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Abstract

Intracavity phase interferometry is sensing technique developed at UNM, in which a

physical quantity to be measured is put as integral part of a mode-locked laser. It

relies on the fact that any intracavity phase shift of an intracavity pulse will result

in a frequency change of the whole pulse train.

The implementations of IPI requires the operation of a mode-locked laser in which

two pulses circulate independently, i.e. with no phase coupling between them. IPI

has been demonstrated with a variety of laser systems, to detect either non-reciprocal

effects (such as rotation, magnetic field), or phase changes that can be made periodic

at the repetition rate of the laser cavity. The purpose of this work is to study the

feasibility of applying this technique to the measurement of non-periodic (i.e. slow)

changes in optical path. The new concept to measure sub-nanometer displacement

uses an optoelectronic modulator (EOM) inside the cavity. The operation of the

mode-locked laser after insertion of such an element in its cavity is analyzed.
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Several laser systems have been tried for the implementation of IPI. Two of them

are presented in this thesis. The first one is a Nd:YVO4 laser, mode-locked by a

multiple quantum wells (MQW) saturable absorber. The presence of a solid state

saturable absorber introduced a dead band in the beat note response of the system.

A new coupling between group and phase velocity was discovered experimentally,

and explained through simulation. This coupling affects negatively the operation

of the system, since the repetition rate is no longer a reliable fixed quantity. The

coupling could be eliminated by replacing the MQW with a dye jet absorber. A first

demonstration of a slow optical path change (in the nm range) was made.

The system that appeared at first the most promising is the intracavity optical

parametric oscillator (OPO) synchronously pumped by a mode-locked Ti:Sapphire

lasers. Bringing the unstable behavior of that laser under control proved consider-

ably more difficult than anticipated, and led to an extensive theoretical analysis of

the laser. The instabilities arise from both intensity and phase fluctuations in the

OPO pulse train. We simulate the second order nonlinear interactions taking place

inside the nonlinear crystal of the OPO, using a new approach in the frequency do-

main, valid down to a few optical cycles, and taking into account the dispersion of

the crystal to all orders. Phase mismatched processes draw our attention as they

introduce large effective nonlinear refractive indices (creating self-phase- and cross-

phase-modulation) that result in a coupling of intensity and phase instabilities.

A full numerical model of coupled Ti:Sapphire and OPO cavities is established

by parameterizing the gain, loss, dispersion and nonlinearities. The pulse evolu-

tion of both Ti:Sapphire and OPO is examined at each cavity round trip using the

ABCD matrix method in temporal domain invented in this dissertation. The simu-

lation reproduces the observed unstable operation. However, islands of stability are

found. That is an operation observed to be stable against perturbation of any of the

parameters.

vii



Contents

List of Figures xiii

List of Tables xxviii

Glossary xxix

1 Introduction 1

1.1 The definition of CEO, CEP and beat note . . . . . . . . . . . . . . . 2

1.2 IPI applied to sub-nm displacement . . . . . . . . . . . . . . . . . . . 4

1.2.1 IPI applied to periodic change in optical path length . . . . . 4

1.2.2 IPI applied to slow changes in optical path length . . . . . . . 5

1.3 Implementations of IPI . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Spatial and temporal stability study of pulse propagation in res-

onators 8

2.1 ABCD matrix in spatial domain and beam propagation . . . . . . . . 9

2.2 The concept of cavity oscillation and damping coefficient . . . . . . . 11

viii



Contents

2.3 ABCD matrix in temporal domain and pulse propagation . . . . . . . 14

2.4 Experimental search for the damping coefficient . . . . . . . . . . . . 18

2.4.1 Attempt at direct measurement . . . . . . . . . . . . . . . . . 18

2.4.2 Indirect determination through 2-level system analogy . . . . 20

2.5 Time versus space matrix . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Optoelectronic modulator inside laser cavity 22

3.1 Mechanisms of phase and amplitude modulator . . . . . . . . . . . . 23

3.2 Phase modulator inside the cavity acting as a Fabry-Perot etalon . . 24

3.3 Simulation of Fabry-Perot effect of the EOM . . . . . . . . . . . . . . 27

3.4 Amplitude modulator combined with PBS and two arms . . . . . . . 30

3.5 Amplitude and phase of the return pulse . . . . . . . . . . . . . . . . 32

3.5.1 Near a complete polarization rotation (ϕ close to π) . . . . . . 35

3.5.2 Small polarization rotation (ϕ close to zero) . . . . . . . . . . 37

3.5.3 Δ near π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Nd:YVO4 laser for IPI 39

4.1 Experimental setup with and displacement measurement . . . . . . . 40

4.1.1 The vanadate laser . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Saturable absorber and generation of a pulse pair . . . . . . . 41

4.1.3 Displacement measurement with a dye jet

saturable absorber . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



Contents

4.2 Experimental setup with MQW and beat note measurement . . . . . 44

4.2.1 Beat note measurements . . . . . . . . . . . . . . . . . . . . . 46

4.3 Coupling of phase and group velocity through MQW . . . . . . . . . 46

4.3.1 Experimental setup and results . . . . . . . . . . . . . . . . . 46

4.3.2 Saturable absorption and group velocity . . . . . . . . . . . . 48

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Intracavity pumped OPO for IPI 53

5.1 Experimental setups . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 OPO and pump cavities of equal length . . . . . . . . . . . . . 54

5.1.2 OPO cavity of twice the length of the pump cavity . . . . . . 59

5.2 Alignment procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Instability issues, and attempts to eliminate them . . . . . . . . . . . 63

6 Simulation of second order nonlinear interactions 67

6.1 Nonlinear equations in frequency domain . . . . . . . . . . . . . . . . 68

6.1.1 Summary of the theoretical model . . . . . . . . . . . . . . . . 70

6.1.2 Outline of the numerical approach . . . . . . . . . . . . . . . . 70

6.1.3 Quasi-Phase Matching . . . . . . . . . . . . . . . . . . . . . . 73

6.1.4 Comments on the simulation . . . . . . . . . . . . . . . . . . . 75

6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



Contents

6.2.1 SHG only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 SFG only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.3 DFG only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Including all experimental conditions . . . . . . . . . . . . . . . . . . 94

6.3.1 Optimization of input pulse parameters . . . . . . . . . . . . . 95

6.3.2 Pulse center shift after one passage . . . . . . . . . . . . . . . 96

6.3.3 Wavelength shift at each passage . . . . . . . . . . . . . . . . 101

6.3.4 Near Phase-matched interactions . . . . . . . . . . . . . . . . 104

6.3.5 Phase mismatched interactions . . . . . . . . . . . . . . . . . 106

6.3.6 Gain of OPO at different pump levels . . . . . . . . . . . . . . 108

7 Simulation of coupled Ti:Sapphire and OPO cavities 110

7.1 Presentation of the problems . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Coupled cavities algorithm . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Energy evolution . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.2 Chirp evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.1 Damping effect . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.2 GVD of Ti:Sapphire and OPO cavities . . . . . . . . . . . . . 121

7.3.3 Gain and loss parameters . . . . . . . . . . . . . . . . . . . . 124

7.3.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



Contents

7.3.5 Cavity detuning and wavelength tracking . . . . . . . . . . . . 128

7.3.6 Cavity length fluctuation study . . . . . . . . . . . . . . . . . 129

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusion and future work 135

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 Fiber based IPI nanoscope . . . . . . . . . . . . . . . . . . . . 136

8.2.2 Frequency domain Optical Parametric Amplification . . . . . 138

References 139

A Coupled NL wave equations derived in frequency domain 143

A.1 Quasi-Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B Matlab code for coupled Ti:Sapphire and OPO cavities 149

C Fortran code for second order nonlinear interactions 157

xii



List of Figures

1.1 The phase modulator is inserted in a linear cavity in which two pulses

circulate, represented here at each end of the cavity. Their crossing point

is in the middle of the cavity. D is the beat note detector. D1 is the

detector that extract the laser signal to drive the phase modulator. The

purpose of the phase modulator is to add a phase shift on only one of the

two pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Pockels cell is inserted in a linear cavity in which two pulses circulate,

represented here at each end of the cavity. The purpose of the Pokels cell

is to deflect — totally or partially – the red pulse in the upper arm of the

end-of-cavity interferometer. P is a polarizing beam splitter, D the beat

note detector. This beat note changes linearly with the displacement ΔL

of mirror REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The beam waist (top) and the inverse of curvature of wavefront (bot-

tom) is plotted as a function of round trips. The model is a typical

Ti:Sapphire laser with wavelength at 795nm, beam waist of 211μm, cav-

ity length d = 89cm and equivalent radius of curvature R = 92.5cm. The

damping coefficient is ε = 0.01. . . . . . . . . . . . . . . . . . . . . . . 13

xiii



List of Figures

2.2 Oscillation period in round trips as a function of the cavity parameters

R− d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The pulse width (top) and the chirp (bottom) is plotted as a function of

round trips. The model is a typical Ti:Sapphire laser with wavelength

at 770nm, pulse width about 100fs and pulse energy fixed around 27.5nJ.

The Ti:Sapphire crystal is 3mm long with a Kerr coefficient of 10.5×10−16

cm2/W. The dispersion of the cavity is -800fs2. The damping coefficient

is ε = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The sketch of an experimental setup to measure the damping coefficient

of a Ti:Sapphire cavity. (a) The laser design with AOM inside the cavity.

(b) A magnified look at the end of cavity, with a small pertubation to the

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Sketch of a experimental setup to measure the phase delay introduced

by an EOM inside a laser cavity. The EOM is driven by AC voltage at

RF frequency of half the cavity repetion rate. Two pulses are combined

through a delay line, the beat note is measured as a function of voltage

amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Beat frequency plotted as a function of voltage amplitudes. . . . . . . . 25

3.3 Sketch of a experimental setup to measure the group delay introduced by

the EOM inside a laser cavity.The EOM is driven by an increasing DC

voltage (-1kV to 0V). The repetition rate is measured as a function of

voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Cavity round trip time plotted as a function of DC voltage. . . . . . . . 27

3.5 transmission |T | (black), phase φ/π (red) and dφ/dδ (blue) of a FP are

plotted as a function of δ. . . . . . . . . . . . . . . . . . . . . . . . . . 28

xiv



List of Figures

3.6 Simulation of the group delay versus voltage on the EOM, using dn(V )/dΩ =

[3 × 10−17 − 0.6 × 10−22 · V]s, the later value obtained from a fit to the

experimental data of (Fig. 3.4). . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Since there are two pulses circulating in the cavity, the detectors D1 or D2

(bottom part of the figure) record a signal at 180 MHz, which is divided

by 2, phase adjusted, amplified before being sent to the EOM. Unless the

two pulses returning to the polarizing beam splitter are exactly dephased

by π (relative displacement of λ/4 of the two mirrors of the end-cavity

interefometer) the “red pulse” will be attenuated as sketched in the graph

“pulse intensity at modulator (180MHz)”. Because of the reduction of

intensity of the “red pulses”, a component at 90 MHz appears in the

spectrum analyzer recording of the pulse train on detector D2. That 90

MHz component is used in a feedback loop to maintain the bias of the

phase modulator for the minimum loss condition, which corresponds to

zero signal at 90 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 The signal recorded by detector D1 is now divided by 4. The “blue” pulse

crosses the modulator at the null of the electric field. The “red” pulse

crosses at the (+) and (-) peaks of the modulation. . . . . . . . . . . . 33

3.9 The normalized intensity of the return pulse is plotted as a function of Δ

for ϕ from 0 to π, with π/8 interval . . . . . . . . . . . . . . . . . . . . 36

3.10 The phase change of the return pulse is plotted as a function of Δ for ϕ = π 36

3.11 The phase change of the return pulse is plotted as a function of Δ for

ϕ = 0.03π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xv



List of Figures

4.1 The linear setup of a diode-pumped Nd:YVO4 laser. A saturable absorber

(S.A.) is located in the middle of the linear cavity, with two identical

lenses to focus the beam tightly in the saturable absorber. A pinhole is

inserted after one of the lenses to assist passive mode-lock For beat note

measurement, the EOM and PBS with two subcavities replace the other

end of the cavity after the laser is prealigned. . . . . . . . . . . . . . . . 41

4.2 Linear mode-locked Nd:YVO4 laser with dye jet in the middle of the cavity.

A thin phase modulator is placed in the reference arm to create a beat note. 43

4.3 The beat note is measured as a function of displacement due to the applied

DC voltage on the phase modulator. A total displacement of 250 nm has

been measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The beat note is measured as a function of the peak to peak voltage on

the phase modulator. The data deviated from a straight line that passes

through origin indicates the deadband. . . . . . . . . . . . . . . . . . . 45

4.5 Linear mode-locked laser producing two intracavity pulses E+ and E−

per cavity round-trip. G is the gain medium (Nd:YVO4), M the multiple

quantum well absorber, and L are two AR-coated lenses for tight focusing

of the beam in the MQW absorber at Brewster angle. The detector D

is to monitor the repetition rate. Insets c) and d) illustrate two extreme

cases where the nodes of the standing wave coincide with either the nodes

of MQW, or the anti-nodes of MQW. which corresponds to minimum or

maximum saturation respectively. These two conditions correspond to

a different saturable absorption, hence a different impact on the group

velocity of the pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvi



List of Figures

4.6 Comparison of the experimental data with simulation. The repetition rate

of the laser is plotted as a function of cavity length shortening. Left: the

departure in repetition rate from 90 MHz when the MQW is at the center.

Right: the departure in repetition rate from 85 MHz, when the MQW is

off center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 The repetition rate plotted as a function of the cavity shortening with a

non-resonant MQW in the middle of the cavity. . . . . . . . . . . . . . 50

4.8 (a) Linear mode-locked Ti:Sapphire laser with MQW in the middle of

the cavity and an end mirror mounted on a piezoelectric ceramics (PZT).

(b) Repetition rate of the laser recorded as a function of the laser cavity

length. A deviation from the straight line is present with a modulation

period of half the wavelength. . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 The sketch of an intracavity OPO pumped by a Ti:Sapphire with equal

cavity length. The focal length of the lens for 532 nm is f = 6 cm, and the

radius of curvature of the two curved mirrors is R = 7.5 cm. The beam is

focused onto the MQW by a lens with focal length f = 8 cm. The radii

of curvature of the two curved mirror at the end of Ti:Sapphire cavity are

both R = 10 cm. The radii of curvature for both of the curved mirrors

for OPO cavity are R = 5 cm. . . . . . . . . . . . . . . . . . . . . . . 55

5.2 The laser outputs taken from a 2% OC are plotted as a function of pump

power for different pumping optics alignments. . . . . . . . . . . . . . . 56

5.3 OPO pulse train monitored on a digital oscilloscope. The capture time

on each screen shot is 5 μs. These two screen shots are taken within 2

minutes. (a) two pulse operation, (b) one pulse operation . . . . . . . . 59

xvii



List of Figures

5.4 The sketch of an intracavity OPO pumped by a Ti:Sapphire of half cavity

length. The focal length of the lens for 532 nm is f = 4 cm, and the radii

of curvature of the two curved mirrors is R = 5 cm. The pair of SF10

prisms is separated by 24 cm. A negative GVD mirror (-150 fs2) is used

as the end mirror. The laser beam is focused into the PPLN crystal by a

lens with focal length f = 3.6cm. It is then focused into MQW by another

lens with focal length f = 3.6 cm. The radii of curvature for both of the

curved mirrors of the OPO cavity is R = 5 cm. . . . . . . . . . . . . . . 60

5.5 OPO and Ti:Sapphire pulse trains monitored on a digital oscilloscope.

The yellow trace on the top is OPO, and the blue trace on the bottom is

Ti:Sapphire. The capture time for the screen shot is 5 μs. The intensity

of the Ti:Sapphire is much higher so the two pulse trains are shown at

different amplitude scales. . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Figure (a) Shows an oscilloscope recording at 1 ms/division of (top) the

RF square wave at 90 MHz, and (bottom) a 0.64kHz beat note recorded

on the detector D. (b) Shows a plot of the beat note versus voltage applied

to the phase modulator. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Double OPO pulse train monitored on a digital oscilloscope. The capture

time for each screen shot is 5 μs. (a) without SHG from LBO, (b) with

SHG from LBO - the two pulse trains can hardly be distinguished. . . . 64

5.8 OPO pulse train and electrical signals monitored on a digital oscilloscope.

Yellow trace is the OPO pulse train at 1200nm, green trace is the modu-

lating voltage on the piezo, and blue trace is the signal obtained from the

differential amplifier followed by DC amplifier. The piezo is modulated at

different frequencies 11 Hz (a) and 22 Hz (b). . . . . . . . . . . . . . . 66

xviii



List of Figures

6.1 Diagram illustrated the different sum and difference frequency processes

involved in the intracavity pumped parametric oscillator. Only the optical

parametric process ωp = ωs + ωi is phase matched. . . . . . . . . . . . . 69

6.2 Phase-matched SHG energy evolution of cw (solid line) and pulse (dashed

line), red for pump and blue for SH. The peak intensity of the (funda-

mental) short pulse (100 fs) is the same as the intensity of the cw case,

which is approximately 5× 1013 W/m2. The pulse energy is plotted as a

function of distance (initial energy normalized to 1). The cw intensity is

also plotted, normalized to the initial value of the fundamental. . . . . . 76

6.3 Phase-mismatched SHG energy evolution of cw (solid line) and pulse

(dashed line), red for pump and blue for SH. The two cases have same

peak intensity and the energies are normalized. The period varies with

different intensities for cw SHG. . . . . . . . . . . . . . . . . . . . . . 78

6.4 Phase-mismatched SHG cw phase modulation. The pump phase (red,

right scale) has a linear slope along propagation with some modulation,

while the phase variation of the second harmonic (blue, left scale) is much

steeper, but nearly perfectly linear. . . . . . . . . . . . . . . . . . . . 79

6.5 Phase-mismatched SHG with continuous waves. Each data point is the

electrical field of pump (red) or second harmonic (blue) integrated over

time and plotted in the complex plane. The purpose is to indicate the

amplitude and phase evolution of the field vectors as they propagrate

through the crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xix



List of Figures

6.6 Phase-mismatched SHG pulse propagation. The phase of the pump (red

curve, right scale) and that of the second harmonic (blue curve, left scale),

are plotted as a function of distance. The phase are defined as ϕavg =∫
ϕ(t)I(t)dt/

∫
I(t)dt. The pump pulse (100 fs) has a peak intensity of

about 5× 1013 W/m2. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.7 Phase-matched SHG with pulses. Each data point is the electrical field of

pump (red) or second harmonic (blue) integrated over time and plotted in

the complex plane. The purpose is to indicate the amplitude and phase

evolution of the field vectors as they propagrate through the crystal. . . . 82

6.8 Phase-mismatched SHG with pulses Each data point is the electrical field

of pump (red) or second harmonic (blue) integrated over time and plotted

in the complex plane. The purpose is to indicate the amplitude and phase

evolution of the field vectors as they propagrate through the crystal. . . . 83

6.9 Phase-mismatched evolution of the second harmonic in SHG. . . . . . . 83

6.10 Phase-mismatched evolution of the pump pulse intensity in SHG. . . . . 84

6.11 Phase-matched SFG energy evolution for cw (solid line) and pulse (dashed

line) cases respectively. Initial intensities are 3×1013W/m2(pump) and 2×
1013W/m2(signal) for both cw and pulse. Red stands for pump frequency,

magenta for signal and green for sum. . . . . . . . . . . . . . . . . . . 85

6.12 Phase-matched SFG energy evolution for cw only. Initial intensities are

4.5 × 1013W/m2 (pump) and 0.5 × 1013W/m2 (signal). Red stands for

pump frequency, magenta for signal and green for sum. As the signal

wave vanishes the SFG turns into DFG for sum and pump frequencies.

When the sum energy decreases to zero it returns to the initial condition

of SFG and repeats these processes. . . . . . . . . . . . . . . . . . . . 86

xx



List of Figures

6.13 Phase-mismatched SFG energy evolution for cw (solid line) and pulse

(dashed line) cases respectively. Initial intensities are 3×1013W/m2(pump)

and 2 × 1013W/m2(signal) for both cw and pulse. Red stands for pump

frequency, magenta for signal and green for sum. . . . . . . . . . . . . . 87

6.14 Phase-mismatched SFG for cw pump and sum. Each data point is the

electrical field of pump (red) or sum (blue) integrated over time and plot-

ted in the complex plane. The purpose is to indicate the amplitude and

phase evolution of the field vectors as they propagrate through the crystal. 87

6.15 Phase-mismatched SFG pump and sum pulses. Each data point is the

electrical field of pump (red) or sum (blue) integrated over time and plot-

ted in the complex plane. The purpose is to indicate the amplitude and

phase evolution of the field vectors as they propagrate through the crystal. 88

6.16 Phase-mismatched evolution of the pump pulse in SFG. . . . . . . . . . 88

6.17 Phase-mismatched evolution of the signal pulse in SFG. . . . . . . . . . 89

6.18 Phase-mismatched evolution of the sum pulse in SFG. . . . . . . . . . . 89

6.19 Phase-matched (dashed line) and quasi-phase-matched (solid line) DFG

processes. Red stands for pump frequency, blue for signal and yellow for

idler. The propagation distance is 100μm and the PPLN grating period

is 20.23μm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.20 Quasi-phase-mismatched DFG processes. Red stands for pump frequency,

blue for signal and yellow for idler. The propagation distance is 1mm and

the PPLN grating period is 22μm. . . . . . . . . . . . . . . . . . . . . 91

xxi



List of Figures

6.21 Quasi-phase-matched DFG processes for pulses. Each data point is the

electrical field of pump (red) or signal (blue) integrated over time and

plotted in the complex plane. The purpose is to indicate the amplitude

and phase evolution of the field vectors as they propagrate through the

PPLN crystal which is 1 mm long and whose grating period is 22μm. . . 92

6.22 Phase-mismatched evolution for pump pulse in DFG. . . . . . . . . . . 93

6.23 Phase-mismatched evolution for signal pulse in DFG. . . . . . . . . . . 93

6.24 Phase-mismatched evolution for idler pulse in DFG. . . . . . . . . . . . 94

6.25 Transmission of pump and signal pulse energy after propagation through

a 1mm PPLN for different initial pulse duration. Blue stands for pump

frequency, red for signal. The pulse duration is varied from 50fs to 300fs,

with 50fs interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.26 Transmission of pump and signal pulse energy after propagation through

a 1mm PPLN for different time delays between them. Red stands for

pump frequency, blue for signal. The delay time is varied from -15fs to

270fs, in 15fs interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.27 Pulse center shift for pump and signal pulse after propagation in a 1mm

PPLN for different delay time. Red stands for pump frequency, blue for

signal. The delay time is varied from -15fs to 270fs, with 15fs interval. . . 97

6.28 The group delay in a 1mm PPLN crystal for signal wavelength from

1.06μm to 1.26μm calculated from Sellmeier equation. . . . . . . . . . . 98

6.29 Pulse center shift for pump pulse after propagation in a 1mm PPLN for

different signal wavelengths (1110 to 1170nm with 10nm interval) at dif-

ferent delay time (60, 90, 120, 150fs). . . . . . . . . . . . . . . . . . . . 99

xxii



List of Figures

6.30 Pulse center shift for signal pulse after propagation in a 1mm PPLN for

different signal wavelengths (1110 to 1170nm with 10nm interval) at dif-

ferent delay time(60, 90, 120, 150fs). . . . . . . . . . . . . . . . . . . . 99

6.31 Relative pulse center shift between pump pulse and signal pulse after prop-

agation in a 1mm PPLN for different signal wavelengths(1110 to 1170nm

with 10nm interval) at different delay time(60, 90, 120, 150fs). . . . . . . 100

6.32 Wavelength shift for signal pulse after propagation in a 1mm PPLN for

different delay time. The delay time is varied from -60 fs to 330 fs, with

30 fs interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.33 Wavelength shift for signal pulse after propagation in a 1mm PPLN as

a function of signal wavelength for different delay time 90fs (blue), 120fs

(black) and 150fs (red). . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.34 Wavelength shift for signal pulse after propagation in a 1mm PPLN for

different wavelength (1130 to 1150nm), delay (60 to 150fs) and chirp co-

efficient (0 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.35 The transmission of pump (blue) and signal (red) pulses after propagation

for signal wavelength from 1108nm to 1214nm . . . . . . . . . . . . . . 104

6.36 The transmission of pump (blue) and signal (red) as a function of sig-

nal wavelength for chirp coefficient 0(solid lines), 0.5(dashed lines) and

1(dash-dot lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.37 Phase shift of pump (blue) and signal (red) as a function of the intensity

of the signal. As is often the case, the cross-phase modulation is larger

than the self-modulation. . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.38 Effective n2 of pump (blue) and signal (red) as a function of signal wave-

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xxiii



List of Figures

6.39 Effective n2 of pump (blue) and signal (red) as a function of signal wave-

length for chirp coefficient 0 (solid lines), 0.5 (dashed lines) and 1 (dash-

dot lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.40 OPO gain as a function of signal pulse energy at three pump levels. . . . 108

6.41 Pump depletion as a function of signal pulse energy at three pump levels. 109

7.1 (a) Sketch of the intracavity pumped OPO. The OPO cavity is twice as

long as the Ti:sapphire cavity. (b) top: signal applied to the modula-

tor. Bottom: beat note signal. (c) Beat note recording versus signal on

modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Simulation of the intracavity pumped OPO. . . . . . . . . . . . . . . . 114

7.3 The parameters we choose to run the simulation for coupled Ti:Sapphire

and OPO cavities are listed in each column. The red indicate the stable

range with quasi-equilibrium solutions. . . . . . . . . . . . . . . . . . . 119

7.4 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 120

7.5 GVD=-1700fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 121

7.6 GVD=-1600fs2 (pump), 900fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 122

xxiv



List of Figures

7.7 GVD=780fs2 (pump), -500fs2 (signal); Linear loss=11% (pump), 7% (sig-

nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 123

7.8 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.16-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 124

7.9 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=10% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.9-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm . . . . . . . . . 125

7.10 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1136nm . . . . . . . . . 126

7.11 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note: Pump

energy starts from 80% as before and signal energy starts from 180%. . . 127

7.12 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note: A sudden

change of -0.5fs is applied to the cavity round trip time. . . . . . . . . . 128

7.13 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note: A sudden

change of 1.7fs is applied to the cavity round trip time. . . . . . . . . . 129

xxv



List of Figures

7.14 The blue solid line is a set of normally distributed pseudorandom numbers

plotted as a function of round trip time. The noise amplitude (in fs) is

proportional to round trip counts, and frequency is 25 MHz. The red

dotted line is the square of the noise. . . . . . . . . . . . . . . . . . . . 130

7.15 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note:Cavity

round trip time fluctuation (Fig. 7.14) is added to the cavity round trip

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.16 The blue solid line is a set of normally distributed pseudorandom numbers

plotted as a function of round trip time. The noise amplitude (in fs) is

proportional to round trip counts, and frequency is 2.5 MHz. The red

dotted line is the square of the noise. . . . . . . . . . . . . . . . . . . . 131

7.17 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note: Cavity

round trip time fluctuation (Fig. 7.16) is added to the cavity round trip

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.18 The blue solid line is a set of normally distributed pseudorandom numbers

plotted as a function of round trip time. The noise amplitude (in fs) is

proportional to round trip counts, and frequency is 0.25 MHz. The red

dotted line is the square of the noise. . . . . . . . . . . . . . . . . . . . 132

xxvi



List of Figures

7.19 GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7%

(signal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss

coeff=1.5e6; Damping coeff=0; Initial lambdas=1140nm. Note:Cavity

round trip time fluctuation (Fig. 7.18) is added to the cavity round trip

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.1 Sketch of the fiber laser sensor. Two pulses are made to oscillate in a cavity

made of polarization maintaining (PM) fibers, one propagating on the slow

axis, and the other on the fast axis. A X indicates the crossing point of

the two pulses, where a carbon nanotube (CNT) saturable absorber is

located both for mode-locking and for imposing the pulse crossing point.

At the right end of the cavity, a polarizing beam splitter P separates the

two pulses, one being sent to a reference arm, the other to the arm with

the sensing element. On the left side of the cavity, output couplers and

beam combiners make the two output pulse trains interfere on a detector D137

xxvii



List of Tables

7.1 Gain/loss parameters for the Ti:sapphire laser. . . . . . . . . . . . . . . 116

xxviii



Glossary

CEO Carrier to envelope offset

CEP Carrier to envelope phase

AOM Acousto-optic modulator

EOM Electro-optic modulator

NL Nonlinear

PPLN Periodically poled lithium niobate

SHG Second hamornic generation

SFG Sum frequency generation

DFG Difference frequency generation

PM Phase matching

QPM Quasi-phase matching

τRT Cavity round trip time

νRT Cavity repetition rate

ν Optical frequency

xxix



Glossary

λ Wavelength

L Cavity length

ΔL Displacement

vg Group velocity

vp Phase velocity

Δϕ Relative phase shift

Δν Beat note frequency

n Refractive index

n2 Nonlinear refractive index

χ(2) Second order nonlinear susceptibility

k Wave vector

I Intensity
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Chapter 1

Introduction

Since the invention of the laser and realization of coherent light, there have been

various ways of tailoring laser sources for precision measurements. Intracavity Phase

Interferometry (IPI) is realized as a synthesis of “frequency combs”, “Interferome-

try” and “resonator based laser sensors”. In the case of a continuous laser, utmost

stretching of the coherence time leads to a precisely defined single frequency. Com-

parable precision is achieved through the mode-locking mechanism, creating a train

of equally spaced pulses, of which the spectrum is a frequency comb where each tooth

is defined with the same precision as that of the cw laser. The group velocity of the

intracavity pulse defines the tooth spacing, while the phase velocity determines the

absolute position of this comb. The first tooth of the extended comb with respect to

the origin is called “carrier to envelope offset (CEO)”. Beating the frequency comb

with an unknown frequency is a way of seeking precision measurement in the fre-

quency domain. This work is about beating two entire frequency combs, of the same

tooth spacing but different CEO.

In most interferometric measurements, such as performed with a Michelson inter-

ferometer, a phase change in the optical paths is observed as an amplitude modulation
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in space or time. The sensitivity to a phase perturbation is greater in a resonator.

In a Fabry-Perot for instance, a physical quantity that changes the phase of a res-

onator, is monitored with a change of its transmission. The phase perturbation is

repeated by the average number of round-trips in the cavity. The (Q-times) (Q be-

ing the quality factor) repeated phase perturbation implies improved sensitivity. The

linewidth of a Fabry-Perot can be decreased by inserting gain in the cavity. Inter-

ferometry in an active resonator (laser) makes the best of two worlds: exploiting the

ultimate Q-factor and converting phase into a frequency rather than an amplitude

measurement.

Many physical quantities can be imprinted onto the intracavity light wave. Sub-

nanometer displacement, nonlinear index, rotation of earth, magnetic and electric

field or anything that changes phase velocity produces a carrier to envelope phase

(CEP) shift ΔϕCEP , perceived as a relative displacement of the frequency combs

or shift in CEO. Two pulse trains of the same repetition rate are generated by a

laser in which two intracavity pulses circulate. Any minute relative phase change

(≥ 10−10 radian) between the two intracavity pulses is converted into a frequency

shift between the two pulse trains, measured by beating the two pulse trains emitted

by the laser. Interferometry with ultrashort pulses compared to a continuous wave

interferometry has the advantage that there is no dead band in the measurement,

because the pulses interact only at their crossing point.

1.1 The definition of CEO, CEP and beat note

In a perfect IPI system the physical quantity that changes the optical frequency

between the two combs has no effect on the repetition rate. In this ideal case the

beat between the two combs is actually the beat between the two CEOs. The CEO
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is defined as the change in CEP divided by the pulse period:

f0 =
ΔϕCEP

2π
· νRT , (1.1)

where f0 is the CEO and νRT is the cavity repetition rate.

The latter (CEP) is often defined as the value of the phase of the carrier at the

location of the pulse peak. Such a definition however relies on a somewhat arbitrary

choice of carrier frequency. A better definition is based on a complex description of

the electric field:

E(t) =
1

2
Ẽ(t) + c.c. =

1

2
E(t)eiϕ(t) + c.c. (1.2)

where 1
2
Ẽ(t) is the Fourier transform of the positive frequency part of the Fourier

spectrum of the pulse. The new definition of the CEP is the difference of the phase

ϕ(t1) of the complex field taken at the peak of the amplitude E(t1), and the phase

ϕ(t2) taken at the peak of the real field E(t2) [1, 11]. The time t1 corresponds to

the peak of the envelope, and t2 to a carrier peak. In a laser cavity, the resonance

condition imposed by the cavity length (and the phase velocity) is linked to the time

t1, while the ratio of the cavity length to the group velocity should set the time t2.

IPI measurement is based on the fact that any physical phenomena that changes

the CEP in the cavity will modify the optical frequency. There are however many

things in the cavity that can affect the optical frequency, such as the gain dynamics

and optical elements. The key to this design is to have two pulse trains in the cavity

that share almost all the optical elements with only one exception; one pulse train is

affected by a “sample”, while the other is not. As a result one pulse train will have a

slightly different optical frequency than the other. The relative change in phase Δϕ

between two intracavity pulses per round-trip is measured as a beat note

Δν = Δϕ/(2πτRT ), (1.3)
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where τRT = 1/νRT is the cavity round trip time. Δν is measured when the pulse

trains corresponding to the two pulses are made to interfere outside the laser cavity.

1.2 IPI applied to sub-nm displacement

IPI has the potential of sensing displacements down to 10−8λ. The challenge ad-

dressed in this dissertation is to find a practical, all solid state implementation. Slow

length shortening or elongation, rather than periodic motion in repetition rate fre-

quency, is one of the most promising — and challenging — aspect of IPI. We mainly

attempt analyze and solve the difficult problems encountered in this task. The dis-

tinction between the two types of application of IPI, either to sense periodic or slow

change in optical path length, is made through Sections 1.2.1 and 1.2.2.

1.2.1 IPI applied to periodic change in optical path length

The first requirement of IPI is to create two pulse trains inside a laser cavity (for

example the pulse crossing is established by a saturable absorber element). The

next requirement is to create a phase shift on one of the pulse trains with respect to

the other. One way to do this is to insert a phase modulator inside the cavity and

drive it at half the laser repetition frequency. A typical configuration is illustrated in

Fig. 1.1 This is a classical “colliding pulse mode-locking” configuration which results

in two intracavity pulses meeting exactly in the middle of the cavity. The purpose

of the phase modulator is to add a phase shift on only one of the two pulses. By

overlapping the two pulses through a delay line a beat note Δν is measured:

Δν

νRT
=

Δϕ

2π
=

Δ(nL)

λ
, (1.4)
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Figure 1.1: The phase modulator is inserted in a linear cavity in which two pulses circulate,
represented here at each end of the cavity. Their crossing point is in the middle of the
cavity. D is the beat note detector. D1 is the detector that extract the laser signal to drive
the phase modulator. The purpose of the phase modulator is to add a phase shift on only
one of the two pulses.

where λ is the laser wavelength, n is the refractive index and Δ(nL) is the change

in optical path length.

1.2.2 IPI applied to slow changes in optical path length

IPI is a potential candidate for a nanoscope combining high spatial and temporal

resolutions that are desirable for biomedical imaging. For the precise measurement

of length, the two pulses are going through the same cavity and are only separated at

the end, where they are diverted into two arms of sample and reference. This design

allows us to measure slow changes in the optical path length, which is generated in

a sample inserted in one of the arms. In this context the two arms are called sample

and reference.

The general laser configuration is sketched in Fig. 1.2. At every round trip, one of

these two pulses is deflected to the subcavity terminated by the sample reflector by

the combination of electro-optic modulator and polarizing beam splitter (P ), while

the other pulse circulates in a straight cavity, terminated by the reference mirror
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Figure 1.2: The Pockels cell is inserted in a linear cavity in which two pulses circulate,
represented here at each end of the cavity. The purpose of the Pokels cell is to deflect —
totally or partially – the red pulse in the upper arm of the end-of-cavity interferometer.
P is a polarizing beam splitter, D the beat note detector. This beat note changes linearly
with the displacement ΔL of mirror REF .

(REF ). The signal recorded on the detector D1 shown in Fig. 1.2 is divided by

2 or by 4 to drive a phase locked loop, and applied after amplification and phase

adjustment to the modulator.

1.3 Implementations of IPI

The implementations of IPI requires two pulses circulating inside a laser cavity. It is

required that the corresponding two trains extracted from the cavity be independent

and that no coupling mechanism lock their frequencies together. Although this may

seem an impossible task, it has been realized in various laser systems. A Ti:Sapphire

laser with dye jet saturable absorber has been used to measure electro-optical coef-

ficients [6] and magnetic fields [32]. The highest resolution of 0.17Hz was achieved

with a synchronously pumped OPO [34].

This dissertation is dedicated to the implementation of IPI for the measurement

of nanometer displacements. The simulation of pulse evolution in the laser has been

facilitated by a new ABCD temporal matrix which is introduced for the first time
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in Chapter 2. The study of Electro Optic Modulators (EOM) as the key mechanism

for separating and controlling the two pulses in the cavity is discussed in Chapter 3.

A successful demonstration of nanometer resolution through IPI for length measure-

ments is described in Chapter 4 with a Nd:YVO4 laser. This approach had however

to be abandoned because of complex coupling of phase and group velocity analyzed

in that Chapter. Chapter 5 is devoted to challenges (performance and instability) of

IPI on an intracavity pumped optical parametric oscillator (OPO) platform. Simu-

lation of the second order nonlinear interactions for the Ti:Sapphire laser pumped

OPO is in Chapter 6. In Chapter 7 the modeling of the coupled Ti:Sapphire and

OPO cavity is presented. The model leads to an understanding of sources of am-

plitude and phase instability in this system. In the large parameter space of the

intracavity pumped OPO, an island of stability has been identified.
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Chapter 2

Spatial and temporal stability

study of pulse propagation in

resonators

In this chapter we will introduce a novel cavity matrix method to investigate pulse

propagation in the temporal domain. The pulse evolution of a mode-locked laser

is important in many respects, and particularly interests us because we care about

small phase shifts that may affect the intracavity pulse at each round trip. In anal-

ogy with the ABCD matrix for Gaussian beam propagation, we develop an elegant

description for Gaussian pulse propagation in the temporal domain. Simple yet ef-

fective, we will later use this approach in Chapter 7 to model a complex coupled

cavity system that we built for an IPI application.

We begin with a review of the ABCD matrix in the spatial domain, as it applies

to beam propagation in section 2.1. We proceed to the analysis of laser cavities by

ABCD matrices in section 2.2. We note that the generally accepted “stability cri-
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terium” does not match our general understanding of a stable equilibrium, by which

a departure from the equilibrium is followed by an evolution converging towards the

stable solution.

If the ABCD matrix is applied multiple times to the beam parameters that cor-

respond to the exact cavity solution, the beam waist and radii of curvatures are

unchanged at each round-trip. However, given an initial slight departure from the

exact cavity solution, the beam parameters will oscillate without any damping with

the round-trip index. This does not correspond to the reality of a laser cavity, where

we know that the Gaussian beam parameters converge towards a stable solution,

rather than oscillate indefinitely. In order to mimic a stable resonator, we introduce

a “damping parameter” into the ABCD formalism.

Two experimental attempts to find the value of the damping parameter in a

Ti:sapphire laser are presented in section 2.4. We exploit next the space-time analogy

to create an ABCD formalism in the time domain, and carefully examine the pulse

propagation with chirp in section 2.3. The Chapter concludes with a discussion

on the difference in applying of the ABCD formalism in the temporal and spatial

domains in section 2.5.

2.1 ABCD matrix in spatial domain and beam

propagation

An ABCD matrix [19] is a ray transfer matrix which describes the effect of an optical

element on a laser beam. It can be used both in geometrical optics and for propa-

gating Gaussian beams. The paraxial approximation is always required for ABCD

9
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matrix calculations. Tracing of a light path through an optical system can then be

performed by multiplying this matrix with a vector representing the light ray:

⎛
⎜⎝ y2

α2

⎞
⎟⎠ =

⎛
⎜⎝ A B

C D

⎞
⎟⎠ ·

⎛
⎜⎝ y1

α1

⎞
⎟⎠ (2.1)

where y and α refer to transverse displacement and offset angle from an optical axis

respectively. The subscripts ‘1’ and ‘2’ denote the coordinates before and after an

optical element. For example, a thin lens with focal length f has the following ABCD

matrix:

⎛
⎜⎝ 1 0

− 1
f

1

⎞
⎟⎠ , (2.2)

and propagation through free space over a distance d is associated with the matrix:

⎛
⎜⎝ 1 d

0 1

⎞
⎟⎠ (2.3)

A convenient quantity, labeled the q parameter, has been defined for Gaussian

beams. It concatenates the information on the beam radius w and the radius of

curvature R in a single complex quantity defined by:

1

q
=

1

R
− i

λ

πw2
(2.4)

It has been observed that the modification of the q parameter by an optical element

can be expressed in terms of the elements of the ABCD matrix:

q2 =
Aq1 +B

Cq1 +D
(2.5)

or the equivalent reciprocal form:

1

q2
=

C +D/q1
A +B/q1

(2.6)

10
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where q1 and q2 represent the value of the q parameter before and after the optical

element, respectively. Equation (2.5) is often represented in the form:

⎛
⎜⎝ q2

1

⎞
⎟⎠ =

⎛
⎜⎝ A B

C D

⎞
⎟⎠
⎛
⎜⎝ q1

1

⎞
⎟⎠ . (2.7)

Please note that, for equivalence with Eq. (2.5), a re-normalization of the ‘q’ vector

is needed after the matrix multiplication.

2.2 The concept of cavity oscillation and damping

coefficient

For a cavity characterized by an ABCD matrix, the evolution of the ‘q’ parameter

over N round trips is given by:

⎛
⎜⎝ qN

1

⎞
⎟⎠ =

⎛
⎜⎝ A B

C D

⎞
⎟⎠ ·

⎛
⎜⎝ qN−1

1

⎞
⎟⎠ =

⎛
⎜⎝ A B

C D

⎞
⎟⎠

N−1

·
⎛
⎜⎝ q1

1

⎞
⎟⎠ (2.8)

It can be shown [19] that, for the beam to be trapped in the cavity, there is a stability

condition: −1 ≤ 1
2
(A+D) ≤ 1.

Equation (2.8) is reminiscent of the equation of rotation of a vector E, charac-

terized by the equation:

∂E

∂θ
= iE (2.9)

which has a solution E = E0e
iθ. The differential equation (2.9) can also be repre-

sented by the successive products:

EN = [1 + iΔθ]EN−1 = [1 + iΔθ]NE0. (2.10)

11
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If M represents the ABCD matrix, |U | the unit matrix, qs the steady state solution

of the column vector q, and Δq a departure from equilibrium:

M(qs +Δq) = |U |qs +MΔq = |U |qs + i|U |ΔθΔq (2.11)

expressing that the Δq is a periodic solution around the steady state. In the real

physical world, given a stable cavity, we know that a perturbation Δq will decay

to zero. In order to have a damped solution, one should add an imaginary part to

Δθ → Δθ + iε. Thus replacing the matrix E by

E → E − i|U |ε (2.12)

should lead to the desired damping. In a real laser, the stability results from the

balance of gain and losses. The rays are replenished at a rate determined by the

lifetime of a photon in the empty resonator. One can thus assimilate a damping of

Δq with the loss factor of the cavity. As a simple model of this effect, we associate

a phenomenological damping coefficient ε to the ABCD matrix, by replacing M by

M− ε.

Let us consider here the simplest cavity consisting of a flat mirror and a mirror

of curvature R at a distance d. The ABCD matrix of the cavity, starting from the

flat mirror, is:

⎛
⎜⎝ 1− 2d

R
2d− −2d2

R

−2
R

1− 2d
R

⎞
⎟⎠ =

⎛
⎜⎝ 1 d

0 1

⎞
⎟⎠ ·

⎛
⎜⎝ 1 0

−2
R

1

⎞
⎟⎠ ·

⎛
⎜⎝ 1 d

0 1

⎞
⎟⎠ (2.13)

Since we start at the flat mirror, that is where the waist is located, implying that

the radius of curvature is infinite, and the rays inclination zero. The beam waist at

the flat mirror is:

w2
0 =

λ

π

√
d(R− d) (2.14)

12
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The modified cavity matrix is:

⎛
⎜⎝ 1− 2d

R
2d− −2d2

R

−2
R

1− 2d
R

⎞
⎟⎠+

⎛
⎜⎝ −iε 0

0 −iε

⎞
⎟⎠ . (2.15)

Whenever a parameter — be it w or the curvature R — departs from equilibrium,

it returns to equilibrium with a time constant equal to a fixed number of oscillations,

for a given ε. If ε = 0, the departure from equilibrium oscillates forever without any

damping. Setting ε = 0.01, a damping is clearly added to the oscillations (Fig. 2.1).

Figure 2.1: The beam waist (top) and the inverse of curvature of wavefront (bottom)
is plotted as a function of round trips. The model is a typical Ti:Sapphire laser with
wavelength at 795nm, beam waist of 211μm, cavity length d = 89cm and equivalent radius
of curvature R = 92.5cm. The damping coefficient is ε = 0.01.

The frequency of oscillation depends on the type of resonator: it is a low frequency

for a cavity close to the flat-flat stability limit. The oscillation period is plotted in

Fig. 2.2 as a function of the cavity parameters [in this particular example (R− d)].

13
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Figure 2.2: Oscillation period in round trips as a function of the cavity parameters R− d.

2.3 ABCD matrix in temporal domain and pulse

propagation

Space-time duality and the theory of temporal imaging has been developed by [20, 3].

This duality leads naturally to the conclusion that a quadratic phase modulation in

time is the analog of a thin lens in space, and dispersion in time the equivalent of

propagation (diffraction) in space. Therefore, by a suitable combination of dispersion

and quadratic phase modulation (now a “time lens”), we can synthesize the time-

domain analog of an imaging system. We establish next the analog of the ABCD

matrices in the time domain, which we will apply to the study of mode-locked laser

cavities.

A laser cavity in temporal domain can be treated as a simplified combination of

Kerr lens and dispersion compensation. If we define the time equivalent of the q
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parameter:

1

p
= ϕ̈− 2i

τ 2G
, (2.16)

where ϕ̈ = ∂2ϕ
∂t2

is the second derivative of the phase in the middle of the pulse, and τG

[remembering that τp =
√
2 ln 2τG] is the Gaussian pulse width. With this definition,

the matrix for dispersion is:

⎛
⎜⎝ 1 k′′

0 1

⎞
⎟⎠ , (2.17)

where k′′ = ∂2k
∂Ω2 is the second derivative of wave vector k. If we apply

1

p
=

C + D
p0

A+ B
p0

to Eq. (2.16), using a un-chirped initial 1/p0 = −2i/τ 2G0 we find:

1

p
=

−i

τ 2G0(1 +
4k′′2�2
τ4G0

)
+

4k′′

τ 4G0(1 +
4k′′2�2
τ4G0

)
(2.18)

With the factor 2 in the numerator of the imaginary part of p, the first term obviously

shows the correct expression for the pulse broadening:

τG = τG0

√
1 +

4k′′22

τ 4G0

(2.19)

The second term gives also the correct chirp:

ϕ̈disp =
4k′′

τ 4G0(1 +
4k′′2�2
τ4G0

)
(2.20)

For the chirp induced by some modulation, such as the Kerr effect, we have to use

the matrix:

⎛
⎜⎝ 1 0

chirp 1

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

2π�Kerr

λ
n2

I
τ2G

1

⎞
⎟⎠ (2.21)
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where the second part is the Kerr modulation. When applied to the same initial con-

dition as above, we find indeed that the application of the matrix give an unchanged

pulse width, and a chirp

ϕ̈ =
2πKerr

λ
n2

I

τ 2G
.

In Eq. (2.16), the time correspondent of the focal length f → −1/ϕ̈, and the time

equivalent of the Rayleigh range is ρ0 → τ 2G0/2. Applying the correspondence to

Eq. (2.14), we find that the minimum pulse duration in that cavity is given by:

τ 2G0

2
=

√
k′′(− 2

ϕ̈
− k′′). (2.22)

The time equivalent of the “flat mirror – curved mirror” cavity, is one that starts

from a bandwidth limited pulse at one end, propagates through the (negative) dis-

persion of the cavity, goes through a Kerr self phase modulation, then dispersion

again to the starting point for a round trip:

⎛
⎜⎝ 1 + k′′ϕ̈ k′′(2 + k′′ϕ̈)

ϕ̈ 1 + k′′ϕ̈

⎞
⎟⎠ (2.23)

The result of Eq. (2.14) can be derived from the ABCD matrix, or by simply

identifying the wavefront curvature with that of the mirror:

1

R
=

d

d2 + ρ20
(2.24)

The time equivalent equation is:

− ϕ̈

2
=

k′′

(k′′)2 + (
τ2
G0

2
)2
. (2.25)

where ϕ̈ has to be the applied modulation.
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In Fig. 2.3 we plot the chirp and pulse duration oscillations as a function of

roundtrips. Both parameters are seen to converge to the steady state solutions

Eqs (2.25) and (2.22).

Figure 2.3: The pulse width (top) and the chirp (bottom) is plotted as a function of
round trips. The model is a typical Ti:Sapphire laser with wavelength at 770nm, pulse
width about 100fs and pulse energy fixed around 27.5nJ. The Ti:Sapphire crystal is 3mm
long with a Kerr coefficient of 10.5×10−16 cm2/W. The dispersion of the cavity is -800fs2.
The damping coefficient is ε = 0.01.
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2.4 Experimental search for the damping coeffi-

cient

2.4.1 Attempt at direct measurement

Two experimental designs are implemented to measure the damping coefficient. The

deviation of beam parameters from equilibrium is introduced by an acousto-optic

modulator (AOM), which is much faster than a typical mechanical devices such as a

galvanometric mirror. The two approaches are as follows:

1. A cw Ti:Sapphire laser is built to measure the damping coefficient for ray

displacement–‘y’ parameter. As shown in Fig. 2.4, an acousto-optic modulator

(AOM) is inserted near the end mirror of the cavity. When there is voltage

applied on the AOM, the laser beam is deflected. The deflection angle θ is

proportional to the driving frequency of the applied voltage. The laser is pre-

aligned for the first order of deflection, and then the driving frequency is varied

by a square wave to create a small shift from the equilibrium. The laser then

lases between these two modes. The measurements are taken by a photomulti-

plier tube (PMT) a certain distance away from the end mirror so that the two

modes are well separated. This experimental setup is sketched in Fig. 2.4

2. A laser beam is sent through a Fabry-Perot (extracavity). The input angle is

shifted by an AOM. The output angle is examined as a function of time. It is

an outside cavity experiment as opposed to the previous one.

Both approaches were attempted, using a Ti:Sapphire laser In the first approach

of Fig. 2.4, two mode lasing was successfully achieved with the AOM. When the driv-

ing frequency of AOM is varied by a square wave, a small shift from the equilibrium

is created and we expect to see an intensity oscillation passing through the pinhole.
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Figure 2.4: The sketch of an experimental setup to measure the damping coefficient of a
Ti:Sapphire cavity. (a) The laser design with AOM inside the cavity. (b) A magnified look
at the end of cavity, with a small pertubation to the system.

However the intensity signal measured with PMT only showed the gain recovery of

the Ti:Sapphire (microseconds). The expected oscillations are on the scale of a few

round-trip time, and their frequency should be a function of the cavity configuration,

which can be adjusted with the spacing of the two curved mirrors at each side of the

Ti:sapphire crystal. One essential condition to observe the transients of the cavity

is that the departure from equilibrium be turned on in less than one round-trip.

Instead, with the AOM available, the “perturbation” is turned on adiabatically, in

a time long compared with the frequency to be observed, and probably even long

compared with the damping time that we are seeking to observe.

A successful experiment would require a fast (1 ns) electro-optic deflector, driven

by a square wave. While academically interesting, it was decided not to pursue

further an experiment that required a too large time and financial investment, and
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was distracting from the main goal or the research.

2.4.2 Indirect determination through 2-level system analogy

Whether in space or time, it is difficult at best to pinpoint a physical interpreta-

tion to the damping constant ε. The answer may reside in a experiment performed

previously with a Ti:sapphire laser, which had as objective to study the analogy

between the mode-locked Ti:sapphire laser and a quantum mechanical two-level sys-

tem [30, 31]. The experimental situation was that of a mode-locked ring laser, in

which two pulses can circulate in opposite direction. The intensities Ẽ1Ẽ∗
1 and Ẽ2Ẽ∗

2 in

either direction 1 are the equivalent of the diagonal density matrix elements rho11 and

ρ22 of a two-level system. The off-diagonal element is ρ12 = Ẽ1Ẽ∗
2 , and the two level

system can be “detuned from resonance” by a frequency Δ equal to the difference in

cavity resonance frequency for the two senses of circulation. Rabi oscillations of the

populations ρii as well as of the off-diagonal matrix elements ρij can be produced by

letting the laser evolve with only onedirection oscillating, as initial condition. An

unidirectional initial condition is created by feeding back one direction into the other

with a mirror. At time t = 0, the feedback is blocked by a fast Pockel’s cell, and

Rabi oscillations manifest themselves as alternating directionality in the ring laser.

As in the case of a two-level system, there is an “energy relaxation time” for the

diagonal elements, and a “phase relaxation time” for the off-diagonal elements. The

measured phase relaxation time of 30 ms may be considered as an upper limit to the

damping time constant τrt/ε.

It should be noted that in this particular experiment, the gain and losses remain

constant (there is no change in total pulse energy from one round-trip to the next.

The situation that will be investigated in Chapter 7 involves dynamics of gain and

1Ẽ1 and Ẽ2 are the complex field amplitudes of the pulses circulating counter-clockwise
and clockwise, respectively
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saturable absorption, hence constant changes in pulse energy and duration charac-

terized by much faster time constants. It will be shown in Chapter 7 that the gain

relaxation dynamics plays the same role as a damping coefficient ε.

2.5 Time versus space matrix

For the comparison of time and space matrix, one needs to point out that it is

possible to have both positive and negative dispersion. It automatically results in an

opposite signs of chirp created by the time lens. Therefore the damping coefficient

also has to be opposite signs. For instance, a positive Kerr effect requires negative

dispersion compensation, the pulse before entering the Kerr medium should have a

negative chirp, and ε needs to be positive for proper damping.

The temporal ABCD matrix is more complex than the spatial ABCD matrix in

the sense that the “temporal lens” is modified at every round trip through energy and

pulse duration evolution. Therefore it becomes unpredictable whether the stability

condition is always satisfied or not. However this argument is also true for spatial

ABCD matrix if a Kerr lens is taken into account for the laser cavity design.
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Chapter 3

Optoelectronic modulator inside

laser cavity

One of the most challenging aspects in using intracavity phase interferometry to de-

tect slow changes of phase (slow compared to the cavity round-trip), is the splitting

of the “sample” and “reference” pulses in two separated arms of the cavity. One

possible solution to this challenge is to use an optoelectronic modulator (EOM) to

send the two pulses towards a different path at each half round-trip. The facts that

it will be used inside a laser cavity, and driven by relatively high voltage at radio

frequency add to the complexity. This chapter is devoted to the study of the oper-

ation of the EOM inside the laser cavity. The application to length measurement is

treated in the next chapter. We first explain the function of the EOM as phase and

amplitude modulator outside the cavity in section 3.1. Then we will focus on the

effects taking place when it is brought inside a laser cavity. In section 3.2 we discuss

the Fabry-Perot effect of a phase modulator inside the cavity, both experimentally

and theoretically. Next we study it as an amplitude modulator combined with PBS

which splits the laser pulses into two arms, and demonstrate how it is driven elec-

trically in section 3.4. We are interested in the amplitude and phase of the pulse
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returned from the two arms, and will describe the corresponding beat note signal

that can be generated of this setup in section 3.5.

3.1 Mechanisms of phase and amplitude modula-

tor

An EOM is a device that can be used to control the phase or polarization of an

optical beam using the Pockels’ effect. The latter is a first order electro-optical effect

that introduces a birefringence change. The refractive change along each optical axis

is proportional to a constant or varying electrical field V :

Δn(V ) =
2r

n0d
V = βV (3.1)

where r is the electro-optical coefficient of the material, n0 is the refractive index

when no voltage is applied, and d is the distance between two electrodes where the

voltage V is applied. We define β as the coefficient for Pockels’ effect that will be

measured in section 3.2. The Pockels’ effect occurs only in crystals that lack inversion

symmetry, such as lithium niobate, lithium tantalate or gallium arsenide and in other

noncentrosymmetric media such as electric-field poled polymers or glasses. In this

chapter we will use lithium tantalate which has an r33 = 30.4pm/V.

An EOM could be used as phase or amplitude modulator, depending on the

polarization of the input beam with repect to the crystal axes. The EOM acts as

a phase modulator only when the input beam is linearly polarized along one of the

crystal axes. If the input polarization has components projected on both crystal

axes, the output polarization becomes elliptically polarized. When the elliptical

polarization pass through a polarizing beam splitter, it will be seperated into two

orthogonal polarizations. If we only consider one of the linear polarizations, the EOM
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and polarizer combination provides amplitude modulation. The details related to our

specific setup will be discussed in section 3.5.

The driver electronics are not trivial for an EOM at radio frequency (RF). Pockels’

cells have a non-negligible capacitance. For instance, the capacity of the EOM we

use in the lab is in the order of 10pF, while a typical RF amplifier requires 50Ω load.

Therefore the impedance of the EOM has to be matched to create a transmission

line for the desired RF frequency. We built our own LC circuit based on the design

proposed by John Hall in their frequency comb applications [15, 9]. However, in that

design, the resonant frequency had only a very limited tuning range than could only

be determined by trial and error. Furthermore, we could not achieve a sufficiently

narrow resonance, such that a full 90o rotation of the polarization could be achieved

with the available RF drive. In order to ensure the best performance, a customized

commercial RF amplifier from Amplifier Research is purchased as a dedicated special

driver for our EOM.

3.2 Phase modulator inside the cavity acting as a

Fabry-Perot etalon

The modulator is first inserted inside a mode-locked laser cavity as a phase mod-

ulator.The phase velocity and group velocity of the laser pulse are modified as it

propagates through the modulator by applying voltage on it. If the voltage increases

over time, the phase and group velocity will be reduced with an increasing refractive

index. We define the phase and group velocity delays as:

τp(V ) =
φ(V )

Ω
, (3.2)

τg(V ) =
dφ(V )

dΩ
, (3.3)
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where φ is the phase of the light wave, Ω = c/λ, and “p” and “g” denote “phase”

and “group”.

Figure 3.1: Sketch of a experimental setup to measure the phase delay introduced by an
EOM inside a laser cavity. The EOM is driven by AC voltage at RF frequency of half
the cavity repetion rate. Two pulses are combined through a delay line, the beat note is
measured as a function of voltage amplitudes.

Figure 3.2: Beat frequency plotted as a function of voltage amplitudes.

The phase delay can be measured as the beat note between the two pulses as
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shown in Fig. 3.1. The expression for the beat frequency is:

Δν =
Δφ

2πτRT

=
(2π/λ)Δn(V )

2πτRT

(3.4)

where τRT is the round trip time,  is the length of EOM and Δn(V ) is defined in

Eq. (3.1). Therefore a linear relationship can be found between the beat frequency

and the applied voltage.The slope of Fig. 3.2 is used to calculate β ≈ 1.65× 10−8/V

defined in Eq. (3.1).

The group delay will be measured by monitoring the repetition rate of the laser

illustrated in Fig. 3.3. With the MQW not being in the middle of the cavity, the laser

lases with one pulse per cavity. So we extend one end of the cavity from Fig. 3.1

and observe one pulse operation, which allows us to measure the group velocity

change only due to the voltage on EOM. One would assume that the group delay

also increases linearly with a DC voltage. Counter-intuitively, the group delay is

modulated as we increase the DC voltage from -1kV to 0V. As we can see from

Fig. 3.4 the cavity round trip time is plotted as a function of DC voltage, with a

modulation depth around 80 fs. The explanation of this modulation is that the EOM

acts like a Fabry-Perot(FP) inside the cavity. The group velocity associated with

the FP structure modifies the group delay of the pulses.

Figure 3.3: Sketch of a experimental setup to measure the group delay introduced by the
EOM inside a laser cavity.The EOM is driven by an increasing DC voltage (-1kV to 0V).
The repetition rate is measured as a function of voltage.
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Figure 3.4: Cavity round trip time plotted as a function of DC voltage.

3.3 Simulation of Fabry-Perot effect of the EOM

To explain the periodic structure of the repetition rate, we looked at the phase

modification from a FP etalon. The transmission and phase of a FP is written as:

T =
(1− R)e−iδ/2

1− R · e−iδ
= |T |eiφ, (3.5)

φ = arctan

[
1− R

1 +R
tan

(
δ

2

)]
, (3.6)

where δ = 4πn�
λ

= Ω·n(Ω)·2�
c

when it is normal incidence. The derivative of φ is the

group delay we are interested in:

dφ

dΩ
=

∂φ

∂Ω
+

∂φ

∂n
· ∂n
∂Ω

=
dφ

dδ

(
n

c
+

dn

dΩ
· Ω
c

)
, (3.7)

Fig. 3.5 shows the plot of transmission |T | and phase φ (normalized by π) and

dφ/dδ of a FP as function of δ. The modulation effect is exaggerated as we set
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the reflectivity R of both surfaces to be 0.5. In the experiment, with an AR coating

R = 0.025% the modulation becomes much less and manifests itself as the modulation

of repetition rate (Fig. 3.4).

Figure 3.5: transmission |T | (black), phase φ/π (red) and dφ/dδ (blue) of a FP are plotted
as a function of δ.

In Eq. (3.7), dφ/dδ is known for a given R, and n(V ) can be calculated from

n = n0+βV . The only undetermined term is dn/dΩ in the brackets. We can extract

the appropriate value of dn/dΩ from a fit of the experimental data (Fig. 3.4). Fig. 3.6

is the simulation result of the group delay versus applied voltage on the AOM, using

the fitted value dn(V )/dΩ = [3 × 10−17 − 0.6 × 10−22 · V]s,where V is in volts. The

simulation reproduces both the delay about 30 fs and the modulation deption of

around 80 fs.
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Figure 3.6: Simulation of the group delay versus voltage on the EOM, using dn(V )/dΩ =
[3× 10−17 − 0.6× 10−22 ·V]s, the later value obtained from a fit to the experimental data
of (Fig. 3.4).
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3.4 Amplitude modulator combined with PBS and

two arms

The role of the EOM and PBS combination is to divert every other pulse (remember-

ing that there are two intracavity pulses circulating in the cavity) towards a specific

branch. It is thus placed inside the laser cavity as an amplitude modulator. The

laser beam is linearly polarized at an angle 45 degrees to the crystal axis of the mod-

ulator, and a polarizing beam splitter is placed behind it to separate the horizontal

and vertical polarizations. Let us assume a cavity round-trip frequency of 90 MHz,

and the two pulses operation makes pulse repetition rate 180 MHz. The modulator

can be either driven at the cavity round-trip frequency of 90 MHz (high modulation

frequency, lower peak to peak voltage), or at half that frequency (45 MHz, lower

modulation frequency, higher peak to peak voltage). These two options are analyzed

in the two sections that follow.

Modulator operating at 90 MHz

The 180 MHz signal from a photodiode is divided by 2, amplified, sent through an

adjustable delay, an amplifier, and the modulator, as sketched in Fig. 3.7. The signal

from the fast photodetector D1 is sent through a high pass filter, a TTL converter,

and a divider by 2. An accurate delay line is used to ensure that the zero and maxi-

mum voltages in the modulator correspond to the arrival time of the optical pulses.

A couple of amplifiers are used to boost up the signal to the half-wave voltage. The

pulse train is monitored through detector D2 with an oscilloscope, frequency counter

and spectrum analyzer. With the present system, the mode-locking is considered

“good” when repetition rate fluctuations on the frequency counter are less than 100

Hz.
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Figure 3.7: Since there are two pulses circulating in the cavity, the detectors D1 or D2

(bottom part of the figure) record a signal at 180 MHz, which is divided by 2, phase
adjusted, amplified before being sent to the EOM. Unless the two pulses returning to
the polarizing beam splitter are exactly dephased by π (relative displacement of λ/4 of
the two mirrors of the end-cavity interefometer) the “red pulse” will be attenuated as
sketched in the graph “pulse intensity at modulator (180MHz)”. Because of the reduction
of intensity of the “red pulses”, a component at 90 MHz appears in the spectrum analyzer
recording of the pulse train on detector D2. That 90 MHz component is used in a feedback
loop to maintain the bias of the phase modulator for the minimum loss condition, which
corresponds to zero signal at 90 MHz.

The electrical drive at 90 MHz should ideally be a square wave, which ensures

the pulse seeing the either zero or the maximum voltage when passing through the

EOM twice. This allows more freedom on the delay line to adjust the phase of the

applied RF signal.

The 90MHz signal to the modulator is from zero to a half wave voltage (90 degree
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rotation of the polarization). In the case of the tantalate modulator that we have,

the “zero” requires a bias of -50V, to which we have to add a peak to peak voltage

of 183 V.

Modulator operating at 45 MHz

An alternative to the modulator drive of the previous section is to operate between 0

V (transmitting the “blue” pulse) and ± the half wave voltage ±Vπ. The advantage

is a lower frequency. The disadvantage is that twice the peak-to-peak voltage of the

previous section is required. The desired waveform should have both flat tops and

bottoms, and the symmetry of the waveform must be guaranteed to avoid unwanted

bias beat note, since one of the pulses goes through zero voltage that has a steep

slope. The corresponding set-up is sketched in Fig. 3.8.

3.5 Amplitude and phase of the return pulse

In this section, we will discuss only the pulse that goes through a non-zero voltage

and experiences polarization change, since the other pulse going to the reference arm

always sees zero voltage and is not affected by EOM.

Before entering the modulator, the pulse of our interest is vertically polarized,

along an axis ŷ1, orthogonal to an horizontal axis x̂1. The initial field is [Ex1 =

0., Ey1 = 1. · exp(iωt)]. We project that field on the principal axes ŷm and x̂m of the

modulator (oriented at 45o):

Exm = Ey1 cos θ1 =
1√
2
eiωt

Eym = Ey1 sin θ1 =
1√
2
eiωt (3.8)
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Figure 3.8: The signal recorded by detector D1 is now divided by 4. The “blue” pulse
crosses the modulator at the null of the electric field. The “red” pulse crosses at the (+)
and (-) peaks of the modulation.

The modulator introduces a difference in phase (which we will put on the axis ym)

φ. At the output of the modulator:

Eym =
1√
2
ei(ωt+ϕ). (3.9)

After the modulator, we project again on vertical ŷ and horizontal x̂ axis:

Ex =
1

2

(
1− eiϕ

)
eiωt

Ey =
1

2

(
1 + eiϕ

)
eiωt (3.10)

After the beam has been split by the polarizing beam splitter, the returning beams
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recombine after having been given a relative phase shift Δ introduced by the differ-

ence in two arms:

Ex =
1

2

(
1− eiϕ

)
eiΔ

Ey =
1

2

(
1 + eiϕ

)
(3.11)

The beam returns towards the modulator. Projecting on the modulator axis:

Exm =
1√
2
(Ex + Ey) =

1

2
√
2

[
1 + eiΔ + eiϕ

(
1− eiΔ

)]

Eym =
1√
2
(Ey − Ex) =

1

2
√
2

[
1− eiΔ + eiϕ

(
1 + eiΔ

)]
(3.12)

The modulator imparts another phase change of ϕ on the ŷm component Eym →
Eym × exp(iϕ). The components alongŷ1 and x̂1 of the pulse re-entering the main-

cavity are thus:

Ex1 =
1

4

[(
1− eiϕ

)
+ eiΔ

(
1 + eiϕ

)
+ eiϕ

(
1− eiϕ

)
− eiΔeiϕ

(
1 + eiϕ

)]

Ey1 =
1

4

[(
1 + eiϕ

)
+ eiΔ

(
1− eiϕ

)
+ eiϕ

(
1 + eiϕ

)
− eiΔeiϕ

(
1− eiϕ

)]
,(3.13)

which can be re-written:

Ex1 =
1

4

[(
1− eiϕ

) (
1 + eiϕ

) (
1 + eiΔ

)]

Ey1 =
1

4

[(
1 + eiϕ

)2
+ eiΔ

(
1− eiϕ

)2]
. (3.14)

The normalized intensity of the return pulse is plotted as a function of Δ for dif-

ferent ϕ in Fig. 3.9. The complexity of these equations arises from the fact that

the Michelson type interferometer with the polarizer as beam splitter acts as a wave

plate, since it introduces a phase shift Δ between the two components. The object of

the IPI measurement is precisely to measure the phase shift Δ. The EOM modulator

on the other hand is a voltage dependent waveplate, introducing a phase shift ϕ(V ).
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From this last set of equations, it is obvious that Δ = π returns the correct

polarization independently of ϕ. This is of practical interest, in cases where the

sample arm cannot take the full power of the intracavity pulse. Only a small portion

(small value of ϕ) of the beam is sent towards the sample arm. If Δ is close to π

(between 2π/3 and 4π/3), over 90% of the pulse intensity |Ey1|2 is returned to the

main portion of the cavity [see Fig. 3.9]. A beat note of a frequency proportional to

the elongation of either reference or sample arm can be recorded, as demonstrated

at the end of Chapter 4. The penalty for sending only a weak portion of the pulse

to the sample arm is a reduced phase shift upon return. See Section 3.5.3 for a more

detailed analysis.

Another interesting limit is when ϕ = π: the modulator acts as a half wave

plate, rotates the polarization of one of the two intracavity pulses by 90o, which

sends its full energy to the sample arm. As that pulse returns back, its original

vertical polarization is restored at the modulator, and there are no losses. The

phase difference shift of the returning signal has the value of Δ, and a beat note of

Δν = Δ/(2πτrt) can be measured. This case is analyzed in the next Section 3.5.1.

The limit of ϕ near zero is discussed in Section 3.5.2

3.5.1 Near a complete polarization rotation (ϕ close to π)

There are two special limits to the phase shift ϕ of the EOM: near zero and π where

the minimum return loss occurs. The ideal value is ϕ = π, which corresponds to a

rotation of the polarization by 90o, consistent with the set of Eqs. (3.10). For ϕ = π:

Ex1 = 0

Ey1 = eiΔ (3.15)
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Figure 3.9: The normalized intensity of the return pulse is plotted as a function of Δ for
ϕ from 0 to π, with π/8 interval

The phase of the return pulse is ideally the relative phase difference Δ between two

arms as shown in Fig. 3.10.

Figure 3.10: The phase change of the return pulse is plotted as a function of Δ for ϕ = π
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Let us now consider a small departure from this ideal condition: ϕ = π − ε. For

small ε, the set of Eqs. (3.14) becomes:

Ex1 =
1

4

[
iε (2− iε)

(
1 + eiΔ

)]

Ey1 =
1

4

[
(iε)2 + eiΔ (2− iε)2

]
. (3.16)

The x component of the field represents a loss of the order of ε in field, ε2 in intensity.

Besides the loss of the y component of the field to the x component, it has a phase

shift that remains equal to Δ to first order.

3.5.2 Small polarization rotation (ϕ close to zero)

If ϕ = 0, which means no rotation of the polarization at all, the phase of the return

pulse will contain no information about Δ. If ϕ is small, only a tiny part of the pulse

will be sent to the sample arm and the return pulse contains a small phase shift due

to Δ, therefore produces a much reduced beat frequency. The small ϕ approximation

of Eqs. (3.14) is:

Ex1 ≈ 1

2
iϕ
(
1 + eiΔ

)

Ey1 ≈
[
1 + iϕ− ϕ2

4

(
1 + eiΔ

)]
. (3.17)

As shown in Fig. 3.11, the return phase is no longer proportional to Δ as before,

instead the return phase presents a sinusoidal behavior. This suggests that the beat

note between sample and reference pulses can no longer determine what exactly Δ

is.
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Figure 3.11: The phase change of the return pulse is plotted as a function of Δ for
ϕ = 0.03π

3.5.3 Δ near π

From the previous two sections we find that the relation between return phase and Δ

evolves from a straight line to a sinusoidal curve when ϕ is changed from π to 0.03π.

It is safe to conclude that no matter what value of ϕ is taken (any value between 0

and π), the value of Δ should always be set to a limited region around π. In this

case the beat note retrieves an approximate linear dependence on Δ. The price for

operating at Δ ≈ π is that the bias beat note equals φ/(2πτRT ).

We can introduce a feedback to maintain the polarization along x component

zero. This imposes that we set Δ = π + η, where η is a small value (Δ being

maintained near π by a feedback loop, η being a small phase modulation imposed

by a phase modulator.

If Δ is set close to π, the return phase can be approximated for small ϕ by

ϕ+ 2 · (ϕ/π)2 × (Δ− π). This last approximation results from a fit of Fig. 3.11.
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Nd:YVO4 laser for IPI

The first demonstration of Intracavity Phase Interferometry for displacement mea-

surement was performed with Nd:Vanadate laser mode-locked by saturable absorbers

in Section 4.1. A total displacement of 250 nm in optical path was measured with

the resolution better than 10 nm. While it has successfully demonstrated the capa-

bility of sensing nm displacement by sending only fraction of intracavity power to the

sample arm, the use of flowing dye jet, involving solvents with harmful vapors and

cancerogenic organic dyes is not seen as a viable option for commercial instruments.

The following approach is to test an all solid state laser and saturable absorber com-

bination, where the dye jet is replaced by Multiple Quantum Wells (MQW) as the

saturable absorber. The laser setup is presented in Section 4.2, with a MQW sat-

urable absorber serving as well as mode-locking element and the generator of a pair

of intracavity pulses. Beat note measurements are presented. It was discovered that

the MQW introduces a coupling between the two sets of pulse trains. In section 4.3

further experiments and simulations produce actual evidence of the coupling of phase

and group velocity through MQW, and, in general, nanostructures inside a cavity.
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4.1 Experimental setup with and displacement mea-

surement

4.1.1 The vanadate laser

Nd:YVO4 exhibits a high pump absorption and gain, with a typical laser emission

wavelength at 1064 nm and a fluorescence lifetime around 90 ns [27]. Nd:YVO4

is well suited for passively mode-locked lasers with very high pulse repetition rate.

This feature results mainly from the high laser cross sections and the strong pump

absorption.

For beat note measurement, the Electro-Optic Modulator (EOM) and Polariza-

tion Beam SPlitter (PBS) with two subcavities replace one end of the cavity after

the laser is pre-aligned. When the saturable absorber is set to be in the middle of

the cavity, this geometry leads to an operation with two pulses in the cavity. It is

the configuration of minimal losses because of the mutual saturation in the absorber,

where the two counter-propagating waves collide. As shown in Fig. 4.1, two pulse

trains can be extracted from this cavity and, given appropriate relative delays, made

to interfere on a detector.

The main implementation of the set-up of Fig. 4.1 is to direct one of the two

intracavity pulses towards the reference arm, and the other (via a λ/2 pulse applied

to the EOM) to the sample arm. Each of the pulse trains corresponding to these

two intracavity pulses will have an average carrier frequency given by νref = NL/vp

and νs = N(L + ΔL)/vp = νref + Δν. The interference of the two pulse trains

on a detector gives rise to a beat note Δν = NΔL/vp = νΔL/L, hence a precise

measurement of the length difference ΔL between the two arms of the end-of-cavity

interferometer.
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Figure 4.1: The linear setup of a diode-pumped Nd:YVO4 laser. A saturable absorber
(S.A.) is located in the middle of the linear cavity, with two identical lenses to focus the
beam tightly in the saturable absorber. A pinhole is inserted after one of the lenses to assist
passive mode-lock For beat note measurement, the EOM and PBS with two subcavities
replace the other end of the cavity after the laser is prealigned.

Our Nd:YVO4 laser is pumped by a diode at 808nm. The diode pump with a fiber

output is focused by two lenses into the Nd:YVO4 crystal. The laser setup is sketched

in Fig. 4.1. The Nd:YVO4 laser cavity is terminated at one end by a curved mirror

with a radius of curvature of 10cm. The other curved mirror is transparent to 808nm

and highly reflective at 1064nm. A saturable absorber is located in the middle of

the linear cavity, with two identical lenses to focus the beam tightly in the saturable

absorber. A pinhole is inserted after one of the lenses to assist passive mode-locking.

There is no dispersion compensation components in the cavity, resulting in a pulse

duration of approximately 30 ps.

4.1.2 Saturable absorber and generation of a pulse pair

Saturable absorption by a broadband organic dye [29] was the first mechanism to

initiate mode-locking. It was realized very early that the saturable absorption mech-

anism, being nonlinear, is enhanced in a standing wave configuration. Locating the
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absorber at an end mirror of a linear cavity [29], or in a ring cavity [13], results

in a contrast enhancement of the nonlinear process. In a ring laser [14], the larger

peak power in the antinodes of the standing wave resulted in enhanced saturation

for bidirectional operation, hence a mode of operation with two pulses crossing in

the saturable absorber. A similar situation exists in the linear laser: if a saturable

absorber is located in the middle of the cavity, mutual saturation favors an operation

with two pulses circulating in the cavity and crossing at that location [6]. In presence

of counter-propagating pulses of intensity I1 and I2, the attenuation of either beam

is given by:

dI1,2
dz

= − |α0|
1 + I1,2

Is
+ β I2,1

Is

I1,2, (4.1)

where α0 is the linear absorption coefficient, Is the saturation intensity, and β the

mutual saturation coefficient. Since β = 2 for most homogeneously broadened me-

dia such as dye solution or semiconductor absorbers, the absorption of counter-

propagating pulses of equal intensity will saturate 3 × as easily as one single traveling

pulse [12]. Therefore, two pulse operation, where a standing wave is created at the

pulse meeting point, is favored.

4.1.3 Displacement measurement with a dye jet

saturable absorber

We choose a dye jet saturable absorber (Fig. 4.2) made of Q-Switch V dissolved in

EPH solvent. Because of the motion of the particles in the dye jet, the phase of

the backscattering is randomnized, and there should be no phase coupling between

the two pulses. However, the mode locking operation of the laser is noisy, and the

mode locking is assisted by the EOM. The DC bias voltage on the EOM is -60 V.

With a peak to peak AC voltage of 3.1 V on the EOM, The pulse are here partially
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alternating between the reference and sample arm.

Figure 4.2: Linear mode-locked Nd:YVO4 laser with dye jet in the middle of the cavity.
A thin phase modulator is placed in the reference arm to create a beat note.

Instead of changing the length of the sample arm with a piezoelectric translator,

we change the length of the reference arm by applying a DC voltage to a phase modu-

lator inserted in the reference arm. The beat note is measured,and is proportional to

the elongation of the optical path in the reference arm achieved through application

of a DC voltage on the phase modulator inserted in that path. The voltage applied

on the phase modulator is varied from -100 V to -800V, with 50 V interval. The

optical path change due to the 700 V change on the phase modulator is calculated

to be about 250 nm, given the coefficient for Pockels’ effect measured in chapter 3.

In Fig. 4.3 the beat note is plotted as a function of displacement due to the

applied DC voltage on the phase modulator. There is still some bias beat note from

the system. In total, a displacement of 250 nm has been measured.

Fig. 4.3 shows that we still have a resolution in the nm range, despite the noisy

mode locking behavior of a dye jet vanadate laser. For the first time, we demonstrate

that we can get a beat note even if only a fraction of the pulse energy is sent towards

the sample arm. A beat note change of around 15 kHz is measured as a result of a

total displacement of 250 nm in optical path. According to chapter 3, if the pulse is

sent completely to the sample arm, a 250 nm change in optical path should result in
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Figure 4.3: The beat note is measured as a function of displacement due to the applied
DC voltage on the phase modulator. A total displacement of 250 nm has been measured.

a beat note of 42 MHz instead. The beat note is indeed heavily reduced by the fact

that only a small fraction of the pulse energy is sent towards the sample arm. There

is a simple estimation of this effect. The AC voltage of 3.1V on the EOM introduces

only π/60 phase shift, therefore the return phase is reduced by a factor of 1/1800,

and then generate a beatnote of 23 kHz, which is close to the 15 kHz we measured.

4.2 Experimental setup with MQW and beat note

measurement

The facts that the mode locking operation depends on the dye jet temperature, and

that the position of jet has to be adjusted with laser intensity and that the dye has

a short lifetime, all make the previous setup unsuitable for long time measurements.

Therefore the following experiment is to test an all solid state laser and saturable

absorber combination, where the dye jet is replaced by Multiple Quantum Wells
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(MQW) as the saturable absorber. The MQW substrate is transparent to 1064 nm,

and inserted in the cavity at Brewster angle to minimize the loss due to reflection.

There are several sources of noise and error in a displacement measurement, that

limit the ability to detect a small beat note Δν. A first experiment is to investigate

the beat note that can be produced without using the two arms of the interferometer.

To that effect, the EOM is oriented with its axis parallel to the laser polarization, to

act simply as a phase modulator. Both pulses propagate then only in the reference

sub-cavity. The EOM is driven at the cavity round-trip frequency, with a phase

adjustment such that one of the pulse gets a positive phase increment 2πΔn/λ and

the other a negative increment −2πΔn/λ, where  is the path-length in the EOM.

Figure 4.4: The beat note is measured as a function of the peak to peak voltage on
the phase modulator. The data deviated from a straight line that passes through origin
indicates the deadband.

The laser is operating at 180MHz, with fluctuation of less than 100Hz when EOM

and PBS is not inside the cavity. The beat note is plotted as a function of the voltage

applied on the EOM in Fig. 4.4. The measured frequency becomes noisier when the

voltage approaches zero. This deviation from a straight line that passes through
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origin is a clear evidence of a deadband [26].

4.2.1 Beat note measurements

The beat note is measured as a function of the peak to peak voltage on the phase

modulator. The data deviated from a straight line that passes through origin indi-

cates the deadband, because of the injection locking between two pulse trains. The

observed beat note bandwidth is of the order of 1 kHz, in contrast to the 1Hz band-

width observed with a similar laser system where the MQW is replaced by a flowing

dye jet [32]. In the case of an optical parametric oscillator supporting two intracavity

pulses, a beat note as narrow as 0.17Hz is observed [34]. The experiment described

in Section 4.3 that follows shed light on this anomaly.

4.3 Coupling of phase and group velocity through

MQW

4.3.1 Experimental setup and results

The experimental setup chosen to investigate a potential coupling between phase

and group velocities is sketched in Fig. 4.5 (a), with the MQW located in the middle

of the linear cavity. The MQW bandgap is designed for peak absorption at the

operating wavelength, so that the index of refraction is not affected by saturation

modification [2].

The pulse repetition rate is recorded as a function of cavity length with a fre-

quency counter in the setup presented in Fig. 4.5(a). A slow motor (speed 100 micron

per minute) was used in order to have adequate resolution in recording the repetition
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Figure 4.5: Linear mode-locked laser producing two intracavity pulses E+ and E− per cav-
ity round-trip. G is the gain medium (Nd:YVO4), M the multiple quantum well absorber,
and L are two AR-coated lenses for tight focusing of the beam in the MQW absorber at
Brewster angle. The detector D is to monitor the repetition rate. Insets c) and d) illustrate
two extreme cases where the nodes of the standing wave coincide with either the nodes of
MQW, or the anti-nodes of MQW. which corresponds to minimum or maximum saturation
respectively. These two conditions correspond to a different saturable absorption, hence a
different impact on the group velocity of the pulses.

rate. Piezoelectric ceramics were also used to move the mirrors, but the laser cavity

being unstabilized, the data were obscured by subwavelength drifts of the cavity. For

a linear cavity one expects the repetition rate μRT to be inversely proportional to

the cavity length “vg/2L”. For a small change ΔL in the cavity length, the slope

dμRT/dL = −vg/2L
2 is approximately a constant. However, we observe a modula-

tion of the repetition rate with a periodicity corresponding to a half wavelength as

shown in Fig. 4.5 (b). The MQW used for this experiment has the layout of five 14

nm thick Ga0.75In0.25Al spaced by λ/2 (134nm) layers of GaAs grown at 350oC.
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4.3.2 Saturable absorption and group velocity

Usually the Carrier to Envelope Phase (CEP) value of a pulse in a laser cavity has

no effect on its operation. At a fixed location of a crossing point of two circulating

pulses in a laser cavity, however, the relative CEP of the two pulses defines the

position of the standing wave field. If a nanostructure with high absorption cross

section (or gain) is placed at that location, the absorption will reshape the pulse and

change the group velocity (repetition rate) of the laser. A standing wave Estand =

E+(t) exp(−ikzi)+E−(t) exp(ikzi) is formed at the location of quantum well zi where

two counterpropagating fields of E+ and E− meet. E+ and E− are Gaussian electric

fields with FWHM of
√
2 ln 2τG, E+(t) = E0e

−[(t−τD)2/τ2G] and E−(t) = E0e
−(t2/τ2G),

where τD is the delay time between two pulses at location zi.

The saturation of absorption is governed by an exponential dependence on the

standing wave field [12], for each quantum well

a(t)|zi = a0 exp

[−(
∫ t
0 EstandE

∗
standdτ)

(EsatE∗
satT1)

]
, (4.2)

where Esat is the saturation field and T1 is the fluorescence lifetime. The saturation

field increases with the thickness of the quantum well, as the number of electron

states increases. A saturable absorber with a lifetime longer than the pulse duration,

attenuates the leading edge of the pulse. This results in delaying the center of the

pulse and reshaping the envelope. For a nano-structure saturable absorber and two

pulses per cavity, the MQW does not trace the envelope but only sees the standing

wave at the position of the MQW. As the standing wave moves with respect to

the MQW, the saturation of absorption varies periodically. Two extreme cases of

maximum and minimum saturation are indicated in the inset of Fig. 4.5.

The coupling is simulated for a 30 ps Gaussian pulse at 1064 nm. Each pulse is

modified at the location of the quantum well zi as it propagates through the medium.
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Figure 4.6: Comparison of the experimental data with simulation. The repetition rate
of the laser is plotted as a function of cavity length shortening. Left: the departure in
repetition rate from 90 MHz when the MQW is at the center. Right: the departure in
repetition rate from 85 MHz, when the MQW is off center.

The change in field due to absorption is ΔE±(t) = a(t)Estand exp(∓ikzi), with a(t)

given by Eq. 4.2. As the cavity length scans, the position of the standing wave with

respect to the quantum wells moves from zi to zi+Δz where Δz is the displacement

of an end cavity mirror. The pulse overlap is reduced by changing the cavity length

to the point where the multiple quantum well is not exactly in the middle. Two

situations of fully and partially overlapped pulses are simulated and measured in

accordance to the setup in Fig. 4.5 (a). In our modeling α = [EsatE
∗
satT1][

√
πE2

0τG]

is a dimensionless parameter that defines the saturation. The values of a0, α and τD

are optimized for best fit of data as shown in Fig. 4.6, where a0 = 4× 10−4, α = 0.6,

τD = 0 (full overlap) and τD = 132ps (partial overlap).

Additional experiments

In the absence of coupling, the repetition rate dependence on the cavity length is

a straight line. The data shown in Fig. 4.6 sits beneath this straight line. The
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deviation maximizes when the standing wave has its antinodes at the quantum well

position. The larger attenuation at the leading edge of the pulse, as opposed to the

saturated absorption at the pulse tail, results in a delay of its center of gravity, hence

a net reduction of the pulse group velocity averaged over the cavity. To remove the

modulation effect on the repetition rate, one straightforward approach is to eliminate

the standing wave pattern created when two pulses counter propagate. By moving the

MQW far enough from the cavity center, the operation is automatically changed to

one pulse per cavity. All other conditions being equal, the repetition rate dependence

on cavity length returns a linear relation.

Another approach is to design a non-resonant nano-structure so that there is

little coincidence between the standing wave nodes and the nodes or anti-nodes of

the MQW. With an aperiodical structure (with spacings of 100nm, 104nm, 108nm

and 112nm of GaAs) there is only a small deviation of the repetition rate from the

straight line, as the cavity length is modified.(Fig.4.7)

Figure 4.7: The repetition rate plotted as a function of the cavity shortening with a
non-resonant MQW in the middle of the cavity.

The modulation is totally eliminated with the use of a saturable absorber dye

jet, which does not have any nanostructure. These observations demonstrate that
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localized saturable absorption structures (for instance nanostructures) do affect the

laser repetition rate by introducing a coupling between phase and group velocities.

To further verify our explanation, an experiment was conducted in a Ti:Sapphire

linear laser at 800 nm. Since the substrate is opaque at this wavelength, we have to

use the MQW saturable absorber in reflection. The experimental setup is illustrated

in Fig. 4.8 (a). Recording the repetition rate of the laser as a function of the laser

cavity length for the two pulse per cavity operation, shows the same deviation from

the straight line as takes place with the vanadate laser, with a modulation period of

400 nm (Fig. 4.8 (b)).

Figure 4.8: (a) Linear mode-locked Ti:Sapphire laser with MQW in the middle of the
cavity and an end mirror mounted on a piezoelectric ceramics (PZT). (b) Repetition rate
of the laser recorded as a function of the laser cavity length. A deviation from the straight
line is present with a modulation period of half the wavelength.

51



Chapter 4. Nd:YVO4 laser for IPI

4.4 Conclusion

We have demonstrated IPI response that changes linearly with the displacement ΔL

in the reference arm, in the order of nanometers with a solid state laser, with dye

jet saturable absorber. By replacing the dye jet with a semiconductor absorber we

demonstrate a beat note measurement corresponding to refactive index change in

the cavity. It was discovered that the MQW used as saturable absorber introduces

a coupling between group and phase velocity, resulting in a beat note bandwidth

as large as 10 kHz. Therefore the requirement of IPI that the group velocity be

independent of the signal to be measured is not met. A simple theoretical model

based on saturation has been shown to match very exactly the shape of the group

delay dependence on cavity length [23]. It was therefore concluded that the vana-

date laser with saturable absorber was not the ideal system for Intracavity Phase

Interferometry.
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Intracavity pumped OPO for IPI

In this chapter we report the implementation of IPI using a mode-locked Ti:Sapphire

lasers to synchronously pump an intracavity optical parametric oscillator (OPO).

Synchronously pumped OPOs are good candidates for the IPI application because

the group delays are externally imposed by a pump laser, without having to insert

a physical element that could couple the phases of the intracavity pulses and intro-

duce a dead band. We choose intracavity pumped OPO because the high intracavity

power of a laser provides more gain for the OPO, since the nonlinear effect is pro-

portional to the square of pump intensity. Ti:Sapphire laser is chosen as the pump

laser source because it provides both high power and short pulse duration. We will

demonstrate two types of the experimental setups in section 5.1, and evaluate their

performance and results. The systematic alignment procedure of the OPO is out-

lined in section 5.2. In section 5.3 we discuss the instability issue of the system and

attempts to eliminate it by improving the mechanical, thermal conditions as well as

inserting nonlinear losses as energy limiter.
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5.1 Experimental setups

For an intracavity pumped OPO, the nonlinear crystal is set inside the pump laser

as well as two curved mirrors that are AR coated for the pump wavelength and

HR coated for the OPO wavelength. The nonlinear crystal we use for the OPO is

a periodically poled lithium niobate (PPLN) for its high gain and moderate group

velocity mismatch. The 1 mm long PPLN crystal is Brewster cut to avoid the

feedback to the pump laser. The PPLN is 1 mm thick and 7 mm high, with grating

periods stacked at different height along the mm dimension (every mm): 20.1μm,

20.4μm, 20.7μm, 21μm, 21.4μm, 21.6μm, and 22.9μm. It gives us the freedom of

selecting one of these gratings depending on the pump wavelength and desired signal

wavelength.

The cavity length of the OPO needs to be a multiple of the laser cavity for

synchronization purposes. The realization of IPI requires two pulses per cavity op-

eration, and there are two approaches to it: one is to simply make the OPO twice

as long as the Ti:Sapphire cavity (section 5.1.2); the other is to make them equal

and generate two OPO pulses when the pump pulse passes through the PPLN twice

(section 5.1.1).

5.1.1 OPO and pump cavities of equal length

The first design is to build a cavity of the same length of the laser cavity. The pump

pulse passes through the NL crystal twice to create two pulses. The advantage of

this design is that the OPO cavity remains of a reasonable size. The disadvantage

however is that the two signal pulses created are usually not of the same intensity,

and there is gain competition between them that brings instability to the OPO

operation [35, 33].
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Figure 5.1: The sketch of an intracavity OPO pumped by a Ti:Sapphire with equal cavity
length. The focal length of the lens for 532 nm is f = 6 cm, and the radius of curvature
of the two curved mirrors is R = 7.5 cm. The beam is focused onto the MQW by a lens
with focal length f = 8 cm. The radii of curvature of the two curved mirror at the end
of Ti:Sapphire cavity are both R = 10 cm. The radii of curvature for both of the curved
mirrors for OPO cavity are R = 5 cm.

The Ti:Sapphire laser is pumped by a Millennia CW 532 nm laser with maximum

output power of 10 W. The full sketch of Ti:Sapphire and OPO cavities is shown in

Fig. 5.1. The Ti:Sapphire laser is mode-locked with a MQW mirror in one end of the

cavity. A pair of SF10 prisms separated by about 33 cm provide tunable negative

group velocity dispersion for compensation of the large positive dispersion of other

intracavity components (PPLN, Ti:sapphire). The Brewster cut Ti:Sapphire crystal

is 4 mm long and mounted on a water cooled copper mount. The focal length of the

lens for 532 nm is f = 6 cm, and the radii of curvature of the two curved mirrors is

R = 7.5 cm. The intracavity beam is focused onto the MQW by a f = 8 cm focal

lens.

A challenge in the alignment of any Ti:sapphire mode-locked laser is that the

maximum output power does not coincide with the lowest threshold configuration.
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Figure 5.2: The laser outputs taken from a 2% OC are plotted as a function of pump
power for different pumping optics alignments.

This is because, even though MQW are used for initiating the mode-locking, Kerr

lensing, which may be negligible near threshold, still plays an important role in

the laser operation. Unlike situations where the mode-locked laser is just used as

an oscillator seed for an amplifier, achieving the highest possible output power is

essential for pumping the OPO. To optimize the operation, before inserting the prism

pair, the laser output taken from a 2% OC was recorded as a function of pump power

as shown in Fig. 5.2. Various parameters (distance between curved mirrors around

the gain crystal, position of the Ti:sapphire crystal, pump lens position) were varied

in order to optimize the pumping geometry for maximum output at high pump power.

Up to 600 mW output power has been measured for 8.5 W pump power. The laser

is then mode locked after the prism pair was inserted, and the lasing wavelength was

found to be tunable from 775nm to 810nm. The shortest pulse duration measured

at this stage is around 90 fs at a center wavelength of 790 nm.

In order to pump the OPO inside the laser cavity, we extend the Ti:Sapphire

cavity by adding two curved mirrors. The folding mirror that focuses the laser beam
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into the PPLN crystal has a radius of curvature of 10 cm, and the end mirror for

Ti:Sapphire cavity has the same R = 10 cm. The PPLN is located about 5 cm away

from the folding mirror and 10 cm away from the end mirror. The distance between

these two curved mirrors is measured to be between 13.7 cm and 15 cm in order for

the laser to lase. The radii of curvature for both of the curved mirrors for the OPO

cavity is R = 5 cm. One of them needs to be cut in half for laser beam clearance

(the angles of incidence being kept small to minimize astigmatism). These curved

mirrors are high reflection coated for OPO wavelength from 1060 nm to 1260 nm, and

anti-reflection coated for pump wavelength around 790 nm. The PPLN crystal needs

to be heated to avoid photorefractive damage. It is mounted on a copper plate with

heating wires around the copper plate and a thermocouple attached to the mount. A

temperature controller is used to set the temperature of PPLN to about 10 ◦C above

room temperature to stablize the temperature.

After all the elements are present in the laser cavity we measure the pulse du-

ration by auto-correlation. A minimum of 170 fs pulse duration FWHM could be

achieved by adjusting the amount of glass passing through the prisms. This relatively

large pulse duration is due to the very large positive dispersion of other elements of

the cavity (such as the PPLN) that we are trying to compensate with the pair of

very dispersive SF10 prisms. There was no attempt to compensate the third order

dispersion. The measured 170 fs are consistent with the measurement of the laser

spectrum, which suggest we are close to the time-bandwidth product limit of a Gaus-

sian pulse. The repetition rate of the laser is 108.71 MHz, which corresponds to a

cavity length of 1.38 m.

The length of the two arms of the OPO cavity are chosen based on the timing

of two passages of the laser pump through the PPLN. Let us define the distance

between PPLN and Ti:Sapphire end mirror to be d1, the length of left and right

arms of the OPO to be d2 and d3. There is a simple relation d3 − d2 = 2 · d1 that
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equally spaces the two pulse trains in the OPO cavity, i.e. when one pulse is at the

end of the OPO cavity, the other pulse is at the other end. Therefore with the same

cavity length, the OPO repetition rate is twice that of the Ti:Sapphire’s.

Alignment of the OPO cavity is a difficult procedure, mainly because there is

no detectable fluorescence signal that could be used as a guide, and because of the

stringent length requirement (±1μm) for OPO cavity. We managed to align the

OPO cavity using the procedure detailed in section 5.2. Strong depletion up to

32.5% of the pump has been observed. The pump wavelength is modified by the

OPO pulse. The beam is apertured with razor blades between two prisms to prevent

any shift of the pump wavelength when the OPO is working. The wavelength of

the OPO signal is tunable from 1060nm to 1180nm only by adjusting the cavity

length. The broadest spectral bandwidth measured with the OPO is around 20 nm

at 1160 nm, which indicates a very short signal pulse. A beamsplitter is inserted in

the OPO cavity to extract the two pulses with a proper delay line the pulses meet

at the detector for beatnote measurements. However as shown in Fig. 5.3 (a) the

pulse train of the OPO is unstable. The short pulse duration, compounded with the

instability problem, exacerbated the difficulty in overlapping two pulses in time. We

also tried to overlap the two second harmonics (SH) of the OPO signals which leaks

out through the two focusing mirrors, since this SH inherits the phase information

of the signal. However further stabilization was still needed before an IPI response

could be demonstrated.

It is also difficult in the experiment to realize conditions where the two OPO

pulses have equal intensity. Naturally the OPO pulses which are generated from the

first laser pass are stronger, however the intensity of the two generated OPO pulses

can be equalized or flipped with cavity alignment. The OPO is less stable (i.e. more

unstable) when the two pulses are of more or less of equal intensity (Fig. 5.3 (b)).

This is because:
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Figure 5.3: OPO pulse train monitored on a digital oscilloscope. The capture time on
each screen shot is 5 μs. These two screen shots are taken within 2 minutes. (a) two pulse
operation, (b) one pulse operation

1. The laser pulse is attenuated after one passage.

2. The laser pulse goes through slightly different passages when it comes and goes.

3. There is gain competition between two OPO pulses.

5.1.2 OPO cavity of twice the length of the pump cavity

A straightforward solution to the previous design is to set the OPO cavity length

twice that of the laser. This solution however imposes a 3 m long OPO cavity, which

brings more mechanical instabilities. It is therefore desirable to build a laser cavity

as compact as possible. The final design is sketched in Fig. 5.4.

The Ti:Sapphire laser is pumped by the Millennia CW 532 nm laser with maxi-

mum output power of 10 W. The Brewster cut Ti:Sapphire crystal is replaced by a

3 mm long one with a more stable mount. The focal length of the lens for 532 nm is

f = 4 cm, and the radii of curvature of the two curved mirrors is R = 5 cm. We also
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Figure 5.4: The sketch of an intracavity OPO pumped by a Ti:Sapphire of half cavity
length. The focal length of the lens for 532 nm is f = 4 cm, and the radii of curvature of
the two curved mirrors is R = 5 cm. The pair of SF10 prisms is separated by 24 cm. A
negative GVD mirror (-150 fs2) is used as the end mirror. The laser beam is focused into
the PPLN crystal by a lens with focal length f = 3.6cm. It is then focused into MQW by
another lens with focal length f = 3.6 cm. The radii of curvature for both of the curved
mirrors of the OPO cavity is R = 5 cm.

replace the MQW by a more recent one. We use the same pair of SF10 prisms, but

use a negative GVD mirror (-150 fs2) as the end mirror to shorten the separation of

prism pair to 24 cm. The laser beam is focused into the PPLN crystal by a lens of

focal length f = 3.6cm. It is then focused into the MQW by another lens of focal

length f = 3.6 cm. The radii of curvature for both curved mirrors focusing into the

OPO crystal is R = 5 cm. This setup is the most compact possible cavity that can

be built in our lab with current optics and mounts.

The Ti:Sapphire laser is mode-locked at 780 nm, with the shortest pulse duration

τp = 80 fs measured through auto-correlation. The shorter pulse duration is the

result of a better cavity geometry that enabled us to optimize the spacing between

the two prisms. The repetition rate of the Ti:Sapphire cavity is 180 MHz, which

corresponds to a cavity length of 83 cm. The intracavity power is estimated to be

about 6 W. Therefore the energy per pulse is about 30 nJ. This laser configuration
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is good for the long OPO (twice the pump cavity) cavity.

The spacing between two curved mirrors of the OPO cavity has a narrow range

of 5.15-5.2 cm for the OPO to lase. It is still possible to generate two pulses when

the laser pulse passes through the PPLN twice as in section 5.1.1. We can adjust the

alignment to favor one of them. There are however always two identical pulses per

cavity in the OPO cavity pumped by the Ti:Sapphire pulse train, separated by the

Ti:Sapphire cavity round trip time. There is no restriction on the symmetry of the

arms of the OPO cavity, only the crossing point of the OPO pulses has to be in air.

The output power of the OPO signal is reduced, as compared to the configuration

with equal cavity lengths. The depletion of the pump is up to 14%, measured by the

power meter for pump. The pump wavelength is also modified by the OPO pulse.

The overall performance of this setup is better than the previous one, although the

OPO pulse train is still unstable, and the fluctuation are fed-back to the Ti:Sapphire

pulse train as shown in Fig. 5.5. The delay line is adjusted to overlap the two pulses

onto a slow IR detector. The proper delay was found when the signal on the detector

becomes noisier. However no beat note is observed by translating the delay line yet.

Figure 5.5: OPO and Ti:Sapphire pulse trains monitored on a digital oscilloscope. The
yellow trace on the top is OPO, and the blue trace on the bottom is Ti:Sapphire. The
capture time for the screen shot is 5 μs. The intensity of the Ti:Sapphire is much higher
so the two pulse trains are shown at different amplitude scales.
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Beat note measurement

A phase modulator is inserted in the OPO cavity. It is a 1 mm thick lithium niobate

plate oriented near brewster angle to minimize the loss to the OPO. The RF voltage

applied on the phase modulator is triggered by the repetition rate signal from the

Ti:Sapphire cavity, then divided by two and sent to an electronic delay line. The

beat note can be measured when the OPO cavity is tuned off resonance, at the lasing

threshold. We vary the amplitude of the voltage and measure the beat frequency

correspondingly. The beat frequency is plotted as a function of the amplitude of

the voltage in Fig. 5.6. A linear fit to the data calculates the slope of 3.25Hz/mV,

and can be converted to 2.1×10−7 radian/mV and finally 3.9×10−11 refractive index

change for this LiNbO3 phase modulator. From Fig. 5.6 (b) we can tell that there is

no measurable deadband for the system, although there is a substantial noise.

Figure 5.6: Figure (a) Shows an oscilloscope recording at 1 ms/division of (top) the RF
square wave at 90 MHz, and (bottom) a 0.64kHz beat note recorded on the detector D.
(b) Shows a plot of the beat note versus voltage applied to the phase modulator.
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5.2 Alignment procedure

The alignment of the OPO cavity is extremely difficult, as there is no detectable

fluorescence, and the cavity length has to be matched within microns. We developed

a standard alignment procedure, injecting the beam from a CW diode laser at the

designed signal wavelength, which is 1.2 μm. The alignment laser beam is sent to

the laser cavity using a pellicle beam splitter. The polarization of the alignment

laser has to be the same as that of the OPO polarization, which is horizontal for

the PPLN. The leakage of Ti:Sapphire laser acts as a rough alignment so that the

alignment beam at 1.2 μm should overlap with it as close as possible. Several iris

shutters are placed in the optical path to check the multiple reflection of alignment

laser on the OPO end mirrors. By adjusting the angles of the two end mirrors of the

OPO, we make the OPO cavity resonant for 1.2 μm. The resonance of the cavity

is monitored by an infrared camera. The interference pattern of the alignment laser

serves as indicator for the OPO cavity alignment. Thereafter, the OPO cavity length

has to be adjusted by a translation stage to find the synchronization length (in the

order of 1 micron, depending on the strength of the parametric gain). If everything

is appropriate, a blink of the signal pulse will indicate the OPO lasing.

5.3 Instability issues, and attempts to eliminate

them

The most important requirement of the OPO is a stable pulse train. However the

instability has always been a dominant feature in every design of the intracavity

OPO. Several attempts have been made to eliminate the fluctuation:

1. Both laser and OPO cavities are covered by plastic boxes to reduce air turbu-
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lence. There is improvement to the stabity.

2. The mechanical vibration of the cavity is indeed improved by changing to high

quality stable mounts and translation stages in setup 5.1.2.

3. The temperature control of the PPLN crystal is switched from a pulsed mode

to continuous mode, which eliminated the unwanted noise of the current cycle.

4. For dispersion compensation purpose we added a pair of prisms in the OPO

cavity in setup 5.1.1, however the prism separation is limited and shows no

big difference. The GVD contribution from specially coated mirrors (multiple

wavelengths) is not clear.

5. We also tried to add more SHG loss to the cavity in setup 5.1.1. We inserted

a 5 mm long lithium triborate (LBO) crystal inside the OPO cavity to create

additional nonlinear loss for two pulses per cavity operation. We use two lenses

of 5 cm focal length to focus the signal pulse into the LBO crystal. When strong

SH was generated from LBO, an improvement in stability was observed.

Figure 5.7: Double OPO pulse train monitored on a digital oscilloscope. The capture time
for each screen shot is 5 μs. (a) without SHG from LBO, (b) with SHG from LBO - the
two pulse trains can hardly be distinguished.

64



Chapter 5. Intracavity pumped OPO for IPI

As shown in Fig. 5.7, the comparison between pulse trains with (right) or

without (left) LBO are given. Note that the case without LBO shows clearly

the gain competition between the two pulses, i.e. the amplitude fluctuations

are out of phase, while in the case with LBO the reduced amplitude fluctuations

are almost in phase. Further experiments show that even with weak SHG the

two amplitude of two OPO pulse operation is locked together, however the beat

note is not observed.

6. Active stabilization is realized by attaching one of the OPO end mirrors to

a piezoelectric ceramics. The signal wavelength depends on the OPO cavity

length. We can feedback this wavelength shift to the piezo to stabilize the

cavity length.

First we extracted the frequency doubling of signal and sent it through a pair

of prisms to a quadrant detector. This is to convert the wavelength shift

into position shift. And then we sent the signal from quadrant detector to a

DC amplifier and used the output to drive the piezo. However this feedback

loop did not work well because the relatively low sensitivity of the quadrant

detector. We then tried to split the same SH beam into two identical avalanche

photodiodes, each of which detects opposite slope of the beam. A differential

amplifier was built to amplify the difference between these two detectors, which

gives the information of beam position. We close the loop with the DC amplifier

and a piezo driver.

This setup has been tested when the loop was open and an external modulating

voltage is added to the piezo. Fig. 5.8 demonstrates the effect on the OPO

pulse train at different modulating frequency. The yellow trace is the OPO

pulse train at 1200nm, the green trace is the modulating voltage on the piezo,

and blue trace is the signal obtained from the differential amplifier followed

by DC amplifier. As we can see in Fig. 5.8 the differential signal (blue) is
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180o out of phase with respect to the PZT voltage (green), indicating that the

differential signal can be used for stabilization.

Figure 5.8: OPO pulse train and electrical signals monitored on a digital oscilloscope.
Yellow trace is the OPO pulse train at 1200nm, green trace is the modulating voltage on
the piezo, and blue trace is the signal obtained from the differential amplifier followed by
DC amplifier. The piezo is modulated at different frequencies 11 Hz (a) and 22 Hz (b).

The attempts to stabilize the OPO pulse train are effective to some extent, how-

ever the fluctuations are never fully eliminated. The fact that a stable operation for

beat note measurement can only be achieved at low OPO intracavity power, when

the feedback from OPO to pump is minimized, indicates a complex coupling be-

tween the Ti:Sapphire and OPO cavities. Therefore a theoretical model containing

the nonlinear interactions in the PPLN has been elaborated and presented in Chap-

ters 6 and 7. This model leads to an understanding of the mechanisms that affect

the stability of the system, and finds conditions leading to a stable operation.
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Simulation of second order

nonlinear interactions

In this chapter we simulate the second order nonlinear (NL) interactions taking place

inside the nonlinear crystal of the OPO. Coupled NL wave equations consisting of all

the interacting electric fields are solved in the frequency domain for ultrafast pulses

in section 6.1. The simulation results of NL interaction propagating through NL

crystal for SHG, SFG and DFG are given in section 6.2. In section 6.3 the nonlinear

processes have been studied under different experimental conditions to demonstrate

various effects including, but not limited to pulse shaping, chirp, wavelength tuning.

In particular, phase mismatched processes are emphasized as they introduce large ef-

fective nonlinear refractive indices (creating self-phase- and cross-phase-modulation)

that result in a coupling of intensity and phase instabilities.
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6.1 Nonlinear equations in frequency domain

The nonlinear crystal used in the OPO cavity is a periodically poled lithium niobate

(PPLN) crystal, designed for quasi phase matched difference difference frequency

generation (DFG) ωs = ωp − ωi (where ωp is the pump frequency, resonating in the

pump cavity, ωi the idler, and ωs the signal that is made to resonate in the OPO cav-

ity). It is well known [8, 25] that, in synchronously pumped lasers, small fluctuations

in length of the pump or signal cavity result in large wavelength shift of the signal,

hence a departure from the design phase matched condition. In addition there are

other phase mismatched processes that take place in the nonlinear crystal. These

are second harmonic generation (SHG) of the pump, signal and idler wave, and sum

frequency generation (SFG) involving any combination of these waves. These mis-

matched process have little impact on the net gain in the crystal, but affect the phase

of the various pulses through a large self-phase modulation and cross phase modu-

lation. For instance, the pump intensity is sufficient to create a second harmonic,

which, while not representing a significant loss, does create a phase modulation pro-

portional to the intensity (self-phase modulation), hence can be represented by a

nonlinear index. The sum of the pump and signal frequency create a cross-phase as

well as a self-phase modulation. These effects are very important in the context of

the intracavity pumped OPO, as they are responsible for a coupling between phase

and amplitude instabilities. More generally, the complete modeling of the interaction

between pump and signal inside the nonlinear crystal presented here is warranted

in a more general context, in view of the growing importance of optical parametric

amplification in the design of high power ultrashort lasers [21].

After establishing the mathematical model, we will take our laser as numerical

example, with pump frequency centered at 770 nm, the signal at 1140nm, the idler

at ωi = ωp − ωs, i.e. 2372nm, the second harmonic of the pump at ω2 = 2ωp, i.e.

385nm, the sum frequency of pump and signal at ω3 = ωs+ωp, i.e. 460nm, the second

68



Chapter 6. Simulation of second order nonlinear interactions

harmonic of the signal at ω4 = 2ωs, i.e. 570nm, and the sum frequency of pump and

idler at ω5 = ωi + ωp, i.e. 581nm. These processes are sketched in the diagram of

Fig. 6.1. For sake of clarity, and better understanding of the physics involved, we

Figure 6.1: Diagram illustrated the different sum and difference frequency processes in-
volved in the intracavity pumped parametric oscillator. Only the optical parametric process
ωp = ωs + ωi is phase matched.

will limit the simulation discussed below to the most intense fields. Therefore, we

will ignore the last two frequencies ω4 and ω5 which involve weaker fields.

To include the frequency dependence of the index of refraction to all orders for

short pulses, the second-order nonlinear frequency generations in the PPLN crystal is

modeled in the frequency domain. Maxwell’s propagation equations for the five fields,

written in the frequency domain, can be separated within the reasonable assumption

that the Fourier spectra of the pulses at the five frequencies do not overlap. This

derivation was first introduced to model phase matched second harmonic generation

with birefringent crystals [5, 4]. This model is adapted to the problem of quasi-

phase-matched frequency generation, with all beams collinear, and polarized linearly

along the optical z axis of the nonlinear crystal (PPLN).
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6.1.1 Summary of the theoretical model

To analyze all mixing process, taking into account dispersion to all orders, we solve

Maxwell’s propagation equations in the frequency domain [12]:

[
∂2

∂z2
+ Ω2με(Ω)

]
Ẽ(Ω, z) = −μ0Ω

2P̃NL(Ω, z). (6.1)

where

ε(Ω) = ε0(1 + χ(1))(Ω). (6.2)

is the relative dielectric constant, and Ẽ(Ω, z) is the total electric field. The second

order nonlinear polarization is made of products of pairs of fields, in the time domain

PNL
i t, z) = ε0

[∑
j χ

(2)
jk EjEk +

∑
� χ

(2)
i� EiE�

]
where the first terms are sum frequency

(SF) process, and the second terms difference frequency (DF). Substituting for each

field, in the frequency domain, Ei(Ω, z) = Ẽ(Ω, z) exp[−iki(Ω)z], in Eq. (6.1), we find

that the nonlinear interaction equations can be written in the simple elegant form:

∂Ẽi(Ω)
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∑
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iki(Ω)

4n2
i

χ
(2)
jk

{[
Ẽj(Ω, z)e−ikj(Ω)z

]
�
[
Ẽk(Ω, z)e−ikk(Ω)z

]}
eikiz

sin(mkgz)

m

(6.3)

where the symbol “�” represents a convolution for DF, and a correlation for SF, and

kg = 2π/Λ where Λ is the period of the PPLN grating.

6.1.2 Outline of the numerical approach

In Eq. (6.3), elegance is at the cost of numerical convenience and accuracy. It is

unpractical to have a mesh that covers all optical frequencies with MHz steps, as re-

quired by Eq. (6.3). It is desirable to shift all spectra to zero frequency, and deal only
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with the spectral components that are covered by the pulses. Such a shift removes,

in the time domain, the underlying carrier frequencies and leaves only the envelopes

of each pulse to be changed along propagation. Since these spectra represent pulses

propagating at the group velocity of the respective pulses, in the laboratory frame,

the phase factor of each Fourier component will take very large values with increas-

ing distance z, making numerical computation unnecessarily challenging. We chose

therefore a retarded frame of reference, propagating at the group velocity of one of

the pulses. Since the pump pulse repetition rate is the primary clock of this system,

it is natural to chose a frame of reference for the five pulses moving at the pump

group velocity.

The total electric field Ẽ(Ω, z) in Eq. (6.1) includes the pump field centered at

ωp, the signal field centered at ωs, the idler centered at ωi, the second harmonic

field centered at ω2, and the sum field centered at ω3. In the nonlinear part of the

polarization P̃NL we consider only the χ(2) terms that are associated with the five

interacting waves. Each of these terms has to fulfill the wave equation separately.

We will assume that, for each nonlinear mixing, the second order susceptibility χ(2)

is frequency independent within the interaction bandwidth. Here we only consider

three of the processes shown in Fig. 6.1

χ
(2)
1 : ωp = ωs + ωi

χ
(2)
2 : ω2 = ωp + ωp

χ
(2)
3 : ω3 = ωp + ωi (6.4)

The nonlinear polarizations can be decomposed in five contributions, respectively

centered at ωp, ωs, ωi, ω2 and ω3:

P̃NL
p (t, z) = ε0

[
χ
(2)
1 Ẽs(t, z)Ẽi(t, z) + χ

(2)
2 Ẽ∗

p(t, z)Ẽ2(t, z) + χ
(2)
3 Ẽ∗

s (t, z)Ẽ3(t, z)
]

P̃NL
s (t, z) = ε0

[
χ
(2)
1 Ẽp(t, z)Ẽ

∗
i (t, z) + χ

(2)
3 Ẽ∗

p(t, z)Ẽ3(t, z)
]
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P̃NL
i (t, z) = ε0χ

(2)
1 Ẽp(t, z)Ẽ

∗
s (t, z)

P̃NL
2 (t, z) = ε0χ

(2)
2 Ẽp(t, z)Ẽp(t, z)

P̃NL
3 (t, z) = ε0χ

(2)
3 Ẽp(t, z)Ẽs(t, z). (6.5)

Most of the equation manipulations and substitutions required for numerical com-

putation are dictated by numerical rather than physical considerations. The details

of those can be found in Appendix A.

The final expressions to be solved numerically are using spectral fields limited to

a range of frequencies corresponding to the bandwidth at each central frequency, and

including the wave-vector with its exact frequency dependence:

P(ΔΩ) = Ẽp(ΔΩ)e−ikp(ΔΩ)z

S(ΔΩ) = Ẽs(ΔΩ)e−iks(ΔΩ)z

I(ΔΩ) = Ẽi(ΔΩ)e−iki(ΔΩ)z

N (ΔΩ) = Ẽ2(ΔΩ)e−ik2(ΔΩ)z

M(ΔΩ) = Ẽ3(ΔΩ)e−ik3(ΔΩ)z. (6.6)

The coupled equations for these newly defined field amplitudes are similar to the

general set of equations (6.3):

∂Ẽp(ΔΩ)

∂z
= Ap

[
χ
(2)
1 (S ∗ I) + χ

(2)
2 (P �N ) + χ

(2)
3 (S �M)

]
(ΔΩ)

·eikp(ΔΩ)z (6.7)

∂Ẽs(ΔΩ)

∂z
= As

[
χ
(2)
1 (I � P) + χ

(2)
3 (P �M)

]
(ΔΩ)eiks(ΔΩ)z (6.8)

∂Ẽi(ΔΩ)

∂z
= Aiχ

(2)
1 (S � P) (ΔΩ)eiki(ΔΩ)z (6.9)

∂Ẽ2(ΔΩ)

∂z
= A2χ

(2)
2 (P ∗ P) (ΔΩ)eik2(ΔΩ)z (6.10)

∂Ẽ3(ΔΩ)

∂z
= A3χ

(2)
3 (S ∗ P) (ΔΩ)eik3(ΔΩ)z. (6.11)
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The operator ∗ describes a convolution and � a cross-correlation. The refractive in-

dexes n(Ω) are required to calculate kp,s,i,2,3(ΔΩ). They are obtained from a Sellmeier

equation [36]. The coefficients Ai are defined in Appendix A.

6.1.3 Quasi-Phase Matching

A treatment of pulse evolution in phase matching crystals that can be found in one

of the most used textbook is unfortunately incorrect. A correct derivation is given

in this section with details in Appendix A.

The susceptibility χ(2)
n of the periodically poled lithium niobate (PPLN) alternates

its sign at every poled domain “n”.

χ(2)
n = χ(2)(−1)n, (6.12)

where n is the index of poled domain. The expression can be decomposed into a

Fourier series:

χ(2) =
4χ(2)

π

∞∑
m=1,3,5...

1

m
sin(

2πmz

Λ
) =

2χ(2)

iπ

∞∑
m=1,3,5...

1

m

[
eimkgz − e−imkgz

]
,(6.13)

where Λ is the grating period of PPLN crystal, and kg = 2π
Λ
. The grating period is

chosen such that the poling is reversed before conversion back to the pump occurs,

for the wavelength at the center of each pulse:

δk(0)Λ

2
= π (6.14)

The quasi-mismatch of the wave vector is:

δk(ΔΩ,ΔΩ′) = ks(ΔΩ′) + ki(ΔΩ−ΔΩ′)− kp(ΔΩ)±mkg, (6.15)

73



Chapter 6. Simulation of second order nonlinear interactions

where m = 1, 3, 5...∞. The set of equations (6.11) for the DFG needs to be rewritten

as a sum over m = 1, 3, 5...∞:

∂Ẽp(ΔΩ)

∂z
= Ap

∞∑
m=1,3,5...

[
χ
(2)
1 (S ∗ I) + χ

(2)
2 (P � mathcalN) + χ

(2)
3 (S �M)

]
(ΔΩ)

·eikp(ΔΩ)z sin(mkgz)

m
(6.16)

∂Ẽs(ΔΩ)

∂z
= As

∞∑
m=1,3,5...

[
χ
(2)
1 (I � P) + χ

(2)
3 (P �M)

]
(ΔΩ)eiks(ΔΩ)z sin(mkgz)

m
(6.17)

∂Ẽi(ΔΩ)

∂z
= Ai

∞∑
m=1,3,5...

χ
(2)
1 (S � P) (ΔΩ)eiki(ΔΩ)z sin(mkgz)

m
(6.18)

∂Ẽ2(ΔΩ)

∂z
= A2

∞∑
m=1,3,5...

χ
(2)
2 (P ∗ P) (ΔΩ)eik2(ΔΩ)z sin(mkgz)

m
(6.19)

∂Ẽ3(ΔΩ)

∂z
= A3

∞∑
m=1,3,5...

χ
(2)
3 (S ∗ P) (ΔΩ)eik3(ΔΩ)z sin(mkgz)

m
. (6.20)

A good approximation to a square wave is obtained by limiting the sum up to the

value of m = 5. Dividing by Λ, we note that Eq. (A.19) is equivalent to the phase

matching condition:

−k(0)
s − k

(0)
i + k(0)

p − kg = 0 (6.21)

The set of equations (6.11) have to be integrated over the thickness of the PPLN

crystal, given a set of initial fields at z = z0. As detailed in the Appendix A a final

transformation of the numerical solution has to be performed in order to account

for the effect of dispersion, before a final inverse Fourier transform is performed to

obtain the fields in amplitude and phase in time domain.

The numerical simulation is realized in Fortran. The code is attached in Ap-

pendix C.
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6.1.4 Comments on the simulation

To the best of our knowledge this is the first model to simulate the evolution of short

pulses experiencing second-order nonlinear processes with quasi-phase-matching, tak-

ing dispersion into account to all orders. It applies to pulse duration as short as a

few optical cycles, the only limitation being that the spectra of the different pulses

(signal, pump and idler) may not overlap.

The model uses a plane wave approximation, and therefore does not take into

account diffraction. It has been established that, in the case of phase matched non-

linear crystals, the optimum conversion is achieved when the crystal length exceeds

by a factor of 3 the Rayleigh range (see reference [7] page 121). This limitation how-

ever does not apply to us: the group velocity dispersion of the OPO crystal imposes

a length of less than 1 mm, which in all practical cases will be much less than the

Rayleigh range.

Introducing a spatial dimension may be important for other OPO applications,

such as extremely broadband amplification using an array of crystal in the Fourier

plane of a grating arrangement [21]. The large phase modulations that we observe

due to non-phase matched conditions will result in spatial chirp and beam deflections

in the spatial domain.

6.2 Simulation results

Although the theoretical discussion in the previous section is primarily to simulate

the behavior of short pulses around 100 fs, we will start with the simpler case of

continuous waves, in order to gain a better physical understanding, and be able to

compare the numerical results with analytical solutions. In the present program, the

cw solution corresponds to changing the initial pulse duration to 100ns so that the
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field amplitude is constant over the range of interest.For all the simulation presented

in this section, the nonlinear crystal length is 1mm, and the initial pulse shape is

Gaussian with FWHM of 100 fs.

6.2.1 SHG only

Here we start the comparison of numerical and analytical results for SHG because it

is the most well studied effect and also the simplest case of all. The phase matching

condition is controlled by selecting different values of grating period Λ. For all

calculations presented in this section, Λ is 2.2632171μm for phase match and 2.25μm

for phase mismatch.

Figure 6.2: Phase-matched SHG energy evolution of cw (solid line) and pulse (dashed
line), red for pump and blue for SH. The peak intensity of the (fundamental) short pulse
(100 fs) is the same as the intensity of the cw case, which is approximately 5×1013 W/m2.
The pulse energy is plotted as a function of distance (initial energy normalized to 1). The
cw intensity is also plotted, normalized to the initial value of the fundamental.

The simulation of phase-matched cw SHG follows the hyperbolic tangent and

secant as predicted by standard analytical solutions. The accuracy of the numerical
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approximation was verified using the analytical solution of the set of differential

equations. In the same figure we also plot the phase-matched SHG for 100 fs pulse of

the same peak intensity as the cw field. The energy evolution curves for 100 fs pulse

clearly have a gentler slope than for cw field. That is because, in the short pulse case,

the frequency dependence of the k-vectors has to be taken into account. Only the

zero-th order of their Taylor expansions are perfectly phase matched. Because the

exact frequency dependence of the k-vectors is introduced via the Sellmeier equations,

the lower conversion efficiency in the pulsed case reflects several phenomena usually

treated separately through the various orders of a Taylor expansion of the function

k(Ω). These effects are (i) phase mismatch for frequency components away from

the central frequency (first order), (ii)temporal walkoff due to the difference group

velocities for the fundamental and second harmonic (first order), (iii) pulse reshaping

due to second and higher order dispersion. All these effects scale with (Δk)maxL,

where (Δk)max is the largest k-vector mismatch across the pulse spectrum, and L

is the crystal length. Therefore, the cw conversion efficiency can be approached by

reducing the size of the crystal L, and increasing the intensity, to the maximum

compatible with the damage threshold of the material.

An interesting phenomenon of effective third-order nonlinearity manifests itself if

the SHG is phase mismatched as discussed in reference [10] for cw SHG. We indeed

reproduce the same effect in our simulation. The energy transfers between pump

and SH with a period of ΔL = 2π
Δk

, as shown by the solid curves in Fig. 6.3, which

represents the evolution of the intensity of the fundamental (red) and second har-

monic (blue) for cw radiation, as a function of distance. The curves are plotted

for increasing initial intensities, which are 1, 2, 3, 4, 5 × 1013W/m2. It is seen that

the period ΔL decreases with intensity, which suggests either an intensity dependent

“equivalent index” at the fundamental [neff (ω)] or at the second harmonic [neff (2ω)].

Further calculations indicate that the nonlinear index applies primarily to the fun-

damental. The periodicity of second harmonic conversion versus distance is washed
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Figure 6.3: Phase-mismatched SHG energy evolution of cw (solid line) and pulse (dashed
line), red for pump and blue for SH. The two cases have same peak intensity and the
energies are normalized. The period varies with different intensities for cw SHG.

out, as can be seen from the dashed lines in Fig. 6.3. There are two contributions to

this effect. One is because of the plurality of frequencies involved in a 100 fs pulse,

and the other is due to the large temporal walkoff between fundamental and second

harmonic(fig. 6.9).

A considerable simplification in the simulation of interwoven Ti:sapphire-OPO

cavities could be made if some simple empirical formulae could be used to approxi-

mate the pulse modification as it propagates through the nonlinear crystal. Fig.6.3

suggests some modified hyperbolic tangent and secant can be used, as in the phase

matched case of Fig. 6.2. The main difference between phase mismatch and perfectly

match for short pulse is that the energy of the phase mismatched SH never reaches

maximum (the initial pump energy) no matter how high the pump intensity is. In

fact it saturates earlier than the phase matching case.

And we can see in fig. 6.4, for continuous radiation, the pump phase has a lin-
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Figure 6.4: Phase-mismatched SHG cw phase modulation. The pump phase (red, right
scale) has a linear slope along propagation with some modulation, while the phase variation
of the second harmonic (blue, left scale) is much steeper, but nearly perfectly linear.

ear slope along propagation with some modulation, while the phase variation of the

second harmonic is much steeper, but nearly perfectly linear. This phase modu-

lation is directly related to the energy transfer through Kramers-Kronig dispersion

relations. The phase modulation results from the dispersion associated with a two-

photon (quadratic) loss. Kramers Kronig relations have been established for two-

photon absorption and nonlinear index n2 [17]. Whenever there is a two-photon

resonance, there is associated, off-resonance, an enhancement of the nonlinear in-

dex n2 (negative below resonance, positive above resonance). The same applies to

harmonic generation, since it is also a quadratic loss. The “resonance” is here the

phase matching frequency (or in our case, the “quasi” phase matching frequency).

For better understanding of this phenomenon we represent the field vectors in a com-

plex plane shown in Fig. 6.5. Each data point is the electrical field of pump (red)

or second harmonic (blue) integrated over time and plotted in the complex plane.

The purpose of Fig. 6.5 is to indicate the amplitude and phase evolution of the field
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vectors as they propagrate through the crystal. In the case of phase matching of cw

second harmonic generation, the fundamental and second harmonic complex vectors

spin counterclockwise at the same rate kz. The second harmonic [curve starting

downwards from the origin (0, 0)] is generated with a phase difference of −π/2 with

respect to the fundamental, and the end of its complex vector describes and outward

spiral. The fundamental complex vector (still cw, phase matched case) shrinks as

it spins, tracing an inward spiral. With the phase mismatch of 0.005π in Fig. 6.5,

the phase angle of the second harmonic k2ωz spins faster than the fundamental. The

second harmonic returns to zero after having spun an angle of θ2, while θp is the

angle that the fundamental has rotated for that same distance. It is clear from the

picture that they satisfy the relation:θ2 + 2θp = π. The intensity dependence of

“cascaded n2” is contained in that angle θp. As the intensity increases and the rate

of shrinking (expansion) of the fundamental (second harmonic) spirals increases, the

angle θp increases, making it seem like the refractive index for the fundamental is

increasing.

The simulation of phase mismatched SHG is also done for short pulses in com-

parison with the CW case. Energy evolution of pump and SH for phase mismatched

SHG is shown in Fig 6.3. Modulated phase along propagation is observed in the

pulse regime for phase mismatched SH pulse instead of pump. For pump phase there

is only a little deviation from a straight line as shown in Fig. 6.6.

Plots of the field vectors in the complex plane (imaginary part of the fields versus

real part) for phase matched SHG (Fig 6.7) and phase mismatched SHG (Fig 6.8),

after transmission through 1 mm of PPLN, are shown. As expected, there is little

phase modulation in the phase matched case. In the phase mismatched case, the

pump shows a linear phase modulation with time. Both results of Fig. 6.6 and Fig 6.8

are consistent with a nonlinear index for the pump beam. The second harmonic

presents a periodical behavior similar to the cw case. The trajectory in the complex
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Figure 6.5: Phase-mismatched SHG with continuous waves. Each data point is the elec-
trical field of pump (red) or second harmonic (blue) integrated over time and plotted in
the complex plane. The purpose is to indicate the amplitude and phase evolution of the
field vectors as they propagrate through the crystal.

Figure 6.6: Phase-mismatched SHG pulse propagation. The phase of the pump (red
curve, right scale) and that of the second harmonic (blue curve, left scale), are plotted as
a function of distance. The phase are defined as ϕavg =

∫
ϕ(t)I(t)dt/

∫
I(t)dt. The pump

pulse (100 fs) has a peak intensity of about 5× 1013 W/m2.
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plane is an inward spiral, instead of the spinning motion of the cw case.

Figure 6.7: Phase-matched SHG with pulses. Each data point is the electrical field of
pump (red) or second harmonic (blue) integrated over time and plotted in the complex
plane. The purpose is to indicate the amplitude and phase evolution of the field vectors as
they propagrate through the crystal.

Group velocity mismatch for short pulses is another well discussed issue in fre-

quency conversions. In the PPLN crystal the SH pulse travels much slower than the

pump pulse, and our simulation (Fig.6.9) shows a longer SH pulse generated along

propagation. At the entrance of the crystal, the un-depleted fundamental creates

the most intense second harmonic. That second harmonic created earlier propa-

gates more slowly, and looses overlap with the fundamental. Further down along

the crystal, generation of second harmonic continues with decreasing yield, due to

the depletion of the fundamental. As a result, the second harmonic that exits the

crystal has a leading edge resembling that of the fundamental, and a long trailing

edge characterized by the difference in group velocities, and the rate of depletion of

the fundamental. At each passage through the PPLN crystal, the second harmonic is

thus broadened and delayed, as shown in Fig.6.9. The reshaping of the pump pulse is

less dramatic (Fig. 6.10). Because of larger depletion at the peak of the fundamental
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Figure 6.8: Phase-mismatched SHG with pulses Each data point is the electrical field of
pump (red) or second harmonic (blue) integrated over time and plotted in the complex
plane. The purpose is to indicate the amplitude and phase evolution of the field vectors as
they propagrate through the crystal.

pulse, there is some pulse broadening.

Figure 6.9: Phase-mismatched evolution of the second harmonic in SHG.

83



Chapter 6. Simulation of second order nonlinear interactions

Figure 6.10: Phase-mismatched evolution of the pump pulse intensity in SHG.
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6.2.2 SFG only

SHG is considered as a degenerate case of SFG. While SFG shares some similarity

with the SHG discussed above, it also presents a few different behaviors. In this

section, the grating period of the PPLN crystal is 4.451797 μm for phase matching

and 4.4 μm for phase mismatch. Fig.6.11 shows the phase-matched energy evolution

of SFG for cw (solid line) and pulse (dashed line) cases, respectively.

Figure 6.11: Phase-matched SFG energy evolution for cw (solid line) and pulse
(dashed line) cases respectively. Initial intensities are 3 × 1013W/m2(pump) and 2 ×
1013W/m2(signal) for both cw and pulse. Red stands for pump frequency, magenta for
signal and green for sum.

The main difference comes from the initial energy ratio between two input wave-

length, namely 770nm and 1140nm in our simulation. When the interaction is phase

matched, unlike SHG, the input waves both disappear only if their energy ratio is

the inverse of the wavelength ratio as shown in Fig. 6.11. If their energy ratio does

not satisfy this condition, when one input wave loses all its energy, the leftover of

the other input wave will start the DFG process with the generated sum wave and

gain energy back. This periodic interchange between SFG and DFG is illustrated in
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Fig. 6.12.

Figure 6.12: Phase-matched SFG energy evolution for cw only. Initial intensities are
4.5 × 1013W/m2 (pump) and 0.5 × 1013W/m2 (signal). Red stands for pump frequency,
magenta for signal and green for sum. As the signal wave vanishes the SFG turns into
DFG for sum and pump frequencies. When the sum energy decreases to zero it returns to
the initial condition of SFG and repeats these processes.

If the SFG process is phase mismatched, we observe an energy oscillation in the

case of cw radiation. Similarly to the case of SHG, there is an averaging out effect

for the pulsed case. Fig. 6.13 shows the phase-mismatched energy evolution of SFG

for cw (solid line) and pulse (dashed line) cases, respectively.

The field vectors are presented in the complex plane for pump and sum frequencies

in Fig. 6.14 (cw case) and Fig. 6.15 (pulse case), when the SFG is phase mismatched.

Each data point is the electrical field of pump (red) or sum (blue) integrated over

time and plotted in the complex plane. The purpose is to indicate the amplitude

and phase evolution of the field vectors as they propagrate through the crystal. As

in the case of SHG, the sum frequency vector starts downwards from the point (0,

0) and spins counterclockwise.

The intensity evolution of pump, signal and sum pulses for phase mismatched
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Figure 6.13: Phase-mismatched SFG energy evolution for cw (solid line) and pulse
(dashed line) cases respectively. Initial intensities are 3 × 1013W/m2(pump) and 2 ×
1013W/m2(signal) for both cw and pulse. Red stands for pump frequency, magenta for
signal and green for sum.

Figure 6.14: Phase-mismatched SFG for cw pump and sum. Each data point is the
electrical field of pump (red) or sum (blue) integrated over time and plotted in the complex
plane. The purpose is to indicate the amplitude and phase evolution of the field vectors as
they propagrate through the crystal.
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Figure 6.15: Phase-mismatched SFG pump and sum pulses. Each data point is the
electrical field of pump (red) or sum (blue) integrated over time and plotted in the complex
plane. The purpose is to indicate the amplitude and phase evolution of the field vectors as
they propagrate through the crystal.

SFG are plotted in Fig. 6.16, Fig. 6.17 and Fig. 6.18 respectively.

Figure 6.16: Phase-mismatched evolution of the pump pulse in SFG.
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Figure 6.17: Phase-mismatched evolution of the signal pulse in SFG.

Figure 6.18: Phase-mismatched evolution of the sum pulse in SFG.
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6.2.3 DFG only

The DFG process is the dominating all second order nonlinear process in an OPO.

In this section we focus on the pulsed case only. The previous discussion of SHG and

SFG does not include the quasi phase matching effect. From equation (A.18) we can

predict that the interaction strength of quasi-phase-matching is roughly 2/π times

smaller than perfect phase matching, with a periodic modulation corresponding to

each poled domain, as shown in Fig. 6.19.

Figure 6.19: Phase-matched (dashed line) and quasi-phase-matched (solid line) DFG pro-
cesses. Red stands for pump frequency, blue for signal and yellow for idler. The propagation
distance is 100μm and the PPLN grating period is 20.23μm.

Fig. 6.20 shows the energy evolution when the PPLN grating period is changed

to 22μm. When the DFG is phase mismatched, energy evolution still preserves the

oscillating behavior because the walk-off between pump and signal are not as huge

as in the SHG and SFG processes. However if we increase the initial spectrum

(decrease pulse duration) the oscillation will be averaged out as shown in SHG and

SFG processes.

The field vectors are presented in complex plane for pump and signal pulses in

Fig. 6.21. Each data point is the electrical field of pump (red) or signal (blue)
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Figure 6.20: Quasi-phase-mismatched DFG processes. Red stands for pump frequency,
blue for signal and yellow for idler. The propagation distance is 1mm and the PPLN
grating period is 22μm.

integrated over time and plotted in the complex plane. The purpose is to indicate

the amplitude and phase evolution of the field vectors as they propagrate through

the crystal. It also creates an effective n2 which we will discuss in more details later.

91



Chapter 6. Simulation of second order nonlinear interactions

Figure 6.21: Quasi-phase-matched DFG processes for pulses. Each data point is the
electrical field of pump (red) or signal (blue) integrated over time and plotted in the
complex plane. The purpose is to indicate the amplitude and phase evolution of the field
vectors as they propagrate through the PPLN crystal which is 1 mm long and whose grating
period is 22μm.
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The intensity evolution of pump signal and idler pulses for quasi phase matched

DFG are plotted in Fig. 6.22, Fig. 6.23 and Fig. 6.24 respectively.

Figure 6.22: Phase-mismatched evolution for pump pulse in DFG.

Figure 6.23: Phase-mismatched evolution for signal pulse in DFG.
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Figure 6.24: Phase-mismatched evolution for idler pulse in DFG.

6.3 Including all experimental conditions

There are many experimental parameters that affect the results of our simulation.

In this section we attempt to include all parametric dependence of the second order

processes in the PPLN. In our experiment we pump the OPO inside a Ti:Sapphire

cavity with a pulse duration on the order of 100fs. The PPLN crystal is 1mm long

with a grating period of 20.23μm. In the complete model containing DFG, SHG

and SFG, only the DFG is quasi-phase-matched while the SHG and SFG have a

large quasi phase mismatch vector. The simulation has shown that the effect of

SHG and SFG can be approximated by a correction to the material nonlinear index.

The input of our model is both pump pulse and signal pulse with intensities around

3 × 1013W/m2 and 2 × 1013W/m2 respectively. The pulses are transform limited if

no chirp is specified.
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6.3.1 Optimization of input pulse parameters

For 1mm long PPLN crystal, the optimal input pulse duration is around 150 fs given

a fixed initial energy (Fig. 6.25), and the optimal delay of signal pulse with respect to

pump pulse is around 120 fs (Fig. 6.26). To understand these numbers, we compare

it with the group delay mismatch which is calculated to be 233 fs between pump and

signal. The optimal delay should indeed be half of the 233 fs mismatch.

Figure 6.25: Transmission of pump and signal pulse energy after propagation through a
1mm PPLN for different initial pulse duration. Blue stands for pump frequency, red for
signal. The pulse duration is varied from 50fs to 300fs, with 50fs interval.

A parabolic fit can be made of the traces of Fig. 6.25,

Tp(τ) ≈ 0.78 + 6.1 · 10−6(τ − 150)2

Ts(τ) ≈ 1.23− 6.2 · 10−6(τ − 150)2 (6.22)
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Figure 6.26: Transmission of pump and signal pulse energy after propagation through a
1mm PPLN for different time delays between them. Red stands for pump frequency, blue
for signal. The delay time is varied from -15fs to 270fs, in 15fs interval.

and Fig. 6.26.

Tp(Δτd) ≈ 0.8 + 7.8 · 10−6(Δτd − 120)2

Ts(Δτd) ≈ 1.2− 7.9 · 10−6(Δτd − 120)2 (6.23)

If we combine the two sets of equations, the estimated transmission for pump and

signal pulse are:

Tp(τ,Δτd) ≈ 0.79 + 6.1 · 10−6(τ − 150)2 + 7.8 · 10−6(Δτd − 120)2

Ts(τ,Δτd) ≈ 1.215− 6.2 · 10−6(τ − 150)2 + 7.9 · 10−6(Δτd − 120)2 (6.24)

6.3.2 Pulse center shift after one passage

The DFG interaction between pump and signal will modify their pulse shapes and

therefore shift the pulse centers of gravity. The shift depends on the delay between
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pump and signal pulse shown in Fig. 6.27. The references are taken at the pulse

centers of gravity respectively after pure propagation without nonlinear interaction.

Figure 6.27: Pulse center shift for pump and signal pulse after propagation in a 1mm
PPLN for different delay time. Red stands for pump frequency, blue for signal. The delay
time is varied from -15fs to 270fs, with 15fs interval.

A parabolic fit for the center part of red trace of Fig. 6.27, and a linear fit for the

center part of red trace are made:

Centerp(Δτd) ≈ 7.4− 5.9 · 10−4(Δτd − 102)2

Centers(Δτd) ≈ 2.7− 0.034 ·Δτd (6.25)

In the experiment, we observe that the repetition rate of the pump cavity de-

creases when the OPO starts lasing. For instance, the repetition rate changes from

180.8823 MHz (without OPO lasing) to 180.8821 MHz (with OPO lasing) and in-

dicates a pulse center delay of 6 fs. This phenomenon becomes more obvious if a

longer pump pulse is present.

We also consider the case for other signal wavelengths. Fig. 6.29 and Fig. 6.30
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Figure 6.28: The group delay in a 1mm PPLN crystal for signal wavelength from 1.06μm
to 1.26μm calculated from Sellmeier equation.

show the pump and signal pulse center shifts, respectively, as a function of delay

for signal wavelengths from 1110 nm to 1170 nm. The relative pulse center shift is

made of the difference between pump and signal pulse centers shown in Fig. 6.31.

The characteristics in pulse center shift as a function of delay is similar for different

wavelengths. The spacing between each curves for different wavelength indicates

a wavelength dependence of the group velocity delay of about 1fs for 3nm signal

wavelength detuning (Fig. 6.28). Therefore we can rewrite the approximate equa-

tions Eq. (6.25) for pulse center shift by adding a proper group velocity delay term

corresponding to different wavelength.
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Figure 6.29: Pulse center shift for pump pulse after propagation in a 1mm PPLN for
different signal wavelengths (1110 to 1170nm with 10nm interval) at different delay time
(60, 90, 120, 150fs).

Figure 6.30: Pulse center shift for signal pulse after propagation in a 1mm PPLN for
different signal wavelengths (1110 to 1170nm with 10nm interval) at different delay time(60,
90, 120, 150fs).
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Figure 6.31: Relative pulse center shift between pump pulse and signal pulse after propa-
gation in a 1mm PPLN for different signal wavelengths(1110 to 1170nm with 10nm interval)
at different delay time(60, 90, 120, 150fs).
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6.3.3 Wavelength shift at each passage

It is an accepted concept that an externally pumped OPO changes wavelength to

track the repetition rate of the pump. There are however two different mechanisms

that can account for this apparent tracking.

1. If the repetition rate of the pump is modified, the OPO is no longer at syn-

chronism, and the oscillation ceases. The laser starts again from noise, and

the wavelength components that match the pump period through their group

velocity emerge.

2. There is a real wavelength shift at each passage through the OPO if the repe-

tition rates is not matched.

In the first case, the laser will show maximum instability, since the wave has to die

and be resuscitated at each cavity length fluctuation.

The second mechanism, if it exist and can be enhanced, maybe the key to intra-

cavity pumped OPO stabilization.

The spectrum of signal pulse is examined before and after nonlinear interaction,

and a tiny wavelength shift is measured through our simulation as a function of the

delay between signal and pump. This wavelength shift is less than 0.1% of the signal

spectrum, but can be non negligible when the signal pulse propagates many round

trips in the OPO cavity.

From delay of 60fs to 180fs the wavelength shift can be approximated as

λs(Δτd) ≈ 0.0621− 5.67 · 10−4Δτd (6.26)

and the following discussion will focus on the linear region from 60fs to 150fs.
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Figure 6.32: Wavelength shift for signal pulse after propagation in a 1mm PPLN for
different delay time. The delay time is varied from -60 fs to 330 fs, with 30 fs interval.

We also examined this wavelength shift for different signal wavelength inputs

for delays set at 60fs, 90fs, 120fs and 150fs respectively. As shown in Fig. 6.33 we

find the output wavelength is shifted towards the phase matched wavelength from a

negative slope. This is because of the wavelength dependent gain that modifies the

signal wavelength as it propagates through the crystal.

In order to increase this wavelength shift effect, a counter-chirped pump and signal

pulse model is proposed. We run the program for wavelength 1130, 1140 and 1150nm,

delay time 60, 90, 120 and 150fs, and chirp coefficients 0.5, 1, 1.5, 2 and 3. A linear

interpolation for the 3D wavelength shifts data (Fig. 6.34) is performed afterwards.

From Fig. 6.34 we can tell that the wavelength shift is indeed magnified with chirp,

and the maximum effect is reached with chirp coefficient around 1.5.
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Figure 6.33: Wavelength shift for signal pulse after propagation in a 1mm PPLN as a
function of signal wavelength for different delay time 90fs (blue), 120fs (black) and 150fs
(red).

Figure 6.34: Wavelength shift for signal pulse after propagation in a 1mm PPLN for
different wavelength (1130 to 1150nm), delay (60 to 150fs) and chirp coefficient (0 to 3)

103



Chapter 6. Simulation of second order nonlinear interactions

6.3.4 Near Phase-matched interactions

Limited by mirror coating, λs may vary from 1060nm to 1260nm. However for the

DFG process only one wavelength λ0
s satisfies the quasi-phase-matching condition

given a fixed grating period. Therefore the gain of DFG is a function of signal

wavelength (Fig. 6.35).

Figure 6.35: The transmission of pump (blue) and signal (red) pulses after propagation
for signal wavelength from 1108nm to 1214nm

A parabolic fit can be made of the traces of Fig. 6.35.

Tp(τ) ≈ 0.8 + 5.5 · 10−4(λ− 1140)2

Ts(τ) ≈ 1.2− 5.5 · 10−4(λ− 1140)2 (6.27)

The chirp added to the pump and signal pulses will bring down the conversion

efficiency, as shown in Fig. 6.36.

The wavelength tunability does not only affect the energy efficiency of DFG, but

also the phase of both pump and signal pulses. Fig. 6.37 shows the phase shift of the

signal at ωs (red) and the pump at ωp (blue) as a function of signal intensity, after
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Figure 6.36: The transmission of pump (blue) and signal (red) as a function of signal
wavelength for chirp coefficient 0(solid lines), 0.5(dashed lines) and 1(dash-dot lines).

propagation through 1 mm of PPLN. A detuning of 10nm is assumed. The most

significant phase shift is that of the pump, corresponding to a large nonlinear index

of n2,ps = −1.1 · 10−15 cm2/W.
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Figure 6.37: Phase shift of pump (blue) and signal (red) as a function of the intensity of the
signal. As is often the case, the cross-phase modulation is larger than the self-modulation.

This nonlinear index is wavelength dependent, as shown in the calculation of

Fig. 6.38. Good practical approximations for the value of the effective nonlinear
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indices for the pump (affected by the signal intensity) n2,ps and the signal (affected

by the pump intensity) n2,sp are:

n2,ps =
(1140− λs)

39
· 10−14cm2/W (6.28)

n2,sp =
(1140− λs)

108
· 10−14cm2/W (6.29)

Figure 6.38: Effective n2 of pump (blue) and signal (red) as a function of signal wavelength.

If the pump and signal pulses are counter-chirped, the effective n2 is modified, as

shown in Fig. 6.39.

6.3.5 Phase mismatched interactions

SHG of pump and SFG of pump and signal are strongly phase mismatched interac-

tions. They produce less significant n2 effects as compared to the near phase matched

DFG process. The simulation of pulsed second harmonic generation shown Fig. 6.6

and Fig 6.8 suggest that the phase mismatched second harmonic of the pump can

be assimilated to a nonlinear index. Calculations made as a function of intensity
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Figure 6.39: Effective n2 of pump (blue) and signal (red) as a function of signal wavelength
for chirp coefficient 0 (solid lines), 0.5 (dashed lines) and 1 (dash-dot lines).

show that, because of the low conversion to second harmonic, the phase modulation

is primarily dependent on the pump intensity and can be represented by the index

n2,pp = −1.1 · 10−16cm2/W (6.30)

The phase modulation is proportional to the pump intensity ϕpp(t) = (2π/λp)n2,ppIpL.

Another nonlinear process affecting the pump is the phase mismatched sum fre-

quency generation ωp + ωs, leading to a phase modulation of the pump ϕps(t) =

(2π/λp)n2,psIpL, where

n2,ps = −1.9 · 10−16cm2/W (6.31)

The same process affects also the signal, imparting a phase modulation on the signal,

proportional to the pump intensity: ϕsp(t) = (2π/λs)n2,spIpL, where

n2,sp = −1.8 · 10−16cm2/W (6.32)

107



Chapter 6. Simulation of second order nonlinear interactions

Contribution to pump and signal pulse propagation

∂Ẽp
∂z

= −2πi(n2,ppIp + n2,psIs)

λp
=

2πi× (1.1 · 10−16Ip + 1.9 · 10−16Is)

λp
. (6.33)

∂Ẽs
∂z

= −2πin2,spIp
λS

=
2πi× 1.8 · 10−16Ip

λs

. (6.34)

6.3.6 Gain of OPO at different pump levels

Last but not least, we study the strength of DFG interaction at different pump

and signal levels. The OPO gain and pump depletion are defined as the relative

transmission of the signal and pump pulse energy, respectively. We simulate the

values for 100 fs pump and signal pulse duration, 50 μm focal spot diameter, and

30nJ, 20nJ, 10nJ of pump pulse input energy. OPO gain (Fig. 6.40) and pump

depletion (Fig. 6.41) are plotted as a function of signal pulse input energy from 0.1

nJ to 5 nJ. From the plots we can use linear approximation for the gain/depletion

dependence on signal pulse energy.

Figure 6.40: OPO gain as a function of signal pulse energy at three pump levels.
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Figure 6.41: Pump depletion as a function of signal pulse energy at three pump levels.
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Chapter 7

Simulation of coupled Ti:Sapphire

and OPO cavities

A full numerical model of coupled Ti:Sapphire and OPO cavities is established by

parameterizing the gain, loss, dispersion and nonlinearities. The pulse evolution of

both Ti:Sapphire and OPO is examined at each cavity round trip using the ABCD

matrix method in temporal domain introduced in Chapter 2. Conditions to stabilize

this complex system are found through the simulation results. The islands of stability

are quite narrow, requiring very tight mechanical tolerances and stability. The impact

of noise and its dynamics on the stability is also analyzed. This model can also be

utilized to analyze and optimize similar systems with gain, loss and chirp.

In section 7.1 we will summarize the problems encountered in the experiment

described in Chapter 5. A model of the coupled Ti:Sapphire and OPO cavities is

established in section 7.2, including a simplified two-level model for the Ti:sapphire

gain, and a matrix approach for the chirp. through energy and chirp evolution .The

simulation results are discussed in section 7.3. We finally conclude in section 7.4.
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7.1 Presentation of the problems

The intracavity pumped OPO for Intracavity Phase Interferometry (IPI) is sketched

in Fig. 7.1 (a).

Figure 7.1: (a) Sketch of the intracavity pumped OPO. The OPO cavity is twice as long
as the Ti:sapphire cavity. (b) top: signal applied to the modulator. Bottom: beat note
signal. (c) Beat note recording versus signal on modulator.

Previous calculations by Andreas Velten of the intracavity pumped OPO [35]

showed several types of amplitude instabilities of the pulse train, and suggested

negative feedback as a stabilizing mechanism.

1. Q-switching tendency of the Ti:sapphire enhanced by the coupling with the

111



Chapter 7. Simulation of coupled Ti:Sapphire and OPO cavities

OPO. Cure:

a) Use a gain medium with short lifetime (semiconductor, VECSEL)

b) Intracavity energy limiter (or simply higher second or higher order non-

linear processes inside the signal cavity).

2. Only one pulse in the OPO cavity where 2 are expected. Solutions:

a) Intracavity energy limiter (or simply higher second or higher order non-

linear processes inside the signal cavity)

b) OPO cavity length twice that of the pump cavity

3. Cavity detuning: when the cavity lengths are not matched, the OPO signal

will drift away from perfect overlap, until it vanishes. Another OPO signal will

be generated from noise. In the process: large amplitude instability. Solutions:

a) Active stabilization

There is a trivial solution to obtain a beat note with (nearly) stable operation:

very low intracavity OPO power to avoid nonlinear effects. That led to the beat note

shown in Figs. 7.1 (b) and (c). Operating at low power close to threshold is never a

desirable situation for any laser. The other recommendation issued from the study

of Andreas Velten [35] is to introduce inducible losses. This can be done either by

inserting a two-photon absorber in the cavity, or a second harmonic generator, or

simply by tightening the focusing into the OPO crystal. Attempting these solutions

led to the realization that the problem is considerably more complex than anticipated.

The model of Velten addresses only amplitude instabilities. It will be shown in this

chapter that phase instabilities are considerably more difficult to eliminate, and have

not been taken into account in previous models. Active stabilization as a solution

for 3.a). has been unsuccessfully attempted [25, 24]. It seemed logical to use the

wavelength of the OPO itself as an error signal, since the excursion in wavelength
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is very large for a small cavity length detuning. This unfortunately cannot work,

because the laser extinguishes itself first when synchronization is lost, before re-

emerging from noise at the synchronized wavelength, and therefore, the instability

occurs before the error signal.

The main shortcoming of the previous approach is to have ignored the laser

phase fluctuations arising from inexact phase matched processes. In making tighter

focusing in the PPLN or adding a nonlinear crystal in the OPO cavity to reduce the

amplitude fluctuations mentioned in (1) and (2), we introduce non-phase matched

nonlinear processes that couple the fields of the oscillator and pump, in amplitude

and phase, and introduce new fields as well. Non-phase-matched processes, that are

often neglected, have an important impact on the dynamics of the coupled cavities,

contributing for instance to a feedback from the OPO signal to the pump phase

and amplitude. The intracavity pumped OPO is a too complex instrument to be

developed solely by experimental trial and error. Therefore, a complete theoretical

model, containing all the nonlinear interactions, should be elaborated, to understand

the mechanisms that affect the stability of the system, and find conditions leading

to a stable operation.

7.2 Coupled cavities algorithm

Fig. 7.2 is a block diagram of the algorithm proposed to simulate the coupled OPO-

pump cavities. The algorithm is realized in MATLAB, by a main program named

“coupledcavities” and two functions named “TiSaph” and “OPO”. An additional

function of “jitter” is used when cavity fluctuations are taken into consideration.

The code is attached in Appendix B.

It seems reasonable to assume that the pulse shape remains approximately un-

changed. The parameters describing the pulse are then limited to the pulse chirp c,
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Figure 7.2: Simulation of the intracavity pumped OPO.

the pulse duration τp and the pulse energy Wp and the pulse wavelength λ. Some of

these are defined by the field envelope:

Ẽ(t) = E0e−[( t
τp

)(1+ct)]2
, (7.1)

where E0 is a function of Wp. All interactions can be treated in the time domain.

It is possible to have a stable (analytical) model of energy evolution, assuming only

saturable gain and saturable absorber (see Chapter 5 of [12]).

7.2.1 Energy evolution

Saturated gain and absorption equation for Ti:Sapphire cavity

We chose here to represent the gain and absorber media by a simple two-level sys-

tem [12], for which analytical expressions define the transmission. It is however an

oversimplification in the case of the TI:sapphire laser. We have therefore adjusted

the parameters (gin cross-section, saturation energy) to match the result produced
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with a more elaborated 4 level system that used the correct physical parameters

for this laser. Defining a gain factor G = σΔN, where σ is the cross section for

stimulated emission, and  is the length of the gain medium traversed per round-trip,

dG

dt
= −G−Ge

Tp
− GW

WgsTp
. (7.2)

In Eq. (7.2), Wgs = Wgs × Ag × τp/Tp is an effective saturation energy in the gain

medium, where Ag is the cross section of the beam at that location. The steady state

(dG/dt = 0) solution of Eq. (7.2) is:

G(W) =
Ge

1 + W
Wes

. (7.3)

The gain equation will be solved between pulses (gain recovery). During the pulse,

we will integrate separately the gain and absorber equation. We will use both for

the gain and the absorber:

dW

dz
= αWs

(
1− e−W/Ws

)
(7.4)

where Ws is either the saturation energy density, or the energy density at which

Kerr lensing turns on. This equation applies for the gain as well, where Ws is then

the gain saturation energy density. This equation can be integrated at each passage

to yield the pulse energy Wg2 after the gain, as a function of the pulse energy Wg1

entering the gain medium:

Wg2 = AgWsg ln
[
1− eαgdg

(
1− eWg1/AgWsg

)]
. (7.5)

The same for the saturable absorber:

Wg2 = AaWsa ln
[
1− eαada

(
1− eWa1/AaWsa

)]
. (7.6)
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physical quantity symbol Modifying equation used for
Pulse Energy W (7.5) gain/pass
Gain factor G (7.2) gain recovery between pulses
Pulse energy density W (7.6) saturable abs/pass

Table 7.1: Gain/loss parameters for the Ti:sapphire laser.

Because of the complex nature of the interactions within the PPLN crystal, it

is desirable to use approximation that represent the physical process involved, with-

out going through a detailed calculation of the propagation through the nonlinear

crystal at each round-trip. The Ti:sapphire laser is represented by the parameters

in table 7.2.1.

OPO gain and pump depletion

With the OPO pumped inside the Ti:Sapphire cavity, we also have to include the

energy loss due to the OPO gain in the Ti:Sapphire energy evolution. The gain of

the OPO cavity derives solely from the nonlinear interaction with Ti:Sapphire pulse

and is studied extensively in Chapter 6 under different conditions.

There are linear losses due to mirror transmission and other elements inside the

cavities. The nonlinear loss from non-phase-matched SHG and SFG are is relatively

small and can be neglected. This is however not the case for the phase shifts intro-

duced by these processes.
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7.2.2 Chirp evolution

In this model we simulate the evolution of chirp and pulse duration using the ABCD

matrix method in temporal domain developed in Chapter 2.

The chirp evolution results from dispersion, n2 of the materials (nTS
2 for Ti:Sapphire [12]

and nLN
2 Lithium Niobate [28]), and from the cascaded nonlinearities (n2,ps for pump

and n2,sp for signal).

We make the approximation that the pulse is linearly chirped and Gaussian, and

remains so as it cycles through the cavity. The effect of GVD is to create a pulse

broadening and a chirp, with the change of the second derivative of the phase versus

time equal to:

Δcp(disp) = Δ

(
∂2

∂t2
ϕ(t)

)
=

4k′′
�

τ 4p
L (7.7)

where we have used the characteristics of Gaussian pulse propagation. The chirp

induced by self-phase modulation is:

Δcp(Kerr) = Δ

(
∂2

∂t2
ϕ(t)

)
= −2π

λ�

n̄2
∂2I

∂t2
L (7.8)

For the chirp by cascade nonlinearities, we use the results of numerical calculations.

The contributions of SHG and SFG turned out to be small compared to the material

Kerr effects. The self and cross phase modulations from DFG are not negligible and

more complicated since they involve the intensities of the pump and signal.

7.3 Simulation results

The pulse energy and duration of pump and signal wavelengths are plotted as a

function of cavity round trips. Also of interest are the chirp development in the
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pump and signal pulses. The delay between signal and pump pulses is another im-

portant parameter as it is used in the simulation to determines the synchronization

of Ti:Sapphire and OPO cavities. Lastly we examine the signal wavelength evolution

as a function of cavity round trips. We are particularly interested in the signal wave-

length shifts that tracks the OPO cavity detuning with respect to the Ti:Sapphire

cavity. That will provide the answer to the question whether there is a mechanism

for cavity stabilization and what it is.

The pump and signal pulses are chosen to be counter-chirped with an extra chirp

in the OPO cavities. This is not a “natural occurrence” in the laser. Without

any modification, both the Ti:Sapphire and OPO cavities present positive chirp and

negative GVD. As we will see in in section 7.3.5, the self-stabilization is only possible

when the pump pulse is positively chirped and signal pulse is negatively chirped. The

wavelength shift per round trip in this case will compensate for the cavity detuning

and return to a stable operation as demonstrated. We can add a negative chirp to

the OPO by inserting phase mismatched second harmonic generation in its cavity.

A 3 mm long lithium triborate (LBO) is more than enough to create the effective n2

of 4× 10−15 cm2/W that is used in the simulation.

We define the equilibrium solution of our model to be stationary pulse energy and

pulse duration. If the pulse evolution starts from any non equilibrium value (which

is usually the case), the pulse either presents oscillatory behavior until it damps

to a steady state, or steps out of the stable zone and never comes back. Fig. 7.3

shows the range of the parameters we choose to generate quasi-equilibrium solutions

(oscillatory solutions around equilibrium).
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Figure 7.3: The parameters we choose to run the simulation for coupled Ti:Sapphire and
OPO cavities are listed in each column. The red indicate the stable range with quasi-
equilibrium solutions.
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7.3.1 Damping effect

As discussed in Chapter 2, the physical explanation of damping is the cavity lifetime,

making the damping time equal to the ring down time of the cavity. This (unproven)

assumption is supported by the fact that the oscillation are seen to be damped simply

because of the inclusion of gain and loss for both Ti:Sapphire and OPO cavities, as

shown in Fig. 7.4, where no damping coefficient ε (cf. Chapter 2) was included.

Figure 7.4: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm
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7.3.2 GVD of Ti:Sapphire and OPO cavities

For a pair of counter-chirped pump and signal pulses we need to have opposite signs

of the dispersion for Ti:Sapphire and OPO cavities. The GVD of either Ti:Sapphire

or OPO cavity will change both pump and signal pulse characteristics. The change

of parameters from Fig. 7.4 to Fig. 7.5 is a decrease of the GVD of the Ti:Sapphire

cavity from -1600fs2 to -1700fs2. It is seen from the plot that the pump pulse energy

decreases while the signal energy increases, and both pump and signal pulses are

longer. For the plot of Fig. 7.6, it is the GVD of the OPO cavity that has been

decreased from 1000 fs2 to 900 fs2. The pump pulse energy increases while the signal

energy decreases, and both pump and signal pulses become slightly shorter.

Figure 7.5: GVD=-1700fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm

It is interesting to compare the above results by just flipping the signs in the

121



Chapter 7. Simulation of coupled Ti:Sapphire and OPO cavities

Figure 7.6: GVD=-1600fs2 (pump), 900fs2 (signal); Linear loss=11% (pump), 7% (signal);
OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damping
coeff=0; Initial lambdas=1140nm

two cavities, i.e. the negative chirp being added to the Ti:Sapphire cavity. The new

results indicate a much narrower range of stability, along with stronger oscillations

(Fig. 7.7).
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Figure 7.7: GVD=780fs2 (pump), -500fs2 (signal); Linear loss=11% (pump), 7% (signal);
OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damping
coeff=0; Initial lambdas=1140nm

123



Chapter 7. Simulation of coupled Ti:Sapphire and OPO cavities

7.3.3 Gain and loss parameters

Gain and loss parameters are usually adjusted in pairs to obtain equilibrium solu-

tions. Since the gain and saturable absorption of Ti:Sapphire cavity are fixed, we

only tune the OPO gain and loss as well as pump depletion due to the OPO inter-

action. Comparing with Fig. 7.4, Fig. 7.8 is plotted for a 9% increase in OPO gain.

The pump pulse energy decreases while the signal energy increases, and both pump

and signal pulses are longer. Fig. 7.9 is plotted for an increase in pump depletion

and decrease in linear loss of the Ti:Sapphire cavity by 10%. The pump pulse energy

increases while the signal energy decreases, and both pump and signal pulses become

slightly shorter.

Figure 7.8: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.16-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm
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Figure 7.9: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=10% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.9-0.1×Es; NL loss coeff=1.5e6; Damping
coeff=0; Initial lambdas=1140nm
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7.3.4 Initial conditions

The initial signal wavelength, the energy and duration of pump and signal pulses

all change the behavior of quasi-equilibrium evolutions, but converge to almost the

same final solution. In the following plots we change the initial signal wavelength

(Fig. 7.10) and initial pulse energies (Fig. 7.11), respectively.

Figure 7.10: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1136nm
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Figure 7.11: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note: Pump energy starts from 80% as before and
signal energy starts from 180%.
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7.3.5 Cavity detuning and wavelength tracking

For synchronously pumped OPO, the signal wavelength, within the gain bandwidth,

is known to be determined by the cavity length of the OPO. However how the

wavelength tracks the repetition rate change remains unclear. In our simulation

we find that it is only for a small range of detuning that the wavelength shift per

round trip automatically brings it to the demanded wavelength. With the current

parameters the OPO cavity can only afford a sudden change from -0.5fs to 1.7fs per

round trip, which corresponds to a range of 0.33μm change in cavity length. It is thus

imperative that the construction of the intracavity pumped OPO be mechanically

stable and rigid.

Figure 7.12: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note: A sudden change of -0.5fs is applied to the
cavity round trip time.
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Figure 7.13: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note: A sudden change of 1.7fs is applied to the
cavity round trip time.

7.3.6 Cavity length fluctuation study

Cavity length fluctuations play an important role in the instability of our system.

In this simulation we add to the cavity round trip time a set of normally distributed

pseudo-random numbers whose amplitudes are proportional to round trip counts. As

we expect, the equilibrium solution becomes noisier than previous results, depending

on the magnitude of added noises as well as the noise frequency. The noise frequencies

are calculated by Fourier transform and are around 25 MHz (Fig. 7.14), 2.5 MHz

(Fig. 7.16) or 0.25 MHz (Fig. 7.18) respectively (the cavity repetition rate is 100

MHz).

129



Chapter 7. Simulation of coupled Ti:Sapphire and OPO cavities

Figure 7.14: The blue solid line is a set of normally distributed pseudorandom numbers
plotted as a function of round trip time. The noise amplitude (in fs) is proportional to
round trip counts, and frequency is 25 MHz. The red dotted line is the square of the noise.

Figure 7.15: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note:Cavity round trip time fluctuation (Fig. 7.14)
is added to the cavity round trip time.
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Figure 7.16: The blue solid line is a set of normally distributed pseudorandom numbers
plotted as a function of round trip time. The noise amplitude (in fs) is proportional to
round trip counts, and frequency is 2.5 MHz. The red dotted line is the square of the noise.

Figure 7.17: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note: Cavity round trip time fluctuation (Fig. 7.16)
is added to the cavity round trip time.
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Figure 7.18: The blue solid line is a set of normally distributed pseudorandom numbers
plotted as a function of round trip time. The noise amplitude (in fs) is proportional to
round trip counts, and frequency is 0.25 MHz. The red dotted line is the square of the
noise.
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Figure 7.19: GVD=-1600fs2 (pump), 1000fs2 (signal); Linear loss=11% (pump), 7% (sig-
nal); OPO gain=1.15-0.5×Es; Pump depletion=0.91-0.1×Es; NL loss coeff=1.5e6; Damp-
ing coeff=0; Initial lambdas=1140nm. Note:Cavity round trip time fluctuation (Fig. 7.18)
is added to the cavity round trip time.
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As we can see from these three figures, our system of coupled cavities is more

tolerant to faster fluctuations, given the same noise amplitude. The noise amplitude

range for which the system can return to stability is only several femtoseconds.

7.4 Conclusion

Intracavity pumped OPO was proposed as an ideal candidate to implement IPI mea-

surements. However the experimental development in Chapter 5 reveals it has never

reached its full potential because of the stability problems. In order to study the cou-

pling between pump and signal pulses, the knowledge of nonlinear interaction taken

place in PPLN is prepared in Chapter 6. In this chapter we successfully establish a

full numerical model of coupled Ti:Sapphire and OPO cavities by parameterizing the

gain, loss, dispersion and nonlinearities. Condition to stabilize this complex system

is a situation where any change of relative timing of the pump and signal in the OPO

leads to a wavelength shift of the signal that will modify its group velocity towards

better synchronization. The simulation results show that this condition can be ful-

filled if the pump pulse has a positive chirp, and the signal a negative chirp, provided

the signal pulse enters the PPLN with some delay with respect to the pump. For

a stable steady state to take place in the coupled cavities in experiment, the aver-

age nonlinear index should be negative in the OPO cavity. This can be achieved

by inserting a non-phase matched second harmonic generating crystal in the OPO

cavity.
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Conclusion and future work

8.1 Conclusion

We have demonstrated an IPI response that changes linearly with the displacement

ΔL of the reference arm, in the order of a few nanometers with a solid state laser,

with a dye jet as saturable absorber. A total displacement of 250 nm in optical path

was measured with the resolution better than 10 nm, even with a small fraction of the

intracavity power sent to the sample. By replacing the dye jet with a semiconductor

absorber we demonstrate a beat note measurement corresponding to a refractive

index change in the cavity. It was discovered that the MQW used as saturable

absorber introduces a coupling between group and phase velocity, resulting in a

beat note bandwidth as large as 10 kHz. Therefore the requirement of IPI that

the group velocity be independent of the signal to be measured was not met. A

simple theoretical model based on saturation has been shown to match very exactly

the shape of the group delay dependence on cavity length [23]. It was therefore

concluded that the vanadate laser with saturable absorber was not the ideal system

for Intracavity Phase Interferometry.
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Intracavity pumped OPO was proposed as an ideal candidate to implement IPI

measurements. However the experimental developments reveal it has never reached

its full potential because of stability problems. The fact that a stable operation for

beat note measurement can only be achieved at low OPO intracavity power, when

the feedback from OPO to pump is minimized, indicates a complex coupling between

the Ti:Saph and OPO cavities.

A comprehensive theoretical model including all nonlinear interactions (phase

matched and mismatched), as well as dispersion to all orders, in the nonlinear crystal

of the OPO was elaborated. We found the often neglected phase-mismatched pro-

cesses to have an important impact on the dynamics of the coupled cavities through

cross phase modulation [22]. A full numerical model of coupled pump and OPO

cavities is established by parameterizing the gain, loss, dispersion and nonlinearities.

The pulse evolution of both pump laser and OPO is calculated at each cavity round

trip using the ABCD matrix method in temporal domain. The simulation reproduces

the observed instabilities. However, it is found that the same cascade nonlinearities

that cause unstable phase and amplitude coupling can be exploited to stabilize the

coupled OPO-pump in amplitude, phase and wavelength. The stable cavity uses

counter-chirp in the pump and OPO cavities. A negative chirp is produced in the

OPO by inserting phase mismatched second harmonic generation in its cavity

8.2 Future work

8.2.1 Fiber based IPI nanoscope

The idea of the nano-metrology we investigated in this thesis can be transferred

from free space laser to fiber based systems. The fiber laser is mode locked by a

carbon nanotube saturable absorber, which is distributed over a tapered section of
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the fiber [18]. The use of polarization mantaining fibers and differentiating the two

pulses by two orthogonal polarizations is a promising solution to either the coupling

between two pulses or the coupling between two cavities. The setup is illustrated in

Fig. 8.1.

Figure 8.1: Sketch of the fiber laser sensor. Two pulses are made to oscillate in a cavity
made of polarization maintaining (PM) fibers, one propagating on the slow axis, and the
other on the fast axis. A X indicates the crossing point of the two pulses, where a carbon
nanotube (CNT) saturable absorber is located both for mode-locking and for imposing the
pulse crossing point. At the right end of the cavity, a polarizing beam splitter P separates
the two pulses, one being sent to a reference arm, the other to the arm with the sensing
element. On the left side of the cavity, output couplers and beam combiners make the two
output pulse trains interfere on a detector D

One can measure the difference in optical path lengths when there is a transparent

element in the sample arm. It is possible to reconstruct a three dimensional image

using tomographic approach, given the sample sitting on a translation and rotation

stage. The portability and feasibility of fiber will make it suitable nanoscopy in

biomedical applications.

This system can be further improved by an optical parametric oscillator, syn-

chronously pumped by the mode-locked fiber laser. Controlling the pulse timing by

pulsing the gain is conceptually the ideal configuration of the IPI. The approach

seems promising, Gowda et al. having recently demonstrated a bidirectional OPO

fiber laser [16].
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8.2.2 Frequency domain Optical Parametric Amplification

Our study of second order nonlinear interactions can be applied to many research

areas. For instance, amplification of few-cycle laser pulses with their correspond-

ing octave spanning spectra still remains a formidable challenge since the universal

dilemma of gain narrowing sets limits for both real level pumped amplifiers as well

as parametric amplifiers. Bruno Schmidt et al. demonstrate that employing para-

metric amplification in the frequency domain rather than in time domain opens up

new design opportunities for ultrafast laser science, with the potential to generate

single cycle multi-terawatt pulses [21]. Our theory of parametric interactions is valid

down to a few optical cycles, the only limitation being that the spectra of the dif-

ferent pulses (signal, pump and idler) may not overlap. It will be a suitable tool to

simulate vavious effect and predict performance, given the experimental parameters.

We can also further extend our approach to other nonlinear interactions. For

instance, Raman scattering and four-wave mixing have wide applications, but their

simulations are still under development, especially for ultrafast pulses. Our simula-

tion deals with complex electric field and provide the information both in amplitude

and phase.
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Appendix A

Coupled NL wave equations
derived in frequency domain

The various polarization have been defined in Eq. (6.5) of Chapter 6. Most calculations
being performed in the frequency domain, the Fourier transform of these equations will be
used:

P̃NL
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[
χ
(2)
1
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Ẽ∗

s (Ω
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Inserting these five polarizations into the wave Eq. (6.1), and grouping terms of the
same central frequency, leads to the set of five equations:
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A description in complex spectral amplitude ãp,s,i,2,3(Ω, z) and fast varying spectral phase
−ikp,s,i,2,3(Ω)z is next chosen for each pulse:

Ẽp,s,i,2,3(Ω, z) =
1

2
ãp,s,i,2,3(Ω, z)e

−ikp,s,i,2,3(Ω)z (A.3)

where Maxwell’s wave equation imposes the condition

k2(Ω) = Ω2με(Ω). (A.4)

Substituting in the five equations (A.2) leads to a set of five differential equations for the
evolution with distance of the five complex spectral amplitude functions:
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ã∗s(Ω
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(A.5)

It has been shown [5, 4] that the second derivative is generally negligible, consistent with
the slowly varying envelope approximation, even down to a few optical cycles. As stated
earlier, computational considerations impose that the various spectral envelopes should
be centered at the origin of the frequency axis, which is achieved by defining the shifted
functions

Ẽp,s,i,2,3(ΔΩ, z) = ãp,s,i,2,3(Ω, z)

kp,s,i,2,3(ΔΩ) = kp,s,i,2,3(Ω)

ΔΩp,s,i,2,3 = Ω− ωp,s,i,2,3. (A.6)

In the set of equations (A.5), the envelopes ãp,s,i,2,3 are continuous functions of the fre-
quency Ω, that covers the spectrum from infrared to ultraviolet. In numerical computation,
these functions will be represented by discrete arrays, at discrete frequencies limited to a
range of a few inverse pulse durations. The size and steps of the arrays are not arbitrary,
but matched to the energy conservation.

Since we are not dealing here with pulses of a few optical cycle duration, we can make
the approximation that the variation of the scaling factor in front of the integral is negligible
in this frequency range, and we can assume it to be constant for each wave equation.
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s (ΔΩ′, z)Ẽ3(ΔΩ +ΔΩ′, z)ei[ks(ΔΩ′)−k3(ΔΩ+ΔΩ′)+kp(ΔΩ)]zdΔΩ′

+χ
(2)
2

∫
Ẽ∗
p (ΔΩ′, z)Ẽ2(ΔΩ +ΔΩ′, z)ei[kp(ΔΩ′)−k2(ΔΩ+ΔΩ′)+kp(ΔΩ)]zdΔΩ′

}

∂Ẽs(ΔΩ)

∂z
= −i

ω2
s

4c2k
(0)
s{

χ
(2)
1

∫
Ẽ∗
i (ΔΩ′, z)Ẽp(ΔΩ +ΔΩ′, z)ei[ki(ΔΩ′)−kp(ΔΩ+ΔΩ′)+ks(ΔΩ)]zdΔΩ′
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+χ
(2)
3

∫
Ẽ∗
p (ΔΩ′, z)Ẽ3(ΔΩ +ΔΩ′, z)ei[kp(ΔΩ′)−k3(ΔΩ+ΔΩ′)+ks(ΔΩ)]zdΔΩ′

}

∂Ẽi(ΔΩ)

∂z
= −i

ω2
i χ

(2)
1

4c2k
(0)
i∫

Ẽ∗
s (ΔΩ′, z)Ẽp(ΔΩ +ΔΩ′, z)ei[ks(ΔΩ′)−kp(ΔΩ+ΔΩ′)+ki(ΔΩ)]zdΔΩ′

∂Ẽ2(ΔΩ)

∂z
= −i

ω2
2χ

(2)
2

4c2k
(0)
2∫

Ẽp(ΔΩ′, z)Ẽp(ΔΩ−ΔΩ′, z)ei[−kp(ΔΩ′)−kp(ΔΩ−ΔΩ′)+k2(ΔΩ)]zdΔΩ′

∂Ẽ3(ΔΩ)

∂z
= −i

ω2
3χ

(2)
3

4c2k
(0)
3∫

Ẽs(ΔΩ′, z)Ẽp(ΔΩ−ΔΩ′, z)ei[−ks(ΔΩ′)−kp(ΔΩ−ΔΩ′)+k3(ΔΩ)]zdΔΩ′

(A.7)

The Taylor expansion of a pump k-vector can be written as:

kp(ΔΩ) = k(0)p + k(1)p · (ΔΩ) +
1

2
k(2)p · (ΔΩ)2 + .... (A.8)

where k1p = 1
vgp

is responsible for group delay. The phase matching condition is chosen to

apply at the central pulse frequencies ΔΩp,i,s = 0:

δk(0) = k(0)s + k
(0)
i − k(0)p = 0. (A.9)

In order to choose a retarded frame of reference moving with the group velocity of the
pump pulse, it is essential in the simulation to subtract the same k1p ·(ΔΩ) term from all five
k-vectors. To condense the notation and also for simulation consideration, the following
quantities are introduced:

Ap =
−iω2

p

4c2k
(0)
p

=
−iπ

2npλp

As =
−iω2

s

4c2k
(0)
s

=
−iπ

2nsλs

Ai =
−iω2

i

4c2k
(0)
i

=
−iπ

2niλi

A2 =
−iω2

2

4c2k
(0)
2

=
−iπ

2n2λ2
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A3 =
−iω2

3

4c2k
(0)
3

=
−iπ

2n3λ3
(A.10)

P(ΔΩ) = Ẽp(ΔΩ)e−ikp(ΔΩ)z

S(ΔΩ) = Ẽs(ΔΩ)e−iks(ΔΩ)z

I(ΔΩ) = Ẽi(ΔΩ)e−iki(ΔΩ)z

N (ΔΩ) = Ẽ2(ΔΩ)e−ik2(ΔΩ)z

M(ΔΩ) = Ẽ3(ΔΩ)e−ik3(ΔΩ)z (A.11)

to obtain the coupled equations for the field amplitudes:

∂Ẽp(ΔΩ)

∂z
= Ap

[
χ
(2)
1 (S ∗ I) + χ

(2)
2 (P �N ) + χ

(2)
3 (S �M)

]
(ΔΩ)

·eikp(ΔΩ)z (A.12)

∂Ẽs(ΔΩ)

∂z
= As

[
χ
(2)
1 (I � P) + χ

(2)
3 (P �M)

]
(ΔΩ)eiks(ΔΩ)z (A.13)

∂Ẽi(ΔΩ)

∂z
= Aiχ

(2)
1 (S � P) (ΔΩ)eiki(ΔΩ)z (A.14)

∂Ẽ2(ΔΩ)

∂z
= A2χ

(2)
2 (P ∗ P) (ΔΩ)eik2(ΔΩ)z (A.15)

∂Ẽ3(ΔΩ)

∂z
= A3χ

(2)
3 (S ∗ P) (ΔΩ)eik3(ΔΩ)z. (A.16)

Here the operator ∗ describes a convolution and � a cross-correlation. The refractive
indexes n(Ω) are required to calculate kp,s,i,2,3(ΔΩ). They are obtained from a Sellmeier
equation [36].

A.1 Quasi-Phase Matching

The susceptibility χ
(2)
n of the periodically poled lithium niobate (PPLN) alternates its sign

at every poled domain ”n”.

χ(2)
n = χ(2)(−1)n, (A.17)

where n is the index of poled domain. The expression can be decomposed into a Fourier
series:

χ(2) =
4χ(2)

π

∞∑
m=1,3,5...

1

m
sin(

2πmz

Λ
) =

2χ(2)

iπ

∞∑
m=1,3,5...

1

m

[
eimkgz − e−imkgz

]
, (A.18)
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where Λ is the grating period of PPLN crystal, and kg = 2π
Λ . The grating period is

chosen such that the poling is reversed before conversion back to the pump occurs, for the
wavelength at the center of each pulse:

δk(0)Λ

2
= π (A.19)

Equation (A.7) for the DFG needs to be rewritten as a sum over m = 1, 3, 5...∞:

∂Ẽi(ΔΩ)

∂z
= −πω2

i χ
(2)
1

2c2k
(0)
i

∞∑
m=1,3,5...

1

m

∫ {
Ẽ∗
s (ΔΩ′, z)Ẽp(ΔΩ +ΔΩ′, z)

{
ei[ks(ΔΩ′)−kp(ΔΩ+ΔΩ′)+ki(ΔΩ)+mkg ]z

−ei[ks(ΔΩ′)−kp(ΔΩ+ΔΩ′)+ki(ΔΩ)−mkg ]z
}
dΔΩ′} . (A.20)

A good approximation to a square wave is obtained by limiting the sum up to the value
of m = 5. Dividing by Λ, we note that Eq. (A.19) is equivalent to the phase matching
condition:

−k(0)s − k
(0)
i + k(0)p − kg = 0 (A.21)

The numerical solution can be achieved by integrating the set of equations (6.7) to (6.11)
over the thickness of the PPLN crystal, given a set of initial fields at z = z0. However
this solution does not include the effect of the linear dispersion of the crystal on the
phase of each individual pulse, because the transformation (A.3) has removed the effect of
dispersion. This transformation has to be reversed in order to get the complete electric
field. For propagation from z0 to z1 the reverse transformation is a multiplication by
exp[ikj(ΔΩ)(z1 − z0)] where j takes the value p, s, i, 2 or 3.

Ẽp(ΔΩ, z1) = Ẽp(ΔΩ, z0)e
ikp(ΔΩ)(z1−z0) (A.22)

Ẽs(ΔΩ, z1) = Ẽs(ΔΩ, z0)e
iks(ΔΩ)(z1−z0) (A.23)

Ẽi(ΔΩ, z1) = Ẽi(ΔΩ, z0)e
iki(ΔΩ)(z1−z0) (A.24)

Ẽ2(ΔΩ, z1) = Ẽ2(ΔΩ, z0)e
ik2(ΔΩ)(z1−z0) (A.25)

Ẽ3(ΔΩ, z1) = Ẽ3(ΔΩ, z0)e
ik3(ΔΩ)(z1−z0). (A.26)

By performing the inverse Fourier transform on equations (A.22) through (A.26) we obtain
the expression of final fields in time domain.
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Matlab code for coupled
Ti:Sapphire and OPO cavities

%main program of coupled cavities

clear all

clear global

global Lts n2ts Lln n2lnp n2lns Ws alphagd alphaad Ag Aa Aln Energy0

%pump wavelength

lambdap = 770e-7; %cm

%T:S crystal

Lts = 0.3*2; %cm

n2ts = 10.5e-16; %cm^2/W

%ppln crystal

Lln = 0.1*2; %cm

n2lnp = 4e-15; %cm^2/W at 770nm

n2lns = 1.6e-15; %cm^2/W at 1140nm

%engery evolution parameters

sigma = 5e-20; %cm^2 5e-20 in the book

hbar = 1.054571726e-19; %J*fs

Ws = hbar*(2*pi*3e-5/lambdap)/(2*sigma)*1e-3;

%J/cm^2 %reduced due to approx. to 3 level system

alphagd = 0.3;%0.22;%0.20539; %gain parameter

alphaad = -0.1; %was -0.02 %absorber parameter

Ag = 2e-5; %beam area[cm^2] in the TS crystal

Aa = Ag/10; %beam area[cm^2] in SA ,was /1.5

Aln = 2e-5;%~pi*2.5e-5/4; %beam area[cm^2] in the ppln crystal
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%simulation results interpolated

delta = zeros(4,3,6); %[delay(60-150), lambda(1130-1150),

chirp(0,0.5,1,1.5,2,3)]

delta(:,1,1)= [0.8289;-0.4330;-1.7416;-2.6466];

%delay from 60 to 150, lambda 1130, chirp 0

delta(:,1,2) = [3.8124;2.1204;-0.3232;-2.8856];

%delay from 60 to 150, lambda 1130, chirp 0.5

delta(:,1,3)= [5.3478;3.1087;-0.0024;-3.2765];

%delay from 60 to 150, lambda 1130, chirp 1

delta(:,1,4)=[5.1623;2.8420;-0.0742;-3.0690];

%delay from 60 to 150, lambda 1130, chirp 1.5

delta(:,1,5)= [4.2305;2.1574;-0.2504;-2.6746];

%delay from 60 to 150, lambda 1130, chirp 2

delta(:,1,6)= [2.4211;1.0050;-0.5060;-1.9973];

%delay from 60 to 150, lambda 1130, chirp 3

delta(:,2,1)= [0.3909;0.1842;-0.0938;-0.3522];

%delay from 60 to 150, lambda 1140, chirp 0

delta(:,2,2)=[3.7455;2.8535;1.1716;-0.9082];

%delay from 60 to 150, lambda 1140, chirp 0.5

delta(:,2,3)= [5.8223;4.3461;1.8387;-1.1730];

%delay from 60 to 150, lambda 1140, chirp 1

delta(:,2,4)=[6.1340;4.3894;1.8590;-1.0325];

%delay from 60 to 150, lambda 1140, chirp 1.5

delta(:,2,5)= [5.4666;3.7759;1.5916;-0.8085];

%delay from 60 to 150, lambda 1140, chirp 2

delta(:,2,6)= [3.7168;2.4568;1.0161;-0.4986];

%delay from 60 to 150, lambda 1140, chirp 3

delta(:,3,1)= [-0.1326;0.6888;1.4049;1.7935];

%delay from 60 to 150, lambda 1150, chirp 0

delta(:,3,2)=[3.3239;3.2115;2.3826;0.9655];

%delay from 60 to 150, lambda 1150, chirp 0.5

delta(:,3,3)= [5.7174;5.0559;3.3396;0.8672];

%delay from 60 to 150, lambda 1150, chirp 1

delta(:,3,4)=[6.4745;5.4179;3.4854;0.9674];

%delay from 60 to 150, lambda 1150, chirp 1.5

delta(:,3,5)= [6.1169;4.9314;3.1748;1.0396];

%delay from 60 to 150, lambda 1150, chirp 2

delta(:,3,6)= [4.6133;3.6195;2.3817;0.9873];

%delay from 60 to 150, lambda 1150, chirp 3

%in Hz

dmu = delta/7.5e-15/8191;
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lambda = [1130,1140,1150];

for i = 1:6

mlambda(:,:,i) = [lambda;lambda;lambda;lambda];

end

dlambda = -dmu.*(mlambda*1e-9).^2/0.3;

[X,Y,Z] = meshgrid(lambda,60:30:150,[0,0.5,1,1.5,2,3]);

[Xq,Yq,Zq]=meshgrid(1130:1150,60:150,0:0.1:3);

dlambdaq = interp3(X,Y,Z,dlambda,Xq,Yq,Zq);

%preparation of arrays for main loop

N = 2000; %# of round trips

Energyp = zeros(1,N);

Energys = zeros(1,N);

phi2p = zeros(1,N);

phi2s = zeros(1,N);

taup = zeros(1,N);

taus = zeros(1,N);

invp =zeros(1,N);

dtp = zeros(1,N);

dts = zeros(1,N);

lambdas = zeros(1,N);

abarp = zeros(1,N);

abars = zeros(1,N);

%initial values

Energy0=2.75173410813534e-08; %steady state pump energy without OPO

Energyp(1)=Energy0*1;

Energys(1)=Energy0*0.1;

taup(1) = 85; %Gaussian pulse width in fs

taus(1) = 85; %Gaussian pulse width in fs

phi2p(1)= 0;

phi2s(1)= 0;

dtp(1)= 0;

dts(1)= 120;

lambdas(1) = 1140e-7;

chirp(1) = 2*pi/lambdap*n2ts*Energyp(1)/Ag/taup(1)*1e15/taup(1)^2*Lts;

abarp(1) = chirp(1)*taup(1)^2/4;

%noise

% m = 100;

% gamma = 0.5;%.*(1:N)*0.5e-3

% [noise, fn, vafn] = jitter(m,N,gamma); %noise with increasing amplitude

noise = zeros(1,N); %noise with constant amplitude
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%main loop

for j = 2:N

[Energyp(j),taup(j),phi2p(j),dtp(j),abarp(j)] = TiSaph4(Energyp(j-1)

,Energys(j-1),taup(j-1),taus(j-1),phi2p(j-1),abarp(j-1),dtp(j-1),

dts(j-1),lambdap,lambdas(j-1));

[Energys(j),taus(j),phi2s(j),dts(j),abars(j),lambdas(j)] = OPO4(

Energyp(j-1),Energys(j-1),taup(j-1),taus(j-1),phi2s(j-1),abars(j-1),

dtp(j-1),dts(j-1),lambdap,lambdas(j-1),Lln,n2lns,Aln,dlambdaq,

noise(j-1));

if lambdas>1150e-7

break

elseif lambdas<1130e-7

break

end

end

%write the file

dlmwrite(’GVDp-1600s1000LLp11%s7%OPOgain1_15-0_5xEsPumpdepletion0_91-0_1xEs

NLlosscoeff1_5e6Damping0Initiallambdas1140.txt’,...

[Energyp*1e9;Energys*1e9;taup;taus;abarp;abars;lambdas*1e7;noise]’,’

delimiter’,’\t’,’newline’,’pc’,’precision’,’%10.5f’)

%make the plot

figure

subplot(4,1,1);

[AX1,H1,H2] = plotyy(1:N,Energyp*1e9,1:N,Energys*1e9,’plot’);

set(get(AX1(1),’Ylabel’),’String’,’Pump energy(nJ)’)

set(get(AX1(2),’Ylabel’),’String’,’Signal energy(nJ)’)

ylim(AX1(1),[20 40])

set(AX1(2),’YColor’,’r’)

set(H2,’Color’,’r’)

ylim(AX1(2),[2 4])

title(’GVD=-1600fs^2(p)&1000fs^2(s); Linear loss=11%(p)&7%(s);

OPO gain=1.15-0.5xEs; Pump depletion=0.91-0.1xEs;

NL loss coeff=1.5e6; damping coeff=0; Initial lambdas=1140nm’)

subplot(4,1,2);

[AX2,H3,H4] = plotyy(1:N,taup*1.17,1:N,taus*1.17,’plot’);

set(get(AX2(1),’Ylabel’),’String’,’Pump pulse width(fs)’)

set(get(AX2(2),’Ylabel’),’String’,’Signal pulse width(fs)’)

ylim(AX2(1),[0 200])

set(AX2(2),’YColor’,’r’)

set(H4,’Color’,’r’)
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ylim(AX2(2),[0 200])

subplot(4,1,3);

[AX3,H5,H6] = plotyy(1:N,abarp,1:N,abars,’plot’);

set(get(AX3(1),’Ylabel’),’String’,’Pump chirp coeff.’)

set(get(AX3(2),’Ylabel’),’String’,’Signal chirp coeff.’)

ylim(AX3(1),[-0.6 0])

set(AX3(2),’YColor’,’r’)

set(H6,’Color’,’r’)

ylim(AX3(2),[0 0.6])

subplot(4,1,4);

[AX4,H7,H8] = plotyy(1:N,dts-dtp,1:N,lambdas*1e7,’plot’);

set(get(AX4(1),’Ylabel’),’String’,’delay btw signal and pump’)

set(get(AX4(2),’Ylabel’),’String’,’Signal wavelength(nm)’)

ylim(AX4(1),[110 150])

set(AX4(2),’YColor’,’r’)

set(H8,’Color’,’r’)

ylim(AX4(2),[1135 1142])

xlabel(’Roundtrip counts’)

----------------------------------------------------------------------

%simulate the pulse evolution of Ti:Sapphire cavity

function [Energyp,taup,phi2p,dtp,abarp] = TiSaph4(

Energyp,Energys,taup,taus,phi2p,abarp,dtp,dts,lambdap,lambdas)

global Lts n2ts Lln n2lnp Ws alphagd alphaad Ag Aa Aln Energy0

%Ti:Sapphire gain and loss

Energyp = Ag*Ws*log(1-exp(alphagd)*(1-exp(Energyp/(Ag*Ws)))); %gain

Energyp = Aa*Ws*log(1-exp(alphaad)*(1-exp(Energyp/(Aa*Ws)))); %loss

Energyp = 0.89*Energyp; %linear loss

%Dispersive process, energy is conserved

%chirp coeff. for the TS crystal

Ip = Energyp/(Ag*taup*1e-15); %pump intensity

Is = Energys/(Aln*taus*1e-15); %signal intensity

chirp1 =(2*pi/lambdap)*n2ts*Ip/taup^2*Lts;%= -4*abar/tau1^2; 1/fs^2

%chirp coeff. for the PPLN crystal

chirp2 =(2*pi/lambdas)*n2lnp*(Ip*Ag/Aln+2*Is)/taup^2*Lln;

%material 1/fs^2

n2ps = ((1140+abarp*4)*1e-7-lambdas)/39*1e-7+0.8*abarp*1e-15;

%effective n2ps

chirp2 = chirp2 + (2*pi/lambdap)*n2ps*Is/taup^2*Lln;%cross PM

chirp = chirp1 + chirp2;
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%Dispersion

GVD1 = -1600; %fs^2 -1700<=GVD1<=-1600 (800fs;0.91-0.1;1.15-0.5,0.93)

GVD = 2*GVD1;

%Matrices

Kerr = [1,0; chirp,1];

Disp1 = [1,GVD1; 0,1];

Disp = [1,GVD; 0,1];

epsil = 0;%.01i; %damping coeff.

M = Disp*Kerr+epsil*eye(2); %cavity matrix

stbl = 0.5*(M(1,1)+M(2,2));

%disp(stbl)

invp = phi2p-2i/taup^2; %value from last roundtrip

abarp = -chirp*taup^2/4;

invp = (M(2,1)+M(2,2)*invp)/(M(1,1)+M(1,2)*invp); %current value

phi2p = real(invp); %output chirp

taup = sqrt(-2/imag(invp)); %output pulse duration

%OPO interaction

g = sqrt(2*log(2));%factor in front of Gaussian pulse duration

Energyp =(0.91-0.1*Energys/Energy0+6.1e-6*(taup*g-150)^2+7.8e-6*

(dts-dtp-120)^2+5.5e10*(lambdas-1140e-7)^2)*Energyp;

dtp = dtp+7.4 + 5.9e-4*(dts-dtp-102)^2-7.59116; %output pulse center

----------------------------------------------------------------------

%simulate the pulse evolution of Ti:Sapphire cavity

function [Energys,taus,phi2s,dts,abars,lambdas] = OPO4(Energyp,Energys,

taup,taus,phi2s,abars,dtp,dts,lambdap,lambdas,

Lln,n2lns,Aln,dlambdaq,noise)

Energy0=2.75173410813534e-08; %steady state pump energy

%chirp coeff. for the PPLN crystal

Ip = Energyp/(Aln*taup*1e-15); %pump intensity

Is = Energys/(Aln*taus*1e-15); %signal intensity

chirp1 =(2*pi/lambdap)*(n2lns-4e-15)*(Is+2*Ip)/taus^2*Lln;

%material 1/fs^2

n2sp = ((1140-abars*4)*1e-7-lambdas)/108*1e-7-0.8*abars*1e-15;

%effective n2sp

chirp2 =(2*pi/lambdas)*n2sp*Ip/taus^2*Lln; %cross PM

chirp = chirp1 + chirp2;

%Dispersion

GVD1 = 1000; %fs^2 500<=GVD1<=1100(pump GVD 1600)

GVD = 2*GVD1;

154



Appendix B. Matlab code for coupled Ti:Sapphire and OPO cavities

%Matrices

Kerr = [1,0; chirp,1];

Disp1 = [1,GVD1; 0,1];

Disp = [1,GVD; 0,1];

epsil = 0;%-0.01i; %damping coeff.

M = Disp*Kerr+epsil*eye(2); %OPO cavity matrix

%Dispersive process, energy is conserved

invp = phi2s-2i/taus^2; %value from last roundtrip

abars = -chirp*taus^2/4;

invp = (M(2,1)+M(2,2)*invp)/(M(1,1)+M(1,2)*invp); %current value

phi2s = real(invp); %output chirp

taus = sqrt(-2/imag(invp)); %output pulse duration

%OPO interaction

g = sqrt(2*log(2));%factor in front of Gaussian pulse duration

beta = 1.5e6; % ~0.5% SHG loss

Energys =(1.15-0.5*Energys/Energy0-beta*Energys-6.2e-6*(taus*g-150)^2

-7.9e-6*(dts-dtp-120)^2-5.5e10*(lambdas-1140e-7)^2)*Energys;

Energys = 0.93*Energys; %linear loss, output energy

dts = dts+2.7 - 0.034*(dts-dtp)+1.38-(lambdas*1e7-1140)*0.3+noise;

%output pulse center(-0.5<=dx<=1.7)

delayn = round(dts - dtp)-59;

lambdan = round(lambdas*1e7)-1129;

chirpn = round(abars*10)+1;

dlambdas = dlambdaq(delayn,lambdan,chirpn);

lambdas = lambdas+dlambdas*1e-7; %output signal wavelength

----------------------------------------------------------------------

%The generation and analysis of random noise on round trip time

function [noise2,f2,vaf2] = jitter(m,N,gamma)

dt = 10e-9; %10 ns round trip time

df = 1/dt; %1e8

T = ([1:N]-N/2)*dt; %ns

noise = randn(1,N)*gamma;

%noise with random # generated every m round trips

noise2 = interp(noise,m);

%crop the interpolated noise to the same scale N

noise2 = noise2(N*m/2-N/2+1:N*m/2+N/2);

figure

plot(noise2)
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hold on

plot(noise2.^2,’r--’)

NFFT = 2^nextpow2(N); % Next power of 2 from N

%fourier transform of noise

fn = fft(noise,NFFT)/N;

fx = df/2*linspace(0,1,NFFT/2+1);%x axis of the fourier transform

fn2 = fft(noise2,NFFT)/N;

% figure

% plot(fx,2*abs(fn(1:NFFT/2+1)))

% hold on

% plot(fx,2*abs(fn2(1:NFFT/2+1)),’r’)

%calculate the frequency and variance of noise.

f = sum(fx.*abs(fn(1:NFFT/2+1)).^2)/sum(abs(fn(1:NFFT/2+1)).^2);

vaf = sum(fx.^2.*abs(fn(1:NFFT/2+1)).^2)/sum(abs(fn(1:NFFT/2+1)).^2)-f^2;

f2 = sum(fx.*abs(fn2(1:NFFT/2+1)).^2)/sum(abs(fn2(1:NFFT/2+1)).^2);

vaf2 = sum(fx.^2.*abs(fn2(1:NFFT/2+1)).^2)/sum(abs(fn2(1:NFFT/2+1)).^2)

-f2^2;
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Appendix C

Fortran code for second order
nonlinear interactions

program simppln

! for DFG only

! no phase front tilt and collinear phasematching

implicit NONE

integer N

parameter(N=8191) !has to be (2^n)-1

!-- declare common blocks -------------------------------------

common/art1m/tpre1m,tpim1m,tsre1m,tsim1m,tire1m,tiim1m,t2re1m,t2im1m,

t3re1m,t3im1m

common/art0/tpre0,tpim0,tsre0,tsim0,tire0,tiim0,t2re0,t2im0,t3re0,t3im0

common/arthp/tprehp,tpimhp,tsrehp,tsimhp,tirehp,tiimhp,t2rehp,t2imhp,

t3rehp,t3imhp

common/art1p/tpre1p,tpim1p,tsre1p,tsim1p,tire1p,tiim1p,t2re1p,t2im1p,

t3re1p,t3im1p

common/arD1m/Dpre1m,Dpim1m,Dsre1m,Dsim1m,Dire1m,Diim1m,D2re1m,D2im1m,

D3re1m,D3im1m,Dsire1m,Dsiim1m,Dp2re1m,Dp2im1m,Ds3re1m,Ds3im1m,Dpire1m,

Dpiim1m,Dp3re1m,Dp3im1m

common/arD0/Dpre0,Dpim0,Dsre0,Dsim0,Dire0,Diim0,D2re0,D2im0,D3re0,D3im0,

Dsire0,Dsiim0,Dp2re0,Dp2im0,Ds3re0,Ds3im0,Dpire0,Dpiim0,Dp3re0,Dp3im0

common/arDhp/Dprehp,Dpimhp,Dsrehp,Dsimhp,Direhp,Diimhp,D2rehp,D2imhp,

D3rehp,D3imhp,Dsirehp,Dsiimhp,Dp2rehp,Dp2imhp,Ds3rehp,Ds3imhp,Dpirehp,

Dpiimhp,Dp3rehp,Dp3imhp
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common/arD1p/Dpre1p,Dpim1p,Dsre1p,Dsim1p,Dire1p,Diim1p,D2re1p,D2im1p,

D3re1p,D3im1p,Dsire1p,Dsiim1p,Dp2re1p,Dp2im1p,Ds3re1p,Ds3im1p,Dpire1p,

Dpiim1p,Dp3re1p,Dp3im1p

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg !kvg is grating period of ppln

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vinp/taup,taus,dp,ds,ampp,amps,np,ns,ni,n2,n3

!delay and amplitude for p and s

common/vcon/minval,tpa,tsa,tia,t2a,t3a

common/vrea/dist

common/angles/woff,tilt,intang

common/kvecs/k0p,k1p,k0s,k1s,k0i,k1i,k02,k12,k03,k13

!-- declare variables --------------------------------------------------

character*8 fnamep,fnames,fname2,fnamec,fnamei,fname3

character*4 conname

character*1 chue,czee,ceie,czed,ceid

integer dhue,dzee,deie,dzed,deid,tlen,tlde

integer i,j,k,l,sign,mult

integer loopnum,loopmax,oloop,iloop,omax,imax

double precision st,dist,zmax,deltaz

double precision taup,taus,dp,ds,ampp,amps,np,ns,ni,n2,n3,kvg

double precision det,dom,facp,facs,faci,fac2,fac3

double precision tpre1m(N),tpim1m(N),Dpre1m(N),Dpim1m(N),Dsire1m(N),

Dsiim1m(N),Dp2re1m(N),Dp2im1m(N),Ds3re1m(N),Ds3im1m(N)

double precision tsre1m(N),tsim1m(N),Dsre1m(N),Dsim1m(N),Dpire1m(N),

Dpiim1m(N),Dp3re1m(N),Dp3im1m(N)

double precision tire1m(N),tiim1m(N),Dire1m(N),Diim1m(N)

double precision t2re1m(N),t2im1m(N),D2re1m(N),D2im1m(N)

double precision t3re1m(N),t3im1m(N),D3re1m(N),D3im1m(N)

double precision tpre0(N),tpim0(N),Dpre0(N),Dpim0(N),Dsire0(N),

Dsiim0(N),Dp2re0(N),Dp2im0(N),Ds3re0(N),Ds3im0(N)

double precision tsre0(N),tsim0(N),Dsre0(N),Dsim0(N),Dpire0(N),

Dpiim0(N),Dp3re0(N),Dp3im0(N)

double precision tire0(N),tiim0(N),Dire0(N),Diim0(N)

double precision t2re0(N),t2im0(N),D2re0(N),D2im0(N)

double precision t3re0(N),t3im0(N),D3re0(N),D3im0(N)

double precision tprehp(N),tpimhp(N),Dprehp(N),Dpimhp(N),Dsirehp(N),

Dsiimhp(N),Dp2rehp(N),Dp2imhp(N),Ds3rehp(N),Ds3imhp(N)

double precision tsrehp(N),tsimhp(N),Dsrehp(N),Dsimhp(N),Dpirehp(N),

Dpiimhp(N),Dp3rehp(N),Dp3imhp(N)
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double precision tirehp(N),tiimhp(N),Direhp(N),Diimhp(N)

double precision t2rehp(N),t2imhp(N),D2rehp(N),D2imhp(N)

double precision t3rehp(N),t3imhp(N),D3rehp(N),D3imhp(N)

double precision tpre1p(N),tpim1p(N),Dpre1p(N),Dpim1p(N),Dsire1p(N),

Dsiim1p(N),Dp2re1p(N),Dp2im1p(N),Ds3re1p(N),Ds3im1p(N)

double precision tsre1p(N),tsim1p(N),Dsre1p(N),Dsim1p(N),Dpire1p(N),

Dpiim1p(N),Dp3re1p(N),Dp3im1p(N)

double precision tire1p(N),tiim1p(N),Dire1p(N),Diim1p(N)

double precision t2re1p(N),t2im1p(N),D2re1p(N),D2im1p(N)

double precision t3re1p(N),t3im1p(N),D3re1p(N),D3im1p(N)

double precision minval,tpa,tsa,tia,t2a,t3a,width,fsqr,oldwidth

double precision arge,argt,tmpre,tmpim,newwidth

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N)

double precision agp,ags,agi,ag2,ag3

complex*16 cwp(N),cws(N),cwi(N),cw2(N),cw3(N)

complex*16 hlpp(N),hlps(N),hlpi(N),hlp2(N),hlp3(N)

double precision pi,tpi,ftor,pf,bdiam

double precision error,delta,deltaold,tmp

double precision chi,lambda,waist,energp,energs,energi,energ2,energ3

double precision fldp,flds,fldi,fld2,fld3,totfld,woff,tilt,intang

double precision k0p,k1p,k0s,k1s,k0i,k1i,k02,k12,k03,k13

double precision p1m,p0,c1m,c0,Dp1m,Dp0,Dphp,Dhp1m

double precision Dhp0,Dc1m,Dc0,Dchp,Dc1p

!-----------------------------------------------------------------------

! define input parameters

!-----------------------------------------------------------------------

!-- define constants ---------------------------------------------------

pi = 3.14159265359d+0 ! equals PI

tpi = 6.28318530718d+0 ! equals 2 PI

ftor = 0.707106781188d+0 ! equals 1/sqrt(2)

pf = .00132720936472d+0

! equals epsilon*c/2 units are A^2 * s^3 / ( kg * m^2 )

!-- define pulse parameters --------------------------------------------

taup = 111.8d+0 ! FWHM of e gaussian [fs]

taus = 111.8d+0

lambda = 770d+0 ! wavelength [nm]
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bdiam = .05d+0 ! in [cm]

tilt = dble( 0 ) ! pulsefront tilt in degrees !was 40

intang = dble( 0 ) ! int. half angle betw. funds for noncoll.

!-- define crystal parameters ------------------------------------------

!(SNLO v52)

np = 2.170464d+0 ! refractive index along e-axis for pump 770nm

ns = 2.144053d+0 ! for signal 1140nm

ni = 2.108331d+0 ! for idler 2372.432432nm

n2 = 2.340316d+0 ! for SH of pump 385nm

n3 = 2.262916d+0 ! for SF of pump and signal 459.5811518nm

! kvg = tpi/22d+0 ! k vector of grating period 22um [1/um]

kvg =tpi/20.23473d+0 !phase-matching period 20.23473um [1/um]

chi = 2.0d+0*15.3d+0 ! chi^(2) in 10^-12 [m/V] chi = 2d

zmax = 1d+3 ! total crystal length [um]

woff = dble( 0 ) ! walkoff angle

!-- numerics parameters ------------------------------------------------

det = 7.5d+0 ! spacing betw. two succ. pts in fs, was 0.75

st = 1d-1 !1 calc. is performed every stepsize um

deltaz = 1d+2 !5 output is written every deltaz um

error = 1d-3 ! allowed diff. between pred. and corr.

minval = 1d-10 ! variable < minval --> val=0

loopmax = 5 ! corrector gives up after loopmax iter.

k0p = 177109.448241068d+0 ! k0 in 1/cm

k1p = 75.7d+0 ! k’=1/v_g in ps/cm

k0s = 118170.897433459d+0 ! k0 in 1/cm

k1s = 73.37d+0 ! k’=1/v_g in ps/cm

k0i = 55838.1413128332d+0 ! k0 in 1/cm

k1i = 72.5218377575062d+0 ! k’=1/v_g in ps/cm

k02 = 381938.678061229d+0 ! k0 in 1/cm

k12 = 97.4584223863297d+0 ! k’=1/v_g in ps/cm

k03 = 309362.936522663d+0 ! k0 in 1/cm

k13 = 86.3660819646103d+0 ! k’=1/v_g in ps/cm

kvg = kvg*1d+4 ! 1/um -> 1/cm

!-- calculate parameters -----------------------------------------------

zmax = zmax*1d-4 ! um -> cm
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st = st*1d-4 ! um -> cm

deltaz= deltaz*1d-4 ! um -> cm

det = det*1d-3 ! fs -> ps

taup = taup*1d-3 ! fs -> ps

taus = taus*1d-3

dom = tpi/(N*det) ! delta omega

waist = pi*(bdiam**2)/4 ! beam waist [cm^2]

p1m = 23d+0/5d+0

p0 = 28d+0/5d+0

c1m = 1d+0/31d+0

c0 = 32d+0/31d+0

Dp1m = 26d+0/15d+0*st*1d-2 ! *.01 bec cm -> m (st in cm)

Dp0 = 4d+0*st*1d-2

Dphp = 32d+0/15d+0*st*1d-1

Dhp1m = 3d+0/8d+0*st*1d-2

Dhp0 = 9d+0/8d+0*st*1d-2

Dc1m = 1d+0/93d+0*st*1d-2

Dc0 = 12d+0/93d+0*st*1d-2

Dchp = 64d+0/93d+0*st*1d-2

Dc1p = 15d+0/93d+0*st*1d-2

omax = int(zmax/deltaz) ! parameter for outer loop

imax = int(deltaz/st) ! parameter for inner loop

! prefactors in front of integrals

facp= (chi)/(1d+3*lambda*np)

facs= (chi)/(1d+3*lambda/770d+0*1140d+0*ns)

faci= (chi)/(1d+3*lambda/770d+0*2372.432432d+0*ni)

fac2= (chi)/(0.5d+3*lambda*n2) ! prefactor for convolution

fac3= (chi)/(1d+3*lambda/770d+0*459.5811518d+0*n3)

!-- determine output files ---------------------------------------------

energp=0.6d-3 ! energp=3e3 mJ for cw and 3e-3 for pulse PM,

!10x larger for unPM

energs=0.4d-3 ! energs=3e1 mJ for cw and 3e-5 for pulse PM,

!10x larger for unPM

print *,’energp=’,energp,’ mJ’,’energs=’,energs,’ mJ’

dhue=int(tlen/100)

161



Appendix C. Fortran code for second order nonlinear interactions

dzee=int((tlen-(dhue*100))/10)

deie=int(tlen-(dhue*100)-(dzee*10))

chue=char(dhue+48)

czee=char(dzee+48)

ceie=char(deie+48)

open(unit=8,file="inputdata.dat",status=’new’)

write(8,664) ns, chi/(facs*1d+3*ns)

664 format(2x,’ ns =’,f8.4,’ ’,3x,’ lambdas =’,f8.2,’ nm’)

write(8,665) energp,energs

665 format(2x,’ energp =’,f8.4,’ mJ’,3x,’ energs =’,f8.4,’ mJ’)

write(8,666) taup,taus

666 format(2x,’ taup =’,f8.4,’ ps’,3x,’ taus =’,f8.4,’ ps’)

!pulse centers

dp=0d+0 !-dble(tlde)/2000. !ps

ds=120d-3 !+dble(tlde)/2000. !ps

dzed=int(tlde/10)

deid=int(tlde-(dzed*10))

czed=char(dzed+48)

ceid=char(deid+48)

write(8,667) dp,ds

667 format(2x,’ delay dp’,f8.4,’ ps’,2x,’ delay ds’,f8.4,’ ps’)

ampp = 86802109.8203d+0*dsqrt(energp/(np*waist*taup)) !~1.3e7

amps =86802109.8203d+0*dsqrt(energs/(ns*waist*taus)) !~1.3e5

print *,’writing into ’,’fnamep,’,’fnames,’,’fname2’, ampp, amps

! units for ampo/e are [V/m] if energp/e is in [mJ], waist in

! [cm^2] and tauo/e in [ps]

open(unit=1,file="pump.dat",status=’new’)

open(unit=2,file="signal.dat",status=’new’)

open(unit=3,file="idler.dat",status=’new’)

open(unit=4,file="2nd.dat",status=’new’)

open(unit=5,file="sum.dat",status=’new’)

open(unit=6,file="kvs.dat",status=’new’)

open(unit=9,file="energy.dat",status=’new’)
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!----------------------------------------------------------------------

! start the simulation

!----------------------------------------------------------------------

!-- initialize --------------------------------------------------------

call selma ! get k-vectors from the Sellmeier equation

!-- clear arrays ------------------------------------------------------

do 10 i=1,N,1

Dpre1m(i)=dble(0) ! D means derivative with respect to z

Dpre0(i) =dble(0) ! pre means pump pulse real part

Dprehp(i)=dble(0) ! 1m means at step (n-1)

Dpre1p(i)=dble(0) ! 0 : (n), hp : (n+0.5), 1p : (n+1)

Dpim1m(i)=dble(0)

Dpim0(i) =dble(0)

Dpimhp(i)=dble(0)

Dpim1p(i)=dble(0)

Dsre1m(i)=dble(0) ! sre means signal pulse real part

Dsre0(i) =dble(0)

Dsrehp(i)=dble(0)

Dsre1p(i)=dble(0)

Dsim1m(i)=dble(0)

Dsim0(i) =dble(0)

Dsimhp(i)=dble(0)

Dsim1p(i)=dble(0)

Dire1m(i)=dble(0) ! ire means idler pulse real part

Dire0(i) =dble(0)

Direhp(i)=dble(0)

Dire1p(i)=dble(0)

Diim1m(i)=dble(0)

Diim0(i) =dble(0)

Diimhp(i)=dble(0)

Diim1p(i)=dble(0)

D2re1m(i)=dble(0) ! 2re means SHG of pump real part

D2re0(i) =dble(0)
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D2rehp(i)=dble(0)

D2re1p(i)=dble(0)

D2im1m(i)=dble(0)

D2im0(i) =dble(0)

D2imhp(i)=dble(0)

D2im1p(i)=dble(0)

D3re1m(i)=dble(0) ! 3re means SFG of pump and signal real part

D3re0(i) =dble(0)

D3rehp(i)=dble(0)

D3re1p(i)=dble(0)

D3im1m(i)=dble(0)

D3im0(i) =dble(0)

D3imhp(i)=dble(0)

D3im1p(i)=dble(0)

Dsire1m(i)=dble(0) ! sire means signal+idler pulse real part

Dsire0(i) =dble(0)

Dsirehp(i)=dble(0)

Dsire1p(i)=dble(0)

Dsiim1m(i)=dble(0)

Dsiim0(i) =dble(0)

Dsiimhp(i)=dble(0)

Dsiim1p(i)=dble(0)

Dpire1m(i)=dble(0) ! pire means pump-idler pulse real part

Dpire0(i) =dble(0)

Dpirehp(i)=dble(0)

Dpire1p(i)=dble(0)

Dpiim1m(i)=dble(0)

Dpiim0(i) =dble(0)

Dpiimhp(i)=dble(0)

Dpiim1p(i)=dble(0)

Dp2re1m(i)=dble(0) ! p2re means SHG-pump pulse real part

Dp2re0(i) =dble(0)

Dp2rehp(i)=dble(0)

Dp2re1p(i)=dble(0)
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Dp2im1m(i)=dble(0)

Dp2im0(i) =dble(0)

Dp2imhp(i)=dble(0)

Dp2im1p(i)=dble(0)

Dp3re1m(i)=dble(0) ! p3re means sum-pump pulse real part

Dp3re0(i) =dble(0)

Dp3rehp(i)=dble(0)

Dp3re1p(i)=dble(0)

Dp3im1m(i)=dble(0)

Dp3im0(i) =dble(0)

Dp3imhp(i)=dble(0)

Dp3im1p(i)=dble(0)

Ds3re1m(i)=dble(0) ! s3re means sum-signal pulse real part

Ds3re0(i) =dble(0)

Ds3rehp(i)=dble(0)

Ds3re1p(i)=dble(0)

Ds3im1m(i)=dble(0)

Ds3im0(i) =dble(0)

Ds3imhp(i)=dble(0)

Ds3im1p(i)=dble(0)

10 continue

!-- initial conditions -----------------------------------------------

call initial !get the temporal profile of the two input functions

do 11 i=1,N,1

hlpp(i)=cmplx(tpre0(i), tpim0(i))

hlps(i)=cmplx(tsre0(i), tsim0(i))

hlpi(i)=cmplx(tire0(i), tiim0(i))

hlp2(i)=cmplx(t2re0(i), t2im0(i))

hlp3(i)=cmplx(t3re0(i), t3im0(i))

call fft(hlpp,N,-1)

call fft(hlps,N,-1)

call fft(hlpi,N,-1)

call fft(hlp2,N,-1)

call fft(hlp3,N,-1)
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do 12 i=1,N,1

k=((1-N)/2)-1+i

!intensities of p,s,i,2,3

write(1,*)0.,pf*dreal(hlpp(i)), pf*dimag(hlpp(i))!/dble(1e13)

write(2,*)0.,pf*dreal(hlps(i)), pf*dimag(hlps(i))!/dble(1e13)

write(3,*)0.,pf*dreal(hlpi(i)), pf*dimag(hlpi(i))!/dble(1e13)

write(4,*)0.,pf*dreal(hlp2(i)), pf*dimag(hlp2(i))!/dble(1e13)

write(5,*)0.,pf*dreal(hlp3(i)), pf*dimag(hlp3(i))!/dble(1e13)

12 continue

write(1,*)

write(1,*)

write(2,*)

write(2,*)

write(3,*)

write(3,*)

write(4,*)

write(4,*)

write(5,*)

write(5,*)

call cor0ps !p - s returns Dpsre0() and Dpsim0()

call cor0pi ! returns Dpire0() and Dpiim0()

call cor0si ! returns Dsire0() and Dsiim0()

do 14 i=1,N,1

Dpre0(i) = Dsire0(i)+Dp2re0(i)+Ds3re0(i)

Dpim0(i) = Dsiim0(i)+Dp2im0(i)+Ds3im0(i)

Dsre0(i) = Dpire0(i)+Dp3re0(i)

Dsim0(i) = Dpiim0(i)+Dp3im0(i)

14 continue

!- calculating fcts @ n-1 --------------------------------------------

! assume all fcts are known @ n. Fcts @ n-1 are calculated using a

! linear approximation

do 13 i=1,N,1

tpre1m(i) = tpre0(i) - Dpre0(i)*st

tpim1m(i) = tpim0(i) - Dpim0(i)*st

tsre1m(i) = tsre0(i) - Dsre0(i)*st
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tsim1m(i) = tsim0(i) - Dsim0(i)*st

tire1m(i) = tire0(i) - Dire0(i)*st

tiim1m(i) = tiim0(i) - Diim0(i)*st

t2re1m(i) = t2re0(i) - D2re0(i)*st

t2im1m(i) = t3im0(i) - D2im0(i)*st

t3re1m(i) = t3re0(i) - D3re0(i)*st

t3im1m(i) = t3im0(i) - D3im0(i)*st

13 continue

call cor1mps ! returns Dpre1m() and Dpim1m()

call cor1mpi

call cor1msi

do 15 i=1,N,1

Dpre1m(i) = Dsire1m(i)+Dp2re1m(i)+Ds3re1m(i)

Dpim1m(i) = Dsiim1m(i)+Dp2im1m(i)+Ds3im1m(i)

Dsre1m(i) = Dpire1m(i)+Dp3re1m(i)

Dsim1m(i) = Dpiim1m(i)+Dp3im1m(i)

15 continue

!-- calculation -------------------------------------------------------

dist = 0d+0 ! set z to 0 cm

do 20 oloop=0,(omax-1),1 ! outer loop for calculation

do 30 iloop=0,(imax-1),1 ! inner loop for output into files

dist = dist+st ! increment dist by st

write(*,995)"z[cm]= ",dist

call cor0ps ! returns Dpre0() and Dpim0()

call cor0pi

call cor0si

do 16 i=1,N,1

Dpre0(i) = Dsire0(i)+Dp2re0(i)+Ds3re0(i)

Dpim0(i) = Dsiim0(i)+Dp2im0(i)+Ds3im0(i)

Dsre0(i) = Dpire0(i)+Dp3re0(i)

Dsim0(i) = Dpiim0(i)+Dp3im0(i)

16 continue
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!- half-point calculation --------------------------------------------

! calculate the fcts and derivs @ the half-point

do 31 i=1,N,1

tprehp(i) = tpre1m(i) + Dhp0*Dpre0(i) + Dhp1m*Dpre1m(i)

tpimhp(i) = tpim1m(i) + Dhp0*Dpim0(i) + Dhp1m*Dpim1m(i)

tsrehp(i) = tsre1m(i) + Dhp0*Dsre0(i) + Dhp1m*Dsre1m(i)

tsimhp(i) = tsim1m(i) + Dhp0*Dsim0(i) + Dhp1m*Dsim1m(i)

tirehp(i) = tire1m(i) + Dhp0*Dire0(i) + Dhp1m*Dire1m(i)

tiimhp(i) = tiim1m(i) + Dhp0*Diim0(i) + Dhp1m*Diim1m(i)

t2rehp(i) = t2re1m(i) + Dhp0*D2re0(i) + Dhp1m*D2re1m(i)

t2imhp(i) = t2im1m(i) + Dhp0*D2im0(i) + Dhp1m*D2im1m(i)

t3rehp(i) = t3re1m(i) + Dhp0*D3re0(i) + Dhp1m*D3re1m(i)

t3imhp(i) = t3im1m(i) + Dhp0*D3im0(i) + Dhp1m*D3im1m(i)

31 continue

call corhpps ! returns Dprehp() and Dpimhp()

call corhppi

call corhpsi

do 17 i=1,N,1

Dprehp(i) = Dsirehp(i)+Dp2rehp(i)+Ds3rehp(i)

Dpimhp(i) = Dsiimhp(i)+Dp2imhp(i)+Ds3imhp(i)

Dsrehp(i) = Dpirehp(i)+Dp3rehp(i)

Dsimhp(i) = Dpiimhp(i)+Dp3imhp(i)

17 continue

!-- predictor ---------------------------------------------------------

delta = dble(0) ! set criterium for loop to 0

tmpre = dble(0) ! reset aux variable

tmpim = dble(0)

do 150 i=1,N,1

tpre1p(i) = p0*tpre0(i) - p1m*tpre1m(i) + Dphp*Dprehp(i) -

Dp0*Dpre0(i) - Dp1m*Dpre1m(i)
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tpim1p(i) = p0*tpim0(i) - p1m*tpim1m(i) + Dphp*Dpimhp(i) -

Dp0*Dpim0(i) - Dp1m*Dpim1m(i)

tsre1p(i) = p0*tsre0(i) - p1m*tsre1m(i) + Dphp*Dsrehp(i) -

Dp0*Dsre0(i) - Dp1m*Dsre1m(i)

tsim1p(i) = p0*tsim0(i) - p1m*tsim1m(i) + Dphp*Dsimhp(i) -

Dp0*Dsim0(i) - Dp1m*Dsim1m(i)

tire1p(i) = p0*tire0(i) - p1m*tire1m(i) + Dphp*Direhp(i) -

Dp0*Dire0(i) - Dp1m*Dire1m(i)

tiim1p(i) = p0*tiim0(i) - p1m*tiim1m(i) + Dphp*Diimhp(i) -

Dp0*Diim0(i) - Dp1m*Diim1m(i)

t2re1p(i) = p0*t2re0(i) - p1m*t2re1m(i) + Dphp*D2rehp(i) -

Dp0*D2re0(i) - Dp1m*D2re1m(i)

t2im1p(i) = p0*t2im0(i) - p1m*t2im1m(i) + Dphp*D2imhp(i) -

Dp0*D2im0(i) - Dp1m*D2im1m(i)

t3re1p(i) = p0*t3re0(i) - p1m*t3re1m(i) + Dphp*D3rehp(i) -

Dp0*D3re0(i) - Dp1m*D3re1m(i)

t3im1p(i) = p0*t3im0(i) - p1m*t3im1m(i) + Dphp*D3imhp(i) -

Dp0*D3im0(i) - Dp1m*D3im1m(i)

tmpre=tpre1p(i)

tmpim=tpim1p(i)

delta=delta+dsqrt(tmpre**2 + tmpim**2)

150 continue

!-- corrector ---------------------------------------------------------

loopnum = 1 ! reset loop counter

200 deltaold = delta

delta = dble(0) ! reset delta

tmpre = dble(0) ! reset aux variable

tmpim = dble(0)

call cor1pps ! returns D0re1p() and Dpim1p()

call cor1ppi

call cor1psi

do 18 i=1,N,1

Dpre1p(i) = Dsire1p(i)+Dp2re1p(i)+Ds3re1p(i)

Dpim1p(i) = Dsiim1p(i)+Dp2im1p(i)+Ds3im1p(i)

Dsre1p(i) = Dpire1p(i)+Dp3re1p(i)

Dsim1p(i) = Dpiim1p(i)+Dp3im1p(i)

18 continue
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do 250 i=1,N,1

tpre1p(i) = c0*tpre0(i) - c1m*tpre1m(i) + Dchp*Dprehp(i) +

Dc1p*Dpre1p(i) + Dc0*Dpre0(i) - Dc1m*Dpre1m(i)

tpim1p(i) = c0*tpim0(i) - c1m*tpim1m(i) + Dchp*Dpimhp(i) +

Dc1p*Dpim1p(i) + Dc0*Dpim0(i) - Dc1m*Dpim1m(i)

tsre1p(i) = c0*tsre0(i) - c1m*tsre1m(i) + Dchp*Dsrehp(i) +

Dc1p*Dsre1p(i) + Dc0*Dsre0(i) - Dc1m*Dsre1m(i)

tsim1p(i) = c0*tsim0(i) - c1m*tsim1m(i) + Dchp*Dsimhp(i) +

Dc1p*Dsim1p(i) + Dc0*Dsim0(i) - Dc1m*Dsim1m(i)

tire1p(i) = c0*tire0(i) - c1m*tire1m(i) + Dchp*Direhp(i) +

Dc1p*Dire1p(i) + Dc0*Dire0(i) - Dc1m*Dire1m(i)

tiim1p(i) = c0*tiim0(i) - c1m*tiim1m(i) + Dchp*Diimhp(i) +

Dc1p*Diim1p(i) + Dc0*Diim0(i) - Dc1m*Diim1m(i)

t2re1p(i) = c0*t2re0(i) - c1m*t2re1m(i) + Dchp*D2rehp(i) +

Dc1p*D2re1p(i) + Dc0*D2re0(i) - Dc1m*D2re1m(i)

t2im1p(i) = c0*t2im0(i) - c1m*t2im1m(i) + Dchp*D2imhp(i) +

Dc1p*D2im1p(i) + Dc0*D2im0(i) - Dc1m*D2im1m(i)

t3re1p(i) = c0*t3re0(i) - c1m*t3re1m(i) + Dchp*D3rehp(i) +

Dc1p*D3re1p(i) + Dc0*D3re0(i) - Dc1m*D3re1m(i)

t3im1p(i) = c0*t3im0(i) - c1m*t3im1m(i) + Dchp*D3imhp(i) +

Dc1p*D3im1p(i) + Dc0*D3im0(i) - Dc1m*D3im1m(i)

tmpre=tpre1p(i)

tmpim=tpim1p(i)

delta=delta+dsqrt(tmpre**2 + tmpim**2)

250 continue

tmp=dabs((delta-deltaold)/(delta+minval))

print *,’delta = ’,tmp,’ loop # ’,loopnum

if (loopnum.ge.loopmax) goto 300

loopnum=loopnum+1

if (tmp.gt.error) goto 200

300 continue

!-- shifting arrays ---------------------------------------------------

tpa = dble(0)

tsa = dble(0)

tia = dble(0)
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t2a = dble(0)

t3a = dble(0)

do 400 i=1,N,1 ! backwards

Dpre1m(i) = Dpre0(i) ! (n-1) <-- (n)

Dpre0(i) = Dpre1p(i) ! (n) <-- (n+1)

tpre1m(i) = tpre0(i) ! (n-1) <-- (n)

tpre0(i) = tpre1p(i) ! (n) <-- (n+1)

Dpim1m(i) = Dpim0(i)

Dpim0(i) = Dpim1p(i)

tpim1m(i) = tpim0(i)

tpim0(i) = tpim1p(i)

Dsre1m(i) = Dsre0(i)

Dsre0(i) = Dsre1p(i)

tsre1m(i) = tsre0(i)

tsre0(i) = tsre1p(i)

Dsim1m(i) = Dsim0(i)

Dsim0(i) = Dsim1p(i)

tsim1m(i) = tsim0(i)

tsim0(i) = tsim1p(i)

Dire1m(i) = Dire0(i)

Dire0(i) = Dire1p(i)

tire1m(i) = tire0(i)

tire0(i) = tire1p(i)

Diim1m(i) = Diim0(i)

Diim0(i) = Diim1p(i)

tiim1m(i) = tiim0(i)

tiim0(i) = tiim1p(i)

D2re1m(i) = D2re0(i)

D2re0(i) = D2re1p(i)

t2re1m(i) = t2re0(i)

t2re0(i) = t2re1p(i)

D2im1m(i) = D2im0(i)

D2im0(i) = D2im1p(i)

t2im1m(i) = t2im0(i)

t2im0(i) = t2im1p(i)
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D3re1m(i) = D3re0(i)

D3re0(i) = D3re1p(i)

t3re1m(i) = t3re0(i)

t3re0(i) = t3re1p(i)

D3im1m(i) = D3im0(i)

D3im0(i) = D3im1p(i)

t3im1m(i) = t3im0(i)

t3im0(i) = t3im1p(i)

tpa = tpa+(tpre0(i)**2 + tpim0(i)**2)

tsa = tsa+(tsre0(i)**2 + tsim0(i)**2)

tia = tia+(tire0(i)**2 + tiim0(i)**2)

t2a = t2a+(t2re0(i)**2 + t2im0(i)**2)

t3a = t3a+(t3re0(i)**2 + t3im0(i)**2)

400 continue

tpa = tpa*dom

tsa = tsa*dom

tia = tia*dom

t2a = t2a*dom

t3a = t3a*dom

write(9,998)dist, dble(np*tpa+ns*tsa+ni*tia+n2*t2a+n3*t3a),

dble(np*tpa),dble(ns*tsa),dble(ni*tia),dble(n2*t2a),dble(n3*t3a),

tpre0(4096),tpim0(4096),tsre0(4096),tsim0(4096)

!----------------------------------------------------------------------

30 continue ! end of inside loop

do 40 i=1,N,1

agp=dble((kvp(i))*dist)

ags=dble((kvs(i))*dist)

agi=dble((kvi(i))*dist)

ag2=dble((kv2(i))*dist)

ag3=dble((kv3(i))*dist)

agp=dmod(agp,tpi)

ags=dmod(ags,tpi)

agi=dmod(agi,tpi)
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ag2=dmod(ag2,tpi)

ag3=dmod(ag3,tpi)

cwp(i)=cmplx( (tpre1m(i)*dcos(agp))+(tpim1m(i)*dsin(agp)),

-(tpre1m(i)*dsin(agp))+(tpim1m(i)*dcos(agp)) )

cws(i)=cmplx( (tsre1m(i)*dcos(ags))+(tsim1m(i)*dsin(ags)),

-(tsre1m(i)*dsin(ags))+(tsim1m(i)*dcos(ags)) )

cwi(i)=cmplx( (tire1m(i)*dcos(agi))+(tiim1m(i)*dsin(agi)),

-(tire1m(i)*dsin(agi))+(tiim1m(i)*dcos(agi)) )

cw2(i)=cmplx( (t2re1m(i)*dcos(ag2))+(t2im1m(i)*dsin(ag2)),

-(t2re1m(i)*dsin(ag2))+(t2im1m(i)*dcos(ag2)) )

cw3(i)=cmplx( (t3re1m(i)*dcos(ag3))+(t3im1m(i)*dsin(ag3)),

-(t3re1m(i)*dsin(ag3))+(t3im1m(i)*dcos(ag3)) )

40 continue

call fft(cwp,N,-1)

call fft(cws,N,-1)

call fft(cwi,N,-1)

call fft(cw2,N,-1)

call fft(cw3,N,-1)

print*,’--------------------------------------> files’

do 70 i=1,N,1

k=((1-N)/2)-1+i

write(1,*)dist, pf*dreal(cwp(i)), pf*dimag(cwp(i))!/dble(1e13)

write(2,*)dist, pf*dreal(cws(i)), pf*dimag(cws(i))!/dble(1e13)

write(3,*)dist, pf*dreal(cwi(i)), pf*dimag(cwi(i))!/dble(1e13)

write(4,*)dist, pf*dreal(cw2(i)), pf*dimag(cw2(i))!/dble(1e13)

write(5,*)dist, pf*dreal(cw3(i)), pf*dimag(cw3(i))!/dble(1e13)

70 continue

write(1,*)

write(1,*)

write(2,*)

write(2,*)

write(3,*)

write(3,*)

write(4,*)

write(4,*)
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write(5,*)

write(5,*)

20 continue ! end of outside loop

!-- end -------------------------------------------------------------

994 format(a)

995 format(a,f6.4) ! for z-output on screen

!996 format(13x,a,f7.5,1x,a,i1) ! for delta/loop#-output on screen

996 format(f7.5,i1) ! for delta/loop#-output on screen

998 format(f4.2,10(2x,e10.4)) ! for energy.dat

999 format(f4.2,1x,d8.4,1x,d18.4) ! for o.dat, e.dat, 2.dat

close(1)

close(2)

close(3)

close(4)

close(5)

close(9)

2 continue

1 continue

print *,’ I am done’

pause

stop

end

!--------------------------------------------------------------------

! subroutines

!--------------------------------------------------------------------

!- initial.f --------------------------------------------------------

subroutine initial

parameter(N=8191) !has to be (2^n)-1

common/art0/tpre0,tpim0,tsre0,tsim0,tire0,tiim0,t2re0,t2im0,

t3re0,t3im0
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common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vinp/taup,taus,dp,ds,ampp,amps,np,ns,ni,n2,n3

common/vcon/minval,tpa,tsa,tia,t2a,t3a

common/vrea/dist

integer i,k

double precision taup,taus,dp,ds,ampp,amps,np,ns,ni,n2,n3,minval,

tpa,tsa,tia,t2a,t3a

double precision det,dom,tmp,mulo,mule,facp,facs,faci,fac2,fac3

double precision tpre0(N),tpim0(N),tsre0(N),tsim0(N),tire0(N),tiim0(N),

t2re0(N),t2im0(N),t3re0(N),t3im0(N)

double precision tpaim,tpare,tsare,tsaim,ftor,tpi, abar

complex*16 cwp(N),cws(N),cwi(N),cw2(N),cw3(N)

ftor=0.707106781188d+0 ! equals 1/sqrt(2)

tpi =6.28318530718d+0 ! equals 2 PI

88 format(6(e9.2,2x))

! ------ generates gaussian pulses ------------------------------------

abar = -0.5d+0

write (8,668) -abar,abar

668 format(18H chirp coefficient,f8.3,9H for pump,4x,f8.3,11H for signal)

do 10 i=1,N,1

k=((1-N)/2)-1+i

cwp(i)=cmplx(ampp*dexp(-(((dble(k)*det)-dp)*dble(1.17741)/taup)**2)

*dcos(-abar*(((dble(k)*det)-dp)*dble(1.17741)/taup)**2),

ampp*dexp(-(((dble(k)*det)-dp)*dble(1.17741)/taup)**2)

*dsin(-abar*(((dble(k)*det)-dp)*dble(1.17741)/taup)**2))

cws(i)=cmplx(amps*dexp(-(((dble(k)*det)-ds)*dble(1.17741)/taus)**2)

*dcos(abar*(((dble(k)*det)-ds)*dble(1.17741)/taus)**2),

amps*dexp(-(((dble(k)*det)-ds)*dble(1.17741)/taus)**2)

*dsin(abar*(((dble(k)*det)-ds)*dble(1.17741)/taus)**2))

tire0(i)=dble(0)

tiim0(i)=dble(0)

t2re0(i)=dble(0)

t2im0(i)=dble(0)

t3re0(i)=dble(0)

t3im0(i)=dble(0)
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10 continue

call fft(cwp,N,1)

call fft(cws,N,1)

do 20 i=1,N,1

tpre0(i) = dreal(cwp(i))

tpim0(i) = dimag(cwp(i))

tsre0(i) = dreal(cws(i))

tsim0(i) = dimag(cws(i))

20 continue

print *,’initial - survived’

return

end

!- selma.f ----------------------------------------------------------

subroutine selma

parameter(N=8191) !has to be (2^n)-1

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/angles/woff,tilt,intang

common/kvecs/k0p,k1p,k0s,k1s,k0i,k1i,k02,k12,k03,k13

integer i,j,k,l

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision det,dom,facp,facs,faci,fac2,fac3

double precision ae,be,ce,de,Ame,Bme,Cme,Dme,Eme,Fme,selm,selmir

double precision tsubp,tsubs,tsubi,tsub2,tsub3

double precision tpne,tsne,tine,t2ne,t3ne

double precision lambda,tstep,angle,lsqf,lsq2,omega,comega,omegap,

omegas,omegai,omega2,omega3

double precision woff, tilt, coeff,intang

double precision k0p,k1p,k0s,k1s,k0i,k1i,k02,k12,k03,k13

!---- define constants -----------------------------------------------

! for PPLN

ae = 4.582d+0 ! constants for the e polarization in VIS region

be = 0.099169d+0

ce = 0.044432d+0
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de = 0.02195d+0

! constants for e polarization in the IR region up to 5um

! data taken from JOSA B, Vol. 14, Issue 12, pp. 3319-3322 (1997)

Ame = 2.2454d+0

Bme = 0.01242d+0

Cme = 1.3005d+0

Dme = 0.05313d+0

Eme = 6.8972d+0

Fme = 331.33d+0

lambda=0.770d+0 !in um

comega=1883.65156731d+0/lambda !center frequency in 1/ps

coeff =3.14159265359d+0/180d+0

!---------- calculating k-vectors ------------------------------------

do 100 i=1,N,1

l=i-((N+1)/2)

omega=comega+dble(l)*dom

omegap = omega

omegas = comega*770d+0/1140d+0 +dble(l)*dom

omegai = comega*770d+0/2372.432432d+0 +dble(l)*dom

omega2 = comega*2d+0 +dble(l)*dom

omega3 = comega*770d+0/459.5811518d+0 +dble(l)*dom

!-----------------------------------------------------------

! calculate the n_e for pump

tpne = dsqrt(selmir(Ame,Bme,Cme,Dme,Eme,Fme,omegap))

!-----------------------------------------------------------

! calculate the n_e for signal, idler, 2nd harmonic and sum frequencies

tsne = dsqrt(selmir(Ame,Bme,Cme,Dme,Eme,Fme,omegas))

tine = dsqrt(selmir(Ame,Bme,Cme,Dme,Eme,Fme,omegai))

t2ne = dsqrt(selmir(Ame,Bme,Cme,Dme,Eme,Fme,omega2))

t3ne = dsqrt(selmir(Ame,Bme,Cme,Dme,Eme,Fme,omega3))

tsubp = (k1p*dble(l)*dom)

kvp(i)=(33.4448160535d+0*tpne*omegap)-tsubp !33.444... is 1/c in ps/cm

kvs(i)=(33.4448160535d+0*tsne*omegas)-tsubp
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kvi(i)=(33.4448160535d+0*tine*omegai)-tsubp

kv2(i)=(33.4448160535d+0*t2ne*omega2)-tsubp

kv3(i)=(33.4448160535d+0*t3ne*omega3)-tsubp

write(6,*) omega,kvp(i),kvs(i)

100 continue

close(6)

print *,’done with k-vectors’

return

end

!#####################################################################

!---- n^2 calculation for visible -------------------------------------

function selm(ta,tb,tc,td,omega)

! calculates n^2 according to the sellmaier formula

!

!

! tb 2

! n^2 = ta + ----------------- - td * (K/omega)

! 2

! (K/omega) - tc

double precision ta,tb,tc,td,omega,tfac,selm

tfac = 1883.65156731d+0 !2pi*c in um/ps

selm = ta + (tb/(((tfac/omega)**2) - tc)) - (td * (tfac/omega)**2)

return

end

!---- n^2 calculation for infrared-----------------------------------------

function selmir(tA,tB,tC,tD,tE,tF,omega)

! calculates n^2 according to the sellmaier formula

!

! 2 2 2

! tA *(K/omega) tC *(K/omega) tE *(K/omega)

! n^2 = 1 + ------------------- + ------------------- + ------------------

! 2 2 2

! (K/omega) - tB (K/omega) - tD (K/omega) - tF
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double precision tA,tB,tC,tD,tE,tF,omega,tfac,selmir

tfac = 1883.65156731d+0 !2pi*c in um/ps

selmir = 1d+0+(tA*(tfac/omega)**2/((tfac/omega)**2-tB))+(tC*(tfac/omega)**2

/((tfac/omega)**2-tD))+(tE*(tfac/omega)**2/((tfac/omega)**2-tF))

return

end

!- fft.f ------------------------------------------------------------

subroutine fft(tmparray,N,sign)

!---------------------------------------------------------------

! performes the Symmetric Complex Fast-Fourier Transform

!

! tmparray : double precision complex array of length N

! the input function is given in this array and the

! output is written into the same array

! N : integer, to be (2^n)-1,

! defines the arraylength

! sign : integer, to be +1 or -1

! +1 : FFT, -1 : inverse FFT

!

! det : given as common in double precision

! defines delta t

! dom : given as common in double precision

! defines delta omega

! dom := (2*PI)/(N*det)

!

! F(w) := 1/sqrt(2*Pi) Int{ f(t) e^( i w*t) } dt ; sign: +1

! f(t) := 1/sqrt(2*Pi) Int{ F(w) e^(-i w*t) } dw ; sign: -1

!---------------------------------------------------------------

!-- declare variables ------------------------------------------

parameter(m=8191) !has to be (2^n)-1

integer i,j,k,N,sign

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

double precision array(2*(m+1)),factor

double precision det,dom,facp,facs,faci,fac2,fac3
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complex*16 tmparray(m)

!-- into workarrays --------------------------------------------

j=0

do 1 i=((N+1)/2),N,1

j=j+1

array(j) = real(tmparray(i))

j=j+1

array(j) = dimag(tmparray(i))

1 continue

j=j+1

array(j) = dble(0.)

j=j+1

array(j) = dble(0.)

do 2 i=1,((N-1)/2),1

j=j+1

array(j) = real(tmparray(i))

j=j+1

array(j) = dimag(tmparray(i))

2 continue

!-- call fft --------------------------------------------------

call four1(array,(N+1),sign)

!-- sort -------------------------------------------------------

if(sign.gt.0) then

factor=det/2.50662827463d+0

else

factor=2.50662827463d+0/(dble(N+1)*det)

endif

j=0

do 100 i=1,N,2

k=N+1-i

j=j+1

tmparray(j)=cmplx(array(k),array(k+1))*factor

100 continue

do 110 i=(N+4),((2*N)+1),2

k=(3*N)+5-i

j=j+1

tmparray(j)=cmplx(array(k),array(k+1))*factor
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110 continue

return

end

!-- subroutine from Numerical Receipes --------------------------

subroutine four1(DATA,NN,ISIGN)

INTEGER NN,ISIGN,I,N,J,M,MMAX

DOUBLE PRECISION WR,WI,WPR,WPI,WTEMP,THETA

DOUBLE PRECISION DATA(*)

N=2*NN

J=1

DO 11 I=1,N,2

IF(J.GT.I)THEN

TEMPR=DATA(J)

TEMPI=DATA(J+1)

DATA(J)=DATA(I)

DATA(J+1)=DATA(I+1)

DATA(I)=TEMPR

DATA(I+1)=TEMPI

ENDIF

M=N/2

1 IF ((M.GE.2).AND.(J.GT.M)) THEN

J=J-M

M=M/2

GO TO 1

ENDIF

J=J+M

11 CONTINUE

MMAX=2

2 IF (N.GT.MMAX) THEN

ISTEP=2*MMAX

THETA=DBLE(6.28318530717959D0)/DBLE(ISIGN*MMAX)

WPR=-2.D0*DSIN(0.5D0*THETA)**2

WPI=DSIN(THETA)

WR=1.D0

WI=0.D0

DO 13 M=1,MMAX,2

DO 12 I=M,N,ISTEP

J=I+MMAX

TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1)
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TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)

DATA(J)=DATA(I)-TEMPR

DATA(J+1)=DATA(I+1)-TEMPI

DATA(I)=DATA(I)+TEMPR

DATA(I+1)=DATA(I+1)+TEMPI

12 CONTINUE

WTEMP=WR

WR=WR*WPR-WI*WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

13 CONTINUE

MMAX=ISTEP

GO TO 2

ENDIF

RETURN

END

!- pfield.f ----------------------------------------------------------

subroutine pfield(array,N,fsqr)

!--------------------------------------------------------

! calculates the energy of the largest pulse in the array

! neglecting satellites (largest in amplitude)

!

! array : complex array, double precision, N points

! N : number of points in the array

! fsqr : field squared in double precision; has to be

! multiplied by n and det or dom

!

! written by Jens Biegert, 07/97

!--------------------------------------------------------

integer i,j,N,tmpnum,upnum,lonum

double precision tmpnew,tmpold,tmpminold,tmpminnew,fsqr

complex*16 array(N)

! -- get max amplitude ----------------------------------

tmpold = 0.

tmpnum = 0

do 10 i=1,N,1

tmpnew=dsqrt(real(array(i))**2 + dimag(array(i))**2)

if(tmpnew.ge.tmpold)then
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tmpold = tmpnew ! value of max amp

tmpnum = i ! position of max

else

goto 15

endif

10 continue

15 continue

! -- find min for points to the right of the max -----

tmpminold = tmpold ! put max amp in here

upnum = 0

do 20 i=tmpnum,N,1

tmpminnew=sqrt(real(array(i))**2 + (array(i))**2)

if(tmpminnew.le.tmpminold)then

tmpminold = tmpminnew

upnum = i

else

goto 25

endif

20 continue

25 continue

! -- find min for points to the left of the max ------

tmpminold = tmpold ! put max amp in here

lonum = 0

do 30 i=1,tmpnum-1,1

j = tmpnum-i

tmpminnew=dsqrt(real(array(j))**2 + dimag(array(j))**2)

if(tmpminnew.le.tmpminold)then

tmpminold = tmpminnew

lonum = j

else

goto 35

endif

30 continue

35 continue

! -- calculate the field squared --------------------

fsqr = dble(0.)

do 40 i=lonum,upnum,1
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fsqr = fsqr+(real(array(i))**2 + dimag(array(i))**2)

40 continue

! isqr has to be multiplied by det or dom and the

! refractive index

return

end

!- cor0ps.f ----------------------------------------------------------

subroutine cor0ps

common/art0/tpre0,tpim0,tsre0,tsim0,tire0,tiim0,t2re0,t2im0,

t3re0,t3im0

common/arD0/Dpre0,Dpim0,Dsre0,Dsim0,Dire0,Diim0,D2re0,D2im0,

D3re0,D3im0,Dsire0,Dsiim0,Dp2re0,Dp2im0,Ds3re0,Ds3im0,Dpire0,

Dpiim0,Dp3re0,Dp3im0

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre0(N),tpim0(N),tsre0(N),tsim0(N),tire0(N),tiim0(N),

t2re0(N),t2im0(N),t3re0(N),t3im0(N)

double precision Dpre0(N),Dpim0(N),Dsre0(N),Dsim0(N),Dire0(N),Diim0(N),

D2re0(N),D2im0(N),D3re0(N),D3im0(N),Dsire0(N),Dsiim0(N),Dp2re0(N),

Dp2im0(N),Ds3re0(N),Ds3im0(N),Dpire0(N),Dpiim0(N),Dp3re0(N),Dp3im0(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvs(i)*dist

arg1=dmod(arg1,tpi)
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arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre0(i)*dcos(arg1))-(tpim0(i)*dsin(arg1)),

(tpre0(i)*dsin(arg1))+(tpim0(i)*dcos(arg1)) )

cws(i)=cmplx( (tsre0(i)*dcos(arg2))-(tsim0(i)*dsin(arg2)),

(tsre0(i)*dsin(arg2))+(tsim0(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cws,N,-1)

do 30 i=1,N,1

cwi(i)=cmplx( real(cws(i))*real(cwp(i))+dimag(cwp(i))*dimag(cws(i)),

dimag(cwp(i))*real(cws(i)) - real(cwp(i))*dimag(cws(i)) )

30 continue

call fft(cwi,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvi(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire0(i)=faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire0(i)=Dire0(i)-faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=Diim0(i)-faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire0(i)=Dire0(i)+1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=Diim0(i)+1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire0(i)=Dire0(i)-1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=Diim0(i)-1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+5d+0*kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Dire0(i)=Dire0(i)+1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=Diim0(i)+1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire0(i)=Dire0(i)-1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim0(i)=Diim0(i)-1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

40 continue

return

end

!- cor1mps.f ----------------------------------------------------------

subroutine cor1mps

common/art1m/tpre1m,tpim1m,tsre1m,tsim1m,tire1m,tiim1m,t2re1m,t2im1m,

t3re1m,t3im1m

common/arD1m/Dpre1m,Dpim1m,Dsre1m,Dsim1m,Dire1m,Diim1m,D2re1m,D2im1m,

D3re1m,D3im1m,Dsire1m,Dsiim1m,Dp2re1m,Dp2im1m,Ds3re1m,Ds3im1m,

Dpire1m,Dpiim1m,Dp3re1m,Dp3im1m

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre1m(N),tpim1m(N),tsre1m(N),tsim1m(N),tire1m(N),tiim1m(N),

t2re1m(N),t2im1m(N),t3re1m(N),t3im1m(N)

double precision Dpre1m(N),Dpim1m(N),Dsre1m(N),Dsim1m(N),Dire1m(N),Diim1m(N),

D2re1m(N),D2im1m(N),D3re1m(N),D3im1m(N),Dsire1m(N),Dsiim1m(N),Dp2re1m(N),

Dp2im1m(N),Ds3re1m(N),Ds3im1m(N),Dpire1m(N),Dpiim1m(N),Dp3re1m(N),Dp3im1m(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)
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tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvs(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre1m(i)*dcos(arg1))-(tpim1m(i)*dsin(arg1)),

(tpre1m(i)*dsin(arg1))+(tpim1m(i)*dcos(arg1)) )

cws(i)=cmplx( (tsre1m(i)*dcos(arg2))-(tsim1m(i)*dsin(arg2)),

(tsre1m(i)*dsin(arg2))+(tsim1m(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cws,N,-1)

do 30 i=1,N,1

cwi(i)=cmplx( real(cws(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cws(i)),

dimag(cwp(i))*real(cws(i)) - real(cwp(i))*dimag(cws(i)) )

30 continue

call fft(cwi,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvi(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1m(i)=faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1m(i)=Dire1m(i)-faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=Diim1m(i)-faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1m(i)=Dire1m(i)+1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=Diim1m(i)+1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-3d+0*kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Dire1m(i)=Dire1m(i)-1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=Diim1m(i)-1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1m(i)=Dire1m(i)+1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=Diim1m(i)+1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1m(i)=Dire1m(i)-1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1m(i)=Diim1m(i)-1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

40 continue

return

end

!- corhpps.f ----------------------------------------------------------

subroutine corhpps

common/arthp/tprehp,tpimhp,tsrehp,tsimhp,tirehp,tiimhp,t2rehp,t2imhp,

t3rehp,t3imhp

common/arDhp/Dprehp,Dpimhp,Dsrehp,Dsimhp,Direhp,Diimhp,D2rehp,D2imhp,

D3rehp,D3imhp,Dsirehp,Dsiimhp,Dp2rehp,Dp2imhp,Ds3rehp,Ds3imhp,

Dpirehp,Dpiimhp,Dp3rehp,Dp3imhp

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tprehp(N),tpimhp(N),tsrehp(N),tsimhp(N),tirehp(N),tiimhp(N),

t2rehp(N),t2imhp(N),t3rehp(N),t3imhp(N)

double precision Dprehp(N),Dpimhp(N),Dsrehp(N),Dsimhp(N),Direhp(N),Diimhp(N),

D2rehp(N),D2imhp(N),D3rehp(N),D3imhp(N),Dsirehp(N),Dsiimhp(N),Dp2rehp(N),
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Dp2imhp(N),Ds3rehp(N),Ds3imhp(N),Dpirehp(N),Dpiimhp(N),Dp3rehp(N),Dp3imhp(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvs(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tprehp(i)*dcos(arg1))-(tpimhp(i)*dsin(arg1)),

(tprehp(i)*dsin(arg1))+(tpimhp(i)*dcos(arg1)) )

cws(i)=cmplx( (tsrehp(i)*dcos(arg2))-(tsimhp(i)*dsin(arg2)),

(tsrehp(i)*dsin(arg2))+(tsimhp(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cws,N,-1)

do 30 i=1,N,1

cwi(i)=cmplx( real(cws(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cws(i)),

dimag(cwp(i))*real(cws(i)) - real(cwp(i))*dimag(cws(i)) )

30 continue

call fft(cwi,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvi(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Direhp(i)=faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Direhp(i)=Direhp(i)-faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=Diimhp(i)-faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+3d+0*kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Direhp(i)=Direhp(i)+1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=Diimhp(i)+1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Direhp(i)=Direhp(i)-1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=Diimhp(i)-1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Direhp(i)=Direhp(i)+1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=Diimhp(i)+1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Direhp(i)=Direhp(i)-1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diimhp(i)=Diimhp(i)-1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

40 continue

return

end

!- cor1pps.f ----------------------------------------------------------

subroutine cor1pps

common/art1p/tpre1p,tpim1p,tsre1p,tsim1p,tire1p,tiim1p,t2re1p,t2im1p,

t3re1p,t3im1p

common/arD1p/Dpre1p,Dpim1p,Dsre1p,Dsim1p,Dire1p,Diim1p,D2re1p,D2im1p,

D3re1p,D3im1p,Dsire1p,Dsiim1p,Dp2re1p,Dp2im1p,Ds3re1p,Ds3im1p,

Dpire1p,Dpiim1p,Dp3re1p,Dp3im1p

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1
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integer i

double precision dist

double precision tpre1p(N),tpim1p(N),tsre1p(N),tsim1p(N),tire1p(N),tiim1p(N),

t2re1p(N),t2im1p(N),t3re1p(N),t3im1p(N)

double precision Dpre1p(N),Dpim1p(N),Dsre1p(N),Dsim1p(N),Dire1p(N),Diim1p(N),

D2re1p(N),D2im1p(N),D3re1p(N),D3im1p(N),Dsire1p(N),Dsiim1p(N),Dp2re1p(N),

Dp2im1p(N),Ds3re1p(N),Ds3im1p(N),Dpire1p(N),Dpiim1p(N),Dp3re1p(N),Dp3im1p(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvs(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre1p(i)*dcos(arg1))-(tpim1p(i)*dsin(arg1)),

(tpre1p(i)*dsin(arg1))+(tpim1p(i)*dcos(arg1)) )

cws(i)=cmplx( (tsre1p(i)*dcos(arg2))-(tsim1p(i)*dsin(arg2)),

(tsre1p(i)*dsin(arg2))+(tsim1p(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cws,N,-1)

do 30 i=1,N,1

cwi(i)=cmplx( real(cws(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cws(i)),

dimag(cwp(i))*real(cws(i)) - real(cwp(i))*dimag(cws(i)) )

30 continue

call fft(cwi,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvi(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1p(i)=faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Dire1p(i)=Dire1p(i)-faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=Diim1p(i)-faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1p(i)=Dire1p(i)+1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=Diim1p(i)+1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1p(i)=Dire1p(i)-1/3d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=Diim1p(i)-1/3d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1p(i)=Dire1p(i)+1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=Diim1p(i)+1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

arg3=+kvi(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dire1p(i)=Dire1p(i)-1/5d+0*faci*( (dimag(cwi(i))*dcos(arg3))

+(real(cwi(i))*dsin(arg3)) )

Diim1p(i)=Diim1p(i)-1/5d+0*faci*( (dimag(cwi(i))*dsin(arg3))

-(real(cwi(i))*dcos(arg3)) )

40 continue

return

end

!- cor0pi.f ----------------------------------------------------------

subroutine cor0pi

common/art0/tpre0,tpim0,tsre0,tsim0,tire0,tiim0,t2re0,t2im0,

t3re0,t3im0

common/arD0/Dpre0,Dpim0,Dsre0,Dsim0,Dire0,Diim0,D2re0,D2im0,

D3re0,D3im0,Dsire0,Dsiim0,Dp2re0,Dp2im0,Ds3re0,Ds3im0,Dpire0,
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Dpiim0,Dp3re0,Dp3im0

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre0(N),tpim0(N),tsre0(N),tsim0(N),tire0(N),tiim0(N),

t2re0(N), t2im0(N),t3re0(N),t3im0(N)

double precision Dpre0(N),Dpim0(N),Dsre0(N),Dsim0(N),Dire0(N),Diim0(N),

D2re0(N), D2im0(N),D3re0(N),D3im0(N),Dsire0(N),Dsiim0(N),Dp2re0(N),

Dp2im0(N),Ds3re0(N), Ds3im0(N),Dpire0(N),Dpiim0(N),Dp3re0(N),Dp3im0(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre0(i)*dcos(arg1))-(tpim0(i)*dsin(arg1)),

(tpre0(i)*dsin(arg1))+(tpim0(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire0(i)*dcos(arg2))-(tiim0(i)*dsin(arg2)),

(tire0(i)*dsin(arg2))+(tiim0(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cws(i)=cmplx( real(cwi(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cwi(i)),

dimag(cwp(i))*real(cwi(i)) - real(cwp(i))*dimag(cwi(i)) )

30 continue

call fft(cws,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays
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arg3=+kvs(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=Dpire0(i)-facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=Dpiim0(i)-facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=Dpire0(i)+1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=Dpiim0(i)+1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=Dpire0(i)-1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=Dpiim0(i)-1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=Dpire0(i)+1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=Dpiim0(i)+1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire0(i)=Dpire0(i)-1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim0(i)=Dpiim0(i)-1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

40 continue

return

end

!- cor1mpi.f ----------------------------------------------------------

194



Appendix C. Fortran code for second order nonlinear interactions

subroutine cor1mpi

common/art1m/tpre1m,tpim1m,tsre1m,tsim1m,tire1m,tiim1m,t2re1m,t2im1m,

t3re1m,t3im1m

common/arD1m/Dpre1m,Dpim1m,Dsre1m,Dsim1m,Dire1m,Diim1m,D2re1m,D2im1m,

D3re1m,D3im1m,Dsire1m,Dsiim1m,Dp2re1m,Dp2im1m,Ds3re1m,Ds3im1m,

Dpire1m,Dpiim1m,Dp3re1m,Dp3im1m

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre1m(N),tpim1m(N),tsre1m(N),tsim1m(N),tire1m(N),tiim1m(N),

t2re1m(N),t2im1m(N),t3re1m(N),t3im1m(N)

double precision Dpre1m(N),Dpim1m(N),Dsre1m(N),Dsim1m(N),Dire1m(N),Diim1m(N),

D2re1m(N),D2im1m(N),D3re1m(N),D3im1m(N),Dsire1m(N),Dsiim1m(N),Dp2re1m(N),

Dp2im1m(N),Ds3re1m(N),Ds3im1m(N),Dpire1m(N),Dpiim1m(N),Dp3re1m(N),Dp3im1m(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre1m(i)*dcos(arg1))-(tpim1m(i)*dsin(arg1)),

(tpre1m(i)*dsin(arg1))+(tpim1m(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire1m(i)*dcos(arg2))-(tiim1m(i)*dsin(arg2)),

(tire1m(i)*dsin(arg2))+(tiim1m(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cws(i)=cmplx( real(cwi(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cwi(i)),

195



Appendix C. Fortran code for second order nonlinear interactions

dimag(cwp(i))*real(cwi(i)) - real(cwp(i))*dimag(cwi(i)) )

30 continue

call fft(cws,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvs(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=Dpire1m(i)-facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=Dpiim1m(i)-facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=Dpire1m(i)+1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=Dpiim1m(i)+1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=Dpire1m(i)-1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=Dpiim1m(i)-1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=Dpire1m(i)+1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=Dpiim1m(i)+1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1m(i)=Dpire1m(i)-1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1m(i)=Dpiim1m(i)-1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

40 continue
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return

end

!- corhppi.f ----------------------------------------------------------

subroutine corhppi

common/arthp/tprehp,tpimhp,tsrehp,tsimhp,tirehp,tiimhp,t2rehp,t2imhp,

t3rehp,t3imhp

common/arDhp/Dprehp,Dpimhp,Dsrehp,Dsimhp,Direhp,Diimhp,D2rehp,D2imhp,

D3rehp,D3imhp,Dsirehp,Dsiimhp,Dp2rehp,Dp2imhp,Ds3rehp,Ds3imhp,

Dpirehp,Dpiimhp,Dp3rehp,Dp3imhp

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tprehp(N),tpimhp(N),tsrehp(N),tsimhp(N),tirehp(N),tiimhp(N),

t2rehp(N),t2imhp(N),t3rehp(N),t3imhp(N)

double precision Dprehp(N),Dpimhp(N),Dsrehp(N),Dsimhp(N),Direhp(N),Diimhp(N),

D2rehp(N),D2imhp(N),D3rehp(N),D3imhp(N),Dsirehp(N),Dsiimhp(N),Dp2rehp(N),

Dp2imhp(N),Ds3rehp(N),Ds3imhp(N),Dpirehp(N),Dpiimhp(N),Dp3rehp(N),Dp3imhp(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tprehp(i)*dcos(arg1))-(tpimhp(i)*dsin(arg1)),

(tprehp(i)*dsin(arg1))+(tpimhp(i)*dcos(arg1)) )

cwi(i)=cmplx( (tirehp(i)*dcos(arg2))-(tiimhp(i)*dsin(arg2)),

(tirehp(i)*dsin(arg2))+(tiimhp(i)*dcos(arg2)) )

20 continue
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call fft(cwp,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cws(i)=cmplx( real(cwi(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cwi(i)),

dimag(cwp(i))*real(cwi(i)) - real(cwp(i))*dimag(cwi(i)) )

30 continue

call fft(cws,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvs(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpirehp(i)=facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpirehp(i)=Dpirehp(i)-facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=Dpiimhp(i)-facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpirehp(i)=Dpirehp(i)+1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=Dpiimhp(i)+1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpirehp(i)=Dpirehp(i)-1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=Dpiimhp(i)-1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpirehp(i)=Dpirehp(i)+1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=Dpiimhp(i)+1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-5d+0*kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Dpirehp(i)=Dpirehp(i)-1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiimhp(i)=Dpiimhp(i)-1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

40 continue

return

end

!- cor1ppi.f ----------------------------------------------------------

subroutine cor1ppi

common/art1p/tpre1p,tpim1p,tsre1p,tsim1p,tire1p,tiim1p,t2re1p,t2im1p,

t3re1p,t3im1p

common/arD1p/Dpre1p,Dpim1p,Dsre1p,Dsim1p,Dire1p,Diim1p,D2re1p,D2im1p,

D3re1p,D3im1p,Dsire1p,Dsiim1p,Dp2re1p,Dp2im1p,Ds3re1p,Ds3im1p,

Dpire1p,Dpiim1p,Dp3re1p,Dp3im1p

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre1p(N),tpim1p(N),tsre1p(N),tsim1p(N),tire1p(N),tiim1p(N),

t2re1p(N),t2im1p(N),t3re1p(N),t3im1p(N)

double precision Dpre1p(N),Dpim1p(N),Dsre1p(N),Dsim1p(N),Dire1p(N),Diim1p(N),

D2re1p(N),D2im1p(N),D3re1p(N),D3im1p(N),Dsire1p(N),Dsiim1p(N),Dp2re1p(N),

Dp2im1p(N),Ds3re1p(N),Ds3im1p(N),Dpire1p(N),Dpiim1p(N),Dp3re1p(N),Dp3im1p(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvp(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)
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arg2=dmod(arg2,tpi)

cwp(i)=cmplx( (tpre1p(i)*dcos(arg1))-(tpim1p(i)*dsin(arg1)),

(tpre1p(i)*dsin(arg1))+(tpim1p(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire1p(i)*dcos(arg2))-(tiim1p(i)*dsin(arg2)),

(tire1p(i)*dsin(arg2))+(tiim1p(i)*dcos(arg2)) )

20 continue

call fft(cwp,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cws(i)=cmplx( real(cwi(i))*real(cwp(i)) + dimag(cwp(i))*dimag(cwi(i)),

dimag(cwp(i))*real(cwi(i)) - real(cwp(i))*dimag(cwi(i)) )

30 continue

call fft(cws,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvs(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1p(i)=facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1p(i)=Dpire1p(i)-facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=Dpiim1p(i)-facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1p(i)=Dpire1p(i)+1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=Dpiim1p(i)+1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1p(i)=Dpire1p(i)-1/3d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=Dpiim1p(i)-1/3d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist+5d+0*kvg*dist-tpi/4d+0
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arg3=dmod(arg3,tpi)

Dpire1p(i)=Dpire1p(i)+1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=Dpiim1p(i)+1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

arg3=+kvs(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dpire1p(i)=Dpire1p(i)-1/5d+0*facs*( (dimag(cws(i))*dcos(arg3))

+(real(cws(i))*dsin(arg3)) )

Dpiim1p(i)=Dpiim1p(i)-1/5d+0*facs*( (dimag(cws(i))*dsin(arg3))

-(real(cws(i))*dcos(arg3)) )

40 continue

return

end

!- cor0si.f ---------------------------------------------------------

subroutine cor0si

common/art0/tpre0,tpim0,tsre0,tsim0,tire0,tiim0,t2re0,t2im0,

t3re0,t3im0

common/arD0/Dpre0,Dpim0,Dsre0,Dsim0,Dire0,Diim0,D2re0,D2im0,

D3re0,D3im0,Dsire0,Dsiim0,Dp2re0,Dp2im0,Ds3re0,Ds3im0,Dpire0,

Dpiim0,Dp3re0,Dp3im0

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre0(N),tpim0(N),tsre0(N),tsim0(N),tire0(N),tiim0(N),

t2re0(N),t2im0(N),t3re0(N),t3im0(N)

double precision Dpre0(N),Dpim0(N),Dsre0(N),Dsim0(N),Dire0(N),Diim0(N),

D2re0(N),D2im0(N),D3re0(N),D3im0(N),Dsire0(N),Dsiim0(N),Dp2re0(N),

Dp2im0(N),Ds3re0(N),Ds3im0(N),Dpire0(N),Dpiim0(N),Dp3re0(N),Dp3im0(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)
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tpi = 6.29318530718d+0

! print *,’cor0si’

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvs(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cws(i)=cmplx( (tsre0(i)*dcos(arg1))-(tsim0(i)*dsin(arg1)),

(tsre0(i)*dsin(arg1))+(tsim0(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire0(i)*dcos(arg2))-(tiim0(i)*dsin(arg2)),

(tire0(i)*dsin(arg2))+(tiim0(i)*dcos(arg2)) )

20 continue

call fft(cws,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cwp(i)=cmplx( real(cws(i))*real(cwi(i))- dimag(cws(i))*dimag(cwi(i)),

real(cws(i))*dimag(cwi(i)) + dimag(cws(i))*real(cwi(i)) )

30 continue

call fft(cwp,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvp(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=Dsire0(i)-facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=Dsiim0(i)-facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=Dsire0(i)+1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=Dsiim0(i)+1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))
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-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=Dsire0(i)-1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=Dsiim0(i)-1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=Dsire0(i)+1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=Dsiim0(i)+1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire0(i)=Dsire0(i)-1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim0(i)=Dsiim0(i)-1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

40 continue

return

end

!- cor1msi.f ---------------------------------------------------------

subroutine cor1msi

common/art1m/tpre1m,tpim1m,tsre1m,tsim1m,tire1m,tiim1m,t2re1m,t2im1m,

t3re1m,t3im1m

common/arD1m/Dpre1m,Dpim1m,Dsre1m,Dsim1m,Dire1m,Diim1m,D2re1m,D2im1m,

D3re1m,D3im1m,Dsire1m,Dsiim1m,Dp2re1m,Dp2im1m,Ds3re1m,Ds3im1m,

Dpire1m,Dpiim1m,Dp3re1m,Dp3im1m

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre1m(N),tpim1m(N),tsre1m(N),tsim1m(N),tire1m(N),tiim1m(N),

t2re1m(N),t2im1m(N),t3re1m(N),t3im1m(N)
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double precision Dpre1m(N),Dpim1m(N),Dsre1m(N),Dsim1m(N),Dire1m(N),Diim1m(N),

D2re1m(N),D2im1m(N),D3re1m(N),D3im1m(N),Dsire1m(N),Dsiim1m(N),Dp2re1m(N),

Dp2im1m(N),Ds3re1m(N),Ds3im1m(N),Dpire1m(N),Dpiim1m(N),Dp3re1m(N),Dp3im1m(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvs(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cws(i)=cmplx( (tsre1m(i)*dcos(arg1))-(tsim1m(i)*dsin(arg1)),

(tsre1m(i)*dsin(arg1))+(tsim1m(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire1m(i)*dcos(arg2))-(tiim1m(i)*dsin(arg2)),

(tire1m(i)*dsin(arg2))+(tiim1m(i)*dcos(arg2)) )

20 continue

call fft(cws,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cwp(i)=cmplx( real(cws(i))*real(cwi(i))- dimag(cws(i))*dimag(cwi(i)),

real(cws(i))*dimag(cwi(i)) + dimag(cws(i))*real(cwi(i)) )

30 continue

call fft(cwp,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvp(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=Dsire1m(i)-facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=Dsiim1m(i)-facp*( (dimag(cwp(i))*dsin(arg3))
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-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=Dsire1m(i)+1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=Dsiim1m(i)+1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=Dsire1m(i)-1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=Dsiim1m(i)-1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=Dsire1m(i)+1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=Dsiim1m(i)+1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1m(i)=Dsire1m(i)-1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1m(i)=Dsiim1m(i)-1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

40 continue

return

end

!- corhpsi.f ---------------------------------------------------------

subroutine corhpsi

common/arthp/tprehp,tpimhp,tsrehp,tsimhp,tirehp,tiimhp,t2rehp,t2imhp,

t3rehp,t3imhp

common/arDhp/Dprehp,Dpimhp,Dsrehp,Dsimhp,Direhp,Diimhp,D2rehp,D2imhp,

D3rehp,D3imhp,Dsirehp,Dsiimhp,Dp2rehp,Dp2imhp,Ds3rehp,Ds3imhp,

Dpirehp,Dpiimhp,Dp3rehp,Dp3imhp

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist
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parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tprehp(N),tpimhp(N),tsrehp(N),tsimhp(N),tirehp(N),tiimhp(N),

t2rehp(N),t2imhp(N),t3rehp(N),t3imhp(N)

double precision Dprehp(N),Dpimhp(N),Dsrehp(N),Dsimhp(N),Direhp(N),Diimhp(N),

D2rehp(N),D2imhp(N),D3rehp(N),D3imhp(N),Dsirehp(N),Dsiimhp(N),Dp2rehp(N),

Dp2imhp(N),Ds3rehp(N),Ds3imhp(N),Dpirehp(N),Dpiimhp(N),Dp3rehp(N),Dp3imhp(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvs(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cws(i)=cmplx( (tsrehp(i)*dcos(arg1))-(tsimhp(i)*dsin(arg1)),

(tsrehp(i)*dsin(arg1))+(tsimhp(i)*dcos(arg1)) )

cwi(i)=cmplx( (tirehp(i)*dcos(arg2))-(tiimhp(i)*dsin(arg2)),

(tirehp(i)*dsin(arg2))+(tiimhp(i)*dcos(arg2)) )

20 continue

call fft(cws,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cwp(i)=cmplx( real(cws(i))*real(cwi(i))- dimag(cws(i))*dimag(cwi(i)),

real(cws(i))*dimag(cwi(i)) + dimag(cws(i))*real(cwi(i)) )

30 continue

call fft(cwp,N,1)

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvp(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=facp*( (dimag(cwp(i))*dsin(arg3))
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-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=Dsirehp(i)-facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=Dsiimhp(i)-facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=Dsirehp(i)+1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=Dsiimhp(i)+1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=Dsirehp(i)-1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=Dsiimhp(i)-1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=Dsirehp(i)+1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=Dsiimhp(i)+1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsirehp(i)=Dsirehp(i)-1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiimhp(i)=Dsiimhp(i)-1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

40 continue

return

end

!- cor1psi.f ---------------------------------------------------------

subroutine cor1psi

common/art1p/tpre1p,tpim1p,tsre1p,tsim1p,tire1p,tiim1p,t2re1p,t2im1p,

t3re1p,t3im1p

common/arD1p/Dpre1p,Dpim1p,Dsre1p,Dsim1p,Dire1p,Diim1p,D2re1p,D2im1p,
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D3re1p,D3im1p,Dsire1p,Dsiim1p,Dp2re1p,Dp2im1p,Ds3re1p,Ds3im1p,

Dpire1p,Dpiim1p,Dp3re1p,Dp3im1p

common/arkv/kvp,kvs,kvi,kv2,kv3,kvg

common/vdbl/det,dom,facp,facs,faci,fac2,fac3

common/vrea/dist

parameter(N=8191) !has to be (2^n)-1

integer i

double precision dist

double precision tpre1p(N),tpim1p(N),tsre1p(N),tsim1p(N),tire1p(N),tiim1p(N),

t2re1p(N),t2im1p(N),t3re1p(N),t3im1p(N)

double precision Dpre1p(N),Dpim1p(N),Dsre1p(N),Dsim1p(N),Dire1p(N),Diim1p(N),

D2re1p(N),D2im1p(N),D3re1p(N),D3im1p(N),Dsire1p(N),Dsiim1p(N),Dp2re1p(N),

Dp2im1p(N),Ds3re1p(N),Ds3im1p(N),Dpire1p(N),Dpiim1p(N),Dp3re1p(N),Dp3im1p(N)

double precision kvp(N),kvs(N),kvi(N),kv2(N),kv3(N),kvg

double precision arg1,arg2,arg3,tpi

double precision det,dom,facp,facs,faci,fac2,fac3

complex*16 cwp(N),cws(N),cwi(N)

tpi = 6.29318530718d+0

do 20 i=1,N,1 ! 1D arrays --> 2D arrays

arg1=-kvs(i)*dist ! always define as e^(-i phi)

arg2=-kvi(i)*dist

arg1=dmod(arg1,tpi)

arg2=dmod(arg2,tpi)

cws(i)=cmplx( (tsre1p(i)*dcos(arg1))-(tsim1p(i)*dsin(arg1)),

(tsre1p(i)*dsin(arg1))+(tsim1p(i)*dcos(arg1)) )

cwi(i)=cmplx( (tire1p(i)*dcos(arg2))-(tiim1p(i)*dsin(arg2)),

(tire1p(i)*dsin(arg2))+(tiim1p(i)*dcos(arg2)) )

20 continue

call fft(cws,N,-1)

call fft(cwi,N,-1)

do 30 i=1,N,1

cwp(i)=cmplx( real(cws(i))*real(cwi(i))- dimag(cws(i))*dimag(cwi(i)),

real(cws(i))*dimag(cwi(i)) + dimag(cws(i))*real(cwi(i)) )

30 continue

call fft(cwp,N,1)
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Appendix C. Fortran code for second order nonlinear interactions

do 40 i=1,N,1 ! 2D arrays --> 1D arrays

arg3=+kvp(i)*dist+kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=Dsire1p(i)-facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=Dsiim1p(i)-facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=Dsire1p(i)+1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=Dsiim1p(i)+1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-3d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=Dsire1p(i)-1/3d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=Dsiim1p(i)-1/3d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist+5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=Dsire1p(i)+1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=Dsiim1p(i)+1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

arg3=+kvp(i)*dist-5d+0*kvg*dist-tpi/4d+0

arg3=dmod(arg3,tpi)

Dsire1p(i)=Dsire1p(i)-1/5d+0*facp*( (dimag(cwp(i))*dcos(arg3))

+(real(cwp(i))*dsin(arg3)) )

Dsiim1p(i)=Dsiim1p(i)-1/5d+0*facp*( (dimag(cwp(i))*dsin(arg3))

-(real(cwp(i))*dcos(arg3)) )

40 continue

return

end
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