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Abstract

A novel technique for ultrafast pulse measurement is presented. This technique in-

volves only the measurement of the fundamental, second harmonic, and third har-

monic (or other third-order nonlinear) spectra of an ultrafast pulse. An algorithm is

employed to generate trial SHG and THG spectra based on the measured fundmental

spectrum and a trial phase. The phase is adjusted iteratively until the best match

between the trial and measured SHG and THG spectra is obtained. The technique is

experimentally simple, not subject to delicate temporal alignments, and potentially

insensitive to wavefront quality.
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Chapter 1

Introduction

1.1 Definitions

The electric field of a pulse is defined in the frequency domain as a spectral amplitude

times a spectral phase. If the measured spectral intensity, or spectrum, is S(ω) and

the spectral phase is φ(ω), the complex electric field is written:

E(ω) =
√
S(ω)eı̇φ(ω) (1.1)

Very often the spectral phase, φ(ω), is expanded in a Taylor series around the center

frequency ω0 because each part has a physical significance.

φ(ω) = φ0 + φ1(ω − ω0) +
φ2

2
(ω − ω0)

2 +
φ3

6
(ω − ω0)

3 + . . . (1.2)

φ0 is the “absolute” phase: the phase of the carrier wave with respect to the field

envelope. φ1 corresponds to a shift in the center frequency of the pulse or, via a

Fourier transform, a time shift in the pulse. φ2 is second-order dispersion, called

group velocity dispersion (GVD). For a pulse with a Gaussian intensity profile in the

time domain, GVD corresponds to a linear shift of frequency (called chirp) with time.

1



Chapter 1. Introduction

A pulse with positive chirp has a frequency that increases with time; negative chirp

has a frequency that decreases with time. Most materials impart positive chirp to a

pulse as the pulse propagates through them. The next term, φ3, is called third-order

dispersion (TOD). TOD causes the center frequency to arrive before frequencies on

either side of it. This mixing of slightly different frequencies causes a ripple in the

time domain. In the time domain, the main pulse will be preceded or followed by

smaller pulses, depending on the sign of φ3.

1.2 History of the measurement problem

When one wants to measure the duration of an event, one has to have a shorter event

with which to gate the longer event so that we gain some “snapshots” with which we

can see the evolution of the longer event. For example, Q-switched Nd:YAG lasers

can produce laser pulses several nanoseconds long that can be measured with fast

photodiodes with sub-nanosecond risetimes. Shorter events in the picosecond regime

can be measured with streak cameras. But with the advent of broadband dye and

Ti:sapphire lasers in the early 1980s, femtosecond pulses became possible. But how

do you measure femtosecond pulses without an even faster event to gate it? The

obvious answer was to gate the pulse with itself. If one were to break the pulse into

two replicas using a Michelson interferometer, a slow detector will record the time-

averaged field autocorrelation (or first-order autocorrelation) of the pulse. If the two

pulses are delayed with respect to each other by a time τ and we neglect constant

terms, the first-order autocorrelation, Γ(τ), will be given by:

Γ(τ) =

∞∫
−∞

E(t)E∗(t− τ)dt (1.3)

This quantity is also called the interferogram since it records the interference of the

fields of the two pulses. The Fourier transform of the interferogram yields the spec-

2



Chapter 1. Introduction

trum. This is the basis for Fourier-transform spectrometry. But the interferogram

gives no information about the spectral phase. It is insufficient to measure a pulse,

which requires knowing both the spectrum and the spectral phase.

|E(ω)|2 = S(ω) = F


∞∫
−∞

E(t)E∗(t− τ)dt

 (1.4)

The first attempt to measure ultrafast pulses was the intensity autocorrelation,

or second-order autocorrelation. An intensity autocorrelation involves splitting the

beam into two parts and mixing them in a nonlinear medium to generate a signal

whose electric field in the frequency domain is the convolution in the frequency domain

of the electric fields of the two pulses being mixed together. The experimental setup

for measuring the autocorrelation is shown in Figure 1.1 [1].

Figure 1.1: Experimental setup for intensity autocorrelation

The nonlinear medium, typically a second-harmonic generation (SHG) crystal,

will generate light at twice the frequency as the input beams. The electric field of the

this SHG signal is proportional to the two electric fields of the pulses.

ESHG(t, τ) ∝ E(t)E(t− τ) (1.5)

3



Chapter 1. Introduction

The measured intensity autocorrelation is measured by a slow detector which does

not resolve the electric field, but the time integral of the magnitude squared. Thus

the intensity autocorrelation, A(τ), is given by:

A(2)(τ) =

∞∫
−∞

|E(t)E(t− τ)|2 dt

=

∞∫
−∞

I(t)I(t− τ)dt (1.6)

where I(t) = |E(t)|2. Because the intensity autocorrelation is dependent solely on the

magnitude squared of a field, it necessarily contains no information about the phase

of the field. It has been shown that there are infinitely many fields and intensity

profiles that have the same intensity autocorrelations [2]. But although the intensity

autocorrelation is incapable of uniquely determining E(t) or even I(t), it does uniquely

determine the root-mean-squared pulse width [3].

1.3 Fringe-Resolved Autocorrelation (FRAC)

An improvement upon autocorrelation was pioneered by Jean-Claude Diels in 1983

[4]. Fringe-resolved autocorrelation (FRAC) or interferometric autocorrelation (IAC)

involves splitting a pulse into two parts, sending them through a Michelson interfer-

ometer, then mixing the two legs in a nonlinear medium and measuring the resultant

interferometric intensity profile on a camera. The experimental setup for this is shown

below in Figure 1.2 [5].

4



Chapter 1. Introduction

Figure 1.2: Experimental setup for interferometric autocorrelation

The FRAC signal is proportional to the magnitude squared of the sum of the

electric fields.

IFRAC(τ) =

∞∫
−∞

∣∣∣[(E(t) + E(t− τ)]2
∣∣∣2 dt

=

∞∫
−∞

∣∣∣E(t)2 + 2E(t)E(t− τ) + E(t− τ)2
∣∣∣2 dt (1.7)

Expanding out the terms further, we can relate them to intensities and fields of the

input beams and group them in the following manner:

IFRAC(τ) =

∞∫
−∞

I(t)2 + I(t− τ)2dt

+

∞∫
−∞

(I(t) + I(t− τ))<(E(t)E∗(t− τ))dt

+

∞∫
−∞

<(E(t)2E∗(t− τ)2dt

+

∞∫
−∞

I(t)I(t− τ)dt (1.8)

The first term is a constant and is therefore centered at frequency 0 when Fourier-

transformed into the frequency domain. The second term is like an interferogram,

but it is modified by the (I(t) + I(t− τ)) term in front of it. It will be centered at ω0

5



Chapter 1. Introduction

in the frequency domain. The third term is an interferogram of the second harmonic

and appears centered around 2ω0 in the frequency domain. And the fourth term is

an autocorrelation centered around frequency 0 in the frequency domain. Examples

of pulses and their FRAC traces are shown below in Figure 1.3, taken from [2, p. 86].

Figure 1.3: Examples of fringe-resolved autocorrelation traces. Top row: a 10 fs
Gaussian intensity. Second row: a 7 fs sech2 intensity. Third row: a pulse with
considerable TOD. Fourth row: a double pulse.

Naganuma et al. showed that knowledge of the fundamental and SHG spectra

along with the autocorrelation is a sufficient data set from which to reconstruct a

pulse without any assumptions of the pulse shape [6]. Thus FRAC, if combined with

6



Chapter 1. Introduction

the fundamental spectrum, is a sufficient data set for pulse reconstruction. Naganuma

proposed an iterative algorithm to guess a spectral phase for the measured spectrum

until a close match is found between the guessed and measured FRAC traces. This

technique is not difficult to implement, but it suffers from a time-direction ambiguity

and cannot determine distinguish φ(ω) from −φ(ω). Trebino also questions the accu-

racy of the technique for very short pulses, since the difference between FRAC traces

diminishes as pulse lengths get shorter [2, p.89]. In an effort to retrieve the phase

of a pulse without relying on assumptions about the pulse shape, Wolfgang Rudolph

et al. improved upon FRAC in 1999 by breaking the symmetry of the Michelson

interferometer used to delay the two copies of the pulse. One pulse is made to travel

through an extra length of dispersive medium (such as fused silica) and the cross

correlation between the two legs is generated either in a nonlinear crystal or using

a two-photon current detector. This technique is called Phase and Intensity from

Cross-correlation And Spectrum Only, or PICASO [7]. It does not have the ambi-

guity with sign of the chirp that the simpler FRAC had, nor does it need to assume

a pulse shape a priori. But the dispersion of the material used to unbalance the

Michelson interferometer must be known for the technique to work. In 2002, Man-

soor Sheik-Bahae and Toshiyuki Hirayama modified FRAC to make the technique

more sensitive to chirp [8]. They called their technique MOdified Spectrum AutoInt-

erferometric Correlation (MOSAIC). MOSAIC uses the same apparatus as FRAC to

collect a second-order interferometric autocorrelation. But in MOSAIC, signal pro-

cessing removes the components of the trace that are centered at ω0. The 2ω0 and

autocorrelation components are retained and the 2ω0 component is amplified by a

factor of 2. Inverse Fourier transforming this signal in the frequency domain yields

the MOSAIC trace in the time domain. Although MOSAIC itself does not fully re-

construct the electric field (although it can if combined with the spectrum), it serves

as a real-time diagnostic for low-order dispersion in the beam [9]. Some examples of

7



Chapter 1. Introduction

pulses with varying amounts of chirp are shown below in Figure 1.4 taken from [8] to

show the utility of MOSAIC for diagnosing chirp.

Figure 1.4: Examples of MOSAIC traces compared to FRAC traces. Chirp is varied
in each case by making the pulses travel through a 6-mm-thick SiO2 window for (a)
zero, (b) two, (c) three, and (d) five passes.

1.4 Frequency-Resolved Optical Gating (FROG)

It was shown by Ishida et al. in 1985 that the electric field of a femtosecond pulse

could be fully reconstructed from a spectrally-resolved intensity autocorrelation if

the second harmonic spectrum is known for every delay between the two pulses [10].

8



Chapter 1. Introduction

Although Ishida was the first to make such a measurement, he didn’t try to extract

intensity and phase information about the pulse. In the early 1990s, Rick Trebino,

Daniel Kane, and Ken DeLong used this approach to reconstruct the electric fields

of femtosecond pulses [2]. They called the method frequency-resolved optical gating

(FROG). FROG involves creating a 2D image of the pulse intensity versus wavelength

and delay. Any nonlinear process that can be used for autocorrelation can also be

used for FROG, but the most common process is second harmonic generation (SHG)

because signal intensities are higher for SHG than for any third-order process (i.e.

polarization gating, third harmonic generation, self-diffraction). Figure 1.5 shows

how SHG FROG can be implemented in a single-shot configuration [11].

Figure 1.5: Setup for single-shot SHG FROG.

The measured SHG FROG intensity is:

ISHGFROG(ω, τ) =

∣∣∣∣∣∣
∞∫
−∞

E(t)E(t− τ)e−ı̇ωtdt

∣∣∣∣∣∣
2

(1.9)

The flowchart for the FROG algorithm has the following steps.

Step 1: The FROG algorithm makes an initial guess for E(t), guessing both an

amplitude, A(t), and a phase, φ(t), for the electric field.

E(t) = A(t)eı̇φ(t) (1.10)

9



Chapter 1. Introduction

Step 2: It then computes a guessed signal based on whatever nonlinear process is being

employed. This is the mathematical form constraint. In the case of SHG FROG, it

computes the signal field thusly:

Esig(t, τ) ∝= E(t)E(t− τ) (1.11)

Step 3: This signal is then Fourier transformed with respect to t to get the signal in

the frequency domain:

Esig(ω, τ) =

∞∫
−∞

Esig(t, τ)eı̇ωtdt (1.12)

Step 4: This computed signal is in the same domain as the measured signal. Now the

algorithm applies a data constraint. We replace the guessed amplitude of Esig(ω, τ)

with the square root of the measured quantity,
√
ISHGFROG(ω, τ), to generate a new

signal, E
′
sig(ω, τ) that has the correct amplitude, but not the correct phase.

Step 5: We perform the inverse Fourier transform get back to the time domain from

the frequency domain.

E
′

sig(t, τ) =
1

2π

∞∫
−∞

E
′

sig(ω, τ)eı̇ωtdω (1.13)

Step 6: Integrate the signal over delay to generate E(t) again.

E(t) =

∞∫
−∞

E
′

sig(t, τ)dτ (1.14)

The new E(t) is then used on the next iteration of the cycle, and after a number of

iterations, the correct complex electric field is found. Because FROG relies on two

dimensional data (intensity vs. wavelength and delay), it is not subject to the am-

biguities found in one-dimensional phase retrievals. In general, the two-dimensional

phase retrieval problem yields unique answers, but the one-dimensional phase retrieval

problem does not [2, p.107]. FROG does contain some so-called “trivial ambiguities”

such as not being able to measure the absolute phase, φ0, nor being able to measure

10



Chapter 1. Introduction

pulse arrival time (which corresponds via Fourier transform to φ1). SHG FROG also

contains a time-direction ambiguity (E(t) = E∗(−t)), but third-order FROG traces

do not. Also, because FROG collects an N2-sized array of data to reconstruct 2N

points (N amplitude and N phase), the solution is greatly over-determined. This

redundancy of data allows the algorithm to diagnose the presence of systematic mea-

surement. SHG FROG traces, for instance, must be symmetric along the delay axis.

Asymmetry is an indication of systematic error in SHG FROG. Miscalibrations of the

delay or wavelength axis will also lead to large FROG errors.

1.5 Spectral Phase Interferometry for Direct Elec-

tric field Reconstruction (SPIDER)

Another elegant method for reconstructing both the amplitude and phase of a pulse

is Spectral Phase Interferometry for Direct Electric field Reconstruction (SPIDER),

first developed by Chris Iaconis and Ian Walmsley in 1998 [12]. In this technique, an

incoming pulse is split into three pulses: A, B, and C. A and B are replicas of the

input pulse and have a known delay, τ , of 3-5 picoseconds introduced between them

with a delay line or etalon. Pulse C is stretched in time to about 20 picoseconds with a

grating stretcher that linearly chirps the pulse, giving a spectral shear of Ω. Then the

two replica pulses A and B are nonlinearly mixed with different quasi-monochromatic

sections of the spectrally sheared pulse C to produce two pulses, A’ and B’, that are

identical except that B’ is frequency-shifted by Ω relative to A’. Then A’ and B’ are

interfered with each other and the interferogram is detected on a slow spectrometer.

An experimental setup for the SPIDER technique is shown in Figure 1.6 [13].

11



Chapter 1. Introduction

Figure 1.6: Experimental setup for SPIDER.

The fringes resolved by the spectrometer will be given by

ISPIDER(ω) = |E(ω)|2 + |E(ω − Ω)|2 + 2 |E(ω)E(ω − Ω)| cos(φ(ω − Ω)− φ(ω)− τω)

(1.15)

Fourier transforming these fringes in the frequency domain will yield a DC component

and two AC components centered at −τ and +τ in time. Next a filter is applied

to select only the positive AC component of the Fourier transform. This positive

component is then inverse Fourier transformed back to the frequency domain. This

yields the phase term φ(ω − Ω) − φ(ω) − τω. The τω term is found by doing a

separate SPIDER measurement with the stretched pulse blocked so that the spectral

modulation is due only to the the delay in the two replica pulses. When τω is

subtracted, the resulting phase is the phase difference φ(ω − Ω) − φ(ω). From this,

φ(ω) is found by simply phase-wrapping the result whenever it makes a jump of 2π

in the phase. The diagram below in Figure 1.7 shows the steps SPIDER uses in

reconstructing the phase [14].

12
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Figure 1.7: Flow chart describing the SPIDER algorithm.

SPIDER has the advantage of being a direct (instead of iterative) method for

calculating the phase of a pulse. Furthermore, it is single shot (limited only by the

integration time of the spectrometer) and requires a minimum of data to be collected

(just one spectrum). However, it is extremely sensitive to alignment of the optics and

requires great mechanical stability so the fringes don’t wash out. There are also no

independent checks in the data to ensure the validity of the measurement. Because it

involves the nonlinear mixing of two femtosecond pulses with a stretched picosecond

pulse, the nonlinear conversion efficiency is low, requiring higher input energies than

other methods.
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1.6 SPINS

All the methods listed above that can retrieve the phase of a pulse rely either on

spectral interferometry of a nonlinear correlation (FRAC, PICASO, MOSAIC, SPI-

DER) or spectrally resolving the autocorrelation (FROG). The purpose of this thesis

is to explore the possibility of retrieving the phase of a pulse from measuring only

the fundamental spectrum along with two nonlinear spectra. For the purposes of

this investigation, we record the fundamental, second harmonic, and third harmonic

spectra. We start by defining our fundamental pulse as in Equation 1.1:

E(ω) =
√
S1(ω)eı̇φ1(ω) (1.16)

where the subscript 1 denotes the fundamental pulse. The nonlinear SHG and THG

pulses will have a similar form:

ESHG(ω) =
√
S2(ω)eı̇φ2(ω) (1.17)

and

ETHG(ω) =
√
S3(ω)eı̇φ3(ω) (1.18)

where S2 and S3 are the measured SHG and THG spectra, respectively and φ2(ω)

and φ3(ω) are the corresponding spectral phases for the SHG and THG pulses. If

we assume an instantaneous material response, the nonlinear SHG and THG electric

fields in the time domain are proportional to products of the fundamental field in the

time domain:

ESHG(t) ∝ E(t)2 (1.19)

and

ETHG(t) ∝ E(t)3 ∝ ESHG(t)E(t) (1.20)

14
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The nonlinear SHG electric field is computed, neglecting constants, as the convolution

of the two pulses in the frequency domain:

ESHG(ω) =

∞∫
−∞

E(ω
′
)E(ω − ω′

)dω
′

(1.21)

Substituting Equation 1.16 in for E(ω) in Equation 1.21 we get:

ESHG(ω) =

∞∫
−∞

√
S1(ω

′)S1(ω − ω′)e
ı̇

(
φ(ω

′
)+φ(ω−ω′

)

)
dω

′
(1.22)

Thus, the SHG spectrum is dependent upon the fundamental spectrum and phase

by:

S2(ω) =

∣∣∣∣∣∣
∞∫
−∞

√
S1(ω

′)S1(ω − ω′)e
ı̇

(
φ(ω

′
)+φ(ω−ω′

)

)
dω

′

∣∣∣∣∣∣
2

(1.23)

Similarly, because of Equation 1.20 which shows that the THG field is proportional to

the SHG field times the fundamental field in the time domain, we can write the THG

field as the convolution of the SHG field with the fundamental field in the frequency

domain:

ETHG(ω) =

∞∫
−∞

ESHG(ω
′
)E(ω − ω′

)dω
′

(1.24)

Then the THG spectrum can be written in terms of the fundamental spectrum and

phase as follows:

S3(ω) =

∣∣∣∣∣∣
∞∫
−∞

ESHG(ω
′
)E(ω − ω′

)dω
′

∣∣∣∣∣∣
2

(1.25)

In the SPINS retrieval algorithm, a pulse is defined by the measured funda-

mental spectrum times a spectral phase, as in Equation 1.16. The initial phase of

the pulse is guessed. The fundamental field E(ω) is Fourier transformed to E(t) and

the trial second and third harmonic fields are generated via Equations 1.19 and 1.19.

Instead of using a χ(3) process such as THG, a cascaded χ(2) process could be used

instead. For instance, instead of generating the third harmonic directly, the second

harmonic could be mixed with the fundamental to get either THG or downconverted

15
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via difference frequency generation (DFG) back to the fundamental frequency. Math-

ematically, the THG process is the same; the THG electric field is proportional to the

input field cubed. ETHG(t) ∝ E(t)3. But with DFG, the electric field is at the same

frequency as the initial field, so EDFG(t) ∝ E(t)2E(t)∗ The advantage of cascaded

χ(2) is greater conversion efficiency of the fundamental beam to the third-order beam.

The major disadvantage is added experimental complexity, as the SHG and funda-

mental beams have to be overlapped in time using a delay line. Plus, the the case of

using DFG to get a nonlinear signal at the fundamental frequency, the beams need to

be mixed in a non-collinear geometry so the DFG signal can be separated from the

original fundamental. These fields are then inverse Fourier transformed back to the

frequency domain and the magnitude squared of the field is the trial SHG or THG

spectrum, StrialSHG(ω) and StrialTHG(ω). An error function,∆, is computed as a quadratic

root-mean-square deviation between the trial and measured spectra with N points

each:

∆ =

[
1

N
[
N∑
i=1

[
(StrialSHG(ωi)− SmeasuredSHG (ωi)

]2
+
[
StrialTHG(ωi)− SmeasuredTHG (ωi)

]2].5
(1.26)

The phase is defined in the frequency domain using the convention given in Equa-

tion 1.2. The coefficients of each term of the expansion are varied iteratively until a

minimum in the error function is achieved. Because SPINS involves only the direct

generation of second and third harmonics, there is no delicate time overlapping be-

tween the pulses. Since there is no interferometry involved, the experimental setup

is robust and not sensitive to small changes in path length. Depending on the wave-

lengths used, it is at least theoretically possible for all three spectra to be measured

with the same spectrometer. SPINS is also the only one of these techniques that

is robust enough to theoretically work with an input pulse that has a poor-quality

wavefront, although this claim was not tested.
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Algorithm Development

2.1 Uniqueness of solution

The investigation into the efficacy of the SPINS technique begins by studying whether

or not it will lead to unique solutions. To test this, a sample pulse is generated with

a known spectrum and phase. The phase is restricted to GVD and TOD terms only,

i.e. φ(ω) = φ2(ω − ω0)
2 + φ3(ω − ω0)

3. In our case, a sech2 spectrum was modified

so that it became asymmetric and values of GVD and TOD were chosen so that the

generated phase caused the pulsewidth by about 40 percent over the transform limit.

The time domain intensities of the two pulses are shown below in Figure 2.1.
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Figure 2.1: Pulse in time domain with GVD = 50,000 fss and TOD = -10,000,000
fs3 compared to transform-limited pulse.

Errors, as defined in Equation 1.26, were computed for pulses with different

values of GVD and TOD and those errors were plotted versus against the GVD and

TOD values to generate an error map. For the example shown below in Figure ??, the

known GVD is 50,000 fs2 and TOD is -10,000,000 fs3. The algorithm did converge

to a solution at the known values of GVD and TOD. It also converged to a solution at

the opposite of those values. This ambiguity shows that the same nonlinear spectra

are generated with the phase φ(ω) as with −φ(ω). This corresponds to a direction-

of-time ambiguity. The 3D graph of the error map shown below in Figure 2.3 makes

the convergence to the two phase points more obvious.
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Figure 2.2: Error map for pulse with known GVD = 50,000 fss and TOD = -
10,000,000 fs3. The log of the error is plotted. Solutions are at blue points.

Although this is not a conclusive proof of the uniqueness of the solution for

a general phase, it does show that the solution is essentially unique when spectral

phase is confined to GVD and TOD only.
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Figure 2.3: 3D Error map for pulse with known GVD = 50,000 fss and TOD =
-10,000,000 fs3. Note the two points where the error is exceedingly small. These are
the two solutions.

2.2 Sensitivity to phase

Another important consideration in assessing the versatility of a femtosecond pulse

measurement technique is its sensitivity to phase. How does the sensitivity of SPINS

compare to FROG? Using pulses with the same spectrum above, the phase was

changed by adding a fourth order dispersion (FOD) term to the Taylor series ex-

pansion of the phase. GVD and TOD remained the same, but a FOD coefficient of

-100,000,000 fs4 modified the phase. This phase caused the pulse to be 43% longer in

the time domain compared to the transform-limited pulse, as seen in Figure 2.4. The

SHG and THG spectra as well as FROG traces were simulated and compared with

each other. The FROG traces were generated via Equation 1.12 using time-domain

data that was truncated to 210 points from the original 216 points. This was done
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Figure 2.4: Pulse in time domain with GVD = 50,000 fs2, TOD = −107fs3, and
FOD = −108fs4 compared to transform-limited pulse.

solely because Matlab could not handle an array size necessary to accommodate the

points necessary to maintain that same resolution in the frequency domain. Since the

time-domain data was truncated to 1/64 of its original value, the frequency data is

necessarily coarsened by a factor of 64. This must be kept in mind when comparing

the two techniques. The square of the differences are summed over frequencies in the

case of the SHG and THG spectra. The square of the differences in the FROG images

are summed over frequencies and delay, since FROG data are 2D spectrograms. In

neither case was the difference divided by the number of points because of the differ-

ent frequency resolutions of the spectra compared to the FROG data. The spectra

and FROG images for the two pulses are shown below.
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Figure 2.5: Plot showing the differences in SHG spectra between a transform-limited
pulse and one with phase that causes a 43% stretching in time domain

Figure 2.6: Plot showing the differences in THG spectra between a transform-limited
pulse and one with phase that causes a 43% stretching in time domain
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Figure 2.7: Transform-limited FROG image

Figure 2.8: FROG image of pulse with non-zero phase
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Figure 2.9: Difference between the transform-limited and non-zero phase FROG im-
ages

One way of estimating the sensitivity to phase is to compare the peak-to-peak

differences of the spectra. The peak-to-peak difference between the transform limited

spectra and the other spectra were 12.6% for the SHG spectra, 29.2% for the THG

spectra compared to a 16.3% peak-to-peak difference in the FROG images. Given

this metric, SPINS is seen to be of comparable sensitivity to FROG.

2.3 Resiliency to noise

Every real measurement will have random noise. FROG traces can have random noise

introduced by dark current in the CCDs or stray light in the spectrometers. However,

the FROG retrieval algorithm is robust and random noise does not affect it greatly

since random noise will rarely appear in such a pattern as to cause the algorithm
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to mistake the actual pulse for another pulse. In the case of SPINS, much less data

is collected than in FROG and therefore there is not the self-correcting redundancy

inherent to FROG. The measured spectra in SPINS have the same sources of noise as

FROG traces: dark current in the detector arrays and stray light in the spectrometers.

We next explore how much random noise the three spectra can have before the SPINS

retrieval algorithm fails to retrieve the known phase.

Using the same pulse with non-zero phase described earlier, we first add random

noise to the fundamental spectrum. The SHG and THG spectra are then generated

from this noisy spectrum with a well-defined phase. Next, different random noise of

the same magnitude as the first is added to the SHG and THG spectra. The retrieval

algorithm is run using a simplex method to find the known coefficients of the GVD,

TOD, and fourth order dispersion (FOD) of the phase. With the error defined as

in Equation 1.26, the algorithm was able to retrieve the phase when noise with a

magnitude of 0.8% of the maximum signal was introduced.
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Figure 2.10: Phase retrieval using simplex method with 0.8% noise. Known phase
(dark blue) and retrieved phase (green) are almost indistinguishable.

As seen above in Figure 2.10, the retrieval algorithm converged to the known

phase. The retrieved and computed SHG and THG spectra with 0.8% noise are shown

below in Figures 2.11 and 2.12.
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Figure 2.11: Retrieved (orange) and computed (green) SHG spectra with 0.8% noise.

Figure 2.12: Retrieved (orange) and computed (green) THG spectra with 0.8% noise.
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However, when the noise level is increased to 1 percent, the retrieval algorithm

fails to retrieve the known phase. As seen in Figure 2.13 below, the known phase

(dark blue) and retrieved (red) phases begin to deviate noticeably in the wings of the

spectrum.

Figure 2.13: Phase retrieval using simplex method with 1 percent noise. Known phase
(dark blue) and conjugate of the retrieved phase (red) deviate noticeably in the pulse
wings.

The retrieved nonlinear spectra match their computed counterparts well when

the intensity is high, but not in the wings where it is not, as seen in Figures 2.14 and

2.15 below.
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Figure 2.14: Retrieved (orange) and computed (green) SHG spectra with 1 percent
noise.

Figure 2.15: Retrieved (orange) and computed (green) THG spectra with 1 percent
noise.
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To address this problem, the error function was modified to give more weight

to the wings of the pulse. This is done by multiplying the square of the difference in

the spectra by the absolute value of the frequency (assuming the center frequency is

0). The modified error signal is given by Equation 2.1.

∆mod =

[
1

N

N∑
i=1

[
(StrialSHG(ωi)− SmeasuredSHG (ωi)

]2
|ωi|+

[
StrialTHG(ωi)− SmeasuredTHG (ωi)

]2
|ωi|

].5
(2.1)

With this modification to the error signal, the retrieval algorithm was able to retrieve

the phase with 1.1 percent noise in the spectra, a 37.5 percent improvement. The

successful retrieval is shown below in Figure 2.16. The known phase, the hardly

visible dark blue line, is virtually identical to the conjugate of the retrieved phase,

the red line.

Figure 2.16: Phase retrieval using simplex method with 1.1% noise. Known phase
(dark blue, hardly visible) and conjugate of the retrieved phase (red) are almost
identical.
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As seen below in Figures 2.17 and 2.18, the retrieved SHG and THG spectra

fit the computed spectra much better with the modified error function which weights

points farther from the center frequency more than with the original error function.

Figure 2.17: Retrieved (orange) and computed (green) SHG spectra with 1.1% noise.

Figure 2.18: Retrieved (orange) and computed (green) THG spectra with 1.1% noise.
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Experimental Validation

3.1 Purpose

Having resolved that the retrieval algorithm can retrieve a known phase based on

a 3-term Taylor expansion of the phase around the center frequency (GVD, TOD,

and FOD) using a simplex search method, we test the algorithm against real data

obtained from experiment.

3.2 Experimental Setup

A 10 Hz rep rate optical parametric chirped pulse amplifier (OPCPA) laser was used

in this experiment because the 10 Hz rep rate made it easy to externally trigger the

spectrometers and to obtain single-shot data. Also, the third harmonic generation

efficiency in air is particularly good at 1550 nm, making it easy to generate the non-

linear spectrum that will have the lowest signal. The laser produces 170 fs pulses

tunable around 1550 nm wavelength with energies of about 5 mJ. The Martinez-
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designed pulse compressor utilizes a retroreflector mounted on a translation stage to

vary the the pulsewidth by changing the spacing between the gratings. The experi-

mental setup for the SPINS measurement is quite simple and is shown below in Figure

3.1.

Figure 3.1: Experimental setup for SPINS.

The majority of the beam is reflected off a 90 percent reflective beam splitter

(CVI BS1) onto a 1 meter focal length gold mirror which begins to focus the beam.

A femtosecond autocorrelating beam splitter (CVI FABS 1550) splits the converging

beam into two legs: one to generate SHG and the other to generate THG. A BBO

crystal angle-tuned to phase match SHG or THG is placed well upstream of the focus

to minimize the onset of self-phase modulation. An integrating sphere behind the

SHG BBO crystal collected light for the fiber-coupled SHG spectrometer (an Ocean

Optics HR2000) and the fundamental imaging spectrometer (an Acton AR150 with
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a Sensors Unlimited SU320 InGaAs camera). A small alumina disk placed just after

the THG BBO crystal provided a surface for diffuse reflection into a 1 mm diameter

fiber that coupled into an Ocean Optics USB2000 spectrometer. The 10 percent of

the beam that passed through the original beam splitter was reflected off another 90

percent reflective beam splitter, through two lenses that served as a telescope, off two

more dielectric mirrors and into a SHG FROG.

3.3 Procedure

The experimental procedure involved measuring single-shot spectra of the fundamen-

tal, second harmonic, and third harmonic along with a FROG trace for comparison to

an established phase-retrieval method. The laser was tuned to produce 170 fs pulses

with about 5 mJ per pulse and a center wavelength of 1540 nm. The compressor stage

was scanned through positions near optimal compression to vary the group velocity

dispersion (GVD) component of the spectral phase. At each compressor position,

data were taken both with and without a thick piece of fused silica glass in the beam

prior to the first beam splitter. The additional fused silica adds third-order dispersion

(TOD) to the spectral phase.

3.4 Results

As the compressor stage moved and the amount of GVD in the phase changed, it

was obvious that both the shape and relative intensity of the SHG and THG spectra

changed, as expected. However, due to instability of the laser energy shot-to-shot and

instability of the fundamental spectrum, it is difficult to observe any general trend in

how GVD affects the nonlinear spectra by eye on this laser. Figure 3.2 below shows
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the great shot-to-shot variability in the fundamental spectrum of this OPCPA laser.

The variability of the fundamental spectrum causes variability in the nonlinear

Figure 3.2: Fundamental spectra as recorded for 4 different shots

spectra as well. The change in the nonlinear spectra in the four shots shown below

in Figures 3.3 and 3.4 are from both changes in GVD between the shots as well as

variability of the fundamental spectrum. Instability of the laser should not cause a

Figure 3.3: SHG spectra as recorded for 4 different shots with different GVD.
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Figure 3.4: THG spectra as recorded for 4 different shots with different GVD.

problem with retrieving the phase of a pulse as long as all measurements were taken on

the same pulse. However, post-processing of the data indicated that the fundamental

spectrum as measured by the Acton imaging spectrometer was considerably different

than the spectrum retrieved by the FROG, as seen in Figure 3.5. The cause of this

error is unlikely to be a problem with the FROG as the FROG reconstructions had a

low error, indicating that they converged to a solution. Miscalibrations of the FROG

would result in higher FROG error. Since the spectrum measured by the imaging

spectrometer is much wider, it is likely caused by optical parametric gain (OPG) in

the amplifier crystals. These crystals are thin enough to match more bandwidth than

the 1550 nm seed laser produces. OPG would amplify whatever vacuum photons could

be phase matched with the crystals. The OPG spectrum would therefore be wider

than the seed spectrum that is amplified, but would have a pulsewidth comparable to

that of the pump laser, about 300 ps. After traveling through the pulse compressor,

the OPG would remain uncompressed while the amplified seed would be compressed

to hundreds of femtoseconds. But the imaging spectrometer does not care about the

pulse duration; it simply counts whatever photons are at each wavelength, regardless
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Figure 3.5: Fundamental spectra as recorded by the imaging spectrometer (green)
and retrieved by FROG (blue).

of pulsewidth. The FROG is not afflicted by this problem since it retrieves the

fundamental spectrum from looking at the SHG spectrum. The SHG spectrum is

intensity dependent and the OPG will make a negligible contribution to the SHG

spectrum. Thus FROG in this case more reliably measures the fundamental spectrum

than does the imaging spectrometer.

To test the SPINS algorithm with real data, we substitute the FROG-retrieved

fundamental spectrum for the measured fundamental spectrum and keep the mea-

sured SHG and THG spectra. The input spectra are shown below in Figure 3.6 and

the measured FROG image is shown in Figure 3.7.
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Figure 3.6: Fundamental, SHG, and THG spectra used as input to SPINS algorithm.

Figure 3.7: Measured FROG image. Wavelength is on the horizontal axis and delay
is on the vertical axis.

The retrieved FROG error was 0.00203854. An error of 0.01 is considered

acceptable and 0.005 is good in practice. There are no units show for the axes be-
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cause they are scaled in post-processing. The results of the SPINS phase retrieval

are seen in Figure 3.8. The SPINS-retrieved phase differs noticeably from the the

FROG-retrieved phase. Plotting the SHG and THG spectra computed from the

Figure 3.8: Comparison of SPINS and FROG phase retrievals. SPINS-retrieved phase
(red) differs markedly from FROG-retrieved phase (dark blue).

FROG-retrieved phase and SPINS-retrieved phase is useful in diagnosing the discrep-

ancy between the two methods. An overlay of the measured, SPINS-retrieved, and

FROG-retrieved SHG spectra is shown in Figure 3.9. Neither phase retrieval method

generates an SHG spectrum that has the pedestal that is seen in the measured SHG

spectrum. This could be indicative of measurement problem with the SHG spectrum.

The corresponding THG spectra are plotted in Figure 3.10. There is good agreement

between the FROG-retrieved THG spectrum and the measured THG spectrum.
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Figure 3.9: Comparison of SHG spectra: SPINS-retrieved (blue), FROG-retrieved
(green) and measured (red).

Figure 3.10: Comparison of THG spectra: SPINS-retrieved (blue), FROG-retrieved
(green) and measured (red).
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Since there is good agreement between the FROG-retrieved THG spectrum

and the measured spectrum and a low FROG error, it is reasonable to conclude that

the FROG is working correctly. It is not known why the SHG FROG spectrum does

not match the SHG spectrum measured with the fiber-coupled spectrometer. The

wings seen on the measured SHG spectrum could be due to the broadband OPG

from the amplifier crystals. Although the pulsewidth of the OPG is on the order of

300 ps, the BBO crystal used to generate the SHG is about 1mm thick, which might

allow measurable conversion of the OPG to its second harmonic. Perhaps the reason

it would not show up in the FROG trace is because it uses a thinner crystal and the

input intensity is lower by several orders of magnitude.
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Conclusion

It was demonstrated using machine-generated spectra and phases that the SPINS

technique can be used to retrieve the phase of pulses using only the fundamental,

SHG, and THG spectra as input parameters. The technique contains a time-reversal

ambiguity, but other ambiguities arising from using only the low-order Taylor ap-

proximations to the phase are seen to describe the same phase when looking at the

region that matters, i.e. frequencies where the spectral intensity is non-negligible.

The retrieval algorithm can retrieve the phase with 0.8% noise in all three spectra.

Weighting the error function by the absolute value of the frequency (assuming a car-

rier frequency of 0) improves the performance of the algorithm, allowing retrieval

with 1.1% noise in the spectra. The technique is simple to implement, requiring only

three spectrometers, and simple to align since there are no concerns with spatial and

temporal overlap of beams. Also, since the technique does not attempt to map pulse

delay onto position in the crystal like other single-shot techniques, it is potentially

insensitive to wavefront distortions.

Some experimental concerns became apparent while trying to collect the three

spectra. Third harmonic can be generated in air quite easily with 1550 nm pulses.
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However, as the beam focuses in air to get the intensities high enough to generate third

harmonic, another χ(3) process, self-phase modulation (SPM), is also occurring. SPM

broadens the fundamental wavelength and this broadened fundamental also converts

to third harmonic. Thus the third harmonic spectra generated by focusing a beam

in air is different from one that is generated in a nonlinear crystal placed before the

focus that is phase-matched to preferentially yield the third harmonic. Ideally, THG

should be generated by a phase-matched crystal in vacuum to minimize SPM.

1550 nm light cannot be detected with silicon detectors. Thus the imaging

spectrometer used to measure the fundamental spectrum uses an InGaAs camera.

These InGaAs cameras have a non-uniform response pixel to pixel that must be cal-

ibrated out. All the spectrometers, regardless of material, should have their spectral

responses calibrated. This is essential when trying to fit the shape of a computed

spectrum to that of a measured one.
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Future Work

The SPINS algorithm as it is now written attempts to retrieve the coefficients of

the GVD, TOD, and FOD Taylor series expansion of the phase. Many pulses are

afflicted with phases that cannot be adequately described using only these three

terms. It would be preferable to use more terms or let every point in the phase vary

independently of the others. Allowing all the points to vary independently greatly

increases the computational demands. This was accomplished, however, using a quasi-

Newton algorithm being fed noiseless spectra and an initial guess for the phase that

was not greatly different than the known phase. It failed when the initial guess varied

too much from the known phase, showing the lack of robustness of the quasi-Newton

method. A genetic algorithm proved to be quite insensitive to initial guesses, but

was computationally expensive. Furthermore, the genetic algorithm in Matlab seems

to have a maximum number of variables that it will optimize and it was not enough

to allow every point of the phase to float. The simplex method proved to be a good

compromise between robustness and computational time. Future work could include

using a simplex method or genetic algorithm to retrieve the phase while letting all

the points in the phase float instead of expressing the phase in terms of a Taylor
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expansion. This will likely have to be programmed in a language other than Matlab.

The 1550 OPCPA laser turned out to be a poor choice for testing the SPINS algorithm

owing to the problems in measuring the fundamental and SHG spectra caused by the

OPG. Future validation should be carried out on a Ti:sapphire laser system at 800

nm. A laser operating nominally at 800 nm will have SHG at 400 nm and THG at

267 nm. Measuring the THG spectrum at 267 nm is problematic because the spectral

response of the silicon detector arrays in most spectrometers changes rapidly across

wavelengths in that region of the UV. Alternatively, one can generate the difference

frequency (DFG) between the SHG and fundamental pulses. This cascaded χ(2)

process would produce a pulse at the fundamental wavelength. This is experimentally

more complicated as it involves spatially and temporally overlapping the SHG and

fundamental beams in a crystal. Also, because the intensity of the fundamental beam

will be much higher than that of the DFG, the mixing of the SHG and fundamental

must be noncollinear so that the DFG comes out at a different angle than the other

two beams. Even though the fundamental and DFG beams will be orthogonally

polarized, the extinction ratio of a polarizer will not be great enough to fully separate

the two. It is hoped that with more algorithm development and optimization taken

with experimental validation with a Ti:sapphire laser system that SPINS will fill a

niche that no other technique has been able to fill: single-shot pulse retrieval from

beams with poor-quality wavefronts.
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