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Abstract

Intensive investigations during the past two decades have focused on potential applications

of near-infrared (NIR) femtosecond filament for remote spectroscopy. The short length

(less than 1 m) and low energy (only several millijoule) of a single NIR filament limit

these applications. Long-pulse UV filaments have therefore been proposed at UNM to

overcome such limitations. This dissertation describes our investigation and optimization

of the high-power UV source, focusing on details of the generation and characterization of

the generated pulses, as well as the applications of UV filaments for remote sensing and

high-voltage discharge.

On the topic of pulse generation, a 266 nm UV system delivering laser pulses below

200 ps with up to 0.4 J per pulse at 1.25 Hz repetition rate is developed. Two aspects of

the laser source are closely investigated. On the one hand, the spatio-temporal profile of

the laser pulses that has been overlooked for decades is systematically studied. It is shown

that a curved energy front, i.e., pulses away from the beam center delayed from the center
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pulse, originates from the Q-switched unstable cavity Nd:YAG oscillator and evolves dur-

ing the processes of laser amplification and pulse compression. To eliminate the energy

front curvature, a possible solution is proposed based on the numerical simulation. On the

other hand, a long existing debate on the minimum pulse duration that can be achieved

through stimulated Brillouin scattering (SBS) pulse compression is resolved by this work.

It is demonstrated that the lower limit of the compressed pulse duration is not set by the

phonon lifetime of the SBS medium. The energy exchange between the pump and com-

pressed Stokes pulses is responsible for the pulse compression below phonon lifetime.

Next, using the newly developed powerful and stable UV source, the generation of

UV filaments in air is studied. It is shown that, when focused by a 3 m lens, a single

filament is generated inside the laboratory, while multiple filaments are observed in an

open environment with a 9 m focusing lens. Detailed characterization of the filament spatial

profile and the conductivity of the plasma channel created by the filament are performed.

Two applications of the UV filaments are investigated. The single UV filament is ap-

plied to spectroscopy studies, including both Raman and Laser Induced Breakdown Spec-

troscopy (LIBS). A UV filament is shown to be very efficient in exciting forward stimulated

Raman scattering (SRS) in gases. Backward emission of SRS signal, which could be uti-

lized for remote sensing, has not been observed. However, a side experiment carried out

in water discloses a new mechanism of driving efficient backward SRS generation, which

can possibly be employed in the case of gas medium. A second study with the single fil-

ament is carried out for LIBS. The dynamics of self-absorption dip in LIBS spectrum is

investigated, which can be further applied for the high resolution spectroscopy.

The last application is filament-induced high-voltage discharge. A fully guided 40 cm

long discharge is demonstrated with the UV filament alone, at 1/2 the self-breakdown volt-

age in air. Two additional lasers are tested to improve the discharge triggering by photo-

detaching oxygen negative ions and heating the plasma. The anticipated improvement in

reducing the discharge delay or enhancing the discharge probability has not been observed.
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Chapter 1

Introduction

Self-focusing is a well known nonlinear optical phenomenon that has been experimentally

discovered in 1964 [1]. When an intense light beam has power above a critical value Pcr, it

creates an index gradient along its cross-section associated with its intensity distribution.

Then, the index distribution of the optical medium with positive susceptibility χ3 behaves

like a positive lens thereby focusing the beam. The direct consequence of self-focusing

effect is to create damage tracks made up of small bubbles lasting 2 cm in length [1], when

Q-switched nanosecond pulses are focused into transparent glass. Since then, self-focusing

is considered as one of the major limiting factors in the development of high-power lasers

on the engineering side. From the scientific research side, the observation of damaged

tracks has triggered extensive studies in laser filaments for half a century.

Before the experimental observation of laser filaments, an intense beam might propa-

gate without diffracting has already been proposed [2]. In 1966, Garmire et al. [3] have

reported the observation of laser filaments of∼100 µm in diameter lasting more than 10 cm

in CS2. Chiao et al. [4] have reported the observation of multiple filaments at laser power

much higher than the critical value. The modulation instability in both amplitude and phase

of the laser beam has been suggested to break the self-focused beam into many filaments [5].
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Limited by the available laser power, the early studies have mainly focused on the high

nonlinear index media such as liquids and solids. Therefore, the filament range under in-

vestigation is quite limited.

In 1990s, with the development high-power femtosecond Ti:Sapphire lasers, long-range

laser filaments have been directly observed in air [6, 7], which has opened a new page for

laser filament studies. Laser filaments in air have peculiar properties [8] such as long-

range propagation, generation of continuous plasma track in the wake of it, high intensity

clamping (sub-TW/cm2 to 100 TW/cm2 depending on the laser wavelength) and high ro-

bustness (immune from fog or small particle perturbation). Different applications such

as remote sensing [9,10], high-voltage discharge triggering [11–13], remote measurement

of high static electric field [14], water condensation [15, 16], microwave guiding [17] and

attosecond pulse generation [18], have all been attempted based on different properties

of the laser filaments. So far, the major focus of the studies has been confined into the

near-infared (NIR) femtosecond filaments. Since a single NIR filament is limited by its

short length (less than 1 m) and low energy (only several millijoule) in applications such

as remote sensing and lightning triggering, long-pulse UV filaments have therefore been

proposed at UNM to overcome such limitations. Theoretical studies [19] have shown that

a single UV filament is capable of propagating much longer distance, while also carrying

two orders of magnitude more energy as compared to a single NIR filament. Experimental

works are needed to confirm theoretical predictions.

Previously, two dissertation works [19,20] have been devoted to develop the high-power

UV source. Since the critical power for 266 nm laser pulses in air is about 0.13 gigawatt

(GW), it is desired for the UV system to deliver 1 GW peak power pulses (i.e., pulses of sub-

nanosecond duration with sub-Joule energy at 266 nm) for stable UV filaments generation.

Such UV system is not commercially available. Its development has been shown to be a big

challenge. Therefore, these dissertations have presented limited results on the applications

of UV filaments. The present work describes our further investigation and optimization of
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the high-power UV source, focusing on details of the generation and characterization of

the generated pulses, as well as the applications of UV filaments for remote sensing and

high-voltage discharge. This dissertation will be organized as follows.

The following two Chapters focus on two aspects of the UV laser source. In Chapter 2,

we study the spatio-temporal profile (i.e., spatial distributions of pulse width and delay)

of laser pulses obtained from a high-energy Nd:YAG laser, which has an unstable cavity

design for the oscillator. We will show that the spatio-temporal profile originates from an

unstable oscillator, and evolves during the amplification process. In the end, it is found

that the spatio-temporal profile commonly exists in high-energy laser pulses. Chapter 3

investigates stimulated Brillouin scattering (SBS), which is employed to generate high-

energy GW peak power pulses. The major efforts will be put on the generation of sub-

nanosecond pulses shorter than the phonon lifetime. From there, the long existing debate

on the minimum pulse duration that can be achieved through SBS pulse compression will

be resolved.

Chapter 4 is devoted to the generation and characterization of sub-nanosecond UV fila-

ments in air. Different initial conditions for the generation of UV filaments will be explored.

The next two Chapters focus on the applications of UV filaments for remote spectroscopy

and high-voltage discharges. In Chapter 5, both Raman and Laser Induced Breakdown

Spectroscopy (LIBS) with UV filaments are investigated. We will demonstrate the forward

vibrational and rotational Raman scattering excited by UV filaments with high efficiency.

Backward emission of SRS signal, which could be utilized for remote sensing, has been

searched but without success. For the backward emission of SRS signal, we will show a

side experiment carried out in water. The results will disclose a new mechanism of driv-

ing efficient backward SRS generation that can possibly be employed in the case of gas

medium, with which the backward SRS signal has not been observed with UV filaments in

air. A second study with the single filament will be carried out for LIBS. The dynamics of

a self-absorption dip in LIBS spectrum will be investigated, which can be further applied
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for the high resolution spectroscopy. Chapter 6 focuses on the application of UV filaments

in high-voltage discharges. It will be shown that UV filaments are better suited for laser-

induced discharge because of the creation of high conductivity plasma channel. In order to

enhance the capability of UV filaments in triggering the high-voltage discharge, two extra

laser pulses will be employed to photo-detach oxygen negative ions and heat the plasma.

We will be showing that the anticipated improvement in reducing the discharge delay or

enhancing the discharge probability has however not been observed. Finally, Chapter 7

concludes this dissertation work devoted to sub-nanosecond UV filament study.

In the appendices, we will describe part of the PhD works that have focused on the

timescale of femtosecond to attosecond, much shorter than the sub-nanosecond addressed

in the main body of this dissertation. The development of femtosecond laser and the as-

sociated laser technology of carrier-envelope-phase (CEP) stabilization will be presented

in detail, while a brief mention of the application of CEP stabilized femtosecond pulses to

attosecond pulse generation will also be made.
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Chapter 2

High-energy Nd:YAG laser system: A

revisit

2.1 Introduction

As mentioned in the previous chapter, it is desired to have a UV system that delivers laser

pulses of sub-nanosecond duration with sub-Joule energy. The high-energy requirement is

often satisfied by employing Q-switched nanosecond lasers. Therefore, the starting point

of our project is a high-energy nanosecond laser system. For our application, the require-

ments, purposes and solutions for such system are summarized in Table 2.1. Based on the

design considerations, a flashlamp-pumped, Q-switched Nd:YAG laser system with Mas-

ter Oscillator Power Amplifier (MOPA) configuration has been employed. An unstable

resonator design has been chosen because of its large output energy. We refer to the work

of Xu [20] for a detailed description of the system design. In this dissertation work, we will

focus on the following three parts. First, we will discuss the redesign of the pump chamber

of the first four amplifiers. As compared to the old design, the new pump chamber pro-

vides slightly better energy efficiency and a more uniform spatial pulse width distribution.
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Second, we will discuss in detail the spatio-temporal profile, which refers to the spatial

distribution of pulse width and pulse delay between pulses emerging from different radial

positions across the beam cross section. Even though similar high-energy laser systems

have been developed, the spatio-temporal profile of the laser pulses has not been explicitly

investigated. Therefore, a revisit to such system is necessary. Third, the harmonic genera-

tion employed for frequency conversion in the depletion regime will also be addressed.

Table 2.1: Design considerations for high-energy laser system
Requirements Purposes Solutions
IR laser pulses of
several Joules per
pulse

Sub-Joule UV pulse
generation

Flashlamp-pumped, Q-switched
Nd:YAG laser with Master Os-
cillator Power Amplifier (MOPA)
configuration

Flat-top or super-
Gaussian spatial
profile

Uniform SBS pulse
compression (intensity
dependent) across the
beam cross section

Employing unstable resonator

High energy extrac-
tion efficiency

Cost effective Employing unstable resonator

Single longitudinal
mode operation

Stable SBS pulse com-
pression

Development of real-time reso-
nance tracking method [21]

Nd:YAG is employed because of its high gain and good thermal and mechanical properties. It is
by far the most commonly used solid-state laser for high energy application.

2.2 Master oscillator power amplifier system

The laser system is home-designed to deliver laser pulses either directly at 1064 nm or at

532 nm via frequency doubling. Figure 2.1 presents the schematic diagram of the laser

system. It begins with a Q-switched unstable oscillator (positive-branch confocal geome-

try), operating at 1064 nm at a repetition rate of 1.25 Hz. The oscillator could be operated

with either multi (unseeded) or single longitudinal (seeded) mode. The single longitudi-

nal mode with high fidelity is achieved by employing injection seeding combined with a
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Seeder ISO

Figure 2.1: Schematic diagram of the high-energy Nd:YAG laser system. The Nd:YAG os-
cillator, seeded by a 60 mW CW seeder, has an unstable resonator design, which includes
a concave end mirror (EM) and a convex output coupler (OC) with super-Gaussian reflec-
tivity profile. It is Q-switched by a Pockels Cell (PC) to deliver a couple of nanoseconds
pulses, which are amplified by a chain of 6 single-pass amplifiers (Amp. 1-6). The IR pulse
at 1064 nm obtained after the 6th amplifier is then frequency doubled through a LBO crys-
tal with maximum conversion efficiency of 70%. For the measurement of spatio-temporal
profiles, the oscillator and amplified pulses are coupled out from position A and B, respec-
tively, to be characterized. The un-compressed green pulse after the second dichroic mirror
is magnified by a telescope with M=3.31 (not shown here) and then characterized after that.
ISO: Faraday isolator; DM: Dichroic (long pass) Mirror; M=1.3 denotes that the telescope
has a magnification of 1.3.

real-time resonance tracking method [21]. The output energy of the oscillator is 100 mJ in

injection-seeded operation and 140 mJ in unseeded operation, at the electrical pumping en-

ergy of 48 J for both cases. They are boosted to be 5 J and 7 J, respectively, after a chain of

six single-pass amplifiers. It should be pointed out that, with a stable resonator design, the

oscillator output energy would be much less as compared to that of an unstable resonator.

Due to the low input energy fluence to the laser amplifiers, the energy extraction efficiency

and thereby the output energy of the amplifiers would be reduced too. If the same amount

of output energy is sought, one or two extra amplifiers would have to be employed, which

would make the system to be less cost effective. Another shortcoming of utilizing a stable
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resonator is that it outputs a much longer laser pulse, which is not desired in the application

of SBS pulse compression, as will be discussed in the next Chapter.

The first four amplifiers employed in the system detailed in Xu’s work [20] have been

operated for almost ten years. During this dissertation work, it has been noticed that the

laser system produces less and less output energy. After trouble shooting, it is found that

the reflector of the pump chamber has degraded. Figure 2.2(a) shows the picture of the

degraded pump chamber reflector. The reflecting surface is made of silver, coated with

thixotropic space-grade silicon rubber. The latter acts as an adhesive and overlay protector

that is resistant to photochemical degradation. Once the rubber layer has degraded (e.g.

peeling off), the silver reflector is exposed directly to the flashlamp emission, and is cor-

roded away by the combined action of the UV light and the de-ionized water. The degraded

pump reflector then leads to less population inversion thereby lower efficiency for the laser

amplifier.

(a) (b)Silver reflector

Silicon rubber

Gold plated 

rough surface

Figure 2.2: (a) Degraded pump chamber with original design; (b) Newly designed pump
chamber with gold plated reflecting surface.

For our new design of the pump reflector, an aluminum block plated with gold, as shown

in Fig. 2.2(b), is adopted to provide broadband reflection to the flashlamp emission. In this

case, the gold should be much more resistant to any kind of degradation as compared to the

silicon rubber. The rough surface is specially chosen for the reflecting surface to achieve

better pump uniformity. The energy performances of the original laser (before degrading)

is compared to the rebuilt laser in Fig. 2.3. The output energy is checked up to 4 J, i.e.,
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Figure 2.3: A comparison of energy performances between original and rebuilt laser sys-
tems

the working point of our whole system. It should be pointed out that the energies are taken

at exactly same conditions for both the original and rebuilt systems. It is not surprising to

see that both systems have similar energy performance, since the geometry of the newly

designed pump chamber is exactly the same as the old one. However, as we will show

later, the pump uniformity, which is manifested by the more uniform spatial pulse width

distribution, has indeed been improved in the new laser system.

2.3 Spatio-temporal characterization of Nd:YAG laser

pulses1

The spatio-temporal profile of the amplified pulses has already been noticed and experi-

mentally measured by Xu [20] but without explicit investigation. In this section, we will

1Portions of this section have been published in C. Feng et al., Appl. Opt. 55, 1603-1612
(2016) [22]
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identify the spatio-temporal profile to originate from pulses out of an unstable resonator.

The gain saturation effect inside the amplifiers is also found to modify the spatio-temporal

profile of the oscillator pulses. We will first provide a background of this study and then

show both experimental and simulation results.

2.3.1 Background

As mentioned above, the high-energy laser system often employs an unstable resonator

design combined with amplifiers to achieve high efficiency, high energy as well as high

beam quality. Since its first description by Siegman [23], the unstable resonator has been

extensively studied both theoretically and experimentally [24, 25]. While combined with

a variable-reflectivity output coupler [26, 27], the unstable resonator seems to surpass its

counterpart, i.e., stable resonator, since it could deliver a near diffraction-limited beam

with much higher output energy. However, studies [28, 29] have shown that the intensity

profile of pulsed unstable oscillators evolves with time. More specifically, the laser beam

starts to build up from the optical axis with a Gaussian shape at the early time of the laser

pulse. It then evolves towards a ring shape at the trailing edge, due to gain depletion in

the central area of the gain medium. In a similar study reported by Anstett et al. [30], it is

found that the laser pulse generated from a stable cavity does not exhibit such an issue. In a

very recent study by Dansson et al. [31], the spatial distributions of pulse width and delay

between two pulses at different radial positions have also been experimentally investigated,

for laser pulses generated by an injection-seeded Nd:YAG laser with unstable resonator.

Differences of up to 4 ns in pulse width and up to 10 ns in pulse delay between a pulse

from beam center and a pulse from beam edge have been reported.

The spatio-temporal behavior of the laser pulse from an unstable resonator, i.e., the

temporal evolution of the intensity profile and the spatial variation of the pulse width and

delay, would certainly limit its applications where the highest peak intensity is sought. The
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above mentioned works [28–31] still have two questions unanswered. First, how does the

injection-seeding affect the spatio-temporal profile of the laser pulse emerging from an

unstable oscillator? Second, does the result reported by Dansson et al. [31] emanate from

the oscillator or the amplifier? It has been demonstrated in different works [32–34] that

both pulse width and delay can be modified during laser pulse amplification.

In this section, we focus on the complete characterization of spatio-temporal profiles

of pulses emitted from each stage of the Nd:YAG system. Our measurements show that:

• Pulses emerging from an unstable resonator have an energy front with a curvature

inversely proportional to the pump strength or optical gain. By Injection-seeding,

the energy front curvature is enhanced due to reduction of the effective gain. The

pulse width distribution has negligible spread across the beam cross section, for all

the operation conditions.

• After laser amplification, the energy front curvature increases, as a result of gain

saturation. Due to the same saturation effect, the amplified pulse exhibits longer

pulse duration at the beam center and shorter pulse duration at the beam edge. The

spatio-temporal profile of the amplified pulse observed here matches the one reported

earlier [31].

• The frequency doubled green pulses exhibit slightly shorter pulse width as expected.

The energy front curvature is maintained to be similar as the IR pulses.

2.3.2 Pulse characterization setup

The pulse characterization setup, sketched in Fig. 2.4(a), is used to measure the spatio-

temporal profile of the laser pulses. The input beam is attenuated by an uncoated wedge.

The two surface reflections from the wedge are used as the signal and reference beam, re-

spectively. A negative lens is used to expand the beam, while measuring the oscillator out-
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Figure 2.4: (a) Layout of the pulse detection setup; TS: Translation stage; PD: Photodetec-
tor. (b)-(d) Qualitative presentation of the spatio-temporal profiles of pulses emerging from
unstable oscillator, laser amplifier and SBS compressor (will be presented in Chapter 3),
respectively. X is the transverse coordinate in arbitrary unit.

put, to achieve better spatial resolution of the signal beam detection. For the measurements

of the output from the laser amplifiers and SBS compressor, a collimated beam of more than

10 mm diameter is sampled directly by a 200 µm size pinhole. The signal beam transmit-

ted through the pinhole is detected by a photodetector, either Thorlabs DET210 (350 MHz

bandwidth) for the nanosecond pulse detection or Hamamatsu R1328U-52 biplanar photo-

tube (rise time: 60 ps; spectral response: 185-650 nm) for measuring the sub-nanosecond

pulse, which will be discussed in Section 3.5. Both pinhole and photodetector are trans-

lated together along the horizontal axis to spatially scan the beam diameter. The width as
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well as the intensity of the signal pulse from each individual position are recorded by a dig-

ital oscilloscope (2.5 GHz bandwidth). Another set of pinhole and detector combination is

employed to measure a reference pulse, sampled within the reference beam at an arbitrary

position. The delay between the leading edge of a signal pulse and the reference pulse at

the 50% intensity level is simultaneously measured by the oscilloscope. The energy front

distribution of the signal beam could then be extracted from the delay measurements. The

benefit gained from using an optical reference signal is to completely avoid the timing jitter

between an electronic signal (for instance, triggering signal for the Q-switch) and the laser

pulse. All the measurements are averaged over 50 laser shots, which further improves the

accuracy of the delay measurements.

To illustrate the spatio-temporal profile that will be quantitatively discussed below, Fig-

ures. 2.4(b)-(d) show a qualitative presentation of the distribution and evolution of the pro-

file. Two interesting features of the spatio-temporal profile will be focused on. First, the

pulse width distribution has negligible spread across the beam cross section for the oscil-

lator pulses [Fig. 2.4(b)], while it is spatially dependent for the amplified and SBS com-

pressed pulses [Figs. 2.4(c) and (d)]. Second, the delay between pulses, referred as the

energy front curvature, is also radial position dependent.

2.3.3 Numerical modeling

Caprara [29] and Anstett [30] have developed similar three dimensional (3-D) numerical

models (i.e., 2-D in transverse direction plus 1-D in propagation direction), which have

successively predicted the temporal evolution of the beam profile within a laser pulse. In

this work, assuming cylindrical symmetry, a 2-D model considering only one dimension in

the transverse direction is carried out to simulate the spatial variation of the pulse duration

and pulse delay across the beam cross section.

Figure 2.5 describes the layout of the unstable oscillator used in the simulation. The
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Figure 2.5: Layout of unstable Nd:YAG oscillator used in the numerical model.

cavity is formed by an output coupler with super-Gaussian reflectivity profile and a stan-

dard concave end mirror. Their field reflectivity profiles are listed in Eqs. (2.1) and (2.2),

respectively:

r1 (x) =
√
0.12 exp

(
−
∣∣∣∣ xw1

∣∣∣∣2.45 + i
2π

λ

x2

2f1

)
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i
2π
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x2
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)
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−2
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∣∣∣∣2.45
)
exp

(
i
2π

λ

x2

2f3

)
(2.3)

where w1 is the 1/e2 super-Gaussian profile radius of 1.1 mm. f1 and f2 of -1.1 m and 1.7 m

are the focal length of reflecting surfaces of the output coupler and end mirror, respectively.

A 7 mm diameter × 115 mm length Nd:YAG rod with 0.8% doping is used as the gain

medium, which is divided into seven slices in the simulation to achieve good accuracy.

Each slice is assumed to have a uniform gain distribution as initial condition, which is

typically valid for a gain medium with low doping concentration [25]. At the population

inversion of 0.75 · 1018cm−3, the corresponding single-pass small signal gain is 1.41 for

each slice [Fig. 2.5].

In the simulation, the transverse distributions of different components, such as elec-

tric field, free propagator, transfer functions of cavity mirrors and gain sheets with 30 mm

diameter, are all digitized in the space domain with step size of less than 30 µm by one-
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dimensional arrays of either complex numbers or real numbers. For instance, the initial

electric field distribution at an arbitrary position along the optical axis is represented by

a one-dimensional array of complex numbers. This complex array is propagated 36 steps

(14 steps with gain and 22 steps without gain) inside the cavity to complete a round trip.

The free propagation between two steps of 0.3 cm optical path length (L) is computed in

frequency domain, by multiplying the complex field by the free propagator. The analytical

expression of the latter in space domain is described in Eq. (2.4). The transformation from

space domain to frequency domain and vice versa utilizes the one-dimensional fast Fourier

transformation (FFT) algorithm. The effect of cavity mirrors on the complex field is mod-

eled by multiplying the input field by the transfer functions of the reflecting surfaces, as

described above. The amplification process is simulated via Frantz-Nodvik equation [35],

as shown in Eq. (2.5).

h (x) =

√
i

Lλ
exp

(
−i

2π

λ

x2

2L

)
(2.4)

Wout = Ws ln

{
1 +

[
exp

(
Win

Ws

)
− 1

]
G

}
(2.5)

Win and Wout are the input and output energy fluence, respectively. Ws is the saturation

fluence with a typical value of 0.67 J/cm2 for Nd:YAG. The distribution of gain G within

each gain slice is updated after each passage of the complex field. Since the gain medium

is pumped by a pulsed flash-lamp, gain recovery is neglected during the whole process of

pulse formation. The final output of the oscillator is computed by multiplying the intra-

cavity field distribution by the transmission profile [Eq. (2.3)] of the output coupler. The

transmitted beam is slightly defocused by the output coupler with a focal length f3 of -

10.5 m.

To simulate laser amplification, the above described codes for free propagation and

pulse amplification are employed. The first two amplifiers are simulated and compared

to the experimental results. The Nd:YAG rods of 7 mm diameter × 115 mm length and

8 mm diameter × 115 mm length for the first and second amplifier, respectively, are both

divided the same way into seven slices. The corresponding time resolution is of 0.1 ns. The
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population inversion within two amplifiers are set to be 0.63 ·1018cm−3 and 0.6 ·1018cm−3,

corresponding to the electrical pump energy of 40 J and 50 J in the experiment, respectively.

The gain distribution along the x-axis is also assumed to be uniform. The simulated output

from the oscillator is used as the input for the first amplifier.

2.3.4 Spatio-temporal characteristics of pulses out of an unstable os-

cillator: Unseeded and Injection-seeded operations
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Figure 2.6: Measured spatio-temporal profiles of the oscillator pulses; Left: Unseeded operation,
Right: Injection-seeded operation; ID denotes inversion density.

The spatio-temporal profiles of the oscillator pulses are experimentally characterized

and presented in Fig. 2.6. The x-axis has been converted from the measurement to represent
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the real size of the laser beam right after the oscillator output coupler, by deconvolving the

defocusing effect of both output coupler and the negative lens used in the measurement,

as well as the diffraction effect for propagation. In order to have a direct comparison with

the simulation presented later, the effective inversion density is obtained by assuming a

direct proportionality between electrical pumping energy and the inversion density. The

conversion factors used in Fig. 2.6 are 1.667 · 1016 J−1cm−3 for unseeded operation and

1.563 · 1016 J−1cm−3 for seeded operation.

For both injection-seeded and unseeded operations, the energy front curvature is de-

creasing with increasing pump, and then saturates to a certain value as demonstrated in

Fig. 2.6. By comparing the two operations at the same pump level, the energy front curva-

ture is shown to be always larger for the injection-seeded operation than that of the unseeded

case. The difference in energy front curvature for two operations is also getting less as the

pump increases, similar to the saturation behavior described above. The asymmetric dis-

tribution observed in the pulse-front distribution is attributed to pump asymmetry, which

is confirmed by the pulse intensity measurement as indicated in the same figure. At a max-

imum pumping energy of 48 J chosen to ensure the single longitudinal mode quality of the

seeded operation, the pulse at beam edge (with ∼6% of the pulse intensity at beam center)

is delayed by 4-5 ns, only half of that reported earlier [31], with respect to the pulse emitted

at beam center. The pulse width also decreases with increased pump as expected. However,

instead of varying significantly with radial position inside the beam [31], the pulse width

is relatively constant across the beam at each pump input for both operations. At the lowest

pump of 36 J where the laser operates just above the threshold with only 15 mJ of output

energy for the seeded operation, the pulse width is more sensitive to the pump asymmetry.

In order to make a comparison with experiment, two differences are considered in the

simulation in order to distinguish seeded from unseeded operation. First, an initial elec-

tric field equivalent to a fluorescence level of incoherent light (random phase) is applied

for the unseeded operation, while an initial electric field with constant phase and 10 times
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Figure 2.7: Simulated spatio-temporal profiles of the oscillator pulses; Left: Unseeded operation,
Right: Injection-seeded operation; ID denotes inversion density.

stronger amplitude is employed for the injection-seeded operation. The difference in ini-

tial condition leads to a shorter pulse build-up time for the injection-seeded operation as

compared to its counterpart, which matches the experimental observation. Second, the

injection-seeding forces the oscillator to operate in a single longitudinal mode. The out-

put energy of the injection-seeded operation has been experimentally observed to be lower

than that of the unseeded operation, even if the two operations are both pumped at the same

level [20, 36]. The energy decrease has been elaborated in two different ways. On the one

hand, it is explained as owing to a smaller number of modes operating, there is less gain

available for the seeded case [36]. On the other hand, it is found that the generation of

seeded pulses encounter more loss in the case of slow Q-switch being used [20]. To ad-

dress both possibilities, the reduced effective gain is adopted in the simulation of seeded

operation. The population inversion is therefore set to be lower for the injection-seeded
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case. As is shown in Fig. 2.7, the above considerations match the simulation results with

the experimental observations. It should be pointed out that the inversion density used in

the simulation does not match exactly the one from experiment. It has been chosen such

that the simulated pulse width matches the experimentally measured one, especially in the

case of lowest gain available for the seeded operation.

The temporal evolution of the spatial intensity profile [30] has been explained as gain

depletion happening first on the optical axis because of the highest mirror reflectivity, and

next at the beam edge. Similar concept has been used to interpret the formation of a

parabolic-shaped energy front [31], where the pulse builds up first on the resonator axis

and the formation of a pulse at the beam edge requires a longer build-up time. However, to

fully understand the negligible spread of pulse width distribution across the beam, a further

consideration of the cross coupling between the inner and outer regions of gain medium,

due to the geometric magnification design, has to be introduced. Moreover, the dependence

of energy front curvature on optical gain and injection-seeding still needs to be discussed.

The above discovered features could be explained as follows:

• Pulse width distribution: Since part of the photons generated on axis would always be

coupled to the outer region, the pulse formed firstly on axis would seed the generation

of pulses away from the beam center. Therefore, the pulses emerging across the beam

show similar pulse width in both experiment and simulation.

• Dependence of energy front curvature on optical gain: The dependence of pulse

build-up time Tb on optical gain has been shown to follow Tb ∝ 1/ (Ni −Nth) [32],

where Ni and Nth are the initial population inversion and threshold inversion, re-

spectively. Since Nth is smallest on optical axis, the center pulse with shortest Tb

will always lead other pulses generated away from the center, provided that Ni is

uniformly distributed along both transverse and longitudinal directions. Therefore,

energy front curvature always exists, as demonstrated in both experiment and simu-
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lation. The delay between the edge pulse and the center pulse could be written as

Td =
κ (N e

th −N c
th)

(Ni −N c
th) (Ni −N e

th)
, (2.6)

where κ is a constant, N e
th and N c

th represent the corresponding threshold inversion

at beam edge and beam center, respectively. It is obvious that Td decreases as the

optical gain (i.e., Ni) increases, and saturates at high pumping energy. Hence, the

energy front curvature will be larger for the case of low pumping energy. As the pump

increases, the energy front curvature decreases and its reduction saturates, following

the saturation in the reduction of Td.

• Dependence of energy front curvature on injection-seeding: For the case of injection-

seeded operation, the available gain at a specific pump is reduced, evidenced by the

lower output energy discussed earlier. Hence, larger energy front curvature is ob-

served. The difference is more clear at low pumping energy. Due to the saturation

effect discussed above, the energy front curvature for the injection-seeded operation

is very close to that of the unseeded operation at high pumping energy.

2.3.5 Spatio-temporal characteristics of amplified pulses: Gain satu-

ration effect

The high-energy Nd:YAG laser system is completed by sending the injection-seeded oscil-

lator pulses to a chain of 6 single-pass amplifiers to boost their energies. In order to achieve

efficient energy extraction as well as high energy stability, each amplifier is running in the

saturation regime by having the input energy fluence close or even above the saturation

fluence of 0.67 J/cm2. It has been demonstrated that saturated laser amplification could

lead to pulse shortening [33], provided that the input pulse has a sharp leading edge. In

other cases, a lengthened pulse could also be obtained if an input pulse with slowly rising

edge is getting amplified [37]. As in our oscillator, the Q-switch opening time is slowed
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down to enhance the mode selectivity and to ultimately reach 100% single mode opera-

tion [21]. Hence, the oscillator pulse exhibits a relatively slow leading edge. The amplified

pulse is therefore expected to have longer pulse width. To demonstrate this, the IR pulses

are characterized after the 6th amplifier for the cases of either only operating the first two

amplifiers or running six amplifiers together.
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Figure 2.8: Spatio-temporal profiles of the amplified pulses obtained by operating only the
first two amplifiers; (a) Measurement; (b) Simulation; The intensity of the pulse from beam
edge is chosen to be ∼10% of that of the center pulse to match the experimental condition

Figure 2.8(a) shows the measured spatio-temporal profile of the amplified pulse with

only the first two amplifiers operating. The amplified pulse emerging from the beam center

exhibits a longer pulse width compared to the pulse from the beam edge. The amount of

pulse delay between the center pulse and the pulse from beam edge is almost doubled,

i.e., from 5 ns to 8 ns. Both observations could be understood as follows. The pulses

located around the beam center typically have higher intensity, therefore experience more

gain saturation. In the case of a center pulse, the strong leading edge depletes most of

the available gain, which in turn sharpens itself, and moves forward. The trailing edge of

the pulse being left almost unchanged. As a result, the gain saturation effect lengthens the

pulse. For the pulses located away from the beam center, less gain saturation leads to shorter

pulses. With less leading edge motion towards the pulse propagation direction, the delay
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between the pulse from beam center and pulse from beam edge is enlarged. A simulation

on the spatio-temporal profile of the amplified pulse is carried out, and its results shown in

Fig. 2.8(b), for the case of operating the first two amplifiers. In order to compare with the

experimental result, the x-axis of Fig. 2.8(b) has been converted from the simulated beam

size after the second amplifier into the size after the 6th amplifier, by considering the effects

of three telescopes and the diffraction effect for propagation. To match the experimental

condition, the intensity of the pulse from beam edge is chosen to be around 10% of that

of the center pulse. As demonstrated in Fig. 2.8(b), the energy front curvature and pulse

width are both qualitatively reproduced.
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Figure 2.9: Measured spatio-temporal profiles; (a) IR pulse characterized at position B
indicated in Fig. 2.1; (b) Green pulse characterized one telescope (M=3.3) after the setup
shown in Fig. 2.1; The area between two dashed lines in (a) corresponds to the measured
range in (b).

The amplified pulse is expected to have longer pulse width at the beam center and

larger energy front curvature if more saturated amplification is experienced by the input

pulse. Such a concept is demonstrated by the spatio-temporal profile of the amplified pulse

for the case of running all the amplifiers, as illustrated in Fig. 2.9(a). The intensity of the

pulse at the beam edge now is about 35% of that of the beam center. The maximum pulse

width near the beam center reaches more than 11 ns (FWHM) at the output energy of 3.5 J.
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The corresponding maximum delay is around 11 ns as well. We will show in the next

Chapter that the SBS pulse compression is implemented at the wavelength of 532 nm. For

a direct comparison of IR and Green pulses, the spatio-temporal profile of the latter is also

characterized and presented in Fig. 2.9(b). The IR and green beams are characterized at

different places, as mentioned in Fig. 2.1. The axis correspondence of the IR to the green

measurement has been converted by considering different beam expander used between

the two characterization positions. The area between two dashed lines shown in Fig. 2.9(a)

corresponds to the diameter used for the green pulse characterization. One expected feature

is that the green pulse exhibits slightly shorter pulse width compared to that of IR. However,

the delay is kept almost unchanged, i.e., with a maximum delay of 6∼7 ns. The green pulse

is then sent to the SBS pulse compressor to generate high-energy sub-nanosecond pulse. In

section 3.5, the spatio-temporal characteristics of SBS compressed pulses will be discussed.

2.4 Efforts on flattening the curved energy front

We have shown above that the curved energy front of the amplified pulses results from the

combined effects of unstable resonator and gain saturation inside the amplifiers. In order

to minimize the curved energy front thereby increase the focusing intensity, two ways have

been tested to either eliminate the pulse delay for oscillator pulses or minimize the gain

saturation effect from amplifiers.

2.4.1 Using a specially shaped high power seeder

It has been discussed in the previous Section that injection-seeding helps reducing the pulse

build-up time. Therefore, it seems possible to compensate the oscillator pulse delay by

using a specially shaped seeder beam, i.e., a beam that has higher intensity at the beam

edge and lower intensity at the beam center, such that the edge pulse could start to build
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up earlier. Based on this idea, a high power seeder beam with 500 mW CW power is

employed and shaped to have a Gaussian dip at the beam center as shown in Fig. 2.10(a),

by inserting another Gaussian reflectivity mirror into its path at a position between the

first and second turning mirrors. The measurements taken at the two highest pumping

energies of 43.5 J and 48 J, however, do not show clear effect on flattening the energy

front curvature. Seeder beam with the same shape but at low power of 70 mW, which

is controlled by the combination of a half waveplate inserted in between the two turning

mirrors and the following coupling polarizer, has also been tested. As demonstrated in

Fig. 2.10(b), the energy front curvature is always as much as the one shown in Fig. 2.6 This

further emphasizes the saturation in energy front curvature, as demonstrated by the little

difference in energy front curvature existing between the seeded and unseeded operations.
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Figure 2.10: (a) Specially shaped high power seeder beam with low power density at the
beam center; (b) Measured spatial delay distributions.

2.4.2 Using dye as saturable absorber to sharpen the leading edge of

input pulses to amplifier

It has been mentioned earlier that the enlarged energy front curvature due to gain saturation

effect inside the amplifiers only happens when the input pulses have relatively slow leading
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edge. Therefore, a direct way to minimize the energy front curvature for the amplified

pulses is to sharpen the leading edge of input pulses to the amplifier, which can be realized

by using dye as the saturable absorber (SA). To test this idea, a specially designed dye cell

to achieve laminar flow is put after the second amplifier. A picture of it is shown in Fig. 2.11

The two windows used in the cell are both air side AR-coated to minimize the reflection

loss. The dye Q-switch 5 dissolved in dichloromethane is circulated through the cell by a

speed adjustable pump.

Figure 2.11: Specially designed dye cell to achieve laminar flow.

Figure 2.12 presents the measurements of spatio-temporal profiles of both IR and green

pulses. It is worth noticing that those measurements are taken with the old pump chamber

design that has been discussed in Section 2.2. As compared to the data demonstrated in

Fig. 2.9, the new pump chamber design provides much better uniformity for the spatio-

temporal profile distribution. The measurement shown in Fig. 2.12(a) is taken at the pulse

energy of 3.5 J. The corresponding green energy after frequency doubling is around 2.2 J,

at which point the spatio-temporal profile of the green pulses is measured and illustrated

in Fig. 2.12(c). After applying the saturable absorber cell, the IR and green pulse energies

have dropped 22% and 33%, respectively, when the same amount of pumping energy is

used. As shown in Fig. 2.12(d), the pulse width and spatial delay of the green pulses
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are both reduced. However, the maximum pulse delay is still as much as the pulse width

of several nanoseconds. Moreover, to bring back the green energy to the working point

of around 2 J, it requires more laser amplification that might further increase the delay.

Therefore, it is concluded that saturable absorber is not efficient tool to minimize the energy

front curvature.
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Figure 2.12: (a) and (b) Spatio-temporal profiles of IR pulses in the case of with and without
using dye saturable absorber, respectively; (c) and (d) Spatio-temporal profiles of Green
pulses in the case of with and without using dye saturable absorber, respectively.

2.4.3 Further possible solutions

Based on Eq. (2.6), there are two more possible solutions to alleviate the energy front cur-

vature of the oscillator pulses. The first solution is to shape the transverse loss distribution,

i.e., with lower loss at the beam edge and higher loss in the beam center. This solution is

26



Chapter 2. High-energy Nd:YAG laser system: A revisit

easier to realize. However, the energy would probably be much reduced since the output is

very sensitive to the internal cavity loss. Longer output pulse would also be expected. As

discussed in the beginning of this Chapter, both changes are not preferred.

Another solution is to shape the distribution of initial gain or population inversion Ni,

i.e., with higher Ni at the beam edge and lower Ni in the beam center, which requires much

more technical complexity. In simulation, we have used the model described earlier to test

this idea. Figure 2.13 presents the simulated gain and the corresponding delay distribu-

tions. It is clear that the gain shaping would help reducing the energy front curvature. In

practice, the special gain distribution might be achieved by employing a highly doped gain

medium [25].
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Figure 2.13: (a) Three different single slice gain distributions; The uniform gain distri-
bution, which is the same as the one shown in the inset of Fig. 2.5, is employed for the
simulation with results presented in Fig. 2.7. (b) The corresponding delay distributions.

2.5 Second harmonic generation in the depletion regime

Since its first demonstration by Franken et al. [38], second harmonic generation (SHG) has

become the daily tool for frequency conversion in most of the optics research lab. In the
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case of frequency doubling from 1064 nm to 532 nm, several nonlinear crystals, such as

Potassium dideuterium phosphate (KDP and DKDP), Potassium titanyl phosphate (KTP)

and Lithium triborate (LBO) are often employed. Among different choices, KTP is very

popular because of its largest nonlinear coefficient deff of 3.58 pm/V2 in the type II phase

matching, which typically leads to high conversion efficiency. However, since it has rela-

tively low damage threshold and often suffers from gray tracks, the KTP crystal is unfavored

in our application of very high energy frequency doubling. For the consideration of high

operation reliability, LBO (deff=0.832 pm/V, type I phase matching) has been chosen due

to its high damage threshold (25 J/cm2 @ 10 ns 1064 nm pulse). To further enhance the

stability, the LBO crystal with a dimension of W13.5 × H13.5 × L12.5 mm3 has been

put into an home-designed temperature-stabilized oven, as demonstrated in Fig. 2.14. The

temperature stabilization is realized by using a resistance temperature detector (RTD) as

sensor and a PID controller to provide feedback to the heater (actuator).

RTD

LBO

Heater

Figure 2.14: Home designed oven for LBO crystal to reach better SHG stability.

2Crystal data presented both here and in Section 3.6 are all quoted from SNLO [39]

28



Chapter 2. High-energy Nd:YAG laser system: A revisit

In harmonic generation, it has been demonstrated that there are two regimes [40]. In

the case of pump with negligible depletion, the intensities of input fundamental pulse and

output second harmonic pulse have the relationship I(2ω) ∝ I2(ω). When the conver-

sion efficiency is high (i.e., with pump depletion), the previous relationship becomes to

I(2ω) ∝ I(ω). In our case, if the IR input energy is scanned, we should be able to see

this transition in two aspects. First, the dependence of green energy on the IR input energy

should be nonlinear and then becomes linear as the IR energy is increased. Second, the

IR/Green pulse width ratio should be the well known
√
2 at low conversion efficiency and

then reduces to be close to one at very high conversion efficiency. The experimental results

shown below will corroborate the above analysis.

2.5.1 Experimental and simulation results

In the experiment, the size of IR laser beam from the last amplifier is reduced to 10 mm (full

width at 1/e2 maximum intensity) by using a telescope with M=-1.6. This helps to increase

the input beam intensity such that high conversion efficiency could be achieved. Besides

the experimental characterization, we also employ the SNLO program [39] to simulate the

SHG in LBO. Both experimental and simulation results are presented in Fig. 2.15. It can

be seen that the simulation matches experimental measurements very well. As shown in

Fig. 2.15(a), the maximum green energy reaches 3.5 J when the input IR energy of 5 J is

employed. The corresponding conversion efficiency is as high as 70%. The green energy

fluctuation at the depletion regime (i.e., with green energy > 500 mJ) is measured to be

below 1%.

To explore the transition discussed above, the input energy to the LBO crystal is varied.

At relatively low input energy that corresponds to low conversion efficiency, the green

energies can be fitted very well with a parabolic function, as illustrated by the red curve.

As the conversion efficiency further increases, a linear fit (green line) is found to be more
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Figure 2.15: (a) Experimental and simulation results of green energy and the corresponding
efficiency with different IR input energy; Two curves and a line are fits to the data. (b)
Variation of IR/Green pulse width ratio and the conversion efficiency with different IR
input energy; Two curves are fits to the data.

appropriate to the converted green energies. The change in IR/Green pulse width ratio has

also been investigated and displayed in Fig. 2.15(b). It should be noticed that the ratio at

low conversion efficiency does not correspond to
√
2, which is due to two reasons. First, the

detector used to characterize green pulse has slightly better time resolution than that of the

one used for IR pulse measurement. Second, we have shown earlier that both IR and green

pulses have radial position dependent pulse width. Even though we have tried hard to find

the spatial correspondence of IR and green pulses to be measured, a slight misalignment

might still be existing, which would also modify the pulse width ratio. Nevertheless, we

have seen that the difference between the IR and green pulse width becomes less as the

conversion efficiency increases. Both transitions in energy and pulse width observed from

experiment are all in agreement with the expectation.

Besides the characterizations of pulse energy and pulse width, the time integrated spa-

tial profile of green pulse at the energy of 2 J has also been recorded and presented in

Fig. 2.16. It should be noticed that apodizer apertures have been employed in the system

(see Fig. 2.1) to maximize the beam filling factor inside the amplifiers while also avoiding

the hard aperture diffraction. The sharp beam edge and strong edge modulation are both

30



Chapter 2. High-energy Nd:YAG laser system: A revisit

1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (a
. u

.)

X (a. u.)

Figure 2.16: Time integrated green beam profile at the pulse energy of 2 J.

related to the aperture effect.

2.5.2 Spatio-temporal characteristics of frequency-doubled pulses

The spatio-temporal profile of frequency-doubled pulses with energy around 2 J has been

demonstrated in both Fig. 2.9 and Fig. 2.12. It has been shown that the pulse width is

reduced with a small amount while the delay is almost maintained after the frequency dou-

bling. Therefore, we conclude that, in the case of SHG in the depletion regime, the fre-

quency doubled pulses inherit the spatio-temporal characteristics of fundamental pulses.

2.6 System Summary

In this chapter, we have described our home-designed high-energy nanosecond Nd:YAG

laser system. The system is running with single longitudinal mode and super-Gaussian

spatial profile. The maximum energy of the frequency-doubled green pulses can reach
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3.5 J with fluctuation less than 1%. The spatio-temporal profiles of the pulses obtained

from each stage of the system have been investigated in detail. It has been learned that

spatio-temporal behavior of high-energy pulses commonly exists. Even though the pulses

with Gaussian shaped spatial profile from a stable resonator are free of pulse delay along

the radial coordinate, much stronger spatio-temporal modification from amplifiers is also

expected, since the energy fluence around the beam center is much higher than that of the

beam edge as compared to the case of super-Gaussian beam. The ultimate solution to the

issue would be shaping the laser beam from a stable resonator to have a real flat-top beam

profile. The shaped beam is then sent to amplifiers to be amplified. In such a case, complex

relay imaging systems are required since the shaped beam is not a free propagation mode

anymore.
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Chapter 3

High-energy sub-nanosecond pulse

generation by SBS pulse compression in

liquids

3.1 Introduction

The motivation in obtaining high-energy sub-nanosecond pulses is triggered by the UV

filament study, which requires long (sub-ns to ns) UV pulses at 266 nm with gigawatt

(GW) peak power. To achieve the same peak power, shorter pulses require lower pulse

energy, and thus are easier to realize. However, it needs to be emphasized that the lower

UV energy still means the level of sub-joule, which is not typical for any laboratory setup

or even commercial product.

As discussed earlier, nanosecond pulses are routinely generated by Q-switching tech-

nique. The high energy (>1 J) output is realized by employing Master Oscillator Power

Amplifier (MOPA) configuration. Sub-nanosecond pulses can also be obtained directly

from a Q-switched microchip laser [41]. However, direct amplification of sub-nanosecond
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pulses to the desired Joule level energy is limited by optical damage caused by self focus-

ing. We will revisit self focusing in chapter 4, where it plays a key role in the generation of

laser filament in air.

An alternative way to generate sub-nanosecond pulses is to compress Q-switched ns

pulses to the sub-nanosecond regime, by exploiting nonlinear processes such as stimulated

Raman scattering (SRS) or stimulated Brillouing scattering (SBS). The advantage in using

SRS for pulse compression is its very short phonon lifetime, which guarantees shorter com-

pressed pulse width. The implementation of SRS pulse compression is, however, hindered

greatly by the competition between stimulated Raman and stimulated Brilloin scattering,

by the competition between forward and backward SRS, as well as by the generation of

high order Stokes and anti-Stokes components.

The SBS pulse compression is preferable since it is free of the drawbacks mentioned

above. Since it was first reported by Hon [42], stimulated Brillouin scattering has been

demonstrated to be an efficient and robust way to compress nanosecond pulses into the

sub-nanosecond regime [43–50]. It continuously gains attention [49–52] because of its

simplicity, high energy conversion efficiency and high temporal compression ratio.

So far, most of the studies on SBS pulse compression focused the energy range of a

few mJ to 100s of mJ. In our case, the compressed pulses at either 1064 nm or 532 nm

have to have > 1 J energies in order to obtain sub-joule UV pulses. The direct compression

at 266 nm has been attempted without success, because of the medium decomposition by

the high energy photons. One of our efforts is therefore to push the energy load capacity

of SBS compression to its highest level. Since obtaining shortest compressed pulse is as

important as achieving highest compressed energy, another focus of our work is to reveal

the key factors as well as the limitations in realizing high temporal compression ratio while

still maintaining excellent reliability and reproducibility.

In this chapter, we will first provide some background information for the SBS pulse
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compression. Following that, we will show the results of pulse compression in FC72 at

1064 nm and in water at 532 nm. The importance in selecting appropriate compressor

configuration and SBS medium will be demonstrated therein. Then, we will present the

high-energy sub-phonon lifetime compression both experimentally and theoretically. Our

investigation shows different mechanism and limitation of the sub-phonon lifetime com-

pression from compared to the previous report [53]. Since the input pulses to the SBS

compressor have been shown to exhibit spatio-temporal profiles, the spatio-temporal char-

acteristics of the SBS compressed pulses have also been investigated. Before concluding

this chapter, the sub-nanosecond UV pulse generation via another second harmonic gener-

ation is reported.

3.2 SBS pulse compression: Background

3.2.1 Principle

Stimulated Brillouin scattering is a nonlinear process of interaction among three waves, i.e.,

two optical waves and an acoustic wave. Figure 3.1(a) is a schematic representation of the

stimulated Brillouin scattering process. For an incident pump of high intensity, the Stokes

wave scattered by the acoustic wave, which is initiated by the thermal excitation at the

beginning, will be strong enough to beat with the pump wave. The beating between pump

and stokes would reinforce the acoustic wave due to the electrostriction effect, whereas the

beating between pump and the enhanced acoustic wave would reinforce the stokes wave.

Towards the end, the positive feedback described by those two interactions leads to the

amplification of Stokes by saturation of the pump.

Similarly, when a laser pulse is focused into the SBS medium, a counter-propagating

Stokes pulse will be initiated around the beam focus. If the length of the SBS medium is

long enough, the density grating, created by the interference between the pump and Stokes
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(a) (b)

Figure 3.1: (a) Schematic representation of the stimulated Brillouin scattering process. (b)
Illustration of pulse compression by stimulated Brillouin scattering [54].

pulse, will move along with the Stokes pulse at the speed of light. The moving grating then

behaves like a mirror that pushes the photons from the pump pulse into the leading edge

of Stokes pulse. As the interaction becomes stronger because of the positive feedback as

mentioned above, the accumulation of energy into the leading edge of Stokes pulse gets

more efficient, leading to a gradually shortened pulse as demonstrated in Fig. 3.1(b).

3.2.2 Configuration of SBS pulse compressor

For SBS pulse compression, there are three typical configurations, as shown in Fig. 3.2. The

first two setups, i.e., single-cell setup [42, 55] and cascaded generator-amplifier setup [44,

45], are often employed, due to their simplicity in implementation. However, high pulse

energy dumped into the beam focus would easily cause optical breakdown and other nonlin-

ear competing processes such as self-focusing and stimulated Raman scattering with those

two setups. The stability of pulse compression can not be guaranteed. For the cascaded

two-cell setup, one could conceive to insert an filter in between the two cells to attenuate

the energy sent into the generator, thus maintaining better stability. The energy efficiency
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would however be dramatically reduced because of the large loss introduced by the atten-

uator [56].

(b) Cascaded generator-amplifier setup

Figure 3.2: Three typical configurations implemented in SBS pulse compression; (a)
Single-cell setup; (b) Cascaded generator-amplifier setup; (c) Energy-scalable generator-
amplifier setup.

The best way to compress high-energy pulses with high fidelity is the energy-scalable

generator-amplifier setup [54], as presented in Fig. 3.2(c). In this setup, the half wave-plate

(HW1) and thin-film polarizer (TP1) are used to control the energy of the generator input

pulse, which is reflected by two polarizers TP1 and TP2 thus with S polarization. The

generator input is focused by a plano-convex lens (L) into the SBS generator to create a
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pre-compressed Stokes seed pulse that propagates in the backward direction. After passing

through the quarter wave-plate (QW1) twice, the initial S polarization of the generator

input beam is rotated to be P polarization, which ensures the Stokes seed beam propagating

through TP2 and reaching into the SBS amplifier. The main portion of the compressor input

that passes through TP1 with P polarization is used as the SBS pump and sent into the SBS

amplifier from the right hand side. The polarization of Stokes seed and pump pulses are

changed to circular by QW2 and QW3, respectively. After the interaction between two

counter-propagating pulses, their polarizations are modified to be S after going through

the quarter wave-plate once again, which allows them to be reflected out by TP2 and TP3,

respectively.

The difference between the cascaded and energy-scalable generator-amplifier setup is

that the pulse energy sent into the generator in the latter setup can be finely controlled.

Therefore, an optimum condition can be found to avoid all the negative effects associated

with the focusing geometry as mentioned above, thus obtain very stable pre-compressed

Stokes seed pulses from the SBS generator. Since the high energy pulses (i.e., the main

portion of the input pulses) are sent into the SBS amplifier as collimated beams, there is no

concern of optical breakdown happening there. Because of their lower gain as compared

to that of SBS process, other nonlinear competing processes will not arise before the gen-

eration of SBS Stokes pulse by the pump itself, which acts as the only limiting factor for

the maximum compressible energy. However, since the SBS gain (G = gBIL) is propor-

tional to the pump intensity and steady-state gain factor gB, the energy load capacity could

be simply enhanced by increasing the pump beam size or by choosing a low gB material

without introducing complication.

It should be mentioned that the merit of energy-scalable setup has not been completely

displayed in its first demonstration [54]. Xu has systematically studied and optimized the

performance of the energy-scalable generator-amplifier setup, which relies much on several

key factors. More details about the optimization process are in references [52] and [20].
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3.2.3 SBS medium

SBS pulse compression has been demonstrated in high-pressure gases [42, 44, 55, 57, 58],

solid-state materials (fused-quartz and fused-silica) [59], as well as liquids [45,46,55,60].

It has been proved that, only with liquid media, SBS pulse compression with high energy

load capacity and high efficiency can be obtained. Among different choices, the heavy

fluorocarbon (FC) liquids (FC-72, FC-75, FC-40, etc.) [47,49,56,61,62] are very popular

due to their favorable properties, such as low absorption coefficient, moderate gain factor

and high damage threshold, in SBS application.

Other than liquid fluorocarbon, water has also been explored in SBS applications [46,

48, 60]. The physical properties of FC72 and water are listed in Table 3.1. As compared

to FC liquid, there are several advantages in using water as SBS medium. First, water is

cheap and widely available even at the highest purity. Second, water shares many of the

favorable properties of liquid fluorocarbon, such as short phonon lifetime and chemical

stability. Moreover, its lower steady-state gain factor allows larger energy load capacity, as

discussed earlier. Third, water has smaller ∂n/∂T as compared to that of FC liquid, where

n is the refractive index of SBS medium and T is temperature. It should be emphasized that

the effect of ∂n/∂T on SBS compression has barely been investigated before. Recently,

we have shown that the beam pointing stability and beam quality can be severely distorted,

Table 3.1: Physical properties of FC72 and water associated with SBS application
Liquid λP ΩB/2π gB τB T ∂n/∂T α

(nm) Hz (cm/GW ) (ps) (0C) (10−4K−1) (10−6cm−1)

FC72 1064 1.1 6-6.5 590 25 -4.7 2.3
FC72 532 2.2 6-6.5 148 25 -4.7 <10
Water 1064 3.71 3.8-4.8 1180 25 -0.99 (1.2− 1.4) ∗ 105
Water 532 7.42 3.8-4.8 295 25 -0.99 350-530

Data of FC72 cited from references [61, 63]. Data of water cited from references [64, 65]. Data
of different wavelength is converted based on ΩB ∝ 1/λP and τB ∝ λ2

P . λP , laser wavelength;
ΩB/2π, SBS frequency shift; gB , steady-state gain factor; τB , phonon lifetime; ∂n/∂T , thermal
induced refractive index change; and α: linear absorption coefficient.
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when a low energy collimated beam is propagated through a 2.5 m glass cell filled with

FC72 [52]. Both deflection and distortion are caused by the index gradient that is built

up along the vertical direction because of the tiny temperature gradient. It will be shown

in Section 3.3.1 that the phase aberration associated with the large ∂n/∂T also severely

distorts the far field distribution of SBS compressed beam.

In the case of water, both beam pointing stability and beam quality can be preserved.

More interestingly, it has been shown by Abbate et al. [65] that the ∂n/∂T is around zero

at the water temperature of 2-40C. We will show our effort on operating SBS pulse com-

pression in water at low temperature in Section 3.3.2. It should be pointed out that one

drawback of using water as the SBS medium is its relatively large absorption coefficient

at the wavelength above 500 nm. The direct impact is the lower energy efficiency in SBS

compression when water is employed. However, as we will show below, more than 60%

of overall energy efficiency can be achieved in water at 532 nm with the energy-scalable

generator-amplifier setup. For the consideration of excellent reliability and reproducibility,

water would be the ideal medium for the application of high-energy SBS pulse compres-

sion. It is interesting to point out that heavy water might be an even better choice, since it

has advantages of zero ∂n/∂T at 11 0C and lower absorption coefficient at 532 nm.

3.2.4 Theoretical modeling

The SBS pulse compression process can be numerically modeled. Xu has studied on the

modeling of SBS pulse compression in detail [20]. Since the absorption loss is very low

for FC72, which is the major focus of Xu’s work, the previous model does not include

the linear loss to both pump and Stokes pulses during the process of pulse compression.

Instead, a transmission factor is simply applied to the compressed Stokes pulse in order to

justify for the actual energy efficiency. In the case of water, which has been mainly focused

by this work, the linear loss plays a bigger role in adjusting the intensities of pump and
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Stokes pulses, which are critical in defining the compressed Stokes pulse. Therefore, we

have modified the previous model to consider the linear loss of both pulses, during their

each step of propagation inside the SBS medium.

We have made another improvement to the previous model, which considers that the

acoustic phonon at beam focus is fed by random noise. This consideration leads to appropri-

ate pulse compression, but can not address the build-up time of the Stokes pulse correctly.

To overcome this issue, the strength of the acoustic wave created at the beam focus needs

to be proportional to the intensity of the pump pulse at that point. As will be presented in

Section 3.5, reasonable results have bee obtained by utilizing the further developed model

for the simulation of spatio-temporal profile of the SBS compressed pulses. Here, we give

a brief discussion on the modeling.

∂E1
∂t

+ c/n
∂E1
∂z

= −iϵ0c
2gBΓBρ

′E2 (3.1a)

∂E2
∂t

− c/n
∂E2
∂z

= −iϵ0c
2gBΓBρ

′∗E1 (3.1b)

∂2ρ′(z, t)

∂t2
+ (ΓB + 2iΩB)

∂ρ′(z, t)

∂t
+ iΩBΓBρ

′(z, t) = −1

2
ΩBE1E∗

2 (3.1c)

As mentioned above, the SBS process is an interaction among three waves, which can be

described by three coupled differential equations, as listed in Eqs. 3.1. In those equations,

gB is the steady-state Brillouin gain factor, ΓB/2π is the full width at half maximum of the

SBS gain spectrum, τB = 1/ΓB is the phonon lifetime, and ΩB is the Brillouin shift. ρ′ is

defined as ρ(z, t) = −(ϵ0γeq
2
B/ΩB)ρ

′(z, t), where γe is the eletrostrictive constant of the

SBS medium and qB is the wave number of acoustic wave. c, n and ϵ0 are the speed of light

in vacuum, the refractive index of SBS medium and the vacuum permittivity, respectively.

t is the time axis and z is the spatial axis along the propagation direction of the pump. The

value of different parameters used in the simulation for both FC72 and water have been

summarized in Table 3.1. The slowly varying envelope approximation is applied to both

pump (E1) and Stokes (E2) fields. The split-step method is used to numerically solve the
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coupled equations.

The model described above is similar to other simulations [43,53,66,67], without con-

sidering the transverse dimension. This model has been demonstrated to accurately repro-

duce the experiment result [52], if only the compression in the beam center is considered.

When it is used to predict the spatio-temporal profile of SBS compressed pulses, discrep-

ancy between the experiment and simulation is found. As we will show in Section 3.5, part

of the features observed from the experiment can be reproduced. The limitation will be

discussed in detail there.

3.3 High-energy SBS pulse compression in FC72 and wa-

ter3

In this section, we will demonstrate the capability of high-energy (Joules level) SBS pulse

compression in liquids, by employing the energy-scalable generator-amplifier setup. We

will present the results of pulse compression in both FC72 and water. It will be shown

that water as combined with the energy-scalable generator-amplifier setup is ideal for high-

energy pulse compression.

3.3.1 SBS pulse compression in FC72 at 1064 nm

The high-energy pulse compression is first carried out at 1064 nm. Two cells of the energy-

scalable generator-amplifier setup shown in Fig. 3.2(c) are both filled with FC72 as the SBS

medium. The length of both cells has been chosen to be 2.5 m, in order to match half of

the spatial length (cτp/n) of the laser pulse4, where τp represents the FWHM. It will be

3Portions of this section have been published in C. Feng et al., Opt. Lett. 39, 3367-3370
(2014) [51]

4The full spatial length of the laser pulse is considered to be 2cτp/n
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demonstrated in Section 3.4 that long enough interaction length is essential for achieving

shortest compressed pulse width.

Figure 3.3: SBS compressed pulses from an energy-scalable generator-amplifier setup; (a)
Stokes seed pulse; (b) Amplified Stokes pulse; Inset, far field distribution of amplified
Stokes beam.

Laser pulses (1 J per pulse, 12 ns FWHM), obtained after the 6th amplifier of Nd:YAG

laser system, are used as the input to the SBS compressor. The laser beam is expanded

to 20 mm beam diameter (full width at 1/e2 maximum intensity) to maximize the energy

load capacity. The generator input pulse with 50 mJ energy is employed to create pre-

compressed Stokes seed pulse. The remaining portion of the input with 950 mJ energy is

used as the pump. An amplified Stokes pulse of 735 mJ is obtained with energy fluctuation

of less than 1.3%. The corresponding overall energy efficiency is up to 73.5%. To charac-

terize the compressed pulse, a 25 GHz InGaAs biased photodetector (model: 1417) from

Newport combined with an Agilent digital oscilloscope (bandwidth: 2.5 GHz; Sampling

rate: 20 Gsa/s) are used. Both Stokes seed and amplified Stokes pulse are presented in

Fig. 3.3. The Stokes seed pulse has a duration of 1 ns FWHM, while the amplified Stokes

pulse is about 580 ps (±13 ps) FWHM. Besides the main pulse, a secondary pulse is also

shown in the amplified Stokes pulse, which will be investigated in detail in Section 3.4. The

inset shown in Fig. 3.3(b) presents the far-field distribution of the amplified Stokes beam,
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which exhibits obvious distortion. The phase aberration introduced by the index gradient

as discussed earlier is responsible for the distortion. In the application where highest focus

intensity is sought, FC72 is disqualified. Then, we are motivated to study the SBS pulse

compression in water.

3.3.2 Reliable SBS pulse compression in water at 532 nm

Efforts on minimizing the ∂n/∂T effect

To overcome the issues in FC72, water is chosen for its low ∂n/∂T and the possibility

of eliminating the effect of ∂n/∂T at low temperature. For the latter purpose, we have

designed special glass cells for cooling down the water. Figure 3.4 shows the two versions

that have been experimentally tested. In both designs, the SBS cell has an inner tube that

is filled with high purity water (OmniSolv, EMD Milipore) as the SBS medium. It also

has an outer mantel that is employed to circulate the cooling liquid, thus behaving like a

temperature stabilizer.

Figure 3.4: Two versions of glass tube design for the purpose of running SBS pulse com-
pression under low water temperture.
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The SBS cells are tested in a single-cell pulse compression setup at the wavelength of

532 nm. Laser pulses of 12 mJ are focused into the inner tube with a plano-convex lens of

2.2 m effective focal length in water. The spatial profiles of the generated Stokes seed beam

are recorded by a CCD camera, with the results being presented in Fig. 3.5. In the case of

2.2 m focusing lens, the distortion in Stokes beam profile [Fig. 3.5(a)] has been observed

immediately for the first design when the cooling temperature is slightly below the room

temperature (23 0C). With the same cell, the beam distortion has not been observed even

at the cooling temperature of 2 0C [Fig. 3.5(b)], if a 80 cm lens is used to focus the input

beam. As a comparison, the cooling temperature can go down to 14 0C for the second cell

design with 2.2 m focusing, until the beam distortion starts to appear.

(b)(a)

Figure 3.5: Stokes beam profiles obtained with the SBS cell of first design; (a) Input beam
is focused close to the end of glass tube by using a 2.2 m focusing lens; (b) Input beam is
focused around the middle of glass tube by using a 0.8 m focusing lens.

All the observations mentioned above can be explained by the convection exhibited at

both ends of the glass tube, which is created by the temperature gradient along the beam

propagation direction. In order to overcome this issue, much longer outer mantel has to be

designed to enclose the inner tube. Another solution is to use much more expensive heavy

water as the SBS medium, which has negligible ∂n/∂T around 11 0C. In this case, the
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constraint on the cell length can be alleviated. For the experiments discussed below, the

water temperature is stabilized at 21 0C, which is enough for obtaining compressed pulses

with high stability and excellent beam quality.

Experimental results

Figure 3.6: Experimental setup employed for SBS pulse compression in water; HW: Half
Wave-plate; QW: Quarter Wave-plate; TP: Thin-film Polarizer; L: Lens.

The experimental setup demonstrated in Fig. 3.6 is slightly different from the one dis-

played earlier in Fig. 3.2(c). Double-walled glass cells are used to stabilize the water tem-

perature at 21 0C. An extra half wave-plate (HW2) and a thin-film polarizer (TP3) are

added to vary the Stokes seed energy sent into the SBS amplifier, for the purpose of inves-

tigating the dependence of energy extraction efficiency inside the amplifier on the Stokes

seed intensity. The input laser pulse has maximum duration of 12 ns. The input beam

diameter is chosen to be 30 mm (full width at 1/e2 maximum intensity), limited by the 2"

optics used in the compressor.

Before characterizing the SBS compressor, we have measured the SBS threshold of the

amplifier cell, with the experimental setup and the result shown in Figs. 3.7(a) and (b),

respectively. We consider the maximum pump energy that can be sent into the amplifier to
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Figure 3.7: (a) Experimental setup for the SBS threshold and transmittance measurements;
(b) SBS threshold measurement; (c) Transmittance measurement.

be 2.2 J, above which point the back scattered signal from the pump increases exponentially.

With the same setup, we have also measured the transmittance to be around 85%, with the

corresponding linear loss coefficient to be 6.5 · 10−4cm−1. The measured loss coefficient

is slightly larger than the number quoted in Table 3.1 because of the extra scattering losses

from different surfaces.

To assess the performance of the setup, we start by characterizing the seed pulse from

the generator. As illustrated in Fig. 3.8(a), the energy reflectivity of the generator saturates

at about 73%, for an input energy above 90 mJ. We measure the relative energy fluctuation

in the generated seed pulse to be around 2%, which matches the amount of fluctuation in

the input beam [Fig. 3.8(a) inset]. This observation implies that the SBS process in the

generator is extremely stable. The stability is further demonstrated by the small fluctuation

in pulse width sampled at beam center[Fig. 3.8(b)], when the input energy exceeds 90 mJ.

The relative standard deviation (RSD) of pulse width, measured for 50 laser shots, is <5%.
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Figure 3.8: (a) Output energy of Stokes seed (solid diamond) and the corresponding energy
efficiency (solid circle) with different generator input energy; Inset: Ratio between input
standard deviation (SD) and input energy (solid triangle); Ratio between seed standard
deviation and Stokes seed energy (solid star); (b) Pulse width evolution of Stokes seed with
respect to generator input energy. Solid circles denote measurements of seed pulse width
and the solid curve is a fit to the measurements. Error bar shows the maximum deviation
of pulse width from the mean value. Three insets show typical compressed pulse shapes
for corresponding input energy.

We achieve a minimum compressed pulse width of 309 ps at the highest input energy of

160 mJ. The pulse detection setup used here is the combination of a Hamamatsu R1328U-

52 biplanar phototube (rise time: 60 ps; spectral response: 185-650 nm; detection area:

10 mm diameter) and an Agilent DSO90254A digital oscilloscope (Bandwidth: 2.5 GHz;

Sampling rate: 20 Gsa/s). Due to the limited time resolution of the latter, pulses shorter

than 400 ps can not be accurately characterized, as demonstrated by the wiggles in the pulse

leading/trailing edge. For the consideration of very stable SBS pulse compression, an input

energy of 120 mJ, which produces seed pulses of 90 mJ and 325 ps from the generator, is

chosen for subsequent compression experiments.

The seed pulse enters the amplifier cell and interacts with the pump pulse, which is

chosen to have 2.2 J energy per pulse, the threshold value as claimed above. To determine
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Figure 3.9: (a) Amplified Stokes energy and extraction efficiency for the SBS amplification
process. Solid diamonds denote measured output energy; Solid circles denote extraction
efficiency. The solid and dashed curves are a fit to the data. The energy of the input pump
pulse is fixed at 2.2 J. (b) The typical 300 ps amplified Stokes pulse sampled at the beam
center with an output energy of ∼1.2 J. The inset shows the far field distribution of Ampli-
fied stokes beam at maximum energy.

the minimum seed energy required to extract a pump energy of 2.2 J, we vary the input

seed energy by HW2 plus TP3 and monitor the output (amplified Stokes pulse). As shown

in Fig. 3.9(a), the maximum extracted energy is close to 1.2 J, with only 2% energy fluctu-

ations (not shown in the figure). The total losses L (sum of water absorption and loss from

optics) of the amplification process is measured by subtracting from the total input energies

(pump Ep and seed Es) the sum of the transmitted (depleted) pump Ed and the amplified

Stokes pulse EAS . The SBS energy extraction efficiency, plotted in Fig. 3.9(a), is defined

as ηex=EAS/(Ep +Es −L). The maximum of 75% extraction efficiency is comparable to

the value found in the literature [54]. Both extracted energy and extraction efficiency start

to saturate at a seed energy of 90 mJ. At this point, the peak intensity of the seed pulse

(due to compression in the generator cell) matches that of the uncompressed pump pulse,

leading to most efficient non-linear interactions [52].
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The typical amplified Stokes pulse sampled at the beam center with pulse duration of

300 ps at maximum output energy is shown in Fig. 3.9(b). The pulse width fluctuation of

the amplified Stokes pulse is similar to that of the Stokes seed pulse. The possible origin of

the pulse width fluctuation has been explained in a previous work [67]. As a comparison

with the pulse compression in FC72, the far field distribution of amplified stokes beam at

full energy is also displayed in the inset of Fig. 3.9(b). It is obvious that the focusing ability

of the compressed pulse obtained here is much better.

To summarize this section, we have demonstrated high-energy SBS pulse compres-

sion in water, by employing the energy-scalable generator-amplifier setup. The maximum

compressible energy of the current setup is up to 2.4 J, which can be further increased by

utilizing larger optics. A maximum of 40 fold compression, from 12 ns to 300 ps (close to

the phonon lifetime of 295 ns of water at 532 nm) has been achieved near the beam center.

In the next section, we will present our further study on high-energy pulse compression

below the phonon lifetime.

3.4 High-energy sub-phonon lifetime SBS pulse compres-

sion5

3.4.1 Background

In SBS pulse compression, the shortest compressed pulses are always desired for achiev-

ing the highest peak power. However, the minimum pulse duration that can be achieved

via SBS pulse compression is still under debate. The phonon lifetime of SBS medium

has been considered as the lower limit of compressed pulse duration by some of the stud-

ies [46, 48, 54]. For some other works [42, 44, 45, 57, 58], pulse compression below the
5Portions of this section have been summarized in C. Feng et al., “High-energy sub-phonon life-

time pulse compression based on stimulated Brillouin scattering in liquids” (To be submitted) [68]
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phonon lifetime has been experimentally observed, but without physical explanation. In

most cases, short and clean (i.e., without exhibiting long tail or trailing edge modulation)

compressed pulses have only been obtained by employing either double-stage compres-

sion or a cascaded generator-amplifier setup. The idea of double-stage compression is to

pre-compress the input pulse in a single-cell setup, then have another compression of the

pre-compressed pulse either in the same or a second single-cell setup.

For pulse compression in a single-cell setup, Gorbunov et al. [57] have successfully

achieved sub-phonon lifetime pulse compression in simulation of square input pulses, but

experimentally failed in demonstrating with Gaussian-shaped input pulses. It is found that

the compression ratio is sensitive to the focusing angle of the pump beam. To scale up the

compressible energy, it has been concluded that the focusing angle has to be increased by

shortening the focal length. Our investigation presented below draws the opposite conclu-

sion that long focal length is essential for obtaining the compressed pulse duration below

the phonon lifetime.

Recently, two more papers [49,53] have reported sub-phonon lifetime SBS pulse com-

pression with Gaussian input pulses. Velchev et al. [53] have tried to address the limiting

factors on sub-phonon lifetime compression. They have concluded that, for pulses much

longer than the phonon lifetime, the minimum compressed pulse width is limited by the

lifetime of acoustic phonon. As we will demonstrate later, no matter what is the length of

the input pulse, sub-phonon lifetime compression is readily achievable in a single-cell setup

as long as the interaction length is long enough to match half of the pulse length. In [49],

sub-phonon lifetime compression has been experimentally demonstrated with a cascaded

generator-amplifier setup. In order to compress the pulses below phonon lifetime, the focal

length inside the generator has to be increased from 300 mm to 1000 mm, which is against

the design principle of such setup. With long focal length, high-energy pulse compression

with acceptable stability becomes impossible.
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3.4.2 Analysis

Generally, laser pulses with Gaussian temporal shape are employed for SBS pulse compres-

sion. In a single-cell setup, the interaction length has been commonly chosen as cτp/2n, in

which case the Stokes pulse is considered to be initiated from the first half maximum inten-

sity point on the pulse leading edge and the pulse compression finishes at the second half

maximum intensity point. The remaining pump pulse keeps propagating into the cell and

interacting with the acoustic phonon that is fixed near the window. In this case, the density

grating behaves like a static mirror, which simply converts the long tail of the pump pulse

into a long tail for the Stokes pulse [42].

It is obvious that the above situation only applies for one specific input energy. As the

input energy increases, the portion within the pump pulse involved in the pulse compression

shifts towards the pump pulse leading edge. The remaining part of the pump pulse now has

higher intensity, which makes it hard for the fixed acoustic phonon to completely convert

the remaining pump into Stokes. The consequence is that part of the remaining pump will

propagate to the beam focus region to form one or a sequence of Stokes pulses that are

well separated in time [69]. In either case, i.e., the presence of long trail or multiple Stokes

pulses, the main Stokes pulse has not been well compressed, simply because the pump

pulse has not been fully employed for the pulse compression. A longer interaction length

of cτp/n to fully cover the pump length for SBS interaction is expected to overcome this

issue and lead to shorter compressed pulses.

It is widely accepted that the SBS compressed pulses exhibit a sharp leading edge and

a relatively slow trailing edge. An even shorter compressed pulse would be obtained if the

trailing edge could also be sharpened. An early study reported by Damzen et al. [43] has

actually pointed out the way by having energy exchange between the trailing edge of the

pump pulse and the Stokes pulse, under the strong interaction condition. Even though it has

been believed as a negative effect for pulse compression because of the presence of multiple
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pulses, we will demonstrate that, by controlling the pump intensity, the energy exchange

mechanism helps obtaining very clean compressed pulses with sharp trailing edge. The

compressed pulse duration can be below the phonon lifetime readily from a single-cell

compression setup.

3.4.3 Sub-phonon lifetime compression in a single-cell setup: experi-

ments

To confirm the above analysis, we have performed pulse compression experiments in a

single-cell with 2.5 m length. Pulse compression in FC72 at 1064 nm and in water at

532 nm are tested, demonstrating that sub-phonon lifetime compression can be achieved in

different SBS medium at different wavelength. Since the pump beam has spatial intensity

distribution and the compression ratio is strongly intensity dependent, the results presented

below represent the best pulse compression around the beam center unless specified other-

wise.

Sub-phonon lifetime compression in FC72 at 1064 nm

In the case of FC72, two lenses with focal length of 100 cm and 200 cm have been used to

approximately match cτp/2n and cτp/n of 9 ns input pulses, respectively. The input beam

size is fixed at 20 mm diameter (full width at 1/e2 maximum intensity). The compressed

pulses are characterized by a 25 GHz InGaAs biased photodetector (model: 1417) from

Newport combined with an Agilent digital oscilloscope (bandwidth: 2.5 GHz; Sampling

rate: 20 Gsa/s).

The dependence of the compressed pulse duration on both focal length and pump energy

are demonstrated in Fig. 3.10(a). The dash line representing the phonon lifetime of FC72

at 1064 nm is calculated from 1/2πδυB to be 590 ps, with Brillouin bandwidth δυB of
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Figure 3.10: (a) Experimentally measured dependence of compressed pulse duration on
the input energy, with the focal length of 100 cm and 200 cm being, respectively, used;
(b)-(d) Compressed pulse shapes with different initial conditions.
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270 MHz from [61]. The difference in pulse compression with two focal length lenses

is clearly shown. The compressed pulse duration has been limited to the phonon lifetime

when the focal length only matches to cτp/2n. This observation is similar to the result

reported in [53]. However, with a long focal length that matches to cτp/n being used, sub-

phonon lifetime compression has readily been achieved, even with relatively low pump

energy. This observation disproves the conclusion drawn from the previous work [53] that

the compressed pulse width is limited to the phonon lifetime if the pump duration is much

longer than the phonon lifetime.

It is helpful to understand the sub-phonon lifetime compression by checking the com-

pressed pulses obtained with different initial conditions, as shown in Figs. 3.10(b)-(e). The

shortest compressed pulse obtained with 100 cm focal length at the pump energy of more

than 400 mJ exhibits the typical feature of SBS compressed pulse, i.e., with sharp leading

edge and relatively slow trailing edge. However, to achieve similar compressed pulse du-

ration, it requires much less input energy in the case of a 200 cm interaction length being

used. The compressed pulse [Fig. 3.2(c)] is also free of modulation as compared to the one

[Fig. 3.2(b)] obtained with 100 cm focal length.

As the input energy increases, the trailing edge becomes sharper that further shortens

the compressed the pulse below the phonon lifetiem. Figure 3.2(d) represents the shortest

pulse of less than 400 ps at the compressible energy of more than 300 mJ. At very high

input energy, the pulse compression becomes very unstable, which is manifested by the

large error bar. Strong modulation on the Stokes pulse, as demonstrated by the two typical

pulses in Fig. 3.2(e), has been observed.

Sub-phonon lifetime compression in water at 532 nm

Instead of repeating the above experiments in water at 532 nm, we choose to fix the focal

length at 220 cm and investigate the dependence of pulse compression on input pulse du-
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ration. The results obtained from this experiment can be used to compare with the results

reported in [53]. To characterize the short pulses (<295 ps) with relatively good accuracy,

a Hamamatsu R1328U-52 biplanar phototube (rise time: 60 ps; spectral response: 185-

650 nm; detection area: 10 mm diameter) and a Tektronix DPO 70804 digital phosphor

oscilloscope (Bandwidth: 8 GHz; Sampling rate: 25 Gsa/s) are used.

The pulse compression is assessed by characterizing the dependence of compressed

pulse duration and energy efficiency on the input energy, as presented in Fig. 3.11. Laser

pulses with pulse duration of 7 ns and 9 ns are employed for the compression. It can be

seen that the compression ratio is larger for shorter input pulses, which is in agreement

with the simulation results reported in [53]. Our simulation, as will be presented below,

also confirms this observation.
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Figure 3.11: Experimentally measured dependence of compressed pulse duration on the
input pulse energy at a fixed focal length of 220 cm, with input pulse duration of 7 ns and
9 ns, respectively; The inset shows the corresponding energy efficiency for the two input
pulse duration cases.

When 7 ns input pulses are used, sub-phonon lifetime pulse compression has been
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achieved with the input energy above 60 mJ. As it has been mentioned in Chapter 2, the

Nd:YAG laser pulse width is proportional to the output energy, because of the gain satura-

tion effect inside the laser amplifiers. Pulses with 7 ns duration at 532 nm can be obtained

with the maximum output energy of 120 mJ, at which input energy the compressed pulse

width is as short as 150 ps. The energy efficiency, as shown in the inset of Fig. 3.13, reaches

more than 75%. Therefore, the compressed pulses of 150 ps with 90 mJ per pulse have been

obtained. The saturation in pulse compression would be expected if higher input energy

was used.

For 9 ns input pulses, sub-phonon lifetime pulse compression has been achieved when

the input pulse energy goes beyond 150 mJ. The compressed pulses of 240 mJ with min-

imum duration of 190 ps are obtained at the input energy of 300 mJ. As the input energy

further increases, both increased pulse width and larger fluctuation are observed. It is worth

noticing that SRS is found to appear randomly at the input energy of more than 350 mJ,

which is considered as one of the reasons to cause pulse fluctuation. The compressed pulse

shapes at different input energies have also been reviewed for the case of 9 ns input pulses.

Similar behavior, as reported in Figs. 3.10(c)-(e), has been observed.

3.4.4 Sub-phonon lifetime compression in a single-cell setup: numer-

ical simulations

To understand the mechanism behind sub-phonon lifetime compression, simulations on

single-cell pulse compression have been carried out, using the optimized model described

in Section 3.2.4. The results presented below represent the pulse compression in water,

which is preferred for high-energy application.

In order to compare with the experimental results as discussed above, the input pulse

parameters to the simulation are chosen to match those from experiment. Specifically, the

pulse has Gaussian temporal shape with duration of 9 ns (FWHM), and the beam size is
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Figure 3.12: (a) Simulated dependence of compressed pulse duration on the input energy,
with the focal length of 110 cm and 220 cm being, respectively, used; (b)-(d) Compressed
pulse shapes with different initial conditions.
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30 mm at full width of 1/e2 maximum intensity. We first check the effect of interaction

length on the pulse compression. Two different interaction length of 110 cm and 220 cm

have been chosen to match cτp/2n and cτp/n, respectively.

Figure 3.12(a) illustrates the dependence of compressed pulse duration on the input

energy, which is quite similar as the one observed from pulse compression in FC72. When

an interaction length of 110 cm is used, the compressed pulse width with input energy up

to 1000 mJ is always longer than the 295 ps phonon lifetime of water at 532 nm, which is

represented by the horizontal dashed line shown in the same figure. This further confirms

that a short interaction length applies limitation on the duration of the compressed pulses.

In the case of 220 cm interaction length, sub-phonon liftime pulse compression can be

achieved above certain pump energy. The compressed pulse shapes at four different input

energies are displayed in Figs. 3.12(b)-(e). The transition behavior in pulse shape is qual-

itatively in agreement with that reported in Figs. 3.10(c)-(e). Specially, the shortest pulse

obtained at the input energy of 500 mJ exhibits a small pulse resurgence. It qualitatively

matches the pulse shape shown in Fig. 3.10(d), in which the sharp trailing edge is followed

by a slow decaying tail. It is found that the change in both pulse shape and duration during

the transition is more related to the change of pulse trailing edge, which is sharpened by

transferring its energy back to the pump. As the input energy further increases, the second

pulse becomes stronger, and more importantly, the trailing edge of the first pulse is also

found to get less sharp, which thus leads to a longer pulse.

In the early study, Damzen et al. [43] have well explained the mechanism of energy

exchange between the pump and Stokes pulse, and considered the energy exchange as a

negative effect in creating multiple pulses. However, by finely tuning the pump intensity

(i.e., either adjust the pump energy or the beam size while satisfying the interaction length

requirement), the energy exchange mechanism can be well employed for achieving sub-

phonon lifetime compression.
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Figure 3.13: Simulated dependence of compressed pulse duration on the input energy at a
fixed focal length of 220 cm, with input pulse duration of 7 ns and 9 ns being, respectively,
used.

Another interest in simulation is to tune the input pulse width while fixing the inter-

action length. Figure 3.13 presents the results with the interaction length fixed at 220 cm.

Again, the simulations reproduce the experimental results as demonstrated in Fig. 3.13 very

well. It is necessary to point out that, as the compressed pulse gets shorter, it gets easier to

trigger the generation of SRS, which would ruin the pulse compression stability. Therefore,

the energy carried by shorter compressed pulses has to be reduced, because of the intensity

limitation imposed by other nonlinear effects.

Based on both experimental and simulation results presented above, we draw a recipe

for preparing sub-phonon lifetime SBS pulse compression in a single-cell setup. First of

all, one needs to choose an interaction length of cτp/n to balance the compression ratio and

linear absorption loss. Next, the optimum pump intensity to achieve shortest compressed

pulse can be found by scanning either pump energy or beam size. It is important to note

that the pump energy to achieve optimum pulse compression can be scaled up by increas-
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ing the beam size thereby keeping the pump intensity constant. Last, shorter input pulses

are desired to obtain shorter compressed pulses, if high-energy output is not the primary

interest.

3.4.5 Sub-phonon lifetime compression in generator-amplifier setup:

experiments

Our goal is to obtain compressed pulses with Joule level energy. Therefore, the energy-

scalable generator-amplifier setup sketched in Fig. 3.6 has been employed again to scale up

the energy of the pre-compressed pulses from a single-cell setup (genertor). In this case,

the total input energy is kept at 2 J to the SBS compressor, and the input energy to the

generator is scanned.

Even though SBS pulse compression in amplifier is much more straightforward as com-

pared to the case of generator pulse compression, since it only involves collimated beams,

the nonlinear competing effect such as SRS is still the most concern for the case of very

high energy compression. The generation of SRS inside the amplifier is found when the

input energy to SBS generator is beyond 250 mJ, even though no SRS generation has been

noticed from the generator. Due to such reason, the maximum input energy to the generator

has been limited to 240 mJ for the following experiment.

Here, we show the results of spatial distribution of the compressed pulse width, as well

as compressed pulse shapes that are quantified by the pulse detection setup presented in

Fig. 2.4(a). Further detailed discussion on the spatio-temporal profiles of the SBS com-

pressed pulses will be presented in Section 3.5.

Figures 3.14(a), (c) and (e) display the spatial pulse width distributions of both Stokes

seed (black solid square) and Amplified Stokes pulses (red solid circle), at the generator

input energy of 120 mJ, 180 mJ and 240 mJ, respectively. The pulse compression effi-
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Figure 3.14: (a), (c) and (e) Experimentally measured spatial pulse width distributions of
both Stokes seed (Black solid square) and Amplified Stokes pulses (Red solid circle) at
three generator input energies of 120 mJ, 180 mJ and 240 mJ, respectively; (b), (d) and
(f) Typical amplified Stokes pulse shapes representing the best compression around beam
center at three corresponding generator input energies.

ciency (i.e., both compression ratio and stability) is found to be gradually enhanced for

both Stokes seed and Amplified pulses across the beam cross section as the input energy

to SBS generator is increased.
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The typical Amplified Stokes pulse shapes representing the best compression around

beam center are also demonstrated in Figs. 3.14(b), (d) and (f), with correspondence to

the three generator input energies, respectively. The shortest pulse obtained at the gener-

ator input energy of 240 mJ reaches 170 ps and is still free of modulation. The latter is

considered as a limit to the maximum generator input energy being used. The minimum

relative standard deviation (RSD) of pulse width fluctuation is found to be below 5%. With

higher generator input energy, the random generation of SRS causes larger fluctuation of

compressed pulses.
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Figure 3.15: Experimentally measured pulse energy of the Amplified Stokes pulse and the
corresponding energy efficiency.

The ultimate output energy together with the overall energy efficiency of the SBS com-

pressor are also characterized for three different generator input energies, and illustrated in

Fig. 3.15. The maximum energy obtained is close to 1.3 J with the energy stability of less

than 1.5% (not shown here). The corresponding overall efficiency is up to 64%. It has been

demonstrated in [52] that the energy efficiency starts to saturate once the intensity ratio be-

tween Stokes seed and pump pulse exceeds one. The current observation is consistent with
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the previous conclusion.

3.5 Spatio-temporal characteristics of SBS compressed

pulses

In this section, we focus on exploring the spatio-temporal profiles of the SBS compressed

pulses. The spatio-temporal profile of the input green pulse with 2 J energy to the com-

pressor has been shown in Fig. 2.9(b). We use the case of 120 mJ generator input energy
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Figure 3.16: Measured spatio-temporal profiles of the SBS compressed pulses; Left:
Stokes seed from SBS generator; Right: Amplified Stokes pulse from SBS amplifier; Both
Stokes seed and Amplified Stokes are characterized at position C indicated in Fig. 2.1. The
pump beam is blocked at a position between TP1 and TP4 [Fig. 2.1] while measuring the
spatio-temporal profile of Stokes seed.
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as an example to perform the comparison between experiment and simulation.

The spatio-temporal profiles of both Stokes seed and amplified Stokes pulses are exper-

imentally characterized and displayed in Fig. 3.16. Since the SBS pulse compression is a

nonlinear process that is intensity dependent, the compressed pulses exhibit shorter pulse

width around the beam center and longer pulse width close to the beam edge [Fig. 3.16(a)],

because of the intensity distribution of input beam [48, 51]. Very interestingly, the max-

imum pulse delay existing for the Stokes seed pulse is also compressed from 6∼7 ns

[Fig. 2.9(b)] down to 2∼3 ns [Fig. 3.16(c)], which is comparable to the maximum pulse

width. The pulse width and pulse delay are further compressed after the SBS amplification

process, as demonstrated in Figs. 3.16(b) and (d).

Besides the experimental characterization, we also carry out the simulation by using the

numerical model described in Section 3.2.4. The simulation is made under a geometrical

optics approximation, in which the pulse propagation, generation and amplification of a

Brillouin component is computed along non-interacting rays. The origin of each ray is

taken from a Gaussian or super-Gaussian intensity profile on a collimated beam. At each

point of the original profile, the experimentally measured pulse temporal profile is used,

with the pulse width and pulse delay shown in Fig. 2.9(b).

Figure 3.17 illustrates the simulated spatio-temporal profiles of the compressed pulses.

The pulse width distribution of the Stokes seed [Fig. 3.17(a)], has a parabolic shape that

qualitatively reproduces that observed in the experiment. Quantitatively however, the simu-

lation shows larger pulse delays on the edge of the Stokes beam [Fig. 3.17(c)] as compared

to those of the input pulse. This discrepancy with the experimental observation is a re-

sult of ignoring the coupling between inner and outer regions near the beam focus, around

which place the Stokes seed is initiated. In the SBS generator, a background field at the

Stokes frequency of 10−6 of the pump field seeds the Brillouin backscattering. This initial

Stokes field is smaller for the rays of the beam edges, resulting in a larger delay of the Bril-

louin stimulated backscattering. The approach exploited in the current simulation fails to
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Figure 3.17: Simulated spatio-temporal profiles of the SBS compressed pulses; Left:
Stokes seed from SBS generator; Right: Amplified Stokes pulse from SBS amplifier.

account for the contribution of the more intense central ray to the seeding of the marginal

rays, which should be the key factor to shorten the pulse delay observed in the experiment.

In addition, the spherical aberration from the focusing lens might also play a role in the

reduction of pulse delay.

The simulated pulse width distribution of the amplified Stokes [Fig. 3.17(b)] shows

similar feature as the experimental observation, where the pulses located around the beam

center are further compressed. The lengthened pulse width at the beam edge is attributed

to the incomplete interaction because of the low intensity, as well as the inappropriate

delay between the Stokes seed and pump pulse. The simulated pulse delay distribution for

the amplified Stokes [Fig. 3.17(d)] almost reproduces that of the simulated Stokes seed.

It is worth noticing that the Stokes seed and pump are both collimated beams inside the
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SBS amplifier. Therefore, no extra delay, as the one observed from the SBS generator

simulation, has been introduced to the amplified Stokes in the current simulation. However,

the simulation still does not catch the delay compression, as observed for the amplified

Stokes in the experiment, due to the same reason that we are not considering interaction in

the transverse direction.
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Figure 3.18: Experimentally measured spatial delay distributions of the amplified Stokes
pulses for the cases of 120 mJ and 240 mJ generator input energies being applied

Based on the above discussion, the delay between the edge pulse and center pulse would

be increased if higher input energy to the generator was used. This prediction has been con-

firmed by the experimentally measured spatial delay distributions of the amplified Stokes

pulses. As demonstrated in Fig. 3.18, the spatial delay is larger, when 240 mJ pulses are

used for the SBS generator, in compared to the case of 120 mJ generator input energy being

applied.
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3.6 High-energy sub-nanosecond UV pulse generation

After having achieved high-energy as well as reliable generation of sub-nanosecond laser

pulses at 532 nm, it is straightforward to obtain sub-nanosecond UV pulses via another sec-

ond harmonic generation. Among different nonlinear crystals, BBO and KDP are the most

appropriate ones to convert 532 nm laser beam into 266 nm. BBO crystal has relatively

large nonlinear coefficient deff of 1.75 pm/V for the type I phase matching. Therefore,

it is often used for the frequency doubling of either CW or low energy pulsed laser to

achieve high conversion efficiency. For the case of high energy application, two photon ab-

sorption has often been observed at relatively high UV intensity to reduce the conversion

efficiency. This issue could in principle be resolved by using a crystal with large aperture

size. However, the very large size BBO crystal with good quality is still not available. In

our case, two photon absorption has been observed even a BBO crystal with a dimension

of W16 × H16 × L7 mm3 being used. Another shortcoming of using BBO crystal is its

very small acceptance angle of 0.37 mrad· cm, which makes it to be very sensitive to the

alignment and the divergence of input laser beam.

The KDP crystal can be grown with much larger aperture size. It also has acceptance

angle in the Type I phase matching of almost 7 times larger than that of the BBO crystal. It

is therefore a better choice for our application, even though its nonlinear coefficient deff of

0.463 pm/V is relatively small. To achieve optimum conversion, the crystal length is first

predicted by using the SNLO program. The input parameters (i.e., beam size and super-

Gaussian order) to the simulation are taken from experiment. An average input pulse width

of 500 ps is used since the spatial pulse width distribution can not be simulated by the

program. Based on the above considerations, a crystal length of 10 mm is found to be the

optimum. The aperture size of 50 × 50 mm2 is chosen to accommodate the green beam

size of 30 mm (full width at 1/e2 maximum intensity).

It has been demonstrated in Section 3.4.3 that both compression ratio and output energy
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Figure 3.19: (a) Experiment and simulation of SHG from 532 to 266 nm, for the case
of 120 mJ SBS generator input energy being used; (b) Experiment of SHG from 532 to
266 nm, for the case of 240 mJ SBS generator input energy being used.

of SBS compressor are proportional to the generator input energy. Here, we compare the

generation of sub-nanosecond UV pules while operating the compressor at two different

initial conditions. Figure 3.19(a) shows both the experiment and simulation of SHG from

532 to 266 nm, for the case of 120 mJ SBS generator input energy being used. The maxi-

mum UV energy of 300 mJ, with a corresponding conversion efficiency of 27%, has been

achieved at the maximum green input energy of more than 1.1 J. The simulation is carried

out to compare with the experiment. A large discrepancy is found between the experiment

and simulation, which predicts a maximum UV energy of 500 mJ. The discrepancy between

experiment and simulation could be due to two factors. On the one hand, the assumption of

average input pulse width introduces error in predicting the conversion efficiency from the

simulation. On the other hand, two-photon absorption is not considered by the simulation,

but it definitely plays a role in reducing the efficiency in practice. For the case of 240 mJ

SBS generator input energy being used, the compressed green pulse has shorter duration

therefore higher intensity, which leads to more efficient generation of UV pulse. The max-

imum UV energy obtained in this case is up to 400 mJ, with a corresponding efficiency of

more than 31%.

69



Chapter 3. High-energy sub-nanosecond pulse generation by SBS pulse compression

-15 -10 -5 0 5 10 15
0

500

1000

1500

2000

2500

3000

-15 -10 -5 0 5 10 15
0

500

1000

1500

2000

2500

3000

0 400 800 1200 1600 2000
0

100

200

300

400

500

 Generator input = 120mJ
 Generator input = 240mJ

Pu
ls

e 
w

id
th

 (p
s)

X (cm)

(c)

(b)(a)  Generator input = 120mJ
 Generator input = 240mJ

D
el

ay
 (p

s)

X (cm)

p= 206 ps

In
te

ns
ity

 (a
. u

.)

Time (ps)

Figure 3.20: (a) Spatial pulse width distributions of UV pulses; Inset shows the typical spa-
tial profile of UV beam at maximum energy of around 1.2 J; (b) Spatial delay distributions
of UV pulses; (c) UV pulse recorded by a streak camera with 10 ps resolution.

Besides the characterization of energy performance, the spatio-temporal profiles of UV

pulses have also been investigated and displayed in Fig. 3.20. By comparing two cases of

operating SBS compressor with different generator input energy, the generated UV pulses

are found to have shorter pulse duration but larger delay when higher generator input en-

ergy is employed. The different delay distributions have already been identified from the

SBS compressed pulses, as shown in Fig. 3.18. It has to be pointed out that the temporal

resolution of the pulse detection setup is very close to the pulse duration to be measured.

Therefore,the measured pulse is always longer than the actual pulse. To confirm the min-

imum pulse duration, we have utilized a streak camera that has 10 ps resolution. In the
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Chapter 3. High-energy sub-nanosecond pulse generation by SBS pulse compression

case of 120 mJ generator input energy, the minimum duration of 200 ps for the UV pulse

has been measured by the streak camera, as presented in Fig. 3.20(c). The minimu pulse

duration should be below 170 ps, i.e., the minimum duration shown in Fig. 3.14(f), when

240 mJ generator input energy is applied.

Since larger delay exhibited in the UV pulses would lower the beam intensity and further

complicate the spatio-temporal profiles In the following chapters where the high power

UV pulses are utilized, the SBS pulse compressor is always operated with the total energy

of 2 J and generator input energy of 120 mJ. Finally, the spatial profile of the UV beam

at maximum output energy of 1.2 J is presented in the inset of Fig. 3.20(a). The time

integrated intensity profile exhibits a super-Gaussian distribution. The contamination (low

intensity dots and circles) presented inside the beam has been confirmed to be introduced

by the 266 nm interference filter, which is used to block the remaining green beam.

3.7 Conclusion

In this chapter, the generation of high-energy sub-nanosecond pulses via stimulated Bril-

louin scattering has been systematically investigated. water has been demonstrated better

SBS medium in achieving high-energy and stable SBS pulse compression. Our main focus

of this work has been devoted to resolve the the long existing debate on the minimum pulse

duration that can be achieved via SBS pulse compression. It has been shown that sub-

phonon lifetime compression can readily be achieved in a single-cell setup. The energy

exchange between pump and Stokes pulse is confirmed to be responsible for sub-phonon

lifetime pulse compression

The main issue exhibited in SBS compressed pulses is the delay distribution, which

has been inherited from the Nd:YAG laser with some modification. It is worth mentioning

that the pulse compression ratio does not depend on the spatial delay distributions of the
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input pulses. Therefore, the UV laser performance would be dramatically enhanced if the

spatial delay can be eliminated for the input pulses to SBS compressor. The following

diagram shown in Fig. 3.21 describes an ideal system that is capable of delivering Joule

level sub-200 ps SBS compressed pulses free of spatial delay distribution.

Seeder
TEM00 laser oscillator

Single longitudinal mode

Pulse

Shaper

Beam

Shaper
Amplifier chain

SBS pulse compressor

Energy-scalable generator-amplifier setup

Figure 3.21: Diagram of a new laser system design that is free of spatial delay distribution.

The new system design starts with an injection-seeded Q-switched stable oscillator,

which delivers single longitudinal and single transverse mode laser pulses. A pulse shaper

is employed to shorten the pulses. With short pulses, the modification of spatio-temporal

profile inside amplifiers would be minimized. The length of the SBS cells could also be

shortened. A beam shaper such as liquid crystal spatial light modulator (LCSLM) is utilized

to finely control the beam intensity sent into the amplifiers. A feedback loop could be used

to control the output intensity and the spatio-temporal profile by feeding an input beam

with appropriate intensity distribution. Then, the output from the amplifier chain could be

frequency doubled and further compressed in the SBS compressor.
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Chapter 4

Generation and characterization of

sub-nanosecond UV filaments in air

4.1 Introduction

Since their first observations with both near IR [6] and UV [7] femtosecond to several

picosecond pulses, laser filaments in air have been extensively investigated because of their

wide applications (see review articles [8, 70] and the references therein). To elaborate the

filament formation and propagation, different models have been proposed. For example,

the moving focus model of Brodeur et al. [71] considers the laser pulse to be a stack of time

slices that would either self-focus at different positions or diffract, depending on the power

they carry. Another model proposed by Dubietis [72] emphasizes on the transverse beam

profile shaping by multiphoton ionization that leads to axicon type self-focusing. For those

two models, the preparation phase in air plays a very important role. The third model that

depicts the filament to be a self-induced waveguide [8] is widely cited for its simplicity.

It interprets the filament resulting from a balance between self-focusing due to the spatial

Kerr effect and plasma de-focusing that is associated with the multiphoton ionization. In

73



Chapter 4. Generation and characterization of sub-nanosecond UV filaments in air

our case, when the special tool of aerodynamic window [73] is used, the preparation phase

of the filament formation is completely eliminated. With this initial condition, the filament

is created from a focal spot in vacuum without preparation phase in air. The fact that

filaments are observed under theses conditions validates the waveguiding model, but does

not invalidate the other models, in the case of filaments prepared in air.

Figure 4.1: Filament initiation and propagation described by the self-guiding model.
The positive refractive index change (n2I) resulted from spatial Kerr effect leads to self-
focusing. The plasma generated via multiphoton ionization introduces negative refractive
index change (−2ρ/ρc) to cease the collapse and then diffract the laser beam.

Figure 4.1 shows the schematic representation of filament generation and its propaga-

tion that are described by the self-guiding model. When a laser beam with low power is

focused in air, it propagates linearly with its characteristic length being twice the Rayleigh

range (2noπω
2
o/λo). In nonlinear regime, the laser beam would undergo self-focusing if its

power exceeds a critical valuePcr (Pcr = 3.77λ2
o/8πnon2 for a Gaussian spatial beam [74]).

For example, the critical power in air at atmospheric pressure for laser pulse at 266 nm is

0.13 GW. It is necessary to mention that the concept of critical power applies well to the

quasi-continuous-wave (e.g. the sub-nanosecon UV pulse employed here), but can not be

viewed as a sharp line between the linear and nonlinear propagation of ultrashort pulses,

as recently pointed out by Polynkin and Kolesik [75].

As laser intensity increases dramatically due to the self-collapse, the multiphoton ion-

ization kicks in. The generated plasma via ionization then stops the self-focusing action
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and even diffracts the laser beam because of the negative index change. As sketched in

Fig. 4.1, a balance between the self-focusing and defocusing leads to the formation of a

high intensity beam (i.e., approximately 0.5 TW/cm2 for UV filament and 50 TW/cm2 for

NIR filament6) with its propagation length to be much longer than the Rayleigh range. It

should be noticed that the filament itself only harvests a fraction of the input laser pulse

energy. The remaining portion maintaining low intensity is usually called reservoir that

surrounds and co-propagates with the filament. Such reservoir does not exist with the use

of an aerodynamic window.

During the filament propagation, the laser pulse looses its power via different processes,

such as multiphoton absorption, plasma absorption, new wavelength generation and so on.

The filament finally ceases when the laser power is not enough to balance the diffraction.

For the case of 800 nm filament, the strong conical emission (new wavelength generation)

usually consumes quite a lot laser power and makes the single filament limited by only

less than 1 m length [73]. In the application of filament triggered lightning, it has been

predicted that filament length of more than 10 m is required. Moreover, the femtosecond

filament only carries µJ (UV) to few mJ (NIR) energy, which limits its applications where

high energy deposition is desired.

To increase both the filament length and energy, the UNM group has proposed the long

pulse UV filament [77, 78]. Later, the long pulse UV filament has been both theoretically

investigated and experimentally demonstrated [79]. Since the sub-nanosecond UV source

used in the previous work is very unstable due to absence of single longitudinal mode oper-

ation (no active feedback in seeded operation) and the poor pulse compression in a single-

cell setup, the probability of filament generation has been very low. The characterization

on the filament has also been very limited. In this chapter, we report the experimental ob-

servation of UV filament generation in air, by employing our newly developed high power

UV source. Different initial conditions for the filament generation have been investigated.

6Recent estimate of peak intensity is much higher at I ≥ 1.4× 1014Wcm−2 [76].
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Besides UV filament, the possibility of generating sub-nanosecond green filaments in air

has also been experimentally tested, with the results presented in the end of this chapter.

4.2 Experimental setup

Figure 4.2 presents the experimental setup for UV filament generation and detection. The

UV pulses that have been fully characterized in the previous Chapter with energy of 300 mJ

per pulse are employed for the generation of UV filaments. A plano-convex lens is em-

ployed to focus the UV pulses to localize the filament generation. It has been demonstrated

with the NIR filament that the filament properties [80], such as the filament length, plasma

density [81] and so on, depend on the focusing conditions. Lenses with a focal length rang-

ing from 0.6 m up to 9 m have been chosen to initiate the UV filament. In the case of 9 m

lens being used, the characterization of UV filaments has been performed on the roof of

the CHTM building, where the discharge experiment is carried out.

Figure 4.2: Experiment setup for UV filament generation and detection. Inset shows the
simulated pressure profile of aerodynamic window when high pressure air of 8 Kg/cm2

is input.The grazing plate is HR coated for 355 nm at 0o incidence. With 89o of incidence
angle, the transmittance of 266 nm input beam with S polarization is only 0.5× 10−6. VP:
Vacuum Pump; PG: Pressure Gauge; HPA: High Pressure Air.
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Besides the focal length, another initial condition, i.e., focusing the beam either in air

or in vacuum, can also be varied by employing our special tool of aerodynamic window.

As demonstrated in the inset of Fig. 4.2, a differential pressure in the aerodynamic win-

dow that effectively separates low pressure vacuum chamber (experimentally measured to

be 10 Torr) from atmospheric pressure (around 630 Torr in Albuquerque) on the outside

is created by a supersonic air flow. Since any self-focusing or higher order nonlinearity

is absent in the vacuum chamber prior to the filament formation, the onset of filament

(boundary condition) can be very well defined. By using the aerodynamic window, it has

been demonstrated that the spectral component of NIR filament is strongly dependent on

the preparation medium [82]. For the UV filament, its size dependence on the preparation

phase will be reported.

In filament characterization, we use a digital camera to image the plasma channel. To

measure the filament spatial profile, linear attenuation is a prerequisite. Otherwise, the

high intensity filament can damage any diagnostic optics. One solution is to use a plate

of fused silica at grazing incidence. This was employed by other groups and was also

used to observe the first UV filaments [79]. Unfortunately, the small fraction of the beam

that is transmitted through the plate (6% for θi = 89o) is still above the critical power

for self-focusing in fused silica. The wavefront distortion and self-phase modulation can

be minimized by using a thin plate (≤1 mm). Then, it is however impossible to have the

required flatness of λ/10 over the 10 cm diameter required for grazing incidence.

The solution that we bring is to use a rigid mirror of 6" diameter and 1" thickness with

proper coating. In the case of 266 nm with grazing incidence, the mirror with 355 nm high

reflectivity (HR) coating at 0o incidence could reach an attenuation of 106 [73]. The theo-

retical transmission curves have been verified for eight different wavelengths, at a grazing

incidence of 88.5o. This method of attenuating the beam is limited to linearly s-polarized

beams. Extra care has to be taken to convert the filamenting beam from p-polarization to

s-polarization by using a half waveplate. After the attenuator, a CCD camera is used to
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capture the spatial profile of the filament. By replacing the camera with a spectrometer, the

spectral components of UV filament could also be investigated.

4.3 UV filament generation with different initial condi-

tions

4.3.1 Using different focal length lenses in filament generation

We first investigate filament generation by focusing the UV beam in air. Four different

focal length (i.e., 0.6 m, 1.5 m, 3 m and 9 m) lenses have been employed to explore the

dependence of focusing condition. In this case, the aerodynamic window is not in use.

Figure 4.3: Direct image of plasma channels generated with three focusing lenses of (a)
0.6 m, (b) 1.5 m and (c) 3 m, respectively. The laser beam is propagating from left to right.

The plasma columns generated with 0.6 m, 1.5 m and 3 m focusing lenses are imaged by

78



Chapter 4. Generation and characterization of sub-nanosecond UV filaments in air

the digital camera and presented in Figs. 4.3(a)-(c), respectively. The UV beam propagates

from left to the right hand side. The bluish color captured by the camera is the plasma

emission. In order to have enough brightness, the image is integrated over 35 laser shots. It

can be seen that the generation of UV plasma filament depends on the focusing condition.

When lens of 1.5 m focal length is used, the avalanche ionization featured by a bright

plasma bead has been observed once or twice every 35 shots. The probability in observing

plasma bead is getting much higher to almost every shot when a 60 cm focusing lens is

employed. However, when long focusing lens is used, a smooth plasma channel is created,

as demonstrated by the case of 3 m focusing. In case of NIR plasma filament, the above

mentioned focal length dependence has not been observed. As will be discussed in detail in

Section 4.4, the generation of plasma beads is associated with the spatio-temporal profile

of the input UV pulses that has been quantitatively characterized in the previous chapter.

For the case of 9 m focusing lens, we have not observed plasma beads neither. Since the

long plasma channel is used for triggering and guiding the discharge, a more quantitative

characterization of the conductivity has been performed and will be discussed in detail in

Chapter 6.

Knowing the focusing condition that is appropriate for filament generation, we move to

characterize the UV filament profiles with three focusing lenses (i.e., 1.5 m, 3 m and 9 m).

We first take some reference beam profiles that can be used to compare with the filament

generated with high power UV beam.

The spatial profile of low power beam being focused by a 3 m lens is first recorded at

2.1 m after the geometric focus, and presented in Fig. 4.4(a). No filament or any intensity

modulation is observed, as expected. Next, the spatial profile at full power of the UV beam,

focused by the same 3 m lens, is captured at 1.3 m before the geometric focus. As demon-

strated in Fig. 4.4(b), the filament has not yet started from that point. This measurement

can confirm the observation of a filament recorded 1.3 m after the geometric focus, as will

be shown below. It should be noticed that all the profiles are captured some distance away
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(a) (b)

Figure 4.4: (a) Low power UV beam profile recorded at 2.1 m after the geometric focus
while focused by a 3 m lens. (b) Full power UV beam profile recorded at 1.3 m before the
geometric focus while focused by a 3 m lens.

from the geometric focus. Otherwise, the HR coating for the grazing plate will be easily

damaged because of the high UV energy.

Figures 4.5(a)-(c) show the typical profiles of filament, initiated with different focal

length lenses. In the case of the shorter focal length lens (i.e., 1.5 m and 3 m) being used, the

generated filaments stay in the single filament regime [Figs. 4.5(a) and (b)]. In the case of

a 9 m lens, the spatial profile has been recorded by a digital camera. It is clear that multiple

filaments (high intensity dots) have been generated. As will be shown in Chapter 6, the

multiple filaments last for more than 3 m. The difference in filament generation is attributed

to two factors. On the one hand, the UV beam has been propagated about 30 m to where

the multiple filaments being observed. Since the initial high power UV beam has super-

Gaussian spatial profile that is not a free propagation mode, its intensity distribution evolves

and becomes quite different after the propagation. It has been demonstrated that the critical

power is different for laser beam with different spatial profile [74]. It is therefore reasonable

to observe the difference in filament generation because of the different initial conditions.

On the other hand, the UV beam experiences more turbulence when it propagates on the

roof in an open environment. Intensity modulation of the UV beam acquired from the
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1 cm

Figure 4.5: (a) UV filament profile recorded at 1.05 m after the geometric focus while
focused by a 1.5 m lens. (b) UV filament profile recorded at 2.1 m after the geometric focus
while focused by a 3 m lens. (c) UV filament profile recorded at 1 m after the geometric
focus while focused by a 9 m lens. (d) NIR filament profile cited from reference [83].

turbulence is expected to favor the generation of multiple filaments.

To have a comparison, the multiple NIR filaments generated with similar focusing con-

dition (f=10 m) has been demonstrated in Fig. 4.5(d) [83], which is similar to the UV fila-

ment observed here. In the case of NIR filament, the spectrum is typically broadened, via

nonlinear processes such as self phase modulation and four wave mixing, to cover the range

from visible to near IR. The spectral broadening therefore contributes to the observation of

colorful spots. For the UV filament, the above mentioned nonlinear processes are not pre-

sented because of the lower clamping intensity (0.5 TW/cm2 as compared to 50 TW/cm2

in the NIR). The longer pulse duration of the UV filament favors the generation of discrete
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new wavelength by stimulated Raman scattering with relatively high efficiency, as will be

discussed in detail in the next Chapter.

4.3.2 Filament generation by focusing UV beam in vacuum or air

After having observed filament by focusing the UV beam in air, we bring in the aerody-

namic window such that the initial preparation phase could be controlled for the filament

generation. The 3 m lens has been chosen in this case to focus the UV beam 2 mm before

the exit of the aerodynamic window. The detection setup has been translated along the

beam propagation direction to characterize the filament profiles. When the grazing plate

is placed after the aerodynamic window within 1.3 m, we have observed coating damage,

which therefore limits the measurement to be at least 1.3 m away from the window exit. As

shown in Fig. 4.6, the filament with similar beam size keeps propagating a long distance

Focusing in air

D=130 cm D=170 cm D=210 cm D=250 cm

Focusing in vacuum

Figure 4.6: UV filaments generated with 3 m focusing lens. The filament profiles are sam-
pled at 4 longitudinal positions with D=130 cm, D=170 cm, D=210 cm and D=250 cm,
respectively. The maximum distance is limited by the available laboratory space. Top row:
filaments generated by focusing the high power UV beam in vacuum; Bottom row: fila-
ments generated by focusing the high power UV beam in air without operating the vacumm
chamber.
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that is much longer than the Rayleigh range. By comparing the filaments generated with

two different initial conditions, the filament generated by focusing UV beam in air has a

larger size as compared to the other case, which matches the previous observation [19].

Since there is almost no loss by focusing the UV beam in vacuum, the smaller filament size

in this condition is attributed to be the higher initial power that the UV beam/filament could

carry. It should be pointed out that the filament size (1-2 mm FWHM) characterized here is

quite different from that (300-400µm) of the filament being observed by Chalus [19]. We

attribute the difference being possibly resulted from the different spatio-temporal profile of

the UV pulses.

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0 (b) Air

In
te

ns
ity

 (a
. u

.)

y (mm)

(a) Vacuum
In

te
ns

ity
 (a

. u
.)

y (mm)

Figure 4.7: 1-D intensity profile along Y axis for filament taken at D=1.7 m. (a) UV
beam being focused in vacuum. (b) UV beam being focused in air. Black curve is the
experimental measurement, while red curve is Gaussian fit to the experimental data.

The one dimensional (1-D) intensity profile of the filaments sampled at D=1.7 m have

been extracted from the 2-D profiles presented above and demonstrated in Fig. 4.7. A

Gaussian fit has been made for the experimentally measured profile with good accuracy,

especially for the case of filament generation with UV beam being focused in vacuum.

In the previous theoretical study, it has been shown that the eigenfunction solution of the

simulation has only very little difference from the Gaussian distribution [19]. Therefore, it

is reasonable to have a good match between the experimentally measured profile with the
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fitted Gaussian profile.

4.3.3 Effort on generating filament with UV vortex phase mask

The multiple filaments reported in Fig. 4.5 are always presented at random transverse po-

sitions. With well organized multiple filaments in the transverse plane, a plasma cylinder

or air waveguide (with lower refractive index at the outer side of a cylinder because of air

rarefaction) could be formed. Those specially shaped waveguides could be applied into

the microwave guiding [17] or optical wave guiding [84]. With a similar idea, we have

proposed using UV vortex filament to trap the NIR filament [85].

Intensity pattern

(a)

(b)

(c)

Figure 4.8: (a) Structure of the UV vortex phase mask. (b) The designed intensity pattern
of the vortex beam. (c) The comparison of circular height profile of the designed and
fabricated phase mask.

Experimentally, we employ a UV vortex phase mask provided by Professor Eric John-

son from Clemson University. Figures 4.8(a)-(c) show the phase mask structure, the sim-

ulated UV intensity pattern after the mask and the comparison of height profile for the de-

signed and characterized mask, which are all adapted from [86]. As shown in Fig. 4.8(c),

the characterized structure height has up to 10% difference from the designed value at the
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Azimuthal angle of 360 degree, which is the main reason for the failure in observing vortex

beam, as demonstrated in Fig. 4.9.

Figure 4.9: UV intensity profile after passing through vortex phase mask.

4.4 Experimental test of green filament generation in air

Other than the UV filament, we have also tested the possibility of generating green (532 nm)

filament in air. In this case, part of the SBS compressor output (600 mJ) is directly focused

in air with a 3 m lens. Figure 4.10 presents the picture of beam trace recorded by a digital

camera. A train of plasma beads generated via avalanche ionization have been observed.

The positions where the beads located are around the geometric focus but totally random

for each laser shot. It is worth emphasizing that the self-focusing is balanced by the plasma

defocusing via multiphoton ionization in the filament. With the plasma beads, the laser

beam would be either dramatically attenuated or completely blocked if the plasma fre-

quency is higher than the optical frequency of the laser pulse. It is therefore impossible to

have filament generation in such case.
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Figure 4.10: Photograph of the green beam trace with plasma beads (marked out by red
circles) generated by avalanche ionization when high intensity sub-nanosecond green laser
pulse is focused in air with 3 m lens.

The generation of plasma beads can be well explained by the established theory. It

is known that the inverse Bremstrahlung (heating of the average electron temperature in

an optical ïňĄeld) leads to avalanche when the electron temperature (in eV) reaches the

ionization potential (Ip=12.5 eV for oxygen molecule). The time to reach avalanche can be

expressed as [78, 87]

∆t =
ϵ0cmeω

2

2Iνeffe2
Ip (4.1)

where I and ω are the laser intensity and frequency, respectively; me is the electron mass

and νeff represents the effective rate of momentum transfer between an electron and a heavy

particle. Therefore, the upper limit of the laser pulse duration set by inverse Bremstrahlung

is inversely proportional to the wavelength squared times the intensity of the light.

In the case of 248 nm, the longest pulse duration allowed to form filament is about

4 ns [78]. By considering the filament intensity scaling law (i.e., the clamping intensity

increases as the wavelength gets longer) and the wavelength difference, the longest pulse

duration for 266 and 532 nm lasers are estimated to be 1 ns and 10 ps, respectively. It is

obvious that the pulse duration of our available sub-nanosecond green pulses is beyond the
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upper limit. Hence avalanche ionization is observed even with long focusing condition.

To explain the experimental observation for the case of 266 nm, we need to recall the

spatio-temporal profile of the UV pulses that has been presented in Section 3.6. The UV

pulses located around the beam center have the duration of less than 1 ns therefore would

create a smooth plasma channel. There are however pulses of more than 1 ns located at

the outer region of the beam and delayed from the center pulses. Those long pulses can

act as heater to raise up the temperature of the electrons that have been created earlier via

inverse Bremstrahlung. Being focused with a shorter focal length lens, the intensity of the

heater beam is higher thereby with stronger inverse Bremstrahlung effect, which can lead

to avalanche ionization manifested by the plasma beads.

It is worth mentioning that the above scenario has been experimentally demonstrated

with two lasers [88], where the first femtosecond laser creates a smooth filament plasma

channel and a second delayed nanosecond laser with enough intensity introduces plasma

beads on top of the existing plasma channel. The issue experienced with the UV filament

generation could be eliminated, by employing the UV source that has been proposed in the

end of Chapter 3.
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Chapter 5

Application of filaments for Remote

spectroscopy

Laser filaments have peculiar properties such as long propagation distance, generation of

a continuous plasma channel which includes molecules and ions in excited state, as well

as strong white light emission in the case of femtosecond NIR filament. Those character-

istics make the filament suitable for various techniques of remote sensing. Several pos-

sibilities have been demonstrated so far with the NIR filaments . First, absorption spec-

troscopy of the atmosphere has been performed by range gating the backscattering from

the white light supercontinuum, which has severed as a remote broadband spectroscopic

source [9,89–91]. Second, as a versatile real-time analysis tool, filaments are being applied

for Laser Induced Breakdown Spectroscopy (LIBS) and remote sensing capability of up to

200 hundred meters has been demonstrated [92]. Very recently, intensive studies [93–107]

have shown strong emissions from NIR filaments in both forward and backward directions,

which opened another possibility for remote sensing application. One last technique based

on stimulated Raman spectroscopy has also been recently employed in a proof-of-principle

experiment for gas sensing when combined with Mid-IR filaments [108]. Since the required

backward Stokes pump can only be generated with pressurized gases of mixed N2 and Ar,

88



Chapter 5. Application of filaments for remote spectroscopy

it is still far away from utilizing the proposed scheme for real remote sensing application.

So, can we apply the UV filaments into remote sensing by employing the same tech-

niques as mentioned above? To answer this, we need to recall the difference between UV

and NIR filaments. First of all, the UV filament does not create supercontinuum generation

as already discussed in the previous chapter, which excludes the possibility of utilizing ab-

sorption spectroscopy technique. Second, the strong emission from molecular ions (e.g.,

N+
2 ) observed from NIR filaments always involve population inversion, which is still under

debate of either from electron recollision [107] or multiphoton resonance pumping [109].

Since UV filament can not satisfy either of the requirements, we have not experimentally

observed the typical N+
2 emission at 428 nm from UV filaments.

However, with very narrow bandwidth (< 1 GHz) combined with high energy, UV

filament is the idea source to excite stimulated Raman scattering (SRS), which could be

employed for identifying different species that have distinct Raman modes. The UV fila-

ments are also advantageous in performing laser induced breakdown spectroscopy (LIBS).

With broadband supercontinuum generation, NIR filaments can introduce spectral contam-

ination to the emission spectrum (an effect that can be mitigated through temporal gating).

It is much less problematic for the UV filaments with very narrow bandwidth. Due to its

much higher energy, the UV filaments also create stronger plumes and their associated

emissions. In this chapter, we report on our investigations on both Raman spectroscopy

and LIBS with UV filaments.

5.1 Application of filaments for stimulated Raman spec-

troscopy

In this section, we first show SRS excited by UV filaments in the forward direction. It

is found that the SRS efficiency is gas pressure and pump polarization dependent. Next,
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we investigate the backward emission from UV filaments. So far, we have only observed

backward stimulated Brillouin scattering, which can be employed for sensing application,

but requires a detection setup of high spectral resolution. In the last part of this section,

we report on impulsive stimulated Raman scattering excited by NIR filaments and probed

with weak UV pulses. The latter study is essential in enhancing desired Raman signals

from pollutants under investigation.

5.1.1 Stimulated Raman and Brillouin scattering excited by UV fila-

ments

Experimental setup

Figure 5.1: Experiment setup for the excitation and detection of stimulated scattering from
UV filaments.

To investigate the stimulated scattering excited by UV filaments, we have utilized the

experimental setup illustrated in Fig. 5.1. UV filaments are generated by focusing the full

power UV beam with a 3 m focal length lens into a 5 m long gas cell, i.e., a transparent

plastic tube that is employed to fill different gases with controllable pressure. A quarter-

wave plate (λ/4) is used to control the polarization of the initial laser pulse. In the forward

direction, a 266 nm 450 high reflectivity mirror is employed sometimes to attenuate the

pump beam. Since the high reflectivity (>90%) covers the spectral range from 240 nm to
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290 nm, the first Stokes and first anti-Stokes lines are both much attenuated when the mirror

is used. Another two uncoated wedges are always employed to attenuate the whole output.

The spectral components are then analyzed by either an Ocean Optics fiber coupled spec-

trometer (HR2000CG-UV-NIR) with 1 nm spectral resolution or a DEMON spectrometer

(Lasertechnik Berlin, Germany) with 5 pm or 0.5 cm−1 resolution around 266 nm. The DE-

MON spectrometer is a double-echelle type monochromator with an Andor ICCD camera,

that can be gated via its photocathode. For the backward direction, a CCD camera and a

spectrometer are used to record the backward emission.

Forward stimulated vibrational Raman scattering

We first report on the forward stimulated vibrational Raman scattering excited by UV fila-

ments with linear polarization in different gases (air, N2 and O2). The vibrational lines of

N2 and O2 with the excitation line of 266.05 nm are listed in Table 5.1.

Table 5.1: Vibrational Raman lines of N2 and O2

N2 (∆ν = 2330cm−1) O2 (∆ν = 1556.26cm−1)
order Anti-Stokes (nm) Stokes (nm) Stokes (nm) Anti-Stokes (nm) order
1st 250.52 283.63 277.54 255.47 1st

2nd 236.70 303.70 290.07 245.70 2nd

3rd 224.33 326.83 303.78 236.65 3rd

4th 213.19 353.77 318.86 228.25 4th

5th 203.10 385.55 335.51 220.42 5th

6th 193.92 423.60 353.99 213.11 6th

7th 185.54 469.99 374.63 206.27 7th

Figure 5.2 presents the Raman signal from air at different pressures. At atmospheric

pressure (12 psi or 630 torr in Albuquerque), up to 2nd order Stokes and anti-Stokes lines

have been observed, as demonstrated in Fig. 5.2(a). Since the Raman signal is relatively

weak, the HR mirror is not used in this case, which explains the saturation of the laser line.

It is known that the Raman gain is proportional to the density of molecules [64], which can

be controlled by tuning the gas pressure. As shown in Figs. 5.2(b) and (c), higher order
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Figure 5.2: Forward stimulated vibrational Raman scattering excited by UV filaments from
air with different pressures; (a) 12 psi; (b) 16 psi; (c) 21 psi. The observed spectra only
contain the vibrational lines from N2.

Stokes and anti-Stokes lines have been obtained as the air pressure increases from 12 psi

to 21 psi. The intensity of vibrational lines near the laser line as well as the laser line itself

have been attenuated by the 266 nm HR mirror. In order to capture the highest order Stokes

line, the lower order Stokes lines are kept saturated.
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Figure 5.3: Vibrational Raman spectrum of pure (a) N2 and (b) O2 at the pressure of 21 psi.

By comparing the observed lines with the ones listed in Table 5.1, it is found that only

vibrational lines from N2 have been obtained. Since the air still has 20% of O2, the ques-
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tion is why the Raman lines from O2 have not been observed. To understand the reason,

the vibrational Raman spectrum from pure N2 and O2 at 21 psi have been acquired, as

demonstrated in Fig. 5.3. In the case of N2, up to 7th order Stokes line has been observed.

The energy of the Raman signal has been measured and converted to be up to 30 mJ by

considering the attenuation of 266 nm HR mirror. The corresponding energy efficiency is

as high as 10%. In the case of O2, the 266 nm HR mirror is not used in order to obtain the

much weaker Raman signal, as shown in Fig. 5.3(b). The first order Stokes line from N2

that is attenuated by more than 90% is still much stronger than the unattenuated first order

Stokes line from O2. This indicates that the O2 vibrational Raman signal has been buried

under the much stronger signal from N2 when air is under investigation.

Forward stimulated rotational Raman scattering

Besides the vibrational lines, the rotational spectrum can also be used to distinguish dif-

ferent species. The results shown above have demonstrated that the vibrational lines over-

whelm the Raman spectrum, which makes it very difficult to observe the rotational lines.

However, it is found that the intensity ratio between the vibrational line and rotational line

can be controlled by the pump polarization. As demonstrated in Fig. 5.4(a) the rotational

lines around 266 nm from N2 can be enhanced with circularly polarized pump. In the

meanwhile, the vibrational lines are suppressed. For the case of O2, the rotational lines are

however found to be insensitive to the pump polarization, as illustrated by Fig. 5.4(b). The

difference mentioned above can be attributed to the different orbital structures of N2 and

O2, which are presented as the insets in Fig. 5.4.

With circularly polarized pump light, we further analyze the rotational lines of N2 as-

sociated with the main 266 nm laser line and the first vibrational Stokes line. Figure 5.5(a)

shows the stimulated rotational Raman spectrum around the laser line, which covers several

nanometers range. Since the high resolution spectrometer has limited spectral window for

each measurement, successive spectra taken at different central wavelength and represented
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Figure 5.4: Polarization dependence of rotational Raman spectrum of pure (a) N2 and (b)
O2 at the pressure of 21 psi. The insets show the Dyson orbital structures of N2 and O2 that
are cited from reference [110].

with different color lines have to be stitched together. The gain factor for each measurement

has also been labeled by the magnification number to indicate the relative intensity among

different parts of the Raman spectrum.

To study the details, we first zoom in to the region around the laser line, as demonstrated

in Fig. 5.5(b). We also convert the horizontal axis to wavenumber shift as is convention-

ally used for Raman analysis. It has been reported [111] that the wavenumber shift of the

rotational Raman lines with respect to the pump line are given by

∆ν̄ = B (4j + 6)
(
cm−1

)
(5.1)

where B is the rotational constant in unit of cm−1 and j is the rotational angular momentum

quantum number. The pure rotational Raman scattering follows the angular momentum

selection rule with ∆j = ±2 for two successive dipole transitions. Then, it is found that

the spacing between two successive lines corresponding to either two odd-j or two even-j
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Figure 5.5: Stimulated rotational Raman spectrum of pure N2 around the laser line at
266.05 nm with circular polarization; (a) Full spectrum; (b) A zoomed in spectrum around
the laser line; (c) Identification of three different sets of rotational lines; Solid lines: Rota-
tional lines derived from the laser line; Dashed lines: Each line is an accumulation of the
2nd order rotational Raman lines derived from the 1st order rotational Raman lines with
Stokes shift; Dotted lines: Each line is an accumulation of the 2nd order rotational Raman
lines derived from the 1st order rotational Raman lines with anti-Stokes shift. Magnifica-
tion number shown in (a) indicates the gain used for each spectrum measurement.

numbers is 8B. The spacing between two successive lines corresponding to one odd-j and

one even-j numbers is 4B. It should be noticed that the spacing between the first line and

the laser line is 6B.
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It has been shown for N2 that the intensities alternate by a factor of 2 between the even-

j and odd-j terms of the Raman spectrum due to the influence of the nuclear spins [111].

From our measurement, the intensity alternation has however not been observed. The ro-

tational lines corresponding to odd-j numbers are missing. Actually, similar experimental

observation of only rotational lines corresponding to even-j numbers from neutral N2 has

been reported in [102]. It therefore indicates that the excitation of rotational lines might

depend on other factors that need to be identified.

Supposing the widest spacing between two successive lines is 8B, we can extract the

mean value of the B constant from the measured spectrum to be 1.96 cm−1, which matches

fairly well with the quoted value of 1.998 cm−1 from reference [112]. It is worth mentioning

that the spectral resolution of the spectrometer is 0.5 cm−1, which we believe is responsible

for the discrepancy in B values. By using the derived B value, the first rotational Stokes

Raman line with j=0 (∆ν̄ = 6B) and other Stokes lines corresponding to even-j numbers

(up to j=56) can readily be identified. For the anti-Stokes side (with positive wavenumber

shift), the first two lines (j=0,2) have not been observed mainly because of their weak in-

tensity (i.e., weaker than the first two Stokes lines). Other rotational anti-Stokes Raman

lines that correspond to the even-j numbers have also been labeled as shown in Fig. 5.5(b).

It can be seen in Fig. 5.5(b) that there are still some unidentified peaks. To have better

visibility with those small peaks, we have modified the vertical axis of Fig. 5.5(b) to get

Fig. 5.5(c). All the rotational lines labeled in Fig. 5.5(b) have been relabeled with black

solid line in Fig. 5.5(c). After examining other peaks that have enough signal to noise ratio

(SNR), an interesting phenomenon has been found with all those unlabeled peaks having

the spacing of either 2B or 6B to its nearest two lines that have been previously labeled.

This indicates that those unlabeled peaks could be the 2nd order rotational Raman lines,

which have been shifted from the 1st order rotational Raman lines (labeled by solid lines)

by 6B and have the same spacing of 8B. Depending on the shifting direction (i.e., shifting

either to the left or to the right), we have labeled two sets of Raman spectra with either
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dashed (Stokes) or dotted (anti-Stokes) lines.
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Figure 5.6: A sketch to explain the generation of 2nd order stimulated rotational Raman
lines (a) Generation of 1st order stimulated rotational Raman lines from the laser line; (b)
Generation of 2nd order stimulated anti-Stokes rotational Raman lines from the first 1st

order anti-Stokes rotational Raman line; (c) Generation of 2nd order stimulated anti-Stokes
rotational Raman lines from the second 1st order anti-Stokes rotational Raman line; (d)
Summation of all the 2nd order stimulated anti-Stokes rotational Raman lines from each of
the 1st order anti-Stokes rotational Raman line;

Now, we try to confirm the above assumption by taking two lines L1 and L2 as examples

[Fig. 5.5(c)]. Figure 5.6 shows a sketch to explain the generation of 2nd order stimulated

rotational Raman lines step by step. First, both 1st order Stokes and 1st order anti-Stokes

rotational lines are created from the laser line as demonstrated in Fig. 5.6(a). The spacing

between the laser line and the first Stokes (anti-Stokes) Raman line is 6B. The comb spacing
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for the rest of lines is 8B. To simplify the explanation, we ignore the amplitude distribution

of all the lines and only choose the 1st order anti-Stokes lines for the further generation of

2nd order anti-Stokes Raman lines. The conclusion will however not be scarified by the

above assumption.

As sketched in Fig. 5.6(b), the first 1st order anti-Stokes rotational Raman line can

create its own anti-Stokes comb, where the first 2nd order line is shifted 6B away from that

line. Other 2nd order lines are again with equal comb spacing of 8B. It is interesting that

the newly generated comb (dotted lines) is just shifted from the original comb (solid lines)

by 6B. Similarly, the second 1st order anti-Stokes rotational Raman line can also create its

own 2nd order anti-Stokes comb as shown in Fig. 5.6(c). The same process can be repeated

until the last 1st order anti-Stokes line. Then, by adding all the combs together, the 2nd

order anti-Stokes comb has its highest amplitude for the last line L2 at its right side.

Similarly, a 2nd order Stokes comb with its highest amplitude for the line L1 can also

be generated. Since it is always more efficient in the generation of Stokes comb, the ampli-

tude of the Stokes comb should be larger than that of the anti-Stokes comb. Using the same

concept, another two 2nd order combs can also be found to the Stokes side of the laser line.

Indeed, the above analysis matches very well with the experimental observation, which cor-

roborates our assumption. It should be mentioned that we have also taken other rotational

spectra associated with higher order vibrational Stokes and anti-Stokes lines. We will not

show them here again since similar features as demonstrated above have been observed.

Backward stimulated Brillouin scattering

Besides the forward emission, we have also investigated the backward emission, which

is always desired for remote application. So far, the only detected stimulated backward

signal has been identified as the backward stimulated Brillouin scattering from atmospheric

pressure air. The spatial profile of the backward emission presented in Fig. 5.7 has only
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been recorded when the pump energy is above a certain value, which is the feature of a

stimulated process. The spectrum of the backward emission confirms it to be SBS signal.

There are different studies that utilize the Brillouin shift as the tool for sensing application.

It however requires very high spectral resolution detection setup. In our case, the spectral

shift of SBS signal from the the pump laser wavelength is still too small to be identified,

even with the high resolution spectrometer. The much weaker signal from spices with low

concentration sets another difficulty in remote sensing application. This issue can hardly

be resolved with SBS, but can be overcome by the impulsive stimulated Raman scattering.

Figure 5.7: Spatial profile of the backward stimulated Brillouin scattering excited by the
UV filaments from atmospheric pressure air. The spectrum shown in the inset confirms
that the backward signal is SBS.

5.1.2 Impulsive stimulated Raman scattering excited by NIR filaments

and probed with weak UV pulses

In sensing application, the particular pollutant under investigation usually has very small

concentration. The strong Raman signal from Nitrogen and Oxygen would possibly over-

shadow the spectral components that are of interest. One technique that is under investi-
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gation is the possibility of selective excitation of the molecules with a properly formatted

sequence of femtosecond pulses (comprised in a 800 nm filament). Only the molecular

vibration or rotation in synchronism with the sequence of pulses will be excited, and will

produce a more intense Raman signal. The improved signal to noise ratio in Raman detec-

tion will enable the detection of species that are in low concentration.

Figure 5.8: Experimental setup for impulsive stimulated Raman scattering. The UV and
NIR beams are combined after passing through 3 m focal distance lenses. GP is a set of
grazing incidence plates for attenuation. SHG is a LBO second harmonic generating crystal
for frequency doubling the 800 nm pulses.

For preliminary study, we employ the 50 fs NIR filament with linear polarization (not a

formatted sequence of femtosecond pulses yet) as the excitation source, which impulsively

creates the rotational wave packets of N2 at atmospheric pressure. Then, a temporally

synchronized weak UV pulse is co-propagated with the NIR filament to probe the rotational

states, which in turn creates Raman lines. The experimental setup is shown in Fig. 5.8.

The UV energy used is only 20 mJ for this demonstration. The two beams are combined by

a dichroic beam splitter. Several grazing incidence plates are used to attenuate the beam,

before it is sent to a monochromator that has several angstrom resolution. The two lasers are

synchronized electronically. There is however a ns jitter inherent to the Q-switch seeding

process [21]. The timing between pulses is monitored by a fast UV vacuum photodiode,

which is detecting the UV beam and the second harmonic of the NIR pulse.

Figure 5.9(a) shows the rotational spectrum recorded in the forward direction. Since
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(c)

(a) (b)

Figure 5.9: (a) Impulsive rotational Raman spectrum of nitrogen. (b) Dependence of the
Stokes and anti-Stokes signals on the infra-red intensity. (c) Dependence of the signal on
the relative delay between NIR and UV.

the excitation has been performed at atmospheric pressure, the Raman signal has been

randomly probed by the weak UV pulse due to the fairly low Raman gain. The probed

Raman signal (i.e., the shifted UV spectrum) is therefore represented by counts, instead of

the intensity. Note that the UV radiation is spectrum sufficiently narrow so that there is no

measurable scattering from the 266 nm laser at the two data points on either side of the laser

line. The energy scan in figure 5.9(b) shows a clear threshold for this nonlinear process.

We have not observed a dependence on the UV energy when it is scanned at the level of 10s

of mJ. Figure 5.9(c) is a plot of the Raman signal dependence on the delay between the NIR

impulse and the UV Raman pump. Because of the relatively long duration of the near-IR

pulse as compared to the vibrational period of most molecules, the test experiments have
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only been conducted on the rotational excitation of nitrogen. For the future experiment of

selective excitation, a pulse shaper [113] or an even more complicated laser system [114]

needs to be developed for the generation of pulse trains.

5.2 Highly efficient backward stimulated Raman scatter-

ing in water7

It has been mentioned earlier that there is large interest in generating backward stimulated

Raman scattering for sensing application. It is however very hard to succeed in gases even

with high intensity filaments. In liquids, the backward stimulated Raman scattering has

been demonstrated short after the invention of the laser. But the conversion efficiency is

often low. In this section, we report our investigation on the generation of backward stimu-

lated Raman scattering in water with high efficiency and high energy. The new mechanism

revealed here might be applied for the generation of backward stimulated Raman scattering

in gases.

5.2.1 Background

Stimulated Raman scattering (SRS) was first observed in organic liquids [116,117] pumped

by Q-switched pulses, and later reported from water excited by a higher intensity mode-

locked subnanosecond laser [118]. It has been noticed that, using nanosecond pulses, stim-

ulated Brillouin scattering (SBS) is the dominating process because of its larger steady-

state gain coefficient as compared to the SRS process [118–120]. Recent experiments have

demonstrated that the SBS efficiency could reach as high as 98% in liquid fluorocarbon [61]

and 75% in water [51] provided that a single-longitudinal-mode Q-switched laser is used.
7Portions of this section have been published in C. Feng et al., Opt. Express 23, 17035-17045

(2015) [115]
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SBS however is reduced when the pump pulse width is close or smaller than the phonon

life time, due to the smaller transient SBS gain. With reduced depletion into SBS, mode-

locked picosecond [121] and subnanosecond [122] pulses were employed to enhance the

forward SRS. Extremely efficient forward SRS conversion up to 80% has been obtained.

Besides SBS and forward SRS, backward stimulated Raman scattering is a third process

pumped simultaneously by the input laser. The early theory [123] predicts that the back-

ward to forward SRS intensity ratio should be unity under steady-state condition. However,

experiments have shown large discrepancies, i.e., the ratio is less than 10−2 if pumped with

subnanosecond or shorter pulses [122, 124]. A ratio of more than unity has also been

reported by Maier et al. [120], where a Q-switched nanosecond pulse (15 ns) is used to

obtain a maximum backward SRS energy of 1.5 mJ from CS2. The competition between

SBS and SRS is again attributed to the suppression of backward SRS. Several factors, such

as cross section difference, multimode excitation and self-focusing, appear to contribute to

the backward to forward SRS ratio. Among those three, self-focusing has clearly shown

its importance in changing the ratio by favoring the forward emission [125, 126]. There-

fore, both SBS and self-focusing should be minimized in order to achieve better backward

SRS efficiency. Based on this fact, Chevalier et al. [127] have demonstrated a very high

backward SRS efficiency of 40% by choosing a material (i.e. acetone) with a maximum

Raman gain (g) to nonlinear index (n2) ratio, and by pumping with mode-locked picosec-

ond pulses. It is worth noticing that the maximum backward SRS energy is obtained at

the pump energy of 1 mJ. A further increase in pump intensity leads to a quick drop of

the backward SRS generation, associated with an efficient build-up of filaments inside the

liquid. It is concluded that the backward SRS energy is not scalable if picosecond pump

pulses are used.

Other than the common competition existing between SBS and SRS, Zhang et al. [128]

have reported the pumping effect of SBS on SRS by focusing single-mode nanosecond

pulses into a liquid droplet. The droplets provide whispering gallery mode resonators for
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the SBS generated from the pump laser and confine both SBS and SRS along the entire

droplet circumference for maximum spatial overlap. The highly correlated spatial profiles

of SBS and SRS indicates that the SRS is pumped by SBS. This is further confirmed by

the temporal correlation as well as the SRS threshold measurements. Very recently, Liu

et al. [129, 130] have extended the pumping effect of SBS on backward SRS into a more

universal case of optical cell experiment. By focusing single-mode nanosecond pulses into

a water cell with focused depth up to 1.8 m, the correlation on SBS and backward SRS en-

ergies is found to support the existence of pumping of SRS by SBS. A maximum backward

SRS energy of 0.25 mJ, corresponding to an efficiency of 0.03%, has been achieved. It has

also been shown that the backward SRS excited by the pump laser and by SBS co-exist and

could not be distinguished [130].

In this section, we demonstrate backward SRS generation of high energy (4.5 mJ) and

high conversion efficiency (9%) from a water cell. For the first time, a special ring-shaped

backward SRS profile, which is associated with the spatial dependent pulse width distri-

bution of pre-compressed pump pulse, is reported. We present evidence that the backward

SRS results from forward pumping by backward SBS, based on different correlations be-

tween SBS and backward SRS generated from Raman cell. Our study on the evolution of

filament generation in water under different pump inputs leads to an understanding of our

measurements on SRS, as well as the results [120, 127] obtained earlier with pump pulses

of different duration.

5.2.2 Pump source for the Raman cell

In most prior experiments of stimulated Raman scattering, the pump is produced by a stan-

dard inversion laser. The source used in the present investigation is based on backward

SBS, which has been detailed in Chapter 3. The pump source for Raman generation is only

a single 2.5 m long oscillator, and does not include the amplifier cell. It has been demon-
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strated in Section 3.5 that the pulse width of the SBS compressed pulses is radial position

dependent, as demonstrated in Fig. 5.10(a) again for the primary pump energies of 10 and

50 mJ. The energy of this SBS compressed pulse is plotted as a function of primary pump

pulse energy in Fig. 5.10(b). The beam profile of the SBS generated in this cell ranges from

25 mm at 50 mJ output, to 30 mm at maximum output energy (400 mJ).
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Figure 5.10: (a) Spatial pulse width distributions of the pump generated in the first cell,
at the energies of 10 and 50 mJ; (b) Energy and efficiency of the SBS cell generating the
pump pulse, as a function of the primary Nd:YAG pulse energy

5.2.3 Experimental setup

The experimental setup sketched in Fig. 5.11(a) includes the SBS generator described in

the previous section, followed by a 54 cm long water cell (SRS cell). The pump beam is

coupled out through TP2 [Fig. 5.11(a)], focused by the lens L2 and directed by two mirrors

into the SRS water cell. The latter is slightly tilted to spatially separate the backward signal

and surface reflections. The polarization of the SRS pump can be manipulated with the

quarter-wave plate QW2. The position of the lens L2 is adjusted to have the focal spot at

27 cm from the entrance window, a depth chosen to match half of the spatial length of the 2

to 3 ns pulses.The coupling optics between the two cells implies a reduction factor of 2.8,

hence an input diameter ranging from 9 mm at 50 mJ to 11 mm at 400 mJ. The dichroic
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mirror (DM) with >99% reflectivity at 532 nm and ∼95% of transmittance around 650 nm

allows the backward SRS to be coupled out and characterized. We measure the output

energy, the spatial and temporal profiles for both SBS and SRS as well as the filament

generated by the pump beam.

Figure 5.11: (a) Schematic of experimental setup for SRS generation. The combination of
a half-wave plate HW and a thin film polarizer TP1 is used to control the energy of the pulse
(the pulse radial profile is I(r) = exp(−2r4/w4) with w = 15 mm) focused by the lens L1

(effective focal length of 2.2 m in water) into a first SBS cell. The quarter-wave plate QW1
makes the SBS p-polarized to transmit through the thin film polarizer TP2, to provide a
pump for the second (SRS) cell. This pump is focused (lens L2 of 50 cm focal length)
onto the 54 cm Raman cell via the dichroic mirror DM. Its polarization is controlled by the
quarter-wave plate QW2. Different color filters (CF) are used to block the unwanted beams
after both backward SRS and forward SRS are collected by lens L3 and L4, respectively.
Throughout the whole section, “backward SRS” refers to the propagation of the Raman
radiation towards the left of the second cell. (b) Ring-shaped backward SRS profile at the
pump energy of 50 mJ. (c) Typical forward SRS profile with the pump energy of more than
50 mJ.

5.2.4 Experimental results

Stimulated Brillouin scattering: energy and efficiency

The energy characteristic of the SBS generated by the compressed source differs signifi-

cantly to those of nanosecond pumped SBS shown in Fig. 5.10(b). In the latter, the energy
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efficiency increases monotonically to approach 76% at 500 mJ, in agreement with previ-

ous reports [47,61]. The backward SRS is observed to appear randomly at an input energy

around 400 mJ (SBS output energy of ∼300 mJ) and becomes stable when the input energy

exceeds 500 mJ. A similar behavior has been reported by Liu et al. [129]. This energy be-

havior of SBS generator is characteristic of steady state generation [131]. By contrast, the

energy characteristic of the SBS generated in the second cell [Fig. 5.12] shows a transition

from steady state at low energy to transient. Because of the compression in the first cell,

the pump in the second cell is of higher power (up to 1 GW) but less energy. As a result,

the energy efficiency curve shown in Fig. 5.12 saturates at a relatively low energy, to peak

at 45 mJ, and subsequently drops with increasing energy. The maximum SBS efficiency

obtained is only about 20%, which can be explained by the shorter pump pulse duration

(closer to the phonon lifetime of 295 ns in water at 532 nm) implying a smaller backward

gain and SBS energy conversion to backward SRS.
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Figure 5.12: SBS output energy (left scale) and the corresponding efficiency (right scale)
from the short SRS generating cell
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Stimulated Raman generation: energy and stability

The pump radiation into the second cell results not only in generation of backward SBS, but

also both backward SRS (with respect to the pump) and forward SRS (in the direction of the

pump). Chevalier et al. [127] have reported that the backward SRS conversion efficiency in

some materials could be enhanced by choosing circular pump polarization. Therefore, the

backward SRS generations with both linearly and circularly polarized pump are compared.

Figure 5.13(a) shows the SRS output energies at two different pump polarizations.
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Figure 5.13: (a) SRS output energies at both linear and circular pump polarization; (b)
Relative Standard Deviation (RSD) of SRS energy at circular pump polarization. Forward
and backward denote the SRS propagation direction with respect to the pump; Linear and
circular refer to the pump polarization.

The energy dependence of the SRS does not follow the exponential dependence shown

in [132], except at the lowest pump energies. In the case of forward generation, the en-

ergy dependence of the Stokes signal turns to linear, typical of saturation. Consistent with

Chevalier et al. [127], a larger conversion for circular polarization than for linear polariza-

tion is observed at low energies. With increasing energy, the pump pulse duration reduces,

resulting in (i) a decrease in backward conversion, and (ii) filamentation, as the peak inten-

sity of the pump pulse increases.

108



Chapter 5. Application of filaments for remote spectroscopy

The SRS energy fluctuation is also measured, as illustrated in Fig. 5.13(b), for the case

of circular pump polarization. Similar behavior is observed for the pump with linear po-

larization (not shown here). It should be noted that the maximum 532 nm pump energy

used in the first cell for SBS is below the threshold (400 mJ) for backward SRS genera-

tion. Therefore, no SRS signal from the first cell is seeded into the second cell. Several

observations regarding the SRS generation are worth emphasizing. First, the generation of

backward SRS is more efficient and more stable than that of forward SRS when the pump

energy is below a certain threshold. The same observation indicating that the backward

SRS to forward SRS ratio could even be larger than 1, has also been reported in the early

work of Maier et al. [120] where a nanosecond pump pulse is used. Next, both backward

SRS and forward SRS generation are pump polarization dependent. Backward SRS gen-

eration with a circularly polarized pump is more efficient, while forward SRS shows the

opposite trend. The maximum backward SRS energy and conversion efficiency achieved

are 4.5 mJ and 9%, respectively, when circularly polarized pump is employed. Last, the

backward SRS generation saturates around a pump threshold and drops at higher pump

energy. By contrast, forward SRS generation shows a sharp increase once the pump energy

exceeds the same threshold as mentioned above. Since the circularly polarized pump ex-

cites backward SRS more efficiently, further experimental measurements presented below

are based on the circularly polarized pump.

Spatial profiles and their corresponding intensities

The evolution of the spatial profiles of backward SRS presented in Fig. 5.14 shows some

correlation with the energy plots of Fig. 5.13. Not shown in the figure are the profiles at the

lowest pump energies, between 2 mJ (threshold for backward SRS) and 10 mJ, where the

backward SRS profile evolves from a single spot (2 to 5 mJ) to 2 spots (8 mJ). This evolution

continues from 5 spots (10 mJ) to a increasingly large number, as seen in Fig. 5.14(a). The

same observation has been reported by Chevalier et al. [127]. As the pump energy increases
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SRS SRS SRS

SBS SBS SBS

Figure 5.14: Spatial profiles of backward SRS and SBS taken with a digital camera at
different pump energies; (a) and (d), 10 mJ; (b) and (e), 50 mJ; (c) and (f), 100 mJ; Fringes
next to SBS profile are due to the leakage of back-scattering through the edge of the dichroic
mirror.

from 10 to 50 mJ, a ring-shaped pattern appears in the backward SRS profile [Fig. 5.14(b)].

The ring shape starts to break up into spots again [Fig. 5.14(c)] with a further increase of

the pump energy and the corresponding backward SRS energy also gradually drops from

its maximum value. Irregular backward SRS profiles are later observed if higher pump

energies (>100 mJ) are used.

The pump SBS itself can generate its own backward SBS signal, which then propagates

in the same direction as the backward SRS shown in Figs. 5.14(a)–(c). It is interesting to

compare the corresponding profiles of SBS, which are recorded in Figs. 5.14(d)–(f), with

that of backward SRS. The profiles of SBS and backward SRS are highly correlated at

pump energies around 50 mJ. By choosing appropriate filters to balance the contrast of

green and red colors, the overlap of two rings is observed, which shows clear evidence that
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the backward SRS is driven by the SBS under current experimental conditions. It is worth

emphasizing that, if backward SRS were to be excited by the pump itself, the high intensity

portion of the backward SRS profile should be at the beam center [see forward SRS profile

in Fig. 5.11(c)], where the pump beam exhibits its highest intensity.

In addition, we have measured the ratio of the intensity of the radiation in the ring and in

the center of the hole, for both SBS and backward SRS. At the pump energy of 50 mJ, this

ratio in the backward SRS beam is about 3 times of the ratio measured in the SBS beam.

This is to be expected, since the generation of backward SRS is nonlinearly dependent on

the SBS (pump) intensity before the saturation is reached, as discussed in Section 4.2.

Spatial pulse width distributions

Measurements of the spatio-temporal profile of the pump pulse further demonstrate that

the backward SBS is generating the backward SRS. A cross-section of the pulse width

distribution in the pump beam at 10 mJ and 50 mJ was shown in Fig. 5.10(a). The SBS gain

in the second cell is decreasing with decreasing pulse width, with the steepest dependence

when the pulse duration approaches the phonon lifetime of 295 ps. The SBS reflectivity

is moderate and uniform at the pump energy of 10 mJ, where the pump pulse duration

remains above 1 ns across the beam. The backward generated SBS beam has a Gaussian

like profile [Fig. 5.14(d)]. However, when the pump energy is increased to 50 mJ, the

minimum pump pulse width reduces to be 500 ps [Fig. 5.10(a)], quite close to the phonon

lifetime. The corresponding SBS reflectivity around the beam center is then dramatically

lowered due to the reduced transient SBS gain. The gain remains however high on the edges

of the beam, where the pulse duration exceeds 1 ns. Therefore, a ring-shaped SBS profile

is formed. As a result of the increasing hole in the center of the beam, the SBS efficiency

decreases [Fig. 5.12]. At increasing pump energies, the portion of the pump beam with a

few hundred ps duration increases in diameter, resulting in further reduction in efficiency.

This is verified by the SBS profile with a larger hole taken at the pump energy of 100 mJ
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[Fig. 5.14(f)].

If the backward SRS were to be excited directly from the pump, it would have a profile

with a higher intensity at the left side, corresponding to the shortest pump pulse duration

seen also at the left side of the beam. However, the intensity distribution of backward SRS

simply follows that of SBS beam, which exhibits less intense beam at the left side.

-1.0 -0.5 0.0 0.5 1.0
100

200

300

400

500

 

 

Pu
ls

e 
w

id
th

 (p
s)

X (a. u.)

 SBS

 Backward SRS

Figure 5.15: Spatial pulse width distributions: pulse width of SBS and that of backward
SRS at the corresponding positions at the pump energy of 50 mJ. Due to the limited tem-
poral resolution of the pulse detection setup (140 ps rise-time), the actual SRS pulse width
could be much shorter than indicated in the figure.

The spatial pulse width distribution of SBS beam at the pump energy of 50 mJ is pre-

sented in Fig. 5.15. The horizontal axis is normalized such that the pulse width of input and

output could be compared directly. Since the focused depth is chosen to match the longest

pulse width at the beam edge, pulses within the whole beam area are efficiently compressed.

It is worth mentioning that the shortest pulse width achieved is below the phonon lifetime,

which further increases the SBS intensity. The backward SRS pulse width at the corre-

sponding position is also measured and presented together with the SBS pulse width. The
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pulse width of backward SRS is seen in Fig. 5.15 to be shorter than the SBS pulse width,

which agrees to prior theoretical [130] and experimental [120] observations. The back-

ward SRS and SBS appear to be correlated. For instance, the backward SRS shows shorter

pulse width at the position where the SBS pulse width is also shorter. This provides further

evidence of the pumping effect of SBS on backward SRS.

Evolution of filament generation

Figure 5.16: Evolution of filament generation in water under different pump energies; (a)
2 mJ; (b) 10 mJ; (c) 50 mJ; (d) 100 mJ; The pump beam propagates from left to right.

Based on the correlations existing between different parameters of SBS and SRS, we

have established that backward SRS could be efficiently driven by SBS. In this section we

investigate the propagation of the pump (which is the SBS from the first cell in Fig. 5.11(a)),

and the evolution of the backward SRS profile. It has been shown that the backward SRS

is initiated by self-focusing [120] and its evolution related to filament generation [127].

The tracks of filaments are recorded in the photographs of Fig. 5.16, for different pump

energies. At low pump energy of 2 mJ, both backward SRS and forward SRS generations
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are observed to appear randomly as a single small spot. As the pump energy increases,

the number of backward SRS spots increases because of the generation of transversely dis-

tributed multiple filaments, which could not be resolved because of the limited spatial res-

olution [Fig. 5.16(b)]. At higher pump energy longer filaments are generated. As reported

in [127], with increasing pump pulse energy, those backward SRS spots gradually disap-

pear or become irregular areas. As mentioned in the previous sections, the ring-shaped

SBS also starts to build up and excites the backward SRS, giving it a similar profile. At

the pump energy of 50 mJ, only two main filaments [Fig. 5.16(c)] 8 are shown to co-exist

inside the beam center area, which ensures the generation of a regular ring shape. However,

more filaments [Fig. 5.16(d)] are at the beam edge with even higher pump energy. Spots

are observed again within the ring-shaped backward SRS profile [Fig. 5.14(c)]. The back-

ward SRS energy also drops since the forward SRS generation is enhanced by the filament

generation. Because of the competition existing between backward SRS and forward SRS,

the stability of their energies thus shows opposite tendency.

5.2.5 Optimization of the conversion efficiency in Raman

In this section we analyze the factors influencing the efficiency and high energy conversion

into backward SRS, based on our data and those of [127, 129]. Our understanding of the

mechanism of SRS generation leads to the conclusion that it is only possible to meet the

conflicting requirements of high energy and high efficiency to backward SRS in a setup

with multiple cells.

All observations converge to the conclusion that, in the backward direction, SBS is the

primary and more efficient mechanism, and is a source of SRS in the same direction. The

first element of the cascade pump SBS – backward SBS — SRS requires high efficiency and

efficient compression of the pump SBS. Intensity enhancement could readily be satisfied

8Those two filaments might not be well distinguished due to the limited resolution.
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since the SBS process is well known for its application in pulse compression [52]. In

order to achieve best intensity enhancement, i.e., single compressed pulse and high energy

efficiency, a focused depth (of the pump) of ≥1 m inside the medium is typically required

to match half to full of the spatial length [cτp/n, where τp is the pulse width (FWHM) and n

is the index of refraction of the SBS medium] of the single-mode nanosecond input pulse.

After the focused depth (f ) is chosen, a small f -number (f /D) therefore a large input beam

diameter (D) is also needed to keep the Rayleigh range small such that the point, where SBS

starts to build up, is less dependent on the pump energy. Both larger f -number and higher

pump energy tend to move the SBS build-up point towards the entrance, which equivalently

reduces the focused depth and therefore lowers the efficiency of intensity enhancement.

The generated backward SBS is amplified towards the cell entrance, to reach its maximum

intensity near the peak of the pump, which, given the optimum design configuration for

SBS, is close to the entrance window [64]. This is the region where the SRS is effectively

generated, which happens — counter-intuitively — to be where the beam size is the largest.

This explains the previous observation that backward SRS could barely be observed when

the focused depth is short [129], and that a single-cell setup cannot drive very efficiently

backward SRS generation.

A multiple-cell setup makes it possible to pre-shape the pump SBS pulse for optimum

backward SRS generation. In the two-cell configuration presented here, a pre-compressed

pulse (≤3 ns) serves as pump in the second cell, resulting in a much faster accumulation

of SBS energy than in the case of a ∼10 ns pump pulse (as is the case in a single-cell

setup [129]). Therefore, the SBS intensity reaches backward SRS threshold much earlier.

Another advantage of the two-cell setup is that small beam diameter of 9 mm, which is

defined by the f-number and focused depth chosen for the second cell, requires much less

energy to obtain the same intensity as achieved from single-cell setup. As a result the

energy efficiency could be dramatically enhanced. Last, the compressed SBS pulse width

could reach below the phonon lifetime with a two-cell setup design [53], which further

enhances the SBS intensity to drive backward SRS more efficiently.
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There are different configurations and liquids to be used depending on the energy to

be achieved in the final process. For instance, if the initial pump energy of the first cell

is highest, a liquid of small Brillouin gain, such as water, will be chosen to create a high

energy SBS. This pump SBS could further be scaled up using a SBS amplifier cell, as

demonstrated in [51, 52]. In the final cell for Raman generation, the efficiency can be

optimized by a judicious choice of liquid with high Raman gain coefficients [121].

5.2.6 Summary

In this section, we have demonstrated efficient backward SRS generation from an optical

cell driven by intense SBS, by exploiting a two-cell setup. The mechanism of backward

SRS generation is interpreted as being a forward Raman process pumped by a backward

SBS. Since the UV filament can excite the backward SBS, it is possible to employ the mech-

anism explored here to generate backward stimulated Raman scattering in air for further

remote sensing application.

5.3 Application of filaments for Laser Induced

Breakdown Spectroscopy (LIBS)

The application of filaments for remote sensing by employing Laser Induced Breakdown

Spectroscopy (LIBS) technique has been firstly demonstrated with femtosecond NIR fil-

aments [92, 133], and later with sub-ps UV filaments [134]. It gains continuous atten-

tions [135–138] and has been very recently applied for the isotopic analysis of zirconium

(Zr) samples [139]. As mentioned earlier, NIR filaments always exhibit continuum genera-

tion, which will add a strong background to the emission spectrum thus lower the signal to

noise ratio. To overcome this issue, it has been demonstrated that a telescope system needs

to be employed to create short filaments thereby less continuum generation. Even though
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the proposed solution allows non-gated measurement for a sample placed 50 m away from

the femtosecond laser source together with the detection system [140], it becomes less

practical when the sample is located further away since the generation of filament becomes

less controllable at a far distance. In this section, we demonstrate that the long pulse UV

filament induced breakdown spectroscopy is almost free of the background issue. There-

fore, the UV filament better suits the LIBS experiment with non-gated detection. Then, we

report our investigation on the dynamics of self-absorption in LIBS, which requires gated

measurements.

5.3.1 Experimental setup

f

266 nm, 200 ps

532 nm, 250 ps

532 nm,  10  ns

800 nm,  60  fs

1064 nm, 10 ns

Figure 5.17: Experimental setup for the investigation of Laser Induced Breakdown Spec-
troscopy. The focusing lens has focal length of f=1500 mm. The inset shows a picture of
the plume created by the high intensity laser ablating the solid sample.

The setup used for the LIBS experiments is sketched in Fig. 5.17. To investigate the de-

pendence of the self-absorption dynamics on different laser parameters, we have employed

nanosecond and sub-nanosecond laser pulses from the laser system described in Chapters 2

and 3, as well as femtosecond pulses from a Ti:Sapphire oscillator amplifier system. So

far, we have focused on solid samples such as Copper (Cu) and Aluminum (Al). For the

non-gated detection, a Czerny-Turner monochromator combined with a Hamamatsu Pho-

tomultiplier Tube (PMT: Model R212) has been employed for the spectrum analysis. Since
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the spectral resolution is not so stringent in this case, the scanning step size is set to be

0.5 nm. The DEMON spectrometer as mentioned earlier has been utilized for the gated

measurements.

5.3.2 Non-gated LIBS with UV and NIR filaments
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Figure 5.18: Comparison of the non-gated LIBS with Cu sample when filamented and non-
filamented NIR (a) and UV (b) pulses are employed. Each spectrum is normalized to their
own maximum and averaged over 4 laser shots. Cu I denotes ion Cu+.

The non-gated LIBS experiments have been performed with both UV and NIR (15 mJ,

60 fs) lasers. A sealed box has been used to hold the sample (either Cu or Al) such that the

LIBS experiments can be carried out under either atmospheric pressure or vacuum condi-

tion. Normally, a filament can not be formed under vacuum condition. Therefore, we are

also comparing the LIBS results with and without filament formation. Figure 5.18 presents

the LIBS spectra from Cu obtained with different conditions. When NIR filament is em-

ployed, a strong continuum is present in the LIBS spectrum [black curve in Fig. 5.18(a)],
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which lowers the signal to noise ratio (SNR) and even obscures several emission lines.

Those lines can only be observed under vacuum condition, where there is no continuum

emission since there is no filament.

On the contrary, the LIBS spectrum [Fig. 5.18(b)] shows much better SNR when either

UV filaments or non-filamenting UV pulses are utilized. Due to the different SNR, sev-

eral weak lines (i.e., 406.3 nm, 529.2 nm and 570 nm) can only be captured with the UV

filaments but not with the NIR filaments. Similar behavior has also been observed in the

investigation of explosives [10]. Therefore, we conclude that it is advantageous to perform

the non-gated LIBS measurement with UV filaments where no extra control is required.
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Figure 5.19: Non-gated LIBS spectrum from Al sample with UV filaments as the exciting
source. The normalized spectrum is averaged over 4 laser shots. Al I denotes ion Al+.

The same comparison has been made with the Al sample with similar outcome. Fig-

ure 5.19 illustrates the typical LIBS spectrum centered around 400 nm that is generated

with UV filaments and taken with the Czerny-Turner monochromator. Two main peaks at

394.4 nm and 396.15 nm represent the transitions from different excited states to the ground

state of neutral atoms. In the next section, we focus on the emission line at 396.15 nm and

investigate the dependence of self-absorption dynamics on the plasma temperature, which

is closely associated with the laser parameters.
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5.3.3 Dynamics of self-absorption in Laser Induced Breakdown Spec-

troscopy

Self-absorption is a well-known phenomenon in LIBS and mainly observed for transitions

where the lower level is the ground state of the atom, as explained in [141]. For single

atoms, the wavelength of emission and absorption are identical. Atoms in the cooler outer

part of the plume can therefore absorb the radiation that is emitted by atoms in the hot inner

part. A broader emission line from the hot part of the plasma will therefore be superposed

by a narrower absorption line as shown in Fig. 5.20. Consequently, the occurrence of self-

absorption can yield information about the temperature distribution in laser-generated ab-

lation plumes. Since the laser ablation process involves two interactions, i.e. laser-sample

and laser-plasma interactions, with the latter being much dependent on the laser parame-

ters such as wavelength, the evolution of self-absorption is expected to be excitation laser

source dependent.

We investigate laser-induced spectra using five different lasers, which have been listed

in Fig. 5.17, as excitation sources. Spectra were obtained with the DEMON spectrometer.

Among the various target investigated, the data presented here are for the emission line at

396.152 nm of Aluminum 6061. This emission line corresponds to a transition from 3s24s

to the ground-state level 3s23p [142], which shows self-absorption, of which we investigate

the dynamic behavior.

The main behavior of the spectra observed with the first four lasers listed in Fig. 5.17

is shown using the example of the 266 nm pulses in Fig. 5.20(a). For a delay of 1000 ns,

we see the typical broadband emission with the narrower self-absorption dip at exactly

the resonance wavelength. Attempting to find the beginning of the self-absorption, we

decreased the delay to 250 ns until we observed the remains of the plasma continuum

emission. Even here, the self-absorption can be recognized.

Figure 5.20(b) shows a completely different behavior when a 10 ns laser pulse at 1064
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Figure 5.20: Gated LIBS spectrum of an aluminum sample excited with (a) 266 nm and
(b) 1064 nm lasers with different delays between laser pulse and ICCD gate. The emission
line amplitude and the dip width decrease with increasing delay.

nm is used for ablation. After the plasma emission has stopped, at lower delay times, only

the emission of the hot parts of the ablation plume can be seen. For longer delays, this

emission line becomes narrower (due to the plume cooling down) and at around 5 µs, the

self-absorption dip appears. As compared to the previous case of using shorter wavelength

excitation lasers, the self-absorption dip builds up much later. The difference in build-up

time can be explained by the different structure of the laser-generated plasma, which has

significantly higher initial temperature due to the larger heating by inverse bremsstrahlung

at the infrared wavelength, therefore takes longer to form a cooler outside layer. It is worth

mentioning that the absorption dip observed here is as narrow as 15 pm, hereby demon-

strating the potential resolution of absorption dip LIBS.

Besides the laser wavelength dependence, we have also observed the evolution of the

absorption dip with respect to the ablation history, as demonstrated in Fig. 5.21. When a

fresh sample is ablated with the 266 nm laser pulses, the LIBS spectrum obtained at a short

delay of 250 ns exhibits strong continuum at the very beginning. As the ablation continues,

the continuum spectrum decreases and the self-absorption dip appears and further develops.
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Figure 5.21: Gated LIBS spectrum of a fresh aluminum sample excited with different num-
bers of (a) 266 nm and (b) 1064 nm laser shots.

In the case of the fresh sample being ablated with 1064 nm laser pulses, the LIBS spectrum

obtained at a long delay of 7500 ns evolves the opposite way. The self-absorption dip exists

for the early laser ablations. It however disappears after some laser shots. In the meantime,

the emission line also gets stronger as well as narrower, as shown in Fig. 5.21(b). The full

width at half maximum of the emission spectrum after 830 shots of laser ablation is as

narrow as 28 pm. A similar behavior has also been observed for longer delays of 9500 ns,

in which case it takes more laser shots to erase the self-absorption dip.

More experiments are necessary to fully explain this behavior. However, a tentative

explanation is the following: With 266 nm excitation source, the spectrum captured with

short delay of 250 ns is dominated by the plasma emission at the beginning of laser ab-

lation. After some laser shots, a geometric structure (e.g. a dip) is created, which leads

to less efficient ablation process thereby less plasma generation and continuum emission.

The decrease in continuum spectrum is also confirmed by the reduction of visible white

light emitted from the plume during the ablation process. Then, the self-absorption dip

becomes visible and further develops as the ablation continues. In the case of 1064 nm

laser pulses being employed, the similar geometric structure created after some laser shots
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would confine the hot plasma. It then needs longer time for the plasma to expand and form

the cool atoms at the outside layer. Therefore, the self-absorption dip disappears at the

delay of 7500 ns after a period of ablation. With the same sample, the dip will be found to

appear at longer delay, which has been confirmed by our measurement.

5.3.4 Summary

Self-absorption in LIBS experiments exists immediately after the excitation when shorter

wavelengths are used. These lasers generate a cooler plasma which contains a sufficient

amount of atoms in the ground state that can absorb the emission of the hotter parts at

all times. For hotter plasmas, as generated with an infrared laser, self-absorption is not

immediately apparent. After some time, when the cloud of atoms has sufficiently expanded

and cooled, the self-absorption dip appears. The evolution of self-absorption dip with

respect to the ablation history, which has been observed for both short and long wavelength

excitations, are all associated with the geometric structure created by the laser ablation.
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Chapter 6

Long-gap DC high-voltage discharge

induced by UV filaments

6.1 Introduction

The investigation on laser-induced high-voltage discharge has started since 1970s [143–

145]. The idea behind is to use the powerful laser pulse to create a plasma channel via

photo-ionization, which provides a preferential discharge path and also initiates the dis-

charge with lower breakdown voltage or electric field. Such investigation can be applied

for lightning control, as proposed in [146] in 1974.

In the early studies, the powerful nanosecond pulses from Q-switched Nd:glass [143,

144] or CO2 [145,147] lasers are often employed. Since their lasing wavelengths are above

1 µm, spatially isolated plasma beads that have been discussed in Chapter 4 are easily

created, due to the strong inverse Bremstrahlung effect. It has been confirmed that only a

continuous ionization channel, rather than the plasma beads, is responsible for the laser-

induced discharge [144]. It is therefore necessary to search for long and continuous plasma

column that can eventually be applied for the long-gap laser-induced discharge.
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In 1995, short after the discovery of laser filament in air, the UNM group has pro-

posed and experimentally demonstrated the high-voltage discharge guided by femtosecond

ultraviolet laser filament [11, 148]. Since the continuous plasma channel created by laser

filament is ideal for laser-induced discharge, after the pioneer work done at UNM, there

have been intensive investigations on NIR filament induced high-voltage discharge (a few

examples [13,14,149–151]). In the meantime, there are only a few works that have investi-

gated the discharge induced by either nanosecond UV pulse at 248 nm [152] or femtosecond

UV filament at 400 nm [153]. It has however been shown by the latter study that, with one

order of magnitude less input energy, the UV filament has comparable ability to induce the

high-voltage discharge as that of the NIR filament. Therefore, our long pulse UV filaments

fit ideally into the application of laser-induced discharge.

Knowing that the plasma channel created by the filament is suitable for discharge appli-

cation, its short lifetime however sets a limit in supporting laser/filament-induced/guided

long-gap (>10s cm) discharge. The recombination and attachment processes limit the

plasma lifetime to be less than 10 ns, while it typically takes microseconds to establish a

discharge. In order to have the discharge guided by the conductivity of the plasma, photo-

detachment is required to revive the plasma channel by pealing off the electron from O−
2 .

The idea of using extra laser pulses of long duration (1 µs) has been proposed from our early

works [11,12,154]. Later, many studies [155–159] have focused on prolonging the filament

plasma lifetime by introducing extra laser pulses of short duration (e.g., ns or fs), which are

widely available in many laboratories. Even though the plasma lifetime can be extended

with extra short pulses, it is still on the order of 100 ns, much shorter than the discharge

build-up time. Consequently, the effect on discharge has been shown to be very limited,

when a second Q-switched nanosecond laser pulse at 532 nm is used to photo-detach the

electrons [160].

In this chapter, we report our investigations on long-pulse UV filament-induced DC

high-voltage discharge. We show that it is very effective to trigger a discharge with the UV
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filaments. In order to further increase the length and density of the plasma column created

by the UV filament, another two pulses are employed, where a 0.65 J 10 ns frequency

doubled Nd:YAG laser at 532 nm is chosen to photo-detach the electrons from O−
2 and

O−, while a second 1.1 J 10 ns Nd:YAG laser at 1064 nm is utilized for plasma heating

via inverse Bremstrahlung effect. As will be demonstrated below, no clear effect on the

discharge has been observed by adding extra short laser pulses. It therefore suggests that

our initial proposal of using long pulses with duration at the same order of the discharge

build-up time is necessary, if long-gap filament-induced high-voltage discharge is desired.

6.2 Experimental arrangement

The high voltage discharge chamber is located on the roof of the CHTM building. The

laser beams are combined in the laboratory and sent into the HV facility via several mirrors

Nd:YAG
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Figure 6.1: Discharge experimental arrangement for the lasers and high-voltage room; Mir-
rors M8-10 will be described in detail below.
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that reflect all three wavelengths (266 nm, 532 nm and 1064 nm). Figure 6.1 presents the

arrangement of both laser and high-voltage facilities for the discharge experiment. The

distance between the UV laser and the high-voltage room is about 30 m.

6.2.1 Combination and propagation of three laser beams of different

wavelength

The combination of three laser beams with different wavelengths requires both spatial

and temporal alignment. The temporal alignment can be easily achieved by firing the Q-

switches of the three lasers with the desired timing. The spatial alignment is however a little

challenging since the transverse overlap is required even after 30 m propagation. Moreover,

the longitudinal (i.e., beam focus position) overlap needs also to be fulfilled since high in-

tensity beams are necessary for the photo-detachment and plasma heating.

Figure 6.2: Combination and propagation of three laser beams into the HV room; M1-2:
45o 266 nm HR mirrors; M3-5: 45o 1064 nm HR mirrors; M6-7: 45o 1064 and 532 nm
HR mirrors; M8-10: 45o 1064 and 532 and 266 nm HR mirrors; BS1: HR 532 nm and HT
1064 nm beam splitter; BS2: HR 266 nm and HT 1064 and 532 nm beam splitter; TL1:
Telescope with magnification of 2.7; TL2: Near afocal telescope with magnification of
1.13; TL3: Telescope with magnification of 7; All the telescope lenses are uncoated fused
silica.
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Figure 6.2 shows the schematic for the beam combination. The 1064 nm and 532 nm

beams are first combined with a beam splitter BS1 and expanded by the telescope TL3.

Next, those two beams are combined with the expanded UV beam after a second beam

splitter BS2. Last, all three beams with the diameter of 3" are reflected by three mirrors

M8-10 and focused to the middle point of two electrodes with a 9 m focusing lens. In

order to bring the geometric focus of the three beams together, telescopes TL1 and TL2 are

used to adjust the divergence of the 1064 nm and 532 nm laser beams, respectively, such

that the large chromatic aberration of the focusing lens can be compensated. It should be

mentioned that the UV beam experiences 30% of optical losses from three uncoated lenses

and three mirrors (M8-10). Therefore, the UV energy delivered into the HV room is about

210 mJ.

6.2.2 Characterization of UV filaments employed for discharge exper-

iment

It has been mentioned in Chapter 4 that multiple filaments are created with a 9 m focusing

lens in the open environment. Here, we present more details on the characterization of

the filament profile and the conductivity of the plasma channel, which is essential for the

laser-induced discharge.

Figure 6.3: Evolution of multiple filaments with respect to the propagation distance. The
filaments are generated by focusing the high power UV beam in air with a 9 m focal length
lens.

A digital camera is used to take pictures of the UV laser beam profile that is presented
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on a white paper. The distances under the images are with respect to the entrance point of

the HV room. As illustrated in the images in Fig. 6.3, the multiple filaments last for more

than 3 m.

Laser beam

0.2nF

HV +

0.2nF

HV -

R=10

Oscilloscope

R=100M R=100M

D=37.3cm

Figure 6.4: Experimental setups for measuring the resistivity of the plasma channel; (a)
Setup for spatially resolved measurement; (b) Setup for spatially averaged measurement.

Two different electric circuits, as shown in Fig. 6.4, are employed for measuring the

conductivity of the plasma channel that is created by either only the UV filament or UV fil-

ament plus other two laser beams. The first circuit is used to spatially (i.e., along filament

propagation direction) resolve the conductivity of the plasma channel, while the second

one measures the spatially averaged conductivity of the plasma channel of 37.3 cm length,

which is the gap distance between the two electrodes for later discharge experiment. The

current waveform is converted to a voltage waveform across the 10 Ω resistor and recorded

by the oscilloscope. The peak value of the voltage waveform is used to indicate the con-

ductivity of the plasma channel.

Figure 6.5(a) presents the conductivity measurement spatially scanned along the fil-

ament. The distance is the same as defined for the filament profile measurement. Two

groups of data, i.e., one for the case of only with UV filaments and the other for case

of UV filaments plus the other two lasers temporally overlapped with the UV pulse, are

compared. It can been seen that no significant increase in plasma conductivity has been

introduced, by adding another two laser beams. Other combination of different delays for
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the two nanosecond pulses have also been tested with similar conclusion.
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Figure 6.5: Conductivity measurements of the plasma channel created by the multiple fil-
aments; (a) Spatially resolved measurement; (b) Spatially averaged measurement.

For the spatially averaged measurement, the two electrodes are placed at the positions

labeled by the two gray lines shown in Fig. 6.5(a). The applied voltage represents the total

voltage, which is twice the voltage applied on each electrode. As shown in Fig. 6.5(b),

the measured signal is linearly proportional to the applied voltage. The effect of adding

additional short pulse lasers on the conductivity is again shown to be very limited. The

resistance per unit length of the plasma channel can be calculated to be around 5 KΩ/cm,

which is remarkably lower than 1 MΩ/cm measured during a recent similar experiment

with NIR Filaments [161]. Therefore, the conductivity of the plasma channel created by

the UV filaments is much higher than that of the plasma channel generated with the NIR

filaments. This is consistant with the result reported by Liu et al. [153] that the UV filament

has much higher capability in inducing high-voltage discharge.
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6.2.3 High-voltage facility

Both photograph and schematic diagram of the arrangement of the discharge circuit are

shown in Fig. 6.6. Two steel spheres (16" diameter) are used as electrodes and the laser

beams pass through holes in both positive and negative electrodes. Two capacitor banks

with equal capacitance of 0.2 nF are used for charging the electrodes. The capacitor banks

are designed for minimum inductance, resulting in a discharge rise time of less than 20 ns.

These capacitor banks are charged by two high voltage power supplies (PTS-300 hipots

from High Voltage, Inc.) up to 300 kV with opposite polarities. The power supplies are

initially designed for insulation resistance testing of dielectric materials, in which case the

leakage current is very small. Because of that, the controller has a safety relay that shuts

down the 300 kV power supply whenever the detected current is above the rated value of

5 mA. As will be shown below, the typical discharge current in our case is hundreds of

Amperes. Therefore, extra capacitor banks are needed to provide the high current, other

than using the high voltage power supplies directly.

Figure 6.6: Left: photograph of the high-voltage setup; Right: schematic diagram of the
circuit.
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6.3 Experimental results

6.3.1 UV filament alone

We first test the high-voltage discharge induced by the UV filament itself. For the current

HV setup, the self-breakdown electric field (i.e., discharge without the assistance of laser

pulse) is measured to be 24 KV at an inter electrode distance of 10 cm. With the help of

the UV filament, the minimum electric field needs to initiate the discharge reduces below

12 KV. The reduction of at least 50% of the breakdown electric field is more than the

reported value of 20-40% in the case of NIR filament [150,161], which confirms again that

the UV filament is more suitable for the laser-induced discharge.
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Figure 6.7: Photograph of the (a) completely guided and (b) partially guided high-voltage
discharge; The gap distance between two electrodes is 37.3 cm and the applied voltage
on two spheres are 170 KV and -170 KV, respectively. (c) The typical discharge current
waveform recorded at 37.3 cm gap distance and 160 KV applied voltage on each sphere.

Figures. 6.7(a) and (b) show the images of either fully or partially guided discharge by

the UV filament alone. For the partially guided discharge [Fig. 6.7(b)], it has been noticed
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that the guided part always happens at the negative electrode side (the right side of the

image). Similar phenomenon has been observed in long-gap laser guided discharge [147].

It has been explained as that the laser produced plasmas guide streamers and leaders from

a negative electrode more effectively than from a positive electrode, and the discharge de-

velopment from the negative electrode plays an important role in the guidance effect.

The current waveform of the discharge is monitored with a Pearson current probe. The

UV pulse is also recorded before it enters into the HV room. The delay between the UV

pulse and the first negative current peak, as presented in Fig. 6.7(c), is considered as the dis-

charge delay. The delay is typically in the microsecond range. The purpose of the following

experimental tests is to see if the delay can be reduced by adding extra laser pulses.

6.3.2 Combination of UV filaments with other two laser beams

As mentioned above, the objective is to reduce the discharge delay or equivalently to reduce

the discharge threshold and increase the discharge probability at a specific applied voltage,

by adding a 532 nm laser for photo-detachment and a 1064 nm laser for plasma heating.

Different combinations of laser beams with different delays that have been investigated for

the discharge of 37.3 cm are listed below.

• UV filaments alone; 532 nm laser alone; 1064 nm laser alone; combination of 532 nm

and 1064 nm lasers with 0 ns delay. The total applied voltage is scanned from 250 KV

to 340 KV.

• Combination of UV filaments with the delayed 532 nm pulses. The delay is scanned

from 0 to 100 ns with 10 ns minimum step. At each delay, the total applied voltage

is scanned from 250 KV to 340 KV.

• Combination of UV filaments with the delayed 1064 nm pulses. The delay is scanned

from 0 to 100 ns with 10 ns minimum step. At each delay, the total applied voltage
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is scanned from 250 KV to 340 KV.

• Combination of UV filaments with the delayed 532 nm and 1064 nm pulses. Different

delayed combinations have been tested. At each delay, the total applied voltage is

scanned from 250 KV to 340 KV.

During the experiments, various parameters for each set of data are recorded, such as the

temperature inside the HV room, the barometric pressure, the relative humidity, the laser

pulse energies, the discharge shape, the current waveform, the spectrum of the discharge

plasma emission and the voltage on the electrodes. For each set of data, at least 100 data

points are recorded (in other words 100 laser shots). It is worth emphasizing that the total

applied voltage is always below the self-breakdown, such that the observed discharge is

always being triggered by the laser beams. The probability of discharge, the average delay

between the laser pulse and discharge, and the standard deviation of the delay are the main

analyzed data for each set of data. All the data presented below are based on the gap distance

of 37.3 cm.

First of all, we have confirmed that no discharge can be induced by the Green laser

pulse alone, the IR laser pulse alone or their combination. Since there are three variables

including applied voltage, combinations of three pulses and the delay between pulses, we

simplify the measurements by fixing two parameters and varying the other one for each

set of measurement. We start with scanning the pulse delay and fixing the applied voltage

and the beam combination. Figure 6.8 presents one of the delay scan results. In this case,

the total applied voltage is fixed at 340 KV and the other two nanosecond laser pulses are

delayed together with respect to the UV. It can be seen that the discharge delay has very

large fluctuation, which is a typical feature for all the measurements. With different optical

delays, no clear improvement on reducing the discharge delay or enhancing the discharge

probability has been observed. It is necessary to mention that we have closely investigated

the optical delay at 80 ns, at which delay the effect might exist. However, the slightly shorter

discharge delay and higher discharge probability observed in Fig. 6.8 can not be repeated
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by the other measurements. The reason will be detailed below.
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Figure 6.8: The dependence of discharge delay and probability on the laser pulse delay
between the UV and the overlapped Green and IR. The optical pulse delay is labeled on the
top axis, where UGR20 denotes the green and IR pulses are both delayed 20 ns from the
UV. UV alone is used as a reference. The shading area represents the standard deviation of
the discharge delay.

Next, we scan the applied voltage by fixing the optical delay. For each applied volt-

age, we also vary the combination of different beams. Figure 6.9 displays one set of the

measurements taken with the optical delay fixed at 50 ns. Two expected features have been

observed. On the one hand, the discharge delay decreases with the increase of the applied

voltage. On the other hand, the discharge probability is increasing with the increase of the

applied voltage. However, as demonstrated in Fig. 6.9, the mean discharge delay has not

been clearly reduced nor the discharge probability has been increased, after adding extra

laser pulses. It is therefore concluded that adding the Green and/or IR 10 ns laser pulses

does not have the anticipated effect on the discharge, because of the too short plasma life-

time as compared to the discharge delay (µs). It is worth mentioning that adding extra laser

pulses seems to reduce the fluctuation of the discharge delay, which is the only positive
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effect we have observed so far.
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Figure 6.9: The dependence of discharge delay and probability on the applied voltage. The
optical delay is fixed at 50 ns for different combination of laser pulses.

In Fig. 6.9(b), it has been noticed that the discharge probability is sometimes higher

even with the lower applied voltage. Similar behavior has been often observed in other

measurements. Two factors, i.e., the fluctuation of plasma conductivity and the change

in absolute humidity, are found to be responsible for the mentioned phenomenon. Fig-

ure 6.10(a) presents the measurements with UV filament alone that are sorted with the same

total applied voltage of 280 KV and the same absolute humidity of 0.0095 Kg/m3. As much

as 50% fluctuation in discharge delay is observed, which is attributed to the fluctuation of

plasma conductivity as already demonstrated in Fig. 6.5. Data shown in Fig. 6.10(b) are

obtained with the UV filament alone at the applied voltage of 340 KV and sorted with dif-

ferent absolute humidity. It can be concluded that the discharge delay decreases and the

discharge probability increases with the increase of absolute humidity. In order to exclude

the effect of humidity, one has to sort the data that are taken under the same humidity for

comparison. However, same conclusion has been made that there is no significant effect on

the discharge by adding other lasers, even with the data sorting [162]. So, the plasma fluc-
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tuation itself already has strong effect on varying the discharge delay. The combined effects

of both plasma conductivity fluctuation and humidity change are therefore responsible for

the huge variation of discharge delay as demonstrated in Fig. 6.8.
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Figure 6.10: The effects of (a) plasma conductivity fluctuation and (b) absolute humidity
change on the discharge delay.

In order to overcome the above mentioned issues, a long laser pulse is desired to keep

the plasma created by the filament alive and stable, for a period that is comparable to the

discharge delay.

6.4 Conclusion

Laser Induced discharge in air can be achieved at voltages which are less than the half

voltage needed for self-breakdown. UV filaments are capable of creating transient conduc-

tivity of about 200 times larger as compared to NIR (800nm) filaments. Adding the Green

(532nm) and/or IR (1064) laser pulses does not have any statistical significant effect on

increasing the discharge probability or on reducing the delay. This is due to the fact that

these laser pulses are not long enough to maintain the conductivity of the plasma channel.
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One can conclude therefore that longer pulses are needed to keep the air ionized for the

time needed to establish a discharge. Longer pulses and longer wavelength are desirable,

such as could be achieved with atmospheric pressure CO2 lasers. One last consideration is

that the generation of the plasma beads should be avoided when CO2 laser is employed for

heating the plasma , since the inverse Bremstrahlung effect will be very strong with laser

pulses of 10 µm wavelength.
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Conclusion

This dissertation has mainly focused on the investigation of long-pulse UV filaments in air.

The major results and progresses can be summarized as follows.

First, we have designed and developed a high-power UV source, which satisfies the

peak power requirement for the generation of UV filaments. The laser system is composed

of a high-energy Nd:YAG laser with MOPA configuration and a high-energy SBS pulse

compressor utilized for enhancing the peak power. Since it is not of importance to most

of the studies, the spatio-temporal profile of the laser pulses from a high-energy Nd:YAG

laser with unstable resonator design has been overlooked for decades. In this work, we have

systematically investigated the spatio-temporal profiles of laser pulses from each stage of

our high-energy, sub-nanosecond laser system. We show that the pulses generated from a

Q-switched unstable oscillator exhibit a curved energy front. Interestingly, the energy front

is less curved with higher optical gain. We also demonstrate that injection-seeding does

not help to flatten the energy front. During laser amplification, the spatio-temporal profile

of the oscillator pulse is further modified by the gain saturation effect within the ampli-

fiers. More specifically, we find that, after amplification, the pulse from the beam center

is temporally broader (up to 4 ns) and leads the pulse from the beam edge by more than
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10 ns. Finally, after the SBS-based pulse compression stage, the spatio-temporal profile of

the output pulse is further modified. Here, the center-to-edge delay of the energy front is

shortened but still comparable to the pulse width, effectively lowering the achievable inten-

sity as well as complicating the temporal structure of the laser pulse at the beam focus. Our

measurements are accurately reproduced by numerical simulations of the underlying phys-

ical processes. To alleviate the cured energy front of pulses out of an unstable resonator, a

possible solution based on the numerical simulation has also been proposed.

Stimulated Brillouin scattering pulse compression is an efficient and robust way to ob-

tain sub-nanosecond pulses. With the optimized energy-scalable generator-amplifier setup,

reliable and reproducible high-energy sub-nanosecond pulse generation in water has been

demonstrated. Since shorter compressed pulse duration is always desired for achieving

higher peak power, further effort has been put on resolving the long existing debate, i.e.,

the lower limit for the SBS compressed pulse width. We have revealed the interaction length

as the key factor in determining the compressed pulse width in a single-cell setup. Conven-

tionally, a too short interaction length has often been chosen to achieve sub-phonon life-

time pulse compression. Moreover, the mechanism that is responsible for the sub-phonon

lifetime compression has also been identified as due to the energy exchange between the

pump and compressed Stokes pulses. Experimentally, we have achieved the minimum com-

pressed pulse duration of 150 ps (only half of the phonon lifetime of 295 ps) with the pulse

energy of 90 mJ from a single-cell setup, or the minimum pulse duration of 170 ps with

pulse energy up to 1.3 J from a two-cell setup. The maximum compressible energies in

both SBS generator and amplifier are found to be limited by the competing nonlinear effect

of stimulated Raman scattering, which typically ruins the stability of compressed pulse

width. The experimental results have been well confirmed by the numerical simulations.

Our work on SBS pulse compression paves the way to the reliable generation of sub-200 ps

laser pulses at the Joule level energy.

Next, using the newly developed high-power UV source, we have investigated the UV
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filament generation under different initial conditions. For the experiments carried out in-

side the laboratory with limited space, lenses with focal length of ≤3 m have been used to

initiate the UV filaments. We have found that the complicated spatio-temporal profile of

the UV pulses causes avalanche breakdown within the plasma channel created by the fila-

ment, when lenses with focal length of ≤1.5 m are used. This observation asks for further

optimization of our high-power UV source. With the 3 m focusing lens, single filament has

been observed. The plasma column created by the UV filaments and the spatial profile of

the UV filaments have both been characterized. Using a 9 m focusing lens, multiple fila-

ments have been generated in an open environment. The modulation in both amplitude and

phase experienced by the UV beam during the 30 m propagation in the open environment

is attributed to the observation of multiple filaments.

Then, the UV filaments have been applied for remote spectroscopy studies. Raman

spectroscopy combined with UV filaments with their long range propagation capability is

well suited for remote sensing application. We have carried out the proof of principle ex-

periments, which have demonstrated the high efficiency (up to 10% of energy conversion

efficiency) of forward Raman generation in gases excited by the UV filaments. The depen-

dence of the generation of vibrational lines and rotational lines on the pump polarization

has been experimentally studied. In order to enhance the Raman signal from low concen-

tration species, another type of Raman scattering, i.e., impulsive stimulated scattering has

also been investigated. The rotational Raman states of N2 impulsively excited by the NIR

filaments have been successfully probed by the weak UV pulses.

Backward emission is crucial for remote sensing application. We have however not

observed the backward Raman emission from UV filaments in air. To explore the pos-

sibility of exciting backward Raman scattering, we have carried out a side experiment in

water, which has much higher Raman gain coefficient. From this experiment, we have

demonstrated that the backward Raman scattering can be efficiently driven by the intense

stimulated Brillouin scattering. As high as 9% of energy conversion efficiency has been
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achieved. Since SBS has already been observed from the UV filaments, it is possible to

excite the backward SRS by the SBS, if the intensity of the SBS could be further enhanced.

Laser induced breakdown spectroscopy is a very versatile tool for sample identification.

We have performed the LIBS experiments with all the laser pulses available inside our lab.

The dynamics of self-absorption dip of the Al LIBS spectrum has been experimentally

investigated. We have found that the build-up time of the self-absorption dip is strongly

dependent on the plasma temperature, which is closely related to the laser wavelength.

Surprisingly, the self-absorption dip is as narrow as less than 20 pm. Such narrow spectrum

feature can be further utilized for high resolution spectroscopy.

Finally, the UV filaments have been employed for studying the laser-induced high-

voltage discharge. We have demonstrated that the UV filaments are better suited for dis-

charge triggering as compared to the NIR filaments, because of the higher conductivity

plasma channel. A fully guided 40 cm long discharge has been demonstrated with the UV

filament alone, at 1/2 the self-breakdown voltage in air. Two additional lasers are tested

to improve the discharge triggering by photo-detaching oxygen negative ions and heating

the plasma. The anticipated improvement in reducing the discharge delay or enhancing the

discharge probability has not been observed.
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Appendices

The following appendices describe part of the PhD works that have focused on the timescale

of femtosecond to attosecond, much shorter than the sub-nanosecond addressed in the main

body of this dissertation. The development of femtosecond laser and the associated laser

technology of carrier-envelope-phase (CEP) stabilization are presented in detail, while the

application of CEP stabilized femtosecond pulses for attosecond pulse generation is briefly

mentioned.
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Appendix A

Kerr lens mode-locked Ti:Sapphire

femtosecond laser oscillator

Kerr lens mode-locked Ti:Sapphire laser was first discovered in 1991 [163] to generate

60 fs ultrashort pulses. Nowadays, pulses as short as few cycles (i.e., < 10 fs at the

center wavelength of 800 nm) can be directly obtained from the Kerr lens mode-locked

Ti:Sapphire oscillator, even with the carrier-envelope-phase (CEP) of the laser pulses being

stabilized [164–167]. For the IR filament project, we want to build our own Ti:Sapphire

oscillator, which will be combined with a commercial Ti:Sapphire laser amplifier to deliver

laser pulses of 30 fs duration, 1 TW peak power at the repetition rate of 10 Hz. To achieve

the above specifications, the requirements for the oscillator are as follows. The average

output power should be more than 400 mW at the repetition rate of around 80 MHz. The

spectral bandwidth needs to be as broad as 50 nm centered around 800 nm. In this section,

we will report on the design, development and characterization of a Kerr lens mode-locked

Ti:Sapphire laser oscillator.
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Appendix A. Kerr lens mode-locked Ti:Sapphire femtosecond laser oscillator

A.1 Experimental setup

Figure A.1: Schematic design of the Kerr lens mode-locked Ti:Sapphire laser oscillator.
M1-M3: Flat mirrors with GDD (720-870 nm) = -40±10 fs2, HR>99.9% from 690-
870 nm; CM: Curved mirrors with GDD (720-870 nm) = -40±10 fs2, HR>99.9% from
720-880 nm, AR<0.2% at 532 nm; OC: Output coupler with GDD (720-870 nm) < 20 fs2,
T = 5±1%. All the above optics are from LAYERTEC.

The schematic design of our oscillator is presented in Fig. A.1. The laser cavity is

formed by two flat end mirrors M1 and output coupler (OC) with 5% transmission, two

curved mirrors (CM) with 5 cm radius of curvature focusing the laser beam into the the

Ti:Sapphire crystal, and another two flat mirrors (M2 and M3) for extra dispersion com-

pensation. The cavity length is 175 cm, i.e., with 58 cm for the upper arm and 117 cm for

the lower arm, corresponding to the repetition rate of 85.7 MHz and pulse train period of

11.7 ns. The Ti:Sapphire crystal has dimension of L3×W3×H0.9 mm3. The thickness

of 0.9 mm is specially chosen for better heat conduct. Part of the output (5 W CW power)

from a green laser (Verdi V10 from Coherent) is focused by a plano-convex lens (L) with

7.5 cm focal length to pump the crystal, which has absorption coefficient of 5.08 cm−1 at

the pump wavelength. A thermoelectric cooler (TEC) is employed to stabilize the temper-

ature of the crystal to be 180C. The three flat mirrors (M1, M2 and M3) and two curved

mirrors (CM) with group delay dispersion (GDD) of -40 fs2 each are used to compensate
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the positive GDD introduced by the crystal, air, output coupler (OC) as well as the self

phase modulation (SPM) inside the crystal. To use the least optics with limited negative

GDD, multiple bounces on one mirror has been chosen. The angle θ has been designed to

be 15.4o to cancel out the astigmatism introduced by the crystal and curved mirrors.

A.2 Mode-locking procedures and results

There is a typical procedure for obtaining mode-locked laser pulses. First, one needs to

maximize the CW output power, by playing with the cavity alignment, the position of the

curved mirrors with respect to the crystal, and the focusing position of the pump beam

inside the crystal. Two maximum CW power can typically be found when the curved mirror

CM2 is translated. From the maximum CW power point where the curved mirror is further

from the crystal, one starts to move the curved mirrors towards the crystal. During that

process, a reduction of the output power will be observed. The spectrum also gets jumpy.

During the mirror movement, the mode-locking can be initiated by taping the end mirror.

To obtain stable mode-locking, the position of the crystal also needs to be finely tuned.

Figure A.2: Spatial profiles of (a) CW and (b) mode-locked operations of Ti:Sapphire laser
oscillator.

After our oscillator gets mode-locked, the spatial, spectral and temporal profiles of the
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laser pulses have all been characterized. Figure. A.2 displays the spatial profiles of the laser

beam at both CW and mode-locked mode. Due to the Kerr lensing effct, the high order

spatial mode from the CW operation has been filtered out in the mode-locked operation, as

manifested by the clean and round profile shown in Fig. A.2(b).

Figure. A.3(a) shows the spectrum for the mode-locked laser pulses obtained from the

current design. It has 36 nm FWHM spectral bandwidth, which is slightly narrower than

the desired value. We have tried to increase the bandwidth through the cavity dispersion

control, which is realized by varying the number of bounces on the flat mirrors M2 and

M3. It however ends up with either less stable mode-locking or even narrower spectrum.

It should be noticed that the change in dispersion can only be the multiple of 40 fs2, which

is too coarse to optimize the spectrum. In order to maximize the spectral bandwidth, a pair

of thin wedges should be employed for very fine dispersion management.

Figure A.3: (a) Spectral and (b) temporal characterizations of the mode-locked laser pulses.

In temporal characterization, the pulse train has been recorded by a photodiode and an

oscilloscope, as demonstrated in Fig. A.3(b). The measured pulse period, which is slightly

more than one division of 10 ns corresponds to the designed value of 11.7 ns. The pulse

duration of the individual pulses has also been measured by an intensity autocorrelator to

be 56 fs FWHM, which is much longer than the Fourier transform limited pulse of 26 fs if

assume a Gaussian-shaped pulse with 36 nm FWHM spectral bandwidth. The discrepancy
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is due to the pulse stretching introduced by the positive dispersion of different optics outside

the cavity, such as the substrate of the output coupler, the filters used to attenuate the laser

beam and the beam splitter inside the autocorrelator.

A.3 Summary

We have experimentally demonstrated a Kerr lens mode-locked Ti:Sapphire laser oscilla-

tor. The 36 nm FWHM spectral bandwidth obtained from the current design can support

Fourier transform limited pulses of 26 fs duration. Even wider spectral bandwidth thereby

shorter pulse width could be obtained with further optimization of the cavity dispersion.
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Appendix B

Carrier-envelope-phase stabilization of

amplified femtosecond laser pulses and

their applications into attosecond

science9

The CEP stabilized oscillator pulses typically have the energy of few nJ per pulse, which is

not enough to perform most of the nonlinear studies. The oscillator pulses therefore need

to be amplified through the laser amplifiers, which would introduce extra CEP noise. In

the following sections, we will present our work on the CEP stabilization of the amplified

femtosecond pulses, and briefly mention the application of those pulses into the attosecond

science research. This work was carried out in the group of Professor Giuseppe Sansone in

Politecnico di Milano and supported by a Marie-Curie Fellowship during the year of 2012.

9Portions of this Apendix have been published in C. Feng et al., Opt. Express 21, 25248-25256
(2013) [168]
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B.1 Introduction

The control of strong-field phenomena down to the attosecond regime relies on the genera-

tion and application of ultrashort intense laser pulses characterized by a well defined and re-

producible waveform, i.e. by a stable and controllable carrier-envelope-phase (CEP) [169].

Tailoring the electric field of few-cycle pulses allows one to steer the electronic motion in-

side atoms and molecules with unprecedented temporal resolution thus offering control

over different processes such as above threshold ionization [170], non-sequential double

ionization [171], and high-order harmonic generation [172]. The application of these

sources for the investigation of strong field phenomena is triggering the development of

high repetition rate lasers (from few kHz up to the MHz range) with high energy per pulse

(from hundreds of µJ up to tens of mJ) leading to high average powers (>10 W) that chal-

lenge the possibility to control the CEP through the entire amplification process. The con-

trol of the CEP in amplified laser systems is usually based on the combination of two feed-

back loops operating on the oscillator and on the amplifier(s), respectively, that compensate

for the CEP drift, i.e., the variation of CEP between two consecutive pulses. The train of

pulses delivered by a mode-locked oscillator is characterized by a constant CEP drift de-

termined by the difference between the group and the phase velocities in a round trip of the

cavity. Intensity noise fluctuations induce variations of the CEP drift due to the intensity-

phase coupling inside the active medium of the oscillator [173]. The CEP variation between

consecutive pulses delivered by the oscillator can be fixed making use of a feedback loop

based on a nonlinear interferometer, that measures the CEP drift, and either an acousto-

optic modulator or a piezo-stage that modulates the power of the pump laser [174] or tilts

an end mirror of the cavity [164], respectively. A full analysis of influence of cavity con-

trols such as tilt and translation of the end mirror on the CEP can be found in [175]. Using a

Fabry-Perot reference cavity, Jones and Diels [166,167] have pioneered another way to sta-

bilize the frequency, phase and repetition rate of oscillator pulses simultaneously. Recently,

a new approach based on a frequency shifter has been developed [165,176]. The amplifica-
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tion process introduces additional CEP noise mainly due to mechanical instabilities in the

stretcher-compressor setup, beam pointing instabilities or power fluctuations of the pump

laser [177]. A second feedback loop is required for the compensation of this noise. High

repetition rate, high average power lasers call for large correction bandwidth of the CEP-

feedback loop that is limited either by the detection system or by the actuator. The CEP

drift at the output of the amplifier can be characterized using a visible-infrared spectrom-

eter that acquires the interference pattern generated by a spectrally broadened continuum

and by its second harmonic in a nonlinear interferometer (f-2f interferometer) [178, 179]

after the final compression stage. In this scheme the CEP drift is measured by applying a

Fourier-based algorithm on the interference pattern. Alternatively the interference pattern

can be sampled using two photomultipliers [180], a photodiodes array [181] or a single pho-

todiode [182] replacing the visible-infrared spectrometer thus ensuring a faster acquisition

rate. Strong-field effects such as ATI have also been used for single-shot CEP drift charac-

terization of kHz-rate laser systems [183]. Several actuators acting only on the amplifiers

have been proposed and experimentally demonstrated to correct the CEP noise induced by

the amplification process including the adjustment of the distance between gratings in the

stretcher/compressor [184], the variation of the amount of glass in the beam path by moving

a glass wedge [185], or the modulation of the pump-power of the oscillator [172]. In the

first two cases, as massive moving mechanical parts are included in the loop, the feedback

bandwidth is limited to few Hertz; instead, in the last case, as two feedback loops (one for

the oscillator and one for the amplifier) are acting on the same parameter, possible cross-

talk might be unavoidable. Recently a new method, based on the use of a programmable

acousto-optic dispersive filter (Dazzler) [186] inserted into the beam path, was proposed for

the stabilization of the CEP of amplified pulses [187]. An electro-optic modulator was also

successfully implemented in the correction of the CEP drift introduced by the amplification

chain [188,189]. The main advantage of these devices is the absence of moving parts, that

could allow feedback bandwidths up to few tens of kHz. In this appendix, we demonstrate

a complete analog feedback loop for correcting the CEP drift introduced by a high-average
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power amplifier by combining a fast single-shot detection system and a fast actuator. We

also present the application of CEP stabilized pulses in the generation of attosecond pulses,

which are further employed in the investigation of eletron dynamics in atomic and molec-

ular gases. In section B.2 we present the laser and CEP stabilization setup. In section B.3

we compare the results of CEP stablization obtained for the in-loop measurements using

different approaches and the data acquired using an independent out-of-loop measurement

of the CEP drift, discussing the importance of a single-shot characterization of CEP noise

for high repetition rate laser systems. In section B.4, we briefly mention the application of

CEP stabilized pulses into the generation of attosecond pulses. Finally, in section B.5 we

present our conclusions.

B.2 Experimental setup for CEP stabilization
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Figure B.1: Experimental setup. WL: white light; SHG : second harmonic generation
crystal; Pol: polarizer; PMT: photomultiplier; PID: proportional-integrative-derivative.

The amplified laser system delivers ultrashort pulses (FWHM=25-30 fs) at 10 kHz rep-
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etition rate with a pulse energy of 2 mJ after compression. The system is based on a com-

mercially available CEP-stabilized oscillator (Rainbow-Femtolasers) with a residual CEP

standard deviation σ= 90 mrad. The pulses are strechted by an Öffner triplet up to 360 ps;

a programmable acousto-optic modulator (Dazzler) is placed after the stretcher to control

the high-order phase dispersion terms. The pulses are then injected into a regenerative

amplifier with an output power of about 1.2 W. A second acousto-optic modulator (Maz-

zler) [190] is inserted in the cavity for shaping and broadening of the amplified spectrum.

At the output of the regenerative amplifier, a first water-cooled 4-pass pre-amplifier and a

second 4-pass amplifier boost the energy up to 4.5 W and 29 W, respectively. The latter am-

plification stage is based on a cryo-cooled (-1800C) crystal mounted in a vacuum chamber;

at this low temperature the thermal lens introduced by the pump-laser is on the order of few

meters and can be easily corrected. The pulses are finally injected in a grating-compressor

with a throughput of about 70% for an output power of 20 W. The pulse duration was

characterized using the second harmonic frequency-resolved optical gating technique. For

the experiment, a small fraction (few µJ) of the compressed pulses is directed to a f-2f

nonlinear interferometer [Fig. B.1], similar to the setups shown in refs. [178–180]. The

pulses are focused in a 2-mm-thick sapphire plate for the generation of white-light (WL),

corresponding to the signal at frequency f, which is collimated and then focused by two

100-mm focal length spherical mirrors in a 500-µm-thick BBO crystal cut for second har-

monic generation at 1064 nm. The infrared part of the WL is frequency doubled leading to

a new component (2f signal) around 500 nm with perpendicular polarization with respect

to the initial WL. The lens placed after the second harmonic crystal focuses the diverging

beam in correspondence of the slit position. A polarizer projects the polarization of the two

pulses along the same direction and a 50% broadband beamsplitter separates the signals in

two parts: the first one is focused in a spectrometer coupled with a line scan kHz camera

that measures the spectral interference pattern between the f and the 2f components. The

position of the fringes is directly related to the CEP of the laser pulse at the input of the

f-2f interferometer. The line scan camera and acquisition software allows single-shot ac-
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quisition up to a sampling rate (i.e. the maximum frequency at which single-shot data can

be acquired) of 180 Hz. It is important to point out that a single laser pulse is sufficient

to determine the CEP, avoiding average over consecutive pulses that might wash out fast

CEP variations. The sampling rate of the system drops to 100 Hz when the acquisition

software is also used to feedback the laser system to stabilize the CEP; it is mainly lim-

ited by the time required by the algorithm to retrieve the CEP drift ∆φ that determines

the error signal ∆ε, and by the communication with the control card which sends the cor-

rection voltage to the proportional-integrative-derivative (PID) device. The second part of

the radiation is diffracted by a grating, that spatially resolves the spectral fringes along the

direction indicated with x in Fig. B.1. We have verified that the fact that a non-collimated

beam is diffracted by the grating does not appreciably deteriorate the spatial dispersion of

the different spectral components at the slit position. A single fringe is selected by a slit,

separated in two parts by the apex of a prism, and sent to two photomultipliers (PMTs)

that integrate the signal over two ranges (x1,x2) and (x3,x4). Then, on a single-shot basis,

the outputs of the PMTs are analogically integrated and subtracted, providing ∆S = S2–S1

and the signal error ∆ε. For a symmetric alignment of the prism with respect to the slit

(i.e. x4–x3 = x2–x1 = ∆x and x2 = x3), it is possible to demonstrate analytically that the

difference signal depends on the CEP, φ , according to the relation:

∆S (φ) ∝ 1

α
sin2 (α∆x/2) sin (αx1 + φ) (B.1)

where α is determined by the grating dispersion and by the distance between the grating

and the detectors. Calculations simulating this detection scheme show that a misalignment

up to 20% of the slit from the symmetric configuration introduces a negligible error in

the estimation of the CEP. Experimentally, we took care that the slit misalignment from

symmetric configuration was less than 10%.

The error signals ∆ε, delivered either by the kHz camera or by the PMTs detection

system, is sent to a PID controller whose output drives either the Dazzler or an electro-

optic (EO) crystal (LiNbO3) [188] introduced between the stretcher and the regenerative
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amplifier. In the first case, the voltage applied to the analog input of the board driving the

Dazzler selects a suitable acoustic wave that is sent to the acousto-optics for the correction

of the CEP variation. In the second case, the signal drives a voltage amplifier connected

to the EO crystal modulating the refraction index experienced by the laser pulses. The two

systems allow to pre-compensate for the CEP drift measured at the output of the system. It

is important to point out that in the case of the PMTs-based feedback the complete analog

manipulation of the signal and the absence of any Fourier-based algorithm for the retrieval

of the CEP drift make the scheme scalable to laser repetition rates up to a few hundreds

of kHz. As stated in the introduction, the combination of a fast CEP detector (already

exploited in refs. [180,182]) with fast actuators, like the Dazzler and the EO crystal, should

allow for a larger correction bandwidth of CEP noise, while avoiding cross-talk issues

that might occur when the feedback loops compensating for the noise introduced by the

amplifier and by the oscillator operate on the same actuator [180, 182]. The combination

of the two detection and analysis systems allows one to compare the performances of the

feedbacks based on the kHz camera and on the PMTs acquisition devices. Great care was

paid in minimizing air vibrations and mechanical instabilities occurring between the two

detection systems.

B.3 Experimental results of CEP stabilization

The single-shot CEP drift measured by the kHz camera using the feedback loops based

on the PMTs and kHz camera acquisition systems are shown in Fig. B.2. The CEP noise

introduced by the amplification process is controlled using either the Dazzler [Figs. B.2(a)

and (b)] or the EO crystal [Figs. B.2(c) and (d)]. When using the kHz camera to feedback

the Dazzler or the EO crystal [Figs. B.2(b) and (d)], the sampling rate is reduced to 100

Hz, due to the software processing time; a higher sampling rate (180 Hz) can be achieved

when the kHz camera only detects the single-shot CEP variations [Figs. B.2(a) and (c)].
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Figure B.2: Single-shot CEP variation measured by the kHz camera at an acquisition rate
of 180 Hz (a,c) and 100 Hz(b,d). The feedback signal correcting the noise introduced by
the amplifier system was provided by the PMTs (a,c) or the kHz camera (b,d) detection
systems acting on the Dazzler (a,b) and on the EO crystal(c,d).

The measured CEP standard deviations σ using the PMTs-based feedback are 330 mrad

for the Dazzler and 320 mrad for the EO crystal, indicating an improvement of 26% and

42% with respect to values of 450 mrad (Dazzler) and 560 mrad (EO crystal), respectively,

measured using the kHz camera-based feedback. It is worth to remark that these values are

based on single-shot measurements, thus ensuring a meaningful comparison between data

acquired with different detection systems and actuators.

The improvement can be understood by comparing the power spectral densities (PSDs)

of the CEP noise shown in Figs. B.3(a) and (b) (see black curves of Figs. B.3(a) and (b)).

The PSDs without feedback on the amplifier (but with the fast feedback loop operating on
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Figure B.3: Power spectral density (left axis) measured by the kHz camera with (black
curves) and without (red curves) feedback loop operating on the amplifier. The error signal
was provided to the Dazzler by the kHz camera (a) or by the PMTs detection system (b). The
integrated phase noise (dashed blue curve ; right axis) as a function of frequency. (c) Power
spectral density measured by an oscilloscope sampling the error signal ∆ε with (black
curve) without (red curve) feedback on the amplifier. The feedback loop was provided to
the Dazzler by the PMTs detection system.

the oscillator) are also shown for comparison (red curves). The kHz camera feedback allows

one to efficiently reduce CEP noise up to a frequency of about 10 Hz, confirming the results

presented in ref. [189]. Higher frequency components are not affected by the feedback loop

due to the limited sampling rate of the error signal ∆ε. The PMTs feedback, on the other

hand, shows a clear reduction of the CEP noise up to the limit of 90 Hz, imposed by the

sampling rate of 180 Hz of the digital measurement. The phase noise integrated over the

frequency range (blue-dashed curves) confirm that the PMTs based feedback allows for a

better control of the CEP with respect to the kHz camera system. The PSDs for the EO
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crystal-based feedback loop present a similar behavior (not shown). The analog feedback

loop allows one to achieve comparable final CEP stability using either the Dazzler or the

EO crystal.

In order to verify that the PMTs feedback loop allows for correction of even higher

frequency components, we recorded the PMTs error signal during the stabilization feedback

based on the PMTs and the Dazzler. The oscilloscope resolution allows for a single-shot

acquisition at the full repetition rate of the laser. In Fig. B.3(c) the PSD of the analog signal

with (black curve) and without feedback loop (red curve) is presented. We show the PSDs

in the frequency range between 0.1 Hz up and 5 kHz, evidencing that the correction of the

analog loop is effective over a large frequency range up to frequencies as high as 1 kHz.

Figure B.4: CEP variation measured by an out-of-loop nonlinear f-2f interferometer. The
feedback signal correcting the noise introduced by the amplifier system was provided by
the PMTs (a) or the kHz camera (b) detection systems acting on the Dazzler.

We also performed an out-of-loop measurement of the CEP drift using a second inde-

pendent nonlinear interferometer, as shown in Fig. B.4. A small fraction of the compressed

pulse was used to generate the f-2f interference pattern that was measured by a visible-
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infrared spectrometer connected to a software for the retrieval of the CEP. The CEP was

stabilized using the PMTs and the kHz camera connected to the Dazzler. In this case the

CEP standard deviation measured by the spectrometer integrating over 10 pulses were 385

mrad and 440 mrad, respectively. The improved stability by the fast analog feedback re-

duces to about 14%, due to additional noises that we attribute to the different conditions for

the WL generation in the two independent interferometers. In spite of this, the out-of-loop

measurements definitely confirm the improved CEP stability using the PMTs feedback.
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Figure B.5: Effect of the integration time on the shot-to-shot CEP standard deviation for
the Dazzler analog feedback (open circle) and EO crystal analog feedback (full triangle).
The solid curve indicates the expected standard deviation evolution as a function of the
number of shots N, assuming a single-shot standard deviation of 320 mrad.

The importance of a fast feedback loop based on a single-shot CEP detection can be

fully understood by analyzing the CEP variations for different integration times of the ac-

quisition system as reported in Fig. B.5. The CEP was stabilized using the PMTs-based

feedback and the data were acquired using the kHz camera for increasing integration times

corresponding to an average over N laser shots. It is evident that even integration over

few shots determines a remarkable reduction of the measured CEP drift with respect to the
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single-shot value. In particular, averaging over a large number of shots (>20 in our experi-

mental conditions) leads to a CEP standard deviation that is independent on the number of

laser pulses. In these conditions it is not possible to draw any conclusion about the residual

CEP noise drift, indicating that a single-shot high repetition rate acquisition system is of

primary importance for a reliable characterization of the CEP noise. We also numerically

evaluated the expected CEP standard deviation after averaging over N shots. We consid-

ered a train of pulses characterized by CEP values with zero average and standard deviation

of 320 mrad, corresponding to the single-shot CEP fluctuation measured experimentally.

To account for the long-term fluctuation of the laser, the CEPs of the closest consecutive

pulses are also weakly correlated. For all choices of N, the average CEP has zero mean;

the standard deviation, on the contrary, strongly depends on N, as evidenced by the red

curve of Fig. B.5. This simple model is in well agreement with the experimental data, and

confirms that for large numbers of N the fluctuations of the averaged CEP are well below

its jitter recorded with single-shot detection.

B.4 Application of CEP stabilized pulses for the genera-

tion of isolated single attosecond pulses

The above CEP stabilized pulses have been employed for the generation isolated single

attosecond pulses. To do so, the 30 fs CEP stabilized pulses have been first compressed

to a few femtosecond via the hollow-core fiber compression [191, 192]. The compressed

few-cycle pulses are then used in the generation of isolated single attosecond pulses in Kr,

by employing the polarization gating technique [193]. The remaining IR beam has bee

blocked by the Aluminium filter, which also shapes the XUV continuum to be centered

around 25 eV. To characterize the attosecond pulses, the streaking measurement [194,195]

has been carried out in Ar, with the result presented in Fig. B.6(a). Finally, the amplitude

and phase information of the isolated single attosecond pulse have been retrieved by the
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(a) (b)

Figure B.6: (a) Streaking measurement of the isolated attosecond pulses; Detection gas:
Ar. (b) Retrieved attosecond pulse amplitude and phase distributions.

FROG-CRAB algorithm [196] and demonstrated in Fig. B.6(b). Isolated single attosecond

pulse with 368 as duration has been successfully obtained. The generated attosecond pulse

have been further applied for the investigation of electron dynamics in molecular gas such

as N2. The results can be found in a recent publication [197].

B.5 Conclusions

We have demonstrated a novel, complete analog feedback loop for CEP drift stabilization

of a high average power amplifier operating on a single-shot basis at the full repetition rate

the laser system (10 kHz). The feedback is based on a fast acquisition detection setup in

combination with either an acousto-optic or an electro-optic crystal. The absence of moving

parts allows one to correct frequency noise up to 1 kHz leading to CEP residual noise of

320 mrad. The demonstrated method should be scalable to systems operating at repetition

rates up to few hundreds of kHz. Out-of-loop measurements confirm the improvement of

the CEP stability. The CEP stabilized pulses have been compressed to few-cycle pulses via

the hollow-core fiber compression technique and employed in the generation of isolated
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single attosecond pulses, which have been further applied for the investigation of electron

dynamics in N2.
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