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ABSTRACT 
 

The passage of cosmic-ray muons through matter is dominated by the Coulomb 

interaction with electrons and atomic nuclei.  The muon’s interaction with electrons leads to 

continuous energy loss and stopping through the process of ionization.  The muon’s interaction 

with nuclei leads to angular diffusion.  If a muon stops in matter, other processes unfold, as 

discussed in more detail below.  These interactions provide the basis for advanced applications of 

cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near 

horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted 

by density and secondary signals that are induced by cosmic-ray muon trajectories. 

We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, 

using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon 

Tracker (MMT).  Geant4 simulations were compared to the data for verification and validation.  

In both the data and simulation, we can identify regions of interest in the reactor including the 

core, moderator, and shield.  This study reinforces our claims for using muon tomography to 

image reactors following an accident. 

Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty 

verification and national security purposes.  The differentiation of SNM from other materials, 

such as iron and aluminum, is useful for these applications.  Several techniques were developed 

for material identification using cosmic-ray muons.  These techniques include: 1) identifying the 

radiation length weighted by density of an object and 2) measuring the signals that can indicate 

the presence of fission and chain reactions.  By combining the radiographic images created by 

tracking muons through a target plane with the additional fission neutron and gamma signature, 

we are able to locate regions that are fissionable from a single side.  The following materials were 

imaged with this technique: aluminum, concrete, steel, lead, and uranium.  Provided that there is 

sufficient mass, U-235 could be differentiated from U-238 through muon induced fission. 
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CHAPTER 1 
 

Introduction 
 

It is basic human desire to understand, see what is hidden, and discover objects inside of a “black” 

box; whereas that box might be the human body, a cargo container, a nuclear reactor – or simply – just a 

box.  Beginning with the discovery of X-ray imaging in 1895 by Wilhelm Röntgen [1], many forms of 

penetrative radiation have proven to be a useful probe for looking inside and discovering the unknown.  In 

particular, cosmic-ray muons are a highly penetrating form of radiation that have been used to successfully 

image objects with a wide range of geometric scales, atomic properties, and densities. 

Prior to the discovery of the cosmic ray, the scientific community believed that background 

radiation was either terrestrial in origin or due to the presence of the sun.  Then in 1912, Victor Hess 

measured radiation “of great penetrating power” while ballooning with Wulf electrometers, a type of sealed 

ionization chamber [2].   By performing measurements in darkness to eliminate the effects of solar 

radiation, Hess discovered that the ionization chambers reported increasing amounts of ionization at several 

thousand meters above ground.  His experimental measurements of the cosmic-ray eventually led to his 

winning the Nobel Prize in physics for the discovery of cosmic radiation.  Street and Stevenson found 

evidence of a particle with a mass intermediate of the proton and electron in cloud chamber observations of 

cosmic rays in 1937 [3], which partially confirmed theoretical predictions by Hideki Yukawa [4].  

However, this “mu meson” particle did not interact via the strong force as predicted by Yukawa, who 

actually predicted the pi meson.  Additional research revealed that the mu meson had different properties 

from other identified mesons, which resulted in the mu meson being renamed as a muon.     

The cosmic-ray muon belongs to the lepton family which contains three charged particles: 

electrons, muons, and taus, as well as three corresponding neutrinos.  The charged leptons interact through 

the electromagnetic, weak, and gravitational forces.  We are able to utilize these forces, mainly the 

electromagnetic force, for performing charged particle radiography.    The weak force becomes important 

when considering a different type of imaging known as muon induced fission laminography which is also a 

focus of this work.  Muons are an effective radiography probe having advantages and unique capabilities 

compared to other imaging probes such as gammas, x-rays, neutrons, and protons.  The cosmic-ray muon is 
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highly penetrative due to being minimally ionizing.  It is a component of background radiation, and it is 

suitable for measuring a wide range of materials. Of further interest is the information that can be derived 

from combining multiple scattering, attenuation, and muon induced fission signatures.     

Muons have been used historically to image the interior of thick or large objects.  For example, the 

pyramids that Alvarez et al. [5] studied involved measuring muon transmission through meters of 

limestone.  Recently, we have developed techniques to identify small objects, on the order of centimeters, 

behind shielding.  Measuring properties of these objects, we can determine whether the objects were made 

of special nuclear material, e.g. uranium or plutonium.  A multiple scattering technique was developed 

based upon established principles of charged particle radiography, e.g. proton radiography [6].  The 

multiple scattering of the cosmic-ray muon yields better spatial resolution when compared to transmission 

images.  However, different isotopes of special nuclear material look identical for both transmission and 

scattering radiography because they have the same density and atomic number.  In this dissertation work, I 

discuss a novel technique used to determine isotopic composition of special nuclear material by the tagging 

of coincident muon induced fission signatures [7].  With the combination of multiple scattering, 

attenuation, and tagged cosmic-ray muon induced fission, we are able to quantify the amount of special 

nuclear material, its location, and roughly assess the isotopic composition of the material. 

A large fraction of my work was devoted to developing advanced modeling capabilities for muon 

radiography through validation with experiments.  I present my findings on modeling capabilities through 

the analysis of the imaging of a nuclear reactor at the University of New Mexico [8].  Through this recent 

work, cosmic-ray muon imaging has been extended to the identification of thick, lower density materials 

behind heavy amounts of shielding and overburden.  In the case of the University of New Mexico Research 

Reactor, we identified a core consisting of uranium loaded in polyethylene that resided in shielding of 

concrete, water, steel, and lead.  Our team began this work to assist in the cleanup of Fukushima Daiichi 

following its nuclear reactor meltdown caused by the tsunami in March 2011.  The imaging of the 

remaining core structure is useful for the acceleration of cleanup operations, increasing its efficiency, and 

reducing radiation dose to the workers.  We have now simulated and performed measurements in 

preparation for a project of this magnitude.  Our work at the University of New Mexico research reactor 

produced useful insight into the obstacles that will be present during a deployment of a muon tomography 
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system at Fukushima, validated simulations pertaining to those efforts, and improved multiple scattering 

image analysis for radiography of thick, lower density objects behind heavy overburden.  Additionally, we 

develop a coincidence scheme to enable cosmic-ray measurements in a radiation field1

  

. 

                                                           
1 Appendix B 
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The Author’s Role and this Dissertation 
 

The development of cosmic-ray muon tomography at LANL is a team effort spanning multiple 

disciplines including: nuclear physics, computer science, and electrical engineering.  A portion of the recent 

muon radiography work involved independent research by the author for the intent of pursuing a doctoral 

dissertation.  The author led the following three broadly defined activities with the support of the Threat 

Reduction team at LANL. 

1. Proposal, experimental execution, simulation, data analysis, and publication of the University of 

New Mexico Research Reactor measurements 

2. High fidelity simulation of the Mini Muon Tomography experimental apparatus 

3. Development of methodology for the implementation of muon induced fission and single sided 

muon radiography and isotopic differentiation between U-235 and U-238 

This dissertation focuses on these three topics, but it does include additional team oriented efforts 

that support the theme of this work.  These additional team efforts are referenced through their 

corresponding publications.  The horizontal imaging of the mockup reactor and the Fukushima Daiichi 

simulations was heavily team oriented.  I differentiate my involvement between the earlier reactor work 

and the UNMRR work as I consider the UNMRR efforts to be largely driven by myself.  There was help 

from my team with the UNMRR research which amounted to: obtaining funding, deploying the 

experiment, and peer review of the data analysis.  The material identification techniques that involved 

comparing radiation length and attenuation length were a team based effort.  Single sided radiography and 

tagged muon radiography were my own work, but I did receive excellent guidance from senior scientists on 

my team.   
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Dissertation Outline 
 

Following the introductory chapter, this dissertation takes a modular approach for explaining the 

history of muon radiography, the underlying physics, experimental equipment, simulation, and results.  

Chapter 2 describes the history of muon tomography beginning with the study of muon transmission 

through tunnels, pyramids, and volcanoes.  The imaging technique derived from measuring multiple 

Coulomb scattering of cosmic-ray muons is explained.  The second chapter concludes by showing a 

tabulated summary of teams that are currently investigating a variety of applications for muon radiography.  

 Chapter 3 explains the relevant physics behind cosmic-ray muon radiography.  The physical 

origin of the cosmic-ray muon is discussed.  An empirical model is shown to accurately approximate the 

muon momentum spectrum as a function of zenith angle.  The three physical processes that effect 

radiography are detailed in this chapter: energy loss, multiple Coulomb scattering, and muon induced 

fission.  The third chapter concludes with derivations that explain the linear dependence of Z for multiple 

Coulomb scattering, and the energy loss of muons has a very weak Z dependence. 

 The experimental apparatus that is used to measure the muon trajectories is discussed in Chapter 

4.  This apparatus is the Mini Muon Tracker (MMT) detector consisting of aluminum drift tubes with 

FPGA front end electronics.  An overview of the secondary neutron detectors, used for the single sided, 

tagged muon imaging, is presented in Chapter 4.  Chapter 5 includes the algorithms used for the muon track 

reconstruction from the drift tube signals along with the several radiography algorithms used to generate 

images from the muon tracks.  In Chapter 6, the MMT is simulated with a Monte Carlo computer model 

showing the intrinsic performance of muon tracking with aluminum drift tubes.   

Chapter 7 presents the work leading up to the reactor imaging of the UNMRR and the results of 

the measurements at the UNMRR.  Prior to the UNMRR, the author and his team performed measurements 

and simulations of horizontal muon radiography at LANL with large concrete blocks and lead to mock up a 

reactor imaging scenario.  Following these measurements, the muon team then proceeded to model the 

damaged reactor at Fukushima with Geant4 simulations.  The experiment at the UNMRR was the first 

muon radiograph of a nuclear reactor using the multiple scattering technique.  Geant4 simulations of the 

UNMRR measurements were performed for verification and validation purposes.  The results from the 
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measurement and simulation present an exciting view into the capabilities of horizontal imaging 

applications for muon radiography. 

Chapter 8 discusses material identification using cosmic-ray muons.  This includes several 

algorithms that compute the radiation length weighted by density of objects that are imaged and the results 

of single sided imaging using tagged muon radiography.  The signal to noise ratio is shown to be improved 

by using neutron tagged stopped tracks compared to conventional transmission radiography.  Finally, fast 

fission isotopic identification is discussed in detail by comparing data measured from low enriched uranium 

(LEU) and depleted uranium (DU). 

Chapter 9 has the final conclusions and discusses the current state of the art work being performed 

by the author and muon radiography team at LANL. 
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CHAPTER 2 
 

History 

Following the discovery of X-ray imaging in 1895, physicists were developing new methods and 

techniques for each identified particle (or wave) of radiation.  They determined the capabilities and 

limitations for each form of radiation that could be measured and used in imaging applications.  However, 

it was not feasible to image objects that were “sufficiently thick” or shielded, .e.g. a lead plate surrounded 

in concrete.  It would be another 50 years until a suitable particle, and method, for imaging larger objects 

was found.  In the 1950s, E.P. George  measured the attenuation of cosmic-rays through large structures 

[9].  George deployed a Geiger counter “telescope” in the Guthega-Munyang tunnel in order to determine 

the thickness of ice and rock above, also known as overburden.  Thus cosmic ray attenuation radiography 

had been born.  George and his colleagues are shown in Figure 1 next to their Geiger counter telescope. 

In the 1960s, Luis Alvarez advanced cosmic-ray muon attenuation radiography with his team’s 

imaging efforts of the Egyptian pyramids.  Alvarez imaged the structure of the Second Pyramid of Giza [5].  

For several decades prior, cosmic-ray muons had been known to have good properties for measuring large 

structures, such as pyramids, however; it wasn’t until 1965 that the technology caught up to the theory for 

such a measurement.  The invention of the digital read-out spark chamber allowed Alvarez to proceed, and 

he deployed his experimental apparatus in a chamber at the bottom of the Second Pyramid of Chephren, a 

location known as the Belzoni Chamber. 

In the Belzoni Chamber, Alvarez deployed two spark chambers, each measuring 0.9 𝑚 by 1.8 𝑚 

in area.  An image of the chambers and their deployed location is shown in Figure 2.  In an earlier work, 

low resolution cosmic-ray experiments had shown the existence of the King’s Chamber and the Queen’s 

Chamber of the Great Pyramid, therefore Alvarez focused on identifying small features over large 

thicknesses of limestone instead.  The Belzoni Chamber was chosen as it was the most suitable point in the 

pyramid to measure through comparable thicknesses of limestone from each of the Second Pyramid’s faces. 
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Figure 1 – E.P. George and his colleagues deploying a Geiger counter “telescope” in the Australian mines of 

Guthega.  George determined the thickness of ice and rock overburden in the tunnels from counting the amount 

of cosmic ray attenuation [9]. 
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Figure 2 – Cross section of the Pyramid of Chephren (left) and spark chamber cosmic-ray measuring equipment 

(right).  On the left image the four letters refer to: A) Smooth limestone cap, B) the Belzoni Chamber, C) 

Belzoni’s entrance, and D) Howard-Vyse’s entrance.  The spark chamber detectors were placed in the Belzoni 

Chamber [5]. 
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He estimated that the cosmic-ray should travel in 2.3 meters less of limestone when passing through the 

center of the pyramid face as compared to the longer distance from traveling through the corner of the 

pyramid.  This should result in a signal intensity difference of 5 percent.  Furthermore, Alvarez also 

predicted that if a hidden chamber with a height of 5 meters were to be present, the intensity difference in 

the flux from this particular direction would be increased by 10 percent as compared to solid limestone.  

Alvarez’s group computed a suite of simulations to model the attenuation of cosmic-rays through 

the Second Pyramid.  The simulations were primarily used to assist in searching for hidden chambers when 

compared with the data.  Over the course of the experiment, the simulations were refined with better 

models ultimately yielding the conclusion that no “hidden chambers” of sufficient size existed between the 

spark chamber detectors and the outer walls of the Second Pyramid.   

Results from Alvarez’s research brought attention to the usefulness of cosmic-ray muon 

attenuation radiography.  Cosmic-ray muon transmission radiography is akin to looking for the shadow of 

an image due to overburden of the traversed material.  In Alvarez’s case, he was able to use the attenuated 

cosmic-rays in order to locate the faces of the pyramid and identify the cap on top of the pyramid as shown 

in Figure 3 and Figure 4.  A stronger signal is found on two of the faces, north and east, due to the Belzoni 

Chamber being located closer to those faces by several meters. 

Several decades later, Nagamine and Tanaka began studying volcanoes and mountains in 

telescopic mode, which is a moniker for single sided attenuation radiography [10-14].  Initially, their 

research focused on using the cosmic-ray muon to probe the inner-structure of a mountain.  They have 

expanded upon this technique performing computed tomography with telescopic measurements from 

multiple angles of Mount Asama, a volcano in Japan.  This method is the cutting-edge in muon telescopic 

radiography, but it also shows the weaknesses in using telescopic cosmic-ray muon radiography for higher 

resolution applications. 

From Alvarez’s previous work, it is known that cosmic-ray muons are an effective probe for 

imaging through many meters of limestone.  Another use for these cosmic-ray muons is measuring the 

inner-structure of volcanoes and their lava conduits as proposed by Nagamine [11].  Prior to performing 

measurements on a volcano, Nagamine’s team demonstrated their method by imaging the inner-structure of 

Mt. Tsukuba in Ibaraki, Japan.  The process for performing this measurement is rather   
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Figure 3 – Azimuthal measurement of cosmic-ray muon flux through all four faces of the pyramid.  The zenith 

angle integrated counts from 20 to 40 degrees.  The corners are easily identified as the depressions in the flux 

where there is a maximum of flux along the center of the pyramid face.  The depression of flux near the corners 

is due to the increase in attenuation due to a greater amount of material [5]. 
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Figure 4 – These two graphs show the difference between the simulation and the measured cosmic-ray muon 

flux across two 24-degree-wide strips in order to show the cap at the top of the pyramid.  In the absence of a cap, 

we would expect the deviation to lie along the zero line.  The data points represent the distances indicated by the 

cosmic rays (simulation vs. data) and are compared with the solid line, which represents the same distance 

measured by areal survey [5]. 
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straightforward: 1) determine the energy spectrum of the cosmic-ray muons and their dependence on the 

zenith angle, 2) find the intensity of cosmic-ray muons penetrating through certain thicknesses of rock, and 

3) apply this knowledge to create a density map of Mt. Tsukuba.  In order to track the cosmic-ray muons at 

Mt. Tsukuba, a threefold telescope of plastic scintillators was used.  The muons were located in the detector 

by performing analysis on the time of flight of the muon through each scintillator panel, which resulted in a 

detector hit location resolution of±2.5 𝑐𝑚.  When projected two kilometers to the mountain, the resolution 

of this method is ±50.0 𝑚, which is to be expected when performing a telescopic measurement over the 

scale of a mountain.  A result from this work is an image of the mountain casting a shadow via cosmic-ray 

muon attenuation as shown in Figure 5.  The muons stop throughout the mountain resulting in a lower 

signal in the detector planes as compared to the horizon above the mountain. 

In an attempt to improve the quality of telescopic mode cosmic-ray muon imaging, Tanaka 

developed a method for performing three-dimensional computed tomography [14].  Over several years, his 

team had installed two telescopic detector systems at Mt. Asama, an active volcano in Japan.  The 

mountain was measured from these two detector stations, and the data was fitted to a damped least squares 

method used to solve a density matrix of voxels 100 meters on an edge.  By using this method, Tanaka is 

able to better resolve the density of different locations throughout the volcano’s inner geometry.  In Figure 

6, three vertical slices of the volcano are reconstructed displaying several features throughout Mt. Asama 

including: conical procession of slices, a void in the center, and several structures of higher density near the 

void.   

Thus, telescopic cosmic-ray muon imaging has been a useful method for measuring large 

geometries, however; a new technique developed at Los Alamos National Laboratory has improved the 

capabilities of muon tomography by measuring the multiple scattering of muons as they pass through an 

object plane [15-20].  This technique is also capable of being fused with additional cosmic-ray muon 

radiography methods, such as telescopic measurements and coincident signals from secondary detectors.  

The usage of multiple scattering in charged particle radiography is well known, e.g. proton radiography 

[21-28].  Therefore it comes as no surprise to find this method applied for cosmic-ray muon radiography as 

well.  Interestingly, the muon has followed the same evolutionary path of the X-ray community, beginning 

with attenuation and moving onward into scattering analysis. 
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Figure 5 – The five figures above are histograms obtained in the Mt. Tsukuba measurement with different 
discrimination cuts.  The cuts are made based upon the amount of low-rate events allowed.  At 20% of the low-
event-rate cut, the outer profile of the mountain is clearly visible.    The bottom image is a photo of Mt. Tsukuba 
with an arrow indicating the detector location [11]. 
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Figure 6 – Damped least squares solution of two-directional muon computed tomography.  Three vertical slices 
are shown: (a) 2170-2270 meters above sea level, (b) 2270-2370 meters above sea level, and (c) 2370-2470 meters 
above sea level [14]. 
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For example, in the case of X-rays, Röntgen’s discovery of X-ray attenuation preceded the development of 

back-scattering imaging techniques.  By using multiple scattering, cosmic-ray muons can be used to image 

dense objects over ranges of centimeters to meters. 

Muon radiography using multiple Coulomb scattering was experimentally validated with a 

detector stack consisting of four ionizing radiation tracking chambers [29].  The active area of each delay 

line drift chamber [30] was 3600 square centimeters.  After detector calibration, with an empty field of 

view, the positional precision of this experimental setup was determined to be 400 microns full width half 

maximum (FWHM).  A scintillator was used to trigger the system for recording incident muons, and muon 

trajectories were measured.  The discrimination between low-Z (water, plastic, concrete), medium-Z (iron, 

copper), and high-Z (lead, uranium) materials, using muon radiography, was achieved with an image 

reconstruction algorithm that incorporates a point of closest approach (POCA) calculation [18].  In this 

algorithm, the scattered path of the muon is approximated by a straight line.  The momentum is estimated 

by particle scattering in two known planes.  A voxel along the computed straight muon path is selected 

using POCA, which determines the nearest distance, and corresponding voxel, between the incident and 

scattered muon path.  The momentum and scattering information in each voxel is then used to compute the 

scattering strength which is defined by eq. 1.  This is described in more detail in Chapter 3.   

 
𝜆𝑚𝑎𝑡 = �

13.6
𝑝0

�
2 1
𝐿0,𝑚𝑎𝑡

=� 𝜎𝜃0,𝑚𝑎𝑡
2  eq. 1  

Where 𝜆𝑚𝑎𝑡is the scattering strength, 𝑝0 is the muon momentum,  𝐿0,𝑚𝑎𝑡  is the material radiation length, 

and 𝜎𝜃0,𝑚𝑎𝑡
2  is the squared aggregate scattering distribution which is well described as Gaussian. 

 

A tungsten cylinder resting on a Lexan plate supported by two steel rails was reconstructed using 

this technique showing clear differentiation between the steel and tungsten, shown in Figure 7.  An 

extension of this method was studied using simulations with the same reconstruction method and a cosmic-

ray muon source with an appropriate angular and energy spectrum.  The simulations established that muon 

radiography of large objects, e.g. a commercial shipping container, can be performed quickly, in 

approximately one minute.  Additionally, the measurement of muon momentum could also be used to 

improve image reconstruction and enhance signal to noise ratio. 
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Figure 7 – Reconstruction of test object based on experiment using one hundred thousand cosmic-ray muons.  
The object in the center is a tungsten cylinder measuring 5.5 cm in radius by 5.7 centimeters in height.  The 
cylinder is resting on a Lexan plate.  This assembly sits on two steel rails.  The image is reconstructed using 1 
cubic cm voxels.  The cylinder is clearly identified from the Lexan plate and steel bars [29]. 
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Over 120 million vehicles enter the United States each year.  Cosmic-ray muon tomography can 

be used for monitoring the trafficking of nuclear weapons and special nuclear material in these vehicles.  

Experimental validation of this application was achieved through measurements from the large muon 

tracker (LMT) [15].  The LMT consisted of 12 planes of 0.05-m-diameter, 3.65-m-long drift tubes in 

crossed x-y sets.  These detectors measured muons with a positional precision to 400 microns FWHM and 

an angular precision of approximately 2 mrad FWHM.  A robust tracker that fits time zero and eliminates 

the need for fast trigger was implemented, which increased the solid angle significantly. By using the 

incident muon flux, the drift tubes of the LMT were also able to be calibrated automatically.  A lead brick 

was mounted next to an automobile engine to demonstrate the speed in identifying a nuclear threat.  Muon 

trajectories were measured for 160 minutes by the LMT and the resulting image reconstruction is shown in 

Figure 8.  Receiver operator curves (ROC), using 40 independent trials, indicated that the lead could be 

identified with zero false positives in 4 minutes.  The required exposure time can be reduced by: including 

momentum in the track reconstruction and enlarging the solid angle of the detector system.  Modeling and 

simulation with Geant4 [31], a Monte Carlo particle physics simulation package, was used to study 

additional cases for applying muon tomography for SNM threat identification.   

The multiple scattering and transmission of muons have been used to image objects with a variety 

of size, density, and atomic mass.  Recent research of multiple scattering muon tomography shows that it is 

possible to image small objects on the order of centimeters.  As this document will show, multiple 

scattering is a more sensitive technique, buy attenuation radiography can also yield a useful secondary 

signal that can improve signal to noise ratio for detecting special nuclear material.  Thus, both methods 

have their uses for specific applications, from high resolution imaging to isotopic identification of enriched 

uranium.  The measurement of near horizontal muon multiple scattering will also allow for the imaging of 

larger structures, e.g. Fukushima Daiichi reactor, at better resolution than what transmission techniques are 

able to accomplish.  Furthermore, cosmic-ray muon radiography is spreading to the broader scientific 

community, indicated in Table 12

                                                           
2 This table was compiled by Dr. E.C. Milner at LANL 

, for many purposes including: geophysics, volcano imaging, tunnel 

imaging, archaeological surveys, fuel canister tomography, port security, safeguards, treaty verification and 

more.
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Figure 8 – Mean scattering angle for a slice through the scene 50 cm above the base plate.  The left panel shows 
the engine, the middle panel the engine plus the 10 cm x 10 cm x 10 cm lead cube, and the right panel the 
difference [15]. 

  



20 
 

Type Country Group Purpose 

Transmission 

Radiography 

 

 

 

 

 

 

 

 

 

 

France 

Hungary 

Italy 

 

Japan 

 

 

 

 

 

Mexico 

United States 

Sorbonne 

Eötvös University 

INFN Napoli 

INFN Trieste 

Riken 

KEK 

Tsukuba University 

Nagoya University 

University of Tokyo 

Toshiba 

UNAM 

Univ. of Texas at Austin 

Geophysics 

Geophysics 

Volcano Imaging 

Archaeology 

Volcano and Reactor Imaging 

Reactor Imaging 

Reactor Imaging 

Nuclear Emulsion Technique 

Volcano Imaging 

Reactor Imaging 

Pyramid Imaging 

Archaeology 

Scattering 

Radiography 

Canada 

China 

 

Italy 

 

Russia 

Sweden 

United Kingdom 

United States 

 

 

 

Chalk River Lab 

Lanzhou University 

Tsinghua University 

INFN Padova 

INFN Torino 

IHEP 

Uppsala University 

AWE 

Decision Sciences 

LANL 

Florida Institute of Tech. 

University of California 

Dry Cask Storage Monitoring 

Geant4 Simulations 

RPC System 

CMS Drift Tube System 

ALICE RPC 

IHEP 

Fuel Canister Tomography 

SNM Detection 

Port Security 

Everything 

GEM Detector Development 

Simulation and Algorithms 

Table 1 – This table describes active muon radiography projects by location and group as of 2013.  Categories 
are separated into two types: transmission radiography and scattering radiography.  
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CHAPTER 3 
 

Theoretical Overview  
 

A well established model for the incident cosmic-ray muon flux is necessary for understanding the 

radiographic capabilities of muons and their implementation in simulations and experiments.  Cosmic-ray 

muon flux is dependent upon position, angle, and energy.  This spectrum is defined by: 1) the incident 

cosmic-ray proton that generated the muon as a result of pion decay from hadronic showers, and 2) the path 

that the resulting cosmic-ray muon followed along its course to the surface of the earth.  As the muon 

approaches the earth’s surface, it passes through the earth’s atmosphere, which is hardening the momentum 

distribution of the muons and reducing their total flux.  Thus, when muons traverse smaller lengths in 

atmosphere, as is the case of vertical muons at high altitude, the flux is higher and the energy spectrum is 

softer.  The opposite is true for horizontal muons, where the spectrum’s average energy is higher and there 

is less flux. The cosmic-ray muon flux at sea level is about 104 𝜇
𝑚2 𝑚𝑖𝑛

, and is composed of nearly equal 

numbers of positively and negatively charged muons.   

The cosmic-ray muons have been studied for the greater part of the 20th century, and we make use 

of the resulting theories and measurements to create models for Monte Carlo simulations.  In particular, our 

simulations rely upon a cosmic-ray muon source that is derived from over 30 years of experimental 

evidence and theoretical explanations.  In this dissertation, it is shown how the knowledge of the cosmic-

ray spectrum can improve the material identification capabilities of cosmic-ray muons.  For example, the 

spectrum of the cosmic-ray muon flux can be used to create a multi-group fit for determining radiation 

lengths of cosmic-ray muon radiography image reconstructions.  The theoretical knowledge of the flux 

allows us to predict the muon rates expected from horizontal muons and determine the impact of 

overburden from buildings adjacent to an experiment. 

The physical processes of charged particle interactions with matter form the basis of cosmic-ray 

muon imaging.  The passage of the muon through the electron cloud of atoms causes ionization resulting in 

continuous energy loss of the incident muon and potentially leading to muon absorption.   This process is 

the foundation of transmission mode muon radiography.  Additionally, the slowing down of negatively 

charged muons can also lead to muon capture and muon induced fission.  Muon induced fission is a useful 

imaging technique for identifying special nuclear materials with high neutronics gain.  The muon 
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interaction with the charged nuclei of atoms in a material results in multiple scattering and angular 

diffusion of the muon.  By measuring the multiple scattering of cosmic-ray muons, we can obtain better 

spatial imaging resolution as compared to transmission radiography.  In the following sections, I discuss the 

theory behind the cosmic-ray muon spectrum and the three physical processes: ionization, multiple 

scattering, and muon induced fission, which enable the use of cosmic-ray muons for imaging. 
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The Cosmic-Ray Muon Spectrum 
 

An accurate model of the cosmic-ray muon spectrum at the earth’s surface was developed at 

LANL.  This model implements methods discussed in previous work that parameterized the cosmic-ray 

muon spectrum as a function of zenith angle [32].  The momentum distribution of vertical muons (with a 

zenith angle around 𝜃 = 0°) at the surface of the earth is well known experimentally.  However, the effect 

that the zenith angle has on the cosmic-ray muon flux energy spectrum and rate is less studied.  Reyna 

suggested a simple approximation for defining the cosmic-ray muon momentum spectrum over all zenith 

angles, 0° ≤ 𝜃 ≤ 90°.  By combining empirical data with the angular zenith relationship derived by Reyna, 

we are able to approximate the cosmic-ray muon momentum spectrum.  This model, hereafter referred to as 

the “Reyna Model”, is used in the simulation and analytical computations in this dissertation.  I describe 

this model in more detail below. 

The cosmic-ray muon momentum spectrum at the surface of the earth is explained by starting with 

the cosmic-ray muon’s source, e.g. a cosmic-ray proton.  The cosmic-ray proton is accelerated in deep 

space from supernova remnants [33-35], and the proton arrives at the atmosphere of the earth producing 

hadronic showers shown in Figure 9.  These hadronic showers occur due to the highly energetic cosmic-ray 

proton interacting with atmospheric nuclei forming secondary particles including hadrons and mesons.  The 

delta resonance of this interaction is responsible for most of the pion production in the atmosphere. A high 

energy cosmic-ray proton interacts with a nucleon in the atmosphere producing a delta baryon and residual 

nucleus: 

 𝑝 + 𝑁 → Δ + 𝑁 eq. 2  

The delta resonance produces a group of delta particles, Δ−, Δ0, Δ+, and Δ++.  Charged pions and 

nucleons are obtained commonly from the following two branches: 

 Δ− → 𝑛 + 𝜋− eq. 3  

 Δ++ → 𝑝 + 𝜋+ eq. 4  
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Figure 9 - Diagram of cosmic-ray muon generation in the atmosphere above the earth.  The cosmic-ray proton 

enters the atmosphere creating a hadronic shower, dominated by pions.  The charged pions decay into a cosmic-

ray muons and neutrinos.  Because of their relatively long lifetime and relativistic energies, most of the cosmic-

ray muons survive until they interact with the surface of the earth. 

 

 

 

  



25 
 

With a mean lifetime of 26 𝑛𝑠, the pion decays resulting in a muon and neutrino or gammas 

depending on the parent pion charge (most probable branching ratio is shown here): 

 𝜋− → 𝜇− + 𝜈𝜇�  eq. 5  

 𝜋+ → 𝜇+ + 𝜈𝜇 eq. 6  

 𝜋0 → 𝛾 + 𝛾 eq. 7  

Most cosmic-ray muons originate near an altitude of 15 km [36].  As they pass through the earth’s 

atmosphere, the cosmic-ray muons typically lose ~2 GeV from ionization.  The cosmic-ray muon energy 

spectrum at the earth’s surface is at an average energy of ~3 ─ 4 GeV.  At the surface of the earth, the 

muons will continue to slow down through additional interactions and either get captured or decay.  Upon 

decay of the cosmic-ray muon, an electron (or positron) and two neutrinos are emitted:  

 𝜇− → 𝑒− + 𝜈𝑒� + 𝜈𝜇 eq. 8  

 𝜇+ → 𝑒+ + 𝜈𝜇� + 𝜈𝑒 eq. 9  

In summary, the angular and momentum distribution of the cosmic-ray muon is a convolution of 

the production spectrum, continuous energy loss in atmosphere, and decay [36].  In order to approximate 

the cosmic-ray muon momentum intensity at a particular zenith angle, the Reyna Model was derived by 

analyzing six surface muon measurements.  These surface experiments: Nandi and Sinha [37], MARS [38], 

Kellogg et al. [39], OKAYAMA [40], Kiel-Desy [41], and MUTRON [42], measured the cosmic-ray muon 

flux as a function of zenith angle and momentum.  The OKAYAMA measurements of lower momentum 

cosmic-ray muons, 𝑝𝜇 ≤ 250 𝐺𝑒𝑉, at multiple angles comprised nearly half of the data analyzed.  MARS 

and Nandi/Sinha measured vertical cosmic-ray muons, and the other three groups measured cosmic-ray 

muons at the zenith angles within the range of 25.9° ≤ 𝜃 ≤ 90°. 

In the Reyna Model, the momentum distribution of the vertical muon intensity is described by eq. 

10, where 𝑝𝜇 is the momentum of a particular muon. 
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 𝐼𝑉�𝑝𝜇�[𝑐𝑚−2 𝑠𝑟−1 𝑠−1 𝐺𝑒𝑉−1] eq. 10  

By plotting the six surface measurements with a simple scaling variable (eq. 11), a similarity in 

the spectral shape of the differential surface muon intensity is identifiable.  A scale factor is then introduced 

for all cosmic-ray muon momenta ∝ 1/cos𝑛(𝜃), where optimal agreement is reached at 𝑛 = 3.  Thus, a 

relationship exists in the data relating muon intensity at any angle and momentum to the vertical intensity 

shown in eq. 12.  Figure 10 shows this relationship by applying the scaling factor to muon flux defined by 

the scaling variable 𝜁.  

 𝜁 = 𝑝𝑢 cos(𝜃) eq. 11  

 𝐼�𝑝𝜇 ,𝜃� = cos3(𝜃) 𝐼𝑉(𝜁) = cos3(𝜃) 𝐼𝑉(𝑝𝑢 cos(𝜃)) eq. 12  

There are several parameterized models that fit the cosmic-ray muon spectrum including: Gaisser 

[43], Tang et al. [44], Bogdanova et al. [45], and Bugaev et al. [46].  The Gaisser and Bugaev models 

describe only the vertical muon intensity.  The Tang and Bogdanova models include angular dependence 

for approximating cosmic-ray muon flux at the earth’s surface.  We chose instead to use empirical data for 

the incident vertical cosmic-ray muon intensity at the earth’s surface, 𝐼𝑉�𝑝𝜇�, and then apply Reyna’s 

method, eq. 12.  Data from Haino’s group [47] was used to sample the low momentum range of the cosmic-

ray muon spectrum, and data from the L3 collaboration [48] was used to sample the high momentum range.  

A smoothing function joined the data sets when they overlapped.  The Reyna Model is simple to implement 

in simulations and is adequate for the full sky simulations that will be discussed further in this dissertation. 
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Figure 10 – Differential surface muon intensity (top figure) plotted as a function of 𝜻.  A scaling factor of 
𝟏/𝐜𝐨𝐬𝟑(𝜽)is applied (bottom figure) resulting in a good fit between momentum and angle for all data sets.  The 
solid black line (bottom figure) is a best fit of the scaled data [32]. 
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Muon Energy Loss 
 

The primary mechanisms for cosmic-ray muon energy loss are ionization and radiative processes.  

The dominant physical process of energy loss is identified by the critical energy.  When the muons 

momentum is at the critical energy, the amount of energy loss is equivalent between ionization and 

radiative processes.  For most materials, the critical energy is above several hundred GeV, which indicates 

that ionization is the primary mechanism of energy loss for the majority of cosmic-ray muons given that the 

average energy of the cosmic-ray muon spectrum is ~3-4 GeV. 

The electronic interaction of high momentum muons, with a speed of 𝑣 = 𝛽𝑐, occurs in singular 

collisions with energy loss E [49].  The rate that this energy loss occurs is well-described by the Bethe 

formula [50-52] shown in eq. 13.  For a given material the function mainly varies by 𝛽 unless considering 

highly relativistic particles where 𝑇𝑚𝑎𝑥  becomes more significant. 

 
−
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� eq. 13  

Where 𝑑𝐸
𝑑𝑥

 is the change in kinetic energy 𝐸 over some distance 𝑥 also known as the “stopping power”,  𝑁𝐴 

is Avogadro’s number, 𝑚𝑒𝑐2 is the electron mass, 𝑧 is the unit charge of the incident particle, � 𝑒2

4𝜋𝜖0𝑚𝑒𝑐2
� is 

the classical electron radius,  𝑍 is the atomic number, 𝐴 is the atomic mass, 𝛾 is the Lorentz factor, 𝐼 is the 

mean excitation energy in 𝑒𝑉, 𝑇𝑚𝑎𝑥  is the incident particle energy, and 𝛿(𝛽𝛾) is the density effect 

correction to ionization energy loss. 

The change in energy, 𝑑𝐸
𝑑𝑥

, is only weakly dependent of the specific material due to the 𝑍
𝐴
 ratio.  In 

lower Z materials, the amount of neutrons is similar to the amount of protons.  The ratio of neutrons to 

protons increases for higher Z up to approximately 3
2
 the amount of neutrons when compared to protons.  In 

order to prove that the material has only a small effect on energy loss, I replace the 𝑍
𝐴
 in eq. 13 with 

𝑍
𝑍+𝑁

~ 𝑍
2𝑍

~ 1
2
 for lighter Z materials, and  𝑍

𝑍+𝑁
~ 𝑍

5
2𝑍

~ 2
5
 for heavier Z materials.  The ln 2𝑚𝑒𝛽2𝛾2𝑇𝑚𝑎𝑥

𝐼2
 term is 

also dependent on Z which affects the mean excitation energy, 𝐼.  However, when compared to the strong 

linear Z dependence of multiple Coulomb scattering, the Z dependence of energy loss due to ionization is 

quite weak. 
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The high-energy cosmic-ray muon (𝛽𝛾 ≥ 1) is highly penetrative and loses energy in small 

increments.  When ionization losses are dominating the energy loss process, the particle is known as 

minimally ionizing, and its total energy loss is ~2 𝑀𝑒𝑉 𝑔−1𝑐𝑚2.  The minimum ionization is similar for 

most materials and for different charged particles. While the Z dependence is generally weak, the density 

effect is much stronger and linear for the slowing down process.  Additionally, density does typically 

increase for higher Z materials, this effect is also shared with the multiple Coulomb scattering.  The 

different regimes of muon lethargy in copper are summarized in Figure 11. 

It is possible for muons to lose all of their energy in a material and range out, or stop.  These 

ranges are typically on the order of meters for a cosmic-ray muon with an average energy of 4 GeV.  This 

penetrative power of muons enabled the original uses of cosmic-ray muons to measure pyramids and mine 

shafts.  The effects of cosmic-ray muon stopping will be discussed in further detail below as muon induced 

fission is one resultant of this process. 
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Figure 11 – Stopping power for positive muons in copper over nine orders of magnitude in momentum.  The 
different dominant physical processes, such as radiative losses and ionization, are shown.  The critical energy 
occurs at 𝑬𝝁𝒄.  The majority of the slowing down of the cosmic-ray muon spectrum occurs in the Bethe region 
for muons at the surface of the earth (average energy of 4 GeV) [53]. 
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Multiple Coulomb Scattering 
 

When a muon passes through matter, it is deflected by many small angle scatterings from nuclei.  

These deflections are due to the Coulomb interaction, which yields the terminology for this process, 

multiple Coulomb scattering (MCS).  The theory of MCS is well described by Molière and Bethe [54].  The 

cosmic-ray muon undergoes a random walk as it scatters through a material, which results in an aggregate 

Gaussian angular distribution for the exiting muon [29] shown in eq. 14 and illustrated in Figure 12 [18].   

 𝑑𝑁
𝑑Θ

∝ Θ exp �−
Θ2

2Θ02
� eq. 14  

The width of this Gaussian distribution, Θ0, is: 

 
Θ0 =
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𝐿
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� eq. 15  

Where 𝐿0 is the radiation length, p is the particle momentum, and βc is the muon velocity (~1 for cosmic-

ray muons). 

 Multiple Coulomb scattering has a linear Z dependence for the Gaussian width, Θ0, from the 

inverse dependence of the radiation length, shown in approximated form in eq. 16.  The Θ02 parameter is 

also referred to as the scattering strength, 𝜆𝑚𝑎𝑡 . 

 
𝜆𝑚𝑎𝑡 = Θ02 ≅ �
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2 1
𝐿0,𝑚𝑎𝑡

 eq. 16  

The Z dependence arises from the definition of radiation length which is the characteristic length of matter 

that a high-energy charged particle travels through and is defined in eq. 17. 

 1
𝐿0

=
4𝛼𝑟𝑒2𝑁𝐴

𝐴
{𝑍2[𝐿𝑟𝑎𝑑 − 𝑓(𝑍)] + 𝑍𝐿𝑟𝑎𝑑′ } eq. 17  

For 𝐴 = 1 𝑔 𝑚𝑜𝑙−1, 4𝛼𝑟𝑒
2𝑁𝐴
𝐴

= (716.408 𝑔 𝑐𝑚−2)−1,  𝐿𝑟𝑎𝑑 and 𝐿𝑟𝑎𝑑′  are tabulated values by Tsai [55], and 

𝑓(𝑍) is approximated below in eq. 18, where 𝑎 = 𝛼𝑍 [56]. 

 𝑓(𝑍) = 𝑎2[(1 + 𝑎2)−1 + 0.20206 − 0.0369𝑎2 + 0.0083𝑎4 − 0.002𝑎6] eq. 18  
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Figure 12 – Multiple Coulomb scattering of a charged particle through material.  The magnitude of scattering is 
exaggerated for illustrative purposes [18]. 
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The radiation length can be simplified as [57]:   

 
𝐿0 =

716.4 𝑔 𝑐𝑚−2𝐴

𝑍(𝑍 + 1) ln �287
√𝑍

�
 eq. 19  

We can simplify eq. 19 further by approximating 𝐴
𝑍
 as a constant, and moving the natural log term and 

leading constant into a total constant K.  This results in a radiation length that is inversely proportional to Z 

with some constant, K, as shown in eq. 20. 

 
𝐿0 =

716.4 𝑔 𝑐𝑚−2𝐴

𝑍(𝑍 + 1) ln �287
√𝑍

�
∝ 𝐾

1
𝑍 + 1

∝ 𝐾𝑍−1 eq. 20  

Where 𝐴
𝑍

= 𝑍+𝑁
𝑍

~ 𝑍+𝐾𝑍
𝑍

~𝐾 and ln �287
√𝑍
�~𝐾. 

By combining eq. 16 and eq. 20, the scattering strength is linearly dependent and proportional to 

the Z of the scattering material, eq. 21.  The MCS sensitivity to Z enables the discrimination of different 

materials with similar densities.  Additionally, the combination of MCS muon radiography and 

transmission mode radiography produces a signal that could be used for identifying objects through density 

measurements and scattering analysis [58].  

 
𝜆𝑚𝑎𝑡 = Θ02 ≅ �

13.6 𝑀𝑒𝑉
p

�
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∝ 𝐾 �
13.6 𝑀𝑒𝑉

p
�
2

𝑍 eq. 21  
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Muon Induced Fission 
 

The capture of negatively charged muons in heavy materials, e.g. uranium, can lead to fission.  

The neutrons that result from the fission of heavy materials can be amplified by materials with large fast 

neutron fission cross-sections.  This fission neutron signal can be combined with muon tracking in order to 

create a single sided, tagged muon radiography image that is particularly sensitive to fast fission materials.  

By using this technique, special nuclear material can be identified with a high signal to noise ratio from one 

side. 

A slow cosmic-ray muon, 𝑝 ≪ 100 𝑀𝑒𝑉/𝑐2, is below the point of minimal ionization loss.  At 

this point, each ionization removes increasingly larger amounts of the muon’s energy until the muon either 

decays or is captured in the material.  If the muon is negatively charged, and the capturing material is high 

Z, muon induced fission may occur through either a prompt or delayed process [59].   

The negative muon is typically captured in the electromagnetic shell of the atom and quickly de-

excites releasing muonic x-rays in the process.  As the muon approaches ground state, the probability of it 

interacting with a proton in the nucleus increases.  This is due to the increased mass of the muon pushing its 

orbit closer to the nucleus as compared to an electron’s orbit in the same state.  In high Z materials, e.g. 

uranium, the 1s orbital muon resides inside the nucleus.  In prompt muonic fission, the excitation energy of 

the muonic atom is transferred directly to the nucleus via non-radiative internal conversion.  This transition 

typically overcomes the fission barrier height of most actinides.  The prompt muon induced fission process 

can be represented as:  

 (Z, A)(μ−)∗ → (Z, A)∗(μ−) eq. 22  

Alternatively, the muon may interact with a proton through the weak force resulting in a 

transmutation of the proton to a neutron and a neutrino: 

The neutron generally receives up to 20 MeV of energy and may escape the nucleus.  The 

resulting excited nucleus is prone to fission. The characteristic mean lifetime of this process, which is 

known as a delayed muon-induced fission, is 70-80 ns in actinides. 

  

 𝜇− + 𝑝 → 𝑛 + 𝜈𝜇 eq. 23  
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CHAPTER 4 
 

Muon Tomography Instrumentation 
 

  The cosmic-ray muon is a component of background radiation, which enables us to perform 

experiments without being tied to expensive source facilities. Though the muons arrive at the experimental 

apparatus with some variation in flux and energy spectrum, we are not sensitive to the impact of these 

changes during measurement over long integration times.  The experimental facility, where we performed 

the majority of our measurements, is located at an altitude of ~2200m, which yields more muon flux in 

contrast to sea level. There was little effect from overburden due to adjacent buildings.  The cosmic-ray 

muon is a probe with the capability of performing charged particle radiography on materials with a variety 

of thickness, density, and atomic mass; for the detection of these muons, we have implemented arrays of 

drift tube detectors.  

The muon tomography team at LANL decided that sealed aluminum drift tubes were the most 

suitable detector for cosmic-ray muon radiography.  With a well established history in the high energy 

physics community, due to its use in charged particle detection for accelerator experiments, the drift tubes 

provided a cost effective, low gamma background alternative to scintillators and photomultiplier tubes.  

Given that the expected rate of flux through the tubes was low, as compared to an accelerator beamline, the 

tubes were sealed providing extra robustness and ease of operation.  The muon tomography team was able 

to quickly produce many of these drift tubes for performing cosmic-ray muon imaging. 

Aluminum drift tubes have several characteristics limiting the muon radiography resolution.  

Detector scattering effects amount to several milliradians of angular deflection of the muon probe, which 

when projected over a meter, can blur reconstructed edge resolution by millimeters to centimeters.  This 

effect can be reduced by replacing the aluminum drift tubes with carbon fiber drift tubes; this lessens the 

effect of detector scattering.  The front end electronics that digitize the drift tube hits have a 200 MHz clock 

which translates to a 5 ns granularity of the data.  Given the speed of the charge migration in the 

spectroscopic gas, the 5 ns granularity corresponds to a spatial resolution of approximately 400 microns of 

uncertainty in each aluminum drift tube.  A faster clock would improve the spatial resolution in the drift 

tubes, and that is a more likely option for improvement than finding a slower gas. 
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Mini Muon Tracker (MMT) 
 

The Mini Muon Tracker uses two muon supermodules to measure incoming and outgoing tracks 

of individual muons, where the region of interest is contained within the acceptance of the tracker pair. 

Each supermodule of the Mini Muon Tracker contains drift tubes that measure the trajectories of passing 

muons.   Individual drift tubes have a 5 cm outside diameter, 1.2 m length and 0.9 mm wall thickness; they 

are sealed on both ends with welded aluminum end-caps[60].  Tubes are filled with a gas mixture of 50 % 

Ar, 44 % CF4, and 6% C2H6. The anode wire is 30-µm, gold-plated tungsten, installed with 0.49N (50g) 

tension, and maintained at +2550 V relative to the grounded tube wall during operation.   

Drift tubes are arranged in a stacked, dense-pack of double layers, and are able to detect 

interacting charged particles with high efficiency. For the MMT, each supermodule (one above and one 

below), is comprised of 3 sets of x-y planes; each plane is 114.3 cm by 114.3 cm (24 tubes at each of two 

staggered layers in each direction, so 48 tubes for each x and y).  The total number of tubes in the system is 

576 (96 for each x-y plane; 3 x-y planes per supermodule; 2 supermodules). 

Each drift tube in the MMT is a non-proportional avalanche counter.  When a muon travels 

through one of the tubes, it creates a line of electron/ion pairs in the gas.  Some electrons and ions may 

recombine, however when high enough voltage is applied, an “electron cloud” will start drifting toward the 

wire.  The geometry of the electrodes in these tubes creates an avalanche electric field that amplifies the 

electron cloud as it approaches the wire, near a distance of 1 mm.  This results in charge accumulating onto 

the wire and provides signal for the front end electronics.  Figure 13 shows a drift tube schematic and a 

muon travelling through that tube resulting in an ionized electron cloud moving to the wire. 

The drift velocity of the electron charge is an important value for reconstructing the location of the 

ionizing muon trajectory.  The drift time of the electron cloud is defined by the distance of the closest 

approach of the muon trajectory to the drift tube wire and the electron cloud drift velocity.  The drift 

velocity can be determined either from simulations or measured by using tracking data from the MMT 

during system calibration.  This yields a time-to-radius function for the drift tube, which is used to convert 

drift times to distance of closest approach for an ionizing muon trajectory.  The distance of closest 

approach, obtained for each hit in an event, is then used for muon trajectory reconstruction.  An event is 

defined as a single muon crossing the MMT detectors whilst hitting multiple tubes in the trackers. 
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Figure 13 – Drift tube design cutaway (left) [60] and diagram of a charged particle passing through that drift 
tube (right).  This drift tube detector is a gas filled aluminum tube with a Swagelok fitting that anchors a wire 
between both ends of the tube.  When a charged particle passes through the tube, it creates electron and ion 
pairs (ions omitted in right figure).  The cloud of electrons drifts to the wire creating a signal. 
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In Figure 14, the drift tube radius to time curve is shown for MMT drift tube #270.  A datum point 

is plotted for each hit that occurs in the tube per track.  This datum point is converted to a radial distance by 

using a distance of closest approach between the track vector and a vector that makes up the wire (assumed 

to be straight).  Distance is plotted versus drift time recreating a drift to time (RT) curve for the drift tube 

#270.  Results from a Garfield [61] simulation of the tube are superimposed on the data points.  There is a 

time offset in the data as compared to the simulation, however; the shape of the simulation is similar to the 

drift tube data.  This offset occurs from the tracking reconstruction process, which determines an initial 

time for track fitting purposes. 

The drift tube pulses are amplified by charge sensitive amplifiers, discriminated by multi-

threshold discriminators, and digitized in field-programmable gate array (FPGA) time-to-digital converters 

(TDCs). The data is transferred to a data-acquisition computer through a dedicated Ethernet link.  

Additional signals are input into the TDC boards for timing coincidence between muons and their induced 

fission gamma and neutron signatures.  Hardware in the form of neutron detectors, gamma detectors, 

discriminators, and logic level converters are used to provide this signal. 

The MMT has been adapted to operate in different modes.  In a vertical (standard) orientation, 

shown in Figure 15, objects are placed between the upper and lower tracker sets.  Scattering in the objects 

deflects the muons, as measured by the difference between track direction vectors measured above and 

below the objects.  The MMT can be rotated by 90 degrees into a horizontal orientation, e.g. for reactor 

imaging, with the supermodule planes oriented vertically for the reactor experiment in order to measure 

near horizontal muons. This orientation allows easy set up of the detectors around a large object like the 

University of New Mexico’s Research Reactor.  The MMT system is transportable in a trailer for field 

work, and this has been demonstrated in several public demonstrations for educational purposes. 
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Figure 14 - R(t) curve for MMT drift tube number 270.  Data (blue points) consists of a one hour run worth of 
muon tracks that cross tube 270.  The Garfield simulation is the continuous (red) line.  The Garfield simulation 
parameters matched the drift tubes used in the MMT.  There is a time offset between the simulation and data 
due to the track fitting process. 
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Figure 15 - The mini muon tracker (MMT) in a vertical (standard) orientation.  Muon trajectories are measured 
by drift tubes located in each supermodule.  The muon scattering objects in the field of view (e.g., lead blocks 
seen as blue rectangles in the photo) are reconstructed by the data acquisition computer; their images are 
displayed on the monitor in real time. 
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FPGA Frontend Electronics 
 

A field-programmable gate array (FPGA) design3

Figure 16

 was implemented for the frontend electronics 

for converting the signal from the drift tubes into digital data.  There are three printed circuit boards (PCB) 

for the front end electronics and an additional printed circuit board that provides high voltage to each drift 

tube.  The bottom PCB of the front end electronics magnifies the amplitude of the signal from the drift 

tubes with a preamplifier and amplifier.  Following signal amplification, the bottom PCB applies a 

discrimination cut on the amplified signal converting the analog signal into a series of logic cuts based on 

the discriminator threshold.  The middle PCB of the front end electronics contains the FPGA components 

responsible for reading a clock signal, time-stamping the logic from the bottom board with a TDC, and 

exporting the TDC buffers every second.  This middle PCB communicates with the data acquisition 

computer (DAQ), the 200 MHz clock, and the other frontend electronics cards with Ethernet.  A master and 

slave relationship is used in order to synchronize each of the 24 cards.  The top PCB is used to read in 

additional TTL signals to be combined and timed in coincidence with the muon tracking.  This enables the 

single-sided muon tagged imaging used to study muon induced fission.  PCB components are shown in 

. 

 

  

                                                           
3 The current iteration of the frontend electronics has been designed by Decision Sciences Corporation 
(DSC).   
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Figure 16 – Frontend electronics for the Mini Muon Tracker.  The three printed circuit boards are used to read 
signal from the drift tubes and convert the signal into logic that is time stamped by the TDC.  The drift tube 
analog signal is converted into logic pulses with a preamplifier, amplifier, and discriminator (PAD).  Additional 
logic signals can be read into the TTL input.  Every second, the data is exported to the DAQ via Ethernet. 
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Secondary Signal Detectors Overview 
 

The secondary signals used to tag muon induced fission for muon radiography result from 

neutrons and gammas born during the fission process.  Several detectors were investigated for measurement 

of these fission products.  There were several criteria used to determine the feasibility of each detector: 

time until detection, efficiency, and susceptibility to background.  As will be discussed in the muon induced 

fission chapter, the neutron is the best secondary particle to detect for tagged muon induced fission 

radiography.  Thus, the focus on secondary particle detection is specific to the identification of a neutron in 

coincidence with the incident muon. 

Four detectors were evaluated: He-3 tubes wrapped in polyethylene, He-4 tubes, a solid plastic 

scintillator bar, and EJ-301 liquid scintillators; these detectors are shown in Figure 17.  The solid plastic 

scintillator bars failed at providing a signal of neutron flux due to having poor pulse shape discrimination 

characteristics and a large gamma background detection rate.  The He-4 tubes were also not suitable given 

that their efficiency was at most 1-2 percent for detection of fast neutrons.  The He-3 tubes wrapped in 

polyethylene performed well; however, their time until detection was too long due to moderation time.  The 

EJ-301 liquid scintillators were the best candidates for identifying neutrons in coincidence with the incident 

cosmic-ray muon.  Further discussion of the EJ-301 detectors, and their usage, is in the muon induced 

fission chapter. 
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Figure 17 – Detectors used to measure neutrons from muon induced fission.  There were several criteria for 
identifying the best neutron detector: time until detection, efficiency, and susceptibility to background (mainly 
gamma).  The two best detector candidates were the liquid scintillator and the He-3 polyethylene wrapped 
suitcase detector. 
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CHAPTER 5 
 

Methodology of Research Overview 
 

The content of this dissertation research evolved over time to include material identification, 

horizontal reactor imaging, and high fidelity muon tomography simulations.  The initial objective of this 

work was to develop an imaging technique for material identification.  A second goal, horizontal reactor 

imaging, was identified following the tsunami that damaged the nuclear power plant at Fukushima, Japan.  

Simulations, mostly in Geant4, were studied and improved throughout the course of this work. 

The methodology of this work focused on two objectives: 1) measure and analyze muon 

trajectories for material identification and reactor imaging and 2) improve predictive capabilities through 

the comparison of measurements and simulations.  Experiments and simulations were performed with a 

standard scientific method, e.g.: 

1. Propose the question: Can U-235 be identified using single sided imaging?  Is U-235 

distinguishable from U-238 using this technique? 

2. Background research: Muons stop and scatter in U-235 and U-238 identically and muon 

induced fission occurs in Uranium.  Production of secondary neutrons is higher in 

materials with neutronics gain (U-235 has a higher fission cross-section at 1 MeV than U-

238 for example) 

3. Hypothesize:  If U-235 has more neutronics gain, then it should be distinguishable from 

U-238 when measured using single sided muon imaging with muon induced fission. 

4. Experimental test: Measured low enriched uranium (LEU) and depleted uranium (DU) 

blocks with MMT and secondary detectors 

5. Data analysis: The measured data suggests that by being sensitive to secondary neutrons, 

objects can be imaged from one side when imaging is performed in coincidence.  

Additionally, isotopic information can also be determined with some a priori knowledge 

(e.g. knowing that the cube is Uranium, but not its isotopes). 

6. Peer review: Publications, team review, and review by sponsors of research 

There were many additional questions to be asked of the capabilities of muon tomography, some 

of which are addressed in this dissertation.  In general, muon tomography’s sphere of influence can be 
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grouped by application to include homeland security, treaty verification, reactor imaging, medical, 

geophysical, and archaeological.  The team that I was involved with performed research primarily in the 

treaty verification, homeland security, and reactor imaging areas, however; we have also investigated 

medical imaging capabilities (Appendix C).  Though each of these applications is quite different, there is a 

significant overlap in the experimental techniques. We needed to address several research questions to 

advance the applications. Is the rate of cosmic-ray flux adequate in order to image objects within a 

reasonable timeframe for vertical and near horizontal cases?  Can the physical interactions of cosmic-ray 

muons in matter provide measurable data for material identification?  Can cosmic-ray muons be detected 

with sufficient resolution and efficiency?   

During the research for this dissertation, several ideas were hypothesized based upon the current 

understanding of the cosmic-ray muon tomography capabilities.  Multiple scattering and single sided 

imaging, through the measurement of muon induced fission coincidence, can provide information on the 

material composition of the inspected object. The known cosmic-ray muon horizontal flux could be used to 

image the interior of thick and complex objects, e.g. a nuclear reactor.  These topics, including their 

experimental measurements, simulations, analysis, and results, are discussed in further detail in the 

following chapters.  

To study the advanced applications of muon tomography, an experimental detector, the MMT, 

was used to measure muon tracks that passed through objects, e.g. a LEU cube or a nuclear reactor at the 

University of New Mexico.  The single sided imaging used neutron and gamma detectors for measurement 

of the secondary signals resulting from muon induced fission.  Several objects were used in single side 

imaging mode including: a lead sphere, several lead bricks, an aluminum cylinder, several blocks of steel, a 

cube of depleted uranium, and a cube of 19.6% enriched uranium (19.6 % U-235/ 80.4 % U-238).  In this 

thesis I focused on the results from the two uranium cubes.  For horizontal reactor imaging, we used large 

concrete blocks and palettes of lead to imitate a mockup reactor and imaged the AGN-201m reactor at the 

University of New Mexico. 
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The Reconstruction of Cosmic-Ray Muon Tracks 
 

The creation of cosmic-ray muon tracks was performed with a linear residual fitting routine known 

as the L1 fitter [62].  The L1 fitter performs a regression of points on a plane by summing the absolute 

difference between the fitted line and data.  Its usage is similar to the well known L2 (least squares) fitting 

approach, but it is reduced to a linear difference model for suppressing outliers.  Both the data and 

simulation use the L1 algorithm to construct tracks from hit and timing information obtained in the 

detectors.  The primary difference between the data and simulation is the exclusion of time zero fitting in 

the simulations of the detectors.  As the detectors are triggerless, temporal windows are used to group the 

hits in the measured data.  A best fitted track with the lowest residual from a combination of tracking 

possibilities is computed from the windowed hits.  The simulation avoids this issue by recording only the 

parent particle (a muon or electron), which is tracked from its origin to the end and does not follow 

secondary particles. 

The track fitting is accomplished via a multi-step process. First, incoming and outgoing track 

information is compiled as two vectors. The tube number, drift time, and distance of closest approach to the 

tube’s wire is stored in the vector for each tube hit in an event. The event is then filtered using the number 

of drift tube hits and whether they lie within a specified range.  If either the number of hits exceeds a 

specified maximum or the number of activated layers is not achieved, the vector is cleared and the next 

event information is processed. Once these checks are completed, the event hits are separated into groups 

corresponding to the top and bottom modules of the MMT based upon the wire positions of the tubes. 

The coarse tube fitting creates a track based upon the wire positions of the hit tubes in an event.  

The XZ and YZ wire planes are fitted independently, where Z is defined as the distance between two 

supermodules.  An iterative process is used to fit the plane of wires, which results in a slope, intercept and 

L1 fit quality parameter, 𝜒.  The intercept position is a projection of that fitted line to a center plane of the 

detector. The line is chosen by minimization of the χ parameter. The projections are calculated for each of 

the ‘hit’ tubes, and the absolute difference is found for each pair and added to χ for every hit. A tracking 

“story” is created around each of the hit wires, thus the iterations are constrained to the number of hits.  The 

coarse tube fitting results in a trajectory that includes the intercepts, the slopes, and the combined ‘χ’ for 

both the x- and y-directions. 
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After the coarse fitting, the exact fit is initiated. The main difference for the exact fit is the 

implementation of the drift and the ambiguities matrix. The drift variable is set as the distance of the hit 

from the center wire of the tube. A Gaussian blur is included to approximate uncertainties in the detector 

measurements.  The ambiguities matrix is used to determine what side the muon passed through the tube.  

The rest of the fitting process is the same as coarse fitting, with the inclusion of the drift and ambiguities 

matrix. 

We compute and track the hit tube ambiguities in a matrix. Within this ambiguities matrix, each 

tube fit sets the ambiguities as either 1 or -1, corresponding to the left or right side of the tube. The best 

track between two points is found using permutations of the hit location point. Each point is rotated around 

the wire location through all producible tracks, and the one with the least cumulative difference is selected. 

This least cumulative difference is defined as the summation of the differences between each tube’s wire 

and the drift variable for every hit. Along the projected path, each ‘hit’ and corresponding ‘tube’ are 

identified.  The orthogonal distance between the tube’s wire and the track found with the drift variable are 

subtracted. These values are then summed to create the least cumulative difference.  The three points within 

the event that have the lowest drift variable are used. Each possible combination of the three points is 

permutated, and the least cumulative difference track is located.  The ambiguity of each hit is set to either 1 

or -1, which is based upon the tracking scenario that has the least residual (least cumulative difference). 

This ambiguities vector is returned for use in the fine tube fitting.  

After all trajectories are compiled for both the x- and y-directed tubes, the final track for each 

event is created. This is done for both the incoming track and outgoing track information.  Once completed, 

the tracking program proceeds onto the next event. All ‘in track’ and ‘out track’ information for the events 

is stored in the output file in the form of position and direction vectors (direction cosines).  The final result 

is a simulation output that can be compared with data. 
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Acquisition and Analysis of Data for Muon Tomography 
 
 

The data in this dissertation was analyzed using image analysis tools along with statistical analysis 

packages and graphing programs.  Several software packages were used for data analysis including: the 

open source object oriented mathematical toolkit ROOT, a LANL image analysis package NewDisplay 

[63], and Microsoft Excel.  ROOT provided several useful features including: histogram analysis and non-

linear, fast storage of data and simulation results.  NewDisplay is image analysis software developed at 

LANL, originally for the proton radiography community.  Excel was used for graphing muon trajectories, 

the output from image analysis projections, and error analysis. 

The acquisition and analysis of the MMT data was done in a consistent manner.  A hypothesized 

question was asked; for example, can muon induced photons be identified in coincidence with muon tracks 

that pass through uranium?  The MMT would then be configured by placing uranium in the field of view 

and surrounding the MMT with sodium iodide detectors.  The sodium iodide detectors would be connected 

to a data acquisition system designed to filter out background photons below 2 MeV.  In general, this 

method was used for data acquisition during material identification purposes regardless of the secondary 

particle detector type or material that was inspected.  At the end of this preparation, data was ready to be 

measured. 

The MMT has a graphical user interface that enables automated run control.  This was a useful 

feature as the data can be automatically separated into small chunks, typically on the order of hourly runs, 

and then added together during analysis.  This method increased the reliability of the data acquisition in the 

event of occasional hardware failure, e.g. high voltage or low voltage power supplies tripping.  A log book 

was used to record each run.  An image of the data acquisition GUI is shown in Figure 18. 

The result of a measurement is several ROOT files that contain hit and tracking information 

measured by the MMT and recorded from the secondary detectors.  This data was separated into three file 

formats for data analysis: full trajectories, stopped trajectories, and secondary detector pulse times.  The 

files were output in a comma separated value format and contained the time of the tracks and the track 

position and direction components.  These values were then processed using software such as Excel or 

NewDisplay. 
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Figure 18 – Run control GUI for the MMT.  The GUI has several features including a log book, manual start 
and stop of data acquisition, automated run control, and system health monitoring features.   
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NewDisplay has many functions for image processing which are primarily oriented toward data 

analysis.  With this software it is possible to open high resolution images and evaluate their contents one 

pixel at a time.  Some of the functionality of this software includes: mathematical operations on images, 

batch mode image processing, selecting projections (referred to as lineouts), higher order operations such 

as Abel inversions, and simplified output that is formatted for use in Excel.  An example of an image being 

processed in NewDisplay is shown in Figure 19.  The muon induced secondary signals were paired with the 

stopped or passing muon tracks by using NewDisplay as well. 

The final result of the data acquisition and analysis is a set of images and projections that show the 

behavior of muons passing through an object and the measurement of secondary signals in coincidence 

with those muons.   
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Figure 19 – NewDisplay image processing software.  A piece of steel embedded in concrete is shown below.  A 
lineout projection of the horizontal and vertical axis are included on the right.  The values shown in the 
projection plots are averaged between the selected green lines. 
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MMT Detector Resolution 
 

The spatial edge resolution of the MMT is measured by fitting the edge of two lead bricks that are 

separated by 5.1 cm.  The lead brick dimensions are 20.7 cm x 10.2 cm x 5.1 cm with an uncertainty in 

physical measurement of 1 mm.  Cosmic-ray muons passing through the lead bricks were measured for six 

hours.  A multi-group multiple scattering image reconstruction was performed to obtain the edge lineout 

projections for each brick.  The image was reconstructed with a pixel size of 2 mm and using the nearest 

neighboring pixels for the image smoothing.  The pixel size was studied by comparing edge resolution by 

using several pixel sizes ranging from 2 mm – 2 cm with and without neighboring pixels.  I concluded that 

the pixel size and selection of neighbors did not have a significant impact on the edge resolution provided 

that the count statistics in a voxel were sufficient.  Six of the edges, forgoing the two edges in the center, 

were used to compute the average of the resolution and its error by using the method of replicate trials [64].  

Figure 20 displays the image reconstruction of the lead bricks and the average line projections that are 

selected. 

Several projections are taken through the bricks for computing the average edge resolution.  The 

following edges are labeled and shown in Figure 21.  Each edge measurement spans a nine centimeter 

range and has an offset subtracted to align the edges on the same plot.  Edges B, C, and D are flipped for 

plotting purposes. 

The computation of the edge resolution of the lead bricks is accomplished by fitting the edge.  

Here the edge is defined as a convolution between a step function and a Gaussian with some width.  The 

width of the Gaussian is determined by using a non-linear least squares model.  The model minimizes the 

𝜒2 between the data and the fit which is well characterized by an error function.  The fitting algorithm 

includes the three components of the Gaussian, the amplitude 𝐴, the mean 𝑥0, and the width 𝜎. 

 
erf(𝑥, 𝑥0,𝐴,𝜎) = 𝐴� 𝑒−

(𝑥−𝑥0)2
2𝜎2 𝑑𝑥

𝑥0+𝑥

𝑥0−𝑥
 

eq. 24  

The fit of the edge is computed by varying the Gaussian variables for the edge in two pieces, to the 

left of the mean and to the right of the mean.  These pieces, which are solved simultaneously, form the two 

equations used in the non-linear least squares solver.  A baseline variable, 𝑏, is also included. 
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 𝑦𝐿 = erf(𝑥𝐿 , 𝑥0,𝐴𝐿 ,𝜎𝐿) + 𝑏𝐿 , where 𝑥𝐿 ≤ 𝑥0 eq. 25  

 

 

Figure 20 - Image reconstruction of two lead bricks using a multigroup algorithm for scattering angle analysis.  
The edges of these two lead bricks are used to compute the spatial resolution.  This image is shown in 5mm pixel 
sizes for visual purposes only.  The plots on the right side are the average projections of the x and y plane which 
are bounded by the green lines. 
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Figure 21 - A plot of the six edges used to measure spatial resolution using two lead bricks.  The edges are 
analyzed with a fitting algorithm designed to compute the Gaussian width of an edge. 
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 𝑦𝑅 = erf(𝑥𝑅 , 𝑥0,𝐴𝑅,𝜎𝑅) + 𝑏𝑅, where 𝑥𝑅 ≥ 𝑥0 eq. 26  

The results are two Gaussian widths which represent the edge resolution of the MMT.  In this 

case, the Gaussian widths are forced to be equal during the fitting process to produce a smooth and 

continuous fit.  This width, 𝜎, is used for reporting spatial resolution. 

 𝜎𝑅 = 𝜎𝐿 = 𝜎 eq. 27  

An example of the fitting, for Edge B and Edge F, is shown in Figure 22.    The green curve 

represents the data obtained by taking a projection of the lead brick which bounds Edge F and Edge B.  The 

left curve is the resulting fit of the Edge F and the right curve is the fit of Edge B.  This procedure was 

repeated for the other four edges: A, C, D, and E. The method of replicate trials is used to compute the 

error.  The results are shown in Table 2 which includes the spatial edge resolution of the MMT measured 

with this method.  The full width at half maximum is also computed.  However, our convention is to define 

spatial resolution using 𝜎. 

 𝐹𝑊𝐻𝑀 = 2√2 ln 2𝜎 ≈ 2.35482 𝜎 eq. 28  

The following equations are used for the statistical analysis shown in Table 2 including the mean, 

standard deviation, and standard deviation of the mean (SDOM).   

 
𝑥̅ =

1
𝑁
�𝑥𝑖

𝑁

𝑖=1

 
eq. 29  

 

 
𝜎𝑥 = � 1

𝑁 − 1
�(𝑥𝑖 − 𝑥̅)2  

eq. 30  

 

 𝑆𝐷𝑂𝑀 = 𝜎𝑥̅ =
𝜎𝑥
√𝑁

 eq. 31  

The final result of the averaged spatial resolution for the MMT using the lead bricks is 0.63 ± 0.02 𝑐𝑚. 
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Figure 22 - An edge fitting of the lead brick data.  The Edge F (left edge) and Edge B (right edge) are fitted using 
the error function and varying Gaussian parameters.  This function is input into a least squares minimization 
function to obtain the best fit to data.  
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Table 2 - Spatial resolution of six edges obtained by measuring muons passing through two lead bricks.  The 
spatial resolution is averaged and an error analysis is performed by using method of replicate trials.  The 
average spatial resolution is 0.63 cm. 

  

Edge A Edge B Edge C Edge D Edge E Edge F MEAN StdDev SDOM
Edge Resolution (cm) 0.722 0.5725 0.6752 0.5942 0.6225 0.5843 0.62845 0.058695 0.023962

FWHM (cm) 1.70018 1.348134 1.589974 1.399234 1.465875 1.375921 1.479887 0.138215 0.056426
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The measurement of an edge resolution from a brick, or any other parallelepiped type of geometry 

has limitations due to the different lengths of muon trajectories that pass near the edge, adding a component 

of resolution blur.  This effect can be removed by performing a resolution study in 1-dimension on a 

spherical object with the assistance of a regularized Abel inversion.  The Abel inversion will be discussed 

in more detail in Chapter 7, pg. 102.   

The advantage of using a sphere is that the distance of closest approach for the track can be used 

to determine the edge resolution.  When the distance of closest approach is used, the muon trajectory passes 

through the same amount of material regardless of an incident angle (assuming that the muon is sufficiently 

high in momentum).  An Abel inversion is then applied to compute the varying path lengths expected 

through the sphere and to determine the proper radiation length for a given path length in volumetric space.  

Thus, the best possible spatial resolution that is obtainable in the MMT is determined from a sphere.  Both 

the lead bricks and sphere provide a useful perspective on the overall spatial resolution that is possible with 

muon tomography using our current algorithms.  Some objects are not spherically symmetric, thus the more 

conservative value can also be used across many applications for the MMT. 

Figure 23 shows that for a spherical cross-section, any muon passing through the sphere has the 

same distance of closest approach per given track length.  An Abel inversion in one dimension is used to 

obtain path lengths per radiation length from the scattering information in each voxel.  This method is 

performed across the whole spherical domain and a one dimensional plot is obtained.  The analysis of the 

edge resolution is performed similar to that of the lead bricks in the previous section.  In order to compute 

the uncertainty, the method of replicate trials is used. 

A lead spherical shell was measured with the MMT to study the spatial resolution of the system.  

The inside of the sphere is hollow with a diameter of 62 mm and the lead shell has an outer diameter of 202 

mm.  These measurements were made with an uncertainty of 1 mm.  The lead sphere was imaged for 90 

hours which yielded 21.31 million muon tracks.  Figure 24 displays the lead sphere in two planes which are 

used to determine the center of the object. 
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Figure 23 - The figure on the left depicts a muon passing through a hemisphere of the lead spherical shell.  On 
the right is a cross-section illustration of a muon passing through the shell.  Path lengths corresponding to the 
muons trajectory as a function of shell radius are labeled.  These path lengths are used for the reconstruction of 
the 1 dimensional image using an Abel inversion. 
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Figure 24 - XY and XZ reconstructions of a lead sphere using a multigroup algorithm to treat the scattering 
angle analysis.  The two images are used to find the center of the sphere to perform the 1 dimensional sphere 
reconstruction.  The image on the right shows that there is some stretching of the image along the Z axis.  This is 
due to vertical blur effects during image reconstruction, as the cosmic-ray muon flux is not measured in this 
view directly. 
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Figure 25 shows the Abel inversion, with a small regularization factor, of the 1-dimensional 

reconstruction of the sphere.  The edge resolution is computed with a non-linear least squares analysis of 

the error function with Gaussian parameters that represent the edge.  Each section of the edge analysis 

corresponds to 1/9th of the total data (10 hours, 2.37 million tracks).  The nine separate lead sphere runs are 

reconstructed in one dimension using 2 mm voxels.  Each run consisted of ten hours of data.  The 

resolution width, 𝜎, is tabulated for each of the nine runs and the method of replicate trials is used to 

compute the error.  The results for the resolution from using a sphere are shown in Table 3.  The mean of 

the spatial resolution is 0.30 ± 0.01 𝑐𝑚. 

The resolution of the MMT has been empirically determined with two measurements.  The first 

measurement involved using lead bricks that returned an edge resolution of 0.63 ± 0.02 𝑐𝑚.  This 

resolution is larger and conservative compared to the lead sphere analysis.  The resolution obtained by 

using a lead sphere was a factor of two better, 0.30 ± 0.01 𝑐𝑚.  This is because the spherical symmetry and 

straight muon tracks enable the computation of track length as a function of radius.  This allows for 

conversion from areal radiation lengths to volumetric (radial shell based) radiation lengths.  One conclusion 

is that an improved tomographic reconstruction algorithm is needed in order to accurately resolve edges of 

parallel-piped objects.  With this improved algorithm, the resolution of the lead bricks would then approach 

that of the sphere. 
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Figure 25 - Lead sphere resolution analysis of an edge with the associated Abel inversion shown below.  The 
Abel inversion is performed on the one-dimensional projection of 10 hours of lead data.  There are three layers 
to the Abel inversion image.  These layers, from bottom to top, refer to data obtained from the incident muon 
tracks, the outgoing/scattered muon tracks, and an average of the two. 
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Table 3 - Tabulation of spatial resolution values from measuring the edge of a lead sphere.  An Abel inversion is 
performed to obtain the volumetric radiation length of the edge.  The mean spatial resolution of the MMT is 0.3 
cm.  This is the best value for edge resolution obtainable through analysis of spherical symmetry. 

 

 
  

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8 Edge 9 MEAN StdDev SDOM
Edge Resolution (cm) 0.2566 0.2945 0.3005 0.3407 0.2744 0.2708 0.2982 0.3043 0.3597 0.299967 0.03291 0.01097

FWHM (cm) 0.604247 0.693494 0.707623 0.802287 0.646163 0.637685 0.702207 0.716572 0.847029 0.706368 0.077496 0.025832
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CHAPTER 6 
 

Simulation and Modeling of the MMT 
 

The simulations in this dissertation are created using the Geant4 [31] toolkit, developed at CERN 

for the simulation of the passage of particles through matter.  High statistics simulations are computed on a 

64 processor Xeon X7560 monolithic server.  Parallelization is done at an individual event level and 

implemented via explicit message passing (MPI). As the number of primary events is several orders of 

magnitude greater than the number of processing cores, load balancing is trivially achieved. In order to 

speed up calculations, secondary particles produced from interactions of primary muons were ignored. 

Typical simulation runs are performed on 50 cores, and it took approximately a day of computational time 

to simulate 500 million muon tracks -- 10 million events per core -- during the periods when the server was 

lightly loaded. 

A model of the MMT was created and used to study the effect of detector scattering and other 

parameters that impact the resolution of reconstructed images.  These parameters include detector blur 

effects and the cosmic-ray muon source.  The cosmic-ray muon source used in the Geant4 simulations is 

modeled from sea-level data that is then extrapolated to Los Alamos’s altitude.  The cosmic-ray electron 

flux, primarily below 1 GeV, is also included, which affects the ratio of low angle scattering to high angle 

scattering.  The electron flux causes large angle scattering and increases the tail in the scattering angle 

distributions, mostly above 50 mrad.  The MMT drift tube calibration and detector hardware effects have a 

significant impact on the resolution of the muon tomography.  The sum of these effects is reproduced in 

simulation by adding a Gaussian blur term to the track fitting of the simulation output. 

The Geant4 implementation of the MMT geometry is in XML format, also known as Geometry 

Description Markup Language, or GDML.  The model is modular, which is useful for geometric parameter 

studies, e.g. changing the aluminum drift tubes to carbon fiber to study detector scattering effects.  The 

geometry was simplified, reducing the drift tubes to two pieces each (an inner gas cavity and a cylindrical 

shell wall).  Several aluminum structural components were included to better model the effects of the 

scattering from the aluminum structural geometry.  Finally, the wooden platform that the imaged objects sat 

upon was included as well.  The final model geometry is shown in Figure 26.  
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Figure 26 – Modeled MMT geometry for use in Geant4 simulations.  This model contains 576 drift tubes that are 
simplified as a cylindrical shell filled with a gas cavity.  Other support structure is included to mock up 
additional sources of detector scattering.  The wooden platform, used to place objects in the MMT without 
damaging the drift tubes, is also included. 
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The method of tracking performed in the simulation was designed to reproduce the experimental 

process of obtaining muon hit information and converting hits into tracks.  ROOT was used to store 

individual tube hit information in the simulation per event.  The end result was a collection of events in a 

data stream where any given event contained a series of tube indices and corresponding distances of closest 

approach to the tubes’ centers (wire locations).  This was accomplished by constructing a vector from the 

muon as it passed through each particular tube shown previously in Figure 13.  The distance of closest 

approach (DOCA) was computed for each simulated hit and was passed into the track reconstruction 

software.   

 𝑐 = 𝑣𝑊�����⃗  ×  𝑣𝜇����⃗  eq. 32  

For a simulated hit, there were two direction vectors, the normalized muon vector 𝑣𝜇����⃗  and the normalized 

wire vector of the tube 𝑣𝑊�����⃗ .   

 
𝑡2 =

𝑐 ∙ 𝑃𝑊�����⃗
|𝑐|

 
eq. 33  

 
𝑡1 =

𝑐 ∙ 𝑃𝜇���⃗
|𝑐|

 
eq. 34  

A point on the muon vector is notated as 𝑃𝜇���⃗  , and a point on the wire vector is notated as 𝑃𝑊�����⃗ .   

 𝐷 = |𝑡2 − 𝑡1| eq. 35  

The DOCA, 𝐷, is defined as the absolute difference between the projections of the wire vector and the 

muon track vector on the plane that is normal to both of these vectors.  

The scattering angle distributions of a bare field of view were compared for the reconstructed data 

and simulations.  Track fitting of both the data and the simulation was performed with the same method, 

the L1 trajectory fit as described in pg. 47 of Chapter 5.  The fit of the simulation results excluded a 

component of the fitting algorithm, time zero, which is present in the track reconstruction algorithm for the 

data stream.  This is because the simulation’s tracks are recorded in increasing time from the origin of the 

thrown event.  We did not study other effects involving generating random noise in the simulation for this 

work, which affects data measurements due to external background. We focus instead on the understanding 

of intrinsic MMT detector resolution. 
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The Cosmic-Ray Muon Momentum Distribution at Los Alamos 
 

In order to extend the well-known cosmic-ray muon momentum spectrum at sea level to higher 

altitudes, two separate extrapolation methods were investigated. The known sea-level data for the 

momentum and total flux distributions of cosmic-ray muons [47, 48] were extrapolated to cover a range of 

approximately 10 MeV to 100 TeV. This distribution was then modified to generate the high altitude muon 

momentum spectrum. First, the muon momentum was converted to kinetic energy through the energy-

momentum relation: 

 
𝑇𝜇 = ��𝑝𝜇2 + 𝑚𝜇

2� − 𝑚𝜇 eq. 36  

where 𝑇𝜇 is the muon kinetic energy, 𝑚𝜇 = 105.7 𝑀𝑒𝑉/𝑐2 is the rest mass of the muon, and 𝑝𝜇 is the 

muon momentum.     

In the first method, linear extrapolation was used to extend the distribution of cosmic-ray muon 

kinetic energies to higher altitudes.  This linear extrapolation formula is: 

 
𝑇 =  𝑇0 + 

𝑑𝐸
𝑑𝑥𝐿

(𝐸𝑈 − 𝑇0) + 𝑑𝐸
𝑑𝑥𝑈

(𝑇0 − 𝐸𝐿)

∆𝐸
∙
𝜌𝑎𝑖𝑟

cos (𝜃)
 

eq. 37  

 

Where 𝑑𝐸
𝑑𝑥𝐿

 and  𝑑𝐸
𝑑𝑥𝑈

, correspond to the energy loss values of the upper and lower energy bin, EU and EL.  

The cosine term accounts for the angles used in the sea level data [47, 48].  From the incremented kinetic 

energy, the muon intensity was found, with the following equation: 

 
 𝐼(𝐺𝑒𝑉−1) =  

𝐼0(𝐺𝑒𝑉−1)
∆𝐸0
∆𝐸 𝑒−(0.1)/(6.2∗𝐸∗𝑐𝑜𝑠(𝜃))

 eq. 38  

Where ∆𝐸0 is the change in energy from the previous altitude, ∆𝐸 is the change in energy at the next 

altitude step,  𝐸 is the final energy at the new altitude. This initial method is useful in the high energy 

region and shows promise with fitting high-energy spectrum behavior, but it fails in the low energy region 

when energy losses become larger than energy bin size. We used therefore a different method to extend the 

muon spectrum to Los Alamos altitude.   

The second method begins with the same sea level data set [47, 48].  Again, the input momentum 

is converted to kinetic energy with the momentum-energy relation (eq. 36).  The sea level data is fitted with 
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a high order polynomial of logarithms.  The intensity in units of inverse energy is then computed for each 

energy bin.  A correction term was applied to account for differences in altitude between sea level and Los 

Alamos:  

 𝐶𝑓 =  
1

𝑒(𝑇+0.1
𝑚 ∙𝑡𝑐ℎ )

 eq. 39  

Where m is the muon mass, h is the height correction for the desired altitude, and tc is the 

relativistic time correction for muon flight. This corrected intensity was then used as our muon source for 

simulations at Los Alamos altitude.  The cosmic-ray muon momentum spectrum for Los Alamos altitude 

and sea level is shown in Figure 27. 
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Figure 27 – Cosmic-ray muon flux at two altitudes, sea level and Los Alamos (~2200 m).  The muon flux at sea 
level was obtained by combining two data sets [47, 48] with some additional extrapolation.  The muon flux at 
~2200 m was obtained with a model applied to the sea level data set to account for energy loss and muon 
lifetime. 
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Bare Simulation of the MMT with the Los Alamos Muon Momentum Spectrum 
 

A bare field of view was measured with the MMT, and simulations were performed using the 

MMT model in Geant4.  Both simulation and measurements contained the wooden platform and aluminum 

drift tubes.  The cosmic-ray simulation source was used to generate muons with a momentum distribution 

corresponding to the extrapolation model used for Los Alamos altitude as described above.  The angular 

distribution of the cosmic-ray muons was computed using the Reyna model.  When comparing the 

simulations with data, there are several differences that are attributed to the cosmic-ray muon source 

generator and the track fitting algorithm.  The following analysis shows that by softening the cosmic-ray 

momentum spectrum, including electron flux, and implementing a blur component in the track fitting, the 

simulated cosmic-ray source adequately models the cosmic-ray background. 

The bare field data was measured for six hours with the MMT.  A full-sky simulation in Geant4 

was used to evolve a total of 20 million cosmic-ray muons and electrons and provide simulated tracks for 

comparison with the data.  All simulations were normalized by the same value, derived from matching the 

peak of the scattering angle distribution of the 900 micron blur tracks to the data.  This blur is attributed to 

several sources including: drift tube resolution (~400 microns), calibration issues, poor performance of a 

few individual tubes, noise, and time zero fitting. There are two notable regions in the scattering angle 

distributions, a shoulder and a tail (see Figure 28).  This indicates that some tracks are being poorly fit, 

causing both blur and the resulting scattering angle shoulder.  This is reproduced by adding random 

Gaussian blur during the simulated muon trajectory reconstructions. 

The cosmic-ray muon track reconstructions were blurred during the track fitting process to add 

Gaussian randomness to the distance of closest approach for each simulated drift tube hit.  We studied the 

shoulder by varying the 𝜎 (width) of the Gaussian component from 0 up to 900 microns.  Several sets of 

scattering angle reconstructions with different 𝜎 are shown alongside the data in Figure 28.  As blur 

increases, the shoulder’s center shifts and the FWHM widens.  The scattering angle histogram is displayed 

in the corner of this figure, showing a difference in the tail between data and simulation.  The tail of the 

data and simulation is composed of large angle scattering events caused primarily by electrons and soft  
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Figure 28 - A comparison of scattering angle distributions from data and simulation.  The incident and outgoing 
cosmic-ray muons pass through an empty field of view in the MMT in all cases.  Two features are noticeable; a 
shoulder below 10 mrad and a tail on the larger scattering angles.  The shoulder is due to uncertainties found in 
the measurement and forced in the simulation during muon trajectory reconstruction.  The tail indicates that 
there are more soft scattering events in the data which is associated with spectral differences in the cosmic-ray 
muon flux.  A Gaussian blur is used to modify the simulated intrinsic tracks creating the shoulder seen in the 
data. 
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muons.  The impact of the large angle scattering tail is minimal; as it is several orders of magnitude below 

the majority of the scattering events, which are below 20 mrad. 

A random Gaussian blur with 𝜎 = 900 𝜇𝑚, adequately models this “shoulder” effect.  The 

scattering angle distribution of the simulated tracks with this blur component is compared with the data in 

Figure 29.  The error bars are computed with the standard error model.  The relative difference is included 

showing a maximum difference between simulation and data of ~23 percent below 50 mrad.  Thus, we can 

conclude that we are able to model the MMT with sufficient accuracy in GEANT4. 
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Figure 29 - Cosmic-ray muon scattering angle comparison between data and a simulation blurred with a 
Gaussian hit uncertainty of 𝝈 = 𝟗𝟎𝟎 𝝁𝒎.  The relative difference is included showing a maximum difference 
between simulation and data of ~23 percent below 50 mrad. 
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CHAPTER 7 
 

Reactor Imaging Overview 
 

Muon tomography is a capable technology for imaging objects of different size and material 

atomic number, Z, which are found in commercial nuclear reactors. A series of experiments and 

simulations have been undertaken in order to prove the capabilities of muons in nuclear reactor 

environments. The University of New Mexico Research Reactor measurements uncover the challenges of 

muon tomography taken in remote environments with external radiation fields. Muon tomography 

measurements of the UNMRR prove the capabilities of muon tomography for imaging high Z and low Z 

materials in the same field of view. 

A proof of principle experiment was performed at LANL by using the MMT to measure objects in 

a configuration that utilizes cosmic-ray muons incident from the horizon, also known as horizontal flux.  A 

mockup reactor structure was built out of lead and was surrounded by several meters of concrete blocks.  

Horizontal muon tomography was accomplished by measuring the incident and exiting muon trajectories.  

By using the multiple scattering technique, the tomographs of the mock reactor were reconstructed.  The 

experimental results suggested that the horizontal imaging, through the analysis of cosmic-ray muon 

multiple scattering, would be useful for reactor imaging, e.g. at Fukushima Daiichi.  Following this 

experiment, several simulations, using Geant4, modeled the scenario of deploying a muon tomography 

system at Fukushima.  The results of these simulations confirmed that cosmic-ray muons are a useful probe 

for imaging the damaged nuclear reactor core.  The next step in studying the capability of horizontal 

cosmic-ray muon radiography was to deploy the MMT at a nuclear reactor, the UNMRR, and validate the 

Geant4 simulation models with experimental data.  The results of this work at the UNMRR validate our 

models and reconstruction technique. This is the first time that a nuclear reactor has been imaged by 

measuring the cosmic-ray muon multiple scattering. 
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Mock Reactor Experiment and Simulation 
 

The reactor mockup tests were performed at LANL to prove the principle of “reactor tomography” 

and to optimize our muon tomography algorithm to image a reactor core through thick concrete walls [65]. 

It was a new challenge because the existing muon tomography technique uses downward-going (vertical) 

muons to study systems with small localized scatterers. This is not the scenario for reactor style imaging, as 

the flux is more horizontal in nature due to detector placement.  As was discussed earlier, the muon flux 

and energy spectrum are not isotropic: the incident flux of cosmic-ray muons is greatest in the vertical 

orientation, but the flux of horizontal-going muons is also significant above 1-GeV energy. It is these 

horizontal-going muons that are well suited to the geometry required for making an image of the uranium 

inside the pressure vessel of the reactors. A near-horizontal muon loses about 5-GeV when penetrating 

through a reactor as shown in Table 4. 

In our demonstration, we measured cosmic-ray muons passing through a physical arrangement of 

material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core as shown in 

Figure 30.  Approximately five tons of lead were used to construct a mockup core that is similar to a 

boiling water reactor (BWR) of the type installed at the Fukushima Daiichi plant.  The concrete shielding 

of the primary containment, which is about 3 m thick, was also part of the experimental mock-up geometry. 

In terms of scattering length, 0.7 m of lead is equivalent to the uranium fuel in a reactor core (120 radiation 

lengths), however; the uranium core would be easier to image than the lead target with the muon 

tomography technique because of larger atomic number.   

The reactor mock-up experiment ran for three months continuously. Several configurations of lead 

block reactor mock-ups were chosen including a full stack of lead bricks and a stack with a conical void. 

Muon tracks were measured for between 10 to 20 days for the different mock-up scenarios, and the 

resulting outputs were reconstructed into images. The results of the reconstruction proved that it would be 

possible to deploy a muon tomography system at a commercial plant or at the Fukushima cleanup site such 

as in the following example configuration shown in Figure 31. 
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Table 4 – Muon energy loss by reactors for a horizontal muon.  Energy loss (dE/dx) at 3 GeV was used for the 
estimation.  A mixture of UO2, Zr, and H2O with each component assumed to have an average density of 2.6, 
2.01, and 0.6 g/cm3 over the volume of the core assembly. 
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Figure 30 – Experimental drawing of reactor mock-up (top) and photograph (bottom).  In the photograph, 2.74 
meters of concrete surrounds a stack of lead on each side.  The MMT detector planes are oriented on the ends of 
each slab of concrete (diagramed in orange, top). 
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Figure 31 – Deployment of a muon tomography system in a nuclear reactor imaging configuration.  The detector 
planes (teal boxes) are oriented vertically and placed on either side of the reactor.  The near horizontal muons 
are measured as they pass through the reactor.  An image is reconstructed showing details of the core and other 
components that are found in the field of view (red box). 
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A configuration of lead blocks in a series of thickness measured in the horizontal direction was 

studied. The lead was arranged in thicknesses of 80 cm, 40 cm, 20 cm, and void, also known as the “80 40 

20 measurement”. The reconstructed muon image confirms the location of the particular sections of lead. 

This occurs due to a dependence of muon interaction with length of material as well as Z. The concrete 

blocks create some additional scattering which does influence the resolution on the order of centimeters. 

However, the results of this measurement are very clear for establishing the location of the lead stacks. The 

MMT measured this data set over the course of 210 hours.  The results of this configuration are shown in 

Figure 32. 

A second configuration of lead bricks was studied that created a scenario similar to a damaged 

nuclear reactor.  The damage is characterized by a wedge shape due to molten fuel boiling over the sides of 

the core.  To accomplish this, a conical section was removed from the top of a stack of lead bricks.  

Cosmic-ray muons were measured passing through this configuration for 500 hours.  The resulting 

reconstruction, Figure 33, shows a defined conical shape with a resolution on the order of tens of 

centimeters. 

 Following the experiments, several simulations were performed with the 80 40 20 measurement 

geometry.  The results of these simulations show the difference between using the multiple scattering 

technique as compared to the attenuation method of transmission radiography.  The simulations had 1 

million cosmic-ray muon events each and are shown in Figure 34.  To image a reactor core, the contrast 

between the uranium and other materials, including large sections of steel, water, and concrete, is required.  

Muon transmission measures the difference in the muon flux caused by muons stopping in materials after 

total energy loss.  The energy loss of cosmic-ray muons, dE/dx, is comparable between most materials, and 

given that the effective thickness and volume density of the fuel is similar to that of water found in the 

reactor, the sensitivity of muon transmission is greatly inhibited.  This problem is further complicated by 

the inclusion of overburden from the concrete buildings and reactor pressure vessel.  In contrast, the 

multiple scattering technique is able to leverage the difference in Z of the materials.  This explains why 

multiple scattering can produce images with better material identification than muon transmission.  
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Figure 32 – Lead stack configuration of 80 cm, 40 cm, 20 cm, and void.  Cosmic-ray muons were measured 
passing through the lead stack over a duration of 210 hours.  An image reconstruction (right) shows the location 
of the different thicknesses of lead. 
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Figure 33 – Conical void configuration for a molten reactor mock-up.  Lead bricks are removed from a stack of 
lead to produce the conical void as shown in the photograph (upper-right) and diagram (lower-left).  Muons are 
measured for 500 hours passing through this geometry and the concrete walls.  An image is reconstructed 
(lower-right) of the lead bricks showing a region indicative of the conical void. 
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Figure 34 – Geant4 simulation of lead quadrants demonstration for muon transmission (left) and multiple 
scattering (right) reconstruction techniques.  The lead quadrants (thickness of void, 20, 40, and 80 cm) were 
located between two concrete walls each of 3 m thickness. 
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Fukushima Reactor Simulations 
 

The cosmic-ray muon imaging of a nuclear reactor was simulated and then compared for both 

transmission and multiple scattering muon radiography [66].   The simulation code GEANT4 was used to 

track cosmic-rays through a model of a boiling water reactor similar to Fukushima Daiichi Reactor #1. The 

model of the reactor included all major structures, the reactor building, the containment vessel, and the 

pressure vessel.  Calculations were performed for an intact core, a core with a 1 m diameter of material 

removed from the core and placed in the bottom of the pressure vessel, and no core. A schematic view of 

the detector placement is shown in Figure 35. The placement of detectors outside of the reactor buildings is 

dictated by very high radiation levels and very limited access to the insides of the buildings. 

Several approximations were made to simplify the calculation: structures outside of the field 

encompassed by the detectors were not included (mainly the turbine buildings); the detectors were assumed 

to measure position and angles perfectly; there was no gamma shielding added around the detectors; and 

the energy spectrum was assumed to be independent of zenith angle and was taken from the 75° zenith 

angle measurements of Jokisch et al. [41], which corresponds to the angle of reactor core from the lower 

detector. The angular acceptance of the experimental setup is small; therefore, the muon momentum 

angular dependence is insignificant. The thickness of the gamma-ray shield was not decided upon, but it 

was assumed to be negligible in the scattering contribution when compared to the reactor walls.  A 

comparison of the spectra given by Jokisch et al. and by Tsuji et al. [40] shows a 50% discrepancy at low 

momentum and differences in the slope at higher momenta Figure 36. This is indicative of the uncertainty 

in the normalization of our results. 

The output saved from the GEANT4 runs included the input and output vectors, 𝑋⃗𝑖𝑛 and 𝑋⃗𝑜𝑢𝑡, for 

each incident particle.  The incident flux projected to the reactor core location was used to normalize the 

transmission radiography (attenuation method).  The calculations are normalized to the 75° zenith angle 

flux.  The muon angular distribution can be approximated by [36]: 

 𝑑𝑁
𝑑Ω

[ muons/min/sr/cm2] =
3
𝜋
𝑐𝑜𝑠2(𝜃),  

Ω =
𝑠𝑖𝑛(𝜃)ℎ𝑤

𝑙2
,     𝑁 =

𝑑𝑁
𝑑Ω

Ω sin(𝜃) ℎ𝑤 

eq. 40  
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Figure 35 – Cutaway view of a boiling water reactor and a schematic of the detector placement for the Monte 
Carlo calculation.  In the case of attenuation radiography, only trajectory information from the lower detector 
was used.  The location of the 1 m diameter void in the core and its placement in the bottom of the pressure 
vessel are indicated by arrows. 
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Figure 36 – Cosmic-ray muon energy spectrum at sea level.  Solid symbols are from Jokisch [41], and the open 
symbols are from Tsuji [40].  Muons which penetrate the reactor lose 5-6 GeV. 
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The normalization of the angular distribution gives a total muon flux of 1/cm2/min, when it is 

integrated over 2𝜋 steradians.  The sin(𝜃) accounts for the fact that the detectors are not normal to the line  

that connects their centers.  The modeled detectors have ℎ = 10 𝑚,𝑤 = 5 𝑚, and 𝑙 = 45 𝑚 and are 

mounted at 𝜃 = 75°.  For these conditions, we expect 5.3(2.5)  × 105 muons per day. 

Algorithms were developed to construct images of the core using both the attenuation and multiple 

scattering of the cosmic rays.  The goal is to determine the sensitivity of these techniques for measuring the 

amount of melted fuel remaining in the reactor core as well as the location of debris.  Transmission images 

were constructed by projecting the outgoing trajectories to a vertical plane centered in the core and 

histogramming the number of events in 10 x 10 cm2 pixels.  Then, the image was calculated as 

– ln[𝑁(𝑥,𝑦)𝑡0/𝑁0(𝑥,𝑦)/𝑡𝑁], where 𝑁0 was the incident fluence and 𝑁 was the transmitted fluence in 

exposure times of 𝑡0 and 𝑡𝑁, respectively.  The histogram of incident fluence was smoothed to remove an 

artifact introduced by the blur of the projection of the output trajectories to the plane of the core.   

Plots of both the scattering images and the transmission images are shown in Figure 37 for 

different exposures starting at 1 h, increasing by near factors of 10 up to 6 weeks. The time scale of several 

weeks should be considered as “fast” for this particular application, as the timescale of the cleanup is 

estimated to be between 30-50 yrs.  These histograms are displayed with a linear gray scale with a lower 

value of zero in order to make the combination of contrast and statistical fluctuations clearly visible. The 

times for the images are for a 50 m2 detector. For a 1 m2 detector, these need to be increased by a factor of 

50 to obtain the statistics shown at the center of the pictures. The acceptance of this geometry falls to zero 

at the detector edges. At 1 h, the difference in scattering between the images with and without the core is 

visible, and by ten hours the reactor core is visible in the scattering image. At 4 days, the 1 m diameter void 

is visible in the core, and by 6 weeks both the void and the resulting sphere of core material below the core 

are clearly visible.  The low contrast in the attenuation images is apparent when they are compared to the 

scattering images. The core can be detected by comparing the empty and intact images at the longer 

exposures, but structure in the images due to the building components shows up as strongly as the core.  

The void and sphere of material, clearly visible in the scattering radiograph, is not detectable in the 

attenuation image. 
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Figure 37 - Reactor reconstructions at different exposure times. In scattering radiography, the reactor core can 
be detected after about 10 hours of exposure. After four days, a 1 m diameter (1%) void can be detected when 
compared to an intact core. After 6 weeks, the void is clear and the missing material can be observed. With the 
attenuation method, the core can be observed when compared to an empty scene in four days. The void is 
undetectable even after 6 weeks of exposure. 
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Another major challenge is the engineering of a detector system for muon tomography at 

Fukushima Daiichi.  The site has high radiation levels on the order of 1 mSv/h, primarily from the 

production of gamma rays from Cs and Sr fission product contamination.  Experimental measurements 

were made at the site with small scale drift tube detectors and have shown that 50 cm of concrete will 

provide adequate shielding for operating detectors at the locations modeled in this paper.  A radiation shield 

of precast concrete can be quickly installed at the site as well. 

In summary, GEANT4 was used to model cosmic-ray radiography of the Fukushima Daiichi 

reactor unit #1.  It is shown that 6 weeks of exposure, with a 50 m2 detector, is able to produce an image 

reconstruction where a 1 m diameter sphere can be imaged, which is 1% of the total image resolution.  On 

the other hand, the same exposure in transmission radiography shows much less sensitivity.  This analysis 

shows that high quality data for radiography of the Fukushima core from outside of the buildings can be 

accomplished with scattering radiography and large detectors.  On site tests at Fukushima Daiichi have 

shown that these measurements are possible with appropriate shielding.  For more discussion on this topic, 

refer to Appendix A. 
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Imaging of the University of New Mexico Research Reactor    
 

Experimental images of a nuclear reactor, the AGN-201M reactor at the University of New 

Mexico, were created using data measured with the MMT [8].  The image data are compared with a Geant4 

model.  In both the data and simulation, specific regions are identified corresponding to elements of the 

reactor structure, including its core, moderator, and shield.  The experimental data is then used to validate 

simulations of muon tomography which increases confidence in the predictive capabilities of our muon 

tomography model based on Geant4. 

The University of New Mexico Research Reactor, AGN-201M, consists of 10.93 kg of 

polyethylene loaded with about 3.3 kg of uranium, enriched to 19.75% of U-235.  Moderator and shielding 

consisting of graphite, lead, water, and concrete surround the core.  Several access channels pass through 

and near the core.  In Figure 38, the elevated view of the AGN-201M shows components of the reactor 

geometry. The core profile details how the fuel section is made of stacked cylindrical plates with access 

ports and control rod channels.  The MMT supermodules were offset by 1.9 meters vertically and 3.81 

meters horizontally during the reactor measurements.  Figure 39 shows the layout for these measurements. 

The data collection for muon tomography at the UNMRR ran over several months, though, due to 

different interruptions, total exposure amounted to 891 hours.  The MMT’s status was monitored remotely 

from Los Alamos, located 100 miles from UNM, and the experimental data was collected in 3 hour 

increments.  In Figure 40, the track reconstruction rate and hit rate is shown for the MMT measurements at 

the UNMRR which details the performance of the MMT as a function of time.  There were several periods 

of data acquisition loss due to failure of the high voltage power supply.  The data analyzed in this paper 

corresponds to the continuous data runs in Figure 40 prior to and immediately following the voltage failure 

on October 20th, 2012 through October 30th, 2012. 

Figure 41 shows a period when the reactor was brought critical indicated by the sharp peaks in the 

number of detected hits and an absence of detected tracks during the reactor operation.  This is due to high 

counting rates induced by the radiation background produced by the operating reactor which overwhelmed 

the data acquisition system.  Most of these background events can be discriminated by taking time 

coincidences between multiple drift-tube layers, which can be done in the FPGA.  I plan to implement this 

modification to allow operation in a high radiation environment, e.g. Fukushima Daiichi.  
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Figure 38 - Elevation view of AGN-201M (left) and core profile (right).  The core profile is located in the center 
of the elevation view [67]. 
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Figure 39 - MMT horizontal mode deployment at UNMRR (left) and supermodule 1 (right) 
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Figure 40 - Track and hit rates from measured data during the UNMRR experiment.  The data rates are binned 
over 10 minute intervals.  The blue line corresponds to the number of measured hits.  The red line corresponds 
to tracks that are reconstructed from the hits in the same time bin.  The periods of data loss are due to high 
voltage failures.  The last period of observations relates to firmware adjustments designed to improve tracking 
capabilities in the presence of increased background radiation. 
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Figure 41 - Tracking failure during the period of reactor operation.  The data rates are binned over 1 minute 
intervals.  The blue line shows the number of measured hits.  Red line corresponds to tracks that are 
reconstructed from the hits in the same time bin.  The presence of the increased background during reactor 
operation creates a sharp increase in number of hits, overloading the electronics and disabling the muon 
tracking. 
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A model of the UNMRR is created using the GEANT4 toolkit, developed at CERN for the 

simulation of the passage of particles through matter.  The reactor model includes 35 structural components 

of the reactor.  Simulated muons are provided by a cosmic-ray particle source [32].  Muons are sampled 

uniformly in the azimuthal (horizontal) angle bounded from (0,2𝜋).  A cosn(𝜃) , where n is 2 except near 

the horizon, distribution is used to sample muons in the zenith (vertical) angle, where 𝜃 is bounded from 

(0, 𝜋
2

).  The muon trajectories are recorded in two detector planes located in the positions corresponding to 

the central planes of the two MMT supermodules.  Inscattering, an important component of the data, is 

modeled by simulating detectors that are half a meter larger on each side. 

The geometry of the Geant4 simulation is shown in Figure 42. It shows a number of geometrical 

shapes representing the uranium loaded polyethylene core, core fuse, empty guide control rod channels, 

access ports, graphite reflectors, and other structural elements made of aluminum, lead, water, steel and 

concrete. 

Eight hundred and ninety one hours (37 days and 3 hours) of cosmic ray data were collected at the 

UNMRR.  This includes seven hours of cumulative reactor operation during which tracks could not be 

reconstructed, which reduced our total exposure to 884 hours.  Using this data, we validate our modeling 

and muon transport simulation capabilities.   

Tracks were separated into two groups, transmitted and inscattered, for both the simulations and 

the data.  The separation was determined by the incident trajectory’s location projected to the bottom 

detector.  If the track is within the surface area of the bottom detector’s acceptance then the track is 

considered transmitted otherwise it is inscattered.  This is important because the inscattered events are 

biased to large scattering angles, producing a halo around the image if they are not filtered.  We have 

filtered out most of the inscattering trajectories from the “good” events in our data analysis, but some 

inscattering remains because of small uncertainties in the reconstructed tracks from data. 
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Figure 42 - Geometry of our reactor model.  The fuel plates are located in the center and 
surrounded by cylinders of graphite.  Lead and water cylinders encompass the graphite 
moderator region.  Access ports and drive channels are also included to increase the realism 
of the simulation. 
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The projections of both the height and depth dimension are computed as shown: 

 
𝑥𝑝𝑟𝑜𝑗 = 𝑥0 + �𝑧𝑝𝑟𝑜𝑗 − 𝑧0� ∗

𝑥0′

𝑧0′
 

eq. 41  

 

 
𝑦𝑝𝑟𝑜𝑗 = 𝑦0 + �𝑧𝑝𝑟𝑜𝑗 − 𝑧0� ∗

𝑦0′

𝑧0′
 

eq. 42  

where the projection location is chosen as the bottom detector, and 𝑥0 and 𝑦0 refer to incident tracks 

measured at the upper detector.   

The muon flux from the data and simulation is parsed with this method, diagrammed in Figure 43.  

The MMT recorded 1.73 million tracks during the course of the run. Of these, 17.6% were filtered as 

inscatter events, where the initial trajectory is not pointed at the outgoing detector.  There were 50.0 million 

tracks recorded with both detectors in the simulation after evolving one billion events, with 15.3% due to 

the inscattered flux. 

Muon tracking in the MMT also includes detector efficiency and resolution effects, thus the 

detector edge in the data is fuzzy, rather than the sharp edge we have in our model.  Figure 44 shows the 

flux found in the detectors for both the simulation and experimental measurements.  The fine structure in 

the data is due to differential non-linearities introduced by dead and noisy drift tubes. 

The distribution of the incident flux, normalized to the number of incident tracks, is shown in 

Figure 45 and Figure 46, comparing simulation to data.  The method of replicate trials is used to determine 

the error in the data.  Statistical uncertainty in the high-fidelity simulations is significantly smaller than in 

the data, and is not shown in the plots. There is a maximum discrepancy of 8% between the data and 

simulation of the azimuthal flux in the top supermodule.   
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Figure 43 - A conceptual diagram of computing transmission for a muon track.  The muon trajectory is 
determined by the top detector.  This incoming trajectory is projected to the bottom detector.  If the projection 
remains within the specified surface area of the bottom detector, the track is considered a transmission track; 
otherwise it is classified as inscattering. 
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Figure 44 - Flux in simulation (left 6 images) and experimental measurements (right 6 images).  The top row is 
for the muons entering supermodule 1.  The bottom row is for muons exiting supermodule 0.  For each six 
images, from left to right, the flux is defined as integrated, inscattered, and transmitted. The images are 
normalized and shown in a linear brightness grayscale from black to white.  
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Figure 45 - Azimuthal flux profile in the incident detector.  This figure compares the particles thrown in the 
simulation with muons measured by the MMT.  The distance numbers refer to the coordinate system of the 
MMT (one corner of the bottom supermodule was chosen as the origin). 
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Figure 46 - Zenith flux profile in the incident detector.  This figure compares the particles thrown in the 
simulation with muons measured by the MMT.  The distance numbers refer to the coordinate system of the 
MMT (one corner of the bottom supermodule was chosen as the origin). 
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The zenith flux in the top supermodule has a shallower slope in the data as compared to the 

simulation.  The zenith flux was investigated with simulations by varying overburden and modifying the 

cosmic-ray muon source. The overburden, as well as the reactor structure itself, reduces the flux of lower 

energy muons, which is very sensitive to the zenith angle. Our observations confirm that the higher-energy 

spectrum of cosmic-ray muons does not decrease with zenith angle as steeply as the lower-energy part of 

the spectrum. Of course, this fact is very well known from numerous cosmic-ray studies [37-41, 43-46, 68, 

69]. 

Image reconstruction is based on measuring the scattering angle and position between incident and 

outgoing trajectories of the muons passing through the reactor.  The scattering angle distribution for each 

pixel is fitted to obtain the average radiation length by using a recently developed multi-group description 

of the muon energy spectrum [58]. The angular distributions are fitted with a sum of Gaussians, with 

amplitudes corresponding to the distribution of muon energies and the widths depending on the amount and 

composition of material. The spectrum is calibrated to the integrated radiation length expected for a muon 

crossing the UNMRR.  Figure 47 shows the integration of scattering angles for the MMT in vertical mode 

(without object), as well as with the UNMRR run.  The figure displays that in empty mode the average 

amount of scattering (due mainly to the detectors) is several mrad. The scattering is on the order of ten 

times larger for trajectories that penetrate the reactor.   

The core and surrounding structure of the UNMRR is nearly symmetric about its azimuthal axis.  

We exploit this symmetry by performing a regularized Abel inversion. The regularized Abel inversion is a 

computation of the radial distribution for the materials surrounding the center axis.  The regularization term 

added to the Abel inversion reduces the noise near the symmetry axis by forcing smoothness. This 

procedure provides density weighted by inverse radiation lengths as a function of radius. It is instructive to 

mention that the object projection to its central plane is not completely symmetrical in our case, because of 

different relative heights of the detectors; however, we neglected this effect while performing our 

reconstructions. 

The regularization of the Abel inversion is computed using a linear regularization method[70].    

This is done by minimizing the matrix eigenvalue problem:  
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Figure 47 - Muon flux angular distributions and corresponding fits. The red symbols and fitted line show an 
angular distribution of muons measured with the MMT in a vertical configuration with an empty field of view.  
The blue points and fitted line are averaged over the horizontal configurations with the reactor.   The black 
curves show the components of the fit (blue line) corresponding to different muon energies. 
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 |𝑨 ∙ 𝒖� − 𝒃|2 + 𝜆𝒖� ∙ 𝑯 ∙ 𝒖� eq. 43  

 
Where 𝑨 is the functional projection matrix, 𝒖� is a vector representing the radiation length weighted 

densities, 𝑯 is a degenerate symmetric difference matrix, and 𝒃 is a vector of measurements.  We compute 

the projection (path length) matrix 𝑨 by averaging the path length for each cylindrical shell over the finite 

slice thickness. 

 
𝑨𝑗𝑖 =

𝟏
𝑒(𝑖 + 1) − 𝑒(𝑖)

� �𝛿𝑦1(𝑥) −  𝛿𝑦2(𝑥)�𝑑𝑥
𝑒(𝑖+1)

𝑒(𝑖)
 eq. 44  

 
The index 𝑗 is the cylindrical shell index and 𝑖 is the areal slice index.  The quantity, 𝑒, is the edge 

boundary of the averaging for the projection.  The projected lengths are: 

 𝛿𝑦1(𝑥) = 2�𝑀𝐴𝑋[(𝑟𝑜2 − 𝑥2), 0] eq. 45  

 
 

𝛿𝑦2(𝑥) = 2�𝑀𝐴𝑋[(𝑟𝑖2 − 𝑥2), 0] eq. 46  

 
The shell radii are: 

 𝑟𝑜 = 𝑀𝐴𝑋[|𝑒(𝑗)|, |𝑒(𝑗 + 1)|] eq. 47  

 
 𝑟𝑖 = 𝑀𝐼𝑁[|𝑒(𝑗)|, |𝑒(𝑗 + 1)|] eq. 48  

 
The symmetric difference matrix, 𝑯, is a product of the first difference matrix transposed, 𝑩𝑇, by the first 

difference matrix, 𝑩. 

 𝑯 = 𝑩𝑇 ∙ 𝑩 eq. 49  

 
If the rank of  𝒖� is defined as 𝑀, then the first difference matrix, 𝑩, is (𝑀 − 1) × 𝑀.  𝑩 is populated with 

the following conditions: 

 
𝑩𝑔ℎ = �

−1,  if 𝑔 = ℎ                            
     1,  if 𝑔 = ℎ + 1                       

0, if  𝑔 ≠ ℎ or 𝑔 ≠ ℎ + 1
� 

eq. 50  
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In vector notation, we can determine 𝒖� by solving: 

 (𝑨𝑇 ∙ 𝑨 + 𝜆𝑯) ∙ 𝒖� = 𝑨𝑇 ∙ 𝒃 eq. 51  

 
The projected measurement vector, 𝑨𝑇 ∙ 𝒃𝑖1, is computed by projecting slices of the image, 𝒃𝑖1, onto 𝑨𝑇.  

We finish this image processing technique by taking the product of the projected measurement vector with 

the inverse of the matrix  (𝑨𝑇 ∙ 𝑨 + 𝜆𝑯). 

 
𝒖� = 𝑨𝑇 ∙ 𝒃 �

1
(𝑨𝑇 ∙ 𝑨 + 𝜆𝑯)� eq. 52  

A simulation of the reactor is shown in Figure 48 with arrows relating the regularized Abel 

inversion reconstruction to the elements of the object geometry.  The core of the reactor, which contains 

polyethylene with traces of uranium, has the lowest effective density (density weighted by radiation length) 

of the four materials in the reactor.  There is more scattering in the graphite moderator surrounding the core 

(Figure 48, lower right plot).  The lead shield is very noticeable as a dominating feature of the images due 

to the combination of its high atomic number (Z) and density.  Some access port features are visible near 

the lead shield in Figure 48(access ports filled with hydrogenous material and lead slugs).  There is also a 

small depression in the bottom half due to the control rod channels (CRD, which are empty) shown in 

Figure 48(upper right hand corner).  The high fidelity simulation demonstrates the intrinsic imaging 

capability for muon tomography with the UNMRR.  Features are easily distinguished in the reconstruction 

of this high-statistics simulation. 

The reconstructions from the measured muon tracks and the simulated muon tracks are compared 

for validation purposes.  The data is segmented into 9 independent sets of images and regularized Abel 

inversions are performed for each.  Statistical uncertainties are calculated by dividing the rms of the signal 

in every bin by the number of degrees of freedom (8 in this case).  Discrepancies between model and 

measurements are clearly dominated by systematic errors, resulting from a combination of the model 

assumptions (e.g., we did not attempt to model overburden that affects both azimuth and zenith 

distributions of the incoming muon flux, as well as its spectrum), and detector effects (in particular, we 

ignore a few dead tubes and noisy tubes that are present in MMT). 
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Figure 48 - Regularized Abel inverted reconstruction of simulated muon tomography image showing features of 
the UNMRR.  In the left image, the more prominent features represent the lead cylindrical housing that shields 
the core, the graphite components in the center, access port materials, and the core itself.  The panels on the 
right are the zenith (top-right) and azimuth (bottom-right) projections of the image integrated over a selected 
region.  The core diagram is shown in the center for reference.  
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The regularized Abel inversion of the measured data, a simulation with similar statistics as the 

measured data, and a high statistics simulation are shown in Figure 50.  The high statistics simulation 

amounts to running the MMT at the reactor for 3 years.  Therefore, having a validated simulation model 

becomes very valuable as it only takes several days on 50 CPU to produce high fidelity simulation result. 

There are several features that can be identified in both simulation and measurement in Figure 50.  

The most prominent feature corresponds to the lead cylinder surrounding the core and moderator.  The 

second feature is the water tank surrounding the lead cylinder and seen on the outer edges of the image.  

There is a void in the lower half of the image which is due to the lack of muon scattering in empty control 

rod channels.  Cylindrical caps of lead above and below the core can also be seen. 

The core of the UNMRR is much lower in density and average Z as compared to a commercial 

nuclear power plant core.  Therefore, the core cannot be easily identified in the reconstruction images.  We 

wanted to explore the sensitivity of muon imaging to changes in core composition.  In particular, we were 

interested in whether we could detect the presence of 3 kg of uranium spread homogenously throughout the 

polyethylene core.  Two additional simulations were performed to study this difference.   

In the first of these simulations, the uranium was removed from the core resulting in a density of 

0.90 𝑔/𝑐𝑚3 of bare polyethylene.  Figure 49 shows a comparison of this case with a realistic UNMRR 

core ( 𝜌 = 1.17 𝑔/𝑐𝑚3).  The bare polyethylene core is clearly differentiated from the uranium loaded 

core. 

The two simulations were identical except that in one case the core composition corresponded to 

the UNMRR, and in the other case, we simulated a bare polyethylene core with the same dimensions.  

Furthermore, we simulated UNMRR geometry substituting its low density core with core material 

corresponding to a commercial power plant reactor. 

In Figure 51 and Figure 52, we compare regularized Abel inversions of image reconstructions for 

three cases: 1) simulation of uranium loaded polyethylene core; 2) simulation of bare polyethylene core; 

and 3) experimental data.  There is a scale difference between the simulation and data, of several 

centimeters at large radii, which is not understood.  A correlation of the data points seen in the 

reconstructed data is due to the forced smoothing from the regularized Abel inversion about the azimuth. 

 



108 
 

 
Figure 49 – Comparison of regularized Abel inversions of a uranium loaded polyethylene core on the left, a bare 
polyethylene core in the middle, and a ratio of the two reconstructions on the right.  There are edge effects in the 
ratio due to division of sparse data. 
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Figure 50 - Regularized Abel inversion reconstructions of the UNMRR at the reactor core plane.  A high 
statistics simulation is shown on the left.  A simulation with the same number of transmitted tracks as the data 
(1.43 million) is shown in the middle. The measurement made at UNM is shown on the right.  The high statistics 
simulation contains approximately 44 times as many tracks as the data.  In the images several structures are 
visible including the core with graphite (center), the lead cylinder shield (outer), and the empty control rod 
housing (bottom). 
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eq. 53 

 
Figure 51 - Azimuthal profiles of data and simulation.  Several features are noticeable including the core region, 
the graphite region, and the lead shield.  The water tank outside the lead shield can also be observed. 
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Figure 52 - Zenith profiles of data and simulation for the UNMRR.  There is good agreement in the center, but 
poorly understood discrepancies on the edges. 
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The center and bottom of the zenith projection corresponds to the lead caps, core/graphite, and 

control rod region.  An increase in scattering at both edges of the zenith projection is much more significant 

than the inscatter in the azimuthal projection. This is likely due to effects of tracking related to the vertical 

separation of the detectors; however, these effects are not understood quantitatively at this point. 

In Figure 53, the UNMRR core is replaced by a metal homogenous core consisting of uranium, 

water, and zirconium with a density of 3.75 𝑔/𝑐𝑚3.  This composition and density is representative of a 

core for a commercial nuclear power plant reactor.  Our reconstructions clearly show increased signal 

strength in the core region in this scenario due to the large amount of uranium and high density in the metal 

core model. 
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Figure 53 – Comparison of regularized Abel inversion of higher density metallic homogenous core on the left, 
with a bare polyethylene core in the middle, and a ratio of the two reconstructions on the right.   
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CHAPTER 8 
 

Material Identification Overview 
 

The identification of materials using cosmic-ray muons can be accomplished through methods that 

measure density, radiation length, and isotopic composition.  These measurements provide data for solving 

the following inverse problem. What do the multiple scattering of muons, muon attenuation, and muon 

induced second particles infer for an object in a field of view?  By investigating a variety of objects 

including aluminum, iron, lead, and uranium, we can show that the materials can be identified through 

density and radiation length analysis.  Additional material identification can be obtained from the 

exploitation of axial or spherical symmetry which can be used to decouple the muon trajectory path length 

in order to obtain an accurate assessment of radiation length weighted with density.  Finally, by using 

neutron and gamma detectors to measure secondary signals in coincidence with muon trajectories, 

materials with neutronics gain can be separated from materials with less amplification.  For example, 

differentiating between U-235 and U-238 or well-moderated and un-moderated SNM. 

There are several applications for this technology.  The research originally began to address treaty 

verification objectives for the imaging of nuclear weaponry and warheads.  Following the preliminary 

success of the project, additional research goals were established for use in identifying the materials found 

in objects for homeland security related applications.  The majority of this work remained academic in 

nature, where the bulk of the data was measured from elementary objects interacting with cosmic-ray 

muons, e.g. the LEU cube or the lead sphere. 

Both stopping and scattering measurements are being studied as potential tools to locate the fuel in 

the melted down reactor cores of the Fukushima reactors. The motivation for this work is the potential cost 

saving and reduction in human radiation dose for the three-decade long cleanup program at Fukushima 

Daiichi.   
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Obtaining Material ID from Transmission and Multiple Scattering of Cosmic-Rays 
 

The passage of muons through matter is affected by their Coulomb interactions with electrons and 

nuclei [58].  The muon interactions with electrons lead to continuous energy loss and stopping of muons, 

while their scattering off nuclei lead to angular “diffusion”. By measuring both the number of stopped 

muons and angular changes in muon trajectories we can estimate density and identify materials.  This 

technique has been shown to be useful for locating materials with high atomic number in a contrast with a 

background of material of low atomic number [20].  The combination of energy loss and scattering has 

been suggested as a method to determine both material type and density (therefore providing material 

identification or MID) using focused beams of accelerator produced muons [71].  The combination of 

nuclear attenuation and Coulomb scattering has also been shown to provide MID in proton radiography 

[72].  In this paper we demonstrate MID, using the combination of stopping and scattering of cosmic ray 

muons. Here we demonstrate the material identification using data taken at Los Alamos with the Mini 

Muon Tracker.  An example of a multiple scattering radiographic image obtained with the MMT using 

overhead muons arriving from directions close to the zenith, is shown in Figure 54. 

Transmission (or stopping) imaging with cosmic rays is somewhat different from point source x-

ray imaging in that both the intensity and the direction of the cosmic rays can be measured. The trajectory 

information can be used to generate a focused transmission image at any distance from the detector.  

Conceptually, the stopping length, 𝜆, of cosmic rays in material is inversely proportional to the stopping 

rate and can be related to the energy spectrum, 𝑑𝑁(𝐸)/𝑑𝐸, as shown in eq. 54. 

 1
𝜆

=
𝑑𝑁
𝑁𝑑𝑥

=
1
𝑁
𝑑𝑁
𝑑𝐸

𝑑𝐸
𝑑𝑥

 eq. 54  

A plot of the energy spectrum for overhead muons at sea level is shown in Figure 55. The energy loss, 𝑑𝐸
𝑑𝑥

, 

can be calculated using the Bethe-Bloch formula. Over a wide range of momentum, the energy loss for 

cosmic ray muons varies only logarithmically with momentum and is approximately proportional to the 

electron density, 𝑍
𝐴
. For dense material, where 𝜆 is short compared to the muon decay length, 𝑙 = 𝛽𝑐𝛾𝜏, 

where 𝛽 and 𝛾 are the usual kinematic quantities, 𝑐 is the velocity of light, and 𝜏 = 2.2 𝜇𝑠 is the muon 

lifetime. The muon stopping can be understood as the shifting of the spectrum shown in Figure 55 to the 

left, with the loss of muons with energies below some threshold.    



116 
 

 

Figure 54 - Top) A photograph of the bottom parts of a layered shielding box with a 10×10×10 cm3 (~20 kg) 
uranium cube. When fully assembled, the shielding box surrounds the uranium with 5 cm of lead and surrounds 
the lead with 15 cm of borated polyethylene. Bottom right) a reconstructed image showing a slice at roughly the 
center of the object from a cosmic ray tomography of the shielding box. Bottom left) an image of the shielding 
box with the uranium. Grey scale of the image represents the strength of the scattering signal. 
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Figure 55 – Spectrum of vertical cosmic ray flux at sea level.  Solid symbols are the data [73].  The line is a 
parameterized fit. 
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We have measured the transmission through three thicknesses (each) of lead, concrete and steel. 

The transmission image was obtained by making a ratio of the image of transmitted cosmic rays with the 

target in place to an image with no target. The bottom and top tracks for transmitted trajectories had to 

intersect in a horizontal plane at the center of the object to within a radius of 1 cm. This selection criterion 

was chosen empirically to filter outliers (high energy electrons, delta rays, soft muons) during the image 

reconstruction process. The resulting radiographs are shown in Figure 56.  The negative of the natural log 

transmission as a function of calculated energy loss is plotted in Figure 5. 

The slope of a linear curve constrained to go through the origin fitted to the data in Figure 57 is 

1.03 𝐺𝑒𝑉−1. This is very close to the value of the peak of 1.2 𝐺𝑒𝑉−1 of the normalized spectrum, 1
𝑁
𝑑𝑁
𝑑𝐸

, in 

Los Alamos. The scatter between the different materials is not fully understood, but may be caused by the 

different geometry of the objects (concrete blocks being much thicker than lead). There is also a 

considerable uncertainty in the composition of the concrete, while the steel and the lead is well understood. 

In addition to energy loss and stopping, cosmic rays also undergo Coulomb scattering from the 

charged atomic nuclei. Bethe and Moliere [74-77] developed a theory describing the angular distribution of 

charged particles transported through material foils. The angular distribution is the result of many single 

scatters.  This results in an angular distribution that is Gaussian in shape with tails from large angle single 

and plural scattering. The scattering provides a novel method for obtaining radiographic information with 

charged particle beams [72].  More recently, scattering information from cosmic ray muons has been shown 

to be a useful method of radiography for homeland security applications [15, 17, 29]. 

The dominant part of the multiple scattering polar-angular distribution is Gaussian: 

 𝑑𝑁
𝑑𝜃

=
1

2𝜋𝜃02
𝑒
− 𝜃2

2𝜃0
2  eq. 55  

The Fermi approximation, where 𝜃 is the polar angle and 𝜃0 is the multiple scattering angle, is 

given approximately by: 

 
𝜃0 =

14.1 𝑀𝑒𝑉
𝑝𝛽

�
𝑙
𝑋0

 
eq. 56  
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Figure 56 - Transmission images for the lead (left), concrete (top right) and steel (bottom right) targets.  The 
three thickness of lead were radiographed in a single run. The other targets were imaged during individual runs.  
The grey scale is linear and ranges in value from 0.6 (black) to 1.2 (white) in transmission for all targets. 

  



120 
 

 

Figure 57 - Left) Negative of the natural log of transmission vs. calculated energy loss for three thickness each of 
lead, concrete and steel. Right) Fitted radiation lengths vs. radiation lengths. 
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The muon momentum and velocity are 𝑝 and 𝛽, respectively, and 𝑋0 is the radiation length for the 

material. This needs to be convolved with the cosmic ray momentum spectrum in order to describe the 

angular distribution.  We have approximated the scattering distribution with a model that uses seven 

momentum groups, 𝑝𝑖 . 

 𝑑𝑁
𝑑𝜃

= �
Ai

σi
e−

θ2
2σi eq. 57  

 

 
𝜎𝑖 =

14.1
𝑝𝑖

�
𝑙
𝑋0

 eq. 58  

The model has been calibrated to data taken through the three thicknesses of lead described above.  

We fit the amplitudes, 𝐴𝑖, of each energy group, as well as the intrinsic angular resolution and a fixed 

number of radiation lengths due to the drift tubes and other structural elements of the muon detectors.  The 

model does not account for changes in the shape of the muon spectrum due to stopping. A maximum 

likelihood fit to the set of lead data is shown in Figure 58. Also shown is the decomposition of one of the 

data sets into its momentum groups. 

The momentum distribution obtained from this fit is compared with previous measurements of the 

momentum distribution at sea level and a parameterization that has been extrapolated to the altitude at Los 

Alamos, New Mexico (2231 m) in Figure 59.  The agreement is remarkably good above 1 GeV. At lower 

energies the spectrum is sensitive to stopping and slowing down in the targets and to the electron 

component of the flux.  These effects are not accounted for in this simple model but are important for 

simulating the tails accurately in the angular distribution as discussed previously. 

With the amplitudes fixed by the global fit, described above, a maximum likelihood fit of the 

angular distribution for each voxel, where 𝑙/𝑋0 was the only parameter that was varied, was used to obtain 

a radiation length image of each of the data sets used above. A composite of the resulting images is shown 

in Figure 60.  The fitted value for the thickness of the test objects in radiation lengths is plotted vs. actual 

radiation lengths in Figure 57. 
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Figure 58 - Left) Measured angular distributions for various thickness of lead (points) and the fit (lines) for 
various thicknesses of lead. Right) The decomposition of the fit into energy groups. Empty shows the angular 
distribution with no object in the scanner. 
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Figure 59 - Fitted spectrum (solid symbols) compared to model and previous data (open symbols). Also shown is 
the extrapolation of the sea level spectrum (black) to the altitude of Los Alamos (green curve). 
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Figure 60 – Radiation length images of the test objects described above. 
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The same data have been used to obtain the thickness in both radiation lengths and in attenuation 

lengths. The known thickness and measured thickness agree to ~10-20%. The experimentally measured 

radiation lengths and attenuation lengths are plotted vs. each other in Figure 61. The fact that the different 

materials lie on different curves demonstrates material identification. 

We have used experimental data collected with the Mini Muon Tracker to validate simple models 

of cosmic ray muon radiography. The negative of the natural logarithm of transmission was shown to be 

proportional to material thickness, 𝑡, for a given material and approximately proportional to 𝑑𝐸
𝑑𝑥
𝑡 across a 

range of materials. Similarly, it was shown that 𝑙/𝑋0, the thickness of the object in radiation length units, 

was measured by fitting the polar angular distribution with a set of Gaussian distributions whose 

amplitudes were fixed at values fitted to calibration data. The momentum distribution fitted to the cosmic 

ray data agreed remarkably well above 1 GeV with previously measured data taken with a magnetic 

spectrometer. The combination of our measurements provided estimates of both the areal density and the 

material identification. 
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Figure 61 - Radiation lengths vs. attenuation lengths for the different test objects. The different materials lie on 
lines with different slopes, therefore demonstrating material identification. 
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Improving Material Identification Capabilities in Muon Tomography through Symmetry 
 

The use of the signal from Coulomb scattering enables three dimensional imaging of complex 

scenes with high sensitivity to objects composed of materials with high atomic charge (Z).  Material 

identification is determined by obtaining the density weighted radiation lengths of objects in the field of 

view.  While cosmic rays can penetrate significant overburden, the technique suffers from relatively long 

exposure times and poor resolution because of the low flux and complex algorithms needed for 

reconstruction. A new method for obtaining improved position resolution and statistical precision for 

objects with spherical symmetry is demonstrated [78].  This new method improves material identification 

capabilities by removing the dependence on measuring transmission and instead relying on spherical 

symmetry and the higher resolution of Coulomb scattering measurements. 

Although cosmic rays are highly penetrating and can image through considerable overburden, the 

flux is limited. The times required for detecting the presence of quantities of uranium or plutonium 

necessary to create a nuclear explosion are on the order of minutes, and the times needed to image these 

devices with ~2 cm resolution are on the order of hours.  There are several algorithms for generating 

tomographic images using the input and the output trajectories of the cosmic rays[17].  Here we use a very 

simple method with a voxelated scene. For each voxel a one-dimensional histogram of scattering angle in 1 

mrad steps from 0 to 200 mrad is created.  The histogram is incremented for every cosmic ray for which the 

incident cosmic ray intercepts the voxel and for which the distance between the input and the output cosmic 

rays in the plane of the voxel is less than 2 cm. For large scattering angles this requirement associates 

measured scattering events with defined voxels in which most of the scattering occurred. 

The scattering distribution for each voxel is fitted with a model that uses seven momentum groups 

[79], to approximate the muon momentum spectrum.  The model has been calibrated with data taken 

through the three thicknesses of lead, 5.08, 10.16 and 15.24 cm. The amplitudes of each energy group, as 

well as the intrinsic angular resolution and a fixed number of radiation lengths due to the drift tubes and 

other structural elements of the muon detectors were fitted to minimize the logarithm of the likelihood 

function assuming the data were describe by a Poisson distribution. This model does not account for 

changes in the shape of the muon spectrum due to stopping. A maximum likelihood fit (Appendix D) to the 
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set of lead data is shown in Figure 58. Also shown is the decomposition of one of the data sets into its 

momentum groups. 

Images were constructed by fitting the angular distribution for each voxel to obtain the average 

number of radiation lengths of material that the ensemble of histogram entries has traversed. This 

reconstruction algorithm is scalable to large data sets, is simple to compute, and provides near optimal use 

of the scattering information.  However, it doesn’t optimally use the vertex information. 

We have imaged several spherically symmetric objects: nested spherical shells of copper and 

tantalum, the copper shell alone, and a hollow lead ball. The outer radii were 6.5, 4.5, and 10 cm and the 

inner radii were 4.5, 1, and 2.5 cm for the copper, tantalum and lead shells respectively.  Cartesian slices 

through the three dimensional tomograms, centered on the object, are shown in Figure 62. 

The center of each object (𝑥𝑐 ,𝑦𝑐 , 𝑧𝑐) was estimated by finding the centroid of the signal from the 

object using the Cartesian slices shown in Figure 62 and these were used for a one-dimensional 

reconstruction. A trajectory was defined by the line x(s) where: 

 𝑥(𝑠) = 𝑥0 + 𝑥′𝑠 eq. 59  

 

 𝑦(𝑠) = 𝑦0 + 𝑦′𝑠 eq. 60  

 

 𝑧(𝑠) = 𝑧0 + 𝑧′𝑠 eq. 61  

  

Here (𝑥0,𝑦0, 𝑧0) is a point on the line with direction cosines (𝑥′,𝑦′, 𝑧′) . The point of minimum 

distance between (𝑥𝑐 ,𝑦𝑐 , 𝑧𝑐) and (𝑥0,𝑦0, 𝑧0) is given by 𝑠 = 𝑠0: 

 
𝑠0 =

(𝑥𝑐 − 𝑥0)𝑥′ + (𝑦𝑐 − 𝑦0)𝑦′ + (𝑧𝑐 − 𝑧0)𝑧′

𝑥′2 + 𝑦′2 + 𝑧′2
 eq. 62  

The radius of closest approach is:  

 𝑟0 = �(𝑥(𝑠0) − 𝑥𝑐)2 + (𝑦(𝑠0) − 𝑦𝑐)2 + (𝑧(𝑠0) − 𝑧𝑐)2 eq. 63  

A two dimensional histogram of scattering angle versus radius is shown in Figure 63. 
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Figure 62 - Cartesian slices through the tomographs of the three objects. They are presented on the same 
position and grey scales.  The grey scale is linear between 0 and 80 radiation lengths from black to white 
respectively.  
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Figure 63 - Left) scattering angle vs. radius for the lead spherical shell.  The grey scale is proportional to the 
logarithm of the number of counts per bin.  On the right are plots of counts vs. scattering angle taken along the 
lines shown in the plot on the left. 
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A spherically symmetric object can be described by a set of shells at 𝑟𝑖 with thickness 𝑑𝑟 =

(𝑟𝑖+1 − 𝑟𝑖−1)/2 and of a material with radiation length, 𝑋0𝑖, and weighted density 𝜌𝑣𝑖/𝑋0𝑖. The radiation 

length weighted path length, 𝐿𝑖, as a function of 𝑟𝑖 can be obtained from the data shown in the 2-

dimensional histogram by using the multi-group fitting technique described above for each radial bin.  The 

fit to the lead data shown in Figure 58 has been corrected by 12% to account for the average 1
cos(𝜃)

 increase 

in thickness of the lead in the planar geometry and then used for the spherical symmetry algorithm. 

The 𝐿𝑖 are related to the set of radiation length weighted volume densities, 𝜌𝑣𝑗, by a path length 

vector 𝑃𝑖𝑗  shown in Figure 64. 

 𝐿𝑖 = 𝑃𝑖𝑗
𝜌𝑣𝑗
𝑋0𝑗

 eq. 64  

 

The path length vector is the length a particle at 𝑟𝑖 traverses through shell 𝑗: 

 𝑃𝑖,𝑗 = 0                                                                                        , for 𝑖 > 𝑗

𝑃𝑖 ,𝑗 = 2��𝑟𝑗 +
𝑑𝑟
2
�
2

− 𝑟𝑗2                                                      , for 𝑖 = 𝑗

𝑃𝑖,𝑗 = 2��𝑟𝑗 +
𝑑𝑟
2
�
2

− 𝑟𝑗2 − 2��𝑟𝑗−1 +
𝑑𝑟
2
�
2

− 𝑟𝑗−12      , for 𝑖 < 𝑗

 eq. 65  

 
     

This can be solved for the 𝜌𝑣𝑗/𝑋0𝑖  using the regularization techniques described in Press [70].  

This technique dampens the on-axis noise that arises in conventional Abel inversions[80] which is 

important here because of the poor statistics, especially at small radii. 

The results for the three objects, each with 24 hours of exposure, are shown in Figure 65. The 

𝜌𝑣𝑗/𝑋0𝑖 for each of the materials studied: copper, tantalum, and lead, are within 10% of the tabulated 

values [36].  One can easily distinguish the void inside each of the shells, even the 1 cm radius void at the 

center of the tantalum shell.  An analysis of the width of the edges in Figure 65 gives a position resolution 

of 3 mm which corresponds to our resolution measurements in Chapter 5. 
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Figure 64) An Illustration of the path-length matrix, 𝑷𝒊,𝒋. 
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Figure 65) Radiation length weighted density vs. radius.  The radii have been mirrored around r=0 (the data at 
negative r are the same as the data for positive r). Horizontal lines show the tabulated value of ρ/X.[36] 
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Cosmic ray scattering data were taken on a set of spherically symmetric objects. The data were 

analyzed assuming spherical symmetry. The data were stored in a two dimensional histogram of scattering 

angle vs. radius. The angular distributions were fitted by a sum of Gaussians whose amplitudes were fixed 

by fits to data taken on a set of planar objects. This resulted in one-dimensional plots of thicknesses in 

radiation lengths for each of the objects. These were analyzed with a regularized Abel inversion technique 

yielding radiation-length-weighted volume densities. These results allowed a quantitative evaluation of the 

material composition of the objects.  It is also worth noting that these objects are difficult to study with 

conventional x-ray radiography due to their opacity from attenuation of the photon flux and large angle 

Compton scattering. Observing the cavities at the center of the two thicker objects requires high energy x-

rays (4 MeV) and good anti-scatter techniques [81]. 
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Muon Induced Fission Overview 
 

Most conventional radiography methods involve measuring the transmission of particles, e.g. x-

rays, from attenuation processes.  It has been shown that the scattering information, as in the case of muon 

tomography and charged particle radiography, can be used for imaging as well.  The common feature 

among all of these methods is the requirement for a detector that is located on the opposite side of the 

imaged object/plane with respect to the source of probing particles.  In some scenarios, it may not be 

feasible to locate a detector in that configuration to measure the flux transmission.  Thus, these scenarios 

require a single sided imaging technique whereupon the detector is placed between the source and the 

object of desire. 

Single sided imaging has been used to look at the surfaces of objects, e.g. in airport security 

backscattering applications [82]; and single sided imaging has also been used to identify objects through 

photon backscatter and nuclear resonance fluorescence for homeland security applications [83-90].  These 

methods are either limited by penetration depth, or the steep increase in radiological dose required for 

obtaining useful imaging and isotopic information.  By using cosmic-ray muons coincident with secondary 

signals such as fission neutrons, single sided imaging can be performed with high penetration and low dose.  

The tradeoff is that the natural muon flux is relatively low, ~10000 𝜇/𝑚2/𝑚𝑖𝑛, which requires longer 

integration time for imaging.  Provided that an object is stationary, the use of cosmic-ray muons in these 

applications is an attractive alternative.  Tagging cosmic-ray muons coupled with 𝜇− induced fission 

neutrons in coincidence enables us to detect and image SNM for warhead counting and treaty verification.  

Our method is based on the use of signatures provided by interactions of cosmic-ray muons with 

an inspected object.  As negatively charged muons stop, they are captured into atomic orbits in the stopping 

medium. In high-Z atoms, a stopped negative muon has a large probability of combining with one of the 

protons in a nucleus through the weak interaction forming an excited neutron and neutrino. In a fissionable 

material, stopped negative muons can trigger small fission chains, depending upon the effective 

multiplication of the neutronics system. Each fission reaction produces several gamma rays, 2-3 neutrons, 

and fission fragments. Products of this muon-induced fission create a distinctive signature that we can 

couple to muon trajectories in the target in order to create a tagged image within a coincidence window. In 
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addition, cosmic-ray muons that pass through the target undergo Bremsstrahlung and pair-production 

resulting in potential photonuclear interactions. 

The rate of stopped muons in small cubes (e.g. 1000 𝑐𝑚3) of uranium that cause muon-induced 

fission is at most several a minute.  The stopping rate varies with time, altitude and latitude, but in general 

is stable enough to produce a reliable probe. The rate of the secondary signal is directly proportional to the 

neutronics gain in the target. When compared to other sources of background, such as terrestrial gamma 

flux (~26000 𝛾
𝑚2𝑠

), the rate is low.  Different detectors and techniques can be applied in order to see the 

muon-induced fission signal. These include: neutron detectors, e.g. liquid scintillators, gamma-ray 

detection with high energy thresholds, pulse-shape discrimination, and establishing a coincidence window.  

The amount of fast and thermal fission events depends upon the geometry of the object, the 

quantity of fissile material, as wells as other materials that may reflect, absorb, or moderate neutrons.  The 

Boltzmann transport equation defines these components through a series of losses and gains in the 

neutronics system [91]: 

 
�
1
𝑣
𝜕
𝜕𝑡

+  Ω ∙ ∇ + Σt(𝑟,𝐸, 𝑡)� 𝜙(𝑟,Ω,𝐸, 𝑡)

=  � 𝑑𝐸′
∞

0
� 𝑑Ω′Σ𝑠(𝑟,Ω′ ∙ Ω,𝐸′ → 𝐸)𝜙(𝑟,Ω′,𝐸′, 𝑡)
4𝜋

+
𝜒(𝐸)

4𝜋
� 𝑑𝐸′
∞

0
� 𝑑Ω′𝜈(𝐸′)Σ𝑓(𝑟,𝐸′, 𝑡)𝜙(𝑟,Ω′,𝐸′, 𝑡)
4𝜋

+ 𝑄(𝑟,Ω,𝐸, 𝑡) 

eq. 66  

 

If the system geometrical size is small, the neutron population will be dominated by losses due to leakage 

current, [Ω ∙ ∇]𝜙(𝑟,Ω,𝐸, 𝑡).  Losses can also include absorption through nuclear resonances and scattering 

out of a particular energy group,  Σt(𝑟,𝐸, 𝑡)𝜙(𝑟,Ω,𝐸, 𝑡).  If the resulting neutrons from fission are not fast 

enough, then fast fission neutronics gain is also diminished.  These effects can have a significant impact on 

reducing the fast fission signal component that is being observed in coincidence with muon tracks.  Of 

course, if neutrons of sufficient speed can remain in the fissile material for a long enough period of time, 

because of a large object size or adequate reflection, fast fission will occur, resulting in chain reactions that 

may be measured with neutron detectors.  The source of these neutrons is defined by the scattering kernel 
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∫ 𝑑𝐸′∞
0 ∫ 𝑑Ω′Σ𝑠(𝑟,Ω′ ∙ Ω,𝐸′ → 𝐸)𝜙(𝑟,Ω′,𝐸′, 𝑡)4𝜋 , the fission source term, 

𝜒(𝐸)
4𝜋 ∫ 𝑑𝐸′∞

0 ∫ 𝑑Ω′𝜈(𝐸′)Σ𝑓(𝑟,𝐸′, 𝑡)𝜙(𝑟,Ω′,𝐸′, 𝑡)4𝜋 , and any additional external sources, 𝑄(𝑟,Ω,𝐸, 𝑡).   

There is a practical challenge in measuring signals from fast or thermal fission.  A fast signal 

resulting from muon-induced fission consists of neutrons and gammas emitted in a narrow time window on 

the order of hundreds of nanoseconds.  However, if neutrons from thermal fission are to be measured, the 

timing coincidence window must be extended by hundreds of microseconds to account for the moderation 

time.  The wider coincidence gate results in higher rate of accidental coincidences due to random 

background.  This issue is further compounded if the neutron or gamma detectors are intrinsically slow.  

There are several neutron energy regions that are important to consider for uranium isotope 

identification. A muon induced fission in uranium produces neutrons with energies that are well described 

by the Watt spectrum [92], with an average energy of 1-2 MeV and a tail above 10 MeV (see Figure 66).  

At the lower end of this fast spectrum (~1 MeV), the difference between fission cross-sections of uranium 

isotopes, U-238 and U-235, is almost two orders of magnitude, 𝜎𝑓,𝑈238 = 0.014 𝑏 and 𝜎𝑓,𝑈235 = 1.2 𝑏.  At 

the higher end of the spectrum (above ~5 MeV), the difference in fission cross-section becomes smaller, 

e.g. at 15 MeV 𝜎𝑓,𝑈238 = 1.2 𝑏 and 𝜎𝑓,𝑈235 = 2.1 𝑏.  Another neutron energy region to consider is the 

thermal one, where the difference between isotopes becomes dramatic, with U-235 fission cross-section 

being over 7 orders of magnitude larger than U-238, e.g. 𝜎𝑓,𝑈238 = 1.7 ⋅ 10−5 𝑏 and 𝜎𝑓,𝑈235 = 590 𝑏 at 

0.025 eV.  The U-235 and U-238 total fission cross-sections are shown in Figure 67. 

The fast and thermal energy regions can both be used for material identification. The challenges 

associated with the fast energy region is that the mean free path of a neutron in uranium is large (order of 

centimeters).  This implies that without reflection, or large geometrical size, it is difficult to obtain several 

chain reactions for a good secondary signal measurement.  The thermal energy region produces a fission 

reaction within an object proportional to its U-235 enrichment, but this requires longer coincidence times as 

the thermal neutrons are slow (~2200 m/s).    
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Figure 66 – Energy spectrum of fission neutrons.  The calculated curve is based on the assumption of a 
Maxwellian distribution in the center-of-mass system for the neutrons emitted by a fission fragment [92]. 
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Figure 67 – Total fission cross-sections of uranium.  U-235 is shown in red and U-238 is shown in green.  There 
are three regions of interest for muon induced fission.  The first is the region above 10 MeV where the difference 
in fission cross-section is small between U-235 and U-238.  The second is the region around 1-2 MeV where the 
U-235 cross-section begins to become larger than U-238.  Finally, the third region is at thermal energies where 
the U-235 cross-section is very large (data from ENSDF [93]). 
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Geant4 HEU, LEU, and DU Cube Simulation Study for Muon Induced Fission 
 

Geant4 is used to understand the multiple physical processes that occur in muon induced fission.  

This is done by separating the muon induced fission process into several stages.  First, the neutronics of 

three bare cubes, HEU, LEU, and DU are investigated.  The HEU, LEU, and DU cubes have a side length 

of 10cm. The neutronics study is performed using fast and thermal neutrons in order to understand the 

outgoing neutron and gamma flux from fission.  Second, a simulation is performed on the LEU cube 

surrounded by an inch of high density polyethylene moderator (HDPE).  The HDPE affects the timing 

distribution of secondary signal neutrons, spreading them over several milliseconds and ultimately reducing 

the effectiveness of tagged muon radiography.  Finally, the interactions of 𝜇+ and 𝜇− with the three cubes 

tie together the neutronics with the muon induced fission. 

Neutrons of different energies are simulated within a cube of HEU, LEU, or DU.  The output of 

the simulations is plotted to show the energy and time distributions in order to better understand the 

detector coincidence window sizes and rates.  Several energy regions are investigated corresponding to the 

expected neutron energies that occur from muon-induced fission.  The fission simulations produce a Watt 

spectrum in uranium that contains U-235 with a spatial distribution proportional to the neutron mean free 

path.    A 4𝜋 spherical detector covering the entire solid angle with a radius of 30 cm is used to measure the 

distribution of particles emitted from each cube (see Figure 68).    The high-precision Neutron_HP model is 

used to simulate the neutrons below 20 MeV accurately in Geant4 [94-98]. 

The following simulation runs used 1 million particles per case in order to study the energy and 

timing distribution of secondary signals with adequate statistics.  Simulations were performed with an 

isotropic neutron source located at the center of the uranium. Neutron source energies were monochromatic 

at either 15 MeV or 0.025 eV.  The uranium cubes were bare.  The integrated results of the simulation are 

shown in a table following individual discussions of each component of the flux. 

The gamma energy spectra for the bare cube simulations are shown in Figure 69.  The HEU signal 

is stronger than the signal found in either the LEU or DU, which is to be expected due to the higher fission 

cross-section found in U-235.  The average energy of the exiting gamma rays from fission and capture 

processes is between 1-2 MeV, with the spectrum extending beyond 8 MeV. 
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Figure 68 – Geant4 simulation geometry of a uranium cube with a 𝟒𝝅 spherical detector surface.  The spherical 
detector is sensitive to gamma and neutron flux that results from fission and other processes.  This was used to 
study the neutronics output of different uranium enrichments with muon and neutron sources. 
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Figure 69 – Neutronics simulation of three uranium cubes consisting of depleted uranium, 19.5% U-235 low enriched uranium, and 90% U-235 high enriched uranium.  
A thermal neutron and fast (15 MeV) neutron point source was used in each cube. The secondary gamma energy spectra are compared.  Several differences are 
immediately noticeable, first the overall yield of the gamma is larger in the HEU as would be expected by the larger fission cross-section of U-235.  In DU, there is a 
significant amount of gamma resulting from neutron capture as indicated by thermal neutrons starting in DU (where no fission would be expected). 
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The temporal distribution of the gamma events resulting from the capture and fission of thermal 

and fast neutrons is shown in Figure 70.  The thermal neutrons stimulate fissions quickly in LEU and HEU, 

producing secondary gamma-rays at the times shorter than 10 microseconds.  The thermal neutrons in DU 

scatter for a longer period of time prior to their capture and release of gamma rays.  In the fast energy 

range, the gammas can be seen largely as a result of fast fission.  Delayed gammas are also visible, but they 

are not useful for muon tagged radiography due to their much later occurrence in time.  A coincidence 

window for prompt gamma detection from muon induced fission should be set below 10 microseconds. 

The energy spectra of the neutron flux resulting from the capture and fission of thermal and fast 

neutrons in the LEU, DU, and HEU cubes are shown in Figure 71.  In DU, the escaping thermal neutrons 

have a broadened energy from upscattering and downscattering.  The LEU and HEU show a typical Watt 

spectrum resulting from thermal fission.  The fast neutrons also show a Watt fission spectrum that is 

softened by the DU in the cube.  Additionally, the 15 MeV neutron source escape peak is also present in the 

energy plot.  The secondary neutron detection from muon induced fission involves measuring 

polychromatic neutrons, covering the Watt spectrum. 

The timing spectra of the neutron flux resulting from fission of thermal and fast neutrons in HEU, 

LEU, and DU cubes are shown in Figure 72.  In DU, the thermal neutrons that escape reach the detector 

much later than the fission neutrons in the LEU and HEU cube.  For both fast and thermal fission in the 

LEU and HEU cubes, the prompt neutrons are measured within several microseconds.  The measurement of 

delayed neutrons is possible, but according to the timing distribution, this measurement would require a 

prohibitively large coincidence window.  For the accidental background suppression the coincidence 

window for measuring secondary neutrons from muon-induced fission must be closed within several 

microseconds of the fission event. 

The neutronics analysis is concluded with one final study that describes the timing spectrum of 

secondary gammas and neutrons when moderation is present.  The geometry consists of the LEU cube (10 

cm on a side) surrounded by 5 cm of high density polyethylene (HDPE).  Neutrons are generated as an 

isotropic point source in the center of the cube with thermal or fast energies.  The timing and energy spectra 

of the secondary neutrons and gammas from the moderated LEU cube are shown in Figure 73.  The HDPE 

extends the time until neutron detection from several microseconds to milliseconds.  This   
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Figure 70 – Neutronics simulation of three uranium cubes consisting of depleted uranium, 19.5% U-235 low enriched uranium, and 90% U-235 high enriched uranium.  
A thermal neutron and fast (15 MeV) neutron point source was used in each cube. The secondary gamma time distributions are compared.  The thermal neutrons fission 
quickly in LEU and HEU, which results in secondary gamma time distributions below 10 microseconds.  The thermal neutrons in DU scatter for a longer period of time 
prior to capturing and releasing gamma rays.  In the fast energy range, the gammas can be seen largely as a result of fast fission.  Delayed gammas are also visible, but 
are not important for this analysis.



145 
 

 

Figure 71 - Neutronics simulation of three uranium cubes consisting of depleted uranium, 19.5% U-235 low enriched uranium, and 90% U-235 high enriched uranium.  
A thermal neutron and fast (15 MeV) neutron point source was used in each cube. The secondary neutron energy spectra are compared.  In DU, the thermal neutrons 
that escape have a broadened energy from upscattering and downscattering.  The LEU and HEU show a typical Watt spectrum resulting from thermal fission.  The fast 
neutrons also show a Watt fission spectrum that is softened by the concentration of DU in the cube.  Additionally, the 15 MeV source neutron is also seen at the upper 
part of the energy plot.
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Figure 72 - Neutronics simulation of three uranium cubes consisting of depleted uranium, 19.5% U-235 low enriched uranium, and 90% U-235 high enriched uranium.  
A thermal neutron and fast (15 MeV) neutron point source was used in each cube. The secondary neutron timing distributions are compared.  In DU, the thermal 
neutrons that escape reach the detector much later than the fission neutrons in the LEU and HEU cube.  For both fast and thermal fission in the LEU and HEU cubes, 
the prompt neutrons are measured within several microseconds.  Additionally, the delayed neutrons are visible but not important for purposes of measuring muon 
induced fission.
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implies that a coincidence window would need to span several milliseconds, significantly increasing the 

background count rate and therefore decreasing the signal-to-noise ratio of muon induced fission and 

tagged radiography.  For the same reason the signal-to-noise ratio is also reduced in moderated neutron 

detectors, such as HDPE wrapped He-3.  The most promising solution to this problem is to utilize fast 

liquid scintillators with good pulse-shape discrimination characteristics in order to measure fast neutrons.  

This was done after several experimental studies that investigated several detectors including: HDPE 

moderated He-3, He-4, lithium, and liquid scintillators.  The experimental results shown in this dissertation 

are from the EJ-301 liquid scintillators. 

Following the neutronics study in the different uranium cubes, several simulations were performed 

using 𝜇− and 𝜇+ distributed uniformly throughout cubes of DU, LEU (19.5% U-235), and HEU (90% U-

235).  A parametric study of two muon energies, 2 GeV and 1 MeV, was performed.  The higher muon 

energy approximately represents the average energy of the cosmic-ray muon spectrum. These muons lose 

energy in matter slowly, primarily through ionization.   In the lower energy range, the muons stop in thin 

layers of material due to the increase in their energy losses, 𝑑𝐸/𝑑𝑥.  The output of the parametric 

simulation predicts the secondary neutron and gamma-ray rates measured in a 4𝜋 detector per muon 

generated.  By using Geant4, it is shown that both 𝜇− and 𝜇+ produce secondary particles in uranium.  At 

lower energies, the 𝜇− slows down rapidly and stops with a high probability of capture in the uranium.  

This process is simulated by the muMinusCaptureAtRest process in Geant4, and produces secondary 

particles and additional fissions.  Secondary particles in uranium can also be created by photonuclear 

processes caused by cosmic-ray muon Bremsstrahlung. 

The stopping of 𝜇− in uranium cubes (10 cm side length) is shown in Figure 74.   This primarily 

results in muon induced fission with secondary neutrons and gammas that are released proportional to the 

amount of U-235 enrichment, which enhances the neutronics gain of the cube.  The muon induced fission 

that occurs from stopped 𝜇− produces a signal that is dependent on neutronics gain. This signal can be 

useful for treaty verification applications.  The signal rates per stopped muon are shown in the table at the 

end of this section.
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Figure 73 – A study of moderation times for fission in LEU using Geant4.  A point source of thermal and fast (15 MeV) neutrons was simulated in the center of the LEU 
(10 cm side) cube.  The LEU was surrounded by 5 cm of HDPE on each side.  The most significant issue is that the secondary signals are stretched out to several 
milliseconds from the initial event.  For muon induced fission tagged radiography purposes, this results in a coincidence window that is too large.
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Figure 74 – Secondary neutron and gamma energy spectrum that result from 𝝁− stopping in cubes of uranium: HEU (red), LEU (blue), and DU (green).  The primary 
mode of neutron generation is due to muon induced fission from 𝝁− capture.  Two important features are 1) more gain for increasing U-235 concentration and 2) the 
secondary prompt signals occur below 1 microsecond. 
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Fast cosmic-ray muons of both charges and slow 𝜇+ generate secondary neutrons at much lower 

rates compared to 𝜇− induced fission.  For example, if a slow 𝜇+ stops in uranium it decays releasing a fast 

positron and neutrinos.  The positron creates photons through Bremsstrahlung, which may result in 

photonuclear production of neutrons.  Additionally, fast muons may also radiate photons from 

Bremsstrahlung in high-Z targets.  The rates of these effects are much smaller (by several orders of 

magnitude) when compared to 𝜇− induced fission.  Figure 75, Figure 76, Figure 77 show that prompt 

neutrons are produced by these processes, but at a much smaller frequency. 

The conclusion of this study is that the 𝜇− induced fission produces a dominant source of neutrons 

as compared to the other processes.  Additionally, the increased neutronics gain found in the HEU provides 

increased secondary signal that is useful for tagged radiography.  By using this additional signal, materials 

with high neutronics gain can be tagged and located.  As was shown, both neutrons and gammas are useful 

signals for this method.  We have determined that neutrons are a more desirable secondary signal to 

measure for several reasons: 1) the gamma background is large, 2) low-energy gamma-rays are self-

shielded in SNM, and 3) the majority of the secondary neutron signal is the result of  𝜇− fission events. 

The rates of secondary neutrons in the three different cubes are shown below.  These rates refer to 

the prompt neutrons measured within 1 𝜇𝑠 of the muon either passing through or stopping in the uranium 

cubes.  As will be shown in the next section, this time frame corresponds to the prompt signal measured by 

the EJ-301 liquid scintillator detectors.  The rates were determined by using the simulations mentioned 

previously in this section: 1 million incident muons, uniform source distribution, three types of uranium 

cubes, two muon speeds, two muon charges, and a 4𝜋 detector.  The majority of the secondary neutron 

signal is emitted from the muon induced fission process induced by slow 𝜇−.  The HEU U-235 enrichment 

results in an increase of neutron output by a factor of two compared to the LEU.  The difference between 

neutron output in DU and LEU is much smaller.  Theoretically, it may be possible to differentiate DU from 

LEU as there is a 15 percent difference in the neutronics gain.  
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Figure 75 - Secondary neutron and gamma energy spectrum that result from 𝝁+ stopping in cubes of uranium: HEU (red), LEU (blue), and DU (green).  The primary 
mode of neutron generation is due to 𝝁+decay resulting in a fast positron that yields a Bremsstrahlung photon and subsequent photonuclear processes.  There is a small 
increase in neutronics gain when comparing the HEU to the other cubes. 
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Figure 76 - Secondary neutron and gamma energy spectrum that result from fast 𝝁− passing through cubes of uranium: HEU (red), LEU (blue), and DU (green).  The 
primary mode of neutron generation is due to direct 𝝁− Bremsstrahlung photon production and subsequent photonuclear processes.  There is a small increase in 
neutronics gain when comparing the HEU to the other cubes. 
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Figure 77 - Secondary neutron and gamma energy spectrum that result from fast 𝝁+ passing through cubes of uranium: HEU (red), LEU (blue), and DU (green).  The 
primary mode of neutron generation is due to direct 𝝁+ Bremsstrahlung photon production and subsequent photonuclear processes.  There is a small increase in 
neutronics gain when comparing the HEU to the other cubes.  The difference between 𝝁+ and 𝝁− neutron production is minimal. 
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Table 5 – Rate of fast neutrons that are emitted from bare cubes of uranium (10 cm on a side): HEU (90% U-
235), LEU (19.5% U-235), and DU (0% U-235).  The majority of secondary neutron signal is emitted from the 
muon induced fission process induced by slow 𝝁−.  The HEU results in an increase of neutron output by a factor 
of two compared to the LEU.  The difference between DU and LEU is much smaller. 

  

DU LEU HEU
slow mu- 1.64E+00 1.88E+00 3.60E+00
slow mu+ 4.07E-03 4.84E-03 8.24E-03
fast mu- 3.25E-03 3.54E-03 7.14E-03
fast mu+ 3.53E-03 3.76E-03 6.27E-03

Fast Neutrons/Incident Muon
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Measuring Muon Induced Fission in Uranium: LEU and DU 
 
 

We used the MMT for experimental measurements of muon induced fission in 1 liter uranium 

cubes.  Two cubes were studied including a depleted uranium cube (DU) and a 19.5% U-235 enriched 

uranium cube (LEU).  The LEU cube consists of 4 uranium plates bound in a thin steel structure for 

criticality safety purposes.  Two EJ-301 liquid scintillator detectors were located approximately 10 

centimeters from the face of the uranium cube.  A Mesytec MPD-4 pulse shape discriminator separated 

neutrons from the gamma background, and the discriminated neutron TTL signal was injected into the 

MMT data stream.  The cubes were measured individually: 23.5 hours for the DU cube and 48 hours for the 

LEU cube.  Multiple scattering reconstructions show the experimental setup in Figure 78. 

The stopped track radiography is created before the tagged coincidence image.  This is done by 

measuring events that do not create hits in the bottom supermodule of the MMT.  Both of the stopped 

images are shown in Figure 79.  The stopping image has poorer edge resolution when compared to the 

resolution of multiple scattering.   This is due to the wide angle scattering that occurs in softer, high dE/dx 

muons.  There is also a large penumbra due to having many events that miss the bottom supermodule at the 

edge of the field of view.  The stopped track radiography is filtered with a coincidence window containing 

secondary signals which enables the tagging of muon induced fission. 

Two EJ-301 liquid scintillator detectors were used for the measurement of fast neutrons resulting 

from muon induced fission.  This liquid scintillator, made by Eljen Technology, has excellent pulse shape 

discrimination properties, and it is identical to the well recognized liquid scintillator, NE-213.  The 

scintillator is packaged in a right cylinder with an outer diameter of 12.7 cm and a 2.54 cm thickness.  Each 

scintillator was connected to a Hamamatsu photomultiplier tube (PMT) with a voltage between -1300 V 

and -1400 V.  Both detectors were gain matched with a Cs-137 source photopeak of ~50 mV.  The pulse 

shape discrimination was tested with several gamma sources (including the Cs-137 source) and a Cf-252 

neutron source.  Following detector calibration, the output of the detectors’ neutron discrimination was 

injected into the MMT data stream.  The secondary signals measured by the EJ-301 were clocked with a 

200MHz frequency (a temporal resolution of 5 ns). 
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Figure 78 – Multiple scattering measurement of DU (23.5 hours, left) and LEU (48 hours, right).  The cubes 
were placed in a nearly identical location for purposes of comparing stopped tracks and tagged stopped tracks.  
Several objects in the bottom right corner are extraneous to the scene. 
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Figure 79 – Stopped track radiography of DU (23.5 hours) and LEU (48 hours) cubes.  Both images are 
normalized to the duration of measurement.  The stopped track radiography is the first step in performing 
coincidence tagged radiography. 
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The coincidence signal gate width was set between 350 ns and 650 ns for both the LEU and DU 

runs.  This was determined by recording the difference in time stamps between each EJ-301 detector hit 

and the stopped muon track within a microsecond.  Only the first and nearest event was included.  Given 

that the measured rate of coincidence is low, ~10−3 n
𝑠𝑡𝑜𝑝𝑝𝑒𝑑 𝜇

, the probability of consecutive non-related 

coincidences occurring in the window is negligible, 10−3 ∗ 10−3 → 10−6.  This ensures that looking for the 

first, nearest event is adequate for short time windows with infrequent events.    The results of the timing 

spectrum are shown in Figure 80 and Figure 81.  For both cube measurements, the detectors returned a 

peak of hits between 350 ns and 650 ns.  It was assumed that the timing distribution was composed of 

prompt and delayed components of muon induced fission.  With this model, the prompt component was 

fitted with a Gaussian with a width corresponding to system time resolution.  The delayed component, 

which indicates the lifetime of the muonic atom, was fitted using the exponential. The total temporal 

distribution of events was fitted using a sum of three components: exponential decay, Gaussian, and 

constant background.   

 
𝑦 = 𝐵 + 𝑃𝑒−�

𝑡−𝑡0
𝜏 � + 𝐴𝑒−

(𝑡−𝑡0)2
2𝜎  eq. 67  

Where B is a constant background, 𝑃 is an amplitude at some peak time of the exponential decay, 𝑡0 is the 

peak location for both the Gaussian and exponential curve, 𝜏 is the exponential lifetime associated with the 

muon capture lifetime, and 𝜎 is the Gaussian width.   

The lifetime of the muon capture in uranium was measured for each cube.  In the literature, the 

lifetime of muonic U-235 is ~72 ns and in U-238 is ~77 ns [99].  A Poisson distribution was assumed for 

the data, and the temporal distribution was fitted.  The fitting parameters were varied in order to minimize a 

summed log likelihood ratio, which accounts for statistical weightings near zero counts.  This was done 

using Excel’s solver function while the peak time location, 𝑡0, was fixed.  Eighty-seven degrees of freedom 

were used in the summation that was minimized by the solver.   
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Figure 80 – Secondary neutron coincidence spectrum obtained from a coincidence window of EJ-301 neutron 
detection and stopped muon tracks in LEU.  The data from both detectors is summed (green diamonds) and a 
log likelihood fit (purple line) is performed on the tail of the coincidence spectrum.  The lifetime of the muonic 
LEU, which is measured by this fit, is 𝟖𝟐 ± 𝟑𝟒 𝒏𝒔. 
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Figure 81 - Secondary neutron coincidence spectrum obtained from a coincidence window of EJ-301 neutron 
detection and stopped muon tracks in DU.  The data from both detectors is summed (green diamonds) and a log 
likelihood fit (purple line) is performed on the tail of the coincidence spectrum.  The lifetime of the muonic DU 
which is measured by this fit, is 𝟖𝟎 ± 𝟓𝟕 𝒏𝒔. 
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The fitted lifetime for the LEU cube was 82 ± 34 𝑛𝑠 , and the fitted lifetime for the DU cube was 

80 ± 57 𝑛𝑠.  The error was determined by computing the 1𝜎 equivalent of a log-likelihood ratio and 

subtracting the difference between this new lifetime value and the minimized log-likelihood value.  Both 

fits agreed well within the data, with a summed log likelihood (Appendix D) that was approximately equal 

to the 87 degrees of freedom.  Table 6 shows the fitting parameters for both cubes. 

The tagged radiography of the LEU and DU cubes are shown in Figure 82.  The tagged images 

were normalized to the total number of stopped tracks, 1.041E+5 stopped tracks in the LEU cube over 48 

hours and 4.991E+4 tracks in the DU over 23.5 hours.  The total tagged stopped tracks, determined from 

the neutron detection in coincidence with stopped muons, were 846 ± 29 tracks in the LEU and 376 ± 20 

tracks in the DU.  This signal contributed statistical error of approximately 4% in LEU and 6% in DU.  

Following normalization, this amounted to (7.53 ± 0.45) ⋅ 10−3 n
𝑠𝑡𝑜𝑝𝑝𝑒𝑑 𝜇

 in DU and (8.13 ± 0.33) ⋅

10−3 n
𝑠𝑡𝑜𝑝𝑝𝑒𝑑 𝜇

 in LEU.  The relative difference between these two quantities is ~8 percent (see Table 7).  

This is consistent with our expectation that there should be more neutronics signal from the LEU cube 

following a stopped muon induced fission.  The results of our simulations indicate that if HEU was 

compared to DU or LEU the signal would be dramatically increased.  The tagged muon-induced 

radiography greatly improves the signal-to-noise ratio of the uranium in the image while being more 

sensitive to materials with neutronics gain.  This feature enables SNM to be identified from inert high-Z 

materials which is indistinguishable with multiple scattering and transmission radiography. 

 A simulation was performed using Geant4 of the LEU and DU cube to check agreement between 

the simulation and data of muon induced fission.  The geometry of the simulation is shown in Figure 83.  

One million isotropic 1 MeV 𝜇− were generated uniformly in each cube, and the neutrons were recorded 

passing through each cylindrical detector plane.  The results of this simulation were used to estimate the 

efficiency of the EJ-301 detectors by comparison with the measured, tagged data (see Table 8).  The 

number of neutrons observed per 𝜇− in the simulation was 0.106 n
𝜇−

 in DU and 0.120 n
𝜇−

 in LEU. 
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Table 6 – Fit parameters of temporal distributions for a liquid-scintillator measuring neutrons in coincidence 
with stopped muons.  The measured lifetime of the muon capture in uranium was 𝟖𝟐 ± 𝟑𝟒 𝒏𝒔 in LEU and 
𝟖𝟕 ± 𝟓𝟕 𝒏𝒔 in DU.  The DU measurement had nearly half the total counts of the LEU measurement. 

  

DU - Minimized Fit DU - 1 Sigma LEU - Minimized Fit LEU - 1 Sigma
Background (counts) 0.3 0.3 1.1 1.1
Gaussian Amplitude (counts) 75 75 133 133
Gaussian Width (ns) 16 16 18 18
Exponential Amplitude (counts) 24 24 57 57
Exponential Lifetime (ns) 80 137 82 116
Peak Center (ns) 410 410 410 410
Degrees of Freedom 87 87 87 87
Summed Log-Likelihood 81 168 87 164
Lifetime Uncertainty (ns) 57 57 34 34
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Figure 82 – Tagged radiography in coincidence with muon induced fission neutrons.  The signal in the LEU cube 
is approximately 8 percent stronger which indicates the presence of neutronics gain from the U-235 enrichment.  
The detectors are barely present in the field of view after performing the tagged radiography. 
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Table 7 – Two measurements of uranium cubes were made with the MMT.  For each cube, the number of 
stopping tracks in the cube’s location is shown.  The tagged stopped tracks are shown as well and are 
normalized by the total amount of stopped tracks in the cube.  Thus, we measure a fission neutron signal of 
smaller than 1 percent of the stopped muons in the uranium cubes. 

 

  

Cubes DU LEU
Measurement Duration (min) 1410 2880
Stopped Tracks (counts) 4.99E+04 1.04E+05
Stopped Tracks (counts/min) 3.54E+01 3.61E+01
Tagged Stopped Tracks (counts) 376 846
Tagged Stopped Tracks (counts/stopped) 7.53E-03 8.13E-03
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Figure 83 – Simulation geometry used in Geant4 to model muon induced fission measured by two cylindrical 
detector planes representing EJ-301 liquid scintillators.   
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Table 8 – This table contains the results of a Geant4 simulation used to check the approximate amount of 
neutrons expected.  The geometry of the simulation is shown in Figure 83.  The table shows the normalized 
amount of neutrons detected as a function of the stopped 𝝁− flux.  This value is then renormalized to compare to 
the total stopped flux measured in data to approximate a detector efficiency of ~15-16 percent. 

   

Cubes DU LEU
Sim: Neutrons Detected (counts) 1.06E+05 1.20E+05
Sim: Neutrons Detected (counts/mu-) 1.06E-01 1.20E-01
Mu Minus Ratio (mu-/mu) 0.45 0.45
Sim: Neutrons Detected (counts/mu) 4.78E-02 5.38E-02
Tagged Stopped Tracks (counts/mu) 7.53E-03 8.13E-03
Predicted Detector Efficiency 1.58E-01 1.51E-01
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These values were then normalized assuming that the 𝜇− constituted 45 percent of the total cosmic-ray 

muon flux.  The detector efficiency for the EJ-301 detectors was then computed to be ~15-16 percent.  This 

compares well with published literature values (i.e. NE-213 efficiencies) [100-103]. 

For practical implementation of one sided imaging, we cannot rely on the knowledge of whether 

the cosmic-ray muon was stopped in the object.  Therefore, the total signal of single sided imaging is 

composed of both stopped and transmitted muons.  The results of the cosmic-ray muons stopping in cubes 

of LEU and DU have been shown along with the tagged component associated with stopped muon induced 

fission.  The transmission of cosmic-ray muons has also been analyzed, shown in Figure 84; there are 

2.29 ⋅ 105 muons transmitted through the LEU cube and 1.13 ⋅ 105 muons through the DU cube (see 

Table 9).  A coincidence window was established with the transmitted tracks between 350 ns and 460 ns.   

The temporal distribution of the coincidence data between the transmitted muons and secondary signal is 

prompt (see Figure 85 and Figure 86).  This is expected due to the prompt nature of muon Bremsstrahlung 

induced secondary neutrons.  The measurement of the prompt width is similar to that of the prompt 

component seen in the stopped 𝜇− temporal distribution which was fit with a Gaussian model.  The lack of 

a tail in the transmitted muon coincidence spectrum reinforces our explanation of the lifetime observed 

from measuring the stopped muon coincidence spectrum.  

There were 141 ± 12 neutrons measured in coincidence with the LEU cube and 60 ± 8 neutrons 

measured in coincidence with the DU cube.  This amounts to a coincidence rate of (5.3 ± 0.7) ⋅

10−4 n
𝑡𝑟𝑎𝑛𝑠.  𝜇

 in DU and (6.1 ± 0.5)  ⋅ 10−4 n
𝑡𝑟𝑎𝑛𝑠.  𝜇

 in LEU.  The simulations predict that the transmitted 

signal should be closer to 1 percent of the stopped tracks instead of the 10 percent measured in the data.  

This difference is not understood at this point and will be explored in the future, requiring more accurate 

simulation of the physics and geometry.  The combined tagged radiography, containing both the stopped 

and transmitted components, is shown in Figure 87.  Figure 87 is similar to Figure 82 because the majority 

of the muon induced fission signal arises from stopped 𝜇−.  The tagging of stopped and transmitted tracks 

proves that muon induced fission imaging is possible. 

We developed a methodology for single sided imaging using cosmic-ray muons in coincidence 

with secondary signals.  Simulations were studied of the neutronics in uranium, muon induced fission 

output, and experimental geometry.  The experimental data was consistent with our expectations derived 
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from the simulations.  Our study confirms the feasibility of single sided imaging in coincidence with muon 

induced fission for identifying and imaging SNM.    
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Figure 84 – Cosmic-ray muon transmission reconstruction of the DU and LEU cubes.  This image shows the 
shadow of each cube where the missing flux is due to muons stopping in the uranium.  The DU was measured for 
23.5 hours and the LEU was measured for 48 hours.  Both images have been normalized to the time measured, 
and the difference in statistics between the two measurements is noticeable when comparing the smoothness of 
the LEU data to the DU data. 
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Table 9 – This table summarizes the amount of tagged tracks seen in the data for the uranium cube 
measurements.  The total tagged tracks are a summation of the tagged tracks observed from both muon 
stopping and transmission.  There is ~8 percent increase in signal found in the normalized total tagged tracks 
from the LEU. 

  

Cubes DU LEU
Measurement Duration (min) 1410 2880
Transmitted Tracks (counts) 1.13E+05 2.29E+05
Transmitted Tracks (counts/min) 8.02E+01 7.97E+01
Tagged Transmitted Tracks (counts) 6.00E+01 1.41E+02
Tagged Transmitted Tracks (counts/Transmitted Mu) 5.31E-04 6.15E-04
Tagged Stopped Tracks (counts/Stopped Mu) 7.53E-03 8.13E-03
Total Tagged Tracks (counts/Mu) 8.06E-03 8.74E-03
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Figure 85 – Secondary neutron coincidence spectrum obtained from a coincidence window of EJ-301 neutron 
detection and transmitted muon tracks in DU.  The data from both detectors is summed (blue diamonds) and a 
log likelihood fit (red line) using a Gaussian model is applied to the data.  The width of the Gaussian is 16 ns. 
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Figure 86 - Secondary neutron coincidence spectrum obtained from a coincidence window of EJ-301 neutron 
detection and transmitted muon tracks in DU.  The data from both detectors is summed (blue diamonds) and a 
log likelihood fit (red line) using a Gaussian model is applied to the data.  The width of the Gaussian is 15 ns. 
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Figure 87 - Tagged radiography in coincidence with cosmic-ray muons that stop and transit through the 
uranium cubes.  The total signal in the LEU cube is approximately 8 percent stronger which indicates the 
presence of neutronics gain from the U-235 enrichment.  The detectors are barely present in the field of view 
after performing the tagged radiography. 
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CHAPTER 9 
 

Conclusions 
 

Cosmic-ray muons are a useful probe for measuring and imaging materials.  In the 20th century, 

these muons were used to measure tunnel overburden, the Egyptian pyramids, and volcanoes using a 

transmission technique.  Recently, scientists at Los Alamos developed the multiple scattering method to 

measure materials with a greater degree of accuracy and sensitivity.  It is shown in this dissertation, that a 

combination of muon transmission, stopping, and multiple scattering is useful for advanced applications of 

muon radiography.  The focus of the research presented here is two-fold: 1) near horizontal imaging of 

large structures, such as a nuclear reactor and 2) material identification using scattering in combination 

with secondary sources of information.  During the span of the research, simulations using Geant4 were 

developed to confirm measured results of muon radiography and predict future experimental capabilities. 

The accident at the Fukushima nuclear power plant motivated the research of near horizontal 

imaging, where we used two detectors to measure the multiple Coulomb scattering.  Two experiments 

prefaced the work at the UNMRR: 1) simulating and measuring a mockup reactor geometry and 2) 

simulating the nuclear reactor at Fukushima Daiichi.   

The mockup reactor experiment proved that images could be made of lead bricks in different 

geometrical orientations, e.g. a conical void or stacks of bricks, when behind a large concrete overburden of 

6 m.  By using cosmic-ray muons near the horizon, imaging could be performed on stationary large 

structures in a few weeks of cumulative exposure.  Geant4 simulations verified the measurements of the 

mockup reactor and have been expanded to the simulations of measurements planned at Fukushima 

Daiichi.   

A model of a boiling water reactor similar to Fukushima Daiichi Reactor #1 was simulated using 

Geant4 to pass cosmic-ray muons through the geometry. The model of the reactor included all major 

structures, the reactor building, the containment vessel, and the pressure vessel.  We determined that 6 

weeks of exposure, with a 50 m2 detector, were needed in order to produce an image reconstruction where a 

1m diameter sphere can be imaged.  This small sphere amounted to only 1% of the total fuel in the reactor.  

On the other hand, the same exposure in transmission radiography showed much less sensitivity.  These 

results proved that high quality data for radiography of the Fukushima core from outside of the buildings 
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can be accomplished with scattering radiography and large detectors.  On site tests at Fukushima Daiichi 

have also proven that these measurements are possible with appropriate shielding. 

Tomographic images of the University of New Mexico Research Reactor were constructed using 

cosmic-ray muons measured over an effective 884 hour period. These images were processed with a 

regularized Abel inversion allowing us to identify different components of an AGN-201 m reactor 

structure. The core with access port structures, the graphite reflector, lead shielding, and the water tank 

were observed in both the experiment and Geant4 simulations. The muon flux distribution in the detectors 

and the reconstruction of the reactor and surrounding geometry were compared between the data and 

simulation. The flux showed good agreement along the azimuthal axis for both data and simulation. The 

flux also showed agreement in the center of the detectors along the zenith axis. There was a poorly 

understood discrepancy in the flux near the edges of the detectors along the zenith axis.  We investigated 

images and projections from reconstructed simulations and measurements. The regularized Abel inversion 

was utilized in order to measure the density of the reactor as a function of radial distribution. The azimuthal 

profile of the reconstructed data has good agreement with the simulations. We have shown that given a 

measurement of sufficient duration, our technique is sensitive to different materials in the core region of a 

reactor. 

Cosmic-ray muons are an effective tool for identifying materials of various atomic number and 

mass.  The material identification was performed using a transmission and multiple scattering technique 

that exposed the density weighted radiation length.  For symmetric cases, such as a sphere, the multiple 

Coulomb scattering can be used to identify materials with good spatial resolution (on the order of 

millimeters).  The identification of SNM is also achievable through another technique that involves 

measuring cosmic-ray muon induced fission signatures. 

We have used experimental data collected with the Mini Muon Tracker to validate simple models 

of cosmic ray muon radiography. The negative of the natural logarithm of transmission was shown to be 

proportional to material thickness, 𝑡, for a given material and approximately proportional to 𝑑𝐸
𝑑𝑥
𝑡 across a 

range of materials. Similarly, it was shown that 𝑙/𝑋0, the thickness of the object in radiation length units, 

was measured by fitting the polar angular distribution with a set of Gaussian distributions with amplitudes 

fixed at values fitted to calibration data. The momentum distribution fitted to the cosmic ray data agreed 
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remarkably well above 1 GeV with previously measured data taken with a magnetic spectrometer. The 

combination of our measurements provided estimates of both the areal density and the material 

identification. 

Cosmic ray scattering data were taken on a set of spherically symmetric objects. The data were 

analyzed assuming spherical symmetry. The data were stored in a two dimensional histogram of scattering 

angle vs. radius. The angular distributions were fitted by a sum of Gaussians with amplitudes fixed by fits 

to data taken on a set of planar objects. This resulted in one-dimensional plots of thicknesses in radiation 

lengths for each of the objects. The plots were analyzed with a regularized Abel inversion technique 

yielding radiation-length-weighted volume densities. These results allowed a quantitative evaluation of the 

material composition of the objects.  It is also worth noting that these objects are difficult to study with 

conventional x-ray radiography.  

We developed a methodology for single sided imaging using cosmic-ray muons in coincidence 

with secondary signals.  Simulations were studied of the neutronics in uranium, muon induced fission 

output, and experimental geometry.  Both the prompt and delayed temporal neutron coincidence 

distributions were measured from muons interacting in uranium.  The delayed component of the stopped 𝜇− 

induced fission was measured at ~80 ns in uranium.  The prompt component of this coincidence timing 

spectrum was measured for muons that stopped and transmitted in the cubes of DU and LEU.  The 

experimental data was consistent with our expectations derived from the simulations.  Our study confirms 

the feasibility of single sided imaging in coincidence with muon induced fission for identifying and 

imaging SNM.  It was shown that for single sided imaging, with our EJ-301 secondary detector 

configuration, we measured an SNM tagging rate of 8.06 ⋅ 10−3 n
𝜇
 in DU and 8.74 ⋅ 10−3 n

𝜇
 in LEU.  

Simulations suggest that HEU would show an increase in secondary neutrons by a factor of 2 as compared 

to the LEU or DU. 
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Future Work 
 

The muon tomography team at Los Alamos is currently undertaking several projects that are 

exciting and hope to bring more exposure to this useful technology, as well as help our fellow man.  The 

first, and most critical task at hand, is the continued work that one day may lead to the imaging of 

Fukushima Daiichi.  We partner with TEPCO, Toshiba, KEK, and others in order to make the Fukushima 

imaging a reality.  The next step in this process is to deploy the MMT, in a configuration similar to the 

UNMRR measurements, at a critical assembly facility in Japan.  The objective of this work is part 

operational and part continued proof of our method.  Provided that these sponsors are satisfied, the 

measurements at Fukushima should become reality, which is exciting.  From a humanitarian aid 

perspective, it is estimated that by measuring Fukushima Daiichi with muons, we can reduce the 

cumulative radiological dose to over several thousand workers by at least 50,000 rem. 

A path of medical research is being investigated by measuring the tissue density of a human 

phantom (see Appendix C).  The original goal of this research is to use cosmic-ray muons to measure the 

tissue loss in non-ambulatory patients over time.  By measuring the phantom, we are establishing a baseline 

capability for muon tomography to be used in medical applications.  Provided that resolution could be 

improved and sensitivity to low Z materials increased (through the use of carbon fiber drift tubes), an 

additional application of muon tomography is to measure the brain density of non-ambulatory patients for 

swelling near the skull following head trauma.  If this were possible, it would provide a low dose 

alternative to multiple CTs of the brain, for vehicular accident patients. 

The work involving material identification continues for homeland security, treaty verification, 

and other purposes not mentioned in this dissertation.  Tagged muon radiography in coincidence with high 

energy gamma rays (>2 MeV) and slow neutrons are being investigated.  Additionally, we will perform a 

muon capture lifetime measurement of materials for comparison with uranium and existing literature, e.g. 

lead, iron, and tungsten.  We will also investigate other techniques for quantifying the difference between 

simulations of muon tomography and measurements.  Finally, we will simulate the UNMRR with the MMT 

detector geometry to study contribution of detector effects in the model. 
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APPENDIX A 
 

Imaging Fukushima Daiichi Reactors with Muons 
 

The 9.0-magnitude earthquake followed by the vast tsunami on March 11, 2011, caused a nuclear 

crisis at Fukushima Daiichi [104, 105]. Damage of the reactor cores has attracted worldwide attention to 

the issue of the fundamental safety of atomic energy [106]. A cold shutdown was announced by the 

Japanese government in December, 2011, and a new phase of cleanup and decommissioning was started. 

However, it is hard to plan the dismantling of the reactors without any realistic estimate of the extent of the 

damage to the cores, and knowledge of the location of the melted fuel [107, 108]. In the case of Three Mile 

Island, it took more than 3 years before a camera could be put into the reactor, and about 10 years before 

the actual damage to the reactor could be assessed [109]. Since access to the reactor buildings is very 

limited due to high radiation fields, imaging the reactor cores from outside the buildings will be a valuable 

step, and can reduce the time required to dismantle the reactors significantly, resulting in cost savings and 

lower total worker radiation dose. 

One technique for imaging the cores without access is muon imaging, which utilizes naturally 

occurring cosmic-ray muons to image large-scale objects. Cosmic-ray muons which have a sea-level flux of 

104 m-2·min-1 [53] are the results of hadronic showers high in the atmosphere. Since 1950s, imaging objects 

by measuring transmitted muons with a muon telescope has been applied to study mine overburden [9], an 

Egyptian pyramid [5], a temple gate [110], volcanoes [11, 111-113], a blast furnace [114] and caverns 

[115]. By measuring the attenuation of the muon flux, two-dimensional density maps are obtained. An 

approximation of muon attenuation in matter is given by: 

 
−
𝑁
𝜆

=
𝑑𝑁
𝑑𝑥

=
𝑑𝑁
𝑑𝐸

𝑑𝐸
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 eq. 68  

Here, 𝑁 is the number of muons, 𝜆 the attenuation length, 𝑑𝑁
𝑑𝐸

 the value of the muon energy 

spectrum at low energy, and −𝑑𝐸
𝑑𝑥

 the mean energy loss rate. Since the attenuation arises by muon stop in 

material due to the energy loss, the transmission method is most sensitive to low atomic number (Z) 

materials where the specific energy loss is largest and the Coulomb scattering is smallest. In practical 

applications, muon transmission imaging often suffers from poor position resolution due to the continuous 

scattering along the muon path, and from low signal-to-noise ratio caused by low statistics because of small 
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detection area (typically ~2 m2) [115, 116]. Also, the muon flux incident on the object is of critical 

importance to determine the attenuation for transmission method, which is sometimes not easy to estimate. 

     A more sensitive technique, muon scattering radiography, was invented at Los Alamos 

National Laboratory [20, 29, 117, 118], and has been used by some other groups [119-121]. The scattering 

method uses two muon trackers to measure incoming and outgoing tracks of individual muons, where the 

region of interest is contained within the acceptance of the tracker pair. Combining the incoming and 

outgoing tracks provides better spatial resolution when compared to the transmission method where only 

the information from the scattered outgoing tracks is available. The multiple Coulomb scattering [54] is a 

stochastic process and the Gaussian width of the angle is given by [75]: 

 
𝜃0 =

13.6
𝛽𝑐𝑝 �

𝑥
𝑋0
�1 + 0.038 ln �

𝑥
𝑋0
�� eq. 69  

 

Where 𝛽, 𝑐, and 𝑝 are the velocity and momentum of the incident muon, and 𝑥 and 𝑋0 are the 

thickness and radiation length of the scattering medium. The radiation lengths for water, concrete, steel and 

uranium are 39.3, 11.6, 1.76 and 0.317 cm [53]. The muon momentum can be estimated by the muon 

scattering within the detector [18]. A method for calculating most probable muon trajectory and providing 

higher precision in density inferences has been presented [122]. Techniques used to reconstruct matter 

distributions are: the point of closest approach [18, 19]; maximum-likelihood / expectation-maximization 

[17]; Bayesian estimation [123]. The scattering method has high sensitivity to high-Z materials such as 

uranium, and is very useful for detecting them in a background of low-Z material. This method has been 

applied to scan trailers and shipping containers for special nuclear material [15]. It is also a promising 

technique for International Atomic Energy Agency's nuclear safeguards and non-proliferation [124].  To 

image Fukushima Daiichi reactors, a new analysis, displacement method, has been developed, which is 

described in the latter section. 

      A week after the Great East Japan Earthquake, we began to study applying the muon scattering 

technique to Fukushima Daiichi to assess damage of the reactor cores. Several groups in Japan and the US 

have suggested imaging the reactors with muon transmission method and compact detectors (~1 m2). 

However, since uranium fuel and water give similar energy losses for muons, the fuel is difficult to 
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distinguish from the overburden of water, concrete and steel with the transmission method. The energy loss 

of a muon through matter is given by: 

 
Energy loss = −

𝑑𝐸
𝑑𝑥

 ×  density ×  length eq. 70  

 

The muon energy loss rate in uranium dioxide and water are 1.15 and 1.98 MeV⋅cm2⋅g-1 for 

minimally ionizing particles respectively [125]. In a fuel rod, uranium dioxide pellets are packaged in a 

zirconium alloy tube, and the density of uranium fuel averaged over the active volume of the assembly is 

about 2.6 g/cm3 [126]. Even with the whole assembly, an intact core attenuates the muon flux ~2% more 

than water does, which makes distinguishing the reactor core from water in the presence of the overburden 

difficult using the transmission radiography. In contrast, the fuel gives a distinct signal in scattering 

radiography, producing an image contrast of ~30% even through the same overburden. Also, the muon 

scattering and flux attenuation can be combined to distinguish materials [58]. Compared to conventional 

transmission radiography, scattering radiography improves the spatial resolution and the image contrast by 

an order of magnitude for imaging reactor cores [66]. 

          In the summer of 2011, a reactor mockup was imaged using Muon Mini Tracker (MMT) at 

Los Alamos (altitude of 2,231 m). The MMT consists of two muon trackers each having effective detection 

area of 1.2 x 1.2 m2 and consisting of 6-x and 6-y planes of sealed drift tubes. In the demonstration, cosmic-

ray muons passing through a physical arrangement of material similar to a reactor were measured. The 

reactor mockup consisted of two layers of concrete shielding blocks with a thickness of 2.74-m each, and a 

lead assembly in between; one tracker was installed at 2.5-m height, and another tracker was installed on 

the ground level at the other side. Several arrangements of lead were studied to test specific features of the 

reactor imaging technique. One of the results is shown in Figure 88 where lead with a conical void similar 

in shape to the melted core of the Three Mile Island reactor was imaged through the concrete walls. It took 

3 weeks to accumulate 8x104 muon events. The analysis was based on point of closest approach, where the 

track pairs were projected to the mid-plane of the target, and the scattered angle was plotted at the 

intersection. Even with an event rate of an order of magnitude smaller than what we expect at Fukushima 

Daiichi with proposed Fukushima Muon Tracker (FMT), we successfully imaged the lead cores. 
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     A proposed plan for Fukushima Daiichi Unit 2 is shown in Figure 89. The plan includes 

installation of several muon trackers on the operation floor of turbine building (FMT-1) and in front of the 

reactor building (FMT-2). With this geometry, muons from the east can image the bottom region of RPV 

while muons from the west can image the original core region. The bottom of the reactor containment 

vessel can be imaged by installing FMT-2 below the ground level. Specifications of FMT-1 and 2 are 

shown in Table 10. They consist of gas-filled ionization drift-tube detectors made of aluminum [60], and 

have spatial and angular resolutions of 0.4 mm and 2 mrad (full width at half maximum) with tracking 

efficiency of close to 100%. The FMT system can measure muon scattering and flux attenuation 

simultaneously. Muon trackers of the similar sizes have been manufactured in the past with sealed drift 

tubes [127, 128], and the technique is mature. Advantages of the drift tube compared to other muon 

detectors are: less γ-ray sensitivity when compared to solid state detectors e.g. plastic scintillators; adequate 

spatial resolution; mechanical robustness; operational independence of tubes resulting in negligible 

inefficiencies of the muon tracker in case of failures; relatively low cost. Drift-tube pulses are amplified, 

discriminated and digitized at the detectors in field-programmable gate-array (FPGA) time-to-digital 

converters (TDCs). The data are transferred to data-acquisition computers on the Fukushima Daiichi site 

through a dedicated Ethernet link, converted into muon tracks for online analysis, and then further analyzed 

in detail.   
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Figure 88 - Left – Lead reactor core with conic void. Right – Observed core where average scattering angles of 
muons are plotted. The void in the core is clearly imaged through two 2.74-m concrete walls. The lead core of 
0.7-m thickness gives an equivalent radiation length to the uranium fuel in Unit 1, and gives a similar scattering 
angle. Hot spots at the corners are artifacts caused by edge effect of MMT. 
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Figure 89 - Muon imaging setup for Fukushima Daiichi Unit 2. FMT-2 is installed inside a concrete radiation 
shield in front of the reactor building. Typical muon scattering angles are a few degrees. 
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Table 10 - Specifications of FMT-1 and 2. Measurement time scales inversely with the product of total area of 
FMT-1 and 2 at the lowest-order approximation. However, there is a strong angular dependence of muon flux 
(∝ 𝐜𝐨𝐬𝟐 𝜽𝒛, where 𝜽𝒛 is the zenith angle) [44]. 
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The system is triggerless in the sense that tracks are built after the data have been digitized. The position 

calibration will be carried out in situ using the muon track data (auto calibration). 

A major engineering challenge at Fukushima Daiichi is operation of the FMT in a high radiation 

environment. The site has radiation level of up to a few mSv/h near the reactor buildings of Units 1 - 3, 

which mostly consists of gamma rays from 134Cs and 137Cs. The gamma rays trigger drift tubes through 

Compton scattering which mostly takes place at their aluminum walls. Though most gamma-ray events can 

be discriminated by taking time coincidences between multiple drift-tube layers, average background rate 

of each drift tube must be kept below 20 kHz so as not to exceed the bandwidth of the Ethernet. On May 

25, 2012, background rate in the 0.3-m long drift tubes was measured at Fukushima Daiichi in 

collaboration with Tokyo Electric Power Company (TEPCO) to estimate the shield requirement for the 

FMT-2. The radiation levels of the locations were 0.6, 0.7 and 1.2 mSv/h on the ground. The measured 

background rates were 950 kHz per 1 mSv/h (normalized to the 5.5-m length of the FMT-2 detector). 

Assuming the radiation level at the installation point to be 1 mSv/h, a concrete shield of 40- to 50-cm 

thickness will be needed to reduce the gamma-ray levels by a factor of 50 [129]. The radiation levels on the 

operation floor of turbine building are below 0.02 mSv/h at most locations in the case of Unit 2 (December 

10, 2012), which allows FMT-1 to be operated without any radiation shield. 

     Simulation studies were performed with a geometry based on Fukushima Daiichi Unit 2 to test 

the feasibility of the proposed plan. Modeling studies on Unit 1 are described in the previous paper [66]. 

The Geant4 framework [31] was used and a cosmic-ray generator was implemented, which reproduces the 

correct energy spectrum of muons for different zenith angles in good agreement with known measurements 

[41]. The reactor model included all the major structures of Unit 2 as shown in Figure 89. The core in the 

simulation had an average density of 4.3 g/cm3 over the volume and consisted of uranium dioxide (60.5%), 

zirconium (22%), stainless steel (2%) and water (15.5%) [126]; the debris has density of 8.2 g/cm3 and 

consisted of uranium (70%), zirconium (14%), oxygen (13%) and stainless steel (3%), which is similar to 

nuclear debris found at the Three Mile Island accident [130]. For the image reconstruction, we have 

devised a new method that uses the displacement between the projection of the incoming trajectory to the 

exit detector from the measurement point as illustrated in Figure 90. When a muon goes through an object, 

it tends to be scattered more at the latter part of the trajectory because the scattering width scales inversely  
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Figure 90 - Concept of image reconstruction with the displacement method. The incoming and outgoing tracks 
are projected to a plane at the center of the core, the intersection points are combined with weights chosen to 
optimize the position resolution, and a three-dimensional histogram of x, y, and the displacement length (L) is 
created. The largest weight (>80%) is placed on the incoming muon because it has higher energy and is scattered 
less in the intervening material between the detector and the core. 
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with the muon energy [131]. For the low energy part of the transmitted muon spectrum, most of the muon 

scattering can take place in the reactor core and in the concrete after the core. Since the contribution from 

each scattering source scales with the distance to the exit detector (𝐿𝑖 = 𝑑𝑖𝜃𝑖), the latter part of the 

trajectory is less weighted. 

The simulation results for Unit 2 with various core conditions (0 to 100% melted) analyzed with 

the displacement method are shown in Figure 91 where the reactor cores with conic voids were imaged 

through concrete walls and the steel RPV. The results correspond to 90 days of measurement with 

dimensions of 15x9 m2 and 5.5x22 m2 for FMT-1 and 2 respectively. A displacement threshold was 

selected to discriminate background from the water and concrete walls. Though detector resolutions are not 

included in the simulations, the scattered angle from the core is more than an order of magnitude larger 

than the detector resolution, thus they have little effect. In all cases, muon scattering is observed to provide 

detailed information about the reactor core allowing for quantitative assessment of the intact fraction. In 

addition, spherical debris of 20-, 30- and 40-cm radii can be distinguished. Figure 92 shows the image 

development with time (10 to 150 days) for the 50%-melted core with two debris of 20-cm radius. The 

estimated event rates are 12k and 70k per day for muons that pass through both FMT-1 and 2 from the east 

and west sides, respectively. 

     As a conclusion, feasibility of assessing the damage of the Fukushima Daiichi reactors with 

muon scattering imaging is shown. Muons are strongly deflected by high-Z materials such as uranium, 

which enables the scattering technique to spot them in a reactor. A few months of measurement will reveal 

the distribution of the reactor-core fuel materials, and can guide planning and execution of reactor 

dismantlement, potentially reducing overall project span by many years. 
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Figure 91 - Results of the GEANT4 simulations for Unit 2 with the geometry shown in Figure 89. The 
simulations were run with intact core (left), 10%-, 30%-, 50%-, 70%-melted core and no core (right). Two 
spherical debris of 10-cm (under 10%-melted core), 20-cm, 30-cm and 40-cm (under 70%-melted core) radii 
were placed in the lower region of RPV. 
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Figure 92 - GEANT4 simulations for 50%-melted core of Unit 2 with various measurement time spans. The 
simulation results correspond to measurement spans of 10 (left), 20, 30, 60, 120 and 150 days (right). 
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APPENDIX B 
 

MMT Drift Tube Detector Performance in the Presence of a Radiation Field 
 

From previous measurements, such as at the UNMRR and Fukushima, the presence of a high 

background radiation field negatively impacts the performance of our drift tubes.  This decrease in 

performance occurs at either a high average count rate in a module of tubes (>300 Hz per tube) or a count 

rate of > 2 kHz in an individual tube.  To counteract the high gamma-ray background that would be present 

for a Fukushima Daiichi measurement, the TDC firmware of the MMT was modified to include a 

coincidence between neighboring tubes.  We imitated a high background radiation field by using ~60 kg of 

uranium spread throughout the imaging plane of the MMT.  Two one hour measurements were orchestrated 

to examine the performance of the MMT with and without the coincidence firmware. 

In Figure 93 and Figure 94, the MMT tube hit rates are shown before and after the implementation 

of the coincidence firmware respectively.  The average tube hit rates without the coincidence firmware is 

~400 Hz with several tubes exceeding 1 kHz.  This overloads several of the TDC first-in first-out (FIFO) 

buffers which causes deadtime in the data acquisition and reduces the overall MMT efficiency.  When the 

coincidence firmware is enabled, the tube hit rates drop by at least an order of magnitude.  This function 

allows for better measurement of cosmic-ray muons in radiation fields. 

Without an external radiation field, the MMT has an average tracking rate of ~70 Hz.  By enabling 

the coincidence firmware, the tracking rate decreases to ~35 Hz, or a factor of two.  However, this is an 

appropriate compromise when in the presence of external radiation, as the non-coincidence firmware also 

performs with a tracking rate proportional to the radiation field.  For the measurement performed with the 

distributed uranium source, the non-coincidence firmware had a tracking rate of ~35 Hz, which is the same 

tracking frequency measured with the coincidence firmware.  One important improvement, was the 

reduction of tube hits that otherwise overloaded the FIFO’s of the TDCs.  Thus, our signal to noise ratio in 

the data stream significantly improved.   

Four flux plots in the detector planes of the MMT are shown in Figure 95.  The non-coincidence 

firmware is shown on the left and the coincidence firmware is shown on the right.  The top supermodule   



197 
 

 

Figure 93 – Tube hit rate in the MMT per second with a distributed radiation field created by 60 kg of uranium.  
The hit rates are very high and overflow the data buffers in several of the TDC modules.   
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Figure 94 - Tube hit rate in the MMT per second with a distributed radiation field created by 60 kg of uranium.  
The rates drop by at least an order of magnitude following the implementation of the TDC coincidence 
firmware.  This prevents the TDC first-in first-out buffers (FIFO) from overflowing.   
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Figure 95 – Four flux plots in the detector planes of the MMT.  The non-coincidence firmware is shown on the 
left and the coincidence firmware is shown on the right.  The top supermodule flux is shown on the top and the 
bottom supermodule flux is shown on the bottom.  The structure seen in the plots is due to dead or poorly 
performing tubes.  The coincidence firmware amplifies this structure due to creating localized regions of 
inefficiency with the adjacent dead tube. 
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flux is shown on the top and the bottom supermodule flux is shown on the bottom.  The structure seen in 

the plots is due to dead or poorly performing tubes.  The coincidence firmware amplifies this structure due 

to creating localized regions of inefficiency with the adjacent dead tube.  However, this defect seen in the 

detector planes does not noticeably affect our imaging capabilities.  The image of the distributed uranium 

for the old and new coincidence firmware is shown in Figure 96.  The distributed uranium source was 

measured with the MMT. Two uranium cubes and 4 uranium plates are clearly seen in the multiple 

scattering reconstructions.  The data obtained by using the non-coincidence firmware is shown on the left, 

and the data obtained with the coincidence firmware is shown on the right.  The ratio of the left image to 

the right image is shown in the middle.  This ratio is flat indicating that the coincidence logic does not 

distort the image. 

 We will further test the coincidence firmware during the measurements in Japan which are 

mentioned in the future work section.  We have learned that the efficiency of muon tomography in a 

radiation field can be increased by requiring coincidence, however; the coincidence amplifies the effect of 

the poorly performing tubes creating a dead tracking region.  This can be addressed in the future by either 

repairing the dead tubes, or implementing different coincidence logic. 
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Figure 96 – The distributed uranium source was measured with the MMT. Two uranium cubes and 4 uranium plates are clearly seen in the multiple scattering 
reconstructions.  The data obtained by using the non-coincidence firmware is shown on the left, and the data obtained with the coincidence firmware is shown on the 
right.  The ratio of the left image to the right image is shown in the middle.  This ratio is flat indicating that the coincidence logic does not distort the image. 
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APPENDIX C 
 

The Lady: Measuring a Human Phantom with Muon Tomography 
 

A medical path of research is being investigated by measuring the tissue density of a human 

phantom.  The original goal of this research is to use cosmic-ray muons to measure the tissue loss in non-

ambulatory patients over time.  By measuring the phantom, we are establishing a baseline capability for 

muon tomography to be used in medical applications.  Provided that resolution could be improved and 

sensitivity to low Z materials increased (through the use of carbon fiber drift tubes), an additional 

application of muon tomography is to measure the brain density of non-ambulatory patients for swelling 

near the skull following head trauma.  If this were possible, it would provide a low dose alternative to 

multiple CTs of the brain following vehicular accidents. 

A reconstruction of the human phantom is shown in Figure 97.  Several body structures are 

recognizable including the skull, spinal column, and chest cavity.  Different reconstruction techniques are 

being investigated for applications including measurement of the musculoskeletal components of the body 

and overall mass and density. 
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Figure 97 – The human female phantom imaged in the MMT.  Several body structures are recognizable 
including the skull, spinal column, and chest cavity.   
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APPENDIX D 
 

Fitting Data with a Log-Likelihood Function 
 

The fitting of the data for the multigroup multiple scattering analysis and the time coincidence 

spectrum of the muon induced fission was performed by minimizing a model with log-likelihood.  For 

example, a model was proposed to fit the background, prompt, and delayed component of the timing 

coincidence spectrum by combining a Gaussian, constant, and exponential decay curve: 

 
 

𝑦 = 𝐵 + 𝑃𝑒−�
𝑡−𝑡0
𝜏 � + 𝐴𝑒−

(𝑡−𝑡0)2
2𝜎  eq. 71  

In order to fit the model to the data, a quasi-likelihood approach is used to estimate the fitting 

parameters [132].  The purpose of this model is to minimize the total deviation between the model and the 

data, 

 𝐷 = −2𝜙 log(𝛬) eq. 72  

where 𝐷 is the deviance, 𝜙 is the fixed dispersion parameter, and the likelihood ratio is defined by 𝛬.  For a 

Poisson distribution the log-likelihood deviance is defined as: 

 
𝐷1 = 2�𝑤𝑖 �𝑦𝑖 log �

𝑦𝑖
𝜇𝑖
� − (𝑦𝑖 − 𝜇𝑖)�

𝑛

1

 eq. 73  

Where 𝐷1 is the total deviance of the log-likelihood of a Poisson distribution, 𝑤𝑖  is a weight associated with 

the dispersion of the data (assumed as 1 for our cases), 𝑦𝑖  is a datum point, and 𝜇𝑖 is a model value.  The 

parameters of the model (Gaussian, and exponential) were varied and the deviance was minimized using 

Excel’s solver function.  This allowed us to fit the data to a Poisson distribution. 
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This document has received approval for unclassified release from Los Alamos National 

Laboratory, LA-UR-13-24891. 
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