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ABSTRACT 

Laser-induced breakdown spectroscopy (LIBS) is an emission spectroscopy analysis 

technique that continues to be developed for the study of solids, liquids and gases.  

Geological applications for LIBS are a particularly exciting area of research, in part due 

to the capabilities of the technique to quickly and simultaneously detect nearly all major, 

minor and trace elements on unprepared samples either in a laboratory setting or in situ.  

A significant advancement in LIBS research is the recent deployment of ChemCam to the 

surface of Mars at Gale crater onboard the Mars Science Laboratory (MSL) rover, 

Curiosity.  ChemCam consists of a LIBS instrument and a high resolution micro-imager 

(RMI) and is the first extraterrestrial application for LIBS.  While the state of LIBS 

research is rapidly developing, there are still many aspects of the techniques that warrant 

additional study.  In this work, I have primarily focused on avenues of investigation that 

are most applicable to ChemCam.  To encompass the range of LIBS research and 

applications with respect to geological materials, I have compiled a body of work that 

explores aspects of the fundamentals of LIBS plasma temperature as a function of 

distance, sample classification based on a spectral matching technique called Partial Least 

Square-Discriminant Analysis, and the quantification of several trace elements (Li, Rb, 

Sr, and Rb) using ChemCam spectra.  Trace element abundances and implications for 

geological processes on Mars for the first 100 sols of martian rocks and soils analyzed by 

ChemCam are also discussed.      
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PREFACE 

Laser Induced Breakdown Spectroscopy (LIBS) research is a rapidly advancing 

field for a wide variety of applications including the detection of nuclear materials, 

identification of pathogens on food products, gem provenance classification, and element 

quantification for materials analysis [Cremers and Radziemski, 2006].  Compact LIBS 

systems have been constructed for field applications.  ChemCam, which combines a 

LIBS instrument with a remote micro-imager (RMI), is the first extraterrestrial LIBS 

instrument.  It is part of the Mars Science Laboratory (MSL) payload and was designed 

as a survey tool to identify interesting targets for further analysis with the rest of the 

instruments.  LIBS is an excellent tool for planetary exploration because the 

instrumentation is relatively small and light weight, has low energy requirements, short 

analysis times, a long instrument lifetime (millions of laser shots), and can operate at a 

distance with no sample preparation.  Each pulse of the laser ablates a small (<1 µm) 

amount of the target, removing dust and surface coatings when fired repeatedly.  The 

small spot size (~350-500 µm) potentially allows for the analysis of individual grains.  If 

a sufficient number of analysis locations are distributed across the rock’s surface, bulk 

compositions may also be estimated.   

LIBS is an emission spectroscopy technique in which a pulsed laser is focused 

onto a surface with sufficient energy density (>1 GW/cm
2
) to achieve temperatures of 

~10,000 K and ablate a small portion of the target material, forming a plasma comprised 

of excited atoms, ions, and free electrons [Cremers and Radziemski, 2006].  As these 

species relax, photons are emitted at wavelengths characteristic of each element and these 

emissions are collected by via a telescope or lens and passed to one or more 

spectrometers and detectors (e.g. CCDs, charged coupled devices).  The laser pulse may 

last ~5-10 ns and the initial emission is primary background continuum emission that 

decays faster than the spectral emissions.  Most LIBS systems operate with a time delay 

to avoid the continuum emission, which serves to improve detection limits on the 

emission associated with sample composition.  Following the initial burst of light, ionic 

emission occurs, followed by atomic emission and then molecular recombination [e.g. 

Singh and Thakur, 2007].   



viii 

 

Because the plasmas expand into the local atmosphere, the LIBS technique is 

dependent on atmospheric pressure.  Plasmas are larger under Mars atmospheric 

pressures (7 Torr) than under terrestrial conditions (760 Torr) due to reduced confinement 

of the plasma [e.g. Knight et al., 2000, Effenberger and Scott, 2010].  There is also 

decreased continuum radiation with pressure [Knight et al., 2000], which may diminish 

the need for gated analyses.  Spectral line broadening is reduced due to fewer electron 

collisions and ablation rate is increased under martian conditions [e.g. Knight et al., 2000; 

Effenberger and Scott, 2010], making the martian atmosphere nearly optimal for most 

LIBS analyses.  However, the martian atmosphere is primarily composed of CO2, and 

because the local atmosphere is incorporated into the expanding plasma, quantification of 

C is complicated and detection limits are increased [Ollila et al., 2011; Radziemski et al., 

2005].         

ChemCam operates at distances up to 7 m from the rover, and therefore the 

effects of distance on the laser plasma need to be studied.  Terrestrial studies typically 

control the analysis distance because it is generally easy to move either the instrument to 

the sample or the sample to the instrument.  For ChemCam to be an effective survey tool, 

it is not possible to control the distance.  The temperature of the plasma is one parameter 

that characterizes a plasma and, in the first chapter, I investigate how plasma temperature 

changes with analysis distance.  This work shows that, within error, plasma temperature 

does not significantly change with distance.  The chapter is an excerpt from a publication 

by Wiens et al. [2013], which discusses spectral pretreatment and major element 

calibrations of ChemCam data.    

Following this brief excursion into the fundamentals of the LIBS technique and 

plasma physics, I delve into the applications of LIBS with respect to the study of 

geological materials.  One such application is the classification of samples using the 

chemical signatures contained within the spectra themselves.  There are numerous 

methods to classify rock types based either on chemical or mineralogical data.  LIBS is 

not a mineralogical technique but given its ability to analyze most major elements, one 

could simply use established chemistry-based geological classifications using modeled 

major element abundances derived from the spectra.  However, given the complexity of 
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LIBS spectra and the wealth of information within a spectrum there is potential in simply 

using the spectra themselves for classification instead of a product derived from the 

spectra.  While this does not necessarily provide a rock classification in the traditional 

sense, it gives an indication of what rock or mineral in the spectral database is most 

similar to the unknown sample.  There are many methods by which spectral similarity 

classifications can be conducted, and in the second chapter, I explore classification of 

ChemCam spectra using a modified Partial Least Squares-Discriminant Analysis (PLS-

DA) algorithm, and compare results to a traditional PLS-DA scheme.  The modified 

algorithm is constructed using a series of models, each containing one less class than the 

previous model, to which each unknown spectrum is compared against until a match is 

detected.  This differs from the traditional method in which a single model is constructed 

with all classes represented.  I found the modified algorithm correctly classifies unknown 

samples significantly more often than the traditional method.            

While classification of spectra into categories of known chemical and 

mineralogical composition is useful, estimation of absolute element abundances is 

critical.  Significant progress has been made by the ChemCam team on major element 

quantification using both multivariate Partial Least Squares (PLS) methods and univariate 

peak area calibration curves [Wiens et al., 2013].  In addition to the ability to determine 

major element abundances, ChemCam has good sensitivity to several trace elements and 

I chose to focus on Li, Ba, Rb and Sr for several reasons.  First, ChemCam is the first 

instrument to analyze the martian surface in situ for Li and Ba and thus these results will 

provide important initial abundance assessments in the soils and rocks of Mars.  Second, 

observations of Li, Ba, Rb, and Sr may provide information on the parental magma for an 

igneous rock and the level of fractionation a melt may have undergone.  Third, the 

abundances of fluid mobile trace elements may also provide clues to identifying 

alteration processes that a rock could have been exposed to.  Finally, from a practical 

perspective, these elements are readily observable (i.e. they have limited major element 

peak overlap and are detectable below 100 ppm) in ChemCam spectra and are thus the 

simplest to focus on initially.  The third chapter focuses on detection and quantification 

of these trace elements using ChemCam spectra.  Multivariate PLS models and univariate 

peak area calibration curves are derived for each element.  The models are tested on 
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datasets taken at multiple distances and the suite of calibration targets that are attached to 

the rover.     

MSL successfully landed in the northwestern part of the ~150 km diameter Gale 

crater over 1 year ago.  Gale crater was chosen from a long list of candidate landing sites 

because of the presence of an alluvial fan and orbital spectroscopic measurements 

indicative of layered sulfates and clay minerals in the central mound (Mount Sharp) 

[Milliken et al., 2010].  The rover landed on the distal portion of the alluvial fan, dubbed 

the Bradbury Landing Site, and numerous small exposures of conglomerate were 

discovered in the vicinity [Williams et al, 2013].  The rover landed approximately 450 m 

from a triple junction where 3 distinct geologic units meet (Glenelg).  The MSL team 

chose to visit Glenelg to investigate this contact prior to proceeding to Mount Sharp.  The 

first 100 sols took the rover from Bradbury Landing Site to a location called Rocknest, 

where a sand shadow had formed, and the first scoop of martian fines were deposited into 

the rover for organic and mineralogical analysis.  Over the course of the traverse to 

Rocknest, ChemCam analyzed ~50 rocks and soils, for a total of more than 280 analysis 

points, each with 30-50 individual spectra per point.  In the final chapter, I focus 

primarily on observations that have the highest estimated abundances for Li, Ba, Rb, and 

Sr due to the vast amount of data available, and the somewhat high error bars on the 

current trace element models.  These data may be revisited after additional refinements to 

the spectral database are made, which will hopefully reduce the error bars.               

Overall, Li is low (<15 ppm) in the rock and soil targets analyzed during the first 

100 sols.  This is consistent with the Mars meteorites that have been analyzed on Earth.  

The lack of soil enrichment in Li, which is a highly fluid-mobile element, indicates there 

has been limited influx of subsurface waters contributing to the upper soils.  Localized 

enrichments of 30-60 ppm Li have been observed in several rocks but the host mineral 

for Li is unclear.  Bathurst_Inlet is a fine-grained bedrock unit sampled in five analysis 

locations by ChemCam and three of the locations show a decrease in Li and other alkalis 

over a 30 laser shot mini depth profile, which may imply the unit has undergone a low 

level of aqueous alteration that has preferentially drawn the alkalis to the surface.  Ba, on 

the order of 1000 ppm, has been detected in a buried pebble sampled in the Akaitcho 
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sand ripple.  The Ba appears to correlate with Si, Al, Na, and K, indicating the possible 

presence of an alkali feldspar.  Rb and Sr are present in the conglomerate Link at 100-200 

ppm and 1000-2000 ppm, respectively.  Several other rock and pebble targets have Rb 

>50 ppm and Sr >300 ppm.  These points tend to have high Si and alkali abundances, 

consistent with a feldspathic composition.  Together, these trace element observations 

provide evidence of magmatic differentiation and possible aqueous alteration.          

 Observations such as these highlight the benefit of having a LIBS instrument as 

part of surface planetary missions.  The ability to analyze major, minor, and trace 

elements at a distance without requiring the use of an arm or any surface preparation is 

invaluable.  Improvements on the technique for future missions may include the 

capability to partition the observation of the plasma into time slices would likely improve 

detection limits for many elements, and could allow for isotopic analysis based on 

molecular emission wavelength shifts [Russo et al., 2011].  LIBS may also be combined 

with Raman spectroscopy, thus providing coupled chemical and mineralogical analyses.  

The potential for the LIBS technique to explore the surfaces of Mars, Venus, Mercury, 

Titan, Europa or primitive bodies such as asteroids and comets is tremendous.  Hopefully, 

Mars will only be the beginning for LIBS in space.    

To conclude, I’d like to comment on the format of my dissertation and on being 

part of the 300+ member MSL team.  I began my work on ChemCam prior to the launch 

of MSL and so I initially focused on instrument calibration and I participated in the data 

collection effort conducted at Los Alamos National Laboratory.  From this dataset, I did 

the study on plasma temperature (Chapter 1), which was eventually incorporated into a 

larger calibration paper by the ChemCam Principal Investigator, Roger Wiens [Wiens et 

al., 2013].  I also used these data for the classification study (Chapter 2) that was 

published in Applied Optics [Ollila et al., 2012].  Around the time these projects were 

completed, the rover had successfully landed and I took the opportunity to participate in 

ChemCam operations as science payload uplink and downlink lead.  Daily operation of 

the rover and instruments requires a large number of people, as does evaluating the 

resulting data for scientific purposes.  There are numerous teleconferences each week and 

many people contribute thoughts and ideas.  Everyone who participates in operations or 
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science discussions is welcome to be a co-author on publications and therefore author 

lists can be quite extensive.  The final two chapters of this document have been combined 

and submitted for publication in the Journal of Geophysical Research [Ollila et al., 2013].  

While there are many co-authors on my publications, the majority of the work is my own 

and the co-author list recognizes the contributions of engineers and scientists to the 

success of the mission, as well as direct contributions to the paper itself.  I also 

contributed trace element data covering the first 100 sols to Williams et al. [2013], 

Sautter et al. [2013], Schmidt et al. [2013], and Meslin et al. [2013] and to papers using 

data through sol 360 including McLennan et al. [2013] and several others that are 

currently in preparation.         
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CHAPTER 1 

Plasma temperature as a function of distance 

The following section is an excerpt from the open access publication by Wiens et al. 

[2013].  Several modifications were made to the text to clarify statements that refer to 

portions of the article not presented here, and tables and figures are relabeled to be 

compatible with this document. 

Article citation:  Wiens, R. C., S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, 

S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, 

C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. 

Ollila, R. Perez, R. L. Tokar, D. Vaniman (2013) Pre-flight calibration and initial data 

processing for the ChemCam laser-induced breakdown spectroscopy instrument on the 

Mars Science Laboratory rover. Spectrochimica Acta Part B, 82, 1-27.   

Laser-induced plasmas are complex, inhomogeneous structures that form and 

decay quickly, and are characterized by their temperature and electron number density 

[e.g., Aguilera and Aragon, 2004]. The Boltzmann equation can be used to determine the 

plasma temperature, with the assumptions that the plasma is in local thermodynamic 

equilibrium (LTE) and is optically thin [Yalcin et al., 1999]. To be in LTE, the electron 

density must be high enough for the rate of collisions in the plasma to exceed the 

radiative rate [Yalcin et al., 1999]. For a single species, the Boltzmann equation can be 

used to find this temperature from the slope of the linear relationship between the upper 

energy level of the transition Ek and ln (I ∙ λ /(gk · Aki)), where I is the spectrally integrated 

line intensity, λ is the wavelength of the transition, gk is the upper level statistical weight 

and Aki is the atomic transition probability [Sabsabi and Cielo, 1995]. The slope is equal 

to −1/(kT), where k is the Boltzmann constant and T is the plasma excitation temperature. 

In this study, we sought to determine the relationship between plasma temperature with 

stand-off distances of 3, 5, and 7 m to understand how distance influences plasma 

properties using spectra from the calibration of the ChemCam flight model.  

While numerous studies have stressed the importance of LTE as a prerequisite to 

the calculation of plasma temperatures and recommend selecting the observational gate 

width to exclude the initial and final parts of the plasma, ChemCam cannot be modified 

in such a manner and each plasma is observed over its entire duration.  Therefore it is 

likely that no ChemCam observation can be assumed to be in LTE. To test for LTE, 
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Cristoforetti et al. [2010] outlines three requirements for LTE in inhomogeneous and 

transient plasmas: (1) the electron number density exceeds a certain level at a particular 

temperature for a particular energy difference, referred to as the McWhirter criterion, (2) 

there is sufficient time for excitation and ionization equilibria to be achieved and this 

time is less than the variation rate of thermodynamic parameters, and lastly (3) the 

diffusion length of atoms and ions is less than the variation length of temperature and 

electron density. None of these criteria can be checked with the currently available 

ChemCam data set and it is assumed that the spatially and temporally averaged 

observations are not in LTE, and as a result, the absolute temperatures may not have 

physical meaning. However, the relative differences between values obtained at different 

distances may provide useful information.  

Prior to the construction of ChemCam, several studies were conducted under 

Mars-like conditions with equipment anticipated to approximate ChemCam. Plasma 

temperatures in one such experiment were determined by Sallé et al. [2006] using a gated 

echelle spectrometer. They found excitation temperatures on six rocks to be between 

9,000 and 11,000 K using the suite of neutral Fe lines between 350 and 400 nm at a 

single stand-off distance of 3 m. However, the majority of these lines are at wavelengths 

that fall outside the range covered by ChemCam's spectrometers, and therefore another 

set of lines is required. Due to the resolution of ChemCam (0.15 nm FWHM between 240 

and 342 nm, 0.20 nm between 382 and 469 nm, and 0.65 nm between 474 and 906 nm) 

and possibly due to line broadening from the inclusion of the entire plasma emission in 

the final observation, finding relatively isolated lines that are present in spectra at 3, 5, 

and 7 m distances was difficult. Attempts were made to find a sufficient number (>10) of 

neutral or singly ionized lines of Fe, Ca, Mg, Ti and Si to use in the Boltzmann plot. 

Finally, 29 Ti II lines (Table 1) between 307 and 457 nm were chosen as they are 

resolvable and are strong enough to be observed at 7 m.  

Figure 1 shows an example of the Boltzmann plots at each distance for BHVO2, a 

basalt. The peak areas used are the means of the peak areas from three spectra that are 

themselves averaged from 45 individual-shot spectra. Each group of 45 spectra was 

selected to be distributed between the 4 analysis points on each sample pellet, thus 

reducing heterogeneity from either the sample or the sampling parameters. Uncertainties 
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in the y-axis 

direction of the 

Boltzmann plot are 

based on the 

standard deviation 

of the 3 peak areas 

and are not shown 

as they are the 

same size or 

smaller than the 

data points on the 

chart. The Ti II 

lines were not 

checked for self-

absorption but are 

believed to not 

suffer from it due 

to the decreased atmospheric pressure (930 Pa) and the relatively low concentration of Ti 

(maximum of 2.73% TiO2) although it is recognized that, in the absence of a low-

pressure environment, self-absorption can occur at concentrations as low as 0.1% 

[Bulajic et al., 2002]. The 29 Ti II lines were typically fit with Voigt profiles, although 

occasionally Gaussian profiles were used and a linear background was subtracted locally 

over a small wavelength range. The PeakFit software from Systat Software, Inc. was used 

for background removal and peak fitting. To determine the suitability of each peak for 

inclusion in the analysis, peak ratios of adjacent peaks were found at each distance. The 

standard deviations between the ratios at each distance were inspected and one ratio was 

found to change considerably with distance and had a standard deviation exceeding 1.0 in 

two of the three samples. However, each peak in this ratio had low standard deviations in 

ratios with other nearby peaks and neither peak was overly influential in the Boltzmann 

plots; therefore, both peaks were kept in the final analysis.  

To our knowledge, no studies of plasma temperatures have been conducted at 

 

y = -0.8334x + 14.949,  R² = 0.6098 
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Figure 1.  Boltzmann plots of selected Ti II lines (Table 1) from 

the standard BHVO2 positioned at 3, 5, and 7 m from the 

instrument.  The temperature ranges listed are based on the 

upper and lower bounds from the standard error of the slope.  

Error bars (not shown) for the y-axis are based on the standard 

deviation between the three replicate peak areas and are 

approximately the same size or smaller than the data points. 
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comparable stand-

off distances. 

However, several 

studies have been 

done at various 

energies with 

distance held 

constant. This re-

sults in a change in 

on-target fluences 

that can be 

compared to the 

fluences seen by 

ChemCam which 

have a constant 

energy and a 

varying spot sizes (radius of~120 μm at 3 m and 200 μm at 7 m). With the laser at −10 

°C, the ChemCam laser operates at ~15 mJ per pulse, resulting in on-target fluences for 

the given spot sizes of 34 J/cm
2
 at 3 m, 19 at 5 m and 12 at 7 m. Sabsabi and Cielo 

[1995] found that at various time delays for energies of 60 mJ, 100 mJ and 170 mJ, 

plasma temperatures of an Al alloy increased with increasing energy by ~500–1000 K. 

However, Yalcin et al. [1999] studied aerosolized metals at five energies between 41 and 

150 mJ at various time delays and found plasma temperatures to be not significantly 

different. 

Temperatures for three powdered and pressed basalt geochemical reference 

materials (BEN, BHVO2, and GBW07105) were calculated using the Boltzmann plot 

method with 29 Ti II lines at 3, 5, and 7 m.  Temperatures ranged from 13,900–14,400 K 

at 3 m, 13,800–14,400 K at 5 m, and 14,400–15,000 K at 7 m (Figure 2); error bars are 

determined from the standard error of the Boltzmann plot slope. Results from the 

ChemCam data show no correlation with distance. For each sample, we find that the 

plasma temperatures at 3, 5, and 7 m are the same to within ~5%. Given the difficulty in 
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Figure 2.  Plasma temperature as a function of distance.  Error 

bars are the calculated upper and lower bounds on the 

temperature based on the standard error of the Boltzmann plot 

slope.  These results confirm that the relative ratios of peaks of 

the same element are statistically independent of distance. 
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calculating the temperature using ChemCam data, within the uncertainty of our 

measurements we cannot conclude that there is a relationship between plasma 

temperature and distance.  Additional work is needed using a higher resolution gated 

spectrometer to reduce line overlap before any conclusions should be made. 

 

Table 1:  Spectroscopic data of singly ionized Ti lines
a
 

 

λ (nm) Ei (eV) Ek (eV) gk Aki (10
8
 s

-1
) ΔA/A (%) 

307.386 0.00 4.03 2 1.60 25 

307.611 0.01 4.04 4 1.13 18 

307.953 0.03 4.05 6 1.09 18 

308.892 

309.809 

0.05 

1.23 

4.06 

5.23 

8 

6 

1.50 

0.44 

7 

25 

316.944 0.15 4.06 8 0.41 25 

323.545 0.05 3.88 10 1.71 7 

323.751 0.03 3.86 8 1.37 7 

323.997 0.01 3.84 6 1.26 7 

324.292 0.00 3.82 4 1.47 7 

324.954 1.25 5.06 8 1.84 7 

325.285 0.01 3.82 4 0.41 7 

325.384 0.03 3.84 6 0.34 7 

325.518 0.05 3.86 8 0.22 7 

326.255 1.23 5.03 6 1.31 7 

327.923 1.23 5.01 4 0.74 7 

327.986 1.08 4.86 4 0.88 7 

328.327 1.22 5.00 2 1.46 7 

328.860 1.89 5.66 10 1.76 7 

332.265 1.23 4.96 4 0.74 7 

332.389 0.15 3.88 10 0.48 7 

333.041 0.13 3.86 8 0.41 7 

333.307 1.24 4.96 4 1.16 7 

333.615 0.12 3.84 6 0.38 7 

416.482 2.59 5.57 6 0.48 7 

417.308 2.59 5.57 4 0.49 7 

450.253 1.11 3.87 6 0.09 2 

456.504 1.22 3.94 4 0.09 50 

457.325 1.57 4.28 8 0.19 7 
a
All values were obtained from Kramida et al. (2012) 
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CHAPTER 2 

Comparison of two partial least squares-discriminant analysis algorithms for 

identifying geological samples with the ChemCam laser-induced breakdown 

spectroscopy instrument 

 

The following chapter was published in Applied Optics and is presented here with 

permission from The Optical Society.  

Article citation:  Ollila, A. M., J. Lasue, H. E. Newsom, R. A. Multari, R. C. Wiens, and 

S. M. Clegg (2012) Comparison of two partial least squares-discriminant analysis 

algorithms for identifying geological samples with the ChemCam laser-induced 

breakdown spectroscopy instrument, Applied Optics, 51, B130-B142. 

 

Abstract 

ChemCam, a laser-induced breakdown spectroscopy (LIBS) instrument on the 

Mars Science Laboratory (MSL) rover, will analyze the chemistry of the martian surface 

beginning in 2012.  Prior to integration on the rover, the ChemCam instrument collected 

data on a variety of rock types to provide a training set for analysis of data from Mars.  

Models based on calibration data can be used to classify rocks via multivariate statistical 

techniques such as Partial Least Squares – Discriminant Analysis (PLS-DA).  In this 

study, we employ a version of PLS-DA in which modeling is applied in a defined 

classification flow to a variety of geological materials and compare the results to the 

traditional PLS-DA technique.  Results show that the modified algorithm is more 

effective at classifying samples. 

         

Introduction 

In August 2012, the Mars Science Laboratory rover, Curiosity, will begin the 

exploration of Gale crater, a site near the equator of Mars with orbital evidence of a 

diversity of mineralogy and geomorphic features [Milliken et al., 2010; Anderson and 

Bell, 2010; Thomson et al., 2011].  One of the key chemistry instruments on Curiosity is a 

Laser Induced Breakdown Spectrometer (LIBS), which together with a Remote Micro-

Imager (RMI), comprises the ChemCam suite.  ChemCam will provide chemical 

information on rocks and soils at distances up to 7 m from the rover.  Due to its ability to 
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provide rapid energy-efficient analyses and to penetrate dust and other surficial coatings, 

ChemCam will be an important survey tool for the mission [Wiens and Maurice, 2011; 

Wiens et al., 2012; Maurice et al., 2012].  It will provide direction for further analysis by 

other rover instruments and it will obtain compositional data on Mars rocks and surface 

coatings and on elements never before analyzed on the surface of Mars.  

The primary objective of Curiosity’s mission is to characterize the atmosphere 

and geology in Gale crater and search for habitable environments, or locations that 

sustain or may have sustained life in the past [Grotzinger, 2011].  Determining the types 

of rocks and sediments present is critical to meeting this objective.  While the martian 

crust is typically basaltic in composition [McSween et al., 2009; Christensen et al., 2000], 

recent observations of sedimentary deposits have been identified in regions across the 

planet [Malin and Edgett, 2003].  In Gale crater, orbital infrared spectroscopy has 

identified a transition of interlayered sedimentary beds consisting of clay minerals, most 

likely the Fe-smectite nontronite, to predominantly Mg-sulfates and oxides [Milliken et 

al., 2010].  Bibring et al. [2008] proposed that the transition from clays to sulfates could 

be indicative of a global environmental change to increasingly arid conditions.  It is 

important that ChemCam be able to distinguish these materials and others that would be 

of primary interest for the mission’s objectives, e.g. carbonates, which have been 

identified in other regions of Mars [Ehlmann et al., 2008, Morris et al., 2010].   

Distinguishing these important rocks and minerals can be a challenge with LIBS 

data under martian atmospheric conditions.  While LIBS can detect most, if not all, 

relevant elements, the sensitivity of the technique depends on the ionization energy of the 

elements considered. Typically, under the same conditions of atmospheric pressure and 

laser power, the technique is less sensitive to certain elements such as S [Sallé et al., 

2004; Dyar et al., 2011], and due to atmospheric coupling, C is present in virtually all 

spectra obtained under conditions similar to the high PCO2 conditions on Mars, regardless 

of sample’s C content [Ollila et al., 2011].  Individual carbonate-bearing materials 

[Lanza et al., 2010] and individual sulfate-bearing materials [Dyar et al., 2011] can be 

distinguished in a Mars environment.  However, it may be difficult to distinguish gypsum 

(CaSO4∙2H2O) from calcite (CaCO3) or melanterite (FeSO4∙7H2O) from siderite (FeCO3), 

particularly when they are minor phases.  Spectra of these materials look similar in a 
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Mars environment and are dominated by Ca or Fe peaks, respectively, due to the weak 

intensities of the S peaks, with which Fe peaks can interfere, and due to the C from the 

atmosphere.  Gypsum and melanterite contain H2O, which is absent in calcite and 

siderite, and this is a useful distinguishing characteristic, but anhydrous phases also exist.         

While individual peaks may be used for distinguishing geological materials, 

multivariate analysis techniques using entire spectra have shown promise for 

classification.  For example, Sirven et al. [2007] used Principal Component Analysis 

(PCA), Soft Independent Modeling of Class Analogy (SIMCA) and Partial Least Squares 

Discriminant Analysis (PLS-DA) to distinguish several natural igneous rocks and one 

sedimentary rock.  Harmon et al. [2009] used linear correlation analysis to classify a 

variety of samples including carbonates and silicates.  Clegg et al. [2009] conducted PCA 

and SIMCA on igneous and metamorphosed igneous rock suites.  Gottfried et al. [2009] 

classified suites of carbonates, fluorites and silicates using PCA and PLS-DA.  Lanza et 

al. [2010] used PCA to distinguish carbonates.  Lasue et al. [2011] compared PCA, 

independent component analysis (ICA), and Sammon’s maps for data visualization and 

clustering using a sample suite of 24 igneous and sedimentary materials.   

Recently, Multari et al. [2010] and Multari and Cremers [2011] developed an 

algorithm based on PLS-DA for classification of bacteria.  This algorithm differs from 

the traditional PLS-DA analysis in that it classifies a sample iteratively and then removes 

the classified spectra from subsequent models, the final result of which is a predictive 

flow for classification.  This technique is similar to the multi-class cascade or cascade 

classifier technique [e.g. Gama et al., 2000; Granitto et al., 2005] in that a “divide and 

conquer” strategy for discrimination of classes is employed; however the two techniques 

differ in implementation.  In this study, we evaluated the performance of the sample 

removal-based predictive flow PLS-DA analysis and compare the results to the standard 

PLS-DA technique.  Unlike previous studies, we used no a priori pre-classification of 

samples.  Additionally, we expanded this work beyond classifying spectra that the models 

were trained on to include spectra from rocks that are unknown to the model.  We chose 

to do this in recognition of the fact that creating models to encompass the great variety of 

geological samples present on Earth and Mars is not feasible.  While PLS-DA is not 

designed for this particular application, we decided to evaluate the performance of the 
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models when rocks similar or dissimilar in composition to any of modeled class are 

encountered.   

 

Sample Suite 

We used a suite of materials that would allow us to test the ability of each PLS-

DA analysis method to distinguish compositionally similar samples as well as 

compositionally diverse samples.  Powdered and homogenized pressed pellets were used 

to eliminate grain size as a factor and minimize sample heterogeneity.  Samples 

encompassed a variety of igneous and sedimentary rocks, with a focus on the types of 

materials most relevant to Mars.  The igneous rock suite spans a large range of SiO2 

contents (~38-75 wt. %); sample compositions are plotted in a total-alkali and silica 

(TAS) diagram [Le Bas et al., 1986], which uses bulk chemistry alone for classification 

of igneous rocks (Figure 1).  Several primary mineralogies are also represented including 

 
 

Figure 1.  Total alkali-silica (TAS) diagram of the igneous sample suite.  Filled circles 

mark samples from the unknown sample suite. 
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Mg/Fe-rich and Fe-rich olivines and feldspar.  Sedimentary samples included in this suite 

are either representative of certain environments (stream and marine sediments) or a 

major mineralogy, such as clays (nontronite, montmorillonite, kaolinite), sulfates 

(melanterite, metavoltine, ferrinatrite, jarosite, gypsum), and carbonates (dolomite, 

dolomite-limestone, aragonite). The clays, analyzed as provided from the source without 

further preparation or purification, are assumed to contain common trace minerals such as 

quartz.  For all of the sulfates except gypsum, the sulfur-bearing phase is a relatively 

minor fraction, such that S < 10 wt. % and SiO2 contents are > 40 wt. %.  The particular 

minerals responsible for the high SiO2 concentrations are unknown.  In total, 41 
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individual geological materials were 

selected for modeling (Table 1) and 14 

others were reserved to test the model as 

unknown samples (Table 2).  Examples 

of several spectra representative of 

certain types of samples are shown in 

Figure 2.   The unknown sample suite 

contained samples similar to those in the 

model as well as some that are fairly 

distinct.  Samples were obtained from 

Brammer’s Standard Company, Inc., the 

United States Geologic Survey (USGS), 

the National Institute of Standards and 

Technology (NIST), the Clay Minerals 

Society (CMS), and the collection of M. 

D. Dyar at Mt. Holyoke University.   

 

Experimental Methods 

Instrument Description and Data 

Collection 

The ChemCam LIBS uses a 

Nd:KGW 1067 nm pulsed laser to 

generate a small plasma on a sample.  

Plasma light is collected and transmitted 

through a telescope to an optical fiber 

and demultiplexer that splits the light to 

3 spectrometers that together cover a 

range of approximately 240-850 nm.  

Data used for this study were obtained 

during the calibration of the ChemCam 

flight model at the Los Alamos National 

 

Figure 2. Example spectra of several 

sample classes. Top: spectral range 240–

340. Middle: spectral range 380–470. 

Bottom: spectral range 480–900. 1, JR1 

(high SiO2); 2, MO14 (low SiO2); 3, 

JDO1(dolomite); 4, NBS98A (kaolinite-

rich); 5, NAU2 (nontronite-rich);6, 

MHC1356 (jarosite-bearing); 7, GYPA 

(gypsum). 
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Laboratory.  The laser was operated at 3 Hz (nominal ChemCam repetition rate) and the 

energy was ~10 mJ per 5 ns pulse.  During analysis, samples were housed in a 7 Torr 

CO2 atmosphere chamber placed 3 m from the instrument to approximate conditions 

expected on Mars.  A total of 160 single shot spectra were collected from 4 analysis 

points (40 shots at each point) on each sample.  While 4 analysis locations are sufficient 

for homogenized samples, more locations are anticipated to be required when analyzing 

an unprepared rock [Anderson et al., 2011]. 

 

Spectral Pretreatment 

To control the shot-to-shot variation typical of LIBS measurements, spectra were 

mean centered and normalized to have equal variance.  A visual inspection of the spectra 

revealed that the first 5 shots of each analysis location often had surface contamination in 

the form of adsorbed water and/or manipulation residues; these spectra were thus omitted 

from the dataset.  Because the samples are supposed to be homogeneous powders, outlier 

removal was limited to 35 spectra out of 7140 total spectra.   

 

Statistical Techniques 

PLS-DA is a supervised classification technique that classifies samples based on 

their spectral similarity to modeled classes [e.g. Gottfried et al., 2009; Multari et al., 

2011; Granitto et al., 2005, De Lucia et al., 2008; De Lucia et al., 2011; Hobro et al., 
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2010; Pourghahramani et al., 2008; Naes et al., 2004].  A set of spectra is selected from 

each class for training the model and a second set of spectra are reserved for testing, or 

verifying, the model. The input matrix for modeling can be the whole spectrum, selected 

wavelengths, or peak ratios.  This input matrix (X matrix) is regressed against a second 

matrix (Y matrix) that contains information about each class.  Commonly in PLS-DA, the 

Y matrix contains 0’s and 1’s, with 1’s indicating that the corresponding spectrum from 

the input matrix is a member of that class.  Because there is more than 1 variable in the Y 

matrix, the PLS regression technique is often referred to as PLS2.  The difference is that 

in PLS2, the model maximizes the covariance between linear functions for both the X 

and Y matrices instead of a single linear function for X [Naes et al., 2004].  The model 

produces a set of latent variables (LVs), which are linear combinations of the X matrix 

variables that describe the variance between the X matrix and Y matrix.  The classes of 

the reserved spectra are then predicted based on the model using the chosen number of 

LVs and a prediction value is determined for each spectrum.  Values closer to 1 indicate 

that sample may be a member of that class.   

Choosing the optimal number of LVs is important for building a sensitive yet 

robust model.  Too few LVs result in poor discrimination between classes while too 

many LVs overfit the model and lead to less accurate predictions.  The number of LVs 

can be selected as the first minimum of the Root Mean Square Error of Prediction 

(RMSEP) derived from the cross-validation of the model.  A common cross-validation is 

the ‘leave-one-out’ method, which tests how the model performs when one spectrum is 

removed at a time.  Alternatively, one can select the number of LVs based on the 

maximum number of correct identifications (true positives) and minimum number of 

incorrect identifications (false positives) for the training dataset.  De Lucia et al. [2008] 

determined that this approach for selecting LVs resulted in a better correct classification 

rate and did not overfit their model. 

Class membership can be determined in a variety of ways.  Gottfried et al. [2009] 

used two criteria: (1) if the prediction value was greater than the 50
th

 percentile of the 

values distribution, the spectrum was determined to belong to that class; this results in a 

less discriminatory classification and (2) if the prediction value was greater than the 95
th

 

percentile of the values distribution, the spectrum was called a member of that class; if 
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the spectrum did not achieve this criterion or if the prediction value exceeded this 

criterion for more than one class it was called unclassified.  Sirven et al. [2007] used the 

second method in their PLS-DA modeling.  Multari et al. [2010, 2011] determined 

prediction values for each model using the spectra from the training dataset that resulted 

in the best discrimination and if the prediction value from the spectra in the verification 

dataset exceeded that prediction value, the spectrum was called a member of that class.  

In the traditional PLS-DA method used by Sirven et al. [2007] and Gottfried et al. 

[2009], a single PLS model is built using the X matrix and Y matrix for the training set.  

The training dataset and the reserved spectra in the verification and unknown datasets are 

run through the model.  The output for each model is a vector of n prediction values, 

where n is the number of classes in the model.  Class membership is decided based on 

one of the methods discussed above.   

In the modified PLS-DA predictive flow derived by Multari et al. [2010; 2011], 

n-1 models are built using the training dataset, and the Y vector consists of the data to 

model a single class (PLS1).  For each model, one class is selected for modeling.  

Selection of classes is done with a chemometric analysis technique, which is used to 

identify the class that is the most analytically distinct [Multari and Cremers, 2011].  Once 

this initial PLS model is built for the selected class, the 40 spectra of this class are 

removed and a second class is selected for modeling with the reduced training dataset. 

The modeling proceeds in this manner until a single class remains.  This final group 

cannot be modeled since only a single class exists. The training, verification and 

unknown spectra datasets are run through each model and spectra that are classified by 

one model, either correctly or incorrectly, are removed from prediction in subsequent 

models.  Because the final class cannot be modeled, any spectra that fail to be classified 

in the preceding models will fall into the last category.  The output of the modified PLS-

DA is the same as the traditional PLS-DA except each subsequent model contains one 

less class.     

In this study, the statistical analyses were done using ‘plsr’ [Mehvik and Wehrens, 

2007] from the open source software R [R Development Core Team].  Classes were 

defined as individual samples, resulting in 41 classes, some of which were very similar in 

composition and some were very different.  Forty spectra were selected for each class’s 
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training set and 100 spectra from each class were reserved in the verification set to test 

each model.  Fourteen samples with 100 spectra each were not modeled and were used to 

test predictive accuracy of the models for unknown samples.  The training set spectra 

were selected to be distributed evenly across the 35 spectra collected at 4 analysis 

locations to account for any possible heterogeneity in the pelletized samples.  The 

optimal number of LVs was chosen based on the prediction results of the training dataset 

by identifying the maximum sum of the number of spectra correctly identified as being a 

member of a class and the number of spectra correctly identified as not being a member 

of that class, weighted by the number of spectra in each category.  This same LV was 

then applied to the verification and unknown datasets for that model.  Class membership 

was determined using the prediction values for the selected LV.  For the traditional PLS-

DA model, if a spectrum’s prediction value exceeded the 95
th

 percentile of the values 

distribution for more than one class, that spectrum was called ambiguously classified.  If 

a spectrum’s prediction value exceeded the 95
th

 percentile for the correct class only, it 

was called uniquely and correctly classified and if it exceeded this criterion for only an 

incorrect class, it was called misclassified.  In the removal-based PLS-DA predictive 

flow, once a spectrum was classified based on the 95
th

 percentile of the values 

distribution, it was removed from further classification and no spectrum could be 

classified more than once.  In this case, incorrectly classified spectra were called 

misclassified and none could be considered ambiguously classified.   

 

Results and Discussion 

Traditional PLS-DA 

The training dataset X matrix of 1640 spectra (40 per class) x 6144 wavelength 

channels was regressed against the 1640 x 41 Y matrix of 0’s and 1’s with 1’s 

corresponding to the correct class.  The training dataset spectra were then used in the 

model built with the same data to determine which class each spectrum belongs, with 

class membership defined as the prediction value exceeding 95
th

 percentile of the values 

distribution, and to select the number of LVs.  The maximum number of true positives 

weighted by 40 and true negatives weighted by 1600 was used to define the optimal 

number of LVs as previously described.  Typically, in traditional PLS-DA analyses, a 
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single LV for all classes is chosen, as would be the case if one were to use the RMSEP 

method of selecting the LV.  However, by using the method which maximizes the true 

positives and true negatives, the selection of LV can be tailored for each individual class, 

thus increasing the likelihood of creating the most robust model.  The model built with 

the training dataset was then used to determine class membership for the verification 

dataset and the unknown dataset using the predetermined number of LVs.   

The traditional PLS-DA training dataset averaged 66% uniquely and correctly 

classified and 34% ambiguously classified (Table 3).  Because the traditional PLS-DA 

technique allows for multiple classifications, certain spectra are called ambiguously 

classified if they are classified more than once.  For the ambiguously classified samples 
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in the training dataset, 100% of the spectra belonging to that class were correctly 

identified as members of that class; however, these same spectra were also incorrectly 

classified as members of one or more classes.  For example, the fourth entry in Table 3 

indicates that 2 spectra from GYPA were incorrectly classified as MHC3828, in addition 

to being correctly identified as GYPA.  In some instances, only a few spectra are 

misclassified per class and these cases can be attributed to minor variations in the spectra, 

most likely from instrument variability unaccounted for by the normalization procedure.  

When an entire sample or a sequential set of spectra is misclassified, this is most likely 

due to the inability of the model to distinguish the samples or sample heterogeneity, 

respectively.  Misclassifications that are considered misleading for geological 

interpretation, i.e. confusion between carbonates, sulfates, and clays, are italicized.   

For the training dataset, 9 samples had a 100% unique and correct classification 

rate with no multiple classifications:  BIR1, JR1, GSR2, DH4912, SARM51, 

GBW07108, UNSAK, MHC1356 and VZO106, representing basalts, a rhyolite, a dacite, 

a dolomite-limestone, an aragonite and samples containing the sulfate minerals jarosite 

and ferrinatrite.  Eight samples were 100% ambiguously classified, meaning all spectra 

from these samples were also classified as correct in another class:  GBW07104, 

BHVO2, BCR2, GBW07110, JA1, MO14, JDO1 and MHC3828, representing other 

basalts, an andesite, a dacite, a dolomite, and a gypsum.  Most of the multiple 

classifications are reasonable, based either on their position in the TAS diagram for the 

igneous samples (Figure 1), which plots SiO2 vs. Na2O + K2O, or their major mineralogy.  

GSR2 was classified as GBW07104 and on the TAS diagram in Figure 1, these two 

samples plot very close to each other, although they are technically in different 

classification regions (andesite and dacite).  BHVO2 spectra were also classified as 

GBW07105, which are spatially separated in the TAS diagram but have Al2O3, MgO, 

TiO2 and Fe2O3 compositions similar to within 1 wt.%.  Spectra from BCR2 were 

classified as AGV2 and while these have a fairly large separation in the TAS diagram, 

both fall into an andesitic region, either trachy-andesite or basaltic andesite.  GBW07110 

spectra were classified as Cadillac and these samples have similar total alkali contents but 

occupy adjacent categories in the TAS diagram (rhyolite and trachy-dacite).  JA1 spectra 

were incorrectly classified as MSHA, and both plot near each other in the dacite TAS 
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diagram category.  Out of 40 spectra per class, 38 from MO14 were incorrectly called 

MO12 and 20 spectra were called VH49.  MO14, MO12 and VH49 all classify as basalts 

on the TAS diagram.  Spectra from MHC3828 were all classified as GYPD, but this is 

not unexpected given that both are gypsum contaminated with a similar amount of a 

SiO2-bearing component. 

The explanation for the misclassification of the final sample that was 100% 

ambiguously classified, JDO1, remains unclear.  All 40 spectra from JDO1, a dolomite, 

were also classified as MO14, an olivine-rich igneous rock.  Compositions between these 

two are quite distinct; MO14 has ~47 wt. % SiO2, 17 wt. % Al2O3, 10 wt. % Fe2O3 and 9 
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wt. % CaO and JDO1 has <1 wt. % SiO2, Al2O3 and Fe2O3T and 34 wt. % CaO.  The 

spectra and model codes were checked for errors but none were found.  Inspection of the 

PLS model loadings, which give the degree to which each wavelength contributes to 

separation of the classes, reveal that there is a threshold number of LVs that result in the 

misclassification of JDO1 as MO14.  Using the established method of selecting LVs as 

described previously, 12 LVs were chosen and, at this level, JDO1 spectra have higher 

prediction values than the MO14 spectra that were used to train the MO14 model.  

Reducing the number of LVs to 10 resulted in MO14 spectra having the highest 

prediction values and only a few JDO1 spectra misclassified as MO14.  This case 

highlights the importance of the choice of LV and it may simply be that for this particular 

model, the chosen method of selecting the LV results in an overfitted model.   

For the verification dataset, the average unique and correct classification 

decreased slightly from the training dataset to 64% and the average ambiguously 

classified percent went up to 37% (Table 4).  This decrease in accuracy is to be expected 

since the 100 spectra per class in the verification dataset were not used in building the 

models.  Fourteen classes increased their percentage of unique and correct classification 

by an average of 3.2%, 15 classes decreased in unique and correct classification by an 

average of 9.7% and 12 classes maintained the same unique and correct classification 

percent.  GSR2, SARM51, GBW07108, UNSAK and MHC1356 were 100% correctly 

classified with no multiple classifications, the same as in the training dataset.  JR1 

(rhyolite) was 99% uniquely and correctly classified with one spectrum also identified as 

the clay mineral montmorillonite-rich rock. BIR1 was reduced from 100% correct in the 

training dataset to 38% correct in the verification set due to multiple classification as 

MO14 and JA1.  MO14 and BIR1 are basalts on the TAS diagram but JA1 is classified in 

the TAS diagram as a dacite, considerably different in SiO2 content.  BHVO2, BCR2, 

MO14, JDO1, and MHC3828 were also 100% ambiguously classified while GBW07104, 

GBW07110 and JA1 had up to 3 spectra out of 100 classified correctly with no other 

classifications.  The same issue discussed in the training dataset results, with JDO1 being 

classified as MO14, occurs in the verification set as well.        

Table 5 gives the results for the unknown dataset.  Moppin, the metamorphosed 

basalt was not identified as a member of any of the modeled classes and 4 others (JA3, 
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JB3, UMPH, and STSD4) had between 11 and 68% of the spectra left unidentified.  The 

rest of the spectra were classified as members in multiple models.  In certain instances, 

the classification provides relatively accurate and useful information.  For example, 

100% of NBS97A, a kaolinite, was classified as NBS98A, also a kaolinite.  However, 

NBS88B, a dolomite-limestone (carbonate), was classified as a variety of igneous 

materials (VH49, BWQC1, GBW07105, BEN) and as JDO1, a dolomite (carbonate).   

 

Removal-based PLS-DA Predictive Flow 

The modified PLS-DA technique is based on iterative classification and removal 

of the classified samples.  An initial sample class was selected and a PLS model was built 

to classify it; in this case MHC1356 was the first sample selected for removal, as it is 

spectrally very distinct from the other classes due to its high Fe content.  After this model 

was built, the 40 spectra belonging to this class were removed from the dataset and a new 

model was built to classify the next sample selected.  This iterative model building 

continued until a single class remained.  Selection of the optimal number of LVs and 

determination of class membership was conducted in the same manner as in the 

traditional PLS-DA.  Spectra classified as members of this model, either correctly or 

incorrectly, were then removed from the dataset; this means that a spectrum can only be 

classified once, either as correctly classified or misclassified.  Class membership 

selection was first conducted on the prediction results from the training set, from which 
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the optimum LV was selected, and then on the verification and unknown datasets using 

the preselected LV.   

Table 6 lists the percent of spectra correctly classified by each model as well as 

the class of the misclassified spectra for both the training and the verification datasets.  

Classes are listed in the order that they were modeled and removed.  The modified PLS-

DA algorithm had 100% correct classification for the training dataset and averaged 95% 

correct with 5% misclassified for the verification dataset.  Twenty-seven classes in the 

verification set were 100% correctly classified and 6 classes were 90% or higher in 

correct classification.  The lowest rate of classification belonged to MO12, at 72% 

correct, which was the group of spectra remaining after the final two classes were 
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modeled.  A true prediction of class membership can’t be made on this final group since 

no PLS-DA model can be built when only a single class is present.  However, since all 

other spectra were previously classified, all spectra remaining were known to be of this 

class.  The majority of classes with misclassifications are among the igneous rock suite 

and 138 out of 184 misclassified spectra were called GBW07104, indicating that this 

model is the least robust.  The sedimentary suite was classified very well, with only 7 

spectra misclassified between two classes.  One SARM51 (stream sediment) spectrum 

was called NAU2 (montmorillonite clay mineral) and 6 GYPD spectra were incorrectly 

identified as MHC3828.  These misclassifications are reasonable as clay minerals are 

common in sediments and MHC3828 and GYPD are both gypsums with very similar 

compositions.   

The unknown spectra were all classified in one of the modeled classes (Table 7).  

As previously discussed, the removal-based predictive flow has a final ‘class’ that cannot 

be modeled, therefore any spectra not falling into one of the previous models end up in 

this group.  In this case, the unknown spectra were observed to be classified prior to this 

final group but, if they hadn’t been, there would have been no way to distinguish the final 

class (MO12) from the unknown spectra unless the model is rebuilt with the new 

unknown spectra as a separate class.  The majority of the unknown spectra are classified 

in a reasonable and potentially useful manner.  JA3 were classified as JA1 (95%) and JA2 

(5%), and, based on their positions in the TAS diagram, the classification is reasonable in 

terms of chemical composition.  GBW07113 were identified as JR1 and both are closely 

positioned on the TAS diagram.  Other sensible classifications included NBS97A 
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(kaolinite) being called NBS98A (kaolinite), NBS88B (dolomite-limestone) identified as 

JDO1 (dolomite) and MHC2319 (impure Fe-sulfate, melanterite, with a silicate matrix) 

being called MHC1356 (impure Fe-sulfate, jarosite, with a silicate matrix).  Among the 

sedimentary rocks labeled by a major mineralogy, few misclassifications are truly 

misrepresentative, except for the 4 out of 100 sulfate GYPB (gypsum) spectra identified 

as the carbonate JDO1 (dolomite).   

 

Comparison of the PLS-DA Analysis Methods 

The modified PLS-DA predictive flow performed significantly better than the 

traditional technique.  When classifying the same spectra that were used to train the 

model, the modified predictive flow had 100% correct classification while the traditional 

analysis method was 66% of the spectra were uniquely and correctly classified.  For the 

verification dataset, the predictive flow was 95% correctly classified while the traditional 

method was 64% uniquely and correctly classified.  Both techniques had some difficulty 

in separating the igneous rocks and the modified algorithm had very little difficulty in 

distinguishing the sedimentary rocks.  With 2 exceptions, the number of LVs required for 

the modified technique was fewer than the number required for the traditional technique, 

often to a large degree (Tables 3 and 6).  The traditional PLS-DA averaged 20 LVs 

compared to the modified PLS-DA, which averaged 6 LVs and therefore may result in 

more robust models for the modified technique.   

The superior performance of the predictive flow analysis method can be attributed 

to 3 factors:  (1) by removing samples, the differences between the remaining samples of 

more similar composition are enhanced, (2) no spectrum can have multiple 

classifications, which occurs frequently in the traditional PLS-DA algorithm, and (3) PLS 

models are built with a single Y variable (PLS1), which removes the influence that 

results from modeling other classes simultaneously.      

PLS-DA results from this study compare favorably with the PLS-DA studies on 

geological materials by Sirven et al. [2007] and Gottfried et al. [2009].  Correct 

allocation of the 6 natural rocks analyzed by Sirven et al. [2007] was on the order of 55% 

to 100%, with 0-15% ambiguously classified (unclassified by their terminology) and 0-

35% misclassification.  For the results using a comparable experimental design to this 
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study, Gottfried et al. [2009] had a 98.8 to 100% correct classification for the carbonate 

suite, with 0-1.2% ambiguously classified (unclassified), and 92 to 100% correct 

classification for the silicate suite, with 0-4% misclassified.                

               

Conclusion 

In this study, we compared the classification ability of the traditional PLS-DA 

technique to a classification and removal-based predictive flow developed by Multari et 

al. [Multari et al., 2010; Multari and Cremers, 2011] using LIBS data collected to be 

relevant to the classification of spectra collected on Mars by ChemCam in the near future.  

In traditional PLS-DA, a single PLS model is built that describes the covariance between 

the input X matrix of spectra and the class definition Y matrix [Sirven et al., 2007; 

Gottfried et al., 2009].  The predictive flow method builds a PLS model for one selected 

class and spectra of this class are removed from the dataset and a second PLS model is 

built on the shrunken dataset for the next selected class, and so on until a single class 

remains [Multari et al., 2010; Multari and Cremers, 2011].  Additionally, we expanded 

on the PLS-DA technique by testing the models using spectra from classes unknown to 

the models to determine the sensitivity of each model. 

The PLS-DA techniques were challenged with a dataset of both highly diverse 

and highly similar samples, with each individual sample defined as its own class.  Results 

show that the predictive flow analysis performed better than the traditional technique, 

with 100% unique and correct classification versus 66% for the traditional technique 

using the training dataset and 95% correct compared to 63% for the verification dataset.  

For the traditional method, spectra belonging to a class were at or near 100% correct 

classification but these same spectra would often be misidentified as members of one or 

more other classes, which results in those spectra being labeled ambiguously classified.  

The predictive flow method of analysis cannot have multiple classifications because 

spectra that have been correctly or incorrectly identified as members of a class are 

immediately removed from the dataset prior to prediction with the next model.  This 

factor is likely one of the primary reasons for the superior performance of the predictive 

flow analysis.  Additionally, the iterative removal of classes results in an increased ability 
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for the subsequent PLS regression models to identify differences between the more 

similar classes.   

For the dataset that contained spectra from rocks unknown to the model, both 

methods resulted in the vast majority of spectra classified as one or more of the modeled 

classes.  However, for the traditional method, 16% of the unknown spectra were correctly 

identified as unknown to any modeled class while in the predictive flow analysis all 

spectra were classified as members of one of the modeled classes.  The classifications of 

the predictive flow analysis were more accurate from a geological interpretation 

perspective than the multiple classifications in the traditional method. For example, fewer 

igneous rocks were confused with sedimentary, or fewer carbonates were called sulfates, 

and so on when using the modified technique.         

The PLS-DA predictive flow approach is particularly useful for identifying 

geochemically important minerals that may be encountered by ChemCam and the 

Curiosity rover at Gale crater on the surface of Mars.  We found very little 

misclassification between modeled carbonate, sulfate and clay mineral-rich rocks in a 

diverse sample suite and conclude this method is an ideal tool for rock classification.  
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CHAPTER 3 

Modeling of Trace Elements (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam 

 

This article has been submitted to the the Journal of Geophysical Research.  In its final 

state it will be combined with Chapter 4. 
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Abstract 

The ChemCam instrument package on the Mars Science Laboratory (MSL) rover, 

Curiosity, provides new capabilities to probe the abundances of certain minor and trace 

elements in the rocks and soils on Mars using the Laser-Induced Breakdown 

Spectroscopy (LIBS) technique.  In this study we focus on detecting and quantifying Li, 

Ba, Rb, and Sr in rocks and soils analyzed during the first 100 sols on Mars, from 

Bradbury Landing Site to Rocknest.  Both univariate peak area models and multivariate 

Partial Least Squares (PLS) models are presented.  Li, detected for the first time directly 

on Mars, is generally low, below 15 ppm, in the analyzed rocks and soils.  The lack of 

soil enrichment of Li, which is highly fluid-mobile, implies there has been limited influx 

of subsurface waters contributing to the upper soils.  Localized enrichments of up to ~60 

ppm Li have been observed in several rocks but the host mineral for Li is unclear.  

Bathurst_Inlet is a fine-grained bedrock unit sampled in five analysis locations by 

ChemCam and three of the locations show a decrease in Li and other alkalis with depth, 

which may imply the unit has undergone a low level of aqueous alteration that has 

preferentially drawn the alkalis to the surface.  Ba, on the order of 1000 ppm, has been 

detected in a buried pebble sampled in the Akaitcho sand ripple.  The Ba appears to 

correlate with Si, Al, Na, and K, indicating a possible feldspathic composition.  Rb and Sr 

are present in the conglomerate Link at >100 ppm and >1000 ppm, respectively.  Several 

other rock and pebble targets have Rb >50 ppm and Sr >400 ppm.  These analysis 
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locations tend to have high Si and alkali abundances, consistent with a feldspar 

composition.  Together, these trace element observations provide evidence of magma 

differentiation and possible aqueous alteration.           

Introduction 

Mission Overview 

 On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully 

touched down on the surface of Mars, just northwest of the central mound, Mt. Sharp, in 

Gale crater.  The primary objective of Curiosity’s mission is to characterize the geology 

and atmosphere in Gale crater and search for habitable environments or locations that 

sustain or may have sustained life in the past [Grotzinger et al., 2012].  Curiosity landed 

on what appears to be the distal end of an alluvial fan, based on orbital geomorphology 

[Anderson et al., 2010] and the presence of material consistent with a fluvial 

conglomerate [Williams et al., 2013].  Over the first 100 sols, the rover traveled ~400 m 

and descended ~15 m from Bradbury Landing Site
1
 to a location called Rocknest in the 

Glenelg region where three distinct geologic units meet [Grotzinger et al., 2013].   

 There are two emission spectroscopy instruments on the rover that provide 

complementary chemical information on rocks and soils
2
:  the ChemCam and Alpha 

Particle X-Ray Spectrometer (APXS).  The ChemCam instrument suite has a Laser 

Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI), and this is 

the first planetary mission to use a LIBS instrument [Wiens et al., 2012, Maurice et al., 

2012].  ChemCam is a remote instrument designed to operate at distances of 1.5 to 7 m 

from the rover.  It can detect, dependent on the concentration, all major elements (Si, Ca, 

Mg, Al, K, Na, Ti, and Fe), several minor elements (H, C, N, P, S, Cl, and Mn) and many 

trace elements (Li, B, Rb, Sr, Ba, Cr, Ni, Cu, Zn, As, Cd, and Pb).  Major element 

calibration and some minor and trace element detections for ChemCam are discussed by 

Wiens et al. [2013].   

                                                 
1
 All of the small-scale features names in this paper are informal and are not approved by 

the IAU. 
2
 The term martian soil is used here to denote any loose, unconsolidated materials that can 

be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication of 

the presence or absence of organic materials or living matter is intended, nor is the 

genesis of the deposit. 
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 APXS is a contact instrument that is placed on or very near the surface to be 

analyzed.  APXS instruments were used on the Mars Pathfinder mission [Rieder et al., 

1997] and the Mars Exploration Rovers (MER), Spirit and Opportunity [Rieder et al., 

2003].  Curiosity’s APXS instrument can detect all major elements, several minor 

elements (Mn, P, S, and Cl), and many trace elements dependent on the concentration 

(Rb, Sr, Ba, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, and As) [Campbell et al., 2012].  Due to peak 

overlap, APXS has difficulty quantifying Ba and it cannot detect Li [Campbell et al, 

2012].   

 In this study, we focus on trace element calibrations for elements that are readily 

detectable by ChemCam at low (<100 ppm) concentrations and for which sufficient data 

collected using the ChemCam flight model (now on Mars) is available to use for 

preliminary modeling:  Li, Ba, Sr, and Rb.  The most accurate univariate and PLS models 

are used to provide abundances for Mars targets and, when applicable, the results are 

compared to APXS abundances.  These results are the first in situ Li and Ba abundances 

for Mars. 

 

Geological Significance  

 

Trace element observations of Li, Ba, Rb, and Sr may provide clues to the origin 

of igneous rocks and the abundances of fluid mobile trace elements (e.g., Li and Ba) may 

also provide clues to identifying alteration processes that a rock could have been exposed 

to on or near the surface.  Li preferentially remains in a basaltic melt as crystallization 

occurs and replaces Mg in pyroxene crystals forming from the residual melt; hence they 

may become enriched (up to ~100 ppm) in Li [e.g., Su et al., 2012].  Li is also used as a 

chemical signature due to its high mobility in fluids [Newsom et al., 1999] and it may be 

a key indicator to determine if the salt component of the martian soils [Clark et al., 1982] 

is due to vapor deposition or hydrothermal processes [Newsom et al., 1999].  Some clay 

minerals retain Li, either in the mineral structure or adsorbed in the interlayer region 

[e.g., Horstman, 1957].  During crystallization, Ba
2+

 substitutes for K
+
 in the alkali 

feldspar structure where it is generally charge balanced by Ba
2+

 + Al
3+

 = K
+
 + Si

4+
.  

Surfaces of rocks may become enriched in Ba through alteration processes, e.g. in rock 

varnishes [Garvie et al., 2008].  The ionic radii of Rb
+
 and K

+
 are approximately the same 
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size and these ions are of the same valence state.  Rb will substitute for K in the feldspar 

and mica mineral structures [e.g., Shaw, 1968], and the ratio of K/Rb can indicate the 

amount of fractionation, weathering, hydrothermal alteration, diagenesis, or 

metamorphism the material has undergone [e.g., Shaw, 1968; Nath et al., 2000; 

Wronkiewicz and Condie, 1990].  Sr tends to remain in a basaltic melt during fractional 

crystallization (i.e., the partition coefficient, Kd, for Sr in most of the crystallizing 

minerals like olivine and pyroxene is much less than one).  In more felsic compositions 

(where Kd is closer to one), Sr substitutes for Ca in plagioclase, hornblende, micas, and 

pyroxene.  

 

Previous Detections on Mars 

 

 The capability to detect Rb and Sr was available on the 1977 Viking landers.  

Each lander had an X-ray fluorescence (XRF) spectrometer capable of detecting Rb and 

Sr at levels ≥ 30 ppm [Toulmin et al., 1977].  The soil samples they analyzed did not 

show Rb concentrations above this detection limit, and they found Sr concentrations of 

60 ± 30 ppm and 100 ± 40 ppm in two soil samples.  Toulmin et al. [1977] interpreted 

these concentrations to be consistent with primitive, non-granitic, source material.  The 

Pathfinder and MER rovers had APXS instruments capable of nominally detecting Sr, Ba 

and Rb.  Due to the difficulty in analyzing the scatter peaks that overlap peaks from these 

elements, no information is currently available from these missions for these elements.  

 

 Mars Meteorite Detections 

 Whole rock Rb concentrations in the Mars meteorites are under 15 ppm [e.g. 

Nakamura, 1982; Ruzicka et al., 2001; Borg et al., 1997; Borg et al., 2002; Borg and 

Draper, 2003].  Bridges and Grady [2000] found Rb abundances up to 46 ppm in siderite 

grains and 17.7 ppm in clays in the Lafayette meteorite.  Agee et al. [2013] found up to 

75 ppm Rb in the light-toned material separates of NWA 7034, which are thought to be 

feldspar and Cl-apatite.  Sr values up to 110 ppm were observed in plagioclase grains in 

the basaltic shergottite QUE 94201 [Borg et al., 1997].  Concentrations of Sr up to 1050 

ppm were seen in siderite grains and up to 929 ppm in clays in Lafayette [Bridges and 

Grady, 2000].   A compilation of Ba concentrations in shergottites by Ruzicka et al. 
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[2001] show average whole rock concentrations of 16.4 ± 11.8 ppm.  Bridges and Grady 

[2000] observed Ba concentrations up to 106 ppm in Governador Valadares siderite 

grains and up to 36.6 ppm in Lafayette clays.  Ba-rich feldspars have been observed by 

Hewins et al. [2013] in NWA 7533, a pair to the NWA 7034 martian breccia [Agee et al., 

2013].  Li concentrations in Mars meteorites, both whole rock and in pyroxene grains are 

<10 ppm [e.g., Beck et al., 2004; 2006; Barrat et al., 2002; Herd et al., 2005; Lentz et al., 

2001].   

   

LIBS Background 

  LIBS is an emission spectroscopy technique in which a high-powered laser is 

focused on a solid, liquid or gas and a portion of the material is converted to a plasma, 

exciting each species to a higher state.  As the species relax, they emit at wavelengths 

characteristic of certain elements [e.g., Cremers and Radziemski, 2006].  This technique 

has developed rapidly over the last several decades and numerous experimental designs 

have been constructed tailored to meet specific needs.  The hardware chosen (i.e. the 

lasers and spectrometers) and operational needs (i.e., stand-off distance, energy density, 

and observational window of the plasma) constrain the obtainable accuracy and precision 

of a measurement.  ChemCam was designed as a semi-quantitative technique; so far it 

lacks the accuracy of a contact instrument like APXS, but in exchange, it provides a 

much larger number of analyses at high spatial resolution (~350 µm) for which 

approximate abundances can be obtained.   

  For most elements, there are many emission lines and, if the plasma is optically 

thin, there is generally a linear relationship between each peak’s intensity and the element 

concentration.  In an optically thick plasma, e.g., a plasma with a very high density, it is 

possible for a phenomenon called self-absorption to occur.  In this process, outer layers of 

plasma can absorb photons emitted by the central portion of the plasma and under 

extreme conditions an emission line may exhibit a characteristic peak shape with a dip in 

the center where the strongest absorption occurs.  Under less extreme conditions, the 

peak area no longer increases linearly with concentration and the curve may be better fit 

with a second order polynomial, exponential or logarithm.  According to Bulajic et al. 

[2002], intense peaks can begin to suffer from self-absorption at concentrations as low as 

0.1 wt%, although the low pressure on Mars may reduce self-absorption.  Use of 
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calibration curves for univariate peak area quantification will take this non-linearity into 

account; linear-based multivariate regression techniques such as Partial Least Squares 

(PLS) may not be significantly affected if the non-linearities are present in the set of 

spectra used in modeling and if such non-linearities affect only a few peaks.   

 

Previous Studies on Trace Elements using LIBS  

  Li has not been the subject of many LIBS studies.  Fabre et al. [2002] developed 

a univariate calibration curve using the Li 670.7 nm unresolved doublet in several 

minerals.  Under their operating parameters, they observed a linear relationship up to 

0.3% Li and a second linear relationship from 0.3 wt. % to the highest Li sample at ~8.5 

wt. % Li.  Wiens et al. [2013] determined the limits of detection (LOD) for Li to be 

between 0.3 and 25 ppm depending on the LOD metric for one set of ChemCam 

conditions.     

  Ba concentrations in soils were calibrated using a univariate approach with the Ba 

455.5, 493.4 and 553.55 nm emission lines and multivariate regression [Essington et al., 

2009].  The 493.4 nm line has the highest correlation with Ba content and the lowest 

relative error of prediction.  They also investigated the effect of normalizing to the total 

spectral emission or to the Si 288 nm peak and found normalizing to Si produces a better 

model.  The Ba 233.5 nm line was used by Eppler et al. [1996] to develop univariate 

calibration curves in doped sand and soil matrices and found a linear correlation up to the 

highest concentration presented, 12,000 ppm Ba.  Lazic et al. [2001] used the 553.55 nm 

Ba line and observed a highly non-linear relationship up to 800 ppm Ba.  The calculated 

LOD for Ba for one set of ChemCam operating conditions was determined by Wiens et 

al. [2013] to be between 46 and 973 ppm depending on the LOD metric.         

There are few studies on the use of LIBS to detect Rb in geological matrices.  

Cousin et al. [2011] lists several Rb lines detectable under ChemCam-like operating 

parameters on geological materials but did not investigate Rb further.  Wiens et al. [2013] 

discusses locations of Rb lines, overlapping peaks, and calculated the LOD to be between 

11 and 42 ppm depending on the LOD metric for one set of ChemCam conditions. 

 Several LIBS studies have quantified Sr in solid non-biological materials.  

Mansoori et al. [2011] analyzed cement powder and used the Sr II emission line at 
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407.77 nm and found a limit of detection of 20.3 ppm Sr.  They built a univariate 

calibration curve using the ratio of the Sr line to a Ca line.  Their experiment setup was 

nearly in situ (f=35 mm) with 37 mJ/pulse energy, gated to optimize each element 

studied.  Martin et al. [2012] used an in situ gated system with 50 mJ/pulse on CaCO3 

pellets doped with Sr as an analogue for nuclear fission products.  They used the 460.8 

nm Sr I emission line for univariate calibration and the full spectrum for multivariate 

analysis and found a detection limit of 10 ppm.  Fabre et al. [2011] demonstrated utility 

of the synthesized glass calibration targets that are attached to Curiosity rover’s body and 

periodically analyzed by ChemCam on Mars to quantify Sr.  They used the data collected 

from the ChemCam flight model, which are also used in this study as test sets, to develop 

a univariate calibration curve using the Sr II 421.7 nm peak.  Wiens et al. [2013] found 

the LOD to be between 15 and 358 ppm depending on the selected LOD metric for one 

set of operating conditions.     

 

Experimental Methods  

Calibration Set 

Samples selected for the primary ChemCam calibration endeavor were chosen to 

encompass the expected range of the elements most likely to be encountered on Mars.  

Samples used in this analysis are listed with relevant compositional information in Table 

1.  Readers are directed to the publication by Wiens et al. [2013], which discusses the 

sample suite in detail.   Eight of the samples are calibration targets (ChemCam 

Calibration Targets, or CCCTs) that are replicates of materials sent to Mars on the rover 

[Fabre et al., 2011; Vaniman et al., 2012].  These targets are fabricated glasses 

(designated Picrite, Shergottite, and Norite due to their compositional similarity to 

picritic, shergottitic and noritic materials), ceramics (NAU2-Lo-S, NAU2-Med-S, NAU2-

Hi-S, and KGA-Med-S) designed to mimic expected compositions on Mars, and 

Macusanite, a natural peraluminous obsidian glass.  All other samples are powdered 

(generally < 60 µm grain size [Wiens et al., 2013]) and homogenized pressed pellets that 

were used to eliminate grain size as a factor and minimize heterogeneity.  Samples were 

obtained from a variety of sources including Brammer’s Standard Company, Inc., the  
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Table 1.   Trace element compositions of standards used in this study
a
.   

Sample Li (ppm) Ba (ppm) Sr (ppm) Rb (ppm) 

AGV2* 11 1130 662 66.3 

BCR2 9 677 340 46.9 

BEN* 13 1025 1370 47 

BHVO2* 4.8 131 396 9.11 

BIR1* 3.2 7.14 109 0.2 

BK2* - 1001 487 132 

BT2* - 480 559 - 

BWQC1 - 122 161 26.1 

Cadillac - 711 49 129 

GBW07104 18.3 1020 790 38 

GBW07105* 9.5 498 1100 40 

GBW07108 20 120 91
b 

32 

GBW07110 17.5 1053 318 183 

GBW07113 12.7 506 43 213 

GBW07313 60 4400 267 97.3 

GBW07316 35 2500 667 50 

Granodike - 212 264 21.5 

GSR2 18.3 1020 790 37.6 

GUWGNA 2276 51 - 2020 

GYPA - 28 930
b
 1 

GYPB - 22 118
b
 1.5 

GYPC - 53 296
b
 8 

GYPD - 107 152
b
 24 

JA1 10.2 303 264 10.7 

JA2* 29.1 315 250 71 

JA3* 14 318 294 36 

JB2* 7.78 208 178 6.2 

JB3* 7.21 251 395 13 

JDO1* 0.4 6.14 119
b
 1.5 

JR1 62.3 40 30 257 

KGa-Med-S* 7433 140 152 6 

M6-Haggerty - 1909 1282 68.5 

Macusanite 3528 1.3 1.3 - 

MHC1356 - 294 51.3
b
 3.2 

MHC2319* - 455 1931
b 

1.3 

MHC3828 - 78.5 2053
b
 22.2 

MO7 5.4 7480 1745 12 

MO12 9.2 311 865  

MO14 7.5 172 468 4 

Moppin - 273 405 17.4 

MSHA - 367 483 31.1 

NAu2-Hi-S* 7433 56 144 4 

NAu2-Lo-S* 7433 162 236 9 
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a
Values in grey indicate those samples were not used in modeling for the particular 

element.  “-“ indicates no chemical information is available.  Samples in bold are 

calibration targets that are on the Mars rover.  Macusanite was not shot in the RTC 

database but spectra taken while on Mars are available.  Values in italics indicate that 

sample’s peak was not fit for univariate modeling but the samples were used for PLS. 
b
Samples removed for matrix matched modeling.*Samples shot at multiple distances 

during TVAC calibration.  MHC2319, Norite, Picrite, SRM688, and Ultramafic were 

only shot at 1.6 and 3 m; Shergottite was shot at 1.6 and 3 m but 3 m data was 

unavailable.  STSD1 was also shot a multiple distances but TVAC data for this sample 

was excluded due to missing data. 
 

United States Geologic Survey (USGS), the National Institute of Standards and 

Technology (NIST), the Clay Minerals Society (CMS), and the collection of M.D. Dyar 

at Mt. Holyoke College.   

 

Instrument Description and Data Collection 

 The ChemCam LIBS uses a Nd:KGW (neodymium-doped potassium gadolinium 

tungstate) pulsed laser providing up to 14 mJ on target at 1067 nm to generate a small 

Table 1 (cont.)     

Sample Li (ppm) Ba (ppm) Sr (ppm) Rb (ppm) 

NAu2-Med-

S* 

7433 107 185 6 

Norite* 44 355 284 - 

Picrite* 7.2 1283 1481 - 

SARM51 - 335 44 37 

SGR1* 147 290 420 83 

Shergottite* 7.5 1158 654 - 

SRM688* - 200 169 1.91 

SRM88B - - 64
b
 - 

SRM97A 510 670 1500
b
 - 

SRM98A 325 270 330
b
 - 

STSD1 11 630 170 30 

STSD3 23 1490 230 68 

STSD4 14 2000 350 39 

Trond - 347 668 21.8 

Ultramafic* - 434 283 35.8 

UMPH - 2980 382 74.1 

UNSAK - - 2800
b
 - 

UNSZK 279 - - 860 

VH1 - 277 50 223 

VH49 - 37 234 4.6 

VZO106 - 482 120
b
 35.1 

VZO114 - 63 160
b
 10 

WM - 351 400 3.7 
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plasma on a target.  Plasma light is collected and transmitted through a telescope to an 

optical fiber and demultiplexer that splits the light to three spectrometers:  ultraviolet 

(UV; 240.0 - 342.2 nm), violet (VIO; 382.1 - 469.3 nm), and visible to near-infrared 

(VNIR; 473.7-906.5) [Maurice et al., 2012; Wiens et al., 2012].  The Full Width Half 

Maximum (FWHM) for each spectrometer is 0.15 nm, 0.20 nm, and 0.65 nm for the UV, 

VIO and VNIR, respectively.  Data used for this study were obtained during calibration 

of the ChemCam flight model (FM) at the Los Alamos National Laboratory, Los Alamos, 

NM.  Two calibration datasets were collected (Table 2); one with the FM at room 

temperature (20°C), referred to here as the room temperature calibration (RTC) and the 

other with the FM in a thermal vacuum chamber (TVAC) with the laser at -10°C.  The 

RTC was conducted at 3 m with an approximate laser output of 9.5 mJ per 5 ns pulse.  

The TVAC tests were conducted at 1.6, 3, 5, and 7 m with a laser output of 10 mJ per 

pulse at 1.6 m and 14 mJ per pulse at the other distances.  Forty (RTC) or 50 (TVAC) 

spectra were taken at four locations on each sample.  The laser was operated at 3 Hz 

(nominal ChemCam repetition rate) for all tests.  During analysis, samples were housed 

in a chamber containing a 7 Torr CO2 atmosphere to approximate expected conditions on 

Mars.   

 

 

Table 2. Experimental datasets. 
 

 

 

 

 

 

 

 

 

 

a
Laser output reduced by 8% for the RTC and 20% for the TVAC due to mirrors and 

windows. 
b
Radius from Maurice et al. [2012] 

c
Room temperature calibration; laser at 20°C. 

d
Thermal vacuum calibration; laser at -10°C  

e
Data used from Sol 27, Sol 49, Sol 66, Sol 75, Sol 76, Sol 134, Sol 153, Sol 192  

 

Description Distance (m) Output Energy 

(A, mJ) 

On-target 

Energy (mJ)
a 

Spot Size 

(µm)
b 

Fluence 

(J/cm
2
)  

RTC
c 

3 95, 9.5 9 207 21 

TVAC
d 

1.6 60, 10 8 183 24 

TVAC 3 95, 14 11 207 26 

TVAC 5 95, 14 11 242 19 

TVAC 7 95, 14 11 276 14 

CCCTs
e 

1.6 40-60, 6-10 6-10 181 18-31 



36 

 

Spectral Pretreatment 

 An ambient light background spectrum obtained on the sample without firing the 

laser is subtracted to remove non-LIBS signal.  Spectra are then denoised using a wavelet 

transform method, the continuum is removed, and the instrument response function is 

applied.  Details of this procedure are described in Wiens et al. [2013].  Peak areas are 

obtained directly from this data; normalization to the total emission for the appropriate 

individual spectra range (UV, VIO or VNIR) is done to the obtained peak area.  

Multivariate modeling is done using spectra that have been normalized to the total 

emission by spectral range.  Normalization is a common procedure in LIBS data 

processing that is used to correct for systematic effects such as variations in laser 

intensity.  This procedure can be done in a variety of ways and in this situation we have 

chosen to normalize to the total emission by spectral range.  By normalizing to the 

individual spectral range, anomalies with the instrument response function, hot pixels, 

spikes in emission due to cosmic rays striking the detectors, etc. are not distributed to the 

entire spectrum.   

 A visual inspection of the spectra revealed that up to the first five shots at each 

analysis spot often had surface contamination in the form of adsorbed water and/or 

manipulation residues.  Previous studies using these data have simply removed the first 

five spectra; in this study, we chose to use an outlier removal algorithm based on the 

Pearson’s correlation coefficient described in Oldham et al. [2008].  This algorithm 

typically removed 3 to 10 spectra from the group of 160 spectra, and 65% of the removed 

spectra are among the first five shots.  After this removal process, the remaining spectra 

were evenly distributed into three groups with 45 spectra in each.  Each group of 45 was 

then averaged to form a single spectrum, resulting in three spectra for each target.  This 

homogenization of the spectra was deemed necessary for the trace elements which, due to 

their low signal, are more susceptible to slight compositional and/or laser intensity 

variations across the four locations on each pellet.  Therefore, the LIBS signal should 

more closely represent the reference composition.      

 

APXS Calibration 

  When taken on the same target, APXS data for major and trace elements are 

compared to ChemCam estimates.  A brief description of the APXS technique is 



37 

 

described below and readers are referred to the listed citations as well as articles by 

Berger et al. [2013] and Schmidt et al. [2013] for additional details.   

The APXS employs two well-known methods of X-ray emission analysis 

simultaneously. Its six 
244

Cm sources decay primarily by alpha particle emission, and 

90% of these decays give rise to subsequent emission of the L X-rays of the plutonium 

daughter atom.  At the sample, the alpha particles cause particle-induced X-ray emission 

(PIXE), while the Pu L X-rays cause X-ray fluorescence (XRF).  PIXE preferentially 

excites the lighter elements from Na upwards, with the excitation probability declining 

rapidly with increasing atomic number Z [e.g., Johansson and Campbell, 1988]. XRF 

preferentially excites the heavier elements, but its contribution declines with decreasing Z 

[e.g., Van Grieken and Markowicz, 1993]. Thus for Ti, the two excitation modes 

contribute about equally but as Z increases, the XRF:PIXE ratio for Fe reaches ~95%. 

The two modes are thus well-balanced and provide a conveniently uniform sensitivity for 

Na – Sr.  

To convert these dual-technique spectra to element concentrations, a software 

package GUAPX was developed by Campbell et al [2009; 2010]. This combines a non-

linear least-squares fit of the spectrum with a rigorous treatment of matrix absorption 

effects based on the fundamental physics of XRF and PIXE. GUAPX is a derivative of 

the widely-used PIXE software code GUPIX [Maxwell et al., 1995]. During the final 

refinement of GUAPX, spectra from the geochemical reference materials used in the 

MER APXS calibration of Gellert et al [2006] provided valuable input for testing.  

 The MSL APXS was calibrated using an expanded suite of ~60 geochemical 

reference materials, including a greatly increased contribution of sediments [Campbell et 

al., 2012]. The GUAPX results were presented in the form of ratios (R-value) between 

the GUAPX concentration and the certified concentration for each element. For most 

elements, the mean R-value across the standard was close to unity, with a scatter 

attributable to counting statistics, peak fitting error, and sample heterogeneity. The latter 

term simply reflects the fact that certain elements are hosted mainly by certain minerals 

and not by others. For certain elements in certain rock types, e.g. Al and Mg in basalts, 

departures from unity up to ~ 20% are observed. If the mineralogy is known, empirical 

corrections can be applied to refine such results.        
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Statistical Methods 

There are two categories of techniques commonly used to develop calibration 

models, univariate and multivariate techniques.  Univariate models often consist of fitting 

a linear regression model to data from a dilution series in which the target element 

concentration is progressively decreased within a controlled matrix [e.g. Hilbk-

Kortenbruck et al., 2001].  This is a useful technique for LIBS data as it has been shown 

that emission lines can be significantly affected by the matrix, either the chemical matrix 

or the physical matrix [Eppler et al., 1996; Krasniker et al., 2001; Anzano et al., 2006; 

Bousquet et al., 2007].  But, development of matrix-matched calibration curves for every 

element for every geological matrix would be impractical and in most of the analyses 

presented here, all samples regardless of the chemical matrix are used.  The physical 

matrix is controlled by powdering and pressing the samples into pellets.  Development of 

matrix-matched models for targeted matrices may improve results and will likely be used 

on a case-by-case basis as new data are received from Mars.   

To mitigate the influence of matrix effects and reduce the reliance on a single 

peak for modeling, researchers have applied multivariate statistical techniques to LIBS 

spectra of geological materials [e.g. Laville et al., 2007; Clegg et al., 2009; Tucker et al., 

2010; Dyar et al., 2011; 2012; Anderson et al., 2011; 2012; Lasue et al., 2012].  PLS has 

been used by the ChemCam team for rapid major element abundance determination 

[Wiens et al., 2013].  However, PLS is often less viable in its current form for minor and 

trace elements due to their relatively small signals and/or low abundances.  Moreover, 

PLS tends to predict minor element abundances based strongly on major element 

emission lines due to geochemical isomorphous substitutions, such as that of Rb
+
 for K

+
 

in feldspars [Speicher et al., 2011].  Univariate modeling may therefore be required for 

trace elements, even though the results are known to be affected by matrix effects.  

Training sets for both univariate and PLS modeling are obtained from the RTC dataset, 

which contains the most extensive suite of samples, and these models are tested using the 

TVAC datasets, which contain a more limited selection of samples, as well as the nine 

CCCTs. 

For most of the trace elements, the training set does not have standards with an 

even distribution across the relevant composition ranges expected to be encountered on 
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Mars.  Often the upper compositional ranges are underrepresented in the training sets.  

This uneven distribution generally results in a lower error estimate than would be 

obtained if the lower concentration range were reduced to match the upper concentration 

range.  However, if there are no significant outliers present that may be incidentally 

removed in an attempt to balance the compositional range, estimates will not change 

significantly and therefore, for this preliminary study, no attempts were made to balance 

the compositional range.  It is expected that these results will be reevaluated when a more 

complete training set has been developed.            

 

Univariate Modeling 

For each trace element studied here, a generalized sequential series of modeling 

techniques was applied.  Univariate models were built using peak areas from all peaks 

large enough to fit using one emission line per element.  The PeakFit 4.12 commercial 

software (Systat Software, Inc.) was used to set a local linear background over a small 

range around the target peak and the peak is fit either with a Gaussian Amp or Voigt 

Amp profile; details on these procedures will be described in the appropriate section for 

each element.  Least squares regression models were built using the program “lmcal” in 

the “quantchem” package [Komsta, 2012] from the open source software R [R 

Development Core Team].  Univariate models are cross-validated using a “leave one 

sample out (three spectra per sample)” method and the removed spectra are predicted in 

the model.  These predictions are then used to determine the Root Mean Square Error of 

Prediction (RMSEP) for comparison to the PLS models, as described in the following 

sections.  The “quantchem” package was used to quickly build multiple models for the 

cross-validation.   

 

Multivariate PLS Modeling 

Briefly, PLS regression produces a calibration model by projecting the data into a 

new dimensional space and regressing two data matrices, X and Y, against each other [e.g. 

Naes et al., 2004].  The X matrix, or the input matrix, consists of the set of spectra or the 

selected wavelength ranges from the spectra.  The Y matrix consists of the element 

compositions or the set of compositions.  If a set of compositions of more than the 
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element in question is used, the technique is referred to as PLS2, and the modeling will 

reduce the covariance between the linear functions for both matrices.  Often, not all trace 

elements are analyzed for geochemical reference materials.  Thus, the training set must 

be customized for each element separately to include only reference materials with valid 

compositions for the element of interest.  This precludes the PLS2 method, which builds 

a model to predict multiple elements at once.  Therefore, for this study, each element is 

modeled individually (PLS1).  The PLS modeling produces linear combinations of the X 

matrix that describes the variance between the X and Y matrices; these are called 

components or latent variables (LVs).  Selection of the appropriate number of LVs is of 

primary importance for building robust models and the choice of LV can be made using 

the RMSEP (described below).   

In this study, one or more PLS models were constructed using the ‘plsr’ package 

[Mevik and Wehrens, 2007] in R for comparison to the univariate models.  The ‘plsr’ 

package automatically mean-centers the data matrix.  PLS models are cross-validated 

using the same “leave one sample (three spectra per sample) out” method used in the 

univariate modeling cross-validation.  As with the univariate modeling, multiple PLS 

models were built to optimize the analysis of the particular element.  Initially, a model 

using nearly the entire spectral range (246.5-335.7, 388-469, and 492.5-857 nm) was 

built to establish a baseline.  This model is expected to have the highest error and be the 

least robust due to influence from the many other peaks in the spectra, some of which are 

correlated to the trace element in question due to the geochemical affinities between 

major and trace elements, mentioned above.  The second PLS model mean-centers and 

standardizes the matrices to a standard deviation of one.  Standardizing the wavelength 

bins equalizes the variables and so large peaks no longer have more influence than small 

peaks, thus increasing the contribution of trace elements to the modeling.  The final PLS 

model is developed on a reduced wavelength range selected to have a high (>0.6) 

Pearson’s correlation coefficient between the wavelength and the element.  Due to strong 

correlations between elements, these select wavelengths are further reduced to only those 

known to correspond to an emission line of that element.  This model should produce 

similar results to a univariate model but does not require peaks to be fit. 
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Error Analysis and Component Selection 

To allow comparisons between univariate models and PLS models, we have 

chosen to use the RMSEP for the error assessment for all modeling.  RMSEP is a 

measure of the variability between predicted and reference values for the sample training 

set.  The RMSEP is calculated as the square root of the sum of the square of the 

differences for the ith value (di) between a reference value (ri) and a predicted value (pi) 

(di =  ri – pi) divided by the number of data points (n):  RMSEP = √(∑(di)
2
/n).   

For PLS modeling, the RMSEP can be used to select the appropriate LV, 

previously described as key to making accurate estimates.  The choice of LV is critical to 

building a model that is sensitive enough to use enough LVs to be able to accurately 

predict a sample’s composition while not reaching the point where the noise becomes a 

factor or the model becomes too specific to the training set.  A robust model is 

particularly important when the operational system has as many variables as ChemCam 

does.  Analyses on Mars are done at different distances, laser energies, material types 

(soils/rocks), surface textures, and incidence angles.  These factors will inevitably reduce 

the accuracy of the analyses, but a robust model will be as generalizable as possible.  

Commonly the LV associated with the first local minimum RMSEP or the global 

minimum RMSEP over a set number of components, e.g. 20 LVs, is chosen.   

However, ChemCam’s current situation requires a unique set of criteria to be 

established to select the optimal LV.  At the present time, the RTC dataset is the only 

dataset with a sufficient number of samples of a variety of chemical matrices to be able to 

model on and is representative of a single operating condition (Table 2).  ChemCam will 

generally operate at a higher energy than was obtained under any of the training sets, 

including the TVAC datasets.  ChemCam will also operate at distances up to 7 m, as 

represented by the TVAC 1.6, 3, 5 and 7 m datasets.  A distance correction algorithm is 

presented in Melikechi et al. [2013] but was unavailable for use in this study.  In addition 

to the energy and distance, which can be considered together under the umbrella of on-

target fluence, there is the additional issue of differences between spectra taken on Earth 

in a Mars chamber and Mars itself.  These effects can be studied to a certain extent using 

the CCCTs, which were analyzed on Earth at the same distance as they are analyzed on 

Mars (1.6 m) and the same energy output (60 A on Earth, 40-60 A on Mars).  The on-
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target fluence (Table 2) is 24 J/cm
2 

on Earth and 18 to 31 J/cm
2 

on Mars.  Differences 

between simulated Mars and actual Mars include gas composition (100% CO2 versus 

96% CO2, 1.9% Ar, 1.9% N2 and trace O2 and CO [Mahaffy et al., submitted]), pressure 

(7 Torr versus 5.6 to 6.2 Torr, converted from Haberle et al. [2013]), and atmospheric 

density.  Notable differences between spectra include increases in C and O peak sizes on 

Mars.  The listed factors are currently being investigated to determine if these differences 

significantly affect calibration results.  It may be that new training set spectra will be 

required to encompass these sources of variability.  

Until such a training set is available, additional steps are required to ensure that 

the optimal LV is being used for all operating conditions since the optimal LV for the 

training set may not be acceptable at different distances or for Mars data analysis.  First, 

we build a model using the RTC training set as previously described and the RMSEPs 

from the validation for LVs 1-20 are tabulated.  Data from the TVAC datasets and the 

Mars CCCTs are then predicted in the model and the first 20 LVs for these datasets are 

calculated and all RMSEPs are combined in a table and the sum of the RMSEPs for each 

LV is determined.  The goal is to minimize the RMSEP across all datasets but more 

emphasis is placed on the training set, TVAC 1.6 and 3 m, and CCCTs on Mars because 

ChemCam most often operates at distances of < 4 m.  During this process, it was noted 

that simply selecting the lowest RMSEPs does not necessarily indicate the model is 

acceptable as there may be little correlation between the actual composition and the 

predicted composition, particularly if the compositional range of the dataset is highly 

skewed towards the lower concentration range.  It was decided that it was more important 

to approximately characterize high-abundance samples than to obtain high accuracy for 

the low compositions.  As a quick check, plots of reference composition versus predicted 

composition were made for each dataset for each of the 20 LVs and these were 

qualitatively evaluated prior to the selection of the RMSEP to be sure this aim is met.   

Next, the best model is tested on Mars data.  One such test is to see how the 

model’s estimates behave for shot-to-shot data.  When interrogating a point on a rock, 

single shot abundance estimates should be fairly consistent as the peaks generally do not 

vary significantly over the small depth profile or, if there is a significant change in 

composition, the estimates should change relatively smoothly.  Examination of the shot-
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to-shot estimates for Mars targets indicates consistency up to 15+ LVs for PLS models 

that incorporate a large wavelength range.  However, for the reduced wavelength range 

model (recall it is essentially a univariate model), after more than a few LVs, in general, 

the shot-to-shot estimates begin to vary widely.  This is expected given there are few 

wavelength variables remaining in the model and therefore the “noise”, which in this case 

corresponds to differences in continuum removal that appear at the edges of the peaks 

and additional influence from the less important peaks, begins to quickly degrade the 

predictive capability of the model.  To test whether the selected LV has an acceptable 

level of shot-to-shot precision, estimates for LVs 1-20 are examined. A qualitative 

assessment is made to quickly reduce the number of selectable components to those that 

have relatively smooth shot-to-shot estimates.  After all of these factors are considered, 

the number of LVs is selected and the chosen model is used to obtain compositions of the 

Mars targets.                                 

Calibration Models 

Lithium 

 The full available compositional range for Li includes the ceramic calibration 

targets (7433 ppm Li) and GUWGNA (2276 ppm Li); the next highest Li concentration is 

510 ppm (SRM97A).  There are three standards with Li between 510 ppm and 147 ppm, 

and there are 28 standards with less than 62 ppm Li.  This study uses only standards with 

510 ppm Li or less.    

 The primary Li peak is an unresolved doublet at 670.96/670.98 nm (Table 3), a 

secondary Li peak is an unresolved doublet at 812.85/812.87 nm, and a third unresolved 

doublet is at 610.52/610.52 nm.  The primary Li line is present at concentrations down to 

the lowest available in the training set, BIR with 3.2 ppm.  The secondary Li line is 

generally present at higher concentrations (> ~20 ppm) and it is on the edge of a large Na 

peak at 818.55 nm, which may obscure the presence of Li at this location.  The third peak 

overlaps significantly with a Ca peak at 610.44 nm and is not used in this study.    

 The univariate model (U1) was constructed by fitting a Gaussian profile to the Li 

I 671 nm peak for all 32 standards available.  Figure 1a shows an example fit for one of 

the Norite CCCT spectra from the RTC dataset and Figure 1b compares the Norite CCCT 

between the various dataset; note TVAC 5 and 7 m are not available for Norite due to  
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Table 3. Spectroscopic data of emission lines used in modeling  

  

 

 

 

 

 

 

 

 

 

a
Obtained from Kramida et al. [2012] 

 

poor coupling between the laser and sample at these distances.  Figure 1b hints at a 

potential problem with estimating Li.  After normalization, the spectra taken on Mars  

show the Li peak at ~1/2 the height of the RTC spectra on which the model is built.  

There are no other CCCTs with an appropriate range to test if this is an anomaly with 

Norite alone or if it will be a systematic difference with Li on Mars.  Picrite and 

Shergottite CCCTs have much lower Li abundances, ~7 ppm, and the Picrite Li peaks are 

significantly smaller in amplitude on Mars while Shergottite Li peaks are of similar size 

between Earth and Mars.  Macusanite and the ceramic CCCTs have high Li 

concentrations (3528 ppm and 7433 ppm, respectively) and therefore these samples are 

beyond the range of the model.  However, normalized peak areas between Earth and 

Mars for the ceramic CCCTs are of similar size, indicating the issue may be with the 

Norite target or a matrix effect.  Given the currently available information, we cannot say 

if there will be a systematic underestimation of Li, but we note the possibility. 

 The univariate concentration versus peak area model for Li is shown in Figure 1c.  

Error bars are from the PeakFit software and represent the standard error for the entire fit, 

including the baseline.  The data were best fit with a second order polynomial, indicating 

self-absorption is occurring in the plasma.  The highest concentration sample was unable 

to be predicted in the polynomial regression model due to the square root term being an 

imaginary number.  For these three spectra, a separate linear regression model was used 

Species 

λ 

 (vacuum, nm) Ei - Ek (eV)
a
 

No. of Channels  

(Selected  λ for PLS) 

Avg. Corr. 

Coefficient 

Rb I
 

303.28/303.30 0.0 – 4.1 5 (303.36 – 303.56) 0.79 

Rb I 780.24 0.0 – 1.6 5 (779.85 – 780.67) 0.89 

Sr II
 

407.89 0.0 – 3.0 5 (407.77 – 407.94) 0.66 

Sr II
 

421.67 0.0 – 2.9 15 (421.28 – 421.90) 0.70 

Sr I 460.86 0.0 – 2.7 7 (460.76 – 460.99) 0.63 

Li I
 

670.96/670.98 0.0 – 1.8 27 (667.56 – 673.33) 0.87 

Li I
 

812.85/812.87 1.8 – 3.4 6 (812.52 – 813.53) 0.91 

Ba II 455.53 0.0 – 2.7 16 (455.39 – 455.97) 0.75 

Ba II 493.55 0.0 – 2.5 5 (493.10 – 494.01) 0.84 

Ba II 614.34 0.7 – 2.7 3 (614.05 – 614.49) 0.67 

Ba I 650.06 1.2 – 3.1 2 (649.97 – 650.18) 0.62 

Ba I 728.23 1.1 – 2.8 4 (727.72 – 728.35) 0.69 
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to predict them.  The resulting RMSEP 

is 36 ppm.  Figure 2a is a reference 

versus predicted concentration plot 

which shows that 36 ppm is likely an 

underestimate on the error due to the 

higher density of samples <60 ppm.  

Examination of the TVAC and CCCT 

estimates in Figures 2b-f show that 

there is the potential for over- or under-

estimates at higher concentrations 

(~150 ppm), but in most cases a “high” 

concentration can be distinguished 

from a “low” concentration.  The 

univariate modeling is consistently at 

or below a RMSEP of ~55 ppm and the 

training set RMSEP is 36 ppm.   

 Three PLS models were 

constructed and examined.  Model P1 

uses the full wavelength range and 

examination of the RMSEPs for the 

first 20 LVs and the reference versus 

predicted plots indicates that 7 LVs is 

optimal for this model.  LV 7 does not 

predict the high concentration standard 

(SGR1 147 ppm) well for the TVAC 

data but it is acceptable for the training 

set and CCCTs.  The RMSEP for the 

training set for this model is 45 ppm 

and the sum of the RMSEPs for each 

dataset is slightly higher than the 

univariate model.   

Figure 1:  (a) Example Gaussian fit for the 

Li 671 nm peak on the RTC spectrum for 

Norite.  (b) Comparison of Norite spectra 

taken on Mars (CCCT), TVAC 1.6 and 3 m, 

and the RTC.  (c) Univariate peak area 

model for Li.  
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 Model P2 uses the full wavelength range but standardizes each wavelength bin.  

Unlike P1, this model predicts the high concentration sample fairly well but the low 

concentration range is predicted very poorly in the TVAC dataset, often predicting >50 

ppm for samples with <15 ppm.  The training set and CCCTs are also predicted poorly 

for all LVs; the optimal LV appears to be three.   

 The final PLS model, P3, uses a wavelength range that has been reduced to 33 

channels over the Li I 670 nm and Li I 813 nm peaks (Table 3).  Based on the training 

and test sets, LV 11 would be the optimal choice as there is excellent discrimination 

between high and low concentration and good accuracy at both ends.  However, this is a 

large number of LVs for a model with only 33 variables in the X matrix, and therefore 

additional information is needed to determine if this number of LVs provides stable 

estimates.  Examination of the shot-to-shot estimates for an example Mars target, in this 

case Bathurst_Inlet, which has a relatively large Li peak, reveals that LV 11 is not the 

optimal choice (Figure 3).  LV 11 has shot-to-shot estimates that can vary from 65 ppm 

Figure 2:  Reference versus predicted composition plots of Li univariate and PLS 

models for the (a) RTC training set, (b) the CCCTs, (c) TVAC 1.6 m (d) TVAC 3 

m, (e) TVAC 5 m and (f) TVAC 7 m datasets.   Lines indicate 1:1 composition 

estimates.  
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to 10 ppm in a single shot while the LV 1 follows the Li 671 nm peak intensity closely.  

The RMSEP for LV 1 for the training set is 45 ppm and the sum of the RMSEPs for the 

datasets is the lowest of the PLS models discussed.   

 RMSEPs for each dataset are shown in Figure 4a.  Examination of this figure 

indicates that the models with the lowest errors are the univariate model and the PLS P3 

model with 1 LV, which should be (and is) very similar to the univariate model.  The 

averaged spectra for each analysis point on Mars (excluding the first five shots, which are 

typically influenced from dust), for each model are compared in Figure 5a.  

  

Figure 3:  Single shot PLS model P3 Li predictions on a 30 shot depth profile of 

Bathurst_Inlet for LV 1 and LV 11 compared to the Li 671 nm peak intensity.  LV 

11 shows significant fluctuations in Li estimates compared to LV 1.  Predictions 

based on LV 1 closely follow peak intensity.  Arrows indicate which axis is 

associated with which line.  
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Figure 4: RMSEP for the RTC training set, CCCTs, TVAC 1.6 m, TVAC 3 m, 

TVAC 5 m, TVAC 7 m datasets and the total RMSEP for (a) Li, (b) Ba, (c) Sr and 

(d) Rb.  
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Overall, the two models are consistent and there is a cross-over point at around 20 ppm 

where PLS gives higher estimates above 20 ppm and lower estimates below 20 ppm 

relative to the univariate model.  Due to the lesser number of negative predictions in the 

univariate model, this model is preferable for final abundance estimates.           

 

Barium 

The training set for Ba covers the concentration range from 7 to 7480 ppm.  The 

suite of standards is heavily weighted toward the low concentration range with only three 

samples over 3000 ppm, 12 samples between 1000 and 3000 ppm, and 40 samples below 

1000 ppm.  There are five Ba lines in the ChemCam range that can be detected:  Ba II 

455.53 nm, Ba II 493.55 nm, Ba II 614.34 nm, Ba I 650.06 nm, and Ba I 728.23 nm 

(Table 3).  The Ba 493.55 nm line is present in the training set at concentrations down to 

~300 ppm.  Ba 614.34 nm is located between two mid-sized Ca lines, and, in high Ca 

targets, the space between the lines rises upward, which may subsume the Ba peak.  In 

the training set, this Ba peak is present here down to concentrations of ~300 ppm and 

there is a slightly overlapping Fe line that is present in high Fe standards.  The Ba 650.06 

nm line forms a shoulder on a small Ca peak and Ba 728.23 nm is the least sensitive Ba 

line, present only down to ~600 ppm.   

 

Figure 5:  Comparison of selected univariate and PLS models estimates for all 

martian targets for (a) Li, (b) Ba, (c) Sr, all samples, (d) Sr, igneous matrix matched 

and (e) Rb.  Lines indicate 1:1 composition estimates.  
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The most sensitive Ba emission line in the training set is the Ba 455.53 nm line 

and its presence can be detected down to ~100 ppm.  This line is surrounded by three Ti 

lines and an unknown line that overlaps the second Ti line (Figure 6a).  It is likely this 

unidentified line is Si III due to its presence in Macusanite, which is high in Si, although 

doubly ionized lines are rarely present in ChemCam spectra, nor are lines with such high 

excitation energies (Ei = 19.01, Ek = 21.74 eV [Kramida et al., 2012]).  However, no 

other transition listed in the NIST database fits with the emission line at ~455.49 nm in 

Macusanite.  The presence of the putative Si line may to be tied to the on-target laser 

fluence.  In Figure 6a, the spectra of the CCCTs taken on Mars, which have higher on-

target fluences than the RTC training set, show the presence of this line slightly in Picrite 

(top) and more prominently in KGa-Med-S (bottom).  Comparing the Mars spectra for 

KGa-Med-S to the TVAC 1.6 and 3 m spectra, there are similarities in the region around 

the Si line while the TVAC 5 and 7 m data and the RTC do not show this pattern.   

In spite of these complications surrounding the 455.54 nm Ba emission line, it is 

still the best Ba peak for univariate modeling.  Figure 6b provides examples of how these 

lines were fit with Voigt profiles.  Given the close spacing between the peaks, fitting this 

region is difficult.  The univariate model based on the training set peak fits are shown in 

Figure 6c.  The data were fit with a second order polynomial due to what appears to be a 

small amount of self-absorption past 4000 ppm.  There is significant scatter at the mid to 

low concentration range (<3000 ppm) and this is likely due both to several potential 

outliers and the difficulty in fitting the Ba peak.  The outliers will be investigated further 

but we have chosen to leave them in the model because they are evenly distributed 

around the regression line.  Thus, they do not significantly influence the estimates but the 

RMSEP will be increased.  The RMSEP on this model is 640 ppm; two spectra from the 

highest concentration standard (MO7) were unable to be predicted with the quadratic 

formula and were predicted with a linear regression model instead.  Estimates for the 

training set, TVAC and CCCT datasets are shown in Figure 7.  This plot will be 

discussed further after the PLS models have been described, however we note that for the 

CCCTs, Macusanite, which has a Ba concentration of 1.3 ppm, was fit following the 

same peak locations and methods as the other standards and is overestimated by ~80 to 
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Figure 6:  (a) Comparison of the Ba 455.53 nm region for the RTC, TVAC and CCCTs 

for Picrite (upper, Ba: 1283 ppm, SiO2: 44 wt. %, TiO2: 0.4 wt. %) and KGa-Med-S 

(lower, Ba:140 ppm, SiO2: 36 wt. %, TiO2: 1.5 wt. %).  The upper plot also has a 

spectrum from the Macusanite CCCT (Ba:1.3 ppm, SiO2: 74 wt. %, TiO2: 0.04 wt. %) to 

illustrate the position of the unidentified peak. (b) Example Voigt profile fits for a high 

Ba standard (Picrite, upper) and a high Ti/low Ba standard (KGa-Med-S, lower).  (c) 

Univariate polynomial calibration curve for Ba.   
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200 ppm.  This indicates that the fitting procedures are not optimal when the putative Si 

peak dominates and care should be taken when interpreting data taken on similar spectra 

of unknown composition.            

Three PLS models were constructed for Ba.  Model P1 uses the full wavelength 

range and the global minimum RMSEP over the first 20 LVs for the training set is at LV 

20, indicating that the model may not have reached the true global minimum.  The 

reference versus predicted composition plots indicate that there may be several outliers 

that are over-predicted and several that are under-predicted.  Outside of these outliers, 

there is good discrimination between high and low concentrations for LVs 15-20.  The 

TVAC sets are not very well predicted for any LV, but 10 LVs appears to have the best 

balance between accuracy and high/low concentration discrimination.  In the TVAC, 

MHC2319 (455 ppm) is over-estimated by a factor of ~6, possibly due to its high Si 

content (68 wt. %) as previously discussed in the univariate modeling section, and 

MHC2319 is one of the potentially serious outliers in the training set model.  For the 

CCCTs, LV 2 is the optimal LV.  Striking a balance between the optimum LV for the 

Figure 7:  Reference versus predicted composition plots of Ba univariate and PLS 

models for the (a) RTC training set, (b) the CCCTs, (c) TVAC 1.6 m (d) TVAC 3 m, (e) 

TVAC 5 m and (f) TVAC 7 m datasets.   Lines indicate 1:1 composition estimates. 
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training set (LV 15-20), TVAC (LV 10) and the CCCTs (LV 2) is difficult and, placing 

more weight to the training set and TVAC 1.6 and 3 m sets gives a compromise LV of 

15, which has an RMSEP of 764 ppm for the training set. 

The second PLS model, P2, uses the full wavelength range and standardizes and 

centers each wavelength across the matrix.  The training set for this model is very similar 

to the previous model, and again the global minimum occurs at LV 20.  Inspection of the 

RMSEPs and reference versus predicted plots for the TVAC and CCCT test sets shows 

that no LV has estimates that are accurate or very good at discriminating high 

concentrations from low concentrations.  The one benefit from this model is that, in the 

test sets, MHC2319 does not appear to be a significant outlier for most LVs.  For this 

model, the LV associated with the global minimum RMSEP for the training set is chosen 

simply because no LV is any better or worse in the test sets.  LV 20 has an RMSEP of 

648 ppm for the training set. 

The final model, P3, uses 30 wavelength channels over five Ba peaks (Table 3).  

While the training set RMSEP is lowest at 8 LVs, the model is acceptable across all 20 

LVs.  The TVAC and CCCT tests have low RMSEPs, good high/low discrimination for 

the first 2 LVs, and the shot-to-shot estimates for a Mars target that appears to have Ba 

(Preble 2) are consistent and track with the 455.5 peak intensity.  Both LVs overestimate 

Macusanite, which, as previously discussed, is likely due to the putative Si peak located 

near Ba.  Between LV 1 and LV 2, LV 1 is preferable because, for the TVAC distance 

test sets, JDO1 (carbonate with 1.6 ppm Ba and low Si) is over-predicted, possibly due to 

interference from high Ca around the Ba 614 and 650 nm lines.  Thus selection of LV 1 

may increase the robustness of the model in high Ca targets.  The RMSEP for the training 

set is 670 nm for 1 LV. 

Between the RMSEPs of the three PLS models and the univariate model (Figure 

4b), the univariate and PLS P3 models are approximately the same and both are 

considerably better than the two PLS models that use the full wavelength range.  

Comparison of the univariate and PLS P3 reference versus predicted composition plots 

(Figure 7), shows the univariate model predicts higher than PLS at concentrations >3000 

ppm, while PLS tends to predict higher (and more accurately) at the farther distances in 

the TVAC set (5 and 7 m).  Both the univariate and PLS models poorly predict the 
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Macusanite CCCT but the univariate method is less severe in the overestimation.  

However, PLS appears to be at least as accurate or more accurate over all of the datasets 

than univariate modeling.  Cases such as Macusanite, in which the PLS is significantly 

worse than univariate, should be easy to isolate by noting if the peak center is shifted 

from the Ba position and those abundances can be removed as erroneous.  Figure 5b 

compares the Ba estimates for the PLS P3 model and the univariate model for all Mars 

samples.  The PLS model tends to predict slightly higher values than the univariate and 

there is considerable scatter between the abundances but there is a fairly good correlation 

between the two models.        

Strontium 

 The training set for Sr is fairly complete across a wide concentration range.  

Standards are available with 30-2800 ppm Sr but the dataset is still biased towards the 

low concentration range with 8 samples above 1000 ppm, 10 samples between 500 and 

1000 ppm, and 41 samples below 500 ppm.   

 There are three viable peaks for use in univariate and reduced wavelength range 

PLS modeling:  Sr II 407.89 nm, Sr II 421.67 nm and Sr I 460.86 nm (Table 3).  Fe lines 

overlap the 407.89 nm and the 460.86 nm lines; the best line for univariate modeling is at 

421.67 nm.  The 421.67 nm Sr line is bounded by 2 Fe lines at 421.1 and 422.0 nm; the 

one to the left does not affect the fit of the Sr line but the one to the right may decrease 

the quality of the fit for samples with > ~15 wt. % Fe2O3T.  Several samples with high Fe 

(NAU2-Hi-S, MHC1356, and MHC2319) had poor fits and were not used in univariate 

modeling.  The fitted range for a Voigt profile is from 421.3 to 422.1 nm with a linear 

background set at the base of the peak.  An example of the fit for Picrite and the 

normalized spectra of the Norite and Picrite CCCTs for the various datasets are shown in 

Figures 8a-b, respectively.  There is a slight upward slant to the baseline due to the 

nearby Fe peak.  Sr peaks in the Picrite spectra (1481 ppm Sr) are very similar in size 

between Mars and the other datasets while the Sr peaks in the Norite spectra (284 ppm 

Sr) are larger on Mars than in the other datasets.  The other CCCTs, all of which have 

<700 ppm Sr, show similar behavior to Norite, indicating that at lower concentrations, 

the larger peaks in the Mars data may cause a slight overestimation.           
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 Two univariate models were developed for Sr (Figures 8c-d).  Model U1 uses 59 

samples of a variety of chemical matrices, with the exception of the three high Fe 

samples previously mentioned (Table 1).  The RMSEP of U1 is 659 ppm (Figure 3c).  

Examination of the data points that appear to be outliers shows that these points are 

samples that have chemical compositions that are poorly represented in the database and 

are dissimilar to the majority of samples, which are igneous or sediments derived from 

primary igneous minerals.  Because of this, the second model (U1-Matrix Matched, or 

U1-MM) has a reduced suite of samples that includes igneous materials or materials that 

have an igneous-like suite of major elements.  Samples removed from this set include 

Figure 8:  (a) Example Voigt fit of the Sr peak for the training set Picrite spectrum. (b) 

Comparison of the Mars CCCTs, TVAC 1.6 and 3m and the RTC training set spectra for 

Picrite and Norite. (c) Univariate model for all samples and (d) univariate model for 

igneous and similar matrices.  
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Figure 9:  Sr reference versus predicted composition plots for models  for (a) 

the training set and (b) igneous-like matrices.  Results for both models for the 

(c) CCCTs , (d) TVAC 1.6 m, (e) TVAC 3 m, (f) TVAC 5 m and (g) TVAC 7 

m.  Lines indicate 1:1 composition estimates. 

 



57 

 

carbonates, sulfates, and Al-clays.  This optimizes the model for the type of material 

typically encountered on Mars.  Samples with non-matrix matched compositions, as 

determined by the major element compositions, will be predicted on the full model, and 

in the future, matrix matched models for these rock types may be developed for special 

cases, such as for carbonates or sulfates. The RMSEP for model U1-MM is 172 ppm.  

This decrease in RMSEP is due in part to the removal of outliers but it should also be 

noted that the upper concentration is now 1800 ppm compared to 2800 ppm in U1, and 

there typically is a decrease in RMSEP as the concentration range is restricted.     

 A total of four PLS models were built for Sr.  Model P1 uses the full wavelength 

range and examination of the RMSEP values for the first 20 LVs and the reference versus 

predicted composition plots for the training and test sets for these LVs indicates the 

optimal LV is 10.  This is one LV more than the global minimum RMSEP for the training 

set and it minimizes the sum of RMSEPs over all datasets.  Estimates for the TVAC 

dataset for LV 10 show the model underestimates at 1.6 m, is fairly accurate at 3 and 5 m, 

and overestimates above 1000 ppm and underestimates below 1000 ppm at 7 m.  The 

CCCTs are not estimated well with any LV and 10 LVs gives negative estimates for 

abundances below 1000 ppm and positive estimates for abundances above 1000 ppm.   

 The second PLS model, P2, standardizes and centers the wavelengths.  The 

optimal LV for this model is LV 8, which is one RMSEP before the global minimum 

RMSEP for the training set and minimizes the overall RMSEP for all sets.  For the test 

sets, LV 8 systematically underestimates the TVAC 1.6 and 3 m sets.  For the CCCTs, 

Macusanite is overestimated significantly due to what is likely a large Si peak over Sr 

407 nm (the SiO2 content of this sample is 74 wt. %) and an unidentified peak that 

overprints the Sr 460 nm peak.  The estimates are fairly accurate for the TVAC 5 and 7 m 

sets.   

 The third PLS model (P3) reduces the wavelength range to 27 channels over the 

three Sr peaks (Table 3) and the optimal LV for this model is 1.  The outliers observed in 

the univariate model are present in the training set predictions and, while additional LVs 

draw the outliers in (6 LVs are best for the training set alone), the TVAC and CCCT test 

sets are not well predicted with additional LVs.  With 1 LV, the TVAC 1.6 m set is very 

well predicted and the TVAC 3 m data are well predicted except for MHC2319, which is 
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overestimated.  For the 5 and 7 m TVAC sets, samples with <500 ppm Sr are well 

estimated but a systematic underestimation, which increases with increasing 

concentration, begins to occur past 500 ppm.  The same overestimation of Macusanite 

happens with this model as with P2, and the other CCCTs are estimated well up to 1000 

ppm.  Above 1000 ppm, Picrite shows a small but significant underestimation.  Between 

these three PLS models, both P2 and P3 are very similar but P2 has more scatter in the 

low abundance range while model P3 appears to be more systematic. Model P3 shot-to-

shot abundances on the Mars target Link point 2, which has a large Sr peak, for LV 1 

shows that estimates track the Sr 421.7 nm peak intensity.     

 Finally, model P3 is rebuilt with the igneous and igneous-like matrix-matched 

standards in the RTC training set (P3-MM).  For the TVAC and CCCT test sets, spectra 

from samples that appear to be from an atypical matrix based on the major element PLS 

(i.e., do not contain the typical suite of major elements), namely the dolomite JDO1, the 

high Fe and high Si MHC2319 sample, and Macusanite are excluded from the RMSEP 

calculation.  As MHC2319 and Macusanite were outliers in many of the previous models’ 

calculations, this contributes to the change in RMSEP for the two test sets in which it was 

present (TVAC 1.6 and 3 m for MHC2319 and the CCCTs for Macusanite).  Estimates 

for the training set appear to be very good up to ~ LV 4 where the very lowest 

concentration range gives increasingly negative results, and this trend increases with the 

number of LVs.  The global minimum RMSEP for the training set is 4 while the lowest 

RMSEP for the TVAC 3, 5, and 7 m datasets, the CCCTs and the overall sum of 

RMSEPs are minimized with 2 LVs.  The P3-MM model has fairly stable shot-to-shot 

estimates for both LV 2 and 4, but 2 LVs is slightly more consistent than 4 LVs and 

therefore 2 LVs are chosen.   

 The RMSEPs for the training and test sets (Figure 4c) for the various univariate 

and PLS models show that the highest error is present in model U1 (all samples), 

primarily due to the over-estimation of MHC2319 in the training set and TVAC 1.6 and 3 

m test sets (Figure 9).  Removal of this sample for the igneous matrix model (U1-MM), 

as well as removal of the other sulfates, carbonates and Al-clays, reduces the RMSEP to 

be on par with the PLS models P2 (standardized) and P3 (reduced wavelength model).  

Models P2 and P3 are very similar and either would be acceptable for estimating 
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abundances for non-igneous matrices, although it will be preferable to develop 

specialized training sets for these matrices in the future.  Model P3-MM has the lowest 

RMSEP, primarily due to more accurate estimates in the test sets compared to the U1-

MM model.  Models P3 (LV 1) and P3-MM (LV 2) will be the primary models to 

estimate Sr in Mars targets but models U1 and U1-MM will also be used for comparison.  

Figures 5c-d compare the generalized matrix models and igneous-matrix models.  For the 

generalized model (c) univariate modeling over-estimates relative to PLS at high 

concentrations and underestimates at low concentrations.  For the matrix-matched 

models, both models are consistent but univariate models estimates are slightly higher 

across the concentration range.   

       

Rubidium 

 The training set has spectra from 53 reference materials with reported Rb 

concentrations between 0.2 and 2020 ppm (Table 1).  GUWGNA (weathered granitic 

rock) provides the upper limit at 2020 ppm Rb.  The next highest sample has a 

concentration of 860 ppm, followed by 257 ppm, and there are 13 samples between 50 

and 300 ppm; the remaining 40 samples are between 0.2 and 50 ppm.  Given the small 

number of samples above 257 ppm, the models presented here focus on the range up to 

this value, but we recognize that it is possible that this upper bound may be exceeded by 

observations on Mars.  Future additions to the training set will supplement the 50-500 

ppm range.  Only one CCCT, Macusanite, has sufficient Rb for a visible peak under 

ChemCam conditions.  The Macusanite glass often has poor coupling to the laser and it is 

very sensitive to the focal distance.  At this time, we do not have an independent Rb 

measurement on the specific piece of Macusanite used for the CCCT but based on the 

analyses in  Pichavant et al. [1988], the Rb concentration is expected to be >400 ppm, 

which is beyond the range of these models.     

  There are four resolvable Rb emission lines present in spectra taken under 

ChemCam operating conditions (Table 3).  Rb I 303.3 nm and Rb I 741.0 nm are only 

present in spectra of GUWGNA and Rb I 794.3 nm is significantly overlapped by an O 

line.  Rb I 780.2 nm is located near the O I 777 nm unresolved trio of peaks.  Rb I 780.2 

nm is the only viable Rb line for univariate analysis (Figure 10a).  Due to the discrepancy 
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in size between O 777 and Rb 780.2, it is difficult to fit a profile to the much smaller Rb 

line.  While fitting both peaks together would be preferable, we found that it was too 

difficult to consistently fit the Rb line in this manner.  Instead, the Rb peak was fit alone 

by setting a target range of 779.4 – 781.2 nm (Figure 10b).  There were typically 9 or 10 

original intensity points in this range and obtaining a consistent fit with so few points was 

difficult.  The PeakFit software has an option to interpolate between points to allow a 

better, more reliable fit to be achieved, and we used the suggested window point count of 

five and quadratic fit to interpolate between the original 9-10 points.  After interpolation, 

a total of 30 points were created and the peak and background were fit together to 

minimize error using a Voigt profile and a linear background at the base of the peak.  Of 

the 53 samples available, only 33 samples had large enough peaks to fit.  The Rb I 780.2 

nm peak is consistently large enough to be fit down to 21.8 ppm and occasionally fit 

down to 10 ppm.     

  The univariate model U1 has an RMSEP of 52 ppm and there are at least 2 

standards that are likely outliers at the high concentration range.  JR1 is underestimated, 

probably due to poor coupling, and VH1 is overestimated for unknown reasons.  These 

samples were left in the model because their removal does not significantly change the 

estimates due to their balanced distribution relative to the regression line and, while the 

RMSEP increases, a more conservative RMSEP seems warranted in this case due to the 

wide spread of data at both the low and high concentration ranges.  For the test sets, the 

Figure 10:  (a) Example spectra  of Rb 780.2 nm for the RTC training set and TVAC 

test sets for SGR-1.  (b) Example Voigt fit for the SGR-1 RTC Rb peak; note the 

upward slant resulting from the nearby oxygen peak.  (c) Rb univariate linear model.   
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Rb I 780.2 peak is well resolved to 5 m but the peak loses form at 7 m (Figure 10a) and  

the peak is only able to be fit in 3 samples with the highest Rb shot in the TVAC 7 m set 

(BK2, SGR1, and JA2) as well as JA3.   

 Three PLS models were constructed for Rb.  Model P1 uses the full wavelength 

range and examination of the RMSEPs for the first 20 LVs for the training set reveals the 

global minimum RMSEP occurs at LV 4.  This LV also has the lowest RMSEP for the 

TVAC 1.6, 3 and 5 m sets and the second lowest for the 7 m set and the overall summed 

RMSEP.  However, this model has poor discrimination between high and low 

concentrations for all but the training set, and therefore is an unacceptable model.  Model 

P2 uses the full wavelength range with the wavelength matrix standardized.  This model 

is similar to P1 in that the training set is the only set that has good correlation between 

predicted and reference compositions.  The CCCTs are significantly overestimated for all 

LVs and the other test sets show no correlation between predicted and reference values.  

The lowest summed RMSEP is at LV 12, and since this LV has only a slightly higher 

RMSEP for the training set than the global minimum (35 compared to 29 ppm), LV 12 

Figure 11:  Reference versus predicted composition plots for Rb comparing the 

univariate model to the PLS P3 LV 2 model for the (a) RTC training set, (b) CCCTs, 

(c) TVAC 1.6 m, (d) TVAC 3 m, (e) TVAC 5 m, and (f) TVAC 7 m.  Lines indicate 

1:1 composition estimates. 
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was selected as the best LV for this model.  Lastly, model P3 reduces the wavelength 

range to 10 channels over two Rb peaks (Table 3).  Due to the small number of variables 

in the X matrix, only 10 LVs are possible.  The first 6 LVs show very good correlation 

between predicted and reference values with LV 3 having the global minimum RMSEP 

for the training set.  However LV 2 is very similar in the training set estimates, having an 

RMSEP of 33 ppm and is also similar in the estimates for the TVAC sets and CCCTs.  

Both LVs underestimate the mid to high concentration samples for the TVAC 1.6, 5, and 

7 m sets and both estimate the 3 m set very accurately.  The CCCTs, all with <10 ppm Rb 

(except Macusanite which is excluded for reasons discussed in the univariate model 

description), have acceptably low estimates, i.e. < 20 ppm, for both LVs.  Overall, of the 

3 PLS models, model P3 is the most accurate (Figure 11).  A check of the shot-to-shot 

estimate consistency on a Mars target using P3 LV 2 and 3 are compared to the Rb 

780.26 nm peak intensity for the second point in Link.  Both LVs have acceptable shot-

to-shot predictions and are consistent with the peak intensity.  Because LV 2 has the 

overall lowest RMSEP for all test sets and only a slightly larger RMSEP for the training 

set, LV 2 is selected.                   

 Comparing the univariate model to the PLS P3 LV 2 model (Figures 4d and 11), it 

appears the PLS model is more accurate than the univariate model.  The error on the 

univariate model is higher than model P3 for all test sets but is particularly high for the 

TVAC 5 m set.  The high error is primarily due to BK2 and these fits were checked and 

appear to be accurate.  Comparison of the two models for all Mars analysis locations 

(Figure 5d) shows that the univariate model overestimates relative to the P3 model at 

abundances >100 ppm and underestimates slightly at abundances <50 ppm.  Both 

methods will be applied to the Mars targets for quality control.  One of the benefits of 

using PLS is that compositions may be estimated for targets that do not have a peak large 

enough to fit a profile.  A detriment to PLS is that the background around the primary Rb 

peak fluctuates with the O 777 nm peak intensity and this may result in Rb estimates that 

are more related to the fluctuation in the size of the O peak than to Rb.  This will be 

discussed further in the Rb section of Mars results.            
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CHAPTER 4 

Early ChemCam Results on Li, Ba, Sr and Ba from Gale crater 

This article has been submitted to the Journal of Geophysical Research.  In its final state 

it will be combined with Chapter 3. 

 

Overview of the Mars Dataset 

Over the first 100 sols, ChemCam analyzed ~50 rock and soil targets.  For this 

study, data collected prior to sol 49 are considered to be part of the Bradbury region 

while data taken after sol 49 are part of the Rocknest region [see context imagery in 

Grotzinger et al., 2013].  Each ChemCam analysis point typically has a mini-depth 

profile of 30 shots although occasionally up to 150 shots were taken at each point to 

search for coatings or layering; ~1 µm is removed per shot in basaltic materials [Wiens et 

al., 2012].  In this study, we use abundances based on averaged spectra for each point, 

excluding the first five shots to remove all or most of the dust as well as abundances from 

single-shot data.  Initially, ChemCam began with single point observations for the rocks 

Coronation, Stark, and Mara.  After confirming the successful operation of the 

instrument, larger linescans and then raster grids were developed from 1x5 up to 5x5 

points, although 3x3 is the most common configuration.  Spectra collected from targets at 

>~5 m are noisier than is represented in the training set (which was taken at 3 m) and, 

until distance effects have been studied further, these spectra have been removed from the 

current study.  Also, in some cases the laser struck a hole or missed focusing on the 

intended target resulting in poor signal to noise ratios and these spectra were removed 

from the dataset as well.  For this study, we have divided the Mars targets into five 

general categories: rocks, pebbles, Link (conglomerate), sand (which includes both the 

Akaitcho aeolian sand ripple and the Rocknest sand shadow) and soils.  It can be difficult 

to determine if the analysis location struck a pebble or soil [Meslin et al., 2013], and the 

best attempts were made to properly distinguish them using post-LIBS RMI imagery or 

the shot to shot spectrum behavior.  The Rocknest sand shadow was analyzed by multiple 

instruments, including SAM [Leshin et al., 2013], CheMin [Bish et al., 2013; Blake et al., 

2013] and APXS [Schmidt et al., 2013].   
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Table 4:  Trace element summary for Bradbury and Rocknest targets
a
. 

 

  

Mean (1σ) Median Range 

 

n Univariate PLS Model Univariate PLS Model Univariate PLS Model 

  
Li ( RMSEP:  40 ppm Univariate & PLS) 

Link (Conglomerate) 5 <5 (0) <5 (0) <5 <5 <5 – 10 <5 

Pebble 15 10 (10) <5 (10) 10 <5 <5 – 30 <5 – 30 

Rock, Bradbury 42 10 (10) <5 (10) 10 <5 <5 – 40 <5 – 50 

Rock, Rocknest 128 10 (10) 10 (10) 10 <5 <5 – 60 <5 – 80 

Sand 63 <5 (0) <5 (0) <5 <5 <5 – 10 <5 

Soil 35 10 (10) <5 (10) 10 <5 <5 – 30 <5 – 30 

 

  Sr ( RMSEP:  170 ppm Univariate, 160 ppm PLS) 

Link Conglomerate) 5 1680 (400) 1270 (320) 1800 1380 1180 – 2190 860 – 1670 

Pebble 15 320 (140) 220 (110) 300 210 80 – 560 bd – 370 

Rock, Bradbury 36 180 (130) 90 (110) 150 40 bd – 480 bd – 340 

Rock, Rocknest 99 90 (70) 50 (50) 80 50 bd – 310 bd – 230 

Sand 63 100 (60) 10 (20) 80 bd 20 – 290 bd – 130 

Soil 35 100 (50) 40 (60) 90 bd 10 – 300 bd – 200 

 

  Ba (RMSEP:  640 ppm Univariate, 670 ppm PLS) 

Link (Conglomerate) 5 190 (120) 270 (40) 140 260 70 – 330 220 – 320 

Pebble 15 50 (90) 110 (160) bd 40 bd – 280 bd – 560 

Rock, Bradbury 42 70 (130) 140 (210) 10 60 bd – 610 bd – 1010 

Rock, Rocknest 121 10 (20) 10 (30) bd bd bd – 150 bd – 170 

Sand 63 20 (90) 60 (90) bd 30 bd – 670 bd – 570 

Soil 34 20 (30) 50 (60) bd 20 bd – 80 bd – 210 

 

  Rb (RMSEP:  50 ppm Univariate, 30 ppm PLS) 

Link (Conglomerate) 5 210 (50) 160 (30) 210 170 160 – 270 130 – 190 

Pebble 12 30 (50) 40 (40) 10 30 bd – 150 20 – 120 

Rock, Bradbury 34 20 (20) 30 (10) 10 30 bd – 80 20 – 70 

Rock, Rocknest 64 10 (10) 20 (10) bd 20 bd – 30 20 – 40 

Sand 17 10 (20) 20 (10) bd 20 bd – 70 20 – 60 

Soil 13 10 (20) 30 (10) bd 20 bd – 70 20 - 60 
aAbundances and RMSEP values have been rounded to the nearest 10 ppm. bd = below detection. 
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A total of 288 analysis points are used in this study.  As a guideline, we do not 

assume that an element is present based only on predicted values from a PLS model since 

those estimates are highly dependent on the training set.  All major elements as well as Li 

have peaks visible in every location but Rb, Sr and Ba do not.  Eight spectra have no 

obvious Ba; this number is likely low due to the uncertainty in identifying what peaks are 

present in its characteristic spectral regions.  Thirty-five spectra have no Sr peak or the 

peak is too small to be fit.  Due to the nearby oxygen peak and the relatively low level of 

Rb in most rocks and soils, 143 spectra do not have large enough Rb peaks to fit.  A 

summary of the trace element data is shown in Table 4.  Major and trace element results 

for specific targets discussed in the text are presented in Table 5.  Note that the trace 

element abundances in the following text and these two tables have been rounded to the 

nearest 10 ppm; averages and standard deviations in Table 4 were calculated prior to 

rounding.   

In the following sections, we discuss notable occurrences of Li, Ba, Rb, and Sr.  

Because the highest abundances of Rb and Sr occur together, those sections are 

combined.  The conglomerate, Link, will be discussed in this section due to its unique Rb 

and Sr abundances. Because of the error and uncertainty in Ba, at this time we only 

present high level results until the region with the primary Ba peak is more accurately 

represented in the training set.          

Lithium 

Overall, Li is low for the majority of rocks and soils at Bradbury and Rocknest 

(Table 4).  For the following results, the univariate model with an RMSEP of 40 ppm is 

used unless otherwise specified.  As previously discussed, the univariate model predicts 

the low values better than the PLS model due to fewer negative concentrations but may 

underestimate the higher values.  Here, we choose to focus on three observations:  (1) the 

Li abundance in soils and sand is low, ~5 ppm, (2) Li abundances in several discrete 

locations in two rocks, Jake_M and Rocknest_3, have Li concentrations that are detected 

>30 ppm, and (3) Bathurst_Inlet has >30 ppm Li at all five locations analyzed and, in 

locations 3-5, Li decreases in abundance over the 30 shot depth profile, indicating it is 

enriched at the surface.   
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Table 5:  Major and trace element abundances for selected Gale crater targets.
a 

 

 

SiO2 TiO2 Al2O3 FeOT MgO CaO Na2O K2O 
Sr 
(Univ.) 

Sr 
(PLS) 

Li 
(Univ.) 

Li 
(PLS) 

Rb 
(Univ.) 

Rb 
(PLS) 

Ba 
(Univ.) 

Ba 
(PLS) 

RMSEP 7.3 0.6 3.9 3.2 4.6 4.2 0.7 1.0 170 160 40 40 50 30 640 670 

High Li Observations 

                JakeM 1 53.4 - 10.7 15.5 6.5 - 4.6 1.0 - - 40 50 10 20 - - 
Rocknest3a 8 44.1 1.2 10.3 21.9 2.0 0.3 3.0 1.0 70 110 60 80 - 20 - - 

Rocknest_3_Top1 2 40.6 0.5 7.6 17.1 2.8 3.9 3.0 0.5 20 - 40 40 - 20 - - 

Bathurst 1 39.1 1.1 7.6 16.3 11.6 5.3 2.3 0.3 120 10 50 60 10 30 - - 
Bathurst 2 39.9 1.1 6.8 15.5 8.8 6.5 2.0 0.9 210 60 40 50 30 40 20 - 

Bathurst 3 41.9 1.0 7.4 14.7 10.5 5.5 2.4 0.9 300 110 30 40 20 30 110 140 

Bathurst 4 42.1 1.2 7.3 16.3 10.1 4.5 2.4 1.1 200 50 40 60 20 40 20 10 
Bathurst 5 39.8 1.3 7.6 16.8 10.7 5.5 2.2 0.6 170 50 30 40 20 30 - - 

Variable Ba Observations 

                Stark 72.4 0.9 7.6 7.9 - 3.6 2.8 2.3 120 - - - 60 50 550 740 

Thor_Lake 5 36.1 3.3 12.5 23.1 4.1 - 1.8 0.7 - - - - - 20 - 140 

JakeM_1 4 43.9 0.4 7.5 15.0 2.1 9.1 2.9 0.7 - - - 10 10 20 - - 
Akaitcho 7 51.1 0.7 10.4 11.6 4.2 5.1 3.1 1.5 250 50 - - 20 30 670 570 

Preble 1 63.2 0.5 6.8 11.2 - 5.7 2.8 1.8 170 - - - 30 40 180 530 

Preble 3 62.6 0.4 9.3 12.3 - 3.2 3.0 1.8 170 20 - - 20 30 230 390 

High Rb & Sr Observations 

                Link 1 65.4 0.7 14.6 9.0 - 5.8 2.6 2.1 1800 1380 10 - 270 170 100 220 

Link 2 66.3 0.7 13.3 8.0 - 6.9 3.0 1.9 1380 1020 10 - 210 170 70 270 
Link 3 64.7 0.6 16.3 9.2 - 4.3 2.4 2.2 2190 1670 - - 250 190 330 260 

Link 4 67.3 0.6 13.5 4.7 - 7.9 3.6 2.4 1180 860 - - 160 130 140 250 

Link 5   62.2 0.4 14.0 11.9 - 3.6 2.3 1.9 1860 1400 - - 160 130 300 320 
Beaulieu 2 69.5 0.7 10.2 7.6 - 4.4 4.2 2.6 520 340 10 - 150 120 90 160 

Beaulieu 3 70.8 0.8 10.8 6.8 - 6.5 3.3 1.7 510 210 10 - 120 110 280 370 

Taltheilei 4 65.3 0.6 9.9 8.5 - 6.5 3.7 2.0 440 170 10 - 60 70 190 460 

High Rb Observations   

                Preble 2 79.7 0.3 13.9 5.5 - - 3.8 3.6 - 100 10 - 80 70 610 1010 

JakeM_1 5 67.9 - 11.9 11.2 - 0.8 4.7 2.5 220 80 10 - 60 60 70 70 
Anton 2 48.2 0.7 9.7 10.9 9.3 7.2 3.3 0.5 130 30 10 - 70 60 - 100 

Akaitcho 2 45.1 0.5 10.1 12.4 5.9 6.4 2.7 0.6 90 - - - 70 60 60 40 

High Sr Observations 
                Murky 2 68.5 0.4 11.9 5.7 - 10.9 4.2 1.6 440 330 10 - - 20 - 40 

Taltheilei 1 63.4 0.3 11.2 9.4 - 7.5 3.9 1.3 440 180 10 - - 20 160 280 

Taltheilei 5 63.4 0.3 10.9 7.9 - 10.1 3.6 1.3 480 230 10 - - 20 100 250 
Kam 5 67.4 0.6 10.2 6.5 - 11.0 3.8 1.6 560 370 - - 30 40 - 70 

JakeM 3 65.7 0.1 12.5 14.1 - 1.4 4.2 2.0 410 290 - - 10 20 120 60 
a
Major element abundances are from the PLS2 analysis described in Wiens et al. [2013].  Some targets may fit in multiple categories.  Notable 

instances of trace elements are in bold.  Observation number is listed after the target name. Trace element abundances and RMSEP values have been 

rounded to the nearest 10 ppm.  Dashed lines indicate abundances are too low to be estimated with the current models.
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Lithium in Soils 

Since Viking first analyzed soils at two locations on Mars and found enrichments 

in S and Cl at both locations [Toulmin et al., 1977], there has been considerable work to 

determine the origin of the soils.  Soils at both locations, as well as soils analyzed by later 

missions including the MERs, are similar in composition, an observation that has been 

interpreted to be the result of global homogenization by aeolian processes [Toulmin et al., 

1977; Ming et al., 2006; Morris et al., 2006; 2008; Yen et al., 2005; Yen et al., 2013].  

Chemical analyses of the fine soils by Viking indicate the presence of a two component 

system: a silicate/Fe-oxide component of mafic origin and a component enriched in S and 

Cl, which was interpreted to be a salt [Clark and Baird, 1979; Clark and Van Hart, 

1981].  Recent results from CheMin on the <150 µm fraction of the Rocknest sand 

shadow support this two component system and reveal a predominantly basaltic 

mineralogy with a crystalline component consisting of plagioclase, forsteritic olivine, 

augite and pigeonite, plus an amorphous component that comprises ~25-30 wt. % of the 

XRD analysis [Bish et al., 2013].  The presence of mafic igneous materials was 

anticipated due to the near absence of evidence for evolved magmas on Mars [cf. 

Bandfield et al., 2004], whereas the S- and Cl-bearing phase has been more puzzling.  

Morris et al. [2013] indicate that the amorphous phase(s) observed by CheMin, rather 

than crystalline sulfides, sulfates, and chlorides, likely host most of the S and Cl.  It is 

unclear what this S- and Cl-bearing phase is, but if it is a non-crystalline salt or 

superficial coating on grains, the previously hypothesized mechanisms of formation may 

be evaluated based on associated Li observations.  Deposition of volatile constituents via 

volcanic aerosols has been posited as a likely mechanism for the formation of the S- and 

Cl-bearing component because this mechanism requires little or no water [Clark and 

Baird, 1979; Banin et al., 1997].  Alternatively, the components may have been acquired 

via hydrothermal fluids, enriching the surface materials in fluid mobile elements such as 

Li [Newsom et al., 1999].   

Newsom et al. [1999] modeled two common forms of terrestrial hydrothermal 

systems, the acid-sulfate and neutral chloride systems.  In the former, water is limited and 

deeply buried water is vaporized by heat from a magma source.  This vapor rises, 

mobilizing elements such as S and Cl to the surface.  In the neutral chloride system, water 
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enriched in fluid-mobile elements forms springs on the surface and newly formed 

precipitates are enriched in mobile elements, such as Li and Cl.  Newsom et al. [1999] 

found that a combination of these two systems could match the S/Cl ratio observed by 

Viking.  They note that the volcanic aerosol formation mechanism has highly variable 

S/Cl ratios and additional information is required to determine the viability of this 

mechanism.  Several chemical signatures for fluid-mobile and vapor-mobile formations 

were identified in Newsom and Hagerty [1997].  If hydrothermal fluids reaching the 

surface are primarily responsible for the salt component, Li is expected to be enriched up 

to ~100 ppm in the soils [Newsom et al., 1999].  Figure 12 shows the Li abundance 

predictions for the acid-sulfate hydrothermal system, neutral-chloride system and a mixed 

system compared to observations in the average whole rock SNC meteorites (~3.3 ppm, 

based on 12 analyses in McSween [2003], Filiberto et al. [2012 and references therein], 

Chennaoui Aoudjehane et al. [2012] and Barrat et al. [2002]) and the Gale crater 

materials.  Li values are 

low in the meteorites and 

Gale materials, inconsistent 

with the predicted values 

for models involving fluids 

reaching the surface.  The 

Li values are more 

consistent with a vapor-

transport mechanism, either 

via the acid-sulfate 

hydrothermal system or 

volcanic aerosols.         

Results are 

inconclusive as to which 

vapor-transport mechanism 

is more likely.  Newsom 

and Hagerty [1997] 

Figure 12: Li soil predictions in Martian soil from 

Newsom et al. (1999) compared to averaged SNC, 

Rocknest and Bradbury rocks, pebbles, soil and sand 

data.  The upper range for the Gale rocks and soils is ~60 

ppm and for sand and soils is 30 ppm (RMSEP = 40 

ppm, Table 4).  Measured values in the Gale crater soils 

indicate that the predicted enrichment in Li from the 

neutral chloride and hydrothermal mixture models is not 

present and are consistent with the acid-sulfate soil 

formation model, where S can be transported to the 

surface by vapor phase transport, but not Li.    
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proposed volcanic aerosol deposition may show increased Zn, Mo, Cd, Ba and W relative 

to hydrothermal acid-sulfate deposition.  ChemCam’s detection limit for these elements is 

high, and other than Ba, none have been positively detected in Gale crater.  APXS has 

detected up to ~2250 ppm Zn in rocks at the MER Gusev site and up to ~1100 ppm in 

rocks at Gale crater site [Schmidt et al., 2013 and references therein].  Soils at both 

locations have around ~350 ppm Zn [Schmidt et al., 2013 and references therein]; these 

are relatively high abundances that may be evidence for volcanic aerosol deposition.  

Volcanic aerosols may be the primary contributor to the salt component because such 

systems have variable S/Cl while acid-sulfate hydrothermal systems have a more 

consistent ratio that does not match with the Viking observations.   

Lithium in Rocks              

The averaged Li abundance and standard deviation for all rocks and pebbles in the 

Bradbury and Rocknest traverse is 10 ppm ± 10 (1σ, Table 4).  This is lower than the 

terrestrial upper continental crust, which is estimated to have ~24 ppm ± 7.6 (1σ) Li 

[Rudnick and Gao, 2003].  Li is higher in the terrestrial crust which is andesitic overall, 

unlike Mars which is basaltic.  Also, Li is a fluid mobile lithophile element that may be 

redistributed on Earth through abundant water-bearing fluids, unlike present-day Mars.  

The observed Li abundances at Gale are consistent with estimates for the Earth’s mantle 

(~1.5 ppm [McDonough and Sun, 1995; Magna et al., 2006]), mid-ocean ridge basalts 

(MORB, ~4-5 ppm [Tomascak et al., 2008; Chan et al., 1992]) and with the average 

whole rock SNC value (~3.3 ppm).     

There are three observation points in the first 100 sols (excluding Bathurst Inlet, 

which is discussed in the following section) that have Li abundances >30 ppm, found in 

Jake_M (inferred igneous float) and Rocknest_3 (vesicular rock); Li peaks from these 

points compared to other spectra of low Li abundance (Coronation rock and Portage soil 

<10 ppm) are shown in Figure 13a.  Point 1 in the sol 45 1x5 of Jake_M has estimated Li 

of 40 ppm (univariate) and 50 ppm (PLS).  Point 8 in the sol 83 1x10 (Rocknest_3a) of 

Rocknest_3 has between 60 (univariate) and 80 ppm (PLS) while point two on the top of 

the same rock in the sol 88 5x5 analysis (Rocknest_3_Top1) has 35 (univariate) to 40 

ppm (PLS).  These points have mid-range SiO2 (40-54 wt. %), Al2O3 (7-11  
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Figure 13:  Example spectra for notable observations of (a) Li with Portage soil 

and Coronation (both <10 ppm Li) for comparison, (b) Ba 455.5 nm, (c) Ba 

493.5 nm, (d) Rb with Portage soil (<20 ppm) and Coronation (~30 ppm) for 

comparison, (e) and Sr with the averages of Portage soil and JakeM for 

comparison (both <200 ppm).    
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wt. %), and MgO (3-7 wt. %).  FeOT and Na2O are relatively high (>16 wt. % and 3-4 

wt. %, respectively) and CaO is somewhat low (<4 wt. %).  The RMSEP for both Li 

models is 40 ppm and major element RMSEPs are given in Table 5.       

Attempts to constrain mineralogical possibilities as a host for Li through element 

correlations were made through inspection of single-shot intensities for major and trace 

element species compared to Li peak intensity.  This method is most successfully applied 

when changes occur with depth.  The point in Jake_M and the sol 88 point 2 analysis on 

Rocknest_3_Top1 do not show significant changes over the 30 shot profile and therefore 

it is difficult to determine what elements correlate with Li.  Point 8 in Rocknest_3a does 

show a small compositional change over 30 shots and therefore the subsequent discussion 

will focus on this point alone.  Element correlation analyses can be done using PLS 

estimates or using peak intensities.  In instances where certain major elements have low 

abundances, it is often more useful to select specific emission lines for correlation 

analysis instead of using absolute abundances due to the uncertainty in estimates at low 

abundances.  The selected lines have been checked to ensure they have a linear 

relationship with abundance using the training set and these lines are often less intense 

emission lines, which suffer less from non-linearities due to self-absorption.  When 

available, several lines are used to verify results.  In the case of Rocknest_3a point 8, Mg 

and Ca abundances are relatively low and therefore peak intensities are used instead of 

PLS estimates.     

Analysis of element correlations with Li over the small depth profile at 

Rocknest_3 point 8 reveals that Si, Al, Sr and Mn correlate positively with Li while Ti, 

Cr, and Mg correlate inversely.  Most of these correlations are not strong, with an R
2
 on 

the order of 0.32 to 0.40 for Si, Al, and Sr.  Inverse correlations with Ti, Cr, Mg, and Mn 

have a slightly higher R
2
 (0.46 and 0.63).  Fe, Na and K show little correlation with Li.  

The strongest correlation (R
2
=0.63) is an anti-correlation between Li and Mg.   

If these correlations are not spurious, they suggest Li may be associated with an 

aluminosilicate, possibly a clay mineral, which may be indicative of aqueous alteration, 

or it may be in a primary igneous mineral such as pyroxene.  Li may be enriched in 

smectite clays, i.e. montmorillonite and hectorite, where Li may substitute for Mg or it 
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may be adsorbed in the interlayer region [Horstman, 1957; Vigier et al., 2008].  

Alternatively, Li may be hosted in an Mg-pyroxene.  In this situation, Li would be 

incorporated into the mineral structure at time of formation and the small compositional 

change with depth may indicate that the depth profile partially traversed a zoned grain or 

it is simply an artifact of the ablation process sampling slightly different material with 

each laser pulse.  Pyroxenes have been observed to incorporate significant Li (up to ~100 

ppm)  into their structure but no Li-enriched grains have been identified in the SNC 

meteorites [e.g. Beck et al., 2004; 2006; Barrat et al., 2002; Herd et al., 2005; Lentz et 

al., 2001].   

Examination of Rocknest_3’s morphology and texture does not conclusively 

indicate if it is sedimentary or igneous in origin; layers or striations are present but such 

features could be solidified lava flow features or sedimentary layering [Blaney et al., 

2013 and Tokar et al., 2013].  If Rocknest_3 is an igneous rock, the element correlations 

in point 8 may indicate that a mineral grain that was fully or mostly sampled has been 

partially altered from a primary igneous mineral and the alteration product is enriched in 

Li.  It is also possible that the grain is unaltered primary material that is enriched in Li.  If 

Rocknest_3 is a sedimentary rock, the grain may be detrital in origin due to its 

uniqueness among the nearly 40 analysis points obtained on this rock.  In this case, the 

grain may be unaltered igneous material or a grain weathered to an aluminosilicate clay.  

Additionally, point 8 in Rocknest_3 is the first point to sample the putative layers in the 

upper part of Rocknest_3 [Tokar et al., 2013].  It is possible that this may be a layer 

formed of material enriched in Li while the other sampled layers consist of material lower 

in Li content.   

Lithium in Bathurst_Inlet 

Bathurst_Inlet was analyzed with a 1x5 ChemCam linescan and in two locations 

by APXS.  Images taken by the Mars Hand Lens Imager (MAHLI) reveal that the 

Bathurst Inlet bedrock unit is fine-grained (<80 µm) [Schmidt et al., 2013].  The five 

locations analyzed by ChemCam show Bathurst Inlet to be chemically homogeneous over 

the LIBS beam size compared to Jake_M and the Bradbury float rocks discussed by 

Sautter et al. [2013].  Bulk composition of SiO2 and alkalis from APXS indicates 
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Bathurst Inlet is a hawaiite and ChemCam data is consistent with this [Schmidt et al., 

2013].  One distinctive feature is its relatively high K abundance, such that K/Na>1 

[Schmidt et al., 2013].  Another unique feature of Bathurst_Inlet is its relatively high Li 

(>30 ppm) at each of the five analysis points.  Spectra of its Li peaks compared to other 

Mars targets are shown in Figure 13a.     

ChemCam points 3-5 show a pronounced decrease in Li abundance with depth 

(Figure 14), from ~80 ppm after the dust has been removed to 30 ppm (PLS, RMSEP = 

40 ppm) at shot 30 in point 4.  Other elements do not show such a marked change with 

depth.  In locations 4 and 5, Si, K, Na and Rb appear to correlate positively with Li 

(Figure 15a-b), with the strongest correlations in point four (R
2
 0.51-0.87).  There is a 

Figure 14:  Li 671 nm peak intensity trends with depth in the five analysis 

points taken on Bathurst_Inlet.  PLS estimates for the maximum and minimum 

peak height for point 4, which shows the largest decrease, are 80 and 30 ppm 

(RMSEP 40 ppm), respectively.    
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weaker inverse correlation between Li and Mg (R
2
 0.38-0.48).  Calculation of the percent 

change between averaged PLS results for major and trace element PLS abundances over 

shots 6-10 compared to shots 26-30 show that Li, Rb, K and Na have the largest change 

with depth (Figure 15c-d).   

Two potential scenarios may explain these results.  Because the alkali abundances 

correlate, a possible interpretation is that the depth profiles are sampling areas with 

increasing abundance of alkali-rich feldspar, feldspathoids, or mica grains.  Alternatively, 

Figure 15: Single-shot normalized peak intensity data for Bathurst_Inlet analysis 

points (a) 4 and (b) 5 and percent change with depth calculated from the average of 

shots 6-10 and shots 26-30 using PLS major and trace abundances for points (c) 4 

and (d) 5.   Si, Na, K, and Rb correlate positively with Li peak intensity.  Some 

peaks have been scaled; plotted are Si 635 nm, Rb 780 nm, K 767 (÷3) and Na 819 

nm.  Note:  Intensities are not representative of absolute abundance.  For major 

elements, smaller peaks are chosen because they are less susceptible to saturation 

and self-absorption.  From the percent change plots, the largest decreases with depth 

are in Li, Rb and K2O.   
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the favored scenario is that the Bathurst unit has undergone alteration via a process that 

has mobilized the highly soluble alkalis toward the surface, as observed in the ~15 µm 

depth profile.  Many factors influence element mobility including composition, 

mineralogy, pH, temperature, etc., making it difficult to parse out relative mobility 

among elements when these factors are unknown.  However, the alkalis (Li, Rb, Na and 

K) are generally considered to be more fluid mobile than elements such as Al and Ti [e.g. 

Nesbitt and Wilson, 1992].  The observed pattern of increasing alkalis toward the surface 

is consistent with this.  Li is the most fluid mobile element and demonstrates the largest 

change with depth.  This enrichment process may proceed via periodic wetting over a 

long period of time, possibly from frost, and subsequent evaporation/sublimation may 

carry Li and the alkalis upward.  Similar surficial alkali and alkali earth enrichments (e.g. 

Rb, Na, K and Ca) have been observed in weathered Antarctic meteorites by Velbel et al. 

[1991].  Their preferred explanation is that the meteorites have undergone leaching and 

evaporation that led to the formation of evaporites on the exterior of the meteorites.  A 

surface enrichment in Ca is not observed in Bathurst_Inlet and no Li data is provided in 

Velbel et al. [1991] but the situations appear to be somewhat analogous.   

Barium 

Float rocks and pebbles sampled early in the traverse at the Bradbury site are, on 

average, somewhat enriched in Ba relative to rocks sampled at the Rocknest site (Table 

4), consistent with the more felsic nature of the Bradbury rocks [Sautter et al., 2013].  For 

example, the average Ba abundance and standard deviation for the group’s average for 

the 36 analysis points on rocks at the Bradbury location is 70 ± 130 ppm (1σ, univariate) 

or 140 ± 215 ppm (1σ, PLS) compared to 5 ± 20 ppm (1σ, univariate) or 10 ± 30 ppm 

(1σ, PLS) over the 121 points on Rocknest rocks.  However, because the detection and 

quantification of Ba is difficult, in this section we focus only on the clearest detections of 

Ba.  A clear detection is defined by the obvious presence of peaks at both the primary Ba 

location at 455.5 nm and the secondary location at 493.5 nm.   

Figure 13b-c show examples of spectra from Mars targets with various amounts 

of Ti, Si and Ba.  Stark is high in SiO2 (>60 wt. %) and low TiO2 (<1 wt. %) while 

Thor_Lake point 5 is high in TiO2 (>3 wt. %) and low in SiO2 (<40 wt. %) [Sautter et al., 
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2013].  Because the Si peak at 455.4 nm 

has a slight bump on its right shoulder, it 

appears that Ba is present in Stark, and 

both PLS and univariate models estimate 

~600 ppm Ba.  However, as was shown in 

the modeling section, both models can be 

influenced by the presence of a large 

Si/Ti peak.  But due to the slight 

asymmetry of the peak and a possible 

feature at 493.5 nm (Figure 13c), 600 

ppm of Ba is reasonable.  Preble point 2 

(not shown) is similar to Stark and also 

has high estimated Ba (600-1000 ppm).  

There appears to be no detectable Ba in 

Thor Lake point 5.  The other two 

examples, JakeM_1 point 4 and Akaitcho 

point 7, have mid-range abundances of Si 

and Ti.  JakeM_1 point 4 likely has some 

Ba due to the slight “filling-in” of the dip 

between the Si/Ti peak and the rightmost 

Ti peak.  The clearest detection of Ba in 

the first 100 sols is seen in Akaticho point 

7.  While both Si and Ti peaks are present 

in the 455 nm region, the primary peak in 

Figure 16:  Peak intensity analysis of Ba in the Akaitcho sand ripple, point 7.  (a) Ba 

peak intensity with depth compared to Na, K, Si and Mg peak intensities.  Increased 

Ba, Na, K, and Si are posited to correspond to a buried pebble.  (b) Peak intensities 

for Si, Na, K, Si, Al and Sr correlate positively with Ba while (c) Mg and Mn 

correlate inversely.  Some peaks have been scaled; plotted here are Na 589 nm, K 

767 nm, Si 635 nm (x1.5), Al 705 (x5), Sr 422 nm (x6), Mg 518 nm, Mn 403 nm 

(x10). Note:  Intensities are not representative of absolute abundance.  For major 

elements, smaller peaks are chosen because they are less susceptible to saturation 

and self-absorption.    
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this region is from Ba, and there is clearly a Ba peak at 493.5 nm.  Lastly, several 

locations in Link show increased Ba (up to ~300 ppm) but the presence of the Si/Ti peak 

makes it very difficult to draw any conclusions from this observation. 

Focusing on the clearest detection of Ba, Akaitcho is a small accumulation of 

sand (and dust) that was analyzed as a ChemCam 3x3 grid taken on sol 50 of the traverse.  

Thirty shots were taken at each point.  Inspection of the shot-to-shot signal intensity 

behavior suggests the laser is primarily striking unconsolidated material up to shot ~13 

and shots 14-24 primarily struck a more solid material [Meslin et al., 2013].  The latter 

shots are coincident to the spectra enriched in Ba (Figure 16a).  Several elements, 

including Na, K, Si, Al and Sr, correlate strongly with Ba (Figure 16b) while Mg and Mn 

have weaker negative correlations with Ba (Figure 16c).  Using Ba and the alkalis as a 

signature for the pebble, a plausible scenario to explain the behavior of the depth profile 

is that the laser is slowly exhuming the pebble, and a portion of the pebble is sampled by 

shot 8.  Occasionally, sand falls back over the pebble as indicated by the dips in Ba and 

alkalis over shots 10-13 and 25.  Estimates of Ba abundance from the averaged spectrum 

excluding the first five shots are 670 ppm (univariate) and 570 ppm Ba (PLS).  To more 

accurately estimate the Ba in the pebble and soil, five single shot spectra at two locations 

corresponding to the high Ba regions (shots 16-20 and shots 26-30) were averaged and 

the peaks in the Ba region were fit for estimation in the univariate model.  The averages 

of shots 16-20 and 26-30 estimate 855 ppm Ba and 991 ppm Ba, respectively, ~200-300 

ppm more than in the averaged spectrum.  For comparison, the very first shot over the 

profile predicts a negative value and the average of shots 2-5 is 65 ppm Ba.  

Terrestrial studies have shown Ba abundances follow Si in mafic compositions 

when olivine ± pyroxene ± plagioclase ± amphibole are crystallizing, but it decreases 

with increasing Si when K-feldspar, feldspathoids ± micas crystallize.  Because Ba in 

Akaitcho 7 is correlated positively to Na, K, Si, and Al, an interpretation of the pebble as 

a feldspar or possibly a mica is reasonable.  Concentrations of 800 to 1000 ppm of Ba are 

not uncommon in terrestrial feldspars and Ba-rich feldspars have been identified by 

Hewins et al. [2013] in the recently discovered martian breccia NWA 7533.                             

Rubidium and Strontium  
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The targets within the first 100 sols that have the highest Rb also have the highest 

Sr and therefore we discuss these two elements together.  These measurements provide 

the first detectable levels of Rb on Mars.  The RMSEP for the PLS model used to 

calculate the following averages is 30 ppm for Rb and 160 ppm for Sr.  The average 

abundance is ~25 ppm for the sand and soils and ~35 ppm for rocks and pebbles, 

including Link; these compare favorably to the estimates of 25 ppm and 56 ppm, 

respectively made by Brückner et al. [2003] using Pathfinder K measurements and an 

SNC meteorite K/Rb ratio of 230.  Taylor and McLennan [2009] estimate 12.5 ppm Rb in 

the bulk martian crust, slightly lower than the observed Rb abundances, but the observed 

abundances are biased slightly towards higher concentrations due to an approximate 

detection limit of ~20 ppm.  The average Sr abundance in rocks and pebbles is ~185 ppm, 

lower than Brückner et al.’s [2003] estimate of 405 ppm.  For soils, the average observed 

Sr abundance is ~95 ppm, which is also lower than Brückner et al.’s [2003] estimate of 

189 ppm Sr.   

The most unique points for Sr and Rb are the five analysis points in Link, the 

conglomerate described by Williams et al. [2013], which have Rb >100 ppm and Sr 

>1000 ppm.  Points 2 and 3 in the soil target Beaulieu appear to have struck loose 

pebbles and these pebbles have Rb > 100 ppm and Sr > 500 ppm.  Three points in rocks 

have Rb between 60-80 ppm:  sol 22 Preble point 2, sol 48 JakeM_1 point 5, and sol 32 

Taltheilei point 4, which also has Sr > 400 ppm.  There are mid-range Rb abundances in a 

buried pebble at point 2 in the sol 49 Anton soil, which has ~60 ppm Rb, and point 2 in 

the Akaitcho sand accumulation, which has ~65 ppm Rb.  Additionally, there are several 

targets that have Sr > 400 ppm:  sol 22 Murky point 2 (pebble in soil), sol 32 Taltheilei 

points 1, 4 and 5 (bedrock), sol 43 Kam point 5 (pebble in soil) and sol 45 Jake_M point 

3 (float rock).  Table 4 provides summary statistics for Rb and Sr within each material 

type for all targets within the first 100 sols.  The means of Rb and Sr for all categories 

except for Link are within the models’ RMSEPs.  Major element abundances associated 

with these points are presented in Table 5 and spectra of the Rb and Sr for these points 

are shown in Figure 13d-e.  For comparison, several targets with low Rb and/or Sr 

abundances are also plotted (Portage soil and Coronation or Jake_M).   
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Link is very high in both Rb and Sr, and we have attempted to identify possible 

Rb- and Sr-bearing minerals based on the elements they correlate with.  In Williams et al. 

[2013], the light-toned clasts are interpreted to be feldspar grains and the cementing 

matrix appears to be enriched in Fe, Ti, and Cr.  This is primarily based on an observation 

Figure 17:  Variation diagrams for the 5 analysis points on Link.  Major element 

PLS abundances (wt. %) for (a) CaO (RMSEP 4.2 wt. %), (b) Na2O (RMSEP 0.7 wt. 

%), and (c) FeOT (RMSEP 3.2 wt. %) plotted against SiO2 (RMSEP 7.3 wt. %) 

illustrating the change in depth that occurs in point 5 of Link and to a lesser extent in 

points 2 and 4.  Major element PLS abundances for (d) SiO2, (e) Al2O3 (RMSEP 3.9 

wt. %), and (f) CaO  (RMSEP 4.2 wt. %) plotted against Sr (RSMEP 160 ppm) 

demonstrate the unusual trends observed in point 5 for Si and Ca.  The positive 

correlation between points for Al2O3 with Sr and the inverse correlation with Ca are 

also indicated.  Plots (g-i) show the positive correlation between Rb peak intensities 

and (g) Al, (h) K and (i) Sr for points 1, 3 and 4, which showed the least influence 

from the nearby O peak.    
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of a pronounced change in composition with depth over the 50 shots taken on the fifth 

point on Link in which material enriched in Fe, Ti and Cr is ablated revealing a 

composition beneath that is similar to the other 4 locations, enriched in Si, K, Na, and Ca.  

Figures 17a-c shows this compositional change clearly for Ca, Na and Fe relative to Si.  

The surface shots for point 5 (beginning after the first 5 shots) start on the left side of the 

plots (low Si) and Ca and Na increase in concentration with depth toward the 

composition of the other 4 locations and Fe decreases with depth.   

While the changes with depth for major elements are quite clear, determining the 

relation between Sr and Rb and the major elements is less clear.  For Sr in point 5 (Figure 

17d-f), there appears to be a complex relationship where Sr appears to initially increase, 

decrease and then increase again once in the putative feldspar grain.  This “saw-tooth” 

like pattern appears in plots of Sr with Si, Ca, Al, Na, Ti, and Fe, although it is only 

apparent in Al after thorough inspection of the peak intensities.  This may be explained 

by variable sampling initially of the Fe-rich material relative to the underlying Si-rich 

clasts, and matrix effects between the components may disproportionately affect Sr 

emission.  This would indicate Sr predominately resides in the Si-rich clasts.  However, if 

matrix effects are not a factor, it may indicate that Sr is present in both materials.  

Focusing on the Al and Ca versus Sr plots, possible trends are revealed between the first 

four analysis points and shots 30-50 of point 5.  Al and Sr are correlated positively and it 

appears that Ca and Sr are correlated negatively.   

Rb is more difficult to analyze due to its primary peak’s position near the large O 

peak.  In Link point 5, the Fe-rich material has a larger O peak than the underlying 

material and the O 777 nm peak intensity decreases by 12.5% from the average of shots 

6-10 relative to shots 46-50.  This decrease in O peak intensity is mimicked in Rb where 

the percent change with depth between the Rb peak intensity over the average of shots 6-

10 and shots 46-50 is 23%.  The drop in the O peak intensity is a matrix effect that is 

affecting the Rb peak intensity and thus Rb abundances also appear to decrease with 

depth. 

However, earlier results presented in the supplementary material of Williams et al. 

[2013] pointed toward increasing Rb with depth in point 5, and thereby implying the Rb 

is associated with the putative feldspar clasts.  That interpretation was based on a 
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different normalization scheme in which the spectra were normalized to the total 

emission across all spectrometers instead of the total emission for each spectrometer.  

There is a 70% decrease in the UV spectral range total emission from the first shots on 

the Fe-rich matrix (shots 6-10) to the shots predominately in the Si-rich matrix (shots 35-

40) and this significantly influences the sum of the total emission across all 

spectrometers.  The VNIR spectrometer, in which the Rb and O peaks are present, only 

decreases by 13% over the same range.  The drastic change in total emission in the UV is 

likely due to the large number of Fe and Ti lines in that region and these peaks decrease 

in size as the Fe-Ti rich component is ablated, thus reducing the total emission.  After 

normalization to the total emission, Rb appears to increase with depth, and thus 

associated with Si, K, Na, and Ca.  This is in opposition to results obtained with data 

normalized to each spectrometer’s total emission and, therefore, observations of changes 

in Rb in point 5 are difficult to interpret due to opposing results obtained from different 

normalization schemes.  This is an extreme case study in which highly different chemical 

matrices are sampled in a depth profile and it highlights the importance of normalization.   

Examination of three of the other locations on Link reveal that points 1, 3 and 4 

do not show a significant compositional change with depth and the O peak intensity and 

total emission are relatively consistent over shots 6-50.  Therefore it may be possible to 

determine if there is a correlation between Rb and any other major elements with minimal 

influence from matrix effects in these points (Figure 17g-h).  Because there are no 

significant changes with depth, we cannot rely on shot-to-shot variability and therefore 

we look at the trend formed by all points.  In this case, there appears to be a positive 

correlation between Al, K and Sr with Rb when the 3 locations are taken together.  This 

provides some evidence for Rb being associated with the suggested feldspar phase.          

Given the complexities associated with the total emission, the variability in the 

intensity of the O peaks, the potential matrix effects between a Fe-rich matrix and a Si-

matrix, and how each of these factors affect the chosen normalization procedure, it is 

very difficult to interpret the behavior of Rb in Link point 5 without additional laboratory 

work exploring these issues on a sample of known composition.  At this time, the best 

evidence that Rb and Sr are present in the Si-rich material is that all five locations show 

consistently high Rb and Sr and, from the RMI imagery, these locations appear to have 
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struck light-toned clasts.  The Si-rich material is associated with high Al, K, Na and Ca, 

and thus consistent with a feldspar interpretation.  This interpretation does not exclude Rb 

and/or Sr being present in the Fe-rich matrix material as well because all shots in the 50 

shot depth profile on Link point 5 contain significant amounts of Rb and Sr.  It is possible 

that the initial shots sampled only Fe-rich matrix material, thus indicating Rb and Sr are 

present in the cement.  It is also possible that all shots sampled some portion of the Fe-

rich matrix and the Si-rich clasts.  Additional data on Link-like conglomerates would be 

required to further constrain the composition of the matrix.  

Examination of the high Sr and Rb points in the Beaulieu pebbles, Taltheilei and 

Jake_M show no significant changes with depth and therefore shot-to-shot studies are not 

productive in understanding element correlations.  However, these locations tend to have 

high Si and alkalis contents (Table 5), consistent with Link and a feldspar interpretation, 

and in the case of Jake_M, this is also consistent with the results from APXS, where the 

whole rock chemistry implied a high fraction of feldspar [Stolper et al., in press].                              

K versus Rb plots and K/Rb ratios are often used to make inferences about 

magmatic fractionation processes, as well as about weathering and metasomatism [e.g., 

Shaw, 1968; Nath et al., 2000; Wronkiewicz and Condie, 1990].  Figure 18 shows a plot 

of Rb and K with outlines of the regions for the different material types encountered in 

the traverse.  For reference, generalized fields of several rock types and minerals are 

shown.  Also plotted are estimates of the terrestrial K/Rb ratios for the continental crust 

(296) and for depleted mid-ocean ridge basalts (MORB, 1071) [McDonough et al., 1992].  

The median % K obtained from the Gamma Ray Spectrometer (GRS) for the Gale crater 

region (~0.33 ± 0.03 % K) from Gasnault et al. [2010] is plotted as a horizontal line 

across the chart.  The majority of ChemCam points fall between the terrestrial continental 

crust fractionation line and the depleted MORB estimates and the error bars typically 

encompass both lines.  Most of the rocks, soils, and sand fall in the general 

mafic/intermediate field and partially overlap the upper ranges of the SNC meteorite and 

pyroxene fields.  The exceptions to these observations are the high Rb points in Link and 

two Beaulieu pebbles which fall below the continental crust line and the Rb and K error 

bars do not encompass it.  These points lie below the high K/high Rb terrestrial data 

plotted here (granites and rhyolites (felsic)/illite-smectite/K-feldspar).  K abundances 
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from APXS plotted with ChemCam Rb abundances occupy the same space as ChemCam 

data, indicating consistency between the two techniques for K; Rb was not detected by 

APXS in Jake_M. 

Based on the igneous fractionation trends described in Shaw [1968], these data are 

broadly consistent with the “main trend” observed in terrestrial materials, which roughly 

corresponds to the K/Rb continental crust line in Figure 18.  The oceanic tholeitic basaltic 

trend (OT) is located in the direction of the plagioclase field while the pegmatitic-

hydrothermal (PH) trend is located in the upper right side of the plot.  Highly weathered 

samples would lie to the lower right of the main trend due to the preferential retention of 

 

Figure 18 
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Rb over K as clay minerals are formed [e.g. Nesbitt et al., 1980].  While Link and several 

pebbles appear to lie below this main trend, neither the K nor Rb estimates are accurate 

enough at this time to determine if this trend is due to weathering processes or is simply 

an underestimation of K or an overestimation of Rb. 

A frequency histogram of K/Rb ratios is inset in Figure 18.  The most commonly 

occurring ratio range is 320-360, which encompasses the average value calculated from 

17 SNC meteorite bulk measurements, 344 (range 150 to 770).  The next most frequent 

ratio range (280-320) from ChemCam data includes the estimated ratio from Taylor and 

McLennan [2009] of 299.2.  The broad correspondence between observations from 

ChemCam, the SNC meteorites, and modeled estimates suggests that our measurements 

are reflecting a widespread compositional trend in martian materials. The large range of 

Figure 18 (previous page):  Rb versus K plot showing the Gale crater data relative to 

major rock types, minerals, and the SNC meteorites.  Terrestrial K/Rb ratios for mid-

ocean ridge basalts (MORB) and the continental crust are from McDonough et al. 

[1992].  % K from GRS, represented by a horizontal line, is the median for the Gale 

region (0.33 % K ± 0.03; Gasnault et al., 2010).  The data from Gale crater generally lie 

on the main terrestrial fractionation trend described by Shaw [1968], which 

approximately corresponds to the continental crust K/Rb line.  The pegmatitic-

hydrothermal (PH) and the oceanic theoleitic (OT) trends from Shaw [1968] are 

indicated with dashed lines; Gale materials do not follow these trends. Inset:  Frequency 

histogram of K/Rb ratios in percent.  The orange bar is the 280-320 bin, which contains 

the bulk crust K/Rb estimate (300) from Taylor and McLennan [2009] and the blue bar 

is the 320-360 bin, which contains the K/Rb ratio (344) obtained from the average of 17 

SNC meteorite whole rock compositions.  The highest percentage of ChemCam data 

lies within or near these ratios bins.  Reference data fields are based on values given in 

the following sources; BSI refers to standards in the Brammer’s Standard Inc. 

collection):  plagioclase (n=56, Kinman et al., 2009), pyroxene (n=21, Griffin and Rama 

Murthy, 1969), garnet (n=12, Griffin and Rama Murthy, 1969), olivine (n=5, Griffin 

and Rama Murthy, 1969),  shale (n=29, Wronkiewicz and Condie, 1987; 6 from BSI), 

mafic (n=96, Choi et al., 2013; Dostal et al., 1991; Jafri and Sheikh, 2013; Perez et al., 

2013; Xu et al., 2012; Taylor et al., 1956; Sanfakioğlu et al., 2013; Gast 1965 and 14 

from BSI), hornblende (n=4, Griffin and Rama Murthy , 1969), intermediate (inter., 

n=15, Choi et al., 2013; Taylor et al., 1956 and 7 from BSI), illite-smectite (n=15, Gilg 

et al., 2003; Saleemi et al., 2000), felsic (n=57, Zhang et al., 2011, Alirezaei and 

Hassanzadeh, 2012; Huang et al., 2012; Kaygusuz et al., 2012;  Caffe et al., 2012; 

Taylor et al., 1956 and 10 from BSI), phlogopite (n=1, Griffin and Rama Murthy, 

1969),  K-feldspar (n=40, Huntley and Hancock, 2001; Wilson and Coats, 1972 and 2 

from BSI), SNC meteorites (n=17, Barrat and Bollinger, 2010; Filiberto et al., 2012 

and refs therein; McSween, 2003).  

 



85 

 

ratios in the ChemCam dataset is likely a result of the small analysis spot size which may 

sample individual grains; there may also be a small number of outliers resulting from 

anomalous K or Rb estimates.           

APXS Trace Element Results 

Preliminary Rb, Sr, and Ba trace element concentrations for three rocks, Jake_M, 

Bathurst_Inlet, and Et Then, and one soil, Portage, were analyzed by fitting the APXS 

spectra using the computer code GUAPX.  No Rb or Ba detections were made in any 

sample.  All three Sr determinations by GUAPX lay between the limit of detection 

(LOD) and the limit of quantitation (LOQ), the latter term referring to the level at which 

quantitative discussion of the result is justified.  The values given by GUAPX for LOD 

and LOQ are, respectively, ~100 ppm and ~300 ppm. Work continues to refine the 

modeling of the overlap between Rb and Sr peaks and the Pu L X-ray scatter peaks which 

are largely responsible for determining the detection limits.  Jake_M and Portage were 

analyzed by ChemCam, but Et Then was not.  The estimated Sr abundance range 

determined by APXS for Jake_M and Portage compare favorably to ChemCam estimates.  

In Jake_M, the average of nine ChemCam observation points with positive estimates is 

100 ppm and in Portage, the average is 70 ppm over five points with positive estimates 

(RMSEP for Sr = 160 ppm).      

Conclusions 

The trace element results for ChemCam provide the first in situ measurements of 

Li and Ba, the highest in situ observation of Sr, and the first detectable abundance of Rb 

on Mars.  Univariate and PLS models have been developed for quantifying these 

elements.  This modeling is preliminary and work is underway to supplement the training 

set to more accurately represent the compositional ranges observed at Gale crater on 

Mars, and additional multivariate techniques are being tested to improve accuracy.  The 

major findings observed in the first 100 sols from the Bradbury Landing Site to the 

Rocknest location are the following:   

 Li is low in the majority of rocks and soils, as expected for dominantly basaltic 

materials.  If the salt component of the soils identified by Viking and subsequent 

missions was formed via precipitation from fluids derived from extensive 

hydrothermal processes, then Li concentrations should be enriched in the soils.  
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Instead, it appears that the Li abundance fits the vapor-transport mechanisms for 

enriching the soil in S and Cl. 

 Several LIBS points in rocks have Li > 30 ppm and may indicate the presence of 

primary igneous phases enriched in Li or secondary minerals such as clays. 

 Bathurst_Inlet is enriched in Li and several locations show a marked decrease in 

Li with depth.  This trend is associated with Rb, Na, and K, indicating the surface 

enrichment is due to aqueous alteration processes (i.e. frost deposition, followed 

by melt and evaporation or sublimation) that have preferentially mobilized the 

alkalis. 

 Up to ~1000 ppm Ba has been observed in a buried pebble in the Akaitcho sand 

ripple.  The Ba is associated with Si, Na and K, indicating it may be present in an 

alkali feldspar grain. 

 Rb and Sr are present at high abundances (>100 ppm and >1000 ppm, 

respectively) in the conglomerate Link.  Additional locations with Rb >50 ppm 

and Sr >500 ppm have been identified in several rocks and pebbles.  The majority 

of these locations also have high SiO2 (>60 wt. %), high alkali abundances (>4 

wt. % Na2O + K2O), and CaO between ~4-8 wt. %, possibly indicating a 

feldspathic composition. 

 Sr estimates in Portage and Jake_M are consistent (within error) between 

ChemCam and APXS.   

 Trends in K with Rb indicate the data obtained in Gale crater follow the main 

fractionation trend established by Shaw [1968] and there is no evidence for 

significant weathering from the ratio of these two elements. 

Overall, the trace element data presented here provide additional evidence for 

magmatic differentiation [e.g. Sautter et al., 2013; Stolper et al., 2013] and potentially for 

a small amount of surface aqueous alteration on Mars.  
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