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ABSTRACT
The Green and Colorado Rivers comprise the drainage system of the western

slope of the Colorado Rockies and Colorado Plateau. Comparison of river profiles and
rates of incision between these rivers provides a natural laboratory for resolving controls
on river evolution. Disequilibrium profiles in both rivers are evident by numerous
knickpoints and convexities. By compiling existing age constraints and applying
cosmogenic burial dating techniques to previously undated bedrock strath terraces, we
determine spatial and temporal patterns of incision and profile evolution over the last 10
Ma. In several cases, incision rates are faster below knickpoints than above, suggesting
that knickpoints are dynamically evolving and likely migrating upstream. Reconstruction
of paleo-profiles from the 640 ka Lava Creek B terrace suggests rates of knickpoint

migration of >150 m/ka in soft rock. Hard bedrock often coincides with knickzones and



Vil
appears to slow knickpoint migration (<50 m/ka). Semi-steady average incision rates of
150 m/Ma over the last ten million years on the upper Colorado has resulted in 1.6 km of
incision.

The Lees Ferry knickpoint (ca. 950 m elevation) is interpreted to be an upstream-
migrating knickpoint initiated by integration of the system through Grand Canyon at
about 6 Ma. A burial date of 1.5 +/-0.13 Ma, on a 190-m-high strath terrace 169 km
above the knickpoint indicates a rate of 126 m/Ma and is three times older than a
cosmogenic surface age of the same terrace. Thus high terraces dated by surface
techniques are misleading. This plus a compilation of available incision rates across
Lee’s Ferry knickpoint show moderate rates of 150- 175 m/Ma below Lees Ferry, ca.
100- 130 m/Ma above the knickpoint in long term rates and 230-300 m/Ma above the
knickpoint in very low and young terraces with lower rates farther upstream (e.g. 100
m/Ma on the San Juan and 150 m/Ma near Grand Mesa). Previous authors noted convex
features in tributaries above the knickpoint are at elevations between 1200 and 1400 m
suggesting they are all responding to a change in incision rate on the Colorado River.
Thus longitudinal profiles and incision rates are consistent with diffuse knickpoint
propagation extending perhaps 300 km above Lees Ferry on very short time scales. Very
high short term rates of 300-500 m/Ma over ~500 ka at Lee’s Ferry, and upstream of the
knickpoint (e.g. Navajo Mountain, Fremont River and Trachyte Creek) partly result from
minimum estimates of age but still may suggest incision rates had increased ca. 500 ka
due to knickpoint propagation following slower average incision in the last 1-2 Ma.

A new cosmogenic burial isochron date of 1.48 +/-0.12 Ma on an abandoned

meander 60 m above the river in upper Desolation Canyon gives an incision rate of 40
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m/Ma. Thus, the Green River below Canyon of Lodore displays much slower incision
rates relative to a similar distance upstream on the Colorado River. The combination of
higher gradient, higher discharge, and higher incision rates over the last several million
years, for the upper Colorado River relative to the Green, is interpreted to be due to
differential rock uplift of the Colorado Rockies relative to the Canyonlands and Uinta
Basin regions. This may be driven by mantle bouyancy associated with the Aspen
Anomaly of central Colorado.

The overall conclusions of this paper are that: 1) differential incision across the
Lees Ferry and Desolation knickpoints records upstream-propagating incision transients
in a disequilibrium river system; 2) the upper Colorado River system is incising faster
than the Green River over the last several million years due to rock uplift of the Colorado

Rockies relative to the central Colorado Plateau.
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PREFACE

This thesis will be submitted for publication to the Geological Society of
America’s peer-reviewed journal, Geosphere, in Fall, 2010. The following thesis is a
modified version of the manuscript to be submitted of the same title. As the first author, I,
Andrew L. Darling, performed the majority of the research and work on the paper. The
manuscript is multi-authored by: Andrew L. Darling and Karl E. Karlstrom (Department
of Earth and Planetary Sciences, University of New Mexico); Darryl Granger
(Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall
Drive, West Lafayette, IN 4790, USA); Andres Aslan (Mesa State College, Department
of Physical and Environmental Sciences, 1100 North Ave., Grand Junction, CO 81501,
USA); Eric Kirby (The Pennsylvania State University, Department of Geosciences, 503
Deike Building, University Park, PA 16802, USA); Will Ouimet (Amherst College,
Department of Geology, 11 Barrett Hill Road, Amherst, MA 01002, USA); Greg Lazear
(20508 Brimstone Rd., Cedaredge, CO 81413, USA); David Coblentz (Geodynamics
Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA)

As required by the Department of Earth and Planetary Sciences, this introduction
outlines the roles of the different coauthors. As first author, my role included planning
and organizing a major field expedition to Desolation Canyon in Utah. In addition, |
handled field sampling and mapping, crushing samples and performing mechanical,
gravitational, magnetic and heavy liquid separations, and then dissolving quartz grains in
hydrofluoric acid, then chemical separation of ions. | then re-oxidized ion separates and
pounded sample material into metal cylinders for measurement on the Accelerator Mass
Spectrometer at PRIME Lab, Purdue University. After data reduction for determination

of burial dates | compiled dates in the literature and compared our results to these to
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evaluate ours and existing hypotheses. | drafted appropriate figures and wrote and
revised the manuscript and revised figures. | am listed as corresponding author for the
Geosphere submission.

My advisor Karl Karlstrom helped formulate the research based on past work
throughout the Colorado Plateau and Rocky Mountains, provided funding of the work
mainly through the CREST (Colorado Rockies and Seismic Experiments) research grant,
enabled research river trips, provided edits of various drafts, and helped with data
interpretation. Darryl Granger provided access to the preparatory labs at Purdue
University and to PRIME Lab for ion measurements, handled data reduction and
provided useful insights on the validity of our data, and provided edits and input to the
manuscript. Andres Aslan helped with literature compilation, collected a sample in
Wyoming, and helped with manuscript revisions. Eric Kirby provided helpful insights
from a much broader understanding of the research, suggested regions to focus our
efforts, and provided revisions to the manuscript in addition to serving on the committee.
Will Ouimet helped collect samples in Desolation Canyon and provided feedback at
meetings and to the manuscript. Greg Lazear helped collect samples in Desolation
Canyon and provided insights on rock uplift to the manuscript. David Coblentz provided
digital elevation model data for one figure, served on the committee and provided helpful

comments for the manuscript.



INTRODUCTION
The Colorado River system, as the main river draining the Colorado Rocky

Mountains, is an excellent natural laboratory for studying regional landscape
development and is ripe for a modern compilation of bedrock incision rates combined
with addition of new incision rates in undated reaches. We focus on the Colorado River
above Grand Canyon (the upper Colorado River system) and especially on a comparison
of the Green and Colorado rivers above their confluence (Fig. 1). Many of the main
features of the modern profile have developed in the last 5-6 Ma due to integration of
Colorado Plateau drainages through Grand Canyon to the Gulf of California (Karlstrom
et al., 2008), however, the upper Colorado River reaches may be older and extend back to
ca. 10 Ma (Larson, 1975; Aslan et al., 2008). Tectonic influences interact with climatic
oscillation of discharge and sediment flux to determine the gradient of rivers. Tectonic
influences discussed in the literature include regional epeirogeny (Karlstrom et al., 2008),
offset on faults, (Pederson et al., 2002a; Karlstrom et al., 2007), salt tectonics (Huntoon,
1988; Kirkham et al., 2002), and perhaps tilting that reflect buoyancy in the mantle, either
via long wavelength whole mantle flow (Moucha et al, 2008), or upper mantle convection
(van Wijk et al., 2010).

In regions of non-uniform rock type, erosion-resistant substrate also effects long-
profile development and studies show that channel narrowing and increased gradient
correlate with harder rocks in the river substrate (Grams and Schmidt, 1999; Duvall et al.,
2004; Mackley and Pederson, 2004). At shorter timescales, significant sediment input
from debris flows in ephemeral tributaries is observed throughout the arid Colorado
Plateau and these also can create convex reaches through bed armoring and channel

filling (Schmidt and Rubin, 1995; Grams and Schmidt, 1999; Hanks and Webb, 2006).



The regional debate has recently focused on whether steep reaches reflect bedrock
competence (Pederson et al., 2010) or transient incision (Karlstrom et al., in prep; Cook
et al., 2009) or both. The answer to this question carries implications for the regional
patterns of surface deformation inferred from incision history.

Two data-sets are explored in this paper with the goal of understanding first order
controls on the development of the Colorado River system: 1) analysis of river profiles,
and 2) incision history through time in various reaches determined by dated strath
terraces. These data contain information about the combined effects of regional uplift,
climate change, and drainage re-organization that, if resolved, can help elucidate the still-
controversial uplift and denudation history of the western U.S. (Pederson et al., 2002b;

McMiillan et al., 2006).



Figure 1. Map of rivers and locations mentioned throughout the Colorado Plateau,
including sample locations, marked with black squares. Stars are knickpoints in the
longitudinal profile. Three second DEM generated by Chalk Butte Inc., 1995.



GEOLOGIC BACKGROUND
Tectonic Setting

The modern landscape of the Colorado Plateau and Rocky Mountains is the result
of erosion and fluvial incision acting on a region with a protracted history of both
orogeny and epeirogeny. It seems certain that deformation during Laramide time resulted
in local highlands and basins (Dickinsion et al., 1988). Laramide structural features
consist of basement-cored uplifts and major reverse faults with Tertiary and younger
basins and structural relief from uplifts to basins exceeded 10 km in some places
(MacLachlan et al., 1972). However, paleo elevations at the end of the Laramide are not
well known and the relative magnitudes of Laramide versus mid-Tertiary and Neogene
epeirogenic uplift of the Rockies and Colorado Plateau continue to be debated. At one
end member, most of the modern high elevations were established during the Laramide,
for example by crustal thickening via mid-crustal injection of lithosphere into the
Colorado Plateau during the Sevier Orogeny (Gregory and Chase, 1994; McQuarrie and
Chase, 2000). In this model, the modern high relief landscape developed from some early
plateau via erosional and geomorphic processes. An alternative uplift model hypothesizes
Tertiary epeirogeny that may have coincided with the Tertiary ignimbrite “flare-up” due
to magmatism (Roy et al., 2004; Lipman, 2007) and mantle-driven thermal topography
(Eaton, 2008; Roy et al., 2009). At the other end member, mounting evidence for post-10
Ma increases in elevation in the Rocky Mountains (Leonard, 2002; McMillan et al., 2002;
Sahagian, 2002) suggests a young component of rock uplift. More realistic models
involve several episodes of uplift (e.g. Liu and Gurnis, 2010). This paper evaluates the
importance of the late-Neogene uplift component as recorded by the fluvial system and

elucidated in incision rate patterns.



Regional River System

The Colorado River below Lees Ferry (the lower basin) and through Grand
Canyon began to carry Rocky Mountain water and detritus to the Gulf of California after
6 Ma (Karlstrom et al., 2008). However a paleo-Colorado River already existed in the
Colorado Rockies as shown by gravels beneath 25-10 Ma basalts of the Flattops (25-10
Ma) and Grand Mesa region (Fig. 1; Kirkham et al., 2002; Czapla and Aslan, 2009).
These basalt remnants flowed into the low parts of the topography at the time and,
because they are resistant to erosion, they are now the highest topography. There is very
little difference in elevation between flows of 25 to 10 Ma basalts and hence this time is
thought to have been a period of low-relief and little erosion in central Colorado (Yeend,
1969; Larson et al., 1975; Kirkham et al., 2002). Erosion since 10 Ma has been dramatic
(>1500 m in places) as the Colorado River and its tributaries carve deep canyons (Aslan
et al., 2008).

In contrast the Green River appears to be a somewhat younger system. Infilling of
the Green River Basin (Fig. 1) took place throughout the Tertiary, until 7-8 Ma. Miocene
deposits of the Brown’s Park Formation are somewhat younger than the youngest dated
ash (<8.25 Ma, Luft 1985), which is an older limit on the age of Green River near its
present course. Neogene subsidence and graben collapse played a key role in the early
development of the Green River (Hansen, 1986). The Green River began eroding the
low-relief region north of the Uinta Mountains as a result of drainage integration events
which brought water across the Uinta Mountains and flowed south into the Colorado

River system (Hansen 1986; Munroe et al., 2005).



River Profiles

Several datasets exist for the longitudinal profile of the Colorado River system
(Fig. 2). Early U.S. Geological Survey (USGS) reports (La Rue, 1916) are shown in Fig
2A; these provide precise elevation control for selected points but river distance between
points was not calculated to represent meanders well, and thus underestimates channel
distance. These locations are hence plotted with the same distance upstream as
topographic map derived distances. More modern USGS 1:24,000-scale topographic
maps provide reasonable precision for both river channel length and elevation control and
profiles from these (Fig. 2B) are preferred as they are the most accurate available. Digital
elevation models (DEMs) provide a more readily accessed dataset (Fig. 2C), however 90
m and 30 m resolution DEM’s may sometimes have artifacts in the extracted long profile
in narrow canyons and reservoirs force interpolation.

The main features for all three versions of the longitudinal profile are similar (Fig.
2). The predominant feature of the profile is a knickpoint near Lee’s Ferry that separates
a high gradient reach through Grand Canyon from a very low gradient reach in Glen
Canyon. For clarity, we use the following terminology: 1) a “knickpoint” is an abrupt
convex change in slope of a river’s longitudinal profile; 2) a “knickzone” is the relatively
steep reach below a knickpoint; 3) a “convexity’ is a more gradual convex bulge in a
river profile, i.e. more broad than a knickpoint. The Lee’s Ferry knickpoint divides the
Upper Colorado River hydrologic basin from the Lower Basin and has been described as
the boundary between two separate concave portions of the profile (Karlstrom et al,
2007). Additional minor knickzones and convexities exist within Grand Canyon (Hanks

and Webb, 2006) but these are less obvious in the long profile and reported to strongly



correlate with recent debris flow frequency and distribution and are thus attributed here to
shorter time scale features. There are several prominent knickpoints in the upper basin. 1)
There is a distinct knickzone through Cataract Canyon, a short distance downstream from
the confluence of the Green and Colorado Rivers. Farther upstream, the Green River has
two large knickzones, one in Desolation Canyon and the other where the Green River
crosses the Uinta Mountains. Upstream of the Green-Colorado confluence, the Colorado
River has knickpoints located in Glenwood Canyon, Gore Canyon and Black Canyon

(Gunnison River) shown as stars in Figure 1.
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Discharge and Slope Comparison

Another prominent feature of the profile is that the Colorado River has a steeper
gradient than the Green River above their confluence. In many rivers slope is inversely
proportional with discharge (Osterkamp, 1978) and may be the explanation for this slope
difference. To compare discharge magnitude between the Colorado and Green rivers, we
used USGS records for historic discharges (U.S. Geological Survey, 2001). Data were
averaged over several years from the same years of record for both systems whenever
possible to avoid annual variation in storm tracks and hydrograph shape. We
concentrated on pre-dam data (Table 1) in order to avoid substantial removal of flow via
dams and irrigation systems. Since records are not complete and minor surface water
flow alteration began before the earliest records, specific values of discharge are
minimum estimates.

Discharge records at several stream gauges show that the upper Colorado
consistently produces greater discharge than the Green per unit drainage basin area (Fig.
3). From models of stream power, river gradient decreases as discharge increases either
along a river or as juxtaposed between rivers (Howard, 1994). Comparison of
longitudinal profile of the rivers shows the Colorado to be much steeper than the Green
(see profile figures). This is verified by Ouimet et al., (in prep.; Karlstrom et al., 2010)
using Ks analysis via methods outlined in Kirby et al., (2007) that normalize gradient for
drainage area and reveal reaches that are obviously steeper than normal (e.g. immediately
below knickpoints). This analysis also confirms a visual inspection that shows that the
entire upper Colorado River is systematically steeper than the Green River per unit

drainage area. The gradient observed from the long profiles (see profile figures) and
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stream power model derived estimates of gradient yield a steep upper Colorado River that
is inconsistent with the fact that the Colorado produces greater discharge and implies

different longitudinal profile controls are acting on the system.

10000

1000

100

Discharge (m*s)

10

1 10 100 1000 10000 100000 1000000
Area(km?)

Figure 3. Historical discharge of the Green and Colorado Rivers compiled from USGS
records. The Green River has systematically less discharge per drainage area than the
Colorado. Dates of record are tabulated in Table 1.
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Green River Discharge Data

Peak Peak Peak Log Log
Location Q Area Q Area Q) (A) Record
cfs mi m'fs km®

Warren Bridge, WY 2665 468 76 1212 1.88 3.08 1932-1935
Daniel, WY 4050 932 115 2414 2.06 3.38 1914-1917
La Barge, WY 7830 3910 222 10127 235 4.01 1947-1950
Green River, WY 14838 7670 420 19865 262 430 1915-1918
Flaming Gorge 11798 14900 334 38591 252 4.59 1924-1927
Linwood, WY 10904 18300 309 47397 249 468 1929-1932
Greendale, UT 14125 19350 400 50116 2.60 470 1951-1954
Jensen, UT 31300 29660 887 76819 295 4.89 1904-1906
Quray, UT 30600 35500 867 91945 2,94 496 1948-1951
Green River, UT 42250 44850 1197 116161 3.08 5.07 1914-1917

Colorado River Discharge Data

Peak Peak Peak Log Log
Location Q Area Q Area (Q) (Area) Record
cfs mi’  mis  km®
Baker
Gulch 511 639 14 166 1.16 222 1953-1957
Grand
Lake 1138 102 32 264 1.91 242 19141917
Granby 2675 323 76 837 1.88 292 1908-1911
Hot
Sulphur 5640 825 160 2137 220 3.33 19141917
Kremmling 12028 2382 341 6169 283 3.79 19141917
Glenwood 21425 4558 607 11805 278 4.07 19141917
Palisade 35500 8738 1006 22631 3.00 435 1914-1917
Fruita 47700 17100 1352 44289 313 465 19141917
Cisco 56550 24100 1603 62419 3.20 480 19141817

Table 1. Data used to derive discharge comparison graph (U.S. Geological Survey, 2001).
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Connections between Uplift, Denudation and Incision

We follow terminology of England and Molnar (1990) in distinguishing different
types of “uplift” for discussion of evolving landscapes in tectonically active and erosional
settings like the western U.S. In these types of active regions one needs to consider river
incision rates, the related landscape denudation rates, isostatic rebound that accompanies
denudation, and any tectonic uplift or subsidence.

A major goal of this paper is to compile and analyse bedrock incision rates as
calculated from dates on strath terraces near the trunk river channels to understand
patterns of downcutting through time. When available, multiple datable terraces in a
given reach provides data on changes in incision rate through time, and comparison of
differential incision rates reach-to-reach provides information on tectonic forcings
(Karlstrom et al., 2008) and/or incision transients. This paper compiles available high
quality incision rate data as a step towards those goals. Older and higher terraces are
preferred as these tend to average out the climatically driven cycles of aggradation and
incision that are superimposed on overall rock uplift patterns (Hancock and Anderson,
2002). Only where paleo-profiles are referenced to sea level (Karlstrom et al., 2007) can
differential incision become interpreted in terms of surface uplift as well as rock uplift.

Differential incision rate data can be used to evaluate possible transient
knickpoints. To outline our thinking, we use an example from the Gunnison River that
has a relatively well understood incision history due to numerous terraces that are datable
with Lava Creek B ash (640 ka; Fig. 4). Downstream of the Black Canyon of the
Gunnison to Westwater Canyon (a distance of 185 km) incision rates are ~150 m/Ma

since 640 ka (Aslan et al., 2008; Darling et al., 2009). Near the Black Canyon knickpoint,
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Lava Creek B dated terraces from a paleo-tributary to the Gunnison indicate rates of ~500
m/Ma within the knickzone (Sandoval, 2007; Aslan et al., 2008). Upstream of the Black
Canyon another Lava Creek B locality yields an incision rate of 95 m/Ma (Hansen,

1965). This example suggests that differential incision rates, with moderate rates below,
highest within, and lowest rates above the knickpoint, can be used to identify transient
knickpoints. Downstream incision rates are adjusted to relative base-level fall for the
system, the upper incision rate is not yet affected by the new relative base level, and the
highest rate (largest arrow on the figure) is where the profile is most rapidly adjusting to a
new baselevel. This differential incision pattern suggests that the knickpoint itself will

migrate upstream as an incision wave.
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Colorado
Confluence
400/0.87

4000

3500

3000

2500

2000

1500

1000

500

| 1 ]
2100 2200 2300
Distance from Gulf of California (km)

Figure 4. Gunnison River profile and rates: an example of an upstream-propagating
transient knickpoint. Orange arrows are short term (<1 Ma rates) and red arrows are long
term rates. Green = Mesozoic sedimentary rocks. Pink = Precambrian igneous and
metamorphic rocks. Arrows are proportional to rate magnitude, horizontal bars within
arrows represent strath elevation of dated terraces.
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Knickpoint Propagation Rates

From compiled incision rates on the Gunnison River, we estimate how quickly
knickpoints migrate laterally (Fig. 5). Recent work indicates a rapid incision wave in the
Gunnison River sometime after ~1 Ma, possibly triggered by drainage reorganization
following abandonment of Unaweep Canyon (Fig. 5; Aslan et al., in prep). The
knickpoint would have traveled mainly in soft Mancos Shale, passed Sawmill Mesa (~40
km upstream) before 640 ka as inferred from the moderate incision rate of 150 m/Ma
(Darling et al., 2009). Sawmill Mesa is both an ancient confluence and site of Lava
Creek B ash. At this confluence the incision wave probably split, heading up the
Uncompahgre and Gunnison rivers. The Uncompahgre River drains the San Juan
Mountains (~100 km south from Sawmill Mesa) and quickly rises up a box canyon in
hard rock, providing a minimum recession rate of 160 m/ka from Sawmill Mesa over 640
ka. Near the modern confluence of the Gunnison and North Fork of the Gunnison,
moderate incision rates have been determined on a ~700 ka terrace (Sandoval et al., in
prep.), and the paleo knickpoint was then located an additional 40 km (80 km total)
upstream partly through basement rocks. This provides an approximate minimum retreat
rate of 200 m/ka (~400 ka; from 1 Ma to 640ka) through soft rock from Unaweep Canyon
to the North Fork confluence. Just upstream of the confluence, the Gunnison encounters
basement, and some 20 km upstream of the confluence is the mouth of the paleo-
Bostwick Creek, terraces of which are closely associated with Lava Creek Ash. Ten
kilometers above that is the modern knickpoint. Bostwick Park contains a Lava Creek B
ash preserved stratigraphically above 10 m of river gravel with primary sedimentary

structures, resulting in an incision rate of 400-500 m/Ma (Aslan et al., 2008 and
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references therein). Thus, transient incision passed the Gunnison-North Fork confluence
before 640 ka and passed Bostwick Park sometime after 640 ka. This provides a
maximum (30 km/640 ka) and a minimum retreat rate (10 km/640 ka) through mostly
crystalline basement rocks of ~50 -15 m/ka, respectively. This suite of estimates results

in @ minimum propagation rate on the order of 15 m/ka and an average rate of >150 m/ka
since inception (since most of the rock the rivers were flowing through are Cretaceous
shale). These rates are 100 to 1000 times greater than vertical incision rates over the same
time period.

The resulting range of >150m/ka (softer rock) to >15 m/ka (harder rock) for
knickpoint propagation rates are comparable in magnitude to the modeling results from
Pelletier (2010) for Grand Canyon related knickpoint propagation. While the fluvial
geometry and discharge of and bedrock underlying these rivers is very different, it may
be expected that knickpoints in large rivers on the Colorado Plateau can migrate within
an order of magnitude of these rates or higher. Much smaller drainages, such as Parachute
Creek, have resulted in propagation rate estimates of 7 — 12 m/ka in soft rock (Berlin and
Anderson, 2007) and are near the minimum Gunnison rates. This comparison illustrates
how propagation rate can scale with drainage area. The important conclusion for regional
profile studies is that transient major knickpoints in the large tributaries of the Colorado
River system migrate at high rates and are unlikely to persist in the system beyond a few
million years. This reinforces the interpretation that certain knickpoints that are shown to
be transient are temporarily slowed by harder bedrock (where propagation rates are

slower) rather than being entirely caused by harder rock.
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Figure 5. DEM 3 second eIevatlon data ChaIk Butte Inc., 1995) of the Gunnlsoanver
valley. Sample locations are labeled with the chronology and incision rate for given sites.
Approximate distances of knickpoint migration along the river channel are given for

reaches and timeframes mentioned in the text. Time spans used to calculate rates are 1
Ma to 640 ka and 640 ka to Recent.
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METHODS
Incision Rate Compilation

Bedrock incision rates can be calculated from a single dated terrace if depth to
modern bedrock can be estimated (e.g. Burbank et al., 1996; Pederson et al., 2002;
Karlstrom et al., 2007). If multiple datable terrace flights are present, a preferred method
is to calculate variation in incision rates through time using strath-to-strath comparisons,
i.e. using the elevation difference between two bedrock straths divided by their age
difference (Pederson et al., 2005; Karlstrom et al., 2008). Because of the difficulty in
obtaining good age control, most published incision rates rely on single dated straths. In
addition, because water depth and depth to bedrock are rarely known, strath heights are
commonly reported relative to the modern river (usually the water level shown on USGS
maps). The limited mid-channel drilling data that is available preclude reach-to-reach
comparisons, but suggest that bedrock is commonly on the order of ~10 m below the
river level (e.g. Miser, 1924; Woolley, 1930; Hanks and Webb, 2006; Karlstrom et al.,
2007), but can be as much as 30 m or more (Woolley, 1930; Karlstrom et al., 2007). For
the purposes of this paper, however, and comparison with published incision rate data,

Table 2 uses strath elevation above river-level projected to the nearest river.
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Cosmogenic Burial Dating

Multiple dating methods have been used to estimate the strath terrace ages
compiled in Table 2. This study contributes new dates using the cosmogenic burial
technique. Cosmogenic nuclides (*°Be and ?°Al) are produced when cosmic ray particles
(mostly very high energy protons) impact atoms and molecules in the Earth’s atmosphere
creating a cascade of nuclear reactions, mostly spallation reactions. Eventually less high-
energy subatomic particles reach quartz crystals at the surface and produce °Be and 2°Al
in quartz. Cosmogenic surface dating relies on production of various nuclides (technique
depending) at rates which vary with latitude and altitude. Surface dates are subject to
degradation of the surface of both sampled material and deposits, such that surface
accumulation rates are minimum dates and hence yield maximum incision rates.

Cosmogenic burial dating (Granger and Muzikar, 2001) relies on the different
decay rates of Al (t1,=0.72 Ma; Muzikar et al., 2003) and *°Be (t,=1.5 Ma)
(Nishiizumi et al., 2007). Dates as old as 4.5 Ma (6.25 half-lives for °Al), corroborated
by dated overlying basalt, have been reported (Matmon et al., 2010), and ages from 0.5-3
Ma are routinely reported (e.g. Granger et al., 2001; Haeuselmann et al., 2007). Thus, this
geochronometer is important to fill the critical few million year time frame of river
incision in non-volcanic regions.

Dating deposition of river gravel by cosmogenic burial dating techniques applied
to quartz require: 1) sufficient nuclide production before burial to ensure concentrations
are above the detection limit of Accelerator Mass Spectrometry (AMS) at the time of
measurement; 2) rapid, deep (10 m) sample burial for adequate shielding from post-

deposition nuclide production; 3) a sample within the age range that provides measurable
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quantities of Al and *°Be (i.e. maximum ca. 5 Ma); and 4) a stable environment to
ensure continued shielding until excavation. Preferred sites include gravel deposited in
caves, quarries in alluvium or a landslide scarp of very recent exposure, where depth of
shielding exceeds about 10 m. Field parameters relevant to the cosmogenic shielding for
our samples are outlined in Table 2.

Two unknown quantities exist in determining a burial age. First, we wish to
determine the age, i.e. how long the gravel has been buried. Second, it is unknown how
long the gravel clasts were exposed to cosmogenic nuclide production prior to burial in
the terrace. This “inheritance” sets the initial concentration of 2°Al and °Be for clasts that
were exposed thoroughly before burial. These two variables (age and inheritance)
necessitate two independent radioactive decay patterns (°Al and °Be) for age estimates
(Granger and Muzikar, 2001).

Two techniques for determining burial dates were implemented in this study. 1)
Burial date estimates of deeply buried samples were analyzed via AMS as an
amalgamation of several clasts crushed and processed together as described by Granger
and Muzikar, (2001). 2) The isochron date method (Balco and Rovey, 2008) involves
separate AMS analyses of several clasts that ideally produce a linear fit for Al vs 1°Be
for each set of clasts. In this method, post-burial production is given by the y-intercept of
the linear fit of °Al and °Be data points for multiple clasts and burial age is inversely
proportional to the slope of line (Fig. 6). Uncertainty for isochron cosmogenic dates is
calculated by choosing maximum and minimum line slopes through the data. Reported
dates are calculated from the best fit slope and uncertainty values are calculated from the

differences in estimated maximum and minimum range of slopes. The fact that post-
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burial production can be accounted for in the isochron technique appears to allow dating
of samples with as little as 3-4 meters (Table 2) of vertical shielding, although very recent
exposure is still required.

Shielding at several sites is less than 10 m which resulted in the use of the
isochron method for analysis of the depositional age since post-burial production was
expected. Each sample was collected from the strath with individual clasts collected
from the same level as per suggestion by Granger (noted in Balco and Rovey, (2008).
Samples collected for burial dating were crushed and separated physically and chemically
at PRIME Lab, Purdue University by Darling and data reduction for dates was done by
Granger. Sample processing procedures are discussed in Granger and Muzikar, (2001).

Uncertainty in interpretation of the accuracy of cosmogenic burial dates often
depends on uncertainties about the geologic history of the gravels and/or the terrace they
have ended up within. Many of the isochrons presented below are strongly leveraged by a
single point that happened to have high °Be and 2°Al concentrations. There is nothing
inherently suspect about these points, but for all of the clasts, there is a significant
possibility that clasts get reworked from a paleo-terrace and hence have compound
histories involving multiple phases of production and burial. Recent cosmogenic data
from rivers in South Africa suggest that approximately 20% of clasts in terraces are
reworked from terraces into younger deposits, and thus have compound burial histories
(Granger). Thus, future additional samples should be added to the isochrons, and/or the
addition of a cosmogenic profiling approach might improve the geologic models to help
interpret results. But pending additional work, the results presented below tend to form 4-

6 point isochrons with reasonable precisions and hence we interpret the results as the best
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available ages on the terraces and attempt to place the new ages in the context of incision

rates obtained by other methods.

Al atoms/g quartz

Post-burial production

\\\\

Burial date = -In(slope/P ratio)*t burial
(Balco and Rovey, 2008)

Good spread of inheritance

Good linear fit, very similar
burial history

Figure 6. Example of a generalized isochron cosmogenic burial date sample result.

"°Be atoms/g quartz
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INCISION RATE COMPILATION

All compiled incision rate data for the Upper Colorado and Green rivers are
tabulated in Table 2. A range of incision rates is reported based on the maximum and
minimum error reported for each date where available. In the text, median incision rates
are usually used to simplify discussion. Analysis of maximum and minimum analytical
date does not speak to geologic uncertainty, such as unknown time from deposition to
reworking of ash-fall tuff, or biased chronology methods. We determined a relative
quality rating (1-3) for incision rate data, where “1” is most reliable, based on the
following criteria: Chronology points from the literature (such as basalt) that do not have
known field relationships to river gravel are less reliable and generally are not reported in
this compilation. We report some rates as “apparent incision rates” in central Colorado
because of numerous locations where rates have been dampened by tectonism such as
normal faulting (Pederson et al., 2002) and salt-tectonism related collapse (Kirkham et
al., 2002). Locally dampened incision rates are considered low (“3”) quality rates for the
purpose of understanding regional incision as these rates are too low. However they do
offer insight into tectonic fault slip and collapse rates and magnitudes that interact with
incision. Cosmogenic surface dating is a minimum estimate of age and we assign a
quality estimate of “2” to these samples when ages are > 200,000 ka. “°K/**Ar dates of
basalts are generally considered maximum dates and are less reliable, either reported as a
“2” or “3” depending on geologic constraints at each site.

Incision data are plotted for both short-term (<1 Ma) and long term (>1 Ma) time
frames (Fig. 7 and 8, respectively). Rates determined from dates that are less than ca. 200

ka are not favored for long term patterns due to complexities of increased apparent
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incision rates as glacial oscillations alter incision rate (Hancock and Anderson, 2002; Pan

et al., 2003), hence we concentrate on longer term bedrock incision.
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COMPARING AN ISOCHRON DATE TO KNOWN CHRONOLOGY

Available chronology for Bostwick Park provides an empirical “calibration” for
the isochron cosmogenic technique. A detailed discussion of the geology at Bostwick
Park is in Sandoval et al., (2007) and Aslan et al., (2008). At this site, about 10 m of
gravel was deposited in a paleo-tributary to the Gunnison River. Then the tributary was
abandoned leaving a hanging canyon with an underfit ephemeral stream leading into
Black Canyon. Locally derived gravel and sand mixed with reworked ash (640 ka Lava
Creek B) deposited soon after gravel deposition. Approximately 10 meters
stratigraphically below Lava Creek B ash (in a quarry) several quartzite clasts were
collected and analyzed using the isochron method for burial dating (Fig. 9). The isochron
date for deposition of the gravel is 870 +/-220 ka. The slope of the line for this isochron
is controlled by the 2°Al/*°Be concentrations from one clast, while the other data is
clustered (Fig. 10). Thus, we interpret the age of this deposit to be 640- 870 ka and note
that, while relatively imprecise, the burial date agrees with the tephrochronology and
field relationships that show the gravel to be older but close in age to the Lava Creek B

ash.
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Lava Creek B Ash

Figure 9. Photo of stratigraphy at Bostwick Park showing LCB Ash, gravel and the strath
at the bottom of the quarry, (Photo L. Crossey).
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GRAND AND GLEN CANYONS
Compilation Results

Published incision rate constraints near the knickpoint at Lee’s Ferry and along
Glen Canyon yield incision rates up to 500 m/Ma (Hanks et al., 2001; Garvin et al., 2005;
Cook et al., 2009; Pederson et al., 2010). These high rates are from dates of 500 ka or
less and include multiple cosmogenic surface exposure dating techniques and optically
stimulated luminescence (OSL) dating. We focus on rates reported for the main stem
from the river. For each area under discussion, we first report new rate data (from
cosmogenic burial dating), then summarize the new results in the context of our incision
rate compilation.

Burial Dating Results

Two samples were taken from different parts of the region upstream of Lee’s
Ferry at Bullfrog Marina and near Hite in Glen Canyon. Both were analyzed with the
isochron technique due to relatively shallow burial. We sampled a high terrace which has
a strath 190 m above the pre-Glen Canyon Dam river elevation (Birdseye, 1922) and a
tread 205 m above the river. Gravel exposed at the base of one landslide scarp was
sampled (depth of ~7 m, (Fig. 11) for burial dating and analyzed using the isochron
technique. Six cobbles of far-traveled quartzite were collected, and each ground
separately. By collecting large clasts, we obtained enough quartz from a single clast to
assure uniform inheritance for the clast. This spot is estimated to be within a few meters
of the bedrock strath, which was not exposed. Five points yielded good “°Al/*°Be ratio,
with errors less than 10 % and produced an isochron cosmogenic burial date of 1.5 +/-
0.13 Ma (Fig. 10). The resulting incision rate is 126 m/Ma (Table 2). The terrace tread

(204 m above the river) was previously dated with a cosmogenic surface date of 480 ka
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(Davis et al., 2001; Table 2), a factor of three different. We conclude that the surface
date underestimates the terrace age due to degradation of the surface and/or movement of
boulders on the terrace surface.

A second sample came from a terrace near Hite, Utah, about 240 km above the
knickpoint and 50 km upstream of Bullfrog. The sample consisted of 5 clasts of
sandstone collected from a ~5 m deep road cut through the terrace of the Dirty Devil
River, ca. 4 km from the Colorado River (Fig. 11).This terrace has a strath 107 m above
the Dirty Devil River and a tread 112 m above the river. This sample yielded an isochron

age of 2.9 +0.7/-0.5 Ma giving an incision rate of 37 m/Ma (Table 2).



Figure 11. A. Photo taken while collecting the Bullfrog isochron samples (photo L.
Crossey). B. Photo of the road cut sampled at Hite for a burial date. (Photo A. Darling).

31
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Discussion of Rates

These two ages need to be understood in the context of regional published rates of
150-175 m/Ma over the last 2-3 million years in Grand Canyon, below the knickpoint
(Pederson et al., 2002; Polyak et al., 2008; Karlstrom et al., 2008) and a rate on the San
Juan River of 100 m/Ma over 1.3 Ma (Wolkowinsky and Granger, 2004). Locally our
rates disagree with rates of up to 500 m/Ma just upstream of the knickpoint derived from
cosmogenic surface dates ca. 500 ka and younger (Hanks et al., 2001, Garvin et al., 2005;
Cook et al., 2009) as discussed above. To explain the apparently contradictory incision
rates for the Bullfrog terrace, we infer that the rates based on the cosmogenic surface ages
are too young, and/or average incision rates have increased in the last few hundred
thousand years. We note that our rate of 126m/Ma is consistent with the burial date at
Bluff, UT on the San Juan River (Wolkowinsky and Granger, 2004) in suggesting that,
over 1-2 Ma timeframes, incision has been slower above, than below, the Lees Ferry
knickpoint.

The difference in incision rate between Bullfrog and Hite is difficult to interpret
and could be explained by at least three possible scenarios. 1) One or both dates could be
inaccurate. Of the two, the Hite date is most in need of testing (presently underway). 2)
The difference in incision rate, 126 m/Ma (Bullfrog) and 37 m/Ma (Hite), could be
explained in terms of an incision transient that has reached Bullfrog but not Hite. 3)
Perhaps a more serious problem arises because the upstream 2.9 Ma terrace at Hite (50
km upstream) is at a lower elevation than the downstream 1.5 Ma terrace at Bullfrog (a

difference of 35 m) seeming to require tectonic tilting.
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Figure 12 shows hypothetical terrace heights above the present river for 400 ka
and 1.5 and 3 Ma timeframes interpolated from all available incision rate data that is near
the Colorado River. We use our own rates for Bullfrog rather than Davis et al., 2001 as
discussed above. This leads to a model to explain the data that includes aspects of both 2
and 3 above. The recent model of Cook et al., (2009) suggests that the knickpojnt at Lees
Ferry reflects both a hard bedrock ledge of the Kaibab Limestone at the knickpoint itself
and a zone of “diffuse” transient knickpoint incision through softer rocks above the
knickpoint. The latter results from modeling by Cook et al., whom point out that the
model seems to be compatible with high incision rates from young terraces near Navajo
Mountain (Hanks et al., 2001), the Fremont River (Marchetti et al., 2005), and Trachyte
Creek (Cook et al., 2009). This model is also supported by knickpoints in tributaries
above and below the mainstem knickpoint which are at similar elevations and may be a
result of an increase in incision in their baselevel, the Colorado River. They suggest tha
this diffuse incision has progressed perhaps as far as the Cataract Canyon knickpoint.

Our data do not support the notion that there has been a large effect of rapid and
young incision that far upstream from the main knickpoint, but it may help explain the
different average rates at Bullfrog and Hite. For example, an increase in incision rate to
300 m/Ma in the last 0.5 Ma could change a nominal 50 m/Ma incision rate (since 3 Ma
at Hite) to 125 m/Ma at Bullfrog. The transient incision shown in Figure 12, similar to the
Cook et al. model, is envisioned to be diffusely bypassing the Lee’s Ferry knickpoint, and

to have propagated to between Bullfrog and Hite.
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Figure 12. a) Incision constrains from eastern Grand Canyon and Glen Canyon from
Hanks et al., (2001), Garvin et al., (2005), Cook et al., (2009), Pederson et al., (2010) and
this volume. b) Methodology for determining a possible tilt of Glen Canyon to the east in
the Quaternary drawn on the profile of the Colorado with known terrace elevations.
Assumes slope of the paleo-CO-River to be equal to modern. Hite terrace is projected to
the COR using the gradient of modern Dirty Devil, reducing elevation from Table 2 to
seven meters. The 1.5 Ma terrace below Hite is interpolated assuming constant incision
rate. Horizontal distance between terraces is measured as a straight line, not along the
river channel. Mantle tomography beneath the profile (Schmandt and Humphreys, 2010)
shows relative p-wave velocity under the Colorado plateau.
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The more difficult problem is that the Bullfrog terrace (1.5 Ma) is at higher elevation
(1195 m) than the Hite terrace (3 Ma, 1160 m when projected 4 km to the Colorado). It is
geometrically difficult for an upstream terrace to be both lower in elevation and older
than a downstream terrace in a generally eroding region. One solution to this problem is
to invoke rock tilting between these two locations. These points are 50 km apart and
figure 12b shows 1) the modern river gradient for reference (i.e. 50 m/50 km pinned by
Bullfrog on the downstream end); 2) the upstream dip of the hypothetical geometry of the
interpolated 1.5 Ma terrace, and 3) the 0.16 degree angle of tilt that would be inferred to
explain the current 35 m of elevation difference over this 50 km distance due to East-
tiltng of the Hite point relative to the Bullfrog point.

Thus the observed differential incision could be driven by relatively short
wavelength flexure of the earth’s surface in the region of the Lee’s Ferry knickpoint. The
driving force for this flexure could be mantle bouyancy below the region (e.g. Karlstrom
et al., 2008; Moucha et al., 2008; van Wijk et al., 2010). Figure 12 shows a tomographic
cross section from directly below the river (Schmandt and Humpreys, 2010). High
velocity mantle in the central portion of the Colorado Plateau and east of Lee’s Ferry may
be neutrally or negatively buoyant mantle compared to low velocity mantle below the
Grand Canyon and the western Colorado Plateau. The observed 6-8 % contrast in mantle
velocity requires sharp rheological and density contrasts and geodynamic models suggest
these could produce on the order of 400 m of surface uplift. Given a flexural thickness of
25 km for the Colorado Plateau (Lowry et al., 2000), we propose that this could explain

the postulated 140 m tilt (over 50 km and 1.5 Ma) needed to explain the data.
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Hence, the combined hypothesis of Figure 12 is that the Lee’s Ferry knickpoint is
a transient that was set up at the time of integration of the Colorado River system across
the Kaibab uplift and Grand Wash cliffs in the last 6 Ma (Karlstrom et al., 2008) and has
been responding to both geomorphic and tectonic forcings that include migrating incision
waves (including diffuse knickpoint propagation around a hard bedrock stratum), and

differential rock uplift due to tilting driven by mantle flow.

UPPER COLORADO RIVER
Upper Colorado Burial Dating Results

Morrisania Mesa is an alluvial fan complex on the north flank of Battlement Mesa
in Colorado which provided ideal shielding for a simple burial date from an
amalgamation of quartz-rich drill-hole cuttings. Substantial drilling activity in oil and
gas exploration has lead to numerous drill holes that pierce high abandoned terraces and
alluvial fans. The region surrounding Grand Mesa contains an extensive series of alluvial
fan remnants which often bury Colorado River terraces (Yeend, 1969). Cuttings from a
drill hole on Morrisania Mesa contained fragments of river gravel from a depth of 110 m
which were analyzed assuming complete shielding.

Morrisania Mesa near Rifle Colorado yielded a simple burial date with assumed
perfect shielding of 440 ka +/-300 ka (Table 2). The terrace strath is approximately 94 m
above the river and yields a poorly constrained incision rate of ca. 214 m/Ma (671-127
m/Ma; Table 2). This date is plotted alongside proximal incision rates from the literature
in Figure 13. A simple linear regression of these incision rates and their height above the
river reveal an apparently semi-constant incision rate of 168 m/Ma from 10 Ma basalt

flows to the younger cosmogenic dates. Several other terraces buried by alluvial fans
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exist in this region. Once their chronology is more closely constrained, this area may
provide the evidence to support the trend that incision has, on average, remained constant
for the last 10 Ma, or that it has accelerated from lower incision rates in the past to a rapid
incision pulse (possibly a transient knickpoint) and then slowed down again before the
Grass Mesa terrace was deposited. Also, several terraces are approximately the same
height above the river and could further constrain the apparently ca. 1.8 Ma paleo-profile.

Significant incision (1500 m) has occurred around Grand Mesa basalt flows
(extruded ~10 Ma; Kunk et al., 2002) at a mean rate of 150 m/Ma in western Colorado.
Additional incision constraints from Lava Creek B ash yield a similar rate of around 150
m/Ma for locations close to Grand Mesa (Willis and Biek, 2001; Darling et al., 2009;
Table 2). Substantial incision has occurred over long distances upstream at variable
rates, but generally incision has occurred at 150 m/Ma around the broad western edge of
the Rockies. Substantially down-dropped blocks due to evaporite
dissolution/deformation reduce apparent incision rate substantially in central Colorado
(Kirkham et al., 2000). The Gunnison River above the Black Canyon knickpoint is
incising relatively slowly at 95 m/Ma since Lava Creek B time and at 64 m/Ma from
basalt on top of Flattop Mountain dated to ~10 Ma (Aslan and Kirkham, 2007).

Remnant alluvial fan complexes like Morrisania Mesa around Battlement Mesa
preserve underlying Colorado River gravel in several locations. Berlin et al., (2008) dated
one of these fans at a height above the river of 227 m and calculated an age of 1.77
+0.71/-0.51 Ma which yields an incision rate between 92-180 m/Ma. This region is a

prime location for attempting to date river gravel over a broad time frame (~10 Ma to
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present), as these alluvial fans occur at several elevations and most of them contain river

gravel (Yeend, 1969).
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Figure 13. Plot of age vs height above the river for samples near Rifle, Colorado for four
incision rate markers and the modern river. Heights of terraces that have not been dated
are also shown. The data for this plot are listed in Table 2 for samples from Battlement,
Grand, Grass, and Morrisania Mesas. Current data show semi-steady rates of incision in
this region.
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GREEN RIVER
Burial Dating Results

Tabyago Canyon of Desolation Canyon contains a large entrenched abandoned
meander with a continuous gravel deposit (Fig. 14) currently overlain by locally derived
colluvium and alluvium. Very recent tributary cut bank activity yielded an outcrop of
river gravel (Fig. 15). Hand excavation down to the strath allowed us to sample clasts
just above the strath. Burial depth of the sample was ~4 m below the surface, although
the upper 0.5 m of this terrace consisted of reworked locally derived slope wash,
colluvium and alluvium. Approximately 3.5 m of original depositional structures
remained in the gravel deposit. Results for four clasts (Fig. 10) provide a calculated date
of 1.48 +/- 0.12 Ma for this 60 m terrace. From these data we estimate an average
incision rate of 40 m/Ma (Fig. 8).

Peru Bench near Green River, Wyoming consists of several flights of terraces up
to ca. 180 m above the river with gravel pits in some of them. The 120 m terrace was
sampled along the strath in a gravel pit for isochron burial dating with moderate burial
depth (4 m) and resulted in a date of 1.2 +/- 0.3 Ma for Peru Bench, WY (Table 2, Fig. 1).

This terrace date results in an average rate of 100 m/Ma (Fig. 8).
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with a laser range-finder.
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Figure 15. Collage of photos from Tabyago Canyon sample from Desolation Canyon. A)
Bend in ephemeral stream with excavated hole; B) lower most gravel sample within the
hole; C) profile photo of the cutbank, excavation of the pit is started in lower left corner.

(Photos R. Crow).
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Compilation Results

Work by Pederson et al. (2010) and Munroe et al., (2005) reports three incision
rates on the Green River. One, from U-series dating of young travertine deposits along
the Green just south of Green River, UT provides an incision rate of 300 m/Ma. A similar
high rate of 400 m/Ma along the Green River near Canyon of Lodore is estimated from
level of soil development as a guide to relative age, but these are not included in our
incision rate database because of the lack of published geochronology. Munroe et al.,
(2005) describe briefly an incision rate of 90-115 m/Ma from a Lava Creek B ash site on
a Green River terrace in western Brown’s Park, and from their description it seems to be
a reliable data point (“1”; Table 1). Thus in the area of the Canyon of Lodore the end of
deposition within the Brown’s Park Formation was <8.25 Ma with this ash and gravel
within 50 m of the modern river (dated ash, Luft et al., 1985; Aslan et al., 2010). From
these data incision has occurred at an average minimum rate of 6 m/Ma, and more recent
incision has been much faster as the Green crossed the Uinta’s in the late Neogene. We
consider the Brown’s park incision rate to be of moderate quality (“2”) for bedrock river
incision, which is the long term average of aggradation, incision and graben collapse in
this basin. This point results in a minimum incision rate that clearly describes little
bedrock incision. Lava Creek B ash reported by lIzett and Wilcox, (1982) yielded a
quality (1) incision rate near near the northern edge of the Green River Basin of 67 m/Ma

(since 640 ka).
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REGIONAL DISCUSSION
Comparison of the Colorado and Green River Systems

New cosmogenic incision rates along the Green River provide new controls for
reconstructing the history of the Green River. Integration of the Green River across the
Canyon of Lodore must have taken place between the end of Browns Park sedimentation
<8.25 Ma and prior to terrace gravel deposition on Peru Bench at 1.5 Ma. Higher and
older undated terraces along many portions of the whole Green River system suggest that
our 1.5 Ma terrace date places a minimum date on postulated time of drainage reversal
and development of a South-flowing Green River across the Uintas. Prior to this data
Hansen (1986) suggested that the Green River flowed east away from the location of the
town of Green River as recently as 640 ka based on the correlation of terraces at Peru
Bench (Fig. 1) to terraces at the Rock Springs airport and terraces at Creston Junction on
Interstate-80, which overlies Lava Creek B ash. In Hansen’s model, capture of an east-
flowing paleo-Green River that flowed over the modern Continental Divide initiated the
present course of the Green River through the Gates of Lodore and across the Uinta
uplift. However, the 640 ka Wyoming terrace gravels consist of angular, locally derived
clasts unlike the rounded basement cobble deposits of Green River gravel (Ferguson,
2010). Thus the drainage changed from possibly flowing to the northwest (Ferguson,
2010), to the present southerly course after deposition of the Brown’s Park Formation,
after 8.25 Ma and before 1.5 Ma.

The steeper and older (to 10 Ma) Colorado River is either a result of uplift or
resistant lithologies, and since incision rates are higher in the harder rock of the Colorado
than the softer rock of the Green, it seems that rock type resisting erosion is not the main

control. Because incision rates in the Uinta Basin are one third of the upper Colorado
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rates, we infer that the Green River system is responding to different forces than the
Colorado. These forces could be the result of transient incision as the Desolation
knickpoint approaches the Uinta Basin, or differential tectonic uplift between the Green

and the upper Colorado in the last ca.1.5 Ma or a combination thereof.

Isostatic Response and Incision Rates

The volume of denuded material on the Colorado Plateau and surrounding area
show that the majority of erosion, and hence rock uplift from isostatic rebound, is
centered around the middle of the Colorado Plateau (Pederson et al., 2002b; McMillan et
al., 2006; Lazear et al., 2010) due to the large area over which a 1-2 km thick section of
Mesozoic rock was removed from this region. Addition of Basin and Range extensional
denudation as an additional cause of isostatic rebound modifies the inferred patterns of
isostatic rock uplift (Roy et al., 2009) and timing of differential denudation also affects
the isostatic calculations. These estimates for isostatic response are needed to determine
if other sources of rock uplift have occurred.

We use a map of calculated isostatic rebound magnitude compared to incision
rates does not reveal a direct correlation (Fig. 16). Rates of rebound used below assume
rock uplift is averaged over 6 Ma, the best estimate for onset of erosion in the central
Colorado Plateau as determined by low-temperature thermochronometry (Kelley and
Blackwell (Kelley and Blackwell, 1990; Hoffman et al., 2010) and earliest sediment from
a mostly or completely integrated Colorado River in the Gulf of California (Dorsey et al.,

2010.).
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Figure 16 plots incision rates on a map of isostatic response calculations to test
whether the differential incision we observe is reasonably explained only by isostatic
response or whether tectonic uplift is a possible explanation. Through Grand Canyon
incision rates are greater than estimated rebound rates by about 100 m/Ma and imply a
rock uplift component that is not isostatic (Karlstrom et al., 2008; Moucha et al., 2008).
Central Colorado Plateau rate estimates are maximum rates and only sampled from the
last 300 ka in few locations, however high rates may correlate with large magnitude
rebound in this area and coincide with the region presumably affected by transient
incision above Lee’s Ferry (Cook et al., 2009). Along the Green River the incision rate at
Tabyago Canyon is 75 m/Ma lower than estimated rebound, implying either that the
Plateau has net negative rock uplift or that the Desolation Canyon knickpoint is transient.
Reliable rates along the Green below Desolation Canyon are needed to assess this region
further, however the maximum rate of 300 m/Ma from Pederson et al., (2010), seems to
imply transient incision in Desolation Canyon, although the rate is not from within the
canyon. Estimates of rebound throughout the Colorado Rockies are less than observed
incision by 100-250 m/Ma, with the greatest difference around the San Juan Mountains
and maintaining 100 m/Ma or more to the north side of the Colorado River. The Peru
Bench incision rate is 84 m/Ma higher than estimated rebound and implies recent uplift of
southwest Wyoming, corroborated by studies of tectonically tilted Ogallala Formation

further east (McMillan et al., 2002).
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Figure 16. Isostatic rebound on the Colorado Plateau compared to incision rates, modified
from Lazear (2010). Rebound rate contours (in m/Ma) are calculated average rates from
estimated rebound magnitude and assumed uniform 6 Ma onset of exhumation. Incision
rates are reported as incision rate over measured time and includes only rates from 1.5
Ma or younger (i.e. (m/Ma)/Ma). Red incision rates are much higher than estimated
rebound, yellow are higher than rebound, and blue are less than rebound.
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Origin and Evolution of Knickpoints

Figure 17 shows a regional view of the bedrock substrate of the Colorado River
and Green River systems. Note that in order of “erodibility”, Precambrian basement is
harder than Paleozoic rocks (which have abundant carbonate facies in this region), which,
in turn, are harder than Mesozoic rocks (abundant shale and less indurated sandstone),
and Tertiary sandstone and shale is generally weakest (Pederson et al., 2010). Rivers
commonly develop steeper gradients to incise through harder rocks (Duvall et al., 2004),
but the relative importance of bedrock control versus incision transients as the primary
explanation for Colorado River knickpoints is debated (Cook et al., 2009; Pederson,
2010).

An empirical comparison of bedrock and knickpoints along the Colorado River
system is useful. Several reaches in the upper Colorado and Green river systems are
underlain by crystalline basement rock (Fig. 17); some are prominent knickzones and
others are not. Grand Canyon’s overall steepness (1.5 m/km) could be attributed to hard
bedrock that underlies approximately 50% of the river (Mackley and Pederson, 2004), but
is interpreted by others as a transient feature (Karlstrom et al., 2008; Cook et al., 2009;
Pelletier, 2010). At small scales, basement reaches are a few percent steeper than
sedimentary reaches in Grand Canyon (Hanks and Webb, 2006). Westwater Canyon is
also a reach with crystalline basement rock, but it produces a very small knickpoint (not
noticeable on Figure 17). Instead its gradient (1.9 m/km) is only 2-3 times higher than
gradients in the adjacent Paleozoic (0.65 m/km) and Mesozoic strata (0.9 m/Ma), which
contrasts with the >30m/km gradient through the Gunnison knickzones, a remarkable

difference in slope given similar rock.
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Other major knickzones are not underlain by basement rock. Cataract Canyon, for
example, has a high gradient reach within Paleozoic rock and the steep gradient has been
attributed to debris flows and landslides in a region with active salt-tectonism and
shallow normal faulting (Huntoon, 1988 and references therein). Desolation Canyon on
the Green River is a large knickzone underlain by Tertiary sandstone and shale layers
with a gradient just below the knickpoint of about 2.3 m/km (steeper than Westwater).
This knickpoint closely corresponds with the transition from weak Green River
Formation shale to somewhat more resistant Wasatch Formation sandstone, perhaps
partly explaining the knickpoint. However, since the Green flows low resistance rock and
is steeper through this reach, these canyons seem to be counter examples to bedrock
being the primary control on steep gradients.

The Uinta Mountain knickzone (2.7 m/km) is probably also of composite origin.
It is partly due to debris flow and rockslide sediment accumulation (Grams and Schmidt,
1999), with the hard quartzite of the Uinta Mountain Group contributing to resistant
substrate, channel banks and boulders in the channel. Drilling data show the knickpoints
in quartzite bedrock beneath the river in Canyon of Lodore and Flaming Gorge, (Fig. 18;
Woolley, 1930) suggesting bedrock influences as well as sediment input. Young
deformation also possibly affects the profile (Hansen, 1986). In addition, the young
piracy of a post-8 Ma north-flowing river to the current channel position (Hansen, 1986;
Pederson, 2010; Ferguson, 2010) might have produced a transient incision wave or

waves.
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These data show the knickpoints in the bedrock long profile, the river surface profile, and

the thickness of sediment plus water.
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CONCLUSIONS
Transient Incision

1) Our new burial dates placed in the context of existing incision rates lead to the
following conclusions. Based on differential incision data, the knickpoint at Lee’s Ferry
is transient, and the knickpoint in Desolation Canyon may be transient. Other knickpoints
in the system are yet to be determined to be transient. Knickpoints migrating upstream
may move at rates 2-3 orders of magnitude greater than incision rates on the Colorado
Plateau. This result implies that those knickpoints that are shown to be transient within
the Colorado River system are recent (<6 Ma) and mobile phenomena, and must result
from recent tectonic and integration related perturbations.

2) The hypothesis of a transient knickpoint at Lee’s Ferry is further supported by
our data, and more detailed patterns are currently explained by a combination of diffuse
incision bypassing the knickpoint (modified from Cook et al., 2009) and tectonic forcing
above a mantle velocity gradient that underlies Lees Ferry. The speed of recent rapid
incision estimated by young dates is probably exaggerated by minimum age estimates
however this pulse may still be contributing to canyon cutting in the last few hundred
thousand years.

3) Green and Colorado Rivers comparison suggests regional rock uplift of the
Rockies in last 6-10 Ma. The Green River integrated across the Uinta Mountains prior to
1.5 Ma and incision has proceeded differentially throughout the river. The rates of 40
m/Ma above Desolation Canyon imply that this section of the Green is different from the
Colorado which has been incising at 150 m/Ma as seen in long and short term rates since

10 Ma (Figs.7 and 8). The differential incision rates of the upper Colorado River system
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imply differential rock uplift of the Colorado Rockies and the Wyoming Rockies relative
to the Colorado Plateau.

REFERENCES CITED

Aslan, A., Karlstrom, K., Hood, W., Cole, R.D., Oesleby, T., Betton, C.,
Sandoval, M., Darling, A., Kelley, S., Hudson, A., Kaproth, B., Schoepfer, Benage, M.,
and Landman, R., 2008, River incision histories of the Black Canyon of the Gunnison
and Unaweep Canyon: Interplay between late Cenozoic tectonism, climate change, and
drainage integration in the western Rocky Mountains, in Raynolds, R.G., ed., Roaming
the Rocky Mountains and Environs: Geological Field Trips: Geological Society of
America Field Guide 10, p. 175-202.

Aslan, A., and Kirkham, R., 2007, Origin of the upper Colorado River system; the
view from western Colorado: Geological Society of America Abstracts with Programs, v.
39, no. 6, p. 194.

Balco. G., and Rovey, C.W., 2008, An isochron method for cosmogenic nuclide
dating of buried soils and sediments: American Journal of Science, v. 308, p. 1083-1114.

Berlin, M.M., Anderson, R.S., 2007, Modeling of knickpoint retreat on the Roan
Plateau, western Colorado: Journal of Geophysical Research, v.112: FO3S06.

Berlin, M., Anderson, R.S., and Larson, E., 2008, Late Cenozoic incision rates of
the Upper Colorado River, western Colorado, constrained by burial of gravels by basalt
debris-flows: Geological Society of America Abstracts with Programs, v. 40 no., 1 p. 35-
36.

Birdseye, C.H., Gerdine, T.G., Chenoweth, W.R., 1922, Colorado River, Lees
Ferry, Atiz. To mouth of Green River, UT: San Juan R. Mouth to Chinle Creek, Ariz.
And certain tributaries: U.S. Geological Survey topographic maps.

Burbank, P., Leland, J., Fielding, E., Anderson, R., Brozovic, N., Reid, M., and
Duncan, C., 1996, Bedrock incision, rock uplift and threshold hillslopes in the
northwestern Himalayas: Nature (London), v. 379(6565), p. 505-510.

Cole, R.D., 2010, Significance of the Grand Mesa basalt field in western
Colorado for defining the early history of the upper Colorado River: U.S. Geological
Survey Open-File Report, in review.

Cook, K., Whipple, K., Heimsuth, A., Hanks, T., 2009, Rapid incision of the
Colorado River in Glen Canyon insights from channel profiles, local incision rates, and
modeling of lithologic controls: Earth Surface Processes and Landforms, v. 34(7) p. 994-
1010.



53

Czapla, D., and Aslan, 2009, Evidence of a Miocene ancestral Colorado River,
Grand Mesa, western Colorado: Geological Society of America Abstracts with Programs,
v. 41, no. 6, p. 39.

Darling, A., Aslan, A., Cole, R., Karlstrom, K., Betton, C., Wan, E., 2009, Late
Quaternary Incision Rates and Drainage Evolution of the Uncompahgre and Gunnison
Rivers Calibrated by Lava Creek B Ash, Western Colorado: Rocky Mountain Geology, v.
44, p. 71-83.

Davis, S.W., Davis, M.E., Lucchitta, 1., Hanks, T.C., Finkel, R.C., Caffee, M.,
2001, Erosional history of the Colorado river through the Glen an Grand Canyons. In The
Colorado River Origin and Evolution: Proceedings of a Symposium Held at Grand
Canyon National Monument, Young RA , Spamer EE (eds). Grand Canyon Association
Monograph 12: Grand Canyon Association: Grand Canyon National Park, Arizona; p.
135-139.

Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lundin, E.R.,
McK:ittrick, M.A., and Olivares, M.D., 1988, Paleogeographic and paleo-tectonic setting
of Laramide sedimentary basins in the central Rocky Mountain region: Geological
Society of America Bulletin, v. 100, p. 1023-1039.

Dorsey, R., 2010, Age of oldest marine deposits in the Salton Trough: U.S.
Geological Survey Open File Report, in review.

Duvall, A., Kirby, E., and Burbank, D., 2004, Tectonic and lithologic controls on
bedrock channel profiles and processes in coastal California: Journal of Geophysical
Research, v. 109(F3).

Eaton, G.P., 2008, Epeirogeny in the Southern Rocky Mountains region:
Evidence and origin: Geosphere, v.4, p. 764-784.

England, P. and Molnar, P., 1990, Surface uplift, uplift of rocks, and exhumation
of rocks: Geology, v. 18, p. 1173-1177.

Garvin, C.D., Hanks, T.C., Finkel, R.C., Heimsath, A.M., 2005, Episodic incision
of the Colorado River in Glen Canyon, Utah: Earth Surface Processes and Landforms, v.
30, p. 973-984.

Grams, P.E. and J.C. Schmidt, 1999, Geomorphology of the Green River in the
Eastern Uinta Mountains, Dinosaur National Monument, Colorado and Utah: Varieties of
Fluvial Form, Editors: Miller and Gupta; John Wiley and Sons Ltd.

Granger, D.E., Muzikar, P.F., 2001, Dating sediment burial with in situ-produced
cosmogenic nuclides; theory, techniques, and limitations: Earth Planetary Science
Letters, v. 188, p 269-281.



54

Granger, D.E., Fabel, D. and Palmer, A.N., 2001, Pliocene-Pleistocene incision
of the Green River, Kentucky, determined from radioactive decay of cosmogenic %Al
and *°Be in Mammoth Cave sediments: Geological Society of America Bulletin, v. 113,
p. 825 - 836.

Gregory, K.M., and Chase, C.G., 1994, Tectonic and climatic significance of a
late Eocene low-relief, high level geomorphic surface, Colorado: Journal of Geophysical
Research, v. 99, p. 20,141-20,160.

Haeuselmann, p., Granger, D.E., Jeannin, P., Lauritzen, S., 2007, Abrupt glacial
valley incision at 0.8 Ma dated from cave deposits in Switzerland: Geology, v. 35, p.
143-146.

Hancock, G.S. and Anderson, R.S., 2002, Numerical modeling of fluvial strath-
terrace formation in response to oscillating climate: Geological Society of America
Bulletin, v.114, p. 1131-1142.

Hanks, T.C., Lucchitta, I., Davis, S.W., Davis, M.E., Finkel, R.C.,. Lefton, S.A.,
and Garvin, C.D., 2001, The Colorado River and the age of Glen Canyon (in Colorado
River origin and evolution; proceedings of a symposium): Grand Canyon Associates,
Grand Canyon, AZ, United States, p. 129-133.

Hanks, T.C., and Webb, R.H., 2006, Effects of tributary debris on the longitudinal
profile of the Colorado River in Grand Canyon: Journal of Geophysical Research,
111(F2).

Hansen, W.R. 1965, The Black Canyon of the Gunnison; today and yesterday:
U.S. Geological Survey Bulletin Report B: 1191, 76 p.

Hansen, W.R., 1986, Neogene Tectonics and Geomorphology of the Eastern
Uinta Mountains in Utah, Colorado, and Wyoming: U.S. Geological Survey Profession-al
Paper 1356, p. 1-78.

Harden, D.R., Biggar, N.E., and Gillam M.L., 1985, Quaternary deposits and
soils in and around Spanish Valley, Utah (in Soils and Quaternary geology of the
Southwestern United States): Special Paper-Geological Society of America, v. 203, p. 43-
64.

Howard, A.D, 1994, A detachment-limited model of drainage basin evolution:
Water Resources Research, v. 30(7), p. 2261-2285

Humphreys, E., Hessler, E., Dueker, K., Farmer, L., Erslev, E., and Atwater, T.,
2003, How Laramide-age hydration of North American lithosphere by the Farallon Slab
controlled subsequent activity in the Western United States: International Geology
Review, v. 45 p. 575-595.



55

Huntoon, P., 1988, Late Cenozoic gravity tectonic deformation related to the
Paradox salts in the Canyonlands area of Utah: in Salt deformation in the Paradox region)
Bulletin - Utah Geological and Mineral Survey, v. 122, p. 79-93.

Izett, G.A., 1975, Late Cenozoic sedimentation and deformation in northern
Colorado and adjoining areas, in Curtis, B.F., ed., Cenozoic history of the southern
Rocky Mountains: Geological Society of America Memoir 144, p. 179-209.

Izett, G.A., and Wilcox, R.E., 1982, Map showing localities and inferred
distributions of the Huckleberry Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette
family ash beds) of Pleistocene age in the Western United States and southern Canada:
Miscellaneous Investigations Series, U.S. Geological Survey 1-1325 Maps: map;
1:4,000,000, 1 sheet.

Karlstrom, K.E., Kirby, E., Kelley, S., Aslan, A., Sandoval, M.M. and Crow R.,
2007, Neotectonic influences on the longitudinal profile of the Colorado River system in
Grand Canyon and the Rocky Mountains: Geological Society of America Abstracts with
Programs, v. 39, no. 6., p. 194.

Karlstrom, K.E., Crow, R., Crossey, L.J., Coblentz, D., and Van Wijk, J.W.,
2008, Model for tectonically driven incision of the younger than 6 Ma Grand Canyon:
Geology, v.36, p. 835-838.

Kelley, S. A. and Blackwell, D. D., 1990, Thermal history of the multi-well
experiment (MWX) site, Piceance Creek basin, northwestern Colorado, derived from
fission-track analysis (in Proceedings of the 6th international fission track dating
workshop) Nuclear Tracks and Radiation Measurements, v. 17(3), p. 331-337.

Kirby, E., Johnson, C., Furlong, K., and Heimsath A., 2007, Transient channel
incision along Bolinas Ridge, California; evidence for differential rock uplift adjacent to
the San Andreas Fault (in Beyond steady state; the dynamics of transient landscapes,
Anonymous): Journal of Geophysical Research, v.112 (F3).

Kirkham, R.M., Scott, R.B., Judkins, T.W., 2002, Late Cenozoic Evaporite
Tectonism and volcanism in West-Central Colorado: Geological Society of America
Special Paper 366, 234 p.

Kunk, M.J., Budahn, J.R., Unruh, D.M., Stanley, J.O., Kirkham, R.M., Bryant, B.,
Scott, R.B,. Lidke, D.J., and Streufert, R.K., 2002, *° Ar/ * Ar ages of late Cenozoic
volcanic rocks within and around the Carbondale and Eagle collapse centers, Colorado;
constraints on the timing of evaporite-related collapse and incision of the Colorado River
(in Late Cenozoic evaporite tectonism and volcanism in west-central Colorado):
Geological Society of America Special Paper 366, p. 213-234.

Lanphere, M.A., Champion, D.E., Christiansen, R.L., Izett G.A. and Obradovich,
J.D., 2002, Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment



56

of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society
of America Bulletin, v. 114, no. 5, p. 559-568.

La Rue, E. C., 1916, Colorado River and its Utilization: U.S. Geological Survey,
Water-Supply Paper 395, 231 p.

Larson, E.E., Ozima, M., and Bradley W.C., 1975, Late Cenozoic basic volcanism
in northwestern Colorado and its implications concerning tectonism and the origin of the
Colorado River system: Memoir - Geological Society of America, v.144, p. 155-178.

Leonard, E.M., 2002, Geomorphic and tectonic forcing of late Cenozoic warping
of the Colorado piedmont: Geology, v. 30, p. 595-598.

Lipman, P.W., 2007, Incremental assembly and prolonged consolidation of
Cordilleran magma chambers; evidence from the Southern Rocky Mountain volcanic
field: Geosphere, v. 3, no.1, p. 42-70.

Liu, L., and Gurnis, M., 2010, Dynamic subsidence and uplift of the Colorado
Plateau: Geology, v. 38, p. 659-662.

Luft, S., 1985, Airfall tuff in the Browns Park Formation, northwestern Colorado
and northeastern Utah: The Mountain Geologist, v. 22(3), p. 110-127.

Lowry, A.R., Ribe, N.M., and Smith, R.B.,2000, Dynamic elevation of the
Cordillera, western United States: Journal of Geophysical Research, v. 105, p. 23371-
23390, doi: 10.1029/2000JB900182.

Mackley, R. and Pederson, J., 2004, Relating rock strength controls to large-scale
variations in the Colorado River's profile, Glen and Grand Canyons, UT and AZ:
Geological Society of America Abstracts with Programs, v. 36, p. 550.

MacLachlan, J.C., Bemis, H.C., Bryson, R.S., Holt, R.D., Lewis, C.J., and Wilde,
D.E., 1972, Configuration of the Precambrian rock surface, in Geologic Atlas of the
Rocky Mountain region, Rocky Mountain Association of Geologists, Denver, p.53-55.

Matmon, A., Stock, G.M., Granger, D.E., Howard, K.A., 2010, Cosmogenic
burial dating of Pliocene Colorado River sediments: U.S. Geological Survey, Open-File
Report, in review.

Marchetti, D. W., Dohrenwend, J.C. and Cerling, T. E., 2005, Geomorphology
and rates of landscape change in the Fremont River drainage, northwestern Colorado
Plateau (in Interior western United States): Geological Society of America Field Guide,
v. 6, p. 79-100.



57

McMillan, M.E., Angevine, C.L., and Heller, P.L., 2002, Post-depositional tilt of
the Miocene-Pliocene Ogallala Group on the western Great Plains: Evidence of late
Cenozoic uplift of the Rocky Mountains: Geology, v. 30, p. 63-66.

McMillan, M. E, Heller, P. L, Wing, S. L., 2006, History and causes of post-
Laramide relief in the Rocky Mountain orogenic plateau: Geological Society of America
Bulletin, vol.118, no.3-4, p.393-405.

McQuarrie, N., and Chase, C.G., 2000, Raising the Colorado Plateau: Geology, v.
28, p. 91-94.

Miser, H.D., 1924, The San Juan Canyon, southeastern Utah: A geographic and
hydrographic reconnaissance: U.S. Geological Survey Water Supply Paper 538, 80 p.

Moucha, R., Forte, A.M., Rowley, D.B., Mitrovica, J.X., Simmons, N.A., and
Grand, S.P., 2008, Mantle convection and the recent evolution of the Colorado Plateau
and the Rio Grande Rift valley Geology, v. 36, p. 439 - 442.

Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., McAninch, J.,
2007, Absolute calibration of 1°Be AMS standards: Nuclear Instruments and Methods in
Physics Research 258 p. 403-413.

Osterkamp, W.R., 1978, Relationship between channel gradient and mean
discharge: U.S. Geological Survey Professional Paper, n. 212.

Pan, B., Burbank, D., Wang, Y., Wu, G., Li, J., and Guan, Q., 2003, A 900 k.y.
record of strath terrace formation during glacial-interglacial transitions in northwest
China: Geology, v. 31, p. 957-960.

Pederson, J.L., 2010, Drainage integration through Grand Canyon and the Uintas-
Hunt and Hansen’s groundwater enabled piracy via paleo-canyons, not Lake Hopi
spillover: U.S. Geological Survey, Open-File Report, in review.

Pederson, J., Karlstrom, K., Sharp, W., Mcintosh, W., 2002a, Differential incision
of the Grand Canyon related to Quaternary faulting: constraints from U-series and Ar/Ar
dating: Geology, vol. 30, p. 739-742,

Pederson, J.L., Mackley, R.D. and Eddlement, J.L., 2002b, Colorado Plateau
uplift and erosion evaluated using GIS: GSA Today v. 12, p. 4-10.

Pederson, J.L., Tressler, C., Cragun, S., Mackley, R., and Rittenour, T., 2010, The
Colorado Plateau bullseye of erosion and uplift — linking patterns of quantified rates,
amounts and rock strength: U.S. Geological Survey, Open-File Report, in review.



58

Pelletier, J., 2010, Numerical Modeling of the late Cenozoic geomorphic
evolution of Grand Canyon, Arizona: Geological Society of America Bulletin, v. 122,
no.3/4, p. 595-608.

Polyak, V.J., Hill, C. and Asmerom, Y., 2008, Age and evolution of the Grand
Canyon revealed by U-Pb dating of water table-type speleothems: Science, v. 319(5868)
p. 1377-1380.

Repka, J., Anderson, R., and Finkel, R.C., 1997, Cosmogenic dating of fluvial
terraces, Fremont River, Utah: Earth and Planetary Science Letters, v. 152(1-4), p.59-73.

Roy, M., Kelley, S., Pazzaglia, F., Cather, S., and House, M., 2004, Middle
Tertiary buoyancy modification and its relationship to rock exhumation, cooling, and
subsequent extension at the eastern margin of the Colorado Plateau: Geology, v. 32, p.
925 - 928.

Roy, M., Jordan, T.H., and Pederson, J., 2009, Colorado Plateau magmatism and
uplift by warming of heterogeneous lithosphere: Nature (London), v. 459(7249), p. 978-
982.

Sandoval, M. M., 2007, Quaternary incision history of the Black Canyon of the
Gunnison, Colorado: [Master's Thesis]: Albuquerque, University of New Mexico, 96 p.

Schmandt, B., and Humphreys, E.D., 2010, Seismic constraints on small-scale
convection in the Western U.S. upper mantle: in review.

Schmidt, J.C., and Rubin, D. 1995, Regulated streamflow, fine-grained deposits,
and effective discharge in canyons with abundant debris fans in Natural and
anthropogenic influences in fluvial geomorphology; the Wolman Volume:

Geophysical Monograph, v.89, p. 177-195.

U.S. Geological Survey, 2001, National Water Information System (NWISWeb)
data available on the World Wide Web, accessed 2010, at URL
[http://waterdata.usgs.gov/nwis/].

van Wijk, J.W., Baldridge, W.S., van Hunen, J., Goes, S., Aster, R., Coblentz,
D.D., Grand, S.P., and Ni, J., 2010, Small-scale convection at the edge of the Colorado
Plateau: Implications for topography, magmatism, and evolution of Proterozoic
lithosphere: Geology, v. 38, p. 611-614.

Wallinga, J., Murray, A.S., Duller, G.S.A., and Tornqvist, T.E., 2001, Testing
optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial
deposits: Earth and Planetary Science Letters, v. 193. no. (3-4), p. 617-630.

Willis, G.C., and Biek, R.F., 2001, Quaternary incision rates of the Colorado
River and major tributaries in the Colorado Plateau, Utah, in Young, R.A. and Spamer,



59

E.E., eds., Colorado River, Origin and Evolution: Grand Canyon Association Monograph
12, p. 119-124.

Wolkowinsky, A.J., Granger, D.E., 2004, Early Pleistocene incision of the San
Juan River, Utah, dated with 2Al and °Be: Geology, vol. 32, no. 9, p.749-752.

Yeend, W.E., 1969, Quaternary geology of the Grand and Battlement Mesas area,
Colorado: U.S. Geological Survey Professional Paper, P 0617, p. 50.



APPENDIX AND TABLES

60



APPENDIX 1

AMS results used to calculate cosmogenic burial dates
[10Be]
atoms/g qtz

Darling, 2010 UNM

Isochron Data
Bullfrog terrace
BF 1

BF 2

BF 3

BF 5

BF 6

BF 7

Hite terrace
Hut 1

Hut 4

Hut 5

Hut 6
Tabyago Canyon
TC1

TC2

TC3

TC5

Peru Bench
PWY 1

PWY 2

PWY 3

PWY 4
Bostwick Park
BP 3

BP 5

BP 6

BP 7

644049.6
149948.7
106388.1
133693.9
239903.2
125356.9

196291.3
18134.17
17383.82
33798.89

117765
1314548
4592.644
115625

128423.3
867591.9
295507.5
331360.9

10862.91
10548.87
98738.21
8027.217

unc

22704.53
11702.61
7090.566
7773.876
15092.56
6861.348

7059.704
1937.237
1968.691
3264.399

4943.002
21003.52
3680.544
5337.377

14436.14
18734.88
9600.891
10901.02

795.138
738.9501
2862.177
772.7415

[26Al]
atoms/g qtz

2063041
645638.7
418395.2

570618

1009466

497818.7

341629.8

140785
-12327.2
82941.92

465979
4462084
89038.07
481060.7

494947.6
3370666
1380436

955580.6

25997.11
49980.88
443831.3
56145.49

unc

93940.97
81136.41
32634.82
79886.51
97918.17
508204.1

64636.13
84776.38

47483.2
66844.02

139264
294448.1
102100.1
69655.36

118511.6
290719.8
193058.6
239256.3

25672.32
15711.02
49969.85
29957.38
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