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Abstract

Dendrimers are branched molecules that often have chemical properties similar to pro-

teins and other large organic molecules. Dendrimers presently have applications as reac-

tive surfaces for catalysis, and as hosts for drug delivery. Computer simulations of den-

dritic molecules are difficult due to their relatively large size and the tendency of atoms

within a dendrimer to come within very close proximity to each other. The large number

of steric interactions makes modeling of dendrimers difficult due to unphysically high en-

ergies that arise when a modeler attempts to construct a starting dendrimer from which to

minimize its energy. Here we present Dendmol, a code that uses rigid body mechanics

and a Monte Carlo method to set up the initial conditions for a dendrimer and present our

findings. We found that this method is able to rapidly find conformations of dendrimers

that can be readily placed into molecular mechanics, and molecular dynamics codes for

further study of the dendrimer.

vii



Contents

Glossary x

1 Introduction 1

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Strategies for Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Constructing a Dendrimer for Simulation 8

2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Generating Low Energy Structures 19

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



Contents

3.3 Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Discussion and Results 25

5 Summary and Conclusion 40

Appendices 42

A Modifications to the MM3 Molecular Force Field 43

References 45

ix



Glossary

Å Angstrom, 10−10m

dendrimer A repeatedly branched molecule.

dihedral angle The dihedral angle is the angle between the two planes formed by the

three bond vectors between four consecutive atoms.

endocytosed Endocytosis is the process by which cells absorb molecules from their

environment.

fs Femtosecond = 10−15s

hill climbing Hill climbing is a mathematical technique often used for optimizing func-

tions. Hill climbing allows the optimizer to search regions of the param-

eter space that have higher energies than those already explored. Hill

climbing helps to prevent the optimizer from getting stuck in a local min-

imum.

moiety Groups of atoms within a molecule that are responsible for a specific

chemical functionality.

monodisperse Having the same molecular weight.

Monte Carlo A computational technique to sample high dimensional space using pseudo-

random numbers.
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Glossary

PAMAM A type of dendrimer based on polyamidoamine groups.

PA A type of dendrimer based on phenyl-acetylene groups.

ps Picosecond = 10−12s

recursion Recursion is a method that involves defining a function in terms of itself.
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Chapter 1

Introduction

1.1 History

Dendritic architecture is common in biological systems. Trees, blood-vessels, neurons,

and many other biological structures exhibit dendritic architecture. Dendritic architec-

ture provides a means for providing high surface area to volume ratios. Although these

structures are found at many different size scales in nature there are no known dendritic

structures that occur in nature at the molecular scale.

Dendrimers are a class of synthetic polymers that exhibit dendritic architecture at the

molecular scale. The first reported synthesis of a dendrimer was in 1985 by Vögtle and co-

workers [1]. The term dendrimer is derived from Greek, “dendri” (tree like) and “meros”

(part of). Traditional synthetic polymer solutions are usually composed of a mixture con-

taining many different molecular weights. Dendrimers are unique from such polymers

because unlike traditional synthetic polymers, dendrimers have a consistent molecular

weight (i.e. they are “monodisperse”). Dendrimers are also unique among polymers be-

cause of their repetitive and regular branching.
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Chapter 1. Introduction

Synthesis of dendrimers required a departure from traditional organic polymeriza-

tion techniques and was accomplished by stepwise, repetitive reactions that guarantee

monodispersity. The first dendrimers were synthesized from the core outwards using

“cascade” synthesis; this technique is now known as divergent synthesis. Divergent syn-

thesis techniques suffer from low yields and purification problems. In order to improve

yields convergent synthesis was later developed in 1980 by Fréchet and coworkers. Con-

vergent synthesis involves building the branching ends of a dendrimer first, then fusing

branches together to form increasingly larger pieces of the dendrimer. Convergent synthe-

sis is presently the preferred technique for the synthesis of dendrimers.

1.2 Structure of Dendrimers

Dendrimers are branched polymers that radiate from a central core. Figure 1.1 illustrates

the general motif of a 2nd generation dendrimer. There are presently two conflicting

nomenclatures for naming the generations of dendrimers. For this thesis we will use the

nomenclature developed by Fréchet and Tomalia [2]. The first branching units that radiate

from the core are termed the 0th generation. Subsequent branchings from these monomers

are termed the n+1 generation where n is the generation from which the monomers have

branched. The molecular group at the center of the dendrimer is referred to as the core,

for PA dendrimers the center group is a benzene ring, for PAMAM dendrimers the center

group is ethylene-diamine. Monomers radiate from the core, and each of these monomers

is also capable of branching. The branching of the dendrimer is terminated after a certain

generation with terminal ends represented by boxes in the figure.

Dendrimers are distinguished from other macromolecules by their well-defined branch-

ing properties, repeated subunits and consistent molecular weight. Because dendrimers

branch with each generation, the number of atoms and molecular weight grow exponen-

tially with the number of generations. Such exponential growth limits dendrimers from

2



Chapter 1. Introduction

Figure 1.1: Dendrimer Motif

being constructed beyond a constant generation due to steric hindering of the outer atoms.

This phenomenon is called de Gennes packing [3]; exponential growth of the number of

atoms accompanied by only a cubic growth in available volume with each generation.

The general structure of a dendrimer consists of a core, the branching arm subunits,

and terminating units. In Figure 1.1, the core has 3 branches. In general the core of a

dendrimer may have any number of branches but typical dendrimers have between two

and four branches on the core. The subunits each have two branches radiating from them.

Although the majority of dendrimers have two branching units per subunit, in general they

may have more than two. The yellow squares on the outer portion of the figure represent

the terminating units. The 2-dimensional topology of the figure can be misleading since

dendrimers are 3-dimensional and typically fold in on themselves. Dendrimers may also

contain regions of empty space that are not well illustrated in 2D.

In a PAMAM (Polyamidoamine) dendrimer the most common core used is EDA (Ethylene-

diamine). This core allows for four branching arms to be placed on it for the construction

of the 0th generation dendrimer. Branching units in PAMAM dendrimers are polyami-

doamine. While branching units in PA dendrimers are phenyl-acetylene. The branching

units are perhaps the most influential variable that determines the overall structural prop-

3



Chapter 1. Introduction

erties of a dendrimer.

The branching units serve largely as the architectural backbone of the dendrimer and

hence contribute the most to the overall structure of a dendrimer. Long branching units

are useful for making larger generation dendrimers. Rigid branching arms produce more

crystalline dendrimers while flexible branching arms result in more globular dendrimers.

In this thesis the terminal units will always be hydrogen. In general, though, the ter-

minal ends may be any functional group. Functionalizing the different terminal ends can

modify both the inner and outer chemistry of a dendrimer.

Dendrimers contain voids often filled with solvent. The polarizability of the solvent,

pH, and size of the solvent molecules effect the structure of a dendrimer to varying degrees.

1.3 Strategies for Synthesis

Figure 1.2: Convergent vs. Divergent Synthesis. Two ways to synthesize dendrimers.

Two approaches have been developed to synthesize dendrimers stemming from tra-

ditional organic chemistry. These two methods are known as divergent and convergent

synthesis. The first synthesis of dendrimers performed by Vögtle in 1978 used “cascade”

4



Chapter 1. Introduction

synthesis which is presently known as convergent synthesis. This approach suffers from

low yields and purification problems.

The Tomalia group developed the divergent method for dendrimer synthesis at Dow

from 1979-1985. This approach allowed for the formation of (PAMAM) dendrimers of

generations 1-13 in high yields [2].

1.4 Applications

Since dendrimers are an entirely new class of polymers it is expected that they will have

many unique properties and hence many novel applications.

Dendrimers have been used for drug and gene delivery [4]. By encapsulating drug

molecules, dendrimers can enhance aqueous solubility of host molecules, provided the

terminal ends of the molecule are soluble in an aqueous environment. This can increase

circulation time of host molecules and protect them from harsh environments therefore

slowing drug metabolism. Dendrimers may also have functional groups attached to their

periphery that enable them to target specific tissues and be selectively endocytosed. With

selective endocytosis, a dendrimer could potentially be used to efficiently deliver toxins to

cancer cells while preserving non-cancerous cell lines.

Dendrimers also have potential applications in solar energy conversion. Organic pho-

tovoltaic devices using dendrimers could provide an alternative route to bulk silicon photo-

voltaic devices [5]. Dendrimers may ultimately allow us to improve the efficiency and cost

effectiveness of solar cells.

5



Chapter 1. Introduction

1.5 Approach

The goal of this thesis is to expand upon molecular simulation techniques to simulate

dendrimers so that we can better understand their unique properties. Much of the difficulty

with running atomistic simulations of dendrimers lies with setting up reasonable initial

conditions that can be used by molecular mechanics and molecular dynamics programs.

The problem is that most available techniques produce large degrees of unphysical steric

crowding that cause the molecular mechanics, and molecular dynamics programs to fail.

The current state of the art in setting up atomistic simulations of large dendrimers is to use

continuous configuration biased Monte Carlo (CCBB MC) [6, 7].

We approach the problem of simulating dendrimers using multiple techniques. The

first technique is to use a Monte Carlo method with rigid body dynamics. The Monte Carlo

simulation creates a random initial conformation of a dendrimer with few bad contacts

between atoms. Bad contacts are defined as atom pairs whose distances are close enough

to facilitate the formation of a covalent bond that would change the structural formula of

the dendrimer. Typically a bad contact happens any time two non-bonded atoms are within

1Å (0.1nm) of each other.

Our Monte Carlo algorithm utilizes a simplified discrete energy function that has many

degeneracies (equivalent energies, but different conformations). The simplified energy

calculation allows for quick evaluation of energies. The degeneracies allow us to explore

a large conformational space without having to do any hill-climbing.

A molecular mechanics simulation is then run on the resulting initial conformation.

In this simulation all degrees of freedom are allowed and we are no longer constrained

to a rigid body system. Since there are few bad contacts, standard molecular mechanics

techniques such as Quasi-Newton are able to further minimize the structure using a more

realistic forcefield.

6



Chapter 1. Introduction

After the minimization is performed using molecular mechanics we evolve the system

through time using molecular dynamics to simulate the molecule for 100ps with a temper-

ature of 300K in gas phase. This is performed for both PA and PAMAM dendrimers. For

the PA dendrimers we also insert solvent molecules to study solvent effects such as solvent

penetration and conformational changes resulting from dendrimer-solvent interactions.

Once the molecular dynamics completes, we analyze the properties of the dendrimers

including their radial density function, surface area, volume, solvent penetration and, radii

of gyration and compare our results to those found in the literature.

7



Chapter 2

Constructing a Dendrimer for

Simulation

2.1 The Problem

The large sizes of dendrimers make it difficult to set up initial conditions required for

molecular simulations. Because the number of atoms scales exponentially with the number

of generations, the number of degrees of freedom also scales exponentially. Furthermore,

because dendrimers are not linear polymers, they cannot easily be laid out in a spatial

configuration that guarantees no steric overlaps.

In this thesis, we study two different classes of dendrimers. We study Phenyl-Acetylene

(PA) dendrimers with benzene cores and Polyamidoamine (PAMAM) dendrimers with

ethylenediamine cores. Skeletal formulas for PA dendrimers of generation 0 and 1 are

shown in figure 2.1. Skeletal formulas for PAMAM dendrimers of generation 0-2 are

shown in figure 2.2.

Three dimensional initial placement of atoms in a molecular simulation is often accom-
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Chapter 2. Constructing a Dendrimer for Simulation

plished through a tedious process of constructing the molecule of interest using chemistry

software packages that allow the user to connect bonds and place atoms in a 3 dimensional

GUI environment. Unfortunately the construction of molecules using this technique leaves

an unknown user bias that could place a dendrimer in a physically unrealistic local mini-

mum. Perhaps more importantly, setting up simulations of dendrimers in this manner takes

significant amounts of time because they require the placement of large numbers of atoms

(147,396 in the case of PAMAM10). For these larger dendrimers, the task of constructing

the dendrimer by hand becomes nearly impossible since the user cannot typically arrange

atoms without resulting in molecule with significant steric overlaps.

(a) Skeletal formula PA0 (b) Skeletal formula PA1

Figure 2.1: Skeletal formulas for PA dendrimers.
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Chapter 2. Constructing a Dendrimer for Simulation

(a) Skeletal formula PAMAM0 (b) Skeletal formula PAMAM1

(c) Skeletal formula PAMAM2

Figure 2.2: Skeletal formulas for PAMAM dendrimers.
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Chapter 2. Constructing a Dendrimer for Simulation

2.2 Approach

In this thesis, we initially construct both PA and PAMAM dendrimers based on a rigid

bond-length and bond-angle model. In our model, only the dihedral angles of the den-

drimers are permitted to vary as shown in figure 2.4.

Figure 2.3: Atoms represented as circles are not permitted to change their distance between
one another if they are bonded together, and may not change their angle with respect to
one another if they share a bond angle. On the other hand, the atom on the dashed circle
is permitted to move. In other words, r and θ are fixed, φ is free.

Figure 2.4: Bond angles and dihedral angles

The approach of constraining bond-angles and bond-lengths is frequently used with

Monte Carlo methods and is used to study proteins and other macromolecules [8]. This

approximation is justified by the fact that bond angles and bond lengths are well preserved

in macromolecules. The preservation of bond lengths and bond angles in macromolecules

is due to the relatively large energies required to change a bond angle or bond length com-

pared to changing a dihedral angle. The differences in energies between bond-lengths and

bond-angles are typically about an order of magnitude larger than the energy required to

move the dihedral angles. By constraining the bond-lengths and bond-angles, the number

of degrees of freedom for the system is reduced by approximately 3-fold simultaneously

maintaining realistic ensembles of molecules.

Dendrimers as regularly branched molecules, can be constructed using recursion. In

11



Chapter 2. Constructing a Dendrimer for Simulation

general, we construct a dendrimer by starting with a core moiety and branching out recur-

sively from its branch points. Branch points are bonded with a given arm appropriate for

the dendrimer of interest. These arms have more than one branch point enabling contin-

ued divergent growth of the molecule. Dendrimers are then terminated with a terminal end

group which does not have any branch points.

For PA dendrimers, we use a phenyl group as the core moiety as shown in figure 2.5(a).

From it, we branch off with with phenyl-acetylene arms as shown in figure 2.5(b) to branch

the dendrimer out. The terminal unit used in the PA dendrimers is simply a hydrogen as

shown in figure 2.5(c) for the dendrimers we study here.

(a) PA core (b) PA arm (c) Terminal end

Figure 2.5: Parts of a PA dendrimer. The P ends are placeholders that bind to Arm ends.
P ends may repeatedly bond to Arm ends so that the dendrimer branches out in a recursive
manner. The terminal hydrogen can bind to the Arm ends to terminate the growth of the
dendrimer.

For the PAMAM dendrimers, we use an EDA (Ethylenediamine) group as the core

moiety and branch with polyamidoamine groups. Again, the terminal units we use for our

12



Chapter 2. Constructing a Dendrimer for Simulation

study of PAMAM dendrimers is simply a hydrogen.

(a) PAMAM core (b) PAMAM arm

(c) Terminal end

Figure 2.6: Parts of a PAMAM Dendrimer. Ethylene-diamine (ETA) core, Polyami-
doamine (PAMAM) arms, and terminal hydrogen.

In order to construct a dendrimer for simulation we first declare variables in Eqn. (2.2.1)

that describe bond lengths and bond angles found in PA and PAMAM dendrimers.

rcn = 1.471Å (Carbon-Nitrogen single bond length)

rc3c3 = 1.531Å (sp3 Carbon-Carbon single bond length)

rch = 1.087Å (Carbon-Hydrogen single bond length)

rco = 1.23Å (Carbon-Oxygen double bond length)

raromatic = 1.395Å (Carbon-Carbon conjugated bond length)

rccsp1 = 1.23Å (Carbon-Carbon triple bond length)

ϕk = kth dihedral angle

ψ = 109.5◦Tetrahedral Angle

P = Placeholder matrix representing the current position

I = 4×4 Identity matrix

(2.2.1)

13



Chapter 2. Constructing a Dendrimer for Simulation

We make use of 4×4 matrices in figure 2.7 to form a homogeneous coordinate system

that we can transform into 3-D Cartesian coordinates to place each atom in a dendrimer.

Quaternions are often represented as 4×4 matrices with the following matrix operators to

perform rotations, and translations.

We also define a set of matrix transformations that are used to construct PA core in

equations 2.2.3. The matrix transformations used to construct the PA arms are in equa-

tions 2.2.4.

(a) X Rotation Matrix

(b) Y Rotation Matrix (c) Translation Matrix

Figure 2.7: 4×4 Translation matrix used to move atoms in their local coordinate system.

14



Chapter 2. Constructing a Dendrimer for Simulation

C1 = T (rcn) ·P

C2 = Rx(φi) ·T (rc3c3) ·Ry(−
ψ

2
) ·C1

C3 = Rx(φi+1) ·T (rc3c3) ·Ry(
ψ

2
) ·C2

N1 = T (rcn) ·Ry(−
ψ

2
) ·C3

C4 = Rx(φi+2) ·T (rcn) ·Ry(−
ψ

2
) ·N1

C5 = Rx(φi+3) ·T (rc3c3) ·Ry(−
ψ

2
) ·C4

N2 = T (rcn) ·Ry(
ψ

2
) ·C5

H1 = T (rch) ·Ry(180◦−ψ) ·Rx(
ψ

2
) ·C1

H2 = T (rch) ·Ry(180◦−ψ) ·Rx(−
ψ

2
) ·C1

H3 = T (rch) ·Ry(180◦−ψ) ·Rx(
ψ

2
) ·C2

H4 = T (rch) ·Ry(180◦−ψ) ·Rx(−
ψ

2
) ·C2

H5 = T (rch) ·Ry(180◦−ψ) ·Rx(−
ψ

2
−180◦) ·N1

H6 = T (rch) ·Ry(180◦−ψ) ·Rx(
ψ

2
) ·C4

H7 = T (rch) ·Ry(180◦−ψ) ·Rx(−
ψ

2
) ·C4

H8 = T (rch) ·Ry(180◦−ψ) ·Rx(
ψ

2
) ·C5

H9 = T (rch) ·Ry(180◦−ψ) ·Rx(−
ψ

2
) ·C5

O1 = T (rco) ·Ry(
ψ

2
) ·C3

Arm1 = Rx(
ψ

2
) ·Ry(180◦−ψ) ·N2

Arm2 = Rx(−
ψ

2
) ·Ry(180◦−ψ) ·N2

(2.2.2)

Equations for construction of a PA dendrimer core can be found in Equation 2.2.3.
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Chapter 2. Constructing a Dendrimer for Simulation

C1 = P = I

Arm1 = Ry(−120◦) ·C1

C2 = T (raromatic) ·C1

H1 = T (rch) ·Ry(−60◦) ·C2

C3 = T (raromatic) ·Ry(60◦) ·C2

Arm2 = Ry(−60◦) ·C3

C4 = T (raromatic) ·Ry(60◦) ·C3

H2 = T (rch) ·Ry(−60◦) ·C4

C5 = T (raromatic) ·Ry(60◦) ·C3

Arm3 = Ry(−60◦) ·C5

C6 = T (raromatic) ·Ry(60◦) ·C5

H3 = T (rch) ·Ry(−60◦) ·C6

(2.2.3)

Equations for construction of a PA dendrimer arm can be found in Equation ??.
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Chapter 2. Constructing a Dendrimer for Simulation

C1 = T (rcc) ·Rx(φi) ·P

C2 = T (rccsp1) ·C1

C3 = T (rcc) ·C2

C4 = T (raromatic) ·Ry(60◦) ·C3

C5 = T (raromatic) ·Ry(−60◦) ·C4

C6 = T (raromatic) ·Ry(−60◦) ·C5

C7 = T (raromatic) ·Ry(−60◦) ·C6

C8 = T (raromatic) ·Ry(−60◦) ·C7

H1 = T (rch) ·Ry(60◦) ·C4

H2 = T (rch) ·Ry(60◦) ·C6

H3 = T (rch) ·Ry(60◦) ·C8

Arm1 = Ry(−60◦) ·C5

Arm2 = Ry(−60◦) ·C7

(2.2.4)

17



Chapter 2. Constructing a Dendrimer for Simulation

We begin by constructing the core of the dendrimer. The first three rows of the last

column correspond to x, y, and z Cartesian coordinates. Each 4× 4 matrix represents an

orientation and translation of the canonical Cartesian coordinates.

After building the core we branch out recursively off the “Arm” units and terminate

them with hydrogen terminal units at the appropriate generation. At this point, all confor-

mation of the dendrimer are uniquely specified by the vector ~φ . For our initial conforma-

tion, we simply choose random angles from −180◦ and 180◦.

18



Chapter 3

Generating Low Energy Structures

3.1 Overview

The initial structure as constructed in chapter 2 is likely to have a significant number of

bad contacts since we chose a random conformation. In order to remedy this problem we

must change the conformation in such a way as to minimize the bad contacts or “energy”

of the system.

Finding the minimum energy conformation of molecules is known to be NP-complete

[9]. Since we cannot calculate the minimum energy conformation we need algorithms that

can find conformations that can be used in existing molecular mechanics and molecular

dynamics codes in reasonable amounts of time. We propose using a combination of Monte

Carlo rigid body dynamics, molecular mechanics, and molecular dynamics to accomplish

this task.

Typical molecular simulations using classical mechanics depend on bonded and non-

bonded interactions. Bonded interactions involve bond-length, bond-angle, and torsion

terms. These calculations are typically performed in O(n) time where n is the number of

19



Chapter 3. Generating Low Energy Structures

atoms. Non-bonded interactions involve electrostatic interactions and Van der Waals inter-

actions. Non-bonded interactions are pair-wise interactions and hence have O(n2) interac-

tion terms. Since the non-bonded energies drop off rapidly with distance, it is reasonable

to not include interacting terms beyond some chosen cutoff radius. Spatial subdivision

algorithms can be used to reduce the amount of computation needed to calculate the non-

bonded interactions. Technically the asymptotic performance of the calculations in the

worst case remains O(n2). However, in practice spatial subdivision algorithms reduce the

computational complexity to O(n). [8]

3.2 The Monte Carlo Method

Monte Carlo methods are a class of randomized computational methods. These methods

are particularly useful for minimization of many-dimensional functions. In molecular me-

chanics calculations, Monte Carlo is typically employed by calculating the energy of a

particular state the molecular system is in, then it randomly perturbs that state and recal-

culates the energy of the system. If the energy is less than the previous energy, it is always

accepted, if the energy is greater than the previous energy it is accepted with some prob-

ability that is often a function of the temperature. We present a slight deviation from this

strategy.

Using the spatial subdivision algorithm the energy of a molecule can be calculated in

O(n) time, where n is the number of atoms.

We use the Monte Carlo method to modify only the dihedral angles in the dendrimer.

In order to simplify the calculation of the energy we use a step function to calculate energy.

The step function allows us to compute the number of closely paired atoms that are likely

to contribute to unrealistically high energies. By computing energies as a step function, our

energy calculations are not approximations when we use the spatial subdivision algorithm.
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We wrote a program called Dendmol. Dendmol is a rigid body mechanics Monte Carlo

code. Since bond angles and bond lengths are constant, the conformation of a dendrimer

is completely specified by its dihedral angles. Dendmol represents each dendrimer as

a vector ~φ of dihedral angles. Dendmol first initializes the elements of ~φ to uniformly

distributed random angles between -180 and 180 degrees. This creates a dendrimer with

a random conformation. For small dendrimers (generation 0-3) this is often not a bad

starting configuration, but with larger dendrimers, a random conformation typically places

many atom pairs too close to each other to be physically reasonable.

Since all the bond lengths and bond angles are fixed, there is no need to calculate

the energy of bonded interactions. The only interactions that need to be computed are the

non-bonded interactions. For the purpose of constructing physically viable conformations,

it is only necessary to consider non-bonded interactions that have high energy. We con-

sider any pair of non-bonded atoms to have high energy if they are less than 1.08Å apart.

This distance If all the non-bonded interactions have low energy, then it is likely that the

dendrimer has a physically viable conformation.

A simplified energy function is used to compute the energy of the dendrimer. We

simply count the number of non-bonded atom pairs that are within the cutoff distance.

E(r) =

 1, if r ≤ rc

0, if r > rc

Etotal =
all atom pairs

∑
k

E(r)k

After the energy is calculated it is compared with the previous energy calculation.

A random dihedral angle is chosen to turn a random amount weighted by a parameter

an allowable torsional parameter. If the energy is larger than the previous energy it is
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rejected. If the energy is less than previous energy it is accepted. It may sound as though

this prevents hill-climbing which is an integral part of most Monte Carlo simulations,

however since there are many conformations of the same energy in this scheme there is a

vast configurational space in which to search.

3.3 Molecular Mechanics

Molecular mechanics is a time and temperature independent method to minimize the po-

tential energy of a system of molecules using Newtonian mechanics. For this thesis we

use the “minimize” sub-program in the TINKER [10] package to minimize the energy of

the dendrimer using molecular mechanics.

TINKER supports several forcefields including MM3 [11–13]. A forcefield is a set

of functional forms and parameters used to calculate the potential energy of a system of

atoms. For this thesis we used the MM3 forcefield. However, since several interactions in

the dendrimer are not included in MM3, we had to add them manually by estimating the

interaction terms (see appendix).

First using Dendmol to reduce the number of close atoms pairs to a small number, the

dendrimers are then saved in the TINKER XYZ file format. From here, we run TINKER

molecular mechanics using the “minimize” program that is part of the TINKER package.

The dendrimer is then minimized to an RMS (Root Mean Square) of 0.1 (kcal/mol)/Å. At

this point, the dendrimer is ready to be run in TINKER’s molecular dynamics code.

3.4 Molecular Dynamics

Molecular dynamics is a time and temperature dependent method used to calculate the

trajectories of atoms using the same forcefields that are used in molecular mechanics. The
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purpose of molecular dynamics is to capture the state of molecular systems with high spa-

tial and temporal resolution. For this we also use the TINKER “dynamic” program and

ran each dendrimer for 100ps at a temperature of 300K. 100ps gives the dendrimer suffi-

cient time to get close enough to equilibrium to take meaningful measurements of radius

of gyration and radial density functions. If we were interested in doing a more thorough

molecular dynamics study of dendritic polymers, we would need to run the simulations to

at least 20ns [14]. We could not do this due to limitations of available computing hardware

and because TINKER has not been parallelized.

Since some of the molecular interactions that are necessary for the type of dendrimers

we worked with are not available in the standard force fields provided with TINKER, we

had to include a number of parameters based on similar interactions. The table of these

interactions is provided in the appendix.

For the molecular dynamics, we used a modified MM3 potential [11–13]. Since the

MM3 forcefield did not have several interactions that were needed to describe the dynam-

ics of the molecules so these interactions were added by hand, and can be found in the

appendix. Since the missing interaction terms were for energies of dihedral angles, and

out of plane angles we set all these interactions to have 0 energy. This is a reasonable ap-

proximation since the Van der Waals forces dominate the energy terms of large dendritic

polymers.

Simulations of PA and PAMAM dendrimers were run for 100ps in gas phase and simu-

lations of PA dendrimers were run in a solvent droplets of dichloromethane for 20ps each.

Attempts were made to run simulations of PAMAM dendrimers solvated in water, however

it was found that TINKER does not handle large systems of water molecules [15]. Addi-

tionally the TINKER xyz file format dedicates 5 columns for atom identifiers limiting the

number of atoms that can be properly simulated to 99,999.

(I need to discuss the creation of the 2 dichloromethane spheres that I used to submerge
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the dendrimers. How large these spheres were, and how I minimized their structures and

later submerged the dendrimer). I did this in a way to run the simulation at room temper-

ature and pressure.
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Discussion and Results

Presently, the structure and chemical mechanisms for dendrimers remain poorly under-

stood. There is a gap between experimental evidence and theoretical models that can be

reliably compared. On one hand, we know quite a lot about the properties of dendrimers

in certain solvents, their spectra, and other properties. But theoretical models of these

properties have been difficult to establish because of the large size of most dendrimers and

the complex environments they are typically exposed to.

In this work, our results for radius of gyration of PAMAM dendrimers agrees well

with experimental evidence, and our studies of the radial distribution of monomers within

both PA and PAMAM dendrimers suggest that there is extensive backfolding. This is in

agreement with Maiti et al. [6]

It is likely that we have a good approximate understanding of the structure of den-

drimers. We can safely conclude from experimental and theoretical results that dendrimers

undergo significant back folding and some dendrimers have significant interior voids that

allow them to function as hosts to smaller molecules.

A number of improvements that could be made to Dendmol are readily apparent. The
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first would be to create a file format that will be read in by Dendmol that describes the

internal coordinates of a dendrimer. From this file, Dendmol could be used to construct

a much larger family of dendrimers and dendritic structures than were studied here. The

second improvement would be to improve on how the dihedral angles are chosen for the

Monte Carlo update. Presently these angles are chosen at random. However it is conceiv-

able that with the right data structures, the angles to be modified could be selected based on

which chain they belong to and the distribution of energy in that chain. This could speed

up Denmol’s performance. This was not necessary for this study since Denmol typically

completed its run in under an hour even for large dendrimers.

Measurements of area and volume for PA dendrimers:
Generation Area (Å2) Volume (Å3) Radius of Gyration (Å) Gyration STD (Å)

PA1 480.7 415.3

PA2 1182.2 1040.5 9.42 0.09

PA3 2578.4 2290.5 12.73 0.12

PA4 5259.2 4768.5 15.44 0.23

PA5 10682.5 9777.3 16.63 0.53

PA6 21208.3 19683.6 19.92 0.31

PA7 41767.6 39487.4 22.31 0.10

PA8 81824.6 78847.6 26.39 0.22

PA9 145534.7 154168.8 30.13 0.09

PAMAM Dendrimers:
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Generation Area (Å2) Volume (Å3) Radius of Gyration (Å) Gyration STD (Å)

PAMAM2 2095.6 1907.4 8.06 0.42

PAMAM3 4628.7 4296.3 10.33 0.70

PAMAM4 9643.4 9069.2 13.06 0.57

PAMAM5 20625.1 18723.9 20.87 0.55

PAMAM6 41710.5 37929.4 25.97 1.03

PAMAM7 83091.5 76254.9 30.27 0.89

PAMAM8 42545.5 72781.4 20.48 1.54

The number of atoms for each simulation differed. In the gas phase simulations,

only the atoms of the dendrimer were considered. In solution phase I created a sphere

of dichloromethane molecules to surround the dendrimer.
Generation PA Atoms PAMAM Atoms PA + solvent Atoms

1 120 228 5925

2 264 516 5949

3 552 1092 5982

4 1128 2244 47433

5 2280 4548 47720

6 4584 9156 48619

7 9192 18372 50072

We can see in Table 4.1 the trends of convergence for PA dendrimers.

PA Generation Time Monte Carlo Steps Close Pairs
7 less than 24 hours 266745 0
8 less than 48 hours 979815 0
9 96 hours 1050250 34
10 96 hours 605890 438
11 96 hours 323446 3600

Table 4.1: Denmol runs to illustrate long term convergence with PA dendrimers.
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(a) PA 1 (b) PA 2 (c) PA 3

(d) PA 4 (e) PA 5

(f) PA 6 (g) PA 7

Figure 4.1: VDW Rendering of PA dendrimers with monomers colored by generation.
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(a) PA 4 (b) PA 5

(c) PA 6 (d) PA 7

(e) PA 8 (f) PA 9

Figure 4.2: Convergence of Dendmol while constructing PA dendrimers.
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PAMAM Generation Time Monte Carlo Steps Close Pairs

5 24 hours 2108681 4

6 24 hours 1150436 6

7 24 hours 639563 176

8 96 hours 1238507 1116

9 96 hours 585331 4176

10 96 hours 252275 21064

11 96 hours 95442 104246
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(a) PAMAM4 convergence (b) PAMAM5 convergence

(c) PAMAM6 convergence (d) PAMAM7 convergence

(e) PAMAM8 convergence (f) PAMAM9 convergence

Figure 4.3: Convergence of Dendmol while constructing PAMAM dendrimers.
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(a) PAMAM 1 (b) PAMAM 2 (c) PAMAM 3

(d) PAMAM 4 (e) PAMAM 5

(f) PAMAM 6

Figure 4.4: VDW Rendering of PAMAM dendrimers with monomers colored by genera-
tion.
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Radial distribution functions were calculated for PA dendrimers from generation 2

through 7.

(a) PA2 RDF (b) PA2 solavted RDF

Figure 4.5: PA2 unsolvated and solvated radial distribution function.

In figure 4.5(a) we see that the first and second generation both are found in rela-

tively high density near the core of the molecule. This implies backfolding even in early

generations. The third generation has comparatively little backfolding. In figure 4.5(b)

we see that there is little difference in the distribution of monomers when in gas phase.

The dichloromethane penetrates through the interior of the dendrimer sharply reducing in

concentration 7Å from the center.

In 4.6(a) the first and second generation both are found in relatively high density near

the center of the molecule. The third generation has comparatively little backfolding but it

does overlap the second generation and even part of the first generation.

In 4.6(b) The distribution of the G3 atoms in PA3 are slightly affected by the presence

of solvent which results in slight swelling of the dendrimer. The dichloromethane solvent

penetrates through the interior of the dendrimer with a sharp decrease in concentration

5Åfrom the center.
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(a) PA3 RDF (b) PA3 solvated RDF

Figure 4.6: PA3 unsolvated and solvated radial distribution function.

(a) PA4 RDF (b) PA4 solvated RDF

Figure 4.7: PA4 unsolvated and solvated radial distribution function.

In 4.7(a) the first and second generation both are found in relatively high density near

the center of the molecule. The third generation has comparatively little backfolding but

it does overlap the second generation and first generation. The fourth generation pene-

trates through to within 5Åof the center of the dendrimer with a nearly constant density of

approximately 0.1g/cm3.

34



Chapter 4. Discussion and Results

In 4.7(b) There is no apparent swelling of the PA4 dendrimer the presence of solvent.

The fourth generation is pushed further out of the dendrimer so that it only penetrates to

within 10Åof the center.

(a) PA5 RDF (b) PA5 solvated RDF

Figure 4.8: PA5 unsolvated and solvated radial distribution function.

In 4.8(a) we also see a gradual increase in concentration with generation. Each of the

generations tend to peak in concentration with approximately 0.2g/cm2. The last gener-

ation is peculiar in this case since it penetrates to nearly 1Åof the center. In the solvated

case 4.8(b) we see nearly the same distribution of density with generation. The solvent

penetrates near to the center of the molecule with a steady decline in concentration.

In 4.9(a) we see a gradual increase in concentration with generation. Each successive

generation has slightly more concentration than the previous generation. The sixth gen-

eration has a bimodal distribution and penetrates deep into the interior of the dendrimer

having a higher concentration than most other generations in most parts of the dendrimer.

We see a similar pattern of distributions with generation in the solvated case with no ap-

parent swelling of the dendrimer. The solvent penetrates deep into the interior of the

dendrimer with a pronounced peak at 10Å. This peak suggests the presence of voids in the

dendrimer that may be useful for containing a host molecule.
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(a) PA6 RDF (b) PA6 solvated RDF

Figure 4.9: PA6 unsolvated and solvated radial distribution function.

(a) PA7 RDF (b) PA7 solvated RDF

Figure 4.10: PA7 unsolvated and solvated radial distribution function.

In 4.10(a) the concentration of atoms with each generation is noticeably flat for large

intervals over the radius of the dendrimer. There is a slight increase of concentration

with each generation with a large increase in concentration of the terminal end of the

dendrimer. From 4.10(b) we observe a very similar pattern of density distribution with

generation and a decreasing concentration of solvent down to about 10Åfrom the center.
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At approximately 5Å there is a spike in solvent density suggesting a possible void where a

host molecule could reside.
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In 4.11(a) generation one and two have considerable overlap and penetrate near the

center of the core. In 4.11(b) we see a similar pattern where the outer branches penetrate

into the core and have considerable overlap with each other. At this stage in dendrimer

growth we can see that the outer portions of the dendrimer tend to have higher concen-

trations of the outer arms. In 4.11(c) we can see that there is now a flattening out of the

density distributions. All the generations have considerable overlap, but they also tend to

have a more consistent distribution. In 4.11(d) it can be seen that all the generations tend

to peak at the same concentration and still have significant backfolding with the terminal

ends penetrating to within 5Åof the center.
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(a) PAMAM2 RDF (b) PAMAM3 RDF

(c) PAMAM4 RDF (d) PAMAM5 RDF

(e) PAMAM6 RDF (f) PAMAM7 RDF
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Summary and Conclusion

Dendmol successfully creates initial conformations of PA dendrimers with no steric over-

laps from generation 0-7 in less than 24-hours using a single core of an Intel R© Xeon R©

2.3GHz CPU. After 96-hours Dendmol is able to reduce the number of steric overlaps in

PA8-10 to an extent where TINKER is capable of taking over.

(Here I should talk about PAMAM convergence)

One disadvantage to the rigid body technique is that molecules do not actually move

this way because in physical systems atoms are permitted to move in all directions and

bond lengths and bond angles are allowed to change. Although most realistic ensembles

of molecules are represented with internal coordinates, it can be the case that a kinetic

pathway is not easily reached in internal coordinates that may be accessible when using

other coordinate systems. In molecules that are very flexible in their dihedral angles be-

cause the flexible nature of the dendrimer compensates for small local changes. However

in the Phenyl-Acetylene dendrimers there are obvious differences in the structure when

bond-lengths, and bond-angles are allowed to move about freely. Although they do not

move a lot, a one-degree angle bend can have a significant global effect down the chain of

the molecule.
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Several obvious extensions to Dendmol can be made. The first is to create a file format

that specifies the chemical structure of the dendrimer to be studied. This input file would

specify the core molecule, branching units, and terminating units without specifying the

dihedral angles. Once the file was read, Dendmol would proceed by modifying dihedral

angles to untangle the structure.

Another improvement to Dendmol could be using a more intelligent criterion for choos-

ing dihedral angles to rotate. An algorithm that was more likely to choose dihedral angles

that directly impacted close pair atoms, would probably converge faster and may allow

Dendmol to untangle larger dendrimers.
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Modifications to the MM3 Molecular

Force Field

bond 50 4 15 1 . 2
a n g l e 50 50 50 . 4 120 120 .5 0 . 0
a n g l e 50 4 4 1 . 8 180 180 .5 0 . 0
opbend 50 4 20 .500
opbend 4 50 50 50 0 . 0
opbend 5 50 50 50 0 . 0

# T o r s i o n s f o r PA
t o r s i o n 50 50 50 4 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 50 50 4 4 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 4 50 50 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 50 4 4 50 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
opbend 3 8 0 . 0
opbend 5 8 0 . 0

# T o r s i o n s f o r PAMAM
t o r s i o n 1 1 8 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 1 1 8 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 1 3 8 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 1 1 3 8 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 1 3 8 1 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 3 8 1 1 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 3 8 1 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 5 1 9 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 5 9 1 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 5 1 8 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 5 1 3 8 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 7 3 8 1 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
t o r s i o n 7 3 8 5 0 . 0 0 . 0 1 0 . 0 180 .0 2 0 . 0 0 . 0 3
opbend 1 8 1 1 0 . 0
opbend 8 3 1 7 0 . 0
opbend 7 3 1 8 0 . 0
opbend 1 3 7 8 0 . 0
opbend 1 8 3 5 0 . 0
opbend 1 8 5 5 0 . 0

a n g l e 1 3 8 0 .570 114 .400 0 .000 0 .000
a n g l e 7 3 8 1 .070 124 .800 0 .000 0 .000
a n g l e 5 8 5 0 .670 109 .500 110 .200 111 .000
a n g l e 3 8 5 0 .670 109 .500 110 .200 111 .000
a n g l e 1 8 5 0 .670 109 .500 110 .200 111 .000
a n g l e 1 8 3 1 .620 121 .100 0 .000 0 .000
bond 8 5 6 .1000 1 .6600
bond 8 3 6 .1000 1 .6600
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