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ABSTRACT 
 

 Forests and trees may play important roles in human health outcomes and choices 

made by individuals in urban areas. Disruptions to forest amenities and tree canopy 

coverage caused by shocks to the natural environment may affect urban air quality, 

behavioral decisions, time use habits, and environmental management. This work 

exploits two distinct and unrelated shocks to forests in the United States to investigate the 

environmental and health economic links in urban areas between people and trees, and a 

proposed deeply ingrained role for environmental health in how people live, interact, 

optimize in their communities.   

 The first chapter argues that environmental quality and forest amenities are 

important determinants of health and behavioral patterns in urban areas. The conclusion 

is that further investigations into the indirect market and nonmarket effects of forests and 

trees on the urban economy are necessary to better guide self-investments in health and 

management of natural resources. Chapter 2 examines one mechanism through which 

shocks to the natural environment caused by forest fires in the Mountain West affect 

health in high-density communities distant from the flame zone. Using a case study 
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wildfire event in eastern Arizona that brought smoke over Albuquerque, New Mexico in 

2011, this chapter advances the methodology by which wildfire smoke damages are 

assessed by modifying a relatively new US EPA benefit transfer computer program, 

coupling it with original household survey data, and demonstrating how it can be applied 

to wildfire smoke events. This chapter concludes that not only are wildfire smoke events 

costly in urban areas, but that perhaps wildfire smoke is more toxic to health than 

conventional urban air pollution, necessitating more deliberate and nuanced choices by 

analysts tasked with estimating the damages of wildfire events.  

 Chapter 3 exploits a different shock to forest cover, caused by the emerald ash 

borer (EAB), to investigate heterogeneity in urban invasive species management when 

health is directly accounted for by environmental managers and policymakers. Simulation 

results show that accounting for health impacts associated with lost tree cover increases 

net benefits of management by more than 1100% in a combined management model and 

leads to mortality reductions of 21 persons over 50 years and 5,500 cases of reduced 

morbidity over the same time period for a representative EAB infested county in the US. 

Additionally, results indicate that a “one size fits all” management approach may be 

inappropriate for responding to large-scale invasive species infestations due to 

heterogeneity in county demographics, underlying health incidence, and tree coverage.  

 Chapter 4 further exploits the shock to forest and tree cover caused by EAB to 

examine behavioral changes in infested areas. Specifically, this chapter investigates how 

a shock to environmental quality caused by detection of EAB influences labor-leisure 

tradeoffs made by residents of infested areas using data from the nationally-

representative American Time Use Survey. Econometric results from a variety of models 
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indicate a negative relationship between EAB detection and daily outdoor leisure time in 

addition to a contemporaneous positive relationship between EAB detection and daily 

time spent on labor supply activities. These findings exist primarily along the extensive 

margin and persist after controlling for year and area fixed effects and daily weather 

conditions. Changes are persistent; lasting for 2 years and longer.  

 The overall conclusion presented in chapter 5 is that forests and trees have 

economically meaningful impacts on health outcomes and individual behavioral patterns 

in urban areas as a result of shocks to environmental quality. It may be useful for 

policymakers and environmental managers to consider forest amenities, and disruption to 

forest quality in particular, when setting environmental and labor market policy. 

Accounting for the links between nature, health, and optimal choices, may lead to better 

informed policy, particularly in high-density populated areas where impacts of trees are 

perhaps the greatest.   
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Chapter 1 

Introduction: Thinking about shocks to urban forest cover and impacts on human 

health and behavior 

 

Environmental quality in US urban areas is periodically affected by unexpected 

disturbances or shock events. Shocks may be anthropogenic (e.g., wildfires caused by 

unattended campfires, accidental oil spills, or transporting invasive species along global 

trade routes, etc.) or natural (e.g., wildfires caused by lightning, hurricanes, floods, or 

extreme temperatures, etc.). Climate change is expected to increase the number and 

magnitude of shocks to environmental quality in the coming years, creating 

reverberations throughout the economy (Rahmstorf & Coumou, 2011). Urban forests and 

forest amenities in particular are often disrupted by environmental shocks, with 

associated market and non-market effects. However, reverberations of secondary and 

tertiary market and non-market effects (so-called indirect effects) of forest shocks 

through a regional economy are poorly understood.   

 One way to study indirect effects of forest amenities is vis-à-vis the ties between 

trees and people. People may be connected to trees in a wide variety of ways. Trees 

provide aesthetic value and are a source of recreational opportunities for communities. 

People often hike, camp, or walk through forests and urban parks in order to (re-)connect 

with nature and “recharge.” Research has connected trees to physical and mental health 

and well-being (Tyrväinen et al., 2005). Additionally, trees are a significant source of air 

pollution removal and particle deposition (Nowak et al., 2013), which can be especially 
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important in urban areas where there are significant concentrations of air pollutants and 

substantial pollutant-related cardiorespiratory health effects. Economists have measured 

many direct market and non-market benefits of urban trees, from harvesting and 

stumpage values (both market) to aesthetic and cultural values (both nonmarket). Given 

the nuanced relationship between people and trees, a more complete picture of the 

indirect economic benefits of trees is required to fully comprehend the economic 

reverberations created by environmental shocks.  

A starting point would be to look at how forests and trees influence human health 

and behaviors. Consider the following scenario. Imagine for a moment that you live a 

block away from an urban park filled with large shade trees and walking trails. You often 

take strolls or runs through the park in the evening, perhaps with a friend, partner, or a 

pet. Maybe you occasionally bike along the trails too. Now, imagine there is some 

environmental shock, say an invasive pest or disease, which first stresses and then begins 

to kill some of the park trees. The park is now less shaded and less “green” than it was 

previously. How might you react or respond? Maybe you would go to the park fewer 

times per week or spend less time during each visit. Might your health or well-being be 

affected by this change? Perhaps in ways that you are not even aware of? What about the 

physical environment around you? If the lost tree canopy is not replaced, we might 

expect localized pollution levels to marginally increase. Alternatively, perhaps you are 

not impacted at all and continue to live and function the same as before the shock. 

Ultimately, the interesting question for the economist is whether or not such a disruption 

(and others like it) induce measurable economic impacts and how inclusion of such 

impacts in environmental management and policymaking more generally influences 
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optimal choices and the benefit-cost calculus used to respond to environmental shocks. In 

other words, is inclusion of the nuanced link between trees and people a potentially 

important economic factor that should be admissible evidence in debates regarding 

environmental quality? 

The contribution of this work is to investigate the indirect economic links between 

trees, health, and behavior in high-density US urban areas, moving beyond the direct 

benefits that have previously been analyzed.1 In particular, this work demonstrates that 

shocks to forests and forest amenities can be highly disruptive to human health and 

certain behavioral outcomes, creating both market and non-market costs that reverberate 

through the economy.    

Nature can be linked back to health using the concept of the health production 

function. This is based on the idea of endogenous health in which increments and 

decrements in health are influenced by behavior and self-made investments (engaging in 

preventative care, having a balanced diet, or washing your hands, for example). Shocks to 

environmental quality act as exogenous determinants, affecting how health is produced. 

For example, worsening air quality due to wildfire smoke often affects cardiorespiratory 

health and can lead to spikes in mortality rates. A shock to environmental quality may be 

unavoidable in the very short run, but in the days, weeks, and months following an event 

an individual could seek out a physician, move out of a community, purchase goods or 

services to better defend themselves against future shocks (e.g., a home air purifier), 

petition their elected officials to take action, or could become involved themselves (e.g., 

volunteer to spread the word on the dangers of unattended campfires). These types of 
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investments might improve health instantaneously or minimize health impacts of future 

shocks.  

However, before an investment can even be considered in response to an 

environmental shock it must be the case that the shock is viewed or perceived as 

potentially health altering. If a shock is believed to be completely unrelated to health, 

then endogenous choices regarding behavioral changes and potential investments are 

unlikely to be made – why take action if no reward is perceived? On the other hand, if 

people do perceive a shock as health altering, action is more likely– such as when people 

stay indoors more during wildfire smoke events. The key is in knowing when a shock 

may affect health. This is challenging in practice, as there is often an information gap 

between the science of health and the health of communities. For example, many people 

might not realize that trees promote health by scrubbing the air or that forest and 

watershed restoration and maintenance of distant forest land can reduce the likelihood of 

a wildfire event, keeping rivers, lakes, and airsheds free of certain toxins. Better 

understanding and dissemination of information on how health is connected with nature 

can aid people in making more informed decisions on self-investments in health in 

response to environmental shocks.      

The main argument advanced in this dissertation is that environmental quality and 

health are connected in complex and indirect ways, which are just now beginning to be 

understood. Ignoring these connections when setting economic policy, engaging in 

environmental management, or even determining how to pass the hours in a day, can 

harm health and produce economic consequences. Closing the information gap on how 

shocks reverberate through an economy can lead to increased investments in health and 
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changes in behavior to mitigate decrements in well-being created by disruptions to forests 

and trees.  

From a policy perspective, and from the perspective of an environmental 

economist, this is not to say that we have no understanding of the impacts of shock events 

on welfare. Decades of economic research exists on environmental shocks. The focus has 

primarily been on direct, immediate, and localized impacts; with some notable exceptions 

(e.g., the Exxon Valdez spill, the BP Deepwater Horizon blowout). Studying direct 

impacts, however, may not fully capture the extent and nuances to which a shock disrupts 

society. More importantly, persistent and long-term impacts of environmental shocks are 

likely to be indirect (e.g., lost trees due to an invasive species has an immediate impact 

on children’s health, perhaps influencing long-term levels of educational attainment). 

This is keeping with the biophilia hypothesis introduced and popularized by biologist 

E.O. Wilson, which suggests an intimate and complex relationship between humans and 

nature (Wilson, 1984). Meaningful interactions between humans and nature (e.g., visits to 

the lake cabin as a child, staring at the stars under a pitch black sky, caring for a pet, etc.) 

can leave lasting impressions on people that deeply guide their worldview and decision 

making processes. Likewise, according to biophilia, changes to nature or the quality of 

the interactions between humans and nature can also have lasting impacts. For the 

environmental economist, it is our task to expand notions of environmental value and 

benefit to include such broader definitions of “impact” in order to guide the efficient use 

of limited natural resources.            

1.1 Research methods and empirical tools 
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The goal of the following chapters is to examine the links between nature, health, 

and behavior beyond the obvious direct and localized relationships. Specifically, this 

examination will focus on densely populated urban areas where environmental shocks 

often have the greatest aggregate impact on health and behavior given high levels of 

pollution, limited amount of greenspace, and large populations in urban areas. Methods 

and tools from environmental and ecological economics, health economics, and 

mathematical economics are brought to bear to address the issue. A challenge faced when 

investigating causal mechanisms is to not fall into the correlation trap; correlation does 

not imply causation. This can be particularly problematic when looking at human 

dimensions of environmental quality given selection bias and residential sorting. For 

instance, outdoor enthusiasts may self-select to live in communities with abundant forest 

and tree cover. Even within such a community, residential sorting my result in 

nonrandom placements of households according to access to forest amenities and 

ecosystem services they provide. These actions muddle the direction of causation, 

potentially leading to biased study results unless careful design and planning are utilized 

to tease out the causal mechanisms.  

To address these concerns, the following chapters exploit natural experiments, so-

named because they can approximate “as good as random” controlled trial experiments, 

but in a nonlaboratory or “natural” setting. In a classic natural experiment, some 

exogenous and random shift, change, or shock occurs, affecting experimental and control 

populations in some known and measurable way. Importantly, the process governing 

exposures is both natural and quasi-random, meaning that researchers have no control 

over the assignment of participants to “treatment” and “control” groups. Rather, 
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divergences in environmental quality, for example, can offer the opportunity to analyze 

groups of people as if they had been part of an experiment; some are exposed and some 

are not. Given the sudden and unpredictable nature of environmental shocks, it is 

practically impossible for people to self-select and sort in nonrandom ways that would 

influence the probability of being impacted once a shock occurs. Therefore, natural 

experiments provide stronger evidence of causal links than correlational studies, though 

of course can never unequivocally determine causation.2 

Chapter 2 exploits a natural experiment created by a shock to air quality levels in 

a high-density urban area precipitated by a wildfire smoke event in the Southwestern US. 

The shock increased counts of fine particulate matter (PM2.5) in the Albuquerque, New 

Mexico airshed, resulting in cardiorespiratory morbidity impacts. The crux of this chapter 

is to investigate the ongoing debate regarding how to capture morbidity impacts and 

associated economic costs of smoke from wildfires in densely populated areas when 

original data collection is not possible, yet where aggregate population impacts are the 

largest. Particularly, the nonmarket costs associated with behavioral changes during a 

smoke event. Estimates of such indirect impacts and costs may differ by key assumptions 

made by the researcher in their damage assessment. A comparative analysis of “choices 

of the analyst” will indicate to what degree estimates of economic impacts associated 

with a shock event vary across behavioral and health assumptions, while along the way 

also providing some important lessons for how to empirically link nature, health, and 

behavior.  

Chapter 3 takes the next step by developing an original model of environmental 

management inclusive of indirect health impacts, using some of the key qualitative 
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findings from chapter 2 about how environmental shocks are linked to health in urban 

areas. The application in chapter 3 is to an invasive species, the emerald ash borer (EAB). 

Another natural experiment, EAB quasi-randomly infests North American native ash 

trees, leading to their death within 1-2 years. The sudden shock to environmental quality 

created by lost ash affects air quality levels in urban areas, where ash is often highly 

prevalent. Dynamic simulations are used to explore how EAB management differs (if at 

all) when indirect health impacts are included in the decision making process.  

The results of chapter 3 also begin to shed light on the economic reverberations 

created by environmental shocks. A small beetle (EAB) infests and kills a tree, which 

degrades environmental quality, causing health and behavioral impacts, likely with long-

term implications on regional economic health and community well-being. In urban 

areas, where ash are a popular yard and street tree, degradations to environmental quality 

can be quite significant. Taken in this light, EAB is no longer “just” a beetle, but is 

actually an important determinant of societal welfare with the power to affect people’s 

lives and economic livelihoods.  

A shortcoming of the empirical approach in chapter 3 is that the relationship 

between nature, health, and behavior is assumed, based on extant literature linking EAB 

to excess mortality and morbidity. In chapter 4, an original empirical analysis is 

conducted to determine how shocks to urban forest and tree cover relate to behavioral 

changes. If meaningful changes are observed, this chapter would contribute a new 

dimension of indirect impacts associated with environmental shocks in urban settings. 

The behavioral impacts focused on in this chapter are how people allocate their time in a 

day between leisure activities and labor market activities. The labor-leisure decisions of 
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working adults prior to EAB infestation are compared to the labor-leisure decisions of 

working adults after an EAB infestation. Given the natural experiment setting, observed 

labor-leisure differences across the two groups would be consistent with a casual story; 

the shock to environmental quality created by EAB is associated with changes in daily 

time allocations. Moreover, the direction and magnitude of labor-leisure changes would 

provide insight into how people live and interact with trees.  

Finally, a general set of conclusions and broad implications of each individual 

chapter will be provided in chapter 5. The chapters are logically ordered, beginning with 

the fundamental methodological issues surrounding links between nature, health, and 

behavior (chapter 2), advancing to a model of nature, health, and behavior and what such 

a model tells us about optimal environmental management (chapter 3), and finishing with 

a novel empirical estimate of indirect impacts of environmental shocks on behavior 

(chapter 4), in order to come full circle to address the original question on how shocks 

indirectly reverberate through an economy. Taken together, the results from each chapter 

are scrutinized in order to articulate whether forest and trees have a deeply ingrained role 

in human health and how people live, interact, and optimize in their communities.   
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Notes 

1Direct benefits of forests and trees that have been previously studied include their 

timber and stumpage values (Thompson et al., 1997), market impact on property values 

(Donovan & Butry, 2010), energy and CO2 reductions because of tree shade (McPherson 

et al., 2005), stormwater interception (ibid), ability to reduce air pollution (Escobedo & 

Nowak, 2009), and nonmarket aesthetic, cultural, or psychological values (Majumdar et 

al., 2011; Dwyer et al., 1989).  

2But for the social scientist who takes society as their laboratory, natural 

experiments are currently as close as it gets to the ideal randomized controlled trial 

(RCT) experiments used by laboratory scientists. Unequivocal causation will always 

prove elusive for the economist unless an RCT is carried out, which is impossible (and 

unethical) in many circumstances, including the study of environmental shocks.     
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Chapter 2 

Wildfire smoke health costs: A methods case study for a Southwestern US “mega-

fire” 

 

2.1 Introduction 

 Due to prolonged drought, climate change, and fuels build-up on forested lands, 

the frequency and severity of wildfire events is expected to increase across much of the 

western United States (US) (Liu et al., 2010; US Global Change Research Program, 

2014). In assessing the damage from such events, there is increasing realization of the 

need to incorporate wildfire impacts outside of the flame zone such as downstream water 

quality, regional ecosystem health, and adverse health effects associated with exposure to 

smoke into wildfire management policy. Economists are interested in measuring the 

economic benefits and costs associated with wildfire impacts to inform efficient use of 

limited control resources (Milne et al., 2014). Original estimation of the economic costs 

of wildfire smoke-related health effects is time consuming and costly, requiring extensive 

micro-level data collection in affected areas (e.g., Richardson et al., 2012). However, 

there is an urgent need to better understand the environmental-health costs of wildfire 

events, including effects on both nearby and regional urban populations. 

 Benefits transfer – using existing data to inform decisions in a different setting or 

context (Rosenberger & Loomis, 2003) – is a more accessible way to estimate smoke-

exposure health costs and has been used in several wildfire studies (e.g., Martin et al., 
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2008; Rittmaster et al., 2006; Hon, 1999). Previous research often transfers results from 

non-“wildfire-specific” studies, which may be inappropriate for estimating costs of 

severe, short-duration smoke events (Kochi et al., 2010). The objective of this chapter is 

to provide a case study illustration of a wildfire benefits transfer using the US 

Environmental Protection Agency’s (EPA) benefits mapping and analysis program – 

community edition (BenMAP-CE), and investigate the resulting impact on estimated 

health costs of transferring functions and values from wildfire-specific studies instead of 

ones from the “urban air” literature. BenMAP-CE is an open-source Windows-based 

application that estimates the economic benefits associated with changes in air quality 

over a geographic area (Davidson et al. 2007). This chapter configures and modifies 

BenMAP-CE (version 1.0.8)3 for application to an urban wildfire smoke event in the 

Albuquerque, New Mexico (NM) metropolitan area caused by the 2011 Wallow Fire 

(Wallow “mega-fire,” hereafter) that burned 535,000 acres in Arizona and New Mexico 

(US Forest Service, 2011).  

 This chapter addresses several open issues in the literature, including: (i) the 

appropriateness of valuing smoke-induced health impacts through wildfire-specific 

willingness to pay (WTP) measures; and (ii) selection of transferred air quality 

concentration-response (CR) functions. On (i), we contrast mega-fire event health costs 

using an originally constructed wildfire-specific WTP measure with WTP and cost-of-

illness (COI) values estimated using BenMAP-CE’s built-in valuation functionality. On 

(ii), comparisons are made between estimated health incidence calculated using wildfire-

specific CR functions and BenMAP-CE’s built-in urban air quality CR functions, 

transferred by the EPA from non-wildfire event studies. Again, the objectives are not 
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only to provide a “proof-of-concept” application of BenMAP-CE to a mega-fire caused 

smoke event, but to also explore differences in estimated health impacts and costs across 

types of transferred CR and WTP functions (wildfire-specific or not). Transferred study 

selection in a wildfire smoke benefit transfer is an unsettled methodological issue, which 

is likely to be confronted by researchers estimating the costs of a wildfire event.  

 The contributions of this chapter are threefold. First, following only one previous 

study (unpublished), we provide the second case study application and configuration of 

BenMAP-CE for a wildfire smoke event. Second, we provide preliminary empirical 

evidence of smoke-related health incidence and valuation sensitivity to choice of 

transferred air quality CR functions and WTP values (wildfire-specific or not). Finally, 

using original survey data to complement the case study, we add to the small set of 

available wildfire smoke WTP valuation estimates.  

 Results indicate that the economic costs of a wildfire smoke event are substantial. 

Smoke event morbidity and health costs vary considerably according to whether or not a 

wildfire CR function is used in place of an urban air CR function. Additionally, use of an 

originally constructed WTP measure from a wildfire smoke experience questionnaire 

produces substantially larger health costs than those found by using an urban air quality 

WTP value. Differences are consistent with the nascent literature on divergences between 

conventional and wildfire-specific air quality studies (Kochi et al., 2010; Vedal & 

Dutton, 2006). 
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2.2 Background 

 A combination of natural and human caused factors (e.g., prolonged drought, 

history of fire suppression policy and concomitant fuels build-up in forests, rapid 

expansion of the wildland urban interface) have increased the risk of wildfires in the US 

west and elsewhere (Ryan & Opperman, 2013). Damages from high severity wildfires 

have followed an increasing trend, and can be economically significant (US Global 

Change Research Program, 2014). Further, with climate change, recent assessments 

conclude that wildfire risk and associated damages are expected to increase (Liu et al., 

2010).  

 Damages from a wildfire event can occur both within the burn area and outside of 

it (e.g., due to smoke plumes, and subsequent floods and debris flows, etc.). Resource 

managers must account for effects of fire on ecosystem health, water quality, and soil 

composition both in and immediately surrounding the flame zone (Dale, 2006). Wildfire 

impacts on environmental and behavioral regimes can extend well beyond the flame 

zone, to include downstream surface water quality (Smith et al., 2011), ash fallout (Earl 

& Blinn, 2003), and air quality within the smoke plume (Henderson & Johnston, 2012; 

Fowler, 2003). Wildfire smoke plumes may contain particulates that are especially 

harmful to health (Naeher et al., 2007). These plumes have immediate localized effects 

on communities in and around the flame zone, but can travel great distances (e.g., 

hundreds of miles) according to their atmosphere injection height, which strongly 

influences dispersion.  
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 The site for our case study, Albuquerque, is located in Bernalillo County in north-

central New Mexico (NM). With a city population of 545,852 and a metropolitan 

population of 662,564, Albuquerque is the largest urban center in NM (US Census 

Bureau, 2010). While not situated in forested lands itself, Albuquerque has forest and 

wildland urban interface (WUI) areas to the east (i.e., the eastern slopes of Sandia 

Mountains and parts of the Cibola National Forest) and hundreds of miles to the 

southwest (Gila and Apache National Forests). Predominant winds out of the southwest 

(Ryan & Opperman, 2013) can bring smoke plumes from wildfires into Albuquerque. 

Wildfire smoke over Albuquerque is not uncommon, with smoke from the 2011 Wallow 

mega-fire in southeastern Arizona being the most recent prolonged event. The Wallow 

mega-fire significantly impacted air quality levels across central and northern NM, some 

300 miles away from the burn site, including Albuquerque.4 Health effects associated 

with smoke from the fire have been investigated and include respiratory and 

cardiovascular illnesses (Resnick et al., 2015), though to-date no smoke damage 

assessment has been performed.  

2.2.1 Wildfire smoke health impacts 

 Recognition that wildfire smoke affects human health is not new (Henderson & 

Johnston, 2012; Fowler, 2003; Duclos et al., 1990). Despite decades of “awareness,” it is 

still unclear what many of the short- and long-term health impacts of wildfire smoke are 

in an exposed population. Many studies focus on estimating changes in emergency room 

visits (Rittmaster et al., 2006; Hon, 1999; Duclos et al., 1990), hospital admissions 

(Crabbe, 2012; Delfino et al., 2009; Mott et al., 2005; Shahwahid & Othman, 1999), or 

mortality (Johnston et al., 2011; Hänninen et al., 2009; Vedal & Dutton, 2006). 
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Generally, wildfire smoke events are associated with increased cardio-respiratory related 

physician and hospital visits. However, the link between increased daily mortality and 

smoke exposure is unclear (Vedal & Dutton, 2006).  

 Health impacts of exposure to air pollutants may vary depending on their source. 

Research has investigated whether wildfire smoke or wood smoke exposure produces the 

same health impacts as exposure to urban air pollution (Kochi et al., 2010; Hänninen et 

al., 2009; Naeher et al., 2007; Seagrave et al., 2006). Results have been mixed. Seagrave 

et al. (2006) find little evidence to suggest increased toxicity of wood smoke compared to 

urban pollutants, though only smoke from fireplaces and prescribed forest burns was 

examined. Naeher et al. (2007) argued that insufficient evidence exists to make any 

general conclusions regarding relative pollutant source toxicity. Hänninen et al. (2009) 

observed wildfire-specific mortality increases that were consistent with expected 

estimates from urban air pollutant models. By contrast, Kochi et al. (2010) concluded that 

wildfire smoke is “consistently” more detrimental to cardio-respiratory health than urban 

air pollutants, though less of a threat to mortality. Kochi et al. (2010) only examined 

studies that directly investigated smoke known to be from forest or brush fires, which 

may explain differences in their results compared to earlier studies.  

 Several causes have been proposed to explain why wildfire smoke may be more 

toxic than urban air pollution. These include chemical composition differences between 

smoke plumes and urban air, differences in perceived health risks (people may perceive 

wildfire smoke as more health damaging), and behavioral response patterns (i.e., averting 

behaviors) (Hänninen et al., 2009; Kunzli et al., 2006; Vedal & Dutton, 2006). If wildfire 

health impacts substantively differ from urban air health impacts, then CR functions 
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estimated for one class, say urban air, are inappropriate for use in a benefit transfer 

estimation of health impacts in the other class, wildfire, for example. In the extreme, use 

of an urban air CR function may lead to incorrectly ascribing mortality or morbidity 

incidence to a wildfire smoke event. For this reason, Kochi et al. (2010) recommend 

using wildfire-specific study results whenever possible in a benefit transfer. It remains an 

open empirical question as to how much bias may be introduced by using urban air study 

results in a wildfire smoke damage assessment. Comparing smoke exposure health 

impacts between wildfire-specific and urban air pollutant transferred studies for a specific 

benefit transfer case study, like the one carried out in this chapter, may shed additional 

light on this open debate. 

2.2.2 Evaluating health impacts and costs of wildfire smoke events 

 Wildfire damage assessments often use benefit transfers to capture the economic 

costs of smoke exposure (e.g., Martin et al., 2008; Rittmaster et al., 2006; Cardoso de 

Mendonça et al., 2004; Butry et al., 2001), though not in all cases (e.g., Richardson et al., 

2012; Hon, 1999; Shahwahid & Othman, 1999). One advantage of benefit transfer is that 

it can be used in circumstances where original data are unavailable. Existing data and 

information originally collected for use at one site are transferred to a different context or 

“policy site” (Rosenberger & Loomis, 2003). Ideally, the context and site to which the 

original research is being adapted to is similar in many respects so that the transferred 

values are as close to the “true” value as possible.  

 In a wildfire smoke benefit transfer, two types of transfers are made from prior 

studies: (i) transfers of CR air quality functions to estimate changes in health incidence, 



 

18 

 

 

and (ii) transfers of cost-of-illness (COI) and WTP values to estimate the economic costs 

of health incidence changes. In (i), CR functions from either the urban air quality or 

wildfire smoke literature are used to relate changes in pollutant concentrations to changes 

in health incidence. The economic costs of these changes are valued in (ii) using 

estimates from previous studies (e.g., cost of an emergency room visit, WTP to avoid a 

smoke related health impact, etc.). For example, in a simple benefit transfer, an existing 

CR function for PM2.5 (particulate matter up to 2.5 micrometers in size) from the urban 

air literature might be used to estimate changes in mortality due to a wildfire smoke 

event. WTP results from the value of a statistical life literature might then be used to 

determine the economic costs of the event in terms of increased mortality.  

 Mixed-transfer or “hybrid” wildfire smoke benefit transfers have also been used. 

In a hybrid transfer, the researcher(s) transfers either CR functions or economic cost 

values, but not both (e.g., Kochi et al., 2012; Cardoso de Mendonça et al., 2004). The 

non-transferred results are then estimated using original data specific to the wildfire 

event. In this chapter, we perform both a benefit transfer and a hybrid benefit transfer, 

where in the latter we estimate WTP to avoid a wildfire smoke health impact using 

original data from a smoke health impact questionnaire.  

2.2.3 Using WTP and COI to estimate costs  

 Economic costs of a wildfire smoke event can be estimated either using COI or 

WTP approaches. In a COI approach, the direct and indirect resource costs of a smoke-

related illness are identified and measured. These costs include expenditures on medical 

care and medications, opportunity costs of time spent acquiring medical treatment, and 
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the value of lost wages due to time spent sick (Richardson et al., 2013). COI is an 

imperfect measure of the total burden of wildfire smoke on society because it does not 

fully capture the disutility of illness (Richardson et al., 2013; Richardson et al., 2012; 

Kochi et al., 2010; Freeman, 2003). WTP to avoid a wildfire smoke health impact is the 

preferred utility-theoretic alternative and has been used in a handful of studies (e.g., 

Martin et al., 2008; Rittmaster et al., 2006; Hon, 1999). However, all these previous 

studies (except for Richardson et al., 2012) use a WTP measure derived from the urban 

air literature. In the only published WTP value to avoid health damages estimated for 

wildfire smoke specifically, Richardson et al. (2012) found a WTP of $93.15 (2014$) per 

exposed person per day for a large wildfire in southern California. The authors suggest 

that their result is consistent with the health literature, but do not make a direct 

comparison with urban air study results. Is WTP to avoid a smoke health impact 

meaningfully different than WTP to avoid an illness caused by urban air pollutants? If 

yes, then a wildfire benefit transfer utilizing urban air economic valuation measures may 

over- or under-value smoke-related health costs. Kochi et al. (2010) posited that such 

value differences might exist, but to-date no comparison has been made. Using survey 

data for Albuquerque, NM, we contribute the second estimate of WTP to avoid illnesses 

from wildfire smoke specifically, and compare our value to a commonly used urban air 

WTP value from Dickie and Messman (2004).  

2.2.4 Benefit transfer using BenMAP-CE  

 The US EPA’s BenMAP-CE is a benefit transfer tool that utilizes transferred CR 

functions and economic values to estimate benefits (for an improvement) or costs (for a 

decrement) associated with changes in air quality for non-overlapping health endpoints 
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(Davidson et al., 2007). First, the user inputs modeled or monitored air quality data such 

as particulate matter (PM) into an air quality grid over a defined geographic space. After 

specifying the analysis timeframe, health endpoints of interest, and population-grid size, 

the user defines an air quality policy change (called a control). For example, this could be 

a hypothetical reduction in PM2.5 of 1 𝜇𝑔/𝑚3 annually over a decade in Albuquerque. 

Using the supplied data and selection of health endpoints, BenMAP-CE calculates point 

estimates of changes in incidence for each endpoint associated with the air quality change 

within each grid-cell. Finally, COI and WTP values are transferred from air quality and 

health endpoint literatures or transferred from original estimates by the researcher to 

value estimated incidence changes at the grid-cell level. At the discretion of the user, 

incidence and economic valuations can be spatially aggregated. 

 BenMAP-CE has been applied to analyze health impacts of changes in air quality 

standards in the US (Fann et al., 2012; US EPA, 2010; 2013), and internationally 

(Voorhees et al., 2014). In an unpublished thesis, Douglass (2008) provides the only prior 

application to wildfire smoke. Given the open-source nature and peer-reviewed 

development of BenMAP-CE, it’s a robust benefit transfer tool for estimating and 

valuing wildfire smoke health impacts. The potential of using BenMAP-CE for wildfire 

events is tremendous because it provides a way to quickly estimate health impacts of a 

wildfire event using hourly and daily pollutant measures. Until recently, this was not easy 

to do in a systematic and controlled way.  

 This chapter will configure BenMAP-CE for a wildfire smoke event and apply it in 

a case study of a Southwestern US mega-fire caused smoke event in Albuquerque, NM. 

To evaluate differences between transfers of wildfire-specific and urban air study results, 
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two benefit transfers will be performed in BenMAP-CE. In the first, built-in urban air 

study CR functions, COI, and WTP values will be employed to estimate smoke exposure 

incidence and associated health costs. In the second, wildfire-specific CR functions, COI, 

and an originally estimated wildfire WTP will be utilized. Comparisons will be made 

between estimated incidence and health costs across transfers. This is the first case study 

illustration of results sensitivity to choice of transferred study results (wildfire or urban 

air) and only the second case study application of BenMAP-CE to a wildfire smoke 

event. The value-added of our analysis over the previous BenMAP-CE application 

(Douglas, 2008) is that we investigate sensitivity to transferred study type and use 

originally estimated economic valuation results.  

2.3 Methods 

2.3.1 Modifications to BenMAP-CE 

 BenMAP-CE (v.1.0.8) has more than forty built-in “health impact” functions 

covering twenty-two health endpoints from acute bronchitis to hospital admissions to 

work loss days. In BenMAP-CE, a health impact function refers to the relationship 

between a change in pollutant concentration (∆𝑝) and a change in health incidence (∆𝑦). 

It’s numerically derived from an air quality CR function, which relates pollutant 

concentration (𝑝) to health incidence (𝑦). Each health impact function comes from a 

unique CR function.5 Importantly, none of the built-in health impact functions were 

transferred from wildfire-specific studies. 

 The open-source nature of the program means that practically any health impact 

function can be input by the user as long as it has a specific CR function that relates 
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incremental changes in pollutant levels to changes in incidence, such as those from 

regression estimation of relative risk or odds ratios. Focusing our search of the wildfire 

smoke literature to studies where a CR function was estimated produces a handful of 

results (see Appendix A). Higher morbidity rates during wildfire smoke events are 

consistently observed, with increases in cardio-respiratory emergency room visits and 

hospital admissions being common (Resnick et al., 2015; Crabbe, 2012; Henderson et al., 

2011; Delfino et al., 2009; Hannigan et al., 2008; Moore et al., 2006). Other CR functions 

estimated in the literature include pharmaceutical dispensations for salbutamol (Elliot et 

al., 2013) and non-hospital physical visits (Henderson et al., 2011). A previously 

mentioned, evidence linking wildfire smoke to mortality is mixed (see Kochi et al., 

2010).  

 For the wildfire-specific benefit transfer explored as part of our case study, CR 

functions estimated by Delfino et al. (2009) and Resnick et al. (2015) are used. These two 

studies are selected because they are recent and are specific to western US wildfires, 

where our study area is located. Only statistically significant results are utilized from 

each study and only functions covering individuals aged 0-99 or “all ages” are included. 

We coded into BenMAP-CE four health impact functions for the following endpoints: (i) 

emergency room visits asthma; (ii) hospital admission all respiratory; (iii) hospital 

admission asthma; and (iv) hospital admission pneumonia. Relative risks of each health 

endpoint were converted to coefficients for use in a log-linear health impact function, 

following the BenMAP User’s Manual (Abt Associates, 2012).  

 In our benefit transfer utilizing built-in urban air quality transfers, we select CR 

functions from Mar et al. (2010), Zanobetti et al. (2009), Slaughter et al. (2005), Ito 
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(2003), and Sheppard (2003) for the same set of health endpoints as in the wildfire-

specific analysis. Additionally, CR function results from Ostro and Rothschild (1989) are 

used to estimate incidence of minor restricted activity days (MRAD).6 MRADs capture 

most symptoms and illnesses associated with smoke exposure, including those requiring 

physician or hospital treatment. Thus, it is a broad-based measure of health effects. 

Incidence of MRAD closely matches our originally constructed WTP measure to avoid 

any wildfire smoke-related health impact. This allows us to compare health costs 

estimated using the built-in WTP measure with a wildfire-specific one.  

 The next step was to define the relevant air quality grid. PM2.5 was chosen for the 

geographic grid-area of Bernalillo County, NM, which completely contains Albuquerque 

and a majority of the metropolitan population. A Community Multi-scale Air Quality 

Model (CMAQ) 12x12km grid was used in BenMAP-CE. This is the finest grid size 

available in the program and is commonly used in the literature (US EPA, 2010). A 50km 

radius around each air quality monitoring station was used to define the extent of the 

CMAQ grid. Figure 2.1 illustrates the final CMAQ grid used in BenMAP-CE. Incidence 

and valuation results were calculated for each grid-cell and aggregated to the county level 

(Bernalillo).  

 BenMAP-CE calculates incidence based on differences in air quality between a 

baseline and a treatment. Our treatment is the air quality level in Albuquerque, NM 

during the Wallow mega-fire. The fire started in southeastern Arizona on May 29, 2011, 

but due to atmospheric conditions, quickly developed a smoke plume that affected the 

Albuquerque area (some 200 miles away) by the next day. Sporadically for several weeks 

in June, smoke from the mega-fire significantly impacted PM levels in Albuquerque and 
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across much of northern and western New Mexico, with measured daily PM2.5 levels 

spiking to 70.5 𝜇𝑔/𝑚3 at one monitoring site in Albuquerque on June 4th; an increase of 

675% above the three-year site average for that day.  

 A Wallow mega-fire smoke event day was identified as monitored daily-average 

PM2.5 levels in excess of the 99th percentile of daily average readings per monitor site 

over the previous five years (2008-2012). Only smoke event days occurring during the 

wildfire event period (May 29-July 8) were considered. The 99th percentile threshold for 

an event day is consistent with recent literature in this area (Johnston et al., 2011). If 

PM2.5 levels did not exceed the 99th percentile for the site, then that day was not 

considered a smoke event day for that monitoring station and baseline PM2.5 readings 

were used. Monitoring stations were excluded from this part of the analysis if they did 

not report PM levels for the entire month of June or had at least three missing 

observations during the Wallow mega-fire event.  

2.3.2 WTP estimation using the defensive behavior method  

 We employ the defensive behavior method to estimate wildfire-specific WTP. This 

method captures individual WTP for changes in health status caused by a pollutant, 

incorporating costly averting and mitigating behaviors. Examples of averting behavior 

include staying indoors, wearing a mask, or avoiding work during a wildfire smoke event, 

while examples of mitigating behavior would be buying medicine or being admitted to 

the hospital. The model applied here is from Freeman (2003) and Dickie (2003).  

 The basis of the model is the individual’s health production function, h(.), which 

relates exogenous environmental exposure to a pollutant (p), averting actions (a), and 
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mitigating actions (m) to changes in health status (s). An individual produces a health 

output according to a health production function, 

𝑠 = ℎ(𝑝, 𝑎, 𝑚, 𝒙)                                                                                                                          (2.1) 

where x is a vector of socioeconomic and demographic variables affecting health. 

Exposure to the pollutant decreases health (ℎ𝑝 < 0) and averting and mitigating actions 

are assumed to be non-harmful (ℎ𝑎, ℎ𝑚 ≥ 0). Effects of socioeconomic variables are not 

a priori clear. For this application, p captures exposure to wildfire smoke and s reflects 

whether or not an individual experienced a wildfire smoke-related health effect.  

 Using equation (1) within a utility maximization framework, Freeman (2003) 

derives the marginal WTP for an exogenous reduction in illness from an averting action 

as, 

𝑊𝑇𝑃 = −
𝑝𝑎

𝜕𝑠
𝜕𝑎

                                                                                                                              (2.2) 

That is, the WTP for a reduction in illness is the negative ratio of the price of the averting 

action to the marginal effect of that action on health status. Use of equation (2.2) relies on 

an empirical estimate of 𝜕𝑠 𝜕𝑎⁄ , obtained from equation (2.1) as a post-estimation 

marginal effect. 

 For estimation of equation (2.1), a linear-in-the-parameters probit model is applied, 

Pr(𝑠 = 1 | 𝑝, 𝑎, 𝑚, 𝒙) =  Φ(𝛽0 + 𝛽1𝑝 + 𝛽2𝑎 + 𝛽3𝑚 + 𝒙′𝜸)                                             (2.3) 

where Φ(.) is the standard normal cumulative distribution function. The binary dependent 

variable (s) is whether the respondent experienced a wildfire smoke health effect 
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(Yes/No). The coefficient of interest for an averting action is 𝛽2 - the marginal effect of 

averting actions (a) on health status (s). A probit model is employed because the data 

indicates whether or not an individual experienced a smoke-related health effect, but not 

the duration or symptom days of health effects. This data limitation precludes using a 

symptom count model as done by Richardson et al. (2012) for wildfire smoke. Fitting a 

count data model without a clear picture of the temporal symptom profile would 

necessitate potentially strong assumptions on average symptom days and their intensity 

as experienced by individuals, potentially biasing estimated WTP. A probit specification 

of the type employed here does not require assumptions on symptom profiles and is more 

consistent with available data, though is arguably not as informative as count models in 

determining the relationship between averting actions and health status because it only 

captures a discrete change instead of intensity of symptoms. 

 Endogeneity is often a concern in estimation of equation (2.3) as an individual 

might take an averting action to prevent an illness (averting behavior causing health 

status) or an ill individual might take an averting action to limit future symptoms (health 

status causing averting behavior). The direction of causation is unclear. To prevent biased 

coefficient estimates (Wooldridge, 2011), endogeneity will be purged using a two-stage 

maximum likelihood instrumental variables approach (Freedman & Sekhon, 2010). 

 To econometrically estimate (2.3), we follow Richardson et al. (2012) and 

investigate the relationship between health status and the averting behavior used air 

filter/cleaner. This is because used air filter/cleaner is endogenous to the model7 and is 

the only averting action whose coefficient is negative, both as theoretically predicted. 

Furthermore, prices of air filters, cleaners, and purifiers (𝑝𝑎) are readily available from 
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many sources.8 Equation (2.3) is estimated as a two-stage bivariate probit model with 

used air filter/cleaner as the primary independent variable of interest. Other covariates 

include smelling smoke at home, a control for chronic respiratory disease, controls for 

symptoms (headaches, coughs, shortness of breath, asthma, allergies, and other 

symptoms), education, years in NM, Latino, and number of children under age five in the 

home. We use income as an instrument in a second-stage equation prediction of used air 

filter/cleaner. This is consistent with Richardson et al. (2012). Income is found to be a 

relevant, but not particularly strong instrument. The post-estimation marginal effect of 

used air filter/cleaner will be used in conjunction with the average price of an air 

filter/cleaner, $29.71, to determine WTP for a reduction in wildfire smoke health effects.  

2.4 Data 

2.4.1 Air quality data 

 Daily monitored PM2.5 air quality data from stations in the Albuquerque 

metropolitan comes from US EPA AirData9 for the years 2008-2012, inclusive. The raw 

data contain daily 24-hour average PM2.5 levels in units of 𝜇𝑔/𝑚3 per air monitoring 

site. There are six sites in Albuquerque and one site in Valencia County located in the 

town of Los Lunas (immediately south and adjacent to Albuquerque). Figure 2.2 shows 

the locations of the seven monitoring sites.  

 For creation of the baseline air quality grid, an average for each site was calculated 

using five years (2008-2012) of site-specific daily mean PM2.5 concentrations. This 

yields 365 (366 for a leap year) observations per site. PM2.5 deviations from the five-
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year daily average during a wildfire event is the source of variation BenMAP-CE uses to 

identify health impacts.  

2.4.2 Wildfire experience survey 

 Researchers at the University of New Mexico developed and administered a survey 

questionnaire on wildfire risk and surface water supply to a sample of households in 

Albuquerque, in September-December, 2013. The focus of the survey was on household 

support for implementation of a payment for ecosystem services model to reduce wildfire 

risk in the larger forested watershed approximately 100 miles or more from Albuquerque. 

The survey was part of a larger New Mexico EPSCOR/NSF-funded grant to study 

wildfire and water in New Mexico. Focus groups, individual interviews, and pre-tests 

were used to aid development of the survey instrument. Up to five contacts were mailed 

to 2,596 households in Albuquerque selected from a sampling frame of 190,000 

Bernalillo County homeowners, consisting of (i) an initial cover letter; (ii) a survey 

packet; (iii) a reminder postcard; (iv) a second survey packet; and (v) a final letter with an 

additional survey packet. Contacts were mailed until a returned survey packet was 

obtained, the respondent notified us they did not want to participate, or a contact came 

back as undeliverable. Respondents could choose to complete the questionnaire online or 

via mail. Out of the 2,596 questionnaires mailed, 133 were undeliverable. 911 were 

returned (751 by mail and 160 online) for a response rate of 37%.  

 A section of the questionnaire asked about past wildfire smoke experience, health 

effects of past exposure, and averting or mitigating actions taken to avoid exposure. 

Respondents were asked if they had ever smelled smoke from a wildfire at their home 
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and if exposure to smoke had ever affected their health. If they had smelled smoke, they 

were asked to indicate symptoms experienced (e.g., headache, cough, etc.), averting 

actions taken (e.g., stayed indoors, used an air purifier), and if they took a mitigating 

action (e.g., went to the hospital/physician). Wildfire-specific survey questions fielded to 

Albuquerque, NM homeowners are listed in Appendix A. 

 The survey results on health effects and demographics are used to econometrically 

estimate WTP to avoid a wildfire smoke-related illness. Variable definitions on health 

and demographic questions and their summary statistics are presented in Table 2.1. 

Results indicate that 71% of respondents took at least one averting action during previous 

wildfire smoke events, compared to 1% of respondents who took a mitigating action.  

 Survey results also indicate that a significant percentage of respondents have 

smelled wildfire smoke at their home (88%), with 26% reporting that wildfire smoke has 

impacted their health at some point. The most commonly reported symptom associated 

with wildfire smoke is a cough (25%) followed closely by allergies (21%). Fifty-five 

percent of respondents reported staying indoors more than usual during a smoke event, 

with 42% reporting avoiding normal outdoor recreation and exercise. Overall, survey 

results demonstrate considerable health and behavioral impacts of wildfire smoke in the 

Albuquerque metropolitan area.  

2.5 Results 

2.5.1 Wildfire smoke health incidence 

 Increases in incidence associated with smoke exposure from the Wallow mega-fire 

event are substantial (Table 2.2). Health endpoints are listed separately, by column, and 
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incidence results are categorized by source of transferred CR function. Reported 

incidences are the number of additional visits per Albuquerque resident estimated by 

BenMAP-CE over the 5-week smoke event.10 For MRADs, the reported incidence is in 

units of person-days. Across all endpoints, MRADs are the largest health effect 

associated with wildfire smoke. Over 14,700 person-days of minor health impacts are 

created, which corresponds to an average of 0.03 days or about 44 minutes per 

Albuquerque resident over the event. Emergency room asthma visits are the second 

largest health impact in the wildfire-specific benefit transfer, with 16 additional cases 

over the 5-week event. Less than one additional emergency room visits is estimated by 

BenMAP-CE when an urban air CR function is used. Hospital admissions for any 

respiratory illness increase between 3 and 5 cases, depending on type of CR function. 

Increases in admissions due to pneumonia (2.7 cases) are the largest component of 

overall respiratory admissions based on urban air CR functions, though when wildfire 

functions are used, increases in asthma admissions (2.2) drive overall respiratory 

admissions.11 

 Incidence estimates based on wildfire-specific CR functions are between 43% 

(hospital admission all respiratory) and 2,617% (emergency room asthma) larger than 

incidences estimated using urban air study results. This is consistent with the literature on 

greater morbidity impacts of wildfire smoke compared to urban air pollutants (Kochi et 

al., 2010). However, hospital admission pneumonia incidence is 30% lower across the 

two sources, suggesting that perhaps wildfire smoke has less of an impact on pneumonia 

morbidity than typical urban air pollutants in this case study. MRAD incidence is 
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identical across CR function sources because no wildfire-specific health impact function 

exists for this broad endpoint.  

2.5.2 Health costs (COI and WTP) of smoke exposure 

 Built-in BenMAP-CE COI valuation functions are used to value changes in 

incidence associated with endpoints emergency room asthma and hospital admission 

respiratory. Inclusion of endpoints hospital admission asthma and hospital admission 

pneumonia would overestimate event COI because endpoint hospital admission all 

respiratory already includes all respiratory-related illnesses. Costs are estimated 

separately for urban air and wildfire-specific incidence results and are inflation-adjusted 

to 2014 US dollars (USD). Total COI health costs of Wallow mega-fire smoke exposure 

in the Albuquerque metropolitan area are estimated by BenMAP-CE at $74,000 in the 

urban air function analysis and $111,000 in the wildfire function analysis (Table 2.3). 

These are the medical costs associated with diagnosis and treatment plus lost wages due 

to illness, estimated by BenMAP-CE and aggregated by the software for Bernalillo 

County. Emergency room asthma costs are 2,535% higher and hospital admission all 

respiratory costs are 44% higher in the wildfire benefit transfer, reflective of greater 

estimated morbidity when wildfire-specific CR functions are used.  

  To estimate WTP to avoid a wildfire smoke health effect, the survey data is used, 

and a bivariate probit version of equation (2.3) is estimated. For brevity, individual 

results from estimation of that model are reported in Appendix A. The marginal effect 

associated with used air filter/cleaner is estimated at -0.227 with a 95% confidence 

interval of (-0.400, -0.054). Dividing the negative of the average price of an air cleaner, 
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$29.71, by -0.277 and adjusting for inflation, produces $130.79 (range: $74.19-$551.33), 

which is the marginal WTP for a reduction in wildfire smoke health effects. This is larger 

than a comparable urban air WTP value of $98 (range: $68-$146) from Dickie and 

Messman (2004) and also larger than the only other wildfire-specific WTP of $93.15 (no 

bounds provided) estimated by Richardson et al. (2012).  

 To arrive at an estimate of WTP health costs using wildfire-specific study results, 

MRAD results from Table 2.2 were put into per capita terms and multiplied by the 

previously estimated marginal WTP of $130.79. Table 2.4 reports the results from these 

wildfire-specific calculations, performed in BenMAP-CE, and the results from a separate 

urban air specific estimation in BenMAP-CE using the Dickie and Messman (2004) 

urban air WTP value. Estimated health costs utilizing WTP to avoid an air pollutant-

related symptom range from $338,000 (urban air value) to $429,000 (wildfire smoke 

value); an increase of 27%. Additionally, WTP health costs are between 3.9 and 4.6 times 

larger than comparable COI health costs. This is suggestive evidence of differences in 

estimated wildfire smoke health costs depending on the source of transferred economic 

value (urban air vs. wildfire-specific) and economic value utilized (WTP vs. COI). 

Although, had we instead transferred the Richardson et al. (2012) WTP value estimated 

for Southern California, the resulting WTP health costs would be similar to the urban air 

costs. While our estimated WTP value is arguably more appropriate – it’s specific to 

wildfire and study site (Albuquerque) – in other settings (e.g., California) perhaps urban 

air and wildfire WTP values are not meaningfully different. That said, there is clearly 

room for additional original valuation studies for health effects associated with wildfire 
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events and comparisons of WTP values in other contexts, accounting for differences in 

study design, estimation methods, and sampled populations. 

2.6 Conclusions 

 This chapter illustrates how a robust benefit transfer tool, BenMAP-CE, can be 

applied to wildfire smoke damage assessments in an urban area. Application results 

demonstrate sensitivity to choice of transferred CR function and economic values. Use of 

transferred results from urban air quality studies undervalues the health impacts of 

wildfire smoke compared to use of wildfire-specific study results. We find higher 

incidences of emergency room asthma visits, all respiratory, and asthma hospital 

admissions when CR functions from the wildfire smoke literature are utilized. Increases 

range from 43% to 2,617%. Health costs in the wildfire benefit transfer are 27% (WTP) 

to 50% (COI) larger than costs in the urban air benefit transfer.  

 These findings provide the first empirical support (albeit from a case study) of 

Kochi et al.’s (2010) recommendation to use wildfire-specific study results when possible 

in wildfire damage assessments. Short-duration, extreme shocks to air quality created by 

wildfire smoke plumes appear to have more significant impacts on human health than the 

same pollutant concentration change to levels of urban air quality. This may be because a 

concentration, X, of wildfire smoke is more toxic than the same concentration, X, of 

urban air (Vedal & Dutton, 2006). For these reasons, it’s our recommendation that 

analysts performing wildfire smoke benefit transfers carefully consider the source of 

transferred functions so as not to over- or under-value morbidity changes and associated 

health costs of wildfire smoke.  
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 The urgency to better understand how wildfire affects health, across many 

dimensions, especially in the western US, is underscored by climate change, possible 

connections to carbon sequestration capacity of standing forests (see Koirala & Mysami, 

2015), increased depletion of water in the west, continued growth of western cities, and 

recent increases in the number and severity of wildfires associated with prolonged 

drought in many western US states. BenMAP-CE is a useful tool for studying wildfire 

health impacts that researchers should be aware of and we hope this empirical 

demonstration spurs additional applications of the program to wildfire damage events. 

While this chapter shows where some of the important choices are, it also illustrates 

where additional data collection may be needed, including wildfire-specific CR functions 

for health impacts (mortality, especially) and wildfire-specific WTP measures.   

 There are several limitations of this analysis. First, the only air quality impact 

considered was PM2.5 and not other pollutants created by wildfires such as ozone, NO2, 

etc. Including these in the analysis would raise both incidence and health costs of a 

wildfire smoke event. Second, only monitored air quality data were used. A more 

sophisticated approach would incorporate modeled air quality data to interpolate PM in 

areas where sites are not located. It is unclear how this would alter results, but given the 

significant number of monitoring sites in Bernalillo County and close proximity to one 

another, the advantages of modeling are diminished. However, modeled data might be 

appropriate in areas with fewer proximal sites. Third, statistical differences in study 

design, sampled populations, or estimation methods across the urban air and wildfire-

specific CR functions used in this analysis were not investigated. Previous research (e.g., 

Kochi et al., 2010; Vedal & Dutton, 2006) has examined this issue and offered various 
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explanations on how and why wildfire smoke may be more damaging to health. The 

focus of the present chapter is on the meaningful application of a benefit transfer tool to 

wildfire smoke, inclusive of previous literature demonstrating differences between urban 

air and wildfire smoke. A formal statistical analysis exploring how or why wildfire 

smoke may be more damaging to health is outside this scope. Thus, an important caveat 

is that while a comparison of BenMAP-CE calculated point estimates is informative and 

illustrative of how differences in CR functions and WTP values manifest into overall 

damage assessment heterogeneity, it is not sufficient evidence to draw general 

conclusions regarding the relationship between smoke and urban air.         

 Fourth, a formal statistical analysis to assess the consistency of BenMAP-CE with 

previously estimated costs of wildfire smoke events was not performed. This chapter is 

only a proof-of-concept that BenMAP-CE can be adapted to study wildfire smoke effects 

in urban areas. While an important first step, future work should use BenMAP-CE to 

replicate wildfire smoke economic assessments carried out using other means (e.g., 

questionnaires, hospital admissions, emergency room visits, etc.). Results from BenMAP-

CE, after being modified to assess wildfire smoke events, could be statistically compared. 

Such an approach would provide more conclusive evidence on the viability of the 

program for wildfire smoke analyses. We hope that this chapter spurs such further 

investigations. 
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Notes 

 

 3BenMAP-CE is accessible at: http://www.epa.gov/airquality/BenMAP-

CE/ce.html 

 4As an example of the increasingly common mega-fires seen in recent years in the 

western US, the Wallow Fire burned more than 538,000 acres (841 square miles), and is 

the largest fire on record in Arizona (Ryan & Opperman, 2013). The fire covered parts of 

four counties in eastern Arizona and one in southwestern New Mexico. The fire started 

near the Bear-Wallow Wilderness Area in the Apache National Forest, and the ignition 

source was from an unattended campfire. More than 6,000 people were evacuated and 

physical property damages have been estimated to be over $109 million (Ryan & 

Opperman, 2013). While not the source of any known fatalities, the smoke plume 

extended across New Mexico and into Texas and Oklahoma. 

 5Appendix C of the BenMAP User’s Manual (Abt Associates, 2012) describes the 

health impact function derivation process, though we note that it’s easily performed by-

hand. 

 6A minor restricted activity day (MRAD) is defined as any day on which an 

individual was forced to alter his or her normal activities due to minor illnesses, including 

both respiratory and nonrespiratory conditions (Ostro & Rothschild, 1989). One 

shortcoming is that the single MRAD CR function that exists (Ostro & Rothschild, 1989) 

is estimated for urban air quality.  
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 7Endogeneity was tested for using a Wu-Hausman F-test (p < 0.01) and a Durbin-

Wu-Hausman 𝜒2-test (p < 0.01). 

 8The inflation-adjusted price reported in Richardson et al. (2012) of $29.71 

(2014$) is used. This result is an average of self-reported prices (including $0). Prices 

from other sources (e.g., Home Depot, Amazon.com) were investigated and results are 

available upon request.  

 9http://www.epa.gov/airdata/ad_data_daily.html 

 10Results presented in the Table 2.2 row labeled “urban air quality literature” are 

estimated by BenMAP-CE using urban air quality CR functions selected by us in the 

programs’ graphical user interface, which had already been coded into the software by 

US EPA programmers for the five health endpoints listed. Similarly, results in the row 

labeled “wildfire smoke literature” are estimated by BenMAP-CE using wildfire-specific 

CR functions that we manually and individually coded into the program for four of the 

five incidence endpoints. All individual results in Table 2.2 are produced by BenMAP-

CE calculations.  

 11The health endpoint “hospital admission: all respiratory” is comprised of both 

asthma and pneumonia admissions, in addition to any other respiratory illnesses (not 

estimated in this analysis). The two endpoints separately illustrate specific drivers of 

overall respiratory admissions using endpoint-specific CR functions.  
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Figure 2.1: CMAQ-12km Air Quality Grid for Bernalillo County, NM (Albuquerque 

Metro Area) 
 

 

 
          Source: constructed by the author in ESRI ArcMap 10.1 
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Figure 2.2: US EPA Air Quality Monitoring Sites for Bernalillo and Valencia Counties, 

NM (Albuquerque Metro Area) 

 

 

 
      Source: constructed by the author in ESRI ArcMap 10.1 
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Table 2.1: Wildfire Survey Variable Definitions and Summary Statistics (n=911) 

 

Variable Coding Mean 
Std. 

Dev. 
Min Max 

Wildfire Smoke Exposure      

Smelled smoke at home 1= yes, 0= no 0.88 0.33 0 1 

Own a home north of Albuquerque 1= yes, 0= no 0.10 0.29 0 1 

Smoke has affected health 1= yes, 0= no 0.26 0.44 0 1 

Changed routine because smelled smoke 1= yes, 0= no 0.47 0.50 0 1 

      

Averting Actions      

Evacuated 1= yes, 0= no 0.05 0.22 0 1 

Covered face with mask 1= yes, 0= no 0.07 0.25 0 1 

Used air filter/cleaner 1= yes, 0= no 0.16 0.37 0 1 

Avoided work 1= yes, 0= no 0.01 0.11 0 1 

Removed ashes from property 1= yes, 0= no 0.04 0.20 0 1 

Stayed indoors 1= yes, 0= no 0.55 0.50 0 1 

Avoided outdoor recreation/exercise 1= yes, 0= no 0.42 0.49 0 1 

Took no averting action 1= yes, 0= no 0.29 0.45 0 1 

      

Mitigating Actions      

Visited physician or admitted to hospital 

related to smoke exposure 

1= yes, 0= no 0.01 0.12 0 1 

      

Symptoms      

Headaches 1= yes, 0= no 0.14 0.35 0 1 

Coughs 1= yes, 0= no 0.25 0.43 0 1 

Dizziness 1= yes, 0= no 0.02 0.13 0 1 

Blurred vision 1= yes, 0= no 0.03 0.17 0 1 

Shortness of breath 1= yes, 0= no 0.11 0.31 0 1 

Asthma 1= yes, 0= no 0.11 0.31 0 1 

Allergies 1= yes, 0= no 0.21 0.41 0 1 

Experienced none of the above symptoms 1= yes, 0= no 0.49 0.50 0 1 

      

Health History      

Chronic respiratory disease 1= yes, 0= no 0.33 0.47 0 1 

Heart disease 1= yes, 0= no 0.14 0.35 0 1 

      

Demographics      

Female 1= yes, 0= no 0.37 0.48 0 1 

White 1= yes, 0= no 0.80 0.40 0 1 

Hispanic/Latino  1= yes, 0= no 0.28 0.45 0 1 

College graduate 1= yes, 0= no 0.62 0.49 0 1 

Income 1= <14,999; 2=15,000-

24,999; 3=25,000-34,999; 

4=35,000-49,999; 

5=50,000-74,999; 

6=75,000-99,999; 

7=100,000-149,999; 

8=150,000-199,999 

5.30 1.74 1 8 

Years lived in New Mexico continuous 35.26 19.32 1 85 

Number of children under 5 in house continuous 0.12 0.39 0 3 

      

Beliefs      

Effectiveness of averting actions 1= “Not at all effective;” 

2= “Slightly effective;” 3= 

“Somewhat effective;” 4= 

“Moderately effective;” 5= 

“Highly effective” 

3.19 0.97 1 5 
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Table 2.2: Smoke Exposure Health Incidences by CR Function Source for Wallow Mega-Fire 

  
        

  
 

Source of CR 

Function 

Emergency 

Room: Asthma 

Hospital Admission: 

All Respiratory 

Hospital Admission: 

Asthma 

Hospital Admission: 

Pneumonia 

Minor Restricted 

Activity Days (MRAD) 

Urban air quality 

literature 
0.6 

 

3.5 

 

1.2 

 

2.7 

 

14,786.4 

 

Wildfire smoke 

literature 
16.3 

 

5.0 

 

2.2 

 

1.9 

 

14,786.4 

 

Percentage change: (+) 2616.7% (+) 42.9% (+) 83.3% (-) 29.6% (+) 0.0% 

     Notes: Emergency room asthma incidence for urban air quality results is average of incidences from Mar et al. (2010) and Slaughter et al. (2005) transferred 

functions. Percentage change in incidence from urban air to wildfire smoke is reported in the final row. Source: BenMAP-CE calculations (v.1.0.8). Urban air 

quality literature results come from BenMAP-CE calculations using CR functions from the urban air literature that were selected from the existing BenMAP-CE 

database. Wildfire smoke literature results come from BenMAP-CE calculations using CR functions from the wildfire smoke literature that were manually and 

individually added by the authors to the BenMAP-CE database. Incidence of minor restricted activity days is identical across CR function sources because only 

one literature estimate exists for this incidence endpoint.   

 

  

 

 

  

Incidence Endpoint (Number of Cases) 
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Table 2.3: COI Health Costs (2014$) by CR Function Source for Wallow Mega-Fire 

  
        

Source of CR 

Function 

Emergency 

Room: Asthma 

Hospital Admission: 

All Respiratory TOTAL: 

Urban air quality 

literature 
$177 

 

$73,760 

 

$73,937 

 

Wildfire smoke 

literature 
$4,664 

 

$106,405 

 

$111,069 

 

Percentage change: (+) 2535.0% (+) 44.3% (+) 50.2% 

     Notes: Cost-of-illness (COI) event costs reported. Emergency room asthma costs for urban 

air quality results is average of costs based on estimated incidence from Mar et al. (2010) and 

Slaughter et al. (2005) transferred functions. Percentage change in COI from urban air to 

wildfire smoke is reported in the final row. Source: BenMAP-CE calculations (v.1.0.8). COI 

calculated by BenMAP-CE separately by source of CR functions. Urban air quality literature 

results come from BenMAP-CE calculations of the COI associated with health incidence 

estimated using CR functions from the urban air literature. Wildfire smoke literature results 

come from BenMAP-CE calculations of the COI associated with health incidence estimated 

using CR functions from the wildfire smoke literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incidence Endpoint Costs  
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Table 2.4: WTP Health Costs (2014$) by CR Function Source for Wallow Mega-Fire 

Source of WTP metric 
Minor Restricted Activity 

Days (MRAD) 
WTP-COI Ratio 

Urban air quality literature $337,623 

 

4.6 

 

Wildfire smoke (originally 

estimated) 
$429,156 

 
3.9 

Percentage change: (+) 27.1% NA 

     Notes: Willingness to pay (WTP) event costs reported. NA = not applicable. Percentage 

change in WTP from urban air to wildfire smoke is reported in the final row. WTP-COI 

ratio is the ratio of WTP and COI (Table 2.3) health costs per economic value transfer. 

Source: BenMAP-CE calculations (v.1.0.8). Urban air quality literature results come from 

BenMAP-CE calculations of the WTP health costs associated with minor restricted 

activity days when an urban air WTP value ($98) is used from the existing BenMAP-CE 

valuation database. Wildfire smoke results come from BenMAP-CE calculations of the 

WTP health costs associated with minor restricted activity days using an originally 

estimated wildfire-specific WTP value ($130.79) that was manually coded into the 

software’s valuation database.  
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Chapter 3 

Optimal management of invasive species inclusive of human health impacts: 

application to the emerald ash borer and North American ash trees 

 

3.1 Introduction 

 Invasive pests are disruptive to native ecosystems and may have substantial 

effects on human health. Management of invasive species needs to consider health 

impacts in policy decisions. A number of invasive pests cause damage and loss of native 

vegetation, reducing environmental quality and posing an environmental health hazard. 

Disruption to land-use patterns (Hobbs, 2000), impairment of food yields (McMichael & 

Bouma, 2000), changes in disease vectors (Juliano & Lounibos, 2005), and deterioration 

of ecosystem services (Pyšek & Richardson, 2010) that result after invasion are hazards 

to human health. Health impacts span the spectrum from the benign – pollen allergies 

caused by invasive pampas grass – to the severe – poisoning and potential death from 

consuming shellfish tainted with invasive Alexandrium catenella; the cause of red tide. 

Environmental management may be suboptimal when health effects are not fully 

included in planning decisions (e.g., Chay and Greenstone, 2003; Currie et al., 2009; 

Currie and Walker, 2011). This may lead to larger invasive pest populations and greater 

harm to health. As such, it is important that environmental policy be guided by a fuller 

understanding of the consequences posed by invasive species so as to facilitate the 

efficient use of limited pest control resources.   
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 Economic theory tells us that adding health to the management decision will raise 

the marginal benefit of action, resulting in the use of more management at the optimum 

where marginal benefits and costs are equated; a point that has been theoretically 

demonstrated by Jones and McDermott (2015). However, to call it a day there would be 

premature for two reasons. First, the relationship between environmental quality and 

health is spatially heterogeneous. Areas highly susceptible to invasion vary from 

neighborhood-to-neighborhood, city-to-city, county-to-county, et cetera. For example, 

loss of tree cover in a downtown urban park due to an invasive pest will have a very 

different impact on people living downtown (e.g., on their outdoor physical activity, on 

localized concentrations of air pollutants) than on somebody living in a distant suburban 

area where trees are resistant to invasion. Management inclusive of health should be 

spatially distributed to match the vector of invasive species health impacts. In this case, a 

blanket policy of “more management everywhere” is clearly suboptimal.  

 Second, management practices used when health is omitted from consideration 

may be Pareto dominated by alternative health-centric management techniques. For many 

invasive pests, eradication is the first choice of management, and then managed control 

when eradication proves infeasible (as is often the case). However, managed control only 

results in managed ecological disruption, with associated, though arguably diminished 

health impacts. An alternative management policy might jointly use managed control 

with preemptive planting of replacement invasive-resistant vegetation (e.g., planting 

comparable trees in areas threatened by a forest-attacking pest). A joint management 

approach may yield greater net social benefits than managed control alone if the value of 

native species is sufficiently high (Vannatta et al., 2012). In other words, compositional 
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changes to management might be more appropriate instead of “more” management when 

health is accounted for. This chapter sheds light on the spatial and dynamic nature of 

management for environmental health and examines how health-centric management 

potentially differs from ecological-focused management often used in response to 

invasive pests.  

 Health impacts associated with invasive pests are worth considering and may be 

substantial. The increasingly interconnectedness of the world and the explosion of global 

trade have made it easier for invasive species to jump political boundaries and across 

continents. Invasive species serve as novel hosts for disease vectors (Juliano & Lounibos, 

2005; Leak, 1998), have been linked to increased mortality rates (Donovan et al., 2013), 

and produce reductions in water quality and availability (Richardson & van Wilgen, 

2004; Zavaleta, 2000). Complex interactions between climate change, ecological 

dynamics, land-use patterns, and human transportation networks are likely to increase the 

spread of invasive pests in the future (Crowl et al., 2008), leading to further reductions in 

environmental quality and human health. In some areas, invasive species and climate 

change may work in tandem by increasing the intensity or frequency of fires and floods, 

putting communities at increased health risk (Pejchar & Mooney, 2009). Examining 

integrated environmental management inclusive of a broader array of social health 

impacts provides an opportunity to deepen our understanding of the mechanisms through 

which invasive species create economic disruption and how environmental policy can be 

used when invasion occurs to improve societal well-being.              

 In this chapter, I develop a bioeconomic model of invasive pest management and 

comparable replacement of lost native vegetation with invasive-resistant specimens. 
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Optimal time-dependent management trajectories are determined in the presence of 

health impacts and compared to the case where health is ignored in the policy decision. 

An important feature of this model is that health status is a function of environmental 

quality. As such, the optimal management decision will depend on the relative 

magnitudes of invasive species’ impacts on environmental quality and health. The 

dynamic nature of this relationship means that intertemporal tradeoffs are likely between 

short-term preservation of native plants and long-term improvements to health. The 

timeframe over which these tradeoffs occur will be largely influenced by the infection 

pattern of the pest and the growth rates of replacement vegetation. I investigate these 

tradeoffs by applying the model to the emerald ash borer (EAB), an invasive phloem-

feeding arthropod that targets and destroys all species of North American ash trees.  

 Two key features of invasive pests are critical for this type of bioeconomic 

analysis. First, a clear causal connection or at least a strong association exists between the 

pest and human health, whether directly (e.g., pollen allergies of invasive plants) or 

indirectly (e.g., destruction of health-improving vegetation). Second, management 

responses are available that can mitigate or preempt health-damaging impacts, so that 

there is room to investigate the net benefits of alternative management profiles. Both of 

these features apply to EAB as described in the Application to EAB section.    

 Results of this chapter suggest that consideration of health does in fact alter the 

economically efficient invasive species management profile by influencing the benefits of 

native vegetation. In particular, policy decisions inclusive of health substitute away from 

biological and chemical treatments of invasive species and toward investments in 

vegetation replacement, which in effect is an act of “ecological consumption smoothing,” 
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or an attempt to minimize the impacts of lost vegetation until a comparable replacement 

can be planted. Net benefits of ecological consumption smoothing primarily depend on 

the length of the planning horizon. In a constrained environment, preemptive investments 

in vegetation replacement mean fewer resources available for managed control, raising 

short-term mortality and morbidity rates in favor of long-term health benefits. In contrast, 

ignoring health impacts results in less overall management and more reliance on 

biological and chemical treatments instead of vegetation replacement, so as to preserve 

more valuable native vegetation longer over less valuable discounted future vegetation. 

Without any value to health, the impetus to engage in ecological consumption smoothing 

is reduced given the large costs of preemptive vegetation replacement. Additionally, I 

find that demographic and ecological characteristics of the study area, such as percent 

vegetation cover, baseline health incidence, and population are key determinants of 

invasive species management levels. Results are robust to a range of sensitivity analyses 

and specifications of the environmental health relationship. These findings suggest that 

social well-being can be improved by taking health into consideration when managing 

invasive species. This has direct implications for environmental policy, particularly 

where a strong association between the natural environment and human health exists.  

3.2 Application to EAB 

EAB (Agrilus planipennis) is a small phloem-feeding beetle native to Asia and 

eastern Russia that was first detected in the state of Michigan, USA in 2002, where it was 

introduced through imported ash and ash by-products. EAB larvae feed on the inner 

layers of bark (phloem), disrupting the transfer of nutrients and water through the tree. 

Ash typically die within 1-3 of infestation (Poland & McCullough, 2006). EAB are quick 
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and effective killers, attacking all North American ash species, even healthy adults. As of 

September 2014, EAB have been found in 564 counties across 24 US states and the 

District of Columbia and in two Canadian provinces and is considered to be the most 

destructive forest pest ever introduced in the US (Herms & McCullough, 2014; P. 

Chaloux, personal communication, September 22, 2014). Between 2002 and 2006, EAB 

killed some 20 million ash trees in Michigan alone, with at least 5-7 million deaths 

occurring in the first year of detection (Anulewicz et al., 2007). A lower bound estimate 

for ash tree mortality between 2009-2019 is 17 million (Kovacs et al., 2010), though 

dendrologists believe that the entire stock of 8 billion ash trees in the US are at high risk 

of destruction (Anulewicz et al., 2007; Kovacs et al., 2010; Sydnor et al., 2011; Herms & 

McCullough, 2014). Unfortunately, the spread of EAB continues to progress with newly 

infected areas discovered on a weekly to monthly basis.  

Ash trees provide flows of ecosystem services including the provision of shade, 

interception of rainfall, reductions in storm runoff, and the capturing of air pollutants. 

Tree cover increases property values (Sander et al., 2010) with positive externalities on 

neighborhood aesthetics and community identity (Sydnor and Subburaylu, 2011). Trees 

are also a source of recreation opportunities with associated impacts on physical and 

mental health and overall well-being (Tyrväinen et al., 2005). Ellaway et al. (2005) found 

a 40% lower obesity rate and significantly higher frequency of physical activity in 

residential environments containing high levels of green space, including trees. Among 

children, Roemmich et al. (2006) estimated that a 1% increase in forested park area was 

associated with a 1.4% increase in average physical activity in upstate New York. It is 

unclear, however, whether or not such associations are causal or merely correlational. A 
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stronger causal connection may exist between trees, air pollutants, and cardiorespiratory 

health (Nowak et al., 2006; McDonald et al., 2007; Nowak et al., 2013). Ash trees in 

particular are highly effective at capturing airborne pollutants (Freer-Smith et al., 2004) 

such as ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter 

(PM). By removing harmful pollutants from the air, trees can substantially reduce 

mortality and morbidity rates, especially in heavily polluted urban areas. For ten US 

cities, Nowak et al. (2013) estimated annual improvements in air quality ranging from 

0.05% in San Francisco, CA to 0.24% in Atlanta, GA because of tree cover, leading to 

mortality reductions of 0.6 person/yr. in San Francisco and 1.2 persons/yr. in Atlanta. It is 

likely that a sudden loss of ash trees in a community due to invasive EAB would increase 

air pollutant concentrations, putting the population at increased risk of cardiorespiratory 

illnesses.  

While perhaps the clearest causal links have been found between trees and air 

pollution, other health-altering mechanisms may also be at work, such as behavioral and 

mental health changes. In the only study of EAB and health, Donovan et al. (2013) 

investigated the causal relationship between trees and health across all pathways and 

discovered that between 1990 and 2007, EAB was associated with an additional 6113 

lower respiratory deaths and 15,080 cardiovascular-related deaths across 15 US states.  

The economic value of trees, including ash, have been determined in several 

ways. Implicit private values of trees have been estimated using hedonic pricing models 

(Dombrow et al., 2000; Tyrväinen & Miettinen, 2000; Price, 2003; Donovan & Butry, 

2010; Netusil et al., 2010; Pandit et al., 2013). On average, presence of a landscape tree 

increases residential homes values by 0.5%-1%, though size and distance from the home 
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are all key predictors of value. Larger trees are more valuable than smaller trees and trees 

closer to the home increase property values more than distant ones. The ability of trees to 

capture air pollutants has also been valued in terms of avoided health impacts. Nowak et 

al. (2013) estimated average US health benefits per hectare of tree cover at $1,600/yr., 

largely driven by reductions in cardiorespiratory mortality incidence.  

Trees also produce value by reducing stormwater runoff and reducing indoor 

electricity demand (thanks to the shade they create), which creates measurable reductions 

in CO2 emissions. Combining these other benefits of trees with the value of improved air 

quality, results in tree benefits ranging from $31/tree/yr. to $89/tree/yr. (2005$) in the US 

(McPherson et al., 2005). Finally, aesthetic, cultural, and historical nonmarket values 

(i.e., public goods value) of trees may be substantial (Dwyer et al., 1989; Tyrväinen & 

Väänänen, 1998; Majumdar et al., 2011). For example, Majumdar et al. (2011) applied 

the contingent valuation method to estimate willingness-to-pay (WTP) for urban forest 

preservation in Savannah, GA, USA. The annual value of Savannah’s urban forest ranged 

from $81 million to $167 million. Of course, economic value estimates of trees are site 

and species specific. Urban trees are more valuable than rural or timberland trees and ash 

are among the most popular urban trees in many US communities, meaning that the 

economic costs of their loss are substantial (Kovacs et al., 2010). 

Early management of EAB focused on containment and eradication. Quarantines 

of ash and ash by-products were imposed in infected areas in an effort to limit EAB 

spread while infested ash were removed and destroyed. These efforts were unsuccessful 

as outlier populations beyond the containment zone were regularly detected. Soon after 

EAB was discovered in the US, mangers began searching for and releasing natural 
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enemies. North American woodpeckers may represent the single greatest threat to EAB 

larvae, but certain parasitoids have also proven effective at killing the beetle (e.g., Oobius 

agrili and Tetrastichus planipennisi). It remains unclear how effective natural enemy 

releases have been at slowing EAB dispersion (Herms & McCullough, 2014).  

Integrated management via the “SLow Ash Mortality” or SLAM project 

represent, perhaps, the most effective EAB control option available at the moment. 

Initiated in 2008, SLAM seeks to slow EAB population growth and subsequently slow 

ash mortality. This is achieved through the integrated use of insecticides, girdling, and 

phloem reduction (i.e., harvesting ash prior to death). The insecticide emamectin 

benzoate or TREE-age® has proven highly effective in trials and spatial simulations at 

slowing overall rates of ash decline (McCullough & Mercader, 2012; Herms et al., 2014).  

Other management options including preemptive removal of ash, removal and 

replacement, and a “do-nothing” approach have been investigated and dismissed as 

welfare inferior compared to SLAM (Vannatta et al., 2012), but no published analysis has 

evaluated a preemptive planting without removal strategy. Preemptively planting of 

comparable-in-benefits saplings such as EAB-resistant Asian ash, while native ash trees 

are still living, mitigates disruptions to environmental quality by smoothing the stream of 

tree benefits. Figure 3.1 illustrates this idea through a comparison of hypothetical ash tree 

or comparable EAB-resistant tree instantaneous benefits over time for an infested area. 

Without preemptive planting of comparable tree saplings, ash tree benefits approach zero 

due to mortality. This represents a complete ash tree extinction event in an area. By 

preemptively planting comparable resistant saplings prior to and during the invasion, the 

loss of tree benefits is mitigated as the saplings grow and mature, eventually offsetting 
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the lost benefits from the now dead native ash. This is perhaps easiest to conceptualize in 

an absurd example where as soon as a native ash dies because of EAB, a comparable-in-

benefits tree “switches” on such that the stream of tree benefits remains unaltered. While 

this is not physically possible for large, mature trees, the next best alternative is to plant a 

sapling that grows over time to replace the lost stream of ash benefits. The idea is to 

minimize the vertical distance between the “with preemptive planting” benefit path and 

ash tree benefits prior to EAB in Figure 3.1, or what I had previously defined as 

ecological consumption smoothing. The timing of planting and the ecological properties 

of the replacement species will both determine the precise benefit path, but the theoretical 

principle remains the same. Of course, it should be noted that tree benefits and not net 

tree benefits of management are illustrated in Figure 3.1. The net benefits time path may 

look substantively different depending on the relative benefits and costs associated with 

ash trees and EAB management.  

 This chapter makes three contributions to the EAB management literature. First, it 

demonstrates the importance of including health in the EAB manager’s objective function 

through a comparison of net social benefits and health incidence across optimal control 

model simulations inclusive and exclusive of health. Second, it illustrates why a spatially 

homogeneous or “one size fits all” management approach is suboptimal in the presence 

of demographic and tree cover geographic variability. Finally, it will be shown that over 

certain planning horizons ecological consumption smoothing using a combination of 

biological or chemical treatments and preemptive tree planting creates positive net social 

benefits when health is included in the policy decision process.  
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3.3 Methods  

Consider two types of trees, those that are native to an area and highly susceptible 

to invasive pests, 𝑎𝑛, and those that are non-native and pest resistant, 𝑎𝑟.12 There are two 

sub-types of resistant trees, adults (mature), 𝑎𝑟𝑎, and juveniles (saplings), 𝑎𝑟𝑗. Juveniles 

grow logistically according to an intrinsic rate, 𝑟, bounded by a maximum carrying 

capacity, K, and transition into adults at rate 𝜃. Additions to the stock of juvenile trees, 

𝑚, are determined endogenously as a management decision. The per period change in the 

stock of pest resistant juvenile trees is given by, 

�̇�𝑟𝑗(𝑡) = (1 − 𝜃) [𝑟𝑎𝑟𝑗(𝑡) (1 −
𝑎𝑟𝑗(𝑡)

𝐾
)] + 𝑚(𝑡)                                                                                               (3.1) 

where �̇�𝑟𝑗(𝑡) ≡ 𝑑𝑎𝑟𝑗(𝑡) 𝑑𝑡⁄  for time period, 𝑡.  

The stock of adult resistant trees depends on the transition of juveniles to adults, 

𝜃𝑎𝑟𝑗(𝑡), minus adult mortality, 𝜑𝑎𝑟𝑎(𝑡), where 𝜑 is the natural mortality rate of adult 

trees. Thus, the per period change in the stock of invasive arthropod resistant adult trees 

is given by, 

�̇�𝑟𝑎(𝑡) = 𝜃𝑎𝑟𝑗(𝑡) − 𝜑𝑎𝑟𝑎(𝑡)                                                                                                                                     (3.2) 

where �̇�𝑟𝑎(𝑡) ≡ 𝑑𝑎𝑟𝑎(𝑡) 𝑑𝑡⁄  for time period, 𝑡. It is assumed throughout that adult trees 

are fully grown though have a non-zero mortality rate.  

 Native invasive-prone trees, 𝑎𝑛, grow logistically at rate 𝑔 (𝑔 ≠ 𝑟, necessarily), 

also up to a maximum allowable carrying capacity, 𝐾.13 Following previous literature, 

invasive pests affect trees through the carrying capacity, 𝐾(𝑒) (Barbier, 2007), where 
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𝐾𝑒 < 0. Biological and chemical treatment management of the pests, 𝑧(𝑡), reduces their 

population, 𝑒(𝑧(𝑡)), such that 𝑒𝑧 < 0. The change in native tree stock is thus, 

�̇�𝑛(𝑡) = (1 − 𝜑)𝑔𝑎𝑛(𝑡) (1 −
𝑎𝑛(𝑡)

𝐾 (𝑒(𝑧(𝑡)))
)                                                                                                       (3.3) 

where �̇�𝑛(𝑡) ≡ 𝑑𝑎𝑛(𝑡) 𝑑𝑡⁄  for time period, 𝑡. Pest management, 𝑧(𝑡), is bounded below 

by zero and can be no larger than the number of native trees in any given time period; 

0 ≤ 𝑧(𝑡) ≤ 𝑎𝑛(𝑡).14 Increases in the invasive species population reduce the maximum 

allowable trees in an area, which will reduce native tree growth in equation (3.3). An 

alternative way to conceptualize 𝐾(𝑒(𝑧(𝑡))) is that management reduces the impact or 

effectiveness that pests have on the carrying capacity. That is, the effect of a given 

invader on 𝐾 can be controlled through 𝑧(t).  

 This chapter focuses on the health benefits of trees in terms of improved air 

quality because of consistent causal mechanisms linking the two (Willis & Crabtree, 

2011). Air quality is modeled as a function of native invasive-prone trees and resistant 

adult trees, 𝑤(𝑎𝑛(𝑡), 𝑎𝑟𝑎(𝑡)), where trees improve air quality, i.e., 𝑤𝑎𝑛
, 𝑤𝑎𝑟𝑎

> 0. 

Current health status, ℎ(𝑐, 𝑤(𝑎𝑛(𝑡), 𝑎𝑟𝑎(𝑡))), is a function of air quality and an 

exogenous composite health good, 𝑐, representing all other health goods that an agent 

could consume (Grossman, 1972), where ℎ𝑤 > 0, ℎ𝑤𝑤 < 0, ℎ𝑐 > 0, ℎ𝑐𝑐 < 0.  

 Trees provide many benefits to society along multiple environmental quality and 

health dimensions. For the purposes of this analysis, I focus on dual benefits of trees as 

creators of environmental aesthetic value and reducers of air pollution. To this end, I 

include health status as a function of air pollution in the benefits function following the 
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health-pollution framework presented in Aloi and Tournemaine (2011). Aesthetic 

environmental quality is modeled as a function of the stock of ash and is directly 

introduced as a societal benefit in line with Maupertuis and Sauveur (2005). Accounting 

for the dual environmental and health benefits of trees produces the following implicit 

social benefit function: 𝐵(𝑣(𝑎𝑛(𝑡), 𝑎𝑟𝑗(𝑡), 𝑎𝑟𝑎(𝑡)), ℎ(𝑐, 𝑤(𝑎𝑛(𝑡), 𝑎𝑟𝑎(𝑡))), 𝑦). Social 

benefits are a function of environmental quality and aesthetic benefits, 𝑣(∙), human health 

impacts via air quality, ℎ(∙), and a composite of other ecosystem service flows provided 

by trees, 𝑦. Social benefits are increasing in environmental quality and health status 

(𝐵𝑣, 𝐵ℎ > 0). For simplicity, other ecosystem service flows are assumed constant 

throughout the model (𝐵𝑦 = 0).  

 A basic model for the problem of choosing management of invasive species over 

a management horizon 𝑇 when human health impacts of trees are included can be 

formulated as, 

max
𝑚,𝑧

∫ 𝑒−𝛿𝑡 [𝐵 (𝑣 (𝑎𝑛(𝑡), 𝑎𝑟𝑗(𝑡), 𝑎𝑟𝑎(𝑡)) , ℎ (𝑐, 𝑤(𝑎𝑛(𝑡), 𝑎𝑟𝑎(𝑡))) , 𝑦) − 𝑐(𝑚(𝑡)) − 𝑑(𝑧(𝑡))] 𝑑𝑡    (3.4𝑎)

𝑇

𝑡=0

 

subject to: 

�̇�𝑟𝑗(𝑡) = (1 − 𝜃) [𝑟𝑎𝑟𝑗(𝑡) (1 −
𝑎𝑟𝑗(𝑡)

𝐾
)] + 𝑚(𝑡)                                                                                             (3.4𝑏) 

�̇�𝑟𝑎(𝑡) = 𝜃𝑎𝑟𝑗(𝑡) − 𝜑𝑎𝑟𝑎(𝑡)                                                                                                                                   (3.4𝑐) 

�̇�𝑛(𝑡) = (1 − 𝜑)𝑔𝑎𝑛(𝑡) (1 −
𝑎𝑛(𝑡)

𝐾 (𝑒(𝑧(𝑡)))
)                                                                                                    (3.4𝑑) 

𝑎𝑟𝑗(𝑡 = 0) = 𝑎𝑟𝑗(0);  𝑎𝑟𝑎(𝑡 = 0) = 𝑎𝑟𝑎(0);  𝑎𝑛(𝑡 = 0) = 𝑎𝑛(0)                                                              (3.4𝑒) 
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𝑎𝑟𝑗(𝑇) = 𝑓𝑟𝑒𝑒;  𝑎𝑟𝑎(𝑇) = 𝑓𝑟𝑒𝑒;  𝑎𝑛(𝑇) = 𝑓𝑟𝑒𝑒                                                                                             (3.4𝑓) 

where 𝛿 is the discount factor and 𝑐(𝑚(𝑡)), 𝑑(𝑧(𝑡)) are the management costs associated 

with planting replacement trees and treating invasive pests, respectively.  

 The two solutions to this problem are functions, 𝑚(𝑡) and 𝑧(𝑡), describing for 

each time period, the optimal level of replacement tree planting (𝑚) and use of biological 

or chemical invasive pest treatments (𝑧) that maximizes net social benefits. Combining 

the first order conditions that define an interior maximum and taking their derivative with 

respect to time (see Appendix B), allows for examination of the two relationships of 

interest: 

𝜆2 =
1

(𝛿 + 𝜑)
(�̇�2 + 𝐵𝑣𝑣𝑎𝑟𝑎

+ ℎ𝑤𝑤𝑎𝑟𝑎
)                                                                                                                  (3.5) 

𝐵𝑣𝑣𝑎𝑛
+ ℎ𝑤𝑤𝑎𝑛

(
𝐾(𝑒(𝑧))

2

(1 − 𝜑)𝑔𝑎𝑛
2𝐾′𝑒′) (𝛿 − 𝑔(1 − 𝜑) +

2𝑔(1 − 𝜑)𝑎𝑛

𝐾(𝑒(𝑧))
)

= 𝑑′(𝑧)                                                                       (3.6) 

 As one would expect,  the shadow value for adult EAB-resistant trees (equation 

(3.5)) is increasing in both marginal environmental quality (𝐵𝑣𝑣𝑎𝑟𝑎
) and marginal health 

(ℎ𝑤𝑤𝑎𝑟𝑎
). This demonstrates an important point, which is that omission of health impacts 

associated with trees will produce an undervaluation of the future stream of adult 

resistant tree benefits. Additionally, it can be seen in equation (3.5) that heterogeneity in 

adult tree marginal effects, perhaps spatially or geographically driven, will lead to 

shadow value heterogeneity. If, for example, air quality and environmental quality 

impacts of trees vary by location (e.g., urban vs. rural), then we might expect spatial 

differences in adult tree shadow values, 𝜆2
𝑢𝑟𝑏𝑎𝑛 ≠ 𝜆2

𝑟𝑢𝑟𝑎𝑙 because of spatial differences in 



 

58 
 

marginal impacts, 𝑤𝑎𝑟𝑎
𝑢𝑟𝑏𝑎𝑛 ≠  𝑤𝑎𝑟𝑎

𝑟𝑢𝑟𝑎𝑙 and 𝑣𝑎𝑟𝑎
𝑢𝑟𝑏𝑎𝑛 ≠ 𝑣𝑎𝑟𝑎

𝑟𝑢𝑟𝑎𝑙. This will create differences in 

optimal management time-paths, meaning that a “one size fits all” management is 

inconsistent with the theory if tree marginal impacts differ along some measurable level.  

Equation (3.6) provides some insight into how management indirectly impacts 

human health through native tree stock. The left-hand side of (3.6) is the marginal benefit 

(MB) of an additional unit of chemical or biological treatment, which along the optimal 

trajectory equals marginal cost (MC) of treatment (right-hand side term). One key insight 

of this expression lies in the determination of what the optimal MB/MC tradeoff looks 

like when health is added to the model. For positive marginal health effects, ℎ𝑤𝑤𝑎𝑛
> 0, 

the LHS numerator is larger than it would otherwise be if health were omitted. However, 

it is unclear whether a positive or negative change in treatment (𝑧) is necessary to 

maintain the equality because of ambiguity in the relative magnitudes of LHS terms. 

Assume for the moment that health is omitted from equation (3.6). If EAB treatment 

effectiveness (𝐾′𝑒′) is sufficiently small relative to the carrying capacity, 𝐾(𝑒(𝑧)), 

meaning chemical treatments are ineffective at protecting native trees, then the LHS 

denominator is increasing in absolute value in 𝑧, lowering MB of treatment. For 

sufficiently large health impacts it is possible that adding ℎ𝑤𝑤𝑎𝑛
> 0 to the LHS 

numerator would sufficiently raise MBs to offset the decline from the increase in 

management, thereby equating MB inclusive of health and MC. This means that adding 

health to the model could lead to increased use of chemical treatments. Conversely, if 

treatment is highly effective or health impacts of trees are minor, then considering health 

could lead to fewer treatments. Thus, it is ambiguous whether treatment management of 
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native trees increases or decreases when health is included, consistent with our earlier 

argument that “more” management is not guaranteed.        

 Ambiguity surrounding the marginal impacts involved in the model limit the 

insights that can be gained from a purely theoretical discussion. Therefore, functional 

forms for the model in equations (3.4a)-(3.4d) are defined to numerically determine the 

optimal management time paths. The model is then parameterized for the case of the 

emerald ash borer (hereafter EAB).  

3.3.1 Functional forms of the EAB bioeconomic model  

 I first define a functional form for native ash carrying capacity as influenced by 

EAB management: 𝐾(𝑒(𝑧)). I focus on “SLow Ash Mortality” or SLAM, the dominant 

management strategy used against EAB, and specify a management effectiveness 

function in terms of the ash carrying capacity: 

𝐾(𝑒(𝑧)) =
𝐾

𝛼𝑒(1 1 + 𝑧) + 1⁄
                                                                                                                                   (3.7) 

where 𝐾 is the maximum allowable carrying capacity per acre (𝑚2 ba/ac), 𝛼 is the 

emergent density threshold of ash dieback (𝑚2/EAB), 𝑒 is the exogenously determined 

stock of EAB (EAB/acre),15 and 𝑧 is the endogenously determined level of SLAM 

management (𝑚2 ba/ac). As EAB stock increases, 𝐾(𝑒(𝑧)) falls, but as SLAM 

management increases, the effect of a given level of EAB on 𝐾(𝑒(𝑧)) is diminished. This 

contrasts with an eradication management tool in that EAB are not killed; SLAM slows 

population growth, but does not reverse it. If EAB have minimal or no effect on ash trees 

(e.g., the case of Asian ash), 𝛼 → 0 and lim
𝛼→0

𝐾(𝑒(𝑧)) = 𝐾.   
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 My approach to modeling the relationship between EAB, ash trees, and health is a 

modified air pollution model from Nowak (1994) and Nowak et al. (2006). The daily 

change in concentration for the 𝑗𝑡ℎ air pollutant per 𝑖𝑡ℎ ash tree, 𝑃𝑂𝑖𝑗, is equal to the 

product of ash tree pollutant flux, 𝐹𝑖𝑗, the inverse boundary layer height, 𝐵𝐿−1, and the 

inverse site study area, 𝑆𝐴−1: 

𝑃𝑂𝑖𝑗 = 𝐹𝑖𝑗  𝑥 𝐵𝐿−1 𝑥 𝑆𝐴−1                                                                                                                                          (3.8)    

where 𝑃𝑂𝑖𝑗 is in units of concentration; micrograms per meter cubed per day 

(𝜇𝑔𝑚−3𝑑−1) for 𝑖 = 1, … , 𝑁 ash trees and 𝑗 = 1, … ,4 pollutants – ozone (O3), PM2.5, 

SO2, and NO2. 𝐹𝑖𝑗 describes the rate of ash tree pollutant removal over a given surface 

(in units of mass). Boundary layer height, 𝐵𝐿, is the height of the atmospheric level 

where mixing is well-developed. Equation (3.8) gives the change in concentration for the 

𝑗𝑡ℎ pollutant produced by a single ash tree over a geographic space (e.g., neighborhood, 

city, county, etc.) over time and is similar to equation (2) in Nowak et al. (2013).16  

 When a new ash tree is planted or an existing one dies, the total amount of 

pollutant concentration changes by some measureable amount. This effects current health 

status, ℎ(𝑐, 𝑤(𝑎𝑛, 𝑎𝑟𝑎)), and can be modeled using a concentration response function. 

Following the US EPA (Abt Associates, 2012), the impact of changes to ash tree stock on 

health endpoint 𝑘 in time period 𝑡 is given by the log-linear concentration response 

function for pollutant 𝑗: 

ℎ𝑘𝑗 (𝑐, 𝑤𝑗(𝑎𝑛 , 𝑎𝑟𝑎)) = 𝐵𝑘𝑒𝛽𝑘𝑗(𝑃𝑂𝑖𝑗(𝑎𝑛+𝑎𝑟𝑎))                                                                                                          (3.9)   
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where 𝐵𝑘 is the incidence rate of ℎ𝑘𝑗 when (𝑃𝑂𝑖𝑗(𝑎𝑛 + 𝑎𝑟𝑎)) is zero (i.e., the underlying 

incidence rate), 𝛽𝑘𝑗 relates pollutant concentration 𝑗 to the incidence rate of endpoint 𝑘, 

and (𝑃𝑂𝑖𝑗(𝑎𝑛 + 𝑎𝑟𝑎)) is the concentration of pollutant 𝑗 removed from the air by the 

stock of adult and native ash per unit time.17 I examine 𝑘 = 1, … ,4 health endpoints: 

mortality (long-term and short-term), hospital admissions, emergency room (ER) visits, 

and minor restricted activity days (MRAD). Equation (3.9) is in units of incidence per 

time for a given pollutant (e.g., number of daily ER visits associated with ozone 

emissions). Thus, for any level of ash stock it is possible to calculate avoided mortality 

and morbidity associated with tree cover.  

 Benefits of ash trees are assumed to be additively separable in types of ash and 

health impacts. A simplifying assumption is that all ash of a given maturity have the same 

aesthetic value. Native and EAB-resistant ash have a per unit value of 𝑃𝐴 ($ 𝑚2⁄  of bark 

area).18 Juvenile EAB-resistant ash have a per unit value of 𝑃𝐽 ($ 𝑚2⁄ of bark area). The 

value of avoided health impacts is calculated as the product of equation (9) and the 

economic value of health endpoint 𝑘, 𝑃𝑘. To arrive at an aggregate value for a given 

study area, this calculation is repeated for all pollutant-endpoint combinations, summed, 

and multiplied by the study area population size, (𝑃𝑂𝑃). Benefits of trees are thus,  

𝐵(𝑣(𝑎𝑛 , 𝑎𝑟𝑗 , 𝑎𝑟𝑎), ℎ(𝑐, 𝑤(𝑎𝑛 , 𝑎𝑟𝑎)), 𝑦)

= 𝐴[𝑃𝐴(𝑎𝑛 + 𝑎𝑟𝑎) + 𝑃𝐽𝑎𝑟𝑗] + (∑ ∑ 𝑃𝑘𝐵𝑘𝑒𝛽𝑘𝑗𝑃𝑂𝑖𝑗(𝑎𝑛+𝑎𝑟𝑎)

4

𝑗=1

4

𝑘=1

) 𝑥 𝑃𝑂𝑃                       (3.10) 

where 𝐴 (acres) is the size of the study area under investigation such that equation (3.10) 

is in units of dollars ($).  
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The cost function for management is defined as, 

 𝑐(𝑚) + 𝑑(𝑧) = 𝐴[(𝑐 2⁄ )𝑚2 + (𝑑 2⁄ )𝑧2]                                                                                                            (3.11) 

where 𝑐 ($/𝑚2of bark area) is the marginal cost of planting a new EAB-resistant tree and 

𝑑 ($/𝑚2of bark area) is the marginal cost of SLAM. Costs are increasing at an increasing 

rate in management, consistent with a non-linear density-impact curve (Yokomizo et al., 

2009). Total costs are multiplied by the size of the area of interest to put (11) in units of 

dollars ($). 

3.3.2 Overview of dynamic simulations 

 The functions in equations (3.7), (3.10), and (3.11) are used to make explicit the 

bioeconomic model in equations (3.4a)-(3.4f) as applied to EAB. Since there is no 

closed-form solution to the explicit bioeconomic problem, numerical simulation 

techniques are used to find the optimal trajectories. The simulation scenarios may be 

conceptualized as follows.  

 A manager of invasive EAB in a representative county chooses her optimal levels 

of SLAM management (𝑧) and planting of replacement trees (PLAN hereafter) 

management (𝑚) that maximize net benefits of ash trees.19 There are no EAB present in 

the county at the initial time period (𝑒(0) = 0), but they are introduced in the subsequent 

period. Initially, the county contains 𝑎𝑛(0) = 2700 square meters of ash bark area per 

acre (𝑚2 ba/ac) of native EAB-susceptible ash and 𝑎𝑟𝑎(0) = 𝑎𝑟𝑗(0) = 0  (𝑚2 ba/ac) 

resistant ash trees, both of which are varied in the sensitivity analysis. The optimal 

management time paths for this county are simulated over a 50 year planning horizon to 

capture the main stages of EAB invasion: introduction, detection, colonization, and 
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naturalization. Additionally, it is assumed that EAB managers update their management 

policy on an annual basis, which is the level at which the timestep is set at. Optimal 

starting values for choice and costate variables are determined by a grid-search algorithm. 

A 3% discount rate is assumed in the base case, but is varied in the sensitivity analysis. 

Numerical simulations were performed in Powersim© Studio 9 Academic.  

 To investigate the appropriateness of a “one size fits all” invasive management 

strategy, a four county scenario analysis is also performed. If simulated management is 

consistent across the four areas, then this is suggestive that a uniform management 

approach is appropriate for EAB. By contrast, meaningful differences in optimal 

management profiles across counties would indicate that a nuanced or spatially-target 

approach would lead to greater improvements in net benefits. Four geographically-

disparate EAB counties were selected at random by US region (e.g., West, South, 

Midwest, and Northeast) from 564 infested counties (as of September 2014). Using 

county-specific demographic, health incidence, and tree canopy data, optimal time 

trajectories of PLAN and SLAM management are simulated for each county.  

Finally, impacts of parameter uncertainties on results were investigated through a 

sensitivity analyses, which was performed by changing parameter values one-by-one and 

re-simulating the model for each new value.  

3.4 Data 

 Data were gathered for ecological, pollutant flux, health, and economic model 

parameters. Table 3.1 presents the ecological and pollutant flux parameters. Health and 

economic model parameters are presented in Table 3.2. The parameter base values are 
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used in the main effects analysis and minimum and maximum values are used in the 

sensitivity analysis.20 Sources of data are listed below each table. 

Additional nonparametric data were also collected, as described in the following 

paragraphs.  

EAB detection data from date of first US detection (July 2002) through 

September 2014 was provided by the US Department of Agriculture (USDA) Animal and 

Plant Health Inspection Service (APHIS). Data are at the county-level and include county 

name, state name, FIPS, year of detection, and date that detection was confirmed. Land 

area and population data for each infested county were collected from the US Census 

Bureau State and County QuickFacts database for the year 2010. Area data were 

converted to 𝑚2 or acres as needed.  

Tree cover data comes from two sources. First, Nowak et al. (2013) report 

estimates of the percentage tree cover in 10 US cities over various years from 1996-2009. 

Tree cover ranges from 16.0% of total land area in San Francisco, CA to 52.1% in 

Atlanta, GA, with an average estimate of 26.5%. The base model utilizes the 26.5% 

average. Second, tree cover was independently estimated using the US Forest Service i-

Tree Canopy application for EAB counties as part of the scenario analysis. i-Tree Canopy 

allows users to estimate tree cover within a defined geographic area using remotely-

sensed aerial photography data. To enhance the precision of our estimates, 700 randomly 

selected points were investigated per county, resulting in standard errors less than 2%.  

Ash trees typically comprise 5-10% of forest cover (Wisconsin Department of 

Natural Resources, 2014). Using mean estimates, I assume a 7.5% ash composition of 
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total forest cover in EAB infested counties in our base model. A minimum of 5% and a 

maximum of 10% are considered in the sensitivity analysis. In the four county scenario 

analysis, estimates of ash cover were obtained from county- or state-specific sources 

(Colorado Department of Agriculture, 2013; Connecticut Department of Energy & 

Environmental Protection, 2013; Georgia Invasive Species Task Force, 2013).    

Additional data on pollution concentrations for NO2, O3, SO2, and PM2.5 were 

collected for EAB infested counties. County-level concentration data for 2014 comes 

from US EPA AirData21 and was averaged daily across counties to arrive at an annual per 

pollutant arithmetic mean. Data from counties with an air quality monitoring station not 

reporting to the EPA or without any monitoring station were excluded. Using all 

available data produced annual mean concentrations for NO2 (55 counties), SO2 (127 

counties), O3 (134 counties), and PM2.5 (542 counties). 

Baseline health incidence for the four county scenario analysis was obtained from 

BenMAP-CE (v.1.0.8) using 2010 data compiled by the US EPA (Abt Associates, 2012). 

The EPA used individual-level mortality incidence from the Centers for Disease Control 

National Center for Health Statistics, hospitalization and emergency room rates from the 

Healthcare Cost and Utilization Project, and minor restricted activity day (MRAD) 

incidence from Ostro and Rothschild (1989). Individual-level incidence is aggregated in 

BenMAP-CE and population- and age-adjusted to the year of interest. Data are from 2010 

and aggregated to the county-level. If multiple incidence measures were available, the 

most recent one that captured the largest age range was selected.  

Summary statistics for EAB-detected counties are presented in Table 3.3. 

Statistics are reported for detection year, county area (square miles), population, 



 

66 
 

population density (per square mile), tree cover (%), and air pollutant concentrations. The 

average EAB detection year is early 2010 and the average county has an area of 524 

square miles; roughly the size of Phoenix, AZ. Mean county density is low to moderate at 

348 persons per square mile with an average population of 147,000. Concentrations of 

NO2, SO2, O3, and PM2.5 for 2014 are within acceptable levels of current US EPA 

National Ambient Air Quality Standards.    

3.5 Results 

Dynamic simulation results are presented beginning with the “base case” model 

(SLAM, not inclusive of health). Next, health impacts associated with ash cover are 

added in the “base case with health” simulation (SLAM, inclusive of health). Finally, 

PLAN management is added in the “combined management with health” simulation 

(SLAM & PLAN, inclusive of health) and compared to a simulation where health 

impacts are excluded; “combined management” (SLAM & PLAN, not inclusive of 

health). Figure 3.2 summarizes the presentation of simulation results. 

3.5.1 “Base case” and “base case with health” results    

 In the base case (Figure 3.3), EAB managers have SLAM (z) at their disposal and 

do not include ash tree health impacts in their planning decision. As EAB begin to infest 

ash trees, SLAM management grows exponentially through years 2-4. SLAM peaks in 

year 5 at 880 𝑚2 ba/ac, corresponding to the year when stock of EAB approaches its 

carry capacity. At peak SLAM in year 5, managers are treating roughly every ash tree 

remaining in the county. After simulation year 5, the stock of ash quickly falls, sharply 

reducing the optimal level of SLAM to low-levels that persist through year 25. The long 
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tail on SLAM management is being economically driven by the relatively large marginal 

benefit of the few remaining ash. Managers continue to SLAM the ever-shrinking ash 

population in an attempt to preserve the sock of trees for as long as possible. Net present 

value (NPV) of ash tree benefits over the 50 year planning horizon are $3.2 billion.          

 Inclusive of ash tree health effects (base case with health), EAB managers 

increase the level of SLAM in all simulation years compared to the base case model 

(Figure 3.3). The SLAM with health time path is an upward-shifted version of the base 

case time path. This is not a surprising result as the marginal benefit of a unit of SLAM is 

greater than before because of its indirect effects on mortality and morbidity. Net benefits 

of ash are roughly $1 billion greater when health impacts are included in the model, 

approaching $4.1 billion over 50 years. 

 Reductions in health incidences due to tree pollutant removal are presented in 

Table 3.4 for the base case (column 2) and the base case with health (column 3). Results 

are cumulative over the 50 year planning horizon. The effect of including health in the 

management model is captured by the difference in health incidences, presented in 

column 4 of the table. Changes in incidence are heterogeneous across the health 

endpoints investigated. EAB management inclusive of health reduces mortality by an 

additional 0.3 persons over 50 years (a 1.5% improvement) compared to the simulation 

where health impacts are excluded. 61 minor restricted activity days are avoided (a 1.2% 

improvement) and visits to the ER are reduced by 0.1 events (a 0.8% improvement) when 

health is included in EAB management. Results suggest that the greatest impact of 

incorporating ash tree health impacts in the management decision is on mortality.     
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3.5.2 “Combined management with health” and “combined management” results 

Figure 3.4 presents the optimal management time paths for combined 

management with health and combined management simulations. PLAN time paths are 

on the left panel and SLAM are on the right. I first focus on the combined management 

with health time paths, which are the solid black paths in each panel. In the combined 

management with health optimal time paths, the manager preemptively plants 1236 

𝑚2 ba/ac resistant saplings in the initial period (PLAN, health), filling 95% of available 

forest space in the county. This is despite the fact that no native ash have actually died in 

the initial period. Maximum PLAN occurs in the initial period so that saplings have the 

greatest amount of time to grow prior to the death of the native ash they are intended to 

replace. Plantings rapidly decline in each year after the initial period, bottoming out in 

year 10 after enough saplings have been planted to replace the stock of lost native ash. 

Managers complement their plantings with chemical and biological treatments (SLAM, 

health), which peaks in year 5 at 180 𝑚2 ba/ac, corresponding to the height of the EAB 

infestation. Native ash trees are virtually extinct by simulation year 15, when SLAM 

management converges to zero. This is ecological consumption smoothing at work; 

preserve the current native stock of ash while simultaneously planting resistant tree 

saplings in order to minimize the loss of tree benefits. Present value net benefits of the 

combined management with health simulation are $39.1 billion over 50 years; an increase 

of 1112% over the base case and an 18% increase over combined management net 

benefits. This is evidence that over this planning period, ecological consumption 

smoothing is welfare improving.  
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By comparison, excluding ash tree health impacts from the management decision 

(the dashed time paths in Figure 3.4) leads managers to plant 88% fewer resistant ash 

saplings in the initial period (PLAN, no health) compared to combined management with 

health simulation. However, the decay in PLAN management over time when health 

impacts are ignored is slower than in the combined management with health simulation. 

This is indicative of decreased ecological consumption smoothing. Fewer saplings are 

planted and they are planted over a longer period of time compared to the simulation 

where health is considered. The mechanism driving this change is the sharply reduced 

marginal benefits of PLAN when health is omitted. Now, a planted sapling that grows 

into an adult provides marginal benefits of 𝑃𝐴 from Equation (10) instead of 𝑃𝐴 +

∑ ∑ 𝛽𝑘𝑗𝑃𝑂𝑖𝑗𝑃𝑘𝐵𝑘𝑒𝛽𝑘𝑗𝑃𝑂𝑖𝑗(𝑎𝑟𝑎)4
𝑗=1

4
𝑘=1 > 𝑃𝐴 when health is included. As panel (a) of 

Figure 3.4 demonstrates, this change in ash benefits substantially alters the optimal 

management trajectory. SLAM management is similarly affected (Figure 3.4; panel (b)). 

The optimal trajectory of SLAM management is shifted upward when health effects are 

excluded (SLAM; no health) and is larger in every simulation year. SLAM (no health) 

peaks in year 5 at 589 𝑚2 ba/ac; a 227% increase over the peak of SLAM (health). The 

optimal EAB management profile favors more SLAM and less PLAN when ash tree 

health impacts are ignored. This demonstrates that adding health to the EAB manager’s 

problem does not necessarily lead to “more” of a given type of management, but in this 

case, engagement in ecological consumption smoothing, which is a diversification of 

management.  

 Mortality and morbidity incidence are compared across combined management 

simulations in Table 3.5. Including ash tree health effects in the combined management 
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decision reduces mortality by 21 persons over 50 years (a 13.5% improvement), prevents 

13 emergency room visits (a 13.5% improvement) and 0.3 hospital admissions (a 10.7% 

improvement), and eliminates 5,443 minor restricted activity days (a 13.5% 

improvement) in the representative county. To contextualize the mortality improvement, I 

look to Donovan et al. (2013) who estimated actual EAB-related mortality at 0.96 excess 

deaths/county/yr. or 48 excess deaths/county/50 yrs., on average. Assuming for the 

moment that the Donovan et al. (2013) result is a reliable estimate of average EAB-

related county-level mortality, then my simulation results suggest that adding health 

impacts to the EAB manager’s problem when SLAM and PLAN are available could 

almost halve the number of excess EAB-related deaths from 48 to 27, a 21 person or 44% 

decrease over 50 years. While only a first approximation of the potential consequences of 

ignoring health impacts in an invasive species management model, the comparison is 

nonetheless contextually enlightening.  

3.5.3 Planning horizon impacts net benefits of ecological consumption smoothing 

 Two comparisons are made between base case and combined management 

profiles: (i) base case vs. combined management with health; (ii) base case vs. base case 

with health. I use these comparisons to illustrate the dynamic relationship between the 

planning horizon and the net benefits of ecological consumption smoothing (Table 3.6).   

Across both comparisons, inclusion of health impacts results in larger net present 

benefits and higher reductions in mortality and morbidity at the end of the 50 year 

planning horizon, consistent with our earlier results (Table 3.6, column 3). The difference 

is most pronounced in comparison (i) where a combined management with health profile 

reduces incidence by 40,700 MRADs, 157 incidences of mortality, 97 emergency room 
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visits, and 3 hospital admissions over 50 years compared to the base case (Table 3.6, 

column 3). This is suggestive that ecological consumption smoothing may produce 

substantial welfare gains over the long-term if PLAN and health impacts are added to an 

EAB management toolbox relying exclusively on SLAM.    

However, if the management horizon is shorter then consumption smoothing is 

not necessarily welfare improving (Table 3.6, column 2, comparison (i)). Between 

simulation years 0 and 9, including PLAN and health impacts of ash in the management 

decision results in lower net present benefits and higher incidences of mortality and 

morbidity compared to the base case simulation. This difference is greatest in year 5, 

where net benefits are $4.5 billion lower, MRADs are 1,100 higher, there are 3 additional 

emergency room visits, and 4 excess deaths. This short-term effect is transpiring because 

optimal SLAM levels are substantially higher in the base case model, resulting in slower 

decay of native ash trees and hence higher pollutant flux. By contrast, the combined 

management with health simulation engages in ecological consumption smoothing, 

substituting away from SLAM and toward PLAN, which means a quicker loss of native 

ash. This illustrates the implicit tradeoff discussed earlier between short-term native ash 

preservation and long-term improvements to health. Along the economically efficient 

combined management trajectory, ecological consumption smoothing results in increased 

short-term health consequences, but long-term health gains. This is a key result of this 

study. Observe that this phenomena does not occur in comparison (ii). This is because 

there is no possibility of ecological consumption smoothing since PLAN is not available 

in the base case simulation. In comparison (ii), including health impacts results in higher 

net benefits regardless of the simulation year. These results demonstrate that the decision 
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to engage in ecological consumption smoothing by using health-centric invasive species 

management such as PLAN must be properly informed of the management horizon being 

considered so as not to be harmful to health.     

Figure 3.5 summarizes net benefits across the four simulations presented thus far. 

Net benefits associated with a “no action” or do nothing management profile are also 

presented for comparison purposes. Both the combined management and the combined 

management with health simulations produce 50 year net present benefits substantially 

higher than the base case and no action simulations. Inclusion of health impacts in the 

management decision raises net benefits for both the combined management and base 

case simulations, though a larger increase is observed for combined management. No 

action results in the lowest net benefits compared to utilizing SLAM, PLAN, or some 

combination of the two.   

3.5.4 Four county scenario analysis 

 The results of the four county analysis are now presented. Recall that four 

geographically disparate EAB infested counties were randomly selected in order to 

investigate management spatial heterogeneity. These counties are Boulder County, CO; 

Clare County, MI; Hartford County, CT; and Rockdale County, GA. Demographic, 

health incidence, and tree canopy data were gathered for each county (Table 3.7). There 

is considerable heterogeneity along these measures. Boulder, CO is the wealthiest county 

($68,000 median household income) with the lowest poverty rate (14.2%) and largest 

land area (726 sq. miles). Hartford, CT has the highest population (898,000) and density 

rate (1216 persons per sq. mile), with the greatest baseline hospital admissions (215 

persons per 100,000) and ER visits (691 per 100,000) out of the four counties. Baseline 
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mortality is greatest in Clare, MI (1782 per 100,000), which is also the poorest ($33,000) 

and least populated (31,000) county investigated. Rockdale, GA has the highest 

percentage of forest cover (65.9%), though the smallest ash tree cover (1%). The highest 

percentage of ash cover is found in Boulder County (15%).22   

 For the scenario analysis, the combined management model was re-simulated 

utilizing county-specific parameter values. Two simulations were completed per county. 

One includes ash tree pollutant-related health impacts in the analysis while the other 

excludes them. Comparisons of the “health” and “no health” simulations are made as 

before (Figure 3.6). For the first few simulation years, PLAN management inclusive of 

health impacts is substantially larger than PLAN management without health impacts, 

across all counties. SLAM is used more in all counties when health effects are omitted. 

These are similar results to what was observed in the combined management simulation 

of the representative county. However, there is considerable cross-county management 

heterogeneity. 

 Initial levels of PLAN (health) vary from 1087 𝑚2 ba/ac (Rockdale) to 1802 

𝑚2 ba/ac (Hartford). PLAN (no health) varies considerably less in the initial period, 

ranging from 179 𝑚2 ba/ac (Hartford) to 191 𝑚2 ba/ac (Boulder and Clare). There is no 

clear relationship between initial PLAN and SLAM. For example, Clare managers use 

relatively little PLAN in the initial period (𝑚(0) = 1123 𝑚2 ba/ac), but utilize the same 

amount of SLAM in the initial period as Boulder (𝑧(0) = 24 𝑚2 ba/ac), even though 

Boulder managers PLAN substantially more (𝑚(0) = 1357 𝑚2 ba/ac). Similarly, 

managers in Hartford PLAN the most out of the four counties in the initial period 

(𝑚(0) = 1802 𝑚2 ba/ac), though only SLAM by two more 𝑚2 ba/ac than Boulder and 
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Clare at t=0 and by one more unit than Rockdale (which has the lowest initial level of 

PLAN).  

Benefits of management are greatest in Boulder where ash tree cover is highest 

and lowest in Rockdale where ash cover is the smallest. Even though Clare County is 

sparsely populated and highly rural, net benefits of EAB management are substantial 

relative to other counties given its sizeable forest cover (62.4%) and ash tree cover (7.5% 

of forest cover). In this case, benefits are being driven largely by aesthetic environmental 

values of ash and not through their impacts on health. By contrast, a mixture of urban and 

suburban land use in Hartford County (which fully contains the city of Hartford, CT) has 

lower forest cover (51.3%), though the 2nd largest net benefits. In Hartford, health 

benefits of ash are substantial because of its greater population (900,000) compared to 

Clare County (31,000). This suggests that in areas with relatively modest populations, 

benefits of management are predominantly due to aesthetic environmental values of ash, 

whereas in higher population centers, the health benefits of ash are an important 

component of aggregate net benefits. However, this does not necessarily mean that net 

benefits are always larger in high population areas. Clare County has a 97% lower 

population than Hartford, but only 35% lower net benefits. Other factors such as land 

area, forest cover, and ash cover are also important determinants of net benefits aside 

from population. Though, these results suggest that population is a strong driver of health 

incidence and thusly health benefits of ash. 

Mortality and morbidity incidence reductions vary across counties (Table 3.8). 

Ash trees and EAB management reduce health incidences the most in Hartford County 

and the least in Rockdale County. For the case of Hartford, a combination of high 
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population and a large land area mean that more people benefit from greater air quality 

improvements. Over 50 years, Hartford ash trees reduce mortality incidence by 1105 

cases in the health inclusive simulation and by 1033 cases in the simulation excluding 

health impacts. This is 21-22 cases annually. For other counties, mortality reductions 

range from 11 cases (Rockdale) to 311 cases (Boulder) in the health simulations and from 

11 (Rockdale) to 280 cases (Boulder) for the no health simulations. Emergency room 

visits are reduced anywhere from 18 (Rockdale) to 2107 cases (Hartford) over 50 years 

because of improved air quality. Reductions in hospital admissions are negligible for 

Clare County, but upwards of 70 for Hartford. Minor restricted activity day (MRAD) 

incidence reductions range from 8187 days (Rockdale) to 667,746 days (Hartford) over 

50 years, which corresponds to 0.002 days per person per year in Rockdale County and 

0.01 days per person per year in Hartford County. Across all counties and all health 

endpoints, incorporating ash tree health impacts into the EAB management decision 

results in greater reductions in mortality and morbidity, but non-uniformly so.   

There is clearly substantial heterogeneity in management, especially PLAN, and 

associated tree health impacts across these four counties. Deviations from the 

idiosyncratic optimal county management trajectories would lower net benefits and 

increase mortality and morbidity incidence. Thus, a uniform or one size fits all 

management approach where the same level or percentage of management were applied 

to all areas would be suboptimal and could be Pareto improved upon by using spatially-

tailored management considerate of influential factors such as population and ash tree 

coverage. Additionally, these results serve as a further demonstration that naively 

managing “more” when health is considered in the planning decision is also suboptimal. 
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Across all four counties, SLAM management is actually lower when health is included, a 

result of ecological consumption smoothing. The takeaway here is that invasive species 

management should not only consider health, but the dynamic spatial relationship 

between demographics, underlying ecology, and health.    

3.5.5 Sensitivity analysis  

Sensitivity analyses were performed on all simulations by changing each 

parameter to its minimum or maximum and re-simulating. Given that the EAB manager’s 

problem contains over 35 parameter values, this resulted in over 200 sensitivity 

simulations for the representative county analysis and over 140 simulations for the four 

county scenario analysis. In lieu of reporting this many individual results, I limit the 

discussion to the combined management with health sensitivity analysis because it is the 

most complex of the models simulated and I find that it has the greatest sensitivity. This 

still leaves 81 sensitivity simulation results to discuss! Of these, 66 produced net benefits 

changes of 10% or less from the baseline combined management with health simulation. 

Results are insensitive to changes in these parameters. Therefore, attention is focused on 

the 15 simulations (for nine different parameters) that results are sensitive to, meaning 

that a re-specification resulted in >10% change in net benefits. I discuss each parameter 

in-turn.23     

Changing the size of an average ash, 𝐵𝐴, impacts both the amount of pollutants 

captured per tree and the effective number of trees that can exist on an acre of land. For 

example, smaller ash trees mean fewer captured pollutants per tree, but a higher quantity 

of individual free-standing ash on a parcel of land. It is possible in the aggregate that 

more pollutants are actually captured with smaller trees, if the increase in the number of 
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individual trees is sufficiently large. Indeed, this is what is found. A small decrease in ash 

surface bark area from its base of 15.43 𝑚2 to its minimum of 13.89 𝑚2 increases net 

benefits by 12.1% over 50 years thanks to an overall increase in the quantity of pollutants 

captured. A similar increase in the bark area of an individual tree from 15.43 𝑚2 to its 

maximum of 16.97 𝑚2 subsequently decreases net benefits by 10.3% for the opposite 

reason; fewer pollutants are captured. Additions of ash are preferred to increasing the size 

of existing ash in this model.   

Increasing the carrying capacity of ash trees on each acre of land, 𝐾, substantially 

increases net benefits of combined management. For example, an increase in 𝐾 from its 

base of 4000 𝑚2 ba/ac to its maximum of 6156 𝑚2 ba/ac increases ash tree net benefits 

by 55% over 50 years. This is not surprising because all ash have value in the model, 

such that increasing the ability of the land to hold more of them will produce more 

management value.    

 With greater natural adult ash mortality, 𝜑, a larger number of juvenile EAB-

resistant ash are maintained to buffer the increased rate of adult tree losses. With more 

juvenile ash and fewer adult ash, pollutant flux is reduced, which reduces net benefits. 

For example, an increase in the mortality rate from its base of 4.4% per year to its 

maximum of 6.8% per year reduces benefits by 13% over the management horizon. 

Simulations are also sensitive to the rate of transition between juvenile EAB-resistant ash 

and adult resistant ash, 𝜃. Increasing the rate at which one juvenile ash transitions to an 

adult from a base of 9 years to a maximum of 50 years, reduces net benefits by 65%. As 

modeled in the EAB manager’s problem, net benefits will always be lower the longer the 

transition period since adult ash provide higher aesthetic, environmental, and pollutant-
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capturing benefits. In fact, net benefits are maximized when 𝜃 equals zero because then 

all juvenile ash have equal benefits as adults.  

 Raising the initial number of native ash, 𝑎𝑛(0), from its base of 2700 𝑚2 ba/ac to 

the carrying capacity of 4000 𝑚2 ba/ac, lowers net benefits by 13% over 50 years. The 

ability of the manager to engage in ecological consumption smoothing is reduced the 

closer the initial stock of ash is to the carrying capacity. Preemptive plantings of EAB-

resistant saplings are limited by the availability of the system to support them. If the 

initial ash stock is at the carrying capacity, then a manager must wait until a native ash 

dies in order to replace it, which limits the effectiveness of consumption smoothing by 

reducing it to a simple “remove and replace” strategy. This produces greater health 

impacts, subsequently reducing benefits of ash trees  

 Percentage of land area that is covered by trees (forest cover) and ash trees 

specifically (ash cover) are additional influential variables in the manager’s problem. Net 

benefits are increasing in both variables. For example, an increase in the forest cover of 

the representative county from its base of 26% to its maximum of 52% increases net 

benefits by 96%; almost doubling net benefits over the baseline. Percent ash tree cover is 

not quite as influential. An increase in ash cover from a base of 7.5% of forest cover to a 

maximum of 10% of forest cover raises net benefits of EAB management by 33%.24 With 

larger tree canopies come larger benefits of action, or, equivalently, greater costs of 

inaction, inducing more ecological consumption smoothing and creating greater returns 

to management. 

The larger the population (𝑃𝑂𝑃), the greater the health benefits associated with 

EAB management. Moving from the base population of 147,182 to the maximum of 5.2 
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million raises benefits by a whopping 125% due to mortality and morbidity 

improvements. This large change in net benefits is attributable to the multiplicative 

relationship between population and health incidence inherent in the log-linear 

specification of the concentration response function (see Equation (12)).  Finally, the 

discount rate lowers net benefits of ash trees. Higher discount rates of 6% and 12% 

reduce benefits by 12% and 14%, respectively, because the future is now less valuable. 

Since investments in EAB-resistant ash are immediate, whereas the benefits accrue over 

time, a greater discounting of the future will thusly lower present value net benefits.  

Based on this sensitivity analysis, I find that results are most sensitive to the 

population of the study area and the size of the tree canopy. Both parameters influence 

the magnitude of ash tree health impacts, and are easily measurable for areas of interest in 

the US. I find little sensitivity to changes in any health parameters or pollutant flux 

values. This gives some confidence in the modeling approach adopted in this chapter for 

the EAB-ash-health relationship.  

3.6 Conclusions 

 This research links invasive species management and health through a 

bioeconomic model of EAB, a North American ash tree attacking pest. The impact of 

including health in the management decision operates through two distinct channels by 

influencing the type of management used and the quantity applied. Chemical and 

biological treatments of EAB are heavily used by managers when health is omitted from 

their planning decision. Health benefits of ash trees, when accounted for by management, 

induce ecological consumption smoothing, lowering use of chemical treatments while 

increasing preemptive replacement plantings of EAB-resistant tree saplings. An 
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unexpected result of this chapter is that including health in the management decision may 

actually produce harmful short-run increases in mortality and morbidity due to a 

reallocation of resources away from slowing native tree infestation toward replacement 

plantings. For short-term planning horizons (10 years or less in our simulations) a single 

management policy of chemical and biological treatments may yield higher welfare than 

a combined treatment-replacement policy.  

Heterogeneity across infested areas along demographic, ecological, and 

underlying health dimensions necessitates a more spatially-nuanced management 

approach. Management should be particularly sensitive to infested areas that are urban, 

highly populated, and have large ash tree canopies. It is in these areas that marginal 

benefits of including health in management are perhaps the greatest because of the 

substantial health benefits provided by ash. Any uniform or “one size fits all” 

management strategy consisting of similar management intensity from infested area to 

infested area and not tailored to an area’s unique attributes will be suboptimal, as was 

demonstrated in the scenario analysis.    

Though my model provides the first rigorous insight into the importance of health 

in invasive species management, there are some limitations to the approach taken. First, it 

is assumed that SLAM is only able to slow ash mortality, but not prevent it. Recent 

computer simulations suggest that randomly using SLAM can protect 99% of an urban 

forest from EAB (McCullough & Mercader, 2012). If this technique proves to be viable 

in the field, then PLAN becomes unnecessary, raising net benefits of management. 

Second, averting or mitigating behaviors are not incorporated (e.g., proactively planting 

resistant trees, spending less time outdoors, etc.). Agents might make behavioral changes 
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in response to EAB and loss of ash cover that would change their mortality or morbidity 

risk profile. In this case, avoided health incidences of management would be overstated, 

as would net benefits. However, it is unknown how much, if at all, this is occurring. 

Third, the ability of the ecological system to naturally regenerate flora after an ash fall is 

not accounted for. In areas rich with vegetation, a lost ash tree will naturally be replaced 

with some other type of plant life. Incorporating regeneration into the model would raise 

net benefits by lowering the required amount of managed replacement planting. Future 

work might consider what species are replacing fallen ash and how their pollutant 

capturing properties compare to native ash. Additionally, ecological effects of EAB 

resistant plantings should be investigated with an eye toward induced health effects.  

These findings have important policy implications. Government funding of EAB 

management has begun to wane as the possibility of eradicating and preventing its spread 

becomes ever less likely (Miller, 2014). The inevitable loss of all North American ash 

trees seems imminent to some, reducing the sense of urgency among political leaders and 

agency heads and their willingness to commit resources. Linking EAB to health and 

human well-being, both physically and mentally, may rekindle interest in this salient 

issue. At the same time, scarce resources should be used to minimize health impacts over 

the long-term by committing Federal and state EAB management to large-scale 

preemptive planting of replacement trees, instead of more commonly used “remove and 

replace” initiatives. Setting well-defined and achievable preemptive planting goals may 

take away the “lost cause” stigma, while at the same time improving environmental 

quality, community health and individual well-being.                  
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Notes 

 

12In reality, resistance or susceptibility to invasive pests for any given tree 

depends on a multitude of factors including stress, health, age, size, etc. While some 

species are generally more naturally resistant to invaders than others, it’s still possible for 

a resistant tree to be invaded if it’s dying or unhealthy. I generalize to these two cases for 

the sake of exposition, but recognize that inter- and intra-species heterogeneity exists.   

13Total stock of trees cannot exceed the carrying capacity of the system: 𝑎𝑟𝑗(𝑡) +

𝑎𝑟𝑎(𝑡) + 𝑎𝑛(𝑡) ≤ 𝐾. 

14Similarly, in equation (3.1) new plantings cannot push the total stock of trees 

above the carrying capacity. In other words, 𝑎𝑟𝑗(𝑡) + 𝑚(𝑡) + 𝑎𝑟𝑎(𝑡) + 𝑎𝑛(𝑡) ≤ 𝐾 must 

hold at every time period.  

15See Appendix B for a detailed presentation of the exogenous EAB population 

growth model. 

16The chief difference between equation (3.8) and the one presented in Nowak et 

al. (2013) is that I make explicit the pollutant capturing effects of an individual tree.    

17Other functional forms for concentration response functions exist (e.g., linear, 

logistic, hazard models, etc.). However, the log-linear specification is the most widely 

reported in the literature.  

18As presently defined, 𝑎𝑛 contains both juvenile and adult native ash trees. This 

differs from 𝑎𝑟𝑎, which is defined as only adult trees. Environmental (and health) 

benefits of adult trees differ from saplings and juveniles due primarily to differences in 

size (Anderson & Cordell, 1988). One possible correction for this would be to include a 
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differential term, 0 < 𝜋 < 1, that represents the proportion of adult 𝑎𝑛 trees. This is 

omitted here and in equation (3.13) because I find that the results are insensitive to 

reasonable specifications of 𝜋. 

19The representative county is constructed to have average demographic, 

ecological, and baseline health incidence characteristics based on all 564 EAB infested 

US counties (as of September 2014). Using a representative county for my analysis 

allows me to talk about “average” effects, but since it is not an actual county, it serves 

only to demonstrate important features and implications of the model. Management 

results may differ for actual EAB infested counties from those presented here. 

20If a minimum or maximum does not exist in the literature for a given parameter, 

a +/- 10% sensitivity on the base value is reported. 

21http://www.epa.gov/airdata/ 

22Boulder County contains the city of Boulder, CO and is situated northwest of 

Denver. Clare County is a rural county in central Michigan containing no major urban 

centers. Hartford County contains the city of Hartford, CT along with several suburban 

and rural towns. Rockdale County is southeast of and adjacent to Atlanta and part of the 

Atlanta-Sandy Springs-Roswell, GA MSA. Rockdale contains the small city of Conyers, 

GA.  

23Full sensitivity analysis results for all 81 parameter changes are available upon 

request.  

24Of course, this analysis does not consider where the increase in ash cover comes 

from. If the growth in ash stock comes at the expense of other hardwood trees, then the 

realized benefits may be different depending on the relative values of trees.  
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Figure 3.1: Principle of Ecological Consumption Smoothing for a Hypothetical EAB 

Infested Area 
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Figure 3.2: Simulation Names by Management Type and Health Inclusion  
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Figure 3.3: “Base Case” and “Base Case with Health" Optimal Time Paths 
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Figure 3.4: “Combined Management with Health” vs. “Combined Management” Optimal 

Time Paths 
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Figure 3.5: Summary of Net Present Value Benefits across Simulations (US$) 
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Figure 3.6: Scenario Analysis Time Paths (“Combined management” vs. “Combined 

management with health”) 
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Table 3.1: Ecological and Pollutant Flux Model Parameters 

 

Parameter Description Base value Minimum Maximum Units 

Ecological 

Parameters 

     

𝑇 Ash canopy coverage areaa 27.34 26.67 28.00 𝑚2 

𝐵𝐴 Ash surface bark areab 15.43 13.89 16.97 𝑚2 

𝐾 Ash carrying capacityc 4000 1543 6156 𝑚2 bark area/acre 

𝑟 = 𝑔 Intrinsic growth rate of ashd 0.20 0.18 0.22 /yr 

𝜑 Ash mortality ratee 0.044 0.02 0.068 /yr 

𝜃 Ash transition parameterf 0.11 0.11 0.02 /yr 

𝛼 EAB emergent density for 

apparent ash diebackg 

30 25 35 EAB/𝑚2 bark area 

Pollutant Flux 

Parameters 

     

𝐵𝐿 Boundary layer heighth 550 300 1050 𝑚 

𝑉𝑑,𝑁𝑂2 Deposition velocity for NO2i 0.00225 0.00075 0.00375 𝑚𝑠−1 

𝑉𝑑,𝑆𝑂2 Deposition velocity for SO2i 0.0045 0.0015 0.0075 𝑚𝑠−1 

𝑉𝑑,𝑂3 Deposition velocity for O3i 0.00338 0.00075 0.006 𝑚𝑠−1 

𝑉𝑑,𝑃𝑀2.5 Deposition velocity for PM2.5 

(inclusive of resuspension)j 

0.00261 0.00128 0.00481 𝑚𝑠−1 

      aAverage of values reported in Anderson et al. (2000) and Remphrey et al. (1987). bCalculated for an average ash of 

60 ft. in height and 2.77 ft. in circumference. cThe carrying capacity for ash is calculated as 𝐾 = 𝐵𝐴 ∗ 𝑎𝑠ℎ_𝑎𝑐, where 

𝑎𝑠ℎ_𝑎𝑐 is the number of ash trees per acre, ranging from 100-399 with a mean of 259.2 (Soloman & Zhang, 2000; 

Kennedy, 1990). dInferred from Ludwig et al. (1978). eNowak et al. (2004). fAverage time to ash maturity is assumed 

to be 9 years; annual rate of 1/9. However, some ash species can take 40-50 years to mature, depending on soil quality 

and sunlight availability. gEmergent density of EAB when ash dieback becomes apparent calculated from Anulewicz 

et al. (2007). hAverage of day and night heights reported in Nowak et al. (2013) and Nowak (1994). iLovett (1994). 
jDay and night average from Freer-Smith et al. (2004) for various wind speeds and estimated resuspension rates.  

 

  



 

91 
 

Table 3.2: Health and Economic Model Parameters 

 
Parameter Description Base value Minimum Maximum Units 

Health 

Parameters 

     

𝐵𝐿𝑇𝑀 Baseline incidence rate for 

long-term mortalitya 

3,287.08 2,958.37 3,615.79 rate/100,000/yr 

𝐵𝑆𝑇𝑀 Baseline incidence rate for 

short-term mortalitya 

2,335.62 2,102.06 2,569.18 rate/100,000/yr 

𝐵𝐻𝐴 Baseline incidence rate for 

hospital admissionsa 

140.14 126.13 154.16 rate/100,000/yr 

𝐵𝐸𝑅 Baseline incidence rate for 

emergency room (ER) visitsa 

522.40 470.16 574.64 rate/100,000/yr 

𝐵𝑀𝑅𝐴𝐷 Baseline incidence rate for 

minor restricted activity days 

(MRAD)a 

780,000 702,000 858,000 rate/100,000/yr 

𝛽𝐸𝑅,𝑁𝑂2 Coefficient on NO2 

concentration for ER visitsb 

0.00546 0.00363 0.00729 ppb 

𝛽𝐸𝑅,𝑆𝑂2 Coefficient on SO2 

concentration for ER visitsb 

0.00437 0.00104 0.00771 ppb 

𝛽𝐿𝑇𝑀,𝑂3 Coefficient on O3 

concentration for long-term 

mortalityc 

0.00392 0.00133 0.00652 ppb 

𝛽𝑆𝑇𝑀,𝑂3 Coefficient on O3 

concentration for short-term 

mortalityd 

0.00052 0.00027 0.00077 ppb 

𝛽𝐸𝑅,𝑂3 Coefficient on O3 

concentration for ER visitse 

0.003 0.00104 0.00496 ppb 

𝛽𝑀𝑅𝐴𝐷,𝑂3 Coefficient on O3 for MRADf 0.00260 0.00108 0.00412 ppb 

𝛽𝐿𝑇𝑀,𝑃𝑀2.5 Coefficient on PM2.5 for 

long-term mortalityg 

0.00583 0.00394 0.00771 ppb 

𝛽𝐻𝐴,𝑃𝑀2.5 Coefficient on PM2.5 for 

hospital admissionh 

0.00332 0.00128 0.00537 𝜇𝑔𝑚−3 

𝛽𝐸𝑅,𝑃𝑀2.5 Coefficient on PM2.5 for ER 

visitsi 

0.0056 0.00148 0.00972 𝜇𝑔𝑚−3 

𝛽𝑀𝑅𝐴𝐷,𝑃𝑀2.5 Coefficient on PM2.5 for 

MRADf 

0.00741 0.00604 0.00878 𝜇𝑔𝑚−3 

Economic 

Parameters 

     

𝑃𝐴 Per unit value of adult ashj 848.96 771.46 926.45 $/tree 

𝑃𝐽 Per unit value of juvenile ashk 0 0 0 $/tree 

𝑃𝑀 Per unit economic value of 

forgone mortalityl 

8.70 1.00 23.36 millions of 

$/event 

𝑃𝐻𝐴 Per unit economic value of 

forgone hospital admissiona  

15,523.38 13,971.04 17,075.72 $/event 

𝑃𝐸𝑅 Per unit economic value of 

forgone ER visitsm 

360.51 346.38 374.64 $/event 

𝑃𝑀𝑅𝐴𝐷 Per unit economic value of 

forgone MRADn 

135.36 121.82 148.90 $/event 

𝑐 Marginal cost of PLAN 

management (𝑚)j 

352.86 317.57 388.15 $/𝑚2 bark area 

𝑑 Marginal cost of SLAM 

management (𝑧)o 

94.41 57.65 131.59 $/𝑚2 bark area 

     Note: all economic values are in 2014 real dollars. aUS averages estimated by the US EPA for use in national air 

quality assessments (Abt Associates, 2012). bIto et al. (2007). cJerrett et al. (2009). dBell et al. (2004). eWilson et al. 

(2005). fOstro and Rothschild (1989). gKrewski et al. (2009). hSheppard (2003). iMar et al. (2010). jSydnor et al. 

(2007). kAnderson and Cordell (1988) report no appreciable effect on property value for “small” trees. Furthermore, in 

their analysis of EAB economic impacts, Sydnor et al. (2007) only include ash ≥30cm diameter above breast height 

(dbh). lUS Environmental Protection Agency [EPA] (2014). mStanford et al. (1999). nDickie and Messman (2004). 
oSowers et al. (2009). 
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Table 3.3: EAB-detected County Summary Statistics 

 

Item Mean Std. Dev. Minimum Maximum 

Detection year 2010.22 3.31 2002 2014 

Land area (sq. mile) 524.16 230.81 58.15 1558.42 

Population 147,182 308,600 2,156 5,194,675 

Density (sq. mile) 348.35 896.16 4.0 12,415.6 

Forest cover (%) 0.26 0.11 0.16 0.52 

NO2 concentration 

(ppb) 
12.89 6.20 3.10 27.06 

SO2 concentration 

(ppb) 
2.43 1.25 0.19 7.20 

O3 concentration (ppm) 0.05 0.00 0.03 0.05 

PM2.5 concentration 

(𝜇𝑔𝑚−3) 
10.86 2.27 3.86 19.37 

      Source: detection data from USDA APHIS database. Demographic data from 

the US Census Bureau, 2009-2013. Forest cover obtained from Nowak et al. 

(2013). Concentration data are the mean of 2014 observed values from US EPA 

AirData.    
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Table 3.4: Reduction in Health Incidences due to Pollutant Removal by Ash Trees in 

“Base Case” and “Base Case with Health” Simulations 

 

Health effect 
Incidence reduction 

(base case)  

Incidence reduction 

(base case w/health) 

Difference in 

incidence (%) 
Units 

Emergency room visits 12.3 12.4 0.8% events/50 yrs. 

Hospital admissions 0.4 0.4 nil events/50 yrs. 

Minor restricted activity 

days (MRAD) 
5,135.8 5,196.7 1.2% days/50 yrs. 

Mortality 19.8 20.1 1.5% persons/50 yrs. 

     Incidence reduction is cumulative over 50 years. Difference is the percentage change in health incidence from “base 

case” and “base case with health.” Source: results of simulations performed by the authors in Powersim Studio 9. 
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Table 3.5: Reduction in Health Incidences due to Pollutant Removal by Ash Trees in 

“Combined Management” and “Combined Management with Health” Simulations 

 

Health effect 
Incidence reduction 

(combined mngmt.)  

Incidence reduction 

(combined mngmt. 

w/health) 

Difference in 

incidence (%) 
Units 

Emergency room visits 96.4 109.4 13.5% events/50 yrs. 

Hospital admissions 2.8 3.1 10.7% events/50 yrs. 

Minor restricted activity 

days (MRAD) 
40,393.9 45,836.6 13.5% days/50 yrs. 

Mortality 156.0 177.0 13.5% persons/50 yrs. 

     Incidence difference is the cumulative difference in incidences between the “combined management” simulation 

and the “combined management with health” simulation Source: results of simulations performed by the authors in 

Powersim Studio 9. 
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Table 3.6: Incidence Differences Between Simulations: (i) “Base Case” vs. “Combined 

Management with Health” & (ii) “Base Case” vs. “Base Case with Health” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Comparison (i) contrasts “combined management with health” to the “base 

case.” Comparison (ii) contrasts management profiles “base case” and “base case 

with health.” Incidence difference is from simulation inclusive of health impacts. 

Incidence differences may vary slightly from results in Tables 3.5-3.7 due to 

rounding. Source: results of simulations performed by the authors in Powersim 

Studio 9. 

  

Health effect 
Incidence difference 

(t=5) 

Incidence difference 

(t=50) 

Comparison (i)   

Emergency room visits -2.7 97.0 

Hospital admissions -0.1 2.8 

Minor restricted activity 

days (MRAD) 
-1,132.4 40,652.9 

Mortality -4.4 157.0 

NPV ($) -4,534,341,316.11 35,891,524,138.35 

   

Comparison (ii)   

Emergency room visits 0.1 0.2 

Hospital admissions 0.0 0.0 

Minor restricted activity 

days (MRAD) 
46.4 61.0 

Mortality 0.2 0.2 

NPV ($) 156,137,912.10 125,728,730.10 
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Table 3.7: Overview of EAB Counties Used in Scenario Analysis 

 

Item 
Boulder 

County, CO 

Clare County, 

MI 

Hartford 

County, CT 

Rockdale 

County, GA 

Population  310,048 30,569 898,272 86,919 

HS graduates (%) 0.939 0.839 0.881 0.862 

Median household income 

($)  
67,956 32,668 64,967 52,579 

Poverty rate (%) 0.142 0.265 0.116 0.147 

Land area (sq. mile) 726.29 564.32 735.10 129.79 

Pop. Density (sq. mile) 405.6 54.8 1216.2 656.5 

Mortality incidence (per 

100,000) 
934.6 1781.5 1394.6 1104.2 

Hospital admission incidence 

(per 100,000) 
65.2 72.4 214.7 128.0 

Emergency room incidence 

(per 100,000) 
389.8 544.2 690.8 490.4 

MRAD incidence (per 

100,000) 
780,000 780,000 780,000 780,000 

Tree cover (%) 38.0 62.4 51.3 65.9 

Ash tree cover (% of tree 

cover) 
15.0 7.5 9.5 1.0 

     Source: Demographic data is the 2009-2013 average from US Census Bureau. Baseline incidence data for 

2010 from the US EPA. Tree cover data for 2014 from the US Forest Service i-Tree Canopy and ash tree cover 

for 2013 from various sources described in the text. 
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Table 3.8: Health Incidence Reductions in Four County Scenario Analysis 

Incidence 
Boulder 

County 

Clare 

County 

Hartford 

County 

Rockdale 

County 

Emergency room visits 

(health) 
499.1 54.6 2107.0 19.5 

Emergency room visits 

(no health) 
450.2 50.9 1970.3 18.3 

Hospital admissions 

(health) 
8.9 0.8 70.1 0.6 

Hospital admissions  

(no health) 
8.1 0.7 65.5 0.5 

MRAD (health) 280,315.6 21,943.7 667,746.1 8714.3 

MRAD (no health) 252,860.2 20,469.3 624,425.1 8186.9 

Mortality (health) 310.8 46.4 1104.5 11.4 

Mortality (no health) 280.3 43.3 1032.8 10.7 

     Incidence reduction is cumulative over 50 years. (health) indicates that the simulation 

includes ash tree human health impacts and (no health) indicates that health impacts were 

omitted from the model. Source: results of simulations performed by the authors in Powersim 

Studio 9. 

 

 

 

  



 

98 
 

 

Chapter 4 

Work more and play less? Time use impacts of changing ecosystem services: the 

case of the invasive emerald ash borer 

 

4.1 Introduction 

Invasive alien species may have indirect impacts on human activities and well-

being through disruptions to ecosystem services. According to the World Health 

Organization (2015), ecological impacts of invasive species on biodiversity represent an 

existential ongoing threat to how people live and interact in their communities. 

Investigations of direct impacts of invasive species on human well-being have been made 

(e.g., Mazza et al., 2014; Vilá et al., 2011; Crowl et al., 2008), including cases of 

economic benefits (e.g., Pienkowski et al., 2015). However, there is a growing 

acknowledgement that invasive species may have nuanced and complex indirect 

anthropogenic impacts through ecosystem change, such as impacts on behavior and time 

use patterns (Pyšek & Richardson, 2010; Pejchar & Mooney, 2009). The European 

Environment Agency (2012) cautions that ecological disruption caused by alien species 

will likely precipitate “complex, unpredictable cascades of effects” on human behavior, 

due to factors such as global climate change and increasing international movements of 

people and goods. However, there is a gap in the literature on quantitative measures 

indirectly linking invasive species to human behavior vis-à-vis ecosystem change. This 

absence of empirical assessment on indirect effects hinders our ability to holistically 
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evaluate and predict when and where invasive species might produce “cascades of 

effects” and hence be most deleterious.      

The objective of this chapter is to assess indirect human behavior changes 

associated with detection of an invasive species. A natural experiment is exploited that 

caused a sharp degradation of ecosystem services, and hence a sharp decline in 

environmental quality, within a relatively short period of time across the Midwest and 

Northeast US. Tens of millions of ash trees (Fraxinus spp.) have died in the US over the 

past decade due to the introduction of invasive emerald ash borer (Agrilus planipennis), 

EAB hereafter, sharply reducing the size and diversity of forest canopies (Herms & 

McCullough, 2014). This chapter explores behaviorally-induced effects of EAB, and thus 

reductions in environmental quality, on allocation of time among individuals living in 

EAB infested US counties. Specifically, I investigate the so-called “labor-leisure 

decision” of how an individual allocates time between labor market and leisure activities. 

Labor and leisure activities are selected because they represent the second and third 

largest use of daily time, respectively, among US adults, behind sleeping (Tudor-Locke, 

2011), and are important determinants of overall human well-being (Krueger, 2009).   

Disruptions to forest ecosystems caused by alien species may affect labor and 

leisure time use either positively or negatively depending on underlying relationships 

between people and trees. Leisure time may be higher and labor time lower in areas 

abundant with trees because of increased recreational opportunities. People living 

proximal to forests and greenspace often spend more time outdoors and engage in more 

exercise than their peers (Coombes et al., 2010), perhaps at the expense of time spent 

working. Alternatively, ecosystems sustained by forests promote neighborhood cohesion 
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and meaningful social interactions (Maas et al., 2009; Kuo, 2003), which might result in 

increased economic opportunities and partnerships, increasing time devoted to labor. It is 

unclear from a qualitative perspective which, if any, of these factors might dominate. 

This has precipitated calls for additional quantitative research on indirect anthropogenic 

impacts of invasive species (Katsanevakis et al., 2014; McLaughlan et al., 2014) using 

stronger identification strategies to address issues of ecological confounding (Frumkin, 

2013). Such research can inform ongoing debates on management prioritization guided 

by a more complete understanding of ecological and economic “impact” of invasion, and 

provide information on determinants of time allocation in response to ecological shocks.  

This chapter exploits a natural experiment that created large and exogenous 

reductions in environmental quality through the sudden loss of ash trees due to the 

invasive EAB. Natural experiments are useful when randomized controlled trials are 

unavailable, as they provide an exogenous source of variation in exposure independent of 

outcome, strengthening the identification strategy (Meyer, 1995). Natural experiments 

have previously been used to study EAB and health risks (Donovan et al., 2015; Donovan 

et al., 2013), though this is the first application of this method to EAB and time use 

allocation. A fixed effects cross-county comparison design is used to explore individual 

labor and leisure time allocations before and after EAB detection, for a nationally 

representative, repeated cross-section sample of US adults in the American Time Use 

Survey.  

Results suggest that EAB has a significant impact on labor-leisure time allocation. 

Along the extensive margin, adults are less likely to engage in outdoor leisure recreation 

after detection of EAB in their county of residence and more likely to work after 
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detection compared to individuals in non-detected counties. Impacts persist for 2+ years 

after detection, indicative of long-term effects. I find no evidence of a lead effect of EAB 

detection, consistent with a causal story, and observe that the results are robust to 

alternative control specifications and inclusion of potential weather and macroeconomic 

confounding variables.      

4.2 Background 

4.2.1 Invasive species and their impacts 

 There are many ecological economic dimensions of invasive species, including 

market and nonmarket benefits and costs (Pienkowski et al., 2015; McDermott et al., 

2013; Pimentel, 2011), the public goods nature of biological exclusion and control 

(Ricciardi et al., 2011; Perrings et al., 2002), invasives as a threat to public health and 

well-being (World Health Organization, 2015; Jones & McDermott, 2015; Donovan et 

al., 2013), global economic drivers of biological invasion (Dalmazzone & Giaccaria, 

2014), and models of ecosystem changes (Gallien et al., 2010; Cook et al., 2007). A focus 

has been on the direct economic costs associated with biological invasion (e.g., Aukema 

et al., 2011; Kovacs et al., 2010) and the use of invasive species management to mitigate 

direct impacts (e.g., Vannatta et al., 2012; Settle & Shogren, 2002). Less attention has 

been given to indirect impacts, such as human behavioral patterns and interference with 

day-to-day activities, where impacts may be particularly significant (Cardinale et al., 

2012; Perrings et al., 2002).  

 Presence of an invasive pest may have direct and indirect effects on behavior. We 

might expect to observe changes related to protection of native habitats and management 
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of invasive pests through control and eradication, directly caused by detection. For 

example, farmers or homeowners may spend more time outdoors removing invasive 

weeds or spraying them with herbicides. Management of a biological invader may also 

create employment opportunities or shift time use patterns for certain types of workers. 

Indirect behavioral effects of alien species induced by changes in environmental quality 

are also possible. For example, reductions in biodiversity or loss of environmental 

aesthetics due to an invasive pest may attenuate time spent outdoors and time engaged in 

outdoor recreation activities, for example, walking, hiking, sports, or camping (Nilsson et 

al., 2011). Tuomainen et al. (2011) report that not only are behavioral changes in 

response to ecosystem degradation common both today and throughout history, but are 

often rapid and immediate, as individuals search for more favorable day-to-day living 

arrangements and social outcomes. Therefore, a case can be made that by impacting 

environmental quality, invasive species may have immediate and meaningful effects on 

behavior and time use patterns, especially in cases where ecosystem change is significant. 

Additionally, behavioral changes induced by invasive species may persist through 

time. Disruptions to ecosystems due to invasive pests are often long-term and can even be 

permanent in some cases (Pejchar & Mooney, 2009). For example, in the case of EAB, 

degradation of the forest ecosystem may persist for many years until non-ash 

replacements are introduced and grow to maturity (Herms & McCullough, 2014). The 

duration of time between ash fall and when a replacement is planted (or the forest 

naturally repopulates) and grows to maturity could be a decade or longer, depending on a 

variety of factors such as replacement species, weather, soil quality, management 
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intensity, financial budgets, etc. It is therefore likely that time use impacts of an invasive 

pest could last for several years, if not decades.  

4.2.2 Natural experiments as a source of ecological variation 

Confounding factors make it difficult to establish independent impacts of 

environmental quality on time use allocations, and labor-leisure decisions in particular. 

Correlational studies analyzing cross-sectional data cannot demonstrate a causal 

relationship. Wealthier households (who often work more hours) can afford to live in 

places with better environmental quality (Hobden et al., 2004) and are also more likely to 

exercise than less well-off households (Popham & Mitchell, 2007). Wealth or income 

might be a strong determinant of both labor and leisure time use as well as a strong 

determinant of environmental quality in the area where a person lives. This makes it 

challenging to estimate the independent causal role of quality on time use.25 More 

sophisticated identification strategies are required to tease out such nuanced mechanisms.  

 Natural experiments are often used to provide more suggestive evidence of 

correlational relationship when randomized trials are unavailable. While natural 

experiments cannot fully demonstrate causality, they exploit degrees of randomness over 

which treatments are applied, which is an important missing component from 

correlational studies. The randomness exploited in such studies may strengthen the 

identification strategy and has the potential to greatly increase our understanding of 

important economic relationships (Angrist & Krueger, 2001). 

In a recent natural experiment specific to invasive species, Donovan et al. (2013) 

exploited exogenous detections of EAB in US counties to investigate the relationship 



 

104 
 

between human health and ecosystem services provided by forests. Since spread of EAB 

is quasi-random by flight and economic activity there is a certain degree of randomness 

present in treatment assignment; an important tenant of natural experiments. Donovan et 

al. (2013) found that EAB detection was associated with 21,193 excess cardiorespiratory 

deaths over 1990-2007, which was posited to be a consequence of changes to forest 

ecology. Similar and more recent work, again using EAB detection as a natural 

experiment, suggests that woman are at greater risk of cardiorespiratory disease after 

detection of EAB in their county of residence, perhaps due in part to behavioral shifts in 

time allocation (Donovan et al., 2015). Whether or not, and to what degree, shifts in time 

allocation are occurring in response to EAB detection is an open question that if 

answered would provide evidence of a new dimension of invasive species impacts.   

To address this gap, this chapter exploits a natural experiment created by quasi-

random county-level detections of EAB from 2003-2013. I investigate two research 

questions: (i) does EAB affect the decision to participate in labor or outdoor leisure 

activities?; and (ii) what is the magnitude of the labor-leisure EAB effect and for how 

long does it persist? This chapter contributes to the literature on social impacts of 

invasive species by providing the first quantitative estimates of time use externalities 

associated with ecological disruption caused by an invasive pest, EAB.  

4.3 EAB and its impacts 

EAB is a small phloem-feeding beetle native to Asia and eastern Russia that was 

introduced into the US through transportation of ash and ash by-products, likely through 

international trade. First detected in Michigan in 2002, adult EAB lay eggs in the 

conductive tissue of ash trees. Larvae feed on the inner layers of bark, disrupting the 
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transfer of nutrients and water throughout the tree. EAB appear to attack all species of 

North American ash, including both stressed and healthy specimens. Infested ash 

typically die within 1-3 years (Poland & McCullough, 2006). As of July 2015, EAB have 

been detected in 677 US counties across 25 states and in the District of Columbia and is 

regarded as the most destructive invasive species ever introduced in the US (Herms & 

McCullough, 2014). Eradication and containment efforts have proven largely ineffective 

at controlling spread, through research continues on new chemical and biological 

treatments (McCullough & Mercader, 2012). Experts believe that the entire stock of some 

8 billion North American ash are at risk of extinction (Sydnor et al., 2011). Even the 

current extent of ash loss (estimated to be well over 100 million trees) has proven 

damaging to environmental quality and native ecosystem regimes, for example, by 

decreasing plant and insect biodiversity (Gandhi et al., 2014). Sudden changes to the 

forest canopy, especially in urban areas where ash can comprise 30% or more of total tree 

cover, could have significant impacts on behavior and time use decisions. 

 The sudden loss of ash in a neighborhood, in city parks, or along walking paths 

and streets might reduce the amount of time individuals spend outdoors. This could be 

because of reduced shade cover, increased temperatures, reduced aesthetics or natural 

beauty, or changes in perceptions of “greenness.” For example, Ellaway et al. (2005) 

found that residents living in areas with high levels of greenery, including trees, were 

three times more likely to be physically active than residents living in less green areas. 

Similarly, Roemmich et al. (2006) estimated that a 1% increase in park area was 

associated with a 1.4% increase in average physical activity among children in New 

York. Thus, one story is that loss of ash due to EAB will reduce time spent outdoors. An 
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alternative story could be that EAB may have no impact on outdoor recreation or perhaps 

have even a positive impact. A strain of literature suggests that tree cover encourages 

social interaction and enhances community and civic engagement and trust among 

community members (Elmendorf, 2008; Kuo, 2003). More meaningful interpersonal 

interactions and relationships may provide additional economic and labor market 

opportunities, increasing time spent working, perhaps at the expense of recreation and 

leisure time. Which effect may dominate is not a priori clear. More sophisticated 

empirical approaches are required.   

4.4 Methods 

4.4.1 Overall empirical approach 

To investigate time use effects of EAB, I focus on county-level EAB detections 

over 2003-2013 as officially reported by the USDA Animal and Plant Health Inspection 

Service (USDA APHIS). My research design exploits the fact that EAB are detected at 

different times in different counties. I compare time use allocations of individuals in 

detected counties to like individuals in contemporaneously non-detected counties, but 

where detection occurs within the timeframe of analysis. Fixed effects are used to control 

for unobservable county heterogeneity and underlying time trends in labor-leisure 

patterns. Differences in labor or leisure time between individuals in detected counties and 

individuals in contemporaneously non-detected counties, after controlling for 

demographic, environmental, and economic confounders, in addition to county and time 

fixed effects, can be taken as suggestive evidence of an EAB effect. Importantly, such 

evidence has stronger identification than a correlational analysis, because detection is 
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determined by an exogenous, quasi-random process, providing an “as if” random source 

of ecological variation. 

The possibility cannot be ruled out of some unobserved variable closely trending 

with both detections and time use patterns, which might bias results, falsely giving the 

appearance that EAB is related to time use. The speed and pattern of EAB’s spread (25 

states over 13 years; or just under two states annually, on average), in addition to its 

rapidly changing quasi-random detection process make it unlikely that tree loss is 

confounded by such an unmeasured factor. This viewpoint is consistent with recent 

research in this area (e.g., Donovan et al., 2015; Donovan et al., 2013). However, given 

that potential confounding may still be a concern, I also perform a lead-lag analysis 

where the effect of detection several years prior to actual detection is investigated. Lead-

lag analyses cannot demonstrate causation, but provide strong evidence in support of a 

causal story (Angrist & Pischke, 2009). If EAB is actually related to time use, then we 

should expect detection to have no impact prior to when it actually occurred. 

Additionally, I seek to eliminate several potential sources of confounding through use of 

controls of known determinants of labor and outdoor leisure time use in the preferred 

models, including controls for demography, weather, air quality, tree cover, 

macroeconomic conditions, and socioeconomics. 

4.4.2 Empirical model 

 A key feature of time use data is that they tend to contain a large number of zero 

observations. This could be because the respondent never participates in a given activity 

or because the respondent spent zero time on a given activity on the specific diary day, 

but engages in the activity in general. For example, employed people tend to work during 
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the week, but if interviewed on the weekend might report zero work time. The empirical 

challenge is in deciding whether an observed zero is a true zero or simply represents a 

disconnect between the period of a diary day (a single 24h period) and the period of 

interest over which decisions are made (e.g., weeks, months, or longer). Stewart (2009) 

demonstrates via data simulations that if an observed zero is due to mismatch (i.e., the 

respondent engages in the activity though not on the diary day) ordinary least squares 

(OLS) generates unbiased estimates compared to a Tobit (censored regression) or a two-

part model. However, Stewart (2009) also points out that if it is not possible to identify 

those who never engage (“non-doers”) from those who do (“doers”), then OLS along 

with the Tobit and two-part models produce biased estimates. In practice, it is often the 

case that non-doers cannot be separated from doers, especially for the ATUS which only 

provides a single 24h window of observation. There does not appear to be a convincing 

way to identify a doer from a non-doer in this setting without making some potentially 

strong assumptions. Therefore, two-part, OLS, and Tobit results will all be biased to a 

given degree.  

 Since theory is an imperfect guide of model selection and since there are ongoing 

debates in the literature as to how time use diary data should be modeled (e.g., Foster & 

Kalenkoski, 2013; Frazis & Stewart, 2012; Stewart, 2009), the labor-leisure decision is 

modeled using the three most appropriate and commonly applied techniques. First, a two-

part model (Jones, 2000; Cragg, 1971) is used. In a two-part model, the first stage 

decision to participate in an activity (extensive margin) is modelled separately from the 

second stage decision of how much time to devote to the activity given any participation 

(intensive margin). As it is commonly applied (e.g., Bäck et al., 2014; Vaara & Matero, 
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2011) the first stage is estimated using a discrete choice regression model (e.g., logit, 

probit), while conditional OLS is used in the second stage on the subset of individuals 

participating in the activity. The second model used is a Tobit, which is a censored 

regression model with flexibility to account for large numbers of zeros. The Tobit is also 

often applied to time use data (Kimmel & Connelly, 2007; Kalenkoski et al., 2005). An 

assumption made when using a Tobit is of identical latent processes for participation and 

time use. If observed zero time use for an activity is assumed to be from actual non-doers, 

then the Tobit may be an appropriate choice (Foster & Kalenkoski, 2013) and will 

produce consistent estimates (Amemiya, 1973). Finally, an unconditional OLS is used on 

the full respondent sample following Cawley and Liu (2012). As previously mentioned, 

this will produce unbiased estimates if all respondents are assumed to be doers, though 

perhaps not on their diary day. Estimates are compared and contrasted across the three 

models.   

The basic econometric model is: 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐 = 𝛽𝐷𝐸𝑇𝑡𝑐 + 𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐 + 𝜃𝐶𝑀𝐴𝐶𝑡𝑐 + 𝜎𝑇𝑅𝐸𝐸𝑡𝑐 + 𝛿𝑋𝑎𝑡𝑐 + 𝜇𝑡 + 𝜋𝑐 + 휀𝑎𝑡𝑐          (4.1) 

where the outcome of interest is the time spent in either outdoor leisure recreation or 

work (𝑇𝐼𝑀𝐸) by individual a during the diary day at time t residing in county c, the 

regressor of interest is an indicator variable of EAB detection 𝐷𝐸𝑇 at time t in county c, 

and we jointly control for air quality and weather 𝑊𝐸𝐴𝑇𝐻 at time t in county c, the 

percentage of county land area covered by trees 𝑇𝑅𝐸𝐸 at time t in county c, a vector of 

county-level macroeconomic characteristics 𝐶𝑀𝐴𝐶 at time t in county c, and a vector of 

characteristics 𝑋 of individual a at time t in county c. 𝜇𝑡 is a time fixed effect and 𝜋𝑐 is a 

county fixed effect. Fixed effects are important components for allowing control of 
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unobservable time trends in leisure and work patterns and unobservable county 

heterogeneity that may drive labor-leisure time allocations.      

 Specific variables included in equation (4.1) are age (and its square), gender, log 

annual household income, whether there is a child under the age of 18 in the household, 

whether the residence is owned by the respondent or another household member, race, if 

the respondent is married, student status, employment status, if the interview day was a 

holiday, day of week of interview, month of interview, county median income, 

percentage of county population in poverty, county unemployment rate, percentage of 

county with a high school diploma, air quality index (AQI), snowfall, precipitation, 

maximum temperature, minimum temperature, and percent tree cover. For the labor time 

use equations, a control for business cycles is also included since labor market conditions 

can vary considerably across business cycles, and a control for self-reported health status 

(=1 if “fair” or “poor” health; =0 otherwise) is used to control for sick days.            

 Equation (4.1) is estimated in a variety of ways. For the two-part model, separate 

estimations are made of a logit version of the extensive margin decision for whether to 

spend time in leisure or work and a conditional OLS version of the intensive margin 

decision of minutes spent in leisure or work: 

First-stage Logit (two-part model) 

Pr(𝐵𝐼𝑁_𝑇𝐼𝑀𝐸𝑎𝑡𝑐 = 1)

= 𝐹(𝛽𝐷𝐸𝑇𝑡𝑐 + 𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐 + 𝜃𝐶𝑀𝐴𝐶𝑡𝑐 + 𝜎𝑇𝑅𝐸𝐸𝑡𝑐 + 𝛿𝑋𝑎𝑡𝑐 + 𝜇𝑡 + 𝜋𝑐) 

                             =
1

1 + 𝑒−(𝛽𝐷𝐸𝑇𝑡𝑐+𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐+𝜃𝐶𝑀𝐴𝐶𝑡𝑐+𝜎𝑇𝑅𝐸𝐸𝑡𝑐+𝛿𝑋𝑎𝑡𝑐+𝜇𝑡+𝜋𝑐)
                              (4.2𝑎) 
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where 𝐵𝐼𝑁_𝑇𝐼𝑀𝐸 is a binary variable that equals 1 if the respondent engaged in any 

leisure or labor on the diary day and zero otherwise, and 𝐹(. ) is the cumulative standard 

logistic distribution function. The second-stage equation is presented as, 

Second-stage Conditional OLS (two-part model) 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐 > 0 = 𝛽𝐷𝐸𝑇𝑡𝑐 + 𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐 + 𝜃𝐶𝑀𝐴𝐶𝑡𝑐 + 𝜎𝑇𝑅𝐸𝐸𝑡𝑐 + 𝛿𝑋𝑎𝑡𝑐 + 𝜇𝑡 + 𝜋𝑐

+ 휀𝑎𝑡𝑐                                                                                                                             (4.2𝑏) 

which uses respondents reporting >0 time spent on labor or leisure on the diary day.  

A Tobit version of equation (4.1) is estimated employing a lower bound at zero. 

Let 𝑇𝐼𝑀𝐸∗ be the latent variable and 𝑇𝐼𝑀𝐸 the observed variable. The general Tobit 

formulation is then: 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐
∗ = 𝛽𝐷𝐸𝑇𝑡𝑐 + 𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐 + 𝜃𝐶𝑀𝐴𝐶𝑡𝑐 + 𝜎𝑇𝑅𝐸𝐸𝑡𝑐 + 𝛿𝑋𝑎𝑡𝑐 + 𝜇𝑡 + 𝜋𝑐 + 휀𝑎𝑡𝑐 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐 = 0                      𝑖𝑓 𝑇𝐼𝑀𝐸𝑎𝑡𝑐
∗ ≤ 0,                                                                                        (4.3𝑎) 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐 = 𝑇𝐼𝑀𝐸𝑎𝑡𝑐
∗         𝑖𝑓 𝑇𝐼𝑀𝐸𝑎𝑡𝑐

∗ > 0. 

with associated log likelihood function (Greene, 2008): 

ln 𝐿 = ∑ −
1

2
[log(2𝜋) + 𝑙𝑛𝜎2 +

(𝑇𝐼𝑀𝐸𝑎𝑡𝑐 − 𝑥𝑎𝑡𝑐
′ 𝛼)2

𝜎2

𝑇𝐼𝑀𝐸𝑎𝑡𝑐>0

] + ∑ ln [1 − Φ (
𝑥𝑎𝑡𝑐

′ 𝛼

𝜎
)] 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐=0

          (4.3𝑏) 

where 𝑥𝑎𝑡𝑐
′ 𝛼 is a condensed form vector version of the regressors in equation (4.1), 𝜎2 is 

the error variance, and Φ is the standard normal cumulative density function. I focus on 

the Tobit marginal effects for uncensored observations, 

𝜕𝐸[𝑇𝐼𝑀𝐸𝑎𝑡𝑐|𝑥𝑎𝑡𝑐 , 𝑇𝐼𝑀𝐸𝑎𝑡𝑐 > 0] 𝜕𝑥𝑎𝑡𝑐⁄ , since the main interest is on the average effect of EAB 

on positive time use.    
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Finally, an unconditional OLS version of equation (4.1) is estimated on the full 

respondent sample, including those with zero and non-zero labor-leisure time use: 

𝑇𝐼𝑀𝐸𝑎𝑡𝑐 ≥ 0 = 𝛽𝐷𝐸𝑇𝑡𝑐 + 𝛾𝑊𝐸𝐴𝑇𝐻𝑡𝑐 + 𝜃𝐶𝑀𝐴𝐶𝑡𝑐 + 𝜎𝑇𝑅𝐸𝐸𝑡𝑐 + 𝛿𝑋𝑎𝑡𝑐 + 𝜇𝑡 + 𝜋𝑐 + 휀𝑎𝑡𝑐  (4.4) 

Equations (4.2)-(4.4) are estimated separately for labor and leisure time use. Only 

working age adults (>15 years of age) are included in the analysis. All specifications use 

cluster-robust standard errors at the county level.    

4.5 Data 

Time use data comes from the American Time Use Survey (ATUS). This is a 

nationally-representative, repeated cross-sectional diary survey completed annually since 

2003. A subset of adults on their outgoing Current Population Survey (CPS) rotation are 

selected to participate in the ATUS. The respondent is asked to detail all activities they 

engaged in and the duration of time spent in each activity over a single 24-hour period 

(4am on the previous day to 4am on the interview day). Each activity and its duration are 

appropriately coded to fully account for every minute of the respondent’s day. For more 

information on the ATUS, see the ATUS User’s Guide (BLS, 2014).  

 The ATUS-X extract builder (www.atusdata.org) was used to construct the 

dataset for this chapter. All years for which ATUS data are available were selected 

(2003-2013). This produced 148,345 initial observations. Time use variables were 

constructed for minutes engaged in outdoor recreation (OUT_REC) and minutes engaged 

in work or work-related activities (WORK). Some 24 sport, exercise, and recreation 

activities are included in OUT_REC, from football and baseball to walking and biking to 

lawn care and outdoor home repair. Activities not performed outdoors were excluded as 
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were minutes where the respondent was engaged in a relevant activity, but were not 

outdoors (e.g., driving to a baseball game). Activities included in WORK are time spent 

working in a job, time spent in work-related activities (e.g., a business lunch, driving to 

work, etc.), and other income-generating activities (e.g., side jobs).  

 To obtain respondent county of residence, ATUS data were merged with monthly 

CPS datasets from the National Bureau of Economic Research (NBER). Respondents 

living in counties with populations less than 100,000 are not identified in the CPS for 

privacy reasons. County of residence was successfully identified for 65,629 unique 

respondents (44% match rate).    

 A listing of all US EAB county-level initial detections from 2002 through 2014 

was obtained from the USDA APHIS. This includes date (mm/dd/yy) of detection and 

county and state name. EAB has been detected in 564 counties as of September 2014. 

Once EAB has been detected in a county, it is considered to be permanently infested. By 

county and date, initial EAB detections were merged with the combined ATUS-CPS 

dataset. This allows identification of county infestation status on each respondent’s 

ATUS interview date. Merging produced 16,600 ATUS-CPS respondents living in a 

county where EAB was detected between 2003 and 2013.  

Weather has been identified as a potential confounder of time spent outdoors 

(Bäck et al., 2014). To control for this, daily county-level temperature (minimum and 

maximum), precipitation, and snowfall data were obtained from the National Climatic 

Data Center (NCDC) for 2003-2013. Data reported by the NCDC are for individual 

monitoring stations and most counties have multiple stations. To get county-level results, 

median weather values were calculated across stations within each county. Using the 
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median value reduces the effect of extreme values, which may not represent weather 

experienced by most of the population.26 For a few counties on a few days, weather data 

could not be obtained due to all stations being offline or not reporting on that day. 

County-level data were obtained on a respondent’s interview date for maximum 

temperature (95% match rate), minimum temperature (95% match rate), precipitation 

(99% match rate), and snowfall (96% match rate).       

To control for other environmental influences on time use, air quality data was 

extracted from the US EPA’s AirData System and tree canopy data was obtained from 

the USGS National Land Cover Database (NLCD). Air quality is determined by the Air 

Quality Index (AQI), a 0 to 500 scaling of observed air pollutants regulated under the 

Clean Air Act: particulate matter (PM), ozone (O3), carbon monoxide (CO), sulfur 

dioxide (SO2) and nitrogen dioxide (NO2). The highest pollutant AQI value observed 

within the county determines the overall AQI score for a given day. Higher scores 

indicate greater health risks of exposure. Daily AQI data were obtained for each EAB 

infested county from 1/1/03 to 12/31/13. To determine tree canopy extent, NLCD 

“Percent Tree Canopy” conterminous US raster files were downloaded for 2001, 2006, 

and 2011. GIS spatial analysis tools were used to calculate the annual percent of forested 

land cover in each county. For years between data releases, percent tree cover was 

linearly interpolated, and for years outside releases (2012 and 2013) a linear extrapolation 

was used.             

Macroeconomic conditions may also be important determinants of labor and 

leisure time use allocations. Therefore, data on county-level macroeconomic measures 

were obtained from the US Census Bureau Small Area Income and Poverty Estimates 
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(SAIPE), the decennial US Census, and the Bureau of Labor Statistics Local Area 

Unemployment Statistics (BLS LAUS). Specifically, annual data over 2003-2013 were 

collected on percentage of the county population with a high school diploma or college 

degree (decennial census), percentage of households below the Federal poverty level 

(SAIPE), median income of the county (SAIPE), and county unemployment rate (BLS 

LAUS). Educational attainment data is decennial, so a linear interpolation was used for 

years between censuses.27     

Summary statistics for the final constructed dataset are presented in Table 4.1. 

After dropping missing or “not in universe” ATUS (8215 obs.) and weather (847 obs.) 

values, n=6936 useable observations remain across 102 counties, representing 21.7% of 

EAB infested counties between 2003 and 2013 and 22.0% of the US population. ATUS 

respondents spend an average of 16 minutes on outdoor leisure recreation on interview 

days and an average of 189 minutes (3 hours) working. The proportion of respondents 

reporting any (>0) outdoor recreation time is 13% and the proportion reporting any (>0) 

work time is 45%. Mean family income of $64,500 is lower than the national average of 

$72,600 as reported by the US Census Bureau in 2014, though the fact that ATUS 

censors income at $150,000 may explain this difference.    

4.6 Results 

4.6.1 Two-part model results 

 Two-part model results are presented in Table 4.2 for the extensive margin 

decision of engaging in outdoor leisure or work (logit) and for the intensive margin 

decision of how many minutes to engage in labor or leisure given participation (OLS). 
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Time use is divided into panels A (outdoor leisure recreation) and B (labor time). 

Controls used in each regression are described at the bottom of each panel along with 

goodness-of-fit measures. The coefficients on the detection variables measure the 

independent effects of a positive EAB detection in the county by time since detection; 

within the first year, 1-2 years, and 2+ years after detection. Z- or t-statistics are reported 

below each coefficient value. Pairs of equations for each two-part model (one logit and 

one OLS) are numbered (1) to (4) in each panel and will be referred to as “columns” in 

what follows.  

 For outdoor leisure recreation (panel A), column 1 illustrates a negative 

relationship between EAB detection and probability of spending any amount of time 

recreating outdoors when no controls are included. The effect is only present within the 

first year of detection (1% significance). There is no statistical evidence of intensive 

margin effects on time use in column 1. Adding demographic and county economic 

controls in column 2 increases the magnitude and significance of detection (1-2 years). 

Detection of EAB has both an immediate (≤ 1 year) and medium-term (1-2 years) 

negative impact on the probability that an adult engages in outdoor leisure recreation. 

There is also weak evidence (at the 10% level) of EAB effects on the intensive margin 

decision within the first year of detection.  

In column 3 controls are added for weather, AQI, and forest cover and a stronger 

negative effect of detection after 1-2 years is observed, while the immediate effect of 

detection remains negative and significant at the 1% level. Including year and county 

fixed effects (column 4) makes the coefficient on detection (2+ years) negative and 

marginally significant (10% level). Initial EAB detection now has an immediate and 
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persistent effect on leisure time, though the effect appears to diminish over time. Column 

4 is the preferred model because it has the most controls for potential confounding 

variables known to influence labor and leisure. Computing marginal effects of column 4, 

I find that within the first year of EAB detection, there is a 6.2% (p<0.001) drop in the 

probability that an adult recreates outdoors for leisure purposes, a 5.6% (p<0.01) drop 

between years 1 and 2, and a 4.2% (p<0.1) drop for years 2 and higher. No significant 

impact of EAB detection on the minutes spent outdoors (intensive margin) is observed in 

the preferred model. 

 Time devoted to labor (panel B) is impacted in the opposite direction to leisure 

time. In the preferred model in column 4, EAB detection has a positive and immediate 

impact on the probability of engaging in labor activities within the first year of detection 

and has a positive persistent and significant impact on the probability of labor time 2+ 

years after detection. Specifically, marginal effects suggest an 8.8% (p<0.01) increase in 

the probability spending anytime at work within the first year of detection and a 7% 

(p<0.05) increase for 2+ years after detection.  

Similar to the leisure time results, no intensive margin impact of detection on the 

number of minutes spent on labor time is observed. Interestingly, there is also no 

significant relationship observed between detections and labor time use in columns 1-3. 

Only when all control variables and fixed effects are included does a positive association 

become significant. There is no immediate explanation for this finding. Based on the 

results of the preferred model, there is evidence of immediate and persistent impacts of 

EAB detection on the labor time use decision. If we assume that the increase in labor 

time is at least partially a result of re-allocation away from outdoor leisure time, then 
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these results along with those for outdoor leisure recreation in panel A suggest that EAB 

detection is associated with substitution of leisure with labor time.  

4.6.2 Tobit model results 

 Tobit estimation results are presented in Table 4.3, again divided into panels A 

(leisure) and B (labor) with the controls used in each regression described at the bottom 

of each panel. In the basic outdoor leisure recreation model with no control variables 

(column 1), EAB detection has a negative and significant (1% level) impact on minutes 

spent in leisure activities within the first year of detection and a negative and marginally 

significant (10% level) impact after 1-2 years of detection. Controlling for demographic, 

weather, and county economic characteristics in columns 2 and 3 has little impact on the 

detection coefficients though improves model fit. Including year and county fixed effects 

in column 4 causes the coefficients on detection (≤1 year) and detection (1-2 years) to 

become more negative and significant (1% and 5% levels, respectively), while also 

causing the coefficient on detection (2+ years) to flip in sign and become marginally 

significant (10% level).  

The uncensored marginal effects of detection on outdoor leisure time, 

𝜕𝐸[𝑂𝑈𝑇_𝑅𝐸𝐶|𝑥, 𝑂𝑈𝑇_𝑅𝐸𝐶 > 0] 𝜕𝑥⁄ , were calculated for the preferred model in column 4. 

They suggest that EAB detection is associated with a 14.23 minute (p<0.001) decline in 

leisure time in the first year after detection, an 11.10 minute (p<0.05) decline in years 1-

2, and an 8.13 minute (p<0.1) decline 2 years or more after initial EAB detection. Note 

that the effects of detection diminish and become less significant as we move further 

away in time from the point of initial detection. Additionally, Tobit results are consistent 
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with those from the two-part model insofar as detection has an immediate (first year) and 

persistent (2+ years) impact on leisure time use.     

The preferred labor time use model results in panel B, column 4 suggest a positive 

relationship between detection and minutes spent on work or work-related activities. The 

5% significance on coefficients for both detection (≤1 year) and detection (2+ years) 

indicates an immediate and persistent effect of EAB detection on labor time. Similar to 

two-part model results, I find no relationship between detection and labor time use in the 

models with fewer controls (columns 1-3). For the preferred model in column 4, EAB 

detection is associated with a 34.83 minute (p<0.05) increase in labor time within the first 

year of detection and a 29.84 minute (p<0.05) increase for years 2 and higher after 

detection. Note that effects are diminishing as time since detection increases. Consistent 

with the two-part model results, detection has an almost zero and highly insignificant 

effect on labor time 1-2 years after detection. Why EAB effects labor time immediately 

after detection and again 2 years after detection, but not for years 1-2 is puzzling. Overall, 

the narrative from the Tobit results is consistent with the two-part model; initial county 

detections of EAB are associated with fewer minutes spent on outdoor leisure activities 

and more minutes spent on work and work-related activities. Effects appear immediately 

after detection and persist for 2 years and longer past detection, indicative that perhaps 

changes to time use patterns are permanent.   

4.6.3 Unconditional OLS model results 

Finally, unconditional OLS results on the full respondent sample are considered, 

including those not engaging in any outdoor leisure or labor activities on the diary day. 

Results of these regressions are presented in Table 4.4 by activity panel. There is a 
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negative relationship between detection and leisure time use for the first year after EAB 

detection and 1-2 years after detection across all four specifications in columns 1-4. 

Adding controls increases the magnitude and significance of the negative association. 

The preferred model in column 4 indicates that EAB detection is associated with a 9.01 

minute (p<0.001) decline in time spent on leisure recreation activities in the first year 

after detection and an 8.32 minute (p<0.05) decline in years 1-2 after initial detection. 

This contrasts with two-part model and Tobit results where evidence of a persistent effect 

of detection on leisure time use more than 2 years after initial detection was observed. 

OLS results indicate no persistent impacts on leisure time use. 

Work and work-related OLS time use results (panel B) for the majority of models 

estimated show no meaningful relationship between labor and detection. In the preferred 

model in column 4, a weak positive association between EAB detection and minutes 

spent working within the first year of detection is observed, consistent with two-part 

model and Tobit results. However, there is no persistent impact 2+ years after detection 

in contrast to two-part and Tobit model results. Differences in assumptions surrounding 

the data generating process (i.e., doers vs. non-doers) may explain why a persistent labor 

market effect is not observed. Nevertheless, there is nothing in the unconditional OLS 

results that are inconsistent with findings from the other two econometric models 

estimated. In fact, there is weak confirmatory evidence for the first year of detection.  

Overall, results across the three econometric models investigated consistently 

demonstrate that detection is negatively related with time spent on leisure recreation and 

positively associated with time spent on work and work-related activities. Furthermore, 

as time since initial detection increases, impacts diminish in magnitude as one might 



 

121 
 

expect. The consistency of results across models demonstrates that results are robust to 

various assumptions on the data generating process.  

4.7 Leads and lags analysis 

 Additional support for a causal story of EAB detection impacts on the labor-

leisure decision comes from an investigation of detection leads and lags. If the underlying 

cause of the labor-leisure time use changes is detection of EAB, then we expect to 

observe significant lag effects (i.e., post-detection impacts), but insignificant lead effects 

(i.e., pre-detection impacts). In other words, the detection variable should have no impact 

prior to when actual detection occurred, but should have a meaningful impact on or after 

actual detection. This pattern, if demonstrated, would be consistent with a causal 

interpretation of results, as discussed by Angrist and Pischke (2009). Such an analysis 

can also provide a concise visual representation of the impacts associated with an 

ecological shock.   

 A lead and lag analysis on the labor-leisure decision was performed by 

respecifying the preferred econometric models to include one, two, and three year lead 

effects of EAB detection. These were constructed as indicator variables just as the 

previously reported lagged detection (≤ 1 year), (1-2 years), and (2+ years) variables 

were. The same set of confounding variables were controlled for as in the preferred 

model (4) in Tables 4.2-4.4, in addition to year and county fixed effects. The lead effects 

capture any effect of detection one to three years prior to when actual detection occurred. 

For the main effect results to be consistent with a causal story, the lead effects should all 

be insignificant, indicative that we have identified an actual driver of the labor-leisure 

time use decision instead of some other non-detection related confounder.  
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 Results of the lag-lead analysis for the two-part model are in Figure 4.1. Tobit and 

unconditional OLS lag-lead results are in Figure 4.2. Average marginal effects or 

estimated coefficient values and there 95% confidence intervals are plotted for each of 

the three leads (3 years before, 2 years before, or 1 year before) and three lags (0-1 years 

after, 1-2 years after, 2+ years after) relative to EAB detection. Figure 4.1 is divided 

vertically into outdoor leisure recreation and labor time, and activities are divided 

horizontally into (i) logit (extensive margin) and (ii) conditional OLS (intensive margin) 

plots. As expected, across all plots in Figure 4.1 lead detection variables are statistically 

insignificant and generally close to zero. Along the extensive margin plots in (i), leads 1, 

2, or 3 years prior EAB detection have insignificant effects on leisure time use. 

Consistent with the previously reported numerical results, there is a significant drop in 

the probability of engaging in leisure recreation and a significant increase in the 

probability of engaging in any labor activity immediately after detection. Changes in 

marginal effects generally persistent for 2+ years after detection, though are diminished 

in magnitude and significance compared to the initial effect. Neither the leads nor the 

lags of detection are significant along the extensive margin (plots labeled (ii)), mirroring 

earlier findings of no impact of EAB detection on the conditional decision of how much 

time to devote to a given activity. Importantly, however, is that the lead effects on the 

conditional decisions are all insignificant, consistent with a causal story.  

   Tobit and unconditional OLS results (Figure 4.2) are separated by panels, which 

are further divided into time use activities. In panel A, uncensored Tobit marginal effects 

are plotted along with 95% confidence intervals. Lead effects 1, 2 and 3 years prior to 

detection for outdoor leisure and labor time use are all highly insignificant and generally 
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close to zero. Immediately after detection, we see significant declines in leisure time use 

and significant increases in time devoted to labor, consistent with earlier findings. Lagged 

detection variables diminish in magnitude and significance as we move further away 

from the point of initial detection, though there is evidence of persistent effects 2+ years 

after detection for both leisure (10% level) and labor (5% level) time use. Coefficients 

and associated 95% confidence intervals for unconditional OLS results are presented in 

panel B. Leads 1, 2, and 3 years before EAB detection are all insignificant at 

conventional levels. Post-detection lags are negative and generally significant for outdoor 

leisure recreation, though not persistent for 2+ years after detection. Detection lags for 

labor time are positive for 0-1 years and 2+ years after detection though not significant at 

the 5% level, consistent with our earlier results.  

 Across all models, detection has insignificant lead effects on the labor-leisure 

time use, consistent with a causal EAB story. Given the cross-sectional nature of the data, 

definitive evidence of a causal link between EAB detections and time use decisions 

remains elusive. However, use of a natural experiment along with causally-consistent 

results from a lag-lead analysis provides a stronger identification strategy than 

conventional cross-sectional approaches, and subsequently, stronger suggestive evidence 

of the impact of invasive species on time use habits.  

4.7 Conclusions 

 Shocks to ecological systems brought about by invasive species may have impacts 

on human behavior along multiple dimensions. In this chapter, the relationship between 

environmental quality and the labor-leisure time use decision in highly populated areas 

was investigated. By exploiting a natural experiment created by detections of the invasive 
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emerald ash borer (EAB) in the Midwest and Northeast US (2003-2013), I examined how 

shocks to ash tree coverage and quality impacted individual’s minutes allocated to labor 

market activities and outdoor leisure recreation. Results indicate an immediate impact of 

detection on labor-leisure time use, persisting for 2+ years. Specifically, adults spend 

fewer minutes on outdoor leisure activities and more minutes on labor activities post-

detection. Effects are especially pronounced along the extensive margin decision of 

whether to participate in any nonzero amount of labor or leisure time. This is perhaps 

more troubling than an effect along the intensive margin because it indicates a complete 

shift away from any level of participation, which might be detrimental to health, 

consistent with recent evidence on EAB (Donovan et al., 2015; Donovan et al., 2013).  

 Findings illustrate yet another social externality of invasive EAB, further 

underscoring the importance of managing its spread away from currently non-infested 

areas. Additionally, public awareness campaigns might be warranted, in light of these 

results, encouraging people in infested areas to go outdoors and reaffirming that EAB 

poses no direct threat to health or safety. Future research might investigate the role that 

publically-available information on EAB has on behavior both in the short- and long-

term. It is perhaps surprising that detections have an immediate effect on time use habits 

when tree mortality is generally delayed by 1-3 years after initial infestation. While this is 

consistent with previous findings of immediate impacts of EAB from Donovan et al. 

(2013), a mechanistic explanation is still lacking. It is possible that immediate impacts 

are informationally-induced, creating some type of environmental “fear factor” that shifts 

behavioral patterns and keeps people indoors. I leave this to future research.     
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Notes 

 25Simply controlling for wealth or income in an empirical model is not sufficient 

to address this concern. Wealth correlates with environmental quality (through residential 

sorting), while additionally correlating with labor-leisure time use allocations. To isolate 

the independent effect of environmental quality on time use, residential sorting has to be 

dealt with, otherwise the effects of environmental quality will be overstated. So-called 

“equilibrium sorting” models can be used to capture such wealth effects, though the 

development and application of such models is still in its infancy (Kuminoff, Smith & 

Timmins, 2013).  

 26This will matter most for counties with large intra-county weather heterogeneity 

due to large differences in elevation, for example, Boulder County, CO.   

 27See Appendix C for additional information on the data collection process. 
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Figure 4.1: Two-Part Model Leads and Lags Marginal Effects of EAB Detection on 

Labor and Leisure Time Use 

 

OUTDOOR LEISURE RECREATION 

(i) Logit (extensive margin)                        (ii) Conditional OLS (intensive margin) 
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(i) Logit (extensive margin)           (ii) Conditional OLS (intensive margin) 
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Figure 4.2: Tobit and Unconditional OLS Leads and Lags Marginal Effects of EAB 

Detection of Labor and Leisure Time Use 
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Table 4.1: Summary Statistics of Combined ATUS-CPS and EAB Detection Dataset 

(n=6936) 

 Mean St. Dev. Min Max 

Time Use     

    OUT_REC 16.25 59.40 0 890 

    Pr(OUT_REC>0) 0.13 0.34 0 1 

    WORK 189.12 249.68 0 1380 

    Pr(WORK>0) 0.45 0.50 0 1 

Daily Weather     

    Minimum temperature (°F) 41.16 50.00 -12.46 81.05 

    Maximum temperature (°F) 60.31 52.20 1.58 102.47 

    Precipitation (in.) 0.11 0.30 0 5.34 

    Snowfall (in.) 0.11 0.65 0 16.56 

EAB Detected Counties     

    Year of detection 2008.59 3.96 2003 2013 

    High school diploma 0.89 0.03 0.80 0.97 

    Four year college degree 0.32 0.12 0.11 0.62 

    Household income 55875.31 16115.65 33958 119525 

    Poverty rate 0.12 0.05 0.03 0.28 

    Unemployment rate 0.07 0.03 0.02 0.18 

    AQI 45.57 24.27 0 203 

    Percent tree canopy 0.23 0.16 0.02 0.75 

Individual Characteristics     

    Age 33.94 9.84 15 85 

    Female 0.55 0.50 0 1 

    Bachelor’s degree 0.30 0.46 0 1 

    Student 0.19 0.39 0 1 

    Hispanic 0.07 0.26 0 1 

    Black 0.15 0.36 0 1 

    Married 0.49 0.50 0 1 

    Homeowner 0.72 0.45 0 1 

    Unemployed 0.08 0.27 0 1 

    Family income 64501.39 41155.68 5000 150000 

     Note: family income censored between $5000 and $150,000 in the ATUS.  
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Table 4.2: Results of Two-Part Model for Labor and Outdoor Leisure Time Use 

                                                                    A. Outdoor Leisure Recreation 

                                                        (1)                              (2)                              (3)                              (4) 

 
Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) 

Detection (≤1 year) 
-0.59*** 

(-2.61) 

-3.75 

(-0.27) 

-0.57*** 

(-2.85) 

-25.79* 

(-1.78) 

-0.56*** 

(-2.79) 

-26.98* 

(-1.91) 

-0.82*** 

(-3.69) 

-25.43 

(-1.35) 

Detection (1-2 years) 
-0.40 

(-1.63) 

-3.66 

(-0.25) 

-0.50* 

(-1.95) 

-14.53 

(-1.01) 

-0.51** 

(-2.01) 

-12.32 

(-0.85) 

-0.71** 

(-2.06) 

2.24 

(0.11) 

Detection (2+ years) 
0.02 

(0.14) 

10.47 

(1.09) 

0.06 

(0.47) 

3.00 

(0.30) 

0.10 

(0.74) 

4.80 

(0.45) 

-0.45* 

(-1.73) 

-2.05 

(-0.09) 

Demographic and day 
controls 

  x x x x x x 

Weather, AQI, and forest 

cover controls 
    x x x x 

County economic controls   x x x x x x 

Year fixed effect       x x 

County fixed effect       x x 

Pseudo R2 (or R2) 0.00 0.00 0.11 0.16 0.12 0.17 0.16 0.29 

Log likelihood -1.85e10 - -1.66e10 - -1.64e10 - -1.57e10 - 

Observations 6913 936 6913 936 6913 936 6913 936 

                                                                                 B. Labor Time 

                                                        (1)                              (2)                             (3)                              (4) 

 
Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) Logit 

OLS 

(y>0) 

Detection (≤1 year) 
0.24 

(1.12) 

-11.14 

(-0.62) 

0.35 

(1.43) 

-1.79 

(-0.11) 

0.35 

(1.49) 

-3.37 

(-0.20) 

0.50** 

(2.45) 

7.34 

(0.32) 

Detection (1-2 years) 
-0.27 

(-1.40) 

-32.01 

(-1.20) 

-0.06 

(-0.29) 

-8.89 

(-0.40) 

-0.05 

(-0.22) 

-10.10 

(-0.47) 

-0.01 

(-0.05) 

-2.48 

(-0.09) 

Detection (2+ years) 
-0.09 

(-0.85) 

-9.21 

(-0.83) 

0.12 

(1.01) 

-1.83 

(-0.19) 

0.13 

(1.09) 

-3.42 

(-0.38) 

0.39** 

(2.08) 

2.80 

(0.14) 

Demographic and day 
controls 

  x x x x x x 

Weather, AQI, and forest 

cover controls 
    x x x x 

County economic controls   x x x x x x 

Year fixed effect       x x 

County fixed effect       x x 

Pseudo R2 (or R2) 0.00 0.00 0.18 0.24 0.18 0.24 0.22 0.29 

Log likelihood -2.07e10 - -1.71e10 - -1.71e10 - -1.62e10 - 

Observations 3951 1835 3951 1835 3951 1835 3951 1835 

     Note: Results of county-level EAB detection for the first year, second year, and 2+ years are reported. Logit results are for the extensive 

margin participation decision and OLS results are for the intensive margin time use decision conditional on participation. Demographic 

and day control variables include age (its square), gender, log annual household income, presence of child in household, whether residence 

is owned by respondent or other household member, married, student, employment, day of week, month of interview, and whether 

interview day was a holiday. For labor time results, additional demographic controls added for economic recession and self-reported 

health. Weather, AQI, and forest cover controls include maximum temperature, minimum temperature, snowfall, precipitation, AQI, and 

percent forest cover. County economic controls include county median income, county poverty rate, county unemployment rate, and 

percentage of county population with a HS diploma. ***p<0.01, **p<0.05, *p<0.1. t- or z-statistics in parenthesis.  
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Table 4.3: Results of Tobit Model for Labor and Outdoor Leisure Time Use 

 A. Outdoor Leisure Recreation 

 (1) (2) (3) (4) 

Detection (≤1 year) 
-69.16*** 

(-2.65) 

-66.82*** 

(-3.07) 

-64.71*** 

(-2.99) 

-91.29*** 

(-3.86) 

Detection (1-2 years) 
-47.82* 

(-1.66) 

-51.14* 

(-1.92) 

-51.07* 

(-1.93) 

-69.55** 

(-2.00) 

Detection (2+ years) 
5.91 

(0.45) 

8.81 

(0.62) 

13.41 

(0.93) 

-47.42* 

(-1.75) 

Demographic and day 

controls 
 x x x 

Weather, AQI, and forest 

cover controls 
  x x 

County economic controls  x x x 

Year fixed effect    x 

County fixed effect    x 

Pseudo R2  0.00 0.04 0.04 0.06 

Log likelihood -5.42e10 -5.23e10 -5.20e10 -5.13e10 

Observations 6936 6936 6936 6936 

                                   B. Labor Time 

 (1) (2) (3) (4) 

Detection (≤1 year) 
43.24 

(0.96) 

49.40 

(1.47) 

47.76 

(1.44) 

73.14** 

(2.34) 

Detection (1-2 years) 
-81.43* 

(-1.74) 

-18.25 

(-0.48) 

-17.81 

(-0.47) 

-1.23 

(-0.03) 

Detection (2+ years) 
-27.04 

(-1.03) 

18.96 

(1.00) 

18.42 

(0.98) 

65.44** 

(2.26) 

Demographic and day 

controls 
 x x x 

Weather, AQI, and forest 
cover controls 

  x x 

County economic controls  x x x 

Year fixed effect    x 

County fixed effect    x 

Pseudo R2  0.00 0.04 0.04 0.05 

Log likelihood -1.31e11 -1.26e11 -1.26e11 -1.25e11 

Observations 3951 3951 3951 3951 

     Note: Results of county-level EAB detection for the first year, second year, and 2+ 

years are reported. Coefficients from Tobit estimation with censoring at zero are reported. 

Demographic and day control variables include age (its square), gender, log annual 

household income, presence of child in household, whether residence is owned by 

respondent or other household member, married, student, employment, day of week, 

month of interview, and whether interview day was a holiday. For labor time results, 

additional demographic controls added for economic recession and self-reported health. 

Weather, AQI, and forest cover controls include maximum temperature, minimum 

temperature, snowfall, precipitation, AQI, and percent forest cover. County economic 

controls include county median income, county poverty rate, county unemployment rate, 

and percentage of county population with a HS diploma. ***p<0.01, **p<0.05, *p<0.1. t-

statistics in parenthesis.  
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Table 4.4: Results of Unconditional OLS Model for Labor and Outdoor Leisure Time 

Use 

 A. Outdoor Leisure Recreation 

 (1) (2) (3) (4) 

Detection (≤1 year) 
-6.21*** 

(-2.81) 

-5.12*** 

(-2.75) 

-4.85** 

(-2.53) 

-9.01*** 

(-3.39) 

Detection (1-2 years) 
-4.65* 

(-1.76) 

-5.50** 

(-2.14) 

-5.63** 

(-2.17) 

-8.32** 

(-2.48) 

Detection (2+ years) 
1.66 

(0.92) 

2.13 

(1.15) 

2.59 

(1.29) 

-4.45 

(-1.05) 

Demographic and day 

controls 
 x x x 

Weather, AQI, and forest 
cover controls 

  x x 

County economic controls  x x x 

Year fixed effect    x 

County fixed effect    x 

R2 0.00 0.06 0.06 0.09 

Observations 6936 6936 6936 6936 

                                   B. Labor Time 

 (1) (2) (3) (4) 

Detection (≤1 year) 
19.60 

(0.78) 

21.94 

(1.18) 

20.19 

(1.08) 

32.51* 

(1.78) 

Detection (1-2 years) 
-45.83* 

(-1.92) 

-15.08 

(-0.73) 

-15.92 

(-0.76) 

-9.32 

(-0.37) 

Detection (2+ years) 
-15.44 

(-1.10) 

6.28 

(0.59) 

4.91 

(0.46) 

19.74 

(1.24) 

Demographic and day 

controls 
 x x x 

Weather, AQI, and forest 
cover controls 

  x x 

County economic controls  x x x 

Year fixed effect    x 

County fixed effect    x 

R2 0.00 0.29 0.29 0.32 

Observations 3951 3951 3951 3951 

     Note: Results of county-level EAB detection for the first year, second year, and 2+ 

years are reported. Coefficients from unconditional OLS estimation on the full respondent 

sample are reported. Demographic and day control variables include age (its square), 

gender, log annual household income, presence of child in household, whether residence is 

owned by respondent or other household member, married, student, employment, day of 

week, month of interview, and whether interview day was a holiday. For labor time results, 

additional demographic controls added for economic recession and self-reported health. 

Weather, AQI, and forest cover controls include maximum temperature, minimum 

temperature, snowfall, precipitation, AQI, and percent forest cover. County economic 

controls include county median income, county poverty rate, county unemployment rate, 

and percentage of county population with a HS diploma. ***p<0.01, **p<0.05, *p<0.1. t-

statistics in parenthesis. 
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Chapter 5 

Conclusions: Evaluating the role of environmental shocks on health and behavior 

 

 The relationship between the natural environment and human well-being is 

undeniable. Changes to environmental quality can meaningfully alter community 

interactions with nature, consistent with E.O. Wilson’s biophilia hypothesis presented in 

chapter 1. How this deeply ingrained relationship between nature and humans fits within 

economics was the central question raised at the beginning of this work. Connections 

between the environment and society abound; nature provides us with food and water, air 

to breathe, the means to build shelter and power a consumptive economy. Disruptions or 

shock events that affect environmental quality have impacts on society through direct and 

indirect channels. Throughout the preceding chapters, several indirect impacts associated 

with environmental shocks were demonstrated and their implications explored. This is 

part of a larger narrative intended to argue for the consequentiality of including links 

between nature, health, and behavior in environmental policy and management.    

 The indirect role of nature in human well-being is often ignored by economists. 

Put another way, the health and behavioral dimensions of value created by ecosystem 

services are severely underweighted. The focus of this dissertation has been on forests 

and trees and their value to society. The central hypothesis advanced at the outset in 

chapter 1 is that environmental shocks to forests and trees create meaningfully complex 

reverberations throughout a regional economy. The perspective taken has been subtle and 
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nuanced; the preceding chapters did not investigate forests per se, but instead analyzed 

how shocks to forest quality and coverage have economically consequential impacts on 

communities. This study of induced effects or indirect impacts of trees enables us to 

capture the unique causal relationships between forests, health, and behavior in novel 

ways.  

Some might balk at the notion that forests have consequential health and 

behavioral impacts. A few economists might even reject this hypothesis outright as 

absurd. Whether or not the links between forests, health, and behavior are relevant 

dimensions to consider or not is ultimately an empirical question. Furthermore, it is 

possible that if these relevant dimensions of value are omitted from consideration when 

setting economic and environmental policy, then the resulting outcomes will be 

suboptimal at best and harmful at worst. Given these stakes, a thorough investigation of 

the economic consequentiality of forests is surely warranted.          

The results of the previous chapters support the consequentiality hypothesis on 

several levels. The second chapter showed that smoke produced by forest fires has 

significant economic and health consequences, hundreds of miles distant from the flame 

zone. Economic impacts of smoke events were found to vary considerably depending on 

the choices of the analyst in selecting concentration response and economic valuation 

functions from either the urban air literature or the wildfire literature. Consistent with a 

growing body of epidemiology and economic literature, the results in chapter 2 suggest 

that wildfire smoke is more toxic than urban air pollution. Furthermore, the estimate 

made of WTP to avoid a smoke-related health impact was significantly higher than a 

commonly used estimate coming out of the urban air literature. Combined, these findings 
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suggest an intimate link between wildfire smoke and health, which should be considered 

unique from the link between urban air pollution and health.  

This nuanced finding supports the original hypothesis in that a distant shock 

(wildfire in this case) creates indirect economic reverberations through changes in health 

outcomes and behavioral patterns. Given that many (and recent) benefit-cost analyses of 

wildfires rely on literature estimates transferred from the urban air literature and not the 

wildfire literature, there is the potential that past damage assessments undervalue the 

impact of forest fire smoke. Again, this is consistent with a narrative in which the health 

and behavioral dimensions of value created by forest amenities (indirect effects) are 

underweighted compared to direct impacts within the flame zone – e.g., lost structures, 

evacuations, suppression costs, etc., which are the primary considerations given in many 

wildfire damage assessments. More complete and holistic damage assessments are 

required, which consider an expanded view of “impact” and “environmental value,” 

inclusive of secondary and tertiary smoke impacts such as distant health effects and 

induced behavioral changes among exposed populations. This has the real potential to 

affect forest management and wildfire suppression decisions by changing the benefit-cost 

calculus commonly used in guiding policy.  

The lesson for the researcher and the academician from chapter 2 is that 

empirically estimating the links between forests, health, and behavior requires careful 

attention to the nuances implicit in how forests are situated in an environment and how 

people live and interact with their environment. In the case of Albuquerque, NM, a 

southwestern city rich in outdoor amenities and recreational opportunities, wildfire 

smoke is impactful because it causes people to stay indoors and avoid outdoor activities. 
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In another city, region, or country the way in which people live and interact with their 

environment may be very different (e.g., less outdoors time), such that wildfire smoke 

has less of an effect on health and behavior, with correspondingly attenuated economic 

damages. Perhaps in these areas damage assessments can rely on urban air literature 

estimates instead of looking to the wildfire literature. The takeaway point is that effects 

of environmental shocks vary over time and space, such that a relationship observed 

between forests, health, and behavior in one locale may be completely inappropriate in 

another setting or different context. To that end, a further implication of this work is that 

it demonstrates that the beneficiaries of wildfire risk reduction can be very distant from 

the flame zone and broader in geographic scope. This has implications not just for 

benefit-cost analyses but also for how we design funding mechanisms public payment 

schemes for payment for ecosystem services.    

This conclusion and way of thinking about environmental shocks provided the 

original impetus for the environmental health model constructed and simulated in chapter 

3, relating to the invasive emerald ash borer (EAB). Instead of assuming a stationary and 

static relationship between forests and health, an original dynamic model was created and 

then calibrated based on extant research. This is an important contribution because 

idiosyncrasies in how forests are situated in an environment and how people live and 

interact with nature are not assumed at the onset, but given the flexibility to vary through 

time and space. The results in chapter 3 demonstrate that such flexibility is warranted 

when considering environmental health impacts of invasive species, as optimal 

management varies dynamically and heterogeneously across infested counties. 
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The heterogeneous management result highlights the deeply ingrained role of 

forests and the hypothesized meaningfully complex reverberations in an economy created 

by environmental shocks. Impacts of EAB on health and behavior vary according to the 

ecology of an area and the demographics of the infested community. Why? Simply 

because people live, interact, and optimize within a natural environment differently from 

place to place. This may not come as a surprise, but is actually often overlooked by 

environmental management and policy, which frequently creates blanketed regional or 

nationwide guidelines and regulations that are insensitive to spatial heterogeneity. 

Invasive species managers working out of a blanketed or “one size fits all” playbook will 

manage EAB suboptimally, as was found in chapter 3. Improvements to societal welfare 

and community health could be made if nuanced contextual and site-specific forest and 

environmental health pathways were included in the EAB management decision.     

 This discussion surrounding heterogeneous EAB management is of course 

contingent upon the finding in chapter 3 that forests matter both to an individual’s health 

and to the health of regional economy. Ignoring health and behavioral dimensions of 

forest amenity value when managing EAB creates costly reverberations and impacts rates 

of mortality and morbidity in infested communities. Naïve assessments of EAB economic 

damages omitting indirect and induced effects associated with changes in ash tree quality 

and coverage, provide an incomplete picture of the far reaching reverberations of this 

invasive species. This is problematic because the narrative surrounding EAB is that lost 

ash trees primarily effect a single individual or single household through property values, 

loss of shade, and recreational opportunities.28 Rather, the results from chapter 3 
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demonstrate that the largest impacts of lost ash are on public health and the community-

at-large and not necessarily on the tree owner alone. 

 Bringing into the management fold the public goods nature of ash trees recasts the 

EAB epidemic as a social welfare problem, requiring a rethinking of management 

approaches. In this light, the focus of management should be to minimize harm to society 

– the idea of ecological consumption smoothing. Given that eradication and containment 

of EAB is practically impossible, the third chapter proposes and then demonstrates the 

usefulness of engaging in preemptive/concurrent planting of EAB-resistant trees (PLAN). 

Including health and behavioral impacts in the EAB manager’s problem pushes optimal 

management towards PLAN, thus solving the externality problem.29 This ties back to the 

original hypothesis in that it supports the idea of nature as consequential to well-being 

and more importantly, that accounting for links between forests, health, and behavior in 

policy creates opportunities for investments (e.g., PLAN) that can minimize the effects of 

environmental shocks.   

This research would be incomplete without an original investigation of the 

linkages between trees and people. Whereas chapters 1-3 take for granted, in a sense, the 

relationship between forests, health, and behavior, chapter 4 provides an original analysis 

of behavioral impacts associated with EAB.30 There is an endogeneity problem inherent 

in any investigation of forest impacts on behavior; do trees in a community cause people 

to behavior in a certain way or is it that people with similar behavioral patterns (e.g., 

hikers, outdoor enthusiasts, etc.) move to forested communities? In the former, trees drive 

behavior (causation), while in the latter, trees have little to no effect on behavior 

(correlation). To tease out causation from correlation, the natural experiment created by 
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quasi-random introductions of EAB was exploited. If forests influence behavior, then a 

shock to forest quality and canopy coverage will have anthropogenic consequences.  

The key finding in chapter 4 was that detection of EAB in a county was 

associated with both an immediate and persistent impact on the probability that an 

individual spent time recreating outdoors (leisure time) and the probability that an 

individual spent time engaged in a labor market activity (labor time). Specifically, people 

are less likely to recreate and more likely to work in response to detection of EAB in their 

county of residence. There is also evidence to suggest that the labor-leisure change is 

structural, meaning that a long-term shift in the fundamental structure of the labor market 

has occurred in response to the environmental quality shock created by EAB.  

Consistent with the original hypothesis, EAB induces economic reverberations 

vis-à-vis changes to the structure of the labor market, and time use allocation more 

generally. It is not entirely clear what the causal pathways are that bring about this 

observed change. One plausible explanation is that as forests and trees become infested 

and die, people spend less time outdoors because of reduced shade, increased 

temperatures, and deteriorating outdoor aesthetics. Less time spent outdoors means more 

time available for indoor activities. It is interesting that the observed substitution is away 

from outdoor leisure and toward labor, instead of toward indoor leisure. In fact, no 

statistical change was observed for time spent on indoor leisure activities after detection 

of EAB. Instead, there is an almost a perfect one-to-one substitution of a minute of 

outdoor leisure with a minute of indoor labor. Future research might further explore the 

causal mechanisms behind the decision to work more in response to a shock to forest 

quality. 
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The behavioral impacts of EAB observed in chapter 4 are consistent with a causal 

story because (1) they come from a natural experiment, and (2) there were no lagged 

effects of detection in the leads and lags analysis performed at the end of the chapter. 

These results add yet another dimension to the ecosystem services story of trees. Forests 

are providing a myriad of services to society, such that the loss of a tree or a decline in 

the health of the forest will impact people in direct and indirect ways; conversely, the 

planting of a new tree or addition of a new species will also be impactful. Effects may be 

immediate or occur over the long-term as has been demonstrated throughout this 

research.  

One could imagine incorporating this behavioral relationship into the dynamic 

model in chapter 3 and then simulating out how it affects EAB management over time 

and space. This would be challenging to do because it is not clear what the benefits and 

costs to society are from the observed labor-leisure change. In other words, a way to 

quantify (in dollars) the observed movement away from outdoor leisure towards indoor 

labor would be required. How to do this and what constitutes a benefit or a cost in this 

setting is left to future research. However, the difficulty associated with quantifying the 

labor-leisure effect of EAB is in no way meant to be dismissive or suggestive that it is 

irrelevant to the discussion. On the contrary, this is a fascinating line of research on the 

deeply ingrained role of forests and trees in the economy.   

5.1 Limitations and future research 

 The goal of this research has been to investigate the health and behavioral 

dimensions of shocks to urban forests and trees as they reverberate through the economy 

across time and space. Trees play important ecological roles in urban areas and have a 
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meaningful role in determining health outcomes. It has been argued throughout that there 

is heterogeneity in impacts across urban communities, contingent upon the role of trees in 

a community and the interactions that people have with them. Pinning down the 

relationship between forests, behavior, and health is challenging, and this research has 

tried to contribute to this important area.  

 The most pressing issue for future research is in determining when health and 

behavioral dimensions should be considered in environmental management and economic 

policy more generally. One might say that it should be included “when and where it 

matters,” but far too little research has been done to-date to know when and where it 

makes a difference. To that end, further research on the complex and nuanced links 

between societal well-being and the natural environment is needed. A starting point for 

this type of research would be a continued exploitation of natural experiments where 

some random disruption to environmental quality has occurred. Hypothesized 

connections between the environmental amenity disrupted and human well-being can be 

tested and explored, such as long-term labor market outcomes, educational attainment, 

and disease incidence.  

 Addressing this issue will require the construction of original micro-level time 

series datasets linking individual behavior and outcomes to well-identified environmental 

shock events. This type of data can be very challenging to acquire given the sensitive 

nature of information on health status and labor earnings, though has proven possible in 

practice.31 Where stated preference data are not available, it is possible that revealed 

preference approaches could be successfully utilized as was done in chapter 2 for wildfire 

smoke health damages. With this approach, the effects of a shock are “revealed” to the 
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researcher as derivatives of utility-theoretic models of simple behavioral patterns and 

expenditures on goods and services. Economists often prefer revealed preference 

approaches because of the biases and measurement errors sometimes associated with 

stated preference survey designs. Though, each method has its advantages and 

disadvantages.32    

 An added complication to constructing micro-level data sets on environmental 

shocks is that impacts can vary greatly from place to place. What is true in one area may 

not be true in another area. Socioeconomics, preexisting environmental quality and 

access to nature, and even differences in cultural heritages and community identity may 

create heterogeneous health and behavioral impacts associated with a shock, as was 

demonstrated for the case of EAB in chapter 3. One limitation of the approach taken in 

chapter 3 was that the modeled relationship between trees and health was at the county 

level. There is likely significant spatial heterogeneity within any given county due to 

micro-level differences in land use patterns and socioeconomic levels, among other 

things. Using a geographic information system (GIS) would enable higher resolution 

estimates of impacts to be ascertained. US Census data could be used to narrow down 

demographic and socioeconomic data to Census tracts or neighborhood blocks. Then, this 

information could be merged with high resolution remotely-sensed data on land use and 

environmental quality. Doing this annually would produce a time series GIS that could be 

used to investigate more sophisticated relationships between forests, health, and behavior.  

 This is the idea of linking “one tree to one person” or more accurately, a small set 

of trees in public places and open spaces to a small set of people. Least squares or 

maximum likelihood spatial regression techniques could be used, enabling researchers to 
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better understand the micro-level influences that trees (and nature more generally) have 

on health and behavior. One could imagine this information being visually compiled into 

a sort of environmental shock “heat map,” illustrating the ripple-effects on neighborhoods 

and communities associated with some disruption to environmental quality. This would 

provide insight into how variations in neighborhood characteristics correlate with shock 

event intensity, providing environmental managers with critical information on where 

disruptions are the most impactful and hence where limited control resources might be 

targeted; ultimately addressing the question of when and where health and behavior 

effects should be included in planning decisions.  

   Future research should also address non-forest amenities and other shocks to the 

natural environment unrelated to trees and forests. Another limitation of this research was 

that it focused only on forests and trees, when, for example, appreciable shocks to 

environmental quality are also created by nighttime outdoor lighting, extreme weather 

events, the construction or expansion of highways, droughts, and fires. What are the 

health and behavioral impacts associated changes in the provision of these amenities? 

How do impacts vary across time and space? As more and more of these analyses are 

performed, it is also important to begin comparing impacts across different types of 

shocks (i.e., meta-analyses) to develop a better understanding of underlying causal 

pathways. Investigations across regions and states would also be useful, especially 

comparisons across areas dominated by public lands (the western US) to areas dominated 

by private lands (the Northeast).  
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5.2 Environmental health policy perspectives    

 Finally, it has been stated in several of the previous chapters that environmental 

policy often ignores the link between nature and health. The crux of this research has 

been to demonstrate the economic significance of this link through investigations of 

environmental shocks. But from an environmental health policy perspective, or a health 

policy perspective, the relevant question becomes, then, how should the information 

presented here be used in the policy process? 

 At a general level, one conclusion from this research is that forests and trees are 

determinants of health. People not only coexist with trees, but appear to have their health 

and behavioral patterns influenced by them along several dimensions. This coupled 

human-natural system means that the quality of interactions people have with nature can 

affect their physical and mental health status. By this logic, disruptions to nature, either 

anthropogenic or natural in origin, have important and indirect effects. A reasonable 

question for the health-conscience policymaker tasked with responding to an 

environmental shock (e.g., floods, hurricanes, invasive species, wildfires, etc.) is how can 

my actions or inactions both today and in the future mitigate the harm to health and 

minimize behavioral disruptions created by this event? The focus here is not so much on 

the obvious actions such as providing basic needs, rebuilding structures, and providing 

financial compensation. Rather, the focus is on repairing the ties between people and 

nature that were damaged or possibly cut when the shock occurred.  

 The notion of forests as a determinant of health means that health policy should 

broaden to include forest health and access to forests and trees in communities. At the 

simplest of levels, one could imagine a physician writing a prescription for “walks 
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through the park” as a treatment option. That is not exactly what is meant by broadening 

health policy to include forests, but gives the idea. A structural and top-down health 

policy approach that promotes interactions with trees, plantings of tree saplings in public 

areas and along roads, and maintenance of forest health in the face of diseases, fires, and 

invasive species is more consistent with the findings of this research. For example, a 

public campaign centered on increasing urban tree coverage and diversity of tree species, 

similar to the ongoing MillionTreesNYC (MTNYC) initiative in New York City, but with 

a more health-centered focus, would be a way to integrate this research into the policy 

process.33  

 Yet, it remains unclear whether it is cost effective to promote environmental 

health as a way to improve overall health status. Resources might be better used in more 

conventional schemes such as expanding insurance coverage or access to medical care. 

This does not deny the role that nature has in determining health nor does it preclude 

considerations of environmental health when setting policy. Additionally, sometimes it is 

not a question of diverting resources away from other health programs, but using existing 

resources more efficiently. For the case of EAB, using existing management resources 

from the US Department of Agriculture and various state agencies and universities to 

plant new trees may provide more benefits to society than continuing along the current 

path of controlling spread, in hopes that EAB can one day be eradicated.  

Managers of EAB may not see what they do as health policy work, but it is in the 

sense that public health in part depends on whether or not EAB ever makes it to a given 

community. As soon as EAB is discovered in an area, the health of that community will 

forever be changed unless actions are taken to mitigate the impacts of lost ash. Whether 
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or not adding health policy to an environmental manager’s list of responsibilities passes 

economic muster will depend on as of yet unperformed benefit-cost analyses. The 

argument advanced in this research is that health and behavioral impacts are relevant 

considerations in such policy analyses. To the degree that health dimensions of value 

created by forests are not reflected in health policy, and the degree to which society 

would benefit from a broader consideration of health, will largely determine the setting of 

future forest policy in ways that are consistent with managing forests for the benefit of 

society.   
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Notes 

28Ash trees in parks, along streets, or in public areas are generally assumed to be 

less valuable (Sydnor et al., 2007). Much of the responsibility for EAB detection and 

treatment rests with the individual homeowner who has ash on their property. The 

argument being advanced here is that the public goods nature of ash trees requires a 

rethinking of the obligations associated with the private property right in this setting. 

Actions or inactions of the property owner may be more consequential for the 

community, in terms of public health, than for the homeowner alone.  

29In this case, the under provision of a good (trees) creates positive externalities.    

30In chapters 1-3, extant literature was primarily called upon to inform the 

discussion of wildfire smoke health impacts (chapter 2) and was used to build a pollutant 

deposition model for forests (chapter 3). An original investigation into the empirical 

relationship between trees, health, and behavior was not performed. Given that many 

such studies exist for wildfire smoke and air pollutant models, the marginal contribution 

of an original analysis would be nil. However, little research has been performed on the 

time use behavioral impacts of an environmental shock: the focus of chapter 4.     

31One example of where this data challenge was overcome is Isen et al. (2013). 

There, the authors were able to obtain access to restricted US administrative earnings data 

through the US Department of Treasury to study the long-term labor market effects of the 

Clean Air Act, which provided a shock to air quality levels in US urban areas. It is likely 

that future research will similarly need to rely on restricted data sets from government 

agencies to ensure adequate representation and a high degree of data quality.  
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32Stated preference surveys can suffer from biases associated with asking 

hypothetical questions, interviewer bias, or bias from the warm glow effect (i.e., 

supporting a proposal because of the moral satisfaction it gives). Revealed preference is 

no panacea, however, because it relies on the accuracy of the theoretical model and the 

explicit and implicit assumptions associated with it. If the relationship of interest is 

modeled incorrectly or under unrealistic assumptions, the information “revealed” to the 

researcher may be an inaccurate representation of preferences. Additionally, revealed 

preference data itself often is taken from survey samples (e.g., US Census, Current 

Population Survey, etc.), which are subject to the same set of biases as stated preference 

data. 

33The MillionTreesNYC (MTNYC) initiative, started in 2007, set a goal of adding 

1 million trees to New York City by 2017. As of 2015, over 800,000 new trees have been 

planted in NYC, and other cities across the world from London to Shanghai have started 

similar “million tree” projects. However, the focus of the initiative is to plant trees “in 

and around” city parks. A more health-centered approach would be to identify areas of 

the city where the marginal health benefit of trees is highest (e.g., areas of high traffic 

congestion, areas with little to no existing trees, areas with poor health outcome, etc.) and 

focus plantings in those areas. In terms of health policy, planting new trees in these areas 

would yield the greatest return on investment.     
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Appendix A 

Additional data descriptions and results for Chapter 2 

 

A.1     Recent wildfire smoke epidemiology studies 

 Careful review of the wildfire epidemiology literature produced a handful of 

concentration response (CR) function results. Table A.1 presents selected wildfire 

epidemiology studies with information on the study location, the health endpoints 

investigated and main significant results. Studies are categorized by type of particulate 

matter (PM) studied, either PM2.5 or PM10.  

While there is limited evidence linking PM2.5 wildfire smoke to mortality, PM10 

wildfire smoke has been consistently linked to increased short-term mortality in 

Australia. Most studies consistently find higher morbidity rates during wildfire smoke 

events, with respiratory illnesses being the most common. There is a geographical bias in 

the literature, where North American studies focus mainly on PM2.5, while international 

studies use PM10.  

Omitted from Table A.1 are studies that investigated the relationship between 

wildfire smoke and health, but did so without using direct measures of PM air quality or 

did not statistically estimate the relationship between PM and incidence. BenMAP-CE 

cannot use these non-statistical types of results, and therefore, they are not presented.  

 

 



 

149 
 

Table A.1: Selected Wildfire Smoke Epidemiology Study Results by PM Type 

PM2.5 Studies 
   

Study Study Location Health Endpoints Main Findings 

Elliott et al. (2013) British Columbia, 

Canada 

Pharmaceutical 

dispensations for salbutamol. 

Increased salbutamol 

dispensations in fire-

affected areas. 

Resnick et al. (2015) Albuquerque, New 

Mexico 

Cardio-respiratory 

emergency room (ER) visits. 

Increased ER visits for 

asthma (age 65+), 

cardiovascular (all ages), 

pulmonary disease (age 20-

64), cerebrovascular disease 

(age 20-64) and circulatory 

diseases (age 65+). 

Delfino et al. (2009) Southern, California Cardio-respiratory hospital 

admissions. 

Increased admissions for 

asthma and heart failure. 

Moore et al. (2006) British Columbia, 

Canada 

Physician visits for 

respiratory, cardiovascular 

and mental illnesses. 

Increased visits for 

respiratory illnesses in 

smoke exposed areas. 

    

PM10 Studies    

Study Study Location Health Endpoints Main Findings 

Crabbe (2012) Darwin, Australia Respiratory and 

cardiovascular hospital 

admissions. 

Increased admissions for 

respiratory and 

cardiovascular illnesses 

during fire season. 

Henderson et al. 

(2011) 

British Columbia, 

Canada 

Respiratory and 

cardiovascular physician 

visits and hospital 

admissions. 

Increased respiratory 

physician visits and 

hospital admissions.  

Johnston et al. (2011) Sydney, Australia Mortality. Increased short-term 

mortality during wildfire 

smoke events. 

Hanigan et al. (2008) Darwin, Australia Cardio-respiratory hospital 

admissions. 

Increased respiratory 

admissions. Higher for 

indigenous populations. 
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A.2     Instrumental variables regression coefficient results     

 Full econometric results of estimating the instrumental variables model in 2.5.2 are 

presented in Table A.2. Robust standard errors are reported. Since used air filter/cleaner 

is endogenous in the model of health (as checked using a Hausman F-test and a Hausman 

chi-squared test), a two-stage probit (called a bivariate probit) is used to purge the 

endogeneity. Income is used as the relevant, yet exogenous instrument, as discussed in 

2.3.2.  

 In Table A.2, equation 1, the first-stage equation, the probability that a respondent 

used an air filter or air cleaner is predicted using a multitude of independent variables, 

including the instrument income. All else equal, respondents with higher incomes are 

more likely to use an air filter/cleaner during a smoke event (p < 0.01) as are respondents 

who smell smoke in their home (p < 0.1). Respondents with chronic respiratory diseases 

(p < 0.01) and those with symptoms of coughs (p < 0.01) and shortness of breath (p < 

0.05) are also more likely to use an air filter/cleaner during a smoke event. Additionally, 

homeowners with small children under 5 years of age are more likely to use an air filter 

(p < 0.05). Those respondents who are Hispanic/Latino (p < 0.05) or have a college 

degree (p < 0.1) are less likely to use an air filter/cleaner on a smoky day.    

 In Table A.2, equation 2, the second-stage equation, using an air filter/cleaner 

reduces the probability that a respondent reported having a smoke-related health effect (p 

< 0.01), consistent with the theory on averting behaviors. Not surprisingly, respondents 

who smelled smoke at home (p < 0.01) or have chronic respiratory disease (p < 0.01) are 

more likely to have their health affected by wildfire smoke. Respondents reporting 

symptoms of headaches (p < 0.01), coughs (p < 0.01), shortness of breath (p < 0.01), 
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asthma (p < 0.01), allergies (p < 0.01), or other symptoms (p < 0.05) were also more 

likely to report having a health impact. As the number of years that a respondent lives in 

New Mexico increases, the likelihood of them experiencing a smoke-related health 

impact also increases (p < 0.01), consistent with expectations. Finally, Hispanic/Latino 

respondents report fewer health impacts (p < 0.05), all else equal. Unlike in equation 1, 

having a small child in the house or having a college degree has no statistical impact on 

the probability of reporting a smoke health effect.  

 Since 𝑟ℎ𝑜 = 0.80 is statistically greater than zero (p = 0.04), the econometric 

model is more efficient by estimating it as a simultaneous system of two-equations than 

estimating two separate equations. That is, allowing cross-equation error correlation 

produces a more efficient model; further evidence that used air filter/cleaner is 

endogenous to the model.     
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Table A.2: Bivariate Probit Model Results (n=911) 

 Variable 

Equation 1 

Coefficients 

Pr(used air 

filter/cleaner = 1) 

Equation 2 

Coefficients 

Pr(health effect = 1) 

Used air filter/cleaner - -1.16*** 

(0.35) 

Income 0.42*** 

(0.13) 

- 

Smelled smoke in home 0.48* 

(0.28) 

1.01*** 

(0.21) 

Existing chronic respiratory disease 0.69*** 

(0.15) 

1.11*** 

(0.14) 

Headaches 0.15 

(0.16) 

0.44*** 

(0.17) 

Coughs 0.41*** 

(0.15) 

0.73*** 

(0.14) 

Shortness of breath 0.46** 

(0.18) 

0.51*** 

(0.19) 

Asthma -0.03 

(0.19) 

0.74*** 

(0.22) 

Allergies 0.15 

(0.15) 

0.45*** 

(0.14) 

Other symptoms -0.07 

(0.24) 

0.55** 

(0.26) 

Female -0.04 

(0.13) 

0.16 

(0.13) 

Hispanic/Latino -0.28** 

(0.14) 

-0.28** 

(0.14) 

College degree -0.24* 

(0.14) 

-0.10 

(0.12) 

Child under 5 in home 0.30** 

(0.12) 

-0.01 

(0.16) 

Years in New Mexico 0.00 

(0.00) 

0.01*** 

(0.00) 

Constant -2.23*** 

(0.37) 

-2.71*** 

(0.39) 

rho 0.80 0.80 

Prob rho > 0 (Wald test) 0.04 0.04 

Log likelihood -498.65 -498.65 

Wald chi2 (28) 334.71 334.71 

Prob > chi2 0.00001 0.00001 

N 911 911 

     Notes: Income is the excluded instrument in equation 2. Used air filter/cleaner in 

equation 2 is the predicted value from equation 1. Robust standard errors in parenthesis. *** 

p < 0.01, ** p < 0.05, * p < 0.1. 
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A.3     Wildfire smoke experience survey questions 

 Researchers at the University of New Mexico developed and administered a survey 

questionnaire on wildfire risk and surface water supply to a sample of households in 

Albuquerque, NM, in September-December, 2014, as described in 2.4.2. Fielded survey 

questions specific to wildfire smoke are presented below. Respondents were asked to 

respond to questions on smelling smoke at home, behavioral changes in response to 

smelling smoke, and health effects of smoke exposure.  
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Wildfire Smoke Experience Survey Questions 

 

Now we’d like to ask you a little bit about your experience with wildfire and its impacts. 

 

15. Have you ever smelled smoke and/or ash from a wildfire at your place of residence? Check 

one. 

1 Yes 

2 No ----> Go to Question 17 

 

16. If you answered Yes to Question 15, did you change your normal routine based on 

smelling the smoke and/or ash? Check one. 

 

1 Yes 

2 No 

 

17. Has exposure to smoke and/or ash from wildfires affected the health of anyone in your 

household (including you)? Check one. 

 

1 Yes 

2 No 

 

18. Does anyone in your household have a chronic respiratory disease (e.g. asthma, respiratory 

allergies, emphysema, chronic bronchitis, chronic obstructive pulmonary disease, etc.)? Check 

one. 

1 Yes 

2 No 

 

19. Does anyone in your household have a heart disease (e.g., coronary artery disease, congestive 
heart failure, ischemic heart disease, etc.)? Check one. 

 

1 Yes 

2 No 
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20. Which of the following actions, if any has your household taken to reduce the possibility of 

health effects from exposure to smoke and/or ash from previous wildfires ? Check all that 

apply. 

 

1 Evacuated / left area affected by smoke 

2 Covered face with a mask (dust, surgical, etc.) 

3 Used an air filter, air cleaner, or humidifier 

4 Avoided going to work 

5 Removed ashes from property (yard, car, pool, etc.) 

6 Stayed indoors more than usual 

7 Avoided normal outdoor recreation activities / exercise 

8 
Other activity (please explain) 

__________________________________ 

9 
My household did not take any of the above actions --> Go to 

Question 22 

 

 

 

21. If you identified an action in Question 20, how effective overall do you think the actions 

you identified were at reducing or eliminating the health effects from exposure to wildfire 

smoke and/or ash? Circle one. 

 

Not at all 

effective 

Slightly 

effective 

Somewhat 

effective 

Moderately 

effective 

Highly 

effective 

1 2 3 4 5 

 

 

22. Has anyone in your household ever been admitted to a hospital or visited a doctor’s office 

because of smoke and/or ash exposure from previous wildfires? Check one. 

 

1  Yes 

2  No ----> Go to Question 22 
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23. If you answered No to Question 22, which of the following symptoms, if any, has your 

household experienced due to smoke and/or ash from previous wildfires? Check all that apply.  

 

  1 Headaches 

2 Coughs 

3 Dizziness 

4 Blurred vision  

5 Shortness of breath 

6 Asthma 

7 Allergies  

8 
Other symptom (please explain) 

______________________________________ 

9 My household has not experienced any of the above symptoms  
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Appendix B 

Additional derivations and models for Chapter 3 

 

B.1     Analytical solution to the EAB manager’s problem 

Equations (3.5) and (3.6) in section 3.3 are derived as follows. First, the dynamic 

optimization problem in equations (3.4a)-(3.4f) is solved using the current-valued 

Hamiltonian: 

𝐻𝐶𝑉 = 𝐵(𝑣(𝑎𝑛 , 𝑎𝑟𝑗 , 𝑎𝑟𝑎), ℎ(𝑐, 𝑤(𝑎𝑛 , 𝑎𝑟𝑎)), 𝑦) − 𝑐(𝑚) − 𝑑(𝑧)  + 𝜆1 ((1 − 𝜃) [𝑟𝑎𝑟𝑗 (1 −
𝑎𝑟𝑗

𝐾
)] + 𝑚) 

             +𝜆2(𝜃𝑎𝑟𝑗 − 𝜑𝑎𝑟𝑎) + 𝜆3 ((1 − 𝜑)𝑔𝑎𝑛 (1 −
𝑎𝑛

𝐾(𝑒(𝑧))
))                                                                 (𝐵1.1) 

where 𝜆1, 𝜆2 and 𝜆3 are costate variables. For ease of exposition, explicit time notation 

has been suppressed. Given unique and interior optimal trajectories for choice variables 

𝑚 and 𝑧, the first order conditions are characterized by the maximum principle 

(Pontryagin, 1987): 

𝜕𝐻𝐶𝑉

𝜕𝑚
= 0 → 𝜆1 = 𝑐′(𝑚)                                                                                                                                        (𝐵1.2) 

𝜕𝐻𝐶𝑉

𝜕𝑧
= 0 → 𝜆3 =

𝑑′(𝑧)𝐾(𝑒(𝑧))
2

(1 − 𝜑)𝑔𝑎𝑛
2𝐾′𝑒′

                                                                                                                    (𝐵1.3) 

𝜕𝐻𝐶𝑉

𝜕𝑎𝑟𝑗

= −�̇�1 + 𝛿𝜆1 → �̇�1 = 𝜆1 (𝛿 − 𝑟(1 − 𝜃) +
2𝑟(1 − 𝜃)𝑎𝑟𝑗

𝐾
) − 𝐵𝑣𝑣𝑎𝑟𝑗

− 𝜆2𝜃                                   (𝐵1.4) 

𝜕𝐻𝐶𝑉

𝜕𝑎𝑟𝑎

= −�̇�2 + 𝛿𝜆2 → �̇�2 = 𝜆2(𝛿 + 𝜑) − 𝐵𝑣𝑣𝑎𝑟𝑎
− ℎ𝑤𝑤𝑎𝑟𝑎

                                                                         (𝐵1.5) 

𝜕𝐻𝐶𝑉

𝜕𝑎𝑛

= −�̇�3 + 𝛿𝜆3 → �̇�3 = 𝜆3 (𝛿 − 𝑔(1 − 𝜑) +
2𝑔(1 − 𝜑)𝑎𝑛

𝐾(𝑒(𝑧))
) − 𝐵𝑣𝑣𝑎𝑛

− ℎ𝑤𝑤𝑎𝑛
                             (𝐵1.6) 

𝜕𝐻𝐶𝑉

𝜕𝜆1

= 0 → �̇�𝑟𝑗 = (1 − 𝜃) [𝑟𝑎𝑟𝑗 (1 −
𝑎𝑟𝑗

𝐾
)] + 𝑚                                                                                           (𝐵1.7) 
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𝜕𝐻𝐶𝑉

𝜕𝜆2

= 0 → �̇�𝑟𝑎 = 𝜃𝑎𝑟𝑗 − 𝜑𝑎𝑟𝑎    (𝐵1.8)   ;     
𝜕𝐻𝐶𝑉

𝜕𝜆3

= 0 → �̇�𝑛 = (1 − 𝜑)𝑔𝑎𝑛 (1 −
𝑎𝑛

𝐾(𝑒(𝑧))
)       (𝐵1.9) 

Solving Equation (B1.5) for 𝜆2 yields the following expression: 

  

𝜆2 =
1

(𝛿 + 𝜑)
(�̇�2 + 𝐵𝑣𝑣𝑎𝑟𝑎

+ ℎ𝑤𝑤𝑎𝑟𝑎
)                                                                                                            (𝐵1.10) 

which is the same as equation (3.5) in the main text. Equation (B1.10) describes the value 

of the costate variable or “shadow value” at any given time for adult invasive-resistant 

trees.  

Evaluating Equation (B1.6) at steady state and substituting in Equation (B1.3) yields the 

following expression: 

0 =
𝑑′(𝑧)𝐾(𝑒(𝑧))

2

(1 − 𝜑)𝑔𝑎𝑛
2𝐾′𝑒′

(𝛿 − 𝑔(1 − 𝜑) +
2𝑔(1 − 𝜑)𝑎𝑛

𝐾(𝑒(𝑧))
) − 𝐵𝑣𝑣𝑎𝑛

− ℎ𝑤𝑤𝑎𝑛
                                             (𝐵1.11) 

Algebraic manipulation yields the following: 

𝐵𝑣𝑣𝑎𝑛
+ ℎ𝑤𝑤𝑎𝑛

(
𝐾(𝑒(𝑧))

2

(1 − 𝜑)𝑔𝑎𝑛
2𝐾′𝑒′) (𝛿 − 𝑔(1 − 𝜑) +

2𝑔(1 − 𝜑)𝑎𝑛

𝐾(𝑒(𝑧))
)

= 𝑑′(𝑧)                                                                  (𝐵1.12) 

which is equivalent to equation (3.6) in the main text. The RHS term in Equation (B1.12) 

is the marginal cost of chemical and biological treatments, which equals the marginal 

benefit of treatment (the LHS term) at steady state. 
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B.2     Exogenous model of EAB growth 

The exogenous model of EAB growth used in 3.3.1 is described here. EAB, 𝑒, 

grow at rate 𝑟𝑒 according to a logistic growth function with carrying capacity 𝐾𝑒: 

�̇� = 𝑟𝑒𝑒 (1 −
𝑒

𝐾𝑒

)                                                                                                                                                      (𝐵2.1) 

In the numerical simulations, 𝑟𝑒 is calculated based on a female EAB being able to 

produce 60-90 eggs annually (Poland & McCullough, 2006). Conservatively, 60 eggs 

with an 89% survival rate means that an adult EAB can reproduce about 26.7 larvae 

annually (BenDor et al., 2006), yielding a growth rate of 3.28.  

EAB carrying capacity is calculated as 𝐾𝑒 = 300𝐾 based on BenDor et al. (2006) 

who reported a bark area carrying capacity of 300 EAB/𝑚2 ba and 𝐾 is the ash carrying 

capacity (𝑚2 ba/ac). In the base simulations, 𝐾 = 4000 𝑚2 ba/ac, or 𝐾𝑒 = 1,200,000 

EAB/acre.  

One EAB is introduced into the system in the second time period; 𝑒(1) = 1. In 

subsequent periods, stock of EAB is governed by the growth function in equation (B2.1). 

A +/- 10% sensitivity analysis was performed on all parameters in the EAB 

growth model. Results were insensitive to this analysis, changing by 10% or less.    
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Appendix C 

Additional data descriptions for Chapter 4 

  

C.1    Construction of original dataset 

 Annual ATUS data for 2003 through 2013 were assembled using the ATUS-X 

extract builder at www.atusdata.org. To ascertain respondent county of residence, we 

merged ATUS data with CPS basic monthly files from NBER at 

http://www.nber.org/data/cps_basic.html. The respondent’s county of residence for 

month-in-sample 8 (MIS-8) was merged with ATUS data using individual and household 

identifying keys. Links were checked using sex, race, and age to verify accurate merging. 

County FIPS codes were reported for individuals residing in counties with populations 

greater than 100,000. Date of initial county EAB detections that we obtained from the 

USDA APHIS over 2003 to 2013 was then merged. Finally, using county FIPS, we 

merged data on daily weather, annual forest cover, daily air quality (AQI), and annual 

macroeconomic conditions. Table C.1 summarizes how observations were lost during the 

data merging process.   

 In Table C.1, we started with 148,345 individual observations on time use 

patterns over a single 24h period. After merging observations with county of residence, 

65,629 observations remain (44.2% match rate). Observations were lost because the 

respondent lived in a county with less than 100,000 residents. Of these respondents, 

16,600 live in a county where EAB was detected at some point between 2003 and 2013 

(25.3% match rate). Observed daily weather data was unavailable for 870 respondents on 

their diary day. In all cases, this was due to downed or not reporting weather stations in 
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the respondent’s county. This leaves us with 15,730 observations where daily weather 

could be ascertained (94.8% match rate). County forest cover, AQI, and macroeconomic 

conditions were merged for 15,730 observations (100% match rate). Finally, we dropped 

respondents who had missing or “not in universe” (NIU) ATUS observations for any of 

the confounding variables investigated. NIU observations reflect errors in the original 

data (e.g., a respondent answer a question they were not supposed to answer). The bulk of 

the missing or NIU observations (83.7%) were for family income and school enrollment 

status. Since both these variables are arguably strong determinants of time use habits, we 

felt that there inclusion in the final models was important to avoid omitted variable bias. 

We considered using other income measures (e.g., weekly earnings, hourly wage rate), 

but found even more of these observations were NIU compared to family income. After 

dropping missing and NIU ATUS observations, 6,913 useable observations remained in 

the final dataset.   
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Table C.1: Total Observations after Data Merging 

 

Year 

ATUS 

Obs. 

Matched to 

County 

Matched to 

EAB Detection 

Matched to 

Weather 

Matched to forest cover, 

AQI, macroeconomic 

conditions 

After Dropping 

Missing or NIU 

ATUS Obs. 

2003 20,720 8446 1979 1914 1914 800 

2004 13,973 5771 1469 1434 1434 571 

2005 13,038 5434 1429 1380 1380 635 

2006 12,943 5889 1519 1408 1408 622 

2007 12,248 5583 1416 1325 1325 613 

2008 12,723 5789 1458 1365 1365 576 

2009 13,133 6016 1591 1499 1499 637 

2010 13,260 6050 1543 1460 1460 664 

2011 12,479 5749 1473 1391 1391 638 

2012 12,443 5660 1390 1307 1307 599 

2013 11,385 5242 1333 1247 1247 558 

Total 148,345 65,629 16,600 15,730 15,730 6,913 
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