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Chapter 1

Introduction

1.1 Purpose

People have an amazing ability to solve complex problems by performing a sequence

of simpler operations (i.e: functions/procedures which take input variables and pro-

duce output variables). We are able to do so even when there exists a large number

of possible choices for such operations and when the number of combinatoric ways

that these operations can be chained together is astronomical. On the other hand,

computers typically do not solve problems this way and have to be programmed

with a precise set of instructions. What is it that allows us to perform such a feat

while computers cannot? One of the major features that sets us apart from com-

puters is our ability to draw upon our large range of knowledge and its connections

to the problem at hand. Meta Concepts aims to use knowledge-based information in

this way to enable the automated generation of code in order to solve problems in

cases where solutions would otherwise be difficult to devise by hand. Meta Concepts

is an object-oriented coding system whereby the user specifies and works with an

ontology of concepts or types/classes which captures knowledge about their usage

1



Chapter 1. Introduction

and metadata about their methods, how method calls can be chained together, and

associated method parameters and constraints. By augmenting the code generation

process with knowledge-based information, the system is able to significantly narrow

and prioritize its search through the otherwise vast search space in order to quickly

generate high-performing solutions.

To describe this project in simpler terms: Meta Concepts is a software system

which is used to automatically generate solutions to solve complex problems – it is

a computer program which creates other computer programs – more specifically it

generates a fragment of a program which is useful in the context of a larger program

which we have created to solve a well-defined problem. It is applicable in cases

where we seek solutions which are a composition of simpler primitives much in the

same way that molecules are a composition of atoms which in turn are made up of

elementary particles such as protons and electrons or how mathematical equations

are made up of simpler operations such as addition or division. These systems are

governed by rules or laws which describe how their atomics interact or how they can

be combined, e.g: protons attract electrons, a number which represents a length can

be added to another length, but an area cannot be added to a length. Meta Concepts

allows the user to specify the atomics and the general rules by which these atomics

can be potentially combined in order to automatically generate solutions. In order

for this process to be automated, the user must provide some way of evaluating the

solutions which the system produces and to assign to them some quantitive rank or

fitness. Evaluation is done either against some data, e.g: an equation which describes

some system for which we have collected data, or by judging the performance of the

larger program when the generated solution is “plugged” into the larger program e.g:

part of a behavior for an agent or simulated robot, how well the generated solution

performs or makes decisions when playing a game, etc. In this way, the system can

rapidly generate and test several solutions in a randomized or stochastic fashion until

it finds a solution which solves our problem.

2



Chapter 1. Introduction

1.2 Overview

Meta Concepts is an object-oriented coding system whereby the user defines an on-

tology of concepts and the methods that act upon them. The system takes the idea

of strong-typing to a higher level. In typical programming models, we work with

types where the compiler knows little more than that a certain type is at the lowest

level a floating point number or how a data structure is laid out in memory. In Meta

Concepts the code generator has deep knowledge about its types and manipulates

variables/concepts such as Position, Mass, Length, etc. that have a specific mean-

ing combined with attributes on these concepts, e.g: whether a concept instance

is a vector, a set, a constant, how many times a variable has been used as in in-

put or output, how many calls ago it was produced, and much more. The system

makes it easy to add new types and attributes and facilitates extending the method

matching criteria. We can set requirements and constraints on methods such as the

required inputs and describe what attributes the outputs have. We can also define

quantitatively how strong of a match a certain method is based potential inputs and

their attributes, thereby expressing hard and soft constraints. The concept’s type

is the most important cue used by the code generator, and additionally, attributes

attached to concept provide further hints to the code generator that enables the

highly prioritized search that is at the core of the system’s code generation process.

In Meta Concepts, concepts are implemented as C++ classes. I am using a

language of my own design called MML (Meta Modeling Language) which allows the

generated code to be interpreted by interfacing with the C++ side that performs

the actual execution. Additionally, I have created a modified version of the Clang

C++ compiler to create the MML++ language, a superset of C++. MML++ adds

several powerful features used by the system, among them: the ability to define

metadata directly in the C++ class header files in order to describe knowledge-based

information about methods and their inputs/outputs/return values.

3



Chapter 1. Introduction

A generated solution is simply (this is said with some irony due to the combina-

toric nature of the problem) a chain of method calls. An important design feature

of the system is that it does not generate control flow but rather relies entirely on

methods defined in the ontology. For example, rather than generate a for loop that

performs a computation such as a sum or an average, a method is defined that

performs such functionality. Another important strength of the system is that the

underlying implementation of concepts is written in C++ and can be arbitrarily

complex – we are defining an interface to the classes which allows them to be ma-

nipulated in a meaningful way which is more likely to produce good results than if

we were simply performing random calls.

The following example output in MML depicts a final solution from a simple

program which is subsequently referred to as the setops example/test case:

Length* length_0 = b.setComplement(f);

length_0.foo();

Length* length_1 = a.setComplement(d);

Length* length_2 = length_0.setComplement(length_1);

Length* length_3 = a.setUnion(length_2);

Length* length_4 = f.setUnion(d);

Length* length_5 = length_4.setIntersection(length_3);

g.setObj(length_5);

Figure 1.1: Sample solution

The user provides as input four concepts of type Length named a, b, d, and f,

and seeks as output a concept of type Length named g. In the process, the code

generator creates a few temporaries named: length 0, length 1, etc.

The following excerpt of MML++ code depicts how metadata is defined in the

Real.h header (concept Length derives from the Real concept) in order to show how

method metadata is defined for some of the methods used in the example above:

4
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/*[

self: [set:true , vec:true],

c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setUnion(const Concept* c) const;

/*[

self: [set:true , vec:true],

c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setIntersection(const Concept* c) const;

Figure 1.2: Sample methods and metadata

The final generated metadata picks up certain attributes already provided by

the C++ syntax such as whether a parameter, the object called upon (the “this”

object), or the return value is const. It also knows that because we have used the

generic Concept type that the method will polymorphically produce or take as input

a Length when it is called on a Length type. In this way, rather than define a

method, say setUnion() for each concept that extends Real, we can simply define

it once.

To solve a problem with Meta Concepts, the user begins by specifying the problem

inputs and desired output concepts and by describing these variables with as many

relevant attributes as possible. We are not concerned with generating a complete

program but rather a module, or section of code which is generated then “plugged”

into a larger host program for evaluation. The user devises some way of evaluating the

overall fitness of the program instance when the module is plugged into the program

and evaluated.

In the appendices, under the Sample Program Setup section, we list the source

5



Chapter 1. Introduction

code for the setup and general control flow of this program as it interfaces with the

Meta Concepts system. This problem is a very simple and contrived example to

illustrate the basics of how the system works. In this case, knew what the final

solution was and we calculated the error directly, but imagine a more sophisticated

program in which we were generating a section of code where we do not know the

error a priori but the module serves, for example, as some sort of control mechanism.

Here we might be aiming to evolve a complex behavior in the host program and we

calculate the fitness by how well the larger program performs, not its error.

6



Chapter 2

Related Work

In this chapter I will briefly describe two existing prominent fields of work within

computer science, both active areas of research in artificial intelligence, which are

relevant to Meta Concepts: genetic programming and constraint programming.

2.1 Genetic Programming

Genetic programming (GP) is an evolutionary-inspired automated code generation

technique which is a special form of genetic algorithms (GA’s). The roots of GP

date back to 1950’s, with related work done by Fogel, Holland, Barricelli, Cramer,

and Rechenberg during the 1950’s to 1980’s. However, GP as it is known today, was

developed and formalized by John R. Koza in the 1990’s. [1]

2.1.1 Genetic Algorithms

Genetic algorithms are a machine learning technique that have been successfully

used to solve a large range of problems involving optimization and search. In genetic

7



Chapter 2. Related Work

algorithms we encode solutions as chromosomes. In typical form, the chromosome

consists of a binary string. Key to GA, is the crossover operation which involves

selecting two solutions A and B stochastically from a population in order to create

a new solution by recombining bits of A and B. The simplest crossover approach is

to pick a random crossover point and create a new solution C which is formed by

splicing together the A’s portion of the chromosome to the left of the crossover point

and B’s to the right. Mutation is also employed, by randomly modifying parts of the

chromosome, but usually applied at a lower rate and as secondary to crossover.

After mutation and crossover, the new solution is evaluated and perhaps replaces

a solution of lesser fitness in the population. By iteratively applying mutation and

crossover, the population moves towards a state of higher fitness. We stop after

a fixed number of iterations, after some convergence criteria is achieved, or after

finding some candidate solution which achieves a desired fitness.

Genetic algorithms are typically easy to implement but it has been difficult to

grasp and formulate theoretically how and why they succeed. The building block

hypothesis attempts to describe their success. Goldberg describes the building block

hypothesis heuristic as follows:

Short, low order, and highly fit schemata are sampled, recombined and re-

sampled to form strings of potentially higher fitness. In a way, by working

with these particular schemata (the building blocks), we have reduced the

complexity of our problem; instead of building high-performance strings

by trying every conceivable combination, we construct better and bet-

ter strings from the best partial solutions of past samplings... Because

highly fit schemata of low defining length and low order play such an

important role in the action of genetic algorithms, we have already given

them a special name: building blocks. Just as a child creates magnificent

fortresses through the arrangement of simple blocks of wood, so does a

8
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genetic algorithm seek near optimal performance through the juxtaposi-

tion of short, low-order, high-performance schemata, or building blocks.

[2]

2.1.2 Genetic Programming Fundamentals

Genetic programming is a special form of GA where the chromosomes we are ma-

nipulating are pieces of executable code. A large variety of methods and approaches

have been utilized to perform genetic programming. In this section I will describe

GP in its most basic and traditional form. GP is typically performed by representing

code fragments in tree form. For example, the code expression a * (b - c) + d can

be represented in tree form as:

Plus

Times

a Plus

b Times

-1 c

d

Figure 2.1: Sample GP tree

The primitive set consists of the set of terminals and non-terminal functions

used by the GP run. The terminal set is made up of input variables, constants,

9
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or functions of arity 0 – those that reside at the leaf or terminal nodes of the tree.

So in our example above, the terminal set T = {a, b, c, d,−1} and the function set

F = {Plus, T imes} constitute the primitive set. Usually the arity of the functions

in F is known for each function beforehand. Here we have restricted ourselves to

using arity = 2 functions or binary functions.

2.1.3 Initial Population

GP runs are usually performed with a limited population size. Typical population

sizes for small problems might be on the order of thousands. The ideal population

size usually depends on the nature of the problem we are attempting and often we can

get by with a small population size for simpler runs. Large populations entail greater

memory footprints and can take longer to generate the initial population and require

higher processing and convergence times. Once a reasonable population size has been

chosen, GP runs employ different strategies for forming the initial population. The

grow method and the full method are two such approaches to generating the initial

population. [9] In both methods we are generating solutions up to some desired

tree depth dm, the proper setting of which depends on the complexity of the target

solution. Note that the complexity of the solution grows exponentially with dm. If

we are using strictly binary functions then the number of nodes in a tree of depth

dm is O(2dm).

In the full method, we form subtrees by picking random functions from F until

depth dm is reached, at which point, we pick terminals randomly from T to complete

the tree. The grow method, on the other hand, allows for the creation of trees whose

size and shape is variable. Here, we randomly choose from both T and F until

depth dm is reached, at which point we only choose terminals. Often it is useful to

apply a hybrid approach in generating the initial population, e.g: generate half of

the population with the full and the other half using grow.

10
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2.1.4 Problem Setup, Training Data, and Fitness Evaluation

Consider the following scenario, which is one common usage of GP: we wish to

perform a symbolic regression whereby we would like to generate a function, e.g:

y = f(x). We do not know the exact form of the function but we have a hunch that

it can be created as a composition of a small number of arithmetic functions such as

Add and Times and a limited number of provided terminals. Note that the function

does not necessarily have to be linear (one of the powerful features of GP is that the

function could be anything, involving any types of primitive functions we wish) – we

could just have well as included a Pow function for raising a value to a power, for

instance.

We have collected data which maps input values of x to output values y. So

we have training data which consists of the sets X = {x1, x2, ... xn} and Y =

{y1, y2, ... yn}. We generate successive attempts at finding a function that fits the

data, gi(x). Then we can use the root mean square (RMS) method to derive an

aggregate fitness measure as follows:

RMSi =

√∑n
j=1 (yj − gi(xj))2

n
(2.1)

The GP process can then calculate a fitness fi = 1/RMSi for each generated

function gi(x) by applying gi(x) over the the training data. The exact value of the

fitness measure does not matter, it is only important that fitness values are relative

to one another according to certain desired features that allow us to compare the

relative correctness or utility of the generated functions.

11
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2.1.5 Selection, Mutation, Crossover, and Replacement

After the initial population has been formed, in this simple scenario, the solutions are

evaluated against training data as described using a method such as RMS. We iter-

atively proceed by stochastically selecting solutions from our population. There are

a variety of methods that may be employed to select a solution from the population.

We can select one uniformly by picking a random solution from the population, but

it is sometimes more effective to pick a solution according to some distribution based

on solution fitness so that we are more likely to select fitter solutions. Mutation

and crossover are the two main operations that are then applied to the solution(s)

selected.

In mutation, we select a solution, and somehow alter it, usually in some minor

fashion. A wide variety of mutation techniques may be applied, for example, we may

simply pick a node in the the tree as a mutation point, erase the subtree at that node,

then regenerate that portion of the subtree using the grow or full method. Once a

solution has been mutated, we reevaluate its fitness. We have a few choices on how

to enter it into the population. One approach is to simply enter the new solution

into the population at the end of the list. More commonly, when the solution is at

its capacity, we would replace a solution only if its fitness was higher than that of

the lowest fitness solution.

GP, like GA’s in general, derives it power from the crossover operation. So typi-

cally we employ some kind of rate to determine whether we do mutation or crossover.

A typical heuristic is to do mutation roughly 5 percent of the time and crossover for

the rest. Crossover works by selecting two solutions A and B stochastically as de-

scribed above for mutation. There exists a large variety of crossover approaches to

choose from. One of the simplest approaches involves selecting two random crossover

points p1 from A and p2 from B to form a new solution C by removing the subtree
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in A rooted at p1, replacing it with the subtree in B at p2. After crossover has been

performed, we evaluate the new solution and possible enter it into the population –

the same as we did for a mutated solution.

2.1.6 Stopping Criteria

If the run is successful, we have found a solution that achieves some desired fitness fd

after a number of iterations and we are done. If we are not successful, then the run

can become stagnant as the population of solutions converges to some local optimum.

For this reason, it uncommon for an individual GP run to take a significantly long

time – either we will find a solution or the run will stagnate and will not make much

further progress. For this reason, as the run progresses it can be helpful to monitor:

the best, average, and worst fitness. We can also apply certain convergence heuristics

to these measures in order to automatically halt the run. We might attempt several

more runs if we cannot find a solution or alter various parameters and approaches

such as:

• population size

• initial solution generation approach / parameters

• mutation and crossover rate

• mutation and crossover approaches

• modifying the primitive set

13
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2.2 Constraint Programming

A constraint is a restriction on a space of possibilities; it is a piece of

knowledge that narrows the scope of this space. Because constraints

arise naturally in most areas of human endeavor, they are the most gen-

eral means of formulating regularities that govern our computational,

physical, biological, and social worlds. Some examples: the angles of

a triangle must sum to 180 degrees; the four nucleotides that make up

DNA strands can only combine in particular sequences; the sum of the

currents flowing into a node must equal zero; Susan cannot be married

to both John and Bill at the same time. Although observable in diverse

disciplines, they all share on feature in common: they identify the im-

possible, narrow down the realm of possibilities, and thus permit us to

focus more effectively on the possible. [3]

The field of constraint programming (CP) originated from the need to embed

constraints in logic programming languages such as Prolog. [4] The types of prob-

lems CP is concerned with also encompasses a more restricted form of CP that AI

researchers were actively concerned with in the 1970’s, research of which that has

benefited CP and CP solvers greatly. [5] CP is a technique used for solving opti-

mization and search problems and has grown to be a much broader field that is used

today to solve complex problems in a variety of application domains including [5]:

• the construction of efficient parsers for natural language processing

• computer algebra systems for solving systems of equations and for expression

simplification

• electrical engineering including circuit design
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• operations research in order to solve various optimization and scheduling prob-

lems

• molecular biology including DNA sequencing

2.3 Formal Description

A constraint satisfaction problem (CSP) is defined over a set of variables V =

{x1, x2, ... xn}. where each variable can take on values over some known domain,

i.e: x1 ∈ D1, x2 ∈ D2, ... xn ∈ Dn. D = {D1, D2, ... Dn} where each domain may

be finite or infinite. The constraints C = {C1, C2, ... Cn} are relations that hold

between variables over their domains. For a solution to satisfy the CSP, it must

simultaneously satisfy all constraints or it must be true that C1 ∧ C2 ... ∧ Cn.

For example, consider the following simple CSP involving variables x1, x2 ∈ Z+

with the following constraints:

• x1 > 10

• x2 < 5

• x1 + x2 = 13

Then the following pairs (x1, x2) satisfy this CSP: (11, 2), (12, 1)

A common usage of CPS’s is to formulate the CSP as an optimization problem

whereby an objective function is specified which we seek to minimize or maximize.

If we extended our example above with the maximization of the objective function

f(x1, x2) = x21 + x2, for instance, then our final solution becomes: (12, 1).

Solving a CSP is, in the general case, an NP-Hard problem. Even in a very

simple type of CSP, called SAT, where we restrict our variables bi over the boolean
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domain, and represent clauses in ternary CNF (conjunctive normal form) 1, e.g:

C = (b1 ∨ b2 ∨ b2) ∧ (b3 ∨ b4 ∨ b5) ... , then this problem is NP-complete and unless

P = NP, there is no algorithm that runs in polynomial time that can solve SAT in

polynomial time in the number of n variables. [6].

2.4 CSP Solvers

While CSP solving is an NP-Hard problem in the general case, often we are concerned

with CSP’s containing a relatively small number of variables and clauses and for those

in which the overall complexity is difficult but tractable. A variety of domain-specific

and general methods can be applied to solve many CSP’s of interest. Domain specific

methods are usually provided in the form of packages related to a particular CSP to

be solved. Examples of domain specific methods include [5]:

• solvers for linear systems of equations

• linear programming packages

• implementation of the unification algorithm, i.e: in automated theorem proving

General methods are concerned with generic methods for traversing and reducing

the search spaces encountered in common across different CSP’s. A thorough de-

scription of the methods involved in solving CSP’s is beyond the scope of this thesis,

but solvers typically employ advanced artificial intelligence techniques such as tree

traversal and search, rule-based frameworks, mathematical techniques such as the

simplex algorithm, solving systems of linear equations, and methods specific to CP

1Note that binary SAT CNF clauses (2-SAT) are limited in expressive power, and
solving them is in P, but in going to ternary CNF clauses (3-SAT) which are equivalent in
expressive power to any k-SAT for k ≥ 3, k-SAT is NP-Complete.
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such as the conversion of implicit constraints to explicit constraints and constraint

propagation. [5]

2.5 Constraint Programming Languages

... consider Ohm’s Law: V = I ×R which describes the relationship be-

tween voltage V , current I and resistance R in a resistor. In a traditional

programming language, the programmer cannot use this relationship di-

rectly, instead it must be encoded into statements which compute a value

for one of the variables given values of the other two variables... Requir-

ing the programmer to explicitly maintain relationships between objects

in the program is reasonable for applications in which the relationships

are simple and static. However, for many applications, the crux of the

problem is to model the relationships and find objects that satisfy them.

For this reason, since the late 1960’s, there has been interest in program-

ming languages which allow the programmer simply to state relationships

between objects. It is the role of the underlying implementation to ensure

that these relationships or “constraints” are maintained. Such languages

are called constraint programming languages. [7]

As described above, a constraint programming language (CPL) is a programming

language which includes first-class programming constructs for working with CP

and solving CSP’s. Early CPL systems were done is a rather ad-hoc fashion allowing

existing languages to be extended so that users could benefit from CP in a limited

fashion. For example, the CPL could track relations between variables and could

then deduce certain unknowns from CP relations given other known variables.

More recently, there has been a renewed interest in CPL’s which include a full

integration of CP capabilities. [7] One of the powerful features of a CPL is that
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once we have set up a certain problem as a CSP, multiple queries can be processed,

yielding answers to a variety of questions whereas in traditional programming, we

would have to rewrite certain relations specifically tailored to answer each question.

Consider the example for Ohm’s law that was given in the passage about but imagine

a more involved equation involving several more variables – the equation itself is a

constraint. When we are faced with the task of performing a query, certain variables

may be unknown, but we can limit the scope by specifying additional constraints

specific to a query. We can then answer a number of questions:

• does a solution exist at all given certain additional constraints?

• what is the effect on the solution of modifying, removing, or adding another

constraint?

• what is the solution or solutions which satisfy the constraints?

• among multiple solutions, what is the solution that maximizes some objective

function?

One of the advantages of CSP’s, especially when combined with CPL’s, is that

they are a high-level description or type of declarative statement or assertion in

which the user of a CSP system focuses on the what vs. the how, typically specifying

the CSP in a very natural mathematical language. [7] Despite the high-level nature

of CPL’s, there will always be a certain skill and learning curve involved with the

proper formulation of constraints and often it is vital to possess knowledge, at some

level, of how the solver process works as well as an understanding of the system’s

limits as it is easy to devise CSP’s which are beyond the capability of the solver but

which could possibly be refactored to become tractable.

Despite the utility of CPL’s, one does not necessarily have to use a full CPL to

gain the benefit of CP capabilities. There exists a large number of high-quality and
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freely available CSP solvers than can be called from mainstream languages such as

C/C++ as listed on the Wikipedia entry for constraint programming [8].
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Motivation

The end goals, requirements, and design features of the Meta Concepts system are

summarized as follows:

• To design and implement a general-purpose software system which will scale to

being capable of solving complex problems in a variety of domains including the

development of novel and human-competitive solutions in various areas such as

mathematical and scientific systems, especially AI systems, e.g: components

of agent behaviors and control mechanisms, inference, decision-making, etc.

The solutions generated are not complete programs but components which are

useful in the context of a larger system.

• The system shall be high performance both in its design and algorithms and

in implementation and should ultimately be capable of running on concurrent

and parallel systems.

• The system shall be extensible so that it is easy to add new concepts, methods,

and matching criteria and constraints.

• The system shall enable an informed search process so that it takes advantage
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of both the user’s expertise and domain knowledge as well the system’s ability

to quickly generate and evaluate solutions. Later versions of the system may

also allow the user to control various aspects of the code generation process,

e.g: flag interesting solutions as higher priority.

• Facilitate the creation of general-purpose and highly-reusable ontologies of con-

cepts.

• Enable the system/ontology to learn as it applied to more and more problems.

• Allow the system to be run in server mode. For example, a long run could be

initiated on a remote machine and client systems can connect to that run in

order to monitor or control its progress. The system includes a network-capable

GUI client program for this purpose.

• Support analysis of the operation of the code generation process so that de-

bugging, diagnosis when difficulties are encountered, and further development

and extension of the code generation system is made easier.

• The system shall be robust in that no generated solution shall cause the sys-

tem to halt indefinitely or crash. This is accomplished via extensive use of

exceptions in the framework and supporting code and by enabling the evalua-

tion engine to be interruptible so that it can be terminated if a user-specified

timeout threshold per solution instance is exceeded.

• Facilitate complex implementations of concepts by basing the system on a

mainstream language: C++. Allow generated solutions to be easily integrated

into a C++ program.

• Provide a universal and generic fitness evaluation approach that supports both

supervised and unsupervised learning.
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• Make it easy to add new concepts and methods which can be interfaced with the

code generator by allowing Meta Concepts comments/data to be specified next

to their definition in their C++ header file. Generate metadata from existing

C++ syntax as much as possible, e.g: the C++ const keyword. Perform

extensive error checking as early as possible to detect and report problems

related to Meta Concepts metadata to ensure the correctness of the ontology

as much as possible.

3.1 Relations to Genetic Programming

Meta Concepts was inspired, in part, by genetic programming and earlier related

work and research I conducted independently which led to my discovery of GP as a

field which could be learned from. Genetic programming and Meta Concepts both

have similar goals: they both aim to automate the generation of code using stochastic

methods and rule-based frameworks, solving some problem which generates solutions

which are evaluated with a fitness metric.

Several advanced variations on the basic GP scheme presented in the previous

section have been created, some of which aim to impart the GP process with ad-

ditional information and constraints that guide the code generation process such as

the role that knowledge-based information serves in Meta Concepts. One such main-

stream GP variation, uses grammar-based constraints to express relations where the

non-terminal rules are described by productions similar to those found in context-

free grammars. Other advanced variations of GP are able to generate sequences of

assembly code; others use stack-based machines and alternative computing models;

while others have the capability of generating and accumulating modules of reusable

code. [9] There is an incredible amount of interesting and fruitful prior work that has

been done in GP. As such, I will not attempt to compare the work of Meta Concepts
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to GP in the general case, but will use the traditional basic genetic programming

approach (“BGP”) as presented in the sections prior as a baseline to discuss and

highlight some of the value-added features that Meta Concepts incorporates.

One of the primary features that sets Meta Concepts apart from BGP is the use

of knowledge-based information to both guide and constrain the code generation pro-

cess. In this sense, we are utilizing both the best of the user’s knowledge combined

with the power and speed of the computer and Meta Concepts system. This knowl-

edge is provided primarily by strongly-typed concepts and metadata attributes. In

the BGP example provided above, we have specified two non-terminal functions, Add

and Times. When we create the initial population the only restriction provided in

the generation of trees involving these functions is that they take two arguments.

The system has no notion of the underlying concepts, or semantics of the values it is

manipulating. Therefore it is likely to generate several trees which do not have valid

semantic meaning. For example, suppose we were attempting to devise a function

which computes the area of a regular n-sided polygon as a function of the number

of the n and the length of each side l (this problem is presented later in the Results

section). In Meta Concepts, we can specify, rules, relations, and constraints that

describe the valid operations that can be performed, e.g:

• A length can be added to another length, but a length cannot be added to an

area.

• A length can be divided by another length to create a length ratio.

• An angle can have the function sin() or cos() applied to it which produces a

length ratio.

• A concept of type C can be multiplied by a C ratio to produce a C.

• A length can be multiplied by another length to produce an area.
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• π is a static constant which is available for use whose type is an area ratio.

In BGP, on the other hand, we generate the initial population, and iteratively

apply crossover or mutation which could produce several meaningless expressions

when the variables we are manipulating are assigned types, e.g: multiplying an area

by another area, adding an angle to a length, and so on. Not only do constraints like

the above narrow the search space, but they ensure the validity and correctness of

solutions. Furthermore, Meta Concept ontologies are highly reusable. Once we have

defined an ontology that defines the above concepts and relations for length, area,

angles, etc. we can then put it to use to solve several different problems.

Meta Concepts does not perform mutation or crossover but provides analogous

operations. For the same reasons that generating the initial population is likely to

generate several meaningless expressions, the same applies to crossover and mutation,

furthermore both are destructive. Here, I argue that the Meta Concepts analogs are

more likely to produce stronger results. In Meta Concepts, the analog of mutation is

accomplished by re-queueing a solution to the code generator. The code generation

process can use this solution as a starting point to continue generating code from

that solution then it may finally make a different assignment from temporaries to the

final desired outputs. In this way, we have given the code generator an opportunity

to alter or mutate an already high-performing solution without erasing any of its

code which may be vital to the final solution.

The Meta Concepts analog of GP crossover is the merge operation which will

be described more completely in subsequent sections. Merge works by selecting two

solutions A and B so that their state can be merged, then queues the merged solution

C so that the code generator can further modify it, the same as in the case of mutate.

Again, merge is non-destructive and is more likely to generate useful results because

the same constraints that were applied in generating A and B are applied to C which

guarantees correctness so long as the ontology is consistent. It depends exactly on
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the problem, but in general, the code generator has far fewer choices (many of which

are not helpful in creating a solution of higher fitness) to make compared to in the

case of BGP crossover where we must pick two crossover points in order to splice

together a new tree.

Like BGP, Meta Concepts also suffers from the problem of convergence to local

optimums. We are working with a population whose size is much smaller than

the overall search space. When we begin crossing over or merging solutions, the

population tends to become homogenous over time to the point where the system

will either find a solution after some finite amount of time or will have to reset so that

we can try again. Meta Concepts includes the option of resetting its state, typically

done after some chosen number of iterations if no solution has been found.

Finally, one of the major strengths of Meta Concepts is that it is an object

oriented-system and interfaces with a main-stream language: C++. Therefore the

implementation can be arbitrarily complex and the solutions we generate can be used

in the context of a larger real-world program. We are not limited to mathematical

problems such as the symbolic regression scenario that was described earlier. The

generated code is a sequence of object-oriented calls on objects thereby the behavior

of the final solution can be replicated simply by pasting in the output code of the

solution as C++ and linking against the ontology library. In addition, the system

does not attempt to generate control flow which is error-prone and causes numerous

problems, e.g: infinite loops. Instead, the system relies strictly on methods defined

in the ontology as building blocks. This design decision makes the user’s task of

specifying the ontology and problem instances clearer and avoids certain difficult

code generation problems.
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3.2 Relations to Constraint Programming

Interestingly, the overall problem of code generation that Meta Concepts aims to

tackle can be formulated as a constraint satisfaction problem (albeit a rather complex

one) with an objective function where we aim to maximize fitness over some problem

instance. The variables are the sequence of specific calls that are performed in

a solution as well as the temporaries created and other inputs which are mapped

to parameters of further calls and the domain consists of those variables chosen

as concepts from the ontology and the methods that the ontology provides. Meta

Concepts, in a sense, is a specialized type of CSP solver.

More tangibly and useful, on the other hand, is to consider the ways that Meta

Concepts performs matching between call sequences and matching candidate vari-

ables and call parameters and to understand how this is a type of CSP that could

benefit from the theory of CP and perhaps existing CSP solvers.

One of the approaches that was attempted early on that was abandoned because

it was not tractable was: when choosing which variables in the state to map to a

call’s parameters, to generate the permutations over all possible variable to parameter

mappings. Not only can this lead to a large number of permutations when the number

of call parameters is large, but of more concern, is that when solution size increases,

we have more temporaries to choose from, then generating the permutations explicitly

becomes infeasible.

Unfortunately, the problem is that this makes it difficult to test conditions that

involve constraints over multiple parameters, therefore the current approach is that

the only constraints that may be applied are those involving the potential variable

to be mapped to a certain parameter in isolation. In this way, after a method

has been selected, we generate the candidate variables that can be mapped to a

certain parameter, filtering out those which violate the hard constraints. A hard
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constraint is one that causes the match() method to return m = −1 as described

in subsequent sections. A soft constraint is expressed by mapping to candidate

to some positive value for m so that the candidates can be chosen stochastically

as linearly proportional to m. For example m might partially be a function of how

many calls ago a variable was produced, preferring more recently produced variables,

whereas considerations of type and whether attributes match (e.g: both parameter

and variable are a vector) are expressed as hard constraints.

Some of the higher level goals of Meta Concepts are directly inline with the aims

of CP, especially CPL’s. Namely, that we wish to express relations and constraints

between variables and parameters, especially involving type and attribute domains.

In the case of Meta Concepts, the goal is so that several different variations of these

relations can be generated as potential solutions whereby we constrain the solution

search space and ensure the validity of generated solutions.
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Approach

4.1 Supporting Framework and Languages

A large part of the implementation of this project relies upon the foundation of the

Meta Framework and Languages which I have been developing independently since

2003. In this section I will briefly outline specific features of the Meta Framework

which are utilized by this project.

4.1.1 The M Language and Interpretation

The Meta Framework’s M language is one of the most essential foundations on which

Meta Concepts is built. It allows code to be represented and manipulated as data.

M code can be created at runtime and executed through any MObject subclass. The

mnode type is used recursively to represent M code. In the C++ code segment below,

we construct M code corresponding to a functional node f = Add(x,1) and run it

through an interpreter.

M can be thought of as an interpretable AST. Besides, interpretation it is also
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MObject object;

mnode d = mfunc("Def") + msym("x") + mnode (2);

object.process(d);

mnode f = mfunc("Add") + msym("x") + mnode (1);

mnode r = object.process(f);

cout << "r is: " << r << endl;

Figure 4.1: Example of how M code is created and executed programmatically

used throughout the framework when generating compiled code.

MML

MML (Meta Modeling Language) is a programming language, originally designed

for modeling and simulation, built on top of the the M foundation. M excels at

manipulating or constructing code at runtime, but is difficult to read or write larger

programs in. MML provides a solution by defining a language that gets parsed to

M code which can then be directly interpreted by an MObject. Thus, MML can be

thought of as a convenient front-end to M code and M-based interpreters. MML is

an easy-to-use, semi-weakly-typed language which is based on the syntax of C/C++.

The following MML code is the equivalent to the M code above.

r = x + 1;

Because of M’s functional programming roots, we can easily define, manipulate,

and execute closures, e.g:
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f = {x + 1};

f.push({y}); // f is now , in M: Add(x,1,y)

x = 2;

y = 9;

eval(f); // evaluate f

Figure 4.2: Sample MML code

4.1.2 MProc and MProcTask

Another important feature of the Meta framework used by this project is a graph-

based concurrency system provided via the MProc and MProcTask classes. MProc’s

are connected to eachother to form a network or task where chaining order determines

execution sequence and whereby parallel execution paths can be formed or joined

with other paths. The semantics of the MProc system are highly configurable allowing

the creation of complex networks, that, for the purposes of this project, enable various

search methods to be defined and run in parallel.

MProc’s signal each other with the mvar data type – an essential type of the Meta

framework which is capable of representing virtually any type of data recursively.

The signals provide a mapping that the MProc uses to determine whether or not to

activate when signaled and also allows state to be passed, enabling the passage of

data to be entirely localized, if desired, such that state propagation through signals

allows several instances of the MProc to be run unhindered in parallel.

MProc’s once activated, are queued to an associated MProcTask. MProcTask’s co-

ordinate a specific processing goal, providing high-level thread-pooling and queueing

with optional application-specific priority of queued items.
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4.2 Concepts, Attributes, and Matching

Each concept in the system derives from the Concept base class which in turn is

derived from MObject. Subclasses of MObject are then capable of interpreting M

code and in MML++ they receive special benefits, namely that all of their M-

compatible methods implemented in C++ are then callable by the interpreter. Being

M-compatible entails that the method’s return value and parameters can be encoded

as an mvar or mnode.

Because defining and modifying method signatures is such a frequent task, Meta

Concepts makes the specification of metadata as convenient as possible, allowing

metadata definitions to reside right next to their method definition in the corre-

sponding C++/MML++ header file. Metadata specifications are also checked for

consistency against their method definition. Methods which include a Meta Concepts

comment just before their definition, are then made available to the code generator.

/*[

self: [set:true , vec:true],

c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setUnion(const Concept* c) const;

Figure 4.3: Sample method and metadata

Meta Concepts comments can also be used to describe the concept class itself.

Meta Concepts comments are structured as key-value specifications where each key

either refers to a parameter, the return value with the ret keyword, or the “this”

object with the self keyword. The Meta Concepts comment is itself an mvar where

each contained keyed value consists of an mvar map of the attributes to be set, e.g:

[set:true, vec:true].
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During metadata parsing, when a syntax error is detected, the ontology will

output an error message indicating exactly where the error occurred. Attributes are

set via mutator methods on the Concept or subclass, also reporting a similar error

when an invalid attribute or incompatible attribute value is given.

In the common case, each keyed value describes either the input requirements and

matching criterion when a variable is applied to a parameter or the output state of

the specified parameter when it produces a variable (e.g: a return value). However

in less common cases, such as when a parameter is both an input and an output

(a parameter which is modified), we may wish to describe its output state as being

distinct with the out key extension. In this case, the attribute has its out state

merged with the input state (giving precedence to values in its out state). Consider

the following method foo() which takes an input x which is also modified by the

method call. Similarly, we could create a method that modifies the “this” object by

dropping the const and possibly specifying its out state.
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/*[

self: [set:true , vec:true],

x: [set:true , vec:true],

x_out: [set:false , vec:true]

]*/

void foo(Concept* x) const;

Figure 4.4: Sample method and metadata describing a parameter output state

/*[

self: [set:true , vec:true],

self_out: [set:false , vec:true],

]*/

void bar();

Figure 4.5: Sample method where the “this” object is modified

Meta Concepts incorporates a highly extensible call matching system, making it

easy to add new attributes and matching criteria. Attributes are applicable to a

concept, method, parameter, or variable, or a combination of the four. Currently,

the system supports the following builtin attributes:

• in - true if a parameter can take as input another variable or true if a variable

in the code generation process can be used as an input. A return value is never

an input and some parameters may be strictly outputs in the sense that they

are produced by the method call. By default every method parameter has in

set unless overridden.

• out - true if a parameter or the “this” object is modified by the method call.

For parameters and the return value, the out attribute is automatically set

from the C++ const keyword.
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• const - Automatically set for parameters from the C++ const keyword. A

variable in the code generation process has the const attribute set if it cannot

be further modified, i.e: if it can’t be passed as a parameter where the out

attribute is set.

• vec - true if the variable is a vector or a parameter which accepts or produces

a vector. The recommended approach to defining the ontology is to utilize the

vec attribute rather than creating a distinct type for vectors, e.g: don’t create

concepts such as PositionVec.

• set - similar in usage to vec, set is true if the variable or parameter is an

unordered set of items.

• length - if the type is a vector and the size is fixed, this attribute should be

set to indicate its length.

• poly - true if the parameter is polymorphic in the sense that it is of the same

type as “this”. A polymorphic type uses the Concept type in its call interface.

• given - true if the variable was given as an input as opposed to being that which

was created, i.e: a temporary that was produced during the code generation

process.

• age - the number of calls that have been generated since the variable was

produced. Given variables have a fixed age of 0.

• inputUses - the number of times a variable has been used as an input.

• outputUses - the number of times a variable has been used as an output or

modified.

• enabled - true if the variable, method, or concept can be used by the code

generator or in the case of a variable, further used by the code generation

process.
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• takeThis - true if the parameter can take the same value as the “this” object.

The default is false.

• cloneOf - the name of a variable that was cloned to create a temporary. This

attribute is used by the code generator to initially create a copy of non-const

objects so they can be assigned to final outputs in order to support merging.

• takeCloneOf - only allow the parameter to accept a specified cloneOf object.

• description - a textual description of a concept, method, parameter, or vari-

able.

• remove - a class-level attribute that allows inherited methods to be removed

from a concept and not used during the code generation process.

• static - applies only to variables or parameters which, for example, can be

designated to only accept a static variable. Static variables are special variables

which can be collapsed into a constant which are then embedded directly in

the solution.

• weight - weight is a recently added attribute that applies to variables and

parameters. The weight is a multiplier on the match of a variable whose default

value is 1.0. We specify a weight, to give a higher precedence to input variables,

for instance, say if we want to make it more likely that a certain variable will

be used in a solution.

Certain attributes which are applied to parameters, e.g: vec can be set to the

undef value which indicates that they could accept a variable as input with that

attribute set to any value, e.g: true or false. Boolean valued attributes such as

vec are assumed as false when such an attribute/key is not present.

Additionally, the system supports post conditions which are specified using the

MML language embedded within the Meta Concepts comment. In the example
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below, we use undefined attributes and a post condition to specify that the return

value’s vec attribute depends on whether the input parameter c or self is a vector.

/*[

self: [vec:undef , ratio:undef],

r: [ratio:true],

post: {

if(r.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Concept* mulRatio(const Concept* r) const;

Figure 4.6: Sample method which uses a post condition

The Concept class provides the match() method which defines the builtin match-

ing criteria via a virtual method – derived classes can intercept it and define addi-

tional concept-specific matching. The match() method returns a floating point value

which indicates how strong a match is given a parameter and a potential input vari-

able. The figure below depicts an excerpt of how matching works.

A “full” match is performed during the actual code generation process whereas a

“partial” match is performed when connecting methods to create the code generation

graph (as described in later sections) when less information is available. The match

method returns a negative value if no match is possible otherwise higher values are

more likely to match a variable with a parameter. In this way, we can express hard

constraints, by returning a negative value in cases where hard constraints are violated

as well as soft constraints by returning higher values of m to represent better matches.
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double Concept :: match(const mvar& v, bool full){

if(attrs_.out && !v.out){

return -1;

}

if(attrs_.vec != v.vec){

return -1;

}

// for brevity , code omitted here

double m = pow ((100.0 - v.age)/50.0, 2.0);

return m;

}

Figure 4.7: The match() method

4.3 Code Generation

4.3.1 Initialization

When the ontology singleton is first retrieved, it performs an initialization phase

which creates a prototypical concept for each concept subclass. The concept meta-

data is processed and attached to the concept prototype. An internal Method object

is created for each method over all concepts and each method is assigned a unique

id. The metadata for each method is processed and associated with the method.

Extensive error checking is performed so that errors are detected and reported as

much as possible before code generation begins.

4.3.2 Code Generation Graph (CGG)

When the user instantiates and initializes a CodeGen object by calling the generate()

method, another phases of initialization occurs. Now the user has specified the input

variables and their associated attributes as well as the desired outputs. At this
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point, a Code Generation Graph (CGG) is created and associated with the CodeGen

object. The CGG is a cyclic directed graph which connects methods and determines,

partially1, the potential call paths that the code generation process can follow. The

CGG is implemented using the Meta Framework MProc system as described earlier,

where each node is implemented as an MProc subclass.

<<start>>

Real::setUnion

Real::setIntersection

Real::setComplement

Real::foo

<<end>>

Figure 4.8: Sample CGG for the setops problem

A pseudo-method is created for the begin and end nodes. The begin method

simply outputs the user’s input variables while the end node takes as input the

1See the description of backtracking and restarting for a complete clarification of this.
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user’s desired outputs. Before we begin connecting the graph, we create a map

that associates possible inputs and outputs with methods. Recall that an output

is anything that the method produces or modifies. The concept type of inputs and

outputs is the first cue that two given methods can be connected. For derived classes

we include inherited methods in this process (so that the “this” object type can

be enumerated for inputs and outputs) and also consider that when a base class is

used as a parameter any of its derived classes classes could also be used for that

input/output.

After we have created the method input/output map, to connect the CGG, we

start with the end node and determine if we can find a path to the start node,

creating multiple connections to other method nodes in the process. We perform

a breadth-first traversal examining the inputs of the current node for nodes which

produce those outputs. We form a connection if at least one input maps to one

output but first we do a partial match on the output passed to input as described

with the match() method. If match() returns a non-negative value then a connection

is formed. We stop when we have visited every node in the expanding front. If in the

process, we have not formed a path from the start node to the end node, we report

an error.

4.3.3 Code Generation Process

Each time a new solution is requested by the user, we create an initial state of

the input variables and queue the start node for execution. The figure below gives

an example of the mvar representation of an initial state generated for the sample

problem shown in the Summary section.

Note that the state representation includes, most importantly, a “vars” section

which maintains the current state of variables (but not their runtime values as the
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[seq:[[:0, code:= , outs:[a:2, b:2, d:2, f:2]]],

solutionId :41, solutionTag:"f", temp:0,

vars:[ Length :[a:[age:0, const:true , enabled:true ,

given:true , in:true , inputUses:0, length:0,

out:false , outputUses :0, poly:false ,

set:true , takeThis:false , vec:true] .... ]]

Figure 4.9: Sample mvar representation of the initial state

code generator does not perform an actual execution as it progresses – though this

is an approach that I may explore later). The matching information is contained

in this section and various values e.g: input/output uses are updated at each node.

The current sequence of code generated thus far is contained in the “code” section

which also maps the inputs and outputs that were used at each step. A subsequent

state after some calls have been performed will look something like the figure below

(with some portions of the code emitted for brevity).
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[lastChoices :[4,6,7,8],

seq:[

0:[:0, code:= ,

outs:[a:2, b:2, d:2, f:2]],

1:[:7, code:{

Length* tU_0 = b.setIntersection(f);

},

ins:[b:true , f:true], outs:[tU_0 :2]],

2:[:6, code:{

Length* tU_1 = a.setComplement(b);

}, ins:[a:true , b:true], outs:[tU_1 :2]],

3:[:4, code:{

tU_1.foo();

}, ins:[tU_1:true], outs:[tU_1 :1]],

4:[:6, code:{

Length* tU_2 = tU_0.setComplement(tU_1);

...

}, ins:[tU_0:true , tU_3:true], outs:[ tU_18 :2]], ...

27:[:6 , code:{

Length* tU_19 = tU_14.setComplement(tU_13);

}, ins:[tU_16:true], outs:[tU_16 :1]]],

solutionId :30, solutionTag:"U", temp:20,

vars:[ Length :[a:[age:0, const:true , enabled:true ,

given:true , in:true , inputUses:3, length:0,

out:false , outputUses :0, poly:false , set:true ,

takeThis:false , vec:true ] ,...]]]

Figure 4.10: Sample mvar representation of the state after some calls have been
performed
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Note here that we can see the call sequence (at the beginning of the mvar state)

for the path that led to this particular point. We also retain the method id’s of other

immediate potential branches that could have been made at the last step (as used

in the merge and backtracking methods described later).

At each node, we generate a list of the variables that could be potentially applied

to a given method parameter. We apply the match() to each so that we can create

a prioritized map of which variable permutation to perform the call with. A variable

permutation is selected stochastically with the probability of that permutation being

selected as linearly proportional to the sum of its match priority (over the variable/-

parameter matches). We do a simulated run of the method on the chosen variable

permutation, including executing postconditions, which modifies the variable state

of the selected variables, also creating output variables. We select an output edge to

signal uniformly randomly – although some work is underway to allow the system

to strengthen connections between methods and thereby modify the probability that

the next method will be selected – the problem with this idea is that the proper

solution is not only dependent on the code sequence but several features of the state.

It is possible that at a certain branch, a state may fail to produce a variable set

that matches because of the more rigorous matching that is done in the full match

vs. the partial match that was done in the CGG creation phase when we formed

connections between nodes. In this case, we either backtrack or stop and start over

again by re-queueing the start node.

At some point we will reach a node which is connected to the end state and that

node has some probability of signaling the end node thereby finishing the solution

and sending it to the user for evaluation. The probability that the end node is

signaled is determined by the complexity parameter which is described at the end

of this chapter.
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When the final node is reached, similar to non-terminal nodes, we choose a vari-

able permutation over which we map temporaries to the final desired outputs. A

solution is submitted to a queue for the user to evaluate, but first we perform some

normalizations on it. It is likely that several temporaries have been produced that

the final desired output(s) do not depend on. We use the input/output maps in the

step by step solution data to normalize the final solution so that no extraneous calls

are included.

When the user is ready to evaluate the solution by calling next() on the CodeGen

instance, the interpretable M code is made available and the host program executes

it thereby calling the C++ implementation code. If the code generation process

fails, or the implementation throws an exception, then the process is repeated to

produce another solution. If code generation succeeds and execution succeeds, either

the desired fitness/error has been achieved and we are done or, more likely, the

user submits a fitness for the evaluated solution and it is placed in a population of

solutions of fixed size (specified by the population parameter in the constructor of

CodeGen). If the population is at its capacity and the solutions’s fitness is below that

of the lowest fitness solution in the population, the solution is denied entry and is

discarded, else it forces the lowest fitness solution to be removed from the population

so that the new solution can be inserted.

Because it is possible for a population of solutions to become somewhat homoge-

nous and thereby reach a local optimum, stagnating the code generation process, the

CodeGen method reset() can be called to clear the solution population manually or

we can set an automatic periodic reset interval.
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4.3.4 Merge

Maintaining a population of solutions allows analysis to be done on high fitness

solutions and to use this information to inform the code code generation process

about what has worked well in the past. This is a work in progress, therefore currently

the primary reason for keeping a population of solutions is to support what I call the

“merge” method. Merge works by selecting two high fitness solutions stochastically,

merging their state and code, then re-queuing to a selected CGG node.

Doing this right, so that it doesn’t cause problems in the code generation process

now or later, requires a somewhat complex merging process of the two states. First,

we rename the temporaries with a new solution tag to avoid collisions. Then we

append the code of the second onto the first. Finally, we re-queue this merged

state to one of the solution’s last node choices that was available before one of the

two solutions signaled the end node. Now, the solution has significantly more state

and temporaries to work with from two solutions that have already performed well

and can continue on with the code generation process to hopefully produce a better

solution.

4.3.5 Static Variables

Meta Concepts features the notion of static variables which entail special handling.

Note that the name static, while the semantics of such bear some resemblance to the

static keyword in C++, has an exact meaning specific to Meta Concepts. Input

variables can be specified with the static attribute. Static variables can be the

result of several operations and, the combination of the operations that were used

to produce the static variables is collapsed in the sense that the value of a static

variable is included directly in the solution of the code, while the calls that went into

creating that static variable are removed from the solution. A static appears in a
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solution as:

Length* length_0 = new Length;

length_0.set(1+1/29);

Statics effectively allow the creation and evolution of constants which are often

a vital part of a solution, especially in mathematically-oriented problems. The code

generator handles statics as follows: a variable is static and can be collapsed if all the

variables that went into producing it were also statics. However, in general, statics

can also interact with non-static variables.

4.3.6 Control Parameters

Various parameters have been identified as being important in the code generation

process but the proper settings of their values varies from problem to problem. Cur-

rently, the code generation process can be controlled by the user with the following

parameters:

• mergeRate µ - when a solution’s fitness is submitted, a uniformly random

variable x in the range [0..1] is generated such that if x < µ, then a merge will

be performed rather than generating a new solution from scratch.

• selectionPressure ψ - in the merge process, two solutions are selected ac-

cording to an exponential distribution which favors fitter solutions. ψ controls

the tendency of this selection process to favor fitter solutions with lower ψ

values tending to make this selection process more uniform.

• complexity c - related to pe, the probability that the end node with be signaled.

pe = 1/c such that the expected value of the number of terminal nodes which
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will be reached before the end node is signaled is equal to complexity. Thus

complexity can be adjusted to effectively control the length of the generated

solutions.

• minComplexity - require the solution length to be at least minComplexity

before allowing the end node to be signaled.

• maxComplexity - when solution length reaches maxComplexity always signal

the end node from terminal nodes.

• unusedBias ub- higher values favor selecting unused variables in the variable

permutation as determined by: m∗ = 1
1/ub+inputUses

and mfinal = m ·m∗ ·weight

• fill - true to wait until the population reaches its capacity before beginning

to apply the merge operation.

• restartRate - the probability multiplier that instead of signaling the next

node in the CGG, one of the nodes that comprises the starting method set will

be signaled instead. The ability to restart was an important feature that was

added later on in the development of Meta Concepts because we can easily

reach limited paths through the CGG which can severely limit the possibilities

of the generated code.

• backtrack - true/false. Similar to restarting, backtracking allows us to back

up from the current path one level upon reaching a dead end in the CGG

traversal. A dead end is caused by reaching a node in which we cannot map

variables to method parameters.
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4.4 Meta Concepts GUI

As described in the Motivation section, Meta Concepts can be run in networked

mode. This allows the Meta Concepts GUI, a Mac OS X application written using

Objective C/Cocoa, to connect to a code generation run in progress, either on a local

machine or on a remote machine using TCP/IP. This is particularly useful when we

are performing long-running code generation problems whereby we can connect to

a remote machine which is hosting the run in order to monitor its progress or to

control various aspects of the run. The Meta Concepts GUI currently allows for:

• visualizing the progress of the run via a plot of its progressive best, average,

and worst fitness.

• the ability to view the code for solutions of different rank, e.g: view the code

and fitness of the solution for the current best solution, or the tenth best

solution, etc.

• selectively promote certain “interesting” solutions by giving them higher prior-

ity which increases the probability that they will be selected for further modi-

fication and merging.

• view a simplified representation of the CGG.

• dynamically alter certain code generation parameters, e.g: selection pressure,

merge rate, etc.

• manually reset the code generator thereby clearing the population of solutions.

It is also possible to run the code generator in verbose mode which outputs to

the console various statistics about the run and the last generated solution that was

accepted into the population.
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Figure 4.11: The Meta Concepts GUI attached to a setops run in progress.
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Results

This chapter presents the results of applying Meta Concepts to three key problems

which represent a good mix of the different types of problems that Meta Concepts

was designed to solve. The first is the setops test case/problem as has been par-

tially described so far. setops is a rather simple problem which solves quickly but is

sufficiently complex enough to test the effectiveness of the system and is thereby a

useful baseline. The second problem to be presented, is significantly more challeng-

ing, involving a symbolic regression that derives a series of general equations which

describes the area of a regular n-sided polygon as a function of n and the length of

its sides l. The third problem attempted, is especially challenging, applying Meta

Concepts towards game-playing in which we evolve code that makes a decision on

how to make a competitive next move in the board game Mancala.

5.1 Evaluation Approach

In developing, testing, and evaluating the effectiveness of Meta Concepts, there are

several important metrics that could potentially be utilized. Perhaps the most im-
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portant among them is the number of iterations (i.e: number of solutions generated

and evaluated) before reaching an acceptable final solution for a given problem. In

this section, we perform several runs of each problem and present the associated

runtime metrics. In some cases we were able to perform several runs and present the

mean and standard deviation over these trials. In this way we can test the effects

of various features by adjusting the parameters or disabling certain functionality in

order to evaluate their effectiveness and to evaluate different potential approaches,

e.g: how does a certain problem perform with and without merge enabled?

5.2 Metrics

The following list summarizes some of the important computed metrics we utilize in

this chapter:

• round - the current round number – a new round is started each time we

reset the code generator (i.e: clear the population of solutions), as a result of

resetting the code generator all of the metrics that follow are also reset for that

round.

• iterations - the number of iterations that have been performed since the be-

ginning of the round. The iteration count is incremented when a successfully

generated solution has been presented to the host program for evaluation.

• run time - the total time in seconds that has elapsed for this run (over all

rounds).

• round time - the total time in seconds that has elapsed since the start of the

round.
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• population size - the total number of solutions currently in the population –

this will always be less than or equal to the code generator’s population size

parameter.

• best fitness - the fitness of the highest ranking solution in the population.

• worst fitness - the fitness of the lowest ranking solution in the population.

• average fitness - the mean fitness of all solutions in the population.

• average temps - the mean number of temporaries used over all solutions in the

population.

• average normalized size - the mean size of solutions in the population after

normalization. Recall that normalization involves removing extraneous called

that the final desired output(s) do not depend on.

• average original size - the mean size of solutions in the population before nor-

malization.

• temp utilization - measures the utilization of temporaries by dividing the avg.

normalized size by the avg. number of temps.

• average reduction - measures the mean solution size reduction by dividing the

avg. original size by the avg. normalized size.

• misses - measures the number of times the code generator reached a dead end

and was forced to start over, i.e: it failed to match available variables with call

parameters.

• hit rate - related to misses, measures the number of solutions that did not

result in a miss divided by the total number of solutions attempted.
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• total accepted - measures the total number of solutions that have been accepted

into the population since the beginning of the round. There are two possible

reasons for a solution not being accepted: 1) it is a duplicate of another solution

in the current population. 2) its fitness was below the worst fitness in the

population. The total denied metric measures the total number of solutions

which were not accepted for these reasons. Note that the accepted and denied

counters do not begin being incremented until the population is full if the fill

parameter is enabled.

• total errors - measures the number of solutions generated which resulted in a

runtime exception. Concept classes are free to throw exceptions for various

reasons, e.g: divide by 0, invalid index, a negative length, etc.

• error rate - computes the number of errors over the total number of solutions

attempted.

• duplicates - measures the number of solutions which were attempted as entered

into the population but already existed in the population.

• duplication rate - measures the number of duplicates divided by total number

of solutions attempted.

5.3 Hardware and Software Setup

The development and testing of Meta Concepts and some of the shorter runs were

performed on a quad-core 2.7 GHz Ivy Bridge 2012 MacBook Pro running Mac OS

10.8. All C++/MML++ code, including the Meta Framework, was compiled using

the MML++ compiler which is kept up to date with the development trunk of the

Clang compiler. The long-running problems were conducted on a dedicated 2012
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Mac Mini with a quad-core 2.6 GHz Ivy Bridge processor whereby 8 independent

processes were run in parallel.

5.4 Setops Problem

In the setops test case/problem, we perform a simple type of symbolic regression

whose minimal hand-written solution requires the proper chaining of 4 calls involving

4 input variables and 1 desired output. Setops is a good baseline because it is simple

enough that it runs rather quickly, and thus we can perform several trials to compute

the mean and standard deviation of metrics while on the other hand it is complex

enough to evaluate the effectiveness of several features used by the system. We

present the following sets as input:

A = {1, 2, 3};B = {4, 5, 6};F = {6};D = {1, 2, 5, 6, 7, 8}; (5.1)

where we seek to create an output set:

G = {1, 2, 5} (5.2)

5.4.1 Atomics

The ontology contains the following set of atomics which are selected by the code

generation system to form the CGG. A complete listing of these can be found in the

Ontology Headers section of the Appendix under Real.h. In summary they are:

• setUnion() - set union
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• setIntersection() - set intersection

• setComplement() - set complement

• foo() - a no-op for testing purposes

5.4.2 Fitness

A solution’s fitness is computed as follows: for each element gi in the target set G,

reward 10 fitness points if gi ∈ {1, 2, 5} else subtract 1 fitness point.

5.4.3 Effectiveness of Merge

To evaluate the effectiveness of merge for this problem, 100 trials were performed

with a merge rate of 0.8 (run 1A) and 100 trials with merge rate of 0 (run 1B), keeping

all other parameters the same. The results for these runs are reported below.

Run 1A
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Run 1A was conducted with the following parameters:

trials: 100

fill: false

population: 1000

selectionPressure: 0.5

unusedBias: 5.0

mergeRate: 0.8

restartRate: 1.0

minComplexity: 0

maxComplexity: 9999999

complexity: 10

backtrack: true

resetInterval: 9999999

desiredFitness: 1.79769e308

Table 5.1: Run 1A parameters
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A graphical representation of the CGG was given in Code Generation section of the
Approach chapter. The CGG in text form and related stats are:

Real::setComplement => Real::setIntersection

Real::setIntersection => Real::setIntersection

Real::foo => Real::setUnion

Real::setComplement => Real::setUnion

Real::setIntersection => Real::setUnion

Real::setUnion => Real::setUnion

<<start>> => Real::setUnion

Real::setUnion => Real::setIntersection

<<start>> => Real::setIntersection

Real::setIntersection => Real::setComplement

Real::setUnion => Real::setComplement

<<start>> => Real::setComplement

Real::setComplement => Real::foo

Real::setIntersection => Real::foo

Real::setUnion => Real::foo

<<start>> => Real::foo

Real::foo => <<end>>

Real::setComplement => <<end>>

Real::setIntersection => <<end>>

Real::setUnion => <<end>>

total methods: 39

total nodes: 6

edge upper bound: 24

edges used: 24

unused edges: 0

edge usage: 1

Table 5.2: Run 1A CGG data
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The output metrics are:

metric mean std. deviation
iterations 1039.93 980.822
round time 10.1488 9.99823
best fitness 28.77 0.617178
worst fitness 0.85 7.11433
avg. fitness 14.8232 4.93185
avg. temps 9.97753 1.78807
avg. norm size 14.7971 2.48766
avg. orig. size 31.5122 5.72639
avg. reduction 2.5879 0.187069
misses 0 0
hit rate 1 0
accepted 793.59 575.523
denied 246.34 458.106
errors 2.13 5.05656
error rate 0.00261239 0.0066635
duplicates 108.16 120.711
duplication rate 0.0820795 0.0359945

Table 5.3: Results for run 1A
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Figure 5.1: Sample progressive best and avg. fitness plots from run 1A
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Figure 5.2: Sample progressive avg. norm. size for the fitness runs plotted above
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Figure 5.3: Sample progressive avg. solution norm. size and orig. size for the fitness
runs plotted above
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Note that in the plots depicted above, and with similar plots shown later, the

x-axis counting iterations which we will subsequently refer to as population itera-

tions corresponds to each time a new solution was admitted into the population –

it is different than the overall number of iterations (whose iteration count is also

incremented in the case of denial or error) as reported in the previous table which

we will continue to simply refer to as iterations.

Run 1B

Run 1B was conducted with same parameters as run A, with the only modification

being that we changed mergeRate = 0.80 to mergeRate = 0.0.

The CGG remains unchanged. The output metrics for run 1B are:

metric mean std. deviation
iterations 1982.27 1664.49
round time 10.9301 9.1798
best fitness 28.86 0.402517
worst fitness 0.3 4.52267
avg. fitness 13.1485 4.24026
avg. temps 3.90992 0.416299
avg. norm size 6.72959 0.485083
avg. orig. size 16.5913 1.48711
avg. reduction 2.53428 0.129423
misses 0 0
hit rate 1 0
accepted 899.18 561.194
denied 1083.09 1137.42
errors 0 0
error rate 0 0
duplicates 845.77 685.423
duplication rate 0.391098 0.0899896

Table 5.4: Results form run 1B
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Figure 5.4: Sample progressive best and avg. fitness plots from run 1B
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Figure 5.5: Sample progressive avg. norm. size for the fitness runs plotted above
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Figure 5.6: Sample progressive avg. solution norm. size and orig. size for the fitness
runs plotted above
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Final Solutions

Here we present a sample of two final solutions that solve this problem.

Length* length_0 = b.setIntersection(f);

Length* length_1 = b.setUnion(a);

Length* length_2 = length_1.setComplement(d);

Length* length_3 = length_0.setIntersection(length_1);

Length* length_4 = length_2.setUnion(f);

Length* length_5 = length_1.setComplement(length_4);

length_5.foo();

Length* length_6 = length_5.setComplement(length_3);

Length* length_7 = length_6.setUnion(length_3);

Length* length_8 = length_7.setComplement(f);

g.setObj(length_8);

Table 5.5: Solution 1A

Length* length_0 = b.setIntersection(d);

Length* length_1 = length_0.setComplement(f);

length_1.foo();

Length* length_2 = a.setUnion(length_1);

Length* length_3 = length_2.setIntersection(d);

g.setObj(length_3);

Table 5.6: Solution 1B

5.5 Area of a Regular n-sided Polygon Problem

In this problem, which we subsequently refer to as area, we perform a significantly

more complex type of symbolic regression in which we derive equations which relate
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the area of regular (all side lengths are the same) n-sided polygon to n and the length

l of its sides. The following equations describe this relationship [10]:

ϕ =
2π

n
(center angle) (5.3)

l = 2r sin
ϕ

2
(length of sides) (5.4)

A =
1

2
nr2 sinϕ (area) (5.5)

5.5.1 Atomics

The CGG picks up on a number of methods which are used in the final solution

which are summarized as follows. A complete listing of these can be found in the

Ontology Headers section of the appendices under the headers for Real.h, Angle.h,

Length.h, and Area.h.

• A real r can be multiplied by a count to create a real of polymorphic type r.

Similarly, division can be applied.

• A real r can be divided by a r ratio to produce a real of polymorphic type r.

• An angle can have the sin() function applied to it to create a length ratio.

• A length can be multiplied by another length to create an area.

• A length ratio can multiplied by an area to create an area.
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Inputs

• Count c = 2

• Count n = # of sides of the polygon

• Length l = length of each side

• Angle t = 2π
n

• Angle t2 = π
n

Outputs

• Area areaOut

Evaluation and Fitness

To reduce the adverse effects of awarding high fitness to a solution which by chance

solves the problem for any one input set but does not solve the problem overall and

also to ensure that we are generating a correct formula for a polygon of arbitrary

n sides, the evaluation stage consists of generating and testing polygons of sides

n = [3..10] for 10 instances each, given each instance a randomized size for l. The

fitness is evaluated using a modified version of the the RMS method given these

inputs against the known output area produced from the source equations listed in

the opening of this section.

Output Metrics

Because this is a long-running problem which takes roughly on the order of an hour

to solve with my current Meta Concepts implementation and hardware setup, it was
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difficult to run it for a large number of trials as was done for setops. Therefore,

we present the run metrics for eight individual runs which successfully solved this

problem. Two runs are listed here and the rest can be found in the appendices.

Run 2A parameters, CGG, and metrics:

trials: 1

fill: true

population: 3000

selectionPressure: 0.5

mergeRate: 0.8

minComplexity: 0

maxComplexity: 9999999

complexity: 30

backtrack: true

resetInterval: 50000

desiredFitness: 1.79769e308

Area::mulLengthRatio => Area::mulLengthRatio

<<start>> => Length::mulToArea

<<start>> => Real::divCount

Real::divCount => Real::divCount

<<start>> => Real::divRatio

Real::divCount => Real::divRatio

Real::divRatio => Real::divRatio

<<start>> => Real::mulCount

Real::divCount => Real::mulCount

Real::divRatio => Real::mulCount

Real::mulCount => Real::mulCount
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Area::mulLengthRatio => Real::mulCount

Length::mulToArea => Real::mulCount

<<start>> => Angle::sin

Real::divCount => Angle::sin

Real::divRatio => Angle::sin

Real::mulCount => Angle::sin

Angle::sin => Real::mulCount

Real::mulCount => Real::divRatio

Area::mulLengthRatio => Real::divRatio

Length::mulToArea => Real::divRatio

Angle::sin => Real::divRatio

Real::divRatio => Real::divCount

Real::mulCount => Real::divCount

Area::mulLengthRatio => Real::divCount

Length::mulToArea => Real::divCount

Angle::sin => Real::divCount

Real::divCount => Length::mulToArea

Real::divRatio => Length::mulToArea

Real::mulCount => Length::mulToArea

Length::mulToArea => Area::mulLengthRatio

Real::divCount => Area::mulLengthRatio

Real::divRatio => Area::mulLengthRatio

Real::mulCount => Area::mulLengthRatio

Angle::sin => Area::mulLengthRatio

Area::mulLengthRatio => <<end>>

Length::mulToArea => <<end>>

Real::divCount => <<end>>

Real::divRatio => <<end>>
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Real::mulCount => <<end>>

total methods: 21

total nodes: 8

edge upper bound: 48

edges used: 40

unused edges: 8

edge usage: 0.833333

----- round: 0

----- iterations: 7331

----- run time: 954.559

----- round time: 954.559

----- population size: 3000

----- best fitness: 1.3438e-08

----- worst fitness: 2.5479e-13

----- avg. fitness: 1.8731e-10

----- avg. temps: 7.19933

----- avg. norm. size: 9.19933

----- avg. orig. size: 45.814

----- temp util: 1.2778

----- avg. reduction: 5.03673

----- total misses: 4733

----- hit rate: 0.667159

----- total accepted: 581

----- total denied: 390

----- total errors: 2155

----- error rate: 0.151547
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----- total duplicates: 3696

----- duplication rate: 0.50416

The parameters and CGG for run 2B are the same as in run 2A; the observed metrics
are:

----- round: 0

----- iterations: 46794

----- run time: 5165.97

----- round time: 5165.97

----- population size: 3000

----- best fitness: 6.43295e-08

----- worst fitness: 3.69305e-10

----- avg. fitness: 1.59007e-09

----- avg. temps: 10.2357

----- avg. norm. size: 12.2357

----- avg. orig. size: 50.5613

----- temp util: 1.1954

----- avg. reduction: 4.3407

----- total misses: 18371

----- hit rate: 0.7469

----- total accepted: 7504

----- total denied: 32891

----- total errors: 7418

----- error rate: 0.102199

----- total duplicates: 13477

----- duplication rate: 0.288007

Table 5.7: Run 2B metrics
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Metrics
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Figure 5.7: Progressive average fitness for run 2A and 2B
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Figure 5.8: Progressive average original size for run 2A and 2B
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Figure 5.9: Progressive average normalized size for run 2A and 2B
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Figure 5.10: Progressive total number of denials for run 2A and 2B
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Figure 5.11: Progressive duplication rate run 2A and 2B
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Figure 5.12: Progressive error rate for run 2A and 2B
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Final Solutions

We present the final solutions for run 2A and run 2B. The solutions for the remaining

six runs, as well as additional output metrics and plots are listed in the appendices.

Length* length_0 = t.sin();

Length* length_1 = l.divCount(c);

Length* length_2 = length_1.divRatio(length_0);

Length* length_3 = t2.sin();

Length* length_4 = length_2.divRatio(length_3);

Area* area_5 = length_4.mulToArea(length_4);

Length* length_6 = t.sin();

Length* length_7 = length_6.divCount(c);

Length* length_8 = length_7.mulCount(c);

Area* area_9 = area_5.mulLengthRatio(length_8);

Length* length_10 = length_7.mulCount(c);

Length* length_11 = length_8.mulCount(n);

Area* area_12 = area_9.mulLengthRatio(length_11);

Area* area_13 = area_12.mulLengthRatio(length_10);

Area* area_14 = area_13.divCount(c);

Area* area_15 = area_14.mulCount(n);

Area* area_16 = area_15.divCount(n);

areaOut.setObj(area_16);

Table 5.8: Solution 2A
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Length* length_0 = l.mulCount(c);

Length* length_1 = t2.sin();

Length* length_2 = l.divRatio(length_1);

Length* length_3 = t.sin();

Length* length_4 = length_2.divRatio(length_3);

Length* length_5 = length_4.divRatio(length_1);

Area* area_6 = length_0.mulToArea(length_5);

Area* area_7 = area_6.divCount(c);

Length* length_8 = length_3.divCount(c);

Area* area_9 = area_7.divCount(c);

Area* area_10 = area_9.mulCount(n);

Area* area_11 = area_10.mulLengthRatio(length_8);

Area* area_12 = area_11.mulLengthRatio(length_8);

areaOut.setObj(area_12);

Table 5.9: Solution 2B
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5.6 Mancala Problem

For the final problem, mancala, moving away from symbolic regression, we attempt

to evolve a strategy for playing the game Mancala, taking advantage of the system’s

ability to interface with complex implementation code. This is a good choice for Meta

Concepts, because the rules/mechanics of the game can be coded as a concept/class

then the next choice of move is distilled down to choosing an integer [1..6] which

corresponds to our move decision whereby we first do some analysis on the current

state of the board in order to (hopefully) make an intelligent/competitive next move.

The Mancala game board looks like:

Figure 5.13: Sample Mancala board

The rules of the game are summarized as follows [11]:

• The Mancala board is made up of two rows of six slots each.

• The initial configuration is created by placing four pieces placed in each of the

12 slots.

• Each player has a “store” to the right side of the Mancala board.
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• The game begins with one player picking up all of the pieces in any one of the

slots on his side.

• Moving counter-clockwise, the player deposits one of the pieces in each slot

until the pieces run out.

• If you run into your own store, deposit one piece in it. If you run into your

opponent’s store, skip it.

• If the last piece you drop is in your own store, you get a free turn.

• If the last piece you drop is in an empty slot on your side, you capture that

piece and any pieces in the hole directly opposite. Always place all captured

pieces in your store.

• The game ends when all six slots on one side of the Mancala board are empty.

• The player who still has pieces on his side of the board when the game ends

captures all of those pieces.

• Count all the pieces in each store. The winner is the player with the most

pieces.

5.6.1 Implementation and Atomics

To formulate this problem as a Meta Concepts problem, the Mancala concept/class

was created which makes the following methods available to the code generator 1:

/*[

description: "return the number of pieces at slot i"

1Our slots are numbered 1 through 6; our store is slot 0; and the opponent’s slots are 7
through 12.
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]*/

Count* numPieces(const Index* i) const;

/*[

description: "return the slot index after making a ←↩

number of hops c starting at slot i"

]*/

Index* slotOffset(const Index* i, const Count* c) ←↩

const;

/*[

description: "return the number of hops required to ←↩

reach slot a from slot b"

]*/

Count* slotDiff(const Index* a, const Index* b) const;

/*[

description: "return true (1.0) if the specified ←↩

slot is mine"

]*/

Truth* isMine(const Index* i) const;

/*[

description: "return the AND of a and b = a*b"

]*/

Truth* truthAnd(const Truth* a, const Truth* b) const;

/*[
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description: "return the OR of a and b = max(a,b)"

]*/

Truth* truthOr(const Truth* a, const Truth* b) const;

/*[

description: "return the NOT of a = 1.0 - a"

]*/

Truth* truthNot(const Truth* t) const;

/*[

description: "return 1.0 if c and i are equal else ←↩

0.0"

]*/

Truth* countIndexEqual(const Count* c, const Index* i)←↩

const;

/*[

description: "return 1.0 if c > i else 0.0"

]*/

Truth* countIndexGreater(const Count* c, const Index* ←↩

i) const;

/*[

"return 1.0 if c < i else 0.0"

]*/

Truth* countIndexLesser(const Count* c, const Index* i←↩

) const;
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/*[

description: "return 1.0 if a and b are equal else ←↩

0.0"

]*/

Truth* countEqual(const Count* a, const Count* b) ←↩

const;

/*[

description: "return 1.0 if a > b else 0.0"

]*/

Truth* countGreater(const Count* a, const Count* b) ←↩

const;

/*[

description: "return 1.0 if a < b else 0.0"

]*/

Truth* countLesser(const Count* a, const Count* b) ←↩

const;

/*[

description: "return a + b"

]*/

Count* countAdd(const Count* a, const Count* b) const;

/*[

description: "return a - b"

]*/

Count* countSub(const Count* a, const Count* b) const;
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These methods throw exceptions on various errors cases, e.g: specifying an invalid

slot number.

5.6.2 Problem Formulation and Fitness

To decide which move to make, we are effectively generating a sequence of calls which

results in a Truth value truthOut. We perform this sequence of calls successively

on each of the six slots: slot = [1..6] and pick as our move the slot which results in

the highest truthOut value. After we have chosen our move, the Mancala concept

internally executes the mechanics involved with our choice. A decision was made to

make the opponent always perform a random move by choosing a uniformly random

slot [1..6] and we always get to make our move first. To reduce the “luck” factor

from our results, 50 matches are performed to evaluate each solution and the fitness

is the mean of the number of pieces in our store that we have achieved at the end

of each match. As a useful baseline, it was determined experimentally that when we

make the first move and play randomly against the opponent also playing randomly,

that the mean fitness achieved is approximately 32.

5.6.3 Inputs and Outputs

The inputs are:

• Mancala mancala - the Mancala game board as a const.

• Index slot - the current slot we are testing with weight = 100 to ensure that

this variable is highly utilized in solutions.

• Index index0 = 0 through index12 = 12 - these correspond to the slot in-

dices.
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• Count count0 = 0 and count1 = 1 - these counts can be used to arithmeti-

cally build up higher count numbers.

The desired output is:

• Truth truthOut - we test each of the six slots on our side with the generated

solution and pick the slot which corresponds to the highest truthOut value.

5.6.4 Output Metrics

8 parallel runs were conducted which ran continuously for several hours. We present

the results of the top two runs, run 3A and 3B.

The CGG is rather long and is listed in in the appendices. The parameters for

run 3A and 3B are listed below.

trials: 1

fill: true

population: 3000

selectionPressure: 0.5

unusedBias: 1.0

mergeRate: 0.8

restartRate: 1.0

minComplexity: 0

maxComplexity: 9999999

complexity: 40

backtrack: true

resetInterval: 200000

desiredFitness: 1.79769e308

Table 5.10: Run 3A and 3B parameters
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----- round: 0

----- iterations: 147354

----- run time: 89973.9

----- round time: 89973.9

----- population size: 3000

----- best fitness: 37.8

----- worst fitness: 36.24

----- avg. fitness: 36.5765

----- avg. temps: 13.016

----- avg. norm. size: 15.016

----- avg. orig. size: 55.957

----- temp util: 1.15366

----- avg. reduction: 4.07225

----- total misses: 7611

----- hit rate: 0.954686

----- total accepted: 14209

----- total denied: 129353

----- total errors: 20609

----- error rate: 0.1227

----- total duplicates: 13473

----- duplication rate: 0.0914329

Table 5.11: Run 3A output metrics
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----- round: 0

----- iterations: 63391

----- run time: 50503

----- round time: 50503

----- population size: 3000

----- best fitness: 37.8

----- worst fitness: 33.8

----- avg. fitness: 34.5976

----- avg. temps: 7.33633

----- avg. norm. size: 9.33633

----- avg. orig. size: 59.1073

----- temp util: 1.27262

----- avg. reduction: 8.29488

----- total misses: 4528

----- hit rate: 0.936982

----- total accepted: 9388

----- total denied: 50222

----- total errors: 8462

----- error rate: 0.117768

----- total duplicates: 7658

----- duplication rate: 0.120806

Table 5.12: Run 3B output metrics
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Figure 5.14: Progressive average fitness for run 3A and 3B
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Final Solutions

We present the final solutions for run 3A and run 3B.

Index* index_0 = mancala.slotOffset(index12 , index12);

Count* count_1 = mancala.numPieces(slot);

Count* count_2 = mancala.slotDiff(slot , index_0);

Truth* truth_3 = mancala.countEqual(count_2 , count_1);

Truth* truth_4 = mancala.truthNot(truth_3);

Truth* truth_5 = mancala.truthNot(truth_4);

Truth* truth_6 = mancala.truthAnd(truth_5 , truth_5);

Truth* truth_7 = mancala.truthAnd(truth_6 , truth_6);

Truth* truth_8 = mancala.truthOr(truth_7 , truth_7);

truthOut.setObj(truth_8);

Table 5.13: Solution 3A

Count* count_0 = mancala.numPieces(slot);

Truth* truth_1 = mancala.countIndexEqual(count_0 , slot);

Truth* truth_2 = mancala.truthAnd(truth_1 , truth_1);

Truth* truth_3 = mancala.truthAnd(truth_2 , truth_2);

Truth* truth_4 = mancala.truthAnd(truth_3 , truth_3);

truthOut.setObj(truth_4);

Table 5.14: Solution 3B

5.7 Discussion

Meta Concepts was applied to solve a simple symbolic regression in the setops

problem. Once we developed the system well enough to solve setops and other

simple problems, we moved toward solving a rather complex symbolic regression

83



Chapter 5. Results

with the area problem. area was chosen because it is somewhat difficult to derive

this relationship by hand using direct mathematical reasoning. We were able to

define a set of rules and constraints that greatly reduce the search space using a

combination of concept-typing and metadata attributes. The success of this run is

a good indication that Meta Concepts will be able to tackle increasingly complex

symbolic regression problems in the future as the system is improved.

On the other hand, one of the features that makes these types of symbolic regres-

sion problems difficult to solve with Meta Concepts is the often “hit or miss” nature

of the fitness measure. In setops we were able to define a strong fitness measure

that rewards partially correct solutions whereby the merge operation was able to

successively build up a final solution. In the case of area, without knowing what the

final solution looks like or if it even exists, it is significantly more difficult to devise a

fitness measure that rewards solutions which are partially correct. How do we know

when we are the right track? For example, a solution could be close to being correct,

but even if it is only one call away from being ideal, its fitness may be stuck close to

0.

Because setops runs quickly, we were able to perform 100 trials each for run

1A and run 1B and judging from the mean and std. deviation of the number of

iterations to solution, this gives a strong indication that the merge operation is

working well, decreasing the mean number of iterations by about half. Note that

the closeness in computational time between run 1A and 1B can be explained by

the fact that merge is a computationally expensive operation with the current Meta

Concepts implementation and when we do not perform merging, we do not have

this extra overhead – but for more challenging problems the extra overhead is well

worth the price paid. Based on some preliminary runs that I have completed which

I have not presented here, using slightly more complex symbolic regressions, merge

can decrease the mean number of iterations required significantly more when a good
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fitness measure is used which rewards partially correct solutions.

We also observed that average fitness is significantly higher in run 1A vs. 1B.

And in the case of 2A and 2B, that merging tends to increase the average fitness

exponentially as the run progresses. This is not surprising as we are recombining

already high performing solutions and the temporaries they use to create new solu-

tions, which has a tendency to make the population more homogenous. As we can

observe from the plots, this also has the effect of increasing the average and normal-

ized sizes, decreasing the error rate, and also tends to decrease the duplication rate,

though this last observation comes as somewhat of a surprise.

As the plots of average and best fitness show, it can be helpful to keep an eye

on these metrics as the run progresses. As the average fitness approaches the best

fitness, the runs tend to stagnate and make less progress, then we are relying more

on mutation vs. merge to chance upon the next change that brings the population

to a higher fitness level. If we observe no significant changes to these metrics for

some time, this can be a sign that the round has stagnated and we should reset the

population. Also note, that when the population is ramping up to full, the average

fitness tends to drop until we max out the population and then it begins to climb

again.

It is interesting to observe the effects of normalizing the solutions. We can see by

the plots that it is common to see an average reduction in size of 2 - 7 times as we

remove extraneous calls that the final outputs do not depend on. We can also see the

diminished use of longer original solutions as the size of the original solution tends

to grow at a higher rate vs. the size of the normalized solutions. Also, as expected,

when we observe the mean sizes for run 1A vs. 1B we can see that when merge is

enabled, we see much higher average original and normalized solution sizes.

In the plot of denials for run 2A and 2B we observe that after the population
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reaches its capacity at 3000, denials grow rapidly as duplicate solutions and solutions

with fitness less than the worst population fitness are rejected. Keeping an eye on

the number of duplicates and duplicate rate can give an important indication of why

exactly this is happening.

The final solutions for run 2A and 2B and those listed in the appendices are

insightful. We can see that there are multiple final solutions to the problem which

may look entirely different but are equally correct. Looking at the final solutions

for 1A and 1B too, we can observe that many of the solutions we achieve contain

introns. The term intron was coined by the genetic programming community to

describe code bloat exhibited by solutions which does not help or hurt the final

outcome [9]. Examples of introns include: multiplying a real number by 1, taking

the intersection of a set with itself, a+ b− b, and so on. We are already normalizing

the solution to some degree by removing the extraneous calls that the final desired

outputs(s) do not depend on, but the task of automatically removing introns poses

a more difficult problem because their proper removal depends on the semantics of

the calls being made. Introns are not a major cause of concern at this stage of

development in Meta Concepts, because they do not harm the effectiveness of the

solution and once we have a final solution, in many cases we can remove them from

our final solution by hand inspection, however they do make it harder to quickly

make sense of a solution initially.

When we examine the additional plots of the metrics for area, as listed in the

appendix, we can see that behavior of the system follows a predictable pattern, e.g:

the curves for average fitness tend to increase at a similar rate across runs as for

average normalized size, etc. In many cases, the shapes of the curves are a recurrent

signature of the problem and the code generation setup and given code generation

parameters. However the curves for different problems look largely different, com-

paring the average fitness plots of area with mancala, for instance. Though not
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depicted in this thesis, this type of uniformity for a given problem across multiple

runs was observed for other problems tackled as well. Note in some of these we see

multiple curves due to multiple rounds being performed and resetting the metrics at

the end of each round.

Monitoring certain metrics such as the miss rate and error rate can be helpful in

debugging problems with the problem setup of ontology. One of the features that

was added recently was the ability to have the code generator write a match log and

error log which can be useful in diagnosing problems when we observe abnormally

high error rates and misses. The match log writes out each attempt to map state

variables to call parameters, listing the variables that are used to form a permutation,

the overall match priority, when and why we backtracked, and so on. The error log

records the exceptions that were thrown during solution execution.

When compared to area, the results for mancala are less impressive. We were

able to improve the fitness from the baseline of 32 to about 38 in the best solution

because the generated solutions picked up on the strategy that it should move those

pieces at the slot which end up resulting in ending in our store, yielding a free turn.

I originally anticipated that the system would be able to achieve a more complex

final solution, consisting of logically chaining together combinations of strategies

with AND/OR/NOT to also consider choosing the slot which results in a capture,

for instance. There are a variety of different strategies that arise as a result of the

rules which are required to attain a higher fitness. Further analysis and work is

required perhaps to improve both the code generator and the Mancala concept to

achieve better results here, but I am optimistic. In the future, it is worth spending

time improving mancala, because this is an important problem that is prototypical

of many agent-based problems of interest.

Some of the problems that were encountered while attempting to tackle area and

mancala provided important insights on how to improve the code generation system.
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For example, observing high hit rates and the final solutions, motivated the need for

backtracking and solution restart as was found that we cannot rely entirely on the

structure of the CGG to determine the code generation path so we need to allow

some chance of starting further call paths at the beginning otherwise we severely

restrict solution possibilities.

The complexity or challenge of a problem is determined by a number of factors

including:

• the number of output variables we are seeking.

• the number of inputs we provide.

• the number of atomics selected by the CGG and how greatly the variables in

question are constrained by metadata attributes.

• the minimum number of calls required by a correct solution.

Unfortunately, most of these factors scale the complexity in a highly non-linear

fashion. For example, adding one more required call for Meta Concepts to solve a

problem which is already performing well can increase the complexity significantly.

Therefore, in order to effectively use Meta Concepts to solve a given problem, there

are a number of things which should be done to increase the system’s chances of

success:

• Reduce the number of calls required by providing more or requiring less, i.e:

providing more inputs for those values we already know are part of the solution,

or limiting the complexity of the final desired outputs in a similar way, e.g: in

area we provided a hint input: the center angle 2π
n

which enabled us to solve

the problem more quickly.

88



Chapter 5. Results

• Narrow the number of atomics by removing/disabling methods which we know

or have a hunch are not part of the solution.

• Limit the number of input or output variables so that Meta Concepts only

utilizes those variables we need for the solution or assign them appropriate

weights.

• Reduce the complexity by reformulating the problem, e.g: as we did for the

Mancala problem where we test the solution on each slot number 1 through 6

rather than having solutions return to us the desired slot number of the next

move.
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Future Work

Meta Concepts is a new software system which I plan to continue to actively develop

in the future. As the system is applied to increasingly complex problems, analysis

provides insight into several areas in which the system could be improved upon,

including:

• continuing to build up a reusable ontology that encodes higher-level domain-

knowledge through attributes and other types of metadata.

• to allow the ontology to learn as it tackles more and more problems, e.g: which

methods work well together?

• continuing to improve the Mancala problem so that it can provide highly com-

petitive strategies as it is prototypical of many of the types of agent-based

problems that Meta Concepts is concerned with.

• improve the ability to diagnose problems when the system fails to generate

good solutions; adding the match log and error log was a good start to this.

• though challenging, research new ways of specifying fitness so that the system
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is is better able to reward partial fitness to solutions which are on the right

track in order to avoid the “hit or miss” fitness problem.

• specialized functionality for mutation of static constants, instead of relying en-

tirely on the code generator to perform this operation which is slow to produce

results.

• enhance the matching system so that it could possibly benefit from CP and

CSP solvers.

• continue to develop ways of allowing the user to control the run with the Meta

Concepts GUI; the ability to promote select solutions is one of example of this.

• add the ability to match methods and generated code with their mathematical

equivalents so that simplification and removal of introns is made possible. This

would also have the benefit of making solutions more understandable at a

glance.
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Conclusion

This thesis was inspired by earlier work and research that I conducted independently

in the area of automatic code generation. I found the idea of computers automatically

creating code which solves useful and challenging problems to be most interesting

and an incredibly worthy area of effort, despite its inherent difficulty. I later discov-

ered genetic programming as a field which has a similar purpose with much prior

interesting and fruitful work which could be learned from. The Meta Framework was

designed from the very beginning to support automated code generation as one of its

major use cases. This is indeed a very hard problem and throughout the years, I at-

tempted several different approaches but many of them suffered from an inability to

scale towards solving increasingly difficult problems. This combined experience and

lessons learned have led towards the creation of Meta Concepts, which I believe is a

strong step towards my vision of using automated code generation to solve complex

problems, and in general, to enable computers to make useful scientific discoveries.

In this project, I developed the basic mechanics of the system by applying it

towards simple problems such as setops, then once I had this working well, I scaled

the system further so that I was able to successfully solve more complex symbolic
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regressions, such as area. I believe my approach with the mancala problem is a good

one, but further work is needed to enable it to produce more competitive results. In

the process of applying Meta Concepts towards these problems and the accompanied

analysis, I gained several important insights on how to expand the capabilities of the

system. Some of these are a work in progress while other improvements have been

applied already and are working well. As it stands now, Meta Concepts is a powerful

code generation system which can be applied to real-world programs written in C++

whereby the final solutions produced can be easily integrated with such programs.

A major strength of the system stems from the fact that many problems, in general,

can be rephrased as the task of generating a program, making Meta Concepts a

highly universally-applicative problem solving tool. Going forward, there remains

a significant number of challenges and further work to be done. I look forward to

continuing to develop and scale Meta Concepts in the future.
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Appendices

Appendix A1: Sample Program Setup

#include <iostream >

#include <Meta/MLib.h>

#include <Meta/MTime.h>

#include <Meta/MMLGenerator.h>

#include "Length.h"

#include "Ontology.h"

#include "CodeGen.h"

using namespace std;

using namespace Meta;

int main(int argc , char** argv){

MProgram program(argc , argv);
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// get the ontology singleton

Ontology* ontology = Ontology ::get();

// instantiate a code generator with population 10000

CodeGen cg (10000);

// set code generation control parameters

cg.setSelectionPressure (1.0);

cg.setMergeRate (0.5);

// describe the inputs

Length a;

a.setConst(true);

a.setVec(true);

a.setSet(true);

Length b;

b.setConst(true);

b.setVec(true);

b.setSet(true);

Length d;

d.setConst(true);

d.setVec(true);

d.setSet(true);

Length f;

f.setConst(true);
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f.setVec(true);

f.setSet(true);

// describe the outputs

Length g;

g.setVec(true);

g.setSet(true);

// add the variables to the code generator

cg.addInput("a", &a);

cg.addInput("b", &b);

cg.addInput("d", &d);

cg.addInput("f", &f);

cg.addOutput("g", &g);

// begin generating solutions in the background

cg.generate ();

size_t i = 1;

for (;;){

++i;

// reset the code generator every 5000 cycles --

// perhaps we have converged to a local optimum if

// we haven't found a solution by this time

if(i % 5000 == 0){

cg.reset();

}
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// get the next solution

cg.next();

// inputs

a = [1,2,3];

b = [4,5,6];

f = [6,];

d = [1,2,5,6,7,8];

// run the solution , an error may have occurred

if(!cg.run()){

continue;

}

const mvar& v = g.val();

// evaluate the fitness

double fitness = 0;

for(size_t i = 0; i < v.size(); ++i){

if(v[i] == 1 || v[i] == 2 || v[i] == 5){

fitness += 10;

}

else{

fitness -= 1;

}

}
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// desired fitness achieved , print solution and exit

if(fitness == 30){

mnode f = cg.getSolution ();

mstr mml = MMLGenerator :: toStr(f);

cout << "------------ iterations: " << i << endl;

cout << "------------ final solution" << endl;

cout << mml << endl;

exit (0);

}

// submit the fitness of the solution just evaluated

cg.finish(fitness);

}

return 0;

}

Appendix A2: Setops Program Setup

#include <iostream >

#include "Length.h"

#include "MCProgram.h"
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using namespace std;

using namespace Meta;

class Program : public MCProgram{

public:

Program(int argc , char** argv)

: MCProgram(argc , argv){

}

void setup(){

// describe the inputs

a.setConst(true);

a.setVec(true);

a.setSet(true);

b.setConst(true);

b.setVec(true);

b.setSet(true);

d.setConst(true);

d.setVec(true);

d.setSet(true);

f.setConst(true);

f.setVec(true);

f.setSet(true);
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// describe the outputs

g.setVec(true);

g.setSet(true);

// add the variables to the code generator

addInput("a", &a);

addInput("b", &b);

addInput("d", &d);

addInput("f", &f);

addOutput("g", &g);

// inputs

a = [1,2,3];

b = [4,5,6];

f = [6,];

d = [1,2,5,6,7,8];

}

mvar evaluate (){

if(!run()){

return undef;

}

const mvar& v = g.val();

// evaluate the fitness

double fitness = 0;

for(size_t i = 0; i < v.size(); ++i){
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if(v[i] == 1 || v[i] == 2 || v[i] == 5){

fitness += 10;

}

else{

fitness -= 1;

}

}

if(fitness == 30){

return mvar::inf();

}

return fitness;

}

private:

Length a;

Length b;

Length d;

Length f;

Length g;

};

int main(int argc , char** argv){

Program program(argc , argv);

program.init();

program.start();
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return 0;

}

Appendix A3: Area Program Setup

#include <iostream >

#include <cmath >

#include <Meta/MLib.h>

#include "Length.h"

#include "Area.h"

#include "Angle.h"

#include "Count.h"

#include "MCProgram.h"

using namespace std;

using namespace Meta;

using namespace Func;

class Program : public MCProgram{

public:

Program(int argc , char** argv)

: MCProgram(argc , argv){
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}

void setup(){

t.setConst(true);

t2.setConst(true);

c.setConst(true);

c = 2;

n.setConst(true);

l.setConst(true);

addInput("t", &t);

addInput("t2", &t2);

addInput("c", &c);

addInput("n", &n);

addInput("l", &l);

addOutput("areaOut", &areaOut);

}

mvar evaluate (){

try{

double error = 0;

for(size_t i = 0; i < 10; ++i){

double length = uniform(1, 100);
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l = length;

for(size_t ni = 3; ni < 10; ++ni){

n = ni;

double theta = 2*M_PI/ni;

t = theta;

t2 = theta /2;

double rv = length /(2* sin(theta /2));

double da = 0.5*ni*rv*rv*sin(theta);

if(!run()){

return undef;

}

double ei = areaOut.val() - da;

ei *= ei;

error += ei;

}

}

if(error < 0.0001){

return mvar::inf();

}
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return 1/error;

}

catch(MError& e){

return undef;

}

}

private:

Length l;

Angle t;

Angle t2;

Count c;

Count n;

Area areaOut;

};

int main(int argc , char** argv){

Program program(argc , argv);

program.init();

program.start();

return 0;

}

Appendix A5: Mancala Program Setup
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#include <iostream >

#include <cmath >

#include <Meta/MLib.h>

#include <Meta/MRandom.h>

#include "MCProgram.h"

#include "Mancala.h"

#include "Count.h"

#include "Index.h"

#include "Truth.h"

using namespace std;

using namespace Meta;

using namespace Func;

static const size_t MATCHES = 50;

class Program : public MCProgram{

public:

Program(int argc , char** argv)

: MCProgram(argc , argv){

}

void setup(){
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mancala.setConst(true);

slot.setConst(true);

slot.setWeight (100);

index0.setConst(true);

index0.setStatic(true);

index0 = 0;

index1.setConst(true);

index1.setStatic(true);

index1 = 1;

index2.setConst(true);

index2.setStatic(true);

index2 = 2;

index3.setConst(true);

index3.setStatic(true);

index3 = 3;

index4.setConst(true);

index4.setStatic(true);

index4 = 4;

index5.setConst(true);

index5.setStatic(true);

index5 = 5;
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index6.setConst(true);

index6.setStatic(true);

index6 = 6;

index7.setConst(true);

index7.setStatic(true);

index7 = 7;

index8.setConst(true);

index8.setStatic(true);

index8 = 8;

index9.setConst(true);

index9.setStatic(true);

index9 = 9;

index10.setConst(true);

index10.setStatic(true);

index10 = 10;

index11.setConst(true);

index11.setStatic(true);

index11 = 11;

index12.setConst(true);

index12.setStatic(true);

index12 = 12;
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count0.setConst(true);

count0.setStatic(true);

count0 = 0;

count1.setConst(true);

count1.setStatic(true);

count1 = 1;

addInput("slot", &slot);

addInput("index0", &index0);

addInput("index1", &index1);

addInput("index2", &index2);

addInput("index3", &index3);

addInput("index4", &index4);

addInput("index5", &index5);

addInput("index6", &index6);

addInput("index7", &index7);

addInput("index8", &index8);

addInput("index9", &index9);

addInput("index10", &index10);

addInput("index11", &index11);

addInput("index12", &index12);

addInput("count0", &count0);

addInput("count1", &count1);

addInput("mancala", &mancala);

addOutput("truthOut", &truthOut);

}
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mvar evaluate (){

MRandom random;

random.timeSeed ();

try{

size_t totalFitness = 0;

for(size_t i = 0; i < MATCHES; ++i){

mancala.reset();

bool done = false;

for (;;){

double mt = mvar:: negInf ();

size_t mj;

for(size_t j = 1; j <= 6; ++j){

if(mancala.numPieces(true , j) > 0){

slot = j;

if(!run()){

return undef;

}

double t = truthOut.val();

if(t > mt){

mt = t;

mj = j;

}
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}

}

int r = mancala.move(true , mj);

if(r == 2){

done = true;

break;

}

else if(r == 0){

for (;;){

size_t j;

for (;;){

j = random.equilikely (1, 6);

if(mancala.numPieces(false , j) > 0){

break;

}

}

int r = mancala.move(false , j);

if(r == 2){

done = true;

break;

}

else if(r == 0){
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break;

}

}

}

if(done){

break;

}

}

totalFitness += mancala.score(true);

}

return double(totalFitness)/MATCHES;

}

catch(MError& e){

return undef;

}

}

private:

Index slot;

Index index0;

Index index1;

Index index2;

Index index3;

Index index4;

Index index5;
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Index index6;

Index index7;

Index index8;

Index index9;

Index index10;

Index index11;

Index index12;

Count count0;

Count count1;

Truth truthOut;

Mancala mancala;

};

int main(int argc , char** argv){

Program program(argc , argv);

program.init();

program.start();

return 0;

}

Appendix A5: Ontology Headers

Angle.h:
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#ifndef ANGLE_H

#define ANGLE_H

#include "Real.h"

namespace Meta{

class Length;

/*[

description: "Angle",

enabled: true

]*/

class Angle : public Real{

public:

Angle();

Angle(ConceptType p, const mvar& metadata);

Angle(const Angle& c);

virtual ~Angle ();

virtual Angle* copy() const{

return new Angle(*this);

}

virtual Angle* create () const{
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return new Angle;

}

Angle& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Angle";

}

virtual void validate(const mvar& v);

static mvar metadata ();

/*[

self: [vec:undef],

ret: [ratio:true],

post: {

if(self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Length* sin() const;
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/*[

self: [vec:undef],

ret: [ratio:true],

post: {

if(self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Length* cos() const;

private:

class Angle_* x_;

};

} // end namespace Meta

#endif // ANGLE_H

Area.h:

#ifndef AREA_H

#define AREA_H

#include "Real.h"

namespace Meta{
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class Volume;

class Length;

/*[

description: "Area",

description: "Area2"

]*/

class Area : public Real{

public:

Area();

Area(ConceptType p, const mvar& metadata);

Area(const Area& c);

virtual ~Area();

virtual Area* copy() const{

return new Area(*this);

}

virtual Area* create () const{

return new Area;

}

Area& operator =( const mvar& v){

set(v);
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return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Area";

}

virtual void validate(const mvar& v);

/*[

self: [vec:undef],

l: [ratio:true],

post: {

if(l.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Area* mulLengthRatio(const Length* l) const;

static mvar metadata ();

private:

class Area_* x_;

};
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} // end namespace Meta

#endif // AREA_H

Count.h:

#ifndef COUNT_H

#define COUNT_H

#include "Integer.h"

namespace Meta{

/*[

description: "Count",

enabled: true

]*/

class Count : public Integer{

public:

Count();

Count(ConceptType p, const mvar& metadata);

Count(const Count& c);

virtual ~Count ();

virtual Count* copy() const{
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return new Count(*this);

}

virtual Count* create () const{

return new Count;

}

Count& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Count";

}

virtual void validate(const mvar& v);

static mvar metadata ();

private:

class Count_* x_;

};

} // end namespace Meta

122



Chapter 7. Conclusion

#endif // COUNT_H

Index.h:

#ifndef INDEX_H

#define INDEX_H

#include "Count.h"

namespace Meta{

/*[

description: "Index",

enabled: true

]*/

class Index : public Count{

public:

Index();

Index(ConceptType p, const mvar& metadata);

Index(const Index& c);

virtual ~Index ();

virtual Index* copy() const{

return new Index(*this);

}
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virtual Index* create () const{

return new Index;

}

Index& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Index";

}

static mvar metadata ();

private:

class Index_* x_;

};

} // end namespace Meta

#endif // INDEX_H

Length.h:
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#ifndef LENGTH_H

#define LENGTH_H

#include "Real.h"

#include <iostream >

namespace Meta{

class Area;

/*[

description: "Length",

enabled: true

]*/

class Length : public Real{

public:

Length ();

Length(ConceptType p, const mvar& metadata);

Length(const Length& c);

virtual ~Length ();

virtual Length* copy() const{

return new Length (*this);
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}

virtual Length* create () const{

return new Length;

}

Length& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Length";

}

/*[

self: [vec:undef],

l: [vec:undef , takeThis:true],

post: {

if(l.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Area* mulToArea(const Length* l) const;
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virtual void validate(const mvar& v);

static mvar metadata ();

private:

class Length_* x_;

};

} // end namespace Meta

#endif // LENGTH_H

Mancala.h:

#ifndef MANCALA_H

#define MANCALA_H

#include "Concept.h"

namespace Meta{

class Index;

class Count;

class Truth;

/*[

description: "Mancala",

enabled: true
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]*/

class Mancala : public Concept{

public:

Mancala ();

Mancala(ConceptType p, const mvar& metadata);

Mancala(const Mancala& c);

virtual ~Mancala ();

virtual Mancala* copy() const{

return new Mancala (*this);

}

virtual Mancala* create () const{

return new Mancala;

}

Mancala& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Mancala";
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}

virtual void validate(const mvar& v);

static mvar metadata ();

virtual mvar val() const final;

virtual void set(const mvar& v) final;

void reset();

int move(bool first , size_t slot);

size_t score(bool first) const;

size_t numPieces(bool first , size_t slot);

void writeBoard () const;

/*[

enabled: true

]*/

Count* numPieces(const Index* i) const;

/*[

enabled: true

]*/
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Index* slotOffset(const Index* i, const Count* c) ←↩

const;

/*[

enabled: true

]*/

Count* slotDiff(const Index* a, const Index* b) const;

/*[

enabled: true

]*/

Truth* isMine(const Index* i) const;

/*[

enabled: true

]*/

Truth* truthAnd(const Truth* a, const Truth* b) const;

/*[

enabled: true

]*/

Truth* truthOr(const Truth* a, const Truth* b) const;

/*[

enabled: true

]*/

Truth* truthNot(const Truth* t) const;
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/*[

enabled: true

]*/

Truth* countIndexEqual(const Count* c, const Index* i)←↩

const;

/*[

enabled: true

]*/

Truth* countIndexGreater(const Count* c, const Index* ←↩

i) const;

/*[

enabled: true

]*/

Truth* countIndexLesser(const Count* c, const Index* i←↩

) const;

/*[

enabled: true

]*/

Truth* countEqual(const Count* a, const Count* b) ←↩

const;

/*[

enabled: true

]*/
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Truth* countGreater(const Count* a, const Count* b) ←↩

const;

/*[

enabled: true

]*/

Truth* countLesser(const Count* a, const Count* b) ←↩

const;

/*[

enabled: true

]*/

Count* countAdd(const Count* a, const Count* b) const;

/*[

enabled: true

]*/

Count* countSub(const Count* a, const Count* b) const;

private:

class Mancala_* x_;

};

} // end namespace Meta

#endif // MANCALA_H

Real.h:
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#ifndef REAL_H

#define REAL_H

#include "Concept.h"

namespace Meta{

class Count;

/*[

description: "Real"

]*/

class Real : public Concept{

public:

Real();

Real(const Real& c);

Real(ConceptType p, const mvar& metadata);

virtual ~Real();

virtual Real* copy() const{

return new Real(*this);

}

virtual Real* create () const{
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return new Real;

}

Real& operator =( const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Real";

}

virtual mvar val() const final;

virtual void set(const mvar& v) final;

virtual void validate(const mvar& v);

static mvar metadata ();

virtual double match(const mvar& v, bool full);

void setDelta(bool flag);

bool getDelta () const;
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void undefDelta ();

void setRatio(bool flag);

bool getRatio () const;

void undefRatio ();

void setMultiplier(bool flag);

bool getMultiplier () const;

void undefMultiplier ();

void setCoord(bool flag);

bool getCoord () const;

void undefCoord ();

/*[

self: [vec:true]

]*/

Concept* sum() const;

/*[

self: [vec:true]

]*/
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Concept* mean() const;

/*[

self: [vec:true]

]*/

Concept* max() const;

/*[

self: [vec:true]

]*/

Concept* min() const;

/*[

self: [set:true , vec:true],

c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setUnion(const Concept* c) const;

/*[

self: [set:true , vec:true],

c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setIntersection(const Concept* c) const;

/*[

self: [set:true , vec:true],
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c: [set:true , vec:true],

ret: [set:true , vec:true]

]*/

Concept* setComplement(const Concept* c) const;

/*[

enabled: true ,

self: [set:true , vec:true]

]*/

void foo();

/*[

enabled: true ,

self: [set:false , vec:false]

]*/

void bar();

/*[

self: [vec:undef],

c: [vec:undef , takeThis:true],

post: {

if(c.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Concept* add(const Concept* c) const;
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/*[

self: [vec:true]

]*/

Count* length () const;

/*[

self: [vec:undef , ratio:undef],

count: [vec:undef],

post: {

if(count.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

if(self.hasKey (" ratio")){

ret.ratio = true;

}

}

]*/

Concept* mulCount(const Count* count) const;

/*[

self: [vec:undef , ratio:undef],

count: [vec:undef],

post: {

if(count.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}
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if(self.hasKey (" ratio")){

ret.ratio = true;

}

}

]*/

Concept* divCount(const Count* count) const;

/*[

self: [vec:undef , ratio:undef],

r: [ratio:true],

post: {

if(r.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Concept* mulRatio(const Concept* r) const;

/*[

self: [vec:undef],

r: [ratio:true],

post: {

if(r.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Concept* divRatio(const Concept* r) const;
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/*[

self: [vec:undef],

c: [vec:undef],

ret: [ratio:true],

post: {

if(c.hasKey ("vec") || self.hasKey ("vec")){

ret.vec = true;

}

}

]*/

Concept* divToRatio(const Concept* c) const;

private:

class Real_* x_;

};

} // end namespace Meta

#endif // REAL_H

Truth.h:

#ifndef TRUTH_H

#define TRUTH_H

#include "Concept.h"
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namespace Meta{

/*[

description: "Truth",

enabled: true

]*/

class Truth : public Concept{

public:

Truth();

Truth(ConceptType p, const mvar& metadata);

Truth(const Truth& c);

virtual ~Truth ();

virtual Truth* copy() const{

return new Truth(*this);

}

virtual Truth* create () const{

return new Truth;

}

Truth& operator =(const mvar& v){

set(v);

return *this;

}
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virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Truth";

}

virtual void validate(const mvar& v);

static mvar metadata ();

virtual mvar val() const final;

virtual void set(const mvar& v) final;

/*[

enabled: true

]*/

Truth* truthAnd(const Truth* t) const;

/*[

enabled: true

]*/

Truth* truthOr(const Truth* t) const;

/*[

enabled: true

]*/
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Truth* truthNot () const;

private:

class Truth_* x_;

mvar value_;

};

} // end namespace Meta

#endif // TRUTH_H

Volume.h:

#ifndef VOLUME_H

#define VOLUME_H

#include "Real.h"

namespace Meta{

/*[

description: "Volume"

]*/

class Volume : public Real{

public:

Volume ();
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Volume(ConceptType p, const mvar& metadata);

Volume(const Volume& c);

virtual ~Volume ();

virtual Volume* copy() const{

return new Volume (*this);

}

virtual Volume* create () const{

return new Volume;

}

Volume& operator =(const mvar& v){

set(v);

return *this;

}

virtual bool handle(mnode n, uint32_t flags);

virtual mstr name() const{

return "Volume";

}

virtual void validate(const mvar& v);

static mvar metadata ();
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private:

class Volume_* x_;

};

} // end namespace Meta

#endif // VOLUME_H

Appendix A6: Additional Area Solutions, Metrics,

and Plots

Solution 2C:

----- round: 2

----- iterations: 37965

----- run time: 10912.7

----- round time: 2360.16

----- population size: 3000

----- best fitness: 4.79257e-08

----- worst fitness: 2.89595e-10

----- avg. fitness: 1.29006e-09

----- avg. temps: 10.3697

----- avg. norm. size: 12.3697

----- avg. orig. size: 49.3783

----- temp util: 1.19287

----- avg. reduction: 4.22728
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----- total solutions: 59310

----- total misses: 15147

----- hit rate: 0.744613

----- total accepted: 6684

----- total denied: 24815

----- acceptance rate: 0.269353

----- total errors: 6197

----- error rate: 0.104485

----- total duplicates: 11705

----- duplication rate: 0.30831

----- trial: 1/1

----- rounds: 3

----- iterations: 37965

----- final solution

Length* length_0 = t2.sin();

Length* length_1 = l.divRatio(length_0);

Length* length_2 = t2.sin();

Length* length_3 = length_1.divCount(c);

Length* length_4 = length_3.divCount(c);

Length* length_5 = length_2.divCount(c);

Length* length_6 = length_4.divRatio(length_5);

Area* area_7 = length_3.mulToArea(length_6);

Area* area_8 = area_7.mulLengthRatio(length_5);

Length* length_9 = t.sin();

Length* length_10 = length_9.mulCount(n);

Area* area_11 = area_8.mulLengthRatio(length_10);

areaOut.setObj(area_11);
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Figure 7.1: Run 2C avg. fitness
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Figure 7.2: Run 2C norm. size
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Figure 7.3: Run 2C error rate
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Figure 7.4: Run 2C duplication rate
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Solution 2D:

----- round: 0

----- iterations: 42139

----- run time: 4772.34

----- round time: 4772.34

----- population size: 3000

----- best fitness: 6.61481e-08

----- worst fitness: 3.33262e-10

----- avg. fitness: 1.48222e-09

----- avg. temps: 10.3173

----- avg. norm. size: 12.3173

----- avg. orig. size: 50.6763

----- temp util: 1.19385

----- avg. reduction: 4.32621

----- total solutions: 66820

----- total misses: 17570

----- hit rate: 0.737055

----- total accepted: 7090

----- total denied: 28694

----- acceptance rate: 0.24709

----- total errors: 7110

----- error rate: 0.106405

----- total duplicates: 12918

----- duplication rate: 0.306557

----- trial: 1/1

----- rounds: 1
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----- iterations: 42139

----- final solution

Angle* angle_0 = t2.divCount(c);

Length* length_1 = l.divCount(c);

Angle* angle_2 = angle_0.mulCount(c);

Length* length_3 = angle_2.sin();

Length* length_4 = length_1.divRatio(length_3);

Length* length_5 = angle_0.sin();

Length* length_6 = length_4.divRatio(length_5);

Length* length_7 = length_4.divCount(c);

Area* area_8 = length_7.mulToArea(length_6);

Area* area_9 = area_8.mulCount(n);

Length* length_10 = angle_0.sin();

Area* area_11 = area_9.mulLengthRatio(length_10);

Length* length_12 = t.sin();

Area* area_13 = area_11.mulLengthRatio(length_12);

areaOut.setObj(area_13);
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Figure 7.5: Run 2D avg. fitness
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Figure 7.6: Run 2D norm. size
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Figure 7.7: Run 2D error rate
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Figure 7.8: Run 2D duplication rate

152



Chapter 7. Conclusion

Solution 2E:

----- round: 0

----- iterations: 26184

----- run time: 3323.39

----- round time: 3323.39

----- population size: 3000

----- best fitness: 3.14528e-08

----- worst fitness: 1.7475e-10

----- avg. fitness: 7.68365e-10

----- avg. temps: 9.55333

----- avg. norm. size: 11.5533

----- avg. orig. size: 48.0613

----- temp util: 1.20935

----- avg. reduction: 4.38942

----- total solutions: 42388

----- total misses: 11358

----- hit rate: 0.732047

----- total accepted: 5283

----- total denied: 14468

----- acceptance rate: 0.365151

----- total errors: 4845

----- error rate: 0.114301

----- total duplicates: 8919

----- duplication rate: 0.340628

----- trial: 1/1

----- rounds: 1
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----- iterations: 26184

----- final solution

Length* length_0 = t.sin();

Length* length_1 = l.divCount(c);

Length* length_2 = length_1.divRatio(length_0);

Length* length_3 = t2.sin();

Length* length_4 = length_2.divRatio(length_3);

Area* area_5 = length_4.mulToArea(length_4);

Length* length_6 = t.sin();

Length* length_7 = length_6.divCount(c);

Length* length_8 = length_7.mulCount(c);

Area* area_9 = area_5.mulLengthRatio(length_8);

Length* length_10 = length_7.mulCount(c);

Length* length_11 = length_8.mulCount(n);

Area* area_12 = area_9.mulLengthRatio(length_11);

Area* area_13 = area_12.mulLengthRatio(length_10);

Area* area_14 = area_13.divCount(c);

Area* area_15 = area_14.mulCount(n);

Area* area_16 = area_15.divCount(n);

areaOut.setObj(area_16);
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Figure 7.9: Run 2E avg. fitness
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Figure 7.10: Run 2E norm. size
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Figure 7.11: Run 2E error rate
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Figure 7.12: Run 2E duplication rate
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Solution 2F:

----- round: 0

----- iterations: 34966

----- run time: 4326.44

----- round time: 4326.44

----- population size: 3000

----- best fitness: 9.59377e-08

----- worst fitness: 2.4818e-10

----- avg. fitness: 1.15196e-09

----- avg. temps: 10.0247

----- avg. norm. size: 12.0247

----- avg. orig. size: 49.2873

----- temp util: 1.19951

----- avg. reduction: 4.31465

----- total solutions: 55565

----- total misses: 14397

----- hit rate: 0.740898

----- total accepted: 6382

----- total denied: 22246

----- acceptance rate: 0.286883

----- total errors: 6201

----- error rate: 0.111599

----- total duplicates: 10944

----- duplication rate: 0.31299

----- trial: 1/1

----- rounds: 1
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----- iterations: 34966

----- final solution

Length* length_0 = t2.sin();

Count* count_1 = n.mulCount(c);

Length* length_2 = l.mulCount(n);

Length* length_3 = length_2.divRatio(length_0);

Area* area_4 = length_3.mulToArea(length_3);

Length* length_5 = t.sin();

Count* count_6 = count_1.mulCount(c);

Area* area_7 = area_4.mulLengthRatio(length_5);

Count* count_8 = count_6.mulCount(c);

Area* area_9 = area_7.divCount(count_8);

areaOut.setObj(area_9);
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Figure 7.13: Run 2F avg. fitness
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Figure 7.14: Run 2F norm. size
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Figure 7.15: Run 2F error rate
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Figure 7.16: Run 2F duplication rate
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Solution 2G:

----- round: 1

----- iterations: 44172

----- run time: 8219.28

----- round time: 2844.13

----- population size: 3000

----- best fitness: 4.2453e-08

----- worst fitness: 3.48053e-10

----- avg. fitness: 1.41678e-09

----- avg. temps: 10.3917

----- avg. norm. size: 12.3917

----- avg. orig. size: 50.4203

----- temp util: 1.19246

----- avg. reduction: 4.29565

----- total solutions: 68004

----- total misses: 16830

----- hit rate: 0.752515

----- total accepted: 7205

----- total denied: 30514

----- acceptance rate: 0.236121

----- total errors: 7001

----- error rate: 0.10295

----- total duplicates: 13039

----- duplication rate: 0.295187

----- trial: 1/1

----- rounds: 2
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----- iterations: 44172

----- final solution

Length* length_0 = t2.sin();

Length* length_1 = t2.sin();

Length* length_2 = l.divCount(c);

Length* length_3 = length_2.divRatio(length_1);

Length* length_4 = length_3.divRatio(length_0);

Length* length_5 = t2.sin();

Length* length_6 = length_4.divRatio(length_0);

Area* area_7 = length_4.mulToArea(length_6);

Area* area_8 = area_7.mulLengthRatio(length_5);

Length* length_9 = t2.sin();

Area* area_10 = area_8.mulLengthRatio(length_9);

Angle* angle_11 = t2.mulCount(c);

Length* length_12 = angle_11.sin();

Area* area_13 = area_10.mulLengthRatio(length_9);

Length* length_14 = length_12.divCount(n);

Area* area_15 = area_13.mulLengthRatio(length_14);

Area* area_16 = area_15.mulCount(n);

Area* area_17 = area_16.mulCount(n);

Area* area_18 = area_17.divCount(c);

areaOut.setObj(area_18);
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Figure 7.17: Run 2G avg. fitness
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Figure 7.18: Run 2G norm. size
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Figure 7.19: Run 2G error rate
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Figure 7.20: Run 2G duplication rate
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Solution 2H:

----- round: 1

----- iterations: 44172

----- run time: 8219.28

----- round time: 2844.13

----- population size: 3000

----- best fitness: 4.2453e-08

----- worst fitness: 3.48053e-10

----- avg. fitness: 1.41678e-09

----- avg. temps: 10.3917

----- avg. norm. size: 12.3917

----- avg. orig. size: 50.4203

----- temp util: 1.19246

----- avg. reduction: 4.29565

----- total solutions: 68004

----- total misses: 16830

----- hit rate: 0.752515

----- total accepted: 7205

----- total denied: 30514

----- acceptance rate: 0.236121

----- total errors: 7001

----- error rate: 0.10295

----- total duplicates: 13039

----- duplication rate: 0.295187

----- trial: 1/1

----- rounds: 2
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----- iterations: 44172

----- final solution

Length* length_0 = t2.sin();

Length* length_1 = t2.sin();

Length* length_2 = l.divCount(c);

Length* length_3 = length_2.divRatio(length_1);

Length* length_4 = length_3.divRatio(length_0);

Length* length_5 = t2.sin();

Length* length_6 = length_4.divRatio(length_0);

Area* area_7 = length_4.mulToArea(length_6);

Area* area_8 = area_7.mulLengthRatio(length_5);

Length* length_9 = t2.sin();

Area* area_10 = area_8.mulLengthRatio(length_9);

Angle* angle_11 = t2.mulCount(c);

Length* length_12 = angle_11.sin();

Area* area_13 = area_10.mulLengthRatio(length_9);

Length* length_14 = length_12.divCount(n);

Area* area_15 = area_13.mulLengthRatio(length_14);

Area* area_16 = area_15.mulCount(n);

Area* area_17 = area_16.mulCount(n);

Area* area_18 = area_17.divCount(c);

areaOut.setObj(area_18);
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Figure 7.21: Run 2H avg. fitness
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Figure 7.22: Run 2H norm. size
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Figure 7.23: Run 2H error rate
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Figure 7.24: Run 2H duplication rate
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Appendix A7: Mancala CGG

<<start>> => Mancala::countEqual

<<start>> => Mancala::countAdd

Mancala::countAdd => Mancala::countAdd

<<start>> => Mancala::countSub

Mancala::countAdd => Mancala::countSub

Mancala::countSub => Mancala::countSub

<<start>> => Mancala::numPieces

<<start>> => Mancala::slotOffset

Mancala::countAdd => Mancala::slotOffset

Mancala::countSub => Mancala::slotOffset

Mancala::numPieces => Mancala::slotOffset

<<start>> => Mancala::slotDiff

Mancala::slotOffset => Mancala::slotDiff

Mancala::slotDiff => Mancala::slotOffset

Mancala::slotOffset => Mancala::slotOffset

Mancala::slotOffset => Mancala::numPieces

Mancala::numPieces => Mancala::countSub

Mancala::slotDiff => Mancala::countSub

Mancala::countSub => Mancala::countAdd

Mancala::numPieces => Mancala::countAdd

Mancala::slotDiff => Mancala::countAdd

Mancala::countAdd => Mancala::countEqual

Mancala::countSub => Mancala::countEqual

Mancala::numPieces => Mancala::countEqual

Mancala::slotDiff => Mancala::countEqual

Mancala::countEqual => <<end>>
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<<start>> => Mancala::countGreater

Mancala::countAdd => Mancala::countGreater

Mancala::countSub => Mancala::countGreater

Mancala::numPieces => Mancala::countGreater

Mancala::slotDiff => Mancala::countGreater

Mancala::countGreater => <<end>>

<<start>> => Mancala::countIndexEqual

Mancala::countAdd => Mancala::countIndexEqual

Mancala::countSub => Mancala::countIndexEqual

Mancala::numPieces => Mancala::countIndexEqual

Mancala::slotDiff => Mancala::countIndexEqual

Mancala::slotOffset => Mancala::countIndexEqual

Mancala::countIndexEqual => <<end>>

<<start>> => Mancala::countIndexGreater

Mancala::countAdd => Mancala::countIndexGreater

Mancala::countSub => Mancala::countIndexGreater

Mancala::numPieces => Mancala::countIndexGreater

Mancala::slotDiff => Mancala::countIndexGreater

Mancala::slotOffset => Mancala::countIndexGreater

Mancala::countIndexGreater => <<end>>

<<start>> => Mancala::countIndexLesser

Mancala::countAdd => Mancala::countIndexLesser

Mancala::countSub => Mancala::countIndexLesser

Mancala::numPieces => Mancala::countIndexLesser

Mancala::slotDiff => Mancala::countIndexLesser

Mancala::slotOffset => Mancala::countIndexLesser

Mancala::countIndexLesser => <<end>>

<<start>> => Mancala::countLesser
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Mancala::countAdd => Mancala::countLesser

Mancala::countSub => Mancala::countLesser

Mancala::numPieces => Mancala::countLesser

Mancala::slotDiff => Mancala::countLesser

Mancala::countLesser => <<end>>

<<start>> => Mancala::isMine

Mancala::slotOffset => Mancala::isMine

Mancala::isMine => <<end>>

<<start>> => Mancala::truthAnd

Mancala::countEqual => Mancala::truthAnd

Mancala::countGreater => Mancala::truthAnd

Mancala::countIndexEqual => Mancala::truthAnd

Mancala::countIndexGreater => Mancala::truthAnd

Mancala::countIndexLesser => Mancala::truthAnd

Mancala::countLesser => Mancala::truthAnd

Mancala::isMine => Mancala::truthAnd

Mancala::truthAnd => Mancala::truthAnd

<<start>> => Mancala::truthNot

Mancala::countEqual => Mancala::truthNot

Mancala::countGreater => Mancala::truthNot

Mancala::countIndexEqual => Mancala::truthNot

Mancala::countIndexGreater => Mancala::truthNot

Mancala::countIndexLesser => Mancala::truthNot

Mancala::countLesser => Mancala::truthNot

Mancala::isMine => Mancala::truthNot

Mancala::truthAnd => Mancala::truthNot

Mancala::truthNot => Mancala::truthNot

<<start>> => Mancala::truthOr
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Mancala::countEqual => Mancala::truthOr

Mancala::countGreater => Mancala::truthOr

Mancala::countIndexEqual => Mancala::truthOr

Mancala::countIndexGreater => Mancala::truthOr

Mancala::countIndexLesser => Mancala::truthOr

Mancala::countLesser => Mancala::truthOr

Mancala::isMine => Mancala::truthOr

Mancala::truthAnd => Mancala::truthOr

Mancala::truthNot => Mancala::truthOr

Mancala::truthOr => Mancala::truthOr

Mancala::truthOr => Mancala::truthNot

Mancala::truthNot => Mancala::truthAnd

Mancala::truthOr => Mancala::truthAnd

Mancala::truthAnd => <<end>>

Mancala::truthNot => <<end>>

Mancala::truthOr => <<end>>

total methods: 39

total nodes: 17

edge upper bound: 255

edges used: 98

unused edges: 157

edge usage: 0.384314

172


	University of New Mexico
	UNM Digital Repository
	5-1-2014

	Meta Concepts: A Knowledge-Based Code Generation System
	Nicholas Moss
	Recommended Citation


	tmp.1469198166.pdf.QfSfO

