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Abstract

Many scientific fields and commercial industries need to solve computationally large

problems. These problems can often be broken into smaller tasks, which can be executed

in parallel, on large computer systems. In pursuit of solving ever larger problems in a more

timely manner, the number of nodes in these large computer systems have grown to ex-

tremely large scales. All of the extreme-scale-software systems that run on these extreme-

scale-computational systems go through what we call a bootstrapping phase. During this

phase, the software system is deployed onto a set of computers and its initialization infor-

mation is disseminated.

In this thesis, we present a framework called the Lightweight Infrastructure-Bootstrap-

ping Infrastructure (LIBI) to support extreme-scale-software systems during their boot-

strapping phase. The contributions of this thesis are as follows: a classification system

for process-launching strategies, an algorithm for creating an optimal-process-launching

strategy, an implementation of LIBI and a performance evaluation of LIBI. Our perfor-

mance evaluation demonstrates that we decreased the time required for software system

bootstrapping by up to 50%.
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Chapter 1

Introduction

1.1 Solving Computationally Intensive Problems

Many scientific and commercial fields have problems which can be solved with compu-

tationally intensive code. Physicists want to simulate the formation of planetary bodies

in the solar system [18]. Chemists want to simulate the interaction of chemicals at the

atomic level [5]. Animation studios want to render every pixel of every frame for their

entire movie [12]. Financial firms want to analyze the entire financial market, so that they

can place their buy and sell orders before their competitors [10].

Solving these computationally intensive problems on a single computer would take too

long. However, these large tasks can often be broken into smaller pieces and spread out

across computational clusters. Each node of the cluster can work on their individual task,

in parallel, resulting in faster times to a solution.

In the pursuit of more timely solutions, the resources available in these clustered sys-

tems have reached extreme scales, and the system sizes and capabilities are continuing to

increase [27]. In November of 2005, the BlueGene/L computer at Lawrence Livermore

National Laboratory was the largest supercomputer in the world, with 65,536 proces-

sors [6]. By November of 2007 a successive iteration of the BlueGene/L computer had
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Chapter 1. Introduction

212,992 processors. As of June 2011, the largest and fastest supercomputer in the world,

the K computer at the RIKEN Advanced Institute for Computational Science, has 548,352

processors [2].

Specialized software is needed to support these extreme-scale systems (as well as

smaller scale systems). For example, tools are needed to debug, monitor, and optimize

the software system. Resource managers are needed to efficiently schedule and allocate

resources for individual jobs.

All these types of software systems have what we call a bootstrapping phase. During

this phase, the software system is deployed onto an allocated set of nodes and its initial-

ization information is disseminated. For extreme-scale software to be used successfully, it

has to address the scalability and efficiency of the bootstrapping phase. Let us assume that

on average it takes four minutes to bootstrap a software system which fully utilizes one of

the aforementioned supercomputers. Let us also assume that on average a typical software

system requires two hours of computation time. Over the course of one year, 12 days will

be devoted exclusively to the bootstrapping phase.

1.2 Extreme Scale Software Bootstrapping

Distributed software bootstrapping consists of two procedures: the process launching pro-

cedure and the initialization dissemination procedure. Given a set of computational nodes,

a set of executables, and a mapping between the instances of the executables and the nodes,

the process launching procedure will execute the given executables, on the given nodes,

according to the given mapping. Given a set of running processes and a set of 2-tuples of

<information, operation>, the initialization dissemination procedure will disseminate the

given information in a manner dictated by its associated operation, among the given pro-

cesses. These definitions are similar to those discussed in previous research [11, 26, 4, 13].

There are several existing bootstrapping services. The Process Management Interface

2



Chapter 1. Introduction

(PMI) offers a bootstrapping interface for parallel programming libraries, such as MPI [4].

PMI’s process launching abstraction does not allow for the placement of processes on spe-

cific nodes. The Scalable and Extensible Launching Architecture (ScELA) is also aimed at

parallel programming libraries [26]. It specifies a process launching architecture which is

not readily separable from its MPI implementation. LaunchMon on the other hand is aimed

at the needs of software-system tools [1]. It is mainly focused on mapping the abstractions

of existing launching and communication services to a common set of abstractions.

The novel bootstrapping approach of this thesis does not focus on a specific type of

distributed software. Instead we focus on two goals: providing portability to distributed

software and providing the best performance available on the given system. The bootstrap-

ping service described in this thesis is called the Lightweight Infrastructure-Bootstrapping

Infrastructure (LIBI) [11].

1.3 Contribution of This Thesis

This thesis makes several contributions to software-system bootstrapping:

• We have created a classification system for process launching strategies. This clas-

sification system can be used to guide the implementation of a process launching

service.

• We have created an optimal algorithm for process launching and have proven the

conditions under which optimality is maintained.

• We have created a prototype implementation of LIBI’s bootstrapping abstractions.

• We have evaluated the performance of the LIBI prototype, using MRNet as a bench-

mark.

3



Chapter 1. Introduction

1.4 Thesis Outline

The remaining chapters of the thesis are organized as follows. Chapter 2 discusses back-

ground information and related work. This includes a discussion of several resource man-

agers, a look into process launching strategies, as well as connection hierarchies. Chap-

ter 3 introduces LIBI. This chapter examines MRNet’s bootstrapping use cases, outlines

MRNet’s port to the LIBI abstractions, and discusses the different LIBI implementations.

Chapter 4, discusses the optimal process launching hierarchy and provides a proof of op-

timality. Chapter 5 gives a detailed analysis of performance of the LIBI prototype as well

as MRNet’s LIBI port. Chapter 6 concludes this document and discusses future work.

4



Chapter 2

Background Information

2.1 Overview

In this chapter we provide information that is necessary to understand the discussion of

software-system bootstrapping as well as some related work. We discuss the different

models of process launching. We categorize the different mechanisms used to implement

the bulk launch model. Finally, we discuss the process launching and communication

abstractions provided by other bootstrapping services.

In this thesis, we discuss software-system bootstrapping. The functionality that is

included in software-system bootstrapping is similar to the functionality that is included in

process management. The difference between software-system bootstrapping and process

management centers around the duration of the provided service. Bootstrapping occurs

only at the beginning of a process’ life, while process management deals with the entire

life of the process. Most definitions of process management have requirements that are

more than those of bootstrapping. These can include I/O redirection, signal redirection,

process health monitoring, and job termination [17, 8, 15, 14, 4, 7, 26]. These added

requirements do not conflict necessarily with the requirements of bootstrapping. As such,

we will refer to process managers as bootstrapping services.

5



Chapter 2. Background Information

2.2 Process Launching Models

There are two models for process launching: individual and bulk. The difference between

the individual and the bulk launch model is the number of processes that are capable of

being launched with a single request; individual launches are capable of launching only a

single process while bulk launches have the capability of launching more.

Several services offer individual launch. One of the most basic is exemplified by rsh,

the remote shell. rsh uses a client/server model. The rsh client sends a command to the

rsh server, which then executes the command on its local node. ssh, the secure shell, does

the same thing as rsh, except it encrypts all of the data sent between the client and server.

These individual launch services are widely available and hold a consistent interface on

all platforms.

Bulk launch services on the other hand are not as widely available, and their inter-

faces vary from platform to platform. High Performance Computing (HPC) system ven-

dors and resource managers generally offer their own specialized bulk-launch services.

BlueGene systems and Open RTE each provide an implementation of the bulk-launch ser-

vice, mpirun. CRAY systems provide their own bulk-launch service, aprun. Likewise,

SLURM provides yet another bulk-launch service, srun.

2.2.1 Bulk Launch Frameworks

Bulk launch frameworks are built out of daemons. For the purposes of this thesis, a dae-

mon is a process that is not directly controlled by the user. When used in a bulk launch

framework, daemons communicate with each other to propagate and execute the requested

commands. There are two areas in which bulk launch frameworks differ, the framework

persistence and the connection hierarchy of the daemons.

6



Chapter 2. Background Information

Framework Persistence

The persistence of a bulk launch framework is based upon the number of framework com-

ponents that persist between jobs. The more persistent a framework is, the less has to be

setup for each launch, and the faster a launch can be. The less persistent a framework is,

the more portable it can be and the less resources it needs.

The greatest amount of persistence occurs when both the daemons and the connections

between the daemons persist. This type of persistence can be found in the MPD bootstrap-

ping service [8]. Here daemons persists on each node, connected to each other in a ring

topology. To launch a job, the user sends the executable path and command line arguments

to one of the daemons. The contacted daemon then sends the job information around the

ring. The daemons that are involved with the job then spawn a manager process on their

local node. These manager processes form a smaller ring topology that is used for job

control. Once the job is complete, the manager processes disconnect and terminate, but

the daemons remain connected in a ring.

By having persistent connections, a bulk-launch service can quickly relay the launch

command to all of the relevant nodes. There is no delay from having to form new con-

nections at the start of each job, but this also means that it uses more system resources

than necessary. Unless all nodes in the system have a persistent connection to a central

node (which has scalability issues) the launch message has to be relayed through a set of

intermediary nodes. If the intermediary nodes are dedicated to the resource manager, then

there are less nodes available for computation. If the intermediary nodes are not dedicated

to the resource manager, they could be in use by other jobs. This results in one job using

resources that are allocated to another job.

A more economical use of resources can be achieved when only the daemons per-

sist. This type of persistence can be found in resource managers like SLURM [14] and

ALPS [15]. In SLURM, a daemon persists on each node. When a job needs to be launched,

7
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connections are formed between the daemons on the relevant nodes. Once the job is com-

plete, the connections are disconnected, but the daemons remain.

Persistent daemons still allow for fast bulk launch. They remove the daemon launch

time from the total bulk launch time. However, they are not portable. Persistent daemons

have to be integrated into the resource management system. This make it harder to move

this type of bulk-launch service to a different platform.

The highest degree of portability can be achieved when the daemon image remains the

same between jobs. This type of persistence can be found in ScELA [26]. When a job

needs to be launched, ScELA launches one daemon per node. ScELA uses an executable

as the daemon image, but a library based image is also possible. During the launch event,

ScELA’s daemons connect to each other and are then used for job control. Once the job is

complete the connections disconnect and the daemons terminate.

Since there are very little preconditions required for this type of bulk-launch service it

is very portable. The only requirement is that an individual launch service be available.

The down side is that it does not have the potential to be as fast as a persistent daemon

bulk-launch service. A daemon has to first be started on a node, before that node can

further relay the launch command.

Connection Hierarchies

A second way in which bulk-launch services differ is the connection hierarchy used to

launch the processes. Bulk-launch-connection hierarchies perform similar functionality as

multicast-connection hierarchies. During typical multicast communication, information

is relayed from node to node until all nodes have the information. For bulk launch, that

information is the executable and the corresponding arguments. One important aspect of

multicast communication, that affects performance, is the connection hierarchy between

the nodes. Similarly, the connection hierarchy affects the scalability of the bulk-launch

8
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service.

We will be focusing on tree-based hierarchies in this thesis. There are many types

of non-tree-based hierarchies, but they are not best suited to the type of communication

needed for process launching. A hyper-cube, for example, provides excellent redundancy,

but the path taken by the launch command would not utilize every connection. Instead,

the non-redundant subset of connections used during process launching would resemble

a tree. We will discuss 5 types of tree-based hierarchies: centralized, chain, k-ary trees,

recursive-divide-and-conquer trees, and optimal-multicast trees.

The scalability of these hierarchies can be discussed in terms of productivity of the

individual nodes. Productivity can be described as the amount of time a process does not

spend idling. The more productive a node is, the faster the launch command is dissemi-

nated, and the better the scalability. This concept is discussed in more detail in Chapter 4.

The least scalable connection hierarchies occur at the extreme ends of the tree spec-

trum. This means the broadest trees and the tallest trees. The centralized connection hier-

archy is the broadest possible tree based hierarchy (see Figure 2.1(a)). All of the processes

are connected to the root. This means the last process has to wait until the root process

sends the information to N − 1 other processes before it can receive the information. The

chain hierarchy is worse. It is the tallest of the tree based hierarchies (see Figure 2.1(b)).

All of the processes, except the root and the last process, have a parent and one child. This

is similar to a ring topology without the connection between the last process and the root.

For a message to reach the last process, it has wait for the message to be relayed through

N − 1 processes.

The main reason they are used is because they perform well enough at small scales. As

seen in chapter 5, relaying a message through a single process or waiting for your parent

to send the message to a single prior process, does not take much time. These types of

hierarchies only run into performance problems as the scale of the hierarchy increases.

9
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(a) Centralized (b) Chain (c) 2-ary Tree

(d) Recursive Divide and Conquer
Tree

(e) Optimal Multicast Tree

Figure 2.1: Connection hierarchies of 15 daemons.

The k-ary tree offers a more scalable solution. A k-ary tree is a tree where each process

has at most k children and the height of the tree is minimized. For the last process to

receive the information it only has to wait for the information to be relayed through at

most dlogkNe processes.

The k-ary tree is a popular connection hierarchy. ScELA, SLURM, and ALPS are just

a few of the many bootstrapping services that use this hierarchy. One of the aspects of the

k-ary tree that makes it so popular is that its scalability can be adjusted by the parameter

k.

10
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The scalability of the k-ary tree is not perfect, processes are not as productive as they

could be. For example, in a 2-ary tree of 15 nodes (see Figure 2.1(c)) after the root has

sent the information to both of its child processes it is no longer productive. It waits until

the information has been relayed to the last process. The time that the root spends waiting

is time that could have been spent sending information to additional processes.

The recursive-divide-and-conquer tree is designed to increase the productivity of the

parent processes. This type of tree has not been used for process launching, but it has

been used for communication. This is the connection hierarchy used by COBO, a group-

communication service created at Lawrence Livermore National Laboratory [9]. It was de-

signed to provided sufficient group-communication services to allow for software-system

bootstrapping. COBO is used by LaunchMON.

The recursive-divide-and-conquer tree is built using a divide and conquer approach

(see Figure 2.1(d)). Starting with a list of processes, the root process selects one of the

processes to be its child and divides the remaining processes between itself and its new

child. The root and the new child then continue this process of selecting a new child and

dividing the remaining list until all of the processes are accounted for.

The recursive-divide-and-conquer tree increases the productivity of the parent nodes,

but it does not maximize it. After the list of remaining processes is divided a parent has to

send the executable, the arguments, and half of the list to the new child. Since the time it

takes the parent to send this information and move on to its next child is not equal to the

time it takes the new child to receive and parse the information, there is a delay between

when the parent and the new child start their next recursive step. This delay means that

the parent process will finish launching its half of the list before the new child launches

its half. In the case of process launching, parsing the information can mean executing the

command, and then letting the resulting process launch the remaining list of processes.

This can result in an order of magnitude difference between the delay of the parent and the

delay of the child, when starting the next recursive step.

11
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The optimal-multicast tree accounts for this delay (see Figure 2.1(e)) [20]. Just like the

recursive-divide-and-conquer tree, the optimal-multicast tree has never before been used

for process launching. It has only been used for communication.

The optimal-multicast tree described by Park, Choi, Nupairoj, and Ni uses two param-

eters: thold and tend. In their communication model, thold defines the time required for a

process to send information to one child and then move on to the next. tend defines the

time required for the parent to send information to a child, for that information to traverse

the network, and for the child to receive that information. The time required to perform

a multicast using a given tree is modeled using the parameters of thold and tend. Using

this model of communication time, a dynamic-programming algorithm is used to create

an optimal-multicast tree of a given size; they create larger optimal-multicast trees by

combining smaller optimal-multicast trees.

2.3 Existing Bootstrapping Abstractions

In this section, we will discuss the highlights and deficiencies of existing bootstrapping

abstractions. There are two sets of abstraction that are relevant to bootstrapping: process

launching abstractions and group communication abstractions. The services that we will

discuss are PMI, PMGR, LaunchMON, and ScELA.

2.3.1 Process Launching Abstractions

PMI

The Message Passing Interface (MPI) is the standard programming model used in HPC

systems. The standard practice for launching MPI applications is to execute either

mpirun or mpiexec with the appropriate arguments. These two programs are not part

of the MPI standard [19]. MPI is mainly concerned with inter-process communication, not
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process launching. As such it does not specify a standard command line interface which

could preclude the full implementation of MPI on some systems. This helps explain the

variety of the bulk-launch services discussed in Section 2.2.

Instead of a command line interface, MPI defines two process launching abstractions:

MPI_COMM_SPAWN( ) and MPI_COMM_SPAWN_MULTIPLE( ). These abstractions

provide the functionality to launch numerous copies of one executable or multiple exe-

cutables, respectively. Many MPI implementations choose to pass this functionality onto

PMI [4].

Since PMI is intended for use in process management, it specifies more requirements

than what is needed for bootstrapping. These features includes I/O redirection, propagat-

ing signals, and stopping processes. PMI was designed to be used by parallel libraries,

such as MPI. This use case has guided its process launching abstraction.

PMI’s process launching abstraction offers a single distribution type [22]. This distri-

bution is specified by a 3-tuple of <executable, arguments, count>. This distribution type

works fine for parallel libraries, but it is unsuitable for software-system tools. A debug-

ger needs the ability to launch its processes on a specified set, or subset, of nodes. This

functionality is not possible through the PMI process launching abstraction.

LaunchMON

LaunchMON is a bootstrapping framework for software-system tools [1]. One of the

differences between software-system tools and software systems is that software-system

tools need to "attach" to another set of processes. When a tool attaches to a running

process, it is given control of the running process’ execution. The tool can start and stop

execution, manipulate the values of variables, and trace the stack.

To attach a software-system tool to a software-system, LaunchMON needs to know

the location of each process in the software system. To do this LaunchMON attaches itself
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to the bulk-launch service (mpirun, srun, aprun, ...) that is responsible for launching

the software system and looks for the locations of each of the launched processes. Once

LaunchMON has the location of each process it can launch its own processes at the same

locations and perform a normal attach for each process.

LaunchMON’s "attach" abstraction assumes the existence of a bulk-launch service.

The process distribution that is used by attach is a 1-tuple of <pid>, where pid is the

process id of the bulk-launch process. Since this bulk-launch service is guaranteed to

exist, LaunchMON uses the same bulk-launch service to launch its own processes.

This dependence on existing bulk-launch services has influenced its own process

launching abstraction. The process distribution used by LaunchMON’s process launch-

ing abstraction is specified as a list of 4-tuples of <exec, args, count, dt> where exec is

the path to the executable, args are the arguments for the executable, count is the number

of processes needed to be launched, and dt is a distribution type. A few of the distri-

bution types include block, where each node is given a consecutive block or processes,

cyclic, where each node is cycled through, adding a process to each in turn, and hostslist,

where the node of each process is specified. These distribution types are supported by

many existing bulk-launch services, including: srun, aprun, and most implementations

of mpirun.

For this thesis, we will be basing our process launching abstraction off of Launch-

MON’s process launching abstraction. This allows us to easily work with existing bulk-

launch services.

2.3.2 Group Communication Operations

Many libraries provide a set of group communication operations. As noted in section 2.3.1,

MPI is the most popular one. MPI provides numerous group communication operations.

The wide variety of operations ensures that almost any type of communication is defined

in MPI.
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For software-system bootstrapping, most of these operations are not needed. One could

use MPI for bootstrap communication, but it would be overkill. When MPI itself is boot-

strapped, it only relies on a small subset of its own group communication operations.

PMI

As mentioned in section 2.3.1, PMI is designed for bootstrapping parallel libraries, like

MPI. The communication abstractions defined by PMI involve the storage and retrieval

of key-value pairs from the key-value space (KVS). To accomplish this task, 3 operations

are defined: Put, Get, and Fence. Put stores a set of key-value pairs in the KVS, Fence

is a group communication operation that synchronizes the KVS of every process, and Get

retrieves the values of a given set of keys. The KVS is also used for bootstrapping addi-

tional processes. If an additional set of processes needs to connect to the currently running

processes the new processes can query the KVS associated with the running processes in

order to acquire their connection information.

These three operations were first introduced as the communication interface for MPD

in 2001 [8]. This means there are a number of resource managers that already support

them [4]. However, it does not mean they are not efficient. For the KVS to work properly,

all of the key-value pairs need to be distributed to all nodes or they need to be accessible

from all nodes. The trade off is either wasting a lot of network resources and memory by

broadcasting and then storing unneeded key-value pairs on every node or processing an

individual value request for each Get operation [25].

PMGR

The PMGR Collective takes a different approach to parallel library bootstrap communica-

tion [21]. PMGR provides seven group communication operations. These include barrier,

broadcast, gather, scatter, allgather, alltoall, and allgatherstr. These operations perform the
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same functionality that is defined by MPI operations of a similar name. The only excep-

tion is allgatherstr. Allgatherstr performs a similar function as allgather except the data in

question are null terminated strings, whose length can vary from string to string.

One of the downsides of using these operations is that it makes setting up connections

between two distinct sets of processes harder. With the Put, Fence, and Get operations of

PMI, this task is simple. The second set of processes can simply access the KVS of the

first. To accomplish this task through PMGR, the first set of processes has to explicitly

create connection setup data, and then somehow make it available to the new processes.

LaunchMON

Figure 2.2: Process types used by LaunchMON’s communication operations.

LaunchMON’s bootstrap communication abstractions address the issues of efficiency

and bootstrapping additional sets of processes. LaunchMON’s abstractions are built

around three process types: front-end, master, and member (see Figure 2.2). The front-

end process is the one which launches all of the other processes. The front-end process

can communicate with the master process but cannot directly communicate with any of

the other member processes. When bootstrapping an additional set of processes the front-

end can act as an intermediary, storing the connection setup data, and passing it on to the

additional processes.
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To accommodate the three process types, 6 group communication operations are given:

send, recv, broadcast, scatter, gather, and barrier. Send transfers data from the front-end to

the master process while all of the other members wait. Recv transfers data in the opposite

direction. The remaining operations are all performed between the member processes.

Broadcast sends data from the master to all members, scatter sends distinct data from the

master to each member, gather sends data from each member to the master, and barrier

blocks until all members have entered the group communication operation.

ScELA

With the exception of PMGR’s allgatherstr, the Scalable and Extensible Launching Archi-

tecture (ScELA) provides the group communication operations of both PMI and

PMGR [26]. In addition to these group operations, ScELA provides point-to-point of

communication.

Offering PMGR’s communication operations in addition to that of PMI’s, lessens the

advantages of PMI. The advantage that is taken away is the ability to easily bootstrap addi-

tional sets of processes. If an application now has the option to perform broadcast, gather,

and scatter operations that means that all of the relevant information is not guaranteed to

be in the KVS. Any additional processes now have to be dealt with in the same manner as

when using PMGR.

2.4 Summary

In this chapter we discussed the difference between individual launch and bulk launch.

We then categorized the different methods of bulk launch based on the persistence of the

framework and the connection hierarchy of the daemons. The more persistent a frame-

work is, the faster it can be. However, increased persistence also means less portability

and a higher resource requirements. For connection hierarchies, their scalability can be
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determined by the productivity of the individual process.

We discussed the process launching and group communication abstractions used by

existing bootstrapping services. We discussed the motivating use cases of the launch ab-

stractions. We discussed the tradeoffs of the group communication operations.
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A Framework For Bootstrapping
Extreme Scale Software Systems

3.1 Overview

Our approach to software-system bootstrapping is to create a set of abstractions that are

sufficient for bootstrapping as well as to create a framework for implementing these ab-

stractions. The framework we created is called the Lightweight Infrastructure-Bootstrap-

ping Infrastructure (LIBI). We have discussed the concepts involved with the abstractions

and framework in a previous paper [11]. This chapter will review these concepts and

expand upon them.

LIBI has two goals, one for its abstractions and one for its framework. The first goal

is for LIBI’s abstractions to serve as a model for the type of services a resource manager

should provide. The second goal is to provide a framework which gives portability and the

best available performance to the application that uses it. When used on a platform that

provides bulk-launch and/or group-communication services, LIBI should use these when

adequate. Otherwise, LIBI should provide a suitable alternative.

LIBI is designed to sit between large-scale-software systems and the underlying bulk-

launch and group-communication services. Since LaunchMon already provides access to a
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number of bulk-launch services and group-communication services, LIBI will sit on top of

LaunchMon when appropriate. This relationship may change in the future. If a particular

platform is not supported by LaunchMon, LIBI will be able to use its own implementation

of the services provided by the resource manager or even rely on its own individual launch

based bulk-launch and communication service. Figure 3.1 depicts this relationship.

Large Scale Distributed Software

Process Launching 
Services

Communication 
Services

LIBI

rsh/ssh
srun

mpirun

aprun

LaunchMON

Debuggers System Monitors

Applications
Performance Analyzers

Overlay Networks

Parallel Libraries

Figure 3.1: The relationship between LIBI and the software it interacts with.

3.1.1 Use Cases

The LIBI abstractions are designed to accommodate two use cases. The first use case is to

bootstrap a software system, on a specified set of nodes, where the processes are launched

from a single executable. The second use case is to bootstrap a software system, on a

specified set of nodes, where the application is comprised of multiple executables.

These use cases are similar to those of PMI. PMI’s use cases are based off of the needs

of parallel libraries, mainly MPI. MPI’s process-launching requirements center around

the functions: MPI_COMM_SPAWN( ) and MPI_COMM_SPAWN_MULTIPLE( ). The

difference between LIBI’s use cases and the needs of these two functions is that these two

functions do not require a specified set of nodes. This additional requirement does not

preclude LIBI from bootstrapping MPI, it just requires an additional step. MPI would first

have to request an appropriately sized allocation of nodes before using LIBI.
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To facilitate LIBI’s use cases, the process launching and communication abstractions

will be based on the concepts of a front-end and a session. These concepts are similar to

those used by LaunchMon. A session is a group of processes that are launched at the same

time and can communicate with each other. Each process within the session is a member.

Each member is given a unique identifier called a rank. One of the members is the master

of the session. The front-end can only communicate with the master, but not directly with

any of the other members.

3.2 LIBI Abstractions

3.2.1 Process Launch Abstraction

As noted in the discussion of existing process launching abstractions (Section 2.3.1), a

distribution type is the method in which processes are placed on nodes. PMI offers a single

distribution type which allows the user to specify the number of processes to create from

a given executable, but not how those processes should be distributed among the nodes.

LaunchMon offers multiple distribution types, which can be mapped to the distribution

types of many bulk-launch services.

LIBI’s process launching abstraction will focus on the host list distribution type. There

are a couple of reasons for this. First, it will support both of our use cases. Second, the

other distribution types (block, cyclic, unspecified, ...) can be built on top of the host list

distribution type, but the host list distribution type cannot be built on top of any other.

Third, the host list distribution type allows for the direct implementaion of a bulk-launch

service that is built on top of individual launches. Extra information would have to be

added to the block distribution type, such as a list of possible nodes, before any individual

launch could take place. Finally, most bulk-launch services already support the host list

distribution type.
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LIBI’s process launching abstraction uses a list of process distributions. A process

distribution is a 5-tuple of <sid, exe, args, hl, env>, where sid is a session handle, exe is the

path to an executable file, args are the arguments to pass to the executable during process

creation, hl is a host list, and env is the environment to use for the created processes. A

host list is a list of 2-tuples of <hostname, num-procs>, which defines how many processes

to create on the named node.

launch( process-distribution-list ) instantiates the appropriate sets of processes
according to the input process distributions.

Table 3.1: The launch abstraction used by LIBI.

3.2.2 Group Communication Abstraction

The group-communication abstraction employed by LIBI will be similar to LaunchMon’s.

It will make use of the front-end, master, and member process classes. The group-comm-

unication operations include: send, receive, broadcast, scatter, gather, barrier. This allows

LIBI to easily piggyback on top of LaunchMon, so that it can make use of the bulk-launch

and group-communication services that LaunchMon supports.

LaunchMon’s set of group-communication operations were also chosen based on func-

tionality and efficiency reasons. As noted in Section 2.3.2, the front-end, master, member

process classes facilitate the bootstrapping of additional processes. They are also more

efficient than PMI’s Put, Fence, and Get operations.

3.2.3 Example Usage

To demonstrate how the LIBI abstractions could be used to bootstrap a software system,

we have conducted a case study of MRNet. MRNet is a multicast/reduction network that

22



Chapter 3. A Framework For Bootstrapping Extreme Scale Software Systems

[send|receive]( sid, msg ) transfers data between the session master and the session
front-end. The session members wait until the data transfer is complete.

broadcast( sendbuf, nbytes ) transfers nbytes bytes of data from sendbuf at
the session master to all other session members.

[scatter|gather]( sendbuf, nbytes, receivebuf ) transfers nbytes bytes of data
from/to the session master to/from all session members.

barrier( ) blocks until all session member calls this routine.

Table 3.2: The communication abstractions used by LIBI.

provides a scalable data aggregation service [23]. It is comprised of three different process

types: the front-end, the communication daemons, and the back-end daemons. MRNet’s

bootstrapping needs include launching its communication daemons onto a specified set of

nodes, launching the back-end daemons onto a specified set of nodes, and then connecting

these two types of daemons to form a Tree Based Overlay Network (TBON). The front-end

is the root, the communication daemons are the internal nodes and the back-end daemons

are the leaf nodes.

MRNet’s normal bootstrap mechanism involves multiple individual launches. The

front-end individually launches its child communication daemons. The child communi-

cation daemons connect back to their parent, the root. Once a connection is established,

the parent sends the MRNet TBON topology. The children then launch their own children.

This process is repeated until all processes have been launched.

MRNet’s back-end attach mode offers a second bootstrapping scenario. In the attach

mode, the back-ends are started by a separate entity. Here, MRNet is only concerned with

launching the communication daemons, and connecting them into a TBON. The back-ends

will attach themselves to the communication daemons at a later time.

For this case study we have replaced MRNet’s normal bootstrapping mechanism with
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LIBI. MRNet’s front-end process creates two LIBI sessions; session one is for the commu-

nication daemons and session two is for the back-ends. MRNet’s front-end translates the

MRNet topology into separate process distributions for each LIBI session. After adding

MRNet specific environment variables to each session’s environment, the front-end calls

LIBI’s launch abstraction to launch both sessions.

Each communication daemon and back-end daemon needs to know the hostname and

port number of its parent. To start the communication process, the front-end sends the

MRNet topology to each session master, who then broadcasts it to their session members.

The parent/child relationships are contained within the MRNet topology.

Since there could be multiple processes per node, the front-end sends a host list con-

taining the host name of each process in the session, in LIBI rank order, to each session

master. The master broadcasts the host list to its session members. Each member scans

the host list, counting the number of occurrences of its own hostname before reaching the

position equal to its LIBI rank. The member processes then scan the MRNet topology, to

find the MRNet rank with the same hostname, that has the same number of occurrences

of its own host name preceding it. Using this information, each process can find the host

name and MRNet rank of its parent.

The final piece of information needed is the port number where its parent is listening

for connections. The communication daemons bind to a port number and then use LIBI

to gather all of the <port number, MRNet rank> tuples to the the session master. The

session master sends these tuples to the front-end. The front-end receives the tuples and

adds its own < port number, MRNet rank> tuple. These tuples are sent to the master of

each session, who in turn broadcasts the tuples to their members. Each member, knowing

the MRNet rank of its parent, scans the list of tuples to finds its parent’s port number.

After every process knows its parent’s hostname and port number, LIBI is no longer

needed. From here, MRNet finishes its own bootstrapping process. All communication
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daemons and back-end daemons connect to their parent. These connections form MRNet’s

TBON, which completes MRNet’s bootstrapping.

3.3 Prototype Implementations

This section discusses the two implementations of LIBI. The first implementation inte-

grates with LaunchMon. The second implementation uses an individual launch based

approach to launch and connect the requested processes.

3.3.1 Integration with LaunchMon

The purpose of integrating LIBI with LaunchMon is to offload some development work.

As discussed in Seciton 2.3.1, LaunchMon has both an attach and a launch abstraction.

LaunchMon’s attach implementation already has support for several bulk-launch services.

The implementation of LaunchMon’s launch abstraction should not be far behind. These

bulk-launch services should be able to provide the best (and sometimes only) process

launching option on a given platform.

For the most part LIBI’s launch and communication abstractions pass the information

directly to LaunchMon’s abstractions. The differences between the two abstractions are

mainly implementation specific.

3.3.2 Individual Launch Based Implementation

When a bulk-launch service is not available on the given platform, or if it is not performing

as well as desired, LIBI needs to provide an adequate alternative. To do this, LIBI will

be relying on a persistent image daemon. As noted in Section 2.2.1, persistent image

daemons are the least persistent. They are alive only for the duration of the job. Since they
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do not need to be integrated with the resource manager, they are very portable. The only

thing they rely on is the existance of an individual launch service, such as rsh.

LIBI’s daemon images will be library based, instead of executable based. This turns

the target executable into a LIBI daemon, at least while bootstrapping. The library based

daemon should help maintain LIBI’s lightweight status.

LIBI will use three process launching phases. During the first phase, the front-end will

launch the master process and define a connection hierarchy. During the second phase,

LIBI will use multiple individual launches to launch and connect, one process per node.

These processes will be launched and connected in a manner defined by the connection

hierarchy that was created in the first phase. During the third phase, these processes will be

used to launch any collocated processes on their local node. By using only one individual

launch per node, LIBI eliminates all of the additional network connections that would

have been created for each collocated process. This approach has been used in previous

bootstrapping services, with good results [26, 13].

During the the individual launch, LIBI will pass the current node’s name, and the

port number used by LIBI, to the new process, as command line arguments. Once the

new process is running, it will connect back to the process which launched it. In this way,

LIBI’s launch hierarchy will also be used as its communication hierarchy. For the purposes

of our research, LIBI will be able to use any arbitrary hierarchy. This will allow us to test

the relative performance of different hierarchies. It will also allow us to easily create our

own Greedy hierarchy (see Chapter 4) and compare it to other hierarchies.

3.4 Summary

In this chapter we described the Lightweight Infrastructure-Bootstrapping Infrastructure.

LIBI is designed to sit between large-scale-software systems and the underlying bulk-

launch and communication services. The two motivating use cases cover bootstrapping
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software systems, on a specified set of nodes, where the processes are created from a

single executable and where the processes are created from multiple executables.

LIBI’s launch and communication abstractions are similar to those of LaunchMon.

LIBI’s launch abstraction will focus on the host list distribution type. The group-comm-

unication operations offered by LIBI will include: send, receive, broadcast, scatter, gather,

barrier. Using MRNet as a case study we showed how LIBI’s abstractions could be used

to bootstrap a software system.

LIBI currently has two prototype implementations. The first implementation sits on top

of LaunchMon. The second implementation uses an individual launch based approach.

This implementation relies on library based persistent image daemons. These daemons

will be able to form any arbitrary hierarchy.
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The Optimal Process Launching
Hierarchy

4.1 Overview

In this Chapter, we examine the process-launching phase of software-system bootstrap-

ping. We begin by modeling the time required to launch a given set of processes. We then

propose a new method for launching processes which minimizes the modeled launch time.

We can break the process-launching phase of bootstrapping into three separate sub-

phases: preparation, connection, and co-location. These three phases can be seen in the

LIBI’s individual launch implementation. During the preparation phase, the front-end

process starts the master process. During the the connection phase the first process on

each node is started. Parent processes sequentially launch their child processes. The child

processes then go on to launch their children. During the co-location phase, all of the other

processes on each node are started.
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Listing 4.1: Pseudo code for the connection phase
1 main( ){
2 retrieve parameters from parent
3 for( each child ){
4 create a new process
5 if ( child process )
6 execute individual launch command
7 }
8 }

We will mainly be focusing on the connection phase. The algorithm for the connection

phase is shown in Listing 4.1. This algorithm transforms a set of processes into a hierarchy

of processes. The process which preforms the individual launch is the parent, while the

process that is launched, is the child. This parent/child relationship among the processes

forms a hierarchy. Horizontal connections between processes do not make sense in this

context, so they are not allowed.

There are three types of hierarchies that we will build a model for: chain, sequential,

and arbitrary hierarchies. The first two hierarchies are degenerate cases. These two hi-

erarchies demonstrate the two extremes of the tree spectrum. The sequential hierarchy is

the broadest possible while the chain hierarchy is the tallest. All other hierarchies will fall

somewhere in between these two.

The rest of this Chapter will create a model for the time required to launch a set of

processes, based on the three phases of process launching. Given a process launching

hierarchy the model will estimate the amount of time it will take to launch all of the

processes. This model will be used as a tool to compare separate hierarchies. It will also

be used to guide the creation of the Greedy hierarchy. We will then prove that the Greedy

hierarchy is optimal, meaning it minimizes the total launch time.
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4.2 Modeling Hierarchy Launch Time

To create a model of launch time, we will model the time required for each phase of

the launch. For any given set of set of processes we can assume that the time required

by the preparation phase is a constant. We can also assume that the time required by the

co-location phase is a constant. Let us label these constant times as PREP and COLOC, re-

spectively. We can make these assumptions because any variability in PREP and COLOC

is insignificant when compared to the time required by the connection phase.

Modeling the connection phase requires a little more consideration. The time required

by the connection phase depends on the connection hierarchy. The general method for

creating the model of the connection phase entails tracing through the algorithm in List-

ing 4.1. By tracing through the algorithm we can see which sections are repeated, and how

often they are repeated. We then create a model of launch time, by stating that a section of

the algorithm is repeated x times and takes y amount of time.

In order to create a model of the total launch time, we only need to model the code

that leads to the launch of the last process. However, it is that it is hard to determine, in

an apriori fashion, which process is the last. As such, we model the time it takes to launch

each process and then use the maximum as the modeled launch time. This is expressed in

Equation 4.1, where Launch(h) is the time required to launch all of the nodes in hierarchy

h and Launch(x, h) is the time required to launch node x in hierarchy h. The number of

nodes is represented by n.

Lanch(h) = PREP +maxnx=1Launch(x, h) + COLOC (4.1)
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4.2.1 Modeling the Chain Hierarchy

The first hierarchy we will model, is the Chain hierarchy. As introduced in Section 2.2.1,

in the Chain hierarchy, every node except the last, has one child. This can be thought of as

a ring without the connection between the last node and the first. It can also be thought of

as a 1-ary tree.

To model the Chain Hierarchy, we need to label a relevant section of the algorithm in

Listing 4.1. The section of the algorithm we are concerned with spans two nodes. It starts

when the parent node creates a new process and executes the individual launch command

(rsh, ssh, ...) for the child node. The child node then enters main and retrieves its param-

eters from its parent. Let us label this trace through the algorithm as remote_launch. Let

us label the time required by remote_launch as REMOTE.

For the Chain hierarchy remote_launch is repeated n− 1 times, where n is the number

of nodes in the hierarchy. The value n − 1 also equates to the number of ancestors of

the last node. In fact, the time required to launch any process in the Chain hierarchy is

related to the number of ancestors it has. This idea is encapsulated into Equation 4.2,

where anc(x, h) is the set of ancestors of node x in hierarchy h and chainn is the Chain

hierarchy with n nodes.

Lanch(x, chainn) = (|anc(x, chainn)| ∗REMOTE) (4.2)

Figure 4.1: Modeling the Chain hierarchy at 4 nodes.
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4.2.2 Modeling the Sequential Hierarchy

The next hierarchy that we will model is the Sequential hierarchy. As introduced in Sec-

tion 2.2.1, in the Sequential hierarchy, the root launches every child by itself. This can be

thought of as an k-ary tree when there are k + 1 nodes in the tree.

To model the Sequential Hierarchy, we need to label another relevant section of the al-

gorithm in Listing 4.1. The section we are concerned with is executed by the root process.

Let us label a single iteration of the “for( each child )” loop as sequential_wait. Let us

label the time required by sequential_wait as SEQ.

For the Sequential hierarchy, sequential_wait is repeated n − 2 times, where n is the

number of nodes in the hierarchy. The value n−2 also equates to the number of preceding

siblings of the last node. In fact, the time required to launch any process in the Sequential

hierarchy is related to the number of preceding siblings it has. This idea is encapsulated

into Equation 4.3, where presib(x, h) is the set of preceding siblings of node x in hierarchy

h and sequentialn is the Sequential hierarchy with n nodes.

Launch(x, sequentialn) = (|presib(x, sequentialn)| ∗ SEQ) +REMOTE (4.3)

Figure 4.2: Modeling the Sequential hierarchy at 4 nodes.
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4.2.3 Modeling Arbitrary Hierarchies

The last step is to model arbitrary hierarchies. Instead of limiting ourselves to a model of

another rule based hierarchy, let us model how long it takes to launch a node within any

given hierarchy. This model will encompass k-ary trees and recursive divide and conquer

trees as well as the Chain and Sequential hierarchies.

For an arbitrary hierarchy we do not need to label any new sections of the algorithm;

we still rely on remote_launch and sequential_wait. The difference is that the number of

repetitions of each of these sections of the algorithm is not clearly identifiable.

To identify the number of repetitions of each section of the algorithm we recursively

define the model. In the recursive definition, let us isolate each parent with its children.

When isolated like this, the parent becomes the root and this sub-hierarchy becomes a

sequential hierarchy. Let us label node p’s sub-hierarchy as P . The modeled launch time

of node x, which is a child of node p, can be defined as the time to launch node p plus the

time to launch node x in sub-hierarchy P .

Launch(x, h) = Launch(p, h) + Launch(x, P )

= Launch(p, h) + (|presib(x, P )| ∗ SEQ) +REMOTE

If we follow the recursion to its conclusion, we can see that remote_launch is repeated

for each ancestor of x. We also see that we count the preceding siblings of node x as well

as the preceding siblings of each ancestor of node x. These ideas are encapsulated into

Equation 4.4, where psas(x, h) is the set of nodes which include the preceding siblings of

node x as well as the preceding siblings of each ancestor of node x in hierarchy h.

Launch(x, h) = (|psas(x, h)| ∗ SEQ) + (|anc(x, h)| ∗REMOTE) (4.4)
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Figure 4.3: Modeling the launch of node 6 in an arbitrary hierarchy.

4.3 Greedy Hierarchy

For a given number of nodes there are a vast number of possible hierarchies. In this

section we will outline an algorithm that creates a hierarchy of n nodes, which takes the

least amount of time to launch out of any hierarchy of n nodes. Due to the use of a greedy

algorithm we will call this hierarchy the Greedy hierarchy. We will also prove that the

Greedy hierarchy is optimal, when using the three phases of process launching that were

described in Section 4.2.

The Greedy hierarchy is inspired by the construction of optimal-multicast trees de-

scribed by Park et al. [20]. As discussed in Section 2.2.1, Park et al. start by creating

a parametrized model for multicast communication. This is similar to how we created a

model of process launch time. They then use a dynamic programming model to create a

tree which minimizes the multicast communication time. They combine smaller optimal

trees to create larger optimal trees.

There are a couple of differences between the optimal-multicast tree and the Greedy

hierarchy. First, the optimal-multicast tree was intended to be used for communication

while the Greedy hierarchy is intended to be used for process launching. Second, the

optimal-multicast tree parameters are machine specific, such as network latency. The

Greedy hierarchy on the other hand relies on machine and application specific parame-
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ters. For LIBI’s individual launch version, REMOTE is dependent on numerous factors

such as network latency, executable size, how the executable was compiled (compiler op-

timization flags, shared vs archived libraries, ... ), as well as the location of the LIBI code

within the executable (do other processes occur before LIBI initialization?). Finally, the

optimal-multicast tree uses a dynamic programming algorithm while the Greedy hierarchy

uses a greedy algorithm.

4.3.1 Greedy Algorithm

Listing 4.2: Greedy Algorithm Pseudo Code
1 for( each node){
2 Place node in position with lowest modeled time
3 Calculate modeled time of next sibling
4 Calculate modeled time of first child
5 }

Listing 4.2 shows the pseudo code of the greedy algorithm which creates the Greedy hi-

erarchy. The algorithm takes a list of nodes as input and returns the Greedy hierarchy

for those nodes. The first node of the list is placed in the root position of the hierarchy.

Nodes are added to the hierarchy by greedily choosing the position which has the smallest

modeled launch time.

To keep track of the available positions, we can use a heap data structure of <posi-

tion,time> pairs. This allows us constant time lookup of the position with the smallest

modeled launch time and O(log n) time for the insertion of new available positions. This

allows the greedy algorithm to complete in O(n log n) time.
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4.3.2 Proof of Optimality

Intuitively, the greedy algorithm should produce an optimal process launching hierarchy.

Since we are placing new nodes in the position which results in the fastest launch time,

none of the processes should ever be idle. If a parent process is idle for long, its child

positions will eventually become the fastest in the hierarchy. At which point the parent

node will be assigned a child node to launch. This should maximize the productivity of

each process which should result in a minimal launch time.

We will prove that the greedy algorithm in Section 4.3.1 produces an optimal-process-

launching hierarchy. We start by proving that the range of possible launch times is discrete

(Lemma 2). Since there is a discrete range of possible launch times, these times can be

ordered from lowest to highest (Definition 7). We then show that for each possible launch

time, there is a finite number of nodes that require that amount of time to be launched

(Lemma 3). Finally, we show that the Greedy hierarchy will saturate the lowest unsatu-

rated launch time, before moving on to the next lowest unsaturated launch time. This will

be used to prove that the Greedy hierarchy is optimal (Theorem 1).

Definition 1. Each node in a process launching hierarchy has one parent (except the root,

which has none) and can have multiple children. A node’s children are ordered, meaning

child x has to exist in order for there to be a child x+1. The following is a list of functions

which return a set of nodes that are related to node x in various ways.
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Function Description

root(h) root(h) returns the root of hierarchy h

parent(x, h) parent(x, h) returns the parent of node x in hierarchy h.

anc(x, h) anc(x, h) returns the set of ancestors of node x in hierarchy h.

These are the nodes on the path between the root and node x,

including the root but not node x.
anc(x, h) = {parent(x, h), parent(parent(x, h), h), ...,

root(h)}

children(x, h) children(x, h) returns the sequence of children of node x in hi-

erarchy h.

position(x, h) position(x, h) returns the position of node x within

children(parent(x, h), h).

siblings(x, h) sibling(x, h) returns the set of siblings of node x in hierarchy h.

siblings(x, h) = {y : y ∈ children(parent(x, h), h) and
position(y, h) 6= position(x, h)}

preSiblings(x, h) preSiblings(x, h) returns the set of preceding siblings of node

x in hierarchy h.
preSiblings(x, h) = {y : y ∈ siblings(x, h) and

position(y, h) < position(x, h))}

psas(x, h) psas(x, h) returns the set of preceding siblings of each ancestor

of node x as well as the set of preceding siblings of node x in

hierarchy h
psas(x, h) = {y : y ∈ preSiblings(z, h) and z ∈ anc(x, h)}

∪ preSiblings(x, h)

available(h) available(h) returns the set of nodes which is comprised of the

next available child position of each node in hierarchy h. If node

x has 3 children, the next available child of node x would be its

4th child.
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Definition 2. All process launching hierarchy implementations are based on three phases:

Preparation Phase: This phase can include such tasks as creating the hierarchy and vali-

dation of parameters. This phase occurs before the connection phase.

Connection Phase: During this phase, a parent node will sequentially contact each of its

child nodes. Once a child node has been contacted by its parent, the child node will

receive the information needed to contact its own children. The child node will then

proceed to contact its own children.

Co-location Phase: During this phase, each node launches all of its local processes. This

phase occurs after the connection phase.

Definition 3. Some abbreviations:
Name Definition

PREP PREP is the constant amount of time required by the preparation

phase.

REMOTE REMOTE is the constant amount of time required between when the

parent starts to contact a child and when that child is ready to contact

its children.

SEQ SEQ is the constant amount of time required for a parent to contact

one child and be ready to contact the next.

COLOC COLOC is the constant amount of time required by the co-location

phase.

Hn Hn is the set of hierarchies containing n nodes.

inf inf is the hierarchy where every node has an infinite number of

children.
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Definition 4. The time required to launch node x in hierarchy h is determined by the

time required to launch each node along the path from the root to node x. There are

|psas(x, h)| preceding siblings along this path, each requiring SEQ time, and |anc(x, h)|
ancestors along this path, each requiring REMOTE time. The time required to launch node

x in hierarchy h is defined as Launch(x, h):

Launch(x, h) = (|psas(x, h)| ∗ SEQ) + (|anc(x, h)| ∗REMOTE)

Definition 5. The time required to launch hierarchy h ∈ Hn has to account for each phase

of the implementation. The time required to launch hierarchy h is defined as Launch(h):

Lanch(h) = PREP

+maxnx=1 Launch(x, h)

+COLOC

Definition 6. Let us create a new operation A⊕B where A and B are sets:

A⊕B = {a+ b : (a, b) ∈ A×B}

Note: The Cartesian Product is defined as A×B = {(a, b) : a ∈ A and b ∈ B}.

Lemma 1. The range of A⊕B is discrete, when A and B are both countably infinite sets.

Proof. The Cartesian product of two countably infinite sets is a countably infinite set [3].

A⊕B creates one value for each element ofA×B. The size of the range ofA⊕B is bound

between a finite number of values and a countably infinite number of values. At the lower

bound, it is a finite set, and as such it is discrete. At the upper bound, a countably infinite

set can be put into a one-to-one relationship with the natural numbers, which would make

it discrete. Either way, The range of A⊕B is discrete.
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Lemma 2. The range of Launch(h) is discrete.

Proof. According to Definition 5, Launch(h) relies on the maximum launch time of a

single node in hierarchy h. Let us label the node that take the longest time as max.
Launch(h) = PREP + Launch(max, h) + COLOC Definition 5

= PREP

+(|psas(max, h)| ∗ SEQ)
+(|anc(max, h)| ∗REMOTE)

+COLOC Definition 4

range(Launch(h)) = range(PREP

+ (|psas(max, h)| ∗ SEQ)
+ (|anc(max, h)| ∗REMOTE)

+ COLOC)

= range(PREP )

⊕ range(|psas(max, h)| ∗ SEQ)
⊕ range(|anc(max, h)| ∗REMOTE)

⊕ range(COLOC)

= {PREP}
⊕ {nat ∗ SEQ : nat ∈ N}
⊕ {nat ∗REMOTE : nat ∈ N}
⊕ {COLOC}

range(Launch(h)) = {(nat ∗ SEQ) + PREP : nat ∈ N}
⊕ {(nat ∗REMOTE) + COLOC : nat ∈ N} Definition 6

range(Launch(h)) is discrete Lemma 1
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Definition 7. More abbreviations:
Name Definition

time[i] time[i] = the ith smallest value of range(Launch(h)).

nodes[i] nodes[i] = {x : x ∈ inf and Launch(x, inf) = time[i]}

Lemma 3. ∀i ∈ N, nodes[i] is a finite set.

Proof. A node can be encoded as a string of s’s and c’s. This encoding describes the path

from the root to the node. If two nodes share the same encoding they occupy the same

position in the hierarchy. An s indicates that you need to proceed to the following sibling

of the current node. A c indicates that you need to proceed to the first child of the current

node. Given these definitions of s and c, an encoding of node x in hierarchy h will have

an s for each member of psas(x, h) and a c for each member of anc(x, h).

Let us examine node x where x ∈ nodes[i]. Every node which shares the same number of

s’s and c’s will launch in the same amount of time. To count the number of nodes which

share the same number of s’s and c’s as node x, we will analyze its encoding.

Since every encoding has to start with a c, we will remove the first c from the analysis.

After removing the first c, the encoding has α s’s and βc’s, where α = |psas(x, inf)|,
β = |anc(x, inf)|−1. Without the first c, the remaining encoding has a length of (α+β).

To count the number of nodes which have the same number of s’s and c’s as node x, we

start by counting the number of permutations of a set of (α + β) distinct values:

(α + β)!

There are only two distinct values in the encoding of a node, s and c, so we need to

remove some duplicate counts. The current count considers each instance of s to be a

distinct value. So (s, s, s) is counted six times (one for each permutation), instead of once.

This means there are α! duplicates for each legitimate ordering of s’s. This also means
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there are β! duplicates for each legitimate ordering of c’s. Since we are dealing with a

factorial, we have to divide out these duplicates.

(α + β)!

α! ∗ β!

The pair of of values, α and β, for node x may not be the only pair which results in a

launch time of time[i]. To determine the cardinality of nodes[i], we must account for the

α and β values of all nodes whose launch time is time[i].

Let ε[i] be the set of all pairs of α and β which make the following true:

PREP + (α ∗ SEQ) + ((β + 1) ∗REMOTE) + COLOC = time[i]

Let αip and βip denote the α and β values of the pth pair of ε[i]

|nodes[1]| = 1 nodes[1] = {root}
|nodes[i]| =

∑|ε[i]|
p=1

(αi
p+β

i
p)!

αi
p!∗βi

p!

Definition 8. Let us label the Greedy hierarchy which contains n nodes asGn. The Greedy

hierarchy is defined recursively:

For n = 1, G1 is the hierarchy which only contains the root node.

For n > 1, Gn = Gn−1 + x : x ∈ available(Gn−1) and

∀y ∈ available(Gn−1), Launch(x, inf) ≤ Launch(y, inf)

Definition 9. Given that op ∈ Hn, op is optimal if ∀h ∈ Hn, Launch(op) ≤ Launch(h).

Theorem 1. The greedy algorithm defined in Definition 8, will create an optimal hierarchy

of n nodes.

Proof. We prove it by induction:
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For n = 1: G1 is the hierarchy comprised of only the root. Since |H1| = 1, ∀h ∈
H1, Launch(G1) ≤ Launch(h), so G1 is optimal.

For n >1: Gn is created by starting with Gn−1 and adding a node to the position which

results in the lowest possible launch time. For increasing numbers of nodes, the greedy

algorithm first adds all of the nodes from nodes[x] to the hierarchy. Once all of the nodes in

nodes[x] are in the hierarchy, the greedy algorithm moves on to the nodes in nodes[x+1].

The greedy algorithm is guaranteed to be able to add the nodes in nodes[x + 1] to its

hierarchy because all of the nodes that preceed any of the nodes in nodes[x+1] (ancestors,

preceding siblings, ...), will require less time than the nodes in nodes[x+1]. As such they

will be in nodes[x] or nodes[x− 1] or ... , and are already in the Greedy hierarchy.

If Gn is not optimal, there would have to exist a hierarchy in Hn that launches faster

than Gn. Let us label this faster hierarchy as fast. One way to define fast, is to describe

how it is different from Gn. Let us create a function, move(Gn), which will create the

hierarchy fast by moving a node in Gn to a new position (example: move a child node

to a grand child position). If Launch(Gn) = time[i], move(Gn) can remove a node,

g, from Gn where Launch(g,Gn) ≤ time[i], but the lowest place g can be moved to is a

position in nodes[i] or nodes[i+1]. If g is moved to a position in nodes[i], Launch(Gn) =

Launch(fast). If g is moved to a position in nodes[i+1], Launch(Gn) < Launch(fast).

Either way, fast is not faster than Gn, so Gn is optimal.

4.3.3 Restrictions on Optimality

The Greedy hierarchy is only optimal under certain restrictions. The first restriction is

that the Greedy hierarchy is only optimal when compared to hierarchies which are im-

plemented using the three phases defined in Definition 2. There are ways to alter these

three phases which could possibly result in faster launch times. For example, instead

of sequentially creating separate processes to execute the individual launch commands,
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a hierarchy of processes could be used. Additionally, the Greedy hierarchy launches co-

located processes in the co-location phase. It might be possible to create a faster hierarchy,

by intermixing the launch of remote and co-located processes.

A second restriction on the optimality of the Greedy hierarchy is that it assumes that

REMOTE and SEQ are constant values throughout the launch. In reality, these values

could increase as network and/or file system congestion increases. Furthermore, the phys-

ical network layout and machine differences may differentiate these values. Launching a

child node that shares the same switch as its parent would be faster than launching a child

that does not share its parent’s switch. A hierarchy that accounts for these differences

might prove to be faster.

4.4 Summary

In this Chapter we created a model of the time required to launch any process launching

hierarchy. This model was used to create an optimal process launching hierarchy, the

Greedy hierarchy. A proof to the Greedy hierarchy’s optimality was presented and the

restrictions of its optimality were discussed.
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Performance Analysis of LIBI

5.1 Overview

In this Chapter, we demonstrate the validity of the assertions made in previous Chapters.

We perform tests that validate our model of bulk launch time. We provide evidence for the

superior performance of the Greedy hierarchy. We use MRNet to show the performance

gains of using LIBI to bootstrap distributed software.

5.1.1 Testing Platform

All of the experiments that are detailed in this Chapter were run on Lawrence Livermore

National Laboratory’s Atlas system. Atlas has 1,152 nodes, each of which contains 8 AMD

Opteron 2.4 GHz CPUs. The nodes are interconnected via a double data rate InfiniBand

network. The Atlas system is managed by the SLURM resource manager. The maximum

jobs size is limited to 386 nodes.
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5.2 Model Validation

Goals

The first experiment measures the actual performance of various launch hierarchies. There

are three objectives of this experiment. First, it empirically tests the validity of the launch

time model. Second, it empirically tests the optimality of the Greedy hierarchy. Third,

it evaluates the performance of the LIBI group communication operations over varying

connection hierarchies.

Methodology

The general procedure for this experiment involves using LIBI to launch a test application

numerous times using various launch hierarchies. Once the test application is launched, it

performs a couple of LIBI’s group communication operations and exits.

This experiment has two independent variables: process count and hierarchy type.

Since, only one process is used per node the maximum number of processes is limited

by the max job size of 386 nodes. The launch hierarchies used in the experiment are the

Chain, Sequential, Greedy, 2-ary tree, 16-ary tree, and the 32-ary tree. The Chain and

Sequential trees are included as degenerate cases. Each experimental condition was run

10 times and averaged.

All test runs were executed on the same allocation of nodes. There are a few reasons

for this decision. The main reason is that it simplifies the batch scheduling requirements.

The second reason is that it ensures that all of the test runs occur in the same time period.

This helps keep the levels of network congestion as similar as possible for every test run.

The third reason is that it ensures that test runs do not run concurrently. This eliminates

the possibility that the network utilization of one test run would interfere with another.
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There are a few consequences of this decision that affect the experiment. The main

consequence is that the test executable is left in the file cache between test runs. The local

file cache is only cleared between allocations. This makes us use different parameters for

the launch time model, than if the executable had to be retrieved from a file server. Since

the goal of the experiment is to validate the launch model and to test the optimality of the

Greedy hierarchy, adjusting the parameters is acceptable.

The Greedy hierarchy requires a few parameters to create a model of launch time

(see Chapter 4). These parameters are PREP, REMOTE, SEQ, and COLOC. These pa-

rameters represent the time required by the Preparation phase, PREP, the time required

between when the parent process issues the individual launch command and the subse-

quent child process is ready to launch its children, REMOTE, the time required by the

parent process to go through one iteration of the “for( each child )” loop, SEQ, and the

time required by the co-location phase, COLOC. Since PREP and COLOC are both con-

stants we can combine them, creating a 3-tuple to represent the parameters of the model:

< PREP+COLOC, SEQ, REMOTE >.

To generate the parameters for the Greedy hierarchy, we performed a launch with

estimated parameters and timed the relevant portions of code. We then averaged all of

these times. In this manner we generated the parameters: <0.022s, 0.015s,0.227s>.

The application we used for this experiment is a small standalone application, com-

prised of two executables. Testmain is a 277 KB executable, which calls the LIBI launch

function. Testmember is the 238K executable which is launched, and then performs the

group communication operations. Each of these executables were compiled using the

archived LIBI library (as opposed to the shared object).

For each test run, four performance metrics were measured: launch, barrier, broadcast

followed by a gather, and scatter followed by a gather. Launch was measured in testmain

by timing how long LIBI_fe_launch() took to return. Barrier was measured in testmember
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by the master process. This is a valid measurement because the individual launch version

of LIBI implements barrier as a one byte broadcast followed by a 1 byte gather. Broadcast

starts at the master and gather ends at the master. The third metric, broadcast followed

by a gather, used a similar setup. The broadcast sent a 4 byte message (the size of an int)

with the gather returning the same 4 bytes back to the master. The fourth metric, scatter

followed by a gather, used this method too. By performing a broadcast or scatter followed

by a gather, the timing is able to take place at the master. This alleviates the need to

synchronize the clocks on the given computers.
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Figure 5.1: LIBI Launch Performance: The solid lines are measured values while the
dashed lines represent the modeled launch time. The modeled launch times were created
using the parameters: <0.013s, 0.007s, 0.172s>. This resulted in a coefficient of determi-
nation of R2 = 0.999 between the modeled and the measured values.
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Figure 5.2: Comparing the performance of group communication operations on different
connection hierarchies.

Analysis

In Figure 5.1, both the Sequential hierarchy and the Chain hierarchy went off of the graph.

For 386 nodes, the Sequential hierarchy took 2.92 seconds, while the Chain hierarchy took

67.12 seconds.

In Figure 5.1, the parameters used to create the Greedy hierarchy were not the same

parameters used to create the modeled launch times. The Greedy hierarchy used the pa-

rameters that were created based on the average times measured from a single test run.
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When the modeled launch times that were created from these parameters were placed next

to the actual launch times, it was clear that the model parameters were an over estimate.

Even though they were an overestimate, the model produced from these values had a co-

efficient of determination of R2 = 0.886. The parameters used in Figure 5.1 are the result

of a least-squares fit of Equation 4.4 to the actual data.

Figure 5.1 shows the same relative performance of each launch hierarchy as their mod-

eled launch time. Even with overestimated model parameters, the Greedy hierarchy per-

formed the best, followed by the 16-ary tree, the 32-ary tree, the 2-ary tree, the Sequential

hierarchy, and the Chain hierarchy. The only caveat occurs at smaller node counts. Due to

the low node count, the Sequential hierarchy out performs each of the k-ary trees, up until

a certain node count.

As mentioned in Chapter 3, the launch hierarchy pulls double duty as the communica-

tion hierarchy. Figure 5.2 depicts the performance of each communication hierarchy under

group communication operations. The main observation is that the Greedy hierarchy per-

forms about the same as all of the other hierarchies. The performance in this regard is

based off of the values chosen for REMOTE and SEQ. They were chosen to optimize the

launch hierarchy, not the communication hierarchy. Even still, if the ratio between RE-

MOTE and SEQ was the same for launch as it was for communication, one could expect

the group communication operations to be optimized under the Greedy hierarchy as well.

5.3 Modeled Launch Topology Performance

Goals

This experiment examines the effect of launch hierarchy on modeled launch time. We

examine the modeled launch time because it is easier and faster to compute than timing

the actual launch event. The purpose is to see a wide range of modeled launch times using
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a large array of launch hierarchies. These modeled times will be used to guide the selection

of the parameters for the MRNet case study.

Methodology

To create a single data point, we first create a launch hierarchy using the specified pa-

rameters. Using Equation 4.4 from Chapter 4, we model the time required to launch each

process in the tree. The process requiring the most time to launch is used as the modeled

launch time of the specified hierarchy.

The first independent variable is the node count. Since these are only modeled launch

hierarchies, the node counts varied from (24 − 1) to (217 − 1). These values correspond

to the number of nodes in a full 2-ary tree of increasing depth.

The second independent variable is the type of hierarchy. We covered most of the

hierarchies discussed in previous Chapters. These hierarchies include Chain, Sequential,

Greedy, Recursive Divide and Conquer, and a handful of k-ary trees. The k-values used

were 2, 8, 16, 32, 64, and 128.

The final independent variable is the set of parameters used by Equation 4.4,

<PREP+COLOC, SEQ, REMOTE>. The values that we used reflect two different launch

environments. The first set <0.022s, 0.013s, 0.485s>, reflects launching a 1.6M executable

when it is on an NFS server. The second pair <0.022s, 0.015s, 0.227s>, reflects launching

a 155K executable when it is in the local file cache. These values were created by per-

forming a single test run at 386 nodes, in each environment, timing the relevant portions

of code, and taking the average.
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Figure 5.3: Modeled launch time with the executable on the server (a) and in the local
cache (b).
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Analysis

There are several observations worth noting in Figure 5.3. The first of which is the per-

formance of the various hierarchies. The Greedy hierarchy was the best under both sets

of parameters while the Chain and Sequential were the worst (both hierarchies hug the

y-axis).

The second observation worth noting is how the performance of the k-ary trees change

with the decrease of REMOTE. The smaller values of k change more than the larger val-

ues. This is readily apparent when comparing the 2-ary tree with the 128-ary tree. In

Figure 5.3(a) the 2-ary tree takes almost twice as long to launch a hierarchy at any node

count. In contrast, Figure 5.3(b) shows the 2-ary tree always launching faster than the

128-ary tree. The same relative-performance reversal can be seen between the 8-ary tree

and the 32-ary tree. This is due to the fact that lower k-values have taller trees. This means

their launch time is dominated by REMOTE more than higher k-values.

The third observations worth noting is that the performance of the recursive-divide-

and-conquer hierarchy is incredibly similar to that of the 2-ary tree. This is because they

share the same height. The only thing the recursive-divide-and-conquer hierarchy does

better is that it increases the breadth of the tree, earlier than the 2-ary tree. This spreads

the children out across more nodes, resulting in fewer along the critical path.

5.4 Case Study of MRNet

Goals

To further evaluate the bootstrapping performance of LIBI, we have implemented a version

of MRNet that uses LIBI. Section 3.2.3 explains the detail of this implementation. We will

compare MRNet’s current bootstrapping mechanism to that of LIBI. The purpose of this
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experiment is to evaluate LIBI under real world conditions.

Methodology

The general strategy of this experiment is to bootstrap MRNet numerous times, under

varying conditions. There are three independent variables: process count, bootstrap mech-

anism, and MRNet fanout. The bootstrap mechanisms include the current version of MR-

Net and MRNet over LIBI. The MRNet Over LIBI case used both the LaunchMon version

of LIBI and the individual launch version of LIBI. The LaunchMon version of LIBI used

SLURM’s bulk launch service, srun, in conjunction with COBO, a group communication

service designed for bootstrap communication. The individual launch version of LIBI is

further differentiated by using the Greedy, the 2-ary tree, the 16-ary tree and the Sequential

hierarchies. The parameters used to create the Greedy hierarchy were given in Section 5.3

for the NFS server condition, <0.022s, 0.013s, 0.485s>.

Each test run was given its own allocation of 386 nodes regardless of the actual number

of nodes needed. This accomplished several things. First, this means that each test run

occupies 1
3

of Atlas. This reduces the network congestion caused by other users. Second,

this makes it unlikely that two test runs will run concurrently. Atlas is a fully-utilized

machine, even at night and on the weekends. Third, the separate allocations mean that the

file cache is cleared between each test run. There could still be some caching that occurs

on the server, but this cannot be avoided.

The executables being launched include MRNet’s communication daemon,

mrnet_commnode, and our back-end daemon, test_launch_be. A distinct executable was

compiled for the Current MRNet, the MRNet over LIBI, and the MRNet over LIBI over

LaunchMon conditions. All of the executables were compiled using the archived version

of the needed libraries. The size of each executable is listed in Table 5.1.

We ran two tests using MRNet. The first test kept MRNet’s fanout constant at 16, while
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mrnet_commnode test_launch_be
Current MRNet 1.5M 1.5M
MRNet over LIBI 1.6M 1.6M
MRNet over LIBI over LaunchMon 3.9M 3.9M

Table 5.1: Executable sizes of each test condition.

varying the process count. The process count includes MRNet’s communication daemons

as well as our back-end daemons. Varying the process count will show the scalability of

each launching mechanism, when bootstrapping MRNet. The second test kept the pro-

cess count constant at 3080, while varying MRNet’s fanout. This will show the affect of

MRNet’s fanout on it’s bootstrapping performance.

To mitigate the affect of intermittent network congestion on a single test case, each

bootstrapping condition was executed in order, for each test condition. This sequence of

test runs was repeated three times, and averaged per test case. To increase the process

counts, all test were ran with 8 processes per node.

Analysis

Figure 5.4 (page 58) shows the scalability of each bootstrapping condition when MRNet

has a fanout of 16. MRNet over LIBI performs the best, for all launch hierarchies, followed

by the current version of MRNet, and LIBI over LaunchMon over SLURM. That being

said, all of the bootstrapping conditions appear to scale linearly.

Figure 5.5 shows the breakdown of the MRNet bootstrap timings for the current ver-

sion of MRNet, MRNet over LIBI using the Greedy hierarchy, and MRNet over LIBI over

LaunchMon. The functionality related to each Section is described in Table 5.2. The cause

of the linear scaling is apparent when viewing the timing breakdown. The largest portion

of MRNet’s bootstrapping is the "Parse MRNet Topology" component and the "MRNet
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TBON Formation". Both of these tasks scale linearly, each taking approximately 0.009

seconds per node.

As for LIBI, the biggest component involves translating the MRNet topology back

into a host list. This is the "Preparation for LIBI" component, which scales linearly, taking

about 0.004 seconds per node. The "LIBI Greedy Launch" component scales less than

linearly and the "LIBI Communication" component never took more than an eighth of a

second.

The most surprising result is the "LaunchMon over SLURM Launch" component. This

time was a lot higher than expected. Considering that SLURM uses persistent daemons,

one would expect that the SLURM launch time would be smaller than the LIBI launch

time. There are several factors that could account for this result. First, the LaunchMon

executables are more than double the size of the LIBI executables (see Table 5.1). This

would require additional time to transfer the file from the NFS server. Second, the admin-

istrators of the Atlas system have added some plugins to SLURM which perform tasks like

detecting if a node has run out of memory. These additional plugins would require some

extra communication. However, considering that the "LIBI Communication" component

is insignificant, any communication costs incurred by these plugins would probably also

be insignificant. Third, LaunchMon is using SLURM for bulk launching and COBO for

communication. During the launch phase COBO has to connect all of the daemons. The

launch and connection tasks are seperate under LaunchMon while they are intermixed for

the individual launch version of LIBI.

Figure 5.6 shows the results of changing MRNet’s fanout, while holding the process

count constant at 3080. Here we see that the bootstrapping time of the current version of

MRNet changes with the fanout, but MRNet over LIBI remains relatively constant. This

alleviates most of the bootstrap performance concerns when choosing an MRNet topology.

Figure 5.7 shows the break down of the Figure 5.6 timings. The "Parse MRNet Topol-
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ogy" component was removed because it was the same for both the current version of

MRNet and MRNet over LIBI. This also serves to highlight the comparison between the

relevant portions of code.

The only significant difference in MRNet over LIBI performance occurs with an MR-

Net fanout of two. Here, both the "Preparation for LIBI" and "MRNet TBON Formation"

are smaller than the other fanouts, while the "LIBI Greedy Launch" is just slightly larger.

One potential reason for why the "MRNet TBON Formation" component is smaller is be-

cause each parent only has to accept two child connections. This means there is a reduced

chance of network resource contention. The "LIBI Greedy Launch" is slightly larger due

to the ratio between mrnet_commnode and test_launch_be processes. With a fanout of

two, 1
2

of MRNet’s total processes are mrnet_commnode. With a fanout of eight, only 1
8

of MRNet’s total processes are mrnet_commnode. Due to the scalability of the Greedy

hierarchy, launching a large topology and a small topology is faster than launching two

equal sized topologies.

5.5 Summary

In this Chapter, we validated our model of bulk launch time. We then demonstrated the

superior performance of the Greedy hierarchy. We then demonstrated the increased boot-

strapping performance of MRNet when using LIBI.
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Name Description
MRNet TBON Formation Connect MRNet child processes to their parent.
LaunchMon over COBO
Communication

Distribute the connection setup information to all of the
nodes, using COBO.

LaunchMon over SLURM
Launch

Launch the mrnet_commnode and test_launch_be pro-
cesses on the requested nodes, using srun.

LIBI Communication Distribute the connection setup information to all of the
nodes, using LIBI’s Greedy hierarchy.

LIBI Greedy Launch Launch the mrnet_commnode and test_launch_be pro-
cesses on the requested nodes, using LIBI’s Greedy hier-
archy.

Preparation for LIBI Translate MRNet’s topology representation into a host
list for LIBI.

Current MRNet Launch The current version of MRNet intermixes the launch,
communication, and TBON formation.

Parse MRNet Topology Parse MRNet’s topology file.

Table 5.2: Description of the components in Figure 5.5 and Figure 5.7.
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Conclusions

The goal of this thesis was to improve the current state of software-system bootstrapping.

Our approach was to create a separate entity which could facilitate bootstrapping porta-

bility for software-systems as well as provide the best performance available on a given

platform. In this final chapter, we summarize the contributions of this thesis and describe

some future directions of this work.

6.1 Contributions

In this thesis, we created a system for classifying bulk-launch strategies. A bulk-launch

strategy can be classified based on the framework persistence and the type of connection

hierarchy used between the daemons. This classification system allows for the exploration

of new bulk-launch strategies.

In this thesis, we created an optimal-process-launching hierarchy. We started by cre-

ating a model of launch time. Using this model we constructed a greedy algorithm that

produced the Greedy hierarchy. We then proved that the Greedy hierarchy is optimal under

certain conditions.

In this thesis, we have demonstrably improved the bootstrapping performance of MR-
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Net through the use of LIBI. This is the culmination of all the contributions of this thesis.

MRNet gained portability as well as performance through the use of LIBI.

6.2 Future Work

Our goal of improving distributed software bootstrapping is not complete. There are still

some areas which can be improved.

Automatically Generating Model Parameters

Currently, LIBI relies on user supplied parameters when creating the Greedy hierarchy.

To create the parameters for the tests in Chapter 5, we had to perform an unoptimized

test run first, timing the relevant portions of code. Judging by the disparity between these

estimated parameters and the least squares fitted parameters in Section 5.2, this approach

was not accurate.

A better approach would be to generate the REMOTE and SEQ parameters during the

actual launch. Before creating the launch hierarchy, LIBI could launch a single process and

time the relevant portions of code. With these application specific values, the performance

of the Greedy hierarchy should improve. This would also remove from the user, the burden

of choosing model parameters.

Large Multi-Core Computer Optimization

One corollary of the trend of ever increasing processors counts in extreme-scale systems,

is the trend of increasing processor counts in individual computers. The platform that we

tested on only had 8 cores per node. It doesn’t take a huge leap of imagination to envision

nodes which have 10s or 100s of cores themselves.

62



Chapter 6. Conclusions

This trend of increasing numbers of processing cores in a single computer, opens up an

avenue of optimization for the Greedy hierarchy. As discussed in Section 4.3.3, the Greedy

hierarchy’s current approach is to sequentially create separate processes to execute the

individual launches for a node’s children. The scalability of this approach should mimic

that of the Sequential process launching hierarchy. At small scales sequentially creating

new local processes is relatively fast. However at larger scales, creating a hierarchy of

local processes will be faster. This approach should prove to be faster, up to the point

where the network interface is saturated.

Minimizing the Impact of the File System

One aspect of process launching that we did not address in this thesis, is file system re-

source contention. During the process launching phase, every node in the hierarchy re-

quests an executable from the file system. This can create a bottleneck at the network file

server.

There are several ways to address the scalability of the file system. The Lustre File

System uses a concept called "collaborative caching" [24]. Once a node has received

a file, it can then be used to service I/O requests for that file. Another approach is to

bypass the file system entirely. The bulk launching service on CPlant, Yod, does this [7].

Yod, establishes connections to the persistent daemons on each node, and then uses these

connections to scalably disseminate the executable.

In a similar fashion LIBI could be combined with the Scalable Binary Relocation Ser-

vice (SBRS) to minimize the impact of the file system [16]. LIBI could launch its own

daemon on each node, from an optimized executable. Since this executable would be used

by multiple jobs, it is more likely to be cached closer to the nodes. The LIBI daemon could

then be used to disseminate the larger user applications and libraries.
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Further MRNet Bootstrap Optimizations

As noted in Chapter 5, there are still some large bottlenecks in MRNet’s bootstrapping

process. The largest of which is parsing the MRNet topology. During this portion of

bootstrapping, MRNet converts the topology file to a class-based topology definition.

Instead of starting with a class-based topology definition and then converting this into a

host lists for LIBI, MRNet could directly parse the topology file into a host list. At the end

of bootstrapping, the class based topology definition could be assembled from the MRNet

TBON. This would turn a linear process into a parallel one, alleviating the bottleneck.

Refactoring LaunchMon

Currently LIBI sits on top of LaunchMon. We believe this relationship should change. As

LIBI is improved through additional optimizations of its individual launch version and the

inclusion of HPC vendor and resource manager specific versions, LaunchMon may benefit

from sitting on top of LIBI.
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