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ABSTRACT 

 

Photon-based radiosurgery is widely used for treating local and regional tumors. 

The key to improving the quality of radiosurgery is to increase the dose falloff rate from 

high dose regions inside the tumor to low dose regions of nearby healthy tissues and 

structures. Currently, most radiosurgeries rely on focusing a number of external radiation 

beams to create a sharp dose falloff. As the number of focused beams increases, the 

contributions from each beam will inevitably decrease, and hence an improved dose 

falloff will be obtained. However, with most radiosurgeries being delivered in a 

step-and-shoot manner, the number of external beams is limited to a few hundred. For 

example, Gamma Knife radiosurgery, which has long been a “gold standard” for 

radiosurgery, uses about two hundred beams. In this research, we investigated the use of 

Dynamic Photon Painting (DPP) to further increase dose falloff rate. The key idea of 

DPP is to treat a target by moving a beam source along a dynamic trajectory, where the 

speed, directions and even dose rate of the beam source change constantly during 

irradiation. A number of studies regarding DPP were carried out in this research. We 

found that DPP can create a dose gradient that rivals proton Bragg Peak and outperforms 
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Gamma Knife radiosurgery. These promising results indicate that DPP has the potential 

to significantly improve current photon-based radiosurgery. 
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CHAPTER 1 INTRODUCTION 

Radiosurgery is one of the most effective ways to treat local and regional tumors, 

especially for brain tumors. The steep falloff rate of dose distribution is so that critical 

structures nearby the target will receive a low dose while the center of the tumor will 

receive a high dose [1][13][26][44]. Thousands of successful treated cases show that 

radiosurgery is a very safe and efficient method for treating cancers and avoids loss in 

quality of life compared to other more invasive methods such as surgery or chemotherapy 

[2][51]. 

 

The quality of radiosurgery is determined by the dose falloff rate from high dose 

regions to low dose regions. Currently, the cross-firing technique is widely used to 

increase the dose falloff rate. In this technique, a large number of radiation beams focus 

on a target to create a high dose region around the focusing point [26][34][37]. Intuitively, 

if the number of beams is increased, the contribution of each beam will inevitably 

decrease, resulting in a lower dose to the tissues and structures some distance away from 

the target. Thus, increasing the number of radiation beams should give us sharper dose 

falloff rate (see Figure 1).  

 

Most current radiosurgeries are delivered in a step-and-shoot approach. This 

limits the number of beams to a few hundreds due to various practical and physical 

constraints. For example, in Gamma Knife radiosurgery (see section 2.3 for more details) 

[2][12][13][14][16][25][26][27][32][34][35][36][37][48][51][53][54][63], the number of 
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beams is limited to about two hundred. Physically, it is not possible to drill a large 

number of apertures in a fixed size metal without eventually causing interference among 

them. For intensity-modulated radiation therapy (IMRT) [20][61], it is usually not 

practical to deliver more than a dozen beams due to prolonged treatment time. Even with 

rotational techniques, such as Tomotherapy [29][41], intensity-modulated arc therapy 

(IMAT) [60], volumetric modulated arc therapy (VMAT) [45], and arc-modulated 

radiation therapy (AMRT) [58], the maximum number of beams is still limited to a few 

hundred. 

Target: 100%

Peripheral: 50% Peripheral: 25%

Target: 100%

Peripheral: 50% Peripheral: 25%  

Figure 1 Illustrating the cross-firing technique used in radiosurgery. 

 

We believe in order to further improve the focusing power of radiosurgery, 

dynamic strategies must be involved, in which a beam source moves around a focused 

point in a 3D trajectory with constant change of dose rate, speed, and beam directions. 

The dynamic motion is equivalent to focusing tens of thousands of beams at a common 

point and will therefore create kernel with a much sharper dose falloff. We call this 
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approach dynamic photon painting (DPP). The dose distribution from this convergence of 

tens of thousands of beams on a small volume is used as the DPP kernel. 

 

In this thesis, we studied the potential dosimetric impact of DPP. The rest of the 

thesis is organized as follows: Section 2 introduces some background knowledge. Section 

3 introduces dynamic photon painting and studies the impact of dynamic strategies on 

dose gradient. Section 4 explores the potential of DDP for treatment planning. We 

conclude in Section 5 and discuss some of our current ongoing research. 



 

 4

CHAPTER 2 BACKGROUND 

2.1  Fundamental Physics 

In this thesis, we will focus on photon based radiosurgeries. In this section, we 

briefly discuss the fundamental physics underlying photon based radiosurgeries. 

 

2.1.1 High Energy Photon Production 

Generally speaking, high energy photons used in current radiosurgeries are 

produced either by radioactive decay from Cobalt-60 sources or bremsstrahlung 

interactions in the linear accelerator. In the linear accelerator, electrons are accelerated in 

the electric field to a high energy and then collide with a metal target. The deceleration in 

the target releases photons in a process called bremsstrahlung. The photons produced 

from Cobalt-60 decay, coming from the nucleus, are γ-rays whereas the photons 

produced from electron interactions such as in the linear accelerator bremsstrahlung 

method are called x-rays. 

 

Typically photons produced by different sources are heterogeneous in energy. For 

example, the energies of γ-rays emitted by Cobalt-60 are 1.17 and 1.33MeV. The energy 

spectrum of X-ray from linear accelerator shows a continuous distribution of energies for 

the bremsstrahlung photons superimposed by characteristic radiation of discrete energies. 

The energies of photon beams created by 6MV accelerator are continuous from 0 to 

6MeV with a maximum yield around 2MeV. 
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2.1.2 Photon Interaction with Matter 

When photons pass through matter, they interact in three ways: photoelectric 

effect, Compton effect and pair production. For the energy range of radiosurgery photons, 

the predominant interaction is the Compton effect, where the incident photons collide 

elastically with electrons. During this elastic collision, kinetic energy is transferred from 

the incident photon to an electron. These recoil electrons, called secondary electrons, will 

produce ionization and excitation along their path as they travel through matter. On a 

cellular level, these ionizations will damage DNA and cause cell death [4][42]. 

 

2.1.3 Percent Depth Dose, Tissue Maximum Ratio and Off Center Ratio 

Percent depth dose curve relates the absorbed dose deposited by a radiation beam 

in a medium, such as water for our data. Figure 2 (a) shows the percent depth dose of 

Cobalt-60 with 80cm SSD. The curve presented starts at 5mm, and so the initial dose 

build up is not displayed.  Another two important concepts of a radiation beam are 

Tissue Maximum Ratio (TMR) and Off Center Ratio (OCR). TMR is defined as the ratio 

of the dose at a given point in phantom to the dose at the same point at the reference 

depth of maximum dose. OCR is the ratio of the absorbed dose at a given off-axis point 

relative to the dose at the central axis at the same depth. Figure 2 (b) shows the TMR of 

Cobalt-60 and 6MV accelerator, also starting at 5mm. Figure 2 (c) shows the OCR of 

6MV accelerator. (PDD and TMR data of Cobalt-60 are from book “The Physics of 

Radiation Therapy” [30] at Appendix 14 and 15. Data from 0mm to 5mm are not 

available.) 
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(a) 

(b) 
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(c) 

Figure 2 (a) Percent Depth Dose for Co-60, (b) Tissue Maximum Ratio for Co-60 and 

6MV accelerator beam, and (c) Off Center Ratio curves for 6MV accelerator beam. 

 

2.2  Radiosurgery 

Radiosurgery is a non-invasive medical procedure for various kinds of tumors and 

functional disorder [1][34][44]. Instead of surgical incision, radiosurgery destroys the 

tumor by delivering a high dose to it. Since the high energy photons can also damage 

normal cells along the beam path, the key of a good radiosurgery plan is to maintain a 

sharp dose falloff from the high dose regions inside the tumor to the low dose regions of 

nearby healthy structures. The sharper the dose falloff, the better the tumor control and 

the less the damage to the normal tissues [51]. 
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2.3  Gamma Knife Radiosurgery 

Gamma Knife is the most widely used radiosurgery machine. Figure 3 shows a 

Gamma Knife machine. In Gamma Knife radiosurgery [2][12][13][14][16][25][26] 

[27][32][34][35][36][37][48][51][53][54][63], γ-rays emitted from radioactive Cobalt-60 

sources are used to irradiate tumors. In practical Gamma Knife radiosurgery system, 

about 200 Cobalt-60 sources are placed in a hemispherical mount and their collimated 

γ-ray beams are directed onto a single point to create a high dose volume (called “shots” 

or “kernels”). Current Gamma Knife systems can create high dose volumes of different 

sizes with external beam collimators and automatic built-in collimators. During Gamma 

Knife radiosurgery, the patient’s head is localized with a stereotactic frame to limit the 

interference of the patient’s motion (see Figure 4). That is also why we call it stereotactic 

radiosurgery. 

 

Figure 3 The Gamma Knife machine (adapted from Elekta). 
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Figure 4 The patient is attached to a head frame to prevent movement during treatment 

(adapted from Elekta). 

 

Current Gamma Knife radiosurgery consists of a planning phase and a delivery 

phase. In the planning phase, a set of shots of different sizes are used to pack a target 

volume to create a conformal dose distribution. In this way, the treatment plan becomes 

delivering a number of shots with determined positions, sizes and beam-on times. In 

delivery phase, these determined shots are delivered in a step-and-shot manner. The 

stereotactic head frame provides a reference coordinate system. For each shot, the patient 

is moved to the coordinate position before receiving the shot. 
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2.4  CyberKnife Radiosurgery 

The CyberKnife radiosurgery system was invented by John R. Adler and Peter 

and Russell Schonberg of Schonberg Research Corporation [62]. The two main elements 

of the system are a linear accelerator which produces the radiation beams and a robotic 

arm which allows the radiation beams to be delivered from any direction as needed (see 

Figure 5) [15][28][31].  

 

One major advantage of CyberKnife system is its frameless nature, which 

increases the clinical efficiency. Instead of using a frame to provide a reference 

coordinate system, CyberKnife uses X-ray image guidance. This avoids anchoring the 

patient’s skull with invasive aluminum or titanium screws and makes it easier to break a 

long treatment into one to five treatment sessions. However, patient movement needs to 

be compensated for during the treatment. 

 

2.5  Dynamic Photon Painting 

As mentioned previously, the key to radiosurgery is the dose falloff rate. Most 

current radiosurgeries use a cross-firing technique [34] to improve dose falloff. As the 

number of beams increases, the dose falloff rate gets better (see Figure 1). However, the 

number of beams is constrained to several hundred. Thus we propose Dynamic Photon 

Painting, which moves a beam source around an isocenter in a 3D trajectory (see Figure 

6). It is equivalent to focusing thousands of beams on a single point, to increase the dose 

falloff rate. 

 



 

 11

 

Figure 5 The CyberKnife machine (adapted from Accuray) 

 
Figure 6 Illustrate the trajectories of the radiation beam in Dynamic Photon Painting. The 

beam source rotates around the center of the target from latitude angle 1φ  to 2φ , and 

360° around in longitude angle, about z. 
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2.6  Least Square Problem 

Least square problem, defined as 2min bAx − , often occurs as a key sub 

problem of some larger computational problem, such as radiosurgery treatment planning, 

intuitively in this model, each column of A represents a radiation beam; the column 

vector b represents the ideal dose distribution; the goal of the optimization is to find the 

optimal “beam on time” for each column (X) to create a distribution as close to b as 

possible. Since in reality, “beam on time” must be non-negative, we require 0≥x , 

which gives the non-negative least square problem (NNLS). In this section, we briefly 

sketch the solution of least square problem and NNLS problem. 

 

2.6.1 Solving the Least Square Problem 

One of the most well known algorithms is from Charles L. Lawson and Richard J. 

Hanson [33]. The algorithm is based on QR factorization: let A be an nm×  matrix, then 

there is an mm×  orthogonal matrix Q such that ARQT = , where R is zero below the 

main diagonal. The key steps of the algorithm is the following: (a) find the QR 

factorization matrix Q of matrix A; (b) use matrix Q to reduce the original least square 

problem to 2min QbRx − , where R is an upper triangular matrix; (c) solve the least 

square problem 2min QbRx − . 

 

The following are the key points of solving least square problem. Let A be an 

nm×  matrix with rank k, then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−××−

−××

)()(

)(

00 knkkkm

knkkk RR
RQA  where kkR ×  is upper 



 

 13

triangular with rank k. Observe that )()(2 bAxbAxbAx T −−=−  

)).(())(()()()()( 2 bAxQbAxQQbRxQbRxQbRxbAxQQbAx TTTT −−=−=−−=−−=

Thus we have an equivalent least square problem 2min QbRx − . Now let 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

−km

k

y
y

Qby , then we have 
2

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−=−

−− km

k

kn

k

y
y

x
x

RQbRxbAx  

22

)(

2
)(

kmkknknkkkk
km

kknknkkkk yyxRxR
y

yxRxR
−−−××

−

−−×× +−+=
−

−+
= . Observe that 

when kknknkkkk yxRxR =+ −−×× )( , 2bAx −  reaches the global minimum 2
kmy − . 

Notice that there are many solutions, we can pick a straightforward one kkkk yxR =×  and 

0=−knx . Since kkR ×  is an upper triangular matrix with rank k. It is easy to solve the 

equation kkkk yxR =× . 

 

To obtain QR factorization [9][17][23], we need to talk about Householder 

transformation [7][55] first. Given an m-vector v, which is not the zero vector, there 

exists an orthogonal matrix Q such that 1|||| evQv δ−=  with Te ]0...01[1 =  and 

⎩
⎨
⎧

<−
≥+

=
0 1
0 1

1

1

vif
vif

δ , where 1v  is the first component of v  and Q is an mm×  

orthogonal matrix. It can prove it easily by define 1evvu δ+=  and 
uu

uuIQ T

T

m
2

−= . 

Observe that we just need to apply Householder transformation column by column to 

obtain QR factorization. 
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2.6.2 Solving the Non-Negative Least Square Problem 

The NNLS problem is solved by iterative refinement and the answer is 

approximated by solving a least square problem in every iteration [10][19][21][43][46]. 

Let )()()( bAxbAxxf T −−=  and *x  be the optimal solution. Consider two entries 

0 and 0* => *
ji xx . According to the Kuhn-Tucker Condition [39][50], we must have 

0)( and 0)( **

≥
∂

∂
=

∂
∂

ji x
xf

x
xf . Thus we maintain two sets p and z, p is the collection of the 

variables in *x  that are positive and z is the collection of variables that are zero. 

Observe that if we know the correct set p, we can obtain the solution of the NNLS 

problem by solving the least square problem 
2

min fyA pp − , which consists of all the 

columns indexed by p and then fill in the remaining entries with zeros.  

 

The NNLS algorithm uses the following steps [10][19][21][43][46]:  

(1) All variables are in z and the initial solution is 0)0( =x . 

(2) Let )(kx  be the current solution in the current iteration. We split )0( )()( k
p

k xx = . 

The gradient of )()()( bAxbAxxf T −−=  is )()( bAxAxf T −=∇ . Observe that 

0)( )(

=
∂

∂

i

k

x
xf  for all pi∈ . Now if 0)( )(

≥
∂

∂

i

k

x
xf  for all zj∈ , then the optimal 

condition is met, and we have the optimal solution. If not, then for some zi∈ , 

0)( )(

<
∂

∂

i

k

x
xf . This implies that we can increase )(k

ix  to improve )(xf . We add the 

variable with the most negative 
i

k

x
xf
∂

∂ )( )(

 to p. 
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(3) We verify if all the variables in p are strictly positive. This is done using a greedy 

strategy by solving a least square problem 
2

min fyA pp − , which consists of all the 

columns indexed by p. If pz  is feasible, which means 0≥pz , then )0( )()1( k
p

k yx =+ . 

This implies that our current p is probably too small. We go to step (2) and continue to 

move variables from z to p. If pz  is not feasible, this means our current p contains 

variables that should not be in p. We try to move )(k
px  toward pz  as much as possible 

as long as it is still feasible. The new solution is )0( )()1( k
p

k xx =+ . Since some variables 

may be smaller than zero in )1( +k
px , we need to move them from p back to z. We then 

solve the least square problem with the updated p. 

 

2.6.3 Running Time Analysis 

To solve the least square problem, we need to construct a Householder 

transformation matrix for each column, which takes )( 2nO  time, and then apply this 

transformation to the entire matrix, which takes )( 3nO  time. Since there are n columns, 

the entire QR factorization cost )( 4nO  time. Finally, we need to solve gRx = , where 

R  is a upper triangular matrix. It cost )( 2nO  time. Thus the total running time of 

solving the least square problem will be )( 4nO . 

 

However, we can improve the running time. Observe that the Householder 

transformation can be viewed as multiplying a matrix to a vector jc . 
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222
−=−=⎟⎟

⎠

⎞
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⎝

⎛
−  

In this way, apply the Householder transformation to a column can be done in )(nO . 

Then apply the Householder transformation to a nm×  matrix cost )( 2nO . Since we 

need to apply n transformations, the total running time of QR factorization is )( 3nO . 

Then, we can solve the least square problem in )( 3nO . 

 

The NNLS algorithm will converge in 3n iterations, thus the total running time of 

NNLS algorithm is )( 4nO . 

 

2.6.4 Implementation 

Using the standard C programming language, we have implemented various 

versions of the NNLS algorithm, such as the double version, the float version, the float 

version using Intel Streaming SIMD Extensions (SSE) and parallel computing 

(multi-thread) [47][56]. Intel SSE instructions take the advantage of the increase of 

current computers from 32-bit systems to 64-bit systems. These instructions allow us to 

add four pairs of floating point numbers at the same time. Multi-thread programs take the 

advantage of current multi-core computers, which split the whole program into several 

parts and run parallel threads on each CPU core to cut down the running time of 

programs.  
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2.6.5 Results 

We ran different versions of NNLS program with the same input matrix A 

(100,000 by 10,000 matrix) and b (100,000 by 1 vector). The following is the running 

time (in seconds). 

Table 1 Running time of various versions of NNLS programs 

          Program 

Optimization flag 

Double 
version 

Float 
version 

Multi-thread

(8 threads) 

SSE Multi-thread 
and SSE 

No optimization flag 12162.58 11973.46 6096.30 7326.68 5879.14 

With flag –O3 4348.40 2640.02 1502.36 2033.73 1496.06 

 

In Table 1, the float version is not significantly faster than the double version 

when the executable is compiled with no optimization flag; however the running time of 

float version is only about 60% of that of double version when running with –O3 

optimization flag [65]. The running time of the multi-thread version is about 50% of the 

float version, which is because we can only optimize part of the program. SSE reduced 

the running time, but not significantly when combined with the multi-thread version. To 

obtain a better understanding, we compared the running time of the optimized part only. 

Table 2 Running time of optimized part 

Program

Optimization flag 

Float version Multi-thread (8 threads) 

No optimization flag 6764.58 898.76 

With flag –O3 1738.83 602.04 

 

Table 2 shows that the running time of multi-thread version was reduced to 13% 
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of the running time of the original float version, which is more than seven times faster 

than the original float version. The –O3 optimization flag also cut down the running time 

of original float version, to 25%. 
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CHAPTER 3 DYNAMIC PHOTON PAINTING KERNELS 

To understand the power and limitation of DPP, we took a CyberKnife cone beam 

and revolved it in a hemispherical trajectory around a target (see Figure 6). Our 

CyberKnife beam model is obtained from curve fitting of measured TPR (Tissue 

Phantom Ratio) and OCR (Off Center Ratio) tables from The University of California 

San Francisco Radiation Oncology Department (see Figure 7). The functions used for our 

curve fitting are:  

( )
⎪⎩

⎪
⎨
⎧

=
−⋅−

=

−∑
max

)(

max

5

1

1

>for 

<for 
TPR

76 dde

ddda
d

ada
i

i
i  and 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

⋅
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

⋅
⋅⋅= b

SAD
raerfcb

SAD
raerfc.rSADOCR 80080050, , where d is the 

depth and r is the off-center radius of the calculation point, SAD = SSD + d (SAD is the 

Source Axis Distance and SSD is the Source Surface Distance), and 

erfc(x) =
2
π

e− t 2

dt
x

∞∫  is the error function [66]. For a cone beam with 10mm field size 

at mmSAD 800= , our curve fitting parameters for TPR are 

a1=0.8185, a2=0.0203, a3=0.004, a4=-0.0006, a5=0.00002, a6=0.0061, a7=15, and for 

OCR a=0.4317 and b=4.9375. (Note that the parameter b here is essentially the radius of 

the field at 800 mm standard SAD). 
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The motion trajectory (see Figure 6) of the beam source is described using the 

following parameters: (1) latitude angular range [ ]21 ,φφ , (2) longitude angular range 

[ ]21 ,θθ , (3) source to axis distances (SAD). 
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Figure 7 Curve fitting results for TPR (a) and OCR (b). 

 



 

 21

By revolving the radiation beam in this dynamic manner, we are able to create the 

DPP kernels and carry out comparisons with Gamma Knife kernels and proton Bragg 

Peaks. 
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3.1 Dynamic Photon Painting vs. Gamma Knife 

We compared DPP kernels with Gamma Knife Perfexion 4mm kernels obtained 

from Elekta [63]. The Gamma Knife kernel is a 41× 41× 41 matrix with 0.5mm steps. 

 

Figure 8 shows the dose profile comparison between DPP kernels and Gamma 

Knife kernels. In this study, the DPP kernels are created using a 10mm cone of the 

CyberKnife beam model, a SAD of 320mm, and a latitude angular range of 1° to 50°. 

The SAD is chosen so that the diameter of the DPP kernel at isocenter is also 4mm. (The 

choice of angular range will be discussed in Section 2.4.) Figure 9 shows the isodose 

comparisons of the two kernels. In these plots, the planes are defined as in Figure 6. The 

DPP kernel has a sharper lateral fall off than the Gamma Knife kernel. 
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Figure 8 Dose profile comparisons between DPP kernels and Gamma Knife Perfexion 

4mm kernels. (a) Dose profiles in the XY plane. (b) Dose profiles in the XZ plane.  See 

figure 6 for X, Y and Z definitions. 
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(b) 

(c) 
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(d) 
 

Figure 9 Isodose comparisons between the DPP kernel and Gamma Knife Perfexion 4mm 

kernels. (a) DPP kernel in the XY plane. (b) Gamma Knife kernel in the XY plane. (c) 

DPP kernel in the XZ plane. (d) Gamma Knife kernel in the XZ plane. The plot shown 

contains isodose lines from 10% to 100% with 10% steps.  

 

3.2 Cobalt-60 Source vs. CyberKnife Cone Beam 

In order to understand whether our DPP strategy makes the kernel better or the 

energy of the beam source does, we use the same DPP trajectory but cobalt-60 (Gamma 

Knife beam source) as the beam source to create kernels to compare with the DPP kernels 

created with the CyberKnife cone beam. Figure 10 shows the dose profile comparisons 

between kernels created by the cobalt-60 source and the CyberKnife cone beam. Their 
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dose profiles are almost identical, which means the impact of the particular beam source 

is not significant and our DPP strategy makes kernels have better dose falloff. 
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Figure 10 Dose profile comparisons between kernels created by a cobalt-60 source and 

the CyberKnife cone beam. (a) Dose profiles in the XY plane. (b) Dose profiles in the XZ 

plane. See figure 6 for X, Y and Z definitions. 
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3.3 Dynamic Photon Painting vs. Proton Bragg Peak 

We also compared the same DPP kernels with a pristine 116MeV proton beam. 

The proton was generated in a water phantom with 610  primary protons. The beam had 

a circular Gaussian profile with σ = 2mm. The kernel had a 40mm radius and bins with 

0.5mm sides and was calculated using Fluka [64]. Figure 11 (a) shows the dose profile 

comparison along the distal direction. Figure 11 (b) shows the dose profile comparison in 

the lateral direction. Figure 11 (c) shows the volume dose histogram comparison. 

Observe that the DPP kernel deposits most of its energy in a small region.  

(a) 
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(b) 

(c) 
Figure 11 Comparison between the DPP Kernel and 116 MeV Proton. (a) Profile 

comparisons in the distal direction. (b) Profile comparisons in the lateral direction.  (c) 

Volume Dose Histograms (VDH) comparisons.
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3.4 The Impact of Latitude Angles on Dynamic Photon Painting 

We have also studied the impact of latitude angular ranges [ ]21 ,φφ  on the dose 

gradient of the DPP kernels. By varying 1φ  and 2φ , we obtained a set of kernels and 

compared their dose profiles and isodose distributions.  

 

Figure 12 shows the comparisons of dose profiles with latitude angular ranges 1° 

to 40°, 1° to 45°, 1° to 50°, 1° to 55°, 1° to 60°, and 1° to 65°. Observe that, as 

21 φφφ −=Δ  increases, the dose gradient increases in the XY plane and decreases in the 

XZ planes. The optimal angular range is a tradeoff between the sharpness of dose in the 

XY plane to that in the XZ plane. In addition to the above comparisons, we have also 

studied the impact of 1φ , the starting latitude angle when φΔ  is fixed. These 

comparisons are shown in Figure 13. Observe that, as 1φ  increases, the isodose 

distributions in the XZ plane become more and more irregular at low dose levels in 

comparison to that of the Gamma Knife kernels (Figure 13 (d)). 
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(b) 
Figure 12 Impact of Lateral Angular range on the dose gradient of DPP kernels. (a) 

Profile comparisons in the XY plane. (b) Profile comparisons in the XZ plane.   

(a) 
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(b) 

(c) 
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(d) 
Figure 13 XZ isodose distributions of DPP kernels of different latitude angular ranges. (a) 

1° to 50°. (b) 5° to 55°. (c) 10° to 60°. (d) Gamma Knife 4mm kernel. The plot shown 

contains isodose lines from 5% to 100% with 5% steps. 
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3.5 The Impact of the ERFC Sharpness Parameter on DPP Kernels 

We also studied the impact of the ERFC sharpness parameter on DPP kernels. 

OCR (Off Center Ratio) curve is fitted using function 

)))(())(((*5.0 bxaerfcbxaerfcf ++−= , where erfc(x) is defined as: 

∫
∞ −=
x

t dtexerfc
22)(

π
 [66]. Mathematically, the parameter a reflects the sharpness, 

while b represents the width or radius of the field. Figure 14 shows the comparison of 

dose profiles with 1=a  and 10=a . Figure 15 shows the isodose comparison of DPP 

kernels with different ERFC parameters. Observe that the dose falloff rate increases as a 

increases. 
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(b) 
Figure 14 Impact of the ERFC parameter on the dose gradient of DPP kernels. (a) Profile 

comparisons in the XY plane. (b) Profile comparisons in the XZ plane. 

(a) 



 

 35

(b) 
 

(c) 
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(d) 

Figure 15 Isodose distributions of DPP kernels of different ERFC parameters. (a) Isodose 

distributions of the DPP kernel with 10=a  in the XY plane. (b) Isodose distributions of 

the DPP kernel with 1=a  in the XY plane. (c) Isodose distributions of the DPP kernel 

with 10=a  in the XZ plane. (d) Isodose distributions of the DPP kernel with 1=a  in 

the XZ plane. The plot shown contains isodose lines from 10% to 100% with 10% steps. 



 

 37

CHAPTER 4 Treatment planning results with DPP kernels 

One interesting question we have is whether DPP can actually help improve the 

overall dose distributions in a treatment plan. For comparison purposes, we replaced the 

Gamma Knife kernels in our Dynamic Gamma Knife Radiosurgery planning system [38] 

with DPP kernels and compared the dose distributions.  

 

Here we briefly sketch the key idea of dynamic Gamma Knife radiosurgery for 

the sake of presentation while we refer interested readers to the original paper for more 

details [38]. Dynamic Gamma Knife radiosurgery is based on the concept of 

“dose-painting”. In our scheme, the spherical high dose volume created by Gamma Knife 

unit will be viewed as a “paintbrush” and treatment planning becomes painting a 3D 

tumor volume with a spherical “paintbrush” [37][38]. See Figure 16. 

 
Figure 16 (a) A schematic illustration of the dynamic Gamma Knife radiosurgery concept. 

(b) Planning dynamic Gamma Knife radiosurgery becomes finding a route for the 

paintbrush. (c) Sub-region dose escalation can be achieved by slowing down the speed of 

the paintbrush. 
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Dynamic Gamma Knife Radiosurgery consists of a planning phase and a delivery 

phase. In the planning phase, a set of kernels with different size will be used to pack a 

target volume to create a conformal dose distribution. In this way, the treatment plan 

becomes delivering a number of kernels with determined positions, sizes and beam-on 

time. In the delivery phase, those determined kernels will be delivered in a step-and-shot 

manner. 

 

4.1 Dynamic Gamma Knife vs. DPP using Cyberknife Cone Beams 

Two studies were carried out to compare treatment planning result of using DPP 

kernels and Gamma Knife kernels. In the first study, we used a 3D spherical phantom of 

80mm radius with a spherical tumor of 7.5mm radius at the center. Both optimizations 

were run with identical parameters. To ensure that we got the best Gamma Knife plan 

possible, only 4mm shots were used in the planning. Figure 17 shows the DVH 

comparisons. Figure 18 and Figure 19 show the comparisons between dose profiles and 

isodose distributions. As can be seen from these plots, the DPP plan and the Gamma 

Knife plan are very similar with the DPP plan slightly better and more uniform.  

 

It is also worthwhile to mention that the precision of these comparisons is limited 

by the resolution of our Gamma Knife kernels at 5mm. With such a sharp dose gradient, 

we are approaching the numerical limit. If these comparisons can be done at a much 

higher resolution, we believe the sharper dose gradient of DPP plans will be more 

pronounced. 
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Figure 17 DVH Comparisons of Gamma Knife and DPP using the spherical phantom 

described in text. 
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(b) 
Figure 18 Dose profile comparisons between a DPP plan (in blue) and a Gamma Knife 

plan (in red). (a) Dose profiles in the XY plane. (b) Dose profiles in the XZ plane. 

(a) 
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(b) 
 

(c) 
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(d) 

Figure 19 Isodose comparisons between a DPP plan and a Gamma Knife plan. (a) 

Isodose distributions of the DPP plan in the XY plane. (b) Isodose distributions of the 

Gamma Knife plan in the XY plane. (c) Isodose distributions of the DPP plan in the XZ 

plane. (d) Isodose distributions of the Gamma Knife plan in the XZ plane. The plot 

shown contains isodose lines from 10% to 100% with 10% steps. 

 

We have also used DPP kernels and Gamma Knife kernels for a more challenging 

phantom, which contains a C-shaped tumor surrounding a spherical critical structure (see 

Figure 20). The red part is the tumor, surrounding a spherical critical structure. 
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Figure 20 Plot of C-Shaped tumor phantom. (a) Phantom in the XY plan. (b) Phantom in 

the XZ plan. 

 

 Our goal is to let the tumor receive a 2100 cGy dose. Figure 21 shows the DVH 

comparison. Figure 22 and Figure 23 show the comparisons between dose profiles and 

between isodose distributions. Observe that the DPP plan is better than the Gamma Knife 
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plan, since in the DPP plan, the target receives a higher dose and critical structures 

receive a lower dose than with the Gamma Knife plan. Through the profile comparisons 

in Figure 22, we notice that the dose at high dose region is similar, while DPP plan has a 

lower dose at low dose region. 
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Figure 21 DVH comparison of GK and DPP using the C shaped tumor example 
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(c) 
Figure 22 Dose profile comparisons between a DPP plan (in blue) and a Gamma Knife 

plan (in green) for the C shaped tumor example. (a) Dose profiles along the X direction. 

(b) Dose profiles along the Y direction. (c) Dose profiles along the Z direction. 



 

 46

(a) 

(b) 
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(c) 

(d) 

Figure 23 Isodose comparisons between a DPP plan and a Gamma Knife plan for the C 

shaped tumor example. (a) Isodose distributions of the DPP plan in the XY plane. (b) 

Isodose distributions of the Gamma Knife plan in the XY plane. (c) Isodose distributions 
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of the DPP plan in the XZ plane. (d) Isodose distributions of the Gamma Knife plan in 

the XZ plane. The plot shown contains isodose lines from 10% to 100% with 10% steps. 

 

4.2 DPP Kernels with Different ERFC Sharpness Parameter 

We create two sets of DPP kernels with two different ERFC sharpness parameters 

1=a  and 10=a , then use these kernels in our Dynamic Gamma Knife Radiosurgery 

Treatment Planning System [38]. Our goal is to let the tumor receive a 2100 cGy dose. 

Figure 24 shows the DVH comparison. Figure 25 and Figure 26 show the comparisons 

between dose profiles and isodose distributions. Observe that as ERFC sharpness 

parameter increases, the target will receive a higher dose and critical structures will 

receive a lower dose, which means the treatment plan is better. Through the profile 

comparisons in Figure 25, we notice that DPP plan with 10=a  has a lower dose at low 

dose region than DPP plan with 1=a , which means the critical structure will receive a 

lower dose as the ERFC parameter increases. 
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Figure 24 DVH comparison of DPP with 1=a  and 10=a  using the C shaped tumor 

example 
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(c) 
Figure 25 Dose profile comparisons between DPP plan with 1=a  and 10=a . (a) Dose 

profiles along the X direction. (b) Dose profiles along the Y direction. (c) Dose profiles 

along the Z direction. 
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(a) 

(b) 
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(c) 

 (d) 
Figure 26 Isodose comparisons between DPP plan with 1=a  and 10=a . (a) Isodose 

distributions of the DPP plan with 10=a  in the XY plane. (b) Isodose distributions of 

the DPP plan with 1=a  in the XY plane. (c) Isodose distributions of the DPP plan with 
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10=a  in the XZ plane. (d) Isodose distributions of the DPP plan with 1=a  in the XZ 

plane. The plot shown contains isodose lines from 10% to 100% with 10% steps. 

 

4.3 Key Obstacles and Solutions of DPP Implementation 

CyberKnife robotic radiosurgery has the potential to implement Dynamic Photon 

Painting. The computational challenge of optimizing thousands of beams can be solved 

using cloud computing. Furthermore, various versions of NNLS (Non-Negative Least 

Square) solvers were implemented to reduce the computational time. 
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CHAPTER 5 Conclusion and future work 

We investigated the possibility of using Dynamic Photon Painting (DPP) for 

radiation therapy and radiosurgery, and have demonstrated that the DPP approach has the 

potential to rival proton therapy and Gamma Knife radiosurgeries. The key obstacle of 

the implementation of Dynamic Photon Painting is computation time, which can be 

solved by using a multithread method. Various versions of Non-Negative Least Square 

solvers were implemented to cut down the computational time of the optimization. A 

prototype of Dynamic Photon Painting treatment planning system is under development.  
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