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ABSTRACT 

Radiation therapy is one of the most effective means for treating cancers. An important 

calculation in radiation therapy is the estimation of dose distribution in the treated patient, 

which is key to determining the treatment outcome and potential side effects of the therapy. 

Biological dose – the level of biological damage (e.g., cell killing ratio, DNA damage, etc.) 

inflicted by the radiation is the best measure of treatment quality, but it is very difficult to 

calculate. Therefore, most clinics today use physical dose - the energy deposited by 

incident radiation per unit body mass - for planning radiation therapy, which can be 

calculated accurately using kinetic Monte Carlo simulations. Studies have found that 

physical dose correlates with biological dose, but exhibits a very complex relationship that 

is not yet well understood.  

Generally speaking, the calculation of biological dose involves four steps: (1) the 

calculation of physical dose distribution, (2) the generation of radiochemicals based on the 

physical dose distribution, (3) the simulation of interactions between radiochemicals and 
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bio-matter in the body, and (4) the estimation of biological damage based on the 

distribution of radiochemicals. This dissertation focuses on the development of a more 

efficient and effective simulation algorithm to speed up step (3). The main contribution of 

this research is the development of an efficient and effective kinetic Monte Carlo (KMC) 

algorithm for simulating diffusion-limited chemical reactions in the context of radiation 

therapy. The central problem studied is - given 𝑛 particles distributed among a small 

number of particle species, all allowed to diffuse and chemically react according to a small 

number of chemical reaction equations - predict the radiochemical yield over time. The 

algorithm presented makes use of a sparse grid structure, with one grid per species per 

radiochemical reactant used to group particles in a way that makes the nearest neighbor 

search efficient, where particles are stored only once, yet are represented in grids of all 

appropriate reaction radii. A kinetic data structure is used as the time stepping mechanism, 

which provides spatially local updates to the simulation at a frequency which captures all 

events - retaining accuracy. A serial and three parallel versions of the algorithm have been 

developed. The parallel versions implement the kinetic data structure using both a standard 

priority queue and a treap data structure in order to investigate the algorithm’s scalability. 

The treap provides a way for each thread of execution to do more work in a particular 

region of space. A comparison with a spatial discretization variant of the algorithm is also 

provided. 

  



vii 
 

 

Table of Contents 

Abstract ................................................................................................................................v 

List of Figures .....................................................................................................................x 

List of Tables .................................................................................................................... xi 

Chapter 1 ..............................................................................................................................1 

Introduction ..........................................................................................................................1 

1.1 Executive Summary of Work Presented ....................................................................4 

1.2 Summary of Original Work........................................................................................6 

1.4 Organization ...............................................................................................................8 

Chapter 2 ..............................................................................................................................9 

Background ..........................................................................................................................9 

2.1 Radiation Therapy ......................................................................................................9 

2.1.1 Ionizing Radiation .............................................................................................12 

2.1.2 Compton Scattering, the Photoelectric Effect, Pair Production, and Rayleigh 

Scattering ....................................................................................................................13 

2.1.3 Depth vs. Dose and the Bragg Peak ..................................................................17 

2.1.4 Relative Biological Effectiveness (RBE) ..........................................................22 

2.1.5 Relevant Chemical Reactions and the Creation of Free Radicals .....................23 

2.3 Three Stages of Activity Following Irradiation .......................................................25 



viii 
 

2.4 Monte Carlo Simulations .........................................................................................28 

2.4.1 Kinetic Monte Carlo Simulations and Diffusion ...............................................29 

2.5 Geant4-DNA ............................................................................................................32 

2.6 Fick’s Second Law of Diffusion ..............................................................................33 

Chapter 3 ............................................................................................................................38 

Sequential Algorithm .........................................................................................................38 

3.1 Overview ..................................................................................................................39 

3.2 Nearest Neighbor Search ..........................................................................................39 

3.2.1 The Closest Pair Problem ..................................................................................39 

3.2.2 Proximity Grid ...................................................................................................41 

3.3 Simulation of Time...................................................................................................44 

3.3.1 Kinetic Data Structures .........................................................................................44 

3.3.2 Algorithmic Use of the Kinetic Data Structure .....................................................47 

3.4 Brownian Bridge ......................................................................................................49 

3.5 Serial Implementation ..............................................................................................54 

3.6 Serial Version Results ..............................................................................................56 

Chapter 4 ............................................................................................................................58 

Parallel Implementations ...................................................................................................58 

4.1 Challenges With Respect to Parallelization .............................................................58 

4.1.1 Sources of Resource Contention........................................................................59 



ix 
 

4.1.2 The Accuracy of the Physics With Respect to Simulation Time ......................60 

4.1.3 Parallel Forms of the Proximity Grid Data Structures ......................................62 

4.1.4 The Choice of OpenMP as the Parallelization Technology ..............................66 

4.2 The Parallel Priority Queue Variant .........................................................................66 

4.2.1 Parallelized Grid ................................................................................................67 

4.2.2 Parallelized Kinetic Data Structure ...................................................................68 

4.3. Parallel Priority Queue Variant Using a Treap .......................................................73 

4.4. Parallel Spatially Discretized Variant .....................................................................76 

4.5. Results for Parallel Versions ...................................................................................77 

Chapter 5 ............................................................................................................................84 

Conclusion and Future Work .............................................................................................84 

5.1 Conclusion and Discussion ......................................................................................84 

5.1 Future Work .............................................................................................................86 

References .........................................................................................................................89 

 

 



x 
 

LIST OF FIGURES 

FIGURE 1. COMPTON SCATTERING.  ........................................................................ 14 

FIGURE 2. THE PHOTO-ELECTRIC EFFECT.  ........................................................... 14 

FIGURE 3. PHOTON ENERGY VS. TARGET ATOMIC NUMBER. .......................... 15 

FIGURE 4. DOSE VS. DEPTH.  ...................................................................................... 19 

FIGURE 5. PROTON BEAM DOSE AT A CRANIAL TUMOR SITE. ........................ 21 

FIGURE 6. A BEAM OF 7,500 1 MEV H. ATOMS THROUGH WATER. .................. 22 

FIGURE 7. RELEVANT RADIOCHEMICAL REACTIONS. ....................................... 24 

FIGURE 8. DNA MOLECULE DAMAGED BY A FREE RADICAL. ......................... 25 

FIGURE 9. USING THE MONTE CARLO METHOD TO SOLVE AN INTEGRAL. . 29 

FIGURE 10. GEANT4-DNA FRACTIONAL SURVIVAL. ........................................... 33 

FIGURE 11. THE CONCENTRATION PROFILE AT TWO TIMES ............................ 37 

FIGURE 12. REACTION/REACTANT GRAPH. ........................................................... 43 

FIGURE 13. GRID OF CELLS. ....................................................................................... 44 

FIGURE 14. HIERARCHY OF CELLS. ......................................................................... 44 

FIGURE 15. THE BINARY TREE STRUCTURE OF NEAR NEIGHBORS. ............... 47 

FIGURE 16. TWO PARTICLES IN BROWNIAN MOTION. ....................................... 49 

FIGURE 17. THE DISTANCE BETWEEN TWO PARTICLES IN MOTION. ............. 51 

FIGURE 18. BROWNIAN BRIDGE. .............................................................................. 52 

FIGURE 19. PSEUDO-CODE ......................................................................................... 55 

FIGURE 20. THE SERIAL VERSION VS. A KD-TREE METHOD. ............................ 57 

FIGURE 21. GEANT4-DNA RESULTS W/ PROX. GRID RESULTS OVERLAID. ... 57 

FIGURE 22. DOMAIN DECOMPOSITION. .................................................................. 64 

file:///G:/Shaun/Dissertation.docx%23_Toc433576114
file:///G:/Shaun/Dissertation.docx%23_Toc433576115
file:///G:/Shaun/Dissertation.docx%23_Toc433576118
file:///G:/Shaun/Dissertation.docx%23_Toc433576120
file:///G:/Shaun/Dissertation.docx%23_Toc433576121
file:///G:/Shaun/Dissertation.docx%23_Toc433576125
file:///G:/Shaun/Dissertation.docx%23_Toc433576126
file:///G:/Shaun/Dissertation.docx%23_Toc433576127
file:///G:/Shaun/Dissertation.docx%23_Toc433576128
file:///G:/Shaun/Dissertation.docx%23_Toc433576129
file:///G:/Shaun/Dissertation.docx%23_Toc433576130
file:///G:/Shaun/Dissertation.docx%23_Toc433576131
file:///G:/Shaun/Dissertation.docx%23_Toc433576133
file:///G:/Shaun/Dissertation.docx%23_Toc433576134


xi 
 

FIGURE 23. SPATIAL DECOMPOSITION & WORKLOAD ANALYSIS. ................. 65 

FIGURE 24. BRODAL'S MINIMUM(Q) OPERATION. ............................................... 65 

FIGURE 25. SERIAL VS. PARALLELIZED HASH MAP. ........................................... 68 

FIGURE 26. MIN. SEPARATION DIST. REQ. FOR PARALLEL PROCESSING. ..... 70 

FIGURE 27. TICKET ACQUISITION. ........................................................................... 71 

FIGURE 28. PARALLELIZED KINETIC DATA STRUCTURE. ................................. 71 

FIGURE 29. FLOWCHART OF THE PARALLEL PRIORITY QUEUE METHOD. ... 72 

FIGURE 30. A POSSIBLE ORGANIZATION OF THE TREAP. .................................. 74 

FIGURE 31. PARALLELIZED KINETIC DATA STRUCT. (TREAP VARIANT). ..... 75 

FIGURE 32. ROUND-ROBIN EXECUTION OF THE ZONE METHOD..................... 77 

FIGURE 33. SERIAL VS. PARALLELIZED VERSION OF THE CODE. ................... 79 

FIGURE 34. LOG-LOG PLOT OF RUN TIMES. ........................................................... 79 

FIGURE 35. COMPARISON OF THE SERIAL AND PARALLEL RESULTS............ 80 

FIGURE 36. COMPARISON OF ZONE, PRIORITY QUEUE, TREAP METHODS. .. 80 

FIGURE 37. SCALABILITY OF PRI. QUEUE, TREAP, AND ZONE METHODS. .... 81 

FIGURE 38. ZONE METHOD WITH PRE-ALLOCATED MEMORY. ....................... 81 

FIGURE 39. SCALABILITY OF THE ZONE METHOD. ............................................. 82 

FIGURE 40. EFFICIENCY OF PARALLEL METHODS. ............................................. 82 

FIGURE 41. EFFICIENCY OF ZONE METHOD AND VARIANTS. .......................... 83 

 

LIST OF TABLES 

TABLE 1. DIFFUSION COEFFICIENTS OF FREE RADICALS ..................................27 

TABLE 2. REACTION RATES BETWEEN FREE RADICALS ....................................28 

file:///G:/Shaun/Dissertation.docx%23_Toc433576136
file:///G:/Shaun/Dissertation.docx%23_Toc433576137
file:///G:/Shaun/Dissertation.docx%23_Toc433576140
file:///G:/Shaun/Dissertation.docx%23_Toc433576141
file:///G:/Shaun/Dissertation.docx%23_Toc433576142
file:///G:/Shaun/Dissertation.docx%23_Toc433576144


xii 
 

 

 



1 
 

 

CHAPTER 1  

INTRODUCTION 

According to the American Cancer Society, about 13 million Americans today have cancer 

and one million more are being diagnosed every year [1]. One out of every two men and 

one out of every three women will be diagnosed with cancer in their lifetimes. According 

to a recent report from CNN [2], cancer will become the most deadly disease in the U.S. 

by 2030. Thus, it is important to develop effective methods for treating cancer.  

A cancerous cell is a mutation of a healthy cell and mutations are, by their nature, random. 

To date, there are more than two hundred classes of cancer and within those classes there 

are many variations – usually classified by the type of cells they affect. There are common 

characteristics among them, but they are all significantly different from one another. They 

grow at different target depths within the body, affecting tissues of varying density and 

afflicting differing biological systems. One of the few treatments we know of today that is 

effective against most types of cancer is radiation therapy – a process of delivering lethal 

doses of ionizing radiation into tumorous regions of living tissue in an effort to kill the 

tumorous mass. Since radiation also damages the healthy and normal tissues along its beam 

path, the goal of radiation therapy treatment planning is to maximize the dose to the target 

tumors while minimizing the dose to the nearby healthy tissues and structures. Therefore 

it is important to accurately calculate the dose distribution for any designed radiation 

treatment. Generally speaking, there are two types of dose that are of interest clinically - 

the physical dose and the biological dose. The physical dose refers to the energy absorbed 
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per unit mass in a biological medium following irradiation (measured in Joules per 

kilogram). Biological dose refers to the biological effectiveness (i.e., cell killing 

probability) of the beam irradiation. Living cells are very likely to be rendered inoperative 

when the helical strands of DNA in the nucleus are broken into two pieces (a double strand 

break) because it is very difficult for the cell to repair [3]. Double strand breaks are caused 

directly by the impact of high energy particles or ions, or indirectly by reaction with free 

radicals that have been generated from other radiochemical reactions. If one knows the 

density of these particles, ions and free radicals – at a sufficiently small scale - an accurate 

estimate of biological dose (cell damage) can be made. Such an estimate would be superior 

to an estimate based solely on physical dose, but the physical dose is much easier to 

calculate and can be obtained using Kinetic Monte Carlo simulation. Kinetic Monte Carlo 

simulations arise in many areas of study including chemistry, traffic networks, ecology, 

surface diffusion and growth, and evolutionary game problems in epidemiology. KMC 

methods provide a time evolution of random processes occurring in nature. They are a 

simple and accurate means of modeling real world physical problems, albeit at the expense 

of time and often significant computer resources. Various KMC engines providing this type 

of simulation are in use today, such as Geant4-DNA [4] [5] [6] [7], Fluka [8], and MCNP 

[9].   

Most clinics today use physical dose as a measure of treatment quality. Even though 

physical dose correlates with biological dose, the two types of dose exhibit a complex non-

linear relationship that has yet to be determined and remains an active area of study.  

The biological dose deposited by therapeutic radiation takes place in the following setting 

within living tissue. First, all physical interactions take place, where the molecules in the 
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cell undergo elastic and inelastic physical interactions. This stage – the physical stage - is 

characterized by energy deposition and is extremely fast, lasting only about 1 femtosecond 

(10-15 second). The physico-chemical stage follows this, lasting roughly from 1 

femtosecond to 1 picosecond (10-12 second). This short-lived stage involves the transfer of 

energy to the biological environment and is characterized by thermalization and solvation 

of subexitation electrons, electronic hole migration, and electronic recombination. The 

result of the physico-chemical stage is an array of radiolytic species which are thermalized 

and subject to the diffusion equation. Finally, the chemical stage starts and lasts from 1 

picosecond to 1 microsecond (10-6 second). In this stage, Brownian motion governs particle 

movements, where the thermalized radiolytic species diffuse in the medium reacting with 

each other and with the biomolecules. Kinetic Monte Carlo simulations calibrated with 

experimental data provide the most accurate means for simulating these three stages, 

however Monte Carlo simulation of the third stage is particularly demanding on 

computational resources. This dissertation focuses on simulation of the third stage, i.e., the 

chemical stage.  

Simulation of the chemical stage means tracking the locations of all radiolytic particles, 

simulating chemical reactions as the reactants drift within reaction range of one another. 

At any single instant in time, if the reactants are of the same chemical species, this is a 

description of the well-known geometric closest pair problem, which may be stated as: 

given the locations of 𝑁 points in a metric space, return the pair of points that are closer to 

one another than any other pair. This is an apt description of what it means to simulate a 

chemical reaction because knowing the closest pair of particles at any instant means 

knowing the participants of the next reaction. If the reactants are not of the same species, 
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this is an instance of the variant known as the bi-chromatic closest pair problem where we 

require the solution to contain points of differing colors (i.e., species). Because there are 

many reaction types to simulate and each one has a different reaction radius, there are many 

definitions of closeness that must be used. As time progresses, the particles move to new 

locations by diffusion and we say the simulation is kinetic. As reactions occur, reactants 

are removed from the simulation and products are added, so we say that the simulation is 

dynamic. We can therefore think of these simulations as solving 𝑀 simultaneous kinetic 

and dynamic closest pair or bi-chromatic closest pair problems given 𝑀 reaction types and 

𝑁 particles. Given the assumption that the human body is composed mostly of water, this 

leads us to a statement of the task at hand which may be stated as, given 𝑛 radiolytic 

particles arranged in a radially symmetric, but random, pattern (a particle beam), and a 

variety of molecular species in a bath of 𝐻2𝑂 molecules all subject to diffusion over a time 

period of 1 𝜇𝑠, observe and process all chemical reactions, reporting the radiochemical 

yield over time.  

An algorithm and results are presented here that shows how the simulation times can be 

shortened. The key to the improved run times is a new algorithm for solving the dynamic 

and kinetic closest and bi-chromatic closest pair problems.  

 

1.1 Executive Summary of Work Presented 
 

This dissertation lays the ground work for the accurate calculation of biological dose and 

provides an efficient means for doing so. Efficient serial and parallel kinetic Monte Carlo 

algorithms for estimating dose are presented.  
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Description of the relevant physics. The physics of radiation chemistry, as pertinent to the 

presented algorithm, are presented. Areas covered are Compton scattering, the photo-

electric effect, and elementary particle pair production. Definitions of stopping power, 

linear energy transfer, and relative biological effectiveness are given.  

Kinetic Monte Carlo. The kinetic Monte Carlo method used to model the physics of the 

problem at hand is described.  

Nearest Neighbor Search. The optimization problem known as the bi-chromatic nearest 

neighbor search is at the heart of the algorithm presented here. The best known algorithm 

for computing the static version of the nearest neighbor search is summarized. It is based 

on the use of grids at multiple resolutions and this provides helpful insights to 

understanding the new proximity grid method. An efficient mono-chromatic dynamic near 

neighbor search using multiple binary trees in a wegde structure is also summarized. It is 

an example of a dynamic nearest neighbor search for moving points in a plane.  

Kinetic Data Structure. Traditional time domain codes advance time in their simulations 

in small, globally constant time steps. In cases when the simulated particles number in the 

tens or hundreds of thousands, the simulation can become bogged down by superfluous 

simulation activity that does not contribute to the final result. To mitigate this effect, the 

time step size can be increased, but increasing the size of the time step can cause important 

events to be missed, so this is not always the best solution to the problem. A kinetic data 

structure provides an alternative to the traditional constant time step method and it is used 

in the proximity grid algorithm. We describe this data structure in detail. 
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Parallelization. The proximity grid method has been parallelized with appropriate 

modifications to the data structures. The kinetic data structure is implemented with both a 

priority queue and with a treap.  We show that the algorithm scales well when implemented 

with a priority queue given that appropriate modifications to the grid structure are made.  

 

1.2 Summary of Original Work 

Our contribution is a novel algorithm, using a nearest neighbor search technique that works 

well in the case when particles are in motion and when the definition of a near neighbor 

requires particles of differing species.  Its development is motivated, in part, by the desire 

to improve the Geant4-DNA toolkit by providing a better method for finding the nearest 

neighbor. The Geant4-DNA toolkit currently makes use of a kd-tree to perform nearest 

neighbor searches. A kd-tree provides fast search time but does not offer fast insertion or 

deletion time, thus it is inefficient in the case when the occupants of the tree (the particles) 

are in motion. Our method implements the polychromatic nearest neighbor search using a 

directed acyclic graph of particle groups. The groups are non-empty cells in grids with cell 

sizes of every reaction radius of interest. The grids offer linear time searches at all relevant 

reaction radii while at the same time supporting facilities for moving particles between grid 

cells (and therefore grid cell groupings) with a minimum of overhead.   

Time step sizes for these simulations are on the order of fractions of a picosecond. To attain 

efficient operation, we do not advance the simulation globally at this small time resolution 

because doing so would result in inefficient operation. Instead, we advance the simulation 

in a spatially local manner, making use of a kinetic data structure [10] [11] [12] [13] to do 

so.  
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A parallel version of the algorithm is also presented. Ideally, this algorithm would run on 

a radiation oncologist’s desktop workstation, so MPI (message passing interface) 

technology – best suited for multi-workstation use – was not chosen as the parallelization 

technology. GPGPU (general purpose graphical processing unit) was also considered, but 

at this time memory on graphics cards is limited to 4 GB and we wanted this algorithm to 

be useful in the case when the motions of billions of particles are simulated. OpenMP was 

therefore selected for the implementation. The main challenge faced was in preserving the 

physics of the simulation. That is, care needed to be taken to design a system whereby 

computer processing on no single CPU advanced simulation time past that of any other 

CPU within a small tolerance. This is challenging since the relative densities of particles 

in the simulation change over time and the algorithm needed to be insensitive to such 

differences in order to keep any one CPU from “lagging” behind the others. Parallelization 

of the kinetic data structure is handled using multiple priority queues, resulting in a time 

stepping mechanism that operates in a spatially mixed and randomized manner. All 

operations done at every time step are spatially local (saving run time), and despite the fact 

that the data structures use shared memory, no mutexing or other expensive inter-process 

communication mechanism is required. Three versions of the algorithm are presented. Two 

(the standard priority queue and treap variants) require the use of a ticket acquisition 

mechanism to ensure that regions to be processed don’t overlap one another. Ticket 

acquisition is performed serially, and is therefore a potential bottleneck when a large 

number of cores are used. This bottleneck can be overcome by processing multiple particle 

movements after acquiring a ticket. To make this possible, the kinetic data structure is 

implemented with a treap (a binary tree that also has the properties of a heap). The priority 
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key of the treap is used as the local time step time, and the heap key of the treap is used to 

represent the ticket index for the region in which the particle movement takes place. The 

third method uses spatial discretization in exchange for the ticket acquisition mechanism 

as the method of ensuring that different threads operate in different regions of space. 

  

1.4 Organization 

Chapter 2 presents the background material necessary to understand the relevant concepts 

in radiation therapy and how those concepts are incorporated into related computer 

simulations. Ionizing radiation as well as relevant physical quantities are defined and a 

description of the relevant physical processes are presented. Chapter 3 provides details on 

a new algorithmic approach called the proximity grid method that offers a faster approach 

than the current state of the art. Our unique solution to the nearest neighbor search is 

presented. Details are also given for parallelization of this algorithm and results are 

discussed in chapter 4. Chapter 5 offers a discussion.  
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CHAPTER 2 

BACKGROUND 

The following sections briefly present the field of radiation therapy and Monte Carlo 

simulation of therapeutic radiation in living tissue. Section 2.1 gives an overview of the 

physics involved in radiation therapy as well as some of the terminology used, and it 

explains some of the factors that make biological dose estimation difficult.  

Sections 2.3 and 2.4 describe the three stages of activity that follow therapeutic irradiation 

within living cells and the Monte Carlo methodology used to simulate them in a computer. 

A state-of-the-art Monte Carlo tool called the Geant4-DNA toolkit is discussed next. The 

goal of this research is to perform a simulation on-par with what is done in Geant4-DNA 

and to improve on the simulation time. 

 

2.1 Radiation Therapy 

Radiation therapy is the medical use of ionizing radiation to destroy cancer cells within 

living tissue. The radiation is delivered in the form of either high energy photons (X-rays 

or gamma rays), or as bombardment by high energy, heavy particles (protons, neutrons, or 

heavier ions). In both cases the goal is to kill the cancerous tissue by ionizing atoms within 

its cells. Ionization - the acquisition of electrical charge by an atom or molecule due to the 

gain or loss of electrons - alters the chemical structure of biomolecules, including the DNA 

molecule. X-rays are photons that contain enough energy to break chemical bonds and 

ionize atoms, but photons of longer wavelengths (thus lower energies) do not. For example, 
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a whole body exposure to a 70 kg man of only 4 J/kg of X-ray radiation is lethal, but this 

same amount of energy in the form of heat (i.e., many more, long wavelength, low energy, 

infra-red photons) raises the same quantity of water by only 0.002℃ - a harmless exposure. 

Thus, when we discuss ionizing radiation by photons, we mean X-rays or gamma rays. We 

ignore ultraviolet radiation (which is also ionizing) because it is not energetic enough for 

therapeutic purposes. Radiation in the form of electrons, protons or heavier ions, if 

energetic enough, is also ionizing. The greater the mass of the particles used, the greater 

the depth of penetration of the radiation. 

Radiation therapy using heavy charged particles exhibits a clinically advantageous 

behavior that can be seen in the Bragg peak discussed in section 2.1.3. It is advantageous 

because the majority of the energy is deposited deep in biological tissue.  

The goal of radiation therapy is to apply the dose to the cancerous tissue without affecting 

the healthy tissue that often surrounds the tumorous area. Since the deposited energy often 

cannot be injected into the tumor without also being injected into non-tumorous tissue, the 

goal is to maximize the dose to the tumor while simultaneously minimizing it in the healthy 

tissue. Furthermore, energy from the initial radiation transfer spreads within the tissue 

through secondary effects and is strong enough, in and of itself, to cause damage to non-

tumorous tissue. Therefore in the field of radiation therapy there are two objectives: to 

deliver enough directed energy to a tumor site so that the therapy is effective, and to limit 

the effects of that same therapy on non-tumorous tissue.  

The most common types of radiation used in a modern day cancer clinic include high 

energy X-rays (6MeV and 18 MeV from a clinical linear accelerator), Cobalt-60 gamma 

rays (1.17 MeV and 1.33 MeV) from a gamma knife, or high energy protons (75-250 MeV 
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produced by a cyclotron or synchrotron) [14] [15]. The particle beams are referred to as 

ionizing radiation because they are energetic enough to eject one or more orbital electrons 

and ionize the atoms or molecules it interacts with. The important characteristic of ionizing 

radiation is the local release of large amounts of energy. When molecules in stable chemical 

bonds lose one or more of their orbital electrons the bonds become unstable and break. The 

radiation used in these techniques is strong enough to break strong chemical bonds such as 

the biologically common C=C bond – a chemical bond held together with 4.9 keV [16] - 

and can induce biological damage to DNA molecules. The research presented here is 

motivated by the desire to simulate radiation damage to DNA in biological material. When 

living organisms are exposed to ionizing radiation (such as X-rays, gamma rays, electrons, 

protons, and heavy ions), the incident particles can damage the DNA molecule in the cell 

nucleus causing loss of genetic information that may lead to cell mutation or death [3]. 

Ionizing radiation may damage DNA either directly or indirectly.  In the former situation, 

the radiation directly interacts with the DNA molecules causing breaks in the helical 

structure. In the latter case, the radiation interacts with other atoms or molecules 

surrounding the DNA (e.g., water) to produce free radicals that are able to diffuse far 

enough to reach and damage the strands of DNA molecules. For example, the following 

ionization events frequently take place: 𝐻2𝑂 → 𝐻2𝑂+ + 𝑒−, 𝐻2𝑂+ + 𝐻2𝑂 → 𝐻3𝑂+ +

𝑂𝐻⦁.  The highly reactive hydroxyl radical OH⦁ can then interact with DNA molecules 

causing strand breaks.  
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2.1.1 Ionizing Radiation 

Radiation is the propagation of energy through vacuum or matter carried along by energetic 

protons, neutrons or photons (or other heavier particles). The process is energy conserving. 

In radiation therapy, we are interested in radiation that, upon impact, is energetic enough 

to eject electrons from stable orbits, creating ionized states of chemical matter. These 

ionized states lead to chemical changes, and in the case of biological matter such as DNA 

molecules, these changes can be lethal. Thus we are concerned with quantities such as the 

instantaneous rate of flow of radiative particles per unit area (flux) and with the total flow 

of particles crossing a unit area in a given period of time (fluence). These quantities are 

defined as follows with cross-sectional area, 𝐴, through which the particles flow, time, 𝑡, 

and number of radiative particles, 𝑁.  

𝜙 =
𝑑𝑁

𝑑𝐴 ∙ 𝑑𝑡
         (𝑓𝑙𝑢𝑥) 

Φ =  
𝑑𝑁

𝑑𝐴
= ∫ 𝜙 𝑑𝑡        (𝑓𝑙𝑢𝑒𝑛𝑐𝑒) 

If each particle has an average energy, 𝐸, then the energy flux and energy fluence is defined 

as 

𝜓 =
𝑑𝐸

𝑑𝐴 ∙ 𝑑𝑡
         (𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑢𝑥 𝑖𝑛 𝐽𝑜𝑢𝑙𝑒𝑠) 

Ψ =  
𝑑𝐸

𝑑𝐴
= ∫ 𝜓 𝑑𝑡        (𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑊𝑎𝑡𝑡𝑠) 

In SI units, these quantities are measured in Joules (typically in the MeV range) and in 

Watts, respectively. 
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An important quantity measured in radiation therapy is called absorbed dose. It is a measure 

of energy deposited per unit mass and has units of Grays (J/kg). For a given energy, 𝐸, and 

mass, 𝑚, the dose D, is defined as 

𝐷 =
𝑑𝐸

𝑑𝑚
. 

Unfortunately, absorbed dose cannot always be directly measured. Alternative measures of 

dose include effective dose, and equivalent dose that are weighted by either organ volume 

or known biological effects due to the type of radiation used. 

 

2.1.2 Compton Scattering, the Photoelectric Effect, Pair Production, and 

Rayleigh Scattering 

Electromagnetic radiation such as X-ray radiation is a stream of photons that transfers it’s 

energy to the surrounding tissue producing fast moving charged particles. It is these fast 

moving charged particles that cause the ionization that damage DNA molecules – not the 

radiation itself, thus the incident radiation is said to be indirectly ionizing. At energies 

characteristic of those seen in a Cobalt-60 linear accelerator, the dominant mechanism of 

energy transfer is called Compton scattering. Compton scattering describes the way energy 

is transferred to free or loosely bound electrons as the photons collide with them. An 

incident photon may lose from 0 – 80% of its energy in any given (inelastic) collision, 

transferring that energy to the electron in the form of kinetic energy. All remaining energy 

is emitted in the form of a new photon having a longer wavelength that may participate in 

additional scattering events. 
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Figure 1. Compton scattering. [67] 

The x-ray photon is incident upon a loosely bound or free electron. 

Figure 2. The Photo-electric Effect. [67] 

The photon is incident upon a tightly bound electron. In the case shown here, some 

energy is used to break the orbital bond and the remaining energy is transferred to 

the electron in the form of kinetic energy.  
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The photo-electric effect is similar to Compton scattering except that the photon is incident 

upon a tightly bound electron. In this case, as the electron absorbs energy, it may either 

change orbital shells or be ejected from the atom completely. If the electron changes shells, 

a secondary photon is emitted with energy equal to the difference in binding energy 

between the two orbital shells. If the electron is separated from the atom, some of the 

energy of the original photon is used to overcome the electron’s binding energy. A 

secondary photon may also be emitted. If one is not emitted, the remaining energy 

manifests solely as the kinetic energy of the ejected electron. If one is emitted, the energy 

is split between the velocity of the electron and the wavelength of the new photon.  

 

Figure 3. Photon energy vs. target atomic number. [17] 

  

The red line 𝜎 = 𝜏 indicates the region where the photoelectric effect occurs as often as the 

Compton effect and the red line 𝜎 = 𝜅 indicates the region where pair production occurs as often 

as the Compton effect. 
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Both Compton scattering and the photo-electric effect occur during photon-based radiation 

therapy, but Compton scattering dominates at higher energies, while the photo-electric 

effect becomes more prominent at lower energies (see Figure 3). The Compton and photo-

electric absorption effects in living tissue are not the same. Since Compton scattering is a 

process dealing with free or loosely bound outer shell electrons while the photo-electric 

effect occurs with tightly bound inner shell electrons, the absorption of energy by the 

Compton process is independent of atomic number, but absorption by the photo-electric 

effect varies roughly as the cube of the atomic number. This means that if a radiative energy 

that favors energy transfer by the photo-electric effect is used then bone will receive a 

greater dose than muscle or other soft tissue. On the other hand, if the energy of the beam 

is increased so that Compton scattering becomes dominant, then the hard and soft tissues 

receive a more equally distributed dose. 

Pair production is the creation of an elementary particle and its anti-particle. Pair 

production occurs when a photon with energy greater than or equal to the rest mass of the 

two created particles interacts with the nucleus of an atom. For example, in the creation of 

an electron and its anti-particle, the positron, the minimum required energy of the incident 

photon is 1.022 𝑀𝑒𝑉 =  2𝑚𝑒𝑐2, where 𝑚𝑒 is the rest mass of the electron and 𝑐 is the 

speed of light. The probability of pair production increases with energy and is 

approximately proportional to the square of the atomic number of the target atom. 

Rayleigh scattering also occurs in photon-based radiation therapy. Rayleigh scattering is 

an interaction between rays of light and polarizable atoms whose size is smaller than the 

wavelength of the light. This type of scattering is what causes the sky to appear blue in the 

presence of sunlight. On collision of the photon with the atom, the oscillation of the light 
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ray causes the atom to vibrate at the same frequency as the light. As a result of the 

oscillation, the atom becomes a radiating dipole, giving off the energy from the incident 

ray as a new photon. The newly emitted photon has the same wavelength as the original 

one, but it has a new random direction. This type of scattering is called elastic because no 

energy is lost in the process. The impact on radiation therapy is that since the ray changes 

direction, coherency in the overall beam as a whole is lost. In materials with low atomic 

number such as most soft biological tissues, this type of scattering occurs for photons with 

energies below 20 keV. 

 

2.1.3 Depth vs. Dose and the Bragg Peak 

X-ray or gamma ray radiation are not the only energy delivery mechanisms used in 

radiation therapy. In 1946, physicist Robert Wilson [18] suggested that heavy charged 

particles could be used to treat cancer in a way that minimizes damage to healthy tissue. 

His work was based on the observation that heavy particles such as carbon ions or protons 

deliver the bulk of their energy deep within the target medium and they release 

comparatively little energy at the point of entry into the body. This seemingly 

counterintuitive behavior forms the basis of modern particle therapy. Radiation therapy is 

called particle therapy when any particle heavier than an electron (i.e., a hadron particle) 

is used as an energy delivery instrument. This type of therapy is also called hadron therapy. 

When energetic photons, such as X-rays or gamma rays, are incident upon a material, the 

majority of the energy is released near the surface. This is because the mechanisms of 

energy exchange between photons and matter is through direct collision (Compton 

scattering, the photo-electric effect, pair production and the Rayleigh effect), where much 
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of the energy of the photon is transformed into kinetic energy as it is absorbed into the 

molecular mass. This is not the case with ionizing energy deposited by neutrons, protons 

or other ions. This second type of therapy - hadron therapy - releases more energy as the 

particles slow down and come to rest. The reason for this is because energy is exchanged 

with the target medium through Coulomb force interactions that cause the formation of 

ionic bonds. These bonds form more easily as the particles slow down. Charged particles 

drifting slowly past ions can more easily be trapped in orbit around them, forming a bond, 

while faster ones can more easily escape the force of electromagnetic attraction between 

them. By adjusting the input velocity of the hadron particles, the location at which the 

majority will come to rest can be changed. In this way, the therapeutic dose can be shaped 

to fit both the size and location of a tumor. Hadron therapy allows for minimal dose applied 

at the entrance site, no dose applied at the exit site, and maximal dose applied to the 

tumorous area. The red curve in Figure 4 is an example of this type of dose vs. depth and 

it is called a Bragg peak. It gets its name from William Bragg who first observed the 

behavior in 1903. The blue curve is composed of many smaller beams with each beam 

having a different particle velocity. The sum of the applied doses has a “flat top” near 20 

cm showing the shape of the dose as a function of tissue depth. This flat top is called a 

spread out Bragg peak (SOBP) and forms the cornerstone of radiation particle therapy 

today. The magenta curve shows an example of a more conventional X-ray or gamma ray 

dose. Both energy delivery mechanisms, photons and hadrons, are powerful tools at the 

radiation oncologist’s disposal.  

 



19 
 

 

 

Figure 4. Dose vs. Depth. [19] 

 

The dose vs. tissue depth of a 250 MeV proton beam is shown in red. A beam consisting of the 

sum of many smaller beams with a total energy of 250 MeV is shown in blue. Note the flat top 

that is created 20 cm into the body. In magenta, the dose deposition of a 6 MeV photon beam is 

shown.   

 

One disadvantage of using photons (X-rays or gamma rays) in radiation treatment of 

cancerous tissue deep within the body that can be seen in Figure 4 is that since most of the 

energy is released where the beam enters at the surface of the body, many more healthy 

cells will be killed than cancerous ones. The depth-dose curve, or Bragg curve, (the red 

curve in Figure 4) is a measure of stopping power described by the Bethe equation 

−
𝑑𝐸

𝑑𝑥
=

4𝜋

𝑚𝑒𝑐2
∙

𝑛𝑧2

𝛽2
∙ (

𝑒2

4𝜋휀0
)

2

∙ [ln (
2𝑚𝑒𝑐2𝛽2

𝐼 ∙ (1 − 𝛽2)
) − 𝛽2] 

where 
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−
𝑑𝐸

𝑑𝑥
≡ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑚𝑒 ≡ 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 

𝑧 ≡ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 

𝑒 ≡ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 

𝑛 ≡ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝐼 ≡ 𝑚𝑒𝑎𝑛 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

𝛽 ≡
𝑣

𝑐
 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣 

𝑐 ≡ 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 

휀0 ≡ 𝑣𝑎𝑐𝑐𝑢𝑢𝑚 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦. 

The mean excitation potential energy, 𝐼, is a function of atomic number and may be 

obtained by lookup in a table. The electron density, 𝑛, is 

𝑛 =
𝑁𝐴 ∙ 𝑍 ∙ 𝜌

𝐴 ∙ 𝑀𝑢
 

where  

𝑁𝐴 ≡ 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑍 ≡ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟 

𝜌 ≡ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝐴 ≡ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 
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𝑀𝑢 ≡ 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

With stopping power defined as 𝑆(𝐸) = − 𝑑𝐸 𝑑𝑥⁄ , the mean range of incident particles is 

obtained by integration and is calculated as 

∆𝑥 = ∫
1

𝑆(𝐸)

𝐸0

0

𝑑𝐸 

for particles having initial energy, 𝐸0. 

The effect of the Bragg peak used to shape a dose in hadron therapy can be seen in Figure 

5 that shows physical dose at the site of a cranial tumor. Note that the beam intensity is 

significantly greater at the tumor location. 

 

 

Figure 5. Proton beam dose at a cranial tumor site. 
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Figure 6. A simulation showing a beam of 7,500 1 MeV Hydrogen atoms shot through water. [20] 

 

Figure 6 shows a beam of hydrogen particles with 1 𝑀𝑒𝑉 of energy being shot through 1𝜇𝑚 

of water. The results were generated by SRIM [20]. 

 

 

2.1.4 Relative Biological Effectiveness (RBE) 

When the effectiveness of a dose of radiation on biological matter is compared to the 

effectiveness of the same dose of a different type of radiation measured in a laboratory, we 

use the term relative biological effectiveness (RBE), or equivalently, biological dose. The 

reference radiation source (often gamma or X-rays) is defined to have an RBE of 1.0. If 

𝐷𝑟𝑒𝑓 is the reference dose required to produce some effect, and 𝐷𝑡𝑒𝑠𝑡 is the dose of another 
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type of radiation required to produce the same effect, then RBE is defined as the ratio of 

𝐷𝑟𝑒𝑓 to 𝐷𝑡𝑒𝑠𝑡 where the two doses may be complex functions of many variables. 

𝑅𝐵𝐸 =
𝐷𝑟𝑒𝑓(𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑓𝑙𝑢𝑥, 𝑡𝑖𝑠𝑠𝑢𝑒 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒, … )

𝐷𝑡𝑒𝑠𝑡(𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑓𝑙𝑢𝑥, 𝑡𝑖𝑠𝑠𝑢𝑒 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒, … )
 

When planning radiation therapy, the type of radiation that will yield the greatest RBE is 

sought because tumorous cell death can be achieved using the lowest possible dose. Both 

the reference dose and the test dose are functions of physical dose, dose rate, tissue type, 

radiation type, and other factors. The RBE provides an estimate of the expected cell failure 

in a patient given a known cell failure in the laboratory. 

  

2.1.5 Relevant Chemical Reactions and the Creation of Free Radicals 

We now discuss the chemical reactions relevant to the simulation being performed here. 

Let us consider the case when a beam of ionizing radiation is incident on water molecules. 

Of the many types of molecules in the body, the case of incidence with water is the most 

important because the body consists mostly of water. For simplicity, all simulations 

performed here assume the target body consists entirely of water.  

When energetic particles interact with water the collision produces a free electron and a 

positively charged water molecule. Two events follow this. The free electron reacts with 

another water molecule to produce a negatively charged water molecule, and the positively 

charged water molecule dissociates into a hydrogen ion and a hydroxyl radical. Finally, the 

negatively charged water molecule dissociates into a hydrogen radical and a hydroxyl ion. 

These reactions produce free electrons, 𝐻− and 𝑂𝐻− ions, and the free radicals, 𝐻⦁ and 
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𝑂𝐻⦁. Free radicals are molecules with an unpaired valence electron. These highly reactive 

and biologically dangerous molecules will unselectively pair with an electron from another 

atom or molecule, possibly including those that make up a DNA molecule. Eventually, all 

of these particles recombine to form water, but some of the free radicals will damage or 

destroy DNA molecules before they recombine. In total, there are seven particle species 

excluding water, and ten reactions (see Figure 7, Table 1 and Table 2). 

 

 

When free radicals encounter DNA molecules they can cause DNA strand breaks. If only 

one strand is broken, the unbroken strand can often be used as a template to repair the 

broken side, in which case the breakage is repairable. If both strands are broken, there are 

three mechanisms of DNA repair that can be employed by the cell called non-homologous 

end joining, microhomology-mediated end joining, and homologous recombination, but 

the damage is often unrepairable. In the event that the damage cannot be repaired, the cell 

𝐻2𝑂 

𝑒− + 𝐻2𝑂 → 𝐻𝑂𝐻− 

𝐻𝑂𝐻+ 

Water 

Positively charged 

water molecule 

Incoming radiation 

Negatively charged water molecule 

𝐻⦁ 

Hydrogen radical 

𝑂𝐻− 

Hydroxyl ion 

𝐻+ Hydrogen ion 

𝑂𝐻⦁ Hydroxyl radical 

Figure 7. Relevant radiochemical reactions. 
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will die no later than at the next mitosis cycle when the entire strand of DNA is copied as 

the one cell attempts to split into two. The goal of radiation therapy is to kill cancerous 

cells by causing these double strand breaks.    

 

 

 

2.3 Three Stages of Activity Following Irradiation 

The majority of the damage caused by radiation is due to chemical reactions with water 

within cells. The reactions occur rapidly and are non-selective and random. When ionizing 

radiation enters living organisms, it follows three consecutive stages. The first stage 

following cellular irradiation is called the physical stage. In this stage the molecules in the 

cell undergo elastic and inelastic physical interactions. The physical stage is characterized 

by energy deposition and is extremely fast, lasting only about 1 femtosecond (10-15 second). 

The second stage is called the physico-chemical stage and lasts roughly from 1 

femtosecond to 1 picosecond (10-12 second). This stage is characterized by thermalization 

𝑂𝐻⦁ 

Figure 8. DNA molecule damaged by a free radical. 
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and solvation of subexitation electrons, electronic hole migration, and electronic 

recombination. Thus, particles intermix, seeking thermal equilibrium, while excited 

electrons seek to give off their excess energy as photons or vibrational energy (heat) and 

drop back down to their valence shells. The result of the physico-chemical stage is an array 

of radiolytic species that are thermalized and subject to the diffusion equation. 

The third stage is called the chemical stage, and lasts from approximately 1 picosecond to 

1 microsecond (10-6 second). It involves radiolysis of the cellular fluids and the creation of 

radioactive molecular and atomic particles. In this stage, Brownian motion governs particle 

movements, where the thermalized radiolytic species diffuse in the medium reacting with 

each other and with biomolecules such as DNA. The excitations and ionizations created by 

the energy transfer and ensuing chemical reactions lead to the creation of free radicals - 

molecules or atoms that have at least one unpaired electron in an orbital shell. The Debye-

Smoluchowski (DS) equation describes the movements of the free radicals as 

𝜕𝑝(𝑟, 𝑡|𝑟0)

𝜕𝑡
= 𝐷∇2𝑝(𝑟, 𝑡|𝑟0) + 𝐷𝛽∇ ∙ 𝑝(𝑟, 𝑡|𝑟0)𝐹(𝑟) 

where 𝐹(𝑟) is an external force field, 𝛽 =
1

𝑘𝐵𝑇
, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the 

temperature and 𝑝(𝑟, 𝑡|𝑟0) is the probability density of a particle being at location 𝑟 at time 

𝑡 given the initial location 𝑟0. This is an application of the diffusion equation and in the 

absence of an externally applied force the solution to it is a Gaussian distribution with  

 

 
𝑝(𝑟, 𝑡|𝑟0) =

1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟−𝑟0)2

4𝐷𝑡  
1.  
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Where 𝐷 is the diffusion coefficient, 𝑡 is time and 𝑝 is the probability that a particle initially 

located at 𝑟0 will be located a distance 𝑟 − 𝑟0 away after time 𝑡 [21]. Table 1 shows the 

experimentally derived diffusion coefficients and reaction radii of some important free 

radicals.  

Table 2 shows some of the more important chemical reactions that can take place between 

free radicals. 

 

 

SPECIES DIFFUSION COEFFICIENT, D 

(10-9M2S-1) 

𝒆𝒂𝒒
−  4.9 

⦁𝑶𝑯 2.8 

𝑯⦁ 7.0 

𝑯𝟑𝟎+ 9.0 

𝑯𝟐 4.8 

𝑶𝑯− 5.0 

𝑯𝟐𝟎𝟐 2.3 

Table 1. Diffusion coefficients of free radicals [22] 
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REACTION REACTION RATE 

(1010 M-1S-1) 

𝑯⦁ + 𝒆𝒂𝒒
− + 𝑯𝟐𝑶 → 𝑶𝑯− + 𝑯𝟐 2.65 

𝑯⦁ + ⦁𝑶𝑯 → 𝑯𝟐𝟎 1.44 

𝑯⦁ + 𝑯⦁ → 𝑯𝟐 1.20 

𝑯𝟐 + ⦁𝑶𝑯 →  𝑯⦁ + 𝑯𝟐𝟎 4.17x10-3 

𝑯𝟐𝟎𝟐 + 𝒆𝒂𝒒
− → 𝑶𝑯− + ⦁𝑶𝑯 1.41 

𝑯𝟑𝟎+ + 𝒆𝒂𝒒
− →  𝑯⦁ + 𝑯𝟐𝟎 2.11 

𝑯𝟑𝟎+ + 𝑶𝑯− → 𝟐𝑯𝟐𝟎 14.3 

⦁𝑶𝑯 + 𝒆𝒂𝒒
− → 𝑶𝑯− 2.95 

⦁𝑶𝑯 + ⦁𝑶𝑯 → 𝑯𝟐𝟎𝟐 0.44 

𝒆𝒂𝒒
− + 𝒆𝒂𝒒

− + 𝟐𝑯𝟐𝟎 → 𝟐𝑶𝑯− + 𝑯𝟐 0.50 

 

Table 2. Diffusion controlled reaction rates between free radicals [22] 

  

 

2.4 Monte Carlo Simulations 

The term, “Monte Carlo method”, is a term that refers to the use of repeated random 

sampling and probability statistics to solve problems that either don’t have closed form 

solutions or for other reasons are difficult to solve. The method has a wide range of 

applications and is used to solve problems in fields ranging from economics to nuclear 

physics. One of the earliest and most famous implementations of the method was presented 

by Nicholas Metropolis [23] in his 1953 study of the ideal gas law, 𝑃𝑉 = 𝑛𝑅𝑇, where the 

Boltzman distribution, 𝑒−ℰ/𝑘𝑇, was repeatedly used to move an initial distribution of 224 

particles (a simulated gas) into a new distribution. After many particle movements, the 

system, as a whole, seeks a state of low energy, in agreement with theoretical predictions.   

One of the simplest illustrations of the method can be seen by observing how it is used to 

compute a numerical solution to an integral between two limits of integration. The 
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technique consists of the repeated random sampling of points in the domain and range of 

the function. The area under the curve is the solution to the problem and that area is 

estimated to be the ratio of sampled points under the curve to the total number of sampled 

points multiplied by the area of the enclosing box (see Figure 9).    

 

Figure 9. Using the Monte Carlo method to solve an integral. 

 

The accuracy of the method improves as more and more random samples are generated 

and there is no restriction regarding what type of integral can be solved. Thus, this is a 

simple and powerful method, but obtaining a high degree of accuracy with it can come at 

the cost of significant computer time and resources.  

 

2.4.1 Kinetic Monte Carlo Simulations and Diffusion 

Monte Carlo simulations calibrated with experimental measurements provide the most 

accurate means of simulating the physical and physico-chemical stages [24] of the problem 

of interest here. We are interested in the simulation of the computationally challenging 
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third stage, i.e., the chemical stage where indirect damage to DNA molecules delivered by 

free radicals forms the basis of study. Because the simulations evolve through time, our 

Monte Carlo simulations are referred to as kinetic Monte Carlo simulations (also known as 

a Gillespie algorithm [25]). There are tools in use today that have kinetic Monte Carlo dose 

calculation engines and perform this kind of computation such as the Geant4-DNA Toolkit 

[4] [5] [6] [7], PARTRAC [26] [27], and RADACK [28] and all of them require significant 

computer time and resources to solve reasonably sized problems of this type. 

Accurate modeling of the chemical stage requires tracking the motions of millions or even 

billions of particles over a million picoseconds (the chemical stage lasts 

approximately 1 𝜇𝑠), but simulations of this size are prohibitively expensive to run even 

on large computer clusters. To put the scale of these simulations in perspective, with a mere 

quarter million incident electrons at 1MeV, there are more than 12 million  OH free 

radicals generated within the first picosecond [4] [29] [30] and more than a billion primary 

ions. The time scale under consideration is 1 𝑝𝑠 to 1 𝜇𝑠 where a time step on the order of 

1 𝑝𝑠 is normally used [31]. Thus the scale of a full fidelity simulation is enormous, and can 

easily overwhelm a state-of-the-art computing cluster. Clearly, any algorithmic 

improvements that can be made to this process will be greatly beneficial.  

For these simulations, the diffusion time is proportional to the square of the diffusion 

distance and since no other forces are present, the positions of the molecules are governed 

solely by Brownian motion (i.e. a random walk).  The following equation relates the mean 

squared displacement as a function of diffusivity, 𝐷, and tine, 𝑡. It is the second moment 

(i.e., variance) of equation 1 and it relates the average path length of a diffusing particle to 

the time it is in motion. 
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𝑥2 = 2𝐷𝑡 

These chemical reactions are diffusion limited because the speed of the reaction is fast 

compared to the movements of the reacting molecules. Reaction times are on the order of 

fractions of a picosecond. In this scenario a kinetic Monte Carlo simulation is a direct 

implementation of a random walk of a large number of simulated particles over time in 

software. We are interested in large scale Monte Carlo simulations where ionized 

molecules can be numbered in the hundreds of thousands or millions. A brute force 

approach to solving this problem compares all pairs of particles at each time step requiring 

𝑂(𝑚 ∙ 𝑛2) run time, for 𝑛 particles and 𝑚 discrete time steps. 

The recent and open source Geant4-DNA Toolkit [4] [5] [6] [7] uses a hierarchical data 

structure called a kd- tree [32] to provide fast nearest neighbor searches. In this approach 

time is discretized, and all reactions that occur take place at the beginning of the time 

interval. Within each time interval, the particles diffuse – that is, they make random 

movements. To determine which pair of particles react, a kd-tree is built based on the 

positions of the particles at the beginning of each time step. A closest pair is found whose 

reaction time is used to determine the next time interval. The main drawback to this 

algorithm is that the tree has to be rebuilt for each iteration because all particles are in new 

locations. With 𝑚 time steps, this is an 𝑂(𝑚𝑛 𝑙𝑜𝑔(𝑛)) algorithm, where O(nlogn) is the 

time to build the tree and the expected time to find the closest pair in each iteration. If the 

theoretically best time bounds of searches in the kd-tree are to be realized, then the tree 

must be balanced after the particles are inserted. This expensive step diminishes the benefit 

of the fast search. Karamitros [5] developed an improvement to this method that makes use 

of dynamically sized time steps defined to be the length of time required for the current 



32 
 

nearest neighbors to react with some probability, but the use of the kd-tree itself remains a 

bottleneck. 

 

2.5 Geant4-DNA 

Geant4-DNA is an open source, extensible toolkit that simulates the passage of particles 

through matter. Its use spans multiple application domains such as high energy physics, 

astrophysics, space science, medical physics, and radiation protection. It is a Monte Carlo 

system that combines the general purpose Geant4 architectural design with functionality 

specific to needs in the field of radiobiology. This tool was developed to meet the same 

goals outlined in this dissertation. It can be used to estimate the rate of cell survival 

following irradiation by a high energy source. A plot of dose vs. survival rate as output 

from Geant4-DNA is shown in Figure 10. Geant4-DNA is a state-of-the-art tool used for 

calculating radiometric dose. 

The Monte Carlo engine in the Geant4-DNA toolkit simulates the movements and 

interactions of the incident high energy particles used when delivering therapeutic doses 

into cancerous tissue. A kd-tree is used to provide fast nearest neighbor searches in order 

to determine when the next reaction occurs. Some inefficiencies associated with this 

approach will be discussed in section 2.4.1. It is hoped that the proximity grid method 

presented in chapter 3 can eventually be integrated into Geant4-DNA.  



33 
 

 

Figure 10. Geant4-DNA fractional survival.  

Fractional survival rate of a population of hamster cells irradiated with a 3.66 MeV proton beam 

vs. dose absorbed [33] as reported by Geant4-DNA. 

 

2.6 Fick’s Second Law of Diffusion 

Although we directly simulate the motions of molecules, it can be useful to derive an 

equation describing the macroscopic behavior of a diffusing system. One attempt at 

parallelization of the proximity grid method made use of the equations presented below as 

a way to transfer moving particles between processors in charge of different regions of 

space, but the method was unsuccessful. The derivation is included here for reference. 

Adolf Fick’s second law of diffusion [34] [35] describes the change in particle 

concentration in one dimension over time where particles are under the influence of 

diffusion and there are no externally applied forces. The equation is 
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𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
 

where 𝐷 is the diffusion coefficient (unit area per second), 𝑐(𝑥, 𝑡) is the concentration 

(number of particles per unit volume) at location 𝑥 and time 𝑡, and 𝑥 points in the direction 

of the change in particle concentration. It predicts how the particle concentration changes 

with respect to time due to diffusion. The general solution [35] can be obtained by applying 

the similarity method [35] [36]. After deriving the general solution we will apply boundary 

conditions corresponding to the diffusion we would expect to see when a drop of dopant is 

dropped into a bath of liquid. In this way we will arrive at a useful equation for our 

purposes. The method starts by guessing at a prototype solution with the aid of dimensional 

analysis. The expected functional form is 

𝑐(𝑥, 𝑡) = 𝑡−𝛽𝐹(𝜂) 

𝜂 = 𝑥2 4𝐷𝑡⁄ . 

This form has a “size” term, 𝑡−𝛽, and a “stretch” term, 𝐹(𝜂), where 𝐹 is an unknown 

function, 𝛽 is an unknown constant, and 𝑡 is time. The exponent 2 in the term 𝑥2 is an 

educated guess that arises because 𝑥 appears in Fick’s Law as a second order derivative. 

The 𝐷𝑡 in the denominator serves to make the term, 𝜂, unitless, allowing the function 𝐹 to 

behave as a universal stretch factor that is insensitive to any physical quantity (as it should 

be). The factor of four appears for mathematical convenience. The 𝑡−𝛽 term represents the 

temporal decay of the maximum concentration, with the unitless constant 𝛽 expected to be 

positive. The first and second derivatives of 𝑐(𝑥, 𝑡) with respect to 𝑡 and 𝑥 are 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= −𝛽𝑡−𝛽−1 𝐹(𝜂) + 𝑡−𝛽

𝐹

𝑑𝜂

𝑑𝜂

𝑑𝑡
= −𝛽𝑡−𝛽−1 𝐹(𝜂) − 𝜂𝑡−𝛽−1

𝑑𝐹

𝑑𝜂
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𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
= 𝑡−𝛽

𝑑𝐹

𝑑𝜂

𝑑𝜂

𝑑𝑥
=

𝛽𝑥𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂
 

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
=

𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂
+

𝑥𝑡−𝛽−1

2𝐷

𝑑𝐹2

𝑑𝜂2

𝑑𝜂

𝑑𝑥
=

𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂
+

𝑡−𝛽−1

𝐷
𝜂

𝑑𝐹2

𝑑𝜂2
 . 

Substitution into Fick’s Law yields 

−𝛽𝑡−𝛽−1 𝐹(𝜂) − 𝜂𝑡−𝛽−1
𝑑𝐹

𝑑𝜂
=

𝑡−𝛽−1

2

𝑑𝐹

𝑑𝜂
+ 𝜂𝑡−𝛽−1

𝑑𝐹2

𝑑𝜂2
. 

Note how both 𝑡 and 𝐷 cancel out due to the careful way that 𝜂 is defined. Continuing to 

simplify: 

−𝛽 𝐹(𝜂) − 𝜂
𝑑𝐹

𝑑𝜂
=

1

2

𝑑𝐹

𝑑𝜂
+ 𝜂

𝑑𝐹2

𝑑𝜂2
 

𝛽 𝐹(𝜂) + 𝜂
𝑑𝐹

𝑑𝜂
+

1

2

𝑑𝐹

𝑑𝜂
+ 𝜂

𝑑𝐹2

𝑑𝜂2
= 0 

𝜂
𝑑

𝑑𝜂
(

𝑑𝐹

𝑑𝜂
+ 𝐹) +

1

2
(

𝑑𝐹

𝑑𝜂
+ 2𝛽 𝐹) = 0. 

Since 𝛽 is a free parameter, we choose it to be 
1

2
 so that the terms in parentheses are 

identical. Then 

𝜂
𝑑

𝑑𝜂
(

𝑑𝐹

𝑑𝜂
+ 𝐹) +

1

2
(

𝑑𝐹

𝑑𝜂
+  𝐹) = 0. 

A solution to this equation satisfies the condition  

𝑑𝐹

𝑑𝜂
+ 𝐹(𝜂) = 0. 
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That is, our solution is conditioned on the fact that the derivative of a function plus the 

function evaluated at any point is always zero. This is a condition that can only be satisfied 

with an exponential function, thus 

𝐹(𝜂) = 𝛼𝑒−𝜂 

and the general form for the concentration is 

𝑐(𝑥, 𝑡) =
𝛼

√𝑡
𝑒−𝑥2 4𝐷𝑡⁄  

where 𝛼 is an unknown constant. Applying the boundary condition that the original number 

of particles is constant (i.e., there is no particle source or sink), then the integration of the 

concentration over space at any given time must sum to the number of particles.  

∫ 𝑐(𝑥, 𝑡)𝑑𝑥
∞

−∞

= 𝑁 

∫
𝛼

√𝑡
𝑒−𝑥2 4𝐷𝑡⁄ 𝑑𝑥

∞

−∞

= 𝑁 

Defining 𝑦 ≡
𝑥

2√𝐷𝑡
  allows us to rewrite this as  

2𝛼√𝐷 ∫ 𝑒−𝑦2
𝑑𝑦

∞

−∞

= 𝑁. 

Due to symmetry this is 

4𝛼√𝐷 ∫ 𝑒−𝑦2
𝑑𝑦

∞

0

= 𝑁. 

Since ∫ 𝑒−𝑦2
𝑑𝑦

∞

0
=

√𝜋

2
 this reduces to  

2𝛼√𝜋𝐷 = 𝑁 
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𝛼 =
𝑁

2√𝜋𝐷
 

and the concentration as a function of time and location in one dimension becomes 

𝑐(𝑥, 𝑡) =
𝑁

2√𝜋𝐷𝑡
𝑒−𝑥2 4𝐷𝑡⁄ . 

Figure 11. The concentration profile at two times, 𝑡1 and 𝑡2 with 𝑡2 >, 𝑡1. 

 

  

𝑥 

𝑐(𝑥) 
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CHAPTER 3 

SEQUENTIAL ALGORITHM 

The problem we wish to solve is this. Given 𝑛 radiolytic particles in a variety of molecular 

species in a bath of 𝐻2𝑂 molecules, arranged as a particle beam (e.g., from a gamma knife) 

and subject to diffusion over a time period of 1 𝜇𝑠, observe and process all chemical 

reactions, reporting the radiochemical yield over time. We observe that the reactions in  

Table 2 contain only two species on the left hand side, excluding water which is treated as 

being infinitely abundant and existing everywhere, and that the closest pair of particles in 

any of the left hand sides of the equations will be the next reaction to process at any instant. 

Thus, this is an instance of the kinetic polychromatic closest pair problem in computational 

geometry. Stated formally, the polychromatic closest pair problem is: given 𝑛 points in a 

metric space, where each point is one of 𝑚 species (or colors), find all pairs of closest 

particles such that the resulting set of pairs is the set of ordered pairs of the elements of 𝑚. 

We use the term “kinetic” because the particles are in motion and we want to ask the closest 

pair question at each time step during the simulation. 

The proximity grid method presented here solves the closest pair problem when particles 

are in motion, and is based on the following five observations. 1) A grid provides a notion 

of locality so that entire groupings of particles can be pruned from consideration at once. 

2) A grid is efficient in the kinetic case. 3) A kinetic data structure provides a time stepping 

mechanism that is efficient, requiring the execution of only spatially local operations at 

each time step. 4) A kinetic data structure does not skip important events the way a fixed 
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time stepping mechanism can. 5) A hash table provides constant time lookup and naturally 

lends itself to sparse data storage of the contents of the grid. 

 

3.1 Overview 

A serial version of the algorithm discussed in the sections that follow is presented here. An 

OpenMP parallelized version is presented in chapter 4. The serial version achieves 

𝑂((𝑛 + 𝑘) log 𝑛) run time where there are 𝑛 input particles and the priority queue is 

serviced 𝑘 times.  The serial version of the code was published in [22], and the parallel 

version is being prepared for publication at this time. 

Section 3.2 discusses the closest pair problem and how it is used to implement a nearest 

neighbor search in order to identify chemical reactions. Section 3.3 gives the details of the 

implementation of the time stepping mechanism known as a kinetic data structure. The 

kinetic data structure is used to efficiently handle the large number of time steps required 

in the simulation. Finally, section 3.4 outlines the overall program flow. 

  

3.2 Nearest Neighbor Search 

3.2.1 The Closest Pair Problem 

The closest pair problem is a problem in computational geometry and can be stated as: 

given n points in a metric space, find the pair of points with the smallest distance between 

them. The bi-chromatic version of the problem assigns one of two colors to each point and 

requires that the solution contain points of a different color. The brute force solution to 

both forms of the problem, obtained by exhaustively comparing the distances between each 
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pair of points, runs in 𝑂(𝑛2) time. This is an important problem to consider for these 

simulations because knowing where the closest pair of particles is means knowing the 

participants of the next radiochemical reaction. 

The problem of finding the closest pair of points in an array of randomly scattered two 

dimensional points has been solved in 𝑂(𝑛) time by Khuller [37] using what is referred to 

as a randomized sieve. In this case, the points are motionless. The algorithm proceeds by 

choosing a point at random and calculating its distance to all other points. Once a lower 

bound distance, 𝛿, is found, a two dimensional grid is overlaid onto the domain of particles 

where the cell size is 𝛿/3. All particles that are alone in their grid squares with no particles 

in an adjacent square (i.e., alone in their neighborhood) are removed from the problem 

(they fall through the “sieve”). These steps are repeated with the smaller set of particles 

until it is determined that the next iteration would remove all particles. Finally, at this last 

iteration, labelled iteration 𝑖, a grid of size  𝛿𝑖 is overlaid on the final set of particles and 

distances are computed between all pairs of particles that are within the same neighborhood 

(i.e., in the same grid square or an adjacent one). The pair with the minimum distance is 

the closest pair. Khuller’s solution is the best known solution when the points are not in 

motion and his solution is adaptable to three dimensions, but we wish to consider the 

problem of finding closest pairs of various particle species that are in motion. If Khuller’s 

static problem is changed so that the points undergo simulated Brownian motion (diffusion) 

and if the closest pair question is asked at every time step of the simulation, then this 

solution becomes inefficient because all points removed from the problem at one time step 

must be re-inserted at the next one.   
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Nonetheless, it is instructive to notice that the notion of locality provided by the grid is 

useful in reducing the search space of the problem. An efficient method for solving this 

problem in the kinetic case is developed here.   

This algorithm solves the dynamic bi-chromatic closest pair problem using a layered 

directed acyclic graph, where each layer is a hash table to store the particles (at the lowest 

layer) and cells of particles (at all other layers). The use of hash tables allows the 

identification of the closest pair in linear expected time while also saving space since empty 

cells of particles need not be stored. Time is not discretized globally throughout the 

simulation. Rather, a priority queue is used to keep track of time in spatially local segments 

and its use requires only spatially local work to maintain. With these techniques, the 

simulation time is reduced to O((n+k)logn), where O(nlogn) is the time to initialize the 

data structure,  k is the total number of events of interest (i.e., Brownian movements), and 

O(logn) is the time to update the priority queue in each iteration. Implementation and 

experiments have shown that with the new algorithm the actual run time is nearly linear in 

the number of input particles and is considerably faster than the current hierarchical 

approach. More will be said about this algorithm later. 

 

3.2.2 Proximity Grid 

A hierarchical grid of grids (the proximity grid) provides a way to solve the closest pair 

problem where distinct definitions of closeness apply per {reaction, species} pair (each 

reaction has a different reaction radius) while at the same time satisfying the condition that 

each particle is represented exactly once in the simulation. This condition is necessary 

because to relax it would mean that insertions, deletions, or movements of particles would 
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need to be done more than once and would constitute an undesirable performance penalty. 

The proximity grid may be thought of as a layered directed, acyclic graph, where each layer 

is a three dimensional grid implemented as a hashed map. Any reaction serves as an entry 

point (a point at which one may begin iterating over particles), or root node, of the graph. 

Reaction nodes have one outgoing edge per reactant that points to the grid with an edge 

length equal to the reaction radius of the associated reaction for that reactant (see Figure 

12). There is only one copy of any given particle in the entire simulation, yet that particle 

is represented at each given reaction radius – a key feature of the method (see Figure 13). 

It is important to represent the particles at all reaction radii of the reactions they can 

participate in for two reasons. First, if the cells in the grid have a size equal to a reaction 

radius, then particles more than two cells apart cannot participate in a reaction and may 

easily, and inexpensively, be pruned from consideration when checking for reactions. This 

means that it is only necessary to compute a distance between pairs of particles in adjacent 

cells. Second, it is important to keep the list of candidate reactants as small as possible so 

that the number of potential reactions to consider is minimized. The reaction radii 

considered here vary by as many as three orders of magnitude, so failing to meet this 

criteria would have a significant impact on run time. 

The representation of particles at multiple radii is accomplished by building a tree of cells 

(see Figure 14). Particles are directly inserted only in the grid with the smallest reaction 

radius for any given particle species (the leaf nodes of the tree). All other grids containing 

that particle contain particle cells rather than directly containing particles (the branch nodes 

of the tree). Iteration through the particles for any cell proceeds by recursively iterating 

through child cells in depth-first search fashion, and each grid is sparse. Sparsity means 
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that if any gridded region contains no particles, then it also contains no cells (that is, the 

depth-first search for particles always visits particles, never an empty cell). With this 

hierarchy of cells, iteration through the particles in any given cell is linear in time regardless 

of which grid iteration starts in. 

 

 

The nearest reactable neighbor for any particle is found by searching through the cell that 

the particle belongs in and in all twenty-six surrounding cells in 3D space. Iteration begins 

in the grid corresponding to the reaction radius of interest.  

For any particle of interest, any other particle in the enclosing 333 grid cube region is 

said to be in proximity to the particle. All particles in proximity to a particle of interest are 

checked for a reaction. 

 

 

𝐻⦁ +  𝑒 + 𝐻2𝑂 →  𝑂𝐻 + 𝐻2 

𝐻⦁ 𝑒 

𝑟𝑒1 

𝐻2𝑂2  +  𝑒 →  𝑂𝐻 +  ⦁𝑂𝐻 

𝐻202 𝑒 

𝑟𝑒2 

Figure 12. Reaction/reactant graph. 

The reaction graph and child reactant grids with the dotted arrow showing the tree of 

grids for particle “e”. 𝑟𝑒1 is the reaction radius of the 𝐻⦁ +  𝑒 + 𝐻2𝑂 →  𝑂𝐻 +  𝐻2 

reaction, and 𝑟𝑒2 is the reaction radius of the 𝐻2𝑂2  +  𝑒 →  𝑂𝐻 +  ⦁𝑂𝐻 reaction. 
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3.3 Simulation of Time 

3.3.1 Kinetic Data Structures 

Kinetic data structures [10] [11] [12] [13] are designed to keep track of certain discrete 

events of a system of continuously moving objects. For example, in our simulation we are 

Figure 13. Grid of cells. 

Grid of cells for particle, "e", in the first and second reactions from Figure 12. The cell 

size is the reaction radius for each reaction. The smallest “e” cell contains particles of 

species “e”. All other “e” cells contain “e” grid cells of a smaller reaction radius. 

Figure 14. Hierarchy of cells.  

There is one such hierarchy per species of particle. There is one level of hierarchy 

per reaction radius that the particle is associated with. 
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interested in tracking reactions (i.e., discrete events) for a set of moving particles. It is 

customary to simulate such events within the context of a discrete time stepping 

environment where all particles move in lock-step with one another at every time step, 

however this type of simulation suffers from the problem that excessively small time steps 

capture all important events but can take too much computer time to simulate. On the other 

hand, excessively large steps can miss important events. It is often difficult to find a good 

compromise between these two extremes especially in light of the fact that the most ideal 

time step size may not stay constant throughout the simulation. Furthermore, the chemical 

reactions of interest to us occur on the scale of fractions of a picosecond and one million 

picoseconds of time (one microsecond) must be simulated. Due to the large number of time 

steps, it is important to not waste cpu time simulating unnecessary events. A kinetic data 

structure provides an alternative to a constant time stepping mechanism in a spatially global 

environment, and when well designed, it can simulate exactly the right number of time 

steps to capture all important events without wasting simulation time or requiring the 

determination of an appropriate step size. In addition, each step taken requires only 

spatially local operations.  

The key idea is to identify a small set of discrete attributes that uniquely characterizes a 

useful event within the simulation. The system then evolves with time, while maintaining 

the set of discrete attributes which are referred to as a certificate. The times at which the 

certificates become invalid, arranged in sorted order, form the basis of the time stepping 

mechanism in a priority queue. Thus, time steps in the simulation do not proceed in fixed 

increments. They jump forward to the next time at which a certificate loses validity. When 

a certificate becomes invalid, a small amount of spatially local work is done to re-establish 



46 
 

validity and the simulation continues. The work is spatially local because certificates are 

usually defined in terms of spatially local configurations of geometric objects. A certificate 

might assert that a given set of four points form a convex hull, for example. When one 

point moves such that it crosses the hull boundary, the certificate fails. The work required 

to reestablish validity is simply to redefine the hull in terms of a new set of points - all 

spatially local operations.  

Since the inception of the idea, many classic algorithms have been kinetized, including the 

closest pair problem in the plane [12]. This is an approach that makes use of three 60° 

right-facing wedges for every point in the domain whose apexes are located at each point 

(see Figure 15). Each of the three wedges has a left and a right side (both ±30° slices) that 

function as a binary tree of neighboring points such that neighbors on the left 30° side are 

closer to the point at the apex than neighbors on the right 30° side. There are three binary 

trees connected to each point (three wedges) covering a total arc length of 180°. This 

coverage allows all points on the right to be considered as “children” of points on the left 

in a system of binary trees. Consider the placement of point 𝑐 in the 3-wedge structure 

anchored at point 𝑎 in Figure 15. If it were not for the presence of point 𝑏, point 𝑐 would 

have been placed in the left side of the center wedge (center binary tree) of point 𝑎. 

However, point 𝑏 is closer to 𝑎 than 𝑐 is to 𝑎. Therefore point 𝑐 is placed in point 𝑏’s lower 

wedge (lower binary tree) instead. In this way, chains of near neighbors are maintained and 

the search for a nearest neighbor can be performed in 𝑂(𝑛 log 𝑛) time.   

The flight paths of each point are known and therefore the times at which the arrangement 

of the points in the tree structure become invalid can be computed. These times are called 

certificate failures and are inserted into a priority queue of failure times. Time stepping 
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proceeds by processing each failure time, in the order defined by the queue, repairing the 

trees and inserting new certificates into the queue. These repairs are spatially local 

operations, requiring only a few tree insertions, deletions, and rotations, per time step 

which makes the algorithm both efficient and amenable to situations where objects are in 

motion. 

 

 

 

 

 

 

 

 

3.3.2 Algorithmic Use of the Kinetic Data Structure 

For the simulations performed in this dissertation, the motions of particles are random 

walks governed by a Gaussian distribution from the solution to the diffusion equation. The 

idea of using a time based priority queue [38] to avoid global time discretization has 

inspired the development of the following randomized kinetic closest pair algorithm from 

which we make the following observations. 

Observation 1: The randomized closest pair algorithm as discussed earlier in the closest 

pair section and in [37] relies on the validity of the underlying grid. As long as the moving 

𝑎 

𝑏 

𝑐 

Figure 15. The binary tree structure of near neighbors.  

Each node contains three binary sub-trees consisting of three 60° wedges. The top of 

the tree is the left-most node. The leaves are on the right. 
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particles do not move to a different cell, the grid is in a “valid” configuration. This suggests 

that the certificates should be defined simply as the movement of a particle from one cell 

to another. Since the particle is subject to Brownian motion, we can use random sampling 

to calculate the time a particle changes its grid cell. This is a certificate failure and the time 

of failure can be put in the priority queue. 

Observation 2: We are interested in reaction events. Therefore, the reaction radius of a 

given reaction will determine the size of the associated grid. For any given particle, only 

the particles in the enclosing 3x3x3 set of cells can react with it. We can therefore locate 

its nearest neighbor in constant time, and use random sampling to determine the reaction 

time.  

Since the number of events in our priority queue is 𝑛, it takes O(logn) time to insert or 

remove an event from the queue. Our kinetic randomized closest pair algorithm is 

responsive, local, compact, and efficient as defined by Basch in [12]. These terms mean 

that the data structure is no more than polylogarithmic in the number of input particles, 

both in required memory and in run time. For this priority queue, a certificate expires when 

a particle moves from one cell (of the smallest reaction radius for the associated particle 

type) to another.  

The expected simulation time of our kinetic randomized closest pair is O((n+k)logn), 

where O(nlogn) is the time to initialize the data structure,  k is the total number of events 

of interest, and O(logn) is the time required to update the priority queue in each iteration. 
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3.4 Brownian Bridge 

In time-based simulations, it is most common to discretize time so that the state of the 

simulation moves forward with discrete jumps in time. Thus one knows the locations of 

particles only at those times that are simulated. For a diffusive process, the underlying 

physics are those of Brownian motion, thus, the unknown inter-particle distances can be 

smaller between time steps than they are at the time step boundaries where the distances 

are known. The discrete nature of the simulation effectively imposes a limit on our 

knowledge of the locations of the particles. This fact is important because radiochemical 

reactions occur when species are close enough to react. The possibility that two particles 

are close enough to react between time steps, but not close enough at the time step 

boundaries can be handled probabilistically. 

 

 

 

 

Let the locations of particles at time steps 𝑡 and 𝑡 + ∆𝑡 be known, but the locations at times 

𝑡 + 𝛼∆𝑡 where 0 < 𝛼 < 1 be unknown. The question of whether or not these particles are 

close enough to react during that time can be answered probabilistically using a 

𝑑1 > 𝑟 

𝑝0,𝑡0
 

𝑝1,𝑡0
 

𝑝0,𝑡1
 𝑝1,𝑡1

 

𝑑 ≤ 𝑟 
𝑝0,𝑡0

 

𝑝1,𝑡0
 

𝑝0,𝑡1
 𝑝1,𝑡1

 

Figure 16. Two particles in Brownian motion. 

The particles travel between two known points in a specified time with reaction radius, r. 

Particles 𝑝0 and 𝑝1react because 𝑑1 ≤ 𝑟 (left). Particles 𝑝0 and 𝑝1react because 𝑑 ≤ 𝑟 

during flight (right). 
 



50 
 

construction called a Brownian bridge [39] [5] [40] [41].  A Brownian bridge is a stochastic 

process that is continuous in time between two endpoints, 𝑡 and  𝑡 + ∆𝑡. It is a sequence of 

random steps that are jointly normally distributed such that the endpoints of the random 

walk are known but the steps in between are not. A random walker has a known position 

at 𝑡 and 𝑡 + ∆𝑡 and the positions between are not known, but each step the walker takes is 

the result of a normalized Gaussian sample in the domain. That is, the probability density 

of any given step is the normal distribution: 

𝑝(�⃗�) = 𝒩(�⃗�, 𝜎2) = 𝒩(�⃗�, 𝐷𝑡) 

𝜇 =
𝑥0⃗⃗⃗⃗⃗ + 𝑥1⃗⃗ ⃗⃗

2
 

where we note that the variance may be thought of as a function of time, 𝑡, and a diffusion 

constant, 𝐷 [22] [4] [42]. In the Brownian bridge, the uncertainty in �⃗� is low or zero at 𝑡 

and  𝑡 + ∆𝑡, and maximal at 𝑡 +
∆𝑡

2
 [40]. From this it is clear that the mean of the 

distribution, �⃗�, is the average of the two endpoints of the bridge, 𝑥0⃗⃗⃗⃗⃗ and 𝑥1⃗⃗ ⃗⃗ . In our case 

both 𝑥0⃗⃗⃗⃗⃗ and 𝑥1⃗⃗ ⃗⃗  are known with certainty. We have two particles in motion that we wish to 

relate to a Brownian bridge. To set up this relationship, we will think of the coordinate 

system defined by the line between the two particles (see 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in Figure 17). Each step taken 

during a random walk is a step that lengthens or shortens 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.  
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This construction has two notable features. First, the problem expressed this way is one 

dimensional despite the fact that the particles are moving in three dimensions, and second, 

the probability of every randomly taken step is a conditional one. That is, we now refer to 

the conditional probability, 𝑝(𝑦, 𝑡|𝑥0⃗⃗⃗⃗⃗), when taking each step, where the variable, 𝑦, is 

used to describe the position along the axis defined by  𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in Figure 17 and the origin is 

defined to be located at 𝑥0⃗⃗⃗⃗⃗. For convenience we use the subscripts zero and one to refer to 

the known location at each of the two time steps. Also for convenience, we let 𝑡0 = 0 and 

𝑡1 = ∆𝑡. A Brownian bridge is depicted graphically in Figure 18 which shows the position 

along the one dimensional axis of motion as a function of time. Given the initial distance 

between the particles, 𝑑0, we ask with what probability 𝑦1 reaches or falls below height 𝑟 

on the bridge within time ∆𝑡. We will make use of two boundary conditions – namely the 

known locations of the particles at 𝑡0 and 𝑡1. 

 

Figure 17. The distance vector between two particles in motion. 

Two particles in motion where |𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| is the distance between them as a 

function of time 𝑡 and 𝑥0,𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ and 𝑥1,𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ locate the particles during flight. 

𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 
𝑥0,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

𝑥1,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

𝑗 

𝑖 
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Let 𝑦′ be the current height of the bridge while 0 ≤ 𝑡 ≤ ∆𝑡, then we can write the following 

cumulative distribution: 

𝑃[𝑦′ < 𝑟 𝑎𝑛𝑑 𝑡 < ∆𝑡] = ∫ 𝑝(𝑦, 𝑡|𝑦1,0)𝑑𝑦
𝑟−𝑦′

−∞

= ∫ 𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0)𝑑𝑦
𝑦′

−∞

 

The probability density, 𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) (see equation 1, sect. 2.3), expresses the 

probability that a random walker located at 𝑦 reaches location 𝑟 (see Figure 18) and it may 

therefore be written as  

Figure 18. Brownian bridge.  

Two particles are initially located at 𝑦0 and 𝑦1separated by distance 𝑑0. After time ∆𝑡 

they are separated by 𝑑1. The particles will react if they get closer than 𝑟, so we seek 

the probability that 𝑦1 decreases to height 𝑟 within time ∆𝑡 on the bridge. 
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𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) =
1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟−𝑦−𝑦1,0)
2

4𝐷𝑡 . 

Note that the probability density makes use of the first boundary condition - the location 

𝑦1,0 - and we simply write it in. The quadratic term in the exponent can be factored into the 

sum of two terms: 

(𝑟 − 𝑦 − 𝑦1,0)
2
 

(−𝑦 − (𝑦1,0 − 𝑟))
2

 

(𝑟 + 𝑦 − 𝑦1,0)
2

+ 4𝑦(𝑦1,0 − 𝑟) 

leading to a probability density where the conditional and unconditional portions of the 

probability are isolated from one another. 

𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) =
1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟+𝑦−𝑦1,0)
2

4𝐷𝑡 𝑒−
𝑦(𝑦1,0−𝑟)

𝐷𝑡  

The unconditional probability density, 𝑝(𝑦1,0, 𝑡), is the Gaussian portion of the equation 

above. Graphically, it is the location of the tail of the vector  𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (i.e. the location of one 

random walker) in Figure 17. 

  1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟+𝑦−𝑦1,0)
2

4𝐷𝑡  
(Unconditional Gaussian 

portion). 

 
𝑒−

𝑦(𝑦1,0−𝑟)
𝐷𝑡  

(Conditional portion). 

The remaining term is the conditional portion which we label 𝑝𝑏𝑟𝑖𝑑𝑔𝑒. The second 

boundary condition may be applied by observing what happens as the threshold distance, 
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𝑟, approaches the distance between the particles at the end of the bridge, d1. In this 

situation, the probability of crossing the threshold distance, 𝑟, is 1 and therefore 𝑦 =

𝑦1,∆𝑡 − 𝑟. The bridge probability density can then be written 

𝑝𝑏𝑟𝑖𝑑𝑔𝑒 = 𝑒−
(𝑦1,∆𝑡−𝑟)(𝑦1,0−𝑟)

𝐷𝑡 . 

Note that the equation is symmetric with respect to the beginning and ending inter-particle 

distances, as it must be since the probability density must be the same no matter which 

direction we choose to cross the bridge. This probability density can be used, with a roll of 

the dice, to determine if a reaction occurs despite the fact that the inter-particles distances 

at two known time steps, 𝑡 and 𝑡 + ∆𝑡, are both greater than the reaction radius. 

 

3.5 Serial Implementation 

The serial version of this algorithm [22] has been implemented in the C++ programming 

language. The simulation was set up by creating particles that were randomly generated 

and assigned locations that were normally distributed and symmetric about the X-axis. This 

simulates the distribution of particles shortly after the initial burst of ionizing radiation in 

water. The size of the problem domain is 300 𝑛𝑚.  

Cells in the proximity grids are objects that are stored in hash tables, and we take care to 

remove empty cells as the simulation progresses. This mitigates the effect of hash table 

collisions and keeps the run time cost of iteration through the particles linear in time. The 

pseudo code for this algorithm is as follows: 



55 
 

1. Insert all particles into the priority queue and proximity grid, processing any 

reactions found. 

2. While certificate expiration times are available, and total time < 1𝜇𝑠 do: 

(a) Pop the next certificate and move the associated particle to its new location. 

(b) Check all neighbors in proximity to it for a reaction. If a reaction occurs, 

replace reactants with products. 

(c) Update the priority queue with new certificates. 

3. Report all particle distributions. 

Figure 19. Pseudo-code 

 

The reaction radius for each reaction is computed from the diffusion constants for the 

species involved in the reaction and the reaction rate as described by [30] [42], where 𝑅 is 

the reaction radius, 𝑘𝑑 is the reaction rate, and 𝐷 is the sum of the diffusion constants for 

the reacting species.  

𝑅 =
𝑘𝑑

4𝜋𝐷
 

To handle the situation of how two particles are determined to be close enough for a 

reaction to occur given that the passage of time is constrained to occur in discrete jumps, 

we use a Brownian bridge as described earlier.  
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3.6 Serial Version Results 

The serial version of the algorithm was tested on a desktop computer running Debian Linux 

with 16 GB RAM and 8 Intel core i7 CPUs (2.8 GHz) (only one core was used). The 

running time was calculated from the number of CPU cycles for each algorithm. For 

comparison, a baseline kd-tree method was also run. Details about the kd-tree method can 

be found in [22]. Both codes used 75,000 particles as input, corresponding to an input 

energy of approximately 50 keV. The kd-tree method required 265 hours to complete while 

the proximity grid method performs this same run in 25 hours – a factor of 10 better.  Figure 

20 compares the run times between the two methods.  

The concentration of radiolytic species has been compared with previous results [4] 

obtained using the Geant4-DNA toolkit and found the results to be consistent with one 
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another. Figure 21 shows the results for 𝑒𝑎𝑞
−  species from a total of 7,500 particles for all 

species (corresponding to approximately 50 keV input energy). 

Figure 20. The serial version vs. a kd-tree method. 

Figure 21. Original Geant4-DNA results. Reproduced from [4] 

with the Proximity Grid results overlaid. 
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CHAPTER 4 

PARALLEL IMPLEMENTATIONS 

We present three parallel versions of the proximity grid algorithm based on OpenMP 

technology and we show a way to achieve a constant 80% scalability with respect to the 

number of processors used. All three methods parallelize the priority queue and grid data 

structures, and they do it in a way that avoids the use of expensive mutexes. They are 

insensitive to changes in particle density as the simulation proceeds. The first 

implementation is a ticket-based method. It divides space into regions and assigns ticket 

indexes to them. Each processor must obtain the ticket corresponding to the region for 

which the next particle needs to be processed. The second method uses a treap data 

structure to implement the priority queue. The treap’s priority queue key is used as the 

priority queue key, and the heap key is used to organize subtrees in the treap by ticket 

index. This data structure makes it possible for each processor to process more than one 

particle for each ticket that it has obtained. The third implementation, dubbed the zone 

method, is a more standard spatial discretization method. In this method, the priority queue 

is organized not only by priority queue key, but also by x-coordinate. The three methods 

are compared for scalability and overall effectiveness.   

4.1 Challenges With Respect to Parallelization 

Let us now discuss some of the challenges that must be overcome with respect to 

parallelization of this code. We will discuss the sources of resource contention, the 
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requirement to preserve the accuracy of the physics of the simulation, the restrictions 

associated with parallelizing the proximity grid data structures, and the choice of 

OpenMP as the parallelization technology. 

 

4.1.1 Sources of Resource Contention 

In order for the various tasks performed by the code to be executed in parallel, it is 

necessary to identify those computations that do not depend on the completion of other 

computations – i.e., independent computations. Those tasks meeting this criteria are 

candidates for parallelization, but those tasks should be made as large as possible because 

there is an overhead associated with spawning parallel threads of execution. In the 

proximity grid algorithm, the task being repeated over and over again is the movement of 

a particle followed by the check for a reaction. This is a situation where the largest unit of 

parallelizable work is small. It is so small, in fact, that the overhead associated with keeping 

threads operating in independent regions of space (called ticket acquisition in section 4.2), 

or the repeated calling of expensive functions such as malloc(), can be non-negligible with 

respect to the length of time it takes to perform the task.  

We therefore explore two possible sources of resource contention in the proximity grid 

algorithm in order to determine if they cause a loss of scalability. The first is that, since the 

ticket acquisition process (described in section 4.2) is necessarily a serial operation, there 

may be some point at which, given enough processors, threads finish their work and begin 

to wait in line to obtain a ticket – in other words, there may be a point at which the time it 

takes to obtain a ticket is non-negligible as compared to the time it takes to move a particle 

and check for a reaction. To determine if this is an issue, we devise a way to give each 
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thread more work to do for each ticket that has been obtained. The result is that threads 

need to obtain new tickets less frequently, avoiding the bottleneck (if the bottleneck exists). 

This variant of the algorithm makes use of a treap data structure (described in section 4.3). 

 The second possible source of resource contention is that insertions and deletions in the 

proximity grid data structure are frequently made as particles are moved from cell to cell. 

The particles themselves are retrieved from a memory pool and require no dynamic 

memory allocation. However, during the hash map insert operation, the C++ operator 

new() is called in order to allocate the memory used to maintain the data structure (i.e., in 

the hash map’s buckets). Since many threads may be executing code that resize their 

buckets at the same time, then the call to operator new() may be a bottleneck. Glibc’s 

implementation of malloc, attempts to avoid locking the memory heap as much as possible, 

however heap locking does occur. We modify the zone method (see section 4.4) to use pre-

allocated memory in the hash map data structure with the result being that operator new() 

is called only during the setup phase and it is not called at all when the Monte Carlo portion 

of the simulation starts. In addition, we show the result of substituting glibc’s malloc() with 

tcmalloc() – a thread caching version of malloc(). 

4.1.2 The Accuracy of the Physics With Respect to Simulation Time 

Parallel computations must not only be independent in terms of numerical computation and 

memory access, they must also be independent in terms of any real-world physics being 

simulated by the overall algorithm. It is not sufficient to isolate data and computation 

within each thread if the simulated physics within each thread depend upon one another. 

For example, large scale Monte Carlo simulations of physical environments such as a box 

full of moving molecules (i.e., a gas, or a liquid) may be parallelized such that one subset 
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of molecules are managed by one thread and a second subset is managed by a second 

thread. Even if data and computations are kept separate, the physical quantity of time must 

remain synchronized between the threads in order for the physical processes (i.e., chemical 

reactions) to proceed as they should. One method of accomplishing this is to break the 

problem down into spatial domains and process each domain independently for short 

periods of time, thus keeping the physical quantity of time nearly synchronized.  

Spatial domains may be processed in either a deterministic or a random fashion. Random 

processing of sub-regions in the problem domain can offer some advantages over 

deterministic approaches. For example, if the problem domain exhibits changes in density 

over time, the spatial region centered at a randomly chosen molecule can be assigned to 

the next available processor. In this way, regions of space get a share of processor time that 

is proportional to their particle density. An example of a fluid flow algorithm of this type 

has been developed by O’Keeffe [43].     

Procassini [44] solves a similar kind of problem in a different way. His method dynamically 

assigns processors to the domains requiring the greatest amount of work. In this method, 

the problem geometry is divided spatially and each region is processed in a deterministic 

order. Each domain is replicated a variable number of times – one per assigned processor 

– with each processor responsible for handling an equal number of particles in the domain. 

Periodic testing is done to estimate particle density within each replicated domain to 

determine if load rebalancing would speed up the calculation. Since the rebalancing 

operation is expensive, it is only done if it is determined to be worthwhile. 

In the proximity grid algorithm, this issue is handled elegantly by virtue of the use of 

multiple priority queues, one per processor, and each filled randomly with certificates, as 
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described in section 4.2. Because the queues have a random distribution of certificates with 

respect to particle location, varying particle density does not cause the flow of simulation 

time to diverge among the processors. 

4.1.3 Parallel Forms of the Proximity Grid Data Structures 

The research presented here uses hashed containers and a kinetic priority queue to solve 

the closest pair problem. Parallel forms of these containers are required to parallelize the 

proximity grid algorithm.  Parallel hashing has been studied extensively in the literature 

[45] [46] [47] [48] [49] [50]. These solutions find ways to avoid or minimize collision 

resolution in the hashed container. Collision resolution, a necessary component of 

containers using imperfect hashing, involves the building and accessing of linked lists 

which does not fit naturally in a parallel environment because it can be difficult to keep all 

cores busy while list traversal takes place (the lists have an unknown size and therefore an 

unknown amount of work is required to traverse them). Because of this, perfect hashing is 

sometimes used, but perfect hashing has the disadvantage of being space inefficient. The 

approach by Alcantara [50], uses a perfect hash and achieves space efficiency by rebuilding 

the hash table during every insertion and deletion. The domain is broken down into non-

interacting regions, thus this can be done in a massively parallel way. Therefore they 

remain efficient operations, given enough processors. Breaking the problem down into 

smaller, non-interacting sub-problems is a key to achieving this efficiency. The serial 

version of the proximity grid algorithm achieves efficiency, in part, by keeping the 

hierarchy of cells and particles sparsely organized, and this is accomplished by removing 

cells from parent cells as they become empty and inserting new cells as needed. Cells in 

the proximity grid therefore interact with other cells in some spatially local vicinity. 
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Methods [51] [52] have been developed that interlace regions of space into “active” regions 

and “inactive” ones. Processors periodically visit and operate on regions marked as active, 

advancing simulation time in the region for some small length of time (see Figure 22). The 

active regions are larger than the largest reaction radius or particle movement size so that 

any reaction or movement that occurs can be processed independently of others. 

There are potential drawbacks to spatial decomposition, however. As already noted, 

approaches such as this can suffer from the fact that since the particles undergo diffusion, 

their spatial distribution changes over time making their density a time-varying quantity. 

This means that there can be periods of relative inactivity of some threads with respect to 

the others as the simulation proceeds. Since we strive to keep all threads busy at all times, 

this is not an ideal situation. Furthermore, as can be seen in Figure 23, as time marches on 

and diffusion takes place, the distribution of particles spreads out. This means that the 

processors responsible for handling the regions at the ends of the sub-domains will be asked 

to do more work than the ones in the interior regions as time moves forward. This is not 

only a load imbalance, but it creates a physically unrealistic situation since it causes 

simulated time to proceed more slowly in the two end regions than it does in the interior 

ones. The parallel version of the proximity grid method makes use of spatial 

decomposition, but it does so in a dynamic way that avoids these problems. 
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Figure 22. Domain decomposition. 

 

An example of a region of space in the domain of a Monte Carlo simulation divided into sixteen 

regions and operated on by four processors. The shaded region (region A) is currently active. 

Processors operate in sequence on regions A, B, C, and D. All operations are isolated from one 

another. 

 

There are also algorithms for implementing parallel priority queues [53] [54] [55] [56] [57] 

[58]. Brodal [53] shows how to implement a parallel priority queue using a binomial heap. 

Constant time insertion and deletion is achieved by pipelining a “merge key” operation to 

process 𝑛 queue operations at once given 𝑛 processors. The method makes use of one local 

queue per processor. Operations to each local queue are performed in isolation from the 

other queues, thus no mutexes are required. For any operation on the global queue, Q, 

Brodal defines a “merge key” function to assist in performing the operation. For example, 

let ∀̅ denote a parallelized loop over all 𝑖, then: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚( 𝑄 ) ≡ ∀̅ 𝑖: 𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦( 𝑀𝑖𝑛, 𝑄𝑖 ) 

 is Brodal’s definition of the 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 operation where merging keys means selecting 

the minimum value of all local queues in this case. 



65 
 

 

 

 

 

 

Given set 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑝}, for some maximum number of elements 𝑝, the insert 

function is defined similarly. 

𝐼𝑛𝑠𝑒𝑟𝑡( 𝑄, 𝐸 ) ≡ ∀̅ 𝑖: 𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦( 𝑀𝑖𝑛, 𝑄𝑖, 𝑒𝑖 ) 

Figure 23. Spatial decomposition & workload analysis. 

 

As diffusion takes place, there are more and more particles in regions 1 and 6. This can 

cause a workload imbalance among processors. 

Six regions of space controlled 

by six processors. 

Sphere enclosing diffusing 

particles at some time, 𝑡. 

Region 1 Region 6 

Particles diffuse outward from 

their original locations. 

… 

Tops of queues  

(one of them is the minimum key of the parallel queue) 

Parallel minimum 

N priority queues 

assigned to n processors. 

Figure 24. Brodal's Minimum(Q) operation [53]. 

Regions 2-5 
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In Brodal’s implementation, the case 𝑒𝑖 = 𝑒𝑗 where 𝑖 ≠ 𝑗 is not disallowed. In this case the 

same element exists in multiple local queues – a waste of memory – but otherwise harmless. 

For the parallel algorithm presented in the next section, a parallelization of the priority 

queue similar to the technique by Brodal is used.  

4.1.4 The Choice of OpenMP as the Parallelization Technology  

Finally, for the work done here, only OpenMP parallelization is considered because it is 

desirable to run this algorithm on a desktop workstation that might be found in a radiation 

oncologist’s office. Although such a workstation could reasonably be expected to have a 

GPGPU (e.g., a CUDA-capable nVidia graphics card), today’s best graphics hardware has 

an upper bound of approximately 4GB of on-board memory – a size that could be too small 

for large problems, whereas main memory can be configured with 64 GB memory or more.  

Thus, the OpenMP approach seemed the most appropriate to follow. 

 

4.2 The Parallel Priority Queue Variant 

The parallelized version of the proximity grid method makes use of a dynamic form of 

spatial decomposition that avoids the pitfalls of a dynamically changing spatial distribution 

of particles mentioned in section 4.1. This, combined with a parallel priority queue inspired 

from Brodal’s queue, are the basis of the parallel implementation of the proximity grid 

method. In the discussion that follows, when Brodal’s priority queue is discussed, we use 

the term, key, to mean the unique and sortable id that refers to an item in the queue. When, 

by analogy, discussion turns to the kinetic data structure in the proximity grid method, we 

instead use the term, certificate, which has an expiration time that acts as a key. 
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What follows next is a discussion of the way the two data structures – the proximity grid, 

and the kinetic data structure – are parallelized to support the parallel implementation of 

this algorithm. 

4.2.1 Parallelized Grid 

The proximity grid is a network of cells within cells. Cells are located using hashed 

containers with each key mapped to a particular region of space. Insertion and removal of 

cells in the hashed maps cause rehashing of the container as the data structure changes size. 

All read/write access to the maps would therefore need to be guarded against concurrent 

use by multiple threads. In the parallel version of the proximity grid algorithm, the 

arrangement of hashed containers having an (X,Y,Z) key has been modified to be a vector 

of hashed maps. The vector, containing the X-coordinate key, is pre-allocated to the largest 

size needed by the simulation and insertions and removals in the vector are not done. The 

hashed maps have a (Y,Z) key. As will be shown in the next section, this means that, the 

proximity grid stores shared data (the particles in the simulation), yet does not require any 

form of mutually exclusive access to the data. 
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Figure 25. Serial vs. Parallelized Hash Map. 

Hash map storing a cell index key appropriate for a given radius of a chemical reaction in 

Cartesian coordinates. In the serial version of the algorithm, a single map is used per 

radiochemical reaction (left side). 

 

A vector of hash maps is used in the parallel version of the algorithm to avoid concurrency 

issues. The vector of hash maps is indexed by the x cell coordinate and the hash maps use a (y,z) 

coordinate as the key (right). 

 

4.2.2 Parallelized Kinetic Data Structure 

The parallelized priority queue is partitioned into 𝑝 queues where there are 𝑝 processors. 

Each queue is filled with an equal number of certificates selected at random, thus the 

queues are not subdivided spatially. Rather, they are thoroughly spatially mixed. The top 

of each queue contains a certificate failure time that is either close to, or exactly at, the next 

time step. In Brodal’s implementation [53] of a parallel queue, the top of the parallelized 

queue is the item that has the smallest key among the items at the tops of the individual 

queues. Where Brodal computes an absolute minimum among them, we process each 

certificate in parallel. This is the definition of one parallelized time step.  
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The following operation is defined (shown in Figure 28), returning a list of minimum (more 

specifically, near minimum) expiring certificates, given queues, 𝑄𝑖, number of processors, 

𝑝, the standard 𝑀𝑖𝑛 priority queue operation, and the standard list 𝐴𝑝𝑝𝑒𝑛𝑑 operation. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐿𝑖𝑠𝑡( 𝑄, 𝑝 ) ≡ ∀ 𝑖: 𝐴𝑝𝑝𝑒𝑛𝑑( 𝑀𝑖𝑛, 𝑄𝑖 ) 

The time steps in 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐿𝑖𝑠𝑡( 𝑄, 𝑝 ) can be processed in parallel if the associated 

particles are far away from one another. More precisely, the time steps may be processed 

in parallel without the use of mutexes if the distance between any pair of particles is greater 

than six times the largest reaction radius (see Figure 26). 

To achieve this separation, a ticket mechanism is set up using the X-axis. One ticket 

corresponds to a region of the X-axis that is the size of the largest reaction radius. Before 

any processing is allowed on a given certificate, the code attempts to aquire up to six 

tickets. Three tickets for the source cell and the two cells surrounding it, and three tickets 

for the destination cell and the two cells surrounding it. If one of the six tickets have already 

been taken, then processing is not allowed. The regions assigned to a given processor are 

therefore dynamic and non-overlapping. Ticket acquisition is serialized by an OpenMP 

critical section.  The serial nature of the ticket acquisition mechanism creates the possibility 

of the performance bottleneck described in section 4.1.1. In order to investigate this 

possibility, a treap version of this algorithm was developed (see section 4.3).  

A reaction may occur as each certificate is processed. In this case, other certificates will be 

invalidated in addition to the one at the top of the queue. Those certificates being 

invalidated may reside in any of the queues, however there is no need to protect any 

memory from mutual access from multiple threads. The reason is that each thread is 
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working in its own region of space along the X-axis. When reactions occur, reacting 

particles may safely be marked as destroyed regardless of which queue the certificate for 

that particle belongs to. The particle is destroyed later by the thread that owns the certificate 

at the appropriate time.  

 

Figure 26. Minimum separation distance required for parallel processing.  

 

The squares represent the cells with the largest reaction radius. Blue squares are source cells 

and red squares are destination cells for two particle movements. Green squares represent cells 

that may contain particles reacting with the two particles in motion. As long as the particles are 

at least six cell radii apart, the movements and any associated reactions can be processed in 

parallel. 

 

The expected worst case run time of the serial version of the algorithm is 𝑂((𝑛 + 𝑘) log 𝑛) 

given 𝑛 particles and 𝑘 required insertion/removal operation pairs in the priority queue. 

For the parallel version this becomes 𝑂 ((
𝑛+𝑘

𝑝
) log

𝑛

𝑝
) where there are 𝑝 processors. A 

flowchart of the process is shown below. 
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Figure 28. Parallelized kinetic data structure.  

The parallelized kinetic data structure consists of one priority queue per processor. 

The certificate at the top of each queue is processed in parallel, representing one 

time step. The top of one of the queues is the next time step and the remaining 

queue tops are near minimum times. 

Tops of queues 

 

Process in parallel 

… 
N priority queues 

assigned to n processors. 

One parallelized 

time step. 

X-axis 

Processing is 

allowed here. 

Processing is not 

allowed here. 

1 2

3

Figure 27. Ticket Acquisition. 

A box full of moving particles and an X-axis subdivided into “tickets” is shown. 

Regions 1 and 2 are processed by threads one and two because tickets can be 

acquired. Processor three, attempting to run in region 3, is masked out because the 

ticket is already taken by processor one.  
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Load particles into the grid. For each 

particle, create a certificate and insert it 

randomly into one of n priority queues. 

t < 1 µs?  

Ticket available for 

next processor? 

Done. 

No 

Yes 

No 

Move particle. 

Reaction? 

All Processors 

attempted to obtain 

a ticket? 

No 

Yes 

Yes 
Parallel execution 

Insert new certificate 

into queue. 
Process reaction and 

insert new certificates 

into queue. 

No Yes 

Initialization. 

Ticket acquisition. 

Figure 29. Flowchart of the parallel priority queue method. 
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4.3. Parallel Priority Queue Variant Using a Treap 

A portion of the parallel version of the algorithm described in section 4.2, namely the ticket 

acquisition mechanism, operates serially. The question arises whether or not this serial 

section of code might become a bottleneck as the number of parallel threads increase. That 

is, as the number of threads increase, is there a point at which the work done by one thread 

to process a ticket is roughly equal to the work done by a large number of threads 

attempting to obtain a ticket? If such a point exists, threads will begin to wait in line to 

acquire tickets, and thus become a bottleneck. This issue can be resolved if each thread can 

be given more work to do while it has a ticket. In the context of the priority queue 

algorithm, doing more work means processing more certificates near the top of the queue 

in the same space for which it has already obtained a ticket. This may be accomplished 

elegantly by implementing the kinetic data structure with a data structure called a treap 

[59] instead of with a priority queue. A treap data structure combines the features of a 

binary tree and a heap. It offers two keys. The first key is a priority key. All child nodes of 

a given node in the treap have a lower priority than the node itself. Thus a treap’s priority 

ordering makes it a suitable replacement for a priority queue. In addition, the nodes of a 

treap are organized in heap order. Therefore the second key – the heap index – provides a 

way to easily identify those nodes near the top of the treap (and thus close to the next 

certificate expiration time) having a given ticket index. In this version of the proximity grid 

algorithm, we replace the priority queue with a treap. The priority ordering of the queue is 

the certificate expiration time, just as it is in the priority queue version. The heap index is 

the ticket index of the ticket with the lowest X-coordinate among those tickets affected by 
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a particle movement. The next figure shows a possible arrangement of the certificates in 

the treap version of the kinetic data structure. 

Although the treap has the features of a binary tree, it is only well balanced if the priority 

key is randomized with respect to the heap key. This is not strictly the case here, however 

the certificate expiration times are reasonably well randomized with respect to the X-

coordinate. Thus, when the number of particles is large, the tree can be said to be 

approximately well balanced.  

 

 

Figure 30. A possible organization of the treap. 

 

The top node (orange) has the highest priority and will be processed next. It also has 

ticket index 17. Other certificates near the top of the treap with ticket index 17 are easily 

found by traversing the children of the top node. The blue nodes have ticket indices less 

than index 17 (following heap order) and priorities later than the top priority. Green 

nodes have a ticket index greater than 17 and priorities later than the top priority. 

10 ps
Ticket: 17

11 ps
Ticket: 17

16 ps
Ticket: 5

18 ps
Ticket: 1

18 ps
Ticket: 17

19 ps
Ticket: 17

35 ps
Ticket: 17

40 ps
Ticket: 17

50 ps
Ticket: 17

20 ps
Ticket: 40

22 ps
Ticket: 40

75 ps
Ticket: 40
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The algorithm is modified in the following two ways. First, during ticket acquisition, if a 

ticket is not available for the top certificate in the queue, an attempt is made to obtain a 

ticket for the child node in the treap that does not have the top node’s ticket index. If a 

ticket still cannot be obtained, one more attempt is made with the next child node. If these 

two attempts fail, the current thread is masked out, just as with the priority queue version. 

The second modification has to do with how certificates are processed. Observe that the 

child node of the current certificate in the treap that has the same ticket index as that of 

the node itself is a priority queue of certificates with the given ticket index. In addition to 

processing the top node of the treap, we also process the nodes of this inner priority 

queue in priority order until a small simulation time expires. The result of these two 

changes is that fewer threads sit idle due to ticket conflicts and more work is done in the 

region in which each thread has obtained a ticket so that the need to obtain a new ticket 

occurs less frequently. 

Figure 31. Parallelized kinetic data structure (treap variant).  

The parallelized kinetic data structure consists of one treap per processor. The certificate at the 

top of each queue is processed in parallel, representing one time step, just as in the priority 

queue variant. In addition, all nodes having the same ticket index as the top node are also 

processed (nodes shown in orange). 

 

Tops of queues 

 

Process in parallel 

… 
N treaps assigned to n 

processors. 

One parallelized 

time step. 

Additional certificates 

with the same ticket. 
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4.4. Parallel Spatially Discretized Variant 

The previous sections explored the possibility of using a ticket acquisition mechanism to 

give threads permission to work in particular regions of space. Now we alter the algorithm 

so that threads work in pre-arranged spatially distinct regions that we will call zones. Each 

zone is a section of the X-axis such that threads execute six zones apart. Execution occurs 

in round-robin fashion with a stride of six as shown in Figure 32. The width of a zone is 

the maximum reaction radius among all reactions considered in the simulation. This 

distance allows for particles to move from one zone to any adjacent zone and react with 

particles in any resulting adjacent zone and still be operating in independence (See Figure 

26). There is one priority queue and one proximity grid per zone. The movement of particles 

across zones is handled without the use of mutexes because it has been pre-arranged that 

all adjacent zones are unused by any other processor. This version of the algorithm, in 

contrast to the first two versions, is subject to the performance effects of changing density 

discussed in section 4.1.2. However, so long as the density gradient is small with respect 

to the width of a zone, the effect may be negligible. We will see in section 4.5 that this is 

the case. Execution occurs in six rounds. During round one, all processors work in the 

zones assigned to round one (see Figure 32). During round two, all processors work in the 

zones assigned to round two, and so on, until all six rounds have been completed. After the 

sixth round is complete, the process repeats until the simulation is done. 
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Figure 32. Round-robin execution of the Zone method. 

 

Execution occurs in the shaded region (zone). Processors work in all shaded regions of the X-axis 

during round one first, then the shaded regions of round 2, and so on, until all six rounds are 

complete. Then the process repeats. 

  

 

4.5. Results for Parallel Versions 

The OpenMP version of the code based on the priority queue method was compared with 

the serial version on a desktop computer running Debian Linux with 16 GB RAM and 8 

Intel core i7 CPUs (2.8 GHz). The run time was calculated based on “wall clock time” 

using OpenMP’s omp_get_wtime() function.  

The serial version was run using 70,000 particles requiring 9 hours to complete. The 

OpenMP version, using 8 cores, ran the same problem in 0.36 hours – a factor of 25 better. 

Figure 33 and Figure 34 compare the run times between the two methods.  

X-axis 

Round 1 

X-axis 

Round 2 

X-axis 

Round 3 

X-axis 

Round 6 

… 
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The concentration of radiolytic species has also been compared with previous results [4]. 

Figure 35 below shows the results for 𝑒𝑎𝑞
−  species from a total of 7,500 particles for all 

species (corresponding to approximately 50 keV input energy) for both the serial and 

parallel versions. 

Further testing was done using on an AMD Opteron 6174 processor containing 24 cores 

(48 hyper-threaded cores). To better gauge the scalability of the results, only the first 24 

physical cores were used. The tests that follow all simulate 100,000 input particles.  

Figure 36 shows that the priority queue and zone variants perform about as well as one 

another. The treap variant does not beat them. Therefore it is apparently not advantageous 

– at least out to 24 cores - to process more certificates with a given ticket index for every 

ticket that has been acquired. 

The scalability of the three methods is also shown in Figure 37. All three methods show 

comparable scalability. The code runs approximately 11 times faster using 24 cores than 

with a single core for all three code variants. When the zone method is modified so that the 

hash table uses pre-allocated, large, fixed size buckets, the scalability is significantly 

improved. Twenty four processors are able to improve the run time by a factor of seventeen, 

but the single processor run time performance is degraded. It is noteworthy that the 

efficiency quickly levels off and stays approximately constant at 80%.  
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Figure 33. Comparison of the serial vs. OpenMP parallelized priority queue version of the code. 

 

 
Figure 34. Log-log plot of the run times in Figure 33. 
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Figure 35. Comparison of the serial and parallel results showing agreement in the number of free 

electrons over time. 

 

 

 

 

Figure 36. Comparison of Zone, Priority Queue, and Treap Methods. 
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Figure 37. Scalability of the Priority Queue, Treap, and Zone Methods. 

 

 

Figure 38. Zone Method With Pre-Allocated Memory. 
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Figure 39. Scalability of the zone method. 

The methods shown use pre-allocated memory and memory allocation with the tcmalloc 

[60] (thread caching malloc) library. The original zone method is shown for comparison. 

 

Figure 40. Efficiency of Parallel Methods. 
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Figure 41. Efficiency of zone method and variants. 

In one variant, the proximity grid is implemented to use a large, fixed size, pre-allocated 

pool of memory and no memory is allocated during the simulation. In the second variant, 

the c++ library’s malloc is replaced with tcmalloc [60] (thread caching malloc). 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion and Discussion 

We have shown an efficient method for simulating the radiolytic reactions that cause 

radiation damage in irradiated living tissue. We have shown how a worst case run time of 

𝑂((𝑛 + 𝑘) log 𝑛) can be achieved in the serial implementation– a significant improvement 

over the 𝑂(𝑡𝑛 log 𝑛) run time of the kd-tree method – without sacrificing accuracy – by 

designing a data structure (the proximity grid) that exploits locality in the search for near 

neighbors using many simultaneous definitions of nearness of potentially reacting 

particles. A simulation of 75,000 input particles taking 265 hours (11 days) by a benchmark 

kd-tree version of the code was completed in only 25 hours using the proximity grid 

method.  

The physics of simulations of this type are often simplified by assuming that the body is 

composed entirely of water. The proximity grid data structure supports any number of 

reacting particle species, making it generally useful in situations where this simplification 

is not imposed. Therefore this data structure permits realism with respect to the number of 

particle species and equations that may be simulated. 

 

We have provided an elegant parallel implementation that avoids the use of mutexes and 

we have shown parallel scalability out to at least 24 processors. Our solution exhibits a 

constant parallel efficiency of 80%, achieved by using a hash map data structure with a 

fixed number and size of buckets. It is elegant because its efficiency is insensitive to 
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changing particle density as the simulation proceeds. No one processor advances past 

another in simulated time during the simulation and no one processor has less work to do 

than another.  

A version of the code was developed using a treap data structure as the priority queue. A 

treap (tree and heap) data structure is a tree whose nodes are additionally organized in heap 

order. A treap offers a priority key and a heap order search key. By using the additional 

heap key to store certificates by ticket, it becomes possible for each thread to process more 

than one certificate for each ticket it had acquired. The treap version of the code made it 

possible to determine whether or not ticket acquisition – the only serial portion of the code 

– was a performance bottleneck. That is, we wanted to know if threads were waiting in line 

to obtain a ticket. The results of the treap version vs. the priority queue version (Figure 36) 

reveal that the ticket acquisition mechanism does not constitute a bottleneck – at least out 

to 24 parallel threads. In the event that adding additional processors reveals that ticket 

acquisition does become a bottleneck (this can be identified by generating a plot like the 

one in Figure 37 and observing that the treap and priority queue lines cross), the treap 

version of the code may be used instead of the standard priority queue as an elegant way 

to remove it. 

A version of the code is provided that decomposes the problem into spatial domains. This 

is a more standard approach to solving the problem that serves as a baseline for comparison. 

It is subject to load imbalances due to changes in particle density and as a result, care 

needed to be taken to compensate for this problem. We handled the issue by periodically 

pausing the operation of threads until the others caught up. We find that the proximity grid 
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version compares well with it and is a more elegant approach since it requires no special 

handling due to load imbalances caused by changing particle density. 

For those versions that did not use pre-allocated memory in the hash map data structure, 

useful scalability was observed out to approximately 13 parallel threads. It was found that 

adding additional processors beyond this number does not help performance and, in fact, 

performance decreases slightly. Internal memory allocation by the hash mapped data 

structure in the proximity grid is a bottleneck that inhibits efficient parallelization (see 

Figure 38 and Figure 41).  As the simulation runs, allocation with malloc() occurs only 

when the buckets in the hash map itself are resized. This bottleneck was explored further 

by substituting the system’s memory allocation function, malloc(), with tcmalloc() [60] (a 

thread caching version of malloc()). The idea is that if memory, once allocated, was cached 

on a per thread basis for use in future requests for memory, then the bottleneck could be 

removed. It was found that thread caching does not remove the bottleneck (see Figure 41). 

However, writing the hash map data structure in such a way that both the number of buckets 

and the number of items in a bucket are fixed then the bottleneck is eliminated. Note that 

the hash map implemented this way is cache-friendly, whereas a standard hash map, 

making use of pointers to allocated memory, is not. This fact likely plays a role in the 

performance improvement. 

 

5.1 Future Work 

This work was done with the hope that it could eventually be integrated into the GEANT4-

DNA toolkit. The proximity grid algorithm is in a sufficiently mature state that an effort 

like this could be undertaken. Integration should proceed with the ticket-based parallel 
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version because it has been shown to be as efficient as the spatially discretized version and 

by design it doesn’t suffer from the negative performance effect of varying particle density.  

With regard to memory pre-allocation in the hash map data structure, it solves the 

efficiency bottleneck with respect to parallelism and an implementation in Geant4 can 

certainly proceed with it. However, it is desirable to provide an algorithm that is not bound 

by this code restriction. To improve on this, areas of future research should include writing 

custom versions of malloc() and free(), investigating the possibility that the code suffers 

from false sharing, and running the code on other hardware architectures.  

The standard versions of malloc() and free() are general purpose memory allocation and 

disposal functions. Custom versions of them could be written to address the specific needs 

of this code. For example, they could cache all disposed memory on a per thread basis for 

later re-use, giving none of it back regardless of size the way tcmalloc does, and they could 

provide memory in chunks that are guaranteed to be far enough away in physical memory 

so as not to cause false sharing. If false sharing is the cause, then there will be data blocks 

in the code that are within 64 bytes of each other (the width of a cache line) that are being 

written to by more than one processor at a time (invalidating the entire cache line). One 

place that false sharing might occur is in the case when threads are operating in adjacent 

(adjacent in physical memory) or nearly adjacent hash maps. A reasonable test to see if this 

is at least a possibility is to vary the number of input particles to see if there is any 

dependency on parallel performance. One might expect the effect of false sharing to 

diminish with an increasing number of input particles if false sharing between particles is 

the cause, but this is not the case. As particle density increases, the number of 

radiochemical reactions also increase. The result of this is that the excited radiochemical 
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particles return to water faster, dropping out of the simulation and thereby also boosting 

performance and tampering with the results of the test. Instead, perhaps one might devise 

several input geometries with a constant particle density. As the number of input particles 

increase, so does the volume of the input so that the particle density remains constant. For 

a given number of processors, the time to solution should be linear with respect to the 

number of input particles. If false sharing has an effect on performance, then the effect 

should diminish with increasing number of particles.  

 

  



89 
 

 

REFERENCES 

 

[1]  A. C. Society, "American Cancer Society. Cancer Facts & Figures 2014," Atlanta, 

2014. 

[2]  J. Wilson, "CNN Health," CNN, 11 March 2014. [Online]. Available: 

http://www.cnn.com/2014/03/11/health/cancer-care-asco-report/. [Accessed 16 

March 2014]. 

[3]  H. Y., Microdosimetric Response of Physical and Biological Systems to Low and 

High LET Radiations, Theory and Applications to Dosimetry, Elsevier, 2006.  

[4]  M. Karamitros, "Modeling Radiation Chemistry in the Geant4 Toolkit," Progress in 

Nuclear Science and Technology, pp. 503-508, 2011.  

[5]  Karamitros M., Mantero A., Incerti S., Luan S., Tran H. N., Champion C., Allison 

J., Baldacchino G., Davidkova M., Friedland W., Ivantchenko V., Ivantchenko A., 

Nieminem P., Stepan V., "Diffusion-controlled reactions modeling in Geant4-

DNA," Journal of Computational Physics, vol. 274, pp. 841-882, 2014.  

[6]  S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, P. Moretto, P. 

Niemainem, M. G. Pia, "Geant4 physics processes for microdosimetry simulation: 

design foundadtion and implementation of the first set of models," IEEE Trans. 

Nucl. Sci., vol. 54, no. 6-2, pp. 2619-2628, 2007.  



90 
 

[7]  S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, S. 

Guatelli, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, A. 

Rosenfeld, C. Villagrasa and C. Zacharatou, "The Geant4-DNA Project," Int. J. 

Model. Simul. Sci. Comput., vol. 1, pp. 157-178, 2010.  

[8]  "FLUKA; A fully integrated Monte Carlo simulation package. 

(http://www.fluka.org)". 

[9]  "MCNP; A General Monte Carlo N-particle transport code (http://mcnp-

green.lanl.gov)". 

[10]  Agarwal, Pankaj; Kaplan, Haim; Sharir, Micha, "Kinetic and Dynamic Data 

Structures for Closest Pair and All Nearest Neighbors," ACM Transactions on 

Algorithms, vol. 5, no. 1, 2008.  

[11]  Basch J., Guibas L. J.; C., Silverstein; L., Zhang, "A practical evaluation of kinetic 

data structures," in 13th Symposium of Computational Geometry, 1997.  

[12]  J., Basch; Guibas, L. J.; J., Hershberger, "Data Structures for Mobile Data," in 8th 

Symposium on Discrete Algorithms, 1997.  

[13]  Dinesh Mehta, Sartaj Sahni, "Ch. 23 Kinetic Data Structures," in Handbook of Dtaa 

Structures and Applications, Chapman & Hall, 2004.  

[14]  Hendee W. R., Ibbott G. S., Hendee E. G., Radiation Therapy Physics 3rd ed., 

Wiley. John & Sons Inc., 2004.  



91 
 

[15]  K. F. M., The Physics of Radiation Therapy 4th ed., Lippincott Williams & 

Wilkins, 2009.  

[16]  H. E. J., Radiobiology for the Radiologist 5th ed., Lippincott Williams & Wilkins, 

2000.  

[17]  F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, Wiley-

VCH, 1986.  

[18]  R. Wilson, "Radiological use of fast protons," Radiology, vol. 47, p. 487, 1946.  

[19]  D. E. Bezak, "South Australian Medical Heritage Society Inc," [Online]. Available: 

http://samhs.org.au/Virtual%20Museum/xrays/Braggs-peak-

rxth/braggpeakrxth.htm. [Accessed 16 8 2015]. 

[20]  Ziegler J. F., Ziegler M. D., Biersack J. P., "SRIM Stopping Range of Ions in 

Matter," SRIM.com, 1984. 

[21]  R. S.A., Diffusion Limited Reactions (Vol. 25 in Chemical Kinetics edited by 

Bamford CH, Tipper CFH and Compton RG), Elsevier, 1985.  

[22]  Bloom S., Luan S., Karamitros M., Incerti S., "Geometric Algorithms and Data 

Structures for Simulating Diffusion Limited Reactions," in Symposium on the 

Theory of Modeling and Simulation, Tampa, 2014.  



92 
 

[23]  Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E., "Equation of 

State Calculations by Fast Computing Machines," Journal of Chemical Physics, 

1953.  

[24]  J. Lucido, "Incorporating Microdosimetry into Radiation Therapy Treatment 

Planning with Multi-Scale Monte Carlo Simulations," 2013. 

[25]  D. T. Gillespie, "Exact Stochastic Simulationof Coupled Chemical Reactions," 

Journ. of Phys. Chem., vol. 81, no. 25, pp. 2340-2361, 1977.  

[26]  e. a. Friedland W., "Track structures, DNA structures and radiation effects in the 

biophysical Monte Carlo simulation code PARTRAC," Mutat. Res. : Fundam. Mol. 

Mech. Mutagen., 03 01 2011.  

[27]  e. a. Ballarini F., "Stochastic aspects and uncertainties in the prechemical and 

chemical stages of electron tracks in liquid water: a quantitative analysis based on 

Monte Carlo simulations," Radiat. Environ. Biophys., vol. 39, no. 3, pp. 179-188, 

2009.  

[28]  M. V., B. M. and B. E. A., "Computer aided stochastic modeling of the radiolysis of 

liquid water," Radiat. Res., vol. 149, no. 3, pp. 224-236, 1998.  

[29]  Kreipl M. S., Friedland W., Paretzke H. G., "Time- and space-resolved Monte 

Carlo study of water radiolysis for photon, electron and ion irradiation," Radiat. 

Environ. Biophys., vol. 48, no. 1, pp. 11-20, 2009.  



93 
 

[30]  S. Uehara and H. Nikjoo, "Monte carlo simulation of water radiolysis for low-

energy charged particles," J. of Radiat. Res., vol. 47, no. 1, pp. 69-81, 2006.  

[31]  Friedland W., Jacob P., Paretzke H.G., Merzagora M., Ottolenghi A., "Simulation 

of DNA fragment distributions after irradiation with photons.," Radiat. Environ. 

Biophys., vol. 38, pp. 39-47, 1999.  

[32]  J. L. B. R. A. F. J. H. Freidman, "An Algorithm for Finding Best Matches in 

Logarithmic Expected Time," ACM Transactions on Mathematical Software, vol. 3, 

pp. 209-226, 1977.  

[33]  Chauvie S., Francis Z., GuatelliS., Incerti S., Mascialino B., Montarou P., Moretto 

P., Nieman P., Pia M., "Models of biological effects of radiation in the Geant4 

Toolkit," IEEE Nuclear Science Symposium Conference Record, pp. 803-805, 2006.  

[34]  Nellis G., Klein S., "Mass Transfer," in Heat Transfer, Cambridge, Cambridge 

University Press, 2012, pp. 974-978. 

[35]  Socolofsky S., Jirka G., "Concepts, Definitions, and the Diffusion Equation," in 

Special Topics in Mixing and Transport Processes in the Environment, College 

Station, Texas A&M University, 2005, pp. 1-19. 

[36]  Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J., Brooks, N. H., Mixing in 

Inland and Coastal Waters, New York: Academic Press, 1979.  

[37]  S. Khuller and M. Tossi, "A Simple Randomized Seive Algorithm for the Closest 

Pair Problem," Information and Computation, no. 118, pp. 34-37, 1995.  



94 
 

[38]  K. H. a. S. M. Agarwal PK, " Kinetic and Dynamic Data Structures for Closest 

Pairs and All Nearest Neighbors.," ACM Transactions on Algorithms., 2007.  

[39]  C. J., Stochastic Processes, 2007.  

[40]  Jon S. Horne, Edward O. Garton, Stephen M. Krone, Jesse S. Lewis, "Analyzing 

Animal Movements Using Brownian Bridges," Ecology, vol. 88, no. 9, pp. 2354-

2363, 2007.  

[41]  N. Privault, "Brownian Motion and Stochastic Calculus," in Stochastic Finance: An 

Introduction with Market Examples, Chapman and Hall/CRC, 2013.  

[42]  R. N. Hamm, J. E. Turner and M. G. Stabin, "Monte Carlo simulation of diffusion 

and reaction in water radiolysis - a study of reactant 'jump through' and jump 

distances," Radiant Environ. Biophys., vol. 36, pp. 229-234, 1998.  

[43]  C. J. O’Keeffe, Ruichao Ren, G. Orkoulas, "Spatial updating grand canonical 

Monte Carlo alg. for fluid sim.: generalization to contin. pot. and par. impl.," Journ. 

Chem. Phys., vol. 127, 2007.  

[44]  Procassini R. J., O'Brien, M. J., Taylor J M, "Load Balancing of Parallel Monte 

Carlo Transport Calculations," in International Topical Meeting on Mathematics 

and Computations, Avignon, 2005.  

[45]  D. M., "An optimal parallel dictionary.," SPAA '89 Proceedings of the first annual 

ACM symposium on Parallel algorithms and architectures, pp. 360-368, 1989.  



95 
 

[46]  Karlin A., Upfal E., "Parallel Hashing, an Efficient Implementation of Shared 

Memory," J. ACM, vol. 4, pp. 876-892, 1988.  

[47]  Mattias Y., Viskin U., "On parallel hashing and integer sorting," J. Algorithms, vol. 

12, no. 4, pp. 573-606, 1991.  

[48]  M. F., "Hashing strategies for simulating shared memory on distributed memory 

machines," in Parallel Architectures and Their Efficient Use, Lecture notes in 

Computer Science, 1993, pp. 20-29. 

[49]  A. DAF, Efficient Hash Tables on the GPU, Ph. D. Dissertation, UC Davis, 2011.  

[50]  Alcantara D., Sharif A., Abbasinejad F., Sengupta S., Mitzenmacher M., "Real-time 

parallel hashing on the GPU," ACM Transactions on Graphics , vol. 28, no. 5, 

2009.  

[51]  Ruichao Ren, G. Orkoulas, "Parallel Markov chain Monte Carlo simulations," 

Journ. Chem. Phys., no. 126, 2007.  

[52]  G. T. Barkema, T. MacFarland , "Parallel simulation of the Ising model," Phys. 

Rev. E, vol. 50, p. 1623, 1994.  

[53]  Brodal GS, Traff JL, Zaroliagis CD, "A Parallel Priority Queue with Constant Time 

Operations," Journal of Parallel and Distributed Computing, vol. 49, no. 1, pp. 4-

21, 1998.  



96 
 

[54]  Chen DZ, Hu XS, "Fast and Efficient Operations on Parallel Priority Queues," 

Algorithms and Computation, Lecture Notes in Computer Science, vol. 834, pp. 

279-287, 1994.  

[55]  Das HK, Horng WB, "Managing a parallel heap efficiently," Parallel Architectures 

and Languages Europe Lecture Notes in Computer Science, vol. 505, pp. 270-287, 

1991.  

[56]  Deo N., Prasad S., "Parallel heap, an optimal parallel priority queue," J. 

Supercomputing, vol. 6, no. 1, pp. 87-98, 1992.  

[57]  P. S., "Parallel heap. A practical priority queue for fine to medium grained 

applications on small multiprocessor," in IEEE Symposium on Parallel and 

Distributed Computing, 1995.  

[58]  S. P., "Randomized Priority Queue for Fast Parallel Access," Journal of Parallel 

and Distributed Computing, vol. 49, no. 1, pp. 86-97, 1998.  

[59]  Aragon, C., Seidel, R., "Randomized Search Trees," IEEE, Berkley, 1989. 

[60]  Google, "http://goog-perftools.sourceforge.net/doc/tcmalloc.html," Google, 

[Online]. Available: http://goog-perftools.sourceforge.net/doc/tcmalloc.html. 

[Accessed 20 April 2015]. 

[61]  J. J. Wilkens, U. Oelfke, "Analytical linear energy transfer calculations for proton 

therapy," Medical Physics, vol. 30, no. 5, p. 806, 2003.  



97 
 

[62]  Bloom S., Luan S., "Geometric Algorithms and Data Structures for Parallelizing 

Simulations of Diffusion Limited Reactions," Not yet submitted for publication..  

[63]  "Cancer Statistics," American Cancer Society, 2004.  

[64]  Frongillo Y., Goulet T., Fraser M. J., Cobut V., Patau J. P., Jay-Gerin J. P., "Monte 

Carlo simulation of fast electron and proton tracks in liquid water-II. 

Nonhomogeneous chemistry," Radiation Physics and Chemistry, vol. 51, no. 3, pp. 

245-254, 1998.  

[65]  Preparata F. P., Shamos M. I., Computational Geometry, an Introduction, 1985.  

[66]  Nellis G., Klein S., "Ch 9. Mass Transfer," in Heat Transfer, Cambridge , 

Cambridge University Press, 2012, pp. 974-978. 

[67]  U. o. Cincinati. [Online]. Available: cmap.ucfilespace.uc.edu. [Accessed 16 8 

2015]. 

[68]  Agarwal PK, Edelsbrunner H, Schwarzkopf O, and Welzl E., "Euclidean minimum 

spanning trees and bichromatic closest pairs.," Proceedings of the sixth annual 

symposium on Computational geometry, pp. 203-210, 1990.  

[69]  Abello J, Pardalos PM, and Resende MG., Handbook of Massive Data Sets., 

Norwell Mass: Kluwer Academic Publishers, 2002.  

[70]  Agostinelli. S, "Geant4 - a simulation toolkit.," Nuclear Instruments and Methods 

in Physics Research, vol. A, no. 506, pp. 250-303, 2003.  

 


	University of New Mexico
	UNM Digital Repository
	12-1-2015

	Geometric Algorithms and Data Structures for Simulating Diffusion Limited Reactions
	Shaun Bloom
	Recommended Citation


	tmp.1469198166.pdf.6hJjV

