
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2015

Geometric Algorithms and Data Structures for
Simulating Diffusion Limited Reactions
Shaun Bloom

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Bloom, Shaun. "Geometric Algorithms and Data Structures for Simulating Diffusion Limited Reactions." (2015).
https://digitalrepository.unm.edu/cs_etds/45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151574781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/45?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Shaun Bloom

 Candidate

 Computer Science

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Dr. Shuang Luan

 Dr. Lawrence Williams

 Dr. Trilce Estrada

 Dr. Yin Yang

ii

Geometric Algorithms and Data Structures for

Simulating Diffusion Limited Reactions

BY

SHAUN BLOOM

B.S. PHYSICS, UNIVERSITY OF NEW MEXICO, 1989

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2015

iii

Dedication

I dedicate my dissertation work to my wife, family and many friends. A special thanks

goes to my wife whose encouraging words helped me along the way. I will always

appreciate hers and their patience with me during this time.

iv

Acknowledgements

I would like to express my deep appreciation and gratitude to my advisor, Dr. Shuang

Luan, for the patient guidance and mentorship he provided to me, from the application

process into the doctoral program through to completion of this degree. My meetings

with Dr. Luan have been both educational and inspirational. With regard to geometric

data structures, he’s a deep pool of knowledge and I found our meetings to be full of

creativity and genuinely fun. I am truly fortunate to have had the opportunity to work

with him and I thoroughly enjoyed having discussions in such a creative atmosphere. I

would also like to thank my committee members, Drs. Lance Williams, Trilce Estrada

and Yin Yang for their friendly guidance, thought provoking suggestions, and the general

collegiality that each of them offered to me over the years. In a similar vein, I’d like to

recognize Dr. Dorian Arnold for providing help and direction with the parallel

implementation of my algorithm.

v

Geometric Algorithms and Data Structures for Simulating

Diffusion Limited Reactions

by

Shaun M. Bloom

B.S. Physics, University of New Mexico, 1989

Ph.D. Computer Science, University of New Mexico, 2015

ABSTRACT

Radiation therapy is one of the most effective means for treating cancers. An important

calculation in radiation therapy is the estimation of dose distribution in the treated patient,

which is key to determining the treatment outcome and potential side effects of the therapy.

Biological dose – the level of biological damage (e.g., cell killing ratio, DNA damage, etc.)

inflicted by the radiation is the best measure of treatment quality, but it is very difficult to

calculate. Therefore, most clinics today use physical dose - the energy deposited by

incident radiation per unit body mass - for planning radiation therapy, which can be

calculated accurately using kinetic Monte Carlo simulations. Studies have found that

physical dose correlates with biological dose, but exhibits a very complex relationship that

is not yet well understood.

Generally speaking, the calculation of biological dose involves four steps: (1) the

calculation of physical dose distribution, (2) the generation of radiochemicals based on the

physical dose distribution, (3) the simulation of interactions between radiochemicals and

vi

bio-matter in the body, and (4) the estimation of biological damage based on the

distribution of radiochemicals. This dissertation focuses on the development of a more

efficient and effective simulation algorithm to speed up step (3). The main contribution of

this research is the development of an efficient and effective kinetic Monte Carlo (KMC)

algorithm for simulating diffusion-limited chemical reactions in the context of radiation

therapy. The central problem studied is - given 𝑛 particles distributed among a small

number of particle species, all allowed to diffuse and chemically react according to a small

number of chemical reaction equations - predict the radiochemical yield over time. The

algorithm presented makes use of a sparse grid structure, with one grid per species per

radiochemical reactant used to group particles in a way that makes the nearest neighbor

search efficient, where particles are stored only once, yet are represented in grids of all

appropriate reaction radii. A kinetic data structure is used as the time stepping mechanism,

which provides spatially local updates to the simulation at a frequency which captures all

events - retaining accuracy. A serial and three parallel versions of the algorithm have been

developed. The parallel versions implement the kinetic data structure using both a standard

priority queue and a treap data structure in order to investigate the algorithm’s scalability.

The treap provides a way for each thread of execution to do more work in a particular

region of space. A comparison with a spatial discretization variant of the algorithm is also

provided.

vii

Table of Contents

Abstract ..v

List of Figures ...x

List of Tables .. xi

Chapter 1 ..1

Introduction ..1

1.1 Executive Summary of Work Presented ..4

1.2 Summary of Original Work..6

1.4 Organization ...8

Chapter 2 ..9

Background ..9

2.1 Radiation Therapy ..9

2.1.1 Ionizing Radiation ...12

2.1.2 Compton Scattering, the Photoelectric Effect, Pair Production, and Rayleigh

Scattering ..13

2.1.3 Depth vs. Dose and the Bragg Peak ..17

2.1.4 Relative Biological Effectiveness (RBE) ..22

2.1.5 Relevant Chemical Reactions and the Creation of Free Radicals23

2.3 Three Stages of Activity Following Irradiation ...25

viii

2.4 Monte Carlo Simulations ...28

2.4.1 Kinetic Monte Carlo Simulations and Diffusion ...29

2.5 Geant4-DNA ..32

2.6 Fick’s Second Law of Diffusion ..33

Chapter 3 ..38

Sequential Algorithm ...38

3.1 Overview ..39

3.2 Nearest Neighbor Search ..39

3.2.1 The Closest Pair Problem ..39

3.2.2 Proximity Grid ...41

3.3 Simulation of Time...44

3.3.1 Kinetic Data Structures ...44

3.3.2 Algorithmic Use of the Kinetic Data Structure ...47

3.4 Brownian Bridge ..49

3.5 Serial Implementation ..54

3.6 Serial Version Results ..56

Chapter 4 ..58

Parallel Implementations ...58

4.1 Challenges With Respect to Parallelization ...58

4.1.1 Sources of Resource Contention..59

ix

4.1.2 The Accuracy of the Physics With Respect to Simulation Time60

4.1.3 Parallel Forms of the Proximity Grid Data Structures62

4.1.4 The Choice of OpenMP as the Parallelization Technology66

4.2 The Parallel Priority Queue Variant ...66

4.2.1 Parallelized Grid ..67

4.2.2 Parallelized Kinetic Data Structure ...68

4.3. Parallel Priority Queue Variant Using a Treap ...73

4.4. Parallel Spatially Discretized Variant ...76

4.5. Results for Parallel Versions ...77

Chapter 5 ..84

Conclusion and Future Work ...84

5.1 Conclusion and Discussion ..84

5.1 Future Work ...86

References ...89

x

LIST OF FIGURES

FIGURE 1. COMPTON SCATTERING. .. 14

FIGURE 2. THE PHOTO-ELECTRIC EFFECT. ... 14

FIGURE 3. PHOTON ENERGY VS. TARGET ATOMIC NUMBER. 15

FIGURE 4. DOSE VS. DEPTH. .. 19

FIGURE 5. PROTON BEAM DOSE AT A CRANIAL TUMOR SITE. 21

FIGURE 6. A BEAM OF 7,500 1 MEV H. ATOMS THROUGH WATER. 22

FIGURE 7. RELEVANT RADIOCHEMICAL REACTIONS. 24

FIGURE 8. DNA MOLECULE DAMAGED BY A FREE RADICAL. 25

FIGURE 9. USING THE MONTE CARLO METHOD TO SOLVE AN INTEGRAL. . 29

FIGURE 10. GEANT4-DNA FRACTIONAL SURVIVAL. ... 33

FIGURE 11. THE CONCENTRATION PROFILE AT TWO TIMES 37

FIGURE 12. REACTION/REACTANT GRAPH. ... 43

FIGURE 13. GRID OF CELLS. ... 44

FIGURE 14. HIERARCHY OF CELLS. ... 44

FIGURE 15. THE BINARY TREE STRUCTURE OF NEAR NEIGHBORS. 47

FIGURE 16. TWO PARTICLES IN BROWNIAN MOTION. 49

FIGURE 17. THE DISTANCE BETWEEN TWO PARTICLES IN MOTION. 51

FIGURE 18. BROWNIAN BRIDGE. .. 52

FIGURE 19. PSEUDO-CODE ... 55

FIGURE 20. THE SERIAL VERSION VS. A KD-TREE METHOD. 57

FIGURE 21. GEANT4-DNA RESULTS W/ PROX. GRID RESULTS OVERLAID. ... 57

FIGURE 22. DOMAIN DECOMPOSITION. .. 64

file:///G:/Shaun/Dissertation.docx%23_Toc433576114
file:///G:/Shaun/Dissertation.docx%23_Toc433576115
file:///G:/Shaun/Dissertation.docx%23_Toc433576118
file:///G:/Shaun/Dissertation.docx%23_Toc433576120
file:///G:/Shaun/Dissertation.docx%23_Toc433576121
file:///G:/Shaun/Dissertation.docx%23_Toc433576125
file:///G:/Shaun/Dissertation.docx%23_Toc433576126
file:///G:/Shaun/Dissertation.docx%23_Toc433576127
file:///G:/Shaun/Dissertation.docx%23_Toc433576128
file:///G:/Shaun/Dissertation.docx%23_Toc433576129
file:///G:/Shaun/Dissertation.docx%23_Toc433576130
file:///G:/Shaun/Dissertation.docx%23_Toc433576131
file:///G:/Shaun/Dissertation.docx%23_Toc433576133
file:///G:/Shaun/Dissertation.docx%23_Toc433576134

xi

FIGURE 23. SPATIAL DECOMPOSITION & WORKLOAD ANALYSIS. 65

FIGURE 24. BRODAL'S MINIMUM(Q) OPERATION. ... 65

FIGURE 25. SERIAL VS. PARALLELIZED HASH MAP. ... 68

FIGURE 26. MIN. SEPARATION DIST. REQ. FOR PARALLEL PROCESSING. 70

FIGURE 27. TICKET ACQUISITION. ... 71

FIGURE 28. PARALLELIZED KINETIC DATA STRUCTURE. 71

FIGURE 29. FLOWCHART OF THE PARALLEL PRIORITY QUEUE METHOD. ... 72

FIGURE 30. A POSSIBLE ORGANIZATION OF THE TREAP. 74

FIGURE 31. PARALLELIZED KINETIC DATA STRUCT. (TREAP VARIANT). 75

FIGURE 32. ROUND-ROBIN EXECUTION OF THE ZONE METHOD..................... 77

FIGURE 33. SERIAL VS. PARALLELIZED VERSION OF THE CODE. 79

FIGURE 34. LOG-LOG PLOT OF RUN TIMES. ... 79

FIGURE 35. COMPARISON OF THE SERIAL AND PARALLEL RESULTS............ 80

FIGURE 36. COMPARISON OF ZONE, PRIORITY QUEUE, TREAP METHODS. .. 80

FIGURE 37. SCALABILITY OF PRI. QUEUE, TREAP, AND ZONE METHODS. 81

FIGURE 38. ZONE METHOD WITH PRE-ALLOCATED MEMORY. 81

FIGURE 39. SCALABILITY OF THE ZONE METHOD. ... 82

FIGURE 40. EFFICIENCY OF PARALLEL METHODS. ... 82

FIGURE 41. EFFICIENCY OF ZONE METHOD AND VARIANTS. 83

LIST OF TABLES

TABLE 1. DIFFUSION COEFFICIENTS OF FREE RADICALS27

TABLE 2. REACTION RATES BETWEEN FREE RADICALS28

file:///G:/Shaun/Dissertation.docx%23_Toc433576136
file:///G:/Shaun/Dissertation.docx%23_Toc433576137
file:///G:/Shaun/Dissertation.docx%23_Toc433576140
file:///G:/Shaun/Dissertation.docx%23_Toc433576141
file:///G:/Shaun/Dissertation.docx%23_Toc433576142
file:///G:/Shaun/Dissertation.docx%23_Toc433576144

xii

1

CHAPTER 1

INTRODUCTION

According to the American Cancer Society, about 13 million Americans today have cancer

and one million more are being diagnosed every year [1]. One out of every two men and

one out of every three women will be diagnosed with cancer in their lifetimes. According

to a recent report from CNN [2], cancer will become the most deadly disease in the U.S.

by 2030. Thus, it is important to develop effective methods for treating cancer.

A cancerous cell is a mutation of a healthy cell and mutations are, by their nature, random.

To date, there are more than two hundred classes of cancer and within those classes there

are many variations – usually classified by the type of cells they affect. There are common

characteristics among them, but they are all significantly different from one another. They

grow at different target depths within the body, affecting tissues of varying density and

afflicting differing biological systems. One of the few treatments we know of today that is

effective against most types of cancer is radiation therapy – a process of delivering lethal

doses of ionizing radiation into tumorous regions of living tissue in an effort to kill the

tumorous mass. Since radiation also damages the healthy and normal tissues along its beam

path, the goal of radiation therapy treatment planning is to maximize the dose to the target

tumors while minimizing the dose to the nearby healthy tissues and structures. Therefore

it is important to accurately calculate the dose distribution for any designed radiation

treatment. Generally speaking, there are two types of dose that are of interest clinically -

the physical dose and the biological dose. The physical dose refers to the energy absorbed

2

per unit mass in a biological medium following irradiation (measured in Joules per

kilogram). Biological dose refers to the biological effectiveness (i.e., cell killing

probability) of the beam irradiation. Living cells are very likely to be rendered inoperative

when the helical strands of DNA in the nucleus are broken into two pieces (a double strand

break) because it is very difficult for the cell to repair [3]. Double strand breaks are caused

directly by the impact of high energy particles or ions, or indirectly by reaction with free

radicals that have been generated from other radiochemical reactions. If one knows the

density of these particles, ions and free radicals – at a sufficiently small scale - an accurate

estimate of biological dose (cell damage) can be made. Such an estimate would be superior

to an estimate based solely on physical dose, but the physical dose is much easier to

calculate and can be obtained using Kinetic Monte Carlo simulation. Kinetic Monte Carlo

simulations arise in many areas of study including chemistry, traffic networks, ecology,

surface diffusion and growth, and evolutionary game problems in epidemiology. KMC

methods provide a time evolution of random processes occurring in nature. They are a

simple and accurate means of modeling real world physical problems, albeit at the expense

of time and often significant computer resources. Various KMC engines providing this type

of simulation are in use today, such as Geant4-DNA [4] [5] [6] [7], Fluka [8], and MCNP

[9].

Most clinics today use physical dose as a measure of treatment quality. Even though

physical dose correlates with biological dose, the two types of dose exhibit a complex non-

linear relationship that has yet to be determined and remains an active area of study.

The biological dose deposited by therapeutic radiation takes place in the following setting

within living tissue. First, all physical interactions take place, where the molecules in the

3

cell undergo elastic and inelastic physical interactions. This stage – the physical stage - is

characterized by energy deposition and is extremely fast, lasting only about 1 femtosecond

(10-15 second). The physico-chemical stage follows this, lasting roughly from 1

femtosecond to 1 picosecond (10-12 second). This short-lived stage involves the transfer of

energy to the biological environment and is characterized by thermalization and solvation

of subexitation electrons, electronic hole migration, and electronic recombination. The

result of the physico-chemical stage is an array of radiolytic species which are thermalized

and subject to the diffusion equation. Finally, the chemical stage starts and lasts from 1

picosecond to 1 microsecond (10-6 second). In this stage, Brownian motion governs particle

movements, where the thermalized radiolytic species diffuse in the medium reacting with

each other and with the biomolecules. Kinetic Monte Carlo simulations calibrated with

experimental data provide the most accurate means for simulating these three stages,

however Monte Carlo simulation of the third stage is particularly demanding on

computational resources. This dissertation focuses on simulation of the third stage, i.e., the

chemical stage.

Simulation of the chemical stage means tracking the locations of all radiolytic particles,

simulating chemical reactions as the reactants drift within reaction range of one another.

At any single instant in time, if the reactants are of the same chemical species, this is a

description of the well-known geometric closest pair problem, which may be stated as:

given the locations of 𝑁 points in a metric space, return the pair of points that are closer to

one another than any other pair. This is an apt description of what it means to simulate a

chemical reaction because knowing the closest pair of particles at any instant means

knowing the participants of the next reaction. If the reactants are not of the same species,

4

this is an instance of the variant known as the bi-chromatic closest pair problem where we

require the solution to contain points of differing colors (i.e., species). Because there are

many reaction types to simulate and each one has a different reaction radius, there are many

definitions of closeness that must be used. As time progresses, the particles move to new

locations by diffusion and we say the simulation is kinetic. As reactions occur, reactants

are removed from the simulation and products are added, so we say that the simulation is

dynamic. We can therefore think of these simulations as solving 𝑀 simultaneous kinetic

and dynamic closest pair or bi-chromatic closest pair problems given 𝑀 reaction types and

𝑁 particles. Given the assumption that the human body is composed mostly of water, this

leads us to a statement of the task at hand which may be stated as, given 𝑛 radiolytic

particles arranged in a radially symmetric, but random, pattern (a particle beam), and a

variety of molecular species in a bath of 𝐻2𝑂 molecules all subject to diffusion over a time

period of 1 𝜇𝑠, observe and process all chemical reactions, reporting the radiochemical

yield over time.

An algorithm and results are presented here that shows how the simulation times can be

shortened. The key to the improved run times is a new algorithm for solving the dynamic

and kinetic closest and bi-chromatic closest pair problems.

1.1 Executive Summary of Work Presented

This dissertation lays the ground work for the accurate calculation of biological dose and

provides an efficient means for doing so. Efficient serial and parallel kinetic Monte Carlo

algorithms for estimating dose are presented.

5

Description of the relevant physics. The physics of radiation chemistry, as pertinent to the

presented algorithm, are presented. Areas covered are Compton scattering, the photo-

electric effect, and elementary particle pair production. Definitions of stopping power,

linear energy transfer, and relative biological effectiveness are given.

Kinetic Monte Carlo. The kinetic Monte Carlo method used to model the physics of the

problem at hand is described.

Nearest Neighbor Search. The optimization problem known as the bi-chromatic nearest

neighbor search is at the heart of the algorithm presented here. The best known algorithm

for computing the static version of the nearest neighbor search is summarized. It is based

on the use of grids at multiple resolutions and this provides helpful insights to

understanding the new proximity grid method. An efficient mono-chromatic dynamic near

neighbor search using multiple binary trees in a wegde structure is also summarized. It is

an example of a dynamic nearest neighbor search for moving points in a plane.

Kinetic Data Structure. Traditional time domain codes advance time in their simulations

in small, globally constant time steps. In cases when the simulated particles number in the

tens or hundreds of thousands, the simulation can become bogged down by superfluous

simulation activity that does not contribute to the final result. To mitigate this effect, the

time step size can be increased, but increasing the size of the time step can cause important

events to be missed, so this is not always the best solution to the problem. A kinetic data

structure provides an alternative to the traditional constant time step method and it is used

in the proximity grid algorithm. We describe this data structure in detail.

6

Parallelization. The proximity grid method has been parallelized with appropriate

modifications to the data structures. The kinetic data structure is implemented with both a

priority queue and with a treap. We show that the algorithm scales well when implemented

with a priority queue given that appropriate modifications to the grid structure are made.

1.2 Summary of Original Work

Our contribution is a novel algorithm, using a nearest neighbor search technique that works

well in the case when particles are in motion and when the definition of a near neighbor

requires particles of differing species. Its development is motivated, in part, by the desire

to improve the Geant4-DNA toolkit by providing a better method for finding the nearest

neighbor. The Geant4-DNA toolkit currently makes use of a kd-tree to perform nearest

neighbor searches. A kd-tree provides fast search time but does not offer fast insertion or

deletion time, thus it is inefficient in the case when the occupants of the tree (the particles)

are in motion. Our method implements the polychromatic nearest neighbor search using a

directed acyclic graph of particle groups. The groups are non-empty cells in grids with cell

sizes of every reaction radius of interest. The grids offer linear time searches at all relevant

reaction radii while at the same time supporting facilities for moving particles between grid

cells (and therefore grid cell groupings) with a minimum of overhead.

Time step sizes for these simulations are on the order of fractions of a picosecond. To attain

efficient operation, we do not advance the simulation globally at this small time resolution

because doing so would result in inefficient operation. Instead, we advance the simulation

in a spatially local manner, making use of a kinetic data structure [10] [11] [12] [13] to do

so.

7

A parallel version of the algorithm is also presented. Ideally, this algorithm would run on

a radiation oncologist’s desktop workstation, so MPI (message passing interface)

technology – best suited for multi-workstation use – was not chosen as the parallelization

technology. GPGPU (general purpose graphical processing unit) was also considered, but

at this time memory on graphics cards is limited to 4 GB and we wanted this algorithm to

be useful in the case when the motions of billions of particles are simulated. OpenMP was

therefore selected for the implementation. The main challenge faced was in preserving the

physics of the simulation. That is, care needed to be taken to design a system whereby

computer processing on no single CPU advanced simulation time past that of any other

CPU within a small tolerance. This is challenging since the relative densities of particles

in the simulation change over time and the algorithm needed to be insensitive to such

differences in order to keep any one CPU from “lagging” behind the others. Parallelization

of the kinetic data structure is handled using multiple priority queues, resulting in a time

stepping mechanism that operates in a spatially mixed and randomized manner. All

operations done at every time step are spatially local (saving run time), and despite the fact

that the data structures use shared memory, no mutexing or other expensive inter-process

communication mechanism is required. Three versions of the algorithm are presented. Two

(the standard priority queue and treap variants) require the use of a ticket acquisition

mechanism to ensure that regions to be processed don’t overlap one another. Ticket

acquisition is performed serially, and is therefore a potential bottleneck when a large

number of cores are used. This bottleneck can be overcome by processing multiple particle

movements after acquiring a ticket. To make this possible, the kinetic data structure is

implemented with a treap (a binary tree that also has the properties of a heap). The priority

8

key of the treap is used as the local time step time, and the heap key of the treap is used to

represent the ticket index for the region in which the particle movement takes place. The

third method uses spatial discretization in exchange for the ticket acquisition mechanism

as the method of ensuring that different threads operate in different regions of space.

1.4 Organization

Chapter 2 presents the background material necessary to understand the relevant concepts

in radiation therapy and how those concepts are incorporated into related computer

simulations. Ionizing radiation as well as relevant physical quantities are defined and a

description of the relevant physical processes are presented. Chapter 3 provides details on

a new algorithmic approach called the proximity grid method that offers a faster approach

than the current state of the art. Our unique solution to the nearest neighbor search is

presented. Details are also given for parallelization of this algorithm and results are

discussed in chapter 4. Chapter 5 offers a discussion.

9

CHAPTER 2

BACKGROUND

The following sections briefly present the field of radiation therapy and Monte Carlo

simulation of therapeutic radiation in living tissue. Section 2.1 gives an overview of the

physics involved in radiation therapy as well as some of the terminology used, and it

explains some of the factors that make biological dose estimation difficult.

Sections 2.3 and 2.4 describe the three stages of activity that follow therapeutic irradiation

within living cells and the Monte Carlo methodology used to simulate them in a computer.

A state-of-the-art Monte Carlo tool called the Geant4-DNA toolkit is discussed next. The

goal of this research is to perform a simulation on-par with what is done in Geant4-DNA

and to improve on the simulation time.

2.1 Radiation Therapy

Radiation therapy is the medical use of ionizing radiation to destroy cancer cells within

living tissue. The radiation is delivered in the form of either high energy photons (X-rays

or gamma rays), or as bombardment by high energy, heavy particles (protons, neutrons, or

heavier ions). In both cases the goal is to kill the cancerous tissue by ionizing atoms within

its cells. Ionization - the acquisition of electrical charge by an atom or molecule due to the

gain or loss of electrons - alters the chemical structure of biomolecules, including the DNA

molecule. X-rays are photons that contain enough energy to break chemical bonds and

ionize atoms, but photons of longer wavelengths (thus lower energies) do not. For example,

10

a whole body exposure to a 70 kg man of only 4 J/kg of X-ray radiation is lethal, but this

same amount of energy in the form of heat (i.e., many more, long wavelength, low energy,

infra-red photons) raises the same quantity of water by only 0.002℃ - a harmless exposure.

Thus, when we discuss ionizing radiation by photons, we mean X-rays or gamma rays. We

ignore ultraviolet radiation (which is also ionizing) because it is not energetic enough for

therapeutic purposes. Radiation in the form of electrons, protons or heavier ions, if

energetic enough, is also ionizing. The greater the mass of the particles used, the greater

the depth of penetration of the radiation.

Radiation therapy using heavy charged particles exhibits a clinically advantageous

behavior that can be seen in the Bragg peak discussed in section 2.1.3. It is advantageous

because the majority of the energy is deposited deep in biological tissue.

The goal of radiation therapy is to apply the dose to the cancerous tissue without affecting

the healthy tissue that often surrounds the tumorous area. Since the deposited energy often

cannot be injected into the tumor without also being injected into non-tumorous tissue, the

goal is to maximize the dose to the tumor while simultaneously minimizing it in the healthy

tissue. Furthermore, energy from the initial radiation transfer spreads within the tissue

through secondary effects and is strong enough, in and of itself, to cause damage to non-

tumorous tissue. Therefore in the field of radiation therapy there are two objectives: to

deliver enough directed energy to a tumor site so that the therapy is effective, and to limit

the effects of that same therapy on non-tumorous tissue.

The most common types of radiation used in a modern day cancer clinic include high

energy X-rays (6MeV and 18 MeV from a clinical linear accelerator), Cobalt-60 gamma

rays (1.17 MeV and 1.33 MeV) from a gamma knife, or high energy protons (75-250 MeV

11

produced by a cyclotron or synchrotron) [14] [15]. The particle beams are referred to as

ionizing radiation because they are energetic enough to eject one or more orbital electrons

and ionize the atoms or molecules it interacts with. The important characteristic of ionizing

radiation is the local release of large amounts of energy. When molecules in stable chemical

bonds lose one or more of their orbital electrons the bonds become unstable and break. The

radiation used in these techniques is strong enough to break strong chemical bonds such as

the biologically common C=C bond – a chemical bond held together with 4.9 keV [16] -

and can induce biological damage to DNA molecules. The research presented here is

motivated by the desire to simulate radiation damage to DNA in biological material. When

living organisms are exposed to ionizing radiation (such as X-rays, gamma rays, electrons,

protons, and heavy ions), the incident particles can damage the DNA molecule in the cell

nucleus causing loss of genetic information that may lead to cell mutation or death [3].

Ionizing radiation may damage DNA either directly or indirectly. In the former situation,

the radiation directly interacts with the DNA molecules causing breaks in the helical

structure. In the latter case, the radiation interacts with other atoms or molecules

surrounding the DNA (e.g., water) to produce free radicals that are able to diffuse far

enough to reach and damage the strands of DNA molecules. For example, the following

ionization events frequently take place: 𝐻2𝑂 → 𝐻2𝑂+ + 𝑒−, 𝐻2𝑂+ + 𝐻2𝑂 → 𝐻3𝑂+ +

𝑂𝐻⦁. The highly reactive hydroxyl radical OH⦁ can then interact with DNA molecules

causing strand breaks.

12

2.1.1 Ionizing Radiation

Radiation is the propagation of energy through vacuum or matter carried along by energetic

protons, neutrons or photons (or other heavier particles). The process is energy conserving.

In radiation therapy, we are interested in radiation that, upon impact, is energetic enough

to eject electrons from stable orbits, creating ionized states of chemical matter. These

ionized states lead to chemical changes, and in the case of biological matter such as DNA

molecules, these changes can be lethal. Thus we are concerned with quantities such as the

instantaneous rate of flow of radiative particles per unit area (flux) and with the total flow

of particles crossing a unit area in a given period of time (fluence). These quantities are

defined as follows with cross-sectional area, 𝐴, through which the particles flow, time, 𝑡,

and number of radiative particles, 𝑁.

𝜙 =
𝑑𝑁

𝑑𝐴 ∙ 𝑑𝑡
 (𝑓𝑙𝑢𝑥)

Φ =
𝑑𝑁

𝑑𝐴
= ∫ 𝜙 𝑑𝑡 (𝑓𝑙𝑢𝑒𝑛𝑐𝑒)

If each particle has an average energy, 𝐸, then the energy flux and energy fluence is defined

as

𝜓 =
𝑑𝐸

𝑑𝐴 ∙ 𝑑𝑡
 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑢𝑥 𝑖𝑛 𝐽𝑜𝑢𝑙𝑒𝑠)

Ψ =
𝑑𝐸

𝑑𝐴
= ∫ 𝜓 𝑑𝑡 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑊𝑎𝑡𝑡𝑠)

In SI units, these quantities are measured in Joules (typically in the MeV range) and in

Watts, respectively.

13

An important quantity measured in radiation therapy is called absorbed dose. It is a measure

of energy deposited per unit mass and has units of Grays (J/kg). For a given energy, 𝐸, and

mass, 𝑚, the dose D, is defined as

𝐷 =
𝑑𝐸

𝑑𝑚
.

Unfortunately, absorbed dose cannot always be directly measured. Alternative measures of

dose include effective dose, and equivalent dose that are weighted by either organ volume

or known biological effects due to the type of radiation used.

2.1.2 Compton Scattering, the Photoelectric Effect, Pair Production, and

Rayleigh Scattering

Electromagnetic radiation such as X-ray radiation is a stream of photons that transfers it’s

energy to the surrounding tissue producing fast moving charged particles. It is these fast

moving charged particles that cause the ionization that damage DNA molecules – not the

radiation itself, thus the incident radiation is said to be indirectly ionizing. At energies

characteristic of those seen in a Cobalt-60 linear accelerator, the dominant mechanism of

energy transfer is called Compton scattering. Compton scattering describes the way energy

is transferred to free or loosely bound electrons as the photons collide with them. An

incident photon may lose from 0 – 80% of its energy in any given (inelastic) collision,

transferring that energy to the electron in the form of kinetic energy. All remaining energy

is emitted in the form of a new photon having a longer wavelength that may participate in

additional scattering events.

14

Figure 1. Compton scattering. [67]

The x-ray photon is incident upon a loosely bound or free electron.

Figure 2. The Photo-electric Effect. [67]

The photon is incident upon a tightly bound electron. In the case shown here, some

energy is used to break the orbital bond and the remaining energy is transferred to

the electron in the form of kinetic energy.

15

The photo-electric effect is similar to Compton scattering except that the photon is incident

upon a tightly bound electron. In this case, as the electron absorbs energy, it may either

change orbital shells or be ejected from the atom completely. If the electron changes shells,

a secondary photon is emitted with energy equal to the difference in binding energy

between the two orbital shells. If the electron is separated from the atom, some of the

energy of the original photon is used to overcome the electron’s binding energy. A

secondary photon may also be emitted. If one is not emitted, the remaining energy

manifests solely as the kinetic energy of the ejected electron. If one is emitted, the energy

is split between the velocity of the electron and the wavelength of the new photon.

Figure 3. Photon energy vs. target atomic number. [17]

The red line 𝜎 = 𝜏 indicates the region where the photoelectric effect occurs as often as the

Compton effect and the red line 𝜎 = 𝜅 indicates the region where pair production occurs as often

as the Compton effect.

16

Both Compton scattering and the photo-electric effect occur during photon-based radiation

therapy, but Compton scattering dominates at higher energies, while the photo-electric

effect becomes more prominent at lower energies (see Figure 3). The Compton and photo-

electric absorption effects in living tissue are not the same. Since Compton scattering is a

process dealing with free or loosely bound outer shell electrons while the photo-electric

effect occurs with tightly bound inner shell electrons, the absorption of energy by the

Compton process is independent of atomic number, but absorption by the photo-electric

effect varies roughly as the cube of the atomic number. This means that if a radiative energy

that favors energy transfer by the photo-electric effect is used then bone will receive a

greater dose than muscle or other soft tissue. On the other hand, if the energy of the beam

is increased so that Compton scattering becomes dominant, then the hard and soft tissues

receive a more equally distributed dose.

Pair production is the creation of an elementary particle and its anti-particle. Pair

production occurs when a photon with energy greater than or equal to the rest mass of the

two created particles interacts with the nucleus of an atom. For example, in the creation of

an electron and its anti-particle, the positron, the minimum required energy of the incident

photon is 1.022 𝑀𝑒𝑉 = 2𝑚𝑒𝑐2, where 𝑚𝑒 is the rest mass of the electron and 𝑐 is the

speed of light. The probability of pair production increases with energy and is

approximately proportional to the square of the atomic number of the target atom.

Rayleigh scattering also occurs in photon-based radiation therapy. Rayleigh scattering is

an interaction between rays of light and polarizable atoms whose size is smaller than the

wavelength of the light. This type of scattering is what causes the sky to appear blue in the

presence of sunlight. On collision of the photon with the atom, the oscillation of the light

17

ray causes the atom to vibrate at the same frequency as the light. As a result of the

oscillation, the atom becomes a radiating dipole, giving off the energy from the incident

ray as a new photon. The newly emitted photon has the same wavelength as the original

one, but it has a new random direction. This type of scattering is called elastic because no

energy is lost in the process. The impact on radiation therapy is that since the ray changes

direction, coherency in the overall beam as a whole is lost. In materials with low atomic

number such as most soft biological tissues, this type of scattering occurs for photons with

energies below 20 keV.

2.1.3 Depth vs. Dose and the Bragg Peak

X-ray or gamma ray radiation are not the only energy delivery mechanisms used in

radiation therapy. In 1946, physicist Robert Wilson [18] suggested that heavy charged

particles could be used to treat cancer in a way that minimizes damage to healthy tissue.

His work was based on the observation that heavy particles such as carbon ions or protons

deliver the bulk of their energy deep within the target medium and they release

comparatively little energy at the point of entry into the body. This seemingly

counterintuitive behavior forms the basis of modern particle therapy. Radiation therapy is

called particle therapy when any particle heavier than an electron (i.e., a hadron particle)

is used as an energy delivery instrument. This type of therapy is also called hadron therapy.

When energetic photons, such as X-rays or gamma rays, are incident upon a material, the

majority of the energy is released near the surface. This is because the mechanisms of

energy exchange between photons and matter is through direct collision (Compton

scattering, the photo-electric effect, pair production and the Rayleigh effect), where much

18

of the energy of the photon is transformed into kinetic energy as it is absorbed into the

molecular mass. This is not the case with ionizing energy deposited by neutrons, protons

or other ions. This second type of therapy - hadron therapy - releases more energy as the

particles slow down and come to rest. The reason for this is because energy is exchanged

with the target medium through Coulomb force interactions that cause the formation of

ionic bonds. These bonds form more easily as the particles slow down. Charged particles

drifting slowly past ions can more easily be trapped in orbit around them, forming a bond,

while faster ones can more easily escape the force of electromagnetic attraction between

them. By adjusting the input velocity of the hadron particles, the location at which the

majority will come to rest can be changed. In this way, the therapeutic dose can be shaped

to fit both the size and location of a tumor. Hadron therapy allows for minimal dose applied

at the entrance site, no dose applied at the exit site, and maximal dose applied to the

tumorous area. The red curve in Figure 4 is an example of this type of dose vs. depth and

it is called a Bragg peak. It gets its name from William Bragg who first observed the

behavior in 1903. The blue curve is composed of many smaller beams with each beam

having a different particle velocity. The sum of the applied doses has a “flat top” near 20

cm showing the shape of the dose as a function of tissue depth. This flat top is called a

spread out Bragg peak (SOBP) and forms the cornerstone of radiation particle therapy

today. The magenta curve shows an example of a more conventional X-ray or gamma ray

dose. Both energy delivery mechanisms, photons and hadrons, are powerful tools at the

radiation oncologist’s disposal.

19

Figure 4. Dose vs. Depth. [19]

The dose vs. tissue depth of a 250 MeV proton beam is shown in red. A beam consisting of the

sum of many smaller beams with a total energy of 250 MeV is shown in blue. Note the flat top

that is created 20 cm into the body. In magenta, the dose deposition of a 6 MeV photon beam is

shown.

One disadvantage of using photons (X-rays or gamma rays) in radiation treatment of

cancerous tissue deep within the body that can be seen in Figure 4 is that since most of the

energy is released where the beam enters at the surface of the body, many more healthy

cells will be killed than cancerous ones. The depth-dose curve, or Bragg curve, (the red

curve in Figure 4) is a measure of stopping power described by the Bethe equation

−
𝑑𝐸

𝑑𝑥
=

4𝜋

𝑚𝑒𝑐2
∙

𝑛𝑧2

𝛽2
∙ (

𝑒2

4𝜋휀0
)

2

∙ [ln (
2𝑚𝑒𝑐2𝛽2

𝐼 ∙ (1 − 𝛽2)
) − 𝛽2]

where

20

−
𝑑𝐸

𝑑𝑥
≡ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑒 ≡ 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝑧 ≡ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐ℎ𝑎𝑟𝑔𝑒

𝑒 ≡ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒

𝑛 ≡ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝐼 ≡ 𝑚𝑒𝑎𝑛 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝛽 ≡
𝑣

𝑐
 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑣

𝑐 ≡ 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

휀0 ≡ 𝑣𝑎𝑐𝑐𝑢𝑢𝑚 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦.

The mean excitation potential energy, 𝐼, is a function of atomic number and may be

obtained by lookup in a table. The electron density, 𝑛, is

𝑛 =
𝑁𝐴 ∙ 𝑍 ∙ 𝜌

𝐴 ∙ 𝑀𝑢

where

𝑁𝐴 ≡ 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑍 ≡ 𝑎𝑡𝑜𝑚𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟

𝜌 ≡ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝐴 ≡ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠

21

𝑀𝑢 ≡ 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

With stopping power defined as 𝑆(𝐸) = − 𝑑𝐸 𝑑𝑥⁄ , the mean range of incident particles is

obtained by integration and is calculated as

∆𝑥 = ∫
1

𝑆(𝐸)

𝐸0

0

𝑑𝐸

for particles having initial energy, 𝐸0.

The effect of the Bragg peak used to shape a dose in hadron therapy can be seen in Figure

5 that shows physical dose at the site of a cranial tumor. Note that the beam intensity is

significantly greater at the tumor location.

Figure 5. Proton beam dose at a cranial tumor site.

22

Figure 6. A simulation showing a beam of 7,500 1 MeV Hydrogen atoms shot through water. [20]

Figure 6 shows a beam of hydrogen particles with 1 𝑀𝑒𝑉 of energy being shot through 1𝜇𝑚

of water. The results were generated by SRIM [20].

2.1.4 Relative Biological Effectiveness (RBE)

When the effectiveness of a dose of radiation on biological matter is compared to the

effectiveness of the same dose of a different type of radiation measured in a laboratory, we

use the term relative biological effectiveness (RBE), or equivalently, biological dose. The

reference radiation source (often gamma or X-rays) is defined to have an RBE of 1.0. If

𝐷𝑟𝑒𝑓 is the reference dose required to produce some effect, and 𝐷𝑡𝑒𝑠𝑡 is the dose of another

23

type of radiation required to produce the same effect, then RBE is defined as the ratio of

𝐷𝑟𝑒𝑓 to 𝐷𝑡𝑒𝑠𝑡 where the two doses may be complex functions of many variables.

𝑅𝐵𝐸 =
𝐷𝑟𝑒𝑓(𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑓𝑙𝑢𝑥, 𝑡𝑖𝑠𝑠𝑢𝑒 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒, …)

𝐷𝑡𝑒𝑠𝑡(𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑓𝑙𝑢𝑥, 𝑡𝑖𝑠𝑠𝑢𝑒 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒, …)

When planning radiation therapy, the type of radiation that will yield the greatest RBE is

sought because tumorous cell death can be achieved using the lowest possible dose. Both

the reference dose and the test dose are functions of physical dose, dose rate, tissue type,

radiation type, and other factors. The RBE provides an estimate of the expected cell failure

in a patient given a known cell failure in the laboratory.

2.1.5 Relevant Chemical Reactions and the Creation of Free Radicals

We now discuss the chemical reactions relevant to the simulation being performed here.

Let us consider the case when a beam of ionizing radiation is incident on water molecules.

Of the many types of molecules in the body, the case of incidence with water is the most

important because the body consists mostly of water. For simplicity, all simulations

performed here assume the target body consists entirely of water.

When energetic particles interact with water the collision produces a free electron and a

positively charged water molecule. Two events follow this. The free electron reacts with

another water molecule to produce a negatively charged water molecule, and the positively

charged water molecule dissociates into a hydrogen ion and a hydroxyl radical. Finally, the

negatively charged water molecule dissociates into a hydrogen radical and a hydroxyl ion.

These reactions produce free electrons, 𝐻− and 𝑂𝐻− ions, and the free radicals, 𝐻⦁ and

24

𝑂𝐻⦁. Free radicals are molecules with an unpaired valence electron. These highly reactive

and biologically dangerous molecules will unselectively pair with an electron from another

atom or molecule, possibly including those that make up a DNA molecule. Eventually, all

of these particles recombine to form water, but some of the free radicals will damage or

destroy DNA molecules before they recombine. In total, there are seven particle species

excluding water, and ten reactions (see Figure 7, Table 1 and Table 2).

When free radicals encounter DNA molecules they can cause DNA strand breaks. If only

one strand is broken, the unbroken strand can often be used as a template to repair the

broken side, in which case the breakage is repairable. If both strands are broken, there are

three mechanisms of DNA repair that can be employed by the cell called non-homologous

end joining, microhomology-mediated end joining, and homologous recombination, but

the damage is often unrepairable. In the event that the damage cannot be repaired, the cell

𝐻2𝑂

𝑒− + 𝐻2𝑂 → 𝐻𝑂𝐻−

𝐻𝑂𝐻+

Water

Positively charged

water molecule

Incoming radiation

Negatively charged water molecule

𝐻⦁

Hydrogen radical

𝑂𝐻−

Hydroxyl ion

𝐻+ Hydrogen ion

𝑂𝐻⦁ Hydroxyl radical

Figure 7. Relevant radiochemical reactions.

25

will die no later than at the next mitosis cycle when the entire strand of DNA is copied as

the one cell attempts to split into two. The goal of radiation therapy is to kill cancerous

cells by causing these double strand breaks.

2.3 Three Stages of Activity Following Irradiation

The majority of the damage caused by radiation is due to chemical reactions with water

within cells. The reactions occur rapidly and are non-selective and random. When ionizing

radiation enters living organisms, it follows three consecutive stages. The first stage

following cellular irradiation is called the physical stage. In this stage the molecules in the

cell undergo elastic and inelastic physical interactions. The physical stage is characterized

by energy deposition and is extremely fast, lasting only about 1 femtosecond (10-15 second).

The second stage is called the physico-chemical stage and lasts roughly from 1

femtosecond to 1 picosecond (10-12 second). This stage is characterized by thermalization

𝑂𝐻⦁

Figure 8. DNA molecule damaged by a free radical.

26

and solvation of subexitation electrons, electronic hole migration, and electronic

recombination. Thus, particles intermix, seeking thermal equilibrium, while excited

electrons seek to give off their excess energy as photons or vibrational energy (heat) and

drop back down to their valence shells. The result of the physico-chemical stage is an array

of radiolytic species that are thermalized and subject to the diffusion equation.

The third stage is called the chemical stage, and lasts from approximately 1 picosecond to

1 microsecond (10-6 second). It involves radiolysis of the cellular fluids and the creation of

radioactive molecular and atomic particles. In this stage, Brownian motion governs particle

movements, where the thermalized radiolytic species diffuse in the medium reacting with

each other and with biomolecules such as DNA. The excitations and ionizations created by

the energy transfer and ensuing chemical reactions lead to the creation of free radicals -

molecules or atoms that have at least one unpaired electron in an orbital shell. The Debye-

Smoluchowski (DS) equation describes the movements of the free radicals as

𝜕𝑝(𝑟, 𝑡|𝑟0)

𝜕𝑡
= 𝐷∇2𝑝(𝑟, 𝑡|𝑟0) + 𝐷𝛽∇ ∙ 𝑝(𝑟, 𝑡|𝑟0)𝐹(𝑟)

where 𝐹(𝑟) is an external force field, 𝛽 =
1

𝑘𝐵𝑇
, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the

temperature and 𝑝(𝑟, 𝑡|𝑟0) is the probability density of a particle being at location 𝑟 at time

𝑡 given the initial location 𝑟0. This is an application of the diffusion equation and in the

absence of an externally applied force the solution to it is a Gaussian distribution with

𝑝(𝑟, 𝑡|𝑟0) =

1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟−𝑟0)2

4𝐷𝑡
1.

27

Where 𝐷 is the diffusion coefficient, 𝑡 is time and 𝑝 is the probability that a particle initially

located at 𝑟0 will be located a distance 𝑟 − 𝑟0 away after time 𝑡 [21]. Table 1 shows the

experimentally derived diffusion coefficients and reaction radii of some important free

radicals.

Table 2 shows some of the more important chemical reactions that can take place between

free radicals.

SPECIES DIFFUSION COEFFICIENT, D

(10-9M2S-1)

𝒆𝒂𝒒
− 4.9

⦁𝑶𝑯 2.8

𝑯⦁ 7.0

𝑯𝟑𝟎+ 9.0

𝑯𝟐 4.8

𝑶𝑯− 5.0

𝑯𝟐𝟎𝟐 2.3

Table 1. Diffusion coefficients of free radicals [22]

28

REACTION REACTION RATE

(1010 M-1S-1)

𝑯⦁ + 𝒆𝒂𝒒
− + 𝑯𝟐𝑶 → 𝑶𝑯− + 𝑯𝟐 2.65

𝑯⦁ + ⦁𝑶𝑯 → 𝑯𝟐𝟎 1.44

𝑯⦁ + 𝑯⦁ → 𝑯𝟐 1.20

𝑯𝟐 + ⦁𝑶𝑯 → 𝑯⦁ + 𝑯𝟐𝟎 4.17x10-3

𝑯𝟐𝟎𝟐 + 𝒆𝒂𝒒
− → 𝑶𝑯− + ⦁𝑶𝑯 1.41

𝑯𝟑𝟎+ + 𝒆𝒂𝒒
− → 𝑯⦁ + 𝑯𝟐𝟎 2.11

𝑯𝟑𝟎+ + 𝑶𝑯− → 𝟐𝑯𝟐𝟎 14.3

⦁𝑶𝑯 + 𝒆𝒂𝒒
− → 𝑶𝑯− 2.95

⦁𝑶𝑯 + ⦁𝑶𝑯 → 𝑯𝟐𝟎𝟐 0.44

𝒆𝒂𝒒
− + 𝒆𝒂𝒒

− + 𝟐𝑯𝟐𝟎 → 𝟐𝑶𝑯− + 𝑯𝟐 0.50

Table 2. Diffusion controlled reaction rates between free radicals [22]

2.4 Monte Carlo Simulations

The term, “Monte Carlo method”, is a term that refers to the use of repeated random

sampling and probability statistics to solve problems that either don’t have closed form

solutions or for other reasons are difficult to solve. The method has a wide range of

applications and is used to solve problems in fields ranging from economics to nuclear

physics. One of the earliest and most famous implementations of the method was presented

by Nicholas Metropolis [23] in his 1953 study of the ideal gas law, 𝑃𝑉 = 𝑛𝑅𝑇, where the

Boltzman distribution, 𝑒−ℰ/𝑘𝑇, was repeatedly used to move an initial distribution of 224

particles (a simulated gas) into a new distribution. After many particle movements, the

system, as a whole, seeks a state of low energy, in agreement with theoretical predictions.

One of the simplest illustrations of the method can be seen by observing how it is used to

compute a numerical solution to an integral between two limits of integration. The

29

technique consists of the repeated random sampling of points in the domain and range of

the function. The area under the curve is the solution to the problem and that area is

estimated to be the ratio of sampled points under the curve to the total number of sampled

points multiplied by the area of the enclosing box (see Figure 9).

Figure 9. Using the Monte Carlo method to solve an integral.

The accuracy of the method improves as more and more random samples are generated

and there is no restriction regarding what type of integral can be solved. Thus, this is a

simple and powerful method, but obtaining a high degree of accuracy with it can come at

the cost of significant computer time and resources.

2.4.1 Kinetic Monte Carlo Simulations and Diffusion

Monte Carlo simulations calibrated with experimental measurements provide the most

accurate means of simulating the physical and physico-chemical stages [24] of the problem

of interest here. We are interested in the simulation of the computationally challenging

30

third stage, i.e., the chemical stage where indirect damage to DNA molecules delivered by

free radicals forms the basis of study. Because the simulations evolve through time, our

Monte Carlo simulations are referred to as kinetic Monte Carlo simulations (also known as

a Gillespie algorithm [25]). There are tools in use today that have kinetic Monte Carlo dose

calculation engines and perform this kind of computation such as the Geant4-DNA Toolkit

[4] [5] [6] [7], PARTRAC [26] [27], and RADACK [28] and all of them require significant

computer time and resources to solve reasonably sized problems of this type.

Accurate modeling of the chemical stage requires tracking the motions of millions or even

billions of particles over a million picoseconds (the chemical stage lasts

approximately 1 𝜇𝑠), but simulations of this size are prohibitively expensive to run even

on large computer clusters. To put the scale of these simulations in perspective, with a mere

quarter million incident electrons at 1MeV, there are more than 12 million OH free

radicals generated within the first picosecond [4] [29] [30] and more than a billion primary

ions. The time scale under consideration is 1 𝑝𝑠 to 1 𝜇𝑠 where a time step on the order of

1 𝑝𝑠 is normally used [31]. Thus the scale of a full fidelity simulation is enormous, and can

easily overwhelm a state-of-the-art computing cluster. Clearly, any algorithmic

improvements that can be made to this process will be greatly beneficial.

For these simulations, the diffusion time is proportional to the square of the diffusion

distance and since no other forces are present, the positions of the molecules are governed

solely by Brownian motion (i.e. a random walk). The following equation relates the mean

squared displacement as a function of diffusivity, 𝐷, and tine, 𝑡. It is the second moment

(i.e., variance) of equation 1 and it relates the average path length of a diffusing particle to

the time it is in motion.

31

𝑥2 = 2𝐷𝑡

These chemical reactions are diffusion limited because the speed of the reaction is fast

compared to the movements of the reacting molecules. Reaction times are on the order of

fractions of a picosecond. In this scenario a kinetic Monte Carlo simulation is a direct

implementation of a random walk of a large number of simulated particles over time in

software. We are interested in large scale Monte Carlo simulations where ionized

molecules can be numbered in the hundreds of thousands or millions. A brute force

approach to solving this problem compares all pairs of particles at each time step requiring

𝑂(𝑚 ∙ 𝑛2) run time, for 𝑛 particles and 𝑚 discrete time steps.

The recent and open source Geant4-DNA Toolkit [4] [5] [6] [7] uses a hierarchical data

structure called a kd- tree [32] to provide fast nearest neighbor searches. In this approach

time is discretized, and all reactions that occur take place at the beginning of the time

interval. Within each time interval, the particles diffuse – that is, they make random

movements. To determine which pair of particles react, a kd-tree is built based on the

positions of the particles at the beginning of each time step. A closest pair is found whose

reaction time is used to determine the next time interval. The main drawback to this

algorithm is that the tree has to be rebuilt for each iteration because all particles are in new

locations. With 𝑚 time steps, this is an 𝑂(𝑚𝑛 𝑙𝑜𝑔(𝑛)) algorithm, where O(nlogn) is the

time to build the tree and the expected time to find the closest pair in each iteration. If the

theoretically best time bounds of searches in the kd-tree are to be realized, then the tree

must be balanced after the particles are inserted. This expensive step diminishes the benefit

of the fast search. Karamitros [5] developed an improvement to this method that makes use

of dynamically sized time steps defined to be the length of time required for the current

32

nearest neighbors to react with some probability, but the use of the kd-tree itself remains a

bottleneck.

2.5 Geant4-DNA

Geant4-DNA is an open source, extensible toolkit that simulates the passage of particles

through matter. Its use spans multiple application domains such as high energy physics,

astrophysics, space science, medical physics, and radiation protection. It is a Monte Carlo

system that combines the general purpose Geant4 architectural design with functionality

specific to needs in the field of radiobiology. This tool was developed to meet the same

goals outlined in this dissertation. It can be used to estimate the rate of cell survival

following irradiation by a high energy source. A plot of dose vs. survival rate as output

from Geant4-DNA is shown in Figure 10. Geant4-DNA is a state-of-the-art tool used for

calculating radiometric dose.

The Monte Carlo engine in the Geant4-DNA toolkit simulates the movements and

interactions of the incident high energy particles used when delivering therapeutic doses

into cancerous tissue. A kd-tree is used to provide fast nearest neighbor searches in order

to determine when the next reaction occurs. Some inefficiencies associated with this

approach will be discussed in section 2.4.1. It is hoped that the proximity grid method

presented in chapter 3 can eventually be integrated into Geant4-DNA.

33

Figure 10. Geant4-DNA fractional survival.

Fractional survival rate of a population of hamster cells irradiated with a 3.66 MeV proton beam

vs. dose absorbed [33] as reported by Geant4-DNA.

2.6 Fick’s Second Law of Diffusion

Although we directly simulate the motions of molecules, it can be useful to derive an

equation describing the macroscopic behavior of a diffusing system. One attempt at

parallelization of the proximity grid method made use of the equations presented below as

a way to transfer moving particles between processors in charge of different regions of

space, but the method was unsuccessful. The derivation is included here for reference.

Adolf Fick’s second law of diffusion [34] [35] describes the change in particle

concentration in one dimension over time where particles are under the influence of

diffusion and there are no externally applied forces. The equation is

34

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2

where 𝐷 is the diffusion coefficient (unit area per second), 𝑐(𝑥, 𝑡) is the concentration

(number of particles per unit volume) at location 𝑥 and time 𝑡, and 𝑥 points in the direction

of the change in particle concentration. It predicts how the particle concentration changes

with respect to time due to diffusion. The general solution [35] can be obtained by applying

the similarity method [35] [36]. After deriving the general solution we will apply boundary

conditions corresponding to the diffusion we would expect to see when a drop of dopant is

dropped into a bath of liquid. In this way we will arrive at a useful equation for our

purposes. The method starts by guessing at a prototype solution with the aid of dimensional

analysis. The expected functional form is

𝑐(𝑥, 𝑡) = 𝑡−𝛽𝐹(𝜂)

𝜂 = 𝑥2 4𝐷𝑡⁄ .

This form has a “size” term, 𝑡−𝛽, and a “stretch” term, 𝐹(𝜂), where 𝐹 is an unknown

function, 𝛽 is an unknown constant, and 𝑡 is time. The exponent 2 in the term 𝑥2 is an

educated guess that arises because 𝑥 appears in Fick’s Law as a second order derivative.

The 𝐷𝑡 in the denominator serves to make the term, 𝜂, unitless, allowing the function 𝐹 to

behave as a universal stretch factor that is insensitive to any physical quantity (as it should

be). The factor of four appears for mathematical convenience. The 𝑡−𝛽 term represents the

temporal decay of the maximum concentration, with the unitless constant 𝛽 expected to be

positive. The first and second derivatives of 𝑐(𝑥, 𝑡) with respect to 𝑡 and 𝑥 are

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= −𝛽𝑡−𝛽−1 𝐹(𝜂) + 𝑡−𝛽

𝐹

𝑑𝜂

𝑑𝜂

𝑑𝑡
= −𝛽𝑡−𝛽−1 𝐹(𝜂) − 𝜂𝑡−𝛽−1

𝑑𝐹

𝑑𝜂

35

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
= 𝑡−𝛽

𝑑𝐹

𝑑𝜂

𝑑𝜂

𝑑𝑥
=

𝛽𝑥𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
=

𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂
+

𝑥𝑡−𝛽−1

2𝐷

𝑑𝐹2

𝑑𝜂2

𝑑𝜂

𝑑𝑥
=

𝑡−𝛽−1

2𝐷

𝑑𝐹

𝑑𝜂
+

𝑡−𝛽−1

𝐷
𝜂

𝑑𝐹2

𝑑𝜂2
 .

Substitution into Fick’s Law yields

−𝛽𝑡−𝛽−1 𝐹(𝜂) − 𝜂𝑡−𝛽−1
𝑑𝐹

𝑑𝜂
=

𝑡−𝛽−1

2

𝑑𝐹

𝑑𝜂
+ 𝜂𝑡−𝛽−1

𝑑𝐹2

𝑑𝜂2
.

Note how both 𝑡 and 𝐷 cancel out due to the careful way that 𝜂 is defined. Continuing to

simplify:

−𝛽 𝐹(𝜂) − 𝜂
𝑑𝐹

𝑑𝜂
=

1

2

𝑑𝐹

𝑑𝜂
+ 𝜂

𝑑𝐹2

𝑑𝜂2

𝛽 𝐹(𝜂) + 𝜂
𝑑𝐹

𝑑𝜂
+

1

2

𝑑𝐹

𝑑𝜂
+ 𝜂

𝑑𝐹2

𝑑𝜂2
= 0

𝜂
𝑑

𝑑𝜂
(

𝑑𝐹

𝑑𝜂
+ 𝐹) +

1

2
(

𝑑𝐹

𝑑𝜂
+ 2𝛽 𝐹) = 0.

Since 𝛽 is a free parameter, we choose it to be
1

2
 so that the terms in parentheses are

identical. Then

𝜂
𝑑

𝑑𝜂
(

𝑑𝐹

𝑑𝜂
+ 𝐹) +

1

2
(

𝑑𝐹

𝑑𝜂
+ 𝐹) = 0.

A solution to this equation satisfies the condition

𝑑𝐹

𝑑𝜂
+ 𝐹(𝜂) = 0.

36

That is, our solution is conditioned on the fact that the derivative of a function plus the

function evaluated at any point is always zero. This is a condition that can only be satisfied

with an exponential function, thus

𝐹(𝜂) = 𝛼𝑒−𝜂

and the general form for the concentration is

𝑐(𝑥, 𝑡) =
𝛼

√𝑡
𝑒−𝑥2 4𝐷𝑡⁄

where 𝛼 is an unknown constant. Applying the boundary condition that the original number

of particles is constant (i.e., there is no particle source or sink), then the integration of the

concentration over space at any given time must sum to the number of particles.

∫ 𝑐(𝑥, 𝑡)𝑑𝑥
∞

−∞

= 𝑁

∫
𝛼

√𝑡
𝑒−𝑥2 4𝐷𝑡⁄ 𝑑𝑥

∞

−∞

= 𝑁

Defining 𝑦 ≡
𝑥

2√𝐷𝑡
 allows us to rewrite this as

2𝛼√𝐷 ∫ 𝑒−𝑦2
𝑑𝑦

∞

−∞

= 𝑁.

Due to symmetry this is

4𝛼√𝐷 ∫ 𝑒−𝑦2
𝑑𝑦

∞

0

= 𝑁.

Since ∫ 𝑒−𝑦2
𝑑𝑦

∞

0
=

√𝜋

2
 this reduces to

2𝛼√𝜋𝐷 = 𝑁

37

𝛼 =
𝑁

2√𝜋𝐷

and the concentration as a function of time and location in one dimension becomes

𝑐(𝑥, 𝑡) =
𝑁

2√𝜋𝐷𝑡
𝑒−𝑥2 4𝐷𝑡⁄ .

Figure 11. The concentration profile at two times, 𝑡1 and 𝑡2 with 𝑡2 >, 𝑡1.

𝑥

𝑐(𝑥)

38

CHAPTER 3

SEQUENTIAL ALGORITHM

The problem we wish to solve is this. Given 𝑛 radiolytic particles in a variety of molecular

species in a bath of 𝐻2𝑂 molecules, arranged as a particle beam (e.g., from a gamma knife)

and subject to diffusion over a time period of 1 𝜇𝑠, observe and process all chemical

reactions, reporting the radiochemical yield over time. We observe that the reactions in

Table 2 contain only two species on the left hand side, excluding water which is treated as

being infinitely abundant and existing everywhere, and that the closest pair of particles in

any of the left hand sides of the equations will be the next reaction to process at any instant.

Thus, this is an instance of the kinetic polychromatic closest pair problem in computational

geometry. Stated formally, the polychromatic closest pair problem is: given 𝑛 points in a

metric space, where each point is one of 𝑚 species (or colors), find all pairs of closest

particles such that the resulting set of pairs is the set of ordered pairs of the elements of 𝑚.

We use the term “kinetic” because the particles are in motion and we want to ask the closest

pair question at each time step during the simulation.

The proximity grid method presented here solves the closest pair problem when particles

are in motion, and is based on the following five observations. 1) A grid provides a notion

of locality so that entire groupings of particles can be pruned from consideration at once.

2) A grid is efficient in the kinetic case. 3) A kinetic data structure provides a time stepping

mechanism that is efficient, requiring the execution of only spatially local operations at

each time step. 4) A kinetic data structure does not skip important events the way a fixed

39

time stepping mechanism can. 5) A hash table provides constant time lookup and naturally

lends itself to sparse data storage of the contents of the grid.

3.1 Overview

A serial version of the algorithm discussed in the sections that follow is presented here. An

OpenMP parallelized version is presented in chapter 4. The serial version achieves

𝑂((𝑛 + 𝑘) log 𝑛) run time where there are 𝑛 input particles and the priority queue is

serviced 𝑘 times. The serial version of the code was published in [22], and the parallel

version is being prepared for publication at this time.

Section 3.2 discusses the closest pair problem and how it is used to implement a nearest

neighbor search in order to identify chemical reactions. Section 3.3 gives the details of the

implementation of the time stepping mechanism known as a kinetic data structure. The

kinetic data structure is used to efficiently handle the large number of time steps required

in the simulation. Finally, section 3.4 outlines the overall program flow.

3.2 Nearest Neighbor Search

3.2.1 The Closest Pair Problem

The closest pair problem is a problem in computational geometry and can be stated as:

given n points in a metric space, find the pair of points with the smallest distance between

them. The bi-chromatic version of the problem assigns one of two colors to each point and

requires that the solution contain points of a different color. The brute force solution to

both forms of the problem, obtained by exhaustively comparing the distances between each

40

pair of points, runs in 𝑂(𝑛2) time. This is an important problem to consider for these

simulations because knowing where the closest pair of particles is means knowing the

participants of the next radiochemical reaction.

The problem of finding the closest pair of points in an array of randomly scattered two

dimensional points has been solved in 𝑂(𝑛) time by Khuller [37] using what is referred to

as a randomized sieve. In this case, the points are motionless. The algorithm proceeds by

choosing a point at random and calculating its distance to all other points. Once a lower

bound distance, 𝛿, is found, a two dimensional grid is overlaid onto the domain of particles

where the cell size is 𝛿/3. All particles that are alone in their grid squares with no particles

in an adjacent square (i.e., alone in their neighborhood) are removed from the problem

(they fall through the “sieve”). These steps are repeated with the smaller set of particles

until it is determined that the next iteration would remove all particles. Finally, at this last

iteration, labelled iteration 𝑖, a grid of size 𝛿𝑖 is overlaid on the final set of particles and

distances are computed between all pairs of particles that are within the same neighborhood

(i.e., in the same grid square or an adjacent one). The pair with the minimum distance is

the closest pair. Khuller’s solution is the best known solution when the points are not in

motion and his solution is adaptable to three dimensions, but we wish to consider the

problem of finding closest pairs of various particle species that are in motion. If Khuller’s

static problem is changed so that the points undergo simulated Brownian motion (diffusion)

and if the closest pair question is asked at every time step of the simulation, then this

solution becomes inefficient because all points removed from the problem at one time step

must be re-inserted at the next one.

41

Nonetheless, it is instructive to notice that the notion of locality provided by the grid is

useful in reducing the search space of the problem. An efficient method for solving this

problem in the kinetic case is developed here.

This algorithm solves the dynamic bi-chromatic closest pair problem using a layered

directed acyclic graph, where each layer is a hash table to store the particles (at the lowest

layer) and cells of particles (at all other layers). The use of hash tables allows the

identification of the closest pair in linear expected time while also saving space since empty

cells of particles need not be stored. Time is not discretized globally throughout the

simulation. Rather, a priority queue is used to keep track of time in spatially local segments

and its use requires only spatially local work to maintain. With these techniques, the

simulation time is reduced to O((n+k)logn), where O(nlogn) is the time to initialize the

data structure, k is the total number of events of interest (i.e., Brownian movements), and

O(logn) is the time to update the priority queue in each iteration. Implementation and

experiments have shown that with the new algorithm the actual run time is nearly linear in

the number of input particles and is considerably faster than the current hierarchical

approach. More will be said about this algorithm later.

3.2.2 Proximity Grid

A hierarchical grid of grids (the proximity grid) provides a way to solve the closest pair

problem where distinct definitions of closeness apply per {reaction, species} pair (each

reaction has a different reaction radius) while at the same time satisfying the condition that

each particle is represented exactly once in the simulation. This condition is necessary

because to relax it would mean that insertions, deletions, or movements of particles would

42

need to be done more than once and would constitute an undesirable performance penalty.

The proximity grid may be thought of as a layered directed, acyclic graph, where each layer

is a three dimensional grid implemented as a hashed map. Any reaction serves as an entry

point (a point at which one may begin iterating over particles), or root node, of the graph.

Reaction nodes have one outgoing edge per reactant that points to the grid with an edge

length equal to the reaction radius of the associated reaction for that reactant (see Figure

12). There is only one copy of any given particle in the entire simulation, yet that particle

is represented at each given reaction radius – a key feature of the method (see Figure 13).

It is important to represent the particles at all reaction radii of the reactions they can

participate in for two reasons. First, if the cells in the grid have a size equal to a reaction

radius, then particles more than two cells apart cannot participate in a reaction and may

easily, and inexpensively, be pruned from consideration when checking for reactions. This

means that it is only necessary to compute a distance between pairs of particles in adjacent

cells. Second, it is important to keep the list of candidate reactants as small as possible so

that the number of potential reactions to consider is minimized. The reaction radii

considered here vary by as many as three orders of magnitude, so failing to meet this

criteria would have a significant impact on run time.

The representation of particles at multiple radii is accomplished by building a tree of cells

(see Figure 14). Particles are directly inserted only in the grid with the smallest reaction

radius for any given particle species (the leaf nodes of the tree). All other grids containing

that particle contain particle cells rather than directly containing particles (the branch nodes

of the tree). Iteration through the particles for any cell proceeds by recursively iterating

through child cells in depth-first search fashion, and each grid is sparse. Sparsity means

43

that if any gridded region contains no particles, then it also contains no cells (that is, the

depth-first search for particles always visits particles, never an empty cell). With this

hierarchy of cells, iteration through the particles in any given cell is linear in time regardless

of which grid iteration starts in.

The nearest reactable neighbor for any particle is found by searching through the cell that

the particle belongs in and in all twenty-six surrounding cells in 3D space. Iteration begins

in the grid corresponding to the reaction radius of interest.

For any particle of interest, any other particle in the enclosing 333 grid cube region is

said to be in proximity to the particle. All particles in proximity to a particle of interest are

checked for a reaction.

𝐻⦁ + 𝑒 + 𝐻2𝑂 → 𝑂𝐻 + 𝐻2

𝐻⦁ 𝑒

𝑟𝑒1

𝐻2𝑂2 + 𝑒 → 𝑂𝐻 + ⦁𝑂𝐻

𝐻202 𝑒

𝑟𝑒2

Figure 12. Reaction/reactant graph.

The reaction graph and child reactant grids with the dotted arrow showing the tree of

grids for particle “e”. 𝑟𝑒1 is the reaction radius of the 𝐻⦁ + 𝑒 + 𝐻2𝑂 → 𝑂𝐻 + 𝐻2

reaction, and 𝑟𝑒2 is the reaction radius of the 𝐻2𝑂2 + 𝑒 → 𝑂𝐻 + ⦁𝑂𝐻 reaction.

44

3.3 Simulation of Time

3.3.1 Kinetic Data Structures

Kinetic data structures [10] [11] [12] [13] are designed to keep track of certain discrete

events of a system of continuously moving objects. For example, in our simulation we are

Figure 13. Grid of cells.

Grid of cells for particle, "e", in the first and second reactions from Figure 12. The cell

size is the reaction radius for each reaction. The smallest “e” cell contains particles of

species “e”. All other “e” cells contain “e” grid cells of a smaller reaction radius.

Figure 14. Hierarchy of cells.

There is one such hierarchy per species of particle. There is one level of hierarchy

per reaction radius that the particle is associated with.

45

interested in tracking reactions (i.e., discrete events) for a set of moving particles. It is

customary to simulate such events within the context of a discrete time stepping

environment where all particles move in lock-step with one another at every time step,

however this type of simulation suffers from the problem that excessively small time steps

capture all important events but can take too much computer time to simulate. On the other

hand, excessively large steps can miss important events. It is often difficult to find a good

compromise between these two extremes especially in light of the fact that the most ideal

time step size may not stay constant throughout the simulation. Furthermore, the chemical

reactions of interest to us occur on the scale of fractions of a picosecond and one million

picoseconds of time (one microsecond) must be simulated. Due to the large number of time

steps, it is important to not waste cpu time simulating unnecessary events. A kinetic data

structure provides an alternative to a constant time stepping mechanism in a spatially global

environment, and when well designed, it can simulate exactly the right number of time

steps to capture all important events without wasting simulation time or requiring the

determination of an appropriate step size. In addition, each step taken requires only

spatially local operations.

The key idea is to identify a small set of discrete attributes that uniquely characterizes a

useful event within the simulation. The system then evolves with time, while maintaining

the set of discrete attributes which are referred to as a certificate. The times at which the

certificates become invalid, arranged in sorted order, form the basis of the time stepping

mechanism in a priority queue. Thus, time steps in the simulation do not proceed in fixed

increments. They jump forward to the next time at which a certificate loses validity. When

a certificate becomes invalid, a small amount of spatially local work is done to re-establish

46

validity and the simulation continues. The work is spatially local because certificates are

usually defined in terms of spatially local configurations of geometric objects. A certificate

might assert that a given set of four points form a convex hull, for example. When one

point moves such that it crosses the hull boundary, the certificate fails. The work required

to reestablish validity is simply to redefine the hull in terms of a new set of points - all

spatially local operations.

Since the inception of the idea, many classic algorithms have been kinetized, including the

closest pair problem in the plane [12]. This is an approach that makes use of three 60°

right-facing wedges for every point in the domain whose apexes are located at each point

(see Figure 15). Each of the three wedges has a left and a right side (both ±30° slices) that

function as a binary tree of neighboring points such that neighbors on the left 30° side are

closer to the point at the apex than neighbors on the right 30° side. There are three binary

trees connected to each point (three wedges) covering a total arc length of 180°. This

coverage allows all points on the right to be considered as “children” of points on the left

in a system of binary trees. Consider the placement of point 𝑐 in the 3-wedge structure

anchored at point 𝑎 in Figure 15. If it were not for the presence of point 𝑏, point 𝑐 would

have been placed in the left side of the center wedge (center binary tree) of point 𝑎.

However, point 𝑏 is closer to 𝑎 than 𝑐 is to 𝑎. Therefore point 𝑐 is placed in point 𝑏’s lower

wedge (lower binary tree) instead. In this way, chains of near neighbors are maintained and

the search for a nearest neighbor can be performed in 𝑂(𝑛 log 𝑛) time.

The flight paths of each point are known and therefore the times at which the arrangement

of the points in the tree structure become invalid can be computed. These times are called

certificate failures and are inserted into a priority queue of failure times. Time stepping

47

proceeds by processing each failure time, in the order defined by the queue, repairing the

trees and inserting new certificates into the queue. These repairs are spatially local

operations, requiring only a few tree insertions, deletions, and rotations, per time step

which makes the algorithm both efficient and amenable to situations where objects are in

motion.

3.3.2 Algorithmic Use of the Kinetic Data Structure

For the simulations performed in this dissertation, the motions of particles are random

walks governed by a Gaussian distribution from the solution to the diffusion equation. The

idea of using a time based priority queue [38] to avoid global time discretization has

inspired the development of the following randomized kinetic closest pair algorithm from

which we make the following observations.

Observation 1: The randomized closest pair algorithm as discussed earlier in the closest

pair section and in [37] relies on the validity of the underlying grid. As long as the moving

𝑎

𝑏

𝑐

Figure 15. The binary tree structure of near neighbors.

Each node contains three binary sub-trees consisting of three 60° wedges. The top of

the tree is the left-most node. The leaves are on the right.

48

particles do not move to a different cell, the grid is in a “valid” configuration. This suggests

that the certificates should be defined simply as the movement of a particle from one cell

to another. Since the particle is subject to Brownian motion, we can use random sampling

to calculate the time a particle changes its grid cell. This is a certificate failure and the time

of failure can be put in the priority queue.

Observation 2: We are interested in reaction events. Therefore, the reaction radius of a

given reaction will determine the size of the associated grid. For any given particle, only

the particles in the enclosing 3x3x3 set of cells can react with it. We can therefore locate

its nearest neighbor in constant time, and use random sampling to determine the reaction

time.

Since the number of events in our priority queue is 𝑛, it takes O(logn) time to insert or

remove an event from the queue. Our kinetic randomized closest pair algorithm is

responsive, local, compact, and efficient as defined by Basch in [12]. These terms mean

that the data structure is no more than polylogarithmic in the number of input particles,

both in required memory and in run time. For this priority queue, a certificate expires when

a particle moves from one cell (of the smallest reaction radius for the associated particle

type) to another.

The expected simulation time of our kinetic randomized closest pair is O((n+k)logn),

where O(nlogn) is the time to initialize the data structure, k is the total number of events

of interest, and O(logn) is the time required to update the priority queue in each iteration.

49

3.4 Brownian Bridge

In time-based simulations, it is most common to discretize time so that the state of the

simulation moves forward with discrete jumps in time. Thus one knows the locations of

particles only at those times that are simulated. For a diffusive process, the underlying

physics are those of Brownian motion, thus, the unknown inter-particle distances can be

smaller between time steps than they are at the time step boundaries where the distances

are known. The discrete nature of the simulation effectively imposes a limit on our

knowledge of the locations of the particles. This fact is important because radiochemical

reactions occur when species are close enough to react. The possibility that two particles

are close enough to react between time steps, but not close enough at the time step

boundaries can be handled probabilistically.

Let the locations of particles at time steps 𝑡 and 𝑡 + ∆𝑡 be known, but the locations at times

𝑡 + 𝛼∆𝑡 where 0 < 𝛼 < 1 be unknown. The question of whether or not these particles are

close enough to react during that time can be answered probabilistically using a

𝑑1 > 𝑟

𝑝0,𝑡0

𝑝1,𝑡0

𝑝0,𝑡1
 𝑝1,𝑡1

𝑑 ≤ 𝑟
𝑝0,𝑡0

𝑝1,𝑡0

𝑝0,𝑡1
 𝑝1,𝑡1

Figure 16. Two particles in Brownian motion.

The particles travel between two known points in a specified time with reaction radius, r.

Particles 𝑝0 and 𝑝1react because 𝑑1 ≤ 𝑟 (left). Particles 𝑝0 and 𝑝1react because 𝑑 ≤ 𝑟

during flight (right).

50

construction called a Brownian bridge [39] [5] [40] [41]. A Brownian bridge is a stochastic

process that is continuous in time between two endpoints, 𝑡 and 𝑡 + ∆𝑡. It is a sequence of

random steps that are jointly normally distributed such that the endpoints of the random

walk are known but the steps in between are not. A random walker has a known position

at 𝑡 and 𝑡 + ∆𝑡 and the positions between are not known, but each step the walker takes is

the result of a normalized Gaussian sample in the domain. That is, the probability density

of any given step is the normal distribution:

𝑝(�⃗�) = 𝒩(�⃗�, 𝜎2) = 𝒩(�⃗�, 𝐷𝑡)

𝜇 =
𝑥0⃗⃗⃗⃗⃗ + 𝑥1⃗⃗ ⃗⃗

2

where we note that the variance may be thought of as a function of time, 𝑡, and a diffusion

constant, 𝐷 [22] [4] [42]. In the Brownian bridge, the uncertainty in �⃗� is low or zero at 𝑡

and 𝑡 + ∆𝑡, and maximal at 𝑡 +
∆𝑡

2
 [40]. From this it is clear that the mean of the

distribution, �⃗�, is the average of the two endpoints of the bridge, 𝑥0⃗⃗⃗⃗⃗ and 𝑥1⃗⃗ ⃗⃗ . In our case

both 𝑥0⃗⃗⃗⃗⃗ and 𝑥1⃗⃗ ⃗⃗ are known with certainty. We have two particles in motion that we wish to

relate to a Brownian bridge. To set up this relationship, we will think of the coordinate

system defined by the line between the two particles (see 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in Figure 17). Each step taken

during a random walk is a step that lengthens or shortens 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.

51

This construction has two notable features. First, the problem expressed this way is one

dimensional despite the fact that the particles are moving in three dimensions, and second,

the probability of every randomly taken step is a conditional one. That is, we now refer to

the conditional probability, 𝑝(𝑦, 𝑡|𝑥0⃗⃗⃗⃗⃗), when taking each step, where the variable, 𝑦, is

used to describe the position along the axis defined by 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in Figure 17 and the origin is

defined to be located at 𝑥0⃗⃗⃗⃗⃗. For convenience we use the subscripts zero and one to refer to

the known location at each of the two time steps. Also for convenience, we let 𝑡0 = 0 and

𝑡1 = ∆𝑡. A Brownian bridge is depicted graphically in Figure 18 which shows the position

along the one dimensional axis of motion as a function of time. Given the initial distance

between the particles, 𝑑0, we ask with what probability 𝑦1 reaches or falls below height 𝑟

on the bridge within time ∆𝑡. We will make use of two boundary conditions – namely the

known locations of the particles at 𝑡0 and 𝑡1.

Figure 17. The distance vector between two particles in motion.

Two particles in motion where |𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗| is the distance between them as a

function of time 𝑡 and 𝑥0,𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ and 𝑥1,𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ locate the particles during flight.

𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑥0,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑥1,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑗

𝑖

52

Let 𝑦′ be the current height of the bridge while 0 ≤ 𝑡 ≤ ∆𝑡, then we can write the following

cumulative distribution:

𝑃[𝑦′ < 𝑟 𝑎𝑛𝑑 𝑡 < ∆𝑡] = ∫ 𝑝(𝑦, 𝑡|𝑦1,0)𝑑𝑦
𝑟−𝑦′

−∞

= ∫ 𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0)𝑑𝑦
𝑦′

−∞

The probability density, 𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) (see equation 1, sect. 2.3), expresses the

probability that a random walker located at 𝑦 reaches location 𝑟 (see Figure 18) and it may

therefore be written as

Figure 18. Brownian bridge.

Two particles are initially located at 𝑦0 and 𝑦1separated by distance 𝑑0. After time ∆𝑡

they are separated by 𝑑1. The particles will react if they get closer than 𝑟, so we seek

the probability that 𝑦1 decreases to height 𝑟 within time ∆𝑡 on the bridge.

53

𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) =
1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟−𝑦−𝑦1,0)
2

4𝐷𝑡 .

Note that the probability density makes use of the first boundary condition - the location

𝑦1,0 - and we simply write it in. The quadratic term in the exponent can be factored into the

sum of two terms:

(𝑟 − 𝑦 − 𝑦1,0)
2

(−𝑦 − (𝑦1,0 − 𝑟))
2

(𝑟 + 𝑦 − 𝑦1,0)
2

+ 4𝑦(𝑦1,0 − 𝑟)

leading to a probability density where the conditional and unconditional portions of the

probability are isolated from one another.

𝑝(𝑟 − 𝑦, 𝑡|𝑦1,0) =
1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟+𝑦−𝑦1,0)
2

4𝐷𝑡 𝑒−
𝑦(𝑦1,0−𝑟)

𝐷𝑡

The unconditional probability density, 𝑝(𝑦1,0, 𝑡), is the Gaussian portion of the equation

above. Graphically, it is the location of the tail of the vector 𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (i.e. the location of one

random walker) in Figure 17.

 1

(4𝜋𝐷𝑡)1/2
𝑒−

(𝑟+𝑦−𝑦1,0)
2

4𝐷𝑡
(Unconditional Gaussian

portion).

𝑒−

𝑦(𝑦1,0−𝑟)
𝐷𝑡

(Conditional portion).

The remaining term is the conditional portion which we label 𝑝𝑏𝑟𝑖𝑑𝑔𝑒. The second

boundary condition may be applied by observing what happens as the threshold distance,

54

𝑟, approaches the distance between the particles at the end of the bridge, d1. In this

situation, the probability of crossing the threshold distance, 𝑟, is 1 and therefore 𝑦 =

𝑦1,∆𝑡 − 𝑟. The bridge probability density can then be written

𝑝𝑏𝑟𝑖𝑑𝑔𝑒 = 𝑒−
(𝑦1,∆𝑡−𝑟)(𝑦1,0−𝑟)

𝐷𝑡 .

Note that the equation is symmetric with respect to the beginning and ending inter-particle

distances, as it must be since the probability density must be the same no matter which

direction we choose to cross the bridge. This probability density can be used, with a roll of

the dice, to determine if a reaction occurs despite the fact that the inter-particles distances

at two known time steps, 𝑡 and 𝑡 + ∆𝑡, are both greater than the reaction radius.

3.5 Serial Implementation

The serial version of this algorithm [22] has been implemented in the C++ programming

language. The simulation was set up by creating particles that were randomly generated

and assigned locations that were normally distributed and symmetric about the X-axis. This

simulates the distribution of particles shortly after the initial burst of ionizing radiation in

water. The size of the problem domain is 300 𝑛𝑚.

Cells in the proximity grids are objects that are stored in hash tables, and we take care to

remove empty cells as the simulation progresses. This mitigates the effect of hash table

collisions and keeps the run time cost of iteration through the particles linear in time. The

pseudo code for this algorithm is as follows:

55

1. Insert all particles into the priority queue and proximity grid, processing any

reactions found.

2. While certificate expiration times are available, and total time < 1𝜇𝑠 do:

(a) Pop the next certificate and move the associated particle to its new location.

(b) Check all neighbors in proximity to it for a reaction. If a reaction occurs,

replace reactants with products.

(c) Update the priority queue with new certificates.

3. Report all particle distributions.

Figure 19. Pseudo-code

The reaction radius for each reaction is computed from the diffusion constants for the

species involved in the reaction and the reaction rate as described by [30] [42], where 𝑅 is

the reaction radius, 𝑘𝑑 is the reaction rate, and 𝐷 is the sum of the diffusion constants for

the reacting species.

𝑅 =
𝑘𝑑

4𝜋𝐷

To handle the situation of how two particles are determined to be close enough for a

reaction to occur given that the passage of time is constrained to occur in discrete jumps,

we use a Brownian bridge as described earlier.

56

3.6 Serial Version Results

The serial version of the algorithm was tested on a desktop computer running Debian Linux

with 16 GB RAM and 8 Intel core i7 CPUs (2.8 GHz) (only one core was used). The

running time was calculated from the number of CPU cycles for each algorithm. For

comparison, a baseline kd-tree method was also run. Details about the kd-tree method can

be found in [22]. Both codes used 75,000 particles as input, corresponding to an input

energy of approximately 50 keV. The kd-tree method required 265 hours to complete while

the proximity grid method performs this same run in 25 hours – a factor of 10 better. Figure

20 compares the run times between the two methods.

The concentration of radiolytic species has been compared with previous results [4]

obtained using the Geant4-DNA toolkit and found the results to be consistent with one

57

another. Figure 21 shows the results for 𝑒𝑎𝑞
− species from a total of 7,500 particles for all

species (corresponding to approximately 50 keV input energy).

Figure 20. The serial version vs. a kd-tree method.

Figure 21. Original Geant4-DNA results. Reproduced from [4]

with the Proximity Grid results overlaid.

58

CHAPTER 4

PARALLEL IMPLEMENTATIONS

We present three parallel versions of the proximity grid algorithm based on OpenMP

technology and we show a way to achieve a constant 80% scalability with respect to the

number of processors used. All three methods parallelize the priority queue and grid data

structures, and they do it in a way that avoids the use of expensive mutexes. They are

insensitive to changes in particle density as the simulation proceeds. The first

implementation is a ticket-based method. It divides space into regions and assigns ticket

indexes to them. Each processor must obtain the ticket corresponding to the region for

which the next particle needs to be processed. The second method uses a treap data

structure to implement the priority queue. The treap’s priority queue key is used as the

priority queue key, and the heap key is used to organize subtrees in the treap by ticket

index. This data structure makes it possible for each processor to process more than one

particle for each ticket that it has obtained. The third implementation, dubbed the zone

method, is a more standard spatial discretization method. In this method, the priority queue

is organized not only by priority queue key, but also by x-coordinate. The three methods

are compared for scalability and overall effectiveness.

4.1 Challenges With Respect to Parallelization

Let us now discuss some of the challenges that must be overcome with respect to

parallelization of this code. We will discuss the sources of resource contention, the

59

requirement to preserve the accuracy of the physics of the simulation, the restrictions

associated with parallelizing the proximity grid data structures, and the choice of

OpenMP as the parallelization technology.

4.1.1 Sources of Resource Contention

In order for the various tasks performed by the code to be executed in parallel, it is

necessary to identify those computations that do not depend on the completion of other

computations – i.e., independent computations. Those tasks meeting this criteria are

candidates for parallelization, but those tasks should be made as large as possible because

there is an overhead associated with spawning parallel threads of execution. In the

proximity grid algorithm, the task being repeated over and over again is the movement of

a particle followed by the check for a reaction. This is a situation where the largest unit of

parallelizable work is small. It is so small, in fact, that the overhead associated with keeping

threads operating in independent regions of space (called ticket acquisition in section 4.2),

or the repeated calling of expensive functions such as malloc(), can be non-negligible with

respect to the length of time it takes to perform the task.

We therefore explore two possible sources of resource contention in the proximity grid

algorithm in order to determine if they cause a loss of scalability. The first is that, since the

ticket acquisition process (described in section 4.2) is necessarily a serial operation, there

may be some point at which, given enough processors, threads finish their work and begin

to wait in line to obtain a ticket – in other words, there may be a point at which the time it

takes to obtain a ticket is non-negligible as compared to the time it takes to move a particle

and check for a reaction. To determine if this is an issue, we devise a way to give each

60

thread more work to do for each ticket that has been obtained. The result is that threads

need to obtain new tickets less frequently, avoiding the bottleneck (if the bottleneck exists).

This variant of the algorithm makes use of a treap data structure (described in section 4.3).

 The second possible source of resource contention is that insertions and deletions in the

proximity grid data structure are frequently made as particles are moved from cell to cell.

The particles themselves are retrieved from a memory pool and require no dynamic

memory allocation. However, during the hash map insert operation, the C++ operator

new() is called in order to allocate the memory used to maintain the data structure (i.e., in

the hash map’s buckets). Since many threads may be executing code that resize their

buckets at the same time, then the call to operator new() may be a bottleneck. Glibc’s

implementation of malloc, attempts to avoid locking the memory heap as much as possible,

however heap locking does occur. We modify the zone method (see section 4.4) to use pre-

allocated memory in the hash map data structure with the result being that operator new()

is called only during the setup phase and it is not called at all when the Monte Carlo portion

of the simulation starts. In addition, we show the result of substituting glibc’s malloc() with

tcmalloc() – a thread caching version of malloc().

4.1.2 The Accuracy of the Physics With Respect to Simulation Time

Parallel computations must not only be independent in terms of numerical computation and

memory access, they must also be independent in terms of any real-world physics being

simulated by the overall algorithm. It is not sufficient to isolate data and computation

within each thread if the simulated physics within each thread depend upon one another.

For example, large scale Monte Carlo simulations of physical environments such as a box

full of moving molecules (i.e., a gas, or a liquid) may be parallelized such that one subset

61

of molecules are managed by one thread and a second subset is managed by a second

thread. Even if data and computations are kept separate, the physical quantity of time must

remain synchronized between the threads in order for the physical processes (i.e., chemical

reactions) to proceed as they should. One method of accomplishing this is to break the

problem down into spatial domains and process each domain independently for short

periods of time, thus keeping the physical quantity of time nearly synchronized.

Spatial domains may be processed in either a deterministic or a random fashion. Random

processing of sub-regions in the problem domain can offer some advantages over

deterministic approaches. For example, if the problem domain exhibits changes in density

over time, the spatial region centered at a randomly chosen molecule can be assigned to

the next available processor. In this way, regions of space get a share of processor time that

is proportional to their particle density. An example of a fluid flow algorithm of this type

has been developed by O’Keeffe [43].

Procassini [44] solves a similar kind of problem in a different way. His method dynamically

assigns processors to the domains requiring the greatest amount of work. In this method,

the problem geometry is divided spatially and each region is processed in a deterministic

order. Each domain is replicated a variable number of times – one per assigned processor

– with each processor responsible for handling an equal number of particles in the domain.

Periodic testing is done to estimate particle density within each replicated domain to

determine if load rebalancing would speed up the calculation. Since the rebalancing

operation is expensive, it is only done if it is determined to be worthwhile.

In the proximity grid algorithm, this issue is handled elegantly by virtue of the use of

multiple priority queues, one per processor, and each filled randomly with certificates, as

62

described in section 4.2. Because the queues have a random distribution of certificates with

respect to particle location, varying particle density does not cause the flow of simulation

time to diverge among the processors.

4.1.3 Parallel Forms of the Proximity Grid Data Structures

The research presented here uses hashed containers and a kinetic priority queue to solve

the closest pair problem. Parallel forms of these containers are required to parallelize the

proximity grid algorithm. Parallel hashing has been studied extensively in the literature

[45] [46] [47] [48] [49] [50]. These solutions find ways to avoid or minimize collision

resolution in the hashed container. Collision resolution, a necessary component of

containers using imperfect hashing, involves the building and accessing of linked lists

which does not fit naturally in a parallel environment because it can be difficult to keep all

cores busy while list traversal takes place (the lists have an unknown size and therefore an

unknown amount of work is required to traverse them). Because of this, perfect hashing is

sometimes used, but perfect hashing has the disadvantage of being space inefficient. The

approach by Alcantara [50], uses a perfect hash and achieves space efficiency by rebuilding

the hash table during every insertion and deletion. The domain is broken down into non-

interacting regions, thus this can be done in a massively parallel way. Therefore they

remain efficient operations, given enough processors. Breaking the problem down into

smaller, non-interacting sub-problems is a key to achieving this efficiency. The serial

version of the proximity grid algorithm achieves efficiency, in part, by keeping the

hierarchy of cells and particles sparsely organized, and this is accomplished by removing

cells from parent cells as they become empty and inserting new cells as needed. Cells in

the proximity grid therefore interact with other cells in some spatially local vicinity.

63

Methods [51] [52] have been developed that interlace regions of space into “active” regions

and “inactive” ones. Processors periodically visit and operate on regions marked as active,

advancing simulation time in the region for some small length of time (see Figure 22). The

active regions are larger than the largest reaction radius or particle movement size so that

any reaction or movement that occurs can be processed independently of others.

There are potential drawbacks to spatial decomposition, however. As already noted,

approaches such as this can suffer from the fact that since the particles undergo diffusion,

their spatial distribution changes over time making their density a time-varying quantity.

This means that there can be periods of relative inactivity of some threads with respect to

the others as the simulation proceeds. Since we strive to keep all threads busy at all times,

this is not an ideal situation. Furthermore, as can be seen in Figure 23, as time marches on

and diffusion takes place, the distribution of particles spreads out. This means that the

processors responsible for handling the regions at the ends of the sub-domains will be asked

to do more work than the ones in the interior regions as time moves forward. This is not

only a load imbalance, but it creates a physically unrealistic situation since it causes

simulated time to proceed more slowly in the two end regions than it does in the interior

ones. The parallel version of the proximity grid method makes use of spatial

decomposition, but it does so in a dynamic way that avoids these problems.

64

Figure 22. Domain decomposition.

An example of a region of space in the domain of a Monte Carlo simulation divided into sixteen

regions and operated on by four processors. The shaded region (region A) is currently active.

Processors operate in sequence on regions A, B, C, and D. All operations are isolated from one

another.

There are also algorithms for implementing parallel priority queues [53] [54] [55] [56] [57]

[58]. Brodal [53] shows how to implement a parallel priority queue using a binomial heap.

Constant time insertion and deletion is achieved by pipelining a “merge key” operation to

process 𝑛 queue operations at once given 𝑛 processors. The method makes use of one local

queue per processor. Operations to each local queue are performed in isolation from the

other queues, thus no mutexes are required. For any operation on the global queue, Q,

Brodal defines a “merge key” function to assist in performing the operation. For example,

let ∀̅ denote a parallelized loop over all 𝑖, then:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑄) ≡ ∀̅ 𝑖: 𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦(𝑀𝑖𝑛, 𝑄𝑖)

 is Brodal’s definition of the 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 operation where merging keys means selecting

the minimum value of all local queues in this case.

65

Given set 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑝}, for some maximum number of elements 𝑝, the insert

function is defined similarly.

𝐼𝑛𝑠𝑒𝑟𝑡(𝑄, 𝐸) ≡ ∀̅ 𝑖: 𝑀𝑒𝑟𝑔𝑒𝐾𝑒𝑦(𝑀𝑖𝑛, 𝑄𝑖, 𝑒𝑖)

Figure 23. Spatial decomposition & workload analysis.

As diffusion takes place, there are more and more particles in regions 1 and 6. This can

cause a workload imbalance among processors.

Six regions of space controlled

by six processors.

Sphere enclosing diffusing

particles at some time, 𝑡.

Region 1 Region 6

Particles diffuse outward from

their original locations.

…

Tops of queues

(one of them is the minimum key of the parallel queue)

Parallel minimum

N priority queues

assigned to n processors.

Figure 24. Brodal's Minimum(Q) operation [53].

Regions 2-5

66

In Brodal’s implementation, the case 𝑒𝑖 = 𝑒𝑗 where 𝑖 ≠ 𝑗 is not disallowed. In this case the

same element exists in multiple local queues – a waste of memory – but otherwise harmless.

For the parallel algorithm presented in the next section, a parallelization of the priority

queue similar to the technique by Brodal is used.

4.1.4 The Choice of OpenMP as the Parallelization Technology

Finally, for the work done here, only OpenMP parallelization is considered because it is

desirable to run this algorithm on a desktop workstation that might be found in a radiation

oncologist’s office. Although such a workstation could reasonably be expected to have a

GPGPU (e.g., a CUDA-capable nVidia graphics card), today’s best graphics hardware has

an upper bound of approximately 4GB of on-board memory – a size that could be too small

for large problems, whereas main memory can be configured with 64 GB memory or more.

Thus, the OpenMP approach seemed the most appropriate to follow.

4.2 The Parallel Priority Queue Variant

The parallelized version of the proximity grid method makes use of a dynamic form of

spatial decomposition that avoids the pitfalls of a dynamically changing spatial distribution

of particles mentioned in section 4.1. This, combined with a parallel priority queue inspired

from Brodal’s queue, are the basis of the parallel implementation of the proximity grid

method. In the discussion that follows, when Brodal’s priority queue is discussed, we use

the term, key, to mean the unique and sortable id that refers to an item in the queue. When,

by analogy, discussion turns to the kinetic data structure in the proximity grid method, we

instead use the term, certificate, which has an expiration time that acts as a key.

67

What follows next is a discussion of the way the two data structures – the proximity grid,

and the kinetic data structure – are parallelized to support the parallel implementation of

this algorithm.

4.2.1 Parallelized Grid

The proximity grid is a network of cells within cells. Cells are located using hashed

containers with each key mapped to a particular region of space. Insertion and removal of

cells in the hashed maps cause rehashing of the container as the data structure changes size.

All read/write access to the maps would therefore need to be guarded against concurrent

use by multiple threads. In the parallel version of the proximity grid algorithm, the

arrangement of hashed containers having an (X,Y,Z) key has been modified to be a vector

of hashed maps. The vector, containing the X-coordinate key, is pre-allocated to the largest

size needed by the simulation and insertions and removals in the vector are not done. The

hashed maps have a (Y,Z) key. As will be shown in the next section, this means that, the

proximity grid stores shared data (the particles in the simulation), yet does not require any

form of mutually exclusive access to the data.

68

Figure 25. Serial vs. Parallelized Hash Map.

Hash map storing a cell index key appropriate for a given radius of a chemical reaction in

Cartesian coordinates. In the serial version of the algorithm, a single map is used per

radiochemical reaction (left side).

A vector of hash maps is used in the parallel version of the algorithm to avoid concurrency

issues. The vector of hash maps is indexed by the x cell coordinate and the hash maps use a (y,z)

coordinate as the key (right).

4.2.2 Parallelized Kinetic Data Structure

The parallelized priority queue is partitioned into 𝑝 queues where there are 𝑝 processors.

Each queue is filled with an equal number of certificates selected at random, thus the

queues are not subdivided spatially. Rather, they are thoroughly spatially mixed. The top

of each queue contains a certificate failure time that is either close to, or exactly at, the next

time step. In Brodal’s implementation [53] of a parallel queue, the top of the parallelized

queue is the item that has the smallest key among the items at the tops of the individual

queues. Where Brodal computes an absolute minimum among them, we process each

certificate in parallel. This is the definition of one parallelized time step.

69

The following operation is defined (shown in Figure 28), returning a list of minimum (more

specifically, near minimum) expiring certificates, given queues, 𝑄𝑖, number of processors,

𝑝, the standard 𝑀𝑖𝑛 priority queue operation, and the standard list 𝐴𝑝𝑝𝑒𝑛𝑑 operation.

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐿𝑖𝑠𝑡(𝑄, 𝑝) ≡ ∀ 𝑖: 𝐴𝑝𝑝𝑒𝑛𝑑(𝑀𝑖𝑛, 𝑄𝑖)

The time steps in 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐿𝑖𝑠𝑡(𝑄, 𝑝) can be processed in parallel if the associated

particles are far away from one another. More precisely, the time steps may be processed

in parallel without the use of mutexes if the distance between any pair of particles is greater

than six times the largest reaction radius (see Figure 26).

To achieve this separation, a ticket mechanism is set up using the X-axis. One ticket

corresponds to a region of the X-axis that is the size of the largest reaction radius. Before

any processing is allowed on a given certificate, the code attempts to aquire up to six

tickets. Three tickets for the source cell and the two cells surrounding it, and three tickets

for the destination cell and the two cells surrounding it. If one of the six tickets have already

been taken, then processing is not allowed. The regions assigned to a given processor are

therefore dynamic and non-overlapping. Ticket acquisition is serialized by an OpenMP

critical section. The serial nature of the ticket acquisition mechanism creates the possibility

of the performance bottleneck described in section 4.1.1. In order to investigate this

possibility, a treap version of this algorithm was developed (see section 4.3).

A reaction may occur as each certificate is processed. In this case, other certificates will be

invalidated in addition to the one at the top of the queue. Those certificates being

invalidated may reside in any of the queues, however there is no need to protect any

memory from mutual access from multiple threads. The reason is that each thread is

70

working in its own region of space along the X-axis. When reactions occur, reacting

particles may safely be marked as destroyed regardless of which queue the certificate for

that particle belongs to. The particle is destroyed later by the thread that owns the certificate

at the appropriate time.

Figure 26. Minimum separation distance required for parallel processing.

The squares represent the cells with the largest reaction radius. Blue squares are source cells

and red squares are destination cells for two particle movements. Green squares represent cells

that may contain particles reacting with the two particles in motion. As long as the particles are

at least six cell radii apart, the movements and any associated reactions can be processed in

parallel.

The expected worst case run time of the serial version of the algorithm is 𝑂((𝑛 + 𝑘) log 𝑛)

given 𝑛 particles and 𝑘 required insertion/removal operation pairs in the priority queue.

For the parallel version this becomes 𝑂 ((
𝑛+𝑘

𝑝
) log

𝑛

𝑝
) where there are 𝑝 processors. A

flowchart of the process is shown below.

71

Figure 28. Parallelized kinetic data structure.

The parallelized kinetic data structure consists of one priority queue per processor.

The certificate at the top of each queue is processed in parallel, representing one

time step. The top of one of the queues is the next time step and the remaining

queue tops are near minimum times.

Tops of queues

Process in parallel

…
N priority queues

assigned to n processors.

One parallelized

time step.

X-axis

Processing is

allowed here.

Processing is not

allowed here.

1 2

3

Figure 27. Ticket Acquisition.

A box full of moving particles and an X-axis subdivided into “tickets” is shown.

Regions 1 and 2 are processed by threads one and two because tickets can be

acquired. Processor three, attempting to run in region 3, is masked out because the

ticket is already taken by processor one.

72

Load particles into the grid. For each

particle, create a certificate and insert it

randomly into one of n priority queues.

t < 1 µs?

Ticket available for

next processor?

Done.

No

Yes

No

Move particle.

Reaction?

All Processors

attempted to obtain

a ticket?

No

Yes

Yes
Parallel execution

Insert new certificate

into queue.
Process reaction and

insert new certificates

into queue.

No Yes

Initialization.

Ticket acquisition.

Figure 29. Flowchart of the parallel priority queue method.

73

4.3. Parallel Priority Queue Variant Using a Treap

A portion of the parallel version of the algorithm described in section 4.2, namely the ticket

acquisition mechanism, operates serially. The question arises whether or not this serial

section of code might become a bottleneck as the number of parallel threads increase. That

is, as the number of threads increase, is there a point at which the work done by one thread

to process a ticket is roughly equal to the work done by a large number of threads

attempting to obtain a ticket? If such a point exists, threads will begin to wait in line to

acquire tickets, and thus become a bottleneck. This issue can be resolved if each thread can

be given more work to do while it has a ticket. In the context of the priority queue

algorithm, doing more work means processing more certificates near the top of the queue

in the same space for which it has already obtained a ticket. This may be accomplished

elegantly by implementing the kinetic data structure with a data structure called a treap

[59] instead of with a priority queue. A treap data structure combines the features of a

binary tree and a heap. It offers two keys. The first key is a priority key. All child nodes of

a given node in the treap have a lower priority than the node itself. Thus a treap’s priority

ordering makes it a suitable replacement for a priority queue. In addition, the nodes of a

treap are organized in heap order. Therefore the second key – the heap index – provides a

way to easily identify those nodes near the top of the treap (and thus close to the next

certificate expiration time) having a given ticket index. In this version of the proximity grid

algorithm, we replace the priority queue with a treap. The priority ordering of the queue is

the certificate expiration time, just as it is in the priority queue version. The heap index is

the ticket index of the ticket with the lowest X-coordinate among those tickets affected by

74

a particle movement. The next figure shows a possible arrangement of the certificates in

the treap version of the kinetic data structure.

Although the treap has the features of a binary tree, it is only well balanced if the priority

key is randomized with respect to the heap key. This is not strictly the case here, however

the certificate expiration times are reasonably well randomized with respect to the X-

coordinate. Thus, when the number of particles is large, the tree can be said to be

approximately well balanced.

Figure 30. A possible organization of the treap.

The top node (orange) has the highest priority and will be processed next. It also has

ticket index 17. Other certificates near the top of the treap with ticket index 17 are easily

found by traversing the children of the top node. The blue nodes have ticket indices less

than index 17 (following heap order) and priorities later than the top priority. Green

nodes have a ticket index greater than 17 and priorities later than the top priority.

10 ps
Ticket: 17

11 ps
Ticket: 17

16 ps
Ticket: 5

18 ps
Ticket: 1

18 ps
Ticket: 17

19 ps
Ticket: 17

35 ps
Ticket: 17

40 ps
Ticket: 17

50 ps
Ticket: 17

20 ps
Ticket: 40

22 ps
Ticket: 40

75 ps
Ticket: 40

75

The algorithm is modified in the following two ways. First, during ticket acquisition, if a

ticket is not available for the top certificate in the queue, an attempt is made to obtain a

ticket for the child node in the treap that does not have the top node’s ticket index. If a

ticket still cannot be obtained, one more attempt is made with the next child node. If these

two attempts fail, the current thread is masked out, just as with the priority queue version.

The second modification has to do with how certificates are processed. Observe that the

child node of the current certificate in the treap that has the same ticket index as that of

the node itself is a priority queue of certificates with the given ticket index. In addition to

processing the top node of the treap, we also process the nodes of this inner priority

queue in priority order until a small simulation time expires. The result of these two

changes is that fewer threads sit idle due to ticket conflicts and more work is done in the

region in which each thread has obtained a ticket so that the need to obtain a new ticket

occurs less frequently.

Figure 31. Parallelized kinetic data structure (treap variant).

The parallelized kinetic data structure consists of one treap per processor. The certificate at the

top of each queue is processed in parallel, representing one time step, just as in the priority

queue variant. In addition, all nodes having the same ticket index as the top node are also

processed (nodes shown in orange).

Tops of queues

Process in parallel

…
N treaps assigned to n

processors.

One parallelized

time step.

Additional certificates

with the same ticket.

76

4.4. Parallel Spatially Discretized Variant

The previous sections explored the possibility of using a ticket acquisition mechanism to

give threads permission to work in particular regions of space. Now we alter the algorithm

so that threads work in pre-arranged spatially distinct regions that we will call zones. Each

zone is a section of the X-axis such that threads execute six zones apart. Execution occurs

in round-robin fashion with a stride of six as shown in Figure 32. The width of a zone is

the maximum reaction radius among all reactions considered in the simulation. This

distance allows for particles to move from one zone to any adjacent zone and react with

particles in any resulting adjacent zone and still be operating in independence (See Figure

26). There is one priority queue and one proximity grid per zone. The movement of particles

across zones is handled without the use of mutexes because it has been pre-arranged that

all adjacent zones are unused by any other processor. This version of the algorithm, in

contrast to the first two versions, is subject to the performance effects of changing density

discussed in section 4.1.2. However, so long as the density gradient is small with respect

to the width of a zone, the effect may be negligible. We will see in section 4.5 that this is

the case. Execution occurs in six rounds. During round one, all processors work in the

zones assigned to round one (see Figure 32). During round two, all processors work in the

zones assigned to round two, and so on, until all six rounds have been completed. After the

sixth round is complete, the process repeats until the simulation is done.

77

Figure 32. Round-robin execution of the Zone method.

Execution occurs in the shaded region (zone). Processors work in all shaded regions of the X-axis

during round one first, then the shaded regions of round 2, and so on, until all six rounds are

complete. Then the process repeats.

4.5. Results for Parallel Versions

The OpenMP version of the code based on the priority queue method was compared with

the serial version on a desktop computer running Debian Linux with 16 GB RAM and 8

Intel core i7 CPUs (2.8 GHz). The run time was calculated based on “wall clock time”

using OpenMP’s omp_get_wtime() function.

The serial version was run using 70,000 particles requiring 9 hours to complete. The

OpenMP version, using 8 cores, ran the same problem in 0.36 hours – a factor of 25 better.

Figure 33 and Figure 34 compare the run times between the two methods.

X-axis

Round 1

X-axis

Round 2

X-axis

Round 3

X-axis

Round 6

…

78

The concentration of radiolytic species has also been compared with previous results [4].

Figure 35 below shows the results for 𝑒𝑎𝑞
− species from a total of 7,500 particles for all

species (corresponding to approximately 50 keV input energy) for both the serial and

parallel versions.

Further testing was done using on an AMD Opteron 6174 processor containing 24 cores

(48 hyper-threaded cores). To better gauge the scalability of the results, only the first 24

physical cores were used. The tests that follow all simulate 100,000 input particles.

Figure 36 shows that the priority queue and zone variants perform about as well as one

another. The treap variant does not beat them. Therefore it is apparently not advantageous

– at least out to 24 cores - to process more certificates with a given ticket index for every

ticket that has been acquired.

The scalability of the three methods is also shown in Figure 37. All three methods show

comparable scalability. The code runs approximately 11 times faster using 24 cores than

with a single core for all three code variants. When the zone method is modified so that the

hash table uses pre-allocated, large, fixed size buckets, the scalability is significantly

improved. Twenty four processors are able to improve the run time by a factor of seventeen,

but the single processor run time performance is degraded. It is noteworthy that the

efficiency quickly levels off and stays approximately constant at 80%.

79

Figure 33. Comparison of the serial vs. OpenMP parallelized priority queue version of the code.

Figure 34. Log-log plot of the run times in Figure 33.

80

Figure 35. Comparison of the serial and parallel results showing agreement in the number of free

electrons over time.

Figure 36. Comparison of Zone, Priority Queue, and Treap Methods.

81

Figure 37. Scalability of the Priority Queue, Treap, and Zone Methods.

Figure 38. Zone Method With Pre-Allocated Memory.

82

Figure 39. Scalability of the zone method.

The methods shown use pre-allocated memory and memory allocation with the tcmalloc

[60] (thread caching malloc) library. The original zone method is shown for comparison.

Figure 40. Efficiency of Parallel Methods.

83

Figure 41. Efficiency of zone method and variants.

In one variant, the proximity grid is implemented to use a large, fixed size, pre-allocated

pool of memory and no memory is allocated during the simulation. In the second variant,

the c++ library’s malloc is replaced with tcmalloc [60] (thread caching malloc).

84

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion and Discussion

We have shown an efficient method for simulating the radiolytic reactions that cause

radiation damage in irradiated living tissue. We have shown how a worst case run time of

𝑂((𝑛 + 𝑘) log 𝑛) can be achieved in the serial implementation– a significant improvement

over the 𝑂(𝑡𝑛 log 𝑛) run time of the kd-tree method – without sacrificing accuracy – by

designing a data structure (the proximity grid) that exploits locality in the search for near

neighbors using many simultaneous definitions of nearness of potentially reacting

particles. A simulation of 75,000 input particles taking 265 hours (11 days) by a benchmark

kd-tree version of the code was completed in only 25 hours using the proximity grid

method.

The physics of simulations of this type are often simplified by assuming that the body is

composed entirely of water. The proximity grid data structure supports any number of

reacting particle species, making it generally useful in situations where this simplification

is not imposed. Therefore this data structure permits realism with respect to the number of

particle species and equations that may be simulated.

We have provided an elegant parallel implementation that avoids the use of mutexes and

we have shown parallel scalability out to at least 24 processors. Our solution exhibits a

constant parallel efficiency of 80%, achieved by using a hash map data structure with a

fixed number and size of buckets. It is elegant because its efficiency is insensitive to

85

changing particle density as the simulation proceeds. No one processor advances past

another in simulated time during the simulation and no one processor has less work to do

than another.

A version of the code was developed using a treap data structure as the priority queue. A

treap (tree and heap) data structure is a tree whose nodes are additionally organized in heap

order. A treap offers a priority key and a heap order search key. By using the additional

heap key to store certificates by ticket, it becomes possible for each thread to process more

than one certificate for each ticket it had acquired. The treap version of the code made it

possible to determine whether or not ticket acquisition – the only serial portion of the code

– was a performance bottleneck. That is, we wanted to know if threads were waiting in line

to obtain a ticket. The results of the treap version vs. the priority queue version (Figure 36)

reveal that the ticket acquisition mechanism does not constitute a bottleneck – at least out

to 24 parallel threads. In the event that adding additional processors reveals that ticket

acquisition does become a bottleneck (this can be identified by generating a plot like the

one in Figure 37 and observing that the treap and priority queue lines cross), the treap

version of the code may be used instead of the standard priority queue as an elegant way

to remove it.

A version of the code is provided that decomposes the problem into spatial domains. This

is a more standard approach to solving the problem that serves as a baseline for comparison.

It is subject to load imbalances due to changes in particle density and as a result, care

needed to be taken to compensate for this problem. We handled the issue by periodically

pausing the operation of threads until the others caught up. We find that the proximity grid

86

version compares well with it and is a more elegant approach since it requires no special

handling due to load imbalances caused by changing particle density.

For those versions that did not use pre-allocated memory in the hash map data structure,

useful scalability was observed out to approximately 13 parallel threads. It was found that

adding additional processors beyond this number does not help performance and, in fact,

performance decreases slightly. Internal memory allocation by the hash mapped data

structure in the proximity grid is a bottleneck that inhibits efficient parallelization (see

Figure 38 and Figure 41). As the simulation runs, allocation with malloc() occurs only

when the buckets in the hash map itself are resized. This bottleneck was explored further

by substituting the system’s memory allocation function, malloc(), with tcmalloc() [60] (a

thread caching version of malloc()). The idea is that if memory, once allocated, was cached

on a per thread basis for use in future requests for memory, then the bottleneck could be

removed. It was found that thread caching does not remove the bottleneck (see Figure 41).

However, writing the hash map data structure in such a way that both the number of buckets

and the number of items in a bucket are fixed then the bottleneck is eliminated. Note that

the hash map implemented this way is cache-friendly, whereas a standard hash map,

making use of pointers to allocated memory, is not. This fact likely plays a role in the

performance improvement.

5.1 Future Work

This work was done with the hope that it could eventually be integrated into the GEANT4-

DNA toolkit. The proximity grid algorithm is in a sufficiently mature state that an effort

like this could be undertaken. Integration should proceed with the ticket-based parallel

87

version because it has been shown to be as efficient as the spatially discretized version and

by design it doesn’t suffer from the negative performance effect of varying particle density.

With regard to memory pre-allocation in the hash map data structure, it solves the

efficiency bottleneck with respect to parallelism and an implementation in Geant4 can

certainly proceed with it. However, it is desirable to provide an algorithm that is not bound

by this code restriction. To improve on this, areas of future research should include writing

custom versions of malloc() and free(), investigating the possibility that the code suffers

from false sharing, and running the code on other hardware architectures.

The standard versions of malloc() and free() are general purpose memory allocation and

disposal functions. Custom versions of them could be written to address the specific needs

of this code. For example, they could cache all disposed memory on a per thread basis for

later re-use, giving none of it back regardless of size the way tcmalloc does, and they could

provide memory in chunks that are guaranteed to be far enough away in physical memory

so as not to cause false sharing. If false sharing is the cause, then there will be data blocks

in the code that are within 64 bytes of each other (the width of a cache line) that are being

written to by more than one processor at a time (invalidating the entire cache line). One

place that false sharing might occur is in the case when threads are operating in adjacent

(adjacent in physical memory) or nearly adjacent hash maps. A reasonable test to see if this

is at least a possibility is to vary the number of input particles to see if there is any

dependency on parallel performance. One might expect the effect of false sharing to

diminish with an increasing number of input particles if false sharing between particles is

the cause, but this is not the case. As particle density increases, the number of

radiochemical reactions also increase. The result of this is that the excited radiochemical

88

particles return to water faster, dropping out of the simulation and thereby also boosting

performance and tampering with the results of the test. Instead, perhaps one might devise

several input geometries with a constant particle density. As the number of input particles

increase, so does the volume of the input so that the particle density remains constant. For

a given number of processors, the time to solution should be linear with respect to the

number of input particles. If false sharing has an effect on performance, then the effect

should diminish with increasing number of particles.

89

REFERENCES

[1] A. C. Society, "American Cancer Society. Cancer Facts & Figures 2014," Atlanta,

2014.

[2] J. Wilson, "CNN Health," CNN, 11 March 2014. [Online]. Available:

http://www.cnn.com/2014/03/11/health/cancer-care-asco-report/. [Accessed 16

March 2014].

[3] H. Y., Microdosimetric Response of Physical and Biological Systems to Low and

High LET Radiations, Theory and Applications to Dosimetry, Elsevier, 2006.

[4] M. Karamitros, "Modeling Radiation Chemistry in the Geant4 Toolkit," Progress in

Nuclear Science and Technology, pp. 503-508, 2011.

[5] Karamitros M., Mantero A., Incerti S., Luan S., Tran H. N., Champion C., Allison

J., Baldacchino G., Davidkova M., Friedland W., Ivantchenko V., Ivantchenko A.,

Nieminem P., Stepan V., "Diffusion-controlled reactions modeling in Geant4-

DNA," Journal of Computational Physics, vol. 274, pp. 841-882, 2014.

[6] S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, P. Moretto, P.

Niemainem, M. G. Pia, "Geant4 physics processes for microdosimetry simulation:

design foundadtion and implementation of the first set of models," IEEE Trans.

Nucl. Sci., vol. 54, no. 6-2, pp. 2619-2628, 2007.

90

[7] S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, S.

Guatelli, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, A.

Rosenfeld, C. Villagrasa and C. Zacharatou, "The Geant4-DNA Project," Int. J.

Model. Simul. Sci. Comput., vol. 1, pp. 157-178, 2010.

[8] "FLUKA; A fully integrated Monte Carlo simulation package.

(http://www.fluka.org)".

[9] "MCNP; A General Monte Carlo N-particle transport code (http://mcnp-

green.lanl.gov)".

[10] Agarwal, Pankaj; Kaplan, Haim; Sharir, Micha, "Kinetic and Dynamic Data

Structures for Closest Pair and All Nearest Neighbors," ACM Transactions on

Algorithms, vol. 5, no. 1, 2008.

[11] Basch J., Guibas L. J.; C., Silverstein; L., Zhang, "A practical evaluation of kinetic

data structures," in 13th Symposium of Computational Geometry, 1997.

[12] J., Basch; Guibas, L. J.; J., Hershberger, "Data Structures for Mobile Data," in 8th

Symposium on Discrete Algorithms, 1997.

[13] Dinesh Mehta, Sartaj Sahni, "Ch. 23 Kinetic Data Structures," in Handbook of Dtaa

Structures and Applications, Chapman & Hall, 2004.

[14] Hendee W. R., Ibbott G. S., Hendee E. G., Radiation Therapy Physics 3rd ed.,

Wiley. John & Sons Inc., 2004.

91

[15] K. F. M., The Physics of Radiation Therapy 4th ed., Lippincott Williams &

Wilkins, 2009.

[16] H. E. J., Radiobiology for the Radiologist 5th ed., Lippincott Williams & Wilkins,

2000.

[17] F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, Wiley-

VCH, 1986.

[18] R. Wilson, "Radiological use of fast protons," Radiology, vol. 47, p. 487, 1946.

[19] D. E. Bezak, "South Australian Medical Heritage Society Inc," [Online]. Available:

http://samhs.org.au/Virtual%20Museum/xrays/Braggs-peak-

rxth/braggpeakrxth.htm. [Accessed 16 8 2015].

[20] Ziegler J. F., Ziegler M. D., Biersack J. P., "SRIM Stopping Range of Ions in

Matter," SRIM.com, 1984.

[21] R. S.A., Diffusion Limited Reactions (Vol. 25 in Chemical Kinetics edited by

Bamford CH, Tipper CFH and Compton RG), Elsevier, 1985.

[22] Bloom S., Luan S., Karamitros M., Incerti S., "Geometric Algorithms and Data

Structures for Simulating Diffusion Limited Reactions," in Symposium on the

Theory of Modeling and Simulation, Tampa, 2014.

92

[23] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E., "Equation of

State Calculations by Fast Computing Machines," Journal of Chemical Physics,

1953.

[24] J. Lucido, "Incorporating Microdosimetry into Radiation Therapy Treatment

Planning with Multi-Scale Monte Carlo Simulations," 2013.

[25] D. T. Gillespie, "Exact Stochastic Simulationof Coupled Chemical Reactions,"

Journ. of Phys. Chem., vol. 81, no. 25, pp. 2340-2361, 1977.

[26] e. a. Friedland W., "Track structures, DNA structures and radiation effects in the

biophysical Monte Carlo simulation code PARTRAC," Mutat. Res. : Fundam. Mol.

Mech. Mutagen., 03 01 2011.

[27] e. a. Ballarini F., "Stochastic aspects and uncertainties in the prechemical and

chemical stages of electron tracks in liquid water: a quantitative analysis based on

Monte Carlo simulations," Radiat. Environ. Biophys., vol. 39, no. 3, pp. 179-188,

2009.

[28] M. V., B. M. and B. E. A., "Computer aided stochastic modeling of the radiolysis of

liquid water," Radiat. Res., vol. 149, no. 3, pp. 224-236, 1998.

[29] Kreipl M. S., Friedland W., Paretzke H. G., "Time- and space-resolved Monte

Carlo study of water radiolysis for photon, electron and ion irradiation," Radiat.

Environ. Biophys., vol. 48, no. 1, pp. 11-20, 2009.

93

[30] S. Uehara and H. Nikjoo, "Monte carlo simulation of water radiolysis for low-

energy charged particles," J. of Radiat. Res., vol. 47, no. 1, pp. 69-81, 2006.

[31] Friedland W., Jacob P., Paretzke H.G., Merzagora M., Ottolenghi A., "Simulation

of DNA fragment distributions after irradiation with photons.," Radiat. Environ.

Biophys., vol. 38, pp. 39-47, 1999.

[32] J. L. B. R. A. F. J. H. Freidman, "An Algorithm for Finding Best Matches in

Logarithmic Expected Time," ACM Transactions on Mathematical Software, vol. 3,

pp. 209-226, 1977.

[33] Chauvie S., Francis Z., GuatelliS., Incerti S., Mascialino B., Montarou P., Moretto

P., Nieman P., Pia M., "Models of biological effects of radiation in the Geant4

Toolkit," IEEE Nuclear Science Symposium Conference Record, pp. 803-805, 2006.

[34] Nellis G., Klein S., "Mass Transfer," in Heat Transfer, Cambridge, Cambridge

University Press, 2012, pp. 974-978.

[35] Socolofsky S., Jirka G., "Concepts, Definitions, and the Diffusion Equation," in

Special Topics in Mixing and Transport Processes in the Environment, College

Station, Texas A&M University, 2005, pp. 1-19.

[36] Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J., Brooks, N. H., Mixing in

Inland and Coastal Waters, New York: Academic Press, 1979.

[37] S. Khuller and M. Tossi, "A Simple Randomized Seive Algorithm for the Closest

Pair Problem," Information and Computation, no. 118, pp. 34-37, 1995.

94

[38] K. H. a. S. M. Agarwal PK, " Kinetic and Dynamic Data Structures for Closest

Pairs and All Nearest Neighbors.," ACM Transactions on Algorithms., 2007.

[39] C. J., Stochastic Processes, 2007.

[40] Jon S. Horne, Edward O. Garton, Stephen M. Krone, Jesse S. Lewis, "Analyzing

Animal Movements Using Brownian Bridges," Ecology, vol. 88, no. 9, pp. 2354-

2363, 2007.

[41] N. Privault, "Brownian Motion and Stochastic Calculus," in Stochastic Finance: An

Introduction with Market Examples, Chapman and Hall/CRC, 2013.

[42] R. N. Hamm, J. E. Turner and M. G. Stabin, "Monte Carlo simulation of diffusion

and reaction in water radiolysis - a study of reactant 'jump through' and jump

distances," Radiant Environ. Biophys., vol. 36, pp. 229-234, 1998.

[43] C. J. O’Keeffe, Ruichao Ren, G. Orkoulas, "Spatial updating grand canonical

Monte Carlo alg. for fluid sim.: generalization to contin. pot. and par. impl.," Journ.

Chem. Phys., vol. 127, 2007.

[44] Procassini R. J., O'Brien, M. J., Taylor J M, "Load Balancing of Parallel Monte

Carlo Transport Calculations," in International Topical Meeting on Mathematics

and Computations, Avignon, 2005.

[45] D. M., "An optimal parallel dictionary.," SPAA '89 Proceedings of the first annual

ACM symposium on Parallel algorithms and architectures, pp. 360-368, 1989.

95

[46] Karlin A., Upfal E., "Parallel Hashing, an Efficient Implementation of Shared

Memory," J. ACM, vol. 4, pp. 876-892, 1988.

[47] Mattias Y., Viskin U., "On parallel hashing and integer sorting," J. Algorithms, vol.

12, no. 4, pp. 573-606, 1991.

[48] M. F., "Hashing strategies for simulating shared memory on distributed memory

machines," in Parallel Architectures and Their Efficient Use, Lecture notes in

Computer Science, 1993, pp. 20-29.

[49] A. DAF, Efficient Hash Tables on the GPU, Ph. D. Dissertation, UC Davis, 2011.

[50] Alcantara D., Sharif A., Abbasinejad F., Sengupta S., Mitzenmacher M., "Real-time

parallel hashing on the GPU," ACM Transactions on Graphics , vol. 28, no. 5,

2009.

[51] Ruichao Ren, G. Orkoulas, "Parallel Markov chain Monte Carlo simulations,"

Journ. Chem. Phys., no. 126, 2007.

[52] G. T. Barkema, T. MacFarland , "Parallel simulation of the Ising model," Phys.

Rev. E, vol. 50, p. 1623, 1994.

[53] Brodal GS, Traff JL, Zaroliagis CD, "A Parallel Priority Queue with Constant Time

Operations," Journal of Parallel and Distributed Computing, vol. 49, no. 1, pp. 4-

21, 1998.

96

[54] Chen DZ, Hu XS, "Fast and Efficient Operations on Parallel Priority Queues,"

Algorithms and Computation, Lecture Notes in Computer Science, vol. 834, pp.

279-287, 1994.

[55] Das HK, Horng WB, "Managing a parallel heap efficiently," Parallel Architectures

and Languages Europe Lecture Notes in Computer Science, vol. 505, pp. 270-287,

1991.

[56] Deo N., Prasad S., "Parallel heap, an optimal parallel priority queue," J.

Supercomputing, vol. 6, no. 1, pp. 87-98, 1992.

[57] P. S., "Parallel heap. A practical priority queue for fine to medium grained

applications on small multiprocessor," in IEEE Symposium on Parallel and

Distributed Computing, 1995.

[58] S. P., "Randomized Priority Queue for Fast Parallel Access," Journal of Parallel

and Distributed Computing, vol. 49, no. 1, pp. 86-97, 1998.

[59] Aragon, C., Seidel, R., "Randomized Search Trees," IEEE, Berkley, 1989.

[60] Google, "http://goog-perftools.sourceforge.net/doc/tcmalloc.html," Google,

[Online]. Available: http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[Accessed 20 April 2015].

[61] J. J. Wilkens, U. Oelfke, "Analytical linear energy transfer calculations for proton

therapy," Medical Physics, vol. 30, no. 5, p. 806, 2003.

97

[62] Bloom S., Luan S., "Geometric Algorithms and Data Structures for Parallelizing

Simulations of Diffusion Limited Reactions," Not yet submitted for publication..

[63] "Cancer Statistics," American Cancer Society, 2004.

[64] Frongillo Y., Goulet T., Fraser M. J., Cobut V., Patau J. P., Jay-Gerin J. P., "Monte

Carlo simulation of fast electron and proton tracks in liquid water-II.

Nonhomogeneous chemistry," Radiation Physics and Chemistry, vol. 51, no. 3, pp.

245-254, 1998.

[65] Preparata F. P., Shamos M. I., Computational Geometry, an Introduction, 1985.

[66] Nellis G., Klein S., "Ch 9. Mass Transfer," in Heat Transfer, Cambridge ,

Cambridge University Press, 2012, pp. 974-978.

[67] U. o. Cincinati. [Online]. Available: cmap.ucfilespace.uc.edu. [Accessed 16 8

2015].

[68] Agarwal PK, Edelsbrunner H, Schwarzkopf O, and Welzl E., "Euclidean minimum

spanning trees and bichromatic closest pairs.," Proceedings of the sixth annual

symposium on Computational geometry, pp. 203-210, 1990.

[69] Abello J, Pardalos PM, and Resende MG., Handbook of Massive Data Sets.,

Norwell Mass: Kluwer Academic Publishers, 2002.

[70] Agostinelli. S, "Geant4 - a simulation toolkit.," Nuclear Instruments and Methods

in Physics Research, vol. A, no. 506, pp. 250-303, 2003.

	University of New Mexico
	UNM Digital Repository
	12-1-2015

	Geometric Algorithms and Data Structures for Simulating Diffusion Limited Reactions
	Shaun Bloom
	Recommended Citation

	tmp.1469198166.pdf.6hJjV

