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Abstract

Recent advances in single-molecule chemistry have led to designs for artificial

multi-pedal walkers that follow tracks of chemicals. The walkers, called molec-

ular spiders, consist of a rigid chemically inert body and several flexible enzy-

matic legs. The legs can reversibly bind to chemical substrates on a surface, and

through their enzymatic action convert them to products. We study abstract mod-

els of molecular spiders to evaluate how efficiently they can perform two tasks:

molecular transport of cargo over tracks and search for targets on finite surfaces.

For the single-spider model our simulations show a transient behavior where-

in certain spiders move superdiffusively over significant distances and times. This

gives the spiders potential as a faster-than-diffusion transport mechanism. How-

ever, analysis shows that single-spider motion eventually decays into an ordinary

diffusive motion, owing to the ever increasing size of the region of products. In-

spired by cooperative behavior of natural molecular walkers, we propose a sym-

metric exclusion process (SEP) model for multiple walkers interacting as they
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move over a one-dimensional lattice. We show that when walkers are sequen-

tially released from the origin, the collective effect is to prevent the leading walk-

ers from moving too far backwards. Hence, there is an effective outward pressure

on the leading walkers that keeps them moving superdiffusively for longer times.

Despite this improvement the leading spider eventually slows down and moves

diffusively, similarly to a single spider. The slowdown happens because all spi-

ders behind the leading spiders never encounter substrates, and thus they are

never biased. They cannot keep up with leading spiders, and cannot put enough

pressure on them.

Next, we investigate search properties of a single and multiple spiders mov-

ing over one- and two-dimensional surfaces with various absorbing and reflecting

boundaries. For the single-spider model we evaluate by how much the slowdown

on newly visited sites, owing to catalysis, can improve the mean first passage time

of spiders and show that in one dimension, when both ends of the track are an ab-

sorbing boundary, the performance gain is lower than in two dimensions, when

the absorbing boundary is a circle; this persists even when the absorbing bound-

ary is a single site. Next, we study how multiple molecular spiders influence one

another during the search. We show that when one spider reaches the trace of

another spider it is more likely not to follow the trace and instead explore un-

visited sites. This interaction between the spiders gives them an advantage over

independent random walkers in a search for multiple targets. We also study how

efficiently the spiders with various gaits are able to find specific targets. Spiders

with gaits that allow more freedom of leg movement find their targets faster than

spiders with more restrictive gaits. For every gait, there is an optimal detachment

rate that minimizes the time to find all target sites.
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Chapter 1
Introduction

Natural molecular motors play an important role in biological processes that are

critical for the functioning of living organisms; they are the the source of most

forms of motion in living beings [37, 46]. Molecular motors transport various car-

goes inside cells, make possible for a cell itself to move, participate in the cellular

division process, and when combined in large ensembles allow muscle contrac-

tion which leads to movements of macro-organisms. Molecular motors consume

chemical energy and transform it into motion or mechanical work; they are more

energy-efficient than the macroscopic heat engines. Beside their important role in

biology, molecular motors can be used to perform various tasks in many synthetic

nanoscale systems. This can lead to the creation of new materials and nano-scale

devices that are applicable in medicine, electronics, energy production, optics, and

many other fields. More specific examples of usage of molecular motors are [17]

transport of molecules, supramolecular complexes, and nano- or microparticles

and positioning them in a precise specific order; detection of chemical and bio-

logical entities (molecular motors can capture molecules and particles of interest

and move them close to a sensor); assembly of nanoscale and microscale items in

larger structures; self-propelled probes that can randomly sample the surface in

order to produce an image of it; stretching and bending of molecular structures;

microfluidic pumps that work in nanofluidic channels with submicron dimen-

sions; molecular computation and communication; and control of optical and me-

chanical properties of materials. One of the widely studied molecular motors is

kinesin, for example see [15, 19, 47]. Kinesin is a protein that moves directionally

along microtubule filaments from one end to another, therefore it is also called

a molecular walker. It has two identical “legs" (sometimes called heads or mo-

tor domains) that walk in a coordinated “hand-over-hand" fashion. The exact

1



Chapter 1. Introduction

mechanism of coordination between kinesin’s legs is an active research area. Ap-

plications of kinesin and other biomolecular motors in synthetic systems have

been extensively studied, see for example [2, 11, 18, 28]. In addition to that several

synthetic molecular walkers have been designed [6, 22, 26, 31, 45, 48–51]. Natural

motors like kinesin are very efficient, but they are protein-based and thus more

complicated than synthetic ones. Synthetic motors on the other hand are simpler

and can be used more easily in many applications listed above. As development

of nano-scale devices and materials continues, modeling and efficient simulation

are required to achieve a better quantitative understanding of their behavior, and

to aid the design process.

In this dissertation, I introduce abstract theoretical models that are based

on synthetic molecular motors called molecular spiders [24, 32]. Using the

models I explore transport properties of a single spider moving along a one-

dimensional track; first passage properties of a single spider in various one- and

two-dimensional environments; the behavior of multiple spiders, in particular

how efficient spiders can be for searching for target located on a bounded sur-

face; and the release of spiders from a single localized source. I compare spiders’

behavior with the behavior of simple random walkers, and show that for all stud-

ied scenarios spiders can exhibit more desirable properties than regular random

walkers. Molecular transport properties at the nanoscale are important for as-

sembly of nano-devices and similar applications where nano-particles need to be

moved into specific positions. First passage and search properties are important

for future applications, such as search for disease markers on cell surfaces. In

this case bounded surfaces correspond to the surface of the cell, and target sites

correspond to the disease markers.

2



Chapter 2
Molecular Spiders (Physical Level)

A molecular spider [24, 32] is a synthetic DNA-based molecular walker that is

much simpler than the naturally occurring protein-based walkers such as kinesin.

Its legs are independent and do not coordinate with each other. Unlike kinesin,

spiders do not always move in one direction defined by the track. However, ef-

fective bias towards unvisited sites emerges from the properties of the legs and

sites interactions when the spider is located on the boundary between visited and

unvisited sites.

A molecular spider (Figure 2.1) consists of a rigid, chemically inert body (such

as streptavidin—protein purified from the bacterium Streptomyces avidinii) to

which are attached multiple, flexible enzymatic legs. The legs are deoxyribozy-

mes—enzymatic sequences of single stranded DNA that can bind to and cleave

complementary strands of a DNA substrate at the point of a designed ribonucleic

base impurity. When a molecular spider is placed on a surface coated with the

single-stranded DNA substrate, the legs bind to the substrate.

A bound leg can either detach from the substrate without modifying it, or

it can catalyze the cleavage of the substrate, creating two product strands. The

lower product remains bound to the surface, while the upper product is free to

timeSubstrate 
(DNA) Product 

(Cleaved DNA)

Unbound leg

Bound leg

Figure 2.1: A molecular spider system. The spider moves over a surface of chemical sites
as the legs attach and detach. A leg cleaves a substrate site, turning it into a product site
when it detaches.
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Figure 2.2: The process of substrate cleavage by a deoxyribozyme (a molecular spider’s
leg). First, the deoxyribozyme bind reversibly with a complementary substrate. The en-
zymatic core of the deoxyribozyme can then cleave the substrate. Finally, two products
dissociate from the emzyme, while P1 remains bound to the surface, P2 becomes free to
float away in solution. In the figure the "A" stands for Adenine and pairs with the "T",
which stands for Thymine. The "C" stands for Cytosine and pairs with the "G", Guanine.
The "rA" is a ribonucleic base, the point where cleavage of the substrate happens.

float away in solution. Because the lower product remains complementary to the

lower part of the spider’s leg, there is a residual binding to the product, although it

is typically much weaker than the leg-substrate bond and thus much shorter lived.

The leg kinetics are described by the five chemical reactions in Eq. 2.1 relating legs

(L), substrates (S), and products (P1 and P2).

L + S
k+S−→←−
k−S

LS kcat−→ L + P1 + P2

L + P1

k+P−→←−
k−P

LP

(2.1)

In these equations P1 refers to the lower part of the cleaved substrate that re-

mains bound to the surface, and P2 refers to the upper part. Figure 2.2 illustrates

the process of the substrate cleavage by the deoxyribozyme leg.
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Two types of laboratory experiments to test molecular spiders have been per-

formed, bulk experiments by Pei et al. [32] and single-molecule experiments by

Lund et al. [24]. In bulk experiments multiple molecular spiders were released

in a three-dimensional dextran-streptavidin matrix (a hydrogel made of dextran

oligomers) where substrate sites were positioned at random locations. By mea-

suring the loss of mass of the system it was shown that spiders move through the

matrix and cleave substrates into products (as the upper parts of the cleaved sub-

strates are washed away the system loses mass). In single-molecule experiments

substrates were placed on a two dimensional surface (DNA origami) in the shape

of a predetermined path. Then a spider was placed at the starting point at one

end of the path, and thereafter the spider moved from the starting point to the

other end of the path. The spider’s progress was observed at several time points

through atomic force microscopy (AFM).
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Chapter 3
Computational Models

There are several categories of computational models that can be applied to the

motion of molecular walkers. The most detailed models represent all elements of

the system of interest as a set of interacting atoms. Those models can be simu-

lated using the molecular dynamics method [16]. Molecular dynamics can give

very detailed results, the closest possible to physical reality. It simulates physi-

cal movements and interactions of all atoms and individual molecules, but since

those events happen at very small time-scales (less than a picosecond), typical

simulations span only very short periods of real time and it would take enormous

computational resources to simulate longer periods. Modern molecular dynamic

simulations of proteins and DNA span nanoseconds to microseconds. For exam-

ple, in molecular dynamic simulation of the satellite tobacco mosaic virus one

million atoms were simulated for 50 ns [12], and in a study of the dynamics of the

villin headpiece, 200, 000 atoms were simulated for 500 ms [20]. From Ref. [32]

we estimated that even the simplest molecular spider experiments we would like

to simulate would involve at least 700, 000 atoms and would span at least tens of

minutes; also, we would like to study models where walkers move over surfaces

of arbitrary sizes, and that increases the number of molecules by several orders of

magnitude. Given the huge number of molecules involved in experiments with

molecular spiders, and the long duration of those experiments, it is currently im-

possible to use molecular dynamics for our purposes.

In more abstract models the body and the legs of walkers are represented as

indivisible geometric objects, the surface is represented as a set of several types

of sites in a one-, two-, or three-dimensional space, and the legs randomly attach

and detach from sites at constant rates. These rates correspond to actual chemical

kinetic rates of the leg molecule reacting with a site molecule, and they depend
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on the type of the site. Through its catalytic action, a leg can modify the type of

the site it has attached to. When a leg attaches to a new site, it chooses it from all

available sites according to some probability distribution f ; this distribution is in-

fluenced by the representation of the legs. If legs are considered independent from

each other and the processes of attaching and detaching are of the Poisson type,

then the Kinetic Monte Carlo method [8] can be used to simulate those models.

Details of the representation of body, legs, and sites, distribution f , and structure

of the set of sites define the abstraction level and the level of physical realism of

the model. For example, in a detailed model of the real molecular spiders exper-

iment, studied in [32], the surface can be represented as a set of sites randomly

positioned in a two-dimensional space, and sites can be of two types, substrates

and products. Initially all sites are substrates. The body is represented as a rigid

tetrahedron with four flexible legs attached to its vertices. When a leg detaches

from a site, it changes the site type into a product. In a simple and more abstract

model the substrate and product sites can be placed on a regular infinite one-

dimensional lattice, the body can be seen as a single point with two legs attached

to it and f is a uniform distribution over the nearest neighbors of the site from

which the leg just detached.

In the work of Olah [29, 30], a molecular spider model closer to physical re-

ality was studied. The model has many parameters that correspond to the de-

tails of physical molecular spiders and surfaces. Surfaces in the model are two-

dimensional and can have sites that are placed at random positions or placed on

a regular grid, different shapes can be assigned to bodies of a spider, and legs can

be attached to different parts of the body. Interactions of the legs with the surface

sites are modeled in detail: the rates at which legs attach to the sites, detach from

the sites, and modify the sites are all parameters of the model. The position of

a spider body is also modeled, and its position affects the legs’ movements, and

movements of detached legs are taken into account as well. The goal of this more
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Chapter 3. Computational Models

realistic model is to understand how the motor properties of spiders depend on all

those physical details. Those parameters cannot be studied in simpler and more

abstract models. Particularly, one of the goals of that work is to verify that spiders

can move against forces applied to them, and measure those forces. This analysis

allows molecular spiders to be qualified as molecular motors.

In this work we choose to use more abstract models. We simplify many details

of the model presented in [29]. We use only surfaces where sites form regular

grids, the body of the spider is always represented as a single point to which all

legs are attached, the position of the body is always defined as the mean of the

leg positions, and movements of the body and the detached legs are not modeled.

This approach has several advantages. It gives us more flexibility and makes it

easier to adjust and combine the models to derive new ones. Some of those models

can be used for explorations of particular applications of molecular walkers and

others for enhancing certain properties of molecular walkers. It is also easier to

write simulation software for more abstract models and make those simulations

run faster. Furthermore, we stand a better chance of obtaining analytical results

for simpler models. Finally, and probably most importantly, given some measured

qualities of interest from real-life experiments and results of more realistic models,

we can compare them with our results, and if they agree we can conclude that we

captured the most important and relevant properties of the real-life system in our

abstract representation while leaving out nonessential details.

Mathematical models of molecular spiders at the same levels of abstraction

as our models have been proposed and studied. Antal and collaborators intro-

duced the first abstract model of molecular spiders, and studied the motion of a

single spider on a one-dimensional track. They investigated the movement of spi-

ders with various numbers of legs and various gaits over products only [5] and

showed that such spiders are equivalent to a regular diffusion; the diffusion con-
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stants were computed for some gaits. Subsequently they introduced substrates

and took into account that cleavage and detachment from substrates together take

more time than the detachment from products [4], showing that this difference in

residence time and the presence of multiple legs, together, bias a spider’s motion

towards fresh substrates when it is on a boundary between substrates and prod-

ucts. This important property was also observed experimentally [24]. Samii et al.

investigated various gaits and numbers of legs [35, 36], emphasizing the possibil-

ity of detachment from the track. Models of spiders in two dimensions have also

been studied. In Ref. [3] Antal and Krapivsky evaluated the diffusion constant

and the amplitude describing the asymptotic behavior of the number of visited

sites for a single spider with various gaits placed on an infinite square lattice.

Analytical results regarding the asymptotic behaviors (limit theorems, transience,

recurrence, and rate of escape) of spiders have been derived in Refs. [7, 13]. In

Refs. [14, 21] the behavior of spiders in random environments was studied. Rank

et al. showed that several spiders, each placed on a separate 1D track and con-

nected to a single cargo particle move it faster and remain superdiffusive longer

than a single spider on a single 1D track [34].
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Chapter 4
Single Spider in 1D

Antal and Krapivsky introduced an abstract model of molecular spider motion [4,

5] over an infinite one-dimensional lattice (the AK model). All the models that we

study are based on the AK model. The AK model simplifies the reaction rates in

Eq. 2.1, setting the on-rates to be infinite, and the substrate dissociation rate to be 0,

so that substrates are always cleaved to products before detachment. Essentially,

the AK model defines

k+S = k+P = ∞,

kcat = r ≤ 1,

k−S = 0, and

k−P = 1.

(4.1)

Under these conditions the spider motion can be studied as a function of the

single rate parameter r ≤ 1, which represents the ratio between the substrate

cleavage and product detachment rates. Hence, a residence-time bias is established,

where legs detach faster from previously visited sites than from unvisited sites.

Antal and Krapivsky showed that the asymptotic behavior of this spider model

is diffusive for all values of r. Thus, in the long time limit the AK spiders cannot

be used as a faster-than-diffusion transport mechanism. However, our numerical

simulations of the AK model reveal that when there is a residence-time difference

between previously visited and unvisited sites, the spiders can move superdif-

fusively for time periods that span many orders of magnitude. However, our

numerical simulations of the AK model reveal that when there is a residence-time

difference between previously visited and unvisited sites, the spiders can move

superdiffusively for a long period of time.

The results of this section are published in Refs. [38, 39].
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4.1. The Antal-Krapivsky model

4.1 The Antal-Krapivsky model

The AK model effectively but not explicitly describes spider movement as a con-

tinuous-time Markov process. We reformulated the model to emphasize the states

and transitions, and the Markovian nature of the transitions when the state is

defined to include both the state of the spider and the state of the surface sites.

We consider a system with a single k-legged spider. The legs step over sites

on a regular lattice (Z). The states in the process are the combined state of the

lattice sites and the state of the spider. Each lattice site is a substrate (uncleaved)

or a product (cleaved). Initially all sites are substrates, so the state of the surface

can be described by the set P ⊂ Z of sites that have been cleaved. The state of

the spider is described by the set F ⊂ Z of foot locations—lattice sites with a leg

attached. Together P and F completely define the state of the spider system, i.e.,

the state of the Markov process is X = (P, F).

We call F a configuration of the legs. The gait of a spider is defined by what

configurations and what transitions between configurations are allowed in the

model. There are considerable possibilities for variations on the spider gait. Antal

and Krapivsky describe the gait of a spider with the kinetics of Eq. 4.1. With

k+S = k+P = ∞, a leg immediately reattaches after it detaches. Thus in any state

X = (P, F) of the process, all k legs are attached. Together with the restriction that

at most one leg may be attached to a site, this implies that

|F| = k. (4.2)

Additionally, the legs are constrained by their attachment to a common body.

If the spider has a point body with flexible, string-like legs of length s/2, then any

two feet can be separated by at most distance s, thus

max(F)−min(F) ≤ s. (4.3)
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Chapter 4. Single Spider in 1D

This restriction is that of the “global spiders” of Antal and Krapivsky [5].

The transitions in the process correspond to individual legs unbinding and

rebinding. When a spider is in configuration F, any foot i ∈ F can unbind and

move to a nearest-neighbor site j ∈ {i + 1, i − 1} to form a new configuration

F′ = (F \ {i}) ∪ {j} provided the new configuration does not violate one of the

constraints of Eqs. 4.2 and 4.3. A transition i → j is called feasible if it meets

these constraints. The feasible transitions determine the gait of the spider. The

nearest-neighbor hopping combined with the mutual exclusion of legs leads to a

shuffling gait, wherein legs can slide left or right if there is a free site, but legs

can never move over each other, and a leg with both neighboring sites occupied

cannot move at all. If the legs of such a spider were distinguishable, they would

always remain in the same left-to-right ordering.

The rate at which feasible transitions take place depends on the state of the

site i. If i is a product the transition rate is 1, but if i is a substrate the transition

occurs at a slower rate r < 1. This is meant to model the realistically slower

dissociation rates from substrates. The effect of substrate cleavage is also captured

in the transition rules. If for state X = (P, F) where i ∈ F \ P, the process makes

the feasible transition i → j, then the leg will cleave site i before leaving, and the

new state will have P′ = P ∪ {i}.

In order to compactly represent the state of a spider process, Antal and

Krapivsky introduced a graphical notation. The symbol • represents a site oc-

cupied by a leg and ◦ represents an unoccupied site. All sites initially have a hat

ˆ indicating they are uncleaved (substrate) sites. A site is cleaved into a product

when a leg detaches from it for the first time, denoted by removing the hat. For

example, state ({i− 2, i− 1, i, i + 1}, {i, i + 2}) can be illustrated thus:

· · · ◦̂i−4
◦̂

i−3
◦

i−2
◦

i−1
•
i
◦

i+1
•̂

i+2
◦̂

i+3 · · ·
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4.1. The Antal-Krapivsky model

Since the transition rates are translationally invariant on the lattice, we can gen-

erally omit the indexes on the sites.

Antal and Krapivsky have analytically studied the expectation of the random

variable T(n), which for the bipedal spider with s = 2 is defined as the time when

a leg steps onto an uncleaved site after n + 2 sites have already been cleaved.

When this event occurs the spider is always in the following position (or its reflec-

tion),

· · · ◦̂◦̂◦◦ · · · ◦•◦︸         ︷︷         ︸
n+2

•̂◦̂ · · · .

One can alternatively think of T(n) as the time at which the spider first visits

n distinct sites not counting the three sites its legs span at that time. Since a spider

always cleaves a substrate site it visits, T(n) is equivalent to the time for n + 2

products to be formed. For the case s = 2, k = 2, when r = 1, it was found that

〈T(n)〉 = n2 + n, (4.4)

but more generally, when 0 < r ≤ 1, the leading coefficient is reduced to

〈T(n)〉 = 3
2

1 + r
2 + r

n2 +
1
r

n. (4.5)

This implies that a large residence-time bias between unvisited and visited

sites, corresponding to small values of r, leads to a faster mean time to visit n sites

for large enough n. Antal and Krapivsky also showed that one-legged spiders

do not exhibit this behavior. Thus, it is the combination of having more than one

leg and the ability to irreversibly change the sites and hence rates that allows the
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Chapter 4. Single Spider in 1D

spider to move faster. While for small r values T(n) is smaller, it is still O
(
n2),

and hence not asymptotically faster than an ordinary diffusive process.

Antal and Krapivsky note that with r < 1 there is an effective bias in the spi-

der’s motion when it has one leg on a substrate at the boundary between cleaved

and uncleaved sites. In such a situation the spider moves with probability p+ in

the direction away from previously visited sites and with probability p− towards

previously visited sites. Antal and Krapivsky calculated that the strongest bias is

in the r → 0 limit when p− = 3/8 and p+ = 5/8. In the next sections we show

via simulation that spiders experience an initial period of superdiffusive behav-

ior when r < 1, and in Section 4.5 we show how this behavior is caused by the

effective bias, yet asymptotically dominated by diffusive motion over previously

visited sites in the limit as t→ ∞.

4.2 Simulation Description

We use the Kinetic Monte Carlo method [8] to numerically sample traces of the

spider Markov process. In our simulations, a single two-legged (k = 2) spider

with maximum leg separation constraint s = 2 is placed on a one-dimensional

infinite lattice of substrates and allowed to move according to the model. We vary

the rate r to see how it influences the motion. The case r = 1 corresponds to

ordinary diffusion because there is no effective difference between substrates and

products.

For Sections 4.3 and 4.4 for each value of r ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005} we

simulate 5000 traces of the Markov process. We record samples of several ran-

dom variables (e.g., mean squared displacement and first passage time) that are

functions of time, distance, or the number of sites visited. To ensure that each sim-

ulation trace provides a sample for each measured value of the random variables,
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4.3. Instantaneous Superdiffusion of Spiders

we run each simulation until all of the following conditions are met: (1) the time

is greater than tmax = 108 time units; (2) the spider has visited at least cmax = 104

sites; and (3) the spider has moved at least a distance dmax = 104 sites away from

the origin. We sample so that each of the plots with time on the x-axis that fol-

low is obtained from 6000 measurement points equispaced for the independent

variable axis of the plot (linear or logarithmic). For plots that have distance and

number of cleaved sites on the x-axis we use 104 measurement points each.

For Section 4.6 we simulated 210 different r rates for up to a distance of 10000

using 21504 traces of the Markov process.

4.3 Instantaneous Superdiffusion of Spiders

Superdiffusive motion can be quantified by analyzing the mean square displace-

ment of a spider as a function of time. For diffusion in 1D space with diffusion

constant D, the mean squared displacement is given by Eq. 4.6.

〈X2〉(t) = 2Dtα





α = 0 stationary

0 < α < 1 subdiffusive

α = 1 diffusive

1 < α < 2 superdiffusive

α = 2 ballistic or linear

(4.6)

We shall say that the spider is moving instantaneously superdiffusively at a given

time t if

α(t) =
d(log10 〈X2〉(t))

d(log10 t)
> 1. (4.7)
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Chapter 4. Single Spider in 1D

This definition is similar to that used by Lacasta et al. [23] to describe transient

superdiffusive behavior.
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r=0.01
r=0.005
time squared
diffusion

Figure 4.1: Mean squared displacement, 〈X2〉(t).

Figure 4.1 shows 〈X2〉(t) for different r values. In this log-log plot, straight

lines correspond to power laws, that is, to Eq. 4.6, and the parameter α is given

by the slope. A reference line for diffusion is shown to illustrate that the r = 1

spider is ordinary diffusive, and all spiders eventually become ordinary diffusive

asymptotically. A reference line proportional to t2 is also shown for comparison

to ballistic motion, which shows that spiders with small r values experience sig-

nificant periods of superdiffusive behavior.

We use finite difference methods to estimate α(t) (Eq. 4.7). Figure 4.2 shows

the result of using the Savitzky-Golay smoothing filter [33] on these estimates.

The spiders with r = 1 indeed move diffusively, with α(t) ≈ 1 for all times.

However, the spiders with r < 1 show a pattern of three distinct diffusion regimes

at different time scales. The first of these is an initial regime when the times are
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Figure 4.2: Finite difference approximation of α(t).

small enough that the mean number of cleavages is less than 1 and the spiders

show significantly subdiffusive behavior. This can be explained by considering

that the spider starts in the configuration defined by Antal and Krapivsky,

· · · ◦̂−2
•
−1
◦
0
•̂
1
◦̂
2 · · · .

From this state either the right leg moves at rate r or the left leg moves at rate

1, but if r � 1 the mean time to move the right leg is large. Until the right leg

has moved, the left leg is restricted to hopping between sites −1 and 0. Thus, the

parameter r determines the time scale of this initial period as 0 ≤ t ≤ 1/r.

When t > 1/r, the average number of cleavages is greater than one. After this

time, the spider has taken several steps, and has cleaved out a small region (sea)

of products which defines a boundary between regions of visited and unvisited

sites. As Antal and Krapivsky noted, there is an effective outward bias for bipedal
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Chapter 4. Single Spider in 1D

r max α(t) argmax α(t) t∗ t∗∗ t̂
0.5 1.10 1.20× 101 - - 2.25× 101

0.1 1.32 1.26× 102 8.83× 101 4.06× 103 5.89× 102

0.05 1.40 2.08× 102 1.51× 102 2.83× 104 2.67× 103

0.01 1.60 2.15× 103 6.89× 102 5.68× 105 5.59× 104

0.005 1.68 5.70× 103 1.39× 103 2.49× 106 2.44× 105

Table 4.1: Properties of the mean squared displacement and the superdiffusive regime
defined by α(t) > 1.1.

spiders near this boundary when r < 1. Figure 4.2 shows that spiders with small r

values move superdiffusively in the period of time after the initial regime. Hence,

we call this the superdiffusive regime. We quantify this regime as the period of time

when α(t) > 1.1. The choice of 1.1 is arbitrary, but is a sensible threshold that cor-

responds to a spider moving significantly superdiffusively. Using this threshold,

we define t∗ and t∗∗ as the time when the spider enters and exits the regime of

superdiffusive motion. Table 4.1 summarizes these values. We also compute the

maximum value of α(t), and the time t at which the maximum is reached. These

values show an increasingly significant superdiffusive regime for smaller values

of r.

As predicted by Eq. 4.5, the spiders must eventually move diffusively. This

leads to the third and final diffusive regime, in which all spiders asymptotically

move with 〈X2〉(t) ∝ t.

To quantify when a particular r-value spider is faster than the r = 1 spider

(in terms of 〈X2〉(t)), we define t̂(r) as the first time when 〈X2〉r(t) > 〈X2〉1(t),
and summarize the values in Table 4.1. Between the times t̂ and t∗∗ the spider is

farther on average than a diffusive spider and it is still moving faster by more than

a constant factor. Thus during this interval, the spider is more efficient in every

respect than an ordinary diffusive spider.

18



4.4. Asymptotic Behavior and Distributions

4.4 Asymptotic Behavior and Distributions

To describe a process as unbiased ordinary diffusive, one must show not just that

the mean squared displacement increases linearly with time, but more specifi-

cally that the distribution of the displacement is Gaussian. Initially this is not true

for spiders with r < 1. The bias at the boundary tends to keep spiders towards

the outside of the region of cleaved products, leading to a bimodal distribution

peaked around the average locations of the boundaries at that time. However, as

time increases and the size of the sea of products grows, spiders spend increas-

ingly more time moving in an unbiased, diffusive manner over these sites. This

eventually leads to a more Gaussian-shaped distribution. Fig. 4.3 shows the dis-

placement distributions for the r = 0.01 spider at three times: at argmax (α(t)),

when the spider is moving most superdiffusively; at t̂, when the spider mean

squared displacement overtakes the r = 1 spider; and at tmax, when the spider

is in the diffusive regime. Fig. 4.4 shows a comparison of the distributions at the

same three times for the r = 0.01 and the r = 0.005 spiders. The spider with the

smaller r value has a sharper peak near the boundary at time t = argmax (α(t)),

corresponding to the slower release from substrates.

At tmax = 108, most of the spiders have α(t) ≈ 1. Table 4.2 shows the re-

sults of using the Shapiro-Wilk normality test [44] to test the hypothesis that the

displacement distribution is Gaussian at time tmax. The p-values are significant

enough to support this hypothesis. However, note that the p-values are increas-

ingly small for small r values. This likely indicates that the spider processes for

small r values are still slowly moving towards ordinary diffusion, and hence are

not quite normal, especially near the ends of the distribution due to the bias at the

boundary.

Nevertheless, all the spiders are sufficiently close to normally distributed at
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Figure 4.3: Displacement distribution for r = 0.01 at three characteristic times.

time tmax so that we can use

D(t) =
〈X2〉(t)

2t
(4.8)

as an approximation to the effective diffusion rate of the spiders. The value

D(tmax) should be thought of as the diffusion constant an ordinary diffusive pro-

cess would need in order to have the same mean squared displacement at time

tmax as the given spider process. In this way it can make sense to compute D(t)

even at times when the spider processes are significantly subdiffusive or superdif-

fusive. For these times we interpret the D(t) value as a measure relating the msd

of the spider process to that of an ordinary diffusive process with diffusion con-

stant D. In Fig. 4.5, we use Eq. 4.8 to compute D(t) for all times. Finally, in Ta-
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Figure 4.4: Comparison of displacement distributions for r = 0.01 and r = 0.005 at three
characteristic times argmax (α(t)), t̂, and tmax.

ble 4.2 we estimate D(tmax) with 95% confidence bounds for each value of r. The

analytical value for r = 1 is 1/4, which is within the error bounds of our estimate.

We should expect these values to be monotonically increasing with decreasing r,

and this is true (within confidence intervals). However, the D(tmax) value for the

r = 0.005 spiders is not representative of their true long-term behavior, as these

spiders still have not moved for long enough for their 〈T(n)〉 value to surpass that

of the r = 0.01 spiders. The r = 0.005 spiders are still moving superdiffusively

enough at tmax that the D(tmax) value is substantially smaller than its asymptotic

value. The same would be true of the D(tmax) value for any spider with an even

smaller r.

Of practical interest, from these diffusion rates we estimate that at time tmax

a spider with r = 0.005 will be approximately 31% farther from the origin on

average than an ordinary-diffusive spider with r = 1 (or equivalently an ordinary

random walker with D = 0.25). Thus, given enough time, a spider with slower
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Figure 4.5: D(t) as computed by Eq. 4.8.

enzymatic rate kcat can transport objects significantly farther.

r D(tmax = 108) Shapiro-Wilk
p-value (at tmax = 108)

1.0 0.247± 0.010 0.747
0.5 0.313± 0.012 0.518
0.1 0.413± 0.016 0.620
0.05 0.407± 0.016 0.677
0.01 0.435± 0.017 0.250
0.005 0.417± 0.016 0.206

Table 4.2: The estimated diffusion coefficient D for different r values with 95% confi-
dence bounds, and the p-value for Shapiro-Wilk normality test at time 108, showing the
distributions are reasonably normal at this time.
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4.5 Mechanism of Transient Spider Super-diffusion

Our simulation results have shown that the spiders of the AK model for s = 2, k =

2 move superdiffusively over a significant distance and time, and that this effect

increases with decreasing values of r. Eventually, however, the motion decays to

an ordinary diffusive walk.

In this section, we argue that there is a general principle underlying spider mo-

tion that can be understood by viewing spiders as existing in one of two metas-

tates, a diffusive metastate D wherein a spider moves over visited sites, or a

boundary metastate B wherein a spider moves ballistically away from the ori-

gin when it is on the boundary of uncleaved sites. Because the duration of a B

period remains independent of the past, but the duration of a D period grows

with time, eventually the spider will approach an ordinary diffusive motion. The

s = 2, k = 2, r < 1 AK spider model is the simplest model exhibiting the bound-

ary/diffusive state decomposition and the resulting superdiffusive behavior.

4.5.1 The Boundary and Diffusive Metastates

As explained in Section 4.1, in the AK model legs only hop to nearest-neighbor

sites and cannot hop over one another. This leads to a shuffling gait. If the legs

were distinguishable their ordering would not change. Thus for concreteness we

can refer to a leftmost and a rightmost leg. Because the legs only move to nearest-

neighbor sites, they cannot jump over any site; and because a leg always cleaves

a substrate into a product, a spider cannot leave any substrates behind. Thus a

spider with this shuffling gait will cleave out an interval of products so that for

state X = (P, F), we find

P = {bL(t) + 1, . . . , bR(t)− 1}, (4.9)
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BD

Figure 4.6: A process moves between two metastates, a B state in which the spider is
on the boundary between substrates and products, and a D state in which the spider is
diffusing in the product sea.

where

bL = min (P)− 1, and bR = max (P) + 1. (4.10)

We call bL and bR the left and right boundaries, as they define the interval of

products (Eq. 4.9) we call the product sea. This product sea includes the origin and

contains no substrates within it. Thus, a spider in the product sea has all its legs

on products so it must hop without bias at rate 1, and its motion is diffusive. Any

state in which all the spider’s legs are contained within the product sea belongs

to the diffusive or D metastate. Formally, for state X = (P, F), X ∈ D if and only

if F ⊆ P.

The only other possible state is for the spider to have a single leg on a sub-

strate at one of the boundaries. This must be either the leftmost leg on bL or the

rightmost leg on bR. No other situation is possible because of the shuffling gait

of the legs enforced by nearest-neighbor hopping. In either of these cases, we say

that the spider is in the boundary or B metastate, so that for X = (P, F), we have

X ∈ B if and only if bL ∈ F or bR ∈ F.

Together B and D form a partition of the state space for the spider Markov pro-

cess. Thus, we can view a spider process as a (non-Markovian) stochastic process

that moves between a B state and a D state (Fig. 4.6).

For a particular realization of the spider Markov process, we define a B period

as an interval of time during which the spider is in the B metastate and a D period
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Figure 4.7: A realization X = (P, F) of the spider Markov process. We plot the mean
body position as the mean of the feet locations, ∑i∈F i/|F|. At each time the spider is in
a B (shaded area) or D (white area) metastate. The top and bottom dashed lines show bR
and bL respectively. Thus, at any time t the sites below the bottom dashed line and above
the top dashed line have not yet been visited.

as an interval of time spent in the D state. Fig. 4.7 shows a particular simulated

trace of the Markov process and the partitioning of time into B and D periods.

4.5.2 The Diffusive Metastate D

The D metastate is the simpler state, as it corresponds to an unbiased diffusion

over the product sea, and no sites can be cleaved while in the D state. Let E [τD(t)]

be the mean duration of a D period that begins at time t. This quantity depends

only on the size of the product sea P.

To derive E [τD(t)] we follow the analysis of Antal and Krapivsky [4], and con-

sider that the spider always begins a D period in the state
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· · · ◦̂◦̂◦ · · · ◦︸   ︷︷   ︸
N

••◦◦̂◦̂ · · · .

From here it executes an unbiased random walk on the product sea in which

each step corresponds to a ±1/2 step in the mean of the leg locations. Thus, the

process of exiting the D state is equivalent to that of a normal random walker

exiting an interval of size M = 2N + 4, starting at position x = 2N + 1. For

general M and x this time is

T(M, x) =
x(M− x)

2
,

whence we obtain

T(2N + 4, 2N + 1) =
3(2N + 1)

2
. (4.11)

Antal and Krapivsky [4] calculated that asymptotically

E [N(t)] =
√

t
Γ
(3+3r

4+2r
)

Γ
(

5+4r
4+2r

) . (4.12)

Now, combining Eqs. 4.11 and 4.12, allows us to show that asymptotically

E [τD(t)] =
3
2


2
√

t
Γ
(3+3r

4+2r
)

Γ
(

5+4r
4+2r

) + 1


 . (4.13)

Notice that E [τD] grows with time, hence the D state is non-Markovian.

4.5.3 The Boundary Metastate B

In contrast to the D state, the B state is Markovian. For a B period we can compute

the number of steps a spider takes (SB), the length of the B period (τB), and the

number of cleavages the spider performs (CB). We find that each of these random

26



4.5. Mechanism of Transient Spider Super-diffusion
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Figure 4.8: To compute SB and τB we consider in detail the two states contained within
the B state. A spider always enters the B state by moving to state B1. It can leave the B
state by moving its right leg, cleaving the site, and moving to the D state as there are no
longer any legs on the boundary. If a spider in state B1 moves its left leg instead, it goes
to state B2. From B2 the spider can move either leg. It moves its right leg at rate r which
cleaves the current boundary site, moving the boundary to the right and the spider back
to state B1. Also from state B2 the spider can move its left leg which moves the spider
back to state B1 without changing the boundary.

variables is independent of time, independent of the size of product sea, and in-

dependent of the absolute position of the boundary. These conclusions show that

the spider walking in a B period is essentially Markovian—independent of the

past history of the spider, and translationally invariant. This means that as soon

as the spider cleaves the boundary site and moves onto the new boundary site the

process is renewed.

When s = 2 and k = 2, legs can either be on adjacent sites or separated by

a single unoccupied site. By definition, in the B state one of the legs is always

on a substrate at the boundary. Without loss of generality, assume the spider is

on the right boundary, so that the right leg is at bR. Then the B metastate can be

partitioned into two smaller metastates (Fig. 4.8), a state B1 in which the legs are

separated by one site, and a state B2 in which the legs are adjacent. In either B1

or B2 each leg has exactly one transition it can make, and since one leg is on a

product and one leg is on a substrate the total rate of transition out of either B1 or
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B2 is

R = 1 + r.

A spider can only leave the B metastate when it is in state B1 and the next action

is to move the rightmost leg off the substrate. In the state B2, either leg moving

results in the spider moving to state B1.

To derive the distribution for SB, the number of steps the spider makes in the

B state, we note that each B period begins with the spider moving into state B1.

From B1 the spider has a r/R probability of moving off the boundary into the D

metastate. But with the remaining 1/R probability, the spider moves to state B2

and subsequently back to B1. Thus a B period can be thought of as Y ≥ 0 loops

B1 → B2 → B1, ending at state B1, and a final move to state D, meaning that the

number of steps taken in the B state will be

SB = 2Y + 1. (4.14)

Each time the spider is at B1 it has an independent 1/R probability of making a

loop through B2, thus Y is geometrically distributed with mean 1/R,

P [ Y = y ] =

(
1
R

)y ( r
R

)
=

r
Ry+1 . (4.15)

Combining Eqs. 4.14 and 4.15 gives

P [ Sb = s ] =





0, s even

r

R
s+1

2
, s odd

(4.16)

Each of these SB steps occurs with total rate R, hence the time for the i-th step

is exponentially distributed with scale parameter 1/R. Therefore, the duration of

a B period, conditioned on the event that SB = s steps are made in the period is

gamma-distributed with probability distribution function

fτB|SB
(t|s) = Gamma(s, 1/R). (4.17)
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Using the distribution of Y, we find the marginal probability distribution func-

tion as

fτB(t) =
∞

∑
y=0

Gamma(2y + 1, 1/R) (P [ Y = y ])

=
∞

∑
y=0

(
t2ye−Rt

R−(2y+1)Γ(2y + 1)

)( r
Ry+1

)

= e−Rt
∞

∑
y=0

t2y

(2y)!
r

R−y (4.18)

= re−Rt
∞

∑
y=0

(t
√

R)2y

(2y)!

= re−Rt cosh (t
√

R).

To compute CB, the number of cleavages in a B period, we must pay closer

attention to the transitions out of state B2 in Fig. 4.8. In state B2 either leg can

move. If the leftmost leg moves, it is constrained to move left and the spider

moves back to B1 without cleaving a site. If the rightmost leg moves, it cleaves

the substrate, moves the boundary (bR → bR + 1), and the leg is constrained to

move right onto the new boundary, leaving the spider in state B1 again but at a

new absolute position.

A spider always enters a B period in state B1. From this state there are two

ways to cleave exactly one site. Either (1) the spider follows a sequence of non-

cleaving moves ending in state B2 and then moves its right leg, cleaving that site

and moving back to state B1; or (2) the spider follows a sequence of non-cleaving

moves ending in state B1 and then moves its right leg, cleaving that site and exit-

ing to the D metastate. Let Z1 and Z2 be the events (1) and (2) respectively. Then,

for c ≥ 1 we can compute the distribution of CB as
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P [ CB = c ] = (P [ Z1 ])
c−1 P [ Z2 ] . (4.19)

Note that P [ CB = 0 ] = 0 since at least one substrate will be cleaved when the

spider leaves the boundary.

To compute P [ Z1 ] we must account for all the ways a spider can cleave exactly

one substrate and return to B1. The spider must first move to B2 with probability

1/R, then it can move B2 → B1 → B2 an arbitrary number of times without cleaving

by moving the left leg in state B2 with probability 1/R and subsequently moving

its left leg again when in state B1 with probability 1/R. Finally, the spider will

move its right leg with probability r/R, cleaving a site and returning to B1. Thus,

P [ Z1 ] =
1
R
×

∞

∑
i=0

(
1

R2

)i
× r

R

=
r

R2
R2

R2 − 1
(4.20)

=
r

R2 − 1
=

1
r + 2

.

For event Z2, the spider can leave the boundary by first moving B1 → B2 → B1

an arbitrary number of times without cleaving by moving the left leg with probabil-

ity 1/R when in state B1 and again moving the left leg with probability 1/R when

in state B2, and finally in state B1 moving the right leg with probability r/R to exit

to state D. Thus,

P [ Z2 ] =
∞

∑
i=0

(
1

R2

)i
× r

R

=
rR

R2 − 1
=

r + 1
r + 2

. (4.21)
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Therefore,

P [ CB = c ] = (P [ Z1 ])
c−1 P [ Z2 ]

=

(
1

r + 2

)c−1 (r + 1
r + 2

)
. (4.22)

Hence, CB is geometrically distributed with mean

E [CB] =
r + 2
r + 1

. (4.23)

Together these random variables characterize most of the important character-

istics of the B periods. Each of τB, SB, and CB is independent of the state of the

process when it enters the B period. For this reason we say that the B state is

Markovian with respect to the B/D state decomposition of Fig. 4.6.

4.5.4 How B and D States Explain Spider Motion

The random variable CB is important because sites can only be cleaved during a B

period. Also, because CB is independent of the state of the system when it enters

a B period, the only thing that affects the number of sites cleaved at time t is the

number of B periods that have occurred. Let B(t) be the random variable giving

the number of completed B periods at time t, and if the spider is in the middle of

a B period, let K(t) be the number of sites it has cleaved up to time t in that period

(K(t) = 0 if the spider is in the D state). Recall Antal and Krapivsky’s definition

of N(t) as the number of sites cleaved at time t, to see that

N(t) =
B(t)

∑
i=1

CBi + K(t). (4.24)

Therefore,

E [N(t)] = E [B(t)]E [CB] + E [K(t)] . (4.25)
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Eqs. 4.25 and 4.12 together allow us to show

E [B(t)] =


√t

Γ
(3+3r

4+2r
)

Γ
(

5+4r
4+2r

) − E [K(t)]


 r + 1

r + 2
. (4.26)

Note that asymptotically E [K(t)] → 0, because, as we have shown, E [τD]

(Eq. 4.13) increases with time while E [τB] (Eq. 4.18) and E [CB] (Eq. 4.23) are in-

dependent of time. As t → ∞, the probability to be in a B period will tend to 0,

and so also must E [K(t)]. Thus for large t, Eq. 4.26 simplifies to

E [B(t)] =
√

t
r + 1
r + 2

Γ
(3+3r

4+2r
)

Γ
(

5+4r
4+2r

) . (4.27)

The only way the spider can cleave substrates and increase its maximum dis-

tance from the origin is for it to be in a B state. In fact, if the spider never left

the boundary (i.e., if P [ B→ D ] = 0), it would move ballistically away from the

origin.

Thus, the B/D decomposition of Fig. 4.6 shows how the spider process is in

essence a constant alternation between two types of motion: a ballistic motion

away from the origin in the B state, and an ordinary diffusive motion over the

contiguous sea of products. The spider repeatedly switches between these states,

and the average amount of time spent in each state determines the average behav-

ior of the spider (ballistic vs. diffusive). Because

lim
t→∞

dE [B(t)]
dt

= 0,

the spider initiates fewer and fewer B periods over time, and in the limit spends

all of its time in the D state moving diffusively. It is for this reason that the asymp-

totic behavior is diffusive. However, because at least initially the spider spends a

significant fraction of its time in the B period, there is a superdiffusive transient.
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4.6 First Passage Time

In this section we study the mean first passage time (MFPT) and the distribution

of the first passage time (FPT) of the spiders model. First passage properties of

regular random walkers moving over discrete surfaces with various reflecting and

absorbing boundaries have been extensively studied [9, 10]. Here we show that

the difference between the time the legs spend on visited and on unvisited sites

reduces the MFPT of two-legged spiders in various surface settings, and increases

the MFPT of one-legged spiders (which behave like regular random walkers). We

found that for the spider model the cleavage rate significantly affects the MFPT,

and for any track length there exists an optimal cleavage rate.

4.6.1 Meaningfulness of MFPT

A process to determine if MFPT is a valid characteristic of the first passage be-

havior was given in Ref. [25]. Similarly to that, we assess the meaningfulness of

the mean first passage time in all studied settings. For every setting we estimate

the distribution P(ω) of the random variable ω = τ1/(τ1 + τ2), where τ1 and τ2

are first passage times of two independent spiders. Values of ω close to 1/2 in-

dicate that spiders act similarly in a particular setting. When ω is close to 0 or 1,

the process is not uniform, and MFPT is not a good measure of actual behavior.

Distribution P(ω) can have three distinct shapes: unimodal bell-shaped, bimodal

M-shaped, and plateau-like, almost uniform behavior. Bell-shaped form with a

maximum at ω = 1/2 indicates that MFPT can be considered as a valid measure

of the first passage times of individual spiders. M-shaped form with two peaks

close to 0 and 1, and local minimum at 1/2 indicates that MFPT is not a good

measure of the first passage time of individual spiders. The plateau-like shape

with zero second derivative at ω = 1/2 separates the two above cases. Just as in

Ref. [25], to quantify the shape of P(ω) we fit P(ω) to the model χω2 + c1ω + c2
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for 0.05 < ω < 0.95. The sign of χ indicates the shape of P(ω). In cases when

χ < 0, the distribution is bell-shaped; χ > 0 shows that the distribution is bi-

modal, M-shaped; and χ = 0 indicates that the distribution is almost uniform.

4.6.2 MFPT of Spiders

We measure the mean first passage time, 〈τ(x)〉, where x is the absolute distance

of the walker from the origin on a one-dimensional track. At that point the walker

is absorbed by the boundary. Fig. 4.9 shows the initial configuration of the track

where the walker is positioned in the middle, and the absorbing boundaries are

shown as stars. The length of the track is 2x.

x
Figure 4.9: Initial configuration of the track. All sites are initially substrates. Absorbing
boundary is represented by stars.

According to the results of our numerical simulations the MFPT of both one-

and two-legged spiders is proportional to x2. Eq. 4.28 shows the leading and sub-

leading terms of 〈τ(x)〉.

〈τ(x)〉 ≈ A1(r)x2 + a1(r)x. (4.28)

The amplitude A1 of the leading term describes the asymptotic behavior of the

MFPT. For the one-legged spider we found that A1 does not depend on r. For

the two-legged spider A1 increases with r, and approaches 2 when r = 1. As r

approaches zero A1 ≈ 1.4. Fig. 4.10 shows the amplitude A1 for one- and two-

legged spiders for 182 r values less than 1.
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Figure 4.10: Amplitude A1 from Eq. 4.28 as a function of the cleavage and detachment
rate r. The data are for one-legged (k = 1) and two-legged (k = 2) spiders on a one-
dimensional track.

For both one and two-legged spiders the amplitude a1 of the sub-leading term

decreases monotonically and approaches 0 in the absence of memory (r = 1). The

amplitudes A1 and a1 show that the parameter r only increases the MFPT of one-

legged spiders. For two-legged spiders varying r can decrease their MFPT.

In Section 4.3 we showed that when r < 1, the AK-model walkers go through

three different regimes of motion—the initial, superdiffusive, and the diffusive

stage. For lower r values the initial slow period is longer than for higher r val-

ues, but subsequently the superdiffusive period is longer and faster. For travel

over shorter distances the initial period is more important and thus larger r val-

ues result in lower first passage times. For travel over longer distances the su-

perdiffusive period is important and smaller r values give better results. Thus for

every particular distance there is an optimal value of r (ropt(x)) that minimizes

the MFPT. For example, for distance 2000 the spider with r = 0.05 is faster than
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the other (sampled) r values; but for distances 4000 and longer the spider with

r = 0.01 is faster.

We estimated ropt(x) for tracks of various lengths (up to 10000) through simu-

lations of 210 r values. The results are shown in Fig. 4.11. The figure also shows

the 〈τ(x)〉 that corresponds to ropt(x) for each distance, i.e., the minimum 〈τ(x)〉
achievable by varying the parameter r. The optimum r monotonically decreases

with distance. Smaller r values create a stronger bias towards unvisited sites, but

they make individual steps slower when the spider is on the boundary. Fig. 4.11

shows that for better performance on shorter distances faster steps are more im-

portant than the bias towards unvisited sites, whereas for longer distances the

bias dominates the MFPT.

We also estimate ropt(x) by fitting. First, we assume that A1(r) and a1(r) have

the functional form of Eq. 4.29, and find the constants c1 to c8 by fitting Eq. 4.29 to

the estimates of A1 and a1.

A1(r) = (c1r + c2)/(c3r + c4)

a1(r) = (c5r + c6)/(c7r + c8)
(4.29)

Then, we substitute the results into Eq. 4.28 and find when 〈τ(x)〉 is minimized by

extracting the derivative of 〈τ(x)〉 with respect to r. The predicted ropt(x) is also

drawn in Fig. 4.11. The derivation also shows that ropt(x) ∼ x−1/2. To show this

we, first, find the derivative of the assumed form pf 〈τ(x)〉 (Eqs. 4.28 and 4.30)

with respect to r.

d〈τ(x)〉
dr

=
c1(c3r + c4)− c3(c1r + c2)

(c3r + c4)2 x2

+
c5(c7r + c8)− c7(c5r + c6)

(c7r + c8)2 x

=
c1c4 − c3c2

(c3r + c4)2 x2 +
c5c8 − c7c6

(c7r + c8)2 x (4.30)
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The fitting of Eq. 4.29 to the estimates of A1 and a1 yields estimates of con-

stants c1 to c8. Next, we substitute the constants into Eq. 4.30 and find when the

derivative is zero.

3.29r + 3.01
r + 2.15

x +
−4.35r + 1.34

r
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Figure 4.11: Optimal r values (ropt(x)) for various distances, and the corresponding
〈τ(x)〉. Optimal r values are obtained in two ways; first, by fitting the data for 〈τ(x)〉 into
the model of Eq. 4.28 and amplitudes A1 and a1 into the model of Eq. 4.29, and second, by
simulating 210 values of r and choosing those that correspond to the lowest 〈τ(x)〉. The
estimation of ropt(x) shows that ropt(x) ∼ x−1/2.

Our estimates of the indicator χ show that in the setting of the one-dimensional

track and spider starting from the middle, χ is always negative, independent of

the values of the parameters x and r. Thus the MFPT is a meaningful, reliable

measure of the first passage time of spiders in this setting. However, as the start-

ing position is moved closer to one of the boundaries (and thus farther away from
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the other ) χ grows, and eventually becomes positive. The positive values indicate

that MFPT is not a good measure of the first passage time of spiders when they

start close to the boundaries. Interestingly, when spiders start very close to the

boundary, about 50 sites away or less, the parameter r starts to affect χ. Fig. 4.12

shows dependence of χ on the distance between the spider and one of the targets

z for a track of size x = 1000 and two r values: 0.05 and 1.0. When z ' 50 the

dependence of χ on z is similar for both r values. However, when z / 50, the χ

value for the r = 0.05 spider decreases while that of the r = 1.0 spider remains

steady.
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Figure 4.12: Indicator χ shows how well the MFPT describes the first passage times of the
individual spiders to any of the target sites. The surface is one-dimensional with a circular
reflecting boundary of radius x, the spider starts z sites away from the left absorbing
boundary (site 0). For the r = 0.05 spider χ decreases when z / 50, while for the r = 1.0
spider χ stays about the same. For z ' 50 the behavior of χ is similar for both r values.

This behavior indicates that smaller r values make the first passage time of

spiders more consistent when the starting position is located very close to one of

the targets.
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4.6. First Passage Time

4.6.3 FPT Distribution

For the same setting described in Section 4.6.2 we estimate the distribution of the

spiders’ first passage time, τ(x). For r = 1, when spider are equivalent to regular

random walkers, the distribution decays exponentially with time; in Ref. [27] the

distribution is expressed in terms of the Jacobi theta function [1]:

P∗(t) = (1/x2)

(
− 1

π2
∂ϑ3(z, e−βt/x2

)

∂z

)∣∣∣∣∣
z=π/4

, (4.31)

where ϑ3(z, q) is the Jacobi theta function. Fig. 4.13 shows agreement of the sim-

ulation results with Eq. 4.31. We also used Kolmogorov–Smirnov test against the
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Figure 4.13: Distribution of τ(x) for the r = 1 spider and the distance x = 10000. The
curve shows the theoretical prediction of Eq. 4.31, and the bars show simulation data.

hypothesis that when r = 1.0 P∗(t) is a distribution of τ(x); for the distances

x = 1000, x = 5000, and x = 10000 the p-values are 0.81, 0.81, and 0.42 respec-

tively. The p-values are significant enough to support this hypothesis.
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Chapter 4. Single Spider in 1D

Next, we compare FPT distributions of the spiders with r = 1 and r < 1.

Fig. 4.14 shows FPT distribution densities for the spiders with r = 1.0 and r =

0.05. The curve shows the distribution density for the r = 1.0 spider, as in Fig. 4.13,

and the bars show the distribution density for the r = 0.05 spider.
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Figure 4.14: Distribution of τ(x) for the r = 1 and r = 0.05 spiders. The distance is
x = 10000. The curve shows the theoretical prediction of Eq. 4.31 for the r = 1.0 spider,
and the bars show simulation data for the r = 0.05 spider.

The comparison shows that the distribution for the r = 0.05 spider has more

probability density concentrated closer to the origin. This shows that spiders with

r = 0.05 are more likely to reach boundary sites at x = 10000 faster than r = 1.0

spiders.
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Chapter 5
Single Spider in 2D

In this chapter we describe properties of the spider model in two dimensions.

Particularly, we study the mean square displacement (MSD) of the spider and

investigate how the various boundary conditions affect the spider’s mean first

passage time (MFPT) when it moves over finite two-dimensional surfaces.

To study MFPT we start with an extension of the 1D model of Section 4.6 to

2D, i.e., the mean first passage time of a two-legged spider to a circle, where the

spider starts in the center. For this surface we determined that the cleavage rate

gives the spider an even greater advantage over a regular random walker. The

advantage persists even when the target is a single site, and thus is much harder

to find. In this second 2D model the circle is a reflecting boundary, its center is an

absorbing boundary, and the spider starts from various distances from the center.

As in 1D, every setting of the surface has a corresponding optimal cleavage rate

that minimizes the first passage time to the boundary.

The results of this section are published in Ref. [38].

5.1 Model

The model is a direct extension of the model introduced in the section 4.1. It also

can be seen as a direct extension of the AK model of the spiders on a plane [3] that

takes various boundary conditions into account.

5.1.1 Motion and Surface

In the model a single spider moves over finite two-dimensional regular lattices.

Just as in 1D, a spider has k legs and it moves by detaching a leg from its site on
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Chapter 5. Single Spider in 2D

the lattice and reattaching it to a new site. Only one leg can detach at any given

time, so a spider cannot detach all of its legs to leave the lattice. Each site can

be occupied only by one leg at a time. There is a restriction on the maximum

distance between any two legs S (the gait), and each leg can move to one of the

nearest neighboring sites (4 sites in 2D; a diagonal step is not allowed) with equal

probability as long as the move does not violate one of the constraints above.

Here we use only two types of spiders. First, a spider with k = 1; this spider

is equivalent to a regular random walker. The parameter S does not affect this

spider since it has only one leg. Second, a spider with k = 2 and S = 2; this spider

is exactly the bipedal Euclidean spider with maximal separation 2 [3]. When such

a spider is placed on a one-dimensional lattice, the model becomes equivalent to

that of Section 4.1.

5.1.2 Boundaries and Starting Positions

We study the first passage time of spiders moving over two-dimensional regular

lattices with various boundary conditions and initial configurations. In each case

we are interested when the spider reaches the absorbing boundary.

The boundaries effectively make our surfaces finite. The surface is bounded

by a circle of radius x. Here we study three types of boundaries and initial spider

positions. First, the circle is an absorbing boundary, and the spider starts from the

center of the circle. Second, the circle is a reflective boundary, while the center is

an absorbing boundary, and the spider can start from any site on the circle. Third,

we study the case when radius x is fixed and the spider starts y sites away from

the target site at the center.

In all these settings x effectively defines the size of the surface. And in all those

settings, except the last, we study the dependence of MFPT on x, i.e., 〈τ(x)〉. In

the last case we study the dependence of MFPT on y, i.e., 〈τ(y)〉.
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5.2. Simulation

5.2 Simulation

As in section 4.1, we use the Kinetic Monte Carlo method [8] to simulate many

trajectories of the Markov process for every instance of the parameter set. In each

case we record the first passage time to the absorbing boundary.

To measure 〈X2〉(t) in Section 5.3 we simulated 6 different r rates for up to a

time 105 using 15000 traces. For Section 5.4 we simulated 100 different r rates for

up to a distance of 1000 using 20000 traces. For Sections 5.5.1 we simulated 18

different r rates for up to a distance of 250 using 20000 traces. For Section 5.5.2 we

simulated 15 different r rates for up to a distance of 100 using 20000 traces.

5.3 Mean Squared Displacement

As in Section 4.3, we measure 〈X2〉(t) and α(t) of a two-legged spider moving

over a two-dimensional plane. Figure 5.1 shows 〈X2〉(t) for different r values.

Figure 5.2 shows the result of using the Savitzky-Golay smoothing filter [33]

on the estimates of α(t). The figure shows that, as in the 1D case, when r < 1, the

spiders in 2D go through the three regimes of motion—the initial, superdiffusive,

and the diffusive stage. However, in contrast to the 1D case, very small r values

do not give spiders an advantage over spiders with r = 1. Spiders with smallest

r values approach the diffusive stage before overtaking spiders with r = 1, but r

values around 0.1 give spiders better advantage in 2D than in 1D. Thus, optimum

r values are higher in 2D. In Section 5.6 we show that spiders with optimum r

values have more advantage over spiders with r = 1 in 2D than in 1D.
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Figure 5.1: Mean squared displacement, 〈X2〉(t).

5.4 Spider on the Plane with a Circular Absorbing
Boundary

A direct extension of a one-dimensional track with length 2x to two dimensions is

a set of sites bounded by a circle of radius x. Fig. 5.3 shows the initial configuration

of the surface with the spider positioned in the middle.

Using numerical simulations we found that, similarly to the spiders in one

dimension, the MFPT of both one- and two-legged spiders is proportional to x2.

However, the sub-leading terms are much closer to the leading terms, and there-

fore are more important for estimating the MFPT. This implies that in two di-

mensions spiders (especially those with very small cleavage and detachment rate,

r < 0.05) approach the asymptotic behavior especially slowly. Eq. 5.1 shows the

leading and sub-leading terms of 〈τ(x)〉.
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Figure 5.2: Finite difference approximation of α(t).

〈τ(x)〉 ≈





A2(r) x2 + a2(r) x2/ ln t : k = 2

A2(r) x2 + a2(r) x2/(ln t)0.88 : k = 1
(5.1)

The correlation (ln t)−0.88 for the one-legged spider is unusual and slower than

for the two-legged spider. Somewhat similar effects were observed in Ref. [3] in

the estimation of the mean squared displacement. As in one dimension, the am-

plitude A2 of the leading term does not depend on r for the one-legged spider and

is proportional to r for the two-legged spider. The sub-leading term’s amplitude

a2 monotonically decreases with r in both cases. Fig. 5.4 shows the amplitude A2

for the one- and two-legged spiders for 60 r values that are less than 1.

For one-legged spiders, as in one dimension, lower r values only increase the

MFPT. The comparison of Figs. 5.4 and 4.10 shows that for two-legged spiders

A2 is affected more strongly by r than A1. The A2 of the two-legged spider in

two dimensions even intersects the A2 of the one-legged spider. The A2 starts at 2
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Chapter 5. Single Spider in 2D

Figure 5.3: Initial configuration of the 2D surface. All sites are initially substrates. The
spider starts at the center of the circle. The absorbing boundary is shown as a circle; as
soon as either leg crosses the circle the target is considered to be found, and the experiment
stops.

when r = 1 and decreases towards ≈ 0.5 as r approaches zero.

Similar to the one-dimensional case, spiders with r < 1 start more slowly than

the no-memory spider with r = 1; then they move faster, and finally they slow

down and approach regular diffusion. But in contrast to spiders on a 1D track, the

r values that correspond to fastest times are higher, and the MFPT of spiders with

very small r values (less than 0.1) approaches the MFPT of spiders with r = 1 very

slowly. However, the transition towards the diffusive stage happens more slowly

compared with 1D.

We estimated ropt(x) for circles of various sizes (up to 1000) through simula-

tions of 100 r values, choosing the fastest ones for each distance. Comparison of

the results is shown in Fig. 5.5. The figure also shows the fastest 〈τ(x)〉 that cor-

responds to ropt(x) for each distance. Similarly to the 1D case, we also estimate
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5.5. Spider on the Plane with a Circular Reflecting Boundary and an Absorbing Boundary in the Center
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Figure 5.4: Amplitude A2 from Eq. 5.1 as a function of the cleavage and detachment rate
r. The data is shown for the one-legged (k = 1) and two-legged (k = 2) spiders moving
over two-dimensional surface with a circular absorbing boundary.

ropt(x) by fitting.

Our estimates of the indicator χ for various r and x values show that in the

setting of the two-dimensional circle with absorbing boundary at the perimeter χ

is always negative, and this does not change with the values of the parameters x

and r. Just as in 1D, the MFPT is a meaningful measure of the first passage time

of the individual spiders moving on a two-dimensional lattice.

5.5 Spider on the Plane with a Circular Reflecting
Boundary and an Absorbing Boundary in the Cen-
ter

When we change the contour of the 2D surface to be a circular reflecting boundary

instead of an absorbing one, and place a single target site in the center, spiders
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Figure 5.5: Optimal r values (ropt(x)) for various radii. Optimal r values are obtained in
two ways; first, by fitting the data for 〈τ(x)〉 into the model of Eq. 5.1 and amplitudes A2
and a2 into the model of Eq. 4.29, and second, by simulating 100 values of r and choosing
those that correspond to the lowest 〈τ(x)〉.

with memory (r < 1) still have an advantage over spiders without memory (r =

1). We consider two cases: (1) when the radius x of the circle is variable, and

spider starts from any point on the contour, and (2) when the radius x is fixed,

and the distance x between the starting position and the target is variable. Since

both cases are circularly symmetric, all starting positions with the same distance

from the center are equivalent. In both cases we study how 〈τ(x)〉 is affected by

the parameter r, and how it is affected by x in (1) and y in (2).

5.5.1 2D Circle of Variable Radius With Target in the Middle and
Spider Starting from the Boundary

Fig. 5.6 shows the initial configuration of the surface where the spider is posi-

tioned on the contour and the single target site (absorbing boundary) is shown as

a star. Since the reflecting boundary is a circle and the absorbing boundary is a
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5.5. Spider on the Plane with a Circular Reflecting Boundary and an Absorbing Boundary in the Center

single site in the center, all starting positions of the same distance from the target

site are equivalent. In our simulations we pick a fixed position on the contour as

a starting position for the spider. This position is shown as two small solid circles

in Fig. 5.6.

Figure 5.6: Initial configuration of the surface. All sites are initially substrates. The ab-
sorbing boundary is shown as a star. The spider starts at the periphery. The circle is a
reflecting boundary and thus steps outside of the circle are not allowed.

We measure the first passage time of the walker from the contour of the surface

to its center for various radii x.

Interestingly, the MFPT asymptotically grows slightly faster than x2 . The

sub-leading term also grows faster than in the circular absorbing boundary case.

Eq. 5.2 shows the leading and sub-leading terms of 〈τ(x)〉.

〈τ(x)〉 ∼ B2(r)x2 + b2(r)x1.5. (5.2)

Fig. 5.7 shows the amplitude B2 for the two-legged spiders for 20 different r

values between 0.1 and 1.0.
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Figure 5.7: Amplitude B2 from the Eq. 5.2 as a function of the cleavage and detachment
rate r. The data are shown for two-legged (k = 2) spiders moving over a two-dimensional
surface with a circular reflecting boundary. The single site in the middle of the circle is an
absorbing boundary.

Values of r smaller than 1 give the spider an advantage, similar to the 2D con-

figuration discussed above, but now even for shorter radii x. The typical time-line

of this process can be characterized as follows. First, the spider starts moving,

it eventually visits many sites without finding the target site, and leaves behind

many smaller regions of substrates. Next, the spider starts to move only over vis-

ited sites more often, and eventually encounters regions of substrates of various

shapes and sizes. At this stage, the spider with r = 1 will not be affected by the

substrate regions, and will move just as if they were visited sites. On the other

hand, spiders with r < 1 will become biased to stay on the substrates and explore

those regions more thoroughly; this will increase their chances of finding the tar-

get site, since it must be in one of those unvisited areas. This scenario can explain

how spiders with r < 1 gain an advantage over spiders with r = 1 on this surface.
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5.5. Spider on the Plane with a Circular Reflecting Boundary and an Absorbing Boundary in the Center

The indicator χ, in this setting, grows with the parameter x, and for x ' 17 χ

becomes close to 0. As in the previously described settings, χ does not depend on

the parameter r. Fig. 5.8 shows the dependence of χ on x for r = 0.5. For small
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Figure 5.8: Indicator χ shows how well the MFPT can describe the first passage times of
the individual spiders to a single target. The surface is two-dimensional with a circular
reflecting boundary of radius x, and spider starts from the contour.

surfaces (small values of x), the χ is negative, and thus in those cases MFPT is a

good measure of the first passage time of individual spiders. However, for larger

x, values of χ close to 0 indicate that the shape of the distribution P(ω) is close to

uniform, and thus the MFPT is not as good a measure of individual behavior as it

is in the settings when the spider searches for the contour. It also shows that the

possible paths that the spider can take to locate a single target are more diverse

than paths that lead to the contour.
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Chapter 5. Single Spider in 2D

5.5.2 2D Circle of Fixed Radius With Target in the Middle and
Spider Starting From Various Distances

Fig. 5.9 shows the initial configuration of the surface where the walker is posi-

tioned at a distance y from the target site, and the radius x is set to 100 and remains

constant.

Figure 5.9: Initial configuration of the surface. All sites are initially substrates. The ab-
sorbing boundary is shown as a star. The spider starts y sites away from the center. A
circle of constant radius x = 100 is a reflecting boundary and thus steps outside of the
circle are not allowed.

We measure the first passage time of the walker from the contour of the surface

to its center for various distances y. Fig. 5.10 shows a plot of the MFPT.

The shape of the curves is asymptotically logarithmic; this shows that the ini-

tial position of the spider does not significantly affect 〈τ(y)〉when x is fixed. Even

if the spider starts closer to the target, there are too many possible paths to the tar-

get in 2D, of which one is randomly chosen. Many of them are very long and

initially lead the spider far away from the target.
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5.5. Spider on the Plane with a Circular Reflecting Boundary and an Absorbing Boundary in the Center
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Figure 5.10: Mean first passage time to a single point in the center of the circle with a
fixed radius. The boundary is reflecting, and spider starts at various distances from the
target.

The indicator χ, in this setting, is positive for y / 80 and decreases with the

parameter y. For y ' 70 as the surface configuration approaches the configuration

discussed in the Section 5.5.1, and χ becomes negative, but as in the case of the

Section 5.5.1, it still remains close to 0. Fig. 5.11 shows the dependence of χ on y

for r = 0.5. The positive values of χ for the smaller y values indicate that MFPT

is not a good measure of the first passage times of the individual spiders, and

paths that lead the spider to a target are very diverse and vary significantly in

their lengths.
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Figure 5.11: Indicator χ shows how well the MFPT can describe the first passage times of
the individual spiders to a single target. The surface is two-dimensional with a circular
reflecting boundary of a fixed radius x = 100, and the spider starts at distance y from the
target site.

5.6 Comparison of Spider Performance in 1D and 2D
Settings

It is interesting to compare the advantage spiders with r < 1 (i.e., with memory)

enjoy over those with r = 1 (i.e., without memory) in the described 1D and 2D

settings. We compute the ratio of 〈τ(x)〉 for spiders with r = 1 and 〈τ(x)〉 for

spiders with r = ropt(x). This ratio is plotted in Fig. 5.12 against the surface size

for 1D and 2D.

The plot shows that the cleavage rate r gives spiders more advantage on a 2D

plane searching for a circle than on a 1D strip searching for its ends. This ad-

vantage can be attributed to the amount of substrates that spiders leave behind

as they move away from the origin. In 1D, spiders do not leave any substrates

behind, so there are no substrates between the left and the right ends of the sea
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Figure 5.12: Ratio between 〈τ(x)〉 of the spiders with r = 1.0 and r = ropt.

of products, and when a spider moves back towards the origin there are no sub-

strates to bias it towards the boundary. In 2D, the shape of the product sea can

be very complicated and there can be many substrates left behind. When a spider

moves backward it has a high probability to still encounter substrates, which can

bias it towards the boundary. The higher ropt(x) values in 2D can be attributed

to the direction of the emergent bias when the spider is on the border between

visited and unvisited sites. In 1D, the border is simple, and its shape remains the

same over time. It is defined by the two closest unvisited sites to the origin on the

right and on the left side. As a result, when the spider with rate r < 1 is on the

border, it is always biased in the desired direction—away from the origin. In 2D,

the shape of the border can be much more complex and is even not necessarily

connected. This type of border leads to a much weaker bias towards the edge of

the surface. In many cases the spider is not biased directly to the edge in the direc-

tion of the shortest path, and sometimes the spider even is biased back towards

the circle’s center. Despite that, the greater amount of substrates accessible by

55



Chapter 5. Single Spider in 2D

the spider in 2D overcomes the weaker bias and makes spiders more efficient at

finding the absorbing boundary. Fig. 5.13 shows the average density of products;

the spider has a high probability of encountering substrates when it turns back

towards the origin.

Figure 5.13: Average density of products when spider with r = 0.25 and k = 2 is at
distance 1000.
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Chapter 6
Multiple Spiders with interactions on 2D
surfaces

If we put several spiders of the AK-model on a two dimensional surface they will

influence each other not only through the exclusion principle but also through

their traces in a form of product sites. To test those influences two laboratory

experiments have been proposed by Stojanovic: “T-junction" experiment and

“Search" experiment 1. We studied abstract models of both of those experiments

and obtained some initial results. Both models use the same definition of spiders,

which is a direct extension of spiders of the AK model. Spiders retain all the pa-

rameters and properties of spiders of the AK model in 1D, and we add a new

parameter n that defines a neighborhood of sites to which leg can move in a sin-

gle step from its current position. Figure 6.1 shows neighborhoods that we used

in our models.

The results of this section are published in Refs. [42, 43].

1Milan N. Stojanovic, personal communication, 2009

!
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!
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!
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Table 1 shows all neighborhoods we are using in our models. We represent the definition of
neighborhood graphically as follows: the black circle represents the current leg site and the white
circles show its neighborhood. We use n for the model parameter that defines the neighborhood.

!

!
!

Table 1: Various neighborhood definitions.

3 Analytical results
In the figures that follow, we represent graphically the initial configurations of the tracks over
which the spiders move: a white circle represents a product, a gray circle is an initial substrate,
a black circle represents the initial position of a spider leg, and finally the red and blue circles
represent the traps at the two opposite ends of the T-junction (a leg cannot detach from those sites).

Currently we can compute the distribution of the spider position up to about 60 steps. We have
done this for several spider models and two surface configurations. For small surfaces such as we
used, we find that after 60 steps the spider is almost certain to have reached the blue or the red
trap, from which it cannot escape. Table 2 shows the outcomes of those experiments, as predicted
by our analysis. The rightmost two columns show the probability that the spider will have reached
the red and the blue states respectively. Also we can compute the distribution of the spider final
position when it reaches one of the trap sites, no matter how many steps it takes to reach one of
those sites.

2

n1 n2 n2.5 n3

Figure 6.1: Neighborhoods studied. Black circle shows the current position of the leg.
White circles show where a leg can potentially move in a single step. When a leg of
a spider makes an actual step, that set of accessible sites is usually get reduced by the
restriction that parameter s impose.
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Chapter 6. Multiple Spiders with interactions on 2D surfaces

6.1 T-junction experiment

In T-junction experiments we calculate how a particular trajectory of the first spi-

der affects the trajectory of the second spider; the two spiders are identical and are

released sequentially to walk over a simple finite surface. The surface consists of

a vertical and a horizontal track, where the top end of the vertical track connects

to the middle of the horizontal track to form a T-junction. Both left and right ends

of the horizontal track are traps, and all other sites are initially substrates. We

consider the scenario that the first spider started to move from the bottom of the

vertical track, then chose to move left at the intersection and ended up in the left

trap, leaving a trace of products behind it. Given that the second spider is released

at the intersection after the first spider has been trapped, we compute probability

that the second spider will end up in the right trap. This probability can be seen as

a measure of how strongly the first spider influences the second; if the first spider

did not affect the second spider at all, that probability would be 1/2, and if the

second spider were not allowed to visit the sites visited by the first spider, that

probability would be 1.

Because in this model the size of the surface is relatively small, we can compute

the distribution of the spider final position exactly when it reaches one of the

trap sites, no matter how many steps it takes to reach one of those sites. Also

for small surfaces such as we used, we find that after about 60 steps the spider

is almost certain to have reached the blue or the red trap, from which it cannot

escape. Table 6.1 shows the outcomes of those experiments, as predicted by our

analysis. The rightmost two columns show the probability that the spider will

have reached the red and the blue states respectively. In the figures, we represent

graphically the initial configurations of the tracks over which the spiders move: a

white circle represents a product, a gray circle is an initial substrate, a black circles

represents the initial position of the second spider, and finally the red and blue
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6.1. T-junction experiment

circles represent the traps at the two opposite ends of the T-junction (a leg cannot

detach from those sites).

The initial configurations in Table 6.1 should be viewed as plausible configu-

rations of a T-junction track on an origami after one spider has already completed its

journey. In other words, we are analyzing the movement of a second spider. Ta-

ble 6.1 shows that for all studied gaits the trajectory of the first spider significantly

influences that of the second spider. As r decrees, it becomes less likely that the

second spider follows the first spider. The number of legs and the gait also influ-

ence this dependence: a second spider with more legs is less likely to follow the

first spider. Also this bias is stronger for gaits that allow more freedom of legs

movements.

Table 6.1: T-junction experiment results.

Surface Spider model

Probability

finishing

in red

Probability

finishing

in blue
 

k = 2, r = 0.1,

s =
√

2, n = n1
0.7464 0.2525

 

k = 2, r = 0.1,

s =
√

2, n = n1
0.6543 0.3451

Continued on next page
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Chapter 6. Multiple Spiders with interactions on 2D surfaces

Table 6.1 – continued from previous page

Surface Spider model

Probability

finishing

in red

Probability

finishing

in blue
 

k = 2, r = 0.1,

s =
√

2, n = n1
0.6678 0.3322

 

k = 2, r = 0.5,

s =
√

2, n = n1
0.5343 0.4642

 

k = 2, r = 1.0,

s =
√

2, n = n1
0.5 0.5

 

k = 4, r = 0.1,

s = 2, n = n2.5
0.7636 0.2364

 

k = 3, r = 0.1,

s = 2, n = n2.5
0.7449 0.2551

Continued on next page
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6.2. Search experiment

Table 6.1 – continued from previous page

Surface Spider model

Probability

finishing

in red

Probability

finishing

in blue
 

k = 2, r = 0.1,

s = 2, n = n2.5
0.6885 0.3115

Table 6.1 – end.

Comparison between these analytical results from the model and potential ex-

perimental results (frequencies of red vs. blue outcome) can be used to validate

the model. Alternatively, the model can be used to guide physical experiments by

helping to choose those surface and spider geometries that yield the most bias.

6.2 Search experiment

In Search experiments we measure how fast three identical spiders can find three

trap sites. The traps are placed in three corners of a rectangular lattice, and the

spiders are released at the fourth corner at the same time. All sites except traps

are initially substrates. Used Kinetic Monte-Carlo method, we simulated one- to

four-legged spiders with several gaits and different values of r. We measured

average time to find all traps and how it depends on the parameter r and the

spiders’ gait.
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Chapter 6. Multiple Spiders with interactions on 2D surfaces

6.2.1 Search

In our search model, the lattice is of a finite fixed size, 22 by 32; the numbers may

seem arbitrary, but they reasonably describe the DNA-origami tiles used in past

molecular spider experiments [24]. We use three searching spiders, initially in one

corner of the lattice. The search targets are the three special trap sites, in the three

opposite corners. We assume that a leg that attaches to a trap remains forever

bound to it.2 Furthermore, when a spider’s leg is thus trapped, all its legs cease

moving. All remaining sites initially are ordinary cleavable substrates. Because

there are as many targets as spiders, eventually each spider reaches a target. When

all target sites have been found all motion stops (in this crude abstraction).

The chemical kinetics parameter r and the spiders’ gait parameters n, S, and

k are the variable parameters of the model, and they will influence how fast the

spiders move and search for targets. In the following section we begin our explo-

ration of this parameter space.

6.2.2 Interaction

In the model spiders influence each other’s motion in two ways: First, through

the exclusion principle—if the legs of one spider occupy some set of sites, then

another spider’s legs are prevented from occupying any of those sites. Sec-

ond, through stigmergy, or communication via modification of the environment—

when one spider makes several moves it leaves behind a trail of products; another

spider can subsequently encounter those products on its way and they will affect

its future moves.

2In the laboratory, an uncleavable, pure-DNA substrate has been used [24] for the pur-
pose. In envisaged applications, the targets presented on the cell surface will not neces-
sarily be DNA strands. To bind to non-DNA targets, in addition to the legs the spider
may carry an “arm”, an aptamer molecule that specifically binds to the target.
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6.2. Search experiment

Analysis of the t-junction model showed that spiders are biased towards un-

visited sites when they are on the boundary between visited and unvisited sites.

So when a spider encounters its own trace or other spiders’ traces, it will more

likely move towards fresh substrates. There is thus a repulsive stigmergic interac-

tion: we expect spiders preferentially to avoid the traces of other spiders.

In consequence, in a target search application we expect the spiders to prefer-

entially search for targets in new, unvisited locations. To evaluate the importance

of exclusion and stigmergy for the search task we compare the performance of the

model with two alternative modifications. In the first modification we make spi-

ders move on separate and initially identical surfaces, i.e., each spider has its own

surface and they cannot see each other. But, they still share the same trap sites,

so if one spider finds a particular trap site, that site will appear as occupied for

all other spiders. This modification to the original model removes both exclusion

and stigmergy from the model, and allows us to evaluate how fast these indepen-

dent spiders can find all traps. In the second modification, all spiders move on

the same surface, but we each surface site contains three different chemical com-

ponents, keyed to the three spiders. When a leg of a particular spider a leaves

some site x it affects only the component xa of site x corresponding to a: if xa is

a substrate it is converted into product. Thus in this modification a spider can

“see” only its own traces and has no access to other spiders’ traces. While a site x

is occupied by spider a, the other two spiders are barred from it. Thus this mod-

ification of the model eliminates stigmergic communication between spiders but

preserves the exclusion principle, allowing us to to evaluate the importance of

stigmergy alone.
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Chapter 6. Multiple Spiders with interactions on 2D surfaces

6.2.3 Model and Simulation

Combining the states of all the spiders and the surface gives a continuous-time

Markov process for our model. We use the Kinetic Monte Carlo method [8] to

simulate multiple trajectories of this Markov process. The simulation stops when

all spiders are trapped, i.e., the search is complete, and then the simulated time is

recorded. This time is an observation of a first-passage-time random variable. The

results below will show the mean first passage time estimated from our traces.

6.2.4 Results

We carried out simulations using the following seven spider gaits: (a) k = 2,

Sz = 1, n = n1; (b) k = 2, Sm = 2, n = n3; (c) k = 2, Sm = 3, n = n2; (d)

k = 3, Sm = 2, n = n3; (e) k = 3, Sm = 3, n = n2; (f) k = 4, Sm = 2, n = n3; (g)

k = 4, Sm = 3, n = n2; and a simple random walker, which can be viewed as a

spider with parameters (h) k = 1, Sm = 1, n = n1. Here Sm means that maximum

distance between legs is given as the Manhattan (L1) distance and Sz means the

Chebyshev (L∞; maximum) distance. These gaits were chosen to correspond to

different physically realistic molecular spiders, but it must be admitted that the

space of possible plausible gaits is much larger, and we must defer its exploration

to a future study.

Table 6.2 describes the chosen gaits, along with the initial spider positions and

the target site positions, shown graphically. Initial positions for the gaits with

equal number of legs k are equivalent, and thus Table 6.2 groups the gaits by

k. Black, green, and violet circles represent the initial leg positions of the first,

second, and third spider respectively; gray circles represent ordinary substrates;

red circles represent the three target traps. The targets are non-specific, that is, any

spider can be trapped by any target.
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(f) k = 4, Sm = 2, n = n3
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(h) k = 1, Sm = 1, n = n1

Figure 6.2: The initial state of the system and the spider gait for each simulated configu-
ration. Configurations (a)–(g) are multi-legged spiders and configuration (h) is the control
one-legged spider. Black, green, and violet circles represent the initial leg positions of the
first, second, and third spider respectively; gray circles represent ordinary substrates; red
circles represent the three target traps.
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Figure 6.3: Search time as a function of the kinetic parameter r for the eight configurations
simulated. (a)–(g) are multi-legged spiders; (h) is a one-legged spider.

Simulation results are shown comprehensively in Figure 6.3, and also individ-

ually for each gait in Figure 6.4 to reveal additional detail. Figure 6.4 also contains

results for non-communicating spiders with and without exclusion.

6.2.4.1 The effect of the gait

In Figure 6.3 curves corresponding to the studied gaits have different shapes and

are vertically separated. Thus, the gaits of the spiders greatly influence their per-

formance, and spiders with particular gaits can be faster than regular random

walkers. For the simulated surface, spiders with gaits that allow more freedom
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6.2. Search experiment

for the legs to move (i.e., when a leg is moving to a new site it has more sites

to choose from) achieve better performance. Two- and three-legged spiders with

gaits (b), (c), (d), and (e) are the fastest among those simulated; they either have

the larger neighborhood n = n3 or the longest possible distance between legs

Sm = 3, which makes these gaits the least restrictive. Spiders with gait (a) k = 2,

Sz = 1, n = n1 are the slowest, despite having the same number of legs k = 2 as

the best performing spiders, with gait (c): gait (a) is much more restrictive, and

with its parameters Sz = 1 and n = n1 it gives a small candidate set of new posi-

tions for the legs. Gaits (f) k = 4, Sm = 2, n = n3 and (g) k = 4, Sm = 3, n = n2

are also slower than gaits (b) through (e): they have the same parameters Sm and

n, but the addition of an extra leg reduces the choice of sites for a moving leg (be-

cause the new position must be within a certain distance from each of the legs that

remain attached), which leads to slower performance.

6.2.4.2 The effect of the kinetics

We now examine the influence of the kinetics (i.e., the difference between the

substrates and the products displayed on the surface, which is amenable to ad-

justment in the laboratory) on the search performance of the spiders. Figure 6.4

shows the kinetic parameter r significantly affects the performance of the spiders.

One-legged spiders always have better performance when r is bigger—this ob-

servation is similar to the results of the study of one-legged spiders in one dimen-

sion [4]. Thus, the presence of memory on the surface in the form of substrates and

products does not improve the performance of a monovalent random walker. For

multi-legged spiders each gait has an optimal r value that minimizes the search

time.
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Chapter 6. Multiple Spiders with interactions on 2D surfaces

6.2.4.3 The effect of spider interactions

Figure 6.4 shows that for all gaits except (h) (random walk) spiders with stigmergy

perform better than non-communicating spiders when r is around its optimum

value. As expected, for values of r closer to 1.0, the role of stigmergic communica-

tion is less significant, because the difference between visited and unvisited sites

is small, and thus the traces of spiders influence their behavior only weakly. For

the values of r between the optimum and 1.0, the difference between communi-

cating and non-communicating spiders depends on the spiders’ gaits. For the best

performing gaits (b) and (c), the advantage of stigmergic communication grows

as r decreases from 1.0 to its optimum value. For the gait (h) (random walk) the

advantage of communication also grows as r decreases, while the search time of

both communicating and non-communicating spiders grows. This happens be-

cause the presence of substrates only serves to slow the random spiders down,

and non-communicating random spiders initially have more substrates in total

(for non-communicating spiders there is initially a field of substrates per spider,

while communicating spiders share just one field). Thus, non-communicating spi-

ders use more time to clean their surfaces from substrates. For the gaits (d)–(g), as

r decreases from 1.0 to its optimum value, the difference in search time between

communicating and non-communicating spiders remains very small. For those

gaits the advantage of stigmergic communication starts to appear only when r is

close to its optimum value.

6.2.4.4 The effect of exclusion alone

Comparison of non-communicating spiders with and without exclusion shows

that the influence of exclusion on search time is less significant than the influence

of communication. The effect of exclusion also depends on the number of legs.

For gaits with one and two legs, the difference in search time between spiders
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6.2. Search experiment

with and without exclusion is very small. For bigger spiders, with three and four

legs, this difference grows, and spiders with exclusion are little bit faster than

spiders without exclusion. In fact, for spiders with three and four legs and a range

of r values of between the optimum and 1.0, spiders with exclusion and without

communication perform the best, by a small margin. As with regular random

walkers this happens because non-communicating spiders effectively have more

substrates initially, but in contrast with regular random walkers the substrates

make them faster, and this enhances search performance. But even for those gaits,

communicating spiders with exclusion overtake non-communicating spiders as r

approaches its optimum value.

6.2.5 Discussion

Our system can be viewed as a hierarchical multi-agent system: the system con-

sists of multiple spiders, and each spider consists of multiple legs. The legs and

the spiders interact through exclusion, and also stigmergically as they modify the

surface; and the legs of one spider interact through kinematic constraints. But we

are not free to design this multi-agent system as we please to achieve some system-

level behavior; instead, we are severely restricted in the design of the agents: they

are just molecules of a particular kind, and molecules are dumb. Thus, recalling

the principle of complexity theory that simple local rules, iterated, may give rise

to complex global behaviors, we are asking whether this also happens in a very

primitive setting. We do not expect to be able to mimic the complexity of behav-

iors of even a single ant, which after all is millions times more structurally com-

plex. However, we hope that our results will aid in the development of nanoscale

molecular walkers.
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Figure 6.4: Enlarged plots from Figure 6.3, in which the existence of an optimum r value
for the multi-legged spiders can be discerned better. And comparison with no communi-
cating spiders with and without exclusion.
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Multiple spider model with infinitely strong
source

One way to make spiders spend less time in the diffusive state in 1D is by reducing

the size of the product sea that is accessible by the spider. We can do that by

stochastically releasing multiple spiders at the origin. Spiders that were released

later can act as moving barriers and prevent spiders that were released first from

moving backward too far away from the boundary (Fig. 7.1). That works because,

as in the AK model, every site can be occupied only by one leg of any spider and

in combination with parameter s = 2 this prevents the spiders from passing each

other and changing their relative order. We call spiders that are furthest from

the origin leading spiders. In 1D there are two leading spiders, a leftmost and a

rightmost, and we are measuring the performance of the whole system by the

performance of the leading spiders. Ideally spiders in the middle would make the

size of the product sea that is visible by the leading spiders constant.

The results of this section are published in Ref [40, 41].

Leading left spider Leading right spider

Spiders are injected 
at the origin

...

Figure 7.1: A multiple molecular spider system with injection. A new spider is added at
the origin whenever sites at the origin are unoccupied. Spiders can not pass each other.
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Chapter 7. Multiple spider model with infinitely strong source

7.1 The Multi-Spider Model

Cooperative and interactive behavior of spiders can be studied by extending the

AK model to a multi-spider model that describes a system of S ≥ 2 spiders moving

simultaneously. Every spider in the multi-spider model has identical values for

parameters k (the number of legs) and s (the maximum leg spacing), and they all

move over the same 1D surface of substrates. The (otherwise indistinguishable)

spiders are enumerated as 1, . . . , S, which allows the state of the system to be

described as

X = (P, F1, ..., FS). (7.1)

Here, Fi ⊂ Z gives the attached leg locations of spider i. In analogy to

Eqs. 4.2 and 4.3, we maintain for all i that

|Fi| = k (7.2)

and

max(Fi)−min(Fi) ≤ s. (7.3)

To extend the chemical exclusionary properties of spider legs to multi-spider

systems, we add the restriction that any site on the surface can be occupied by

only one leg of any spider, so that for all i, j:

Fi ∩ Fj = ∅. (7.4)

Finally, we define a mechanism to allow the addition of new spiders into the

system, allowing S to grow with time, while maintaining the Markovian proper-

ties of the process. New spiders can be added at an injection site I = {0, 1} for any

state in which the sites 0 and 1 are unoccupied. A new spider is added as a Pois-

son process with rate λ > 0, and the initial state of the new spider is FS+1 = {0, 1}.
In the limit when λ = ∞, a new spider is added as soon as the injection site is un-

occupied. Even in this limiting case, the presence of other spiders at the injection
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7.1. The Multi-Spider Model

site and their finite rate of movement out of this site constrain the multi-spider

system to a finite number of spiders at all times.

7.1.1 Rebinding Gait

With multiple spiders on a lattice, there are situations where a particular spider

is completely blocked from movement. This happens when its legs are together

(i.e., on adjacent sites) and other spiders occupy the sites to its immediate left and

right. Thus, to simplify the Markov process description, we introduce a slight

change to the gait of the walker. When a leg detaches from a site i it can move not

only to sites i− 1 and i + 1 as in the AK model, but also back to site i. It chooses

from any site in {i− 1, i, i + 1} with equal probability, provided none of the new

configurations violates the constraints of Eqs. 7.2, 7.3, and 7.4. Thus, even if sites

i− 1 and i + 1 are occupied, the leg has somewhere to go. We call this new spider

gait the rebinding gait. It ensures that the probability that any particular leg will

move is independent of the state of the rest of legs in the system, which simplifies

the Monte Carlo simulation of the system.

Furthermore, the rebinding gait is more chemically realistic, as the enzymatic

leg of a real molecular spider can always rebind to the site it just dissociated from,

and its detachment should be independent of the state of the rest of the system.

From an analytical perspective, the effect of allowing rebinding is to slow the

movement of walkers because of the potential for dissociations that do not move

a spider leg. However, simulation results extended to very long times (Fig. 7.2)

show that this change in effective rates does not qualitatively change the motion

of a single spider. The rebinding gait leads to a constant-factor decrease in the

mean squared displacement. In the remainder of the paper when comparisons

of multi-spider systems with rebinding gait are made with single-spider systems,

the single-spider systems have the normal AK gait, without rebinding. This gives
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Figure 7.2: Estimate of 〈X2〉(t) for spiders with the AK gait and the rebinding gait with
k = 2, s = 2, and r = 0.1.

them a constant factor advantage; however, as will be seen, even with this handi-

cap the multi-spider systems are superior as transport devices.

7.2 Simulation Results for the Multi-Spider Model

The multi-spider system provides a simple model for cooperative transport using

interacting walkers. In this application, walkers start at the origin of a 1D surface

covered with energy-supplying substrate. The walkers move outwards in the plus

and minus directions consuming substrate to bias their motion outwards, leaving

an ever increasing sea of products (P ⊂ Z) in between the farthest sites visited

in the plus and minus directions. Because spiders always cleave substrates when

they detach from a site, and the spiders with s = 2, k = 2 have a shuffling gait

wherein they cannot hop over any substrates, the sea of products P is always

contiguous and includes the origin. Thus, as explained in Sec. 4.5.1, there is a well
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defined concept of a left (bL) and right (bR) boundary between the product sea and

the unvisited substrates.

In the multi-spider model, the spiders fill this product sea, creating an exclu-

sionary pressure that prevents the outermost spiders from moving past them. At

any given time there will be one leftmost 1 ≤ Ls ≤ S and one rightmost spider

1 ≤ Rs ≤ S. We are interested in the location of these leading Ls and Rs spiders as

the system evolves. When the Markov process is in state X as given by Eq. 7.1, the

i-th spider’s position is defined as the mean of Fi. We use a function µ to describe

the position of any spider 1 ≤ i ≤ S as

µ(i) = ∑ Fi

k
. (7.5)

Note that when k = 2, s = 2 as in the multi-spider model, µ(i) only takes on

half-integer values and the value of µ(i) uniquely determines the value of Fi. This

is in general not the case for larger values of k and s.

It is sometimes possible for the identities of the leftmost or rightmost spider

to change. When µ(Ls) > 2, all the spiders are to the right of the injection point

I = {0, 1}, and when µ(Rs) < 0.5, all the spiders are to the left of I. In these cases,

when a new spider is injected at I, it becomes the new Ls or Rs, respectively. This

situation becomes very unlikely as the number of spiders released increases; how-

ever, when reporting the MSD of Ls and Rs, these identity changes are important

and are accounted for in our analysis.

7.2.1 Experimental Setup

To quantify the transport characteristics of the multi-spider injection system, we

define a multi-spider system that begins with two spiders on either side of an

injection site near the origin. The two initial spiders start on the boundary on
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Figure 7.3: The initial configuration used for the multi-spider model simulations.

either side of an initial product sea (Fig. 7.3). The precise parameters studied are

given in Table 7.1.

We use the Kinetic Monte Carlo (KMC) method [8] to numerically sample

traces of the multi-spider Markov process. In Table 7.2 we show the number of

runs of the Markov process sampled for each r-value and the minimum time each

sample was run until.

Table 7.1: Parameters studied for the multi-spider model.

Parameter Description

k = 2 number of legs
s = 2 maximum leg separation
P = {−2,−1, 0, 1, 2} initial product sea
S = 2 initial number of spiders
F1 = {1, 3} initial location of rightmost spider
F2 = {−3,−1} initial location of leftmost spider
I = {0, 1} injection site
λ = ∞ injection rate
k−P = 1 rate of detachment from products
kcat = r ≤ 1 rate of detachment from substrates
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Table 7.2: Number of KMC runs for each parameter value and minimum simulation time
combination.

r-value
tmax 1.0 0.5 0.1 0.05 0.01 0.005

1.0× 107 1800 1800 1800 1800 1800 1800
1.0× 108 200 - 200 - - -

The primary parameter of interest is the chemical kinetics parameter r. When

r = 1 there is no effective chemical difference between substrates and products,

and hence no energy is available in the substrates to bias the outermost spiders’

motion. When r < 1 the chemical difference at the boundary acts to bias the mo-

tion of the leftmost spider (Ls) and the rightmost spider (Rs) away from the origin

when they are at their respective boundaries. This creates effective superdiffusion

for the leading spiders as long as they stay near the boundary.

Table 7.2 shows that we have many fewer simulation traces for tmax = 108 than

for tmax = 107. Indeed, these simulation counts are far fewer than the 5000 traces

computed for the single spider model [39]. We were not able to compute more

traces because simulation of the multi-spider model requires much more compu-

tational resources for large values of tmax near 108. Our KMC simulations of the

spider systems consist of iterative computation of consecutive discrete events of

the underlying Markov process. Every individual event takes a constant amount

of computational (wall) time, but the simulation time intervals between events are

exponentially distributed based on the total rate of all potential transitions from

the current state. There are two possible transitions from every state of the single

spider model: the left leg moves, or the right leg moves. Thus, the mean simu-

lation time duration between events remains within 1/2 and 1/(1 + r) for every

simulated step. Since r is a constant that does not depend on tmax, the execution

time of our single spider KMC algorithm is O(tmax), i.e., it depends linearly on
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the simulation time. However, in the multiple spider model the mean duration

between events is not constant. When new spiders are injected, the number of

different possible events in the system increases, and so the simulation time in-

tervals between those events become smaller. Thus, to achieve desired maximum

simulation time tmax for the multi-spiders model, we need to simulate more dis-

crete events than for the single spider model. In section 7.3.2 we estimate that the

number of released spiders grows as O
(√

t
)

. Hence, the execution time of the

multi-spider KMC simulation algorithm is O
(
t3/2
max
)
.

7.2.1.1 Observed Superdiffusion of the Leading Spiders

As discussed in Sec. 4.3, single spider systems with r < 1 show transient superdif-

fusive behavior.Single spiders move faster than ordinary diffusion for a significant

time and distance, but eventually slow down and move as an ordinary diffusion.

Hence, the leading spiders (Ls and Rs) of the multi-spider model also should move

superdiffusively when they are near the boundary. This can be quantified by esti-

mating the mean squared displacement of the leading spiders in the multi-spider

model. Because the environment and the walker are symmetrical, we can, with-

out loss of generality, represent the mean squared displacement of the outermost

walkers by the position of the rightmost spider,

〈X2〉(t) = 〈µ(Rs)(t)〉. (7.6)

Figure 7.4 shows the KMC simulation estimate of 〈X2〉(t) for the multi-spider

model on a log-log plot for each measured r parameter value. In this plot, straight

lines correspond to power laws, that is, to Eq. 4.6, and the parameter α is given by

the slope. To show the instantaneous value of α, we use finite difference methods

to estimate α(t) as in Eq. 4.7. Figure 7.5 shows the result of using the Savitzky-

Golay smoothing filter [33] on these estimates of α(t).
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k = 2 spiders k = 2 single-spider k = 1 spiders

r 1.0 0.05 0.005 0.05 1.0

αmax 1.38 1.73 1.93 1.43 1.41
tαmax 9.03× 101 1.50× 102 1.02× 104 2.17× 102 2.71× 101

td 2.43× 105 1.89× 105 3.31× 106 2.52× 104 1.14× 105

Table 7.3: Properties of the MSD and the superdiffusive regime defined by α(t) > 1.1 for
Rs. Results are compared for the multi-spider model as well as the single spider model
(Sec. 7.2.2) and the k = 1 spiders which are simple random walkers (Sec. 7.4).

These results show the same three-phase behavior as observed in single spider

simulations (Sec. 4.3). The phases can be observed by noting the estimate of the

value of α(t) in relation to the horizontal line in Fig. 7.5 representing α(t) = 1.0.

Below this line, the leading spiders are moving subdiffusivly and above this line

the leading spiders are moving superdiffusivly. For each value of r, the systems

exhibit the following three sequential phases:
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Figure 7.4: Mean squared displacement for Rs. Reference lines are shown for ordinary
diffusion and ballistic motion.
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Figure 7.5: Smoothed finite difference approximation of α(t) for Rs. Horizontal lines
define the threshold for ordinary diffusion at α = 1.0 and our defined threshold for su-
perdiffusion at α = 1.1.

1) The initial phase is defined when t < 1/r. At these times, very few steps

have been made, and the value of α(t) is largely dependent on peculiarities

of the initial configuration, and not of relevance to transport phenomena.

2) The superdiffusive phase begins when t > 1/r and continues while the α(t) ≥
1.1. During this phase the spiders move significantly faster than diffusion.

Decreasing values of r lead to increasing maximum values of α(t), and a

longer time until the spider returns to the α(t) = 1.1 threshold.

3) The diffusive phase begins when the instantaneous value of α(t) = 1.1, and

continues indefinitely, as even the leading spiders eventually spend almost

all of their time diffusing over the products instead of cleaving new sites at

the boundary.

Thus, even though a multi-spider system adds spiders at the origin as fast as
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possible to prevent the leading spiders from moving too far backwards into the

product sea, all multi-spider systems eventually decay to diffusion. This is the

same qualitative behavior exhibited by single spider systems. However, multi-

spider systems move superdiffusively over significantly longer times, and even

when r = 1.0. They also reach a higher peak value of α(t). The superdiffusive

properties of the multi-spider model can be quantified by examining the follow-

ing:

• αmax = maxt≥0 (α(t)), the peak instantaneous value of α(t), which should

satisfy 1 ≤ αmax ≤ 2;

• tαmax = argmax t ≥ 0α(t), the time at which the peak of α(t) is reached;

• and td, the time at which α(t) drops below the threshold of 1.1, and enters

the diffusive phase.

The estimates of these quantities are given in Table 7.3. The results show that

αmax and td generally increase with decreasing r. Furthermore, the walkers with

r = 0.005 have peak α(t) values above 1.9 and remain superdiffusive over times

more than 6 orders of magnitude larger than the mean leg-product residence

time.1 Hence, for finite distances and times relevant to most transport processes

the multi-spider model can achieve significant superdiffusive motion, and with

small r values becomes nearly ballistic for significant spans of time and distance.

A further method of characterizing the transport behavior of multi-spider sys-

tems is to look at their effective instantaneous diffusion rate which (in 1D) is de-

fined as

D̃(t) = 〈X2〉(t)/2t. (7.7)

1The value of k−P is a free parameter in the model. We choose time units so that rate k−P
is normalized to 1, hence all time units are measured relative to 1/k−P = 1.
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Figure 7.6: Effective diffusion rate (D̃(t)) for Rs.

This is arrived at by setting α = 1 in Eq. 4.6. The value of D̃(t) can be thought of as

the diffusion rate a simple diffusing particle would need to have the same mean

squared displacement as the spider system at time t. Hence, greater values of D̃(t)

correspond to faster transport systems. Figure 7.6 shows D̃(t) for the multi-spider

systems. While initially the spiders with lower r have larger D̃ values, eventually

the spiders with the smallest r values are superior.

7.2.2 Comparison with Single Spiders

The multi-spider systems can be directly compared with the single spiders to un-

derstand exactly how useful the additional interior spiders are for transport. Fig-

ure 7.7 shows the results of comparing the 〈X2〉(t) for a single spider, and the

leading spider of the multi-spider model, both with r = 0.05. There is a significant

transport advantage for the multi-spider system. Furthermore, Fig. 7.8 shows the

estimate of α(t) for these two systems, and the leading spider of the multi-spider
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Figure 7.7: Mean squared displacement for the leading spider Rs in the multi-spider
model versus a single AK spider.

system maintains a higher value of α(t) at all times, and significantly longer su-

perdiffusive period. The values of αmax and td are summarized in Table 7.3, and

the multi-spider system is superior in both measurements. Finally, we compare

the first passage times for the single versus multi-spider models in Fig. 7.9. The

mean first passage time 〈fpt(d)〉 is the average time for the leading spider to first

visit a site at a distance d from the origin. At large times the multi-spider systems

have a large advantage in this key transport statistic. Overall, the comparison

with the single AK spider shows that for distances less than 3000 sites from the

origin the leading spider of the multi-spiders model reaches unvisited sites up to

5.25 times faster than a single AK spider.
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Figure 7.8: Finite difference approximation of α(t) for the leading spider Rs in the multi-
spider model versus a single AK spider.

7.3 Asymptotic Diffusion in the Multi-spider Model

In comparison with a single spider, the simulation results in Sec. 7.2 show that

multi-spider systems exhibit larger values for D̃, αmax, and td—all essential mea-

sures of transport efficiency. However, multi-spider systems still eventually decay

to diffusion despite the unlimited supply of spiders injected at the origin. By anal-

ogy with the single spider model (Sec. 4.1), this implies that the effective size of the

product sea as seen by the leading spiders is not constant. As the effective product

sea grows, the leading spiders spend progressively less time at the boundary in

the B state where they move ballistically, and more time in the diffusive D state

where they move over the product sea. This leads to a value of α(t) → 1.0, as

t → ∞, and the leading walkers are effectively diffusing. The origins of this ef-

fect can be understood in detail by examining the effective size of the product sea

(Sec. 7.3.1), the number of released spiders (Sec. 7.3.2), and their spatial distribu-
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Figure 7.9: Comparison of the first passage time of the leading spider Rs in the multi-
spider model versus a single AK spider.

tion (Sec. 7.3.3).

7.3.1 Effective size of the product sea

In 1D, spiders cannot move past each other, and thus the motion of the leading

spiders Rs and Ls is constrained by the presence of their neighboring spiders. In

particular when S ≥ 3 we can define the next-leading spiders, R′s and L′s as

R′s = max
1≤i≤S

i,Rs

(µ(Fi)) (7.8)

and

L′s = min
1≤i≤S

i,Ls

(µ(Fi)) . (7.9)

When S ≥ 4, L′s , R′s, and the remaining S − 4 spiders are called the interior

spiders. The importance of the next-leading spiders, R′s and L′s, is that they define

85



Chapter 7. Multiple spider model with infinitely strong source

︸ ︷︷ ︸
Neff

RsR′
s

bR
Product Sea Substrates

Absorbing
Boundary

Reflecting
Boundary

Figure 7.10: The effective size of the product sea (Neff) as seen by leading spider Rs is the
area between next-leading spider R′s and the right boundary bR.

the effective size of the product sea as seen by the leading spiders. Without loss of

generality we focus only on the rightmost spiders Rs and R′s and define

〈Neff(t)〉 = 〈max
(

FR′s(t)
)
+ 1− bR(t)〉, (7.10)

where the system state at time t is given by X(t) from Eq. 7.1, and bR(t) is the right

boundary for that state as defined in Eq. 4.10. Figure 7.10 illustrates what Neff is

for a particular state X. The choice of name for 〈Neff(t)〉 is meant to correspond

to Antal and Krapivsky’s 〈N(t)〉 [4], which is the mean number of sites cleaved

by a single spider system at time t. It has been shown for single spiders that

〈N(t)〉 = Θ
(√

t
)

[4], and that this implies that the time to leave the diffusive

metatstate 〈τD(t)〉 = Θ
(√

t
)

(Sec. 4.5.2). Since 〈τD(t)〉 grows with time, and

〈τB(t)〉 does not, single spiders eventually spend almost all their time diffusing in

the D state and hence their motion is asymptotically diffusive.

The relation of 〈N(t)〉 with 〈τD(t)〉 is based on the mathematics of the mean

time for a random walker to escape an interval of size N with two absorbing

boundaries. This gives the time for a walker to leave the product sea and re-

turn to the boundary. In the case of the multi-spider system, Neff is also meant to

represent the size of the region of products to escape from; however, it has one

reflecting boundary at max
(

FR′s

)
and one absorbing boundary at bR. The problem

of escape from a region with one reflecting and one absorbing boundary is equiv-

alent to escape from a region of twice the size with two absorbing boundaries
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Figure 7.11: The problem of escape from an area of size Neff with one reflecting and one
absorbing boundary is equivalent to the problem of escape of a single spider from a region
of size N = 2Neff with two absorbing boundaries.

(Fig. 7.11). Hence, we note the relation:

〈Neff(t)〉 = 〈N(t)〉/2. (7.11)

Further analysis of this relationship is deferred to Sec. 7.5. However, the im-

portance of Neff can be understood simply—if 〈Neff(t)〉 increases with time, then

because 〈τD(t)〉 = Θ(〈Neff(t)〉), the leading spider Rs must eventually move dif-

fusively. This is indeed the case for all values of r, as shown in Fig. 7.12. In this

figure we used the Levenberg-Marquardt algorithm [33] to fit power laws to the

estimates of 〈Neff(t)〉. We see that, interestingly, the exponents are close to 0.5—

exactly as with single spiders.

Thus, 〈τD(t)〉 for Rs also grows with time and therefore leads to asymptotic

diffusion. However, in the multiple spider model the effective size of the prod-

uct sea is much smaller than the total number of products (〈Neff(t)〉 � |P(t)|)
because most of the product sea is filled with other spiders, whereas in the sin-

gle spider model 〈N(t)〉 = |P(t)|. Thus, Rs in the multi-spider model remains

superdiffusive for much higher values of |P| than a single spider does. Fig. 7.13
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Figure 7.12: The effective size of the product sea 〈Neff(t)〉 grows with time, and hence
leads to asymptotically diffusive motion for the multi-spider model.

compares the effective size of the product sea of the multi-spider model with the

number of products of the AK model. While both 〈N(t)〉 and 〈Neff(t)〉 grow with

time, the single spider sees a much larger product sea, which explains the results

of Sec. 7.2.2.

7.3.2 Number of Released Spiders

With injection rate λ = ∞, spiders in the multi-spider model are released at

I = {0, 1} whenever possible, yet the presence of other spiders in the sites 0 and

1 prevents release, and so keeps the total number of spiders, S, finite. Hence, S(t)

is a random variable giving the number of spiders released by time t. Figure 7.14

shows our estimates for 〈S(t)〉, for each studied value of r. Again we used the

Levenberg-Marquardt algorithm to fit power laws, and observe approximate ex-
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Figure 7.13: The effective size of the product sea (〈Neff(t)〉) as seen by Rs in the multi-
spider model versus the effective size of the product sea (〈N(t)〉) for a single walker in
the AK model.

ponents of 0.5. Interestingly, 〈S(t)〉 appears to be dependent on r only initially,

whereas at later times the values of 〈S(t)〉 for all r are nearly identical. Thus, the

release of spiders, which occurs at the origin and away from the substrates at the

boundaries, is independent of r, which limits the total number of released spiders

regardless of how fast the leading spiders move.

7.3.3 Spatial Distribution of Spiders

Until now we have focused mainly on the position of the leading spiders Rs and

Ls, but the behavior of the interior spiders controls the release of spiders at the

origin and the effective product sea size near the boundary. At any time t, we

measure the density of spiders using a histogram with 100 equally spaced bins

over the maximum positions obtained by any spider in any simulation trace at that

time. Each bin with n sites can contain at most n/2 spiders, hence the maximum
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Figure 7.14: Mean number of released spiders, 〈S(t)〉; the log-log scale is necessary to
exhibit the differences at early times.

density for each bin is 0.5. Figure 7.15 shows the density of spiders at tmax = 107

for r = 1 and r = 0.05. The density of spiders near the origin is approximately the

same in both cases and is nearly equal to the 0.5 maximum possible density. This
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Figure 7.15: Mean spider density at tmax, for r = 1 (a), and r = 0.05 (b).
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explains why 〈S(t)〉 for large t is nearly the same for all r values. The sites near

the origin are very densely packed for any r-value and the passive addition of

spiders is not presented with many opportunities to add new spiders even when

the injection rate is infinite.

The density of spiders falls off nearly linearly away from the origin, until ap-

proximately distance 4000 (at tmax = 107), where densities for both r values grad-

ually transition to long tails with nearly 0 density. Essentially, the only difference

between the densities for r = 1 and r < 1 is at the tails. The tails for r = 0.05

are much longer, corresponding to the greater 〈X2〉(tmax) value observed for this

r-value. This is to be expected as only the leading spiders Rs and Ls ever see a sub-

strate, and all other spiders only move over products. Thus the rate r only affects

the motion of the leading spiders and those spiders near to the leading spiders

that have comparatively more space to diffuse in. The vast majority of the interior

spiders are too far from the leading spiders to see the effects of the r-value. Hence,

the distribution of spiders away from the boundaries is nearly identical for r = 1

and r < 1.

This similarity in densities of interior spiders is present at all times, as can be

seen in Fig. 7.16, which shows the evolution of these densities with time. For both

r = 1 and r = 0.05, the densities drop off linearly around the origin, until a critical

point where they transition gradually to the near-zero density tails. The tails of

the r = 0.05 spider density remain longer as expected based on the MSD results

of Fig. 7.4, but the evolution of the interior spider density is nearly independent

of r.

7.3.3.1 Distribution of Spider Strides

Spiders with k = 2, s = 2 only have two possible foot patterns: either both of their

legs are together, or both are apart (Sec. 5.1). The together and apart patterns can
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(a) (b)

Figure 7.16: Evolution of mean spider density through time, for r = 1 (a) and for r = 0.05
(b).

be called the two possible strides of a spider. A single spider is equally likely to be

in either of the two strides. However, the spiders in the multi-spider model show

a curious distribution of leg patterns. Figure 7.17 shows the distribution of spiders

in each of the two strides at time tmax, and again the results are remarkably similar

for both r = 1 and r < 1. The high density of spiders near the origin leads to a
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Figure 7.17: Mean density of spiders in each of the together (blue circles) and apart (red
triangles) strides at tmax = 107, for r = 1 (a) and for r = 0.05 (b).
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(a) (b)

Figure 7.18: Average density for spiders with legs together (blue circles) and apart (red
triangles) plotted at several instants, for r = 1 (a) and for r = 0.05 (b).

very strong bias towards the together stride.

This can be considered an emergent phenomenon that arises as a means to in-

crease spider packing close to the injection source. Spiders in this high density

region rarely get an opportunity to spread their legs into the apart stride because

both neighboring sites are almost always occupied. Also of note, at the distances

where the linear decrease in spider density is no longer apparent, the distribu-

tions of strides becomes equal again. This equality of stride distribution indicates

that the spiders are no longer experiencing the extreme exclusionary pressure ob-

served near the injection site. Instead, the spiders on the periphery are able to act

more like single spiders, which have an equal distribution in strides. These effects

are again apparent at all time scales, as seen in Figure 7.18.

7.3.3.2 Density of leading spiders

Unlike the interior spiders, which never see a substrate, the leading spiders Ls

and Rs are strongly affected by the enzymatic rate r. When spiders are in the
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Figure 7.19: Average density of the leading spider at tmax, for r = 1 (a) and for r = 0.05
(b).

boundary metastate (Sec. 4.5.1), they move ballistically away from the origin, and

the smaller the value of r, the less chance they have of exiting the boundary state

and returning to the diffusive D state. Figures 7.19 and 7.20 show the probabil-

ity distribution of µ(Rs) (the leading spiders location) for both r = 1 spiders and

r = 0.05 spiders. Particularly at the shorter times in Figure 7.20, there is a distinct

difference in the distributions shape, with the r < 1 distributions having much

longer tails, and distinctly non-Gaussian shape. The mean of the distributions

is the 〈X2〉(t), reported in Sec. 7.2.1.1, which grows much faster for the r < 1

multi-spider systems than for r = 1. However, the complete distributions shown

in Figures 7.19 and 7.20 reveal more information, particularly that the tails of the

distribution are much shorter on the left than the right. This arises from the exclu-

sionary pressures exerted by the next leading spider R′s. However, the results of

Sec. 7.3.1 show that despite this exclusionary pressure, the distance between the

two leading spiders 〈Neff(t)〉 continues to increase as
√

t regardless of the value of

r. Hence, in the distributions at tmax in Fig. 7.19, there is less distinction between

the r = 1 and r < 1 walkers.
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(a) (b)

Figure 7.20: Average spider density of the leading spider plotted at several instants, for
r = 1 (a) and for r = 0.05 (b).

7.4 Importance of Multi-Pedal Gaits for Transport

Many molecular walkers, including the natural motors kinesin and dynein, are

multivalent—they have two (or more) attachment sites. Interestingly, it has been

shown that in the AK spider model, the superdiffusive effects are only present

when the number of legs k ≥ 2. Without the constraints imposed by multiple legs

the residence time-bias at the boundary when r < 1 does not lead to a bias in

motion towards substrates.

The multi-spider model has two potential sources of bias to cause superdiffu-

sive motion of the leading spiders: the residence time bias at the boundary when

r < 1, and the effective bias caused by the exclusionary pressure of the interior

spiders. We know that the multi-spider systems are transiently superdiffusive

even when r = 1 due to the exclusionary pressure, but what happens to their col-

lective behavior when they have only a single leg? In fact when k = 1 and r = 1

an AK spider is equivalent to an ordinary random walker that moves left and

right with rate 1. Thus, we measured 〈X2〉(t) for the leading walker of the multi-

spider model with k = 1 and r = 1. The values for 〈X2〉(t) are compared with the
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multi-spiders model with k = 2 and r ∈ {1.0, 0.1}, and shown on a log-log scale

in Fig. 7.21, and the corresponding values of α(t) are shown in Fig. 7.22. The k = 1

walkers do exhibit transient superdiffusive behavior, but their values of αmax and

td are surpassed by k = 2 spiders when r < 0.1, as summarized in Table 7.3. Spi-

ders with k = 1 achieve maximum 〈X2〉(t) when r = 1 [4, 5], so by using r = 1

in our comparison we are comparing with the most efficient single-legged spiders

possible.

It is, however, necessary to make an adjustment of scales to correctly compare

the 〈X2〉(t) values between k = 2 and k = 1 walkers. Since the position of a spider

is defined as the mean of its attached leg positions, the k = 2 spiders move by only

distance 0.5 with each step, in contrast to the k = 1 spiders which move by dis-

tance 1. Thus, in the analysis of k = 1 spiders shown in Figures 7.21 and 7.22, the

k = 1 spiders move over a lattice with site spacing 0.5. In essence this correction

can be thought of as adjusting the diffusion constant of the k = 1, r = 1 walkers

which have D = 1 to that of the k = 2, r = 1 walkers which have D = 0.5.

7.5 Analysis of Maximum Product Sea Size

Simulation results presented in Sec. 7.2.1.1 suggest that the leading spider Rs

moves diffusively in the long time limit with the value of α(tmax) ≈ 1. Section 7.3.1

showed that this happens because the mean effective size of the product sea as

seen by Rs, 〈Neff(t)〉, grows with time approximately as
√

t. Hence, the duration

of the D states 〈τD(t)〉 also grows with time, leading to asymptotically diffusive

motion. Furthermore the effective product sea size Neff can also be understood

as being a function N, the number of sites cleaved. Figure 7.23 shows simulation

estimates for 〈Neff(N)〉, which at times close to tmax is almost linear. Thus, while

the leading spider is cleaving sites at the boundary, the interior spiders are not fol-
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Figure 7.21: Comparison of 〈X2〉(t) for the leading spider Rs in multi-spider simulations
versus the k = 1 multi-spider model (with corrected diffusion constant of D = 0.5.)

lowing closely enough and the leading spider sees an increasingly large effective

product sea. If a multi-spider system were to keep the leading spider superdiffu-

sive as t→ ∞, it would have to ensure that 〈Neff(N)〉 does not grow too fast. The

asymptotic bound that ensures this property can be found analytically.

The expected exit time for a random walker from an interval (0, M) with two

absorbing boundaries at 0 and M is

〈Te(x)〉 = x(M− x)
2

, (7.12)

where x is the starting position of the walker. As shown in Fig. 7.11 and explained

in Sec. 7.3.1, the expected exit time from an interval with one absorbing and one

reflecting boundary is the same as exit time from a interval with two absorbing

boundaries of twice the size. Furthermore, when a spider moves over a region of

product sites, its body position µ(F) moves like a simple random walker with a

step size of 1/2.
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Figure 7.22: Comparison of finite difference approximation of α(t) for the leading spider
Rs in multi-spider simulations versus the k = 1 multi-spider model (with corrected diffu-
sion constant of D = 0.5.) Horizontal lines show the threshold for ordinary diffusion at
α = 1 and our defined threshold for superdiffusion at α = 1.1.

When at time t the Rs spider moves off the boundary and into the D state, it

enters a product sea of expected size 〈Neff(N)〉 with one absorbing and one re-

flecting boundary. The expected time to exit this interval is the expected duration

of the D-state, τD. This can be found by using Eq. 7.12 with M = 4〈Neff(N)〉 − 5

and x = 4〈Neff(N)〉 − 8, which gives

〈τD(N)〉 = 〈Te〉 =
3(4〈Neff(N)〉 − 8)

2
. (7.13)

From Ref. [4], the average time interval during which the number of visited

sites grows from N + 3 to N + 4 is

〈τN〉 =
1
r
+

1 + r
2 + r

E [Te] , (7.14)
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Figure 7.23: Size of the effective product sea 〈Neff(N)〉 as a function of the number of
visited sites N.

and the expected time to visit N + 3 sites is

〈T(N)〉 =
N−1

∑
i=0
〈τN〉. (7.15)

Thus, we can write 〈Neff(N)〉 to be a function of N, and by substituting Eq. 7.13

into the sum in Eq. 7.15, we obtain

〈T(N)〉 = N
r
+

1 + r
2 + r

N−1

∑
i=0

3(4〈Neff(i)〉 − 8)
2

. (7.16)

Equation 7.16 shows that if 〈Neff(N)〉 = Θ(N), as Fig. 7.23 suggests, then

〈T(N)〉 = Θ
(

N2), which corresponds to diffusive motion. Hence, in order for

the leading spider to be superdiffusive as t → ∞, we require 〈T(N)〉 = o(N2),

which implied 〈Neff(N)〉 = o(N). Unfortunately, as Fig. 7.11 shows, this is not
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the case for the multi-spider model—to maintain superdiffusive motion asymp-

totically, we need a mechanism stronger than passive injection at the origin.
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Chapter 8
Conclusion

In this work we exhaustively studied the statistical properties of several molecular

spider models and explored their potential for two applications, cargo transport

and search. We demonstrated that for both tasks spiders with legs that spend

more time on the unvisited sites (r < 1, spiders with memory) have an advantage

over spiders without residence-time difference between previously visited and

unvisited sites (spiders without memory, equivalent to regular diffusion).

Using Kinetic Monte Carlo simulations of the Antal and Krapivsky model we

showed the unanticipated result that spiders move superdiffusively over a span

of time before eventually moving diffusively as had been predicted analytically.

This phenomenon can be explained by considering the natural decomposition of

the process as switching between two metastates: a diffusive state D where a

spider moves over the contiguous sea of product sites, and a boundary state B

where the spider has a leg attached to a substrate at the boundary between visited

and unvisited sites. This decomposition partitions the underlying continuous-

time Markov process into B periods and D periods. The spider moves ballistically

away from the origin during B periods, but moves diffusively over visited sites

during D periods. The B state is Markovian in that the transitions from the B state

are independent of the state of the system when it entered the B state. However,

the transitions from the D-state depend on the size of the contiguous sea of prod-

ucts, and this size increases with time. This explains the apparent superdiffusion

at short times when the spider spends more time in the B state, and the decay to

ordinary diffusion at long times, as the spider spends nearly all of its time diffus-

ing over previously visited sites in the D state. The AK model with k = 2, s = 2,

r < 1 is the simplest model of spider motion with this B/D state decomposition

and the resulting superdiffusive effect. With k = 1, there is no bias at the bound-
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aries, and without irreversible cleavage of sites and a rate r < 1 there is no biasing

effect at the boundaries. Thus, the superdiffusive effect depends on spiders hav-

ing multiple legs and on the legs having the ability to modify sites so that future

steps on those sites have different rates.

In order to reduce durations of D periods we proposed a model where spi-

ders are sequentially released from the origin. The goal of multiple spiders in this

model is to prevent the leading spiders from moving too far backwards. Hence,

there is an effective outward pressure on the leading spiders that keeps them

closer to the boundary and increases their chances to move with the bias towards

unvisited sites. We showed that multi-spider systems move faster and farther

than single spiders or systems with multiple simple random walkers. However,

in the asymptotic limit as t → ∞, we find that α(t) → 1, and the leading spiders

of the multi-spider model move diffusively for all values of r. One way to un-

derstand this result is to note that the number of spiders released with time was

〈S(t)〉 = O
(√

t
)

and largely independent of r, even with the injection rate λ = ∞

(Sec. 7.3.2). Under asymptotically superdiffusive motion of the leading spiders

we would see the number of products cleaved N(t) = ω(
√

t), and to fill this

product sea would require S(t) = Θ(N(t)) = ω(
√

t), which is not achieved by

the multi-spider model. Thus, we cannot seem to release spiders fast enough to

support superdiffusion indefinitely. This failure can be understood by observing

that the only spiders that actually get to attach to and cleave the energy bearing

substrates are the leading Rs and Ls spiders. The other, interior spiders only ever

walk on products. Thus, while there is some bias exerted on interior spiders by

the exclusionary pressure of injected spiders near the origin, for the most part the

motion of interior spiders is governed by diffusion. Hence, they do not move fast

enough to get clear of the injection site at the origin to allow enough other spi-

ders to be injected fast enough. Indeed, the density of spiders (Sec. 7.3.3) around

the origin is nearly maximal, and also seemingly independent of r. Thus, it does
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not really matter how small the value of r is (and hence how much biasing en-

ergy is contained within substrates), because the interior spiders see none of that

energy and their diffusive motion is hence independent of r. Yet, the motion of

these interior spiders remains the limiting factor for the injection rate of the new

spiders needed to assist the leading spiders by reducing the effective size of the

product sea. Hence, no matter how fast the leading spiders are able to move ini-

tially, they will inevitably be hindered by the insufficiently fast dispersal of the

energy-deprived interior spiders.

For the search task, our studies show that the search time (MFPT) of single

multi-legged spiders depends strongly on the kinetic parameter r in all studied

cases. The MFPT is lower for r < 1 (i.e., with memory) than for r = 1 (i.e.,

without memory) in the one-dimensional case when the spider is searching for the

ends of a one-dimensional track. For one-legged spiders the parameter r does not

affect leading asymptotic behavior; however, it slows them down by increasing

the constant of the sub-leading term. In the extension of this problem to two

dimensions, when the spider is searching for the contour of a circle from its center,

the advantage of having r < 1 is even more significant, despite the less effective

bias provided by the shape of the leftover substrates. Here the bias provided by

the substrates does not always direct the spider towards the absorbing boundary.

In contrast, on a 1D track, the substrates always bias the spider towards the closest

end when one of the legs is attached to them. The disadvantage in 2D is overcome

by the greater amount of substrates that are accessible to spiders. In 1D, the spider

does not leave any substrates behind when it progresses towards the ends of the

track. In 2D, the shape of the sea of products is complex, and many substrates are

left behind. Those substrates can bias the spider towards the absorbing boundary

when it starts to turn back towards the origin. When we reverse boundaries in

2D we make the absorbing boundary the single site in the center of the circle, and

start the spider from the contour, the parameter r still improves the MFPT even
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though it is difficult to find the single target site in this scenario.

When we introduce multiple spiders and multiple targets, the communication

between spiders starts to influence their performance. Spiders communicate by

seeing each other’s traces, i.e. visited sites. Since multi-legged spiders are biased

towards unvisited sites when they are in the border region, they are more likely

to search for targets in unexplored locations. This property further reduces search

time compared with spiders without memory, which are equivalent to regular

random walkers.

In addition to the presented models, I studied several models with modifica-

tions that further enhance molecular spiders’ properties, including substrates that

can be cleaved several times and parallel tracks. Substrates that can be cleaved

multiple times introduce more memory into the system and allow spiders to re-

act differently with sites that have been visited more times than with sites that

have been visited less frequently. Preliminary results show that this feature can

improve spiders’ performance. Also, when a spider moves over a small number

of parallel tracks, in other words over a narrow but very long rectangle, its perfor-

mance is also improved, compared with a single 1D track. Another approach to

improve spiders’ performance is to introduce multiple tracks of substrates into the

model of multiple spiders with an infinitely strong source. Surprisingly, this mod-

ification made even one-legged spiders move superdiffusively during the whole

observed time period for some r values; as it was shown in Section 4.1, a single

one-legged spider is slowed down when r < 1. When r is less than some crit-

ical value the superdiffusive effect does not seem to fade away with time as it

happened with previously studied models. A full exploration of these models is

reserved for future work.
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