
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2016

Using Rollback Avoidance to Mitigate Failures in
Next-Generation Extreme-Scale Systems
Scott Levy

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Levy, Scott. "Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems." (2016).
https://digitalrepository.unm.edu/cs_etds/31

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/31?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Scott Levy

Candidate

Computer Science

Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Patrick G. Bridges, Chair

Kurt B. Ferreira

Dorian Arnold

David Lowenthal

Using Rollback Avoidance to Mitigate
Failures in Next-Generation

Extreme-Scale Systems

by

Scott Levy

B.S., Electrical Engineering, Cornell University, 1995

J.D., Lewis & Clark Law School, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2016

c©2015, Scott Levy

iii

Dedication

To Jane, for her steadfast support

iv

“It seems very pretty,” she said when she had finished it, “but it’s
RATHER hard to understand!” (You see she didn’t like to confess,
even to herself, that she couldn’t make it out at all.) “Somehow it
seems to fill my head with ideas–only I don’t exactly know what they
are! However, SOMEBODY killed SOMETHING: that’s clear, at any
rate”

Through the Looking Glass, Lewis Carroll

v

Acknowledgments

This document is the culmination of nearly six years of work. While I am credited
as its sole author, neither this document nor the work that it summarizes would have
been possible without significant contributions from many other people. I would
like to begin by acknowledging my advisor, Patrick Bridges. Patrick’s guidance
throughout this process has been invaluable. I learned more from Patrick about the
practice of computer science research and the art of clearly communicating detailed
technical ideas than I can properly summarize in this constrained space.

I would also like to recognize the significant contributions of Kurt Ferreira.
Throughout my tenure at Sandia, Kurt served as my de facto second advisor. He
taught me how to navigate the technical details of working with large-scale systems
and the process of publishing research papers. When I was in law school, the faculty
would frequently tell us that their job was to teach us to think like lawyers. Kurt
taught me to think like a computer scientist. For that, I will be forever grateful.

I would also like to acknowledge the contributions of the other two members of my
committee, Dorian and Dave. I was fortunate to collaborate with Dorian on several
projects (some related to this dissertation, some not) during my time as a student
as UNM. He forced me to challenge my assumptions and to think carefully about
the objectives of computer science research. I appreciate that Dave encouraged me
to take risks, to build things and conduct experiments even when success was not
guaranteed.

There are many others who contributed to the success of this undertaking. I
was very fortunate to spend several years of my career as a Ph.D. student working
as an intern at Sandia National Laboratories. I am grateful for the opportunity;
it was an integral part of my education. In particular, I had the opportunity to
collaborate with Patrick Widener on several occasions and my writing and research
skills improved from the experience. Additionally, Ryan Grant, Simon Hammond,
and Kevin Pedretti provided invaluable technical guidance on several occasions. At
UNM, my interactions (both technical and not) with the members of the Scalable
Systems Laboratory helped me navigate my graduate school experience. In particu-
lar, I would like to express my gratitude to: Matthew Dosanjh, Taylor Groves, Dewan
Ibtesham, Donour Sizemore and Ricardo Villalon. The education that I received be-
fore I matriculated at UNM provided an integral foundation for this undertaking. I

vi

was fortunate to be a student of many talented teachers, including Cheryl Ogden,
John Garing, and Michael Blumm.

Finally, I would like to express my gratitude to my family. I would like to thank
my parents for providing me with the opportunities that made this endeavor possi-
ble. They taught me perseverence and the importance of getting the details right;
values that I hope are reflected in this document. I could not have even begun this
journey without the guidance, encouragement, and confidence of my wife, Jane. Be-
ing married to a Ph.D. student (perhaps especially to this Ph.D. student) is no easy
task. She handled it with aplomb. Thank you, Jane.

vii

Using Rollback Avoidance to Mitigate
Failures in Next-Generation

Extreme-Scale Systems

by

Scott Levy

B.S., Electrical Engineering, Cornell University, 1995

J.D., Lewis & Clark Law School, 2004

Ph.D., Computer Science, University of New Mexico, 2016

Abstract

High-performance computing (HPC) systems enable scientists to numerically model

complex phenomena in many important physical systems. The next major milestone

in the development of HPC systems is the construction of the first supercomputer

capable executing more than an exaflop, 1018 floating point operations per second.

On systems of this scale, failures will occur much more frequently than on cur-

rent systems. As a result, resilience is a key obstacle to building next-generation

extreme-scale systems. Coordinated checkpointing is currently the most widely-used

mechanism for handling failures on HPC systems. Although coordinated checkpoint-

ing remains effective on current systems, increasing the scale of today’s systems to

build next-generation systems will increase the cost of fault tolerance as more and

more time is taken away from the application to protect against or recover from fail-

ure. Rollback avoidance techniques seek to mitigate the cost of checkpoint/restart

by allowing an application to continue its execution rather than rolling back to

viii

an earlier checkpoint when failures occur. These techniques include failure predic-

tion and preventive migration, replicated computation, fault-tolerant algorithms, and

software-based memory fault correction. In this thesis, I examine how rollback avoid-

ance techniques can be used to address failures on extreme-scale systems. Using a

combination of analytic modeling and simulation, I evaluate the potential impact

of rollback avoidance on these systems. I then present a novel rollback avoidance

technique that exploits similarities in application memory. Finally, I examine the

feasibility of using this technique to protect against memory faults in kernel mem-

ory.

ix

Contents

List of Figures xvii

List of Tables xx

1 Introduction 1

1.1 Memory Faults in HPC Systems . 2

1.2 Handling Failures with Checkpoint/Restart 3

1.2.1 Coordinated Checkpoint/Restart 4

1.3 Reducing the Cost of Coordinated

Checkpoint/Restart . 5

1.3.1 Improving Checkpoint Write Performance 5

1.3.2 Uncoordinated Checkpoint/Restart 5

1.3.3 Rollback Avoidance . 6

1.4 Thesis Statement . 7

2 Related Work 9

x

Contents

2.1 Terminology . 9

2.1.1 Binary Prefixes . 9

2.1.2 Fault Tolerance . 10

2.2 Checkpoint/Restart . 10

2.2.1 Coordinated Checkpoint/Restart 11

2.2.2 Uncoordinated Checkpoint/Restart 15

2.2.3 Hybrid Checkpoint/Restart Methods 16

2.3 Rollback Avoidance . 17

2.3.1 Failure Prediction . 18

2.3.2 Replicated Computation . 19

2.3.3 Software Methods for Memory Failure Detection and Correction 20

2.3.4 Algorithm-Based Fault Tolerance 22

2.4 Modeling Fault Tolerance . 22

2.5 Simulating Fault Tolerance on Large-scale Systems 24

2.6 Memory Content Similarity . 26

2.6.1 Memory De-Duplication in Virtualization 26

2.6.2 Other Uses of Memory De-Duplication 27

2.6.3 Internode De-Duplication . 27

2.6.4 Exploiting Similar Memory Pages 28

2.7 Chapter Summary . 28

xi

Contents

3 Modeling Rollback Avoidance and Coordinated

Checkpoint/Restart 30

3.1 Introduction . 30

3.2 An Analytical Model of Rollback Avoidance 32

3.2.1 Developing a Model of Rollback Avoidance 32

3.2.2 Augmenting Coordinated Checkpointing 34

3.2.3 Replacing Coordinated Checkpointing 35

3.3 Validation . 36

3.4 Case Study: Process Replication . 40

3.4.1 Model Parameters . 40

3.4.2 Model Performance . 41

3.5 Case Study: Fault Prediction . 43

3.6 Analysis & Discussion . 47

3.6.1 Designing Rollback Avoidance for Exascale 47

3.6.2 Replacing Coordinated Checkpoint/Restart 53

3.6.3 Assessing the Impact of Model Parameters 53

3.7 Chapter Summary . 57

4 Simulating Rollback Avoidance and Uncoordinated

Checkpoint/Restart 58

4.1 Introduction . 58

xii

Contents

4.2 Considerations for Resilience at Scale 60

4.2.1 Hardware Characteristics . 60

4.2.2 Application Characteristics 61

4.2.3 Impact of Checkpoint/Restart Mechanisms 62

4.2.4 Impact of Failures . 63

4.3 LogGOPSim . 65

4.3.1 Simulating Application Characteristics 66

4.3.2 Simulating Hardware Characteristics 66

4.4 Simulating Failures and Resilience

with LogGOPSim . 67

4.5 Validating LogGOPSim’s Simulation of

Checkpoint/Restart . 69

4.5.1 Validating Simulation of Error-Free Execution 69

4.5.2 Validating Simulation of Failures and Rollback

Avoidance . 76

4.6 Simulating the Impact of Rollback Avoidance

on Uncoordinated Checkpoint/Restart 78

4.7 Chapter Summary . 84

5 Similarity Engine 85

5.1 Introduction . 85

5.2 Implementing the Similarity Engine 86

xiii

Contents

5.2.1 Overview . 86

5.2.2 Tracking Application Memory 88

5.3 Discovering Similarity . 90

5.3.1 Experimental Setup . 91

5.3.2 Computing Page Differences 91

5.3.3 Finding Potentially Similar Pages 95

5.3.4 Analysis . 97

5.4 Evaluating Similarity . 98

5.4.1 Memory Overhead . 98

5.4.2 Runtime Overhead . 103

5.4.3 Prevalence of Similarity . 106

5.4.4 Variability of Similarity . 108

5.5 Exploiting Memory Similarity . 111

5.5.1 Uncorrectable Memory Errors 111

5.5.2 Checkpoint Compression . 114

5.5.3 Silent Data Corruption . 117

5.6 Chapter Summary . 119

6 Characterizing Memory Content Similarity in Kernel Memory 121

6.1 Introduction . 121

6.2 Proposed Approach . 122

xiv

Contents

6.3 Evaluation . 123

6.3.1 Running Workloads on Kitten 123

6.3.2 Identifying Kernel Memory . 125

6.3.3 Experimental Methodology . 127

6.3.4 Data Analysis . 128

6.4 Similarity in Kernel Memory . 129

6.4.1 Similarity Overview . 129

6.5 Chapter Summary . 136

7 Conclusion and Future Work 138

7.1 Summary . 138

7.2 Future Work . 140

Appendices 142

A Derivation of Rollback Avoidance Models 143

A.1 Modeling the Probability of Rollback Avoidance 143

A.2 Modeling Rollback Avoidance + Coordinated Checkpoint/Restart . . 145

A.2.1 Showing the Limit with Optimal Checkpoint Interval 145

A.2.2 Showing the Limit with Fixed Checkpoint Interval 147

A.3 Modeling Rollback Avoidance Without

Checkpoint/Restart . 148

xv

Contents

A.3.1 Extending Daly’s Model . 148

A.3.2 Showing the Limit . 150

B Proof of Maximum Number of Similar Pages in a Checkpoint 151

References 155

xvi

List of Figures

3.1 Validation of the model for augmenting C/R 38

3.2 Validation of the model for replacing C/R 40

3.3 Comparison of application efficiency with and without process repli-

cation . 42

3.4 Impact of failure prediction on the fraction of waste time. 43

3.5 Impact of precision and recall on application speedup 45

3.6 Comparison of the relative impact of precision and recall on applica-

tion speedup . 46

3.7 Application speedup as a function of overhead and probability of

rollback avoidance . 48

3.8 Comparison of a strawman rollback avoidance technique to three

existing techniques . 49

3.9 Effect of rollback avoidance probability and system reliability on ap-

plication speedup . 50

3.10 Impact of overhead and probability of rollback avoidance on appli-

cation speedup . 51

xvii

List of Figures

3.11 Impact of fault tolerance techniques on application performance as a

function of system MTTI . 52

4.1 Validation of the simulator against a simple analytic model 70

4.2 Validation of LogGOPSim simulation against a coordinated and unco-

ordinated checkpointing library for CTH 73

4.3 Validation of LogGOPSim simulation against an coordinated and un-

coordinated checkpointing library for LAMMPS 74

4.4 Validation of simulation framework against analytic model for coor-

dinated checkpointing . 78

4.5 Effect of pa on application execution time 80

4.6 Effect of pa on fault tolerance overhead 81

4.7 Application speedup as a function of pa and oa 82

5.1 Difference speed microbenchmark 94

5.2 Difference size microbenchmark . 95

5.3 Similarity heuristic microbenchmark 97

5.4 Difference threshold benchmark . 102

5.5 Raw execution time data for CTH-blastplate 105

5.6 Page categorization . 107

5.7 Page category variability . 110

5.8 Modeled application speedup . 111

5.9 Checkpoint compression metrics . 117

xviii

List of Figures

6.1 Mean page categorization of kernel memory 131

6.2 Detailed page categorization statistics 133

6.3 Non-unique memory pages as a function of metadata volume 135

B.1 Example of similarity relationship graph 152

xix

List of Tables

3.1 Model parameters for examining the performance of process replica-

tion. 42

4.1 Summary of the parameters needed for accurate simulation of HPC

applications in a failure-prone system. 65

5.1 Descriptions of the set of workloads used for evaluating the perfor-

mance characteristics of the Similarity Engine. 87

5.2 Configuration details of clusters used to gather experimental data. . 92

5.3 Difference size microbenchmark . 96

5.4 Description of the execution parameters for the seven target workloads. 99

5.5 Median runtime overheads for Similarity Engine 103

5.6 Useful difference rate . 106

5.7 Characteristics of next-generation, extreme-scale strawman system . 113

5.8 Runtime overheads of silent data corruption detection 118

6.1 Summary of HPC workloads . 124

xx

List of Tables

6.2 Fraction of Kitten kernel memory used to store page tables 134

6.3 Modification behavior of similar and duplicate kernel memory pages 136

xxi

Chapter 1

Introduction

High-performance computing (HPC) systems are a critical resource for scientists

conducting cutting-edge research. Large dedicated machines enable scientists to nu-

merically model complex phenomena that are otherwise difficult or impossible to

study. These systems facilitate the development of scientific codes that are capable

of high-fidelity simulations of a variety of important physical systems including cli-

mate and weather in the earth’s atmosphere, combustion in next-generation engines,

and the behavior of complex pathways in biological cells [14]. Detailed simulations

of these phenomena enable scientists across many disciplines to make important sci-

entific discoveries.

The next major milestone in the development of HPC systems is the construction

of the first supercomputer capable executing more than an exaflop, 1018 floating point

operations per second. Currently, the fastest supercomputers in the world are capable

of executing a few tens of petaflops (1015 floating point operations per second) [5].

The first system capable of exaflops, an exascale system, is projected to be available

as early as 2023 [85].

Resilience is a key obstacle to building next-generation extreme-scale systems [50,

1

Chapter 1. Introduction

62]. Observations on current systems show that although there are many sources of

failure, hardware failures dominate [148, 149]. Building an exascale computer will

likely require hundreds of thousands of processors and tens to hundreds of petabytes

of memory [8]. Aggregating more and more components will increase the frequency

with which these more powerful systems experience failure. Assuming that the fail-

ure rate of each individual node is identical, then the system mean time between

failures (MTBF) is inversely proportional to the total number of nodes in the sys-

tem [79, 139, 148]. As a result, next-generation systems could experience multiple

failures per hour [50].

More frequent failure may mean that many current mitigation techniques will no

longer be sufficient. Effective and efficient mechanisms for recovering from or avoiding

failures may therefore be necessary for next-generation scientific applications to make

meaningful forward progress on future systems.

1.1 Memory Faults in HPC Systems

Failures in current HPC systems are caused by many different fault types. Memory-

related failures are one of the most frequently observed sources of node failure in

large-scale distributed systems [149]. As a result, significant effort has been devoted

to hardening applications against memory faults. The sheer volume of memory

required to build next-generation extreme-scale systems combined with device trends,

such as shrinking feature sizes, have the potential to increase the frequency of memory

faults [96, 121, 122]. As a result, current projections suggest that a memory failure

could happen as frequently as once per hour on next-generation systems [112].

Memory resilience issues may be exacerbated by attempts to address power con-

cerns. Delivering power to next-generation systems is projected to be a significant

challenge. Even accounting for advances in technology, scaling up today’s systems to

2

Chapter 1. Introduction

reach exascale could require more than 100 megawatts (MW) of electricity [44, 62].

The monetary cost coupled with the technical challenges associated with delivering

that much power make this approach infeasible. As result, the current power budget

for exascale is 20 MW [62].

Memory in large-scale systems consumes a significant fraction of total system

power. Using today’s memory technology (e.g., DDR3) to construct an exascale

system might require up to 50 MW to power the memory subsystem alone [72,150].

Recent advances in memory technology (e.g., DDR4) are projected to reduce the

memory power by as much as half [72, 147], but significant increases in memory

efficiency will still be required to stay within the exascale power budget. However,

gains in the power efficiency of memory devices frequently come at the expense of

reliability [22,72,95].

Memory in HPC systems is typically partitioned between user-level applications

and the kernel. Although the kernel occupies a small fraction of the memory used

by the system, the consequences of memory failures in kernel memory are more

severe than failures that occur in application memory [55]. A failure that causes the

operating system to crash will limit the effectiveness of the many techniques that

have been developed to protect against failures in application memory. Currently,

most current HPC operating systems provide no memory protection beyond that

provided by the hardware (e.g., error-correcting codes (ECC)). However, given the

frequency of accesses to kernel memory there is evidence that failures in these regions

of memory are more common than failures in other regions of memory [87].

1.2 Handling Failures with Checkpoint/Restart

A common approach to handling faults in HPC systems is checkpoint/restart. The

basic idea is that each application process periodically saves its state, a checkpoint,

3

Chapter 1. Introduction

to a persistent storage facility. On today’s systems, this frequently means writing

to a global filesystem. When a failure occurs, the system must identify a set of

checkpoints, one for each application process, that represent a consistent global state

of the system. A consistent global state means that every message in the system

that has been received by one application process has also been sent by another

application process (i.e., there are no orphan messages). A set of checkpoints is

strongly consistent if it represents a consistent global state and every message in

the system that has been sent by one application process has also been received by

another application process (i.e., there are no lost messages). After the system has

identified a set of checkpoints that satisfy this condition, each application process

restores its state from its checkpoint and resumes its computation.

1.2.1 Coordinated Checkpoint/Restart

Coordinated checkpointing is currently the most widely-used mechanism for handling

failures on HPC systems. Coordinated checkpointing works by ensuring that all

checkpoints are taken at the same logical time.1 Although coordinated checkpointing

remains effective on current systems, increasing the scale of these systems to build

next-generation systems will increase the cost of fault tolerance as more and more

time is taken away from the application to protect against or recover from failure.

In particular, increasing the number of application processes increases contention

for the parallel file system because each application process must simultaneously

write its checkpoint to the global file system. As a result, committing checkpoints

becomes more and more expensive as system scale increases. The combination of

more frequent failures and more expensive checkpoints means that at the scales

projected for the first exascale system, less than half of the system’s time may be

1Logical time is a temporal abstraction that allows causality relationships to be reliably
established in distributed systems, see [102].

4

Chapter 1. Introduction

available for advancing an application’s computation [52,126].

1.3 Reducing the Cost of Coordinated

Checkpoint/Restart

Based on the dire predictions of the cost of coordinated checkpoint-restart on next-

generation systems, many approaches have been proposed to reduce its performance

impact. These include alternatives to coordinated checkpoint/restart and techniques

that correct errors as they occur, reducing the need to rollback to a previous check-

point.

1.3.1 Improving Checkpoint Write Performance

Contention for bandwidth to stable storage is one of the principal reasons that coordi-

nated checkpointing is projected to scale poorly. As a result, a number of approaches

to reduce the cost of writing checkpoints have been proposed. These approaches

include techniques for improving global file system performance (e.g., the Parallel

Log-structured File System (PLFS) [17]) and techniques for avoiding the global file

system altogether (e.g., by writing checkpoints to node-local memory [43, 131, 169]

or solid-state drives (SSDs) [18]).

1.3.2 Uncoordinated Checkpoint/Restart

Another approach to reducing the overhead of coordinated checkpoint/restart is to

relax the requirement that all application processes commit checkpoints simultane-

ously. However, without coordinating the writing of checkpoints, the system cannot

5

Chapter 1. Introduction

guarantee that any set of the checkpoints taken represent a consistent global state

of the machine. The resulting phenomenon is known as the domino effect ; when one

application process rolls back to an earlier checkpoint, communication dependencies

force other processes to also roll back to resolve inconsistencies. In the worst case,

the only way to reconstruct a consistent global state is to start the application again

from the beginning [46].

There are a number of techniques for avoiding the domino effect. One widely-

studied approach is to assume that the application is piecewise deterministic and

augment checkpoint/restart by storing logs of messages that each process sends to (or,

alternatively, receives from) its peers. In the execution of a piecewise-deterministic

application, the only non-deterministic events are the receipt of messages; if the order

of received messages is fixed, the application is deterministic. When a failure occurs,

the failed process rolls back to its most recent checkpoint and resumes execution. As

the failed process recovers, the messages that the process received during its original

execution are replayed from the logs. If the failed application process is piecewise

deterministic, this method guarantees that it will be restored to precisely the same

state it was in when the failure occurred [46].

1.3.3 Rollback Avoidance

Rollback avoidance is the set of techniques that allow the application to continue

its execution rather than rolling back to an earlier checkpoint when a failure occurs.

Many such approaches have been proposed to reduce the performance impact of

failures on checkpoint/restart systems. These include failure prediction and preven-

tive migration [33, 66], replication-based approaches [45, 52, 59], fault-tolerant algo-

rithms [29, 37, 38, 86, 97], and software-based memory fault correction [57, 110, 151].

The common principle underlying these approaches is that enabling an application

6

Chapter 1. Introduction

to continue executing (perhaps with some degradation) despite the occurrence or

imminence of a failure will improve its performance.

1.4 Thesis Statement

In this thesis, I examine how rollback avoidance techniques can be used to address

failures on extreme-scale systems. My hypothesis is that rollback avoidance tech-

niques can be effectively used to address fault tolerance concerns on next-generation

systems. I evaluate this hypothesis in the following ways:

• I develop and validate an analytic model of the impact of rollback avoidance on

application performance. I use this model to evaluate the benefits of existing

fault tolerance techniques and to project the benefits of future techniques on

next-generation systems in Chapter 3. I also use this model to examine the

impact of a novel rollback avoidance technique on application performance

in Chapter 5.

• I describe and validate a simulation framework that was developed in collabo-

ration with several colleagues. I then use this framework to examine the impact

of rollback avoidance on applications using uncoordinated checkpointing with

message logging in Chapter 4.

• I present a novel rollback avoidance technique that leverages memory content

similarity. In Chapter 5, I describe a software library for extracting memory

content similarity: the Similarity Engine. I then examine how the information

collected by this library could be exploited to avoid rollback.

• I evaluate the viability of my similarity-based rollback avoidance technique for

protecting kernel memory in Chapter 6. I examine snapshots of kernel memory

7

Chapter 1. Introduction

for two popular HPC operating systems to demonstrate that memory content

similarity could also be used to avoid rollback due to failures in kernel memory.

8

Chapter 2

Related Work

This chapter examines the existing research literature that is related to the research

contributions presented in this document. This examination is structured in the

following way. Section 2.2 provides an overview of the current state of research on

checkpoint/restart methods for fault tolerance. Section 2.3 describes the existing

research on the development of rollback avoidance techniques. Sections 2.4 and 2.5

describe previous efforts to model and simulate, respectively, fault tolerance mecha-

nisms on large-scale HPC systems. Section 2.6 describes earlier attempts to exploit

similarities in memory contents. Finally, Section 2.7 examines how the contributions

of this document are novel and distinct from the existing research.

2.1 Terminology

2.1.1 Binary Prefixes

Throughout this dissertation, I use the binary prefixes defined by the International

Electrotechnical Commission (IEC) in the IEC 60027-2 standard to indicate binary

9

Chapter 2. Related Work

orders of magnitude For example, a KiB is a kibibyte, 210 bytes. I extend this

notation and apply it to indicate the number of processing elements used to run an

application (e.g., 1 Ki processes is equivalent to 1024 processes).

2.1.2 Fault Tolerance

Discussing the current state of research on fault tolerance for extreme-scale sys-

tems requires first establishing a taxonomy of system misbehavior. Despite efforts

at standardization, the terms used to describe system misbehavior are not always

consistently defined in the literature (cf. [16,70,79,100,104,123]). In this document,

I adopt the terminology proposed by Gärtner [70]. Therefore, I define a fault as the

lowest-level of misbehavior in the system. A common example of a fault is the case

of a “stuck bit”, where reading the value of a memory cell always yields the same

value regardless of the value that has been written to it. A failure occurs when the

systems deviates from its specified behavior. In this taxonomy, each failure is the

manifestation of one or more faults. Thus, a computing system is fault-tolerant to

the extent that it is able to prevent faults from leading to failures.

2.2 Checkpoint/Restart

The dominant approach to fault tolerance in today’s largest systems is checkpoint/-

restart.1 The basic approach underlying all checkpoint/restart protocols is to peri-

odically capture the state of the application (a checkpoint) and write it to some form

of persistent storage. When a failure occurs, the checkpoint can be used to restart

the application without necessarily requiring it to start over from the beginning.

1Additional detail on the evolution and development of checkpoint/restart-based fault
tolerance techniques is available from Elnozahy et al. [46,47].

10

Chapter 2. Related Work

One of the key challenges faced by checkpoint/restart protocols is identifying a set

of checkpoints that represent a consistent global state. A consistent global state is

one in which every message in the system that has been received by one application

process has also been sent by another application process (i.e., there are no orphan

messages). A set of checkpoints is strongly consistent if it represents a consistent

global state and every message in the system that has been sent by one application

process has also been received by another application process (i.e., there are no lost

messages).

2.2.1 Coordinated Checkpoint/Restart

Coordinated checkpointing is currently the most widely-used mechanism for han-

dling failures on HPC systems. Coordinated checkpointing works by ensuring that

all checkpoints are taken at the same logical time. The most popular approach to en-

suring this condition is stop-and-sync; stop-and-sync pauses each application process

and waits for all in-flight messages to finish transmission before taking a checkpoint.

The result is a set of checkpoints that represent a strongly consistent global state.

Another less commonly used approach is the Chandy-Lamport distributed snapshot

algorithm [127]. When this algorithm is used, checkpoints are initiated by a single

application process. The initiating process transmits a marker on each of its com-

munication channels. When a process receives a marker, it saves its current state if

it has not already done so. If the process has already saved its state when a marker

arrives on channel c, then it logs all of the messages that have arrived on c since

the process saved its state. The resulting checkpoint is the combination of the saved

state and the message logs for each application process. Every checkpoint taken in

this manner is guaranteed to represent a globally consistent state [35].

Although coordinating when a checkpoint is taken guarantees the existence of a

11

Chapter 2. Related Work

consistent set of checkpoints, it introduces additional costs as well. At the end of

each checkpoint interval, every application process attempts to write its checkpoint

to persistent storage. In current systems, the persistent storage for checkpoints is

typically a parallel file system. As a result, contention for file system resources

reduces the bandwidth available to each process and the time required to commit

a complete set of checkpoints increases. Significant effort has been dedicated to

reducing the time required to store checkpoint data.

Increasing Write Performance

One approach to reducing the cost of checkpoints is to improve the speed at which

data can be written to persistent storage. The Parallel Log-structured File Sys-

tem (PLFS) is an interposition layer that aims to improve checkpoint write band-

width by arranging file system accesses to minimize contention for file system re-

sources [17].

Another approach is to reduce contention by decentralizing the storage resources.

Diskless checkpointing improves the speed at which checkpoints can be saved by

storing the checkpoints in main memory rather than writing them to a parallel file

system.2 Plank et al. [128,129,131] proposed introducing m additional processes into

the application for the purpose of storing checkpoint parity data. In this approach,

each application process stores its checkpoint in a region of its main memory. The

additional processors store parity checkpoints: the bitwise exclusive-or of all of the

checkpoints taken by the application processes.

Alternatively, the process of computing the parity checkpoint can be tailored

to the application to leverage algorithm-specific characteristics [128]. Thus, if any

2Although main memory is not persistent, reasonable assumptions can be made about
the occurrence of faults in the system such that, with high probability, a process’s check-
point data will survive the failure of the process itself.

12

Chapter 2. Related Work

process fails, its checkpoint data can be reconstructed by the surviving processes.

Silva and Silva [152] refined this basic approach by eliminating the processes ded-

icated to storing parity checkpoints. Specifically, they evaluated two approaches:

neighbor-based checkpointing, where each process stores its checkpoint and a check-

point from one of its neighbors; and parity-based checkpointing, where each process

stores its own checkpoint in main memory and a designated processor also stores the

parity checkpoint. Although these techniques can reduce the time required to write

a checkpoint, diskless checkpointing may also significantly increase the total volume

of memory required to run a given application.

Double checkpointing creates pairs of processors, called buddy processors, that

each store duplicates of the other’s checkpoints [43, 169]. When a failure occurs,

there is a high probability that the buddy of the failed processor survives and is able

to supply the lost checkpoint data.

The Scalable Checkpoint/Restart Library (SCR) [119] builds on these ideas to

create a system of hierarchical distributed storage for checkpoint data. The lowest

level of the hierarchy consists of node-local storage and is used to store the most

recent checkpoint. While this level of the hierarchy provides the fastest access to

storage resources, it only protects against failures that affect a small portion of the

system. Higher levels of the hierarchy store older checkpoints using more distant

storage resources that protect against failures that affect larger portions of the sys-

tem.

Emerging storage technologies may also be able to improve checkpoint write per-

formance. In particular, the speed and reliability of solid-state drives (SSDs) may

allow for node-local or rack-local persistent checkpoint storage [18]. The principal

technical challenge to this approach is that the capacity of SSDs is limited. As a

result, the viability of SSDs for local checkpoint storage is dependent on the devel-

opment of effective techniques for managing their limited storage capacity.

13

Chapter 2. Related Work

Reducing Checkpoint Volume

Another approach to reducing the time required to take a checkpoint is to reduce the

volume of the data that must be saved in the checkpoint. In addition to application-

directed checkpointing [153], a number of application-independent techniques for re-

ducing the volume of checkpoint data have been proposed. Incremental checkpointing

reduces the size of a checkpoint by only considering regions of memory that have been

modified in the interval since the previous checkpoint was taken [7, 51,56,132].

Using conventional file compression techniques to reduce checkpoint volume has

also been thoroughly studied [111, 120, 130, 132]. Building on this legacy, Ibtesham

et al. have undertaken a thorough examination of the viability of checkpoint com-

pression on modern systems [88, 89]. Their work includes an analytical model for

identifying the circumstances when compression decreases checkpoint commit time.

Similar techniques have been used across processors.

The mcrEngine [90] leverages semantic information in HDF5 checkpoints to

aggregate and compress checkpoints from multiple processes. Similarly, Nicolae [124]

has developed a framework that removes duplicate memory pages from system-level

checkpoints.

Reducing Checkpoint Frequency

The overheads of coordinated checkpoint/restart may also be reduced by taking fewer

checkpoints. On systems for which the time between failures is distributed according

to the Weibull distribution, lazy checkpointing gradually increases the checkpoint

interval as the time that has elapsed since the last failure occurred increases [159].

This technique is based on the observation that for Weibull-distributed failures, the

probability of a failure decreases as a function of time. Because failures are increas-

ingly unlikely as previous failures grow more distant in the past, the risk of lost work

14

Chapter 2. Related Work

also decreases and checkpoints can be taken less frequently without significantly

degrading the application’s time-to-solution.

2.2.2 Uncoordinated Checkpoint/Restart

Many alternative approaches to coordinated checkpoint/restart have been proposed

due to projections about the prohibitive costs associated with this technique on

next-generation systems. One prominent set of alternatives is uncoordinated check-

point/restart protocols. The motivation is that relaxing the requirement that all

checkpoints be computed at the same logical time can reduce contention for storage

resources. However, when the checkpoints are not coordinated, each time one process

rolls back to an earlier checkpoint, interprocess dependencies may force other pro-

cesses to roll back as well. As a result, when a failure occurs and the failed process

restarts from an earlier checkpoint, cascading rollbacks may require the application

to start over from the beginning: the domino effect [135].

The most commonly-used antidote to the the domino effect is message logging

(see [10]). For applications that are piecewise-deterministic (i.e., given a sequence of

messages the application’s computation is deterministic), logging all sent messages

guarantees that when a failure occurs the failed process be restored to precisely the

same state it was in when the failure occurred [46]. For example, when a failure oc-

curs, the failed process can be restarted from its most recent checkpoint and all of the

messages it received since that checkpoint was taken can be re-sent. Messages can be

logged by either the sender [171] or the receiver [93, 157]. For sender-based logging,

the logs are commonly kept in volatile memory [171]. However, for receiver-based

logging, the logs must be stored in some form of persistent storage so that when a

process fails its message logs are not lost. Additionally, messages can be pessimisti-

cally logged (i.e., logged immediately upon reception/transmission) or optimistically

15

Chapter 2. Related Work

logged (i.e., logged asynchronously after the message has been delivered) [93, 157].

An important challenge to logging application messages is the volume of data

that potentially must be stored by the system. However, for many important HPC

applications the order of messages that a given application process sends is inde-

pendent of the order in which messages are received; such applications are send-

deterministic [34]. Leveraging the fact that send-deterministic applications will send

the same set of messages if they are re-executed from a checkpoint can reduce the

number of messages that need to be logged by rolling back the senders of orphan

messages when a failure occurs [74].

2.2.3 Hybrid Checkpoint/Restart Methods

In addition to coordinated and uncoordinated checkpoint/restart, many hybrid ap-

proaches have also been evaluated. These approaches seek to extract the benefits

from coordination (e.g., tightly bounded recovery time) and independence (e.g., fast

checkpoint writes) while avoiding the significant costs that each may incur in isola-

tion.

Clustering

Clustering [27, 75, 140] uses coordinated checkpoint/restart within clusters of pro-

cesses to minimize message logging costs, and message logging for inter-cluster mes-

sage to minimize the fraction of the system that must be rolled back when a failure

occurs. Clusters of processes can be identified by examining the volume of commu-

nication between processes [75, 140] or by considering the set of processes that may

be affected by correlated failures [27].

16

Chapter 2. Related Work

Communication-induced Checkpointing

Communication-induced checkpointing exploits an application’s communication pat-

tern to relax the strict coordination requirements of coordinated checkpointing while

avoiding the domino effect during failure recovery [9, 28, 92]. Including state infor-

mation in messages that the application exchanges allows each process to determine

when a checkpoint is required to ensure the existence of a set of checkpoints that

represent a consistent global state.

Message Logging + Coordinated Checkpoint/Restart

Although message logging is most commonly associated with uncoordinated check-

point/restart, it is also possible to use it with coordinated checkpoint/restart [48,138].

Because coordinated checkpoints limit how far the application will be forced to roll

back when a failure occurs, message logs no longer need to be written to stable

storage and may instead be maintained locally in memory. Additionally, when a

coordinated checkpoint is complete, all of the messages that are successfully received

before the checkpoint was taken can be discarded. This simplifies garbage collection

and reduces the volume of logged messages. The addition of message logging to

coordinated checkpoint/restart means that the whole system need not be forced to

roll back to its previous checkpoint when a failure occurs. As a result, the system

may be able may be able to take checkpoints less frequently.

2.3 Rollback Avoidance

Techniques for handling faults in large-scale systems can be grouped into three broad

categories: failure avoidance, failure effect avoidance, and failure effect repair [32].

Failure avoidance techniques use prediction to forecast when a failure is likely to

17

Chapter 2. Related Work

occur and, based on this prediction, take action to minimize the impact of the failure

on the application. For example, sophisticated analysis of system logs may provide

enough advance notice to allow the processes threatened by an imminent failure to

be migrated to safer hardware resources [66]. Failure effect avoidance techniques

allow the application to continue to execute despite the occurrence of failures. This

category includes fault-tolerant algorithms, replication, and software-based memory

fault correction. For example, two matrices that are being multiplied together can

be augmented with redundant data that allows the contents of the matrices to be

reconstructed if a failure occurs [86]. Finally, failure effect repair techniques restore

normal execution after the application has been compromised by a failure. The

most widely-studied method in this category is checkpoint/restart and its variants.

Rollback avoidance is the union of the first two categories: failure avoidance and

failure effect avoidance.

2.3.1 Failure Prediction

Several techniques have been proposed that seek to proactively avoid faults that may

occur in the future. These approaches monitor the state of the system to predict

where and when a fault will next occur. When a fault is predicted to affect a

hardware resource, all of the application processes that depend on that resource can

be migrated to other hardware resources.

Several methods have been proposed for predicting faults. One approach to

predicting faults is system log analysis. Fu and Xu [63] have proposed using a neural

network trained with failure data extracted from system logs to forecast future faults.

By extracting spatial and temporal correlation data from the system log, they can

accurately predict when and where faults are likely to occur in the future. Gainaru

et al. have proposed treating system log events as temporal signals [65]. Using this

18

Chapter 2. Related Work

approach, they are able to identify likely future faults by looking for anomalies in

the signals (e.g., changes in frequency or amplitude) generated by the system log.

The authors subsequently combined this approach with data mining techniques to

correlate outliers in the signals they analyze [66].

Another approach to fault prediction is to monitor the state of the hardware using

sensors that collect data such as fan speeds, voltage levels and chassis temperature.

Wang et al. have proposed using the data generated by these hardware sensors to

predict and avoid failures [161]. For example, when the chassis temperature exceeds

an established threshold, failure of the processes that rely on hardware in that chassis

is likely. Litvinova, Engelmann, and Scott have extended this technique to more

effectively predict failures by considering temporal trends in the data generated by

the hardware sensors [113].

2.3.2 Replicated Computation

All fault tolerance requires some form of redundancy [70]. One approach to intro-

ducing redundancy for fault tolerance is to explicitly replicate computation. In this

approach, the application performs each step of its computation two or more times.

Periodically, the states of the computations are compared to determine whether an

error occurred. Ensuring that each computation will arrive at the same answer in a

failure-free environment requires that the application guarantee that for a given set

of inputs, each thread of computation will end up in the same state.

The ROAR project replicates application processes on multiple threads of a single

processor [146]. Periodically, the states of the replicated threads are compared;

divergence among the threads indicates that an error occurred. Similarly, EDDI

uses the compiler to replicate individual instructions [136]. To minimize interference,

each set of instructions uses a unique set of registers and memory locations. At pre-

19

Chapter 2. Related Work

determined synchronization points, the values computed by each set of instructions

are compared to determine whether an error has occurred.

These methods protect against errors that are transient or affect a small portion

of the system (e.g., a single register or the state of a single process). To protect

against faults that may affect an entire node, several methods of replicating applica-

tion processes have been proposed. A common approach to process replication is to

use features of MPI to facilitate communication between replicated processes. This

approach requires that the application be piecewise deterministic (i.e., the applica-

tion’s computation is deterministic for given a sequence of messages).

rMPI [52] and MR-MPI [49] exploit the MPI profiling interface (PMPI) to protect

against fail-stop faults. The PMPI interface allows these methods to ensure that

messages are delivered to the intended application process as well as its replica.

When a single process fails, the state of the replica is up-to-date and can be used

to continue the computation. To protect against undetected failures, RedMPI [60]

compares the contents of messages sent by each application process and its replica(s).

If a process receives a different message from the application process and its replica,

then an otherwise undetected error has occurred.

2.3.3 Software Methods for Memory Failure Detection and

Correction

Large-scale systems commonly incorporate some form of hardware protection (e.g.,

error-correcting codes) to protect against frequent memory failures. Numerous soft-

ware techniques for augmenting or replacing this hardware protection have also been

evaluated.

Shirvani et al. have proposed a software library that can be used in place of

20

Chapter 2. Related Work

hardware memory protection [151]. By modifying an application to access memory

through their API, they track the application’s memory usage and interpose the com-

putation of codewords. Periodically, their library uses these codewords to validate

the contents of the application’s memory. Similarly, Yoon et al. have proposed a

technique that allows for software control of error detection [167]. They propose new

hardware that enables software to dynamically adjust the degree to which memory

is protected against errors.

Not all memory errors can be detected by existing hardware. When undetected

errors occur, they may invalidate the results generated by an application. This phe-

nomenon, known as silent data corruption, is particularly troubling because the end

user has no way of knowing that something untoward has befallen their application.

LibSDC attempts to mitigate the effects of silent data corruption by computing

checksums of memory pages and configuring them as read-only [58]. This allows

it to determine whether the contents of the page have changed since it was last

explicitly written. When the application attempts to write to a read-only page, a

segmentation fault occurs and LibSDC restores the access protections of the page to

allow the application to write to the memory normally. After the page is written,

the memory is no longer protected against silent corruption. As a result, LibSDC

periodically re-protects memory. Berrocal et al. have proposed an algorithm-agnostic

technique that identifies memory corruption by tracking the evolution of the values of

the application’s data [19]. This approach makes predictions about future values of

the application’s data. Significant differences between the prediction and the actual

value suggest that the application’s memory has been corrupted.

21

Chapter 2. Related Work

2.3.4 Algorithm-Based Fault Tolerance

In addition to the algorithm-independent techniques described above, numerous

methods for exploiting algorithm characteristics have been proposed. For exam-

ple, Huang and Abraham introduce a method for adding fault tolerance to matrix

operations [86]. By augmenting matrices with checksum vectors before performing

a given matrix operation (e.g., multiplication), their algorithm is able to determine

whether the result of the operation is correct or whether an error occurred. Chen

and Dongarra extend this idea and propose an encoding that also allows data lost

due to failures to be recovered by the surviving processes [38]. In addition to these

fault tolerance techniques that are entirely contained within an algorithm, Bridges

et al. have proposed a method by which the generalized minimal residual method

(GMRES) can be modified to cooperate with the operating system to protect against

memory errors [29].

2.4 Modeling Fault Tolerance

Young [168] used a simple model of application execution with coordinated check-

point/restart to derive the value of the optimal checkpoint interval. The application

is divided into a series of alternating intervals in which either the application is ex-

ecuting or a checkpoint is being saved. Daly [42] extends this model by introducing

restart time, i.e., the time that elapses from the point of a failure until the applica-

tion is ready to resume execution. Oldfield et al. [126] further extended this model

to consider the impact of filesystem performance characteristics on application ex-

ecution time. Similarly, Wingstrom [33, 164] presented a model of waste time (i.e.,

time not available for application computation) based on Young’s original model.

This model includes restart time but does not account for failures that occur during

a restart interval.

22

Chapter 2. Related Work

As discussed in Section 2.3, many approaches for avoiding rollback have been

proposed. In addition, several approach-specific models have been developed to

evaluate the performance impact of these approaches on applications running on

extreme-scale systems. For example, Ferreira et al. constructed a probabilistic model

for process-level replication in the context of high-performance computing [52]. Using

this model, they showed where in the exascale design space replication outperforms

traditional coordinated checkpoint restart to a parallel filesystem.

Cappello et al. used the Wingstrom model of waste time to evaluate the perfor-

mance impact of proactive migration and preventive checkpointing [33]. Gainaru et

al. incorporated precision and recall into the model to evaluate the effectiveness of

using signal processing to predict failure [66]. Aupy et al. used the model to examine

the impact of fault prediction on preventive checkpointing [15].

These models do not, however, account for the performance impact of unco-

ordinated checkpoint/restart. Few general models of the impact of uncoordinated

checkpoint/restart on application execution time exist (see e.g., Bosilca et al. [23]).

Moreover, the models that do exist do not account for the impact of communication

dependencies of each application process. This is an important omission for two

reasons. First, uncoordinated checkpoint/restart allows decisions about the timing

of checkpoints to be made locally.3 As a result, when one process decides to take a

checkpoint, it may delay its communication with other processes.4 Like operating

system noise [53, 82], these delays may propagate and impact application execution

time in a way that it is difficult to capture in an analytic model. Second, when a

3For some bulk synchronous parallel (BSP) applications, it may be possible to implicitly
coordinate their checkpoints [68]. However, applications that implicitly coordinate the
timing of their checkpoints may not be able to realize the full benefit of uncoordinated
checkpoint/restart because they may still experience significant contention for bandwidth
to persistent storage.

4This phenomenon has a much smaller impact when coordinated checkpoint/restart is
used because delays due to checkpointing activities are coordinated across processes. As a
result, inter-process timing is largely preserved.

23

Chapter 2. Related Work

failure occurs, the surviving processes can continue to make progress unless and until

they have a dependency on the failed process. In many current bulk synchronous

parallel (BSP) applications, the amount of progress that the surviving processes are

able to make is likely to be small. However, important applications (e.g., S3D [77])

are emerging for which global synchronization is infrequent [36,69].

2.5 Simulating Fault Tolerance on Large-scale

Systems

Fault tolerance for HPC has been a very active area of research, but few tools ex-

ist that project behavior beyond small-scale systems. Simulating fault tolerance

techniques requires an appropriate level of detail about the communication of the

target application. Without an accurate representation of application communi-

cation, simulators cannot accurately account for the performance of some fault

tolerance techniques (e.g., asynchronous checkpointing). Too much detail, on the

other hand, unnecessarily reduces simulator performance. The application simula-

tors for fault tolerance that do exist tend to fall to either extreme; either they are

not communication-accurate or they simulate communication in greater detail than

necessary.

Riesen et al. present a simulator that models the impact of node failure on appli-

cation performance in the context of traditional coordinated checkpoint/restart [139].

This simulator can also account for process replication. Tikotekar et al. pro-

pose a similar approach [158]. They present a simulator that models coordinated

checkpointing and can also simulate fault prediction and process migration. While

these tools have been shown to be effective for their stated purposes, they are not

communication-accurate. As a result, they are unable to account for fault tolerance

24

Chapter 2. Related Work

techniques whose performance may be influenced by communication patterns.

At the other extreme is xSim [21]. xSim builds on the MPI profiling interface

and interposes itself between the application and the MPI library. As a result,

the simulator is able to run unmodified HPC applications. Scaling is achieved by

oversubscribing the nodes of the system used for validation. While this provides a

tremendous amount of detail about the performance of the application, it imposes a

significant cost. Due to limits on the degree of oversubscription, large-scale systems

are required to simulate systems that approach extreme-scale. Moreover, as the size

of the simulated system grows and the degree of oversubscription therefore increases,

the time required to simulate the system grows dramatically. Lastly, this oversub-

scription could place significant limits on the size of the problem that can be solved

as the memory for each simulated node must exist in the memory of one physical

node.

Boteanu et al. present a fault tolerance extension to an existing simulator in [24].

However, they target a datacenter environment where each job is a discrete unit that

is assigned to a single processing element.

Finally, SST/macro [6, 91] is a coarse-grained, lightweight simulator designed to

simulate the performance of existing and future large-scale systems. By collecting

traces of application execution, SST/macro is able to simulate the application’s com-

putation and communication patterns at scales and on hardware that does not yet

exist.

25

Chapter 2. Related Work

2.6 Memory Content Similarity

2.6.1 Memory De-Duplication in Virtualization

Memory content similarity has been most thoroughly explored in the context of

data de-duplication. The preponderance of the relevant research on memory de-

duplication has been in virtualization. The Disco VMM [31] introduced transparent

memory sharing to reduce virtual machine memory consumption by exploiting mem-

ory content similarity. By intercepting disk requests that DMA data into memory,

the Disco VMM consolidated read-only pages (e.g., text segments of applications,

read-only pages in the buffer cache5) containing data from the disk across virtual

machines. In some cases, this approach allowed the Disco VMM to significantly re-

duce memory consumption. For example, transparent memory sharing allowed the

VMM to reduce the total memory consumed by 8 VMs, each running the same guest

OS and workload, by more than half.

More recently, VMware ESX server incorporated a broader approach to memory

de-duplication. Instead of intercepting disk requests, Waldsburger proposed identi-

fying all pages in a virtual machine by their contents. When any two pages are found

to have the same contents, the pages are consolidated using copy-on-write (COW).

Applying this approach to systems running as many as 10 identical VMs running the

SPEC95 benchmark on Linux, the VMware ESX server is able to reduce memory

consumption by nearly 60%.

5Although the function of the buffer cache has since been folded into the page cache,
this term reflects the time period in which the paper was written

26

Chapter 2. Related Work

2.6.2 Other Uses of Memory De-Duplication

In addition to virtualization, content duplication has been effectively exploited in

other domains. In the context of data storage, reducing storage requirements in

primary and archival data storage applications by eliminating duplicate data blocks

has been widely studied, see e.g., [134, 166, 170]. Similarly, Nicolae [124] developed

a technique for eliminating duplicate memory pages in checkpoint data before it

is written to persistent storage. Kernel Shared Memory (KSM) allows duplicate

memory to be consolidated in Linux with or without virtualization [12].

2.6.3 Internode De-Duplication

Xia and Dinda have advocated for broadening the scope of sharing in virutaliza-

tion to consider internode sharing. To evaluate the feasibility of this approach, they

consider the prevalence of duplicate pages between nodes running several HPC appli-

cations. For some workloads (notably HPCCG), they observe that significant inter-

and intra-node sharing opportunities exist. Inspired by these results, Xia and Dinda

constructed a service, ConCORD, that tracks duplicate memory pages in distributed

systems [165]. By providing an interface by which duplicate memory pages can be

identified, ConCORD facilitates the development of new system services, e.g., col-

lective checkpointing. Similarly, SBLLmalloc has been used to demonstrate that

memory consumption can be significantly reduced by consolidating duplicate pages

in the application memory of several HPC applications [20]. In several cases, this

approach yields memory savings in excess of 50%.

27

Chapter 2. Related Work

2.6.4 Exploiting Similar Memory Pages

Memory de-duplication research has considered consolidating only duplicate pages.

The Difference Engine [76] introduced the idea that similar pages could also be

consolidated. In this context, two pages are similar if the difference between them

can be represented by an xdelta patch file that is smaller than 2 KiB. By relaxing the

requirement that only duplicate pages be consolidated, the authors show that under

some e-commerce workloads, the Difference Engine can extract significantly more

memory savings than VMware ESX server. Moreover, they show that the Difference

Engine can reduce memory consumption by more than 50% even for VMMs hosting

a single VM. The data presented in [76] were collected by modifying a Xen VMM

and using it to host virtualized workstations running workloads consisting of a mix

of web and database server and compilation benchmarks.

2.7 Chapter Summary

This chapter surveyed the existing literature on fault tolerance, modeling rollback

avoidance, simulation of fault tolerance mechanisms, and exploiting memory content

similarity. Despite the extensive body of research on addressing failures in large-scale

distributed systems, fault tolerance remains an important issue for next-generation

systems.

In this thesis, Chapter 3 begins by introducing a model for predicting the impact

of rollback avoidance and coordinated checkpointing on large-scale distributed sys-

tems. As discussed in Section 2.4, several models of application performance have

been proposed, see e.g., [33,42,168]. My model, an extension of the model proposed

by Young and refined by Daly, also accounts for the impact of rollback avoidance.

Unlike models that are specific to a particular rollback avoidance technique (e.g.,

28

Chapter 2. Related Work

fault prediction [15, 66]), my model provides a framework for directly comparing

rollback avoidance techniques with a common set of assumptions.

Chapter 4 considers how rollback avoidance may impact the performance of ap-

plications when uncoordinated checkpoint/restart is used for fault tolerance. While

high-quality models of coordinated checkpoint/restart exist, no such models exists for

uncoordinated checkpoint/restart. As a result, I present a novel simulation frame-

work based on LogGOPSim that allowed me to conduct an inquiry into the rela-

tionship between rollback avoidance and uncoordinated checkpoint/restart. This is

not the first simulator capable of modeling large-scale application performance (cf.

[21,24,91,139]), but unlike earlier approaches it considers how communication depen-

dencies in the application interact with uncoordinated checkpoint/restart activities.

Finally, Chapters 5 and 6 present a novel technique for exploiting memory con-

tent similarity to improve application, and potentially also operating system, fault

tolerance. Although memory content similarity has been exploited for several pur-

poses (e.g., reducing memory consumption [20,31], eliminating redundant checkpoint

data [124]), this thesis is the first to examine how similarities in memory can be ex-

ploited for fault tolerance. Additionally, this approach can be used to complement

many of the fault tolerance techniques discussed in Section 2.1.

29

Chapter 3

Modeling the Impact of Rollback

Avoidance and Coordinated

Checkpoint/Restart on

Application Performance

3.1 Introduction

As described in Chapter 1, rollback avoidance is the set of techniques that enable

an application to continue executing (perhaps with some degradation) despite the

occurrence or imminence of a failure. These techniques typically rely on reducing

checkpointing costs by significantly reducing the frequency with which the applica-

tion is forced to roll back to a previous checkpoint. Analysis of these techniques is

difficult, however, for two reasons: (i) checkpoint/restart costs vary non-linearly with

system mean time to interrupt (MTTI) [42]; and (ii) these techniques frequently can

mitigate only a subset of system failures (e.g., memory corruption) [29]. As a result,

30

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

the suitability of these techniques in exascale systems is not always clear.

To address this problem, this chapter presents a general model for analyzing the

performance impact of techniques for avoiding failure. The contributions of this

chapter include:

• A general conceptual model that captures the key features of rollback avoidance

techniques: the ability to avoid rollback and the overhead of doing so;

• Two analytic models of the impact of failure avoidance on application per-

formance, one when failure avoidance is used in conjunction with coordinated

checkpointing and one when failure avoidance is used as replacement for coor-

dinated checkpointing;

• Case studies mapping the performance of both replication and fault prediction

techniques to this model; and,

• An analysis of when rollback avoidance techniques are viable either on their

own or in concert with coordinated checkpoint/restart in next-generation HPC

systems.

The remainder of this chapter is organized as follows. Section 3.2 introduces

the analytical models and Section 3.3 provides validation of these models against a

previously validated simulator. Sections 3.4 and 3.5 describe two case studies using

these models: process replication and failure prediction, respectively. Section 3.6 uses

these models to analyze the effectiveness of failure avoidance both with and without

checkpointing and how the performance of these techniques drive the requirements

of future systems, and Section 3.7 summarizes the chapter.

31

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

3.2 An Analytical Model of Rollback Avoidance

Several models exist for specific rollback avoidance techniques (e.g. [52,66]), but not

for rollback avoidance in general. A general analytical model of rollback avoidance is

important for understanding the strengths, limitations, and tradeoffs involved with

these techniques. Because these techniques are frequently used in concert with other

techniques, for example checkpoint/restart, understanding their general behavior

tradeoffs can provide important guidance on the design of next-generation systems. It

can also guide research on current and future rollback avoidance techniques, providing

information about the best way to address resilience challenges.

3.2.1 Developing a Model of Rollback Avoidance

I begin by a developing a general conceptual model of rollback avoidance. In this

model, rollback avoidance is stochastic and can be defined in terms of two char-

acteristics: (i) the ability to avoid rollback; and (ii) the overhead costs. When a

failure occurs, a rollback avoidance technique prevents the application from experi-

encing the failure with probability pa, the rollback avoidance probability. I assume

that failures are exponentially distributed. The inter-occurrence time of each of the

failures that result in rollback despite the best efforts of these techniques is a sum

of exponentially distributed variables. Because the number of consecutive of failures

for which rollback is avoided is geometrically distributed, the resulting sequence of

failure inter-occurrence times is also exponentially distributed [156, p. 320]. The

mean of the resulting distribution is the effective system MTTI (M ′) and is shown

in Equation 3.1. The derivation of this expression is shown in Appendix A.1.

M ′ =
Θ

1− pa
(3.1)

32

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

where

Θ = native system MTTI

pa = rollback avoidance probability

Overhead is modeled as an extension of the application’s solve time. Rollback

avoidance overhead (oa) describes the overhead cost as a fractional increase in solve

time due to a rollback avoidance technique. This fraction represents the expected

increase in solve time due to the overhead imposed by rollback avoidance, including

preparation for future failures, migration to avoid imminent failures, and application

degradation (e.g., slower rate of convergence) due to partial correction. However, it

does not include time spent recovering from a failure for which rollback could not

be avoided. I assume that the application is otherwise unperturbed. The resulting

expression of the application’s solve time (T ′s) is shown in Equation 3.2.

T ′s = Ts(1 + oa) (3.2)

where

Ts = application’s native solve time

oa = overhead of rollback avoidance

To understand how these parameters map to rollback avoidance techniques, con-

sider two examples: repairing memory errors and proactive process migration. When

an ECC error is detected in memory, the memory controller raises a machine check

exception (MCE) in the processor. Current HPC operating systems terminate the

offending process or reboot the entire node in response to a MCE. However, some

proposed techniques allow detected memory errors to be corrected by either using

application knowledge [29,73] or by leveraging redundant information in the applica-

tion’s memory [110]. In these cases, pa is the probability that a memory error can be

33

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

corrected such that the application can continue without experiencing a failure and

rolling back. The overhead, oa, of these techniques is the expected value of the sum

of the additional time that is necessary to prepare for failure and the time required

to recover from memory errors as they occur.

Another approach to rollback avoidance is to proactively migrate processes away

from hardware that is predicted to fail. A common approach is to continuously

examine system event logs looking for sequences of log entries that are believed to

be indicative of impending failure [65]. Health monitoring data can also be used to

determine when a particular node is likely to fail based on environmental observations

(e.g., temperature, input voltage, etc.) [161]. In both cases, pa is equal to the recall of

the prediction mechanism. Recall captures the fraction of failures in the system that

are correctly predicted. The overhead, oa, of these techniques is comprised of two

principal components: (i) the cost of the prediction mechanism, including gathering

and processing the information necessary to make predictions; and (ii) the cost of

migrating processes following the prediction of a failure, including costs due to false

positives.

3.2.2 Augmenting Coordinated Checkpointing

This general conceptual model facilitates an analytical model of the impact of roll-

back avoidance techniques on application performance when used in conjunction with

traditional coordinated checkpointing. Specifically, Daly’s model1 of application per-

formance [42] can be extended to account for rollback avoidance by modifying the

system’s mean time to interrupt (MTTI) and the application’s solve time to account

for the impact these techniques have on application performance. The resulting ex-

1This conceptual model could be used to extend any accurate application performance
model. I chose Daly’s because it is accurate and widely accepted.

34

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

pression for application runtime (Tw) is shown in Equation 3.3.2 Because rollback

avoidance effectively increases the system’s MTTI, the optimal checkpoint interval

also increases.

Tw(pa, oa) = M ′eR/M
′
(
e(τ′opt+δ)/M

′) − 1
) T ′s
τ′opt

(3.3)

where

R = time to required to restart a failed node

M ′ = system MTTI with rollback avoidance

(see Equation 3.1)

δ = checkpoint commit time

τ′opt = optimal checkpoint interval computed using M ′

T ′s = solve time of the application (see Equation 3.2)

3.2.3 Replacing Coordinated Checkpointing

It is also instructive to consider how effective rollback avoidance would need to be

in order to be a viable replacement for coordinated checkpoint/restart. Combin-

ing the conceptual model of rollback avoidance and Daly’s model of coordinated

checkpoint/restart yields the model of rollback avoidance in the absence of check-

2Although Tw is undefined for pa = 1.0, the model is correct in the limit:

lim
pa→1.0

M ′eR/M
′
(
e(τ′opt+δ)/M

′) − 1
) T ′s
τ′opt

= T
′
s

The mathematical basis for this assertion is presented in Appendix A.2.1.

35

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

point/restart shown in Equation 3.4.3.

Tw(pa, oa) = M ′eR/M
′
(eT

′
s/M

′ − 1) (3.4)

where

R = time to required to restart a failed node

M ′ = system MTTI with rollback avoidance

(see Equation 3.1)

T ′s = solve time of the application (see Equation 3.2)

3.3 Validation

This section validates the accuracy of the two models introduced in the preceding

section. It accomplishes this by comparing the application runtime predicted by

the model to the application runtime predicted by a validated and freely available

simulator [52,115,139]. Because the simulator did not originally account for rollback

avoidance, I modified it to ignore failures on simulated nodes with probability pa.

Following a node failure, the interarrival time of the next failure is the sum of the

interarrival times of the failures that are successfully avoided and the interarrival

time of the next failure that cannot be avoided.

Figure 3.1 shows a comparison between the model of the impact of failure avoid-

ance and coordinated checkpointing (Equation 3.3) and the modified simulator. To

minimize the modifications to the simulator, the simulator’s computation of the

3As with the previous model, Tw is undefined when pa = 1.0. However, the model is
again correct in the limit:

lim
pa→1.0

M ′eR/M
′
(eT

′
s/M

′ − 1) = T
′
s

The mathematical basis for this assertion is presented Appendix A.3.2

36

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.125 0.25 0.5 1 2 4 8 16 32 64
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(a) pa = 0.00, oa = 0.00

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.125 0.25 0.5 1 2 4 8 16 32 64
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(b) pa = 0.25, oa = 0.10

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.125 0.25 0.5 1 2 4 8 16 32 64
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(c) pa = 0.50, oa = 0.20

37

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.125 0.25 0.5 1 2 4 8 16 32 64
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(d) pa = 0.75, oa = 0.30

Figure 3.1: Validation of the model for augmenting C/R. These figures show the
results of validating the analytic model of the performance impact of augmenting
coordinated checkpoint/restart with rollback avoidance on application performance
against an existing simulator [52, 139]. I modified the simulator to account for roll-
back avoidance. The model and the simulator use identical values for the solu-
tion time (Ts = 168 hours), the checkpoint commit time (δ = 5 minutes) and node
MTBF (Θn = 5 years). Both use the optimal checkpoint interval (τopt). The subfig-
ures of this figure compare the results across several values of pa and oa. The values
predicted by the model and the simulator error differ by less than 1% in all cases.

optimal checkpoint interval is unmodified. As a result, for the purposes of this com-

parison, I modified the model such that it computed the checkpoint interval based

on the system MTTI without rollback avoidance. Each of the three subfigures show

the results for a different pair of values for oa and pa. In each case, the application

runtime predicted by the model closely matches (within 1%) the value predicted by

the simulator.

Figure 3.2 shows a comparison between the model of the impact of rollback avoid-

ance (Equation 3.4) and the modified simulator. Once again, each of the three sub-

figures show the results for a different pair of values for oa and pa. In each case, the

application runtime predicted by the model closely matches (within 2%) the value

predicted by the simulator.

38

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 100

 1000

 10000

 20 40 60 80 100 120 140
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(a) pa = 0.00, oa = 0.00

 100

 1000

 10000

 20 40 60 80 100 120 140
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(b) pa = 0.25, oa = 0.10

 100

 1000

 10000

 20 40 60 80 100 120 140
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(c) pa = 0.50, oa = 0.20

39

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 100

 1000

 10000

 20 40 60 80 100 120 140
0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
s
)

D
if
fe

re
n

c
e

 b
e

tw
e

e
n

 m
o

d
e

l
a

n
d

 s
im

u
la

to
r

(%
)

System MTTI (hours)

model
simulator

% error

(d) pa = 0.75, oa = 0.30

Figure 3.2: Validation of the model for replacing C/R.. Validation of the analytic
model of the impact of replacing coordinated checkpoint/restart with rollback avoid-
ance on application performance against an existing simulator [52, 139]. I modi-
fied the simulator to account for rollback avoidance. The model and the simula-
tor use identical values for the solution time (Ts = 168 hours) and node MTBF
(Θn = 5 years). The subfigures of this figure compare the results across several val-
ues of pa and oa. The values predicted by the model and the simulator error differ
by less than 2% in all cases.

3.4 Case Study: Process Replication

To demonstrate the power of these analytical models, I use it to examine an exist-

ing process replication library, rMPI [52]. rMPI is a user-level MPI library that

facilitates process replication in HPC systems by ensuring that each process and its

replica receive all application messages even if one of the processes fails.

3.4.1 Model Parameters

Modeling rMPI requires appropriate values for the overhead (oa) and the avoid-

ance probability (pa). Naively, the overhead is equal to the overhead of replicating

messages. Because each process and its replica run simultaneously, the application’s

40

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

time-to-solution could be accurately modeled. However, this underestimates the cost

of replication. To more completely account for the cost of replicating every process,

oa must be at least 1.0. In this case, the model will not yield raw execution time;

it measures resource usage in terms of the number of node-hours required for the

computation.

The runtime overhead of rMPI is generally less than 5%, depending on the appli-

cation [52]. Because this overhead affects each process and its replica, the overhead

is captured by setting oa = 1.10. The probability of avoiding the effects of a failure

by using rMPI is given by the birthday problem [52]. On average, the number of

faults that will occur before the application observes a node failure (i.e., a process

and its replica are down simultaneously) is given by Equation 3.5.

F (n) ≈
√
πn

2
+

2

3
(3.5)

where n is the total number of nodes that comprise the system. The probability

of correcting any single failure can be derived from this expression and is shown

in Equation 3.6.

pa(n) =
3
√
πn−

√
2

3
√
πn+ 2

√
2

(3.6)

The remainder of the model parameters are duplicated from the evaluation of rMPI.

A summary of the model parameters is shown in Table 3.1.

3.4.2 Model Performance

Given the model and this set of parameters, the efficiency of process replication

can be compared against the efficiency of coordinated checkpoint/restart. Figure 3.3

shows the system efficiency as a function of system size both with and without process

replication. The key observation is that this figure closely matches the data collected

in the evaluation of rMPI (cf. Figure 7 in Ferreira et al. [52]). For small systems, the

41

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

Parameter Description Value
Ts solve time 168 hours
Θn node mean time to interrupt (MTTI) 5 years
δ checkpoint commit time 15 minutes
R restart time 15 minutes
oa rollback avoidance overhead 1.10
pa probability of rollback avoidance see Equation 3.6

Table 3.1: Model parameters for examining the performance of process replication.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 16 32 64 128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

256Ki

E
ff

ic
ie

n
c
y
 (

%
)

Application Processes

No Replication
Replication

Figure 3.3: Comparison of application efficiency with and without process replication.
The results obtained using our approach-independent model closely match existing
data on process replication (see Figure 7 of Ferreira et al. [52]). These data were
collected using the parameters in Table 3.1.

42

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

overhead of replication is prohibitive. However, as system size increases and failures

become more likely, replication is more efficient than the baseline approach.

3.5 Case Study: Fault Prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

2
14

2
15

2
16

2
17

2
18

2
19

W
a
s
te

 F
ra

c
ti
o
n

Processes

(a) Good Predictor P = 0.82, R = 0.85

 0

 0.2

 0.4

 0.6

 0.8

 1

2
14

2
15

2
16

2
17

2
18

2
19

W
a
s
te

 F
ra

c
ti
o
n

Processes

(b) Bad Predictor P = 0.4, R = 0.7

Figure 3.4: Impact of failure prediction on the fraction of waste time. Waste time
is all of the application’s execution time that is not spent doing useful work. Im-
pact of failure prediction on the fraction of waste time (i.e., time spent not doing
useful work). These result closely match existing modeling and simulation data for
exponentially distributed failures (cf. [15] : compare the good predictor results to
the red line in Figure 3(b); compare the bad predictor results to the red line in Fig-
ure 4(b) [15]). These data demonstrate that the model is capable reproducing key
results in the field while being general enough to account for additional important
scenarios.

Techniques for predicting the occurrence of failures have been widely studied [64–

67, 142]. Accurately predicting failures before they occur may allow the system to

take corrective action that could prevent the application from being compromised.

The benefit of this family of approaches is typically characterized by recall : the

fraction of the total number of failures that can be predicted. In terms of the model,

pa is equal to the method’s recall. There are two principal costs of failure prediction:

(i) runtime overhead (ort), the costs associated with processing system information

43

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

(e.g., collecting and analyzing system log files); and (ii) false positive overhead (ofp),

the costs associated with unnecessarily initiating proactive response (e.g., needlessly

migrating a process). As shown in Equation 3.7, the false positive overhead can be

expressed in terms of the recall and precision of a given prediction method.

ofp =
(1− P)R

PM
c (3.7)

where

P = precision of the prediction method

R = recall of the prediction method

c = average time required for a proactive response

M = system MTTI

As a result, the overhead of failure prediction can be expressed as shown in Equa-

tion 3.8.

oa =
(1− P)R

PM
c+ ort (3.8)

where

ort = runtime overhead of the prediction

method expressed as a fraction of to-

tal execution time

Figure 3.4 compares the results of the model to existing data on the impact

of fault prediction on application performance [15]. Specifically, it compares two

specific cases of predictor performance. Figure 3.4(a) shows the fraction of waste

time (i.e., time spent by the system doing something other than directly advancing

the application’s computation) for a “good” predictor (P = 0.82, R = 0.85) as a

function of system size. Figure 3.4(b) shows the same result for a “bad” predictor

(P = 0.4, R = 0.7). These results demonstrate that the model closely matches

44

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

existing modeling and simulation data on the the impact of fault prediction (cf. [15]:

compare the red lines in Figure 3(b) to the good predictor results (Figure 3.4(a)),

and the red lines in Figure 4(b) to the bad predictor results (Figure 3.4(b))). The

results are similar when the model is used to reproduce the other figures presented

by Aupy et al. that assume exponentially distributed failures. Although the rollback

avoidance model is technique-independent, it yields results that closely match the

results of this technique-specific model.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

P
re

c
is

io
n

0%
 speedup

50%
 speedup

100%
 speedup

200%
 speedup

Figure 3.5: Impact of precision and recall on application speedup. This figure shows
that the performance impact of fault prediction is much more strongly influenced
by recall than precision. These results were generated using a solve time (Ts) of
168 hours, a system MTTI (M) of 45 minutes, a checkpoint commit time (δ) of 15
minutes, and a restart time (R) of 10 minutes. Speedup is calculated relative to the
execution time with no rollback avoidance.

The rollback avoidance model also allows the claim—first articulated by Aupy

et al. [15]—that recall is more important than precision for fault prediction to be

more closely examined. Figure 3.5 shows the relative impacts of precision and recall

on application performance. For the data in this figure, the system MTTI (M) is

45

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
u
p

Runtime Overhead (ort)

25% precision
50% precision
75% precision
95% precision

(a) Precision

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
u
p

Runtime Overhead (ort)

25% recall
50% recall
75% recall
95% recall

(b) Recall

Figure 3.6: Comparison of the relative impact of precision and recall on application
speedup. These figures confirm that precision has much less impact on application
performance than either recall or runtime overhead.

fixed at 45 minutes, a value that is well within the range currently projected for

the first exascale machine. The proactive response cost is fixed at two minutes.

While this value is longer than the prediction window of current techniques, it is also

shorter than most current proactive measures (e.g., checkpointing) would require

(cf. [65]). The data in this figure show that above a modest threshold (e.g., 50%—

many modern methods are above 90%), precision has relatively little influence on

application execution time.

Figure 3.6(a) illustrates the impact of precision relative to runtime overhead.

The data in this figure were collected with the recall value fixed at 40%—a value

achieved by many current methods. Each of the lines in this figure corresponds to

a different precision, ranging from 25% to 95%. These four lines almost entirely

overlap one another. Although the existing literature is largely silent on the costs

of predicting failures, this figure shows that runtime overhead has a much larger

effect on application runtime than precision does. Moreover, in this configuration,

once the runtime overhead exceeds 20% the benefits of failure prediction disappear

and application execution time increases. Finally, the impact of runtime overhead

46

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

is significant. Below 20% the slopes of these lines are nearly -1; any increase in the

runtime overhead results in a commensurate increase in execution time. As a result,

efforts to improve precision that result in increases in the runtime overhead will yield

little benefit.

Figure 3.6(b) shows the impact of recall relative on runtime overhead. The data

in this figure were collected with the precision value fixed at 95%. Similar to the

previous figure, each of the lines in this plot correspond to a different recall value. If

we consider horizontal slices of this figure, increasing the recall value may be fruitful

even if it results in relatively large increases in the runtime overhead. For example, a

method for which the runtime overhead is 0% and the recall is 50% would yield the

same speedup as a method for which the runtime overhead is 17.8% and the recall is

75%. In other words, any method that increases the recall value from 50% to 75%

and imposes a runtime overhead of less than 17.8% will yield a benefit. This figure

shows that innovative techniques that increase recall—even at the cost of runtime

overhead—may increase the overall benefit of failure prediction.

3.6 Analysis & Discussion

3.6.1 Designing Rollback Avoidance for Exascale

Due to the projected overheads of coordinated checkpoint/restart at extreme-scale,

significant effort has been devoted to developing new rollback avoidance techniques.

In particular, considerable attention has been paid to application-specific techniques.

This section uses the model to explore the projected design space of the first

exascale system to determine where new application-specific techniques may offer the

greatest benefits. The analysis begins by examining how the relationship between

the avoidance probability and the runtime overhead affects application performance.

47

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
u
p

Runtime Overhead (ort)

90% avoidance
80% avoidance
70% avoidance
60% avoidance

Replication

ELSA

FlipSphere

Figure 3.7: Application speedup as a function of overhead and probability of rollback
avoidance. This figure shows the potential application speedup (i.e., the relative
reduction in application execution time) for several hypothetical rollback avoidance
techniques as a function of the overhead imposed by the technique. For comparison,
the dashed horizontal lines correspond to the speedup achieved by existing tech-
niques. These results were generated using a solve time (Ts) of 168 hours, a system
MTTI (M) of 45 minutes, a checkpoint commit time (δ) of 5 minutes, a restart
time (R) of 10 minutes, and no runtime overhead (oa = 0.0). Speedup is calculated
relative to the execution time with no rollback avoidance.

For many application-specific methods—fault-tolerant algorithms, for example—the

overhead represents how much longer the computation takes to converge than if no

error had occurred. Figure 3.7 shows the application speedup for several avoidance

probabilities as a function of overhead. By way of comparison, the dashed horizontal

lines in this figure show the speedups that can be achieved using existing application-

48

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 0.125 0.25 0.5 1 2 4 8 16 32

System Mean Time To Interrupt (MTTI) (h)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

A
g
g
re

g
a
te

 C
o
m

m
it
 B

a
n
d
w

id
th

 (
T

iB
/s

)

0%
 speedup

50%
 speedup

100%
 speedup

(a) Replication

 0.125 0.25 0.5 1 2 4 8 16 32

System Mean Time To Interrupt (MTTI) (h)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

A
g
g
re

g
a
te

 C
o
m

m
it
 B

a
n
d
w

id
th

 (
T

iB
/s

)

0%
 speedup

50%
 speedup

100%
 speedup

(b) ELSA

 0.125 0.25 0.5 1 2 4 8 16 32

System Mean Time To Interrupt (MTTI) (h)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

A
g
g
re

g
a
te

 C
o
m

m
it
 B

a
n
d
w

id
th

 (
T

iB
/s

)

0%
 speedup

50%
 speedup

100%
 speedup

(c) FlipSphere

Figure 3.8: Comparison of a strawman rollback avoidance technique to three exist-
ing techniques. This figure shows heatmaps that show the potential benefit of a
strawman rollback avoidance technique (pa = 0.80, oa = 0.10) relative to three ex-
isting application-independent techniques. Each of these heatmaps covers the range
of MTTI (M) and an aggregate checkpoint commit bandwidth (β) that is currently
projected for exascale. This figure assumes a system comprised of 128Ki nodes, each
of which has 8 GiB of memory. These figures collectively show that this aggressive
strawman would only improve application performance over a fraction of the exascale
design space.

independent techniques. Even if they impose relatively large overheads, there is room

for application-specific techniques to outperform existing techniques if they can avoid

a high percentage of rollbacks due to all sources of failure. For the application-specific

methods that can only avoid rollbacks that result from a subset of system failures,

49

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 1

 2

 3

 4

 5

 6

 0.125 0.25 0.5 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 c

o
o
rd

in
a
te

d
 c

h
e
c
k
p
o
in

t/
re

s
ta

rt

System MTTI (hours)

10% correction
20% correction
40% correction
80% correction

Maximum Speedup

(a) Speedup relative to coordinated check-
point/restart

 0

 100

 200

 300

 400

 500

 600

 0.125 0.25 0.5 1 2 4 8 16 32 64

F
a
u
lt
 t
o
le

ra
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

System MTTI (hours)

10% correction
20% correction
40% correction
80% correction

(b) Overhead of fault tolerance

Figure 3.9: Effect of rollback avoidance probability and system reliability on appli-
cation speedup. This figure shows the effect of a range of rollback avoidance prob-
abilities on application speedup as a function of system reliability. These results
were generated using a solve time (Ts) of 168 hours, a checkpoint commit time (δ)
of 5 minutes, a restart time (R) of 10 minutes, and no runtime overhead for roll-
back avoidance (oa = 0.0). Speedup is calculated relative to the execution time with
no rollback avoidance. “Maximum Speedup” represents the maximum increase in
application performance that can be achieved by eliminating all wasted time.

achieving such high avoidance probabilities will be challenging.

Figure 3.7 represents a single point in the exascale design space. To evaluate the

potential benefits over the entire design space, I consider a strawman. The strawman

is able to avoid 80% of all rollbacks while imposing a 10% overhead. This is an

aggressive strawman given that many application-specific techniques only protect

against rollbacks caused by memory corruption, which is a fraction of all rollbacks.

Given this strawman, I compare its relative performance to three existing techniques:

• Replication. I consider the case where each process is replicated exactly once;

the replication degree is 2. Additionally, I assume a perfectly strong scaling

application (i.e., running the same application with process replication requires

50

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

ELSA

FlipSphere

Replication

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of Rollback Avoidance (pa)

 0

 0.5

 1

 1.5

 2

R
o

llb
a

c
k
 A

v
o

id
a

n
c
e

 O
v
e

rh
e

a
d

 (
o

a
)

20%
slowdown

0%
 speedup

25%
 speedup

50%
 speedup

100%
 speedup

Figure 3.10: Impact of overhead and probability of rollback avoidance on application
speedup. These results were generated using a solve time (Ts) of 168 hours, a system
MTTI (M) of 45 minutes, a checkpoint commit time (δ) of 5 minutes and a restart
time (R) of 10 minutes. Speedup is calculated relative to the execution time with
no error correction. For comparison, the performance of several rollback avoidance
techniques are shown: rMPI, process-level replication for HPC [52] (pa = 0.99,
oa = 1.1); ELSA, log-based prediction library [65] (pa = 0.43, oa = 0.05); and
FlipSphere, software-based error correction library for HPC [57](pa = 0.45, oa = 0.4).

twice as much time).

• Fault prediction (ELSA). ELSA is a fault prediction toolkit with a precision of

93% and a recall of 43% [65]. Although the runtime overhead of ELSA has not

been publicly documented, I assume that it is no more than 5%.

• FlipSphere. FlipSphere is a software-based memory error correction library. It

protects 90% of application memory and imposes an overhead of 40%. Because

FlipSphere only protects against rollbacks that are due to memory corruption,

its protective benefit is less than the fraction of memory that it protects. I

generously assume that 50% of all rollbacks are due to some form of mem-

51

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

 150

 200

 250

 300

 350

 400

 0.5 1 2 4 8 16 32 64

W
a
ll

c
lo

c
k
 t
im

e
 (

s
)

System MTTI (hours)

C/R only
Replacing C/R

Augmenting C/R
Solve Time Ts

2.861.47

Figure 3.11: Impact of fault tolerance techniques on application performance as a
function of system MTTI. This figure compares three different approaches to fault
tolerance: (i) Coordinated Checkpointing only; (ii) Augmenting Checkpointing with
Rollback Avoidance (pa = 0.25 / oa = 0.10); and Rollback Avoidance only (pa =
0.99 / oa = 0.00). The results in this figure were generated using a solve time (Ts)
of 168 hours, a checkpoint commit time (δ) of 5 minutes, and a restart time (R) of
10 minutes.

ory corruption. As a result, the analysis in this section uses pa = 0.45 for

FlipSphere.

Figure 3.8 shows the results of the comparison of the strawman to these three

techniques. In these heat maps, the blue regions are where the strawman provides

little or no improvement, the red regions are where the strawman offers significant

benefits. These figures indicate that the benefits of this strawman depend on where

52

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

in this design space the first exascale system appears. For systems with small MTTI

and small checkpoint bandwidths, replication will outperform the strawman. For

systems with large MTTI and large checkpoint bandwidths, fault prediction will

outperform the strawman. However, somewhere between these two extremes in the

design space there appears to be a significant opportunity for rollback avoidance

techniques such as the strawman to provide significant benefits.

3.6.2 Replacing Coordinated Checkpoint/Restart

In principle, rollback avoidance could also be used as a replacement for coordinated

checkpointing. However, for any rollback avoidance to be an effective replacement,

its probability of avoiding rollback would have be very close to 1.0. To see why this

is, consider a technique that avoids 90% of rollbacks on a system with an MTTI of 1

hour. In this case, the effective MTTI given by Equation 3.1 is 10 hours. Given ex-

ponentially distributed failures, the probability of completing a 168-hour job without

encountering a failure (which is the criteria for success in this case) is approximately

5.0 × 10−8. Figure 3.11 illustrates this phenomenon more concretely. Even a hypo-

thetical rollback avoidance technique that avoids 99% of rollbacks and imposes no

overhead cannot compete with coordinated checkpoint/restart in all circumstances.

In particular, for values of system MTTI below one hour this hypothetical replace-

ment technique is no longer competitive with traditional coordinated checkpointing.

Therefore, the model shows that rollback avoidance alone is unlikely to perform well

on exascale systems.

3.6.3 Assessing the Impact of Model Parameters

The model for predicting application performance also allows for a careful exploration

of the design space for rollback avoidance techniques. Examining the characteristics

53

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

that have the greatest impact on application can inform the design, development,

and refinement of current and future rollback avoidance techniques. This section

considers the impact of three of the model’s parameters: (i) probability of rollback

avoidance (pa); (ii) rollback avoidance overhead (oa); and (iii) system MTTI (M).

Probability of Rollback Avoidance

Combining rollback avoidance techniques and coordinated checkpoint/restart has the

potential to improve application performance by reducing the frequency with which

the application is forced to roll back to a previous checkpoint. I begin by consid-

ering the impact that the probability of rollback has on application performance.

Figure 3.9(a) shows the decrease in application runtime (i.e., speedup) as a function

of the system MTTI for several values of pa. To isolate the impact of pa, this figure

examines the impact of approaches that impose no overhead (i.e., oa = 0.0). To put

the system MTTI into context, a system MTTI of 0.5 hours corresponds to a system

comprised of 65,536 (64Ki) nodes, each with an MTTI of 3.75 years. Similarly, a

system MTTI of 8 hours corresponds to a system comprised of nodes whose MTTI

is 60 years. These two values roughly represent the range of node MTTIs that are

currently projected for the first exascale system [50].

The most striking feature of this figure is how unreliable the system must be before

even very good rollback avoidance techniques (e.g., able to avoid rollback 80% of the

time) significantly improve application performance. For systems with an MTTI

greater than 8 hours, there is very little speedup in application runtime. This is an

especially stark result given that these figures assume zero overhead. However, for

unreliable systems (e.g., systems with an MTTI that is less than 2 hours) rollback

avoidance yields significant benefits, in some case reducing the application runtime

by more than 81%.

54

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

The reason for this behavior is due to a phenomenon that is closely related to

Amdahl’s Law [11]. An application that runs on a system with an MTTI of eight

hours operates with an efficiency of 85%. In other words, 85% of the system time

required to run the application is used to perform useful work. A direct consequence

of this fact is that the maximum possible speedup is approximately 18% (1.00/0.85).

The dashed curve in Figure 3.9 shows the maximum speedup as a function of sys-

tem MTTI. This curve represents the maximum application speedup that could be

achieved if all wasted time (e.g., writing checkpoints, restarting nodes, redoing lost

work) was eliminated. Until the system MTTI drops below approximately 8 hours,

even heroic efforts to eliminate wasted system time will yield only modest gains in

application speed.

Figure 3.9(b) shows the overall overhead of fault tolerance. Even though each

of these avoidance probabilities achieves significant speedup over coordinated check-

point/restart, the overhead of fault tolerance is still significant. Moreover, once the

fault tolerance overhead exceeds 100%, dual process replication will outperform these

less protective strawman approaches.

Rollback Avoidance Overhead

Figure 3.10 considers the impact of the overhead of rollback avoidance techniques

on application performance. It shows the relationship between the probability of

avoiding rollback and the overhead that avoidance imposes on the application. This

figure considers a case where the efficiency of the application with checkpoint/restart

is low: the system MTTI is low (45 minutes) and the checkpoint commit time is high

(15 minutes). Although these values are well within the range projected for the first

exascale system, they represent a system in which less than half of the application’s

runtime is available for useful computation. This figure also demonstrates the impor-

tance of minimizing the overhead of rollback avoidance for techniques that only avoid

55

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

a modest fraction of failures. For example, a technique that imposes a 20% overhead

will not improve application performance unless it is able to avoid more than 23%

of all failures. In contrast, reducing the overhead to 10%, shows improvement when

avoiding just 12% of failures. For techniques that avoid a large fraction of failures

(e.g., more than 70%), overhead has a lesser impact; even when overhead consumes

a significant fraction of the application’s system time, there is application speedup.

System MTTI

As observed earlier, system MTTI has an (unsurprisingly) large impact on the ef-

fectiveness of rollback avoidance mechanisms. To isolate the effects of system MTTI

and to reduce the number of dimensions in the configuration-space, consider three

representative approaches to fault tolerance: (i) coordinated checkpoint/restart only;

(ii) coordinated checkpoint/restart augmented with a rollback avoidance technique

for which the probability of failure avoidance is 25% and the overhead is 10%; and

(iii) a rollback avoidance technique that is able to avoid 99% of all failures with 1%

overhead. All other parameters are taken from Table 3.1. Figure 3.11 shows the

performance of these three approaches as a function of system MTTI, ranging from

30 minutes to 64 hours. The approach that yields the best application performance

depends on the which of three different regions of system MTTI that a given system

is operating in. In the configuration shown in this figure, augmenting coordinated

checkpoint/restart with rollback avoidance is the most effective approach for unre-

liable systems, those with an MTTI below approximately 81 minutes. For reliable

systems, those with an MTTI above approximately 2.9 hours, the rollback avoidance

technique by itself is most effective. Coordinated checkpoint/restart is the preferred

approach in a small range of system MTTI values between these two extremes.

56

Chapter 3. Modeling Rollback Avoidance and Coordinated Checkpoint/Restart

3.7 Chapter Summary

This chapter introduced and validated two analytical models for evaluating the im-

pact of rollback avoidance on application performance in large-scale systems. These

models allow rollback avoidance to examined both in conjunction with coordinated

checkpointing and in isolation. Using these models, I examined the impact of failure

avoidance techniques based on system characteristics. In particular, I showed that

for reliable systems, using rollback avoidance to augment checkpointing yields only

modest performance gains. However, as systems grow in size and failures occur more

frequently, rollback avoidance can yield significant improvements. I also showed that

even very effective rollback avoidance techniques are unlikely to replace coordinated

checkpointing unless future systems are much more reliable than currently projected.

More broadly, these models allow for an exploration of system and application pa-

rameters for which rollback avoidance can potentially provide significant benefits.

57

Chapter 4

Simulating the Impact of Rollback

Avoidance and Uncoordinated

Checkpoint/Restart on

Application Performance

4.1 Introduction

As described in Chapter 1, coordinated checkpoint/restart is currently the domi-

nant approach to fault tolerance on today’s largest systems. Uncoordinated check-

point/restart with message logging has emerged as a potential alternative. One of

the key benefits of uncoordinated checkpoint/restart is that relaxing the coordination

requirement reduces contention for bandwidth to persistent storage thereby allowing

checkpoints to be written more quickly.

Analytic models that can accurately account for the impact of communication de-

pendencies on uncoordinated checkpoint/restart do not exist. Therefore, I developed

58

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

a simulation framework to examine the impact of uncoordinated checkpoint/restart

and rollback avoidance on application performance in collaboration with Kurt Fer-

reira, Dorian Arnold, Bryan Topp, and Torsten Hoefler. The approach to simulation

is motivated by two observations: (1) simulation can be computationally expensive,

and simulation efficiency is maximized by considering only the features of the comput-

ing environment that are relevant to the performance impact of checkpoint/restart;

and (2) the coarse-grained operation of checkpoint/restart (on the order of minutes

to hours) allows the overheads and complexities of cycle-accurate simulation to be

avoided. Based on these observations, we hypothesize that like operating system

noise [53,82], resilience mechanisms (e.g., writing checkpoints, restarting after a fail-

ure or redoing lost work) can be modeled as CPU detours. A CPU detour is a number

of CPU cycles that are used for something other than the application.

This chapter presents an approach to efficiently simulating checkpoint/restart-

based fault tolerance for large-scale HPC systems. Using this approach, it intro-

duces a framework for simulating the performance impact of coordinated and un-

coordinated checkpoint/restart protocols on existing and hypothetical extreme-scale

systems. This framework allows the impact of rollback avoidance and uncoordinated

checkpoint/restart on application performance to be examine. Specific contributions

in this chapter include:

• A survey of system, application, failure, and resilience characteristics required

for accurate and efficient simulation of workloads running on extreme-scale

systems;

• A simulation framework, based on extensions to LogGOPSim [83];

• An evaluation of the predictive performance of the simulation approach against

an existing analytic model of coordinated checkpoint/restart; and

• An examination of the impact of rollback avoidance and uncoordinated check-

59

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

point/restart on application performance

The organization of this chapter is as follows: the next section discusses the

relevant system, application, failure and resilience characteristics that must be ac-

counted for by the simulation framework. This section also offers background on

checkpoint/restart protocols and shows how they factor into the considerations. Sec-

tion 4.3 provides an overview of LogGOPSim, the simulator that serves as the basis of

the framework. Section 4.4 describes how the simulator models failures and rollback

avoidance. Section 4.5 validates the accuracy of the predictions of the simulation

framework. Section 4.6 presents the results of using the simulator to examine the im-

pact of rollback avoidance on uncoordinated checkpoint/restart. Finally, Section 4.7

summarizes the contributions of this chapter.

4.2 Considerations for Resilience at Scale

To enable efficient, large-scale simulations of resilience techniques, this section identi-

fies the relevant hardware and software characteristics that impact simulation perfor-

mance. It also examines how system features, application behavior, fault-tolerance

mechanisms, and failures impact application performance.

4.2.1 Hardware Characteristics

One of the objectives of this chapter is to develop a simulation framework that will

enable the evaluation of resilience techniques on current and future systems. As a

result, the simulator must be able to accurately and efficiently model the impact

of faults and fault tolerance on application performance given the: (a) temporal

scale, (b) spatial scale, and (c) architectural features of next-generation extreme-

scale systems.

60

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Temporal Scale

Faults and fault tolerance mechanisms typically operate at large time-scales (for

example, minutes, hours or even weeks). As discussed in Chapter 1, projected mean-

time-to-interrupt (MTTI) on the first exascale machines are on the order of hours.

Additionally, many of the target applications are long running, and the behaviors

of the applications as well as the systems are expected to be dynamic. As a result,

simulating resilience requires a simulator that can model relatively long periods of

application execution.

Spatial Scale

Currently, the largest HPC systems are comprised of tens of thousands of nodes. If

current predictions hold, the first exascale system may be nearly an order of magni-

tude larger. As a result, the simulator must be capable of modeling the behavior of

systems that are much larger than any that are currently available.

Architectural Features

The first exascale system is not projected to appear until sometime after 2020 [154].

In the intervening span of years, improved interconnect and persistent storage tech-

nologies are likely to emerge. The simulator must therefore also be able to evaluate

the impact of these advances on resilience mechanisms.

4.2.2 Application Characteristics

The simulator must be capable of accounting for the performance aspects of an appli-

cation’s behavior. Prior research and experience has shown that it may be sufficient

61

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

to do this at the coarse granularity of the target application’s computation, specif-

ically: its communication graph, a description of how processes communicate with

each other; its computation time, the time between communication events; and its

dependencies, a partial ordering of all communication and computation events. The

next section examines the interplay of these characteristics and resilience mecha-

nisms.

4.2.3 Impact of Checkpoint/Restart Mechanisms

Despite the proliferation of checkpoint/restart-based resilience mechanisms [9,56,71,

117,118,128,131,152], effective methods for evaluating the true costs of each of these

approaches on exascale systems do not exist [163]. Given the large temporal and

spatial scales of the simulated systems that we wish to consider, effective simulation

demands the elimination unnecessary detail. Existing work on modeling and simula-

tion of coordinated checkpointing provides a guidepost on the required components

and level of details [26,42,139].

In a failure-free environment, the impact of coordinated checkpointing can be

accurately modeled by considering the following application and system characteris-

tics:

• checkpoint time, the amount of time that checkpointing activities prevent the

application from executing. The checkpoint time can be broken down into the

time required for the following phases:

– coordination phase

– checkpoint calculation phase, during which time the checkpoint data are

computed; the checkpoint commit phase, during which the checkpoint data

are written to stable storage; and the resumption phase, during which the

62

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

system resumes normal application execution.

• checkpoint interval, time between consecutive checkpoints

• work time, the amount of time that the application would execute in the absence

of checkpointing activities.

For approaches like uncoordinated checkpointing that lack explicit coordination,

the simulator also needs to consider application characteristics such as the commu-

nication characteristics described earlier in this section. Consider a simple uncoor-

dinated checkpointing strategy where each process generates checkpoints strictly ac-

cording to local policies. Communication dependencies may cause the checkpointing

activities of one process to perturb the behavior and performance of other processes.

For example, if the recipient of a message is currently busy generating a checkpoint

then reception of the message may be delayed until the checkpoint is complete. Fur-

ther, all actions that are dependent on the reception of the message will also be

delayed. Additionally, many asynchronous resilience techniques incorporate some

form of message logging [46] to mitigate recovery costs. Simulating the impact of

this activity also requires that the simulator account for application communication

patterns.

4.2.4 Impact of Failures

Meaningful evaluation of resilience mechanisms necessarily includes consideration of

failures. To accurately simulate the impact of failures on application performance

the simulator must consider: (a) failure characteristics; (b) restart time; and (c) the

recovery model.

63

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Failure Characteristics

To evaluate the impact of faults in the context of a resilience mechanism, a description

of how failures occur in the simulated system is required. Initially, we consider only

fail-stop failures. Although the occurrence of failures in the system could be expressed

in many ways, the most common and succinct description of failure occurrences is in

the form of a probability distribution.

Restart Time

When a failure occurs, some time elapses before any computation can be undertaken

on the failed node. To accurately capture this behavior, the simulator must know the

time between the occurrence of a failure and the moment when the failed node can

resume computation. This includes time to restart failed nodes and processes and to

read checkpoints from persistent storage, but does not include any time for recovery.

For example, in the case of coordinated checkpointing, the end of the restart interval

coincides with the beginning of rework (i.e., redoing work lost due to the failure).

Recovery Model

When the failed node has restarted and is able to resume computation, there is

typically some amount of work that needs to be redone before the system can again

make meaningful forward progress. For example, in coordinated checkpoint/restart,

all of the computation between the last valid checkpoint and the occurrence of the

failure needs to be redone. Typically, each resilience mechanisms presents a different

method for recovering from a failure. Therefore, to accurately account for the cost of

recovering from a failure, the simulator needs a model for each resilience mechanism

that allows it to determine the amount of time that will elapse before the application

64

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Required to Model Parameter Name Parameter Description

All
Checkpointing

coordination
time

time for processes to coordinate the
taking of a checkpoint

checkpoint
computation

time to compute a checkpoint

checkpoint
commit time

time to write a checkpoint to stable
storage

checkpoint
interval

time between consecutive checkpoints

work time time-to-solution without failures or re-
silience mechanisms

Uncoordinated
Checkpointing

communication
graph

details of inter-process communication

computation
events

failure-free computation pattern of
the application

dependencies partial ordering of communication and
computation events

Failure
Occurrences

failure
characterization

rate and distribution of failures

restart time time to read a checkpoint from stable
storage after a failure

recovery model a model of the time required before
forward progress can resume

Table 4.1: Summary of the parameters needed for accurate simulation of HPC ap-
plications in a failure-prone system.

resumes forward progress.

4.3 LogGOPSim

This section describes LogGOPSim [81, 83], the simulator we extend to meet the re-

quirements prescribed by the considerations in Section 4.2. We choose LogGOPSim

because it has been shown to be accurate, is freely available, and is fast enough to

support large-scale simulations while capturing many of the application and hard-

65

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

ware characteristics we require. As described in the next section, we simply needed

to extend it to account for checkpoint/restart and failure recovery.

4.3.1 Simulating Application Characteristics

LogGOPSim [83] is an application simulator based on a variant of the LogP model

of parallel computation [41]. The simulation framework consists of two major com-

ponents: a trace collector (liballprof), and an optimized discrete-event simulator

(LogGOPSim). The trace collector records the sequence of MPI communication op-

erations executed by the target application. The discrete-event simulator uses the

MPI traces to extract the required communication and computation characteristics

of the application while preserving the happens-before relationship of events within

the application.

This simulation framework was developed to simulate applications at scale, and

has the ability to simulate large-scale systems by extrapolating traces that were col-

lected on smaller scale systems. This allows for the simulation of platforms that are

larger than those currently in existence while maintaining the same communication

characteristics (equivalent to weak-scaling of the application). Although the extrap-

olated trace may not precisely represent the communication pattern on the larger

system, the impact of this inaccuracy has been shown to be small [83] if extrapolation

factors are bounded. This framework has been used to evaluate the performance of

collective communication operations [84] and the impact of OS noise [82] on large-

scale applications.

4.3.2 Simulating Hardware Characteristics

LogGOPSim is able to simulate systems with the hardware characteristics described

66

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

in Section 4.2. First, it provides the simulation scale necessary for evaluating check-

pointing techniques. For a single collective operation, LogGOPSim can simulate up to

10,000,000 processes. For more general workloads, it is capable of simulating more

than 64,000 processes.

Second, with some minor modifications, LogGOPSim is also capable of simulating

the necessary temporal scale. The initial implementation of LogGOPSim was intended

for comparatively short simulations. As a result, the temporal scope of the simula-

tions that can be executed by the unmodified simulator was significantly limited by

the size of the simulating system’s memory. To achieve the necessary temporal scale

with reasonable quantities of system memory, we made some simple modifications to

the way that LogGOPSim handles trace data.

Third, LogGOPSim is able to model the impact of emerging interconnect tech-

nologies. Modifying the parameters of the underlying LogGOPS model enables

LogGOPSim to simulate the impact of many changes in network behavior on resilience

techniques. In addition, as discussed more fully below, this model of resilience mech-

anisms allows for the evaluation of how improvements to persistent storage systems

(e.g., the widespread availability of node-local or rack-local SSDs) will affect the

performance of resilience mechanisms.

4.4 Simulating Failures and Resilience

with LogGOPSim

We use LogGOPSim to simulate activities associated with checkpoint/restart (e.g.,

writing checkpoints, restarting after a failure, redoing lost work) by modeling them as

CPU detours. A CPU detour is a number of CPU cycles that are used for something

other than the application, similar to OS noise [53, 82]. To do so, we modified

67

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

LogGOPSim to generate a sequence of CPU detours that represent checkpoint/restart

activities. The duration and frequency of the CPU detours are determined by four

user-specified parameters:

• MTTI, the mean of the exponential distribution that represents the time to

the next interrupt;

• restart time, the amount of time that elapses between the occurrence of a failure

and the moment when the application is able to resume computation;

• checkpoint time (δ), the total time required to generate a checkpoint (including

interprocess coordination) and write it to persistent storage; and

• checkpoint interval (τ), the amount of time that elapses between checkpoints.

In the case of coordinated checkpoint/restart, the user can choose to have LogGOPSim

compute the optimal checkpoint interval based on the other three parameters rather

than explicitly specifying the checkpoint interval.

We have also added support to LogGOPSim for simulating rollback avoidance. The

user can specify the desired rollback avoidance characteristics using the two param-

eters introduced in Chapter 3: probability of rollback avoidance (pa), the stochastic

description of when the application avoids rollback; and overhead of rollback avoid-

ance (oa), the degree to which the application’s execution time is inflated by the

activities of the rollback avoidance technique.

Every τ seconds, LogGOPSim simulates the end of a checkpoint interval and gen-

erates a detour of δ seconds to represent the time taken away from the application to

take a checkpoint. When a failure occurs, as determined by the MTTI, LogGOPSim

determines the amount of time that was lost due to the failure and generates a cor-

responding detour. This includes time for: restarting and resuming computation

(including time lost to failed restarts), incomplete checkpoints, and lost work.

68

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

This chapter examines two checkpoint/restart-based fault tolerance protocols: co-

ordinated checkpoint/restart and uncoordinated checkpoint/restart with optimistic

message logging. For the case of uncoordinated checkpoint/restart with optimistic

message logging, the application is assumed to have a very high bandwidth connec-

tion to persistent storage and that the time required to write to the message log is

negligible. To consider the case where this assumption does not hold, LogGOPSim

could be modified to generate message logging detours. Similarly, pessimistic mes-

sage logging [46] can be accounted for by modifying the CPU overhead parameter

(o in the LogGOPS model) for send operations (os) to account for the log write to

stable storage.

4.5 Validating LogGOPSim’s Simulation of

Checkpoint/Restart

4.5.1 Validating Simulation of Error-Free Execution

This section presents the data collected to validate the simulator against error-free

application performance. It validates the simulator against both analytic models

and small-scale testing to ensure that the simulator accurately models the impact of

resilience mechanisms in failure-free and failure-prone environments.

69

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

128 256 512 1K 2K 4K 8K 16K 32K
0 %

5 %

10 %

15 %

20 %
W

a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

simulation
model

simulation % error

(a) CTH

 200

 400

 600

 800

 1000

 1200

 1400

128 256 512 1K 2K 4K 8K 16K 32K
0 %

5 %

10 %

15 %

20 %

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

simulation
model

simulation % error

(b) LAMMPS

Figure 4.1: Validation of the simulator against the simple analytic model described
in Equation 4.1 for coordinated checkpointing to stable storage in a failure-free envi-
ronment for CTH and LAMMPS. The model and the simulator use identical values
for the Ts (for each application), τ, and δ. The simulation error is less than 3% for
CTH and less than 1% for LAMMPS across the tested node count range.

70

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Analytic Model of Coordinated Checkpointing in a Failure-Free

Environment

Equation 4.1 models application performance in terms of its wall clock time-to-

solution, Tw, in a failure-free environment.

Tw = Ts

(
1 +

δ

τ

)
(4.1)

where Tw is the wall clock time, Ts is the solve time of the application without any re-

silience mechanism, τ is the checkpoint interval [42], and δ is the checkpoint commit

time (time to write one checkpoint). In the case of coordinated checkpoint/restart,

all application processes are assumed to be writing to a shared persistent storage

resource and contention for storage resources is assumed not to degrade the aggre-

gate write bandwidth to the shared storage resource. Given these assumptions, the

checkpoint commit time can be expressed as:

δ =
1

β

N∑
i=1

ci (4.2)

where N is the number of application processes, ci is the size of the checkpoint for the

ith process, and β is the aggregate write bandwidth to stable storage. If checkpoints

are roughly the same size for each process, then Equation 4.2 simplifies to:

δ ≈ Nc0

β
(4.3)

Equation 4.3 implies that the checkpoint commit time is roughly proportional to

the total number of application processes. Each doubling of the number of pro-

cesses means that the time to commit a checkpoint to persistent storage also roughly

doubles.

Figures 4.1(a) and 4.1(b) compare the completion time predicted by this model

to the completion time predicted by the simulator. The times-to-solution for CTH

71

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

predicted by the simulator are very accurate, about 3% greater than the model’s

predictions. More importantly, the simulator closely matches scaling trends predicted

by the model. Moreover, the simulated times-to-solution for LAMMPS are within

1% of the analytic model. On the whole, these data suggest that the simulator is

accurately modeling how the impact of checkpoint/restart scales with system size.

72

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %
W

a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

libckpt
simulator

simulation % error

(a) Coordinated Checkpointing

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

libckpt
simulator

simulation % error

(b) Uncoordinated Checkpointing

Figure 4.2: Validation of LogGOPSim simulation against a coordinated and uncoor-
dinated checkpointing library for CTH. The simulator and libchkpt use identical
values for Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint
commit time). The simulation error in this figure is less than 20%, with this differ-
ences attributed to platform features not being simulated. For example, interference
from the OS is not being generated in this case to simplify analysis. This OS interfere
has been shown to greatly influence impact CTH performance [53].

73

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

libckpt
simulator

simulation % error

(a) Coordinated Checkpointing

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

D
if
fe

re
n
c
e
 t
o
 s

im
u
la

ti
o
n

Nodes

libckpt
simulator

simulation % error

(b) Uncoordinated Checkpointing

Figure 4.3: Validation of LogGOPSim simulation against an coordinated and uncoordi-
nated checkpointing library for LAMMPS. The simulator and libchkpt use identical
values for Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint
commit time). The simulation error in this figure is shown to be less than 5% in the
range tested.

74

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Small-scale testing

To further validate the simulator, we compared its predictions against the results

of small-scale tests on real hardware. The simulator provides fine-grained control

over the checkpoint interval and duration. To mimic this degree of control on real

hardware, we constructed an MPI profiling library, libchkpt. This library, based on

the the libhashckpt incremental checkpointing library [56], includes support for full

coordinated and uncoordinated checkpoints in addition to its support for incremental

coordinated checkpoints. The full coordinated checkpointing functionality ensures

all checkpoints are taken simultaneously on each node, while the uncoordinated ap-

proach takes checkpoints independently. While taking checkpoints, the CPU is taken

from the application until the checkpoint commit time has completed.

Figures 4.2 and 4.3 show the results of the validation experiments. These fig-

ures compare the total wall clock time simulated by LogGOPSim and measured with

libchkpt running on a test platform. For reference, each figure also includes the to-

tal wall clock time in the absence of any failures. Each figure also shows the error in

the simulator’s predicted execution time. Note the performance of CTH in Figure 4.2

exhibits a distinct sawtooth pattern. This pattern is an artifact of how CTH scales

the computation as nodes counts increase. The simulator accurately predicts this

complex sawtooth pattern. This figure the error in the simulator’s prediction. The

predictive performance of the simulator is less accurate for CTH than for LAMMPS,

but the error in the predicted time to solution is less than 20% in both cases. The

size of the error in the predicted execution time for CTH is likely due to the fact that

these experiments do not account for OS noise and they rely on a very simple network

model that does not account for contention. CTH has been shown to be sensitive to

this sort of perturbation [53]. Because CTH performs a significant amount of bulk

data transfer, network contention may also negatively influence its performance.

75

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

Overall, these figures show that LogGOPSim closely tracks the results measured

with libchkpt. For all the configurations examined, the absolute wall clock time

simulated by LogGOPSim is within 20% of the measured values for CTH and within 5%

of the measured values for LAMMPS. Although the error in LogGOPSim’s predictions

of the execution time of CTH is, in some cases, relatively large, its results closely

mimic the trends exhibited by CTH in the libchkpt results.

4.5.2 Validating Simulation of Failures and Rollback

Avoidance

This subsection validates the simulator when errors may occur during an application’s

execution by examining the results of a sequence of experiments designed to measure

the fidelity of the application execution times predicted by the simulator. It also

considers the impact of using rollback avoidance to recover from errors without rolling

back to an earlier checkpoint. The experiments discussed in this section use a trace

collected from 128 MPI processes running LAMMPS with the SNAP potential. The

trace was collected over 10.12 hours of execution. Using this trace as the baseline,

I used the simulator’s extrapolation feature to repeatedly double the size of the

simulated system. The largest system considered consisted of 128 Ki MPI processes.

Figure 4.4 compares the results of this series of simulations against the execution

times predicted by the model introduced in Chapter 3. This figure considers four

different combinations of values for the probability of rollback avoidance (pa) and

runtime overhead (oa). The primary y-axis shows the overall execution time predicted

by our model and simulator. The secondary y-axis shows the percentage difference

between the model and the simulator. Over this set of configurations, the execution

times predicted by the simulator closely track those predicted by the model; in no

case is the difference between the two larger than 6%.

76

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 5

 10

 15

 20

 25

 30

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
h

o
u

rs
)

D
if
fe

re
n

c
e

 f
ro

m
 s

im
u

la
ti
o

n

Processes

model
simulation

simulation % error

(a) pa = 0.00, oa = 0.00

 5

 10

 15

 20

 25

 30

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
h

o
u

rs
)

D
if
fe

re
n

c
e

 f
ro

m
 s

im
u

la
ti
o

n

Processes

model
simulation

simulation % error

(b) pa = 0.25, oa = 0.10

 5

 10

 15

 20

 25

 30

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
h

o
u

rs
)

D
if
fe

re
n

c
e

 f
ro

m
 s

im
u

la
ti
o

n

Processes

model
simulation

simulation % error

(c) pa = 0.50, oa = 0.20

77

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 5

 10

 15

 20

 25

 30

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

0 %

5 %

10 %

15 %

20 %

W
a

ll
c
lo

c
k
 t

im
e

 (
h

o
u

rs
)

D
if
fe

re
n

c
e

 f
ro

m
 s

im
u

la
ti
o

n

Processes

model
simulation

simulation % error

(d) pa = 0.75, oa = 0.30

Figure 4.4: Validation of simulation framework against analytic model for coordinated
checkpointing. This figure compares the execution time predicted by the simulation
framework to the model for coordinated checkpointing introduced in Chapter 3.
Each simulation result represents the mean of 24 independent simulations. These
data are based on the simulation of a 10.12 hour run of LAMMPS with the SNAP
potential. The simulator and the model used identical values for the checkpoint
commit time (δ = 5 minutes) and node MTBF (Θn = 5 years). Both use the optimal
checkpoint interval (τopt) without considering the impact of rollback avoidance on the
effective MTBF of the system. In all four experiments, the simulation data closely
match the results predicted by the model.

4.6 Simulating the Impact of Rollback Avoidance

on Uncoordinated Checkpoint/Restart

The simulation framework described in this chapter facilitates the evaluation of

the potential benefit of using rollback avoidance in conjunction with uncoordinated

checkpointing. Figure 4.5 examines how increasing the fraction of errors for which

rollback can be avoided impacts application execution time. The results in these fig-

ures were collected by simulating 65,536 nodes executing LAMMPS with the SNAP

potential. The original trace was collected on 128 nodes and represents 10.12 hours

of execution. Each simulation result is the arithmetic mean of 24 independent sim-

78

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

ulations. To understand the relationship between rollback avoidance and system

reliability, experiments were conducted to examine two cases: (i) a moderately unre-

liable system (Θn = 5 years) in Figures 4.5(a) and 4.6(a); and (ii) a very unreliable

system (Θn = 1 year) in Figures 4.5(b) and 4.6(b). The simulation results are pre-

sented from two perspectives. Figures 4.5(a) and 4.5(b) show how much faster the

application is relative to uncoordinated checkpoint/restart when rollback avoidance

is used. Figures 4.6(a) and 4.6(b) show the percentage of the application’s overall

execution time that is consumed by fault tolerance. To help isolate the impact of

the probability of rollback avoidance (pa), we assume that the overhead is zero (i.e.,

oa = 0.0) in all cases. There is currently no widely-accepted method for calculating

the checkpoint interval for uncoordinated checkpoint/restart. Because one of the

explicit goals of uncoordinated checkpoint/restart is to reduce contention for write

bandwidth to persistent storage, the checkpoint commit time (δ) used in these ex-

periments is 2 seconds. The checkpoint interval (τ) is 2 minutes. To put this value

in perspective, it is equal to the optimal checkpoint interval that would obtain for

the more reliable configuration of this simulated system (i.e., Θn = 5 years) if we

used coordinated checkpoint/restart instead of uncoordinated checkpoint/restart.

79

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 1

 1.1

 1.2

 1.3

 1.4

 1.5

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 u

n
c
o
o
rd

in
a
te

d
 c

h
e
c
k
p
o
in

t/
re

s
ta

rt

System MTTI (hours)

pa = 0.20
pa = 0.40
pa = 0.60
pa = 0.80

(a) Θn = 5 year.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 u

n
c
o
o
rd

in
a
te

d
 c

h
e
c
k
p
o
in

t/
re

s
ta

rt

System MTTI (hours)

pa = 0.20
pa = 0.40
pa = 0.60
pa = 0.80

(b) Θn = 1 year. Speedup relative to uncoordinated check-
point/restart

Figure 4.5: Effect of pa on application execution time. Evaluating the impact of
rollback avoidance and uncoordinated checkpointing on application performance rel-
ative to uncoordinated checkpointing by itself for two different values of node MTBF
(Θn). Each simulation result is average of 24 independent simulations. These data
are based on the simulation of a 10.12 hour run of LAMMPS with the SNAP poten-
tial. The checkpoint commit time (δ) is 2 seconds, and the checkpoint interval (τ)
is 2 minutes. To isolate the impact of the probability of rollback avoidance, pa, all
of these data assume zero overhead (i.e., oa = 0.0).

80

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

F
a
u
lt
 t
o
le

ra
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

System MTTI (hours)

pa = 0.20
pa = 0.40
pa = 0.60
pa = 0.80

(a) Θn = 5 years

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

8Ki
16Ki

32Ki

64Ki

128Ki

F
a
u
lt
 t
o
le

ra
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

System MTTI (hours)

pa = 0.20
pa = 0.40
pa = 0.60
pa = 0.80

(b) Θn = 1 year

Figure 4.6: Effect of pa on fault tolerance overhead. Evaluating the impact of rollback
avoidance and uncoordinated checkpointing on the overall fault tolerance overhead
for two different values of node MTBF (Θn). Each simulation result is average of
24 independent simulations. These data are based on the simulation of a 10.12 hour
run of LAMMPS with the SNAP potential. The checkpoint commit time (δ) is 2
seconds, and the checkpoint interval (τ) is 2 minutes. To isolate the impact of the
probability of rollback avoidance, pa, all of these data assume zero overhead (i.e.,
oa = 0.0).

81

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

0%

20%

40%

60%

80%

0% 10% 20% 30% 40%

C
o
rr

e
c
ti
o
n
 P

ro
b
a
b
ili

ty

Overhead

25%
slowdown

0%
 speedup

33%
 speedup

(a) Θn = 5 years

0%

20%

40%

60%

80%

0% 10% 20% 30% 40%

C
o
rr

e
c
ti
o
n
 P

ro
b
a
b
ili

ty

Overhead

25%
slowdown

0%
 speedup

33%
 speedup

(b) Θn = 1 year

Figure 4.7: Application speedup as a function of pa and oa. Evaluating the rela-
tionship between the probability of rollback avoidance (pa), the associated overhead
(oa) and application performance. These results were collected by simulating 65,536
nodes executing LAMMPS with the SNAP potential. This figure examines two dif-
ferent values for the MBTF (Θn), 1 year and 5 years, of the simulated nodes. The
original trace was collected on 128 nodes and represents 10.12 hours of execution.
Each simulation result is the arithmetic mean of 24 independent simulations. The
checkpoint commit time (δ) is 2 seconds and the checkpoint interval (τ) is 2 minutes.

The data in this figure show that at least for this application (LAMMPS-snap),

the benefits of rollback avoidance are somewhat modest even when the overhead

is assumed to be zero. In all cases, the maximum observed speedup is less than

45%. However, Figures 4.6(b) and 4.6(a) show that the overall overhead of fault

tolerance is small even on very unreliable systems. This is largely due to the relatively

high efficiency of uncoordinated checkpoint/restart when paired with an application

(LAMMPS-snap) that is relatively insensitive to the introduction of CPU detours

(cf. [54]).

The largest system simulated in this section (128 Ki nodes) would have a system

MTBF of approximately 40 minutes (Θn = 5 years) or 8 minutes (Θn = 1 year) if

it used coordinated checkpoint/restart instead. By way of comparison, Chapter 3.6

examined the improvements in application performance that may result from using

82

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

rollback avoidance with coordinated checkpoint/restart. Figure 4.5 shows that the

maximum speedup in application performance is approximately 1.4. In contrast,

Figure 3.9(a) shows that in the case of coordinated checkpoint/restart on systems

with very low MTBFs, rollback avoidance can potentially increase application per-

formance by more than a factor of 6. However, Figure 3.9(b) shows that in the

cases where rollback avoidance achieves this dramatic increase in performance, the

overhead of fault tolerance is very large and likely prohibitive.

The next examination is of how the probability of rollback avoidance (pa) and the

overhead of avoiding rollback (oa) interact and impact application execution time.

Figures 4.7(a) and 4.7(b) contain heatmaps showing average speedup of LAMMPS-

snap as a function of pa and oa. In these figures, speedup is calculated as the quo-

tient of the average simulated execution time of the base case (pa = 0.0, oa = 0.0)

divided by the average simulated execution time for each pair of values for pa and

oa. In all cases, the average execution time is computed over 24 independent simu-

lations. Figure 4.7(a) shows improvements in application execution time only when

the overhead is very low. Increasing the overhead to 10% eliminates the benefits of

rollback avoidance unless the probability of avoiding rollback exceeds 40%. As the

overhead increases above 10%, rollback avoidance yields no execution time benefit.

Figure 4.7(b) examines the impact on a less reliable system. In this case, more sig-

nificant performance benefits are possible. However, these gains are possible only as

failures become very prevalent in the system. Chapter 3 showed much larger benefits

(on more reliable systems) when rollback avoidance is combined with coordinated

checkpoint/restart.

The results presented in this section are consistent with existing research on the

noise sensitivity of LAMMPS [54,162,163]. LAMMPS is relatively insensitive to noise

events. As a result, when LAMMPS is combined with uncoordinated checkpointing

its execution time is only modestly degraded. Therefore, the benefits of rollback

83

Chapter 4. Simulating Rollback Avoidance and UncoordinatedCheckpoint/Restart

avoidance are also modest.

4.7 Chapter Summary

In this chapter, I presented a new and promising approach to simulating large-scale

systems that use fault-tolerance mechanisms based on the checkpoint/restart model.

We identified a set of platform, application, and resilience characteristics required

for accurate and efficient simulation; described a prototype framework based on ex-

tensions to a validated and freely-available application simulator implementing the

LogP model; showed how resilience processing overheads can be effectively mod-

eled as CPU detours; and demonstrated empirically that the simulation approach

described in this chapter accurately predicts the impact of resilience mechanisms.

I also used this simulation framework to evaluate the potential impact of using

rollback avoidance with uncoordinated checkpoint/restart to reduce application exe-

cution time. As the data in this chapter show, the benefits of using rollback avoidance

to improve the performance of noise-insensitive applications like LAMMPS-snap are

limited. This result illustrates the potential limits to the benefits of rollback avoid-

ance. However, combining rollback avoidance with uncoordinated checkpointing may

yield greater benefits for applications that are more sensitive to noise.

84

Chapter 5

Similarity Engine: Exploiting

Application Memory Redundancy

to Improve Resilience

5.1 Introduction

In this chapter, I propose a novel rollback avoidance technique that leverages content

similarity in the memory of HPC applications to improve resilience to uncorrectable

memory errors. For example, when a memory error occurs on a page that is similar

to one or more other pages in the address space of an application, information about

the page’s similarity can be used to reconstruct the contents of the damaged page

without needing to terminate the affected application or restart it from a known

good state (e.g., a checkpoint).

I begin by describing the design and implementation of an HPC-oriented mem-

ory similarity service: the Similarity Engine. The Similarity Engine provides a gen-

eral, application-independent, lightweight service for detecting and tracking per-node

85

Chapter 5. Similarity Engine

memory similarity in HPC applications. I then describe how this service can be lever-

aged to improve application performance by avoiding rollback when uncorrectable

memory errors occur. I also describe two additional ways in which the service pro-

vided by the Similarity Engine can be used to improve application resilience charac-

teristics.

5.2 Implementing the Similarity Engine

The goal of the Similarity Engine is to discover and exploit process-level memory

similarity in HPC applications to improve their resilience and performance. This

section presents the definition of memory similarity and describes the mechanisms

that the Similarity Engine uses to identify and track this similarity.

5.2.1 Overview

The Similarity Engine categorizes all of the pages in an application’s memory into

four categories–zero, duplicate, similar, and unique–defined as follows:

• Zero pages: pages whose contents are entirely zero

• Duplicate pages: pages that (a) are not zero pages; and (b) exactly match the

contents of one or more other pages

• Similar pages: pages that (a) are not duplicate or zero pages; and (b) can

be paired with at least one other page in application memory such that the

difference between the two is smaller than a tunable threshold: the difference

threshold.

• Unique pages: pages that do not fall into any of the preceding three categories

86

Chapter 5. Similarity Engine

Application Description

HPCCG
One of the Mantevo mini-applications [144]. Designed to mimic
finite element generation, assembly and solution for an unstructured
grid problem.

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS). A classical molecular dynamics simulator from San-
dia National Laboratories [143]. The data presented in this chapter
are from experiments that use the Lennard-Jones (lammps-lj)
and Embedded Atom Model (lammps-eam) potentials that are
included with the LAMMPS distribution.

CTH

A multi-material, large deformation, strong shock wave, solid me-
chanics code [116] developed at Sandia National Laboratories. The
data presented in this chapter are from experiments that use inputs
that describe the simulation of the detonation of a conical explosive
charge (CTH-st) and the simulation of an explosive detonated near
a steel plate (CTH-blastplate).

LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-
ics (LULESH). A proxy application from the Department of Energy
Exascale Co-Design Center for Materials in Extreme Environments
(ExMatEx). LULESH approximates the hydrodynamics equations
discretely by partitioning the spatial problem domain into a collec-
tion of volumetric elements defined by a mesh [3, 108].

SAMRAI

Structured Adaptive Mesh Refinement Application Infrastructure
(SAMRAI). A framework from the Center for Applied Scientific
Computing at Lawrence Livermore National Laboratory that is de-
signed to enable the application of structured adaptive mesh refine-
ment to large-scale multi-physics problems

Table 5.1: Descriptions of the set of workloads used for evaluating the performance
characteristics of the Similarity Engine.

Although they are categorized separately here, when I discuss similarity in general

in this chapter I mean the set of pages that are duplicate, zero, or similar.

87

Chapter 5. Similarity Engine

Based on these definitions, the Similarity Engine works by first tracking appli-

cation memory allocation and periodically scanning allocated memory. During this

scan, it identifies zero and duplicate pages by computing hashes of page contents,

and uses efficient heuristics to detect similarity. This similarity detection is based on

using a difference algorithm that computes differences between pairs of pages, and

heuristics that choose pairs of pages that are likely to be similar.

5.2.2 Tracking Application Memory

The Similarity Engine tracks an application’s memory allocation by interposing code

between the application and the standard C memory allocation functions (e.g.,

malloc, calloc, free) using features of the GNU linker. Each time the applica-

tion allocates (or deallocates) memory, the Similarity Engine updates its view of the

memory that is currently allocated by the application.

Managing Memory Modification

Exploiting memory contents requires an accurate picture of which pages have been

modified since they were last categorized. To this end, the Similarity Engine uses

mprotect to make every page of the application’s allocated memory read-only. When

the application writes to a page of read-only memory, a segmentation fault occurs.

The Similarity Engine uses a SIGSEGV signal handler to receive notification of each

segmentation fault. The Similarity Engine’s signal handler updates its metadata to

indicate that the page has been accessed and restores write privileges to the accessed

page.

Periodically, the Similarity Engine needs to re-protect memory pages that the

application has written to. Therefore, the Similarity Engine divides the applica-

tion’s execution time into tunable protection intervals to track memory accesses. By

88

Chapter 5. Similarity Engine

default, each protection interval is 60 seconds long. The Similarity Engine config-

ures a SIGALRM signal to notify it when each interval begins. At the beginning of

each protection interval, the Similarity Engine makes every modified page of memory

read-only and computes the MD5 hash of every page that has been accessed since

the beginning of the preceding interval. We assume that the contents of application

memory are not adversarial. As a result, two pages with same hash value have the

same contents with very high probability. Moreover, if the hash value of a page has

not changed, then the contents of the page have not been modified.

Handling System Calls

The Similarity Engine requires some pages of application memory to be read-only.

However, when read-only memory is passed to the kernel in a system call, writes to

this memory do not invoke Similarity Engine’s user-level segmentation fault handler.

As a result, system calls may fail. If return values are not carefully checked by the

application, the consequences of the failure may be difficult to predict.

To determine the extent to which the applications examined in this chapter may

attempt to pass references to read-only memory to the kernel, I created a version

of the Similarity Engine that leverages Linux’s ptrace mechanism to intercept and

inspect the system calls made by the application. Specifically, this version of the

Similarity Engine creates a child thread during its initialization and uses ptrace

to attach to the application (its parent). Each time the application enters a system

call, the child examines the contents of the registers that contain the arguments being

passed to determine whether they contain a reference to memory that the Similarity

Engine is actively tracking. For the set of applications and associated input decks

considered in this chapter, no references to tracked memory in the arguments to were

found in any system call.

89

Chapter 5. Similarity Engine

There are likely applications for which references to user-allocated heap memory

are passed to system calls. In these cases, efficiently identifying similarity without

jeopardizing the correctness of the the simulation will likely require integrating the

Similarity Engine into the kernel.

Passing memory references to MPI

Passing read-only message buffers to the MPI library can result in unpredictable

behavior. The Similarity Engine uses the PMPI profiling layer to intercept MPI

calls that reference one or more message buffers. For each message buffer, the Sim-

ilarity Engine determines whether the buffer occupies memory that it is tracking

(i.e., whether it is memory that is or may become read-only). If so, the Similarity

Engine makes it writable and updates its metadata to reflect the fact that it is no

longer managing this memory. As a result, the pages that comprise the message

buffers passed to MPI are categorized as unique in all of the statistics presented in

this chapter. The Similarity Engine currently lacks a mechanism for resuming the

tracking of memory used for MPI message buffers.

5.3 Discovering Similarity

The performance of the Similarity Engine depends on how efficiently it is able to

identify pairs of similar pages. This section describes these differencing and pair

identification steps in detail. Because of the importance of heuristics to efficiently

perform these steps, this section evaluates the tradeoffs for the differencing and pair

identification steps.

90

Chapter 5. Similarity Engine

5.3.1 Experimental Setup

The remainder of this chapter presents the results of the experiments conducted to

evaluate the potential costs and benefits of exploiting memory content similarity.

The characteristics of seven workloads are considered. These workloads, described

in Table 5.1, include two important DOE production applications (LAMMPS and

CTH), a proxy application (LULESH) from the Department of Energy’s Exascale

Co-Design Center for Materials in Extreme Environments (ExMatEx) [61], a mini-

application from Sandia’s Mantevo suite (HPCCG) and an example application from

an important library used in large-scale DOE production applications (SAMRAI).

For each of LAMMPS and CTH, I consider two different input decks.

For all of the applications except for CTH, the experiments were performed using

Compton, a Linux Infiniband cluster. Because CTH is export-controlled, the CTH

experiments were performed on Chama, also a Linux Infiniband cluster. Details on

the composition and configuration of these clusters are presented in Table 5.2. I

use 4 KiB memory pages throughout. The remainder of this section evaluates the

effectiveness and costs of computing differences and identifying potentially similar

pages. It does so by presenting and examining the results of a series of small-

scale experiments. These experiments were conducted by running each of the seven

workloads on 8 MPI processes across 4 nodes of the clusters described above.

5.3.2 Computing Page Differences

At the beginning of each protection interval, the Similarity Engine identifies simi-

larity by computing differences between pairs of pages. This section evaluates the

performance characteristics of four algorithms for computing page differences. These

algorithms include two well-known delta encoding algorithms, a novel lightweight

91

Chapter 5. Similarity Engine

Compton Chama

Nodes 42 1,232

Sockets/Node 2 2

Processors
Intel Sandy Bridge Intel Sandy Bridge
(2.6 GHz / 8 cores) (2.6 GHz / 8 cores)

Operating System Linux 2.6.32 Linux 2.6.32

Interconnect
Mellanox MT26428 QLogic QLE7340

QDR InfiniBand HCA QDR InfiniBand HCA

MPI OpenMPI 1.8.1 OpenMPI 1.8.4

Table 5.2: Configuration details of clusters used to gather experimental data.

differencing algorithm, and page compression.1 A description of each of the four

difference algorithms follows:

• bsdiff (and its mirror, bspatch) use suffix sorting and bzip2 to compute differ-

ences between pairs of binary files [39].

• Xdelta is an open-source delta encoder/decoder based on VCDIFF [94]. VCD-

IFF is both an algorithm and a format for encoding the differences between

binary files [101].

• xor+lz4 is a novel lightweight differencing algorithm that combine naive differ-

ences (bit-wise exclusive-or) with lightweight compression (lz4). lz4 is a lossless

data compression algorithm that is based on LZ77 compression [2].

• bzip2 is a lossless data compression algorithm that uses Burrows-Wheeler trans-

forms and Huffman coding [1].

1In the case of page compression, the compressed page can be viewed as the difference
between the target page and a null page.

92

Chapter 5. Similarity Engine

These algorithms compute the difference between a candidate page and a reference

page. This difference would allow the Similarity Engine to recreate the candidate page

from the reference page in the event that the candidate page was corrupted. Because

xor+lz4 generates symmetric differences, the differences it generates to can be used

to reconstruct either the reference page or the candidate page from the other. The

other three algorithms generate asymmetric differences (i.e., the difference between

the candidate page and a reference page can only be used to reconstruct the candidate

page). As a result, xor+lz4 requires the computation of half as many differences.

To efficiently identify similarity in application memory, the Similarity Engine

must be able to quickly encode small differences between pairs of pages. It also must

be able to decode these differences and quickly reconstruct a page from its reference

page. The speed of difference encoding strongly influences the runtime overhead of

the Similarity Engine. The size of the differences will dictate its memory overhead.

To limit the memory overhead, similarity is defined relative to a tunable difference

threshold. A memory page is similar only if the difference between it and a reference

page falls below this threshold.

The suitability of these algorithms for identifying similarity was examined with

two microbenchmarks. To run these microbenchmarks, I constructed a library that

takes periodic snapshots of the allocated memory of each of our target workloads. I

then randomly chose a maximum of 5,000 candidate pages from each snapshot of each

application that were neither zero nor duplicate. For each candidate, I computed the

difference between it and every other page in the same snapshot.

The first microbenchmark measures the speed of difference encoding and decod-

ing. The results are shown in Figure 5.1. The fastest algorithm by a substantial

margin is xor+lz4. It is more than eight times faster than Xdelta and nearly 200

times faster than bsdiff. Moreover, because Xdelta, bzip2 and bsdiff generate asym-

metric differences, they must compute twice as many differences as xor+lz4 for the

93

Chapter 5. Similarity Engine

same number of pages.

 1

 10

 100

 1000

 10000

xor+lz4

Xdelta

bsdiff

bzip2

T
im

e
 t

o
 c

o
m

p
u

te
 a

 p
a

tc
h

 (
µ

s
)

Encode

19.42

160.64

3104.84

1191.80

Decode

3.43

13.57

550.09

154.09

Figure 5.1: Difference speed microbenchmark. The average time required to compute
the difference between two pages for each of four algorithms. Encode is the average
time to compute the difference between two pages. Decode is the average time to
reconstruct a page. The average is computed over 5,000 random pairs of pages taken
from each of the snapshots taken for each application. This plot includes error bars
showing the standard error. However, the error is too small to be easily seen.

The second microbenchmark measures the size of the differences generated by

each algorithm. For each difference algorithm, the smallest difference computed for

each candidate was recorded. The results are shown in Figure 5.2. In this figure,

a point at (x, y) indicates that for a y fraction of the candidates were considered,

the size of the smallest difference was less than or equal to x bytes.2 As this figure

demonstrates, the speed of xor+lz4 comes with a cost. It generates substantially

fewer small differences than the other three algorithms. As a result, for a fixed

difference threshold, xor+lz4 will tend to identify fewer similar pages.

2In principle, the difference between any pair of 4 KiB pages can be captured in 4 KiB
(i.e., as the exclusive-or of the two). However, as this figures shows, none of these algorithms
use this optimization. As a result, some differences produced by these algorithms are larger
than 4 KiB.

94

Chapter 5. Similarity Engine

 0

 0.2

 0.4

 0.6

 0.8

 1

1 KiB

2 KiB

3 KiB

4 KiB

5 KiB

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
p

a
tc

h
e

s
 c

o
m

p
u

te
d

Difference size

xor+lz4
Xdelta
bsdiff
bzip2

Figure 5.2: Difference size microbenchmark. The distribution of the size of the differ-
ences computed by the four difference algorithms considered. These data represent
the result of computing the difference between 5,000 random pairs of pages from each
snapshot of each application.

5.3.3 Finding Potentially Similar Pages

Due to the cost of exhaustively computing differences between the pages in an ap-

plications memory, an efficient method for identifying pairs of pages that are likely

to be similar (i.e., pairs of pages for which the difference between them is small) is

necessary. I examined four heuristics for identifying potentially similar pages:

• Neighbor : the pages within the same memory allocation that are immediately

adjacent to the candidate page in the application’s virtual address space;

• Random: two pages chosen randomly from the same memory allocation as the

candidate page;

• Same: all of the pages (except for the neighbors) in the same memory allocation

as the candidate page; and

95

Chapter 5. Similarity Engine

• Other : all of the pages that are not in the same memory allocation as the

candidate page.

I used a microbenchmark to determine the relative effectiveness of these ap-

proaches. Using the same set of snapshots described above, 5,000 candidate pages

are randomly chosen that were neither duplicate nor zero. For each candidate, the

difference between it and the pages in each of the four categories described above

is computed. Within each of these categories, the size of the smallest observed dif-

ference is recorded. The results are presented in Figure 5.3. This figure shows that

there are benefits to considering larger regions of memory. Considering pages within

the same allocation as the candidate page is no worse than considering all of the

application’s other allocations. For all but CTH-st, this means computing fewer

differences.

Table 5.3 shows that Same or Other requires the computation of hundreds or

thousands of differences. Because Neighbor and Random represent the minimum of

just two differences, these approaches are surprisingly effective. Nonetheless, devel-

oping more effective and efficient techniques for identifying potentially similar pairs

of pages would increase the benefits of exploiting similarity.

Application Neighbor Random Same Other

CTH-blastplate 2 2 2858 4257
CTH-st 2 2 36279 639
HPCCG 2 2 9823 41622
LAMMPS-eam 2 2 3429 136988
LAMMPS-lj 2 2 4382 156924
LULESH 2 2 274 7492
SAMRAI 2 2 137 45157

Table 5.3: Difference size microbenchmark. Mean number of differences computed
per application for each of four similarity heuristics: neighbor, random, same and
other.

96

Chapter 5. Similarity Engine

 0

 0.2

 0.4

 0.6

 0.8

 1

N
eighbor

R
andom

Sam
e

O
ther

N
eighbor

R
andom

Sam
e

O
ther

N
eighbor

R
andom

Sam
e

O
ther

N
eighbor

R
andom

Sam
e

O
ther

F
ra

c
ti
o

n
 o

f
d

if
fe

re
n

c
e

s
 c

o
m

p
u

te
d

SAMRAILAMMPS-eamLAMMPS-ljHPCCG

 0

 0.2

 0.4

 0.6

 0.8

 1

N
eighbor

R
andom

Sam
e

O
ther

N
eighbor

R
andom

Sam
e

O
ther

N
eighbor

R
andom

Sam
e

O
ther

F
ra

c
ti
o

n
 o

f
d

if
fe

re
n

c
e

s
 c

o
m

p
u

te
d

0-1 KiB 1-2 KiB 2-3 KiB 3-4 KiB > 4 KiB

LULESHCTH-blastplateCTH-st

Figure 5.3: Similarity heuristic microbenchmark. For each target application a se-
quence of snapshots of allocated memory were collected. Up to 5,000 candidate pages
are randomly selected from each snapshot of each application. For each candidate,
differences are computed between it and all of the other pages in memory (differences
between pairs of pages that are identical are not computed). The resulting set of dif-
ferences is binned based on their size. This figure shows the size distribution for each
of four categories of differences. Neighbor is the set of differences that are computed
between two pages that are adjacent in the virtual address space and belong to the
same allocation. Random is the set of differences the candidate page and each of
two pages chosen randomly from the same memory allocation as the candidate page.
Same is all of the pages (except for the neighbors) in the same memory allocation as
the candidate page. Other are the pages that are not in the same memory allocation
as the candidate page.

5.3.4 Analysis

Based on the results of these microbenchmarks, the Similarity Engine is configured

to use the xor+lz4 algorithm for difference computation and to use the neighbor

heuristic for choosing potentially similar pages. Although these choices reduce the

97

Chapter 5. Similarity Engine

amount of similarity that the Similarity Engine is able to identify, they significantly

reduce the cost of discovering the similarity found. For the applications examined in

this section, the runtime overhead of other difference algorithms and similarity iden-

tification heuristics are much too large for the additional overhead to be amortized

by the benefits of the additional similarity they discover.

5.4 Evaluating Similarity

This section evaluates the amount of similarity that Similarity Engine can discover

and track in HPC applications, and measures the cost of tracking this similarity.

The experiments presented in this section were conducted on the clusters described

in Table 5.2. These experiments used the set of workloads described in Table 5.1. The

input decks for each workload and the resultant application execution characteristics

are described in Table 5.4. I ran each workload, except LULESH, with 128 processes

on 16 nodes of these clusters. Because LULESH requires the number of processes

be a perfect cube, it ran with 125 process. I repeated each experiment ten times.

The data presented in this section required 900 experiments to be conducted in

which the Similarity Engine was linked against one of the workloads. Approximately,

10% (91/900) of these experiments failed to complete. I discarded all of the data

collected during these failed experiments and repeated the experiments.

5.4.1 Memory Overhead

Effectively exploiting similarity requires the Similarity Engine to maintain metadata

about the memory that is currently allocated by the application. As pairs of similar

pages are identified, the Similarity Engine needs to store the encoded difference and

the address of the reference page. There is a tradeoff between the difference threshold

98

Chapter 5. Similarity Engine

Application
Original median Mean allocated

Input deck
runtime (seconds) memory (pages)

CTH-st 324.53 37096
st.128

stop cycle = 155

CTH-blastplate 429.04 5130
blast-plate.in

1200× 1200 mesh

HPCCG 362.39 51457
nx=128, ny=64, nz=64

max. number of
iterations = 5000

LAMMPS-lj 492.24 161106
in.lj x=32 y=16 z=16

200 time steps

LAMMPS-eam 598.53 187673 in.eam x=32 y=16 z=16

LULESH 347.18 3167 -s 32

SAMRAI 440.03 9249
octant 3blk.3d.input

225× 225× 225
grid geometry

Table 5.4: Description of the execution parameters for the seven target workloads.

and the resulting overhead. Increasing the difference threshold identifies more similar

pages, but results in the retention of more and larger differences.

To examine this tradeoff, I ran each target application with four difference thresh-

olds: 1 KiB, 2 KiB, 3 KiB and 4 KiB. Each experiment also measured the volume of

metadata required to track the application’s memory use. The metadata includes the

data structures necessary to manage all of the application’s memory allocations, the

data structures for managing computed differences, and the corpus of the differences.

The results are shown in Figure 5.4. With the exception of HPCCG, for difference

thresholds that are 3 KiB or smaller, a few hundred bytes of metadata per 4 KiB

99

Chapter 5. Similarity Engine

memory page is sufficient.

For workloads like CTH-blastplate and CTH-st, the fraction of similar pages that

the Similarity Engine is able to identify changes relatively little as the difference

threshold increases. For the remaining workloads there are benefits to be reaped

by considering a larger difference threshold. These data suggest that a difference

threshold of 3 KiB represents a good tradeoff between the number of similar pages

and metadata volume.

100

Chapter 5. Similarity Engine

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(a) CTH-st similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(b) CTH-st metadata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(c) CTH-blastplate similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(d) CTH-blastplate metadata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(e) HPCCG similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(f) HPCCG metadata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(g) LAMMPS-eam similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(h) LAMMPS-eam metadata

101

Chapter 5. Similarity Engine

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(i) LAMMPS-lj similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(j) LAMMPS-lj metadata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(k) LULESH similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(l) LULESH metadata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(m) SAMRAI similarity

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 KiB 2 KiB 3 KiB 4 KiB

F
ra

c
ti
o
n
 o

f
s
im

ila
r

p
a
g
e
s

Difference threshold

(n) SAMRAI metadata

Figure 5.4: Difference threshold benchmark. For each target application, this figure
consider the trade off between the number of similar pages and the metadata storage
overhead. As the difference threshold increases, larger differences are allowed and
the metadata overhead increases.

102

Chapter 5. Similarity Engine

5.4.2 Runtime Overhead

Identifying similarity using these techniques requires that the Similarity Engine oc-

casionally interrupt the application. It interposes metadata maintenance operations

between the application and the standard C memory allocators. It restores write

privileges as accesses to read-only pages generate segmentation faults. As each pro-

tection interval begins, it must also change the access privileges for pages of allocated

memory to be read-only and identify similar pairs of pages. For each of the target

workloads, Table 5.5 shows the inflation of the application’s execution time due to

the Similarity Engine.

Application
Runtime Runtime Write Allocations

Overhead Overhead Exceptions Added
(all similar) (duplicate only) Per Second Per Second

CTH-blastplate 0.60% 4.69% 23.99 1.04
CTH-st 2.76% 1.99% 485.46 0.06
HPCCG 1.26% 1.30% 54.31 0.06
LAMMPS-eam 14.60% 11.14% 2471.62 1.65
LAMMPS-lj 13.28% 9.92% 1984.47 1.96
LULESH 9.90% 8.89% 31.42 3319.75
SAMRAI 1.84% 1.58% 67.64 594.68

Table 5.5: Median runtime overheads (ratio of median execution times) using
xor+lz4, a 3072-byte difference threshold, and a 60 second protection interval. The
coefficient of variation for the execution time data used to generate this table is
below 1.5% for CTH-st, HPCCG, LAMMPS-eam, LAMMPS-lj, and SAMRAI. The
coefficient of variation for the “all similar” runtime overhead of LULESH is approxi-
mately 22%. The coefficients of variation for the other two LULESH experiments is
less than 1%. The coefficients of variation for all of the CTH-blastplate experiments
exceed 20%.

This table shows that the applications with the highest overheads have high

rates of memory allocation or they write frequently to memory that the Similarity

Engine has made read-only. LULESH frequently allocates and deallocates mem-

103

Chapter 5. Similarity Engine

ory. Frequent changes to the application’s memory allocation necessitates frequent

metadata modification to maintain an accurate view of memory. Accessing pages

of read-only memory can also increase runtime overhead. In addition to the signal

handling overhead, at the end of each protection interval the Similarity Engine com-

putes and encodes differences for every page that has been written to during the

interval. LAMMPS-lj and LAMMPS-eam have relatively stable memory allocations,

but they write to large numbers of read-only pages. The four workloads (CTH-st,

CTH-blastplate, SAMRAI, and HPCCG) that write to relatively few read-only pages

and have stable memory allocations exhibit the lowest overheads.

This table also considers the incremental cost of identifying similar pages in ad-

dition to duplicate and zero pages. The second column of Table 5.5 shows the

overhead if the Similarity Engine only considers duplicate and zero pages. For all of

the workloads save LAMMPS-lj and LAMMPS-eam the additional runtime overhead

of identifying similar pages is quite modest.

Table 5.5 shows that for CTH-blastplate, the results for the “duplicates only” ex-

periments indicate higher overhead than the results of the “all similar” experiments.

These results are counter-intuitive given that the work of tracking duplicate and zero

pages is a subset of the work of tracking similar, duplicate and zero pages. Figure 5.5

shows the execution times measured over twenty trials of the “duplicates only” and

“all similar” experiments. These results are very noisy; even for the unmodified case,

the fastest and slowest execution times differ by hundreds of seconds. As a result,

it is difficult to make fine-grained distinctions between the runtimes of each of these

three cases.

Another factor to consider in the runtime overtime analysis is the extent to which

the Similarity Engine is doing useful work. At the beginning of each protection

interval, the Similarity Engine computes differences between pairs of memory pages.

A useful difference is a difference that is smaller than the difference threshold. On

104

Chapter 5. Similarity Engine

 300

 400

 500

 600

 700

 800

 900

original all
similar

duplicates
only

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Figure 5.5: Raw execution time data for CTH-blastplate. The amount of time re-
quired to complete a fixed problem varies significantly across runs. As a result, it
it difficult to make detailed comparisons between these three application configura-
tions: original is the original CTH executable (i.e., not linked against the Similarity
Engine), all similar is CTH linked against a version of Similarity Engine that tracks
similar, duplicate, and zero pages, duplicates only is CTH linked against a version of
Similarity Engine that only tracks duplicate and zero pages.

the other hand, if the difference exceeds the difference threshold, it is discarded and

the time spent computing the difference is wasted. Table 5.6 examines the percentage

of useful differences that are computed as a function of the difference threshold. As

this table shows, few of the differences computed in the memory of LAMMPS-lj,

LAMMPS-eam, and SAMRAI are useful. Given that LAMMPS-lj and LAMMPS-

eam exhibit the highest runtime overheads of these seven workloads, a lightweight

heuristic for identifying and excluding pairs of pages that are unlikely to be similar

could improve the performance of the Similarity Engine with these workloads.

105

Chapter 5. Similarity Engine

Application
Difference Threshold

1 KiB 2 KiB 3 KiB 4 KiB

LAMMPS-lj 3.16% 3.70% 10.16% 72.32%
CTH-blastplate 49.67% 57.43% 76.12% 83.31%
SAMRAI 14.13% 14.99% 16.56% 32.10%
LAMMPS-eam 2.21% 2.59% 13.51% 64.21%
HPCCG 43.36% 70.49% 72.98% 100.00%
CTH-st 98.01% 99.86% 99.92% 99.96%
LULESH 47.35% 61.33% 69.53% 76.79%

Table 5.6: Useful difference rate. For each combination of workload and difference
threshold, this table contains the percentage of computed differences that are useful
differences, i.e., smaller than the associated threshold. Differences that are larger
than the threshold are discarded. The time spent computing differences that are
ultimately discarded is therefore wasted.

5.4.3 Prevalence of Similarity

The ultimate objective is to identify similarities in memory. To evaluate how effec-

tively the Similarity Engine can extract similarity, I configured it with a protection

interval of 60 seconds and a sample interval of 20 seconds. Configured this way,

the Similarity Engine looks for similarity and re-protects memory every 60 seconds.

Every 20 seconds it examines the current state of memory to determine how much

similarity remains since the beginning of the protection interval. Each time the ap-

plication writes to a similar, duplicate or zero page, its state and its relationship to

other pages in memory are no longer known. Because accessed pages must be classi-

fied as unique, the prevalence of similarity necessarily decreases between protection

intervals.

The results of these experiments are shown in Figure 5.6. This figure shows the

mean fraction of the pages in application memory that fall into the four page cat-

egories defined in this chapter. For each application, this figure shows the average

fraction of memory in each category for samples taken at the beginning of a pro-

106

Chapter 5. Similarity Engine

 0

 0.2

 0.4

 0.6

 0.8

 1

Interval
Begin

Within
Interval

Interval
Begin

Within
Interval

Interval
Begin

Within
Interval

Interval
Begin

Within
Interval

F
ra

c
ti
o
n
 o

f
a
llo

c
a
te

d
 m

e
m

o
ry

LULESHHPCCGLAMMPS-eamLAMMPS-lj

 0

 0.2

 0.4

 0.6

 0.8

 1

Interval
Begin

Within
Interval

Interval
Begin

Within
Interval

Interval
Begin

Within
Interval

F
ra

c
ti
o
n
 o

f
a
llo

c
a
te

d
 m

e
m

o
ry

Duplicate Zero Similar Unique
SAMRAICTH-blastplateCTH-st

Figure 5.6: Page categorization. A comparison of the average page categorization at
the beginning of a protection interval and the average within a protection interval.
When a page is modified, the Similarity Engine no longer knows its relationship to
other pages in memory. As a result, it must be categorized as a unique page. These
data use xor+lz4 and a difference threshold of 3 KiB.

tection interval. It also shows the average fraction of memory in each category for

samples taken within a protection interval. The mean is computed across all appli-

cation processes, samples and trials. For each application, there is more similarity

at the beginning of a protection interval than within the interval. The difference is

particularly stark for SAMRAI. On average nearly 75% of memory is similar, dupli-

cate or zero at the beginning of a protection interval; these categories comprise less

than 6% of memory within an interval. The differences are more modest, but still

significant, for the other four applications. For HPCCG and LULESH significant

similarity exists even within a protection interval. More modest similarity is found

in the memory of LAMMPS-lj and LAMMPS-eam, but it may still be possible to

107

Chapter 5. Similarity Engine

effectively exploit it.

5.4.4 Variability of Similarity

Figure 5.6 considers the mean fraction of pages in each category. Because the dataset

is multi-dimensional, this subsection also examines how much variability is associated

with each dimension of the dataset. To isolate the variability due to changes in a

single dimension, I computed the mean over the data points that correspond to a

particular value in a given dimension. For example, to evaluate the variability by

process, I computed the mean fraction of pages in each category for all of the samples

collected from the process that was assigned MPI rank 0. To examine the variability

in the page categorization across processes, I computed the mean in this way for

every process.

I measure the variability in the data by computing the coefficient of variation

over each dimension.3 The results are shown in Figure 5.7. First, there is little vari-

ability in these data across trials. Additionally, the total number of memory pages

allocation by these workloads is relatively constant across all dimensions. SAMRAI

exhibits signficant variation in the fraction of duplicate, zero, and similar that com-

prise its memory. This behavior is largely due to the fact that a significant fraction

of SAMRAI’s memory is composed of unique pages. As a result, small changes in the

absolute number of duplicate, similar, and zero pages can result in large variations

in their respective fractions. Similarly, there is a larger variation in unique pages for

CTH-st and LULESH. This is due in part to the fact that the memory allocations

for these applications contain a relatively small fraction of unique pages.

The fraction of memory that is comprised of non-unique (similar, duplicate and

zero) pages is a good proxy for the variability of the potential benefits of exploiting

3The coefficient of variation is the standard deviation (σ) divided by the mean (µ).

108

Chapter 5. Similarity Engine

memory content similarity. Non-unique pages are those pages that the Similarity

Engine approach is able to exploit. Figure 5.7(e) demonstrates that there is very

little variation in the fraction of non-unique pages in any of the dimensions of the

dataset. The exception is again SAMRAI. There are two principal reasons for this.

Figure 5.6 shows that for SAMRAI the fraction of duplicate pages at the beginning

of a protection interval is much larger than the fraction within a protection interval.

Moreover, because the fraction of non-unique pages in SAMRAI’s memory allocations

is quite small within a protection interval, small changes in the absolute number of

non-unique pages can lead to significant variation in the overall fraction.

109

Chapter 5. Similarity Engine

 0

 50

 100

 150

 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

(a) Similar pages

 0

 50

 100

 150

 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

(b) Duplicate pages

 0

 100

 200

 300

 400

 500

 600

 700

 800

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

(c) Zero pages

 0

 50

 100

 150

 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

(d) Unique pages

 0

 50

 100

 150

 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

(e) Non-unique pages

 0

 50

 100

 150

 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
e
ff
ic

ie
n
t
o
f
v
a
ri
a
ti
o
n
 (

%
)

all
by sample

by process
by trial

(f) Total pages

Figure 5.7: Page category variability. An examination of the variability of the com-
position of each application’s memory using a 3072-byte difference threshold. All is
the value of the coefficient of variation when computed over the entire dataset. By
process represents how much variation exists across application processes. By sample
represents the variation over the lifetime of the application. By trial represents the
variation across successive executions of the application.

110

Chapter 5. Similarity Engine

5.5 Exploiting Memory Similarity

5.5.1 Uncorrectable Memory Errors

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.5
 1 2 4 8 16

 32

S
p
e
e
d
u
p

FIT/device

1/2 hr System
 MTTI

2 hr System
 MTTI

HPCCG

LULESH

LAMMPS-lj

SAMRAI

CTH-st

LAMMPS-eam

CTH-blastplate

Figure 5.8: Modeled application speedup. This figure uses the average fraction of
memory that is duplicate, zero or similar during a protection interval and an existing
model of rollback avoidance [109] to predict application speedup for next-generation
applications whose memory characteristics resemble one of the seven target work-
loads. This figure was generated using the runtime overhead from Table 5.5 and the
probability of correcting a memory error from Figure 5.6. The system characteristics
are drawn from the hypothetical extreme-scale system described in Table 5.7. The
x-axis corresponds to the reliability of a single DRAM device in FIT, or failures per
billion devices-hours of operation.

Uncorrectable DRAM errors have been shown to be a significant source of failure

on current and future leadership-class HPC systems [155]. When an uncorrectable

ECC error is detected on a modern x86 system, the memory controller raises a

Machine Check Exception (MCE) in the processor. The consequences of raising an

111

Chapter 5. Similarity Engine

MCE vary by operating system. Recent versions of Linux attempt to minimize the

impact of an MCE by adopting simple recovery strategies. For example, if the fault

occurred on a page whose contents are backed up by disk (e.g., a clean page in the

page cache), the error can be handled by invalidating the appropriate cache or page

table entry. In the event that none of its recovery strategies is successful, Linux

poisons the hardware page and kills all of the processes that had the faulted page

mapped into their address space [99]. In other operating systems (e.g., the Kitten

lightweight kernel [145], older versions of Linux), an MCE simply crashes the node.

For each duplicate or similar page, the Similarity Engine maintains a description

of its reference page(s) (i.e., the other pages in the system that are either dupli-

cated by or similar to the page under consideration). In the case of similar pages,

it also stores the appropriate encoded difference. When an uncorrectable memory

error occurs on a similar, duplicate or zero page, the metadata maintained by the

Similarity Engine can be used to reconstruct the contents of the damaged page. Re-

constructing a duplicate page is straightforward. The contents of the damaged page

are reconstructed from the contents of one of its reference pages.4 For zero pages,

the damaged page can be replaced with a page filled with zeros. For similar pages,

the process is only slightly more complex. The contents of a damaged page can be

reconstructed by applying the difference stored in the Similarity Engine’s metadata

to the associated reference page.

As shown in Figure 5.1, using xor+lz4 to reconstruct a damaged page by decoding

the difference stored in the metadata is extremely fast: on average 3.23µs per 4 KiB

page. The additional memory required for metadata does not significantly increase

the vulnerability of the application to memory errors. An error in the metadata

does not affect the continued operation application. Moreover, if an error occurs in

the set of stored differences (which is the majority of the metadata), the Similarity

4In practice, it may be prudent to reconstruct the page in a different physical location
in memory

112

Chapter 5. Similarity Engine

Engine can, with high probability, invalidate the difference and regenerate it at the

beginning of the next protection interval. In the worst case, the system can take a

proactive checkpoint (to eliminate lost work that would need to be re-executed) and

restart the application.

parameter value

nodes 131,072
total system memory 32 PiB
memory devices/node 1152
FIT/node (excluding memory) 1100
checkpoint commit time 10 minutes

Table 5.7: Characteristics of the hypothetical next-generation, extreme-scale system
used to generate Figure 5.8. A FIT value of 1100 corresponds to an MTBF of
approximately 100 years The checkpoint commit time assumes that checkpoints are
written to a parallel file system. Its value is based on existing studies of checkpoint
performance [25,52,119].

Exploiting similarity in this way allows the application to continue execution when

an otherwise uncorrectable memory error occurs rather than restarting and rolling

back to the last checkpoint. This increases the mean time to interrupt (MTTI) of

the system. The model of rollback avoidance presented in Chapter 3 can be used

to examine how the increased MTTI would affect the performance of an applica-

tion executing on a hypothetical next-generation system (see Table 5.7). Based on

the characteristics of this system, the predicted performance of next-generation ap-

plications whose memory characteristics are represented by one of the seven target

applications is shown in Figure 5.8. This figure examines the potential benefit of

this approach as a function of memory reliability. Memory reliability is measured

in terms of the failures in time (FIT) per DRAM device: the number of expected

failures per billion hours of device operation. The strawman system is comprised of

nodes whose MTBF is approximately 100 years when memory failures are excluded.

This hypothetical system would have an MTBF of approximately 7 hours. Figure 5.8

113

Chapter 5. Similarity Engine

examines a range of potential values for memory reliability, from very reliable (one

or two memory failures in the system per day) to very unreliable (several memory

failures in the system per hour). This range of memory reliability is consistent with

existing projections of memory performance on future systems [50,112,155].

As this figure shows, exploiting similarity to correct memory errors is effective

for some but not all memory-use profiles. Applications whose memory-use patterns

resemble those of SAMRAI are unlikely to see much benefit from this approach.

However, applications that use memory like HPCCG and LULESH do can potentially

see substantial increases in application execution speed. If future memory devices

fall on the unreliable end of this range, as some predict for future leadership-class

systems, then applications with memory-use patterns that are similar to LAMMPS-lj

may also see significant gains.

5.5.2 Checkpoint Compression

The Similarity Engine also enables efficient compression of system-level checkpoints

by excluding redundant information. The contents of zero pages can be easily re-

constructed when the checkpoint is restored. Similarly, only one copy of every set of

duplicate pages needs to be included in the checkpoint. Appendix B proves that if

the smallest difference is retained for each similar page then the checkpoint needs to

include no more than half of the similar pages. At the end of a checkpoint interval,

the Similarity Engine would execute the same code that is executed at the end of a

protection interval to identify similarity.

Checkpoint compression does not always reduce the checkpoint commit time. The

viability of compressing checkpoints depends on the: (i) compression ratio, (2) com-

pression/decompression speed, and (3) checkpoint commit bandwidth. If the commit

bandwidth is high enough, the benefit of writing a smaller checkpoint is outweighed

114

Chapter 5. Similarity Engine

by the time required for compression. The compression ratio and the effective com-

pression speed are computed based on the results presented Section 5.4. Figure 5.9

shows the compression performance metrics for this approach. Figure 5.9(a) shows

the effective compression rate of the technique for each of the seven workloads. For

all of these workloads, the effective compression rate exceeds 80 MiB/s. To put

these results in perspective, I compare against the performance of standard com-

pression algorithms presented by Ibtesham et al. [88]. Due to variations in hardware

resources, workload selection, and workload configuration, a direct comparison may

not be meaningful. However, their results provide context for the results presented in

this section. Ibtesham and his co-authors observed compression rates that were, with

one exception, less than 70 MiB/s. In subsequent experiments, they demonstrated

compression rates above 150 Mib/s for LAMMPS, CTH, and MiniMD [89].

Figure 5.9(b) shows the decompression rate for each of the workloads. These

results show decompression rates in excess of 5 GiB/s. In comparison, Ibtesham et

al. saw decompression rates below 600 MiB/s [88, 89]. While the similarity-based

technique exhibits very high compression and decompression rates, its compression

factors tend to be comparatively modest. In this context, I borrow the compression

factor from Ibtesham et al.: the compression factor is extent to which the size of

the checkpoint is reduced. For example, a compression factor of 10% means that

the compressed checkpoint is 10% smaller than the original. Figure 5.9(c) shows

that the compression factors achieved by this technique are below 70% for all of the

target applications except CTH-st. For the two LAMMPS problems, the compression

factor is less than 10%. In contrast, Ibtesham and his coauthors were able to achieve

compression factors in excess of 70% for all but one of their applications by using

off-the-shelf compression libraries.

Given these individual metrics, I use an existing model to calculate the break-

even commit bandwidth: the maximum aggregate commit bandwidth where using

115

Chapter 5. Similarity Engine

compression reduces the checkpoint commit time [88]. If the sustained bandwidth to

persistent storage exceeds this breakeven point, then it is faster to store uncompressed

checkpoints. If the sustained bandwidth is below this breakeven point, then it is faster

to compress before writing them to persistent storage. The mathematical expression

of this model is reproduced in Figure 5.1.

2α× rcomp × rdecomp
rcomp + rdecomp

= rbreakeven (5.1)

where α is the compression factor, the percentage reduction in checkpoint volume due

to compression, rcomp is compression speed, the rate of data compression, rdecomp is

decompression speed, and rbreakeven is the breakeven point, the value of the sustained

bandwidth to persistent storage at which the speed of compressing checkpoints is

exactly equal to storing uncompressed checkpoints.

The results of using this model are shown in Figure 5.9(d). This figure assumes

a system comprised of 524,288 processes. By comparison, Ibtesham et al. observed

system breakeven bandwidths equivalent to between 25 and 115 TiB/s [88, 89]. For

current systems, aggregate checkpoint commit bandwidths of hundreds petabytes

per second or a few terabytes per second are common. The K computer, the fourth

fastest machine on the November 2014 Top500 list [4], has an aggregate file system

bandwidth of 340 GB/s [141]. Mira, a BlueGene/Q machine at Argonne National

Laboratory and the fifth fastest machine on the November 2014 Top500 list [4], has

has an aggregate file system bandwidth of 240 GB/s [13]. Trinity, a next-generation

machine that is being installed at Los Alamos National Lab is projected to have an

aggregate bandwidth to the parallel file system of 1.45 TB/s [114]. Figure 5.9(d)

shows that until aggregate commit bandwidths approach 10 terabytes per second,

using similarity to compress checkpoints will reduce checkpoint commit time. Us-

ing this approach with applications whose memory usage patterns are similar to

LULESH, SAMRAI or HPCCG is likely to yield the largest benefits. As checkpoint

116

Chapter 5. Similarity Engine

commit bandwidths increase, the benefits of applications that behave like LAMMPS

will quickly erode.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
m

p
re

s
s
io

n
 r

a
te

 (
M

iB
/s

)

(a) Compression Rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

D
e
c
o
m

p
re

s
s
io

n
 r

a
te

 (
M

iB
/s

)
(b) Decompression Rate

 0

 20

 40

 60

 80

 100

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

C
o
m

p
re

s
s
io

n
 f
a
c
to

r
(%

)

(c) Compression Factor

 0

 20

 40

 60

 80

 100

 120

 140

LAM
M

PS-lj

C
TH

-blastplate

SAM
R
AI

LAM
M

PS-eam

H
PC

C
G

C
TH

-st

LU
LESH

B
re

a
k
e
v
e
n
 a

g
g
re

g
a
te

 c
h
e
c
k
p
o
in

t
 c

o
m

m
it
 b

a
n
d
w

id
th

 (
T

B
/s

)

(d) Compression Breakeven Parallel Filesys-
tem Bandwidth

Figure 5.9: Checkpoint compression metrics. The performance characteristics of
using similarity-based compression on system-level checkpoints.

5.5.3 Silent Data Corruption

Similarity in application memory can also be used to detect some errors that would be

otherwise undetected. At the end of each protection interval, the Similarity Engine

knows the set of pages for which there were no write accesses during the protection

117

Chapter 5. Similarity Engine

interval. By recomputing the hash value of each of these un-accessed pages, the

Similarity Engine can determine, with high probability, whether the contents of

the page have changed. Similarly, it can also use the set of encoded differences to

determine whether the difference between two pages has changed. If the contents of

a page have changed without a write-access, then some form of silent data corruption

has occurred.

Application
Runtime Difference from
Overhead Baseline

CTH-blastplate 0.81% +0.20%
CTH-st 1.99% -0.75%
HPCCG 2.48% +1.20%
LAMMPS-eam 15.89% +1.12%
LAMMPS-lj 14.76% +1.31%
LULESH 9.45% -0.41%
SAMRAI 1.82% -0.02%

Table 5.8: Runtime overheads of silent data corruption detection. These data were
collected using xor+lz4, a 3072-byte difference threshold, and a 60 second protection
interval

The ability to detect some occurrences of SDC reduces the risk of the application

producing an incorrect result. Although it is difficult to quantify the tradeoffs be-

tween increased execution time and decreased vulnerability to SDC, I examine the

runtime overhead of exploiting similarity for this purpose in Table 5.8. Comparing

these results to the values in Table 5.5 demonstrates that the additional cost of ex-

ploiting similarity to detect SDC is very small. For all of the workloads considered

here, the runtime with the addition of page validation is within 1.5% of the runtime

obtained without this feature enabled. This is due in large part to the fact that

decompressing encoded differences with xor+lz4 is extremely fast (cf. Figure 5.1).

118

Chapter 5. Similarity Engine

5.6 Chapter Summary

This chapter introduced a memory similarity service, Similarity Engine, and demon-

strated that it can be used to identify significant similarity in application memory:

95% in CTH-st, 94% in HPCCG, 79% in LULESH, and 70% in CTH-blastplate. The

Similarity Engine is able to extract more modest similarity in the LAMMPS prob-

lems, LAMMPS-eam and LAMMPS-lj. However, there are applications for which the

Similarity Engine is unable to identify significant similarity using this approach (e.g.,

SAMRAI). I also showed how the similarity that the Similarity Engine identified can

be used to improve performance by increasing application resilience to memory er-

rors. Specifically, for extreme-scale systems where memory failures are projected to

occur frequently the Similarity Engine can exploit similarity to:

• increase application performance by more than double for HPCCG and CTH-st,

by nearly 80% for LULESH and CTH-blastplate, and by 10% for LAMMPS-lj

and LAMMPS-eam;

• reduce checkpoint commit times by compressing checkpoints; and

• efficiently detect silent data corruption over a significant fraction of mem-

ory for LAMMPS-lj, LAMMPS-eam, CTH-st, CTH-blastplate, LULESH, and

HPCCG

The Similarity Engine imposes low overhead due to very efficient methods for identi-

fying pairs of potentially similar pages and for computing differences. The benefits of

this approach could be significantly improved with the development of more efficient

difference algorithms. The algorithm that the Similarity Engine uses, xor+lz4, is

very fast but it identifies much less similarity than the other differencing algorithms.

Similarly, although the simple neighbor heuristic is surprisingly effective, a more

119

Chapter 5. Similarity Engine

sophisticated heuristic for identifying pairs of potentially similar pages would also

improve the impact of this technique.

120

Chapter 6

Characterizing Memory Content

Similarity in Kernel Memory

6.1 Introduction

The kernel comprises some of the most important software in an HPC system. It me-

diates access to hardware resources and ensures that processes are properly isolated

from the misbehavior of their peers. A single kernel instance may be responsible for

managing the execution of many application processes running on several physical

cores. Because multiple processes may be dependent on the services provided by

a single instance of the kernel, the consequences of a failure in the kernel are fre-

quently more severe than failures that only affect a single application process. When

a failure occurs in kernel memory, modern kernels will, with a few exceptions, simply

panic [98]. All processes running within the affected operating system are killed as

a consequence.

Currently, most current HPC operating systems provide no memory protection

beyond that provided by the hardware (e.g., error-correcting codes (ECC)). However,

121

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

given the frequency of accesses to kernel memory, there is evidence that errors in these

regions of memory are more common than errors in other regions of memory [87].

Using the technique described in Chapter 5 for exploiting memory content similarities

to protect against memory faults may also be a viable approach for protecting kernel

memory.

In this chapter, I use offline analysis to examine the potential benefits of using

memory content similarity to protect against faults in the kernel memory of two HPC

operating systems. I also examine the costs of detecting similarity and of maintaining

the associated metadata.

6.2 Proposed Approach

In this chapter, I propose to use the memory content similarity techniques described

in Chapter 5 to allow the kernel to recover from uncorrectable DRAM ECC errors

that would otherwise lead to kernel panic and node failure. In this chapter, pages

of kernel memory are divided into the four page categories defined in Chapter 5.2.1:

duplicate, zero, similar and unique. Similar pages are identified by computing differ-

ences between pages using the cx_bsdiff [160] differencing algorithm.1 The differ-

ences computed by cx_bsdiff are asymmetric. As a result, the relationship between

similar pages may also be asymmetric (i.e., the fact that page A is similar to page B

does not guarantee that the reverse is true). Finally, the difference threshold is set

to 1 KiB.

When an uncorrectable memory fault occurs, knowledge of the similarities within

kernel memory can potentially allow for the fault to be corrected. As discussed

in Chapter 5.5.1, the contents of a similar (or duplicate) page can be used to recon-

1cx_bsdiff is a Python implementation of bsdiff [39].

122

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

struct the contents of the damaged page.

6.3 Evaluation

To evaluate the viability of this approach, this section considers the memory of two

important HPC operating systems running six HPC workloads. The two operating

systems examined were: (i) Linux 2.6.37 (a full-weight kernel) and; (ii) Kitten (a

lightweight kernel) [145]. Although lightweight kernels have been shown to have su-

perior performance characteristics [137], full-weight kernels dominate today’s largest

machines because of their generality, familiarity, and programmability [5, 50, 125].

The six workloads are briefly described in Table 6.1. They include a production

workload from the U.S. Department of Energy (DOE) and Marquee Performance

Codes used to evaluate candidate systems in the acquisition of the Sequoia super-

computer at Lawrence Livermore National Laboratory.

6.3.1 Running Workloads on Kitten

Kitten is a lightweight kernel designed for HPC systems. As such, its underlying

design objective is to provide a familiar Linux-compatible interface where it was

possible to do so without compromising scalability [103]. One of the common Linux

features that is not included in Kitten is a full-featured file system. Instead, it

provides storage in the form of a simple key-value store, where the key is the absolute

path of the file and the value is the contents of the file. Kitten also does not support

the specification of an initial file system image (e.g., initramfs).

Many of the workloads evaluated in this chapter expect to read input data from a

file. As a result, I modified Kitten to create the necessary input files before launching

the application code. Specifically, for each the target workloads, I embedded the

123

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

required input files in the ELF file containing the application’s executable. As part

of its SMARTMAP functionality [30], Kitten includes a loader that launches the

application from an ELF file. I modified this loader to extract the input files from

the ELF file and write their contents to the simple Kitten file system before loading

and executing the application itself.

ASC Sequoia
Marquee
Performance
Codes [107]

AMG
A parallel algebraic multigrid solver for linear
systems arising from problems on unstructured
grids [78].

IRS

Implicit Radiation Solver. Solves the radia-
tion transport equation by the flux-limited diffu-
sion approximation using an implicit matrix solu-
tion [105].

DOE
Production
Application

LAMMPS
Large-scale Atomic/Molecular Massively Parallel
Simulator. A classical molecular dynamics simula-
tor [133,143].

Mantevo Mini-
Applications
[80,144]

HPCCG
Designed to mimic the finite element generation,
assembly and solution for an unstructured grid
problem.

phdmesh
Parallel Heterogeneous Dynamic Mesh. An appli-
cation designed to mimic the contact search appli-
cations in an explicit finite element application.

Miscellaneous
Application

SAMRAI

Structured Adaptive Mesh Refinement Applica-
tion Infrastructure. Designed to enable the ap-
plication of structured adaptive mesh refinement
to large-scale multi-physics problems [106].

Table 6.1: Summary of HPC applications used to evaluate similarity in the contents
of the kernel memory of Linux and Kitten.

124

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

6.3.2 Identifying Kernel Memory

Memory snapshots of kernel memory were collected and examined offline to evaluate

the prevalence of similarity. To examine the contents of kernel memory, I first needed

to determine which memory was being used by the kernel. I accomplished this goal

by instrumenting the two kernels under consideration to provide information that I

could use to identify regions of active kernel memory.

Linux

Exhaustively tracking all of the pages used by the Linux kernel is not feasible. To

capture as much of the kernel’s memory as possible, I developed a kernel module

that tracks all of the pages that belong to a slab allocator.2 Although this approach

does not capture all of kernel memory (and captures some memory that may not be

in active use), it does capture all of the memory that the Linux kernel allocates with

calls to kmalloc. Moreover, given the overall complexity of memory allocation in

the Linux kernel, this is a relatively straightforward approach for approximating the

similarity characteristics of kernel memory.

In Linux, every page of physical memory is represented by an instance of struct

page. The flags field within each of these structures describes the characteristics of

the associated memory page. In particular, pages managed by a slab allocator have

the PG_slab bit set within the flags field. Based on this structure, I built a kernel

module, meminfo, that allowed for the traversal of physical memory to determine

which pages belonged to a slab cache.

The process of installing and initializing the meminfo module causes a virtual

device, /dev/meminfo, to be created. By using that device as the target of an ioctl

2Although the slab allocator has been largely replaced by the more efficient slub allo-
cator [40], the “slab” nomenclature still predominates in the literature.

125

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

command, I can direct the kernel module to write a summary of all of the pages that

currently belong to a slab cache to the system log.

During initialization, the kernel module also registers two kernel probes, a jprobe

and a kretprobe, to track when memory pages are added to or removed from a slab

cache. Kernel probes are provided to allow for debugging the execution of kernel

functions.3 A jprobe allows the user to specify a handler that is called each time

that a specified function is called. A kretprobe allows the user to specify a handler

that is called each time that the kernel returns from a specified function. To track

changes to slab cache membership, I register a jprobe on the return from new_slab

and a kretrpobe on the entry to __free_slab. In each case, when the probe is

triggered, an appropriate message is written to the system log.

Kitten

In the Kitten lightweight kernel, a region of low memory (by default, 64 MB) begin-

ning at address 0 is reserved for kernel use. During the initial boot sequence, a very

simple allocator (bootmem) is used to manage this memory. Near the end of the boot

sequence, management of all unused kernel memory is transferred to a buddy allo-

cator. The buddy allocator handles all of the allocation and deallocation of memory

from the kernel memory region, with the exception of those pages allocated by the

bootmem allocator during the boot sequence. The Kitten buddy allocator, like most

buddy allocators, manages memory in blocks that are a power of two in size. The

minimum block size is 32 bytes.

To determine which blocks of kernel memory have been allocated by the buddy

allocator, I modified the buddy allocator source to track the blocks of memory that

it allocates. Although this approach fails to capture the memory allocated by the

3Detailed information about kernel probes is contained in the
Documentation/kprobes.txt file included with the Linux kernel source.

126

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

bootmem allocator, it does allow all of the memory allocated after the kernel memory

subsystem has been initialized to be identified. I also created a new system call,

get_meminfo. When this new system call is invoked, it writes a list of all of the

memory blocks that were ever allocated by the buddy allocator to standard out. I

modified each of the target workloads to invoke this new system call at the beginning

and end of their execution.

6.3.3 Experimental Methodology

To minimize the perturbation of our experimental framework on the operation of

the kernel, I used the checkpointing functionality of the Palacios Virtual Machine

Monitor (VMM) [103] to collect snapshots of the memory of a virtual machine run-

ning each of the six workloads on both of our operating systems. I created two

guest machines: one that runs Linux 2.6.37 and another that runs Kitten 1.3.0. For

simplicity, all of our applications were run using a single MPI process.

The checkpointing facility of Palacios allowed me to periodically capture snap-

shots of the guest machine’s memory (once every 60 seconds for the data presented

in this chapter). As described above, these two operating systems write information

about kernel memory usage to standard out (Kitten) or to the system log (Linux).

The metadata provided by the modified kernels describes page frames in the guest

machine’s memory that are part of kernel memory. Combining this metadata with

snapshots of the guest machine’s memory allows the contents of kernel memory to

be examined.

127

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

6.3.4 Data Analysis

I analyzed each of the collected kernel memory snapshots offline. For each snapshot, I

walked through the address space from low addresses to high, categorizing each page

of memory into one of the four categories described earlier: (a) duplicate; (b) similar;

(c) zero; or (d) unique. As described in Chapter 5, duplicate pages are identified by

computing the MD5 sum of each page. I assume that two pages with the same hash

are duplicate.

For this offline inquiry, I use a different approach for identifying similar pages

than what was used in Chapter 5. The approach used in this section was inspired

by the Difference Engine [76]. Instead of computing patches between every pair of

pages, I attempt to identify a tractably small set of pages for each candidate page

that are likely to be similar to it.

For each page, I collect four 128-byte blocks of memory. These blocks are treated

as a signature of the page contents. These signatures are evenly distributed within

each 4 KiB page of memory (i.e., at offsets of 0, 1024, 2048 and 3072 bytes).

As each candidate page in the address space of an application is examined, pages

that match one or more of the candidate page’s signatures are identified. In the event

that more than one page matches a single signature, I choose the page nearest to the

candidate page. This approach identifies up to four pages that may be similar to the

current candidate page. In addition to these pages, I also consider the page of kernel

memory that occupies the next smallest page frame number. In all, this approach

identifies as many as five pages that are likely to be similar to the candidate page.

I then compute a patch between the current candidate page and each member of

the set of likely similar pages. If any patch is smaller than a threshold, in this case

1024 bytes, the current candidate page is marked as similar. Because cx_bsdiff

does not generate symmetric patches, observing a single patch that falls below the

128

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

threshold is sufficient to categorize only a single page as similar. Therefore, I also

compute the reciprocal patch of each of the pages in the set of likely similar pages

to determine whether any of them should also be marked as similar.

This is a heuristic approach (cf. [76]) based on the idea that the contents of a page

of memory can be meaningfully summarized as a set of signatures. Although there

may be methods that would yield greater numbers of similar pages by generating

smaller differences, the fraction of similar pages identified by this approach is a lower

bound on the total number of similar pages in kernel memory.

6.4 Similarity in Kernel Memory

This section examines the potential costs and benefits of exploiting similarity in

kernel memory. Although the case for resilient operating systems is still emerging

[55], these results suggest that the proposed approach has promise.

6.4.1 Similarity Overview

Figures 6.1(a) and 6.1(b) show the composition of kernel memory for Linux (a heavy-

weight OS) and Kitten (a lightweight OS). The data for each operating system rep-

resent the mean fraction of the kernel memory pages in each of four categories.

Tables 6.2(a) and 6.2(b) provide detailed statistics about the number of pages in

each category. These data were collected over ten trials of each combination of two

operating systems and six workloads. For Kitten, all of the pages of kernel memory

whose contents are ever managed by the buddy allocator are considered. For Linux,

all of the kernel memory that managed by a slab allocator at any point during the

application’s execution are considered.

129

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

Figures 6.1(b) and 6.1(a) show that both Linux and Kitten have a very large

number of similar pages. Also, the kernel memory of both operating systems con-

tains very few duplicate pages. This result is consistent with how the OS uses this

memory; the majority of the state maintained by these OSs is comprised of table-

based structures containing objects such as page table mappings. Given the nature

of page tables, I would expect to find large numbers of similar pages in memory al-

located for page table data structures. For x86 processors, each element in the page

table hierarchy occupies a full 4 KiB page of memory even if only a handful of pages

are mapped in the referenced region of virtual memory. As a result, page table data

structures tend to be very sparse: they contain large numbers of null entries. The

presence of few non-null entries in these structures allows the differences between

pages containing them to be compactly represented.

To empirically validate these observations, I instrumented Kitten’s buddy allo-

cator to track the percentage of buddy-allocated memory that is used to store page

table data structures. For each of the six applications considered in this chapter, the

minimum observed percentage of memory that is allocated by the buddy allocator

for page tables is shown in Table 6.2. These data show that page table data struc-

tures occupy the vast majority of buddy-allocated memory and thus must also be a

significant source of the similarity observed in Figure 6.1(b).

The page categorization for kernel memory in Linux exhibits much less variation

than kernel memory in Kitten. As shown in Table 6.2(a), there is little variation be-

tween trials or across applications in the page categorization of Linux kernel memory.

In contrast, larger variations are visible in the composition of Kitten kernel memory

both between trials and across applications. While both kernels exhibit significant

similarity, it is likely that both the costs and the benefits in Kitten will exhibit larger

variation than in Linux.

130

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

 0

 20

 40

 60

 80

 100

LAM
M

PS-lj

IR
S

SAM
R
AI

AM
G

phdm
esh

H
PC

C
G

P
e
rc

e
n
t
o
f
m

e
m

o
ry

 p
a
g
e
s

Duplicate

Similar

Zero

Unique

(a) Linux

 0

 20

 40

 60

 80

 100

LAM
M

PS-lj

IR
S

SAM
R
AI

AM
G

phdm
esh

H
PC

C
G

P
e
rc

e
n
t
o
f
m

e
m

o
ry

 p
a
g
e
s

Duplicate

Similar

Zero

Unique

(b) Kitten

Figure 6.1: Mean page categorization of kernel memory. This figure shows the mean
page categorization of kernel memory for each operating system using a 1024 byte
patch threshold. Each bar represents the mean fraction of memory pages in each of
the four page categories observed over a sequence of 10 trials. As discussed in Sec-
tion 6.3.2, memory snapshots were collected every 60 seconds of application execution
time, for a total of 5-6 snapshots per workload.

131

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

Application
Page

Mean (x)
Standard 99% Confidence

Category Deviation (s) Interval

LAMMPS-lj
duplicate 26.60 2.75 (25.65 - 27.55)

zero 13.10 0.30 (13.00 - 13.20)
similar 2706.50 12.18 (2702.32 - 2710.68)
unique 333.10 11.39 (329.19 - 337.01)
total 3079.30 3.61 (3078.06 - 3080.54)

IRS
duplicate 20.68 3.63 (19.44 - 21.93)

zero 13.57 1.03 (13.21 - 13.92)
similar 2695.30 16.31 (2689.69 - 2700.91)
unique 338.75 16.24 (333.17 - 344.33)
total 3068.30 3.25 (3067.18 - 3069.42)

SAMRAI
duplicate 23.60 3.16 (22.51 - 24.69)

zero 14.18 1.40 (13.70 - 14.66)
similar 2698.93 18.05 (2692.73 - 2705.14)
unique 333.38 18.02 (327.19 - 339.58)
total 3070.10 4.41 (3068.59 - 3071.61)

AMG
duplicate 23.20 3.09 (22.14 - 24.26)

zero 13.58 1.01 (13.24 - 13.93)
similar 2690.13 20.97 (2682.93 - 2697.34)
unique 342.38 22.24 (334.74 - 350.02)
total 3069.30 2.55 (3068.42 - 3070.18)

phdmesh
duplicate 20.30 2.26 (19.52 - 21.08)

zero 13.85 1.16 (13.45 - 14.25)
similar 2696.27 16.94 (2690.45 - 2702.09)
unique 336.78 17.79 (330.67 - 342.90)
total 3067.20 3.28 (3066.07 - 3068.33)

HPCCG
duplicate 19.70 3.77 (18.40 - 21.00)

zero 14.00 1.10 (13.62 - 14.38)
similar 2700.02 16.40 (2694.38 - 2705.65)
unique 326.18 14.38 (321.24 - 331.12)
total 3059.90 1.65 (3059.33 - 3060.47)

(a) Linux

132

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

Application
Page

Mean (x)
Standard 99% Confidence

Category Deviation (s) Interval

LAMMPS-lj
duplicate 0.00 0.00 (0.00 - 0.00)

zero 63.45 6.81 (61.11 - 65.79)
similar 908.50 145.64 (858.45 - 958.55)
unique 38.05 152.45 (0.00 - 90.44)
total 1010.00 0.00 (1010.00 - 1010.00)

IRS
duplicate 6.17 33.41 (0.00 - 17.65)

zero 127.13 26.34 (118.08 - 136.18)
similar 929.35 97.99 (895.68 - 963.02)
unique 9.35 39.08 (0.00 - 22.78)
total 1072.00 0.00 (1072.00 - 1072.00)

SAMRAI
duplicate 0.00 0.00 (0.00 - 0.00)

zero 56.82 1.98 (56.14 - 57.50)
similar 963.25 1.75 (962.65 - 963.85)
unique 5.93 0.36 (5.81 - 6.06)
total 1026.00 0.00 (1026.00 - 1026.00)

AMG
duplicate 5.87 45.44 (0.00 - 21.48)

zero 37.90 45.70 (22.20 - 53.60)
similar 927.67 98.69 (893.76 - 961.58)
unique 2.57 7.56 (0.00 - 5.16)
total 974.00 0.00 (974.00 - 974.00)

phdmesh
duplicate 3.83 29.69 (0.00 - 14.04)

zero 37.88 30.08 (27.55 - 48.22)
similar 926.53 96.57 (893.35 - 959.72)
unique 6.75 36.79 (0.00 - 19.39)
total 975.00 0.00 (975.00 - 975.00)

HPCCG
duplicate 5.52 42.73 (0.00 - 20.20)

zero 8.55 42.99 (0.00 - 23.32)
similar 924.18 98.36 (890.38 - 957.98)
unique 2.75 12.64 (0.00 - 7.09)
total 941.00 0.00 (941.00 - 941.00)

(b) Kitten

Figure 6.2: Detailed page categorization statistics. For each combination of six work-
loads and two operating systems, this table provides statistics on the number of
similar, duplicate, zero and unique pages observed in kernel memory. These statis-
tics were generated from data collected over ten trials of each application/operating
system pair.

133

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

Application
Minimum Percentage of Buddy-Allocated

Memory Used for Page Tables
AMG2006 93.7%

IRS 85.3%
LAMMPS-lj 90.8%

SAMRAI 90.9%
HPCCG 97.0%
phdmesh 93.7%

Table 6.2: Fraction of Kitten kernel memory used to store page tables. This table
shows the minimum percentage of memory allocated by Kitten’s buddy allocator that
is used for page table data structures over the ten trials of each of six workloads.

Patch Size Threshold

Figure 6.3 facilitates an examination of the tradeoff between the size of the difference

and memory overhead in these operating systems. It shows the fraction of similar and

duplicate pages as a function of metadata size. The data in this figure were collected

over ten trials of each combination of the two kernels and six applications considered

in this chapter. For each application, this figure shows a very narrow shaded a region

that contains all of the observations collected over the series of trials. Consistent with

observations in the preceding section, there is more variation across applications in

the Kitten data. However, taken as a whole, the tradeoff between memory to store

differences and the number of similar pages is consistent from trial to trial and largely

independent of the application.

The slope of these curves represents the ratio of cost to benefit. For Kitten,

increasing the difference threshold results in a dramatic increase in the fraction of

similar pages yet it requires only a very small increase in the size of the metadata.

For Linux, increasing the patch size comes at a greater (but still modest) cost. For

both OSs, only a modest amount of metadata (less than 12%) is required to protect

all of kernel memory using the proposed approach.

134

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

 0

 20

 40

 60

 80

 100

 0% 2% 4% 6% 8% 10% 12% 14%

P
e
rc

e
n
t
o
f
n
o
n
-u

n
iq

u
e

(s
im

ila
r,

 d
u
p
lic

a
te

 a
n
d
 z

e
ro

)
m

e
m

o
ry

 p
a
g
e
s

Percent of kernel memory

AMG
HPCCG

IRS
LAMMPS-lj

phdmesh
SAMRAI

(a) Linux

 0%

20%

40%

60%

80%

100%

 0% 2% 4% 6% 8% 10% 12% 14%

P
e
rc

e
n
t
o
f
n
o
n
-u

n
iq

u
e

(s
im

ila
r,

 d
u
p
lic

a
te

 a
n
d
 z

e
ro

)
m

e
m

o
ry

 p
a
g
e
s

Percent of kernel memory

AMG
HPCCG

IRS
LAMMPS-lj

phdmesh
SAMRAI

(b) Kitten

Figure 6.3: Non-unique memory pages as a function of metadata volume. This
figures shows the fraction of non-unique (i.e., duplicate, zero and similar) pages as
a function of metadata size for Kitten and Linux running six workloads. Ten trials
were conducted for each application and six memory snapshots were collected during
each run. Due to variations in the timing of the first snapshot, only the results
from the last five snapshots for each trial are included here. The shaded region for
each application shows the range of observed results. For Linux, there is very little
variation between applications and the last sequence rendered is the only one that
is visible.

Modification Behavior

The cost of maintaining the metadata necessary to correct memory errors will de-

pend, in part, on the rate at which similar and duplicate pages are modified. To

examine the frequency of kernel memory modification, Table 6.3 compares the con-

tents of kernel memory pages across the sequence of collected snapshots. The data in

this table are aggregated over the series of trials that were performed. As these data

show, a significant majority of similar and duplicate pages are not modified during

the application’s execution. These results are consistent with how these operating

systems use memory; they construct tables that are written once and read many

times. The infrequent modification of similar and duplicate pages in kernel memory

135

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

Application
Similar/Duplicate Changed Changed Changed Changed Changed

Pages 1+ Times 1 Time 2 Times 3 Times 4+ Times
AMG2006 27211 351 (1.29%) 240 (0.88%) 10 (0.04%) 6 (0.02%) 95 (0.35%)

IRS 27252 411 (1.51%) 196 (0.72%) 11 (0.04%) 0 (0.00%) 204 (0.75%)
LAMMPS-lj 27395 359 (1.31%) 259 (0.95%) 28 (0.10%) 0 (0.00%) 72 (0.26%)

SAMRAI 27288 488 (1.79%) 274 (1.00%) 19 (0.07%) 10 (0.04%) 185 (0.68%)
HPCCG 27288 415 (1.52%) 233 (0.85%) 17 (0.06%) 1 (0.00%) 164 (0.60%)
phdmesh 27257 441 (1.62%) 253 (0.93%) 15 (0.06%) 0 (0.00%) 173 (0.63%)

(a) Linux

Application
Similar/Duplicate Changed Changed Changed Changed Changed

Pages 1+ Times 1 Time 2 Times 3 Times 4+ Times
AMG2006 9730 20 (0.21%) 10 (0.10%) 0 (0.00%) 0 (0.00%) 10 (0.10%)

IRS 10688 138 (1.29%) 96 (0.90%) 4 (0.04%) 0 (0.00%) 38 (0.36%)
LAMMPS-lj 10072 29 (0.29%) 20 (0.20%) 0 (0.00%) 0 (0.00%) 9 (0.09%)

SAMRAI 10204 152 (1.49%) 81 (0.79%) 27 (0.26%) 32 (0.31%) 12 (0.12%)
HPCCG 9401 10 (0.11%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 10 (0.11%)
phdmesh 9731 1 (0.01%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.01%)

(b) Kitten

Table 6.3: Modification behavior of similar and duplicate kernel memory pages.
This table shows the frequency with which pages in kernel memory that are ever
categorized as similar or duplicate. Ten trials were conducted for each applica-
tion/operating system pair. Six memory snapshots were collected during each run.
Due to variations in the timing of the first snapshot, only the results from the last five
snapshots for each trial are included here. For each application, these data represent
the total number of pages captured over all ten trials. These results demonstrate
that similar and duplicate pages in kernel memory change very little over the lifetime
of an application.

suggests that the cost of metadata maintenance will be low.

6.5 Chapter Summary

This chapter examined the feasibility of exploiting memory content similarity in ker-

nel memory. The results in this chapter point to the potential of this novel technique

to efficiently protect against uncorrectable memory errors in kernel memory. For

both Linux and Kitten, significant similarity exists in regions of kernel memory. Ad-

ditionally, similar and duplicate pages in kernel memory are infrequently modified

136

Chapter 6. Characterizing Memory Content Similarity in Kernel Memory

and can be protected with small volumes of metadata.

137

Chapter 7

Conclusion and Future Work

The objective of the work presented in this dissertation was to demonstrate that roll-

back avoidance techniques can be used effectively to mitigate the performance impact

of failures on next-generation extreme-scale systems. In this chapter, I summarize

my contributions and explore potential next steps.

7.1 Summary

In this dissertation, I examined the benefits and costs of using rollback avoidance to

augment checkpoint/restart-based fault tolerance mechanisms. Using a combination

of numerical models, simulation, and implementation, I demonstrated that rollback

avoidance techniques have the potential to address the deleterious performance im-

pact of the increase in failure frequency that is projected for next-generation systems.

We discuss each of the major contributions of the work presented in this dissertation

below.

138

Chapter 7. Conclusion and Future Work

1. An Analytic Model of Rollback Avoidance and Coordinated

Checkpoint/Restart

In Chapter 3, I developed and validated an analytic model of the impact of

rollback avoidance on application performance. I used this model to demon-

strate that when coordinated checkpoint/restart is used on systems that ex-

perience frequent failure, rollback avoidance can yield significant performance

benefits. I also showed that checkpoint/restart will likely still be an important

part of fault tolerance; it is unlikely that rollback avoidance by itself will be

sufficient on next-generation systems. This model also allowed us to demon-

strate that exploiting memory content similarity as described in Chapter 5 has

the potential to yield significant improvements in application performance on

next-generation systems.

2. Simulation of Rollback Avoidance and Coordinated

Checkpoint/Restart

In Chapter 4, I presented and validated a simulation framework for simulating

the performance impact of fault tolerance activities on next-generation sys-

tems. Using this framework, I showed the limitations of rollback avoidance.

For some applications, namely those that are insensitive to noise and noise-

like interruptions, I demonstrated that rollback avoidance may only modestly

improve application performance when asynchronous checkpoint/restart and

message logging are employed.

3. Exploiting Memory Content Similarity to Protect Against Faults in

Application Memory

In Chapter 5, I presented and evaluated a software library for extracting mem-

ory content similarity: the Similarity Engine. Using this library, I characterized

the prevalence of similarities in application memory for several important appli-

cations, proxies, and mini-applications. We then examined and evaluated three

139

Chapter 7. Conclusion and Future Work

techniques for exploiting this information to reduce the performance impact of

rollbacks caused by faults in application memory.

4. Examining the Viability of Using Memory Content Similarity to

Protect Against Faults in Kernel Memory

Finally, in Chapter 6, I examined the feasibility of using my memory content

similarity technique to protect kernel memory against memory faults. I demon-

strated that in Linux and Kitten kernel memory contains significant similarity.

Moreover, I showed that the overhead of this approach is likely to be modest

because kernel memory changes infrequently and it can be protected by a small

volume of metadata.

7.2 Future Work

In this dissertation, I have thoroughly examined the potential costs and benefits of

using rollback avoidance on next-generation systems. However, a number potential

research inquiries remain.

My model of rollback avoidance in Chapter 3 is an extension of Daly’s model of

application execution. As a result, it is limited to modeling exponentially-distributed

failures and coordinated checkpoint/restart. While overcoming these limitations

pose significant challenges, extending the model to account for other failure distribu-

tions and to account for the performance impact of uncoordinated checkpoint/restart

would increase the power of this model.

The simulation framework introduced in Chapter 4 is a powerful tool. However,

like my model, it also only supports exponentially distributed failures. Extending it

to simulate other failure distributions would allow us to examine the impact of the

failures distribution on rollback avoidance. From a software engineering perspective,

140

Chapter 7. Conclusion and Future Work

there are a number of enhancements that would increase the power of the simula-

tor as a research tool. These include parallelization and adding support for MPI

subcommunicators. These features would allow us to simulate a wider variety of

applications running on larger systems.

In Chapter 5, I demonstrated that the memory of several applications contain

significant similarity. Understanding how similarity arises in application memory

might allow us to structure the application in a way that increases this similarity.

One of the biggest costs of my approach is the cost of computing differences. In

Chapter 5.3.3, I demonstrated that the neighbor heuristic is efficient and reasonably

effective. However, for a given difference threshold, it identifies only a fraction of the

total similar pages. Identifying more effective methods for identifying pairs of likely

similar pages would improve the overall impact of our approach.

Finally, in Chapter 6 I examined the feasibility of exploiting content similarity

in pages of kernel memory. The next step is to implement a runtime system in the

kernel that can identify and exploit similarities.

141

Appendices

142

Appendix A

Derivation of Rollback Avoidance

Models

A.1 Modeling the Probability of Rollback Avoid-

ance

This section examines expected time between errors that result in the application

rolling back to an earlier checkpoint. Xi is an indicator random variable to indicate

when rollback due to an error is avoided.

Xi =

1 if i or more consecutive failures can be avoided

0 otherwise

143

Appendix A. Derivation of Rollback Avoidance Models

Using Xi, the interarrival time of unavoidable rollbacks can be captured in the fol-

lowing way.

Yi = the interarrival time of the ith failure

p = probability of avoiding an error

Y = the interarrival time of the next unavoidable rollback

Therefore:

Y =
∞∑
i=0

XiYi

E(Y) =
∞∑
i=0

E(XiYi)

=
∞∑
i=0

E(Xi)E(Yi)

= M
∞∑
i=0

E(Xi)

= M
∞∑
i=0

pi

=
M

1− p

Because rollback avoidance and interarrival times are independent in this model, the

expectation of the product is equal to the product of the expectation. Finally, the

expected value of Y (i.e., E(Y)) is the effective MTBF after the effect of rollback

avoidance is accounted for. Further, because the interarrival times of errors are

exponentially distributed and the number of consecutive errors for which rollback is

avoided rollback is geometrically distributed, the resulting times between unavoidable

rollbacks are also exponentially distributed [156, p. 320].

144

Appendix A. Derivation of Rollback Avoidance Models

A.2 Modeling Rollback Avoidance + Coordinated

Checkpoint/Restart

A.2.1 Showing the Limit with Optimal Checkpoint Interval

When pa = 1.0 this model is undefined. However, this subsection shows that the

model converges to the correct result as pa → 1.0. The limit of Tw(pa, oa) depends on

how the checkpointing interval is determined. The analysis in this section considers

two cases: (i) Daly’s optimal checkpoint interval [42], and (ii) a fixed interval. The

limits are different in these two cases because the optimal checkpoint interval depends

on pa; as pa increases so does the optimal checkpoint interval. The analysis begins

by considering the optimal checkpoint interval. In this case, the result is that:

lim
pa→1.0

Tw(pa, oa) = T ′s (A.1)

In other words, if all rollbacks could be avoided the total work time would be equal

to the application’s solve time, including the overhead of avoiding rollbacks. Consid-

ering the impact of rollback avoidance, the value of the optimal checkpoint interval

(τ′opt) when δ < 2M is:

τ′opt =

√
2δM

(1− pa)

[
1 +

1

3

(
δ(1− pa)

2M

)1/2

+
1

9

(
δ(1− pa)

2M

)]
− δ (A.2)

Daly also provides an optimal checkpoint interval for the case where δ ≥ 2M . How-

ever, as pa → 1.0, the system MTBF effectively becomes infinite. As a result, for any

finite value of δ, the optimal checkpoint interval will be defined by Equation A.2 when

pa is close to 1.0. Tw can be expressed in terms of pa by combining Equations 3.1

and 3.3.

Tw(pa) =

(
M

1− pa

)
eR(1−pa)/M

(
e(τ

′
opt+δ)(1−pa)/M − 1

) T ′
s

τ
′
opt

145

Appendix A. Derivation of Rollback Avoidance Models

To allow for a more compact representation let:

τ̂ = τ
′

opt(1− pa)/M

=
1− pa
M

(√
2δM

1− pa

[
1 +

1

3

(
δ(1− pa)

2M

)1/2

+
1

9

(
δ(1− pa)

2M

)]
− δ

)

=
√

2δ(1− pa)M−1/2 − 2δ(1− pa)
3

M−1 +
δ
√
δ(1− pa)3/2

9
M−3/2

The result is:

Tw(pa) =
M

1− pa
eR(1−pa)/M

(
e(τ

′
opt+δ)(1−pa)/M − 1

) T ′
s

τ
′
opt

= eR(1−pa)/M
(
eτ̂+δ(1−pa)/M − 1

)T ′
s

τ̂

=

(
eτ̂+δ(1−pa)/M − 1

)
T

′
s

τ̂e−R(1−pa)/M

Take the limit of Tw as pa approaches 1.0.

lim
p→1.0

Tw(pa) = lim
p→1.0

Tw(pa)

(
eτ̂+δ(1−pa)/M − 1

)
T

′
s

τ̂e−R(1−pa)/M

To simplify the algebra, let M
′
= M/(1− pa).

lim
p→1.0

Tw(pa) = lim
M ′→∞

Tw(M
′
)

= lim
M ′→∞

(
eτ̂+δ/M

′
− 1
)
T

′
s

τ̂e−R/M
′

Because the limit of the numerator and the denominator are both zero, L’Hôpital’s

Rule can be applied. This yields:

lim
M ′→∞

Tw(pa) = lim
M ′→∞

T
′
se

τ̂+δ/M
′(

dτ̂
dM ′ − δ

M ′2

)
R

M ′2 e−R/M
′
τ̂ + e−R/M

′ dτ̂
dM ′

= lim
M ′→∞

T
′
se

τ̂+(δ+R)/M
′(

dτ̂
dM ′ − δ

M ′2

)
R

M ′2 τ̂ + dτ̂
dM ′

(A.3)

where:

dτ̂

dM ′ = −
√

2δ

2
M

′−3/2
+

2δ

3
M

′−2 − δ
√
δ

6
M

′−5/2

146

Appendix A. Derivation of Rollback Avoidance Models

In Equation A.3, the limit of both the numerator and denominator are zero. However,

a factor of M
′3/2

can be eliminated from each. This yields:

lim
M ′→∞

Tw(pa) = lim
M ′→∞

T
′
se

(τ̂+(δ+R)/M
′
)
(
−
√

2δ
2
M

′−3/2 − δ
3
M

′−2 − δ
√
δ

6
M

′−5/2)
R
M ′2 τ̂ +

(
−
√

2δ
2
M ′−3/2 − 2δ

3
M ′−2 − δ

√
δ

6
M ′−5/2)

= lim
M ′→∞

T
′
se

(τ̂+(δ+R)/M
′
)
(
−
√

2δ
2
− δ

3
M

′−1/2 − δ
√
δ

6
M

′−1)
RM ′−1/2τ̂ +

(
−
√

2δ
2

+ 2δ
3
M ′−1/2 − δ

√
δ

6
M ′−1)

=
T

′
se

(0+0)
(
−
√

2δ
2
− δ

3
0− δ

√
δ

6
0
)

R · 0 · 0 +
(
−
√

2δ
2

+ 2δ
3

0− δ
√
δ

6
0
)

=
T

′
s

(
−
√

2δ
2

)
−
√

2δ
2

= T
′

s

As the probability of avoiding rollback approaches 1.0, the cost of checkpointing

and failure recovery approach zero. As a result, the total work time converges to

the application’s native time-to-solution (T
′
s) expanded by the overhead of avoiding

rollback (1 + oa).

A.2.2 Showing the Limit with Fixed Checkpoint Interval

In this case, the result is that:

lim
pa→1.0

Tw(pa, oa) = T ′s (A.4)

lim
pa→1.0

Tw(pa) = lim
pa→1.0

(
M

1− pa

)
eR(1−pa)/M

(
e(τ+δ)(1−pa)/M − 1

)T ′
s

τ

To simplify the algebra, let M
′
= M/(1− pa).

lim
pa→1.0

Tw(pa) = lim
M ′→∞

M
′
eR/M

′(
e(τ+δ)/M

′

− 1
)T ′

s

τ

=
T

′
s

τ
lim

M ′→∞

e(τ+δ)/M
′
− 1

1
M ′ e−R/M

′

147

Appendix A. Derivation of Rollback Avoidance Models

Because the limit of the numerator and the denominator are both zero L’Hôpital’s

Rule can be applied.

lim
pa→1.0

Tw(pa) =
T

′
s

τ
lim

M
′→∞

− (τ+δ)

M ′2 e
(τ+δ)/M

′

− 1

M ′2 e−R/M
′
+ R

M ′3 eR/M
′

=
T

′
s

τ
lim

M ′→∞

−(τ + δ)e(τ+δ)/M
′

−e−R/M ′
+ R

M ′ eR/M
′

=
T

′
s

τ

−(τ + δ)

−1 + 0

= T
′

s

(
1 +

δ

τ

)

A.3 Modeling Rollback Avoidance Without

Checkpoint/Restart

A.3.1 Extending Daly’s Model

Daly began with a high-level model of the time required to execute an application

[42]. In this model, he expresses the total execution time, Tw, as:

Tw(τ) = solve time + dump time + rework time + restart time

Because no checkpoints are taken in the case of model rollback avoidance without

checkpointing, two changes to this high-level model are required: (i) set the dump

time to zero; and (ii) express Tw as a function of pa and oa. This yields:

Tw(pa, oa) = solve time + rework time + restart time

Given this high-level model, the solve time is T
′
s: the native solve time of the appli-

cation plus the overhead of avoiding rollback. Daly states that the cost of restarting

148

Appendix A. Derivation of Rollback Avoidance Models

and redoing lost work can be expressed as:

rework time + restart time =
[
E(∆t) +R)P (∆t)n(∆t)

]
+[

E(∆t+R)(1− P (∆t))n(∆t)
]

where:

E(∆t) = the expected point of failure in an interval of size ∆t

= M +
∆t

1− e∆/M

P (∆t) = the probability of completing an interval of size ∆t

without interrupt

= e−∆t/M

n(∆) = the expected number of interrupts in an interval of size ∆t

= Tw(pa, oa)/M

When rollback occurs without checkpointing, the application must start over from

the beginning. As a result, the application will complete its execution only when an

interval of size Ts completes without requiring rollback. This yields:

Tw(pa, oa) = solve time + rework time + restart time

= T
′

s +
[
(E(T

′

s) +R)P (T
′

s)n(T
′

s)
]
+[

E(T
′

s +R)(1− P (T
′

s))n(T
′

s)
]

=
M

′
T

′
s

M ′ − (E(T ′
s) +R)P (T ′

s)− E(T ′
s +R)(1− P (T ′

s))

=
M

′
T

′
s

−(E(T ′
s) +R)P (T ′

s)−
T

′
s+R

1−e(T
′
s+R)/M

′ + E(T ′
s +R)P (T ′

s)

=
M

′
T

′
se

(T
′
s+R)/M

′

− T ′
s

1−eT
′
s/M

′ −R− (T ′
s+R)e(T

′
s+R)/M

′

1−e(T
′
s+R)/M

′ + T ′
s+R

1−e(T
′
s+R)/M

′

=
M

′
T

′
se

(T
′
s+R)/M

′

− T ′
s

1−eT
′
s/M

′ −R + T ′
s +R

= M
′
eR/M

′

(eT
′
s/M

′

− 1)

149

Appendix A. Derivation of Rollback Avoidance Models

A.3.2 Showing the Limit

When pa = 1.0 this model is undefined. However, this subsection shows that the

model produces the converges to the correct result as pa → 1.0. In particular, it

shows that:

lim
pa→1.0

Tw(pa) = T
′

s

Because M
′
= Θ/(1− pa):

lim
pa→1.0

Tw(pa) = lim
M ′→∞

Tw(M
′
)

= lim
M ′→∞

M
′
eR/M

′

(eT
′
s/M

′

− 1)

= lim
M ′→∞

(eT
′
s/M

′
− 1)

M ′−1e−R/M
′

The limit of the numerator and the denominator are both zero. Therefore, L’Hôpital’s

Rule can be applied. This yields:

lim
M ′→∞

Tw(M
′
) = lim

M ′→∞

−T ′
sM

′−2
eT

′
s/M

′

−M ′−2e−R/M
′
+ M ′−1(−RM ′−2)e−R/M ′

= lim
M ′→∞

−T ′
se
T

′
s/M

′

−e−R/M ′ − M ′−1Re−R/M
′

= T
′

s

150

Appendix B

Proof of Maximum Number of

Similar Pages in a Checkpoint

This chapter establishes an upper bound on the number of similar pages that must

be included in a checkpoint. In Chapter 5, the examination focuses on a symmetric

difference algorithm (xor+lz4) and a simple similarity heuristic (neighbors). Showing

an upper-bound on the number of pages that must be retained in this instance is

straightforward. Here a more general problem is considered: asymmetric differences

and arbitrary associations between similar pages and the other pages in application

memory allocations.

The analysis begins with the construction of a graph of similar pages and their

relationships.

S = the set of similar pages in application allocated memory

R = the set of non-similar reference pages associated with the similar pages

As discussed in Chapter 5, every similar page, s ∈ S, is defined by a set of tuples,

D = {(d, p)}, where d is the value of the difference and p ∈ (S ∪R) is the associated

151

Appendix B. Proof of Maximum Number of Similar Pages in a Checkpoint

S0 S1 S2

S5 S4 S3

(a)

S0 S1 S2

R1 S4 S3

(b)

Figure B.1: Two hypothetical examples of the relationship between similar pages
(Si) and non-similar reference pages (Ri) in the memory of an application. The
directed edges represent computed differences. An edge from Si to Sj (or Ri to Sj)
indicates a difference that would allow Sj to be recreated from the reference page.
In B.1a, we would need to retain three similar pages, one from each cycle. In B.1b,
we would need to retain one similar page from cycle on the right hand side of the
figure.

reference page. Note that the reference page may be a similar page or it may be a

non-similar page. There is a vertex in the graph for each p ∈ (S ∪ R). For each

s ∈ S, I identify a tuple (d, p) such that for all (di, pi) ∈ D, d ≤ di. In other words,

the smallest difference for each similar page is chosen. A directed edge from p to s

is then created in the graph.

Given this graph, G = (V,E) of similarity relationships, the analysis in this

chapter will demonstrate that no more than half of the similar pages must be included

in a checkpoint. The algorithm for identifying the set of similar pages that must be

retained in a checkpoint is as follows.

1. Remove all of the vertices s ∈ S that are reachable from r ∈ R.

2. Remove all of the vertices r ∈ R.

3. While there is at least one vertex v such that out-degree(v) = 0, remove v.

4. For each cycle in G, remove all but one vertex.

152

Appendix B. Proof of Maximum Number of Similar Pages in a Checkpoint

Examining the implications of each step in this algorithm proves that after the

applying this algorithm, |V | ≤ 1
2
|S|.

1. All of the similar pages that can be reconstructed from zero, duplicate or

unique pages are removed from the graph. Chapter 5 describes how pages in

each category are captured in the compressed checkpoint. In the worst case,

this step removes no similar pages.

2. All non-similar pages can be independently reconstructed from the compressed

checkpoint. This step will never remove any similar pages from G.

3. As this graph is constructed, for all s ∈ S, in-degree(s) = 1. At this point, for

all v ∈ V, v ∈ S. In other words, the remaining vertices only represent similar

pages. Therefore:∑
v∈V

out-degree(v) = |S|

This property is invariant throughout this step of the algorithm. For each

vertex, v, that is removed in this step out-degree(v) = 0 and in-degree(v) = 1.

As a result, the total out-degree of G is reduced by 1 because removing v also

removes exactly one edge which reduces the out-degree of one of the remaining

vertices by 1. Removing v also reduces |S| by 1.

4. At the conclusion of the previous step, the following holds for every remaining

vertex, v:

out-degree(v) > 0 and∑
v∈V

out-degree(v) = |S|

Therefore, out-degree(v) = 1. By construction:

in-degree(v) = 1

153

Appendix B. Proof of Maximum Number of Similar Pages in a Checkpoint

Because every vertex has an in-degree and an out-degree of 1, each vertex

must be part of a cycle. If one similar page is retained from each cycle, all

of the pages in the cycle can be reconstructed. And because the smallest

possible cycle consists of two vertices, no more than half of the similar pages

in application-allocated memory must be included in the checkpoint.

154

References

[1] bzip2. http://bzip.org.

[2] Extremely fast compression algorithm. https://github.com/Cyan4973/lz4.

[3] Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Technical Report LLNL-TR-490254.

[4] November 2014 — TOP500 Supercomputer Sites. http://www.top500.org/

(visited March 2012).

[5] Top 500 Supercomputer Sites. http://www.top500.org/ (visited March 2012).

[6] SST: The structural simulation toolkit. http://sst.sandia.gov/about_

sstmacro.html, 2011.

[7] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira. Adaptive
incremental checkpointing for massively parallel systems. In Proceedings of
the 18th Annual International Conference on Supercomputing, pages 277–286.
ACM, 2004.

[8] Sean Ahern, Arie Shoshani, Kwan-Liu Ma, Alok Choudhary, Terence
Critchlow, Scott Klasky, Valerio Pascucci, Jim Ahrens, Wes Bethel, Hank
Childs, et al. Scientific discovery at the exascale: report from the DOE ASCR
2011 workshop on exascale data management, analysis, and visualization, 2011.

[9] Lorenzo Alvisi, Elmootazbellah N. Elnozahy, Sriram Rao, Syed Amir Husain,
and Asanka de Mel. An analysis of communication induced checkpointing.
In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual
International Symposium on, pages 242–249, 1999.

[10] Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic, optimistic,
causal, and optimal. Software Engineering, IEEE Transactions on, 24(2):149–
159, 1998.

155

References

[11] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.

[12] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by
using KSM. In Proceedings of the Linux Symposium, 2009, Montreal, Quebec,
pages 19–28, 2009.

[13] Argonne National Laboratory. Argonne Leadership Computing Facility.
https://www.alcf.anl.gov/user-guides/mira-cetus-vesta, 2015.

[14] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona
Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul Messina, et al. The
opportunities and challenges of exascale computing. Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee,
pages 1–77, 2010.

[15] Guillaume Aupy, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. Check-
pointing algorithms and fault prediction. Journal of Parallel and Distributed
Computing, 74(2):2048–2064, 2014.

[16] Algirdas Avizienis and Jean-Claude Laprie. Dependable computing: From
concepts to design diversity. Proceedings of the IEEE, 74(5):629–638, 1986.

[17] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, and Meghan Wingate. PLFS: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, page 21. ACM, 2009.

[18] John Bent, Gary Grider, Brett Kettering, Adam Manzanares, Meghan Mc-
Clelland, Aaron Torres, and Alfred Torrez. Storage challenges at Los Alamos
National Lab. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1–5. IEEE, 2012.

[19] Eduardo Berrocal, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan, and
Franck Cappello. Lightweight silent data corruption detection based on runtime
data analysis for HPC applications. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC
’15, pages 275–278, 2015.

[20] Susmit Biswas, Bronis R. de Supinski, Martin Schulz, Diana Franklin, Tim-
othy Sherwood, and Frederic T. Chong. Exploiting data similarity to reduce
memory footprints. In Proceedings of the 2011 IEEE International Parallel

156

References

& Distributed Processing Symposium, IPDPS ’11, pages 152–163, Washington,
DC, USA, 2011. IEEE Computer Society.

[21] Swen Böhm and Christian Engelmann. xSim: The extreme-scale simulator.
In High Performance Computing and Simulation (HPCS), 2011 International
Conference on, pages 280–286. IEEE, 2011.

[22] Shekhar Borkar. The exascale challenge. In VLSI Design Automation and Test
(VLSI-DAT), 2010 International Symposium on, pages 2–3. IEEE, 2010.

[23] George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack
Dongarra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien,
and Dounia Zaidouni. Unified model for assessing checkpointing protocols
at extreme-scale. Concurrency and Computation: Practice and Experience,
26(17):2772–2791, 2014.

[24] Adrian Boteanu, Ciprian Dobre, Florin Pop, and Valentin Cristea. Simulator
for fault tolerance in large scale distributed systems. In Intelligent Computer
Communication and Processing (ICCP), 2010 IEEE International Conference
on, pages 443–450. IEEE, 2010.

[25] Mohamed-Slim Bouguerra, Ana Gainaru, Leonardo Bautista Gomez, Franck
Cappello, Satoshi Matsuoka, and Naoya Maruyama. Improving the computing
efficiency of HPC systems using a combination of proactive and preventive
checkpointing. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pages 501–512. IEEE, 2013.

[26] Mohamed-Slim Bouguerra, Thierry Gautier, Denis Trystram, and Jean-Marc
Vincent. A flexible checkpoint/restart model in distributed systems. In Parallel
Processing and Applied Mathematics, pages 206–215. Springer, 2010.

[27] Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. Cor-
related set coordination in fault tolerant message logging protocols. In Euro-
Par 2011 Parallel Processing, pages 51–64. Springer, 2011.

[28] Daniele Briatico, Augusto Ciuffoletti, and Luca Simoncini. A distributed
domino-effect free recovery algorithm. In Symposium on Reliability in Dis-
tributed Software and Database Systems, volume 84, pages 207–215, 1984.

[29] Patrick G. Bridges, Mark Hoemmen, Kurt B. Ferreira, Michael A. Heroux,
Philip Soltero, and Ron Brightwell. Cooperative application/OS DRAM fault
recovery. In Euro-Par 2011: Parallel Processing Workshops, pages 241–250.
Springer, 2012.

157

References

[30] Ron Brightwell, Kevin Pedretti, and Trammell Hudson. SMARTMAP: operat-
ing system support for efficient data sharing among processes on a multi-core
processor. In Proceedings of the 2008 ACM/IEEE conference on Supercomput-
ing, page 25. IEEE Press, 2008.

[31] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum.
Disco: running commodity operating systems on scalable multiprocessors.
ACM Trans. Comput. Syst., 15(4):412–447, November 1997.

[32] Franck Cappello. Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities. International Journal of
High Performance Computing Applications, 23(3):212–226, 2009.

[33] Franck Cappello, Henri Casanova, and Yves Robert. Checkpointing vs. migra-
tion for post-petascale supercomputers. In Parallel Processing (ICPP), 2010
39th International Conference on, pages 168–177. IEEE, 2010.

[34] Franck Cappello, Amina Guermouche, and Marc Snir. On communication
determinism in parallel HPC applications. In Computer Communications and
Networks (ICCCN), 2010 Proceedings of 19th International Conference on,
pages 1–8. IEEE, 2010.

[35] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Transactions on Computer Systems
(TOCS), 3(1):63–75, 1985.

[36] Jacqueline H. Chen, Alok Choudhary, Bronis De Supinski, Matthew DeVries,
Evatt R. Hawkes, Scott Klasky, Wei-Keng Liao, Kwan-Liu Ma, John Mellor-
Crummey, Norbert Podhorszki, et al. Terascale direct numerical simulations
of turbulent combustion using S3D. Computational Science & Discovery,
2(1):015001, 2009.

[37] Zizhong Chen. Extending algorithm-based fault tolerance to tolerate fail-stop
failures in high performance distributed environments. In Parallel and Dis-
tributed Processing Symposium, 2008. IPDPS 2008. 22nd International, pages
1–8. IEEE, 2008.

[38] Zizhong Chen and Jack Dongarra. Algorithm-based checkpoint-free fault toler-
ance for parallel matrix computations on volatile resources. In Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International, april
2006.

[39] Colin Percival. Naive differences of executable code. http://www.

daemonology.net/bsdiff/, 2010.

158

References

[40] Corbet. The SLUB allocator. http://lwn.net/Articles/229984/, April
2007.

[41] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: Towards a realistic model of parallel computation. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP ’93, pages 1–12, New York, NY, USA, 1993. ACM.

[42] John T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Computing Systems, 22(3):303–312, 2006.

[43] Jack Dongarra, Thomas Herault, and Yves Robert. Revisiting the double
checkpointing algorithm. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, pages
706–715. IEEE, 2013.

[44] Jack Dongarra et al. The international exascale software project roadmap.
International Journal of High Performance Computing Applications, 2011.

[45] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt B. Ferreira,
and Christian Engelmann. Combining partial redundancy and checkpointing
for HPC. In Proceedings of the 32nd International Conference on Distributed
Computing Systems (ICDCS) 2012, pages 615–626. IEEE Computer Society,
Los Alamitos, CA, USA, June 18-21, 2012.

[46] Elmootazbellah N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys, 34(3):375–408, 2002.

[47] Elmootazbellah N. Elnozahy and James S. Plank. Checkpointing for peta-scale
systems: A look into the future of practical rollback-recovery. Dependable and
Secure Computing, IEEE Transactions on, 1(2):97–108, 2004.

[48] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. On the use and imple-
mentation of message logging. In Fault-Tolerant Computing, 1994. FTCS-24.
Digest of Papers., Twenty-Fourth International Symposium on, pages 298–307.
IEEE, 1994.

[49] Christian Engelmann and Swen Böhm. Redundant execution of HPC applica-
tions with MR-MPI. In Proceedings of the 10th IASTED International Con-
ference on Parallel and Distributed Computing and Networks (PDCN), pages
15–17, 2011.

159

References

[50] Keren Bergman et al. Exascale computing study: Technology challenges in
achieving exascale systems, September 2008.

[51] Stuart I. Feldman and Channing B. Brown. Igor: A system for program de-
bugging via reversible execution. In ACM SIGPLAN Notices, volume 24, pages
112–123. ACM, 1988.

[52] Kurt Ferreira, Rolf Riesen, Jon Stearley, James H. Laros III, Ron Oldfield,
Kevin Pedretti, Patrick Bridges, Dorian Arnold, and Ron Brightwell. Eval-
uating the viability of process replication reliability for exascale systems. In
Proceedings of the ACM/IEEE International Conference on High Performance
Computing, Networking, Storage, and Analysis, (SC11), Nov 2011.

[53] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing ap-
plication sensitivity to os interference using kernel-level noise injection. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 19.
IEEE Press, 2008.

[54] Kurt B. Ferreira, Scott Levy, Patrick Widener, Dorian Arnold, and Torsten
Hoefler. Understanding the effects of communication and coordination on
checkpointing at scale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC14), pages
883–894. IEEE Press, 2014.

[55] Kurt B. Ferreira, Kevin Pedretti, Ron Brightwell, Patrick G. Bridges, David
Fiala, and Frank Mueller. Evaluating operating system vulnerability to mem-
ory errors. In Proceedings of the 2nd International Workshop on Runtime and
Operating Systems for Supercomputers, page 11. ACM, 2012.

[56] Kurt B. Ferreira, Rolf Riesen, Rolf Brighwell, Patrick G. Bridges, and Do-
rian Arnold. libhashckpt: hash-based incremental checkpointing using GPUs.
Recent Advances in the Message Passing Interface, pages 272–281, 2011.

[57] David Fiala, Kurt B. Ferreira, and Frank Mueller. FlipSphere: A software-
based DRAM error detection and correction library for HPC. Technical Report
SAND2014-0438C, Sandia National Laboratories, Feb. 2014.

[58] David Fiala, Kurt B. Ferreira, Frank Mueller, and Christian Engelmann. A
tunable, software-based DRAM error detection and correction library for HPC.
In Lecture Notes in Computer Science: Proceedings of the European Confer-
ence on Parallel and Distributed Computing (Euro-Par) 2011: Workshop on
Resiliency in High Performance Computing (Resilience) in Clusters, Clouds,
and Grids, Bordeaux, France, Aug 2011. Springer Verlag, Berlin, Germany.

160

References

[59] David Fiala, Frank Mueller, Christian Engelmann, Kurt B. Ferreira, Ron
Brightwell, and Rolf Riesen. Detection and correction of silent data corrup-
tion for large-scale high-performance computing. In Proceedings of the 25th

IEEE/ACM International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC12), pages 78:1–78:12, Salt Lake City, UT,
USA, November 10-16, 2012. ACM Press, New York, NY, USA.

[60] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira,
and Ron Brightwell. Detection and correction of silent data corruption for
large-scale high-performance computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Anal-
ysis (SC12). IEEE Computer Society Press, 2012.

[61] DoE Exascale Co-Design Center for Materials in Extreme Environments. Ex-
MatEx. http://www.exmatex.org/, 2012.

[62] ASCAC Subcommittee for the Top Ten Exascale Research Challenges. Top
ten exascale research challenges. Technical report, United States Department
of Energy, February 2014.

[63] Song Fu and Cheng-Zhong Xu. Exploring event correlation for failure predic-
tion in coalitions of clusters. In Supercomputing, 2007. SC’07. Proceedings of
the 2007 ACM/IEEE Conference on, pages 1–12. IEEE, 2007.

[64] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. Predicting computer
system failures using support vector machines. In Proceedings of the First
USENIX conference on Analysis of system logs, WASL’08, pages 5–5, Berkeley,
CA, USA, 2008. USENIX Association.

[65] Ana Gainaru, Franck Cappello, and William Kramer. Taming of the shrew:
Modeling the normal and faulty behaviour of large-scale HPC systems. In
Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th In-
ternational, pages 1168–1179. IEEE, 2012.

[66] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Fault pre-
diction under the microscope: A closer look into HPC systems. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC12), page 77, 2012.

[67] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. Failure
prediction for HPC systems and applications: Current situation and open
issues. International Journal of High Performance Computing Applications,
27(3):273–282, 2013.

161

References

[68] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky,
and Manish Parashar. Exploring automatic, online failure recovery for scientific
applications at extreme scales. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC14),
pages 895–906. IEEE Press, 2014.

[69] Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth
Kolla, Jacqueline Chen, and Manish Parashar. Failure masking and local re-
covery for stencil-based applications at extreme scales. In Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC15). IEEE Press, 2015.

[70] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Computing Surveys (CSUR), 31(1):1–26,
1999.

[71] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, Fabrizio Petrini, and Kei
Davis. Transparent, incremental checkpointing at kernel level: a foundation for
fault tolerance for parallel computers. In Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, page 9. IEEE Computer Society, 2005.

[72] Bharan Giridhar, Michael Cieslak, Deepankar Duggal, Ronald Dreslinski, Hs-
ing Min Chen, Robert Patti, Betina Hold, Chaitali Chakrabarti, Trevor Mudge,
and David Blaauw. Exploring DRAM organizations for energy-efficient and
resilient exascale memories. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, page 23.
ACM, 2013.

[73] James N. Glosli, David F. Richards, K.J. Caspersen, Robert E. Rudd, John A.
Gunnels, and Frederick H. Streitz. Extending stability beyond CPU millen-
nium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability. In
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, page 58.
ACM, 2007.

[74] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and
Franck Cappello. Uncoordinated checkpointing without domino effect for send-
deterministic message passing applications. In Proceedings of the 2011 IEEE
International Parallel and Distributed Processing Symposium, May 2011.

[75] Amina Guermouche, Thomas Ropars, Marc Snir, and Franck Cappello.
HydEE: Failure containment without event logging for large scale send-
deterministic MPI applications. In IPDPS, pages 1216–1227, 2012.

162

References

[76] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Sno-
eren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference
Engine: Harnessing memory redundancy in virtual machines. Commun. ACM,
53(10):85–93, October 2010.

[77] Evatt R. Hawkes, Ramanan Sankaran, James C. Sutherland, and Jacqueline H.
Chen. Direct numerical simulation of turbulent combustion: fundamental in-
sights towards predictive models. In Journal of Physics: Conference Series,
volume 16, page 65. IOP Publishing, 2005.

[78] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: A parallel alge-
braic multigrid solver and preconditioner. Applied Numerical Mathematics,
41(1):155–177, 2002.

[79] Thomas Herault and Yves Robert. Fault-Tolerance Techniques for High-
Performance Computing. Springer, 2015.

[80] Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Wil-
lenbring, H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R. Keiter,
Heidi K. Thornquist, and Robert W. Numrich. Improving performance via
mini-applications. Technical Report SAND2009-5574, Sandia National Labo-
ratories, 2009.

[81] Torsten Hoefler. LogGOPSim - a LogGOPS (LogP, LogGP, LogGPS) simulator
and simulation framework. http://www.unixer.de/research/LogGOPSim/,
Apr. 10 2013.

[82] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Characterizing the
influence of system noise on large-scale applications by simulation. In Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC’10), Nov. 2010.

[83] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim - sim-
ulating large-scale applications in the LogGOPS model. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Com-
puting, pages 597–604. ACM, Jun. 2010.

[84] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. Group operation
assembly language-a flexible way to express collective communication. In Par-
allel Processing, 2009. ICPP’09. International Conference on, pages 574–581.
IEEE, 2009.

[85] Jeremy Hsu. When will we have an exascale supercomputer?[news]. Spectrum,
IEEE, 52(1):13–16, 2015.

163

References

[86] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for
matrix operations. Computers, IEEE Transactions on, 100(6):518–528, 1984.

[87] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays don’t
strike twice: understanding the nature of DRAM errors and the implications
for system design. ACM SIGPLAN Notices, 47(4):111–122, 2012.

[88] Dewan Ibtesham, Dorian Arnold, Patrick G. Bridges, Kurt B. Ferreira, and
Ron Brightwell. On the viability of compression for reducing the overheads of
checkpoint/restart-based fault tolerance. In Parallel Processing (ICPP), 2012
41st International Conference on, pages 148–157. IEEE, 2012.

[89] Dewan Ibtesham, Kurt B. Ferreira, and Dorian Arnold. A checkpoint compres-
sion study for high-performance computing systems. International Journal of
High Performance Computing Applications, page 1094342015570921, 2015.

[90] Tanzima Zerin Islam, Kathryn Mohror, Saurabh Bagchi, Adam Moody, Bro-
nis R. De Supinski, and Rudi Eigenmann. McrEngine: A scalable checkpointing
system using data-aware aggregation and compression. In High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International Con-
ference for, pages 1–11. IEEE, 2012.

[91] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali
Pinar, David A. Evensky, and Jackson Mayo. A simulator for large-scale paral-
lel computer architectures. Technology Integration Advancements in Distributed
Systems and Computing, 179, 2012.

[92] Qiangfeng Jiang and D. Manivannan. An optimistic checkpointing and selec-
tive message logging approach for consistent global checkpoint collection in
distributed systems. In Proceedings of the 2007 IEEE International Parallel
and Distributed Processing Symposium, March 2007.

[93] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems
using asynchronous message logging and checkpointing. In Proceedings of the
seventh annual ACM Symposium on Principles of distributed computing, pages
171–181, 1988.

[94] Josh Macdonald. Xdelta. http://xdelta.org, January 2013.

[95] Jungrae Kim, Michael Sullivan, and Mattan Erez. Bamboo ECC: Strong,
safe, and flexible codes for reliable computer memory. In High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on.
IEEE, 2015.

164

References

[96] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors. In Proceeding of the 41st annual international symposium on Computer
architecuture, pages 361–372. IEEE Press, 2014.

[97] Youngbae Kim, James S. Plank, and Jack J. Dongarra. Fault tolerant ma-
trix operations for networks of workstations using multiple checkpointing. In
High Performance Computing on the Information Superhighway. HPC Asia
’97, pages 460–465, Seoul, South Korea, April 1997. Los Alamitos, CA, USA :
IEEE Comput. Soc. Press, 1997.

[98] Andi Kleen. Machine check handling on Linux. SUSE Labs, 2004.

[99] Andi Kleen. mcelog: memory error handling in user space. In Proceedings of
Linux Kongress 2010, Nuremburg, Germany, September 2010.

[100] George Kola, Tevfik Kosar, and Miron Livny. Faults in large distributed sys-
tems and what we can do about them. In Euro-Par 2005 Parallel Processing,
pages 442–453. Springer, 2005.

[101] David G. Korn, Joshua P. MacDonald, Jeffrey C. Mogul, and Kiem-Phong
Vo. The VCDIFF generic differencing and compression data format. Technical
Report 3284, RFC, June 2002.

[102] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[103] John R. Lange, Kevin T. Pedretti, Trammell Hudson, Peter A. Dinda, Zheng
Cui, Lei Xia, Patrick G. Bridges, Andy Gocke, Steven Jaconette, Michael Lev-
enhagen, and Ron Brightwell. Palacios and kitten: New high performance
operating systems for scalable virtualized and native supercomputing. In Pro-
ceedings of the 2010 IEEE International Parallel and Distributed Processing
Symposium, IPDPS’10, pages 1–12, 2010.

[104] Jean-Claude Laprie. Dependable computing and fault-tolerance. Digest of
Papers FTCS-15, pages 2–11, 1985.

[105] Lawrence Livermore National Laboratories. IRS: Implicit Radiation Solver
1.4 Build Notes. https://asc.llnl.gov/computing_resources/purple/

archive/benchmarks/irs/irs.readme.html.

[106] Lawrence Livermore National Laboratories. SAMRAI. https://

computation.llnl.gov/casc/SAMRAI/index.html.

165

References

[107] Lawrence Livermore National Laboratories. ASC Sequoia Benchmark Codes.
https://asc.llnl.gov/sequoia/benchmarks, August 2009.

[108] Lawrence Livermore National Laboratory. Co-design at lawrence livermore
national lab : Livermore unstructured lagrangian explicit shock hydrodynamics
(lulesh). http://codesign.llnl.gov/lulesh.php.

[109] Scott Levy, Kurt B. Ferreira, and Patrick G. Bridges. Characterizing the im-
pact of rollback avoidance at extreme-scale: A modeling approach. In Parallel
Processing (ICPP), 2014 43rd International Conference on, pages 401–410.
IEEE, 2014.

[110] Scott Levy, Kurt B. Ferreira, Patrick G. Bridges, Aidan P. Thompson, and
Christian Trott. A study of the viability of exploiting memory content simi-
larity to improve resilience to memory errors. International Journal of High
Performance Computing Applications, 29(1):5–20, February 2015.

[111] Chung-Chi Jim Li and W. Kent Fuchs. CATCH-compiler-assisted techniques
for checkpointing. In Fault-Tolerant Computing, 1990. FTCS-20. Digest of
Papers., 20th International Symposium, pages 74–81, jun 1990.

[112] Sheng Li, Ke Chen, Ming-Yu Hsieh, Naveen Muralimanohar, Chad D. Kersey,
Jay B. Brockman, Arun F. Rodrigues, and Norman P. Jouppi. System impli-
cations of memory reliability in exascale computing. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC11), page 46. ACM, 2011.

[113] Antonina Litvinova, Christian Engelmann, and Stephen L. Scott. A proactive
fault tolerance framework for high-performance computing. In Proceedings of
the 9th IASTED International Conference, volume 676, page 105, 2009.

[114] Los Alamos National Laboratory. Trinity. http://www.lanl.gov/projects/
trinity/, 2015.

[115] Sandia National Laboratories. App model - application simulator (gpl). http:
//www.cs.sandia.gov/web1400/1400_download.html, Feb. 10 2014.

[116] J.M. McGlaun, S.L. Thompson, and M.G. Elrick. CTH: A three-dimensional
shock wave physics code. International Journal of Impact Engineering,
10(1):351–360, 1990.

[117] Sébastien Monnet, Christine Morin, and Ramamurthy Badrinath. A hierarchi-
cal checkpointing protocol for parallel applications in cluster federations. In
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-
national, page 211. IEEE, 2004.

166

References

[118] Sébastien Monnet, Christine Morin, and Ramamurthy Badrinath. Hybrid
checkpointing for parallel applications in cluster federations. In Cluster Com-
puting and the Grid, 2004. CCGrid 2004. IEEE International Symposium on,
pages 773–782. IEEE, 2004.

[119] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supin-
ski. Design, modeling, and evaluation of a scalable multi-level checkpointing
system. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC10), SC
’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[120] Andreas Moshovos and Alexandros Kostopoulos. Cost-effective, high-
performance giga-scale checkpoint/restore. Technical report, University of
Toronto, November 2004.

[121] Onur Mutlu and Lavanya Subramanian. Research problems and opportunities
in memory systems. Supercomputing frontiers and innovations, 1(3), 2015.

[122] Prashant J. Nair, Dae-Hyun Kim, and Moinuddin K. Qureshi. Archshield:
Architectural framework for assisting DRAM scaling by tolerating high error
rates. In ACM SIGARCH Computer Architecture News, volume 41, pages
72–83. ACM, 2013.

[123] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer,
23(7):19–25, 1990.

[124] Bogdan Nicolae. Towards scalable checkpoint restart: A collective inline mem-
ory contents deduplication proposal. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 19–28. IEEE,
2013.

[125] Katherine Noyes. 94 percent of the world’s Top 500 supercomputers run
Linux. http://www.linux.com/news/enterprise/high-performance/147-

high-performance/666669-94-percent-of-the-worlds-top-500-

supercomputers-run-linux-, November 2012.

[126] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam,
Maria Ruiz Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact
of checkpoints on next-generation systems. In 24th IEEE Conference on Mass
Storage Systems and Technologies, pages 30–46, September 2007.

[127] James S. Plank. An overview of checkpointing in uniprocessor and distributed
systems, focusing on implementation and performance. Technical Report UT-
CS-97-372, Department of Computer Science, July 1997.

167

References

[128] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Algorithm-based disk-
less checkpointing for fault tolerant matrix operations. In Twenty-Fifth In-
ternational Symposium on Fault-Tolerant Computing. Digest of Papers, pages
351–360, Pasadena, CA, USA, June 1995. Los Alamitos, CA, USA : IEEE
Comput. Soc. Press, 1995.

[129] James S. Plank and Kai Li. Faster checkpointing with N+1 parity. In Fault-
Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth Inter-
national Symposium on, pages 288–297. IEEE, 1994.

[130] James S. Plank and Kai Li. ickp: A consistent checkpointer for multicomputers.
Parallel & Distributed Technology: Systems & Applications, IEEE, 2(2):62–67,
1994.

[131] James S. Plank, Kai Li, and Michael A. Puening. Diskless checkpointing.
Parallel and Distributed Systems, IEEE Transactions on, 9(10):972–986, 1998.

[132] James S. Plank, Jian Xu, and Robert H. B. Netzer. Compressed differences:
An algorithm for fast incremental checkpointing. Technical Report CS-95-302,
University of Tennessee, August 1995.

[133] Steve Plimpton. Fast parallel algorithms for short-range molecular-dynamics.
Journal of Computational Physics, 117(1):1–19, 1995.

[134] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage.
In Proceedings of the FAST 2002 Conference on File and Storage Technologies,
volume 4, 2002.

[135] Brian Randell. System structure for software fault tolerance. In ACM SIG-
PLAN Notices, volume 10, pages 437–449. ACM, 1975.

[136] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software implemented fault tolerance. In Pro-
ceedings of the international symposium on Code generation and optimization,
pages 243–254. IEEE Computer Society, 2005.

[137] Rolf Riesen, Ron Brightwell, Patrick G. Bridges, Trammell Hudson, Arthur B.
Maccabe, Patrick M. Widener, and Kurt Ferreira. Designing and implementing
lightweight kernels for capability computing. Concurrency and Computation:
Practice and Experience, 21(6):793–817, April 2009.

[138] Rolf Riesen, Kurt Ferreira, Dilma Da Silva, Pierre Lemarinier, Dorian Arnold,
and Patrick G. Bridges. Alleviating scalability issues of checkpointing proto-
cols. In High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, pages 1–11. IEEE, 2012.

168

References

[139] Rolf Riesen, Kurt Ferreira, Jon Stearley, Ron Oldfield, James H. Laros III,
Kevin Pedretti, Ron Brightwell, et al. Redundant computing for exascale sys-
tems. Technical report, Technical report SAND2010-8709, Sandia National
Laboratories, 2010.

[140] Thomas Ropars, Amina Guermouche, Bora Uçar, Esteban Meneses,
Laxmikant V Kalé, and Franck Cappello. On the use of cluster-based par-
tial message logging to improve fault tolerance for MPI HPC applications. In
Euro-Par 2011 Parallel Processing, pages 567–578. Springer, 2011.

[141] Kenichiro Sakai, Shinji Sumimoto, and Motoyoshi Kurokawa. High-
performance and highly reliable file system for the K computer. FUJITSU
Science Technology, 48(3):302–209, 2012.

[142] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure
prediction methods. ACM Comput. Surv., 42(3):10:1–10:42, March 2010.

[143] Sandia National Laboratories. LAMMPS molecular dynamics simulator. http:
//lammps.sandia.gov, Apr. 10 2013.

[144] Sandia National Laboratory. Mantevo project home page. https://software.
sandia.gov/mantevo, Apr. 10 2010.

[145] Sandia National Laboratory. Kitten lightweight kernel. https://software.

sandia.gov/trac/kitten, March 2012.

[146] Nirmal R. Saxena and Edward J. McCluskey. Dependable adaptive computing
systems-the ROAR project. In Systems, Man, and Cybernetics, 1998. 1998
IEEE International Conference on, volume 3, pages 2172–2177. IEEE, 1998.

[147] Tamara Schmitz. The rise of serial memory and the future of DDR. Technical
Report WP456, Xilinx, March 2015.

[148] Bianca Schroeder and Garth A. Gibson. Understanding failures in petascale
computers. In Journal of Physics: Conference Series, volume 78, page 012022.
IOP Publishing, 2007.

[149] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. Dependable and Secure Computing, IEEE
Transactions on, 7(4):337–350, 2010.

[150] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technol-
ogy challenges. In High Performance Computing for Computational Science–
VECPAR 2010, pages 1–25. Springer, 2011.

169

References

[151] Philip P. Shirvani, Nirmal R. Saxena, and Edward J. McCluskey. Software-
implemented EDAC protection against SEUs. Reliability, IEEE Transactions
on, 49(3):273–284, 2000.

[152] Luis M. Silva and João G. Silva. An experimental study about diskless check-
pointing. In 24th EUROMICRO Conference, pages 395 – 402. IEEE Computer
Society Press, August 1998.

[153] Luis M. Silva, Bart Veer, and João G. Silva. Checkpointing SPMD applications
on transputer networks. In Scalable High-Performance Computing Conference,
1994., Proceedings of the, pages 694–701. IEEE, 1994.

[154] Horst D. Simon. Barriers to exascale computing. In High Performance Com-
puting for Computational Science-VECPAR 2012, pages 1–3. Springer, 2013.

[155] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon
Stearley, John Shalf, and Sudhanva Gurumurthi. Memory errors in modern
systems: The good, the bad, and the ugly. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 297–310, New York, NY, USA,
2015. ACM.

[156] David Stirzaker. Probability and Random Variables: A Beginner’s Guide. Cam-
bridge University Press, 1999.

[157] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems (TOCS), 3(3):204–226, 1985.

[158] Anand Tikotekar, Geoffroy Vallee, Thomas Naughton, Stephen L. Scott, and
Chokchai Leangsuksun. Evaluation of fault-tolerant policies using simulation.
In Cluster Computing, 2007 IEEE International Conference on, pages 303–311.
IEEE, 2007.

[159] Devesh Tiwari, Swastik Gupta, and Sudharshan S. Vazhkudai. Lazy check-
pointing: Exploiting temporal locality in failures to mitigate checkpointing
overheads on extreme-scale systems. In Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International Conference on, pages 25–
36. IEEE, 2014.

[160] Anthony Tuininga. Cx bsdiff. http://starship.python.net/crew/

atuining/cx_bsdiff/index.html, February 2006.

[161] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott.
Proactive process-level live migration in HPC environments. In Proceedings

170

References

of the 2008 ACM/IEEE conference on Supercomputing, page 43. IEEE Press,
2008.

[162] Patrick Widener, Kurt B. Ferreira, Scott Levy, and Torsten Hoefler. Exploring
the effect of noise on the performance benefit of nonblocking allreduce. In
Proceedings of the 21st European MPI Users’ Group Meeting, page 77. ACM,
2014.

[163] Patrick M. Widener, Kurt B. Ferreira, Scott Levy, Patrick G. Bridges, Do-
rian Arnold, and Ron Brightwell. Asking the right questions: benchmarking
fault-tolerant extreme-scale systems. In Euro-Par 2013: Parallel Processing
Workshops, pages 717–726. Springer, 2014.

[164] Joshua Wingstrom. Overcoming The Difficulties Created By The Volatile Na-
ture Of Desktop Grids Through Understanding, Prediction And Redundancy.
PhD thesis, Ph. D. thesis, University of Hawai i at Manoa, 2009.

[165] Lei Xia, Kyle Hale, and Peter Dinda. ConCORD: easily exploiting memory
content redundancy through the content-aware service command. In Proceed-
ings of the 23rd international symposium on High-performance parallel and
distributed computing (HPDC), pages 25–36. ACM, 2014.

[166] Tianming Yang, Hong Jiang, Dan Feng, Zhongying Niu, Ke Zhou, and Yaping
Wan. DEBAR: A scalable high-performance de-duplication storage system for
backup and archiving. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–12. IEEE, 2010.

[167] Doe Hyun Yoon and Mattan Erez. Virtualized and flexible ECC for main
memory. In Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems, ASPLOS ’10, pages
397–408, New York, NY, USA, 2010. ACM.

[168] John W. Young. A first order approximation to the optimum checkpoint in-
terval. Communications of the ACM, 17(9):530–531, 1974.

[169] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kalé. FTC-Charm++: an in-
memory checkpoint-based fault tolerant runtime for Charm++ and MPI. In
Cluster Computing, 2004 IEEE International Conference on, pages 93–103.
IEEE, 2004.

[170] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies, FAST’08, pages 18:1–18:14, Berkeley,
CA, USA, 2008. USENIX Association.

171

References

[171] Willy Zwaenepoel and David B. Johnson. Sender-based message logging.
In Proceedings of the Seventeenth International Symposium on Fault-Tolerant
Computing, number LABOS-CONF-2005-064, 1987.

172

	University of New Mexico
	UNM Digital Repository
	5-1-2016

	Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems
	Scott Levy
	Recommended Citation

	tmp.1469198166.pdf.KLUPo

