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Abstract

How different is the immune system in a human from that of a mouse? Do pathogens

replicate at the same rate in different species? Answers to these questions have im-

pact on human health since multi-host pathogens that jump from animals to humans

affect millions worldwide.

It is not known how rates of immune response and viral dynamics vary from

species to species and how they depend on species body size. Metabolic scaling

theory predicts that intracellular processes will be slower in larger animals since

cellular metabolic rates are slower. We test how rates of pathogenesis and immune

system response rates depend on species body size.

We hypothesize that immune response rates are invariant with body size. Our

work suggests how the physical architecture of the immune system and chemical

signals within it may lead to nearly scale-invariant immune search and response.

We fit mathematical models to experimental West Nile Virus (WNV, a multi-host

pathogen) infection data and investigate how model parameters characterizing the

pathogen and the immune response change with respect to animal mass.
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Phylogeny also affects pathogenesis and immune response. We use a hierarchical

Bayesian model, that incorporates phylogeny, to test hypotheses about the role of

mass and phylogeny on pathogen replication and immune response. We observe that:

1. Hierarchical models (informed by phylogeny) make more accurate predictions

of experimental data and more realistic estimates of biologically relevant pa-

rameters characterizing WNV infection.

2. Rates of WNV production decline with species body mass, modified by a phy-

logenetic influence.

Our work is the first to systematically explore the role of host body mass in

pathogenesis using mathematical models and empirical data. We investigate the

complex interplay between the physical structure of the immune system and host

body mass in determining immune response. The modeling strategies and tools

outlined here are likely to be applicable to modeling of other multi-host pathogens.

This work could also be extended to understand how drug and vaccine efficacy in

humans may systematically differ from that in model organisms like mice, in which

most initial experimental studies are conducted.
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Chapter 1

Introduction

Many emerging pathogens infect multiple host species [8], and multi-host pathogens

may have very different dynamics in different species [9]. Zoonotic diseases that jump

the species barrier from animals to humans cause 2.5 billion cases of human illness

and 2.7 million human deaths per year [10]. Many emerging diseases are zoonotic in

origin.

Understanding how quickly pathogens replicate and how quickly the immune sys-

tem responds is important for predicting the epidemic spread of emerging pathogens,

many of which are zoonotic. While host pathogen interactions have been studied

qualitatively using mathematical models, it is not known how the parameters char-

acterizing the immune response and pathogen replication rates change from species

to species. Emerging zoonotic diseases originate from species that differ in body size,

e.g. birds in avian influenza and cattle in BSE (Bovine Spongiform Encephalopa-

thy). Thus it is important to understand how body size affects immune response and

pathogenesis.

Body size can affect pathogenesis in two ways:
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1. Host metabolism constrains energy delivery to cells [11, 12] and could influence

rates of pathogen replication and immune response rates [6]. The metabolic

rate of each cell is constrained by the rate at which nutrients and oxygen

are supplied by the cardio-vascular network. The rate at which this network

supplies nutrients to each cell (Rcell) scales as the body mass (M) raised to an

exponent of -1/4: Rcell ∝ M−1/4 such that individual cellular metabolic rates

decrease as the body mass increases [11, 12]. This relationship holds over an

incredible diversity of body sizes, from 10−13 g (microbes) to 108 g (whales).

Many biological rates, such as heart rates and reproductive rates, scale as

M−1/4, while many times such as blood circulation times and life times, scale

as M1/4 (times) [11].

Cellular metabolic rate dictates the pace of many biological processes [12].

Cellular metabolism could affect immune system search times by reducing

movement and proliferation of immune cells [6]. Rates of DNA and protein

synthesis also depend on the cellular metabolic rate and could influence the

rate at which pathogens replicate inside infected cells [9]. Using mathematical

models and experimental data, we test whether viral replication and immune

response varies with species mass. We use West Nile Virus (WNV) as a model

pathogen for our studies because it is a generalist pathogen that infects many

species in different taxonomic groups and with a range of body sizes.

2. An effective immune response requires efficient detection of pathogens that may

be initially localized. The detection of small amounts of pathogen is harder in

larger animals due to larger physical spaces. We hypothesize that the immune

system is capable of nearly scale-invariant detection and response, i.e. rates

of immune response and time taken by the immune system to detect and re-

spond to pathogens do not scale appreciably with host body size. We suggest

how: a) the physical architecture of the immune system, comprised of anatom-

ical structures called lymph nodes (that faciliate recognition of pathogen by
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immune system cells), and b) chemical signalling within the immune system,

guiding immune system cells to sites of infection, enable efficient and nearly

scale-invariant detection and response.

WNV pathogenesis also depends on phylogeny, e.g. Passerine species sustain

more viremia than non-Passerine species [5]. Hence phylogeny is expected to affect

immune response and pathogen replication rates. Viral dynamics may be similar in

related species. Modeling techniques that take advantage of relatedness of infected

species may produce more accurate results. We aim to incorporate phylogenetic

hierarchy to make better estimates of biologically relevant quantities for WNV.

Hierarchical Bayesian models enable modelers to encapsulate knowledge about

the underlying biology as priors. Hierarchical models also pool information across

disparate individuals from different groups and are well suited for cases where there

are a limited number of observations from several individuals. Suitable priors in

a hierarchical Bayesian framework can help reduce variance of parameter estimates

[13]. A model that incorporates the hierarchal nature of phylogeny and encodes this

information as priors in a hierarchical Bayesian model may enable more accurate

estimates of parameters characterizing WNV infection.

Hierarchical Bayesian models have been used in image processing [14], ecological

modeling [15] and climate modeling [16]. Bayesian non-linear mixed effects models

with a single level of hierarchy have been applied to modeling of the within-host

response to HIV [17, 18] and influenza [19]. Multilevel data fitting approaches and

Bayesian frameworks are expected to be helpful to modeling within-host viral dy-

namics [20]. However to the best of our knowledge, Bayesian non-linear mixed effects

models with multiple levels of hierarchy have not been applied to within-host model-

ing. Mathematical models that combine within-host experimental data from multiple

species, such as the ones presented here, may also be useful in studying other zoonotic

diseases and help increase our understanding of these diseases.
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Our goals are:

1. to test how the physical architecture of the immune system and chemical signals

within it affect immune response times. This is investigated in Chapters 3

and 4.

2. to characterize dynamics of WNV in mice using ordinary differential equation

models. This is explored in Chapter 5.

3. to test if a hierarchical Bayesian model that incorporates phylogeny allows

more refined predictions. This is explored in Chapter 6.

4. to apply the hierarchical Bayesian model to test the effect of species mass and

phylogeny on rates of pathogen replication and immune response in WNV. This

is investigated in Chapter 7.

1.1 Background on West Nile Virus

We use WNV as a model pathogen for our studies because it is a generalist pathogen

that infects many species in different taxonomic groups and with a range of body

sizes. WNV is a neurotropic flavivirus that has emerged globally as a significant cause

of viral encephalitis. WNV is maintained in an enzootic cycle between mosquitoes

and birds [21] but can also infect and cause disease in many other vertebrates includ-

ing humans. Following its introduction into the United States in 1999, WNV spread

rapidly across the North American continent in only four years and more recently has

been reported in Mexico, South America, and the Caribbean [22, 23, 24]. Although

vaccines are available for animal use, no vaccines or specific therapies for WNV are

currently approved for humans [25].
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WNV is an enveloped virus with a single-stranded, positive sense, 11-kb RNA

genome [25]. WNV is cytopathic and initially infects epidermal Langerhans cells,

which then migrate to the draining lymph node and infect macrophages [25]. From

the draining lymph node, WNV spreads to the spleen, kidney, and spinal cord and

ultimately breaches the blood-brain barrier to infect neurons [25]. The standard

pattern of WNV infection in mice is characterized by an initial exponential growth of

virus that peaks around 3 to 4 days post infection (DPI), followed by an exponential

decline until that leads to undetectable levels of virus by 6 to 8 DPI.

WNV infects a large number of species across different taxonomic groups. This

allows us to test the effects of animal body size on pathogen replication and immune

response. We focus on data from a study which experimentally infected birds with

the same strain of WNV (WNV NY99-6480). The species infected range from 3

gm sparrows to 3 kg geese. Komar et al [5] experimentally infected 25 species of

birds with WNV NY99-6480 and took daily measurements of the concentration of

infective virions in blood (viremia) over the course of infection. Viremia was reported

in plaque forming units (PFU, a measure of the number of infectious virions) over a

span of at most 7 days post infection.

The order Passeriforme includes more than half of all bird species. The exper-

imental infection study infected 10 Passerine species and 15 non-Passerine species.

The Passerine species were house finches, house sparrows, red winged blackbirds,

blue jays, American robins, European starlings, common grackles, black-billed mag-

pies, fish crows and American crows. WNV is exceptionally viremic in corvid species

(a family within the order Passeriforme). The corvid species in the study were blue

jays, black-billed magpies, fish crows and American crows. The number of individuals

infected per species ranged from 1 (American coots) to 8 (American crows).

The experimental infection study included data on 87 individual birds belonging

to 25 distinct species. Of the 87 individuals infected, 26 succumbed to infection.
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With the exception of one individual (a non-Passerine ring billed gull), all mortality

was in Passerine species, primarily corvids.

1.2 Contributions and Organization

The remainder of the dissertation is divided into 7 chapters. The contributions of

these chapters are summarized below:

Chapter 2. This chapter outlines our computational approach, the unique com-

putational challenges in this work and our solutions.

Chapter 3. An effective immune response requires efficient detection of pathogens

that may be initially localized. The detection of pathogens and response against

them is hypothesized to be more challenging in larger animals because the

search occurs in a larger physical space. We hypothesize that immune response

rates and times do not scale appreciably with host body size. This work sug-

gests how the physical architecture of the immune system may lead to nearly

scale-invariant immune search and response. It also proposes an architecture

for an engineered distributed system (a multi-robot control system) that is in-

spired by the physical architecture of the immune system [26]. This chapter

was published by Soumya Banerjee and Melanie Moses in Swarm Intelligence

in 2010 [26].

Chapter 4. Rapid search is crucial for an effective immune response: Immune

system cells must find, identify and neutralize pathogens before those pathogens

replicate in sufficient numbers to cause disease or death. The adaptive immune

system has a small number of pathogen-specific cells that must search for and

neutralize initially localized pathogens in a very large tissue space. The immune

system uses information signals to accomplish this search quickly. This work
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suggests how chemical signals in the immune system accelerate this search. We

show that search times are reduced by over an order of magnitude in mice and

over two orders of magnitude in humans, suggesting that these signals play

an important role in the immune response, especially in larger animals [27].

This chapter was published by Soumya Banerjee, Drew Levin, Melanie Moses,

Frederick Koster and Stephanie Forrest in the 10th International Conference

on Artificial Immune Systems in 2011 [27].

Chapter 5. The qualitative dynamics of WNV have been best studied experimen-

tally in mice. This chapter describes a method to predict biologically relevant

quantities for WNV infection in mice with the intention of gaining a quantita-

tive understanding of WNV dynamics. Our novelty lies in uniquely combining

experimental data from knockout and wildtype mice using a succession of in-

creasingly complex models. Despite large uncertainty in imposed bounds on

model parameters, our analysis yields tight estimates of a variety of biologically

relevant quantities that characterize WNV infection in mice [28]. Our method

could be more broadly applicable to modeling of other emerging pathogens with

large parameter uncertainty. This chapter was co-authored by Jeremie Guedj,

Ruy Ribeiro, Melanie Moses and Alan S. Perelson and is being prepared for

submission [28].

Chapter 6. As a first step towards developing a model of WNV dynamics in dif-

ferent species, this chapter develops a novel multi-level hierarchical Bayesian

model that incorporates phylogeny. In order to control the effect of noisy data

and model uncertainty, this chapter uses a known simple model to generate

simulated viremia data with varying amounts of noise. We then infer differen-

tial equation model parameters using the hierarchical model. The accuracy of

the hierarchical model is calculated by comparing the inferred parameter esti-

mates to the actual parameter values (ground truth from known data). We find
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that our multi-level model (with prior information about differences between

species) can generate more accurate estimates under some circumstances.

Chapter 7. This chapter extends the multi-level hierarchical model from Chapter

6 by introducing a more realistic mathematical model of viral dynamics and

applying it to actual experimental data. We find that the multi-level model

produces more accurate predictions of viremia and more realistic estimates

of parameters. It also uncovers systematic differences in biologically relevant

parameters with species mass and phylogeny.

Chapter 8. This chapter concludes the dissertation by outlining the scaling rela-

tionships for rates of pathogen replication and the scale-invariance of immune

response rates and times. It also discusses implications for spread of zoonotic

diseases and design of human-engineered distributed systems. The chapter also

points out promising avenues for future investigations.
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Chapter 2

Computational Approach

We apply tools and approaches from complex systems and computer science to study

the immune system. An immune response is characterized by non-linear and dy-

namic interactions between the pathogen and the host immune system. We use both

spatially-explicit agent based models (ABM) and computationally tractable ordi-

nary differential equation (ODE) models for simulating the immune system. In this

chapter, we outline all the computational techniques used, challenges faced and the

mathematical and engineering solutions we used to address those challenges.

2.1 Agent-Based Models

Chapter 3 uses the CyCells [29, 30] ABM platform to simulate the dynamics of traf-

ficking of WNV to the lymph node. The CyCells [29, 30] modeling tool explicitly

represents healthy cells, infected cells, and immune system cells, and represents var-

ious chemicals released by the immune system as concentrations. The simulation is

conducted in a 3-dimensional cubic compartment.
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2.2 Differential Equation Models

Chapters 5 to 7 use ODEs to simulate replication of WNV and the host immune

response to WNV. ODE models ignore space by assuming that all components are

well-mixed but have the advantage of being computationally tractable. The ODEs

describing our viral kinetic models were solved numerically using programs written

in Matlab [31] and Berkeley Madonna [32]. We used the Runge-Kutta 4 method of

integration. The curve-fitting method implemented in Matlab and also available in

Berkeley Madonna uses nonlinear least-squares regression that minimizes the sum of

the squared residuals between experimental data and ODE model predicted values.

We use two different ODE models to represent dynamics of WNV replication and

host immune response:

1. Target cell limited model. The target cell limited model assumes that the

concentration of virus reaches a peak and then declines when few susceptible

target cells remain. This model is represented by Eqs. 5.1 - 5.4.

2. Adaptive immune response model. The adaptive immune response model as-

sumes that an adaptive antibody response causes the decline of virus concen-

tration after a peak. This model is represented by Eqs. 5.7 - 5.11.

2.3 Hierarchical Bayesian models and Markov

Chain Monte Carlo

We use hierarchical Bayesian models to delineate the contribution of species mass and

phylogeny to WNV replication and the response of the host to WNV. We use Markov

chain Monte Carlo (MCMC) to draw samples from the distributions characterizing
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our ODE model parameters since they do not have an analytic closed-form.

The Bayesian inference approach can be described as follows. Assume that a

model (in our case a differential equation model describing how virus concentration

changes over time in serum) is represented by parameters Θ. The Bayesian approach

allows us to include prior knowledge about model parameters in a systematic fashion.

If we have information about Θ (for e.g., from experimental evidence) which needs to

be incorporated in our analysis, this is represented as a prior probability distribution

P (Θ). Bayes Rule allows us to incorporate the prior knowledge about parameters,

P (Θ), and experimental data, D, to derive a posterior distribution of parameters:

P (Θ|D) =
P (D|Θ) · P (Θ)

P (D)
(2.1)

The normalizing constant is chosen such that the posterior distribution, P (Θ|D),

integrates to 1, i.e. P (D) =
∫
P (D|Θ)·P (Θ)dΘ. We then use MCMC to numerically

integrate the terms in Eq. 2.1.

2.3.1 Metropolis-Hastings Sampler

We use two popular MCMC algorithms known as the Metropolis-Hastings sampler

and the Gibbs sampler. We use these algorithms to sample from the posterior dis-

tribution P (Θ|D). Let Θ(t) represent the state of the Markov chain at iteration

t of the algorithm. The Metropolis-Hastings sampler uses a proposal distribution

q(Θ|Θ(t−1)) to generate a candidate point, Θ∗, that is conditioned on the previous

state of the sampler, Θ(t−1). In the next step, the algorithm either accepts or rejects

the candidate point based on an acceptance probability:
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α = min(1,
P (Θ∗)

P (Θ(t−1))
· q(Θ

(t−1)|Θ∗)
q(Θ∗|Θ(t−1))

) (2.2)

The Metropolis-Hastings algorithm is as follows:

1. Set t = 1

2. Generate an initial value u, and set Θ(t) = u

3. Repeat

t = t+ 1

Generate a candidate Θ∗ from the proposal distribution q(Θ|Θ(t−1))

Evaluate the probability of acceptance, α = min(1, P (Θ∗)

P (Θ(t−1))
· q(Θ

(t−1)|Θ∗)
q(Θ∗|Θ(t−1))

)

Generate a x from a Uniform(0,1) distribution

If x ≤ α, accept the candidate solution and set Θt = Θ∗, else set Θt = Θ(t−1)

4. Until t = required number of iterations

The Metropolis-Hastings sampler has the advantage of not requiring knowledge

of the normalizing constant, P (D). In our case the parameter Θ is multi-variate

and has different components corresponding to the different ODE model parameters.

We accept or reject the candidate solution involving all components as a block si-

multaneously. This is known as a block-wise updating scheme. A component-wise

updating scheme updates each component in turn and independently of each other.

2.3.2 Gibbs Sampler

The Gibbs sampler is an algorithm in which all samples are accepted and hence

is computationally more efficient than the Metropolis-Hastings sampler. However,
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the Gibbs sampler can only be applied in the case when we know the full condi-

tional distribution of each component of the parameter Θ conditioned on all other

components.

As an illustrative example, we show the workings of the Gibbs sampler for the

joint two-component distribution g(θ1, θ2). The Gibbs sampler can be used if we can

derive the distribution of each component conditioned on the other, i.e. in this case

the conditional distributions g(θ1|θ2 = θ
(t)
2 ) and g(θ2|θ1 = θ

(t)
1 ). The Gibbs sampler

for the case of two-components is as follows:

1. Set t = 1

2. Generate an initial value u = (u1, u2), and set Θ(t) = u

3. Repeat

t = t+ 1

Sample θ
(t)
1 from the conditional distribution g(θ1|θ2 = θ

(t−1)
2 )

Sample θ
(t)
2 from the conditional distribution g(θ2|θ1 = θ

(t)
1 )

4. Until t = required number of iterations

We update each component sequentially in turn (systematic-scan Gibbs sampler).

Our approach is to use the Metropolis-Hastings sampler within the Gibbs sam-

pler; this involves using the computationally efficient Gibbs update steps whenever

the full posterior conditional distributions are known and using Metropolis-Hastings

acceptance steps when the full conditional distribution is not available.
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2.4 Bayesian Model Assumptions

The parameters in our ODE models vary over large ranges (frequently over many

orders of magnitude). Hence in order to stabilize the variance and also ensure that

estimates are positive, we assumed that all ODE model parameters characterizing

viral replication and immune response are lognormally distributed.

2.5 Strategies for Computational Efficiency

Investigating scaling in the immune system requires calibrating our ODE models

to data from multiple species. We have data for 23 different species comprising

83 individual birds. The samplers are run for 30,000 iterations for each and every

individual. Hence the complete Bayesian inference process involves millions of calls

to our ODE solvers. We use a number of techniques to ensure that our computations

are efficient.

1. We use the computationally efficient Gibbs update steps whenever the full

posterior conditional distributions are known and use Metropolis-Hastings ac-

ceptance steps when the full conditional distribution is not available. The

posterior distribution of ODE parameters at the individual level of the hierar-

chical Bayesian model does not have an analytic closed-form solution. Hence

we use the Metropolis-Hastings sampler to update the the parameters at the

individual level. At all other levels of the hierarchical Bayesian model, we are

able to derive the full conditional distributions and hence we use Gibbs update

steps.

2. ODE solvers use error tolerance thresholds to calculate how much a solution

changes from one step of the solver to the next and to determine when to
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stop. The two ways of determining error are relative error and absolute error.

Smaller error thresholds lead to more accurate solutions but also lead to more

solver steps increasing execution time. Hence these error thresholds represent

tradeoffs between accuracy and computational efficiency. We experimented

with different values of error tolerance thresholds and ultimately chose 1e-3 for

the relative error threshold and 1e-6 for the absolute error threshold.

3. Inference via MCMC is a sequential iterative process where the computations

in each step depend on results in the previous step. This sequential proce-

dure increases the computational complexity of our programs. However there

are computations within an iteration that can be efficiently parallelized. In

our case, each iteration of the MCMC procedure generates candidate solutions

which are then passed to the different solvers representing different individual

birds. The computation done by the ODE solver for each individual is inde-

pendent of computations done for other individuals. Hence we parallelize these

simultaneous ODE calls by using the MATLAB construct for parallel for-loops

(parfor), which runs these on multiple cores of the same machine.

4. Finally, the choice of dispersion of the proposal distribution represents trade-

offs between thoroughness of search through the parameter space and compu-

tational efficiency. If the variance of the proposal distribution is very large,

then the MCMC algorithm can sample from far away regions in the parameter

space. However a large proportion of proposed moves will also be rejected since

they are likely to be in regions that represent infeasible solutions. Similarly if

the variance of the proposal distribution is very small, then the sampler would

move around the parameter space slowly which would lead to computational

inefficiency. We experimented with different values of variance of the proposal

distribution and chose a value of 0.01 for the standard deviation on the log

scale.

15



Chapter 2. Computational Approach

Figure 2.1: Screenshot of graphical user interface to solve ODEs and plot model fits
to data.

Figure 2.2: Screenshot of tool to generate best-fit ODE parameter estimates while
being calibrated to experimental data.
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2.6 Tools for Analysis and Modeling

We created a number of tools to facilitate our analysis of data and model results that

have been made available online [33]. We expect these tools to be helpful to other

researchers in the modeling community. Some of the tools we developed are:

1. We implemented graphical user interfaces in MATLAB that helped us solve

ODEs and plot model fits to data. This tool helped us visualize the effects of

changing ODE parameters on model fit to data. A screenshot of the interface

is shown in Fig. 2.1.

2. We developed a tool that generated best-fit ODE parameter estimates while

being calibrated to experimental data. This tool has a graphical user interface

which modelers can use to input different initial guesses and parameters for

solvers. The tool helped us investigate the effects of different initial guesses on

best-fit model parameters. A screenshot of the tool is shown in Fig. 2.2.

3. Finally, the code implementing the hierarchical Bayesian models was made

efficient, extendable and modular so that we could: a) add an arbitrary number

of species into the model, b) investigate different levels of hierarchy, and c)

investigate different hierarchical groupings of species. This necessitated the use

of special data structures. The choice of data structures and implementation

was also influenced by the unique constraints imposed by parallelizing the code

to run on multiple cores.
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Chapter 3

Scale invariance of immune system

response rates and times

3.1 Abstract

Most biological rates and times decrease systematically with increasing organism

body size. We use an ordinary differential equation (ODE) model of West Nile Virus

in birds to show that pathogen replication rates decline with host body size, but nat-

ural immune system (NIS) response rates do not change systematically with body

size. The scale invariant detection and response of the NIS is surprising since the

NIS has to search for small quantities of pathogens through larger physical spaces in

larger organisms, and also respond by producing larger absolute quantities of anti-

body in larger organisms. We hypothesize that the NIS has evolved an architecture

to efficiently neutralize pathogens. We investigate three different hypothesized NIS

architectures using an Agent Based Model (ABM). We find that a sub-modular NIS

architecture, in which lymph node number and size both increase sublinearly with

body size, efficiently balances the tradeoff between local pathogen detection and
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global response. This leads to nearly scale-invariant detection and response consis-

tent with experimental data. Similar to the NIS, physical space and resources are

also important constraints on distributed systems, for example low-powered robots

connected by short-range wireless communication. We show that the sub-modular

design principles of the NIS can be applied to problems such as distributed robot con-

trol to efficiently balance the tradeoff between local search for a solution and global

response or proliferation of the solution. By demonstrating that the lymphatic net-

work of the NIS efficiently balances local and global communication, we suggest a

new approach for Artificial Immune Systems (AIS) that uses a sub-modular archi-

tecture to facilitate distributed search. This chapter was co-authored by Melanie

E. Moses (Department of Computer Science, University of New Mexico). It was

published in Swarm Intelligence, Volume 4, 2010, pp. 301-318. Copyright c©2010

Springer Science+Business Media.

3.2 Introduction

Many emerging pathogens infect multiple host species [8], and multi-host pathogens

may have very different dynamics in different host species [9]. Understanding how

quickly pathogens replicate and how quickly the natural immune system (NIS) re-

sponds is important for predicting the epidemic spread of emerging pathogens. We

show that pathogen replication rates decline systematically with increasing host body

size, but NIS response times do not increase significantly. We discuss how the decen-

tralized architecture of the immune system facilitates parallel search, enabling NIS

response times that do not increase substantially with body size.

The NIS solves a search problem in both physical space and antigen space. For

the pathogens considered here, the length of the search is determined by the time it

takes for a cognate B cell to encounter antigen. Encounter times depend on the size
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of the physical space in which the search occurs. This is a difficult search problem

since very rare antigen specific NIS cells have to search for small quantities of antigen

throughout the body. For example, a mosquito injects 105 live virus particles into a

vertebrate host that has billions or trillions of cells [34]. The research we describe here

suggests that the time for the immune system to detect and neutralize the pathogen is

nearly independent of the size of the organism. We call this scale-invariant detection

and response.

This is counter-intuitive, since if we inject a sparrow and a horse with the same

amount of pathogen, the immune system of the horse has to search a much larger

physical space to find the pathogen, compared to the sparrow. This research models

how different potential architectures of the lymphatic network enable the NIS to

mount an effective immune response that neutralizes pathogens in time that is inde-

pendent of host body size. Physical space and resource limitations can also constrain

Artificial Immune Systems (AIS). Our research shows how the optimal design of such

AIS can be informed by architectural strategies employed by the NIS.

In addition to the immune system having to search larger spaces in larger or-

ganisms, larger body size may be expected to slow immune system response times

because the metabolic rate of cells is lower in larger species [12]. The metabolic rate of

each cell is constrained by the rate at which nutrients and oxygen are supplied by the

cardio-vascular network. The rate at which this network supplies nutrients to each

cell (Rcell) scales as the body mass (M) raised to an exponent of -1/4: Rcell ∝M−1/4

such that individual cellular metabolic rates decrease as the body mass increases

[11, 12]. The metabolic rate of a cell dictates the pace of many biological processes

[12]. This could affect NIS search times by reducing movement and proliferation of

immune cells [6]. Rates of DNA and protein synthesis are also dependent on the cel-

lular metabolic rate and could influence the rate at which pathogens replicate inside

infected cells [9].
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Table 3.1: Four scaling hypotheses of pathogen replication and immune system re-
sponse rate [6]

H1: Pathogen replication rate ∝M0 H2: Pathogen replication rate ∝M−1/4

NIS search time ∝M0 NIS search time ∝M0

H3: Pathogen replication rate ∝M0 H4: Pathogen replication rate ∝M−1/4

NIS search time ∝M−1/4 NIS search time ∝M−1/4

The possibilities that NIS cells and pathogens may move and proliferate at speeds

independent of mass (∝ M0) or proportional to cellular metabolic rate (∝ M−1/4)

lead to four hypotheses, shown in Table 3.1, as originally proposed by Wiegel and

Perelson [6].

We combine an ordinary differential equation model, an Agent Based Model

(ABM) and empirical results from experimental infection studies on West Nile Virus

(WNV) [1, 2, 3] in what is the first test that we are aware of, examining the effects

of body size on pathogen replication and immune system response rates. Our results

are consistent with H2: pathogen replication rate ∝M−1/4 and NIS rates ∝M0.

The remainder of the paper is organized as follows: Section 3.3 gives an introduc-

tion to the relevant immunology; our statistical methods are outlined in Section 3.4;

Section 3.5 discusses an ordinary differential equation model of pathogen growth and

immune response; Section 3.6 discusses the difficulties faced by the NIS in searching

space; we use an ABM to derive scaling relations for NIS cell detection and migration

times in Section 3.7; the results are summarized in Section 3.8; Section 3.9 explains

how a sub-modular NIS architecture balances fast search times and fast communica-

tion to recruit NIS cells, leading to scale invariant detection; Section 3.10 discusses

the applications and implications for this work in distributed AIS using an example

of multi-robot control, and lastly we make concluding remarks in Section 3.11.
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3.3 A Brief introduction to the immune system

The NIS has two main components: the innate immune system and the adaptive

immune system. The innate immune system is the first line of defense of an organ-

ism and consists of complement proteins, macrophages and dendritic cells (DC) [35].

The adaptive immune system consists of T helper cells, B cells and cytotoxic T cells.

The area of tissue that drains into a lymph node (LN) is called its draining region

(DR). The lymphatic system collects extra-cellular fluid called lymph from tissues

and returns it to blood [35]. DCs sample the tissue in DRs for pathogens, and upon

encountering them, migrate to the nearest LN T cell area to present antigen to T

helper cells. Cognate T helper cells specific to a particular pathogen are very rare (1

in 106 NIS cells) [36]. Upon recognizing cognate antigen on DCs, T helper cells pro-

liferate and build up a clonal population in a process called clonal expansion. While

proliferating, T helper cells also migrate to the LN B cell area to activate B cells.

Cognate B cells specific to a particular pathogen are also very rare. They need to

recognize cognate antigen on follicular dendritic cells and also need stimulation from

cognate T helper cells. After recognition, cognate B cells undergo clonal expansion

and differentiate into antibody-secreting plasma cells [35].

This difficult search through the large physical space is facilitated by infected site

inflammation, chemokines and preferential expression of adhesion molecules which

guide NIS cells to sites of pathogen invasion [35]. The infected site LN recruits

NIS cells from other LNs and blood through high endothelial venules. We refer to

the recruitment time as communication overhead between LNs. Some pathogens do

not invoke all the arms of the immune system, e.g. some bacteria are efficiently

eliminated by the innate immune system. We focus here on pathogens, like WNV,

that elicit an antibody response. However, the arguments put forward in this paper

would apply also to other pathogens that spread systemically throughout the body

and evoke a cytotoxic T cell or other response (see Section 3.9).
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We are interested in the physical structure of the NIS, and we hypothesize that

evolutionary pressures have shaped NIS architecture to minimize the time taken to

unite rare antigen-specific NIS cells with their pathogens. This requires both rapid

detection of the initial pathogens and also rapid clonal expansion to produce sufficient

T helper cells to activate a critical number of B cells. These B cells will then undergo

clonal expansion and differentiate into antibody-secreting plasma cells. Hence this

paper focuses primarily on the uptake of antigen by DCs in DR, recognition of antigen

on DCs by T cells in LN, the subsequent process of clonal expansion and recruitment

of B cells from other LNs.

3.4 Statistical methods

We use ordinary least squares (OLS) regression to test whether our model predictions

are consistent with hypothesized scaling relationships and, where possible, biological

measurements. We calculate the r2 value, where r is the Pearson correlation coeffi-

cient and the r2 quantifies the proportion of variation that the independent variable

explains in the dependent variable. We test how empirical data from literature and

results of our simulation scale with mass by taking the logarithm of both variables

and doing an OLS regression. We report whether the scaling exponent is consis-

tent with -0.25, 0, or both. We test for significance at the alpha = 0.05 level. The

mean is reported after testing all log-transformed datasets for normality using the

Jarque-Bera test [37].
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3.5 An ordinary differential equation model for

viral dynamics

A standard Ordinary Differential Equation (ODE) model was developed to observe

how viral proliferation rates and immune response rates scale with body size, and

model results were parameterized to empirical levels of virus in blood [38]. Data on

viral proliferation was taken from studies which used the same West Nile Virus strain

to experimentally infect 25 different species with body mass ranging from 0.02 kg

(house finch) to 390 kg (horse), and the viral load was monitored each day in blood

serum (reported in plaque forming units - a measure of the number of infectious

virions) over a span of 7 days post infection (d.p.i) [1, 2, 3]. In the model, p = rate

of virion production per infected cell, γ = innate immune system mediated virion

clearance rate, ω = adaptive immune system proliferation rate, and tpv = time to

attain peak viral concentration. Equations (1) to (4) are shown below

dT

dt
= −βTV (3.1)

dI

dt
= βTV − δI (3.2)

dV

dt
= pI − c(t)V (3.3)

c(t) =

 γ , t < tpv

γeω(t−tpv) , t ≥ tpv
(3.4)

Target cells T are infected at a rate proportional to the product of their population

size and the population size of virions V , with a constant of proportionality β. The

loss in the target cell population is balanced by a gain in the infected cell population.

Infected cells I die at a rate δI. Virions are produced by infected cells at a rate p

and cleared by the immune system at the rate c(t)V . The action of the immune
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system is decomposed into an innate response (γ) before the virus concentration

attains a peak, and an exponential adaptive immune response after peak due to

clonal expansion characterized by a proliferation rate ω. This paper focuses on p as

pathogen replication, and γ and ω as immune system response.

Empirical data show that time to peak viral concentration (tpv, time between

infection and peak viral concentration in blood) for WNV empirically occurs be-

tween 2 - 4 days post infection (Fig. 3.1) [1, 2, 3]. If this peak were due to target

cell limitation, then we would expect tpv to increase with host mass M since larger

animals have more target cells. However, tpv is likely to be determined by WNV

specific antibodies, which have a critical role in WNV clearance [39]. If the peak is

determined by a threshold presence of antibodies, then it implies that tpv is deter-

mined by the time for cognate B cells to recognize antigen, proliferate and produce

antibodies: tpv = tdetect+ tprolif . Empirically, tpv is independent of host mass [1]. The

time tpv is highly conserved, ranging only between 2 and 4 days post infection across

different hosts that range in mass from 0.02 kg (house finch) to 390 kg (horses). Since

there is no statistically significant relationship between tpv and M (Fig. 3.1)(p-value

testing significance of the slope - 0.35, 95% CI on slope - [-0.037, 0.0607]), then the

data are consistent with the hypothesis that tpv ∝ M0. Hence empirical data for

WNV supports the hypothesis that NIS response rates are independent of M . One

explanation that has been proposed is preferential metabolism, i.e. LNs are supplied

energy at a rate which is independent of host body mass so that the metabolic rates

of B cells and T cells in LN are independent of mass [6].

Other empirical data suggests that pathogen replication rates scale as M−1/4 for

a variety of pathogens in a variety of hosts, including WNV in birds and mammals

[9]. The Cable et al study shows that times for a pathogen to cause symptoms or

death is proportional to M1/4 (where times are inverses of rates, mean exponent =

0.21, Table 1, [9]). Together, these observations reject all hypotheses in Table 3.1
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Figure 3.1: Plot of log10 tpv (empirically measured time between infection and peak
viral concentration in blood, units of day) vs. log10 host body mass M . p-value
testing significance of the slope = 0.35, 95% confidence interval on slope = [-0.037,
0.0607], data from [1, 2, 3]
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Figure 3.2: Left Panel: plot of log10 γ (model estimated innate immune system
mediated pathogen clearance rate, units of day−1) vs. log10 host body mass M (p-
value testing significance of the slope = 0.4238, 95% confidence interval on slope
= [-0.04, 0.146]). Right Panel: plot of log10 ω (model estimated adaptive immune
system cell proliferation rate, units of day−1) vs. log10 host body mass M (p-value
testing significance of the slope = 0.7242, 95% confidence interval on slope = [-0.347,
0.4319])

except H2: pathogen replication declines with M−1/4 and immune response times are

invariant with respect to M . Ideally we would test all four hypotheses simultaneously

using the ODE model described by Equations (1) to (4). However, the ODE has too
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Table 3.2: Estimated ODE model parameters for great-horned owl (where PFU is
Plaque Forming Units)

V0

(
PFU
mL

)
β

(
1

PFU
mL

∗day

)
p
(

1

PFU∗day

)
δ
(

1

day

)
γ
(

1

day

)
ω
(

1

day

)
tpv

(
1

day

)
2.95 10−7 524.97 1.19 91.99 2.7 3

many parameters to simultaneously test both hypotheses without overfitting the

data. Since our main goal is to determine the scaling of the NIS response rates

and times, we fit the data by choosing initial parameter estimates consistent with

pathogen replication rates scaling as M−1/4, and then fit the model to the data.

The ODE model was fit to the viral load data for each of 25 species [1, 2, 3] for

days 1 - 7 and the model parameters were estimated using non-linear least squares

regression. The Berkeley Madonna R© [32] software package was used to generate the

fits and we assigned the parameter value to the mass of the species to do an OLS

regression. The scaling relations found were: p ∝M−0.29 (the predicted exponent of

-0.25 is in the 95% CI, r2 = 0.31, p-value testing significance of slope = 0.0038). The

innate immune system mediated pathogen clearance rate (measured day−1, γ) and

adaptive immune system cell proliferation rate (measured day−1, ω) were indepen-

dent of host mass M (Fig. 3.2)(p-values testing significance of the slope - 0.4238 and

0.7242 respectively, 95% CI on slope - [-0.04, 0.146] and [-0.347,0.4319] respectively).

A sample parameter estimate and model prediction is shown in Table 3.2 and Fig.

3.3.

These findings from our ODE model and empirical data are consistent with hy-

pothesis H2: pathogen replication rates decline in larger hosts, but immune response

is independent of host mass (scale-invariant detection and response). This raises

the question: what mechanisms make NIS rates independent of host body mass and

metabolism? The problem of slower metabolism in larger hosts can be circumvented
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Figure 3.3: A sample plot of virus concentration in blood vs. time post infection
(solid line - predicted ODE model output, circles - actual experimental data for a
great-horned owl (data from [1]). Y axis - virus concentration in log10 PFU/mL of
blood, X axis - days post infection.

in immune response if LNs have privileged metabolism, i.e. they consume energy

which is independent of host mass [6]. However, even if immune system cells are not

constrained by the lower mass specific metabolism in larger organisms, it remains to

be explained how larger spaces can be searched in invariant time.

3.6 Searching for a needle in a haystack

The NIS is confronted with a very difficult search problem. Extremely rare B cells

or T cells specific to a particular antigen (1 antigen-specific T cell in 106 T cells)[40]

search for initially rare antigen in localized tissue. A constant number of virions is

injected into a host by mosquitoes, regardless of host size, for WNV [34] and other

pathogens spread by mosquito vectors. Our analysis of the ODE model and the

empirical tpv suggest that the NIS in bigger organisms can find this fixed number of

28



Chapter 3. Scale invariance of immune system response rates and times

virus particles in approximately the same time as in smaller organisms, i.e. a horse

finds those virions in a body (i.e. ‘haystack’) 10,000 times larger than a sparrow’s

body, but in the same time.

By way of introduction we define a completely modular system as one that is com-

posed of self-contained units that are a fixed size and do not need to communicate,

and a module as a LN and its DR. To simplify our models, we assume that each

LN has a single DR and a DR drains into a single LN. Perfectly parallel search is

easily achievable if an immune response is completely modular at the LN level and

systemic communication in the immune system does not generate more overhead in

larger systems. Completely modular systems have no overhead of communication

and hence achieve perfectly parallel search [41] since search is in a space of the same

size and is replicated in parallel. However, experimental evidence suggests that the

NIS is not modular at the LN level (see Section 3.9) [42, 7, 43].

A conceptually similar concept of modularity has been proposed in protecton

theory [44]. A protecton is a modular unit of protection consisting of 107 B cells of

different specificities per mL of volume and is iterated proportionally to the size of

the organism, i.e. if one samples 1 mL of a tadpole and 1 mL of an elephant, the

same set of 107 B cells will be found in each, but the elephant will have more copies of

the protecton. This modular design reduces the time taken to build up a population

of effector cells by clonal expansion. The protecton is a theoretical concept that the

density and diversity of lymphocytes is constant across organisms. However, theory

does not address how the lymphocytes constituting a protecton migrate through the

body or how much communication occurs between lymphocytes or LNs. This further

motivates the question of investigating whether there is modularity at the level of

LN that would help to parallelize the search process. Sections 3.7 and 3.8 explore

the empirical architecture of LN organization, and explain why a purely modular

architecture is not optimal.

29



Chapter 3. Scale invariance of immune system response rates and times

3.7 Agent based model to explore how LN size

affects NIS response time

The general model of immune system dynamics in the LN and its DR are shown in

Fig. 3.4 and summarized as follows:
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T helper 
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virus

migrate
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Cell

virus

Langerhans 
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detect
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Figure 3.4: Immune system dynamics within a lymph node and its draining region.

1. Stage 1: DCs randomly search for antigen in a local DR. The time taken to

detect antigen is denoted by tDCdetect.

2. Stage 2: DC migrates to a local LN T cell area along a chemotactic gradient.

The time taken to migrate is tDCmigrate.

3. Stage 3: Antigen-specific T cell in a LN detects antigen on DC and the time

taken to detect is tTcell,DCdetect . T cells then activate cognate B cells which undergo

clonal expansion to produce antibody-secreting plasma cells.
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Table 3.3: The parameters used in the agent based model together with a short
description of their role and default value (L - literature, F - fit to data)

Description Value Source

Side length of cubic compartment (DR) 1000µm to 4000µm L [42]

Side length of cubic compartment (LN) 250µm to 1000µm L [42]

Duration of a time step 60 sec F

Number of antigen specific B cells in a
lymph node of 106 B-cells

1 L [40]

Density of DC in DR 1250/mm3 L [45]

Amount of antigen in DR 100 L [34]

Radius of T cell 10µm L [40]

Radius of antigen-presenting DC 30µm L [40]

Speed of T cell 0.1664µm/sec L [40]

Speed of antigen-presenting DC in LN 0.0416µm/sec L [40]

Speed of antigen-presenting DC in DR 0.0832µm/sec L [46]

Sweep and sense distance of antigen-
presenting DC (measured from cell cen-
ter)

50µm L [40]

Total time to detect antigen is given by

tdetect = tDCdetect + tDCmigrate + tTcell,DCdetect (3.5)

We consider the time spent by the draining infected site LN in recruiting other

NIS cells to it as the time spent in communication (tcomm) (see Section 3.9).

We use an ABM to investigate how organization of the lymphatic network mini-

mizes the time to detect antigen tdetect and tcomm, leading to scale-invariant detection

and response.
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We note that the total volume of organs and fluids in mammals both scale pro-

portional to M [47, 11], so in our models, we assume that LN volume and the total

volume of lymph in the entire body are both proportional to M . Thus, the number

of LN multiplied by the volume of each LN is proportional to M . Additionally, the

volume of a DR is determined by M (which is proportional to body volume, given

that tissue density is constant across animals)[47] divided by the number of LN, i.e.,

for a fixed size M , more LN result in a smaller DR for each LN.

In order to explore how the spatial arrangement of LNs affects time to detect

antigen, we use the CyCells [29, 30] ABM to simulate viral replication in a 3D com-

partment representing the LN and DR. We simulated DCs, T cells, viruses and LNs,

and explicitly modeled DC migration from tissue to LN along a chemotactic gradi-

ent, and random walk of DC and T cells in LN T cell area. The model parameters

are summarized in Table 4.1.

The assumptions that we make are: a) initially, we ignore migration of antigen

specific B cells from other LNs. We consider how such systemic responses change the

NIS architecture in the next section; b) there is a fixed chemotactic gradient for DCs

to migrate into the LN; c) for simplicity, we ignore pathogen replication in the tissue

since WNV does not replicate until after it spreads to the LN and other organs; d)

DCs and T cells perform random walks in LN T cell area [48]; and e) LNs have

preferential metabolism [6], i.e. inside a LN, NIS cells have speed and proliferation

rates that are invariant with host mass M .

3.8 Results

We first use an ABM to calculate the detection and migration times in Eqn. (5)

for mice and then show how each of these times scale with LN and DR dimensions.

We then use these scaling relations to derive analytical expressions for detection,
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Table 3.4: Simulated values in mice for DC antigen detection, DC migration and
DC-T cell interaction

Times Dimensions (DR, LN) Value (simulation)

tDCdetect 4000µm, 1000µm Mean = 26 minutes,
SD = 32 minutes, 10
simulations

tDCmigrate 4000µm, 1000µm Mean = 3.7 hours, SD
= 1.3 hours, 10 simu-
lations

tTcell,DCdetect 4000µm, 1000µm Mean = 15.1 hours,
SD = 6 hours, 10 sim-
ulations

Table 3.5: Scaling relations for time for DC antigen detection, DC migration and
DC-T cell interaction (lDR = length of DR compartment, lLN = length of LN com-
partment).

Times Dimensions (DR) Scaling Relation Statistics

tDCdetect 1000µm, 2000µm, 4000µm ∝ (lDR − lLN)0 p > 0.05 +

tDCmigrate 1000µm, 2000µm, 4000µm ∝ (lDR − lLN)1 r2 = 0.97, p < 0.001 +

tTcell,DCdetect 1000µm, 2000µm, 4000µm ∝ l0LN p > 0.05 §

migration and communication times for three hypotheses of LN organization.

Table 3.6: Scaling relations for LN and DR parameters and how tDCmigrate depends on
DR and LN dimensions (N - number of LNs, Vlymph - volume of lymph, VLN - volume
of LN). § - taken from empirical data [7]

LN
Archi-
tecture

N Vlymph ∝
N ∗ VLN

VLN VDR ∝M/N tDCmigrate ∝
lDR − lLN

tcomm ∝
M/V 2

LN

Model 1 M1 M1 M0 M0 M0 M1

Model 2 M0 M1 M1 M1 M1/3 M−2

Model 3 M1/2§ M1 M1/2 M1/2 M1/6 M−1/2
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3.8.1 The base case model of a typical lymph node and scal-

ing up

A DR was simulated as a cubic compartment of side 4000µm with a cubic LN of

length 1000µm. The mean time taken by DCs to detect antigen and the time taken

by an antigen-specific T cell to recognize antigen on DC are shown in Table 3.4 (due

to the prohibitively high execution time of the ABM, we took the average of 10 model

realizations). These are in agreement with experimental observations in mice [40].

The total time to detect antigen (tdetect = tDCdetect + tDCmigrate + tTcell,DCdetect ) is then around

19 hours. This is in agreement with experimental studies in mice [49] and consistent

with our observation that peak viral concentration occurs in day 2 to 4 for WNV

across organisms, given our hypothesis that the peak occurs due to WNV-specific

NIS cells, which must first have come into contact with WNV in the LN.

The DR and LN regions were then scaled up and we observed how DC detection,

migration and T cell interaction times scaled with the size of the DR and LN. We

simulated 3 cubic DRs: DR of length 1000µm with LN of length 250µm, DR of

length 2000µm with LN of length 500µm, and DR of length 4000µm with a LN of

length 1000µm. The observed scaling relations are in Table 3.5 and are consistent

with DC migration time scaling linearly with the mean distance from DR to LN.

The time for DC to detect antigen specific T cell in LN was found to be uncorrelated

with the size of the LN.

We now explore 3 competing hypotheses of lymphatic system organization (Fig.

3.5).
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Figure 3.5: The 3 different hypotheses of scaling of lymph node size and numbers.
(1) Completely Modular Detection Network: base organism with 2 LNs and another
organism 4 times as big with 4 times the number of lymph nodes each of the same size
as the base organism. (2) Non-Modular Detection Network: organism 4 times bigger
has the same number of LNs but each is 4 times bigger. (3) Hybrid Sub-Modular
Detection Network: organism 4 times bigger has more LNs each of which are also
bigger.

3.8.2 Model 1: Completely modular detection network

In our first model, we assume that the lymphatic network forms a completely modular

network containing LN of constant size and number of LN proportional to organism

size M . Using the scaling relationship for tDCmigrate from Table 3.5 and noting that in

this model the LN and DR dimensions do not change with organism size gives us

tDCmigrate ∝M0. Since the ABM predicts that detection times in LN do not depend on

LN dimensions (Table 3.5) we have tdetect ∝ M0 and hence the completely modular

architecture gives us perfect scale-invariant detection. The predicted relations are

summarized in Table 3.6.
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3.8.3 Model 2: Non-modular detection network

The second model is the other extreme, that LNs are arranged in a detection network

with a constant number of LN (all animals have the same number of LNs, however

the size of LNs is larger in larger animals). In this model, the DR volume increases

proportional to organism mass, and the average distance that a DC has to travel

from the DR to the LN increases with organism mass as M1/3 (Table 3.6). Hence

tDCmigrate ∝ M1/3. Since DC migration times are approximately 4 hours in mice, this

model predicts that DC migration times in horses (which are 25,000 larger than mice)

will be 30 times more than that in mice. This would necessitate migration times that

are 5 days in horses and greater than the total observed time for antibody response.

Hence the hypothesis of complete lack of modularity in the NIS is inconsistent with

observations.

3.8.4 Model 3: Hybrid sub-modular architecture

This architecture lies midway between Model 1 and Model 2. In this model LNs

increase in both size and in numbers as animal size increases, and so does the size of

the DR. Table 3.6 gives the predicted relation for tDCmigrate ∝ M1/6. This will lead to

migration times that are only 5 times longer in horses (around 20 hours) than in mice.

It is not implausible that detection should take so long in a horse, and these slight

increases in detection time might be compensated for by slower rates of exponential

growth by the pathogen, as predicted by our ODE model (Section 3.5). Hence

the sub-modular architecture produces detection times which are consistent with

our empirical observations (scale-invariant detection), since the difference between 4

hours and 20 hours cannot be resolved on the basis of measurements of viral load

taken every 24 hours.
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3.9 Sub-modular architecture balances tradeoff

between local and global communication

The limited published empirical data that we could find suggest that the mammalian

NIS has a hybrid sub-modular architecture (Model 3). There is a trend of increasing

LN size and number as animal size increases, for example, 20g mice have 24 LN

averaging 0.004g each, and humans are 3000 times bigger and have 20 times more

LN, each 200 times bigger [42, 7]. Data from elephants (with LN approaching the

size of an entire mouse) and horses (with 8000 LN) also support the hypothesis that

LN size and number both increase with body size (Model 3) [43, 7]; however, data

for more species are required to statistically reject any of our 3 models.

We hypothesize that the NIS is submodular (consistent with Model 3) because it

is selected not just to minimize time to detect pathogens (achieved by Model 1), but

also to minimize the time to produce a sufficient concentration of antibody in the

blood (Abcrit). A horse 25,000 times larger than a mouse must generate 25,000 more

absolute quantities of antibody (Ab) in order to achieve the same concentration of

antibody in the blood (where blood volume is ∝ M)[47]. A fixed antibody concen-

tration is required to fight infections like WNV that spread systemically through the

blood. We can now consider that the NIS has evolved to minimize two quantities:

the time to detect antigen (tdetect), and the time (tproduce) to produce Ab, where Ab

is proportional to M (Ab is the absolute quantity of antibody required to neutralize

the pathogen in blood).

In all pathogens which evoke the adaptive immune system, the rate limiting step

is the recognition of antigen on DCs by antigen-specific T helper cells within the LN

T cell area [36]. The time taken in this recognition step impacts other downstream

processes like activation of B cells since T helper cells activated by DCs must migrate

to the B cell area to activate B cells. If organisms of all body sizes activated the
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same number of initial B cells prior to clonal expansion, the time for a fixed number

of B cells to produce Ab would be ∝ log2M (since B cells reproduce exponentially

through clonal expansion). For example, since it takes 4 days of exponential growth

of activated B cells to produce sufficient anti-WNV neutralizing antibody in mice [39],

then the corresponding time for a horse would be more than 2 months, should the

same number of initial B cells be activated prior to clonal expansion. This conflicts

with empirical data on horses [2]. We assume that the NIS of larger organisms has

to activate a larger number of initial B cells (Bcrit) ∝ M , in order to build up the

critical density of antibodies in a fixed period of time. We now ask how the NIS can

activate Bcrit in our three models.

In Model 1, LNs are a fixed size, and therefore contain a fixed number of B

cells, and the smallest LNs (e.g. in mice) contain on the order of a single B cell

that recognizes any particular pathogen. Thus, activating Bcrit to fight an infection

like WNV that is initially localized in a single DR, requires recruiting B cells from

distant LN. We consider this activation of B cells from remote LN as communication

overhead. In general, the number of LNs that a single infected site LN has to

communicate with (Ncomm) in order to recruit more B cells is proportional to the

amount of antibody required to neutralize the pathogen divided by the number of B

cells resident in a LN (NumBcell): Ncomm ∝ Ab/NumBcell. Noting that Ab ∝M and

NumBcell ∝ VLN we have Ncomm ∝M/VLN

The rate at which new B cells from other LN enter into infected site LN through

the blood or lymphatic vessels (ratecomm) is proportional to the volume of the LN,

ratecomm ∝ VLN (assuming that a larger LN will have proportionally more high

endothelial venules and hence can recruit at a higher rate). The time spent in

communicating with other LNs and recruiting and activating other B cells (tcomm) is

then given by
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tcomm = Ncomm/ratecomm ∝M/V 2
LN (3.6)

Hence in Model 1, there are increasing costs to communicating with other LN

as the organism gets bigger (tcomm ∝ M); it carries out efficient search but is not

optimized for antibody production.

Model 2 (non-modular detection network) compensates for the limitation of phys-

ically transporting NIS cells over larger distances by making LNs bigger in larger

organisms (VLN ∝ M). This increases the rate of influx of B cells (ratecomm ∝

VLN ∝M) and also situates more NIS cells inside the infected site LN. Since all the

necessary NIS cells that need to be activated are within the LN, this architecture has

no communication cost. However, as shown above (Section 3.8.3), Model 2 leads to

DC migration times that are prohibitively long for large animals (tDCmigrate ∝M1/3).

The architecture that strikes a balance between the two opposing goals of antigen

detection (local communication) and antibody production (global communication) is

Model 3 (hybrid sub-modular architecture). It minimizes T = tdetect + tproduce, where

tdetect = time taken to detect antigen, and tproduce = time taken to produce antibody

= tcomm (since the time taken to produce antibodies is equal to the time taken to

recruit B cells or communicate with other LNs; after recruitment starts and cognate

T cells recognize antigen on DCs, T cells can migrate to the B cell area and activate

B cells in parallel to the recruitment process described earlier).

We can solve for the total time (T = tdetect + tproduce) to detect antigen and

produce B cells using Eq. (7) and the scaling relationship for tDCmigrate from Table 3.5

giving:

T = tDCdetect + a(lDR − lLN) + tTcell,DCdetect + bM/V 2
LN (3.7)

where a and b are constants, lDR = length of DR, lLN = length of LN, VLN = volume
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of LN, M = organism mass, and N = number of LNs. This becomes

T = tDCdetect + cV
1/3
LN + tTcell,DCdetect + bM/V 2

LN (3.8)

where c is a constant, and lDR and lLN scale as V
1/3
DR and V

1/3
LN respectively since

VLN and VDR scale isometrically, as M/N .

Differentiating with respect to VLN and setting the derivative to zero to find the

minimum T , gives

VLN ∝M3/7 (3.9)

Since the amount of lymph is proportional to host body mass (N ∗ VLN ∝M), then

N ∝M4/7 (3.10)

These predictions are consistent with the few empirical data we were able to ob-

tain. Similar arguments would also apply to other pathogens that spread systemically

throughout the body and need to activate a number of B-cells or cytotoxic T cells

proportional to M . We note that N ∝ M1/2 was predicted by Perelson and Wiegel

[50], but that analysis did not explicitly consider an optimization to simultaneously

minimize detection time and time to produce the critical number of Ab.

In summary, due to the requirement of activating increasing number of NIS cells

for antibody production in larger organisms, there are increasing costs to global

communication as organisms grow bigger. The semi-modular architecture (Model

3) balances the opposing goals of detecting antigen using local communication and

producing antibody using global communication between LNs. This leads to optimal

antigen detection and antibody production time, and nearly scale-invariant detection

and response.
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3.10 Relevance to artificial immune systems

The natural immune system utilizes an architecture that functions within constraints

imposed by physical space. Physical space is also an important constraint on artificial

immune systems, especially in applications used to connect inexpensive low-powered

sensors using short-range wireless communication [51]. Such spatial networks are

being increasingly used in environmental monitoring, disaster relief and military

operations [51]. These networks might operate under constraints of resource and

physical space, similar to an NIS. Although there are systematic differences between

an NIS and an AIS [52], the design of the AIS can be informed by architectural

strategies employed by their biological counterpart.

3.10.1 Original system

As a concrete example of an application where space is a constraint and scaling of

performance with system size is an important design criterion, we consider an AIS

approach to control multiple robots tasked with obstacle avoidance [53]. The robots

communicate with software agent(s) in a server upon encountering an obstacle. The

agents transmit rule-sets of actions to robots to help overcome their obstacles, and

agents also share information globally amongst themselves by migrating to other

computer servers. Some analogies between this AIS and an NIS are: the obstacle

problem presented by a robot is analogous to an antigen, the rule-set of actions trans-

mitted by an agent correspond to antibodies, the robots are akin to DCs, software

agents correspond to B cells, the computer servers themselves are analogous to LNs,

and the physical area ‘serviced’ by a single computer server corresponds to a DR.

The system is diagrammed in Fig. 3.6 (modified from [53]).
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Figure 3.6: (A) Left Panel: a scaled down version of the multi-robot AIS system. The
shaded regions are artificial LNs (computer servers) and the unshaded regions are the
artificial DR. Light arrows denote communication between robots and servers (local
communication) and bold arrows denote communication between servers (global com-
munication). (B) Right Panel: a scaled up multi-robot AIS system with sub-modular
architecture. Note that the number of artificial LNs and their size (the number of
robots they service and the number of software agents they have in memory) both
increase with the size of the system.

3.10.2 Modifying the original system using a sub-modular

architecture

We are interested in an architecture that minimizes the time taken by a robot to

transmit information about an obstacle (local detection), the time taken by a com-

puter server to transmit back an initial rule-set of actions (local response) and the

time taken by a computer server to communicate good rule-sets to other agents

(global response). There are two potential communication bottlenecks: communi-

cation between robots and computer servers, and communication between computer

servers.
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Overcoming the bottleneck in (local) communication between robot and server

requires many small DRs. A bottleneck in (global) server communication requires

a few large servers. If both local and global communication are constrained, the

architecture which balances these opposing requirements is sub-modular, i.e. the

number of servers increases sublinearly with system size and the capacity of each

server (bandwidth, memory and number of robots serviced by each server) increases

sublinearly with system size (shown in Fig. 3.6). The four ways in which communi-

cation can be bottlenecked are outlined below:

1. High Capacity Robot Bandwidth, High Capacity Server Bandwidth: Assuming

that robots have high bandwidth to communicate with computer servers and

software agents can communicate with each other over a channel with high

bandwidth, we see that trivially any of the architectures would suffice.

2. Limited Robot Bandwidth, High Capacity Server Bandwidth: Assuming com-

munication between robots and computer servers is a bottleneck mandates a

small fixed size DR, i.e. a computer server servicing a small number of robots

to reduce contention and transmission time. Since communication between

servers is not constrained, we can have the number of servers scaling linearly

with system size, giving Model 1 (completely modular network) as the optimal

architecture.

3. High Capacity Robot Bandwidth, Limited Server Bandwidth: Assuming com-

munication between computer servers is a bottleneck stipulates a fixed number

of computer servers to reduce communication overhead. Since communication

between robots and servers is not constrained, we can have the DR size (num-

ber of robots serviced by a single server) and LN size (number of agents in a

single server) scaling with system size. Hence the optimal architecture is Model

2 (non-modular detection network).
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4. Limited Robot Bandwidth, Limited Server Bandwidth: A bottleneck in robot

and server communication demands a small DR and lots of servers, whereas a

bottleneck in server communication requires fewer large servers. The architec-

ture that balances these opposing requirements is Model 3 (hybrid sub-modular

architecture), i.e. the number of servers and their size (number of robots ser-

viced by each server) increases with system size (3.6).

The local communication time within an artificial DR is a function of the number

of robots (d) serviced by a single artificial LN

tlocal = f(d) (3.11)

The function f will depend on constraints on communication between robots and

servers, influenced, for example, by how robot requests are queued on the server and

the distance over which low power robots can send and receive messages. The global

communication time between artificial LNs is also a function of the number of LNs

in the system (n/d) where n is the total number of robots in the entire system

tglobal = g(n/d) (3.12)

The function g depends on communication constraints between servers. For low

latency and high bandwidth connections among servers, tglobal may not scale appre-

ciably. However, low power servers distributed in remote environments, may preclude

broadcast communication such that tglobal increases with n/d. An increase in the size

of an artificial LN (and hence the number of robots serviced, d) would reduce tglobal

at the cost of tlocal. The size and number of artificial LNs to balance local and global

communication depends on the precise functions f and g mediating local and global

communication.
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Although we have provided only one example, this research is widely applicable

to other distributed systems AIS applications. In recent work, we have extended our

work to modify peer-to-peer systems with a sub-modular architecture [54].

In summary, understanding the tradeoff between fast search for pathogens and

fast production of antibodies is important for AIS that mimic the NIS. If the goal

of an AIS is only search or detection in physical space with a local response, then a

completely modular design (Model 1) will be optimal. If an AIS searches in physical

space but requires a global response after detection, a sub-modular architecture

(Model 3) optimizes the tradeoff between local search and global response and will

lead to faster search and response times (T = tlocal + tglobal). Our analysis sheds light

on the relationship between physical space and architecture in resource-constrained

distributed systems.

3.11 Conclusions

Host body size constrains pathogen replication rates due to the physical character-

istics of transportation networks that supply infected and normal cells with energy.

Host body size also constrains NIS detection and response times by increasing the

physical size of search spaces. The NIS is comprised of rare antigen-specific immune

system cells that it must utilize to search for initially small numbers of pathogens

localized in a large physical space. The NIS solves this classic search for a ‘needle in

a haystack’ in time that is almost invariant of the size of the organism. The decen-

tralized nature of the lymphatic network also helps in efficient pathogen detection

by acting as a small volume of tissue where DCs can efficiently present antigen to

T cells. The NIS must also respond to the antigen by producing antibodies (in the

case of WNV) proportional to the mass of the organism. From empirical data, that

time also appears independent of body size.
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We use an ODE model to show that NIS response rates are independent of host

body size and pathogen replication rates decrease with body size. We examine three

different hypothesized NIS architectures using an agent based model, to explain the

scale-invariant detection and response times of the NIS. The sub-modular detection

network strikes a balance between the two opposing goals of antigen detection (local

communication) and antibody production (global communication), and is consistent

with observed numbers and sizes of LN. This submodular architecture of the lym-

phatic network must simultaneously provide systemic protection to the entire body

while protecting each local volume of tissue equally well. Thus, the lymphatic archi-

tecture lies between the extremes of the fully centralized cardiovascular network (in

which blood is oxygenated in a single location) and the fully decentralized concept of

the protecton (in which a fixed number and diversity of lymphocytes protects every

volume of tissue).

We demonstrated that a submodular architecture effectively balances the trade-

off between local search for a solution and global distribution of the solution in dis-

tributed robot control. In addition to incorporating NIS inspired distributed search

algorithms into AIS, we suggest that AIS can replicate the submodular architecture

used by the NIS to balance the tradeoff between local and global communication.
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Chapter 4

The Value of Inflammatory Signals

in Adaptive Immune Responses

4.1 Abstract

Cells of the immune system search among billions of healthy cells to find and neutral-

ize a small number of infected cells before pathogens replicate to sufficient numbers

to cause disease or death. The immune system uses information signals to accomplish

this search quickly. Ordinary differential equations and spatially explicit agent-based

models are used to quantify how capillary inflammation decreases the time it takes

for cytotoxic T lymphocytes to find and kill infected cells. We find that the inflam-

mation signal localized in a small region of infected tissue dramatically reduces search

times, suggesting that these signals play an important role in the immune response,

especially in larger animals. This chapter was co-authored by Drew Levin, Melanie

E. Moses, Frederick Koster and Stephanie Forrest (Department of Computer Science,

University of New Mexico). It was published in the 10th International Conference on

Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, Volume

48



Chapter 4. The Value of Inflammatory Signals in Adaptive Immune Responses

6825, 2011, pp. 1-14. Copyright c©2011 Springer-Verlag Berlin Heidelberg.

4.2 Introduction

Rapid search is crucial for an effective immune response: Immune system cells must

find, identify and neutralize pathogens before those pathogens replicate in sufficient

numbers to cause disease or death. The adaptive immune system has a small num-

ber of pathogen-specific cells that must search for and neutralize a small number

of initially localized pathogens in a very large tissue space. We investigate how

inflammatory signals accelerate this search.

The adaptive immune response must conduct two “searches” to neutralize

pathogens. First, recirculating antigen-specific T and B cell precursors must interact

with antigen-loaded dendritic cells, and the architecture of the lymph node facilitates

this interaction [55, 54, 26]. The second search is T cells activated in the lymph node

efficiently finding and neutralizing infected cells in tissue with the help of inflamma-

tory signals. In this paper we analyze these two searches in response to influenza

infection in the lung.

CTLs are activated within the infected site LN and are released into the blood-

stream where they travel through a branching network of arteries until they reach

a capillary in the lung. Capillaries in infected regions of the lung are permeated by

an inflammatory signal which causes CTLs to exit the capillary and enter the lung

tissue, where a chemokine gradient guides the CTL to infected cells. When CTLs

recognize the antigen displayed on the surface of infected cells, they neutralize those

cells. The information represented by the inflammatory signals is local, and occurs

in an initially small region of the lung surface, possibly as small as a few mm2 in a

100 m2 surface area in a human lung [56]. We ask how much the local inflammatory

signal reduces the time for CTLs to find the site of infection and eradicate the in-
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fluenza pathogen. Without an inflammation signal indicating which capillaries are

near infected tissue, CTLs would have to exit capillaries in random locations and

begin a slow random walk (at speeds measured in microns per minute) through the

large area of lung tissue to search for the site of infection. With the inflammatory

signal, CTLs can exit the relatively fast flow of the circulatory network only when

they are in close proximity to infected cells.

In this paper we describe two sets of models. The first (null) model predicts how

long it would take for CTLs to find infected cells by searching via a random walk

through the entire lung tissue. The second set of models are simplified representations

of how inflammatory signals guide CTL search in real immune systems. This second

set of models is parametrized from experimental data. By comparing predictions of

the null model to the more realistic model with inflammation, we estimate how much

the inflammatory signal reduces the time for CTLs to find and eradicate influenza.

We use ordinary differential equation (ODE) and agent-based models (ABM)

to quantify the value of the inflammatory signal, measured as the decrease in the

time it takes for CTLs to both find and eradicate virus from the lung. The ABM

incorporates the spatial aspect of virus spread and CTL mediated killing of infected

cells, and the ODE model can scale up to realistic cell population sizes. In both cases,

we first model an immune response without inflammatory signals where CTLs exit to

tissue at the first capillary they encounter and search by random walks until they find

a chemokine gradient that guides them to the infected cells. Second, we model an

immune response with inflammatory signals where CTLs exit to tissue only when the

capillary has an inflammatory signal. If there is no signal, CTLs recirculate through

the cardiovascular network until they find an inflamed capillary. We suggest that

localized signals like the inflammatory signal are enormously important to immune

function. Here we take a first step toward quantifying the value of that signal in

terms of time required to get T cells to sites of infection and to control influenza
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infection. This has important consequences for understanding the role of information

signals in immune systems more generally, and also the role that local information

signals can play in other complex biological systems [57, 58] and in artificial immune

systems where decentralized search requires effective use of local signals to solve

computational problems [54, 26].

The remainder of the paper reviews relevant features of the immune system (Sec-

tion 4.3), outlines our hypotheses (Section 4.4), and describes the models (Sections

4.5 and 4.6). Section 4.5 presents the ODE model and compares its predictions to

empirical data. Section 4.6 uses the ABM to verify some of the ODE predictions

and produce more realistic spatially explicit simulations, including pathogen spread

during the CTL search. We conclude by quantifying how much inflammatory signals

improve immune response in these models.

4.3 A Review of the Relevant Immunology

This study characterizes how a key type of adaptive immune cells (cytotoxic T lym-

phocytes, also called CD8+ T cells or CTLs) [59] search for and neutralize a common

respiratory tract pathogen (influenza) in the principal target organ, the lung (Fig.

4.1). Among the many immune cells and molecules involved in providing defense

against influenza [60], there is a complex set of interactions to guide CTLs to the

site of infection and to produce chemokines and other information signals to help

contain the infection. We simplify the array of chemokines with a single signal that

causes inflammation and attracts CTLs to site of infection.

Infection begins when influenza virus is inhaled into the lung. It enters epithelial

cells lining the airways and the air sacs (alveoli) of the lung. Epithelial cells initiate

the first line of innate immune defense through the activation of interferon and

the secretion of chemokines to attract inflammatory cells such as macrophages [61].
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Inflammation increases local blood flow to the infected region and amplifies the

chemokine signal. To initiate the adaptive immune response, resident lung dendritic

cells capture virus and carry it to the draining lymph nodes (LN). LNs provide

a dense tissue in which T and B lymphocytes and antigen-loaded dendritic cells

encounter each other efficiently. Antigen-specific CTLs are activated within the LN,

undergo cell division, and leave the LN to enter the blood circulation. We focus on

the response of cytotoxic T lymphocytes (CTLs) because recovery from influenza

pneumonia in wildtype mice has been shown to require neutralization of infected

cells by CTLs [62].

The cardiovascular network in the lung follows the fractal branching of the air-

ways.The branching arterioles end in a capillary network which nourishes the airsacs

(alveoli) of the lung. The capillary density in mouse lung is approximately 5000/cm2

(estimated from [56]). The surface area of a mouse lung is approximately 100cm2

giving 500,000 capillaries in the mouse lung. Capillary density decreases as M−1/4

where M is organism body mass [11, 56] and since humans are 10,000 times larger

than mice, the capillary density in a human lung is 500/cm2. The surface area of a

human lung is approximately 100m2 and hence the number of capillaries in a human

lung is approximately 5 · 108.

The CTL flow through the arterial network without any signal to guide them

to the tiny fraction of capillaries near the initial infection. If an activated CTL

reaches an inflamed capillary, it exits the capillary into lung interstitial tissue. The

tissue surrounding inflamed capillaries also contains a chemokine gradient which

the CTL follows to locate infected epithelial cells and reduce viral replication. The

chemotactic signals are composed of cytokines and chemokines which provide a region

of attraction larger than that provided by antigen and infected cells. If an activated

CTL reaches an uninflamed capillary, it may wander short distances through the

capillary network. If it still does not encounter an inflammatory signal, it recirculates
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through the blood and eventually returns to another capillary in the lung. The

recirculation time for mice is 6 seconds and 60 seconds for humans [47].
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Figure 4.1: A region (A of radius r) of infected tissue, chemokines and inflammatory
signals, surrounded by region B which does not have any infected cells, inflammation
or chemokines. CTLs (green hexagons) leave the LN at rate σ and travel through
the branching arteries to capillaries. If capillaries are inflamed (in region A) CTLs
exit capillaries and search for infected cells (small red circles) in lung tissue. If the
capillaries are not inflamed (in region B) the CTLs recirculate.

4.4 Goals and Hypotheses

Inflammatory signals and chemotactic gradients are examples of signals that serve to

guide search processes in the adaptive immune system. We hypothesize that these

and other signals enable the activated immune cells to find and neutralize pathogens

53



Chapter 4. The Value of Inflammatory Signals in Adaptive Immune Responses

more quickly than in the absence of such signals. More specifically, we aim to quantify

the benefit provided by the inflammation in the capillaries, which allows circulating

CTLs to know that they have reached a site of infection.

We examine a hypothetical immune response without inflammatory signals (CTLs

searching for infected tissue by randomly walking through lung tissue) and a more

realistic immune response with inflammatory signals (CTLs recirculate through the

arterial network until the presence of inflammation signals them to exit near infected

tissue). We study how long it takes for the first CTL to find the infected region, how

quickly CTLs accumulate in infected tissue, and how many epithelial cells become

infected in a specified time period. We quantify the value of the information signal

as the ratio of these values with inflammatory signal to those values without the

signal. We use ODE and ABM to estimate the value of the inflammation signal.

The ODE can model large numbers of cells, so we use ODEs to compare the value of

the inflammatory signal in mice and humans. We then use an agent based model to

investigate the dynamics of infection growth and spatial interactions between cells

in the mouse.

4.5 Ordinary Differential Equation Model

In this section we analyze how quickly CTLs arrive at the site of infection with

and without an inflamation signal using an ODE model. We represent the region

of infection as a circular area (region A) of radius r of tissue expressing a general

chemotactic signal. This region is surrounded by a region of uninfected tissue (a

concentric circle of radius R (region B)) without inflammation or chemokines.

Any activated CTLs that flow to capillaries in region A will have an inflammatory

signal that causes the CTL to exit the capillary and a chemokine gradient that will

direct those CTLs to infected cells. In contrast, CTLs that arrive in the lung via
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capillaries in region B will have no inflammatory signal and no chemokines to guide

them to the infected cells in region A. We assume that CTLs that exit into tissue

do not go back into circulation.

There are several simplifying assumptions in the ODE model. It ignores viral

replication and assumes that the infected region A is a fixed size. It also ignores

the movement of CTLs inside capillaries, and instead assumes that CTLs either

immediately sense inflammation and exit into tissue or immediately recirculate. The

model also ignores CTL death in the lung.

The dynamics of the system are represented by coupled ODEs. We parameterize

the ODEs to consider two cases. In the first case, CTLs search for virus using only

the random walk (null model). In the second case, CTLs in region A receive an

inflammation signal that allows them to exit and follow the chemotactic gradient,

while CTLs in region B continue to recirculate through the lymph system until they

find an inflamed capillary in region A as in Fig. 4.1.

4.5.1 ODE Model 1: CTL Search Without an Inflammation

Signal

In this scenario there is no signal to direct CTLs to an infected region, therefore

CTLs always exit into tissue as soon as they reach a capillary. The capillaries are

assumed to be uniformly distributed throughout the lung, and a single activated

lymph node is assumed to produce activated CTLS at a fixed rate of σ CTLs per

hour. The infection is in a region of constant radius r, and the lung surface is a

circle of radius R. The time taken for CTLs to circulate through the lymph system

is denoted by trc. The combined system is represented by the following differential

equations:
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dNc

dt
= σ − Nc

trc
(4.1)

dNw

dt
=

(R2 − r2) ·Nc

R2 · trc
− D ·Nw

π((2/3(R− r) + r)2 − r2)
(4.2)

dNf

dt
=
r2 ·Nc

R2 · trc
+

D ·Nw

π((2/3(R− r) + r)2 − r2)
(4.3)

Equation (4.1) describes the change in the number of recirculating activated CTLs

in the cardiovascular system (Nc) due to the rate of production of new CTLs in the

LN (σ) and time it takes CTLs to travel to the capilaries (trc). Since the relevant

time step in this setting is the minimum time taken for CTLs to complete one circuit

through the arterial and venous circulation system (the recirculation time trc) and

is different from the simulation time step (dt), all rate constants are divided by trc.

Equation (4.2) describes the change in the number of CTLs (Nw) that are doing a

random walk in tissue and searching for infected cells. The change in Nw is due to the

rate at which CTLs exit into region B from circulation (a fraction of Nc

trc
) and the rate

at which these searching CTLs find region A. The fraction of circulating CTLs that

enter capillaries in region B is given by the relative area of region B (R
2−r2
R2 ). The rate

at which CTLs find region A is calculated as follows: an average CTL in region B will

be at a distance 2/3 from the periphery of region A (obtained by integrating over all

CTLs at each distance in region B). The mean area that this CTL will cover before

reaching region A is given by the quantity π((2/3(R− r) + r)2 − r2), and the mean

time in which this area is covered is this quantity divided by the diffusion constant

for random walk (D), again adjusted for the recirculation time. The reciprocal of this

time gives the rate at which a single CTL enters region A. To complete the analysis
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we multiply this quantity by the number of searching CTLs. Finally, Equation (4.3)

describes the change in the number of CTLs (Nf ) that have found infected cells (in

region A). This is composed of the searching CTLs from Equation (4.2) that find the

infected region and the fraction of the recirculating CTLs from Equation (4.1) that

enter capillaries in region A (represented by the area of region A relative to the total

lung area). We use the model to study the arrival of CTLs at the site of infection,

first in the mouse lung and then in the human lung.

In order to numerically integrate Equations (4.1)-(4.3) we first estimate the dif-

fusion rate of CTLs. Since we are not aware of any published values for diffusion

rates of activated CTLs within tissue, we used measured mean square displacements

of T cells within the LN [63]. Following Beauchemin et al. [63], the equation relating

mean square displacement of a random walking particle in two dimensions at time t

is given by | m |=
√

4Dt
Γ( 3

2
)

Γ( 1
2

)
where | m | is the mean square displacement, D is the

diffusion constant and Γ is the gamma function. We estimated D as 56(µm)2/h in

the LN [63], and we use this value to characterize the random walk in lung tissue.

We estimate the parameter σ from experimental data (detailed in the next sec-

tion) as 864 activated CTLs per hour, and the time to recirculate (trc) is 6 seconds

[64]. The area of infection has a radius (r) of 1 mm (personal observation for seasonal

strains in mice) and the total lung surface is represented by a circle with a radius of

10 cm (R) [56].

The model shows that there is a steady state of approximately 2 circulating acti-

vated CTL. So few CTLs are in circulation because they exit the LN approximately

1 every 4 seconds and spend only 6 seconds in blood before immediately exiting the

blood to search in the lung. We numerically simulated the ODE system and found

that the time for the first CTL to reach the site of infection (region A) is approx-

imately 12 hours post activation in the LN (Fig. 4.2, Panel A). Approximately 10

CTLs find the infected region at day 5 post activation.
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Next we use ODE Model 1 to predict how quickly CTLs arrive at the infected site

in a human. Human body mass is approximately 10,000 times larger than a mouse.

Human lungs are a corresponding 10,000 times greater area, so R becomes 10 meters

[56]. We assume that the initial area of infection r remains the same 1mm2. CTL

recirculation time (trc) increases to 60 seconds [64].

In order to calculate the rate of CTL production from LN (σ) we scale the (σ)

estimated for mice by a factor of M3/7 following [26]. This scaling assumes that

LNs in larger animals are larger and have more high endothelial venules to release

activated CTLs at a faster rate. From this we estimate σ as approximately 45000

CTLs per hour. Numerically simulating the ODE system, we predict the time for a

CTL to find an infected cell in a human lung as approximately 90 days, which is much

longer than the actual time taken to resolve influenza infections (approximately 10

days) [62].

4.5.2 ODE Model 2: CTL search with an Inflammatory Sig-

nal

Here we model an immune response with inflammatory signals. CTLs exit capillaries

and enter lung tissue only when there is an inflammatory signal in the capillary. All

other parameters are identical to ODE Model 1. The system is represented by the

following differential equations:

dNc

dt
= σ − r2 ·Nc

R2 · trc
(4.4)

dNf

dt
=
r2 ·Nc

R2 · trc
(4.5)
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Figure 4.2: Row A: The number of circulating CTLs (Nc) and CTLs that have arrived
at the site of infection(Nf ) vs. time post activation of the first CTL in LN for CTLs
searching without an inflammatory signal (ODE Model 1) for mice (blue, left axis)
and humans (green dotted, right axis). The number of recirculating CTLs reaches a
steady state because once they enter the lung they never recirculate. Row B: Nc and
Nf vs. time post activation for CTLs circulating in the presence of inflammatory
signals (ODE Model 2 fit to experimental data) for mice (blue, left axis) and humans
(green dotted, right axis). Note the difference in y-axis scale between the two rows.

Equation (4.4) describes the change in the number of circulating activated CTLs

circulating in the cardiovascular system (Nc). (Nc) changes due to the addition of

new CTLs from the LN at rate (σ), and the loss of CTLs from circulation that

exit capillaries expressing inflammatory signals and enter infected tissue (region A).

Equation (4.5) describes the increase in the number of CTLs that find infected cells.

This is the same as the loss term from the pool of recirculating CTLs from Equation

(4.4).

We fit Model 2 to experimental numbers of CTLs in lung at various time points

post infection for influenza in mice [62]. The fitting procedure found free parameters

that minimized the mean squared error between the model and the data. We only

considered data up to the peak of CTL activation and did not consider the decline
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of CTLs after the infection is cleared.

Model 2 (Equations 4.4 and 4.5) was solved numerically using Berkeley Madonna

[32]. The curve fitter option in Berkeley Madonna (Runge-Kutta 4, step size =

0.0004 sec) was used to establish the best-fit parameter estimates. The curve-fitting

method uses nonlinear least-squares regression that minimizes the sum of the squared

residuals between the experimental and predicted values of Nf .

Next we compared model output for mice and humans. For mice, we fixed r to

1 mm, R to 10 cm, and the recirculation time (trc) to 6 seconds. We then estimated

the LN rate of output of CTLs (σ). The best fit estimate for σ was approximately

864 activated CTLs per hour. Model output is shown in Fig. 4.2 Panel B (a list of

all ODE model parameters is given in Table 4.1). Numerically simulating the ODE

system, we estimated the time taken for the first CTL to reach infected tissue to

be approximately 15 minutes (Fig. 4.2 Panel B). Approximately 80000 CTLs find

the infected region at day 5 post activation. We modeled CTL search in the human

lung using the same values as in ODE Model 1 (R = 10 meters, trc = 60 seconds

and σ = 45000 CTLs per hour) and numerically simulated the ODE system. The

predicted time for an activated CTL to discover an infected cell in a human lung is

approximately 8 hours, and the number of CTLs that reach the lung by 5 days post

activation in the LN is approximately 190.

In summary, the presence of an inflammatory signal and a chemokine gradient

around infected cells results in a earlier first discovery of infection by activated CTLs

in both mice and humans. In mice, the first CTL with inflammation arrives in 15

minutes compared to 12 hours without it, a 48-fold speedup. The inflammation signal

reduces search time in humans more than in mice: The first CTL with inflammation

arrives in 8 hours compared to 90 days without it, a nearly 270-fold speedup.
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Table 4.1: The parameters used in the ODE and ABM for mice with a short descrip-
tion of their role and default value (§ measured in human cell lines)

Description Value Source

Release rate of activated CTLs (σ) 864/h Fit to data in [62]

CTL recirculation time (trc) 6 s [47]

CTL diffusion coefficient (D) 56(µm)2/h Calculated from [63]

Radius of lung area (R) 10cm [56]

Radius of circle lung infected area
(r)

0.1cm Personal observation

Length of cubic ABM simulation
compartment

2000µm Model parameter

Time between infection and secre-
tion §

10.5h [65]

Duration of productive infection § 17.15h [65]

ABM virus secretion rate § 2.6 virions/h [65]

ABM CTL sensing radius 10µm Model parameter

ABM Epithelial cell diameter 10µm Model parameter

ABM CTL diameter 4µm Model parameter

Figure 4.3: A snapshot of the CyCells ABM in action. The epithelial cell layer is
made up of healthy cells (dark red), infected incubating cells (green), virus expressing
cells (blue), and dead cells (yellow). The area of lighter red surrounding the infection
shows that free virus particles (semi-transparent white) are present. T-cells (pink)
are seen swarming over locations with high virus concentration.

4.6 Agent Based Model

The ABM extends the earlier results to consider spatial and stochastic effects of CTL

migration and recirculation, also incorporating infection spread and CTL mediated
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killing of infected cells. The CyCells [29, 30] modeling tool explicitly represents

healthy cells, infected cells, and CTLs, and represents cytokines, chemokines, and

virus as concentrations. We model the release of virions from infected cells, diffusion

of chemokines and inflamatory signals, and chemotaxis of CTLs up a chemokine

gradient. A screenshot of the graphical representation is shown in Fig. 4.3.

Figure 4.4: Panel A: Plot of the number of recirculating CTLs (Nc) and CTLs
that have found infected cells (Nf ) vs. time post activation for CTLs only walking
randomly (ABM 1). Panel B: Plot of Nc and Nf vs. time for CTLs only recirculating
(ABM 2). Panel C: Plot of the number of infected cells over time for ABM 1 and
ABM 2. The population bumps in Panel C during the first day post activation are
an artifact of the model initialization scheme and do not affect the final results.

4.6.1 ABM Model 1: Dynamics without Inflammation

We start by modelling a 2mm by 2mm grid with an area of infection that represents

five days of growth in the absence of a secondary immune response. After five
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days, specific CTLs become activated and enter the grid at a random location at

σ = 864/hour, scaled down to adjust for the 4mm2 subset of the 10cm× 10cm area

of the mouse lung. In ABM Model 1, there is no inflammatory signal, so CTLs that

enter the grid immediately exit the capillary and begin a random walk through lung

tissue. Infected cells produce virions which then infect healthy cells. Virus infected

cells are differentiated into two populations: infected cells that are incubating but

not secreting virus, and expressing cells that are actively producing new virions. The

parameters describing rate of infection of healthy cells are taken from a previous study

[65] (summarized in Table 4.1). Our primary results comparing system dynamics

with and without inflammation signals do not depend on these parameters.

The time taken for the first CTL to detect an infected cell is 90 minutes. 33

CTLs find the infection five days post activation (Fig. 4.4 Panel A). There are 4,077

infected cells five days post activation.

4.6.2 ABM Model 2: Dynamics with Inflammation and CTL

Recirculation

Next we study an immune response with inflammatory signals. We simulated an

influenza infection using the same parameters as ABM 1, but allowed CTLs to recir-

culate until they encountered an inflammation signal. We evaluate the value of the

inflammatory signal by comparing the results of ABM 1 and ABM 2.

The time taken for the first CTL to find an infected cell is 3.3 minutes. The

number of CTLs which find infected cells in 5 days is 111,572 compared to 33 in

ABM 1 (Fig. 4.4 Panel C). The number of infected cells remaining in the simulation

is much lower for ABM 2 (46.7) compared to ABM 1 (4,077). Hence the value of

the inflammation signal is a reduction in the number of infected cells at day 5 (from

approximately 4,077 without an inflammatory signal to approximately 47 with the
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Table 4.2: The effect of inflammation on the time taken by CTLs to first detect
infection, the number of CTLs that arrive in the infected region by day 5 post
activation and the number of infected cells in the simulated lung tissue by day 5 post
activation. ABM means and standard deviations are from three independent runs of
each ABM.

Mice Without Inflammation With Inflammation Benefit of Inflammation
Time to first detection ODE 12 hr 15 min 48

ABM 90 min ± 31.3 min 3.3 min ± 1.9 min 27
Arrived CTLs ODE 10 80,000 8,000

ABM 33 ± 4.6 111,572 ± 1,536 3,380
Infected cells ODE - - -

ABM 4,077 ± 518 46.7 ± 4.7 87

Humans Without Inflammation With Inflammation Benefit of Inflammation
Time to first detection ODE 90 days 8 hr 270
Arrived CTLs § ODE 0.05 190 3,800
Infected Cells § ODE - - -

signal).

4.7 Discussion

4.7.1 Summary of Results

In this study we used ODE and ABM models to quantify how much inflammation of

infected tissue improves the adaptive immune response. This is measured in terms

of three different values: how much the inflammatory signal speeds up the arrival of

the first CTL at the site of infection; how much the inflammatory signal increases the

number of CTLs that find the site of infection five days after CTL activation; and how

much the inflammatory signal decreases the number of infected cells at five days after

CTL activation. We used ODE and ABM models to quantify these improvements in

mice and the results are summarized in Table 4.2. The speed up for the first CTL

to arrive in the infected region in a mouse is tens of times faster in both the ODE
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and ABM models. The number of CTLs that reach the infected region by day five

post activation is thousands of times faster in both models. The ABM includes CTL

mediated killing of infected cells and predicts that with an inflammatory signal, the

number of infected cells at day five is 87 times lower.

We scaled up the ODE model to make the same predictions for the human lung

which is 10,000 times larger than the mouse lung. The ODE models predict that

with an inflammatory signal the speed up in arrival of the first CTL humans is 270

times faster and 3800 times more CTL arrive at the site of infection at day five.

Thus, the inflammatory signal improves the CTL search much more in the human

than in the mouse.

4.7.2 Caveats and Limitations

We have made many simplifying assumptions in our models. We have ignored death

of activated CTLs. We have assumed that LNs produce activated CTLs at a constant

rate. We have ignored the time that activated CTLs spend in transit through a

capillary network before going back into circulation if there is no inflammation.

Because our interest is in the effect of a single signal (the inflammation signal the

causes CTL to exit circulation and enter lung tissue near the site of infection), we

ignore a vast array of signaling mechanisms and complex interactions between innate

and adaptive immune system cells.

However, our assumptions and simplifications do not affect our primary con-

clusions about the relative speed of CTL search with and without an inflammatory

signal. For example including a death rate of activated CTLs would give us a slightly

higher estimate of the rate at which LNs release activated CTLs (σ) which would

decrease search times with and without an inflammatory signal. Incorporation of a

time dependent rate (σ) would give us more accurate production rates, but, again,
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this would change search times with and without an inflammatory signal in similar

ways. Our conclusions that inflammation greatly speeds up CTL search in the lung

depends primarily on two assumptions: first the relative speed of the random walk

of CTL in the lung vs the speed of circulation, and second, the initial size of the

infected region and its rate of growth.

4.7.3 Conclusions

Together, the ODE and ABM allow us to quantify the value of an information signal

in biologically relevant terms. The local inflammation signal in the capillary allows

search to be faster because it allows CTLs to recirculate when they arrive in capil-

laries in uninflamed regions of the lung. Because the lung surface area is so large,

and CTL that have exited capillaries move so slowly relative to circulating CTL, this

information signal drastically changes the ability of CTL to search the lung quickly.

It allows CTL to effectively search the large surface area of the lung in the relatively

fast flow of the blood circulatory system, and to exit only very near the site of infec-

tion. Further, because the human lung is 10,000 times larger than the mouse lung,

the search for an initially small site of infection is much more difficult. This work

shows that the effect of the local inflammatory signal is much larger in the search

for influenza in the human lung vs the mouse lung. This suggests that the role of

inflammation, chemokines and other immune signals may be different in humans and

mice. Understanding these differences is important because so much knowledge of

immunology and vaccine design depends on experimental work in mouse models.

The implications of this work extend beyond CTL search for influenza in the lung.

An effective immune response often requires finding rare localized sites of infection.

Models can make important contributions to our understanding of immune function

by explaining how the multitude of immune signaling mechanisms improve such
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search processes.

By understanding the role of information signals in the immune system we can

build models that allow us to understand how immune systems form distributed

information exchange networks to search, adapt and respond to infections. Without

central control, the interactions among millions of communicating components enable

immune systems to search and respond to complex, dynamic landscapes effectively.

We hypothesize that ant colonies, immune systems and other complex biological

systems use common informational strategies to allocate components effectively to

tasks and direct their search in space [57].

Our approach may be useful for developing decentralized search in Artificial Im-

mune Systems [54, 26]. We anticipate that a quantitative characterization of infor-

mation flow and its effect on performance will help us understand why systems of

different sizes and in different environments use different information, organizational

structures and strategies to accomplish similar tasks.
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Chapter 5

Estimating Biologically Relevant

Parameters under Uncertainty for

Within-Host West Nile Virus

Infection

5.1 Abstract

West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a sig-

nificant cause of viral encephalitis. Currently, little is known about the within host

viral kinetics of WNV during infection. We used a series of increasingly complex

mathematical models to examine WNV dynamics in mice. To the best of our knowl-

edge, this is the first effort to model within-host dynamics of WNV. The novelty

of our approach lies in combining viremia measurements for knockout and wildtype

mice by fitting a target cell limited model to knockout mice and adaptive immune

response model to wildtype mice. This approach reduces the number of parame-
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ters that need to be estimated by the immune response model and leads to tighter

bounds on model predictions. Despite large uncertainty in model parameters, our

analysis yields tight estimates of a variety of biologically relevant quantities that are

composed of non-linear combinations of model parameters, e.g. the within-host basic

reproductive number, R0, is between 1.7 to 7.1, the infectious virion burst size or

the average number of infectious virions released over the lifespan of a productively

infected cell is between 1.8 to 12.8 plaque forming units, and the number of cells in-

fected per infectious virion is approximately 0.9. Previous studies have demonstrated

the critical role played by the humoral immune response in conferring protection in

WNV infected hosts by reducing the peak viral load in blood. Not only is peak viral

load an important determinant of the outcome of the infected individual, it is also

a key determinant of transmission to mosquito vectors and epidemic spread. The

models presented here are a first step in gaining a quantitative understanding of the

role of the humoral immune response in reducing host infectivity and consequently

the epidemic spread of WNV. This chapter was co-authored by Jeremie Guedj, Ruy

Ribeiro, Melanie Moses and Alan S. Perelson and is being prepared for submission.

5.2 Introduction

West Nile virus (WNV) is a flavivirus that has emerged globally as a significant

cause of viral encephalitis. It is maintained in an enzootic cycle between mosquitoes

and birds [21] but can also infect and cause disease in horses and other vertebrates

including humans. Infection of humans is associated with febrility that can progress

to lethal encephalitis [66, 67, 68]. Following its introduction into the United States

in 1999, WNV rapidly spread across North America, and more recently WNV has

been reported in Mexico, South America, and the Caribbean [22, 23, 24]. Between

1999 and 2010, there were a total of 1.8 million illnesses in humans of which 1308
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resulted in deaths [69]. Although vaccines are available for animal use, no vaccines

or specific therapies for WNV are currently approved for humans [25].

WNV is an enveloped virus with a single-stranded, positive sense, 11-kb RNA

genome [25]. Since it was first isolated in 1937 [70], substantial attention has been

given to its structure, its genome, the mechanisms of viral entry and dissemination,

the immune response it elicits and its epidemiology (reviewed in [25]). However,

information regarding the kinetics of WNV infection is limited. WNV is cytopathic

and initially infects epidermal Langerhans cells, which then migrate to the draining

lymph node where macrophages are infected [25]. From the draining lymph node,

WNV spreads to the spleen, kidney, and spinal cord and ultimately breaches the

blood-brain barrier to infect neurons [25].

Viral titers in serum indicate that the peak of virus replication occurs before the

virus has spread to the spleen and kidneys (analysis of data from [71]). Hence virus

growth until the peak appears to be mostly driven by replication in Langerhans cells

and macrophages [72]. The kinetics of WNV infection in mice is characterized by

an initial exponential growth of serum virus that peaks at 3 to 4 days post infection

(DPI), followed by an exponential decline that leads to undetectable levels of virus

by 6 to 8 DPI.

Both T and B cell responses are important in controlling WNV infection [71, 73,

25]. Viral specific immunoglobulin M (IgM) is detected just before the virus titer

peak, approximately 3 to 4 DPI, and immunoglobulin G (IgG) is detected around 8

DPI [71]. The effect of induced IgM is to lower peak viremia and reduce the time

to peak viremia [71]. A cytotoxic T cell response does not appear until 6 DPI, well

after the peak of virus replication[74]. Our goal is to quantitatively describe the

interplay between viral dynamics and the immune response in the early phase of

WNV infection.
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Mathematical models have proven to be useful tools in the analysis of viral infec-

tions. For example, the dynamics of human immunodeficiency virus (HIV) infection

were poorly understood until mathematical models were developed. These models

were used to analyze the kinetics of viral load decline in patients under therapy and

were able to estimate the rate of HIV replication, the number of virus particles pro-

duced and cleared daily, and the average life span of infected cells[75, 76, 77, 78].

Similar models have been used to analyze the effects of interferon and ribavirin on

hepatitis C virus (HCV) dynamics [79, 80, 81] as well as the effect of drugs on hepati-

tis B virus (HBV) kinetics [82, 83, 84]. These models took advantage of the fact that

HIV, HCV and HBV infection produce prolonged chronic diseases where the virus

population attains steady state. Perturbation of the steady state by drug adminis-

tration helped to reveal the underlying kinetics of viral production and clearance.

In contrast, WNV produces an acute infection of short duration. Previous work has

applied modeling strategies to understand the kinetics of acute infection in influenza

[85, 86, 87]. To date there are no within host models of WNV infection.

Here, based on data obtained during experimental infection of mice, we develop

kinetic models of WNV infection. We proceed systematically to estimate rates of viral

replication, innate immunity and adaptive immune response. We first use empirical

data to estimate a parameter characterizing the rate of clearance of WNV by innate

immune responses in the first 90 minutes of infection. Next, we analyze data from

a knockout experiment in which there was no humoral (IgM) response in order to

characterize WNV infection dynamics in the absence of the initial adaptive response.

Then we incorporate these parameters into a model to characterize the kinetics of the

humoral response from experimental data in wild type mice. Using this approach

we estimate some parameters in isolation, and then incorporate those parameters

into a more complex model that includes an adaptive immune response. Thus, we

avoid the problem of needing to fit more parameters in our final model than can be

identified from the data.
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We use a computationally intensive method to estimate ranges of parameters

that could possibly have generated the observed viremia curves. The problem is

computationally challenging since the potential parameter space is very large and

tradeoffs between model parameters complicate parameter estimation. We reduce the

parameter space that needs to be explored by imposing constraints from experimental

data. Our computational framework incorporates the large uncertainties in imposed

bounds on model parameters. We then explore this space by parameterizing our

models with millions of feasible parameter combinations, and comparing the resulting

predicted viremia curves to empirical data.

5.3 Materials and Methods

5.3.1 Study data

The data examined here came from three experimental infection studies of WNV[71,

73, 4]. In order to estimate the infectious viral decay rate, we use a viral decay

study which intravenously inoculated wild type (C57BL/6) mice with 105 plaque

forming units (PFU) of WNV 3356 NY2000 [4]. Serum was collected 5 mins, 15

mins, 45 mins and 90 mins post infection. Blood samples were centrifuged at 8,000

rpm for 5 min, and serum was collected and frozen at -80◦C until tested for virus by

plaque assay on Vero cells.

The second set of studies (wildtype and knockout mouse studies) were based

on experimental infections of wildtype and IgM knockout mice. In these studies, wild

type and knockout (sIgM−/− C57BL/6J) mice were subcutaneously inoculated with

100 PFU of a strain closely related to the one used in the viral decay study (WNV

3000.0259 NY2000) [71]. Serum was collected every other day until 10 DPI and

titrated for virus by plaque assay on BHK-21 cells. The wildtype and knockout
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mouse study measured viremia in terms of both viral RNA and PFU but the latter

had fewer measurements. Since the viral decay study measured infectious virus

(PFU), we converted all RNA measurements in the wildtype and knockout mouse

study to PFU. We calculated the ratio of RNA copies per mL of blood for knockout

mice to the viral titer in PFU per mL of blood for knockout mice at day 2 and 4 post

infection from the experimental data. For WNV, we found that approximately 500

RNA copies on average corresponded to an infectious unit (PFU). Hence we scaled

the viral measurements for wildtype mice, originally measured in RNA copies per

mL of serum, to account for the fact that not all viral particles produce infections.

Finally, in order to determine the effect of the antibody response, we used an

antibody titer study that subcutaneously inoculated wildtype (C57BL/6J) mice

with 100 PFU of WNV 3000.0259 NY2000 [73]. Serum was collected every other day

until 12 DPI and neutralizing antibody titers were determined by a standard plaque

reduction neutralization assay [88]. The amount of antibody (measured in units of

plaque reduction neutralization titer for 50% inhibition, PRNT50) was determined.

5.3.2 Fitting models to data

The ordinary differential equations describing our viral kinetic models (Eqs. 5.1 -

5.4 and Eqs. 5.7 - 5.11) were solved numerically in Matlab [31]. The Runge-Kutta

4 method of integration was employed with a step size of 0.0004. The curve-fitting

method uses nonlinear least-squares regression that minimizes the sum of the squared

residuals between the experimental and predicted values of log10PFU/mL of serum.

We weighed all the data points equally in our fitting procedure since no uncertainty

was provided for the experimental viral titers.
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Figure 5.1: Equation 5.5 fit to data from the viral decay study [4] where viral titers in
serum were measured within the first 90 minutes following intravenous inoculation of
mice with WNV. Best fit using linear least-squares regression (r2 = 0.85 and p-value
= 2× 10−5).

5.3.3 A target cell limited model

We first analyze WNV dynamics in immunodeficient (IgM knockout) mice incapable

of antibody response. We assume that the infection is target-cell limited in these

mice, i.e. the concentration of virus reaches a peak and then declines when few

susceptible target cells remain. Models of target cell limited acute infection have

been developed for both HIV [92] and influenza A virus infection [85]. Here we use

a target cell limited model with an eclipse phase, given by the following differential

equations:

dT

dt
= −βTV (5.1)

dI1

dt
= βTV − kI1 (5.2)
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Table 5.1: Input parameters to model

Parameters Description Estimated Ranges Source

γ WNV clearance
rate

≤ 44.4/day (95% confidence in-
terval 29.5 - 54) also varied
with values 10/day, 20/day and
44.4/day

Fit to viral de-
cay study [4]

t1/2
(= ln2/γ)

Half-life of free
virus

≥ 22.5 minutes (95% confidence
interval 18.5 - 33.8)

Calculated

η Rate of IgM pro-
duction

54.7/day Fit to antibody
titer study [73]

T0 Initial target cell
density

2.2× 104 - 2.4× 106/mL Estimated from
[89]

k Rate of transi-
tion from I1 to I2

2.4 - 4/day Estimated from
[90, 91]

dI2

dt
= kI1 − δI2 (5.3)

dV

dt
= pI2 − γV − βTV (5.4)

where T is the number of uninfected target cells, I2 is the number of productively

infected cells, and V is the viral titer in serum. Target cells become infected by virus

at rate βTV , where β is the rate constant characterizing infection. The initial viral

titer and the initial number of target cells are denoted V0 and T0, respectively. The

initial number of infected cells is assumed to be zero. The separation of infected

cells into two classes, I1 cells that are infected but not yet producing virus and I2

cells that produce virus, is similar to that in a model proposed earlier for influenza

infection [85]. This separation increases the realism of the model, since delays in the

production of virus after the time of initial infection are part of the viral life cycle
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(the eclipse phase).

The parameter 1/k is the average transition time from I1 to I2. Productively

infected cells (I2) release virus at an average rate p per cell and die at rate δ per

cell, where 1/δ is the average life span of a productively infected cell. Free infectious

virus is cleared at rate γ per infectious unit per day, for example by phagocytosis

or loss of infectivity and is lost by entering cells during the infection process at rate

βTV . The effects of innate immune responses and T cell responses are not explicitly

described in this model, but are implicitly included in the clearance rate of virus

(γ) and the death rate of infected cells (δ). Since virus requires some time to infect

cells, produce progeny, and lead to the death of infected cells, immediately after

intravenous inoculation virus titers decline because virus is not yet being produced

but is still being cleared as described by

dV

dt
= −(γ + βT0)V (5.5)

where T0 is the density of infectible target cells in blood and β is the infection rate

constant of WNV for such target cells. Thus immediately after infection we expect

an exponential decline in viral titer with rate γ + βT0. Viral titers in serum within

the first 90 minutes following intravenous inoculation of mice with 105 PFU of WNV

were reported in Fig. 7 of ref. [4] (viral decay study). Using this data, we estimate

γ + βT0 = 44.4/day (Fig. 5.1). Thus γ ≤ 44.4/day and the half-life of free virus

(t1/2 = ln2/γ) is ≥ 22 minutes.

Since the viral decay study used intravenous inoculation and measured viremia

in blood until 90 minutes post infection, the infectible cell types are different from

a study that uses a footpad inoculation route. It is also difficult to estimate what

proportion of virus gets into organs and lymph nodes and the proportion of all

infectible cells that are reached in the first 90 minutes after inoculation. Hence the
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target cell density for intravenous inoculation (T0) in the viral decay study is probably

different from the target cell density for footpad inoculation in the wildtype and

knockout mice (T0). Since the rate constant of infection depends on the infectible

cell types, the corresponding rate constants of infection (β and β) are also probably

different in the two settings. Since we are unaware of any data that would allow us to

independently estimate βT0, we fixed γ at various values ≤ 44.4/day and examined

the sensitivity of our estimates of other model parameters to this choice. We also

iterated through values of the eclipse phase duration (1/k) ranging from 6 hours to

10 hours and varied 1/δ from 1 hour to 72 hours (see 5.3.6 Biological constraints on

model parameters).

For biologically feasible combinations of parameters, we generate a viremia curve,

and compare it to empirical data from the knockout mice study [71] in order to

identify a set of the target cell limited model parameters (V0, β, p and δ) that could

have generated the empirical data.
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Figure 5.2: Model fit to data from wildtype and knockout study using one repre-
sentative best-fit parameter estimate. The solid line is the target cell limited model
fit to data (squares) from knockout mice. The dotted line is the model including a
humoral response fit to data (circles) for wild type mice.
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Figure 5.3: Fit of the function A(t) given by Eq. 5.6 to the neutralizing antibody
data (circles) from the antibody titer study.

5.3.4 Model incorporating an adaptive immune response

Humoral immunity is an essential component of the immune response to WNV,

as neutralizing antibodies limit dissemination of infection [71, 73]. Diamond et al.

[73] (antibody titer study) infected wild type mice subcutaneously with WNV and

measured titers of neutralizing antibody as shown in Fig. 5.3. The data can be

described by the following piecewise linear function:

A(t) =

 0 , t < ti

η(t− ti) , t ≥ ti
(5.6)

The level of neutralizing antibody at time t, A(t), measured by the plaque reduc-

tion neutralization test (PRNT) is 0 before time ti and increases linearly with time

after that with rate η. This equation was fit to the antibody titer data (Fig. 5.3)
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and η and ti were estimated (Table 5.1).

The target cell limited model given by Eqs. 5.1-5.4 can be generalized to include

neutralizing antibody. We assume that neutralizing antibody, A, binds virus, V , and

neutralizes it with rate constant ρ, so that infectious virus is lost at rate ρA(t)V . The

model including neutralizing antibody consists of the following differential equations:

dT

dt
= −βTV (5.7)

dI1

dt
= βTV − kI1 (5.8)

dI2

dt
= kI1 − δI2 (5.9)

dV

dt
= pI2 − γV − βTV − ρA(t)V (5.10)

A(t) =

 0 , t < ti

η(t− ti) , t ≥ ti
(5.11)

Note that Eqs. 5.7-5.9 are the same as Eqs. 5.1-5.3. This model has many more

parameters than we can estimate reliably from experimental data in wildtype mice.

The basic target cell limited model (Eq. 5.1 - 5.4) has fewer parameters but is not

biologically realistic for wildtype mice. Both models can fit the experimental dataset

equally well. In order to reliably estimate parameters, we used a target cell limited

model to analyze data from knockout mice (knockout study, [71]) in which there is

no humoral response. This allowed us to estimate key parameters in a target cell

limited model related to WNV replication in the absence of a humoral response.

Then we applied the model incorporating a humoral immune response to analyze

data obtained from wildtype mice (wildtype study, [71]), while fixing the parame-

ters obtained from the fits to the knockout mice. This leaves fewer parameters to

estimate in the model with an adaptive immune response. This unique combination
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of knockout experimental data and models allows us to reliably estimate parameters

for the more complex adaptive immune response model.

For the model with a humoral response, we estimated the parameters V0, ρ and

ti. We re-estimated V0 in this model because a different experiment was analyzed.

5.3.5 Estimation of initial target cell density (T0)

Subcutaneously inoculated WNV initially infects Langerhans cells [93] and

keratinocytes [94] in skin. Langerhans cells then migrate to the draining lymph

node and lead to infection of cells that have not been definitely identified but are

thought to be macrophages and follicular dendritic cells [93]. A study silencing early

viral replication in dendritic cells and macrophages showed suppression of WNV

replication [72] suggesting that these two populations are the major target cells for

WNV.

We obtain a rough estimate of the initial density of target cells (T0) based on

several dendritic cell types. We found estimates for the number of different dendritic

cell subsets (CD8−, CD8+ and CD8int) 1 day after infection with mouse mammary

tumor virus to be approximately 3000 in the draining popliteal lymph node [89]. Here

we assume that WNV infection will lead to a similar density of lymph node dendritic

cells. In order to account for other subsets of dendritic cells and macrophages, we

set the number of a target cells to a value an order of magnitude higher than this

(30,000). We estimate the density of target cells by multiplying the number of target

cells by 22, the estimated number of lymph nodes in mice [95] and then dividing

it by the total blood volume which is approximately 3 mL (the blood volume in

mice is approximately 95 mL/kg of body weight [96] and the weight of C57BL/6J

mice is approximately 30 grams [97]). This gives us an initial target cell density of

T0 = 2.3 × 105/mL. Given the uncertainty in this estimate, in our analysis we vary

80



Chapter 5. Quantifying Uncertainty in Kinetics of Within-Host WNV

T0 by an order of magnitude above and below this value.

5.3.6 Biological constraints on model parameters

In order to reduce the parameter space that needs to be explored we constrained

the range of various parameters based on experimental data. We constrained the

duration of the eclipse phase (1/k) and the duration of productive infection of an

infected cell (1/δ) in the following manner. The duration of the eclipse phase for

neuronal cells infected in-vitro with WNV is 6 to 8 hours [91]. Experimental data in-

vivo suggests that WNV completes one round of replication in dendritic cells within

12 hours in mice [90]. Hence the duration of the eclipse phase in-vivo is less than 12

hours in mice. We constrained the eclipse phase to be between 6 hours and 10 hours.

WNV infection can cause both cytolysis and profuse budding in infected cells

[98]. Hence infected cells may continue to produce virus (due to viral budding) even

after the first round of WNV replication. In order to simulate this, we set the upper

bound on the productive lifespan of an infected cell (1/δ) to 3 days. We also fixed

the minimum productive lifespan of an infected cell in a model with an eclipse phase

(1/δ) to be 1 hour.

Bounds on the initial density of inoculated virus (V0) were set in the following

manner. The wildtype and knockout mice study inoculated 100 PFU of WNV into

the mouse footpad. Assuming complete absorption into blood (3mL in mice) gives

an upper bound for V0 of approximately 33.3 PFU/mL. For the lower bound, we

assume 1% absorption into whole tissue (30 mL in mice) and obtain approximately

0.01 PFU/mL.

Finally, the time of initiation of the IgM response (ti) was constrained from the

antibody titer study [73]. The study measured antibody titers on alternate days

post infection and the first measurable antibody titer occurred at 4 DPI. Hence we
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constrained ti to be between 2 to 4 days.

Generate random 
parameters

refineparameters

refineparameters

refineparameters

ρ, t
i

Re-estimate V
0

Target cell limited model

Adaptive response model

T
0

j
,k

j
,V

0

j
,  β j

,  p
j
,  δ j

,  γ j
      ∀j  1≤ j ≤  59,520 s.t. SSR <  4

T
0

l
,k

l
,V

0

l
,  β l

,  p
l
,  δ l, γ l, l

, ti
l
      ∀l  1≤ l ≤ 690, 000 s.t. SSR < 0.1

V
0

i
,  β i

,  p
i
,  δ i       ∀i 1≤ i ≤ 630, 000

Iterate through T0,k,γ     

Uniformly sample V0,β, p,δ

Step 1

Step 2

Step 3

T
0

j
,k

j
,V

0

j
,  β j

,  p
j
,  δ j

, γ j
      ∀j  1≤ j ≤ 59, 520

γ ≤ 44.4/day (viral decay study)

2.2×104 /mL ≤ T0 ≤ 2.4×106 /mL

2.4/day ≤ k ≤ 4/day

0.01 PFU/mL ≤V0 ≤ 33.3 PFU/mL

4/day ≤ δ ≤ 24/day

Knockout mice data

0.0  FU/mL ≤V0 ≤ 33.3 PFU/mL

2 days ≤ t
i
≤ 4 days

η  = 54.7 (antibody titre study)

Wildtype mice data

Figure 5.4: Outline of the computational approach.

5.3.7 Computational Approach

We set up a framework to explore the biologically plausible parameter space. We use

a computationally intensive method to sample feasible combinations of parameters

from which we generate viremia curves. We compare each curve to empirical data in

order to identify a set of parameters that could have generated the empirical data.

We are interested in determining the plausible range of biological parameters

and not the single set of parameters that give the best fit. Hence we do not use

optimization techniques like genetic algorithms [65] but instead generate samples

uniformly at random from the intervals imposed from biology. Each of these samples
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was given as input to a subroutine we developed, refineparameters, which was used

to search for parameter sets that produce viremia curves consistent with observed

data. The subroutine (written in Matlab [31]) creates a search grid consisting of

new guesses for model parameters centered around the initial guesses it takes as

input. Each grid cell represents an initial guess which was used as input to a Matlab

optimization function (lsqcurvefit). The grid was created by varying the guessed

model parameters by a specified percentage either on the log scale or numerical scale

and then combining each parameter combination with all other possible combinations

of the remaining parameters. It then searched for combinations of input model

parameters that generate viremia curves consistent with observed data by calling the

Matlab optimization routine lsqcurvefit on each initial guess for model parameters

represented by a grid cell. The subroutine imposes biological constraints on model

parameters (described in Section 5.3.6, Biological constraints on model parameters).

The computational approach is outlined in Figure 5.4. The steps of the method are:

Step 1: Iterating through values of T0, k and γ and generating random

guesses for V0, β, p and δ. We iterated through specific values of T0, k and γ in

order to determine how those parameters affect the parameters we are interested in

predicting. We varied T0 from 2.2×104/mL to 2.4×106/mL. We varied the duration

of the eclipse phase (1/k) from 6 to 10 hours, and we varied the viral clearance rate

(γ) from 10/day to 44.4/day (Table 5.1). For each of seven values of T0, three

values of k, and three values of γ, we generated guesses uniformly at random for the

parameters (V0, β, p, δ) within their biologically realistic ranges. We divided each

parameter into 10 intervals on the log scale, and generated 10 random guesses within

those intervals. Each parameter value was then combined with all combinations of

the remaining parameters to generate 104 random guesses for the parameters (V0,

β, p, δ) for each value of T0, k and γ, giving a total of 7 × 3 × 3 × 104 = 630, 000

random guesses. These random initial guesses were then provided to the subroutine

refineparameters, that searched for parameter sets (V0, β, p, δ) that produce viremia
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curves consistent with observed data. We retained all solutions that yielded a sum

of squared residual less than a threshold (4[log10PFU/mL]2) that was chosen to give

visually good fits (59,520 solutions). These sets of solutions that yielded good fits to

the knockout mice data were then sent as input to Step 2.

Step 2: Re-estimating V0 for the immune response model. The sets of

model parameters (V0, β, p, δ) (59,520 solutions) estimated for the target cell limited

model were then used to estimate a corresponding set of parameters (V0, ρ, ti) for

the immune system model. For each set of model parameter estimates (β, p, δ) from

the target cell limited model, the parameter V0 was re-estimated for the immune

response model since the day 2 viremia for wildtype mice was lower than the day 2

viremia for knockouts. The subroutine refineparameters was given the list of 59,520

solutions (V0, β, p, δ) from Step 1. The search grid was created by varying the values

of V0 from the target cell limited model by ± 50% on the log scale with 30 samples.

We took the best value of V0 (V0) for a given combination (β, p, δ). The final output

from this step is a new list of solutions (V0, β, p, δ). This gave a new set of 59,520

combinations of (V0, β, p, δ) where only V0 is re-estimated. These solutions are the

input to Step 3.

Step 3: Estimating immune response parameters ρ and ti. In this step,

for each set of model parameter estimates (V0, β, p, δ) from the output list of Step 2

(59,520 solutions), the immune response parameters (ρ, ti) were estimated by a new

call to refineparameters.

The subroutine refineparameters was given the list of all solutions (V0, β, p, δ)

from Step 2. The search grid was created by varying ρ and ti uniformly along the

constraints (ρ varying from 0− 50PRNT−1

50day−1 and ti trying from 2 - 4 days) and

then combining each combination of ρ (25 values) with all other possible combinations

of ti (9 values). The bound on ρ was found to be sufficient since ρ co-varied with

model parameters like δ on which we had good biological constraints.
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From the list of 25× 9× 59, 520 = 13, 392, 000 solutions, we retained all solutions

that yielded a sum of squared residual less than a threshold (0.1[log10PFU/mL]2)

that was chosen to give visually good fits. This threshold is lower than the one

for the target cell limited model since there are fewer data points available for the

wildtype study. These sets of solutions that yielded good fits to data were then used

to calculate ranges of model parameters for the immune system model (wildtype

mice) (Tables 1 and 2). The final output of this step is a set of combinations of

(V0, β, p, δ, ρ, ti) filtered by a threshold of sum of squared residuals. These sets of

solutions that yielded good fits to data were then used to calculate ranges of model

parameters for the knockout mice and wildtype mice (Tables 5.1 and 5.2). The

computational approach is outlined in Figure 5.4.

5.4 Results

5.4.1 Target cell limited model

The estimated ranges of model parameters are shown in Tables 5.1 and 5.2. The

model fit to the data using one representative best-fit parameter estimate is shown in

the solid line in Fig. 5.2. The ranges of model parameters generated after varying T0

an order of magnitude above and below the default value (2.3×105/mL) and varying

1/k from 6 to 10 hours are reported in Tables 5.1 and 5.2, and the histograms of the

estimated model parameters are shown in Fig. 5.6.

Despite considerable uncertainty in imposed bounds on model parameters (the

initial target cell density, T0, is allowed to vary by two orders of magnitude), we are

still able to calculate biologically relevant quantities with tight bounds. The infec-

tious virion burst size (p/δ) or the average number of infectious virions released over

the lifespan of a productively infected cell was estimated to be between 1.8 and 12.8
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Figure 5.5: Histograms of biologically relevant quantities estimated by our approach.
Top Left - Infectious virion burst size (in PFU). Top Right - Average number of cells
infected per infectious virion. Bottom - Basic reproductive number (R0).

PFU. Since we estimated the ratio of WNV RNA copies to PFU to be approximately

500, this implies that on average an infected cell produces approximately 900 to 6400

RNA copies over its productively infected lifetime. We also estimated the average

number of cells infected by an infectious virion (βT0/(γ+β ·T0)) to be approximately

0.9. Even though our model parameter estimates (like the productively infected cell

lifetime, 1/δ) are no tighter than the imposed biological constraints, we are still able
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Figure 5.6: Histograms of estimated model parameters (V0, β, p, δ, ρ, ti) from the
target cell limited model and model with humoral response.

to predict biologically relevant quantities with reasonable precision.

We also estimated the basic reproductive number (R0). This number represents

the average number of second generation infections produced by a single infected cell

placed in a population of susceptible cells. If R0 is greater than 1, then an infection

can be established, whereas an infection rapidly dies out if R0 is less than 1. For the

target cell limited model (Eqs. 5.1-5.4), R0 is given by [99]:
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R0 =
pβT0

δ(γ + β · T0)
(5.12)

Using Eq. 5.12 we estimated the value of R0 to be between 1.7 and 7.1 with an

average of 2.5 (Table 5.2).

Despite considerable variation in individual model parameters, the estimates of

the biologically relevant quantities like the basic reproductive number, burst size and

number of cells infected by an infectious virion are tightly bound (Fig. 5.5). These

biologically relevant quantities are combinations of model parameters. Fitting the

model to data reveals correlations between model parameters (Fig. 5.7). Without

the fitting of models to data and with the imposed biological constraints, we would

expect the basic reproductive number to vary from 1 to 30 (variation with fitting is

1.7 to 7.1) (Fig. 5.5). Similarly we would expect the infectious virion burst size to

vary from 1 to 30 PFU (variation with fitting is 1.8 to 12.8 PFU) (Fig. 5.5).

We observed that model parameters had tradeoffs with each other (Fig. 5.7). This

precluded estimation of unique values for the model parameters. However this also

helped us to constrain additional model parameters, since they depend on parameters

that we could put experimental bounds on. For example, the rate constant for

infection β, for which we have no experimental bounds, has a statistically significant

relationship with the initial density of inoculated virus, V0 (Fig. 5.7, p-value < 0.001,

r2 = 0.12). The experimental bounds on V0 constrain feasible values of β.

Additionally, the virus production rate, p, has a statistically significant relation-

ship with the productively infected cell death rate, δ (Fig. 5.7, p-value = 0, r2 =

0.27). Such tradeoffs preclude estimation of unique model parameter values and im-

ply that there is a family of solutions. The estimated ranges of model parameters in

conjunction with the correlation plots between model parameters define the family

of solutions that have good fits to data.
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Figure 5.7: Correlation between target cell limited model parameters (T0, V0, β, p,
δ).

Table 5.2: Imposed biological constraints and estimated output ranges, mean and
standard deviation of model parameters
Statistic V0 β δ p ρ ti R0 p/δ

Bound [0.01,
33.3]

[10−5, 10−2] [0.3, 24] [0.3, 120] [1, 50] [2, 4] [1, 30] [1, 30]

Range [0.01,
33.3]

[2 × 10−4,
9× 10−2]

[1.7, 24] [5.2,
118.2]

[1, 50] [2, 4] [1.7,
7.1]

[1.8,
12.8]

Mean 5.2 1.5× 10−3 9.9 28.1 22.7 2.9 2.5 3
SD 4 2 2 1.8 15 0.4 0.4 1

where bounds are the imposed biological constraints, range is the minimum and
maximum estimated value, mean and SD (standard deviation) are of parameter
estimates, V0 is the inoculated virus density (PFU/mL), β is the rate constant of
infection [(PFU/mL)−1day−1], δ is the death rate of productively infected cells (day−1), p
is the virus production rate (PFU/mL), ρ is the efficacy of antibody neutralization
(PRNT−1

50day−1), ti is the time of initiation of IgM response (days post infection), R0 is
the basic reproductive number (Eq. 5.12) and p/δ is the infectious burst size (average
number of virus particles produced over the lifetime of an infected cell, PFU)
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5.4.2 Model incorporating an adaptive immune response

The model with an adaptive antibody response has two additional parameters, ρ

(efficacy of adaptive IgM neutralization, PRNT−1

50day−1) and ti (the time of initiation

of the adaptive IgM response, days). The initial density of inoculated virus, V0, is

also re-estimated. The best-fit ranges of these parameters are given in Table 5.2. The

model fit to the data using one representative best-fit parameter estimate is shown

by the dotted line in Fig. 5.2.

5.4.3 Caveats and Limitations

Our adaptive immune response model combines data from two different strains of

mice (both conducted in the Diamond lab under the same experimental conditions).

We assume that the parameters β, p, δ estimated from the target cell model are

unchanged in the wild type mice with an IgM immune response. All variation in

viremia prior to the peak is attributed to differences in the inoculated dose (V0).

Additionally, combining data from the two mice strain studies required us to convert

the RNA measure from the wildtype and knockout study [71] into a PFU measure

used in the viral decay study [4] (detailed in Study Data).

We also eliminate parameter values that generate viremia curves with sum of

squared residuals above a threshold. Our thresholds are chosen based on visual fit,

which is subjective. Finally, in our calculation of biological bounds on productively

infected cell lifetimes, we assume that WNV is cytopathic in-vivo and that an infected

cell is lysed after WNV completes one round of replication. WNV has been shown

to be cytopathic in-vitro in K562, Neuro 2a [100] and neuronal cells [101]. However

WNV infection in-vitro is cytopathic only at low infectious doses in another cell line

(Vero cells) [98].
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5.5 Discussion

Here we describe a method to predict biologically relevant quantities for WNV while

having large uncertainty in biological bounds imposed on model parameters. We use

a novel approach to combine knockout experimental data and mathematical models.

A humoral immune response contributes to the successful clearing of WNV infection

[71]. However a mathematical model incorporating a humoral response has many

more parameters than we can estimate reliably from the available experimental data

in wildtype mice. A basic target cell limited model has fewer parameters but fails to

capture a progressively increasing rate of virus clearance due to a humoral response.

Both models can fit the experimental dataset equally well. In order to reliably

estimate parameters, we first analyzed data from knockout mice (using a target cell

limited model) in which there is no anti-WNV IgM response, and hence no IgM-

IgG switch to produce a primary IgG response [35]. This allowed us to estimate

key parameters in a target cell limited model related to pathogen replication in

the absence of a humoral response. Then we applied a more sophisticated model

incorporating a humoral immune response to analyze data from wildtype mice while

fixing the parameters obtained from the fits to the knockout mice. This allowed us

to estimate (fewer) parameters related to the adaptive immune response. Hence this

unique combination of knockout experimental data and models allows us to reliably

estimate model parameters.

We then set up a framework to explore large parameter spaces after imposing

constraints from biology. There is considerable variation in model parameters even

after imposing biological constraints, e.g. the initial density of target cells, T0, is al-

lowed to vary by two orders of magnitude. The optimization routine, which generates

best-fit model parameters, is sensitive to the initial guesses for parameters provided

to it. Hence we sample model parameters (V0, β, p and δ) uniformly at random from

the imposed biological ranges and these randomly generated parameters are used as
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initial guesses for the optimization routine. Finally we select those model parameters

that give predictions consistent with our goodness of fit threshold. The problem of

estimating the ranges of model parameters is computationally challenging since this

requires solving differential equations millions of times. Such computationally hard

problems have been solved using other approaches in other diseases [102, 103, 104].

Despite considerable variation in model parameters (the initial target cell den-

sity, T0, is varied by two orders of magnitude), we are able to calculate biologically

relevant quantities with tight bounds. We calculated the basic reproductive number,

R0, which indicated that a single infected cell produces between 1.7 to 7.1 new in-

fections. The infectious virion burst size (p/δ) or the average number of infectious

virions released over the lifespan of a productively infected cell was estimated to be

between 1.8 and 12.8 PFU. Since we estimated the ratio of WNV RNA copies to

PFU to be approximately 500, this implies that on average a productively infected

cell produces approximately 900 to 6400 RNA copies over its productively infected

lifetime. Finally, we also estimated the average number of target cells infected by

an infectious virion (βT0/(γ + β · T0)) to be approximately 0.9. Even though our

individual model parameter estimates (like the productively infected cell lifetime,

1/δ) are no tighter than the imposed biological constraints, we are able to predict

biologically relevant quantities with reasonable precision.

How are we able to predict biologically relevant quantities with certainty even

though there is uncertainty around model input parameters? Fitting the model to

data produces combinations of parameters that can explain the data. The fitting

process eliminates combinations of model parameters that cannot explain the data

and hence reveals correlations between estimated model parameters. The biologically

relevant quantities are combinations of model parameters. Without the fitting of

models to data and with the imposed biological constraints, we initially guessed that

the basic reproductive number, R0, could vary from 1 to 30 (variation with fitting is
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1.7 to 7.1) and the infectious virion burst size could vary from 1 to 30 PFU (variation

with fitting is 1.8 to 12.8 PFU) (Fig. 5.5).

We examined the dependence of model parameters on each other and observed

trade offs between model parameters. (Figure 5.7). This would normally complicate

parameter estimation, but we used this to further constrain model parameters on

which we have no known constraints. For example, increasing the infectious virus

production rate (p) tended to increase the estimated productively infected cell death

rate (δ). This is not surprising since the same total count of virus production per

cell can be achieved by increasing p but having the cells live a shorter time, i.e., also

increasing δ. There are biological bounds on many of these parameters and we used

the fact that parameter estimates are correlated to constrain parameters for which

we do not have biological constraints (like the production rate p). In the previous

example, we have good bounds on δ and since p and δ are correlated, we could put

bounds on p also.

Our method of estimating biologically relevant quantities despite uncertainty in

imposed bounds on model parameters could be more generally applicable to modeling

of other diseases where it is difficult to impose tight biological bounds on parameters.

We may be able to predict biologically relevant quantities for other pathogens with

a lot more certainty than individual model parameters. The process of fitting mod-

els to data should reveal parameter correlations. Such correlations between model

parameters help our computational framework find tighter constraints within the

imposed biological bounds.

Our modeling makes suggestions for further experimental work. More frequent

measurement of viremia and in-vitro measurements of infectious virus decay and

the viral production rate would give more accurate parameter estimates. In-vitro

experiments where the initial target cell density, T0, can be accurately measured

would help in getting precise estimates of parameters that vary with it, like the
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infected cell death rate, δ (Figure 5.7).

The humoral immune response has a critical role in conferring protection in WNV

infected hosts [71]. It reduces the peak viral concentration in blood as well as the

time taken to reach peak viremia. Peak viremia is an important epidemiological

determinant for the spread of WNV [5], which is mosquito vector borne. Above a

threshold peak viremia of 105 PFU/mL of blood, a host is capable of infecting an

uninfected mosquito, which in turn can infect other uninfected hosts and maintain

WNV in an enzootic cycle [5]. Hence hosts that can sustain peak viremia above this

threshold and for a longer duration are pathogen reservoirs. As evidenced in Fig. 5.2,

in the presence of an induced IgM response the peak viremia and the time to peak

viremia are both reduced compared with the kinetics seen in the IgM deficient mice.

The models presented here are a first step towards a quantitative understanding of

the role of the humoral immune response in reducing host infectivity and the epidemic

spread of WNV.
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Chapter 6

A Proof of Concept for

Multi-Level Hierarchical Bayesian

Estimates of Within-Host Viral

Dynamics

6.1 Introduction

Multilevel models like hierarchical Bayesian models reduce estimation error when

they are informed by group level knowledge [13]. Hierarchical Bayesian models take

between and within subject variation into account simultaneously. These models pool

information across disparate individuals from different groups and are well suited for

cases where there are a limited number of observations from several individuals. Hi-

erarchical Bayesian models have been used in image processing [14], ecological mod-

eling [15] and climate modeling [16]. Bayesian non-linear mixed effects models with a

single level of hierarchy have been applied to modeling of the within-host response to
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HIV [17, 18] and influenza [19]. However to the best of our knowledge, Bayesian non-

linear mixed effects models with multiple levels of hierarchy have not been applied to

within-host modeling. Multilevel data fitting approaches and Bayesian frameworks

are expected to be helpful to modeling within-host viral dynamics [20].

We use a multi-level hierarchical Bayesian model that has three taxonomic levels

and is a natural fit to the hierarchical structure of experimental data. Phylogeny

and life history are important determinants of the pathogenesis of WNV. Passer-

ine species sustain more viremia than non-Passerine species [5]. Old World species

are more susceptible to WNV infection than New World species [105]. We aim to

use hierarchy to make better estimates of biologically relevant quantities for WNV.

Using a very simple model operating on simulated data, this chapter compares a

multi-level hierarchical Bayesian non-linear mixed effects model to an aggregated

Bayesian model. We compare estimates of Ordinary Differential Equation (ODE)

model parameters in hierarchical versus aggregated models.

Hierarchical Bayesian models encapsulate knowledge about the underlying biol-

ogy as priors. Suitable priors in a hierarchical Bayesian framework can help reduce

variance of parameter estimates [13]. In some cases use of prior information can help

identify parameters that otherwise might be unidentifiable [18]. A model that incor-

porates the hierarchal nature of phylogeny, life history and mass of infected species,

and encodes this information as priors in a hierarchical Bayesian model may enable

more accurate estimates of parameters characterizing WNV infection.

Modeling of biological systems is complicated by the effects of noisy experimental

data and the difficulty of creating models that completely capture biological realism.

In order to control the effect of noisy data and model uncertainty, this chapter uses

a known model to generate simulated data with varying amounts of noise. The

hierarchical Bayesian model then incorporates known information about differences

between species as priors and then infers the model parameters. The accuracy of the
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Bayesian model can be calculated by comparing its parameter estimates to the actual

parameter values (ground truth). Given known data, this chapter focuses on the

circumstances under which a hierarchical Bayesian approach (with prior information)

can generate more accurate estimates of model parameters than simple Bayesian

models.

This chapter aims to refine and validate the hierarchical Bayesian models to be

used in the next chapter, which will use these models on actual experimental data.

The goals of this chapter are:

1. To implement a novel multi-level hierarchical Bayesian model to estimate pa-

rameters in a mathematical model of viral dynamics.

2. To outline the circumstances under which a multi-level hierarchical Bayesian

model with biologically motivated priors can generate more accurate estimates

of parameters (in a simpified viral dynamics model) than aggregated Bayesian

models without hierarchy. The models are compared based on the accuracy of

estimated parameters at different levels of the hierarchy. We use the sum of

squared residuals between model predicted values and ground truth values to

measure accuracy.

3. Provide a foundation to test model parameters characterizing WNV infection

and host immune response for dependence on host body mass. The following

chapter (Chapter 7) will use a multi-level Bayesian model to estimate param-

eters characterizing WNV infection from real experimental data.
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6.2 Materials and Methods

6.2.1 Overview of Methods

The Bayesian inference approach can be described as follows. Assume that a model

(in our case a differential equation model describing how virus concentration changes

over time in serum) is represented by parameters Θ. The Bayesian approach allows

us to include prior knowledge about model parameters in a systematic fashion. If

we have information about Θ (e.g., from experimental evidence) which needs to be

incorporated in our analysis, this is represented as a prior probability distribution

P (Θ). Bayes Rule allows us to incorporate the prior knowledge about parameters,

P (Θ), and experimental data, D, to derive a posterior distribution of parameters:

P (Θ|D) =
P (D|Θ) · P (Θ)

P (D)
(6.1)

The multi-level hierarchical Bayesian model mimics the hierarchical nature of

phylogeny. There are three levels in the hierarchical tree representation: individual,

species and genus (Fig. 6.3). Each level of the tree has an equation describing

the distribution of model parameters (differential equation model, Eq. 6.2). The

differential equation and hierarchical Bayesian models are explained in greater detail

in the next section.

Our goal is to compare two different hierarchical Bayesian models: a multi-level

model that has three levels of hierarchy (individual, species and genus) (Fig. 6.3) and

an aggregated model with two levels of hierarchy (all individuals of all species pooled

together under a single genus) (Fig. 6.2). We compare the accuracy of parameter

estimates with respect to ground truth at the individual, species and genus level.

We also experiment with different degrees of variation of parameters between species

98



Chapter 6. A Proof of Concept for Multi-Level Hierarchical Bayesian Models

and within species.

6.2.2 Ordinary Differential Equation Model
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Figure 6.1: A sample ODE prediction for virus concentration (in log10 PFU/mL) over
time post infection (line) and simulated ground truth virus concentration (points).

We use a very simple model that simulates only viremia in serum, given by the

following differential equation:

dV

dt
= a · V (6.2)

where V is the viral titer in serum in PFU/mL for a particular avian species. The

rate of increase in viral titer is given by a. The initial viral titer is denoted V0.

The mass of the avian species is given by M . Assuming that an initial mosquito
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inoculated dose (Vdose, in PFU) is diluted in the whole body, gives the relationship

V0 = Vdose/M . The Bayesian model infers (Vdose,a,M) from the viral titer data.

The ordinary differential equations describing our viral kinetic models were solved

numerically in Matlab [31]. The Runge-Kutta 4 method of integration was employed

with a step size of 0.0004. Fig. 6.1 shows a sample plot of the ODE prediction of virus

concentration over time compared to simulated viral concentration reported every

day for four days. All model parameters and virus concentration are logged (base

10) in order to stabilize variance and ensure positive estimates from the Bayesian

inference.

6.2.3 Simulated Data

Table 6.1: Different combinations of between and within species variance
Variance High within species

variance
Low within species vari-
ance

High between species variance (2.5,2.5) (2.5,0.5)
Low between species variance (0.5,2.5) (0.5,0.5)

Number denotes variance on log10 scale

We generated simulated data in which viral titer increases with time as the in-

fection progresses. We simulate data for 10 distinct groups (species) each having 3

individuals (for a total of 30 individuals). The initial mosquito inoculated dose, Vdose,

is generated for the individuals by 30 independent draws from a normal distribution

Normal(3.6, 1) (where p is the mean and q the variance in a normal distribution

Normal(p, q)). We combined two levels of between-species variance with two lev-

els of within-species variance to generate 4 sets of simulated viral titer data (Table

6.1). Each simulated dataset was generated in the following manner: we drew 10

species-level values from a distribution based on a particular value of between-species

variance; centered around each of these 10 values, we drew 3 more individual-level
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values based on the chosen value of within-species variance. This process yields 30

values (10 species each having 3 individuals) of ODE parameters, which are then

given to an ODE solver. The ODE solver generates a virus concentration that varies

over time (post infection) from which we take four samples to generate our ground

truth data.

All draws of (Vdose,a,M) are independent of each other in the data generation

process. Each individual has its own set of parameters (Vdose,a,M), which are then

given to the ODE solver that generates sampled data points from a simulated virus

curve. The data generation process produces a different virus titer curve for each

individual.

a,b

Ω,ν

Σ
−1

µ

σ −2

n

θ
i

y
i

η,Λ

Figure 6.2: Left Panel: Aggregated model with two groups combined. Each group
has three individuals. Also shown are the genus, species and individual levels. Right
Panel: Plate diagram for the aggregated model. The plate denotes iteration of
parameters and the number in the plate shows the number of iterations.
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6.2.4 Constraints on Model Parameters

The initial viral titer, Vdose, is constrained to be within 3 and 3× 104 PFU/mL. The

rate of increase in viral titer, a, is constrained to lie within 0.01 and 100 /day, and

the mass, M , is constrained to be between 10−20 and 1020 kg.

6.2.5 Hierarchical Bayesian Model

Aggregated model

Given a population of individuals that belong to the same group, the hierarchical

Bayesian model assumes that the dynamics of infection of each individual is char-

acterized by parameters (θi to θn for n individuals) that are drawn from a common

species-level distribution (µ).

The aggregated model has 10 species of 3 individuals each. The species are ag-

gregated to form a tree of height 2. The model is shown graphically in Fig. 6.2

(Left panel). There are two levels in the hierarchical tree representation: individual

and all species combined into a single genus. Each level of the tree has an equation

describing the distribution of ODE model parameters (Eq. 6.2). The ith individual

has a parameter θi that represents the mean of (Vdose,a,M) for a particular individ-

ual. This parameter θi is then drawn from the genus level distribution (all species

aggregated) with mean µ. The mathematical details of the aggregated model are

given in Appendix A.

Multi-level hierarchical model

We also implemented a novel multi-level hierarchical model that has 3 taxonomic

levels and is a natural fit to the hierarchical structure of the data. This model has
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Figure 6.3: Left Panel: Multi-level hierarchical model with two groups. Each group
has three individuals. Also shown are the genus, species and individual levels. Right
Panel: Plate diagram for the multi-level hierarchical model. The plate denotes it-
eration of parameters and the number enclosed in the plate shows the number of
iterations.

10 groups (species) of 3 individuals each. The groups are arranged hierarchically to

form a tree of height 3. The model is shown graphically in Fig. 6.3 (Left panel) with

three levels in the hierarchical tree representation: individual, species and genus (Fig.

6.3, Right panel). Each level of the tree has an equation describing the distribution

of ODE model parameters (Eq. 6.2). The ith individual has a parameter θi that

represents the mean of (Vdose,a,M) for a particular individual. This parameter θi

is then drawn from a species-level distribution with mean µ. Finally, the species-

level estimate is itself drawn from a genus-level distribution centered around η. The

mathematical details of the multi-level model are given in Appendix B.
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MCMC implementation

We are interested in inferring the posterior distribution of ODE parameters given

data (P (Θ|D), Eq. 6.1). However the distribution does not have an analytic form.

MCMC techniques enable us to sample from a target distribution; the approximation

gets better as more samples are drawn. We combine the Metropolis-Hastings algo-

rithm and the Gibbs sampler. The Gibbs sampler is a type of MCMC algorithm that

divides the parameters into a number of components and at each iteration sequen-

tially updates each of them by conditioning on the others. The Metropolis-Hastings

(M-H) algorithm updates Θ, and the Gibbs sampler updates all the remaining vari-

ables. We use a blockwise update scheme where proposed new values of parameters

(from the M-H algorithm) are either all updated simultaneously or all reverted to

their previous values. The M-H algorithm draws a subsequent sample from the tar-

get distribution centered around a proposal distribution. Our proposal distribution

is a multi-variate normal distribution centered around the current value of θi.

The choice of dispersion of the proposal distribution is important. If the disper-

sion is high, many MCMC moves will be rejected and the procedure will take longer

to converge. If the dispersion is low, the chain may not explore the parameter space

thoroughly [106, 107]. The standard deviation of the proposal distribution is chosen

to be 0.01 on the log scale (base 10) for all the parameters. If a value returned

by the proposal distribution is outside of the imposed bounds for ODE parameters,

we reflect the value back into range. Convergence is checked informally based on

graphical techniques [108].

All models were run for 3,000 iterations. This constitutes a single “run” of the

Bayesian model. One run of the Bayesian model may be more efficient when a number

of initial samples are discarded (burn-in) and when some number of consecutive

samples are not considered (thinning) [106]. The initial 300 iterations were discarded
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(burn-in phase). Of the remaining 2,700 samples we retained every fifth sample. The

same random number seed was used for both the models.

6.3 Results
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Figure 6.4: Performance on predicting genus, species and individual mean for ODE
parameter M : Multi-level model (blue) vs. aggregated model (red). Y-axis - sum of
squared residuals between predicted mean and actual mean (ground truth), X-axis -
variance between and within species (log scale) as described in Table 6.1.
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Figure 6.5: Performance on predicting species and genus level means for ODE pa-
rameters Vdose and a when there is high between-group and low within-group variance
in M : Multi-level model (blue) vs. aggregated model (red). Y-axis - sum of squared
residuals between predicted mean and actual mean (ground truth).

6.3.1 Estimates for ODE parameter M

The data generation phase produces ODE parameters by drawing from normal dis-

tributions with known mean and variance (ground truth). The exact values of ODE

parameters generated from the probabilistic draw constitute the sample truth.

Fig. 6.4 demonstrates the performance (defined as the sum of squared residuals

between predicted mean and actual mean) of the multi-level and aggregated models

at predicting genus, species and individual level means for the parameter M . All

analysis presented in the tables is from the same run.
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We look at 4 different datasets that have varying amounts of between and within

species variation (shown in Table 6.1). The species-level performance is measured

by summing the sum of squared residuals between actual and predicted means over

all species. Similarly, the individual-level performance is measured by summing the

sum of squared residuals between actual and predicted means over all individual.

The multi-level model consistently makes better predictions of the genus level

mean value of M than its counterpart, regardless of the amount of variation between

and within species, as evidenced by lower sum of squared residuals for blue bars (Fig.

6.4).

We observe that if there is high between-group and low within-group variance

in M (Fig. 6.4), the multi-level model makes better predictions of ground truth at

the genus, species and individual levels than the aggregated model. In fact, given

large variation between species, the multi-level model appears to make more accurate

predictions at all levels. However, the aggregated model makes better predictions at

the species and individual level when there is less variation between species.

6.3.2 Estimates for ODE parameter Vdose

Fig. 6.5 shows the sum of squared residuals between predicted and actual mean at

the species and genus level for Vdose. The results shown here are for the case where

there is high between-group variance and low within-group variance in M . We focus

on this case because we expect our actual experimental data (Chapter 7) to have

high between-group and low within-group variance. The multi-level model performs

better at predicting species level means but is outperformed by the aggregated model

at the genus level. The results for Vdose were similar given other variations in M .
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Figure 6.6: Top panel - A plot of the ODE model prediction for all species combined.
Top Left panel - multi-level model, Top Right panel - aggregated model. X-axis -
days post infection, Y-axis - ODE predicted virus concentration (line) and simulated
data (points) in log10 PFU/mL. The multi-level model makes better predictions for
virus concentration time course with respect to the simulated data. Bottom panel -
Performance at predicting virus concentration in simulated data: Multi-level model
(blue) vs. aggregated model (red). Shown are SSR (sum of squared residuals) for
multi-level model predictions (species level SSR) and aggregated model predictions
(individual level SSR) for different between and within-species variances (Table 6.1).

6.3.3 Estimates for ODE parameter a

The sum of squared residuals between predicted and actual mean at the species

and genus level for a are shown in Fig. 6.5 (results shown for the case where there

is high between-group and low within-group variance in M). Here the aggregated

model is able to better predict the means at both the species and genus level than

the multi-level model. The results shown here are for the case where there is high
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between-group variance and low within-group variance in M . The results for a were

similar given other variations in M .

6.3.4 Predictions of time course of virus concentration

The multi-level model is able to make better predictions of virus concentration over

time with respect to the simulated data. We generated a new set of simulated data

in the following manner. The data generation phase (see Simulated Data) generates

10 different distributions (Vdose,a,M) at the species level. We take the means of

each of these 10 distributions (separately) and create 10 different tuples (Vdose,a,M).

These species level ODE parameters are given to the solver to generate simulated

data sampled daily up to 4 days post infection.

We compare the multi-level and aggregated models to this simulated data using

3 methods:

1. Individual level SSR (multi-level): the multi-level model produces estimates

(distributions) of (Vdose,a,M) for each of the 30 individuals. For each species,

we take the average of the distributions of (Vdose,a,M) for the 3 individuals

that belong to that species. These ODE parameters are then given as input to

the solver that generates a virus concentration over time.

2. Species level SSR (multi-level): for each of the 10 species, the multi-level model

produces estimates (distributions) of (Vdose,a,M). We take the average of each

of these 10 distributions (separately) and obtain 10 different tuples (Vdose,a,M).

These ODE parameters are then given as input to the solver that generates

a virus concentration over time. We note that only the multi-level model

produces a prediction at the species level.

3. Individual level SSR (aggregated): similar to the first method, the aggregated
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model produces estimates (distributions) of (Vdose,a,M) for each of the 30 indi-

viduals. For each species, we take the average of the distributions of (Vdose,a,M)

for the 3 individuals that belong to that species. These ODE parameters are

then given as input to the solver that generates a virus concentration over time.

The comparisons between the multi-level and aggregated models are shown in Fig.

6.6. The multi-level model produces better predictions of the time course of virus

concentration than the aggregated model (Fig. 6.6, Panel B), where the comparison

is done using any of the three methods described above. Ultimately this leads to

better predictions of time course of virus concentration after infection (Fig. 6.6,

Panel A).

6.3.5 ODE parameter correlations

We have observed that parameter correlations help constrain the parameter space

and produce narrower bounds on estimates [28]. Both the multiple level hierarchical

and the aggregated model showed correlations between parameters at the individual

level, e.g. log10Vdose and log10a had a statistically significant correlation (r2 = 0.44,

p-value = 0, OLS slope = -0.85) in the multi-level model for the case where there

is less within-species and more between-species difference. These correlations were

absent at the species and genus level in both the models.

6.4 Discussion

6.4.1 Summary of Results

Our analysis shows that the multi-level model makes more accurate predictions at

the species and genus levels if there is large variation in ODE parameters at the
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species level. We are interested in the species level parameter estimates since the

hierarchical Bayesian model pools together information from diverse individuals at

that level. The species level gives a more nuanced estimate of how an entire group

of individuals behaves in response to infection.

6.4.2 Caveats and Limitations

We have larger variation (both on absolute and relative scales) in species mass (M)

than exists in the experimental infection data. The larger variation is chosen in

order to demonstrate the conditions under which the multi-level outperforms the

aggregated model.

The results presented here change if the between group variation in a is increased.

We believe that the dynamical system represented by the ODEs is especially sensitive

to a. Such behavior, where some parameters may be more susceptible to perturba-

tions in parameter space than others, is typical of biological systems where one or

more parameters are stiff and account for a lot of variation in data [109, 110].

Finally, the analysis presented here is from one run of the hierarchical Bayesian

models. Although one run generates large amounts of data, since the Bayesian

models are stochastic, multiple independent runs would give more confidence in the

generality of the results.

6.4.3 Discussion

The multi-level model makes more accurate estimates of ODE parameters at the

species level and genus level when there is more between-species difference than

within-species difference in those parameters. For example, consider the case where

the ODE parameter M has more variation between species (2.5) than within (0.5).
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The multi-level model makes more accurate estimates of M at the species and the

genus level (Fig. 6.4).

The multi-level model also more accurately predicts time course of virus concen-

tration with respect to simulated data (Fig. 6.6). The simulated data is generated

by taking species level estimates of ODE parameters from the data generation phase

and giving them as input to the ODE solvers.

We also observed that if an inferred parameter does not have phylogenetic de-

pendence (say Vdose) and is not hierarchically distributed then the aggregated model

outperforms the multi-level model in inferring estimates of that parameter (results

not shown).

Both the multi-level and aggregated models preserved ODE parameter correla-

tions at the individual level. However these correlations were absent at the population

level in the multi-level model. This is of interest since we have observed that param-

eter correlations help constrain the parameter space and produce narrower bounds

on estimates [28]. In the absence of parameter correlations at the species and genus

levels, meaningful priors at these levels (such as we have in the multi-level model)

may help constrain parameter estimates to narrower and more biologically realistic

regimes.

Generally, a multi-level model applied to data with large between species variation

makes more accurate predictions than an aggregated model. This appears to be due

to the ability of the multi-level model to incorporate realistic priors at the species

level and more accurately simulate the hierarchical nature of a multi-species dataset.

Accurate predictions about time course of virus concentration (with respect to

simulated data, Fig. 6.6) enables the multi-level model to make better predictions of

parameters (Figures 6.4 and 6.5). The ability to make accurate predictions of ODE

parameters from data is important. Our analysis suggests that the multi-level model
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will outperform an aggregated model on experimental data in which the true values

of ODE parameters are unknown.

The next chapter will examine the performance of the multi-level model in the

following realistic scenarios: we will have a more complex and biologically realistic

ODE model and the model will be trained on actual experimental data. We will

focus on a case where ODE parameters have more between-species variation than

within-species for all parameters (except Vdose). Our objective will be to test model

parameters characterizing WNV infection and host immune response for dependence

on host (species) body mass.
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Chapter 7

A Hierarchical Bayesian Model of

Body Size Effects on Pathogen

Replication and Immune System

Response

7.1 Introduction

Many emerging pathogens infect multiple host species [8], and multi-host pathogens

may have very different dynamics in different host species [9]. Diseases that jump the

species barrier from animals to humans (zoonotic diseases) cause 2.5 billion cases of

human illness and 2.7 million human deaths per year [10]. Many emerging diseases

are zoonotic in origin.

Understanding how quickly pathogens replicate and how quickly the immune sys-

tem responds is important for predicting the epidemic spread of emerging pathogens.

Host body size, through its correlation with metabolic rates, is theoretically predicted
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to impact pathogen replication rates and immune system response rates [6]. Prior

work suggests that body mass affects pathogen replication rates [9, 38, 26], but im-

mune response times are either independent of mass or increase only very slowly

as mass increases [26, 57]. Here, I use mathematical models of viral time courses

from multiple species of birds infected by WNV to test more thoroughly how disease

progression and immune response depend on mass and phylogeny.

Phylogeny is an important determinant of the pathogenesis of WNV. Passer-

ine species sustain more viremia than non-Passerine species [5]. Corvid species are

particularly susceptible to WNV infection [5]. Therefore, any analysis of disease dy-

namics in multi-host pathogens like WNV should take phylogeny into account. We

accomplish this using hierarchical Bayesian models that incorporate the hierarchical

nature of phylogeny.

The role of phylogeny in determining WNV infection outcome is known quali-

tatively [5]. We aim to provide a quantitative prediction for viral competency for

Passerines and corvids in particular. Further, the fits to experimental data using

our mathematical models enable us to form hypotheses as to why WNV viremia is

higher in these groups.

Hierarchical Bayesian models enable modelers to encapsulate knowledge about

the underlying biology as priors. Suitable priors in a hierarchical Bayesian frame-

work can help reduce variance of parameter estimates [13] and possibly produce

more accurate parameter estimates. The previous chapter validated the hierarchical

Bayesian models and showed that a model that incorporates the hierarchal nature of

phylogeny and encodes this information as priors in a hierarchical Bayesian model,

may enable more accurate estimates of parameters characterizing WNV infection.

The present chapter extends the models in the previous chapter by applying them

to actual experimental data.
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We also calculate a reservoir competence index that indicates the relative number

of infectious mosquitoes that would be derived from feeding on these hosts.

This chapter extends the work in the previous chapter by applying hierarchical

Bayesian models to actual experimental data while using a more biologically realistic

ODE model of WNV replication and immune response. The goals of this chapter

are:

1. To test if a multi-level model produces more accurate estimates of virus con-

centration over time (with respect to experimental infection data) than an

aggregated model.

2. To test model parameters characterizing WNV infection and host immune re-

sponse for dependence on host (species) body mass and phylogeny.

7.2 Materials and Methods

7.2.1 Overview of Methods

The multi-level hierarchical Bayesian model mimics the hierarchical nature of phy-

logeny. There are three levels in the hierarchical tree representation: individual,

species and order (Fig. 6.3). Each level of the tree has an equation describing the

distribution of differential equation model parameters. The differential equations

and hierarchical Bayesian models are explained in greater detail in the next section.

Our goal is to compare two different hierarchical Bayesian models: a multi-level

model that has three levels of hierarchy (for individual, species and order) and an

aggregated model with two levels of hierarchy (all individuals of all species pooled

together under a single top level entity) (Fig. 6.2). Each of these Bayesian models
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is run on 3 different kinds of experimental data: all Passerine and non-Passerine

species combined, Passerine and non-Passerine species separately and finally only

corvid species (a subset of Passerines).

7.2.2 Ordinary Differential Equation Model
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Figure 7.1: A sample ODE prediction for virus concentration (in log10 PFU/mL)
over time post infection (blue) and experimental data on virus concentration (red).
Data show viremia of great-horned owls from [5].

We use two models that simulate viremia in serum. The first model assumes that

the infection is target-cell limited in birds, i.e. the concentration of virus reaches

a peak and then declines when few susceptible target cells remain. The model is

the same as the target-cell limited model for mice (Chapter 5, Eqs. 5.1-5.4). The

Bayesian model infers (V0,β,p,δ) from the viral titer data. The ordinary differential
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equations describing our viral kinetic models were solved numerically in Matlab [31].

The Runge-Kutta 4 method of integration was employed. All model parameters and

virus concentration are logged (base 10) in order to stabilize variance and ensure pos-

itive estimates from the Bayesian inference. A sample plot of the ODE prediction of

virus concentration over time (compared to observed data about virus concentration)

is shown in Fig. 7.1.

We also use a more sophisticated model that assumes viral decline is due to an

adaptive antibody (induced IgM) response (same as the adaptive immune response

model in mice, Chapter 5, Eqs. 5.7-5.11). The Bayesian model infers (V0,β,p,δ,ρ,ti)

from the viral titer data.

7.2.3 Constraints on Model Parameters

The model constraints are summarized in Table 7.2. The initial density of uninfected

target cells, T (0), is fixed to 2.3 × 105 /mL (mean of the estimated range in mice,

Chapter 5, [28]). The rate of clearance of free infectious virus,γ, is set to 44.4 /day

(upper bound of estimate in mice, [28]) for all species except three corvids (Fish

crows, Blue jays and American crows) for which we could get good fits with only a

lower value (1 /day).

The eclipse phase of virus, 1/k, is fixed to the lower bound of a range from wild-

type mice (6 hours, see Chapter 5, [28]). Similarly, based on calculations in wildtype

mice (Chapter 5), the lifetime of productively infected cells, 1/δ, is constrained to be

greater than 1 hour while obeying the relationship 1/δ+1/k = 24 hours. Finally, the

rate of antibody production (η) is fixed at 54.7 /day [28] and the time of initiation

of antibody, ti, is bounded between 2 and 4 days [28] based on experimental data or

model fits to experimental data in wildtype mice.

The infectious virion burst size, p/δ, is constrained to not exceed 1012 PFU based
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on fits of the target cell limited model to birds. Similarly, the efficacy of antibody

neutralization, ρ, is bounded between 0.05 and 1000 PRNT−1

50day−1 based on model

fits to experimental infection data on birds. The initial viral titer, V0, is constrained

to be within 0.1 and 1012 PFU/mL and the rate of production of virus, p, is con-

strained to lie within 0.5 and 1012 /day based on fits in birds.

7.2.4 Experimental data

WNV infects bird species ranging from 3 gm sparrows to a 3 kg geese. This wide

range of species mass allows us to test the effects of animal body size on pathogen

replication and immune response. We focus on data from a study which experimen-

tally infected animals with the same strain of WNV (WNV NY99-6480). Komar et

al [5] experimentally infected 25 species of birds with WNV NY99-6480 and took

daily measurements of the concentration of infective virions in blood (viremia) over

the course of infection (sample plot shown in Fig. 1, data points in red). Viremia

was reported in Plaque Forming Units (PFU).

From this experimental dataset we excluded data on 2 species (Japanese quail

and ring-necked pheasant). The virus kinetics in Japanese quail were erratic and

viremia levels in the ring-necked pheasant were approximately constant over time;

as such these species could not be simulated by our model.

The Passerine species are the common grackle, American robin, red-winged black-

bird, house finch house sparrow and corvids. The corvid species are fish crows, blue

jays, American crows and black-billed magpies.

The experimentalists also reported the Level of Detection (LOD) of their viral

assay as 101.7 PFU. The raw experimental data had reports of consecutive viral

measurements at LOD in the declining phase of viremia for some species. In these

cases we only considered the first occurrence of LOD in the time series and discarded

119



Chapter 7. A Hierarchical Bayesian Model of Body Size Effects

the remaining. Considering all LOD data points would have led our models to an

underestimate of the slope of the declining phase due to the flat trajectory induced

by multiple consecutive viremia measurements at the same level.

7.2.5 Hierarchical Bayesian Model

Aggregated model

Given a population of individuals that belong to the same group, the hierarchical

Bayesian model assumes that the dynamics of infection of each individual is char-

acterized by parameters (θi to θn for n individuals) that are drawn from a common

species-level distribution (µ).

The aggregated model has 23 species. The species are aggregated to form a tree

of height 2. The model is shown graphically in Fig. 6.2 (Left panel). There are two

levels in the hierarchical tree representation: individual and all individuals (of all

species) combined. Each level of the tree has an equation describing the distribution

of ODE model parameters (Eq. 5.1-5.4 and Eq. 5.7-5.11). The ith individual has

a parameter θi that represents the mean of (Vdose,a,M) for a particular individual.

This parameter θi is then drawn from a higher distribution (all species aggregated)

with mean µ. The details of the model are given in the Appendix A.

Multi-level hierarchical model

We also devised a multi-level hierarchical model that has 23 groups (species). The

groups are arranged hierarchically to form a tree of height 3. The model is shown

graphically in Fig. 6.3 (Left panel). There are three levels in the hierarchical tree

representation: individual, species and order (Fig. 6.3). Each level of the tree has

an equation describing the distribution of ODE model parameters (Eq. 5.1-5.4 and
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Eq. 5.7-5.11). The ith individual has a parameter θi that represents the mean of

(Vdose,a,M) for a particular individual. This parameter θi is then drawn from a

species-level distribution with mean µ. Finally, the species-level estimate is itself

drawn from a order-level distribution centered around η. The details of the model

are given in the Appendix B.

MCMC implementation

The details of the MCMC implementation are described in Chapter 6. All models

were run for 10,000 iterations. This constitutes a single “run” of the Bayesian model.

The initial 1000 iterations were discarded (burn-in phase). Of the remaining 9,000

samples we retained every fifth sample.

Calculation of averages for ODE parameters at different levels of hierarchy

We use the posterior samples of ODE parameters to generate the averages in the

following way: for each individual, species or order we have 10,000 samples originally

(as described in the previous section) at that level of the hierarchy. After burn-in

this is reduced to 9000 samples and thinning of the samples leads to a total of 1800

samples. The average of these samples (henceforth referred to as individual-level,

species-level or genus-level averages) for each ODE parameter (V0, β, p, δ) is used in

the Results section.

Calculation of reservoir competencies

We calculate a reservoir competence index that indicates the relative number of in-

fectious mosquitoes that would be derived from feeding on each host species and

is calculated from the viremia that develops in the hosts after infection. We ex-
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tend a competence index developed by Komar et al [5] to account for time-varying

viremia. Species that sustain WNV viremia above 105 PFU/mL are considered in-

fectious for mosquito vectors [5]. The reservoir competence index (Ci) is a function

of susceptibility (s), the proportion of birds that become infected as a result of daily

exposure; mean daily infectiousness (i), the proportion of exposed mosquito vec-

tors that become infected per day; and the duration of infectious viremia above a

threshold (d) [5]. Komar et al [5] calculate the competence as Ci = s× i× d where

i = log10(Vp)−5

10
+0.02 and Vp is the peak viremia attained by a host; this assumes that

hosts sustain a fixed viremia (at the level of peak viremia) throughout the duration

of infectivity.

Our competency index for each species is calculated as follows:

Ci = s×
∫ td

0

i(t)dt (7.1)

i(t) =


log10V (t)−5

10
+ 0.02 , log10V (t) ≥ 5

0 , log10V (t) < 5
(7.2)

where td is the time until viremia is measured experimentally, i(t) is the infectivity

at time t and V (t) is the ODE model predicted viremia at time t. Following bird

mortality calculations made in Komar et al [5], we set the susceptibility (s) to be 0.7

for Budgerigars and 1 for all other species.

7.3 Results

7.3.1 Accuracy in viremia prediction

We estimated accuracy of viremia prediction by calculating three different estimates

of a sum of squared residuals (SSR) between data and ODE prediction (for both the

multi-level and aggregated Bayesian models):
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Figure 7.2: Top panel: Accuracy in viremia prediction between multi-level model
(blue) and aggregated model (red) for three different levels - individual, species
and order. SSR - sum of squared residuals between model predicted viremia and
data. Bottom panel: A sample viremia prediction from the multi-level (blue) and
aggregated model (red).

1. Individual-level SSR. We calculated individual-level averages of ODE param-

eters for each species as described in Section 7.2.5. For each individual, we

used these individual-level ODE estimates to generate a SSR between data

and model prediction in the following way: for each individual in a species,

we gave the ODE solver the individual-level parameter estimates and calcu-

lated the SSR between model prediction and individual-level data. The SSR

was then summed up for all individuals of all species and then divided by the

number of individuals. We call this the individual-level SSR.

2. Species-level SSR. We calculated species-level averages of ODE parameters for

each species as described in Section 7.2.5. For each species, we used these
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Figure 7.3: Scaling of biologically relevant quantities with host mass for the multi-
level model: Passerines (black square and black regression line, non-Passerines (red
circle and red regression line) and all combined (blue regression line). Top left: Peak
viremia (Vp), slope = -0.82, p-value = 0.06, r2 = 0.04. Top right: WNV production
rate (p), slope = -1.1, p-value = 0.002, r2 = 0.11. Bottom left: Inoculated density
of virions (V0), p-value = 0.35. Bottom right: R0, slope = -1.3, p-value = 0.006, r2

= 0.09.

species-level ODE estimates to generate a SSR between data and model pre-

diction in the following way: for each individual in a species, we gave the ODE

solver the species-level parameter estimates and calculated the SSR between

model prediction and individual-level data. The SSR was then summed up for

all individuals within a species and then for all species and then divided by the

number of individuals. We call this the species-level SSR.

3. Order-level SSR. We calculated order-level averages of ODE parameters for
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Table 7.1: Statistics of scaling relationships with species mass (all species combined)
from multi-level model with target cell limitation (TCL) or adaptive immune re-
sponse (AIR)

Parameters Combined
slope

p-value r2

p (TCL): WNV production rate -1.1 0.002 0.11

p (AIR): WNV production rate -0.84 0.04 0.05

R0 (TCL): Basic reproductive number -1.3 0.006 0.09

R0 (AIR): Basic reproductive number -0.57 0.08 0.04

p/δ (TCL): Burst size -1.1 0.001 0.12

p/δ (AIR): Burst size -0.86 0.03 0.06

Vp (TCL): Peak viremia -0.82 0.06 0.04

Vp (AIR): Peak viremia - 0.54 0.005

V0 (TCL): Inoculated WNV density - 0.35 0.1

V0 (AIR): Inoculated WNV density - 0.1 0.03

β (TCL): WNV infectivity - 0.64 0.003

β (AIR): WNV infectivity - 0.39 0.009

δ (TCL): Death rate of productively in-
fected cells

- 0.6 0.003

δ (AIR): Death rate of productively in-
fected cells

- 0.51 0.005

ρ (AIR): Rate of adaptive immune sys-
tem mediated virus neutralization

- 0.11 0.03

ti (AIR): Time of initiation of IgM re-
sponse

- 0.56 0.004
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Figure 7.4: Posterior distribution of log10 R0 and burst size (log10 p/δ) for the multi-
level model (target cell limited model). Top panel: Multi-level model with all Passer-
ines (red), corvids (green) and non-Passerines (blue). Middle panel: Multi-level
model with only Passerines (red) and corvids (green). Bottom panel: Multi-level
model with only corvids (green).

each species as described in Section 7.2.5. For each individual, we used these

order-level ODE estimates to generate a SSR between data and model predic-

tion in the following way: for each individual in a species, we gave the ODE

solver the genus-level parameter estimates and calculated the SSR between

model prediction and individual-level data. The SSR was then summed up for

all individuals of all species and then divided by the number of individuals. We

call this the genus-level SSR.

126



Chapter 7. A Hierarchical Bayesian Model of Body Size Effects

We observed that the multi-level model produced more accurate estimates at the

individual-level and species-level (Fig. 7.2, top panel). A representative viremia

prediction for both the multi-level and aggregated model is also shown (Fig. 7.2,

bottom panel). The performance of both the models at the order-level were similar.

7.3.2 Scaling of biologically relevant quantities

We looked at the correlation between individual-level averages of ODE parameters

and species mass (Fig. 7.3) for the multi-level model. The scaling relationships and

statistics are summarized in Table 7.1. We observed that the production rate of

infective virions (p, PFU /day) is correlated with species mass (all species combined:

p-value = 0.002, r2 = 0.11, slope = -1.1; only Passerines: p-value = 0.04, r2 = 0.1,

slope = -1).

The basic reproductive number, R0, had a significant overall correlation with mass

(all species combined: p-value = 0.006, r2 = 0.09, slope = -1.3; only Passerines:

p-value = 7 × 10−5, r2 = 0.33, slope = -3.7). Peak viremia (Pv, the maximum

viremia attained by an individual over the time course of infection) had a marginally

significant correlation with species mass (all species combined: p-value = 0.06, r2 =

0.04, slope = -0.82).

The burst size (p/δ, PFU) had a significant relationship with species body mass

(all species combined: p-value = 0.001, r2 = 0.12, slope = -1.1; only Passerines:

p-value = 0.03, r2 = 0.12, slope = -1.1). Also the viremia at day 1 (V (1)) was

correlated with mass (all species combined, p-value = 0.003, r2 = 0.1, slope = -1.1).

The density of inoculated virions (V0) and the infectivity of WNV (β) had no

significant relationship with species mass (all species combined: p-value = 0.35,

r2 = 0.1 and p-value = 0.64, r2 = 0.003, respectively). Finally, the death rate

of productively infected cells (δ, /day) had no relationship with mass (all species
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combined, p-value = 0.6).

We also used the adaptive immune response model (Eqs. 6.5-6.9) to investigate

how parameters related to the immune response scale with host body mass (multi-

level model, Fig. 7.6 and Table 7.1). The rate of adaptive immune system mediated

neutralization of virus (ρ, PRNT−1

50day−1) did not have a significant relationship

with body mass (all species combined: p-value = 0.11, r2 = 0.03, slope = -0.19),

although we observed that in Passerines it declined significantly with mass (p-value

= 0.04, r2 = 0.1, slope = -0.51). The time of initiation of IgM response (ti) also did

not have a significant relationship with species mass (all species combined: slope =

0.002, p-value = 0.56, r2 = 0.004; only Passerines: slope = 0.01, p-value = 0.07, r2

= 0.08).

7.3.3 Effect of phylogeny on parameter estimates

We investigated the effect of phylogeny on two biologically relevant quantities - the

basic reproductive number (R0) and the burst size. The basic reproductive number

represents the average number of second generation infections produced by a single

infected cell placed in a population of susceptible cells. If R0 is greater than 1, then

an infection can be established, whereas an infection rapidly dies out if R0 is less

than 1. For the target cell limited model (Eqs. 5.1-5.4), R0 is given by [99]:

R0 =
pβT0

δ(γ + β · T0)
(7.3)

The burst size, p/δ, represents the number of infectious virions released by an

infected cell over its productively infected lifespan. Estimates of the mean values of

R0 from the multi-level model are higher for Passerine species (23.8) compared to

non-Passerines (4.7) (Fig. 7.4, top panel). Within Passerines, corvid species (fish
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Figure 7.5: Posterior distribution of log10 R0 and burst size (log10 p/δ) for the ag-
gregated model (target cell limited model). Top panel: Aggregated model with all
Passerines (red), corvids (green) and non-Passerines (blue). Middle panel: Aggre-
gated model with only Passerines (red) and corvids (green). Bottom panel: Aggre-
gated model with only corvids (green).

crows, blue jays, American crows and black-billed magpies) have the highest value

of R0 (93.2) (Fig. 7.4, top panel). Finally, estimates of R0 in the aggregated model

(Fig. 7.5) are orders of magnitude higher than in the multi-level model (Fig. 7.4).

7.3.4 Estimates of reservoir competence

We calculated a reservoir competence index that indicates the relative number of

infectious mosquitoes that would be derived from feeding on these hosts (Section
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Figure 7.6: Scaling of immune response parameters with host mass for the multi-
level model with immune response: Passerines (black square) and non-Passerines (red
circle). Left panel: Rate of adaptive immune system mediated virus neutralization
(ρ, PRNT−1

50day−1). Right panel: Time of initiation of IgM response (ti, days)
(combined and each group separately are non-significant).

7.2.5). The reservoir competency indices we calculate are correlated with and ap-

proximately half of the estimates in Komar et al [5] (Fig. 7.7, r2 = 0.94, slope =

0.54, p-value = 0).

7.4 Discussion

7.4.1 Summary of Results

A multi-level hierarchical model informed by phylogeny more closely matches em-

pirical viremia than an aggregated model (Fig. 7.2). The multi-level model also

produces more reasonable estimates of biologically relevant quantities like the basic

reproductive number and burst size (Fig. 7.4 and 7.5). The multi-level model pre-
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Figure 7.7: Correlation between multi-level model predicted competency and compe-
tency from Komar et al [5] assuming static viremia (r2 = 0.94, slope = 0.54, p-value
= 0)

dicted WNV production rate decreases with species mass, consistent with theoretical

predictions from metabolic scaling theory (Fig. 7.3).

7.4.2 Discussion

Hierarchical Bayesian models are a principled method to aggregate data from mul-

tiple related individuals while still doing fits to data at the individual level. Here

we use a multi-level hierarchical model to incorporate phylogeny and pool infection

data from related species. We observe that the multi-level model produces more

accurate predictions of viremia at the individual and species level when compared to

hierarchical models that have fewer levels of hierarchy (Fig. 7.2).

Additionally, multi-level models with Passerines and non-Passerines or just
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Passerines (Fig. 7.4, top and middle panels) produced more realistic and well peaked

distributions of R0 and burst size, than a multi-level model with only corvids (Fig.

7.4, bottom panel) and the aggregated model (Fig. 7.5). This appears to be due

to the ability of multi-level models to pool information at the species level from

disparate individuals both within and between different species.

The mean values of R0 from the multi-level model are higher for Passerine species

(23.8) compared to non-Passerines (4.7) (Fig. 7.4, top panel). Within Passerines,

corvid species have the highest value of R0 (mean 93.2). Burst sizes of Passerine

species (8690 PFU) are much higher than those in non-Passerines (340 PFU) (Fig.

7.4, top panel). This appears to be consistent with experimental studies that found

Passerines and corvids have higher reservoir competency (ability to transmit infec-

tion to mosquitoes) than non-Passerines [5]. Overall, phylogeny emerges as a key

determinant of biologically relevant quantities like the basic reproductive number

and burst size.

The mean values of R0 from the multi-level model for Passerine species (23.8) is

also higher than the corresponding model predicted value in mice (mean R0 = 2.5,

Chapter 5). The infectious virion burst size of Passerine species (8690 PFU) is also

significantly higher than model estimates from fitting data in mice (mean infectious

virion burst size = 3 PFU, Chapter 5).

Individual cellular metabolic rates and times, if constrained by host metabolism,

are expected to scale with host body mass as M−1/4 and M1/4, respectively. We

observe that the production rate of infectious virions (p, /day) declined significantly

with host body mass. There is large scatter but the 95% confidence interval (CI) for

the slope ([-1.5 0.03]) includes the theoretically predicted exponent of -0.25 (Fig. 7.3).

However, the death rate of productively infected cells (δ, /day), also theoretically

predicted to increases with mass, had no relationship with species mass. Lastly, the

basic reproductive number (R0), declined significantly with body mass (Fig. 7.3)
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and the relationship is even more significant within Passerine species. This is most

likely due to the fact that the production rate of virions (p), a component of the R0

(Eq. 7.3), declined with mass.

We found that the mean of peak viral concentration in serum (peak viremia)

declines with species body mass (Fig. 7.3) although the correlation was marginally

significant. Additionally, most Passerine species had higher peak viremia than non-

Passerines. This is likely due to the fact that most of the Passerine species had a

higher value of production rate (p) than the non-Passerines. Overall, we observed

scaling of some biologically significant parameters with mass which were modified

from theoretical scaling predictions by the influence of phylogeny.

The density of inoculated virions (V0) has no significant relationship with species

mass (Fig. 7.3). This is surprising since if mosquitoes inoculated a fixed dose directly

into the host bloodstream, the density of virions (V0) would be expected to decline

with host mass since the dilution would be higher in the larger blood volume of

a larger species. Mosquito inoculated WNV, that is initially localized at the site

of infection [34], is taken up by immune cells to nearby lymph nodes and thereby

traffics to different organs via the bloodstream. Our results point to the importance

of accounting for spatial patterns of viral spread, especially in the initial stages of

an infection when virus is localized. However for computational efficiency we use

differential equation models that ignore space and assume that all components are

well mixed.

We calculated a reservoir competence index that indicates the relative number

of infectious mosquitoes that would be derived from feeding on these hosts (Sec-

tion 7.2.5). Our reservoir competency index is a refinement on previously published

indices [5] since they take time-varying viremia and species relatedness (via the multi-

level Bayesian model) into account. The reservoir competency indices we calculate

are correlated with and approximately half of the estimates in Komar et al [5] (Fig.
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7.7). The mean reservoir competence for Passerine species (0.8) is higher than that

of non-Passerines (0.2).

We used the adaptive immune response model (Eqs. 5.7-5.11) to investigate

how parameters related to the immune response scale with host body mass (multi-

level model, Fig. 7.6). The rate at which the adaptive (antibody) immune response

neutralizes virus (ρ) did not have a significant relationship with body mass, although

we observed that in Passerine species it declined significantly with mass. The time

of initiation of the adaptive (antibody) immune response (ti) also did not have a

significant relationship with species mass.

The target-cell limited and adaptive immune response models both produce sim-

ilar scaling predictions (when coupled to the multi-level hierarchical model) (Table

7.1), e.g. both viral dynamics models predict that the production rate of WNV (p)

declines with species mass.

In summary, we investigated the effect of body size in the immune system which

is a complex, non-linear dynamical system. Previous scaling work has focussed on

easily observable attributes such as lifespan or fertility rate [11, 12]. In contrast,

in-vivo viral production rates and immune response rates must be inferred by fitting

mathematical models to empirical data such as the viremia curves we use here.

Here we use a multi-level model hierarchical Bayesian model to infer parameters

such as viral production rate for multiple species. This leads to new hypotheses

about the mechanisms that cause certain taxonomic groups to have higher viremia.

For example, our models suggest that higher burst sizes cause corvids to harbor

higher WNV viremia (Fig. 7.4).

Our modeling also suggests that rates of WNV production decline with species

mass whereas rates and times related to the adaptive immune response do not vary

systematically with mass. Taken together, these results provide an understanding of
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how epidemiological determinants like peak viremia vary with species body mass.

Peak viremia is an important epidemiological determinant for the spread of WNV

[5]. Above a threshold peak viremia of 105 PFU/mL of blood, a host is capable of

infecting an uninfected mosquito, and maintain WNV in an enzootic cycle [5]. Hence

hosts that can sustain peak viremia above this threshold and for a longer duration are

pathogen reservoirs. The dependence of peak viremia on host mass and phylogeny

may give important insights into the role of mass and phylogeny on the spread

of WNV. For example, larger non-Passerine species, predicted to have lower peak

viremia, may be less competent as pathogen reservoirs.

Our viral dynamics models take complex non-linear interactions at the level of the

immune system of individuals into account. The hierarchical Bayesian models then

aggregate these dynamics across multiple disparate individuals and make predictions

at different phylogenetic levels. The methods and approaches developed here are

likely to be applicable to modeling of other multi-host pathogens that have significant

differences in dynamics between species. These techniques may also be broadly

applicable to modeling of other complex systems with non-linear interactions at

different levels of organization.
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Table 7.2: Parameter constraints of target cell limited and adaptive immune response
model in birds

Parameters Description Estimated Ranges Source

γ WNV clearance
rate

44.4/day for non-
corvids and 1/day for
corvids

Value for non-corvids esti-
mated from fit to viral de-
cay study in wildtype mice
[4] (Chapter 5)

η Rate of IgM pro-
duction

54.7/day Fit to antibody titer study
in wildtype mice [73] (Chap-
ter 5)

T0 Initial target cell
density

2.3× 105 /mL Average of estimated range
in mice from [89] (Chapter
5)

k Rate of transi-
tion from I1 to I2

4/day Upper bound of estimate in
mice from [90, 91] (Chapter
5)

1/δ Lifetime of
productively
infected cells

≤ 24− 1/k days Calculations in mice (Chap-
ter 5)

ti Time of initi-
ation of IgM
response (days
post infection)

2 - 4 days Estimates in mice [73]
(Chapter 5)

V0 Initial viral titer 0.1 - 1012 PFU/mL Model constraint in birds

p Rate of WNV
production

0.5 - 1012 /day Model constraint in birds

p/δ Infectious virion
burst size

≤ 1012 PFU Model constraint in birds

ρ Efficacy of anti-
body neutraliza-
tion

0.05 - 1000
PRNT−1

50day−1
Model constraint in birds
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Conclusions

How different is the immune system of a mouse from that of a human? Do pathogens

replicate at the same rate in all species? Diseases that jump the species barrier from

animals to humans affect millions worldwide. An understanding of how disease pro-

gression and immune response vary from species to species could have important

public health consequences. This thesis attempts to understand how immune func-

tion scales with body size and is a foundation for future work to investigate scaling

of immune response to other pathogens or in other animals. A theory of scaling for

the immune system could also have implications for performance scaling in human-

engineered systems that draw inspiration from the immune system.

This dissertation analyzed how species body mass and phylogeny affect the arms

race between pathogens and the host immune system in the specific case of WNV.

In Chapter 3, we showed immune response rates and times are nearly invariant

with body mass and how the physical architecture of the immune system facilitates

this. In Chapter 4, we showed how chemical signals in the immune system facilitate

efficient search for infected cells. Chapter 5 showed that we can predict biologically

relevant quantities characterizing WNV infection with precision despite uncertainty
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in individual model parameters. In Chapter 6, we showed that using a hierarchical

Bayesian model to reflect phylogenetic relationships can help make more accurate

estimates of model parameters.

Finally, in Chapter 7, we applied our hierarchical model to empirical data and

observed variation of biologically relevant quantities with species mass and phy-

logeny. The rate at which WNV is produced by infected cells declines with species

mass. Since times scale inversely as rates, this is consistent with findings in Cable

et al [9] who observed that time to death in WNV infections increased with species

mass. Overall, we observed scaling of some biological significant parameters with

mass which were modified from theoretical scaling predictions by the influence of

phylogeny. Taken together, species mass and phylogeny provide mechanistic insights

into why some species (for example, smaller Passerines) are pathogen reservoirs.

8.1 Implications for spread of zoonotic diseases

A critical level of viremia in blood is necessary for a host to infect to uninfected

mosquitoes which can then sustain WNV in an enzootic cycle by potentially infecting

other susceptible hosts. Some small Passerine species are presumed to be pathogen

reservoirs.

Our analysis suggests an important role for both species mass and phylogeny in

dictating epidemiological determinants like basic reproductive number, WNV pro-

duction rate, peak viremia in blood and host competency to infect mosquitoes. Our

model is based on a principled analysis and gives a quantitative prediction for key

epidemiological determinants and how they vary with species mass and phylogeny.

The WNV production rate (p) and the basic reproductive number (R0) decline with

host body mass (Fig. 7.3). The relationship is even more significant within Passerine

species (Fig. 7.3).
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Our models lend mechanistic insight into why some species (smaller Passerine

species) are pathogen reservoirs and some (larger non-Passerine species) are poten-

tially dead-end hosts for WNV. Our techniques give insights into the role of mass

and phylogeny in the spread of WNV and potentially other zoonotic diseases.

8.2 How the immune system achieves

scale-invariance

In sharp contrast to the vast majority of biological rates that slow systematically

as body size increases [11, 12], the rate at which the adaptive (antibody) immune

response clears WNV and the time at which it is initiated do not vary systematically

with mass (Fig. 7.6). We suggest two plausible mechanisms for this scale-invariant

search and response:-

1. The physical architecture of the immune system. In Chapter 3, we proposed

that a sub-modular architecture of lymph nodes, that balances local pathogen

detection and global antibody production, may lead to nearly scale-invariant

search and response times. Reducing time taken to traffic pathogens from tissue

to lymph nodes requires numerous small lymph nodes. However a larger lymph

node can recruit more immune system cells and speed up response against

the pathogen. The optimal architecture that balances the opposing demands

of local pathogen detection and global response is one in which lymph node

number and sizes both increase with animal size.

2. Signaling in the immune system. Chemical signals released from infected sites

help guide immune system cells towards infected regions. Chapter 4 showed

that these inflammatory signals lead to efficient search in the immune system

and the speedup in search due to these signals is higher in larger animals.
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Our model (Chapter 3) predicted time to initiate the adaptive antibody response

(ti) is a combination of: the time to detect WNV by dendritic cells (tDCdetect), the

time taken by antigen-loaded dendritic cells to migrate to the draining lymph node

(tDCmigrate), the time taken by dendritic cells to present antigen to the antigen-specific

cognate T-cells (tDC,cTcelldetect ) and the time taken by the immune system to recruit a

critical number of B-cells and then secrete a critical amount of antibody into blood

(trecruit). We suggest that the architecture of the immune system has evolved to

minimize ti. Minimizing tDCmigrate requires having more lymph nodes of smaller sizes

since each lymph node would have a smaller draining region over which dendritic

cells migrate. Minimizing trecruit requires having fewer but larger lymph nodes since

a larger lymph node can recruit more immune system cells. The architecture that

balances the opposing demands of local trafficking and global recruitment of immune

system cells is one in which the number of lymph nodes and their sizes both increase

with animal body size. Our modelling suggests that this would lead to nearly scale-

invariant search and response: ti ∝M1/7, where M is the mass of the animal.

8.3 Implications for human-engineered

distributed systems

The immune system can be viewed as a computational system that implements a

remarkably efficient distributed search for pathogens. Our work suggests that im-

mune responses are nearly as fast in small and large systems. Understanding how

the immune system scales up efficiently is important in the design of human engi-

neered systems that are inspired by the immune system. Many distributed systems

are engineered to solve analogous problems, and the immune system demonstrates

how such engineered systems can achieve desirable scalability. We propose that the

physical architecture of the immune system can be emulated to design more efficient
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human-engineered distributed systems [54, 26].

The immune system balances the opposing demands of local communication

(pathogen detection) and global communication (antibody production). We showed

that similar tradeoffs can exist in distributed systems like immune system inspired

multi-robot systems and peer-to-peer systems [54, 26]. Taking inspiration from the

architecture of the immune system, we proposed a modular RADAR (Robust Adap-

tive Decentralized search with Automated Response) strategy for distributed sys-

tems. We demonstrated how two existing distributed systems (a multi-robot control

application and a peer-to-peer system) can be improved by a modular RADAR strat-

egy. Such a sub-modular architecture is shown to balance the tradeoffs between local

communication (within peer-to-peer clusters) and global communication (between

peer-to-peer clusters), leading to efficient search for rare amounts of information.

Finally, our immune-inspired modular RADAR strategies can be extended to

other distributed systems like intrusion detection systems and cellphone networks.

Testing the modular RADAR strategy on an implemented mobile multi-robot system

to verify our predictions could also be the subject of future investigations.

8.4 Modeling framework for studying multi-host

pathogens

This thesis introduced a technique to infer parameters characterizing viral production

and immune response across multiple species. The technique involves using hierar-

chical Bayesian models to encapsulate differences between species as priors. Suitable

priors in a hierarchical Bayesian framework can help reduce variance of parameter

estimates [13] and possibly produce more accurate parameter estimates, as shown in

Chapter 6. To the best of our knowledge, Bayesian non-linear mixed effects models
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with multiple levels of hierarchy have not been previously applied to within-host

modeling.

Mathematical models that combine within-host experimental data from multiple

species, such as the ones presented here, may be useful in studying other zoonotic

diseases and help increase our understanding of these diseases. Hierarchical Bayesian

models coupled to within-host viral dynamics models can be used to model other

zoonotic diseases and multi-host pathogens. Our analysis also suggests that this

approach will likely produce more accurate parameter estimates when there is more

variation between species than within.

8.5 Implications for translational research

Most immunological experiments are conducted in mice. However immunological

results in mice do not translate reliably to humans. There are significant differences

in immunology and cell biology between these two species that hamper translational

studies and vaccine trials. A theory that describes systematic differences in immune

response as a function of mass and phylogeny could have implications for the trans-

lation of results of experimental animal studies to increase impact on human health.

Our work is the first to systematically study how the response of the immune sys-

tem and the pathogen varies from species to species. We separated the inter-species

differences into two categories: differences due to species body size and differences

due to phylogeny. The differences attributable to phylogeny would subsume dif-

ferences in immune system cell types, cell biology, activation pathways in immune

system cells and types of normal cells susceptible to WNV infection.

Our models are a deliberate simplification of a very complex biological reality.

These models reveal broad-scale patterns in pathogenesis and immune response :
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1. Rates of WNV production decline with species body mass consistent with pre-

dictions from metabolic scaling theory [11, 12] (Fig. 7.3). These predictions

are modified by differences in phylogeny, e.g. most Passerine species have a

higher host competencies to infect mosquitoes.

2. Rates of adaptive antibody response do not vary systematically with species

body mass (Fig. 7.6).

We view our theory as a first step towards understanding inter-specific differ-

ences in the immune system. Such a theory could constitute a critical first step

in translating experimental studies in model organisms to humans. Our modeling

framework is adaptable and can incorporate new immunological findings as they be-

come available. It can also be extended to investigate host immune responses in

other multi-host pathogens. We also suggest that experimental data from multiple

species, pooled and analyzed using hierarchical Bayesian models, can better inform

translational models and may lead to more accurate predictions of clinical trial end

outcomes like vaccine efficacy.

8.6 Implications for predicting spread of WNV

WNV infection progresses along multiple scales: infection within hosts is related

to dynamics of WNV spread between hosts by mosquito vectors. Coupling two

different processes over multiple scales, from individual cells to epidemic spread in

bird populations, is extremely challenging and could yield valuable insights. Our

model predicted host competency to infect mosquitoes can be coupled to models of

WNV spread between multiple species. Such an approach would help link within-

host WNV dynamics to dynamics between hosts and may help produce accurate

estimates of spread of WNV.
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8.7 Benefits of mathematical modeling

We have used many different mathematical models in our work: ordinary differential

equations and agent-based models; target-cell limited models and adaptive immune

response models; and multi-level and aggregated hierarchical models. These models

encapsulate different assumptions about biological mechanisms and allow us to test

the robustness of model predictions to these assumptions. Therefore it is striking

that our models produce similar predictions, e.g. the target-cell limited and adaptive

immune response models both predict that the rate of WNV production declines with

species mass (Chapter 7, Table 7.1).

Our models deliberately simplify the vast complexities of the immune system.

Nevertheless, these models reveal broad-scale patterns, e.g. the rate of adaptive

immune response mediated virus clearance does not vary systematically with species

mass (Chapter 7, Fig. 7.6). The tight coupling of our mathematical models to

experimental data produces insights that neither could have provided in isolation.

8.8 Caveats and limitations

The immune system has diverse cell types that mount different responses against

pathogens. We have investigated the effect of body size on the innate and adaptive

antibody (IgM) response against WNV. Although we have not investigated T-cell

responses in our models of WNV (since they appear much later in the course of

infection), we have simulated T-cell responses in influenza infection. Our model-

ing suggests that T-cell search for influenza infected cells in lung are facilitated by

chemokine signals in tissue. The speedup in search due to these signals is also higher

in larger animals. However we predict that time to traffic a critical number of T-cells

to infected tissue will scale with body size; the ODE model in Chapter 4 predicts
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that the number of activated T-cells that arrive at the site of infection in mice after

5 days post infection is 80,000 whereas in humans the number is predicted to be 190

(Chapter 4, Table 4.2). This is roughly consistent with experimental data suggest-

ing that T-cell responses to HIV infection in macaques take around 1 to 2 weeks

[111, 112]. Adapting our T-cell recirculation model (Chapter 4) to make predictions

for T-cell response times in humans is an interesting avenue for future work.

Finally, in some cases our hierarchical Bayesian models produce parameter esti-

mates that appear to be biologically unreasonable, e.g. the production rate of WNV

from infected cells (p) for some corvid species is predicted to be approximately 108

PFU day−1, which is extremely high. This could be due to the fact that the initial

susceptible cell population (T0 in our models) is much higher in corvids, and may

suggest that other cell types are also available for infection. Further experimental

data on the susceptible cell population in corvid species may lead to more realistic

estimates of the production rate (since these two parameters are correlated in our

models).

8.9 Concluding remarks

Ultimately, this thesis represents a first step towards an empirical scaling theory of

the immune system. The mathematical framework presented here is an approach to

uncover systematic differences in disease progression and immune response in animals

that differ in body mass and phylogeny. There is potential for substantial impact on

human health since mice are the principal model organisms for most immunological

experiments. This could be extended to understand how drug and vaccine efficacy

differ between humans and model organisms like mice.
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Bayesian Aggregated Model

The aggregated model has individuals of different species. The individuals are ag-

gregated to form a tree of height 2. The model is shown graphically in Fig. 6.2 (Left

panel).

We denote the number of individuals by n and the number of experimental

measurements of virus concentration on the ith individual by mi. yij(tj) repre-

sents the experimental measurements of logarithmic virus concentration in serum

for the ith individual at times tj(j = 1, 2, 3, ...,mi). For notational convenience, let

µ = (log10Vdose, log10a, log10M)T , θi = (log10V0i, log10ai, log10Mi)
T (for the proof of

concept model, Chapter 6), Θ = {θi, i = 1..n}, Y = {yij, i = 1..n, j = 1..mi} and

fij(θi, tj) = log10Vij(θi, tj) where Vij(θi, tj) denotes the numerical solution for V (t) in

Eq. (6.2) for the ith individual at time tj.

The Bayesian non-linear mixed effects aggregated model can be written as the

following three stages [113]:

1. Within-individual variation
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[yi|θi, σ2] ∼ Normal(fi(θi), σ
2) (A.1)

2. Between-individual variation

[θi|µ,Σ] ∼ Normal(µ,Σ) (A.2)

3. Prior distributions

σ−2 ∼ Gamma(a, b),Σ−1 ∼ Wishart(Ω, ν), µ ∼ Normal(η,Λ) (A.3)

The Normal, Wishart and Gamma distributions are chosen to simplify calcu-

lations [113, 114].

The full conditional distributions for θi, σ
−2, µ and Σ−1 can be written as [113,

114]:

[
θi|σ−2, µ,Σ, η,Θ, Y

]
∝ exp

(
−σ

−2

2

mi∑
j=1

[yij − fij(θi, tj)]2 −
1

2
(θi − µ)TΣ−1(θi − µ)

)
(A.4)

[
σ−2|µ,Σ,Θ, Y

]
∼ Gamma

(
a+

∑n
i=1mi

2
, A−1

)
(A.5)

[
µ|σ−2,Σ,Θ, Y

]
∼ Normal

(
B−1C,B−1

)
(A.6)

148



Appendix A. Bayesian Aggregated Model

[
Σ−1|σ−2, µ,Θ, Y

]
∼ Wishart

(
D−1, n+ ν

)
(A.7)

where A = b−1 + 1
2

∑n
i=1

∑mi

j=1 [yij − fij(θi, tj)]2, B = nΣ−1 + Λ−1,

C = Σ−1
∑n

i=1 θi + Λ−1η and D = Ω−1 +
∑n

i=1(θi − µ) · (θi − µ)T .

The priors for the model were provided in the following manner - Ω was initialized

with the variance from the simulated data (all individuals aggregated),and the initial

guess for θ was randomly generated from the top level distribution, N(η,Λ) (same

for the multi-level model). The inference process produces separate estimates of

(Vdose,a,M) even though these estimates are correlated with each other.
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Bayesian Multi-level Model

The multi-level hierarchical model has groups (species) with individuals in each

group. The groups are arranged hierarchically to form a tree of height 3. The

model is shown graphically in Fig. 6.3 (Left panel). Let there be m distinct species

indexed by k and the number of individuals in the kth group is represented by nk.

Let us represent the number of experimental measurements on the ith individual of

the kth species by mik. yijk(tj) represents the experimental measurements of log-

arithmic virus concentration in serum for the ith individual belonging to the kth

species at times tj(j = 1, 2, 3, ...,mik).

For notational convenience, we define the individual level distribution (ith in-

dividual belonging to the kth species) by θik = (log10V0ik, log10aik, log10Mik)
T (for

the proof of concept model, Chapter 6). We define the kth species level distri-

bution by µk = (log10Vdose,k, log10ak, log10Mk)
T and the genus level distribution by

η = (log10V0, log10a, log10M)T .

Let Θ = {θik, i = 1..nk, k = 1..m}, Y = {yijk, i = 1..nk, j = 1..mik, k = 1..m}

and fijk(θik, tj) = log10Vijk(θik, tj) where Vijk(θik, tj) denotes the numerical solution

for V (t) in Eq. (6.2) for the ith individual (belonging to the kth species) at time tj.
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We write this Bayesian non-linear mixed effects multi-level model as the following

four stages:

1. Within-individual variation

[yik|θik, σ2
k] ∼ Normal(fik(θik), σ

2
k) (B.1)

for the ith individual belonging to the kth species.

2. Between-individual variation

[θik|µk,Σk] ∼ Normal(µk,Σk) (B.2)

3. Between species variation

σ−2
k ∼ Gamma(a, b),Σ−1

k ∼ Wishart(Ω, ν), µk ∼ Normal(η,Λ) (B.3)

for the kth species. The Normal, Wishart and Gamma distributions are chosen

to simplify calculations.

4. Genus level prior distributions

η ∼ Normal(x, y),Λ−1 ∼ Wishart(p, q) (B.4)

Fig. 6.3 (right panel) represents these equations graphically in a plate diagram.

In a graphical model like Fig. 6.3 (right panel), for any node u, we can repre-

sent the remaining nodes by U−u and the full conditional distribution P (u, U−u) is
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∝ P (u|parents[u]) ·
∏

w∈children[u] P (w|parents[w]) [107]. The full conditional distri-

bution for u contains a prior component (from the parents of u) and a likelihood

component (from each child of u).

Following the principle above and simplifying, we derived the full conditional

distributions for θik, σ
−2
k , µk, Σ−1

k , η and Λ−1:

[
θik|σ−2

k , µk,Σk, η,Λ
−1,Θ, Y

]
∝ exp

(
−σ

−2
k

2

mik∑
j=1

[yijk − fijk(θik, tj)]2

−1

2
(θik − µk)TΣ−1

k (θik − µk)

(B.5)

[
σ−2
k |µk,Σk, η,Λ

−1,Θ, Y
]
∼ Gamma

(
a+

∑n
i=1mik

2
, A−1

k

)
(B.6)

[
µk|σ−2

k ,Σk, η,Λ
−1,Θ, Y

]
∼ Normal

(
B−1
k Ck, B

−1
k

)
(B.7)

[
Σ−1
k |σ

−2
k , µk, η,Λ

−1,Θ, Y
]
∼ Wishart

(
D−1
k , nk + ν

)
(B.8)

[
η|σ−2

k , µk,Σ
−1
k ,Λ−1,Θ, Y

]
∼ Normal (z, Z) (B.9)

[
Λ−1|σ−2

k , µk,Σ
−1
k , η,Θ, Y

]
∼ Wishart (E, q +m) (B.10)

152



Appendix B. Bayesian Multi-level Model

where Ak = b−1 + 1
2

∑nk

i=1

∑mik

j=1 [yijk − fijk(θik, tj)]2, Bk = nkΣ
−1
k + Λ−1, Ck =

Σ−1
k

∑nk

i=1 θik + Λ−1η , Dk = Ω−1 +
∑nk

i=1(θik − µk) · (θik − µk)T , Z = (U−1 + y−1)
−1

,

z = Z (U−1u+ y−1x) and E−1 = p−1 +
∑m

k=1(µk − η) · (µk − η)T .

The priors for the model were provided in the following manner - the initial guess

for µ came from the generated data; Ω was initialized with the within group standard

deviation from generated data, and the initial guess for θ was randomly generated

from the top level distribution, N(η,Λ) (same for the aggregated model).

The code for both the aggregated and multi-level model implementations is avail-

able online [33].

153



References

[1] N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B.
Davis, R. Bowen, and M. Bunning, Experimental infection of North American
birds with the New York 1999 strain of West Nile Virus, Emerging Infectious
Diseases 9 (2003), 311–322.

[2] M. Bunning, R. Bowen, C. Cropp, K. Sullivan, B. Davis, N. Komar, M. Godsey,
D. Baker, D. Hettler, D. Holmes, B. Biggerstaff, and C. Mitchell, Experimental
infection of horses with West Nile Virus, Emerging Infectious Diseases 8
(2002), 380–386.

[3] L. Austgen, R. Bowen, M. Bunning, B. Davis, C. Mitchell, and G. Chang, Ex-
perimental infection of cats and dogs with West Nile Virus, Emerging Infectious
Diseases 10 (2004), 82–86.

[4] L. Styer, K. Kent, R. Albright, C. Bennett, L. Kramer, and K. Bernard,
Mosquitoes inoculate high doses of West Nile virus as they probe and feed on
live hosts, PLoS Pathog 3 (2007), e132.

[5] N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B.
Davis, R. Bowen, and M. Bunning, Experimental infection of North American
birds with the New York 1999 strain of West Nile virus., Emerg Infect Dis 9
(2003), 311–22.

[6] F. W. Wiegel and A. Perelson, Some scaling principles for the immune system,
Immunology and Cell Biology 82 (2004), 127–131.

[7] P. Altman and D. Dittmer, Biology data book, Federation of American Societies
for Experimental Biology, Bethesda, MD, 1974.

[8] M. Woolhouse, L. Taylor, and D. Haydon, Population biology of multihost
pathogens, Science 292 (2001), 1109–1112.

154



References

[9] J. Cable, B. Enquist, and M. Moses, The allometry of host-pathogen interac-
tions, PLoS ONE 2.

[10] D. Grace, F. Mutua, P. Ochungo, R. Kruska, K. Jones, L. Brierley, L. Lapar,
M. Said, M. Herrero, P. Phuc, et al., Mapping of poverty and likely zoonoses
hotspots: Report to the department for international development.

[11] G. West, J. Brown, and B. Enquist, A general model for the origin of allometric
scaling laws in biology, Science 276 (1997), 122–126.

[12] J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West, Toward
a metabolic theory of ecology, Ecology 85 (2004), 1771–1789.

[13] J. Rouder, J. Lu, and P. Speckman, A hierarchical model for estimating re-
sponse time distributions, Psychonomic Bulletin & Review 12 (2005), 195–223.

[14] L. Fei-Fei and P. Perona, A bayesian hierarchical model for learning natural
scene categories, in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, Vol. 2 IEEE, 2005, pp. 524–531.

[15] C. Wikle, Hierarchical bayesian models for predicting the spread of ecological
processes, Ecology 84 (2003), 1382–1394.

[16] C. Wikle, L. Berliner, and N. Cressie, Hierarchical bayesian space-time models,
Environmental and Ecological Statistics 5 (1998), 117–154.

[17] Y. Huang, D. Liu, and H. Wu, Hierarchical Bayesian methods for estimation
of parameters in a longitudinal HIV dynamic system., Biometrics 62 (2006),
413–23.

[18] C. Han, K. Chaloner, and A. Perelson, Bayesian analysis of a population hiv
dynamic model, Lecture Notes in Statistics, New York, Springer Verlag.

[19] L. Canini and F. Carrat, Population modeling of influenza A/H1N1 virus
kinetics and symptom dynamics., Journal of Virology 85 (2011), 2764–70.

[20] C. Beauchemin and A. Handel, A review of mathematical models of influenza
a infections within a host or cell culture: lessons learned and challenges ahead,
BMC Public Health 11 (2011), S7.

[21] E. B. Hayes, N. Komar, R. S. Nasci, S. P. Montgomery, D. R. O’Leary, and
G. L. Campbell, Epidemiology and transmission dynamics of West Nile virus
disease., Emerg Infect Dis 11 (2005), 1167–73.

155



References

[22] E. Deardorff, J. Franco, A. Brault, R. Lopez, A. Cortes, P. Ramirez, M. Her-
nandez, W. Ramey, C. Davis, D. W. Beasley, R. B. Tesh, A. D. Barrett, and
S. C. Weaver, Introductions of West Nile virus strains to Mexico, Emerg Infect
Dis 12 (2006), 314–318.

[23] N. Komar and G. G. Clark, West Nile virus activity in Latin America and the
Caribbean., Rev Panam Salud Publica 19 (2006), 112–7.

[24] R. S. Lanciotti, J. T. Roehrig, V. Deubel, J. Smith, M. Parker, K. Steele, B.
Crise, K. E. Volpe, M. B. Crabtree, J. H. Scherret, R. A. Hall, J. S. MacKenzie,
C. B. Cropp, B. Panigrahy, E. Ostlund, B. Schmitt, M. Malkinson, C. Banet,
J. Weissman, N. Komar, H. M. Savage, W. Stone, T. McNamara, and D. J.
Gubler, Origin of the West Nile virus responsible for an outbreak of encephalitis
in the northeastern United States., Science 286 (1999), 2333–7.

[25] M. A. Samuel and M. S. Diamond, Pathogenesis of West Nile virus infection :
a balance between virulence, innate and adaptive immunity, and viral evasion,
Journal of Virology 80 (2006), 9349–9360.

[26] S. Banerjee and M. Moses, Scale Invariance of Immune System Response Rates
and Times: Perspectives on Immune System Architecture and Implications for
Artificial Immune Systems, Swarm Intelligence 4 (2010), 301–318.

[27] S. Banerjee, D. Levin, F. Koster, S. Forrest, and M. Moses, The Value of
Inflammatory Signals in Adaptive Immune Responses, in P. Lio et al. (Eds.)
Artificial Immune Systems, 10th International Conference, ICARIS 2011, Lec-
ture Notes in Computer Science, Vol. 6825, Springer Verlag, Berlin, Germany,
2011, pp. 1–14.

[28] S. Banerjee, J. Guedj, R. Ribeiro, M. E. Moses, and A. S. Perelson, Towards a
quantitative understanding of within-host dynamics of West Nile Virus infec-
tion., in preparation.

[29] C. Warrender, Modeling intercellular interactions in the peripheral immune
system, PhD thesis, University of New Mexico, 2004.

[30] ——— CyCells (Open source software)
http://sourceforge.net/projects/cycells, 2003.

[31] The MathWorks Inc. MATLAB version 7.13.0.564, 2011.

[32] R. I. Macey and G. Oster Berkeley Madonna, version 8.0. Technical report,
University of California, Berkeley, California, 2001.

156



References

[33] S. Banerjee Tools for Analysis and Modeling using Differential Equations and
Hierarchical Bayesian Models Applied to Within-Host Viral Dynamics Mod-
els (Open source software) https://sites.google.com/site/neelsoumya/software,
2013.

[34] L. Styer, K. Kent, R. Albright, C. Bennett, L. Kramer, and K. Bernard,
Mosquitoes inoculate high doses of West Nile virus as they probe and feed on
live hosts, PLoS Pathogens 3.

[35] C. Janeway, P. Travers, M. Walport, and M. Shlomchik, Immunobiology: The
immune system in health and disease, Garland Science, New York, NY, 2005.

[36] A. Soderberg, G. Payne, A. Sato, R. Medzhitov, S. Segal, and A. Iwasaki, In-
nate control of adaptive immunity via remodeling of lymph node feed arteriole,
Proceedings of the National Academy of Sciences 102 (2005), 16315–16320.

[37] C. Jarque and A. Bera, A test for normality of observations and regression
residuals, International Statistical Review 55 (1987), 163–172.

[38] S. Banerjee and M. Moses, A hybrid agent based and differential equation model
of body size effects on pathogen replication and immune system response, in P.S.
Andrews et al. (Eds.) Artificial Immune Systems, 8th International Conference,
ICARIS 2009, Lecture Notes in Computer Science, Vol. 5666, Springer Verlag,
Berlin, Germany, 2009, pp. 14–18.

[39] M. Diamond, E. Sitati, L. Friend, S. Higgs, B. Shrestha, and M. Engle, A
critical role for induced IgM in the protection against West Nile Virus infection,
Journal of Experimental Medicine 198 (2003), 1853–1862.

[40] M. Miller, A. Hejazi, S. Wei, M. Cahalan, and I. Parker, T cell repertoire
scanning is promoted by dynamic dendritic cell behavior and random T cell
motility in the lymph node, Proceedings of the National Academy of Sciences
101 (2004), 998–1003.

[41] G. Amdahl, Validity of the single processor approach to achieving large-scale
computing capabilities, in AFIPS ’67 (Spring): Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ACM, New York, NY, USA, 1967,
pp. 483–485.

[42] C. Halin, R. M. J., C. Sumen, and U. H. von Andrian, In vivo imaging of
lymphocyte trafficking, Annual Review of Cell and Developmental Biology 21
(2005), 581–603.

157



References

[43] T. Hildebrandt, R. Hermes, P. Ratanakorn, W. Rietschel, J. Fickel, R. Frey, G.
Wibbelt, C. Reid, and F. Goritz, Ultrasonographic assessment and ultra-sound
guided biopsy of the retropharyngeal lymph nodes in Asian elephants (Elephas
maximus), Veterinary Record 157 (2005), 544–548.

[44] M. Cohn and R. Langman, The Protecton: the evolutionarily selected unit of
humoral immunity, Immunological Reviews 115 (1990), 9–147.

[45] J. Banchereau and R. Steinman, Dendritic cells and the control of immunity,
Nature 392 (1998), 245–252.

[46] I. J. M. de Vries, D. J. E. B. Krooshoop, N. M. Scharenborg, W. J. Lesterhuis,
J. H. S. Diepstra, G. N. P. van Muijen, S. P. Strijk, T. J. Ruers, O. C. Boerman,
and W. J. G. Oyen, Effective migration of antigen-pulsed dendritic cells to
lymph nodes in melanoma patients is determined by their maturation state,
Cancer Research 63 (2003), 12–17.

[47] R. Peters, The ecological implications of body size, Cambridge University Press,
Cambridge, 1983.

[48] M. Bajenoff, J. Egen, H. Qi, A. Huang, F. Castellino, and R. Germain, High-
ways, byways and breadcrumbs: Directing lymphocyte traffic in the lymph node,
Trends in Immunology 28 (2007), 346–352.

[49] A. Itano and M. Jenkins, Antigen presentation to nave CD4 T cells in the
lymph node, Nature Immunology 4 (2003), 733–739.

[50] A. Perelson and F. Wiegel, Scaling aspects of lymphocyte trafficking, Journal
of Theoretical Biology 257 (2009), 9–16.

[51] J. Kleinberg, Computing: The wireless epidemic, Nature 449 (2007), 287–288.

[52] J. Timmis, E. Hart, A. Hone, M. Neal, A. Robins, S. Stepney, and A. Tyrrell,
Immuno-engineering, Vol. 268, Springer US, 2008.

[53] S. Nair and W. Godfrey, An immune system based multi-robot mobile agent
network, in P.J. Bentley et al. (Eds.) Artificial Immune Systems, 7th Inter-
national Conference, ICARIS 2008, Lecture Notes in Computer Science, Vol.
5132, Springer Verlag, Berlin, Germany, 2008, pp. 424–433.

[54] S. Banerjee and M. Moses, Modular RADAR: An immune system inspired
search and response strategy for distributed systems, in E. Hart et al. (Eds.)
Artificial Immune Systems, 9th International Conference, ICARIS 2010, Lec-
ture Notes in Computer Science, Vol. 6209, Springer Verlag, Berlin, Germany,
2010, pp. 116–129.

158



References

[55] ———, A Hybrid Agent Based and Differential Equation Model of Body Size
Effects on Pathogen Replication and Immune System Response, in P.S. An-
drews et al. (Eds.) Artificial Immune Systems, 8th International Conference,
ICARIS 2009, Lecture Notes in Computer Science, Vol. 5666, 2009, pp. 14–18.

[56] E. R. Weibel, Scaling of structural and functional variables in the respiratory
system, Annual Review of Physiology 49 (1987), 147–159.

[57] M. Moses and S. Banerjee, Biologically Inspired Design Principles for Scalable,
Robust, Adaptive, Decentralized Search and Automated Response (RADAR), in
IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), 2011.

[58] T. Paz, K. Letendre, W. Burnside, G. Fricke, and M. Moses, How Ants Turn
Information into Food, in IEEE Symposium Series in Computational Intelli-
gence 2011 (SSCI 2011), 2011.

[59] N. La Gruta and P. Doherty, Influenza Virology Current Topics, Caister
Academic Press, 2006, Chap. Quantitative and qualitative characterization of
the CD8+ T cell response to influenza virus infection.

[60] R. Saenz et al., Dynamics of Influenza Virus Infection and Pathology, Journal
of Virology 84 (2010), 3974–3983.

[61] B. Moser and P. Loetscher, Lymphocyte Traffic Control by Chemokines, Nature
Immunology 2 (2001), 123–128.

[62] H. Miao, J. Hollenbaugh, M. Zand, W. Holden, T. Mosmann, A. Perelson, H.
Wu, and D. Topham, Quantifying the Early Immune Response and Adaptive
Immune Response Kinetics in Mice Infected with Influenza A Virus, Journal
of Virology 84 (2010), 6687–6698.

[63] C. Beauchemin, N. Dixit, and A. Perelson, Characterizing T Cell Movement
within Lymph Nodes in the Absence of Antigen, The Journal of Immunology
178 (2007), 5505–5512.

[64] W. Calder, Size, Function and Life History, Dover Publications, 1984.

[65] H. Mitchell, D. Levin, S. Forrest, C. Beauchemin, J. Tipper, J. Knight, N.
Donart, R. Layton, J. Pyles, P. Gao, K. Harrod, A. Perelson, and F. Koster,
Higher replication efficiency of 2009 (h1n1) pandemic influenza than seasonal
and avian strains: kinetics from epithelial cell culture and computational mod-
eling, Journal of Virology 85 (2010), 1125–1135.

159



References

[66] E. Ceauu, S. Ercoiu, P. Calistru, D. Ispas, O. Dorob, M. Homo, C. Brbulescu,
I. Cojocaru, C. V. Simion, C. Cristea, C. Oprea, C. Dumitrescu, D. Duiculescu,
I. Marcu, C. Mociorni, T. Stoicev, I. Zolotuca, C. Calomfirescu, R. Rusu, R.
Hodrea, S. Geamai, and L. Pun, Clinical manifestations in the West Nile virus
outbreak., Rom J Virol 48 (1997), 3–11.

[67] L. R. Petersen and A. A. Marfin, West Nile virus: a primer for the clinician,
Ann Intern Med 137 (2002), 173–179.

[68] J. J. Sejvar, M. B. Haddad, B. C. Tierney, G. L. Campbell, A. A. Marfin,
J. A. Van Gerpen, A. Fleischauer, A. A. Leis, D. S. Stokic, and L. R. Petersen,
Neurologic manifestations and outcome of West Nile virus infection., J Am
Med Assoc 290 (2003), 511–5.

[69] A. M. Kilpatrick, Globalization, land use, and the invasion of West Nile virus.,
Science 334 (2011), 323–7.

[70] K. C. Smithburn, R. M. Taylor, F. Rizk, and A. Kader, Immunity to certain
arthropod-borne viruses among indigenous residents of Egypt, Am J Trop Med
Hyg 3 (1954), 9–18.

[71] M. S. Diamond, E. M. Sitati, L. D. Friend, S. Higgs, B. Shrestha, and M.
Engle, A critical role for induced IgM in the protection against West Nile virus
infection., J Exp Med 198 (2003), 1853–62.

[72] C. Ye, S. Abraham, H. Wu, P. Shankar, and N. Manjunath, Silencing early viral
replication in macrophages and dendritic cells effectively suppresses flavivirus
encephalitis, PloS One 6 (2011), e17889.

[73] M. S. Diamond, B. Shrestha, A. Marri, D. Mahan, and M. Engle, B cells and
antibody play critical roles in the immediate defense of disseminated infection
by West Nile encephalitis virus, Journal of Virology 77 (2003), 2578–2586.

[74] B. Shrestha and M. Diamond, Role of CD8+ T cells in control of West Nile
virus infection, Journal of Virology 78 (2004), 8312–8321.

[75] D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M.
Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1
infection., Nature 373 (1995), 123–6.

[76] A. S. Perelson, D. E. Kirschner, and R. De Boer, Dynamics of HIV infection
of CD4+ T cells., Math Biosci 114 (1993), 81–125.

160



References

[77] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho,
HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral
generation time, Science 271 (1996), 1582–1586.

[78] A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M.
Markowitz, and D. D. Ho, Decay characteristics of HIV-1-infected compart-
ments during combination therapy., Nature 387 (1997), 188–91.

[79] N. Dixit, J. Layden-Almer, and T. Layden, Modelling how ribavirin improves
interferon response rates in hepatitis C virus infection, Nature 432 (2004),
922–924.

[80] A. U. Neumann, N. P. Lam, H. Dahari, M. Davidian, T. E. Wiley, B. P.
Mika, A. S. Perelson, and T. J. Layden, Differences in viral dynamics between
genotypes 1 and 2 of hepatitis C virus., J Infect Dis 182 (2000), 28–35.

[81] A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden,
and A. S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy
of interferon-alpha therapy., Science 282 (1998), 103–7.

[82] M. Tsiang, J. F. Rooney, J. J. Toole, and C. S. Gibbs, Biphasic clearance
kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy.,
Hepatology 29 (1999), 1863–9.

[83] M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas, and H. McDade,
Viral dynamics in hepatitis B virus infection., Proc Natl Acad Sci USA 93
(1996), 4398–402.

[84] S. R. Lewin, R. M. Ribeiro, T. Walters, G. K. Lau, S. Bowden, S. Locarnini,
and a. S. Perelson, Analysis of hepatitis B viral load decline under potent
therapy: complex decay profiles observed., Hepatology 34 (2001), 1012–20.

[85] P. Baccam, C. Beauchemin, C. Macken, F. Hayden, and A. Perelson, Kinetics
of influenza A virus infection in humans, Journal of Virology 80 (2006),
7590–7599.

[86] A. M. Smith and A. S. Perelson, Influenza A virus infection kinetics: quan-
titative data and models., Wiley Interdiscip Rev Syst Biol Med 3 (2011),
429–45.

[87] C. A. A. Beauchemin and A. Handel, A review of mathematical models of
influenza A infections within a host or cell culture : lessons learned and chal-
lenges ahead, BMC Public Health 11 (2011), S7.

161



References

[88] S. Halstead, C. Venkateshan, M. Gentry, and L. Larsen, Heterogeneity of
infection enhancement of dengue 2 strains by monoclonal antibodies, Journal
of Immunology 132 (1984), 1529–1532.

[89] P. Marti, S. R. Ruiz, G. Marti, F. Anjuère, H. H. Vargas, M. López-bravo,
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