
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2015

High-Dimensional Motion Planning and Learning
Under Uncertain Conditions
Nick D. Malone

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Malone, Nick D.. "High-Dimensional Motion Planning and Learning Under Uncertain Conditions." (2015).
https://digitalrepository.unm.edu/cs_etds/23

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/23?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Nick Malone

Candidate

Computer Science

Department

This dissertation is approved, and it is acceptable in quality and form for pub-

lication:

Approved by the Dissertation Committee:

Dr. Lydia Tapia, Chairperson

Dr. John Wood co-chair

Dr. Deepak Kapur

Dr. Melanie Moses

Dr. Meeko Oishi

i

High-Dimensional Motion Planning and
Learning Under Uncertain Conditions

by

Nick Malone

B.S. Computer Science, University of Tulsa, 2007

M.S. Computer Science, University of Tulsa, 2009

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2015

Dedication

- To everyone who has shown me the paths blazed before me.

Time

Ig
no

ra
nc

e

Science
Truth

- Dr. James Aldridge

iii

Acknowledgments

I would like to thank my advisors, Dr. Lydia Tapia and Dr. John Wood. Their
guidance and support has made everything done here possible. I would also like
to thank my committee members Dr. Deepak Kapur, Dr. Melanie Moses and Dr.
Meeko Oishi. I would like to particularly thank Dr. Meeko Oishi for ensuring that
we did everything as mathematically correctly as possible.

I would also like to thank my contributors on my works, Dr. Kendra Lesser,
Kasra Manavi, Lewis Chiang, Dr. Aleksandra Faust, Dr. Brandon Rohrer, and
Prof. Ron Lumia. Their combined efforts have turned our rough ideas into some-
thing truly useful for the robotics community. A special thanks to Kendra for
working with us path planners and providing us with support on the control the-
ory code base.

Finally, I would like to thank my family and friends for putting up with all the
madness and last minute plan changes needed during my PhD program. First, to
my wife for understanding when I had to spend all night making last changes on
papers. Also, to my parents for teaching how to think and for passing on their
knowledge and understanding of the world. I have only achieved what I have
due to standing on the shoulders of those who came before me.

BECCA development was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000. Support was provided by contract SNL PO-1074659, titled ”Learning
for WAMs”, under the direction of Dr. Brandon Rohrer. Prof. L. Tapia was sup-
ported in part by the National Institutes of Health (NIH) Grant P20RR018754 to
the Center for Evolutionary and Theoretical Immunology. Partial support was
provided by contract SNL-3 PO #1110220, titles Automated Systems Research,
issued to the UNM Manufacturing Engineering Program. This work was also
funded in part by IIS-1528047.

iv

High-Dimensional Motion Planning and Learning Under

Uncertain Conditions

by

Nick Malone

B.S. Computer Science, University of Tulsa, 2007

M.S. Computer Science, University of Tulsa, 2009

Ph.D., Computer Science, University of New Mexico, 2015

Abstract

Many existing path planning methods do not adequately account for uncer-

tainty. Without uncertainty these existing techniques work well, but in real world

environments they struggle due to inaccurate sensor models, arbitrarily moving

obstacles, and uncertain action consequences. For example, picking up and stor-

ing children’s toys is a simple task for humans. Yet, for a robotic household robot

the task can be daunting. The room must be modeled with sensors, which may or

may not detect all the strewn toys. The robot must be able to detect and avoid the

child who may be moving the very toys that the robot is tasked with cleaning. Fi-

nally, if the robot missteps and places a foot on a toy it must be able to compensate

for the unexpected consequences of its actions. This example demonstrates that

even simple human tasks are fraught with uncertainties that must be accounted

for in robotic path planning algorithms. This work presents the first steps to-

wards migrating sampling-based path planning methods to real world environ-

ments by addressing three different types of uncertainty: (1) model uncertainty,

(2) spatio-temporal obstacle uncertainty (moving obstacles) and (3) action conse-

quence uncertainty. Uncertainty is encoded directly into path planning through a

data structure in order to successfully and efficiently identify safe robot paths in

v

sensed environments with noise. This encoding produces comparable clearance

paths to other planning methods which are a known for high clearance, but at an

order of magnitude less computational cost. It also shows that formal control the-

ory methods combined with path planning provides a technique that has a 95%

collision-free navigation rate with 300 moving obstacles. Finally, it demonstrates

that reinforcement learning can be combined with planning data structures to au-

tonomously learn motion controls of a seven degree of freedom robot arm at a low

computational cost despite the number of dimensions.

vi

Contents

List of Figures xii

List of Tables xv

List of Algorithms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 6

2 Related Work 10

2.1 Motion Planning . 10

2.2 Validation . 12

2.3 Motion Planning with Uncertainty 12

2.3.1 Modeling Environments With Sensors 13

2.3.2 Clearance-informed Roadmaps 13

vii

Contents

2.3.3 Modifiable Roadmap Methods 15

2.4 Moving Obstacles . 16

2.4.1 Planning With Uncertainty 18

2.5 Stochastic Reachability . 19

3 Modeling Uncertainty: Inaccurate Workspaces 21

3.1 Safety-PRM Method . 24

3.1.1 Vertex Generation . 24

3.1.2 Vertex Connection . 26

3.2 Experiments . 28

3.3 Simulated Noise with Rigid Bodies and Linkages 29

3.3.1 Environments . 29

3.3.2 Rigid Bodies . 31

3.3.3 Linkages . 34

3.4 Varying Level of Noise in the Environment Model 35

3.4.1 Error Models . 37

3.4.2 Environments . 38

3.4.3 Spherical Error Model . 43

3.4.4 Gaussian Error Model . 44

3.4.5 Log-Normal Error Model . 46

3.5 Kinect Reconstructed Environment with Physical Robot Validation 47

viii

Contents

3.5.1 Whole Arm Manipulator . 48

3.5.2 Environment . 51

3.5.3 WAM Validation . 54

3.5.4 Dynamic Replanning . 55

3.6 Conclusions . 59

4 Spatio-Temporal Uncertainty: Moving Obstacle Avoidance 60

4.1 SR-Query . 61

4.1.1 Preliminaries . 63

4.1.2 Methods . 65

4.1.3 SR for Collision Avoidance 67

4.1.4 Experiments . 72

4.1.5 Conclusions . 82

4.2 APF-SR . 84

4.3 Modeling and Stochastic Reachability Analysis 86

4.3.1 Robot Dynamics . 86

4.3.2 Obstacle Dynamics . 87

4.3.3 Relative robot-obstacle dynamics 89

4.3.4 Stochastic Reachable Sets for Collision Avoidance 91

4.4 Methods . 94

4.5 Experiments . 98

ix

Contents

4.5.1 Experimental Setup . 98

4.5.2 Stochastic Reachable Set Approximation 100

4.5.3 Method and Environmental Parameter Evaluation 102

4.5.4 Holonomic Robot Experiments 109

4.5.5 Unicycle Robot Experiments 115

4.6 Conclusion . 117

5 Transition Function Uncertainty: Integrated Planning and Learning 120

5.1 Preliminaries . 124

5.1.1 BECCA . 124

5.1.2 Transfer Learning . 127

5.2 Methods . 127

5.2.1 Probabilistic Roadmaps Creation 128

5.2.2 Task definition . 129

5.2.3 Transfer Learning from Simulation to Hardware 131

5.2.4 WAM Simulator . 131

5.2.5 WAM Interface . 132

5.3 Experiments . 133

5.3.1 Dimensionality reduction utility 134

5.3.2 Transfer Learning on Pointing Task with Stationary Target . 138

5.3.3 Pointing Task with Non-stationary Target 142

x

Contents

5.3.4 Timing . 145

5.4 Discussion . 147

6 Conclusions and Future Work 149

References 152

xi

List of Figures

1.1 Uncertainty Methods . 6

3.1 Whole Arm Manipulator . 22

3.2 Clearance vs. Penetration . 26

3.3 Environments . 30

3.4 Narrow Environment Comparison 40

3.5 Linkage Robot Comparison . 41

3.6 Error Model Examples . 42

3.7 Spherical Error Model . 44

3.8 Gaussian Error Model . 46

3.9 Log-normal Error Model . 48

3.10 Velocity Profile of the WAM Controller 50

3.11 WAM Physical Environments . 53

3.12 WAM Physical Experiments . 55

3.13 WAM Path . 57

xii

List of Figures

3.14 WAM Torque Sensing Path . 58

4.1 Stochastic Reachable Sets . 66

4.2 SR Query vs. Lazy Methods . 73

4.3 Sample SR Query Trajectories . 74

4.4 50 Moving Obstacle Success Comparison 81

4.5 50 Moving Obstacle Trajectories . 83

4.6 SR set with Markov Switching . 88

4.7 SR set initially in line mode . 93

4.8 600 Obstacle Environment . 99

4.9 Gaussian Success Rate . 106

4.10 Varying σ Success Rate . 107

4.11 Success Rate for Arc vs Line . 108

4.12 Holonomic Robot Success Rate . 112

4.13 Holonomic Robot Path Length . 113

4.14 Failure Histogram . 114

4.15 Unicycle Robot Success Rate . 118

4.16 Unicycle Robot Path Length . 119

5.1 Whole Arm Manipulator (WAM). 121

5.2 BECCA Architecture . 126

xiii

List of Figures

5.3 Task learning Framework . 128

5.4 Joint Velocity . 133

5.5 3-DoF WAM PRM . 135

5.6 PRM Cumulative Reward for a 3-DoF Task 136

5.7 Cumulative Reward for PRM, 3-DoF Simple and Hard tasks . . . 137

5.8 Cumulative Reward per Block of 1-DoF to 7-DoF with PRMs. . . . 137

5.9 Reward per Block for Varying Number of Vertices. 138

5.10 Pointing Task Cumulative Reward 140

5.11 Pointing Task Cumulative Reward with Transfer Learning 141

5.12 Cumulative Transfer Reward . 142

5.13 Non-stationary Target Cumulative Reward 143

5.14 Transfer Learning with Non-stationary Target 145

xiv

List of Tables

3.1 Rigid Body Statistics . 36

3.2 Spherical Error Model Statistics . 49

3.3 Physical Experiment Statistics . 54

5.1 Average cumulative reward . 139

5.2 Transfer Metrics . 141

5.3 BECCA Runtimes . 141

5.4 Average Time for Convergence to Threshold Performance. 147

xv

List of Algorithms

4.1 SR Query . 77

4.2 updateObstacle . 78

4.3 updateEdgeWeight . 79

4.4 APF-SR . 96

4.5 updateObstacle . 97

4.6 o.getAPFGradient . 98

4.7 calcControl . 105

5.8 Task Step . 130

xvi

Chapter 1

Introduction

1.1 Motivation

Uncertainty is an inevitable part of all physical robot systems. No system or task

can be completely known. However, uncertainty is such a difficult problem that

many autonomous methods for planning and learning are designed explicitly to

exclude or substantially limit it. While limiting uncertainty works for small tasks

and simple systems, it is inapplicable on autonomous robotic systems meant to

operate in real world environments outside of a carefully controlled lab setting.

The primary contribution of this work is a set of new motion planning algorithms

which explicitly incorporate uncertainty into the planning process. These algo-

rithms provide a stepping stone for migrating fully autonomous robotics from

carefully controlled laboratory environments to the uncontrollable and unpre-

dictable real world.

In recent years, fully autonomous robots have transitioned from the labo-

ratory and controlled industrial settings to uncontrolled environments such as

households and hospitals. For example, the Roomba has reached increased mar-

1

Chapter 1. Introduction

ket penetration into households across the world [29]. The military is seeking

robots to lighten soldiers’ loads with assistive robotics such as Boston Dynamics

Big Dog [85], and with an ageing population in several countries, hospital robots

like the Robot for Interactive Body Assistance (RIBA) [76] will become critical

to health care. However, these technologies are still limited because of the dif-

ficulties caused by uncertainty. For example, the Roomba has circumvented the

uncertainty problem by using a random search pattern, which can result in lost

performance due to repeatedly cleaning the same section of floor [29]. This floor

cleaning task contains some uncertainty but it does not require precision to per-

form at satisfactory levels, thus a random pattern is sufficient. Unfortunately, this

approach is not applicable to many robotic applications such as dish washing or

laundry folding because these tasks contain uncertainty and require precision.

These precise but more useful robotic applications will require more sophis-

ticated motion planning methodologies. At an abstract level Motion planning is

the task of finding a collision free path from some start state to some goal state.

However, in order for motion planning to be helpful and useful, it will need to

model the environments, consider situations arising from moving obstacles such

as humans, and be able to adapt to the kinodynamic changes that were not or

could not be accounted for in the original plan. Each of these tasks are subject to

uncertainty.

Uncertainty arises from many sources including sensors, moving obstacles,

and wear. This work is primarily concerned with the impact uncertainty has on

the motion planning problem and methods to compensate for various types of

uncertainty. As such, there are three primary sources of motion planning uncer-

tainty in many robotic systems: 1) model uncertainty, 2) spatio-temporal obstacle

uncertainty and 3) transition function uncertainty.

Model uncertainty arises from the process of using a sensor to reconstruct a

2

Chapter 1. Introduction

model of an environment. Many methods exist to solve the reconstruction task

such as Simultaneous Localization and Mapping (SLAM) [6] or Simultaneous

Planning and Mapping (SPAM) [106], but the solutions invariably produce some

inaccuracies where the model does not correctly match the true environment.

There are several sources of this error, but the primary error is due to sensor noise,

with secondary factors due to the reconstruction algorithm [6]. Reconstruction is

often done with vision sensors such as stero-vision, time of flight or structure light

techniques. In the field of mapping and model reconstruction, there has always

been an implication that sensor error will continue to decrease with the advent

of new technologies. Even though sensors may eventually become near perfect,

there will always be uncertainty in the reconstruction due to occlusion and percep-

tion. Even the human visual system cannot know the shape of occluded objects,

and even fails on specific degenerate cases colloquially known as optical illusions.

Thus, model uncertainty needs to be accounted for in the motion planning algo-

rithm itself.

In dynamic environments with moving obstacles, another type of uncertainty

emerges, namely spatio-temporal uncertainty [105]. This creates a whole new type

of uncertainty that no improvement in sensor technology can mitigate. The pri-

mary problem is that a valid path planned at the current state of the environ-

ment could later be invalidated when an obstacle moves across the path. Many

methods exist to attempt to solve this problem [84, 13, 109, 41, 86, 93], but most

are restricted to a small number of simple moving obstacles because they 1) use

expensive methods to predict obstacle motions or 2) do not consider stochastic

uncertainty.

Finally, the last form of uncertainty considered applies when a robot takes an

action. In motion-based robot learning, often a mapping from the current robot

state (e.g. input from sensors) to the appropriate output (e.g. an action or mo-

3

Chapter 1. Introduction

tion) is unknown. This mapping from inputs to outputs is referred to as the tran-

sition function [56]. Transition function uncertainty occurs when the transition

function is unknown or probabilistic. Slippage, wear, and momentum are the pri-

mary causes of transition function uncertainty for most designed robot systems

[104]. However, the transition function can be completely unknown and must be

learned via exploration. This type of transition function uncertainty is an active

area of research and can be approached with a variety of techniques, including

reinforcement learning (RL). Most RL methods need a human in the loop to tune

the parameterization [88], which can be time consuming and difficult. In order to

overcome this limitation, a technique called BECCA, a Brain Emulating Command

and Control Architecture, is explored which generates its own features and tun-

ing [88]. Each of these uncertainty types impacts the motion planning problem

differently, but this work shows that uncertainty can be handled through direct

encoding into the motion planning data structures.

Here, methods are presented that directly couple uncertainty handling with

planning methods. Motion planning in perfectly known environments with per-

fectly characterized robots is itself a challenging problem, and has been shown to

be P-Space hard [39, 40]. Any type of uncertainty merely complicates the problem

further and each type of uncertainty creates a unique challenge. Sampling-based

methods were initially developed because of the infeasibility of complete plan-

ning for moderately complex robots and environments. They trade optimality for

efficiency by only operating on a small subset of all possible robot configurations.

This subset is produced by sampling configurations. In many cases, this subset is

sufficient to solve the motion planning problem quickly. However, in some diffi-

cult cases, these methods may take an indefinite amount of time to find a solution.

It has been shown that many sampling-based methods are probabilistically com-

plete, meaning that if a solution exists, the sampling method will eventually find

it [52]. These methods traditionally work in environments without uncertainty

4

Chapter 1. Introduction

and have been shown to be highly successful at finding valid motion plans from

a start state to a goal state, but suffer when uncertainty is present.

Specifically, three classes of methods are presented: (1) Safety-PRM for model

uncertainty, (2) Stochastic Reachable (SR) sets combined with motion planning

for moving obstacles, and (3) Reinforcment Learning (RL) combined with a Prob-

abilistic Roadmap Method (PRM) for transition function uncertainty. Figure 1.1

shows a breakdown of the uncertainty sources and how they interact. A solution

which can handle all three source of uncertainty simultaneously would provide

the foundation for a robot to reason about motion-based uncertainty.

A PRM is a sampling-based method that probabilistically samples configura-

tions to form vertices of a roadmap. These vertices are then connected by a local

planning method and graph search is used to find a path from some start vetex to

some goal vertex. Safety-PRM builds upon PRM by incorporating a probability

of collision directly into the roadmap. This allows Safety-PRM to find paths with

high clearance from the modeled obstacles and thus compensate for inaccurately

modeled environments. For moving obstacles, a formal verification method, SR

sets, is used to produce a likelihood estimate of collision for a moving obsta-

cle. Then SR sets are combined with roadmap methods and Artificial Potential

Field (APF) methods, which provides the planning methods with a more accu-

rate model of the obstacle motion and allows for more informed paths to be con-

structed that successfully navigate environment cluttered with many moving ob-

stacles. APF methods simply produce repulsion fields around obstacles and make

local path planning decisions by following the local repulsion gradient. Finally,

the BECCA RL is combined with PRM methods to create a method which learns

how to navigate a roadmap for high degree of freedom robots. This combina-

tion provides a framework which allows the RL to converge efficiently and learn

how to operate a robot without any a priori knowledge of the transition function.

5

Chapter 1. Introduction

Figure 1.1: The three sources of robotic uncertainty (bold text) and the related problems
(italic text). Highlighted areas are problems addressed in this thesis.

These three methods provide techniques, which allow a robot to path plan under

varying types of uncertainty.

1.2 Contributions

The research presented here provides solutions for some of the most common

types of uncertainty experienced during path planning methods. The body of this

research is based on the following publications:

6

Chapter 1. Introduction

Journal Publications

• Nick Malone, Aleksandra Faust, Brandon Rohrer, Ron Lumia, John Wood,

Lydia Tapia, ”Efficient Motion-based Task Learning for a Serial Link Manip-

ulator” Transactions on Control and Mechanical Systems, Vol. 3, Num. 1,

Janaury 2014.

Conference Publications

• Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi, Lydia Tapia,

”Path-Guided Artificial Potential Fields with Stochastic Reachable Sets for

Motion Planning in Highly Dynamic Environments” In IEEE International

Conference on Robotics and Automation (ICRA), Seattle, Washington May

2015.

• Aleksandra Faust, Nick Malone, Lydia Tapia, ”Preference-Balancing Motion

Planning under Stochastic Disturbances,” In IEEE International Conference

on Robotics and Automation (ICRA), Seattle, Washington May 2015.

• Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi, Lydia Tapia,

”Aggressive Moving Obstacle Avoidance Using a Stochastic Reachable Set

Based Potential Field,” In International Workshop on the Algorithmic Foun-

dations of Robotics (WAFR), Istanbul, Turkey, 3-5 August 2014.

• Nick Malone, Kendra Lesser, Meeko Oishi and Lydia Tapia, ”Stochastic

Reachability Based Motion Planning for Multiple Moving Obstacle Avoid-

ance” In Proc. International Conference on Hybrid Systems: Computation

and Control (HSCC), Berlin, Germany, April 2014.

• Nick Malone, Kasra Manavi, John Wood, Lydia Tapia, ”Construction

and Use of Roadmaps that Incorporate Workspace Modeling Errors,” In

7

Chapter 1. Introduction

Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1264-1271, Tokyo, Japan, November 2013.

• Nick Malone, Brandon Rohrer, Lydia Tapia, Ron Lumia, John Wood, ”Imple-

mentation of an Embodied General Reinforcement Learner on a Serial Link

Manipulator,” IEEE International Conference on Robotics and Automation

(ICRA), St. Paul, Minnesota, May 2012

Workshop Publications

• Nick Malone, Aleksandra Faust, Brandon Rohrer, John Wood, Lydia Tapia,

”Efficient Motion-based Task Learning,” Robot Motion Planning Work-

shop, IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Vilamoura, Portugal, October 2013.

• Aleksandra Faust, Nick Malone, Lydia Tapia, ”Planning Preference-

balancing Motions with Stochastic Disturbances”, Machine Learning in

Planning and Control of Robot Motion Workshop at IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Chicago, IL, Septem-

ber 2014.

Combined together this research describes, 1) Safety-PRM in chapter 3, 2)

stochastic reachability set based obstacle avoidance in chapter 4, and 3) BECCA

combined with PRMs in chapter 5. As such, it presents a set of methods for:

• Encoding of uncertainty into roadmaps for handling of model uncertainty

(Safety-PRM)

• Validation of Safety-PRM on various error models

8

Chapter 1. Introduction

• Safety-PRM implemented on real robotic hardware

• Robot velocity modulation based on perceived likelihood of collision

• Path planning with moving obstacles using SR sets with several planning

methods (PRM, APF, tree-based)

• Path planning with hundreds of moving obstacles

• Planning data structures used to learn motion-control task for high Degree

of Freedom robots

• Transfer of learning from high fidelity simulation to a physical robot

9

Chapter 2

Related Work

Before discussing the specifics of uncertainty handling methods, the motion plan-

ning problem background and existing methodologies must be discussed. Section

2.1 describes the basic motion planning problem and some common techniques

that have been developed and how this thesis work compares to the existing liter-

ature.

2.1 Motion Planning

Motion planning is a difficult problem. Many techniques utilize the concepts of

configuration space, which maps the n degrees of freedom (DoF) of a robot to a

point in an n dimensional space, and the concept of the workspace, which is the

physical space in which the robot and environment exists (typically 2D or 3D).

Configuration space (C-space) is a set consisting of all possible configurations of

the robot [7]. C-space has two distinct subsets, C-free and C-collision. C-free is the set

of all configurations which are not in collision with an obstacle or in self collision.

C-collision is the inverse set. Unfortunately, C-space is often intractable to map

10

Chapter 2. Related Work

and path planning methods typically avoid directly mapping it. There are four

primary categories of path planning methods: grid-based [12, 91, 92], geometric

[8, 9], potential fields [33, 15, 54, 57, 18], and sampling-based [64, 109, 86, 46, 58,

77]. Here the focus is on potential field and sampling-based methods, as these

two methods are known for low runtime cost and effectiveness in high degree

of freedom problems respectively. The work presented in this thesis expands on

potential field methods and sampling-based methods to handle various types of

uncertainty.

Artificial Potential Field (APF) methods are a local path planning method.

They operate by only considering the next step. These methods produce attraction

forces towards the goal and repulsion forces away from obstacles [33, 15, 54, 57].

At each step these forces are summed together, and the robot moves along the

force gradient. This computation is often done locally and thus is inexpensive to

compute, which makes APF methods ideal for real time applications.

In contrast sampling-based techniques utilize global knowledge. Sampling-

based techniques attempt to approximate the topology of the collision-free C-

space. One class of sampling-based techniques works by building a graph

(roadmap) in collision-free C-space through sampling collision-free robot configu-

rations (vertex generation), connecting neighboring vertices with weighted edges if

a collision-free transition exists (vertex connection), and then querying the resulting

graph (roadmap) by finding a path to a goal configuration (roadmap query). Vertex

generation can be done via several different methods, e.g., using a cell decom-

position of the space [59], a uniform random distribution [51], obstacle bound-

aries [115], or visibility [94]. The utility of these various vertex generation meth-

ods varies with problem complexity. For example, cell decomposition methods

are powerful, but their utility degrades with complex obstacle boundaries and in

high-dimensional planning problems. On the other hand, uniform random place-

11

Chapter 2. Related Work

ment, Uniform PRM, works well with high-dimensional problems, but has diffi-

culty with obstacles that form tight narrow passages. Collision-free tests are often

performed with static obstacles, and edge weights can be determined by several

metrics of interest, e.g., distance [51], clearance from obstacles [66] [74], or other

problem-specific measures [95].

2.2 Validation

Degenerate tests are done by producing small test cases which the results can be

determined via hand calculations. These test cases are then evaluated on the re-

search code to determine if the results match the expected output. This validation

technique is referred to as white-box testing, which tests the internal structures of

algorithms instead of the functionality. Research code is constantly evolving and

the results of the final output do not meet a specification. However, the internal

components of the research code do have expected results. Thus, testing was done

at a white-box level via degenerate test cases and fault injection.

2.3 Motion Planning with Uncertainty

Motion planning with uncertainty is the primary contribution of this work. To

that end the existing methodologies must be discussed. There are many classes

of sampling-based methods such as Probabilistic Roadmap Methods (PRMS)

[64, 109, 86, 46], Rapidly Exploring Random Trees (RRTs)[58, 77], and Grid based

method [59] to name a few. However, few methods were natively designed

to solve the motion planning problem with uncertainty. A multitude of tech-

niques have been proposed to compensate for uncertainty including clearance-

12

Chapter 2. Related Work

informed PRM methods, modifiable roadmaps and explicit planning with uncer-

tainty. However, the first stage in utilizing these methods in the real world re-

quires the environment to be modeled with sensors.

2.3.1 Modeling Environments With Sensors

Path planning algorithms for physical robots often plan using a model of the ac-

tual environment. The modeling process is one of the most challenging tasks in

robotics [102]. Some common technologies used for modeling include: GPS, radar,

laser, sonar and cameras. However, every technology is subject to error, measure-

ment noise, which is not statistically independent and thus modeling is subject to

systematic correlated errors [102].

Two commonly used techniques are RGB-D mapping and Laser range finders.

RGB-D mapping uses a RGB camera with distance values for every pixel in the

image [38, 43, 26, 97]. Either active stereo [55] or time of flight sensing is used

[13]. The measurement noise from models created with RGB-D mapping varies

depending on the method used [38]. Laser range finders use lasers to scan and

map an environment. For example, [103] and [50] proposes a SLAM solution for

mapping and a probabilistic method for localization but maps are subject to cu-

mulative error.

2.3.2 Clearance-informed Roadmaps

The first set of existing methods which can be used to handle uncertainty are the

clearance informed roadmap methods. Clearance-informed methods utilize ob-

stacle information to create high quality paths, more efficient sampling or to han-

dle moving obstacles. Obstacle surfaces are critical in methods such as Obstacle

13

Chapter 2. Related Work

Based PRM (OBPRM) [5] and Medial Axis PRM (MAPRM) [114]. In OBPRM,

configurations are placed near the obstacle surfaces in order to traverse narrow

passages easier. In MAPRM, configurations are placed on the medial axis of C f ree

to increase clearance and visibility. Here, random samples are generated and re-

tracted towards the medial axis. However, in both methods a complete and accu-

rate model of the environment is needed. Earlier methods related to MAPRM such

as Generalized Voronoi Diagram and Hierarchical Generalized Voronoi Graph,

were restricted to workspace clearance [30] [19] [21].

PRMs have also been adapted to handle changes in the environment due to

moving obstacles. The work in [41] expands PRMs to work under both kinody-

namic constraints and with moving obstacles. However, uncertainty is not built

into the roadmaps, directly. Sensing errors are handled by growing the obstacles.

The work in [86] also utilizes PRMs with moving obstacles. In this method, a first-

stage approximate dynamic global roadmap about the connectivity is maintained

and a second-stage path is extracted from the dynamic global roadmap to locally

plan.

Another method, Toggle PRM [22], maps both C-free and C-obstacle (a subset of

C-collision of space occupied by obstacles). Toggle PRM uses C-free and C-obstacle

to aid sample efficiency in narrow passages.

All these methods can handle certain classes of uncertainty, but the methods do

not directly encode and plan for the uncertainty. The nature of clearance informed

methods allow them to be used for model uncertainty but they typically suffer

from high computation costs and only work with certain classes of uncertainty

as a byproduct of high clearance. The methods proposed in this thesis, however,

directly consider the uncertainty in the planning process and produce comparable

results at less computational cost.

14

Chapter 2. Related Work

2.3.3 Modifiable Roadmap Methods

The second set of sampling based methods which can be used with uncertainty

are modifiable roadmap methods. Modifying a roadmap is a means to construct

tunable roadmap paths, handle invalid paths and to accommodate moving obsta-

cles. One type of modifiable roadmap, [95], constructs a coarse roadmap which is

refined in the areas of interest relative to a query. The approach generates an ap-

proximate roadmap, postponing detailed validation until query time where query

preferences are applied to customize the roadmap. For example, [34] takes an

initial roadmap and query solution and adds vertices and edges to improve the

query solution.

Deformable roadmaps such as [116] replan online paths by using deformation

to fix invalid parts of a path. If a portion of a path is found to be in collision,

the midpoint of the invalid portion is pushed a specified distance away from the

obstacle. A similar approach in [48] looks at the path homotopy class, which re-

lies on the notion of path deformability. This method only looks at homotopy

classification and the possibility of deforming a given path to fit another.

The approaches of [84] and [13] address real-time obstacle avoidance in dy-

namic environments. These methods start with an initial path that is collision free

and then incrementally modify the path to maintain a smooth, collision free path.

These methods rely on workspace clearance by using protective bubbles to deform

the path.

Again these methods can be used with uncertainty such as moving obstacles,

however, they often suffer from high runtime computation costs. Instead of di-

rectly planning for the uncertainty these methods add a modification step to ad-

just existing roadmaps generated by existing techniques. In contrast, the methods

presented in this thesis shift the computation cost to a pre-processing step that can

15

Chapter 2. Related Work

be done offline, which allows for minimal computation cost during path construc-

tion and traversal. This allows the presented methods to be highly reactive to the

changing environment.

2.4 Moving Obstacles

Planning with both static and dynamic obstacles is complicated by the need for

constant adjustments of plans to account for moving obstacles, yet critical in ap-

plications such as flight coordination and autonomous vehicles. In these dynamic

environments, it is important to produce trajectories that avoid both static and

dynamic obstacles with high success rates in a computationally efficient manner.

Common approaches to solving the motion planning problem for dynamic ob-

stacles include Artificial Potential Field (APF) methods [33, 15, 54, 57, 18], tree

based planners [58, 77], Probabilistic Roadmap Methods (PRMs) [64, 109, 86, 46],

and several variants which use heuristics [3, 11].

APF methods create a potential landscape and use gradient descent for naviga-

tion, plan locally, and can be dynamically reactive to unexpected obstacles. These

methods generate an artificial potential in the robot’s workspace, which repels the

robot from obstacles and attracts the robot to the goal [53]. They are applicable to

several robotic problems, including unmanned aerial vehicles [15, 54], robot soc-

cer [113], and mobile robots [33, 25, 107, 96]. For example, a recent APF method

assigns non uniform repulsive bubbles around moving human obstacles to pre-

vent robots from moving in front of a walking human [57].

Recent work has extended the APF method to account for cases in which the

goal is not reachable due to obstacle proximity [33], and navigation in narrow

passages is required [25]. Other recent work has focused on modification of the

16

Chapter 2. Related Work

computation of the potential field through fuzzy [96] and evolutionary [107] APFs.

Another branch of work on APFs utilizes the repulsive and attractive concepts of

APFs but also integrates another path planning method [47, 81]. For example,

[47] uses a user defined costmap to influence vertex placement in a RRT algo-

rithm. The costmap dictates a repulsiveness or attractiveness factor for every re-

gion. Similarly, Navigation Fields [81] assign a gradient which agents follow and

is used for crowd modeling.

Roadmap-based techniques, including PRM variants, have been developed to

address planning in spaces with moving obstacles [84, 13, 109, 41, 86, 93]. Gen-

erally, these approaches adapt to moving obstacles using one of two approaches.

The first category generates a roadmap with little obstacle information, and later

filters paths at runtime with local obstacle information [84], [13]. These methods

have low precomputation costs, but generally prove expensive during path selec-

tion. They start with an initial path that is collision free and incrementally modify

the path to maintain a smooth, collision free path. These methods only rely on

physical obstacle clearance by using protective bubbles to deform the path.

The second category approximates the environment and is cheap at runtime.

These methods create an approximate roadmap and then use a heuristic approach

to produce locally valid paths to avoid moving obstacles. These methods decrease

runtime costs at the expense of path accuracy [86], [46]. In [86], a first stage con-

structs a dynamic roadmap that considers some obstacles and is shared across

multiple moving robots. Then, in a second stage, a path is extracted by a single

robot that is locally modified to account for neighboring robots (moving obsta-

cles). Similarly, [109] repairs the existing roadmap when an obstacle makes an

edge or group of edges invalid. The authors of [116] use a roadmap, but deform

the edges around moving obstacles. The work in [3] trades off distance from the

goal and the dynamic obstacles to path plan. Approaches in [112] and [79] utilize

17

Chapter 2. Related Work

roadmap methods with heuristics to manage the moving obstacles, while [111] at-

tempts to optimize the roadmap for moving obstacles under motion constraints.

These existing moving obstacles methods suffer from either expensive runtime

costs or do not consider obstacle motion in a rigorous manner. In contrast, this

thesis demonstrates a method with low runtime costs which utilizes control the-

ory as a foundation for the obstacle motion prediction. This allows the method to

make more informed planning decisions.

2.4.1 Planning With Uncertainty

The two main types of uncertainty are model uncertainty and localization error.

[14] extends PRMs to work while building a workspace model and is used to

guide exploration to areas that have not been sensed, but it does not deal with

measurement noise. The work in [44] and [82] is concerned with localization error

of the robot. In contrast, [74] is concerned with model error, but it uses a proba-

bility of collision for rejection sampling of vertices in the roadmap. Furthermore

the method is tailored to 2D environments where the model noise is quantifiable.

In [16], the general PRM and RRT method is followed, however, the cost of con-

necting two vertices is evaluated through Monte Carlo simulations to deal with

uncertainty. The work in [4] instead samples local motions at each state to esti-

mate the state transition probability for each possible action. A roadmap and the

state transition probabilities are then used to formulate a Markov Decision Process

(MDP) which is then solved using Infinite Horizon Dynamic Programming.

Localization error can also be handled by working in belief space. In [2] the

authors chose to model a 2D motion planning problem as a Partially Observable

Markov Decision Process (POMDP). Belief space and POMDPs are also used to

solve the uncertainty problem in [83]. Here the belief space is used to approximate

18

Chapter 2. Related Work

the solution to the POMDP on a 2D motion planning problem. Similarly, [56]

handles restricted moving obstacles with a POMDP in real time.

Planning with uncertainty often is done with POMDP and Belief space meth-

ods. While these methods are theoretically sound they typically are impractical

for large state-spaces or complex robots due to the high computational costs [83].

The primary drawback is that these methods tend to be exponential in the size of

the state-space [83, 56]. In contrast, this work provides methods to plan with un-

certainty at a lower computational cost than POMDP or belief space methods by

directly considering uncertainty in the planning process. Directly incorporating

uncertainty into the planning algorithms themselves provides superior solutions

in terms of clearance and success rates compared to methods which do not con-

sider uncertainty.

2.5 Stochastic Reachability

Another method of handling moving obstacles is to incorporate a formal method

from control theory. Stochastic reachability (SR) analysis provides offline verifica-

tion of dynamical systems, to assess whether the state of the system will, with a

certain likelihood, remain within a desired subset of the state-space for some finite

time, or avoid an undesired subset of the state-space [1]. To solve problems in col-

lision avoidance, the region in the relative state-space, which constitutes collision

is defined as the set of states the system should avoid [98, 49]. SR sets provide a

formally grounded estimate of the probability of collision between a robot and a

particular obstacle. This probability of collision can be combined with ad-hoc path

planning methods such as Probabilistic Roadmap Methodsand Artificial Potential

Fields to produce predictive path planning methods.

19

Chapter 2. Related Work

SR is based upon the concepts of reachability calculations, which deter-

mines control inputs to avoid collisions with deterministic obstacle dynamics. A

Hamilton-Jacobi-Bellman (HJB) formulation [75] allows for both a control input

and a disturbance input to model collision-avoidance scenarios [69], [35] for mo-

tion planning. The result of the HJB reachability calculations is a maximal set of

states within which collision between two objects is guaranteed (in the worst-case

scenario), also known as the reachable set. The set which assures collision avoid-

ance is the complement of the reachable set. In [100], reachable sets are calculated

to assure a robot safely reaches a target while avoiding a single obstacle, whose

motion is chosen to maximize collision, and the robot cannot modify its move-

ments based on subsequent observations. In [24], a similar approach is taken, but

reachable sets are computed iteratively so that the robot can modify its actions. In

[60], multiple obstacles that act as bounded, worst-case disturbances are avoided

online, based on precomputed invariant sets.

An alternative approach is to calculate a SR set that allows for obstacles whose

dynamics include stochastic processes. Discrete-time SR generates probabilistic

reachable sets [1] based on stochastic system dynamics. In [98], the desired target

set is known, but the undesired sets that the robot should avoid are random and

must be propagated over time. In [49], a two-player stochastic dynamical game

is applied to a target tracking application in which the target acts in opposition to

the tracker.

20

Chapter 3

Modeling Uncertainty: Inaccurate

Workspaces

This chapter presents a method for explicitly planning with modeling uncertainty.

The work presented here is based on [67] and [65].

The motion planning problem consists of finding a valid (collision-free) path

from a start state to a goal state. One solution to this problem is to capture the

topology of the collision-free portion of the configuration space. Probabilistic

Roadmap Methods (PRMs) provide a solution by constructing a roadmap of ran-

domly sampled robot configurations [51]. Collision free configurations are kept,

while collision configurations are rejected. Connections are made between two

configuration samples when a collision-free transition can be made. These sam-

ples (vertices) and connections (edges) define a graph, referred to as a roadmap,

that the robot can safely traverse. Recently, PRMs have been extended to be adapt-

© IEEE 2013. Preliminary results are reprinted, with permission, from Nick Mal-
one, Kasra Manavi, John Wood, Lydia Tapia, ”Construction and Use of Roadmaps that
Incorporate Workspace Modeling Errors,” In Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1264-1271, Tokyo, Japan, November 2013.

21

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

able [84] [13]. These new methods can deform paths [48], update roadmaps due

to moving obstacles [41] [86], map both collision and collision-free states [22], and

deal with uncertainty in the motion model [16] [4] [2] [83]. However, despite

all these advances, roadmap construction in PRMs require that the model of the

problem must be accurate, e.g., there must be a clear delineation between colli-

sion and collision-free states. This workspace models must be accurate because

collision detection is done by mapping a sampled configuration back into the

workspace, and then checking to see if the robot is in collision with any obsta-

cles in the workspace. Inaccurate collision detection due to an inaccurate work

space model can lead to erroneous roadmaps which produce feasible paths in the

modelled environment but lead to collisions in the actual world.

Figure 3.1: Whole Arm Manipulator (WAM) touching an obstacle boundary.

Distinguishing between collision and collision-free configurations requires a

model of the planning space. These models are often manually constructed, have

well-defined obstacle boundaries, and can be easily tested for robot-obstacle col-

lision. Advancing technologies are producing 3D environment models at lower

costs than ever before [102]. These models are constructed using technology such

as sensors [102] and cameras [38]. However, all these technologies are prone to

22

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

modeling error. Therefore, unlike the manually modelled environment, obstacle

boundaries can be fuzzy or approximated thus making collision tests error-prone.

Safety-PRM, a planning method that accounts for modeling uncertainty in the

roadmap, was introduced in [67]. This method calculates and incorporates a prob-

ability of collision during roadmap construction. These probabilities reflect the

amount of certainty in the collision-state of a vertex or edge in the roadmap, thus

allowing the robot to have an expectation of safety from an obstacle’s surface. The

certainty can also be used to weigh roadmap edges, thus allowing robots to easily

transition between being safer (higher expected clearance) or take shorter paths

(lower regard to expected clearance). The focus of the previous work was on val-

idating Safety-PRM against other planning methods. To that end simulated noise

was used to construct the roadmap. However, the method was designed specifi-

cally for the problem of sensor noise. Here, Safety-PRM is demonstrated in a much

more challenging setting with noisily modelled environments and environments

reconstructed from sensor data.

The applicability of this method is demonstrated on a series of environments

with rigid body and articulated linkage robots. Of particular interest is how these

methods are affected by different error models and error amounts. To evaluate

this, a true model is constructed in simulation, and then a series of deformed

models is generated from that true model to represent a sensor reconstructing the

true environment. Path planning is then conducted in the deformed (sensed) en-

vironments and the paths are evaluated in the true environment. In most rigid

body cases and in all Linkage cases, Safety-PRM can generate roadmaps with less

computational cost than basic PRM and MAPRM (methods known for low com-

putational cost and clearance maximization, respectively).

Safety-PRM also is particularly relevant to experimental robot systems. In

this chapter, Safety-PRM is demonstrated on a Barrett Whole Arm Manipulator

23

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(WAM). First, Safety-PRM is compared to Uniform PRM and MAPRM on an en-

vironment model generated by the Kinect sensor [73]. A mapping of expected

safety to robot speed is developed, so that the robot can safely test the validity of

configurations using torque estimation.

3.1 Safety-PRM Method

In order to handle environment models with inaccuracies, the basic PRM method

must be modified. In the basic PRM, collision checking of the robot to obstacles

in the environment is done as a binary check (either free or in collision). Often

this is done because sensing technologies are constantly improving and will hy-

pothetically produce models approaching 100% accuracy. However, current sens-

ing technology still produces noisy data. In order to handle an environment with

noise, Safety-PRM stores a probability of collision with each configuration. This

probability is a function of the clearance or penetration to the nearest obstacle to

the configuration. These probabilities are also used to guide connection and to

find feasible paths. Instead of using raw collision probability, a weighing function

between collision probability and distance is used to allow path tuning. There-

fore, Safety-PRM provides flexible methods for tuning between planning goals

(expected clearance and path length), works on many robot types (rigid bodies

and linkages), and is inexpensive to compute.

3.1.1 Vertex Generation

The first step in PRM methods is generating a set of samples that approximates

C f ree. In an environment modelled with noise, the boundary between C f ree and

Cobstacle is fuzzy. Thus, unlike a standard PRM method, in collision vertices are not

24

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

discarded. Rather, a probability of validity is associated with each vertex, which

is dependent on its expected distance from the obstacle surface. This ensures that

not all vertices are weighted with an equal measure of quality.

A vertex is generated by sampling a configuration, X. Here uniform random

sampling is used but other sampling techniques can also be utilized. Then a prob-

ability of collision is stored with each vertex based on the amount of perceived

clearance (negative clearance is penetration). The clearance probability, Pv(X), of

configuration X is calculated in Equation 3.1.

Pv(X) =
−1 ∗ atan(D(X) − 1) + π

2

π
(3.1)

Where, D(X) is the distance of configuration X to the nearest obstacle surface

in the noisy model in units. This is just one example to produce a collision prob-

ability due to noisy obstacle boundaries, which can be tuned to expected sensor

error. The π
2 shifts the equation so that being close to the obstacle, but not neces-

sarily in collision, has a high collision probability (e.g., P(0) = 0.75). This provides

an extra buffer around obstacle surfaces and causes the algorithm to favor higher

clearance vertices. Figure 3.2 shows a plot of the probability function defined in

Equation 3.1. Equation 3.1 is a fabricated functions that merely demonstrates the

algorithm. This function was found empirically to work well with the error model

used in the experiments. However, this function can be tuned to match the actual

error function of the sensors used to model the the workspace.

Since the introduction of the first PRM method [51], there have been many

PRM variants introduced including [5] and [114]. Since a probability of collision

is associated to all samples, configurations are generated using a uniform random

distribution. This method is able to produce many samples quickly at a low com-

putational cost. However, many PRM sampling variants could be used for sample

25

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Clearance

P
ro

ba
bi

lit
y

Figure 3.2: Probability of a configuration being in collision based on the clearance of the
configuration X, (D(X)). Based on Equation 3.1.

generation.

3.1.2 Vertex Connection

For each vertex in the roadmap, an attempt is made to connect it with its k nearest

neighbors with a local planner. However, since the collision status of the config-

uration is only partially known, the definition of nearest neighbor considers the

probability of collision. Thus, a function (equation on X) is defined that combines

distance and probability of collision. This causes the best candidate neighbors to

likely be free and proximate. Note, that an edge between neighbors consists of a

sequence of configurations. The equation, (d(ci, cj)), provides a calculation of the

distance between two configurations, ci and cj. In this equation λ is a weighting

term, ci is the vertex, Pv(cj) is the probability that cj is in collision, and dist(ci , cj)

is the Euclidean distance of cj from vertex ci.

26

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

d(ci, cj) = (λ)Pv(cj) + (1− λ)dist(ci , cj) (3.2)

This metric will provide smaller scores to neighbors which are close and have

a low probability of being in collision. The k closest neighbors are then chosen

for connection. Pv(cj) is evaluated by using Equation 3.1 where the input is the

clearance of configuration cj.

In the results shown, edges are computed between neighbors ci and cj by using

a straight-line in Cspace. The weight for the edge eij (such that eij is the edge be-

tween configurations ci,cj) is a function of the probability of collision, Pe(eij), and

the length of an edge. The probability of collision of an edge, Pe(eij), is a function

of the intermediate configurations along the edge ci = c0, c1, c2, ..., cn−1, cn = cj,

where the number of intermediate configurations depends on the resolution, a

parameter of the method. Here, the probability of collision of an edge e, Pe,

is the maximum probability of any configuration along that edge, e.g. Pe(eij) =

max(Pv(c0), Pv(c1), Pv(c2), ..., Pv(cn−1), Pv(cn)), . The probability of a collision for

each configuration along the edge, Pv(ci), is computed using Equation 3.1.

Equation 3.3 shows how the weight is calculated for an edge between config-

uration ci and configuration cj. This edge is denoted eij. The parameter γ allows

for customizable scaling between clearance and edge length. This is particularly

important because modeling errors can be highly variable.

Weight(eij) = (γ)Pe(eij) + (1− γ)nlen(eij) (3.3)

Where nlen(eij) is a normalized length of an edge. In the results shown, these

values are normalized by the maximum edge length in order to provide intuitive

scaling between probabilities of collision and edge length.

27

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

Queries are then done using the standard Dijkstra’s algorithm on the weighted

roadmap [23]. Since the roadmap edge weights capture the uncertainty, Dijkstra’s

algorithm will choose paths with the least uncertainty to the goal.

3.2 Experiments

Safety-PRM is evaluted under three different experimental environments. The

first set of experiments (Section 3.3) compare Safety-PRM to Uniform PRM [51]

and MAPRM [114] with a simulated noise model. MAPRM is known for creat-

ing high clearance paths because configurations are placed on the medial axis of

C f ree, and it does this by retracting generated random samples towards the medial

axis. Uniform PRM is the traditional rejection sampling method under a uniform

random sampling distribution. The second set of experiments (Section 3.4) eval-

uates the three methods under more realistic conditions and with varying error

model types and amounts. These conditions are created by building a true envi-

ronment and then applying an error model to produce a deformed model which

represents a sensed environment. Roadmap construction and path planning are

then done on the sensed environment, while paths are validated on the true en-

vironment for collision. Finally, the three methods are evaluated on a physical

robot system (Section 3.5). Here, a model of the environment is constructed with

a Kinect sensor, roadmap construction and path planning are performed on the

reconstructed model, and then the path is evaluated on the physical robot in the

real environment for collisions.

28

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.3 Simulated Noise with Rigid Bodies and Linkages

This set of experiments constructs a roadmap, path plans, and validates with sim-

ulated noise. This simple setup demonstrates the affect of the parameters on the

Safety-PRM method without other confounding effects. It also show that Safety-

PRM produces path of similar quality to MAPRM but with fewer collision detec-

tion calls.

The value of γ in Equation 3.3 determines the trade-off between short paths

and paths with high expected clearance. Thus, experiments with varying γ val-

ues are shown. Each value of γ is shown for 10 runs with 10 different random

seeds. The parameter used to identify neighbors is fixed at λ = 0.75. This value

was empirically found to make well-connected roadmaps at k = 5, k being the

number of neighbors each vertex has. Safety-PRM was implemented within the

Parasol Motion Planning Library (PMPL) developed at Texas A&M University.

Experiments were run on a single core of an Intel 3.40 GHz CORE i7-2600 CPU

and 8 GB of RAM.

3.3.1 Environments

Safety-PRM is explored with rigid body and articulated linkage robots in two

environments. Figure 3.3 depicts the environments. In each environment the

query is designed to show the trade-off in paths with high collision-free proba-

bility (clearance) versus path length by varying γ in the edge weighting function.

• Narrow: consists of an elongated environment with three boxes dividing

the space. The first and second boxes produce a narrow corridor while the

second and third box produce a wide corridor. The query is built so that

the narrow corridor has a shorter path to the goal but higher probability of

29

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(a) (b) (c) (d) (e)

Figure 3.3: Environments: (a) Narrow and (b) Plank and Robots (c) Stick, (d) Big Arrow,
and (e) Linkage.

being in collision, while the wide corridor has a low probability of being in

collision but a longer path length.

• Plank: The Plank environment has several long planks running the same di-

rection but with minor offsets in their angles. This produces several narrow

corridors through which the robot must navigate length wise and transverse

across.

Each environment was run with three different robots. These robots were se-

lected to demonstrate the robustness of Safety-PRM under different planning con-

ditions. However, graphs are only shown for a single robot in each environment

because Safety-PRM’s quality was unaffected by the robot type.

• Stick: is a long thin rigid body object. Its long side is too long to fit through

most of the paths, but when oriented correctly it can pass through most of

the passages with ease.

• Big Arrow: The Big Arrow is a rigid body pyramid and will just narrowly

fit through many of the passages.

• Linkage: The Linkage is a serial three link robot mounted on a pivot which

can be in any orientation and location in 3-space. Each joint can be moved

independently for a total of nine degrees of freedom.

30

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−15

−10

−5

0

5

10

15

20

25

30

% Completion of Path

C
le

ar
an

ce

Path Clearance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Safety-PRM Clearance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−15

−10

−5

0

5

10

15

20

25

30

% Completion of Path

C
le

ar
an

ce

Path Clearance

Shortest Path
Highest Clearance

(b) MAPRM Clearance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−15

−10

−5

0

5

10

15

20

25

30

% Completion of Path

C
le

ar
an

ce

Path Clearance

Shortest Path
Highest Clearance

(c) Uniform PRM Clear-
ance

(d) Safety-PRM Clearance
Paths

(e) MAPRM Clearance
Paths

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

γ value

P
at

h
Le

ng
th

Safety−PRM

MAPRM Highest Clearance

MAPRM Shortest Path

UPRM Highest Clearance

UPRM Shortest Path

(f) Path Lengths

Figure 3.4: Narrow Environment with the Big Arrow robot and 500 vertices. The paths
have been normalized to the range of [0, 1] so that multiple runs can be compared. 0 is
the start of the query while 1 is the goal configuration of the query. The shaded regions
indicate the standard deviation over 10 runs for each experiment. For 3.4d and 3.4e Each
color indicates a different path based on clearance. Red is the highest clearance path and
blue is the shortest path. For MAPRM the shortest and highest clearance paths are shown.

In order to demonstrate modeling error, a simple error model is used in the

simulations. Error is introduced into every collision detection test. The error is

modelled as ± 5% of the maximum reach of the robot to scale the problem with

the robot. The error model used most closely matches a sensor that would pro-

duce uniform errors. While this simplified model does not exactly match the er-

ror one would see from sensed environments, it approximates the error enough

to demonstrate this approach. However, the goal of Safety-PRM is to create a

roadmap which can compensate for many types of sensor error models.

31

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.3.2 Rigid Bodies

Path quality and performance are the two metrics used to evaluate Safety-PRM.

Path quality is determined by path length and clearance. Unfortunately, in certain

planning problems these two parameters can be at odds with each other. Paths

with high clearance can have longer path lengths and short paths can have lower

clearance because of the obstacles in the environment. Performance is determined

primarily by execution time which is directly related to the number of vertices,

edges and collision detection calls. Here path clearance is measured as the dis-

tance of the robot (at a certain configuration) to the nearest obstacle surface, with

penetration being negative. The algorithm performances are primarily impacted

by the number of collision detection calls, as it is an expensive atomic operation

during roadmap construction. Collision detection is done by mapping a configu-

ration of a robot back into the workspace and then checking, in the workspace, if

the robot intersects any of the obstacles (or itself in the case of linkages).

Figure 3.4a shows the path clearances for γ = [0, 1.0] with a step size of 0.1

on a roadmap of 500 vertices. Figure 3.4f shows the path lengths for the cor-

responding γ values. The graphs indicate the γ values under 0.7 produce very

poor paths. However, γ values above 0.7 produce significantly different suc-

cessful paths (paths which reach the goal without collision). Figure 3.4d shows

the Safety-PRM paths for γ = 0.0, 0.6, 0.7, 0.8, 0.9, 1.0. Figures 3.4a and 3.4d di-

rectly show the tunability as γ = 0.7 goes through the shortest path and as the γ

value increases beyond 0.7 the paths have slightly higher clearance. Note that for

γ > 0.7 all the paths go through the higher clearance section of the environment.

These results show that γ provides a mechanism to tune the algorithm for short

but low clearance path or for longer but higher clearance paths.

However, the tunability is not the primary contribution of this work. Primarily,

32

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

Safety-PRM is concerned with an efficient way to produce high clearance paths in

an inaccurate model. 3.4e shows the shortest path and the highest clearance path

for a roadmap of 500 vertices built with MAPRM. These paths are comparable

to the paths produced by Safety-PRM in figure 3.4d. In this particular experi-

ment, Safety-PRM produces slightly higher clearance paths but more importantly

Safety-PRM often produces these paths at lower cost, i.e. with fewer Collision De-

tection (CD) Calls. In sampling methods the number of Collision Detection calls is

a primitive operation that reflects the computational time spent by the algorithm.

Table 3.1 for the Big Arrow robot at 500 vertices shows that Safety-PRM makes

72% fewer CD calls than MAPRM. For the Big Arrow in the narrow environment

Safety-PRM makes at worst 45% fewer CD calls and at best 75% fewer CD calls. In

this environment Safety-PRM is able to produce a high clearance path compared

to MAPRM but at a cheaper cost. MAPRM run to completion is also shown in Ta-

ble 3.1. The goal is to produce a cheap reusable roadmap which well approximates

the Cspace of the inaccurately modelled environment, so high expected clearance

paths can be found. Running MAPRM to completion produces roadmaps which

solve the query but are not necessarily general. For example, Table 3.1 shows

MAPRM producing at most 33 vertices for any robot environment combination.

This is due to the way MAPRM pushes vertices to the medial axis, thus allowing

it to find a path with few vertices.

For the slightly more complex Plank environment, Safety-PRM performs

slightly worse than on the narrow environment. In the Plank environment, Ta-

ble 3.1 shows that Safety-PRM requires 14% more CD calls than MAPRM for a

roadmap with 100 vertices. Note that the number of vertices impacts how well

the roadmap approximates the topology of C-space. However, for more than 100

vertices Safety-PRM does better than MAPRM. For more than 100 vertices Safety-

PRM does at worst 18% fewer CD calls than MAPRM (500 vertices) and at best

40% fewer CD calls (2000 vertices). For the one instance where Safety-PRM does

33

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

worse than MAPRM, MAPRM on rigid bodies is able to use workspace clear-

ance and the fact that on 100 vertices MAPRM has 40% fewer edges than Safety-

PRM while for the other vertex values MAPRM has between 24% to 14% fewer

edges. Furthermore, since MAPRM is using this workspace clearance it is able

to push vertices to the medial axis in a single step and this environment essen-

tially has three hallways thus favoring MAPRM’s medial axis solution as the so-

lution path lies along the hallways. Also, this is not using inflated obstacles. If

these were sensed obstacles, the standard way of using MAPRM would be to in-

flate the obstacle boundaries, however, doing so could potentially lose the narrow

passageways. It is important to note that for rigid bodies and roadmaps greater

than 500 vertices, Safety-PRM is always cheaper than Uniform PRM. Safety-PRM

is cheaper than Uniform PRM because it does not have a rejection step for in-

collision vertices. Uniform PRM must resample configurations which are in-

collision and thus incur more computational overhead.

3.3.3 Linkages

Now the difficulty of the problem is increased by using Linkage robots. In order

for MAPRM to accurately push configurations to the medial axis it must use an

approximate ray casting solution [114]. The proposed method does not need to

use such a technique as a probabilistic encoding of the clearance (Pv(X)) is used.

In this experiment, a 3 link planar robot mounted on a pivot in 3 space is used.

Each link is connected via parallel revolute joints, to form a simple planar link-

age. These joints are then mounted on a free floating pivot which can be oriented

and located freely in 3D. Thus, the robot has 9 Degrees of Freedom, 3 position,

3 orientation and 3 joint angles. Orientation and position is relative to the first

joint in the linkage. The Linkage experiments are run in the Narrow and Plank

34

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

environments with the same starting position and goal position as the rigid body

experiments. The only exception is that the joints are set to be slightly offset from

fully extended.

Similar to the rigid body experiments, Safety-PRM produces comparable if not

higher clearance paths than MAPRM. Figure 3.5a shows the clearances for Safety-

PRM and 3.5b shows the clearances for MAPRM for a roadmap of 500 vertices.

These two graphs show that Safety-PRM produces paths that are comparable to

MAPRM. However, Table 3.1 shows that Safety-PRM makes between 95% to 98%

fewer CD calls than MAPRM. Similarly, to demonstrate tunability, Figure 3.5g

shows the path lengths for varying γ values. Figure 3.5a shows that as γ increases

the path clearance become higher.

Figures 3.5d, 3.5e and 3.5f show the paths for Safety-PRM, MAPRM and Uni-

form PRM, respectively. The MAPRM and Uniform graphs show both the short-

est path and the highest clearance path in the roadmap, while Safety-PRM shows

paths for γ = 0.6, 0.7, 0.8, 0.9, 1.0. These graphs show that Uniform PRM pro-

duces less smooth paths than either MAPRM or Safety-PRM. Similarly, it shows

that the paths produced by Safety-PRM are comparable to the paths produced

by MAPRM. It is important to note that while results for MAPRM to completion

are shown, the task is not simply trying to solve one query. The goal is to pro-

duce an inexpensive roadmap with high expected clearance, which approximates

the Cspace of the environment in order to solve multiple queries in an inaccurate

workspace model.

These experiments show that the computational cost of Safety-PRM is com-

parable to MAPRM with rigid body robots and significantly less expensive than

MAPRM in the Linkage environments. They also demonstrate that Safety-PRM

produces comparable quality paths in terms of clearance to MAPRM. These two

advantages are due to Safety-PRM being built to take inaccurate models into ac-

35

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

count. This means that given an inaccurate model, Safety-PRM will produce rela-

tively high expected clearance paths with less computational cost than MAPRM.

MAPRM is capable of producing high clearance path in the inaccurate workspace

models because it pushes configuration to the medial axis, but it does not directly

take the uncertainty into account. Similarly, Uniform PRM does not consider the

uncertainty but with these small amounts of error can still sometimes find solu-

tions. In general, Safety-PRM can produce high-clearance path with inaccurate

workspace models without added computation cost.

Safety-PRM MAPRM Uniform PRM
Robot Env Vertices Edges CD’s Vertices Edges CD’s Vertices Edges CD’s

Big Arrow Narrow

Comp N/A N/A 33 122.0 8,385.7 25 100.4 2,437.4
100 1,173.4 15,255.5 100 435.6 27,758.7 100 570.6 12,171.5
500 4,725.2 52,470.2 500 2,250.2 184,380.1 500 3,666.0 65,983.9
1000 8,703.0 90,103.4 1000 4,764.6 306,870.6 1000 7,854.8 128,984.7
1500 13,170.0 130,688.2 1500 7,381.0 508,205.1 1500 12,178.4 188,379.4
2000 17,688.4 170,725.3 2000 10,010.6 652,091.8 2000 16,594.2 245,356.5

Stick Plank

Comp N/A N/A 14 44.0 1,872.1 11 37.6 1,542.3
100 904.0 20,702.4 100 551.79 18,158.8 100 539.2 20,082.9
500 4,551.2 81,534.0 500 3,472.4 99,259.1 500 3,367.4 101,648.8
1000 9,152.6 149,258.1 1000 7,472.0 208,658.0 1000 7,261.4 201,228.4
1500 13,767.0 213,742.3 1500 11,621.8 329,380.4 1500 11,256.2 300,961.3
2000 18,420.0 277,172.4 2000 15,858.6 458,286.9 2000 15,409.2 401,185.2

Linkage Narrow

Comp N/A N/A Comp 61.8 266,273.7 Comp 66.6 7,099.5
100 1,516.4 101,187.6 100 478.6 1,934,083.5 100 1,649.2 139,243.9
500 7,709.2 427,025.7 500 2,565.0 10,285,723.8 500 5,455.0 432,761.8
1000 15,568.8 807,674.6 1000 5,244.0 20,001,180.5 1000 8,634.1 655,001.1
1500 23,413.2 1,167,438.8 1500 7,959.0 30,300,016.4 1500 11,667.7 854,130.0
2000 31,313.2 1,517,071.4 2000 10,676.4 39,538,284.2 2000 15,292.2 1,077,846.8

Linkage Plank

Comp N/A N/A Comp 40.2 303,423.2 Comp 49.0 3,221.4
100 1,627.3 68,258.7 100 353.8 2,485,202.3 100 382.0 25,191.7
500 8,332.6 271,513.3 500 2,238.0 10,958,301.2 500 2,331.2 149,392.9
1000 16,695.6 491,709.8 1000 4,739.8 20,904,573.9 1000 4,993.6 330,395.5
1500 25,191.2 705,611.7 1500 7,320.2 31,503,340.8 1500 7,781.0 533,506.3
2000 33,653.8 905,726.3 2000 9,975.6 41,851,387.7 2000 10,635.8 747,872.1

Table 3.1: Rigid Body and Linkage Experiments for different environments and robots
with the number of neighbors for each vertex set to 5. Vertices and edges indicate the
number of vertices and edges in the roadmap. CD’s are the number of collision detection
calls made during roadmap construction.

3.4 Varying Level of Noise in the Environment Model

A model of the physical environment is often extracted through sensing, which

introduces modeling error. Path planning is done using the sensed model, but,

because of the modeling error, these paths could potentially cause collision.

36

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

In these simulation experiments, the effect of different error models and er-

ror amounts are evaluated on Safety-PRM Uniform PRM, and MAPRM. To per-

form this evaluation, a known ground truth environment is produced in simula-

tion. This ground truth environment is then distorted via a specific error model.

The distortion is parameterized by type (Spherical, Gaussian, or Log-Normal) and

amount of distortion. The distorted environment simulates the error introduced

by sensing an environment. Path planning is then done on the distorted environ-

ments. The path is then migrated to the ground truth environment and evaluated

for clearance and collisions. If the path does not have any collisions it is consid-

ered valid. All of these experiments are done in simulation. The ground truth is

a simulated environment and the sensed environment is built by modifying the

simulated ground truth environment with an error model.

Experiments were conducted on three different error models in simulation.

Experiments were performed on the Narrow and Plank environments with all

three robot types (Stick, Big Arrow and Linkage robots). However, since the re-

sults for all three robots and both environments were similar and all showed the

same trends, for brevity, data is only shown from the Narrow environment and

the Big Arrow robot. The previous section showed the results of all three robot

types planning and executing in the same environment. Here, similar trends for

planning in a sensed environment but executing in true environments are demon-

strated. Of primary concern is the success rate for the different methods, however

runtime costs were also compared.

3.4.1 Error Models

An obstacle model in the workspace is made up of triangles. The triangles have

vertices and edges which define a location and orientation in space. To create a

37

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

simulated sensed obstacle model the vertices which make up the triangles of the

model are distorted using the error models described below.

Spherical Error: The spherical error model distorts each vertex in the true model

by a uniformly random distance capped by the radius of the sphere. This model

is parameterized by the radius r. However, this type of distortion is unrealistic as

adjacent vertices are uniformly randomly distorted. To adjust for this the model

is then smoothed with a simple Laplacian smoothing function. The Laplacian

smoothing function is parameterized by n, the number of passes. Figure 3.6b

shows an example of a true model distorted by the Spherical error model.

Gaussian Error: The Gaussian error model also distorts each vertex in the true

model however, the distortion is done by randomly sampling a Gaussian func-

tion. The model is parameterized by µ and σ, and is sampled in three dimensions.

Figure 3.6c shows an example of Gaussian distortion. This is the traditional error

modelled assumed in most work on noise as many sensors and processes can be

modelled via Gaussian error.

Log-Normal Error: Log-normal error is similar to the Gaussian error, except

it has a heavy tail. Again each vertex is distorted by sampling a Log-Normal

function. It is parameterized by µ and σ and is also sampled in three dimensions.

Figure 3.6d shows an example of the log-normal distortion.

In general, the spherical error causes the most sharp angles in the distorted

models, while the Log-Normal model causes the fewest sharp angles. This is due

to the distribution probabilities. The Spherical model is uniform random while

the Log-Normal model has a very high probability of sampling a point near the

mean and low probability of sampling points far from the mean.

38

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.4.2 Environments

Figure 3.3 depicts the true environments while Figure 3.6 shows an example of

sensed (distorted) environments. In each environment the query is designed to

show the trade-off in paths with high collision-free probability (clearance) versus

path length by varying γ in the edge weighting function. The true environments

are distorted using the various error models to produce a facsimile of a sensed

environment. The true environments and robots are explained in detail in Section

3.3.1.

In the following experiments Safety-PRM is compared to MAPRM and uni-

form PRM on varying amounts of error. Specifically r = 2, 6, 10 for the spheri-

cal error model and σ = 2, 6, 10 for the Gaussian and log-normal error models.

All vertices are distorted by offsetting from the true vertex location. The paths

produced in the distorted model are then tested in the known ground truth. If

the path is collision free it is considered valid, otherwise it is considered invalid.

Each environment is run with different roadmap sizes, (500, 1000, 2000). For each

roadmap, γ is tested from 0 to 1 with an increment of 0.1. Finally, for each test, 10

runs are performed with different random seeds to produce different roadmaps.

This minimizes the influence on the success rate due to roadmap differences.

39

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−5

0

5

10

15

20

25

30

35

% Completion of Path

C
le

ar
an

ce

Path Clearance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Safety-PRM Clearance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−5

0

5

10

15

20

25

30

35

% Completion of Path

C
le

ar
an

ce

Path Clearance

Shortest Path
Highest Clearance

(b) MAPRM Clearance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−5

0

5

10

15

20

25

30

35

% Completion of Path

C
le

ar
an

ce

Path Clearance

Shortest Path
Highest Clearance

(c) U-PRM Clearance

(d) Safety-PRM Paths for
varying γ values

(e) MAPRM shortest and
highest clearance paths

(f) Uniform PRM shortest
and highest clearance path

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

500

1000

1500

γ value

P
at

h
Le

ng
th

Safety−PRM

MAPRM Highest Clearance

MAPRM Shortest Path

UPRM Highest Clearance

UPRM Shortest Path

(g) Path Lengths

Figure 3.5: Link Robot in Narrow Environment with 500 vertices. 3.5d 3.5e 3.5f Show
the Linkage Paths on the Narrow Environment. The colors of each path indicate the start
(blue) and the end (yellow) of the paths. The paths have been normalized to the range of
[0, 1] so that multiple runs can be compared. 0 is the start of the query while 1 is the goal
configuration of the query. The shaded regions indicate the standard deviation over 10
runs for each experiment. Ideally, the algorithm will produce paths which maximize the
clearance between obstacles along the paths.

40

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(a) True Environment (b) Spherical Distortion

(c) Gaussian Distortion (d) Log Normal Distortion

Figure 3.6: Examples of the distortion methods on an example box in an environment. (a)
shows the true environment. (b) shows an example of the true environment (a) distorted
with spherical error r = 2. (c) shows an example of Gaussian distortion of (a) with σ = 2.
(d) shows an example of Log Normal distortion of (a) with σ = 2.

41

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.4.3 Spherical Error Model

A Spherical error model is the simplest error model. As discussed in the setup

section, the spherical error model distorts each vertex of the model by a uniform

random amount bounded by the radius of the sphere.

As the amount of error in the model increases, the problem becomes harder.

Figure 3.7 shows the results for Safety-PRM with varying spherical error amounts.

These graphs show the percentage of runs which have valid paths in the true

environment. Interestingly, Safety-PRM is mostly agnostic to the amount of error

as each graph maintains approximately the same shape. This can be seen since

all runs have a probability of success greater than 0.9 regardless of the amount of

error, for γ > 0.9 and roadmap size greater than 100. The value of γ is significant

because it is the trade off parameter between clearance and path length and the

affect of γ is impacted by the amount of error. In contrast, MAPRM (Figure 3.7),

while still producing good results, begins to suffer as the error increases. For

instance, once the error amount is at r = 6 (a maximum expected error for a

Kinect sensor), all roadmap sizes less than 2000 have a maximum success rate of

0.9. Similarly for an error of r = 10, a 1500 vertex roadmap has a success rate of

0.7. It is important to note that MAPRM is typically intended to run to completion

which means the roadmaps produced will be significantly smaller than the maps

tested here. This is done because MAPRM is expensive to run on linkages due to

the need for ray casting to approximate the medial axis. However, these results

indicate that smaller roadmaps will produce poorer success rates for MAPRM,

Thus, the quality of results possible with MAPRM are comparable to the results

with using Safety-PRM, however the cost of MAPRM is higher (Table 3.2).

Finally, Figure 3.7 shows the results for running the spherical error models

with Uniform PRM. As expected the results for Uniform PRM on this task are

42

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

γ

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(a) R = 2

γ

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(b) R = 6

γ

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(c) R = 10

Figure 3.7: : Success rates for Safety-PRM, MAPRM and Uniform PRM for spherical error
with distortion radius R = 2, 6 and 10.

poor because Uniform PRM does not take clearances into account. However, it is

important to note that Safety-PRM has approximately the same running time as

Uniform PRM but produces results comparable to MAPRM.

3.4.4 Gaussian Error Model

The Gaussian error model is a standard error model present in many sensors. This

error model distorts each vertex in the true model by a random amount drawn

43

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

from a Gaussian distribution.

P(x) =
1

σ
√

2π
e
−(x−µ)2

/

2σ2

(3.4)

Where µ is the vertex in the model location and σ is the standard deviation.

Similar to the spherical error model the problem becomes harder as the error

increases. However the Gaussian error model produces less overall distortion

than the Spherical error model. The models distorted by the Gaussian model hold

more of their original shape than when distorted by the spherical model. As such

it is expected that MAPRM and Uniform will perform better on this task. Figure

3.8 shows just such a trend, with only the smallest MAPRM roadmap falling to

90% success rate at σ = 6. Similarly, Uniform PRM does not suffer as much in this

case either.

Both the comparison methods and Safety-PRM do better under the Gaussian

error model because the original obstacle’s shape is retained better than the spher-

ical error model. It is important to note that Safety-PRM retains the same shape

in this error model as in the spherical error model. This indicates that Safety-

PRM is mostly unaffected by the error model type. Safety-PRM is able to com-

pensate for the increasing error in Figure 3.8 but as the error increase the success

curve is pushed further down and requires higher γ values to reach high success

rates. Again, it is apparent that Safety-PRM produces comparable success rates to

MAPRM but at lower cost.

44

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

γ

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(a) σ = 2

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(b) σ = 6

γ

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(c) σ = 10

Figure 3.8: Success rates for Safety-PRM, MAPRM and Uniform PRM for Gaussian error
with distortion σ = 2, 6 and 10.

3.4.5 Log-Normal Error Model

Here, the sensed environment is produced by distorting the vertices with a log-

normal error model. This model typically produces nearby distortions similar

to the Gaussian model but has a very low probability of producing a very large

distortion. The probability density function for the log-normal model is:

45

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

fx(x; µ, σ) =
1

xσ
√

2π
e
−(lnx−µ)2

2σ2 , x > 0 (3.5)

Figure 3.9 shows the results of the same experimental setup as the other two

models. As expected this error model benefits the MAPRM method as it achieves

100% success for all parameters. Interestingly, Uniform PRM does not benefit from

the distorted models much. However, despite this method producing something

of a worst case situation for Safety-PRM it remains mostly unaffected by the large

protrusions. At the largest σ this error model produces sporadic large protrusions

which produces an area of high collision probability in the sensed environment.

These protrusions practically block the passageway between obstacles. Thus, this

error model causes Safety-PRM to produce paths that are closer to the true obsta-

cle surfaces as it attempts to avoid these large spikes.

Despite the challenges of the log-normal error model for Safety-PRM it still

retains a similar shaped curve to the two error model experiments. Thus, Safety-

PRM is able to successfully produce paths in a variety of error model types and

amounts. At the highest clearance/path length trade-off value of γ Safety-PRM

always produces comparable paths and success rates to MAPRM, but at cost com-

parable to Uniform PRM, i.e. less expensive than MAPRM.

3.5 Kinect Reconstructed Environment with Physical

Robot Validation

In this final set of experiments, motion planning is done on a physical robot, the

Barrett Whole Arm Manipulator (WAM), in an environment modelled with sen-

sors. First, a Kinect sensor is used to ”construct” a model of the physical envi-

46

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(a) σ = 2

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(b) σ = 6

γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0

0.2

0.4

0.6

0.8

1

Safety-PRM 500
Safety-PRM 1000
Safety-PRM 2000
Uniform 500
Uniform 1000
Uniform 2000
MAPRM 500
MAPRM 1000
MAPRM 2000

(c) σ = 10

Figure 3.9: : Success rates for Safety-PRM, MAPRM and Uniform PRM for Log-normal
error with distortion σ = 2, 6 and 10.

ronment. Then, a roadmap is built in this environmental model and a path is ex-

tracted. This path is finally validated in the physical environment with the WAM

robot.

3.5.1 Whole Arm Manipulator

The Barrett Whole Arm Manipulator (WAM) [45] platform used in the real robot

experiments is a seven degree of freedom (DoF) robotic arm as seen in Figure 3.1.

47

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

Safety-PRM MAPRM Uniform Random PRM
Robot Env Vertices Edges CD’s Vertices Edges CD’s Vertices Edges CD’s

Big Arrow R = 2

100 800.0 58,141.8 100 647.0 82,874.0 100 562.2 75,442.7
500 4,070.6 242,629.0 500 3,170.2 315,425.1 500 3,000.0 332,446.8
1000 8,231.2 453,367.7 1000 6,302.8 560,822.6 1000 6,110.2 637,774.6
1500 12,368.0 645,746.8 1500 9,466.4 787,097.9 1500 9,267.8 940,927.5
2000 16,543.2 830,164.1 2000 12,590.2 996,711.1 2000 12,431.0 1,226,638.0

Big Arrow R = 6

100 809.6 59,632.5 100 645.6 82,112.8 100 534.6 68,345.5
500 4,101.2 248,299.2 500 3,176.0 315,411.8 500 2,886.8 311,483.8
1000 8,296.2 464,736.7 1000 6,301.0 560,560.3 1000 5,901.4 602,357.4
1500 12,473.2 663,507.5 1500 9,445.0 785,060.5 1500 8,870.6 888,447.6
2000 16,680.8 854,503.5 2000 12,570.6 994,518.2 2000 11,923.8 1,161,099.5

Big Arrow R = 10

100 817.8 61,042.5 100 648.4 83,172.6 100 476.6 61,080.7
500 4,167.2 258,892.2 500 3,167.6 314,143.9 500 2,624.4 280,824.0
1000 8,415.2 485,088.4 1000 6,302.2 558,991.8 1000 5,406.8 536,050.4
1500 12,669.2 696,219.5 1500 9,435.8 782,933.5 1500 8,212.0 782,880.3
2000 16,928.8 899,171.5 2000 12,587.2 995,477.6 2000 11,071.2 1,023,579.5

Table 3.2: Edges and Collision Detection (CD) calls for the simulation experiments on the
spherical environment with varying error amounts.

It is a cable-driven system controlled with position encoders and torque estima-

tion sensors. For the experiments in this chapter, the WAM has been connected

to a GE Intelligent Platforms reflective memory network in a spoke design that

allows multiple computers to share memory at speeds ranging from 43 MB/s to

170 MB/s. The reflective memory networks allows remote computers to handle

the planning processing, while leaving a small and fast computer on-board the

WAM to handle simple motion control.

The WAM is connected to an xPC Target Kernel running Matlab Simulink 7.7.0

R2008b [72]. The controller for the WAM is written in Simulink and interfaces

with remote computers via the reflective memory network. The Simulink code re-

sponsible for directly issuing commands to the WAM, hence the WAM controller,

receives a command vector by reading a specific block of reflective memory. The

command vector is a length-seven vector containing the desired joint angles in

radians of each for the seven WAM joints.

The WAM controller, upon receiving a command vector, places the command

vector into a buffer, which only stores one move until completion of the move.

The command vector is first sanitized so that each entry is within the WAM’s

joint limits. If the WAM is not executing a move, it compares its current loca-

48

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

tion to the command vector buffer. If the command vector buffer is sufficiently

different from the current location, the WAM controller computes a straight line

interpolation between the two points and executes the path within the allowable

WAM workspace. In the current architecture a move cannot be interrupted except

by a collision. The velocity of the straight line interpolation follows a fifth-order

smooth polynomial as seen in Fig 3.10, is used both for safety and for mimicking

biological motion [28]. These slow beginnings and endings to the motion events

provides safer joint torques than a simple uniform motion event.

For additional safety, the clearance probability is also used to determine the

speed of the move. The speed of a move is proportional to P(Edge), the probabil-

ity that an edge is in collision. Any function can be used to determine the speed.

This modulation means that the robot moves slower when it expects that the arm

is near an obstacle, thus if an impact occurs it will be at a slower velocity.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Velocity vs Time

Time (s)

V
el

oc
ity

(m
/s

)

Figure 3.10: Velocity Profile of the WAM Controller

Finally, torque estimation is used to determine if the arm has collided with

an obstacle. Torque is approximated by the on board position encoders in each

WAM joint and is computed via a proprietary algorithm. This produces noisy

torque estimates which slightly lag behind the actual torque experienced by the

arm. Furthermore, a simple threshold is used to determine if the torque is too

high for the arm. It is important to note that the torque estimation is sensitive to

49

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

the speed of the WAM. If the arm is moving too fast the torque estimation will

not be able to detect a collision and stop the arm before damaging the arm. Thus

the velocity modulation is critical to keeping the arm’s velocity low near potential

obstacle collisions. To further reduce the possibility of damaging the arm during

collisions, the joint stiffness is reduced by a uniform amount across all joints by

the onboard controller. This allows the arm to flex during collisions.

3.5.2 Environment

The pipline for the physical experiments is to, 1) build a 3D model of the environ-

ment from sensed data, 2) Build a roadmap using the Parasol Motion Planning

Library (with Safety-PRM, MAPRM and Uniform PRM), 3) Extract a path using

Dijkstra Algorithm. In the case for Safety-PRM the weights are assigned via equa-

tion 3.3, 4) Using the extracted path instruct the WAM arm to navigate between

the path vertices, 5) In the case of collision, stop the arm to prevent damage. Here,

the path plans generated by the planning algorithms are evaluated. If a plan leads

to collision, the method is considered to have failed on the test.

For this set of experiments a Microsoft Kinect sensor was used to collect 3D

point cloud data of an environment to reconstruct a 3D model of the workspace

(Figure 3.11). Eight point clouds were collected at even intervals over a 120 degree

rotation around the workspace. These clouds were all collected from the same

height with the Kinect pointed towards the center of the workspace at each sample

point. This produced a series of point clouds which represented the workspace.

These clouds where then registered using the Point Cloud Library 1.6.0 (PCL) [31]

to produce a noisy point cloud representation. This combined point cloud was

then triangulated, again using PCL, to produce a mesh representation. Finally,

the PCL segmentation and convex hull method were applied to the triangle mesh

50

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

to produce the final model used for path planning [31].

There are two environments for this set of experiments. The first environment

is used for the WAM validation experiments and the second environment is used

for the dynamic replanning experiments. The first environment is a table set up

in front of the WAM with two boxes separated by a gap approximately 2 times

the diameter of the WAM hand (10 inches apart). The task is for WAM to reach

between the boxes and curl around one of the obstacles without collision. Figure

3.11 shows an image of the actual table and the steps used to produce the final

3D model used for path planning. Figure 3.11a shows a photograph of the envi-

ronment, 3.11b shows the raw point clouds after registration and 3.11c shows the

3D model used for path planning after segmentation and convex hull application.

These figures demonstrate the errors introduced by the Kinect sensor in the final

model. Note that the error is different from the three simulation error models and

has been shown to increase quadratically with distance [78].

The second environment is a single box setup on a table that the WAM must

reach over. This task is designed to demonstrate dynamic replanning. Figure 3.14

shows the environment. This box is placed such that the WAM must reach up and

over. However, for low values of γ the WAM will reach into the box and produce

a collision, triggering a replanning event. Section 3.5.4 discusses replanning in

more detail.

51

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(a) Photograph of the physical environment.

(b) Point cloud collected by the Kinect sensor data af-
ter registration and triangulation.

(c) Final 3D model of the environment after segmen-
tation and convex hull applications.

Figure 3.11: WAM Physical Environments

52

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.5.3 WAM Validation

Figure 3.12 shows the results of running path planning with Safety-PRM,

MAPRM, and Uniform PRM on the sensed data and the WAM robot for the task

show in Figure 3.13. As the previous experiments showed that γ < 0.70 produces

poor results in most runs, these experiments are limited to Safety-PRM runs of

γ ∈ [0.70, 0.80, 0.90, 1.0]. Similarly, to provide the robot with the most safety,

the comparison methods were run until a solution was found instead of limiting

the vertices to match those of Safety-PRM. Each experiment was run 5 times with

different roadmaps and averaged together. Figure 3.13 shows an example run for

the task completed by Safety-PRM. The goal is to reach around the colored blocks

without collision under no time constraints.

Figure 3.12 shows that all methods were able to complete the task without

collision. However, for MAPRM and Uniform PRM the sensed data set had to

be manually cleaned up as the error in the model placed the edge of the table

inside the starting configuration. The comparison methods completed the task

because the error induced by the Kinect favors expanding the obstacles more than

reducing them. Thus, the Kinect’s error model acts like a buffer. However, Table

3.3 shows that Safety-PRM was able to solve the task with fewer CD calls than

Uniform PRM and MAPRM. Thus, Safety-PRM performs the physical task as well

as the comparison methods but at a lower cost. This, combined with the previous

experimental results, shows that Safety-PRM successfully encodes the collision

probabilities into the roadmap and is able to generate paths with a similar quality

to MAPRM but with fewer CD calls.

Safety-PRM Uniform Random PRM MAPRM
Robot Env γ Edges CD’s γ Edges CD’s γ Edges CD’s

WAM Table

0.7 54,582.6 295,842.6

N/A 110,207.3 359,457.6 N/A 30,544.6 34,612,483.0
0.8 77,919.3 293,095.3
0.9 77,749.3 288,513.0
1.0 77,750.3 288,513.1

Table 3.3: Edges and Collision Detection (CD) calls for the WAM experiments.

53

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

γ

0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
at

h

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.12: MAPRM (red line), Uniform PRM (yellow line), and Safety-PRM (blue line)
success rates for the physical experiment.

3.5.4 Dynamic Replanning

Another advantage of Safety-PRM is that it builds a roadmap to a specific size

and then plans a path based on the safety trade-off parameter. This is particularly

useful for real robot applications with noisy sensors. Often, path length is an im-

portant consideration and shorter paths are preferred as such γ will be set less

than the maximum. Even with γ set to 1, it is still possible for collision to occur as

sensor error could produce poor or erroneous models of the environment. Thus,

dynamic path replanning is a very useful capability for a path planning algorithm.

54

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

Since Safety-PRM builds specific sized roadmaps, multiple paths to the goal will

likely exist in the roadmap and dynamic path replanning is possible. To demon-

strate path replanning, experiments are performed on an environment consisting

of a table with a box that the WAM must reach over without collision. Figure 3.14

show an example of the environment and the task.

Dynamic replanning is based on detecting collisions. Torque estimation is used

to detect collisions and to refine the roadmap. The simple implementation utilizes

a torque threshold on the WAM motors to determine if a collision has occurred. If

the arm collides with an obstacle, it sends a stop signal. Then the edge that is being

traversed is determined to be in collision. This information is then used to remove

the in-collision edge from the roadmap. The WAM is backed up to the last known

safe vertex in the roadmap and the path is replanned in the pruned roadmap. This

allows for intelligent refinement of the roadmap given the expected clearance of

the Safety-PRM method. Figure 3.14 shows a sequence of this process. In this

experiment, the γ value is set to 0.5, so that the planner will choose a short path

which collides with the obstacle. Figure 3.14c is when the WAM collides with the

obstacle and Figure 3.14d shows the WAM backing up. The remaining figures

show the replanned route to the goal.

55

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(a) Start (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Simulation Path

Figure 3.13: Sequence of the WAM Path, The move time is determined by 2 + (1 +
P(Edge))2 where P(Edge) is the probability of an edge being in collision.

56

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

(a) Start (b) Step 1

(c) Step 2 (d) Step 3

Figure 3.14: Sequence of WAM Path using torque sensing, 3.14c is where the WAM col-
lides with the obstacle and replans the path.

57

Chapter 3. Modeling Uncertainty: Inaccurate Workspaces

3.6 Conclusions

This chapter has shown that the Safety-PRM roadmap offers several advantages

over basic PRM roadmaps for real robots. Using Safety-PRM allowed for cheap,

tunable roadmaps to be produced for complex robots and environments. First,

Safety-PRM was shown computationally cheaper than MAPRM. Second, it al-

lowed for inaccurate workspace models without the need for the traditional

method of enlarging obstacles. However, it provided high expected clearance

paths. These advantages of Safety-PRM allow it to be used on real robotic hard-

ware as demonstrated by the WAM applications.

This chapter demonstrated Safety-PRM on several environment with several

robots. These environment and robots were chosen in such a way as to demon-

strate the generalization of the Safety-PRM method. Experiments were done on

a simple environment, a medium complexity environment, and finally on a com-

plex and Cluttered environment. The results obtained for all of these environment

were similar. This indicates that the algorithm is mostly agnostic to the environ-

ment types and robot types. It is instead mostly impacted by the type and amount

of uncertainty in the roadmap. Furthermore, the Safety-PRM method was shown

with a uniform random sampler as the underlying sampling function. However,

that is not required. Any of the multitude of sampling based methods could be

used in conjunction with the Safety-PRM scheme thus making the method more

general.

58

Chapter 4

Spatio-Temporal Uncertainty:

Moving Obstacle Avoidance

Dynamic and changing environments due to moving obstacles is another major

source of uncertainty in motion planning. Moving obstacles can invalidate a cur-

rent plan or force the robot to avoid an imminent collision. This chapter proposes

solutions for the moving obstacle problem from [64] and [61].

Consider, self-driving vehicles. Pedestrians, other drivers, and unexpected an-

imal crossing all create situations that the path planning algorithm used by the ve-

hicle must consider. Due to moving obstacles, the current plan must be revisited

and possibly adjusted.Unfortunately, simply recalculating a full plan every time a

path is invalidated is ineffective in many situations. Thus, the planning algorithm

must make more informed decisions that consider possible obstacle dynamics.

In this chapter, two methods are presented to account for moving obstacles.

© IEEE 2013. These results are reprinted, with permission, from Nick Malone, Kendra
Lesser, Meeko Oishi and Lydia Tapia, ”Stochastic Reachability Based Motion Planning
for Multiple Moving Obstacle Avoidance” In Proc. International Conference on Hybrid
Systems: Computation and Control (HSCC), Berlin, Germany, April 2014.

59

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

The first method is SR-Query, which combines roadmap methods with formal

control theory to weight roadmap edges in an informed manner. The second

method is APF-SR, which uses formal control theory as a heuristic to fit a po-

tential field around obstacles that matches their expected motion. APF-SR was

developed to provide a motion planning algorithm which is more reactive than

SR-Query. To demonstrate this reactivity, APF-SR is shown navigating environ-

ments with up to 900 moving obstacles which can switch between line and arc

trajectories. These two methods consider the obstacle motions and are thus able

to make informed decisions. It is important to note that the methods do not know

the obstacle’s future trajectories. Rather, they only have a model of the obstacle

motion which provides probabilities of collisions in the short term.

4.1 SR-Query

One of the many challenges in designing autonomy for operation in uncertain

and dynamic environments is the planning of collision-free paths. In applications

such as search and rescue, coordinated sensing, collaborative monitoring, or au-

tomated manufacturing environments, a robot must traverse from a known start

state to a goal state, in an environment that could contain many moving obsta-

cles with stochastic dynamics. While theoretical solutions may be available via

stochastic reachability, the high computational expense limits such an approach

to a very small number of dynamic obstacles, depending on the model complex-

ity of the robot and obstacle dynamics. Motion planning techniques provide a

more computationally feasible alternative, depending on degrees of freedom of

the robot, the nature of the environment, and the planning constraints. However,

there is strong evidence that any complete planner will require exponential time

in the number of DOFs of the robot [51], [42], [20].

60

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

This chapter presents a novel, stochastic reachability based method to create probabilis-

tic roadmaps that accommodate many moving obstacles that travel stochastically along

straight line or arc trajectories. The likelihood of collision with a given object (com-

puted a priori via stochastic reachability (SR)) is used to inform the likelihood of

collision along a given path. This method is demonstrated computationally on

scenarios with up to 50 obstacles with stochastic velocities.

Stochastic reachability analysis provides offline verification of dynamical sys-

tems, to assess whether the state of the system will, with a certain likelihood,

remain within a desired subset of the state-space for some finite time, or avoid

an undesired subset of the state-space [1]. To solve problems in collision avoid-

ance, the region in the relative state-space which constitutes collision is defined

as the set of states for the system to avoid [98, 49]. Unfortunately, the computa-

tion time for stochastic reachable sets (SR sets) is exponential in the dimension of

the continuous state, making the assessment of collision probabilities with many

simultaneously moving obstacles next to impossible (once the dynamics of each

obstacle are incorporated into the state). However, while expensive, SR sets can

be computed offline and the result queried online.

This method combines multiple SR sets (computed pairwise between the robot

and each dynamic obstacle Equation (4.7)), to generate appropriate weights asso-

ciated with the edges in the roadmap. The SR sets are generated offline, computed

individually for relative dynamics associated with each obstacle, and the results

combined and queried at runtime by the method. In an environment with mul-

tiple obstacles, the intersection of multiple SR sets clearly cannot provide a strict

assurance of safety, since the reachable set is computed for one dynamic obsta-

cle in isolation. However, such an approach can significantly improve the ability

of the roadmap to reflect obstacle dynamics. Further, in simulation, it is found

that the SR - weighted roadmap is able to intelligently navigate in the presence

61

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

of stochastic dynamic obstacles significantly more often than standard roadmap

methods.

The proposed method has several advantages over existing moving obstacle

solutions. First, the method is fast since it does not have to make expensive col-

lision detection calls and instead just queries the precomputed SR set. Second, it

scales well with many obstacles. Furthermore, it provides a framework in which

multiple SR sets can be combined to generate approximate collision avoidance

probabilities with many moving obstacles, which would otherwise be impossible

using a single SR set that accounts for all obstacles simultaneously. Finally, by

using SR for the underlying collision probability calculation, the method provides

an upper bound on the probability of collision avoidance, which can be used com-

paratively to select the best path.

Section 4.1.1 presents the robot and obstacle dynamics, and known techniques

for roadmap construction. Section 4.1.2 presents the computed stochastic reach-

able sets for collision avoidance with two types of stochastic dynamic obstacles, as

well as the algorithm for roadmap construction that queries the stochastic reach-

able set. Section 4.1.4 describes the computational experiments, with two moving

obstacles, and finally with 50 moving obstacles. Lastly, conclusions are offered in

Section 4.1.5.

4.1.1 Preliminaries

Obstacle Dynamics

Two representative types of dynamic obstacles, which have known trajectories but

stochastic velocities, are considered. In particular, two-dimensional point mass

obstacles with straight-line and constant-arc trajectories are used. The obstacle

62

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

dynamics are of the form ẋ
o
= f (w, t), with obstacle state xo = (xo, yo), and

with the velocity, w a discrete random variable that takes on values in W with

probability distribution p(w). A discrete random variable is considered here for

computational simplicity, although a continuous random variable could be intro-

duced. The discretized obstacle dynamics (via an Euler approximation with time

step ∆) are

xo
n+1 = xo

n + ∆wn+1

yo
n+1 = αxo

n+1

(4.1)

for straight-line movement, with speed w ∈ W and slope α ∈ R, and

xo
n+1 = xo

n + ∆r (cos(wn+1(n + 1))− cos(wn+1n))

yo
n+1 = yo

n + ∆r (sin(wn+1(n + 1))− sin(wn+1n))
(4.2)

for constant-arc movement, with angular speed w ∈ W .

Relative robot-obstacle dynamics

A two-dimensional point-mass model for the robot is presumed. The robot has

state xr = (xr, yr) and dynamics in Cartesian coordinates

ẋr = ux

ẏr = uy

(4.3)

with two-dimensional control input u = (ux , uy) that is the velocity of the robot in

both directions. While the obstacle is not trying to actively collide with the robot,

its dynamics (4.1), (4.2) contain a stochastic component, which can be considered a

disturbance that affects the robot’s behavior. Discretizing the dynamics (4.3) using

an Euler approximation with time step ∆ results in

xr
n+1 = xr

n + ∆ · u. (4.4)

63

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

A collision between the robot and the obstacle occurs when |xr
n − xo

n| ≤ ǫ for

some n and ǫ small. A relative coordinate space is constructed such that it is fixed

to the obstacle, with the relative state defined as x̃ = xr − xo. Hence the dynamics

of the robot relative to the obstacle are

x̃n+1 = x̃n + ∆un − ∆ f (wn, tn) (4.5)

with f (·) as in (4.1) and (4.2), and a collision is defined as

|x̃n| ≤ ǫ. (4.6)

Using Equation (4.5), a dynamical system is defined with state x̃ ∈ X , control

input u ∈ U that is bounded, and stochastic disturbance w. Because x̃n+1 is a

function of a random variable, it is also a random variable. Its transitions are

governed by a stochastic transition kernel, τ(x̃n+1 | x̃n, un, n), that represents the

probability distribution of x̃n+1 conditioned on the known values x̃n, un and time

step n.

Roadmap Construction

The proposed method combines SR sets with roadmap base techniques. Here

Uniform PRM [51], and cell decompotion [59] are used to construct the underlying

roadmap. Chapter 2 discusses these methods in more detail.

4.1.2 Methods

In this section, the novel methods for integrating SR sets with roadmap path ex-

traction are presented. First, the SR problem for collision avoidance with the

straight-line and constant-arc dynamic obstacles is formulated. Then, the method

for using SR to help build roadmaps that select a path that avoids multiple moving

obstacles is shown.

64

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

xr

y
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) SR set for arc obstacle.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

xr

y
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SR set for line obstacle.

0 2 4 6 8 10
0

2

4

6

8

10

X

Y

0

0.2

0.4

0.6

0.8

1

(c) Roadmap with edges weighted by SR sets

Figure 4.1: This figure shows how the SR sets for constant-arc (a) and straight-line (b)
obstacles are incorporation into a roadmap (c). (a) Stochastic reachable set that shows
the likelihood of collision between the robot and an arc obstacle (in relative coordinates).
(b) Stochastic reachable set for a straight-line obstacle with α = 1. (c) A grid based
roadmap (in Cartesian coordinates) with likelihood of collision with an obstacle indicated
by edge color. More redish color indicates a higher probability of collision The yellow
circle (square) shows the line (arc) obstacle locations.

65

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.1.3 SR for Collision Avoidance

The SR problem can be formulated in the context of collision avoidance, where the

probability of avoiding collisions within some finite time horizon is determined.

The set K is defined as the set of states in which a collision is said to occur (4.6). To

avoid collision with the obstacle, the robot should remain within K, the comple-

ment of K. The probability that the robot will remain within K over N time steps,

with initial relative position x̃0, is given by

Au,N
x̃0

(K) = P [x̃0, . . . , x̃N ∈ K | x̃0, u] (4.7)

with P denoting probability and input sequence

u = [u0, u1, · · · , uN−1]
T.

Since P[x ∈ K] = E[1K(x)], with E denoting expected value and 1K(x) de-

noting the indicator function defined as 1K(x) = 1 for x ∈ K, and 0 otherwise,

Equation (4.7) can be rewritten as (see [1])

Au,N
x̃0

(K) = E

[

N

∏
n=0

1K(x̃n) | x̃0, u

]

, (4.8)

since ∏
N
n=0 1K(x̃n) = 1 if x̃0, . . . , x̃N ∈ K, and 0 otherwise.

Finally, instead of assuming a predetermined set of control inputs u, a state-

feedback control input is constructed to maximize the likelihood of avoiding col-

lision and to facilitate real-time control selection for motion planning. Equation

(4.8) can then be reformulated as a stochastic optimal control problem.

AN
x̃0
(K) = max

π∈Π
E

[

N

∏
n=0

1K(x̃n) | x̃0

]

(4.9)

Hence, we define a policy π = (π0, . . . , πN−1) with πn : X → U and optimize

Equation (4.9) over all possible policies Π of this form. The resulting optimal

policy π∗ provides an upper bound on the probability of avoiding collision.

66

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

A dynamic programming recursion [10] is implemented, first introduced for

the reachability problem in [1], to estimate the collision avoidance probability.

VN(x̃) = 1K(x̃) (4.10)

Vn(x̃) = 1K(x̃)
∫

X
Vn+1(x̃

′)τ(x̃′ | x̃, u, n) dx̃′ (4.11)

Iterating Equations (4.10), and (4.11) backwards, the value function at time 0 pro-

vides the probability of avoiding collision,

V0(x̃0) = AN
x̃0
(K). (4.12)

The optimal control is determined by evaluating

V∗n (x̃) = sup
u∈U

{

1K(x̃)
∫

X
V∗n+1(x̃

′)τ(x̃′ | x̃, u, n) dx̃′
}

(4.13)

which also returns the optimal policy π∗, with

π∗n(x̃) = un = arg sup
u∈U

V∗n (x̃). (4.14)

Equation (4.13) can be simplified to

V∗n (x̃) = max
u∈U

{

1K(x̃) ∑
w∈W

V∗n+1 (x̃ + ∆u−

∆ f (w, n)) p(w)

}

. (4.15)

Figure 4.1a shows the SR set for a constant-arc obstacle with radius r = 5, and

probabilities p(w) = {0.2, 0.2, 0.3, 0.3} associated with angular speeds w ∈ W =
{

.4
2π , .6

2π , .9
2π , 1.2

2π

}

. The slight curvature seen in the probability peaks corresponds

to the obstacle trajectory. Similarly, Figure 4.1b shows the SR set for a straight-line

obstacle with probabilities p(w) = {0.3, 0.4, 0.3} associated with speeds w ∈ W =

{0.5, 0.7, 0.9}, and slope α = −1. The peaks show higher probability of collision

67

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

with the obstacle when the robot is in line with the obstacle trajectory. Intuitively,

the closer the robot is to the obstacle, the higher the probability of collision.

On a single core of an Intel 3.40 GHz CORE i7-2600 CPU with 8 GB of RAM,

Figure 4.1a took 1727.25 seconds to compute, over a horizon of N = 30 steps and

a time step of length ∆ = 1. Figure 4.1b took 1751.87 seconds to compute, again

with N = 30 and ∆ = 1. In both cases, convergence is observed in the stochastic

reachable sets for N > 5 since the robot and obstacle traveled sufficiently far apart

within this time frame.

With a single obstacle, V∗0 (x̃0) in Equation (4.15) is the maximum probability

of avoiding a collision, and hence a tight upper bound. For two obstacles with

separately calculated avoidance probabilities V∗,10 (x̃1
0), V∗,20 (x̃2

0) (with relative po-

sition x̃i
0 with respect to obstacle i), the probability of avoiding collision with both

obstacles is

P[B1 ∩ B2] = P[B1] + P[B2]−P[B1 ∪ B2]

≤ min{P[B1], P[B2]}
P[B1 ∩ B2] ≤ min{V∗,10 (x̃1

0), V∗,20 (x̃2
0)} (4.16)

where Bi corresponds to the event that the robot avoids collision with obstacle

i. An upper bound on the collision avoidance probability is obtained for two

obstacles by taking the minimum of the individual avoidance probabilities. The

same holds similarly for m obstacles. The minimum of the m individual avoidance

probabilities provides an upper bound on the probability of avoiding collision

with all m obstacles.

Lastly, note that because the collision avoidance probabilities are used to de-

termine routing choices on a roadmap, the true probabilities are of less interest

than the relative probabilities. By generating an upper bound on the probabil-

ity of avoiding collision with several moving obstacles, the robot can identify

68

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

and travel along the path with the greatest upper bound. Furthermore, in the

case where avoiding the nearest obstacle is not interfered with by other obstacles,

then this upper bound is tight. Thus, the robot can accurately identify the safest

route through the roadmap. However, if the obstacle density is too high, then this

bound is not tight. This is due to only calculating the SR set for the robot and a

single obstacle, but planning in an environment with multiple obstacles.

SR Query

SR sets (4.12) for straight-line and constant-arc obstacles are now integrated into

a pre-computed roadmap using techniques developed for static obstacles [59, 51].

Given a roadmap and an SR set for each moving obstacle, paths that are likely to

be free are identified.

Algorithm 4.1 describes integration of the stochastic reachable sets into an ex-

isting roadmap via the roadmap query process. Although the SR calculation is

performed offline, Algorithm 4.1 is intended to run in real time, using the infor-

mation currently available to the robot (i.e. obstacle locations). Paths are extracted

using Dijkstra’s algorithm [23]. However, to find paths of combined shortest dis-

tance and lowest probability of collision, the SR computation must be integrated

into the roadmap edge weights. First, since the robot knows the location of each

obstacle at the current time, the positions of the obstacles are updated to reflect

their current locations. Second, each vertex in the roadmap is considered to be a

waypoint. Updates of the roadmap weights are then performed at waypoints (see

Algorithm 4.1, line 7). Updates consist of reweighting all edges (line 9), finding

the path of lowest edge weight (line 11), querying the SR optimal control Equa-

tion (4.14) to determine the robot’s speed and resulting trajectory (lines 13 and

14), and traversing along that edge with the determined robot speed for the al-

lotted time (line 15). If the robot is not at a waypoint, then it continues along the

69

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

predetermined roadmap edge.

Two elements that are critical to the success of Algorithm 4.1 and atypical for

probabilistic road maps are 1) updating of the obstacles, and 2) the subsequent

effect on edge weights.

Regarding the first element, the likelihood of avoiding collision Equation (4.12)

and the optimal control Equation (4.14) are evaluated over a discretized set of

states, and are stored for use during run time for path planning. The algorithm

propagates the location of the obstacles according to each obstacle’s stochastic

dynamics (4.1), (4.2). The stochastically determined obstacle speeds are chosen

as per the randomization in Algorithm 4.2. The relative states are computed for

every robot-obstacle pair in the environment.

Regarding the second element, edges define a transition between two config-

urations (see Section 4.1.1). These edges can be subdivided (often uniformly)

into sets of discrete points defining the transition between configurations in the

roadmap, and each point corresponds to a new intermediate configuration. The

weight for a single edge is updated as in Algorithm 4.3.

For each intermediate configuration associated with an edge, the relative dis-

tance to each obstacle is calculated and the probability of collision avoidance at the

current relative distance is queried for each obstacle. The minimum of all avoid-

ance probabilities is taken as the weight for that configuration. This calculation

is fast in comparison to standard collision detection methods whose computa-

tional complexity is defined by the number of polygons in the planning problem.

The assigned edge weight is then the lowest probability of collision avoidance

amongst all intermediate configurations for that edge, inverted for use in Dijk-

stra’s algorithm (which finds minimum cost paths for graphs with nonnegative

edge weights). Note that it is presumed that the time horizon N and time step ∆

70

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

in Algorithm 4.1 are the same as those in the reachability calculations.

4.1.4 Experiments

The method is evaluated via successful navigation in environments with sev-

eral moving obstacles. Successful navigation is defined as the ability to find a

path from a start state to goal state, without any collisions and within a specified

time horizon. The stochastic reachable sets were computed in Matlab, and the

SR Query was added to the Parasol Motion Planning Library (PMPL) from Texas

A&M University. PMPL was also used to generate the initial roadmaps. Experi-

ments were run on a single core of an Intel 3.40 GHz CORE i7-2600 CPU with 8

GB of RAM.

SR Query is compared to a Lazy-based method (Lazy) for moving obstacle

avoidance [46]. The Lazy method updates the roadmap as obstacles move, by

invalidating edges and vertices that are found to be in collision with the new po-

sition of the moving obstacles. This comparison shows the accuracy gained by

considering the probabilities of collision instead of just the obstacles’ current loca-

tions.

Furthermore, the flexibility of the method is shown by running experiments

with vertex generation done with a uniform random distribution (PRM) [51] and

with a regular cell decomposition (Grid) [59]. While cell decompositions can be

ideal solutions, they are often infeasible for planning problems with several or

complex static obstacles or of high dimensionality. In those cases, PRMs are of-

ten preferred. Since both types of roadmaps are treated the same way by the

algorithm, the impact of the different roadmap toplogies is investigated. In the

Grid roadmaps, every vertex is connected with up to 8 adjacent neighbors. PRM

roadmaps are constructed with uniform random sampling and each vertex is con-

71

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

100 300 500
0

0.2

0.4

0.6

0.8

1

Roadmap Size

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss

PRM SR Query
PRM Lazy
Grid SR Query
Grid Lazy

Figure 4.2: Comparison of SR Query and Lazy methods for the two dynamic obstacle
experiment. Averaged likelihood of successfully traversing a collision-free path within the
allotted time horizon for a given roadmap size, for Grid-based maps and PRM roadmaps.
Note: Grid runs do not have error bars since there is only a single cell decomposition for
a given roadmap size.

nected to its five closest neighbors.

Two Moving Obstacles

In this experiment, the robot navigates across a planning space while avoiding

two dynamic obstacles: one follows straight-line dynamics (4.1) and the other fol-

lows constant-arc dynamics (4.2) from initial conditions xo
l (0), xo

a(0). The robot’s

start state and goal state are at the opposite corners of a 20× 20 planning space

(Figure 4.3a). The obstacle trajectories are chosen to generate sufficient opportu-

nities for conflict with the robot, and obstacles may exit the planning space.

72

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

−10 −5 0 5 10 15
−2

0

2

4

6

8

10

12

x o
l (0)

5.0

10.0

15.0

20.0

x o
a(0)

5.0

10.015.0

20.0

x r(0)

x r(T)

5.0

10.0

15.0

20.0

5.0

10.0

15.0
20.0

X

Y

SR Query
Lazy
Line Obstacle
Arc Obstacle

(a) Similar paths generated by SR Query and Lazy
methods for two dynamic obstacle scenario.

−10 −5 0 5 10 15
−2

0

2

4

6

8

10

12

x o
l (0)

5.0

10.0

15.0

20.0

25.0

x o
a(0)

5.0

10.0

15.0

20.0

25.0

x r(0)

x r(T)

5.0 10.0
15.0

20.0

25.0

5.0

10.0 15.0

20.0

X

Y

SR Query
Lazy
Line Obstacle
Arc Obstacle

(b) Different paths generated by SR Query and Lazy
methods for two dynamic obstacle scenario.

Figure 4.3: Sample trajectories found by SR Query (black line) and Lazy (blue line) meth-
ods on a PRM roadmap with two obstacles (red lines) over T = N∆ = 30 seconds. (a)
Both methods found qualitatively similar paths, due to little obstacle interference. (b) SR
Query and Lazy found very different paths, likely due to a near miss with one of the
dynamic obstacles (yellow circle).

In order to evaluate the performance of the algorithm, roadmaps of |N | = 100,

300, and 500 vertices are constructed using the standard PRM method. For each

73

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

map size, 10 random seeds were used to create 10 different PRM roadmaps. Grid

roadmaps of size ⌊
√

|N |⌋2 vertices were also produced, where N is the number

of vertices in the corresponding PRM roadmap, to account for their square and

unformly spaced vertex structure. One hundred obstacle pair trajectories were

simulated, resulting in 10× 100 = 1, 000 simulations for each map size. The suc-

cess of the algorithm was measured by collision-free path completion (the robot

reaching the target) within the given time horizon. To be conservative, instances

in which the robot did not find a collision-free path within the allotted time hori-

zon were declared as unsuccessful. However, time horizons are only applicable

for the SR Query method since the Lazy method is allowed to run until a path is

found, no path exists, or a collision occurs. Each simulation was run for T = 30

seconds with a sampling interval of ∆ = 1 seconds (N = 30 time steps).

Figure 4.2 shows the effect of map size as well as the relative effectiveness of

the two methods on PRM and Grid roadmaps in terms of the mean percentage

of success. For the PRM roadmaps, SR Query was able to find successful paths

88% to 91% of the time, for roadmaps with 100 and 500 vertices, respectively.

The error bars show how the randomized roadmap structures impact the success

rate. In comparison, the Lazy method found successful paths 63% to 75% of the

time. Unsuccessful runs of Lazy were due either to pruned vertices and edges

that made traversal to the goal impossible, or direct collision with a moving ob-

stacle.Error bars are not included for Grid due to the static map structure of a cell

decomposition. In comparing Grid-based maps to PRM roadmaps, one finds that

the Grid-based maps produce better results for SR Query with larger map sizes,

but poorer results for Lazy (for all map sizes). This is consistent with evidence

that Grids perform as well or better than randomized roadmaps in environments

without static obstacles [59]. In all cases (Grid-based or PRM roadmaps), the SR

Query method performs between 15% and 45% better than the Lazy method.

74

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Furthermore, the paths selected by the two algorithms were examined. In Fig-

ure 4.3a, the path generated via the SR Query method (black line) is fairly similar

to the path generated via the Lazy method. The moving obstacles are shown in

red, and time is indicated as labeled waypoints along each path. Both Lazy and SR

Query methods follow the same path initially, but at around t = 10 seconds, the

SR Query method identifies an incoming obstacle and moves the robot away from

the obstacle. However, the Lazy method does not anticipate a possible collision,

and so it does not change its path. In this case, the Lazy method allows the robot

to barely pass in front of the obstacle. A similar near collision for the Lazy method

is shown in Figure 4.3b. In this example, the paths for SR Query and Lazy are the

same for the first 10 seconds. Again, SR Query anticipates an incoming obstacle

and changes its path to avert a possible collision. The Lazy method generates a

path for the robot that passes in front of the obstacle with very little clearance.

This near miss is highlighted in Figure 4.3b inside the yellow circle.

75

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.1 SR Query

Input: Obstacles O, Roadmap, Max time T = N · ∆
Output: boolean Success

1: nextNode = start

2: previousNode = start

3: for tn = 0; tn < T; n = n + 1 do

4: for Obstacle o ∈ O do

5: updateObstacle(o)

6: end for

7: if at(robot, nextNode) then

8: for each edge e ∈ Roadmap do

9: EdgeWeight = updateEdgeWeights(e, O)

10: end for

11: Path = Dijkstras(previousNode, GoalNode)

12: nextNode = Path.next

13: xr
n+1 = Path.next.getXVelocity()

14: yr
n+1 = Path.next.getYVelocity()

15: end if

16: xr
n+1 = interp(previousNode, nextNode, tn)

17: end for

76

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.2 updateObstacle

Input: time tn = n · ∆, obstacle o, velocities w ∈ W = {w1, w2, ..., wnW}, probabil-

ities p(w)

1: if mod(tn, 1) == 0 then

2: s = rand(0, 1)

3: for index = 0; index < nW ; index++ do

4: if s ≤ p(w)[index] then

5: o.w = w[index]

6: break

7: end if

8: end for

9: end if

10: xo
n+1 = xo

n + ∆ · f (o.w, tn)

77

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.3 updateEdgeWeight

Input: Edge e, Obstacles O

1: EdgeWeight = 0

2: for Configuration c ∈ e do

3: PROB = 1

4: for Obstacle o ∈ O do

5: x̃ = c− o

6: PROB = min{PROB, o.V∗0 (x̃)}
7: end for

8: if PROB < EdgeWeight then

9: EdgeWeight = PROB

10: end if

11: end for

12: e.Weight = 1
EdgeWeight

78

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Fifty Moving Obstacles

In this experiment, a robot navigates across a 60 × 60 planning space while

avoiding 50 dynamic obstacles, Oi, i ∈ {1, · · · , 50}. Twenty-five of the ob-

stacles have straight-line dynamics (4.1), five each traveling along lines with

α ∈ {−1.5,−1,−0.5,+0.5, 1.0}, respectively. The other 25 dynamic obstacles have

constant-arc dynamics (4.2), 10 each with radius r = 50, 10 with r = 40, and

five with r = 30. The speeds and associated probabilities for each obstacle are as

described in Section 4.1.3.

Ten of the three roadmap sizes were constructed, as in Section 4.1.4. Again 100

obstacle trajectories were generated, resulting in 1000 total simulations for each

map size. Since obtaining a feasible path is more difficult with so many more

obstacles, the time horizon was increased to T = 100 seconds.

Figure 4.4 shows the effect of map size as well as the average success rate of

the two methods on PRM and Grid roadmaps. As this is a significantly harder

problem, the percentages of success are lower as compared to the two obstacle

scenario in Figure 4.2. However, in all cases the SR Query method is at least 20%

better than the Lazy method. Interestingly, the Grid-based solution is significantly

more successful than the PRM-based method. This is likely due to the regular

spacing of the roadmap vertices, which prevents long edges and allows the algo-

rithm to make quicker replanning decisions. However, this advantage would not

likely exist in more complex environments. As in Section 4.1.4, the error bars in

Figure 4.4 indicate the significant impact of randomization in the PRM roadmap.

The 50 obstacle test in Figure 4.4 has lower success rates than the two obsta-

cle test in Figure 4.2 because of two factors. First, finding a collision-free path

is significantly harder with 50 obstacles as opposed to merely two. Second, the

roadmap density, defined as the number of vertices per area of the planning space,

79

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

100 300 500
0

0.2

0.4

0.6

0.8

1

Roadmap Size

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss

PRM SR Query
PRM Lazy
Grid SR Query
Grid Lazy

Figure 4.4: Comparison of SR Query and Lazy methods for the 50 dynamic obstacle
experiment. Averaged likelihood of successfully traversing a collision-free path within the
allotted time horizon for a given roadmap size, for Grid-based maps and PRM roadmaps.
Note: Grid runs do not have error bars since there is only a single cell decomposition for
a given roadmap size.

is lower with 50 obstacles than with two obstacles. Since the roadmap sizes are

the same, but the area increases from 20× 20 to 60× 60, the 50 obstacle tests have

lower roadmap density. Lower density roadmaps force the robot to travel greater

distances before path replanning (which occurs in Algorithm 4.1 at roadmap ver-

tices), and consequently should have more collisions. However, relatively high

success rates are evident for the SR Query methods, especially via Grid methods,

likely due to the even distribution of vertices that allow for consistent replanning.

Figures 4.5a and 4.5b show two sample trajectories, one in which the SR Query

method significantly outperforms the Lazy method, and another in which the two

80

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

methods behave comparably.

4.1.5 Conclusions

Here stochastic reachability was successfully incorporated into motion planning

roadmaps, in order to develop a novel planning algorithm that accounts for

stochastically moving obstacles. SR sets for individual obstacles wre combined

into a single planning solution, generating an upper bound on the total avoidance

probability with several obstacles. The method was demonstrated on an exam-

ple with 50 obstacles and on two methods of roadmap construction. By combin-

ing roadmaps with stochastic reachability, the algorithm significantly outperforms

another existing roadmap-based method for moving obstacles.

81

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

x r(T)

20.0

40.0

60.0

80.0

100.0

X

Y

60.0

20.0

40.0

80.0

x r(0)

SR Query
Lazy
Obstacles

(a) Fifty dynamic obstacles scenario in which Lazy
method results in collision, SR Query method does
not.

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

x r(0)

x r(T)

20.0

40.0
60.0

80.0

X

Y

20.0
40.0

60.0

80.0 100.0
120.0

140.0

SR Query
Lazy
Obstacles

(b) Fifty dynamic obstacle scenario in which both
methods successfully find collision-free paths.

Figure 4.5: Sample trajectories found by SR Query (black line) and Lazy (blue line)
methods on a PRM roadmap with 50 obstacles shown at 80s into the simulation
(red squares). Total simulation time T = N∆ = 100s. (a) The Lazy method re-
sults in collision, but SR Query method successfully reaches the goal state without
collision. (b) Sample trajectories (as in (a)), in which similar successful paths are
found via both methods. Movies of the 50 moving obstacle simulations are available at
https:// www. cs. unm. edu/amprg/Research/DO/

82

https://www.cs.unm.edu/amprg/Research/DO/

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.2 APF-SR

Navigation in dynamic, uncertain environments is a difficult yet ubiquitous prob-

lem in transportation systems (e.g., autonomous driving, shipping lanes near

ports, air traffic management) and distributed robotic systems (vehicle swarms

in air, ground, or water environments), with application to problems in search

and rescue, coordinated movement, distributed monitoring and surveillance, and

others. The problem of motion planning is considered in environments with

hundreds of stochastic, dynamic obstacles, in which the obstacles can arbitrar-

ily switch between trajectories that follow a constant radius arc or a straight line,

with stochastic angular or translational speeds, respectively. This kind of motion

is a realistic abstraction of dynamics seen in air traffic control systems, highway

and other ground transportation systems, and others.

While control theoretic methods have been developed to provide assurances

of performance despite stochasticity in low dimensional systems, they are com-

putationally infeasible when the environment has tens to hundreds of dynamic

obstacles. Stochastic reachability analysis provides offline verification of dynami-

cal systems to assess whether the state of the system will, with a certain likelihood,

remain within a desired subset of the state-space for some finite time, or avoid an

undesired subset of the state-space [1]. To solve problems in collision avoidance,

the region in the relative state-space which constitutes collision is defined as the

set of states the system should avoid [98, 49]. Unfortunately, the computation time

for stochastic reachable sets (SR sets) is exponential in the dimension of the contin-

uous state, hence assessment of collision probabilities with many simultaneously

moving obstacles is not feasible.

This section proposes a solution that combines ad-hoc and formal methods, to

incorporate the effect of likely obstacle motion into the desired path, and exploit

83

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

computationally efficient paradigms that can be used in real time. In brief, this

method weights an artificial potential field (APF) with stochastic reachable (SR)

sets, computed pairwise between the robot and each stochastic, dynamic obstacle.

Computational efficiency is achieved by pre-computing the SR sets offline for a

finite set of obstacle types, then querying those sets at run-time to construct a

repulsive potential field around each obstacle.

Preliminary versions of this method were implemented via roadmap meth-

ods for dynamic path queries (SR-Query) [64] and via APF methods for stochastic

obstacles that followed simple line or arc trajectories [17] (but did not switch be-

tween these trajectories). SR-Query was more successful in identifying collision-

free paths in environments with 50 moving obstacles than a roadmap-based ap-

proach that simply pruned invalid edges during dynamic path queries [46], but

was susceptible to fast unseen moving obstacles, due to limited reactivity and re-

quired navigation on the roadmap edges. In [17], the advantages of APF methods

over roadmap-based methods in environments with up to 300 stochastic, dynamic

obstacles were demonstrated. The performance of incorporating SR sets with APF

methods, as opposed to ad-hoc methods [57, 108, 32] for computing repulsion

fields was also evaluated.

In this section, the main contributions are to a) extend APF-SR to accommodate

stochastic hybrid obstacles, which are far more realistic and capture behavior that is much

more representative of real-world dynamic obstacles, b) present a thorough parameter ex-

ploration of APF-SR and comparative analysis between APF-SR and other methods, and

c) demonstrate this method in environments with up to 900 obstacles (approximately an

order of magnitude more obstacles than considered in previous implementations).

Section 4.3 describes the problem formulation, modeling, and stochastic reach-

ability analysis. Section 4.4 presents APF-SR. In Section 4.5, an extensive parame-

ter evaluation is conduct, and APF-SR is shown to be more robust than the related

84

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Gaussian method. A comparison of success rate, path length and cause of failure

with a holonomic and a unicycle robot in environments with up to 900 obstacles

is performed. Then APF-SR is shown to outperform the Gaussian based compar-

ison method by up to 60% in the holonomic case and up to 20% in the unicycle

case with 900 obstacles. Lastly, Section 4.6 provides conclusions and directions for

future work.

4.3 Modeling and Stochastic Reachability Analysis

4.3.1 Robot Dynamics

Two models for the robot are considered: 1) a holonomic point-mass model and

2) a non-holonomic unicycle model, with state xr = [xr, yr, θr] ∈ R
3 representing

its position and heading angle. The holonomic model

ẋr = ux

ẏr = uy

θ̇r = 0

(4.17)

has velocity control input u = [ux, uy] ∈ R
2. The non-holonomic unicycle model

ẋr = us cos θr

ẏr = us sin θr

θ̇r = uw

(4.18)

has control input u = [us, uw] ∈ R
2, such that us is the speed and uw is the an-

gular velocity of the unicycle. Discretizing the robot dynamics Equations (4.17)

and (4.18) using an Euler approximation with time step ∆ results in xr
n+1 =

85

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

xr
n + ∆ f r(un, θr

n), with

f r(un, θr
n) =

ux
n

u
y
n

0

(4.19)

for the holonomic robot and

f r(un, θr
n) =

us
n cos θr

n

us
n sin θr

n

uw
n

(4.20)

for the unicycle robot.

4.3.2 Obstacle Dynamics

Each obstacle is represented as a point mass with state xo = [xo, yo, θo] ∈ R
3,

that follows either a straight-line or constant-arc trajectory with stochastic velocity

wl or stochastic angular velocity wa, respectively. The random variables wl and

ws take values in W l and W a, respectively, with probability distributions pl(w)

and ps(w). The obstacle dynamics discretized with time step ∆ are xo
n+1 = xo

n +

∆ f o(wn, θo
n), with

f o(wn, θo
n) =

wn

αwn

0

(4.21)

for straight-line motion, with speed w ∈ W and line slope α ∈ R determined by

the heading angle θo
n (i.e. α = tan θo

0), and

f o(wn, θo
n) =

rwn cos θo
n

rwn sin θo
n

wn

(4.22)

86

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Heading = 0
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Heading = (13π) / 40
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Heading = (25π) / 40
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Heading = (37π) / 40
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Figure 4.6: Stochastic reachable set for relative robot-obstacle dynamics (4.25) with
Markov switching (4.23), (4.26) in arc mode. Since the SR set is 3D, this plot visualizes
the likelihood of safety with respect to relative position (x̃, ỹ) for four selected values of
relative heading θ̃.

for constant-arc movement, with angular speed w ∈ W and radius r ∈ R
+.

The obstacles are allowed to switch between a straight line trajectory and one

of three arc trajectories (Figure 4.6 shows the SR set for an arc). Hence at any in-

stant, the obstacle may take on continuous dynamics associated with one of four

modes,Q = {line, arc1, arc2, arc3}, with arc trajectories distinguished correspond-

ingly by different radii 0 < r1 < r2 < r3. Further, continuity of the heading angle

is presumed, such that the angle α of the line trajectory is completely specified by

the obstacle heading at the previous instant, upon exiting an arc trajectory.

87

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

The switching dynamics are described by a stochastic process, such that the

duration of time spent in a given mode is modeled similarly to an exponential

distribution. This work presumes that the likelihood of switching from mode qi

to mode qj, qi, qj ∈ Q is given by

pQ(line, arci) = 1
3

(

1− βline
n

)

∀i ∈ {1, 2, 3}
pQ(line, line) = βline

n

pQ(arci, line) = 1− βarc
n ∀i ∈ {1, 2, 3}

pQ(arci, arci) = βarc
n ∀i ∈ {1, 2, 3}

pQ(arci, arcj) = 0 ∀i, j ∈ {1, 2, 3}

(4.23)

with βline
n = e−

∆(n−ns)
S (1−Rline), βarc

n = e−
∆(n−ns)

S (1−Rarc), ∆ · ns the time that the obsta-

cle last switched, S the switching–time–parameter, Rline the fraction of obstacles

in the game space that are following line trajectories, and Rarc = 1− Rline. The

switching–time–parameter allows for the tuning of the switching rates of obsta-

cles, such that lower values of S increase the switching rate and higher values of

S decrease the switching rate. For example, a switching–time–parameter set to

a value much greater than the simulation running time will produce a negligi-

bly small probability of an obstacle switching. This process assures that excessive

switching is unlikely, and also that the total number of obstacles in the game space

following arc and line trajectories remains approximately constant.

4.3.3 Relative robot-obstacle dynamics

The relative dynamics between the robot and a single obstacle is modeled by ex-

amining the motion of the obstacle with respect to a coordinate frame affixed to

88

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

the robot, via standard kinematic analysis. The relative state is defined as:

x̃ =

RT(θr)

xo − xr

yo − yr

θo − θr

∈ R
3 (4.24)

in terms of a standard rotation matrix R(·), with dynamics

x̃n+1 = x̃n + ∆ ·

RT(θr) 01×2

02×1 1

 (f r(un, θr
n)− f o(wn, θo

n))

= x̃n + ∆ f̃ (un, wn, θr
n, θo

n)

(4.25)

For the purpose of computing the SR sets (but not in simulation), the Poisson-

like distribution (4.23) is approximated by a Markov process by presuming con-

stant values for

βline
n = βline

βarc
n = βarc

(4.26)

This approximation is computed empirically for a given Poisson-like distribu-

tion by finding the average switch rate per ∆ over 10,000 trials. The approx-

imation simplifies the dynamics, and enables us to express the resulting sys-

tem as a discrete-time stochastic hybrid system (DTSHS), described by the tuple

H = (X̃ ,Q,U , Tx, Tq), with

• X̃ ⊆ R
3 the set of continuous states representing relative coordinates

• Q = {line, arc1, arc2, arc3} a finite set of discrete modes, with S = X̃ × Q
the hybrid state space

• U ⊆ R
2 a compact Borel space which contains all possible control inputs

• Tx : R
3 × Q × S × U → [0, 1] a stochastic transition kernel that as-

signs a probability distribution to x̃n+1 conditioned on x̃n, qn+1, and un,

Tx(x̃n+1|x̃n, qn+1, un) for all n

89

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

• Tq : Q × Q → [0, 1] a discrete transition kernel that assigns a probability

distribution to qn+1 conditioned on qn, Tq(qn+1|qn).

The sets W l and W s are each assumed to be finite, and therefore can define the

transition kernel Tx as follows.

Tx(x̃n+1|x̃n, qn+1, un) =

pl(w∗), for qn+1 = line,

w∗ = f̃−1(un, x̃n+1− x̃n, θr
n, θo

n)

pa(w∗), for qn+1 = arci,

∀ i, w∗ = f̃−1(un, x̃n+1− x̃n, θr
n, θo

n)

(4.27)

If w∗, the unique solution to Equation (4.25) for a given x̃n+1, x̃n, and un, is not

a member of W l or W a, the probability of obtaining x̃n+1 is zero. The transition

kernel for the mode is given by pQ, except that βline
n and βarc

n are replaced by βline

and βarc from Equation (4.26), respectively. For ease of notation, the continuous

and discrete state transition kernels are combined, such that

τ(x̃n+1, qn+1|x̃n, qn, un) = Tx(x̃n+1|x̃n, un, qn+1)

× Tq(qn+1|qn) (4.28)

4.3.4 Stochastic Reachable Sets for Collision Avoidance

It is presumed a collision occurs between the robot and a single obstacle whenever

‖xr
n − xo

n‖1 ≤ ǫ (4.29)

for some n and some distance ǫ, and define the avoid set, K, as the set of states in

which a collision is said to occur (4.29).

90

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Collision avoidance probabilities are generated through stochastic reachability

analysis. To avoid collision with the obstacle, the robot should remain within

K, the complement of K. The probability that the robot remains within K over

N time steps, with initial relative position x̃0, can be calculated using dynamic

programming [10], introduced for stochastic reachable set generation in [1]. To

compute the SR set, a value function is iterated backwards in time from n = N to

time n = 0,

V∗N(x̃, q) = 1K(x̃) (4.30)

V∗n (x̃, q) = max
u∈U

1K(x̃)∑
Q

∫

X
V∗n+1(x̃

′, q′)τ(x̃′, q′ | x̃, u, q) dx̃′ (4.31)

in which an indicator function 1K(x) is equal to 1 if x ∈ K and equal to 0 otherwise.

The value function V∗0 (x̃0, q0) at time n = 0 describes the probability of avoiding

collision over N time steps when starting in some initial state x̃0 and initial mode

q0.

Note that Equations (4.30) - (4.31) generally do not have a closed form expres-

sion, and must be evaluated manually for all possible (x̃n, qn) ∈ X̃ × Q. For

X̃ ⊆ R
3, this requires a discretization step to only evaluate Equations (4.30) -

(4.31) for a finite number of (x̃n, qn), which results in an approximate solution.

This work does not consider any errors in the resulting SR set because of this ap-

proximation, or the approximation Equation (4.26), and it treats V∗0 (x̃0, q0) as the

actual probability of collision.

Figure 4.6 depicts V∗0 (x̃0, arc), the SR set for an obstacle initially in constant-

arc mode, with a unicycle robot. Figures 4.7a and 4.7c depict V∗0 (x̃0, line), the SR

set for an obstacle initially in straight-line mode with a point-mass and unicycle

robot, respectively. The heat maps show a higher probability of collision when the

robot is in line with the obstacle’s trajectory. Intuitively, the closer the robot is to

the obstacle, the higher the probability of collision. On a single core of an Intel

91

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

(a) (b)

(c)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

X

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.7: SR sets for an obstacle initially in line mode; the color represents probability
of collision. (a) Raw SR set with a holonomic robot. (b) Smoothed SR set after convolution
with a Gaussian (σ = 0.15). (c) Raw SR set with the unicycle robot. (d) Smoothed SR set
after convolution with a Gaussian (σ = 0.15).

3.40 GHz CORE i7-2600 CPU with 8 GB of RAM, the SR set in Figure 4.7a took

1727.25 seconds to compute, over a horizon of N = 30 steps, with time step of

length ∆ = 1. Convergence is observed in the stochastic reachable sets for N > 5

since the robot and obstacle traveled sufficiently far apart within this time frame.

When used in environments with a single obstacle, V∗0 (x̃0, q0), Equation (4.30),

92

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

is the maximum probability of avoiding a collision, and a tight upper bound. To

consider environments with multiple obstacles, let Bi correspond to the event that

the robot avoids collision with obstacle i ∈ {1, · · · , M}. This work presumes

that collision avoidance probabilities are calculated separately for each obstacle

V∗,10 (x̃1
0, q1

0), V∗,20 (x̃2
0, q2

0), . . ., V∗,M0 (x̃M
0 , qM

0) (with relative position x̃i
0 with respect

to obstacle i in mode qi
0). Then the probability of avoiding collision with all obsta-

cles is

P[B1 ∩ B2 ∩ · · · ∩ BM] ≤
min{V∗,10 (x̃1

0, q1
0), V∗,20 (x̃2

0, q2
0), · · · , V∗,M0 (x̃M

0 , qM
0)}

(4.32)

Hence by computing the minimum value over all probabilities of collision avoid-

ance with each obstacle individually, an upper bound to the total collision avoid-

ance probability is obtained. While this upper bound does not provide a guar-

antee of safety, it can inform which paths are relatively more likely to avoid col-

lision. Since the focus is on finding paths with higher success rates, rather than

theoretically guaranteed collision-free paths, the upper bound Equation (4.32) is

appropriate. Further discussion and the derivation of Equation (4.32) is given in

[64].

4.4 Methods

APF-SR differs from SR-Query in several ways. Primarily, APF-SR uses SR sets

to build a repulsive field while SR-Query directly maps the SR set to a roadmap.

APF-SR then utilizes a traditional APF gradient planning method while SR-Query

uses graph serach for path planning. The commonality between the two methods

is that they both leverage SR set to construct probabilities of collisision with mov-

ing obstacles.

In this section, a novel method for integrating SR sets with APF methods is

93

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

presented. First the SR sets are smoothed, then they are incorporated into the

gradient calculation and finally the robot’s control law is updated based on the

gradient calculation. Note that the SR sets are calculated with a time step of ∆,

however the robot and obstacle states are updated at a time step of δ such that

δ < ∆.

One hurdle in using SR sets to inform the potential field is the possibility of

non-smoothness in the optimal value for Equation (4.31). In general, no guaran-

tees of smoothness are possible. In fact, there is a marked discontinuity in the part

of the SR set corresponding to a robot located just behind the obstacle (Figure 4.7).

Since APF methods use a gradient as a warning that the robot is about to collide

with an obstacle, the SR set is smoothed by convolving the set with a Gaussian,

N (µ = 0, σ2). Figure 4.7 shows the raw SR set for a point-mass and unicycle robot

(4.7a and 4.7c, respectively) as well as the the resulting set after convolution with

a Gaussian (4.7b and 4.7d, respectively). As expected, the discontinuity in Figure

4.7a from 0 to 1 at the obstacle boundary is smoothed in Figure 4.7b.

Algorithm 4.4 calculates the APF gradient by summing the obstacle gradients,

calculated in getAPFGradient (4.6), and the goal–vector (Lines 5-9), which is then

used by calcControl (4.7) to construct the control input u (Line 12). The goal–vector

is a small magnitude vector which always points towards the goal relative to the

robot’s current position. Thus, the APF gradient is the direction the robot should

move in to avoid obstacles and reach the goal. Finally, the control law for the robot

is updated with the control input u (Line 10).

The updateObstacle function (Algorithm 4.5) updates the position of the obsta-

cle at each time step. It first updates the mode of the obstacle, by comparing the

probability of switching from the current mode to another mode (probSwitch(o, t),

which is described by the likelihood function (4.23)) against a randomly generated

number between 0 and 1 (Random.nextRandom(0, 1)). If the probability of switch-

94

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.4 APF-SR

Input: obstacles O with precomputed smoothed SR sets, robot r

1: for t = 0; t < maxTime; t = t + δ do

2: APFvector = (0, 0)

3: for Obstacle o ∈ O do

4: updateObstacle(t,o,o.w,o.p(w))

5: if dist(xo
n, xr

n) < dmin then

6: APFvector = APFvector + o.getAPFGradient(xr
n)

7: end if

8: end for

9: APFvector = APFvector+ goal–vector

10: [u, θ] = calcControl(APFvector)

11: xr
n+1 = xr

n + t · f r(u, θ)

12: end for

ing is greater than the randomly generated number, the mode changes from line

to arc (or arc to line). Second, the function then updates the obstacle position ac-

cording to the appropriate obstacle dynamics (arc or line). The speed w of the

obstacle is sampled according to the distribution p(w) of possible speeds (Lines

2-9), and the obstacle dynamics updated appropriately (Line 13).

The getAPFGradient(xr
n) function, Algorithm 4.6, calculates the APF gradient

for all obstacles near the robot. For every obstacle o, if o is within distance dmin of

the robot, then the method queries the potential field influence of o on the robot.

This gradient is calculated by first finding the smallest neighboring location, pi,j,

in the smoothed SR set. pi,j is the relative coordinate point in the stochastic reach-

ability set, where SR(pi,j) is the value in the stochastic reachability set at point pi,j.

95

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.5 updateObstacle

Input: Time step n, sample interval t. obstacle o, velocities w ∈ W =

{w1, w2, ..., wnW}, probabilities p(w)

1: if mod(n, t/∆) == 0 then

2: if probSwitch(o,t) > Random.nextRandom(0,1) then

3: swapDynamics(o)

4: end if

5: s = rand(0, 1)

6: for index = 0; index < nW ; index++ do

7: if s ≤ p(w)[index] then

8: o.w = w[index]

9: break

10: end if

11: end for

12: end if

13: xo
n+1 = xo

n + ∆ · f o(o.w, o.θ)

The gradient is then calculated by the second order central finite difference cen-

tered at i, j. The gradient from each obstacle is then summed together to produce

a net collision avoidance gradient due to all of the obstacles within some local

distance dmin.

The calcControl(APFvector) function, Algorithm 4.7, calculates the control input

u. For the holonomic case u = APFvector . However, for the non-holonomic case a

heading and speed must be extracted from the APFvector to construct u = (us, uw).

This is done by first setting uw to the maximum turn rate in the direction of the

APFvector , then setting us to the maximum velocity in the direction of the APFvector .

96

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.6 o.getAPFGradient

Input: xr
n

Output: o.G

1: if ‖xr
n − xo

n‖ ≤ dmin then

2: {i, j} = xr
n

3: o.G = {(o.SR(pi−1,j)+o.SR(pi−2,j)
2) − (

o.SR(pi+1,j)+o.SR(pi+2,j)
2),

(
o.SR(pi,j−1)+o.SR(pi,j−2)

2)− (
o.SR(pi,j+1)+o.SR(pi,j+2)

2)}
4: else

5: o.G = 0

6: end if

The maximum velocity of the unicycle is the same as the maximum velocity used

in the SR calculation. Finally, u is used to update the control law for the robot.

4.5 Experiments

4.5.1 Experimental Setup

The method is evaluated in environments with hundreds of moving obstacles, and

successful navigation is defined as the ability to find a path from a start state to

goal state, without any collisions and within a specified time horizon. All exper-

iments take place with the same environment, with randomized initial obstacle

start locations. The environment is a toroidal circle of radius 50, and to maintain

consistent obstacle density, an obstacle exiting the circle wraps around the bound-

ary of the environment, re-entering π radians away from the point of exit, with

the same velocity as upon its exit. Figure 4.8 shows an example of the environ-

97

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

X
-50 0 50

Y

-50

-40

-30

-20

-10

0

10

20

30

40

50

S G

Figure 4.8: Example of the environment with 600 obstacles. The orange circle represents
the robots location. S is the start, G is the goal, dark red boxes are line obstacles, and light
blue boxes are arc obstacles.

ment. Red squares represent obstacles in line mode, and blue squares represent

obstacles in arc mode. The robot (represented as the orange circle) must navigate

from the box labeled ‘S’ (Start) to the box labeled ‘G’ (Goal).

The same values are maintained for the model parameters in all experiments.

For the obstacles, the stochastic velocities in line mode are w = {0.1, 0.2, 0.5, 0.7},
with corresponding probabilities p(w) = {0.3, 0.2, 0.3, 0.2}, and in the three arc

modes, the stochastic angular velocities are w = 5w̄, w = 10w̄, w = 15w̄, with

w̄ = {1.0811
2π

1.6216
2π

2.4324
2π

3.2432
2π }, for arcs of radius 5, 10, and 15, respectively, with

corresponding probabilities p(w) = {0.2, 0.2, 0.3, 0.3}. The likelihood of switching

98

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

parameters are driven by Rline = fraction of line obstacles, nS = the time that that

a given obstacle last switched, and S the switching–time–parameterṪhe collision

distance is determined by the obstacle dimensions (it is presume that the robot has

no width or height), and hence ǫ = 1. The time step for the experiments is δ = 0.1

and for the stochastic reachable set calculations is ∆ = 1. The distance around the

robot in which obstacles will affect the selection of the APF gradient is dmin = 3.

To implement the 3D stochastic reachable set calculations, the relative heading is

discretized in increments of π
20 and the corresponding planar stochastic reachable

set that is closest to the current value of relative heading is used.

The method is compared to other published methods that address moving

obstacles: 1) a traditional Gaussian method, [70], with two parameterizations:

N (0, 0.152) and N (0, 0.452), and 2) ORCA [110]. The Gaussian methods wrap

a Gaussian potential field around moving obstacles. Two different standard devi-

ation values are selected to demonstrate the impact of increasing the safety margin

around obstacles, but at the expense of making some paths infeasible due to the

large repulsion area. ORCA was designed for multiple robot collision avoidance

and works by computing a an avoidance vector based on the current state of other

agents in the environment. It also assumes that all obstacles are also attempting

to avoid collision (which is not the case in this environment). However, it is one

of the leading multi-robot avoidance methodologies.

4.5.2 Stochastic Reachable Set Approximation

The correct methodology for hybrid dynamic obstacles is to consider the hybrid

switching in the stochastic reachability set calculation. However, this method re-

quires complete knowledge of all possible dynamics any given obstacle can have.

In practice this may not be possible, and an online path planning system will need

99

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

to learn new dynamics. An approximate but scalable and efficient solution is to

construct a catalog of previously learned dynamics and match observed obsta-

cle motion to an entry in the catalog. Thus, in Figure 4.9 the correct stochastic

reachability set method is compared to the approximate stochastic reachability set

method.

The effect of SR sets that use obstacle dynamics with and without switching is

evaluated. Figure 4.9 shows how the success rate is affected by the switching rate

of the hybrid dynamic obstacles, averaged over 100 runs for each rate. The obsta-

cle switching rate is controlled by S, the switching–time–parameter in Equation

(4.23).

Using the individual stochastic reachability set approximation means that the

path planning algorithm has poor information about the probability of collision

immediately before a hybrid obstacle switches dynamics. For example, if an ob-

stacle is following line dynamics at time t and then switches to arc dynamics at

time t + δ, then APF-SR at time t anticipates a zero probability of collision along

what will become the arc trajectory. Thus, at time t + δ the obstacle is now in-

stantly traveling along an arc trajectory and the decisions made at time t (with

a line trajectory) do not accurately reflect the motion of the obstacle at time t + δ

(with an arc trajectory). The instant before switching is a potential source of failure

for the algorithm.

To demonstrate that the individual SR set method is a good approximation,

Figure 4.9 shows the success rate for the combined SR set (in magenta) and the

individual set method (in blue). These two plots show that the individual method

and the combined method achieve approximately the same success rate for every

switching–time–parameter setting.

100

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.5.3 Method and Environmental Parameter Evaluation

In this set of experiments, the method and the environmental parameters are

explored in detail. The two environmental parameters that affect APF meth-

ods are the ratio between line and arc obstacles, and the rate at which hybrid

obstacles switch between different continuous states (controlled by the switch-

ing–time–parameter). While, the method parameter is the σ used to smooth the

SR set. The value of σ, the obstacle ratio and the time scale are varied. All pa-

rameter evaluation experiments are run in an environment with 300 obstacles,

a goal–vector magnitude of 0.01, and with a holonomic robot. First, Figure 4.10

shows a plot of the success rate vs. size of smoothing–Gaussian. The best perfor-

mance occurs at σ = 0.15. Thus, this value for σ will be used for smoothing all SR

sets for the remaining experiments.

The ratio of line obstacles to arc obstacles is also investigated. Figure 4.11

shows an experiment with 300 obstacles, a goal–vector magnitude of 0.01 and a

variable ratio between obstacle types. Unlike the other experiments, the obstacles

are not allowed to switch dynamics; instead the ratio of obstacles types are varied

from 0 to 100% in a given run. For APF-SR, the success rate is approximately con-

stant around 95% regardless of the line to arc ratio. It is important to note that the

possible radii of the arc obstacles were chosen such that the difference between the

line trajectory and the arc is large. Unlike APF-SR, the success rate for the Gaus-

sian method (σ = 0.15) is reduced by 6% with 100% arcs, and the success rate for

the Gaussian method (σ = 0.45) is reduced 34% with 100% arcs. Similarly, ORCA

hovers around 80% success rate for all the switching–time–parameter values (15%

less than APFSR), which indicates that ORCA is affected more by the number of

obstacles than by their trajectories.

The rate at which obstacles switch dynamics impacts the planning space com-

101

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

plexity, with faster switching obstacles being more complex. Figure 4.9 shows

that APF-SR is practically unaffected by the rate at which obstacles switch dy-

namics. APF-SR is unaffected because it rarely moves in front of obstacles due to

the construction of the repulsive field. Thus, APF-SR will rarely be in the switch-

ing region when the obstacle switches dynamics. Figure 4.9 also shows that the

Gaussian methods, which do not take into account the trajectories of the obstacles,

are heavily affected by a rapid switching rate. They lose at least 10% success rate

for the fastest switching rate compared to the slowest switching rate. However,

APF-SR is only minimally (3%) affected by the obstacle switching rate, which indi-

cates the state switching instant has little effect on the overall performance. Thus,

the method is capable of successfully planning with hybrid dynamic obstacles re-

gardless of their switching rate.

Finally, the goal–vector magnitude is the last tunable parameter. Of all the pa-

rameters, goal–vector showed no conclusive best value. As such all remaining ex-

periments are shown with several goal–vector values. Constant magnitude vectors

of {0.1, 0.01, 0.001} are used for the goal–vector parameter. However, an additional

test is also run with the goal–vector magnitude set to 0.01 when all obstacles are

more than dmin (3) units away and set to 0 when at least one obstacle is closer

than dmin units away. This test allows the algorithm to attempt maximal avoid-

ance when obstacles are nearby without being drawn towards any goal.

In summary, these parameter experiments found that smoothing–Gaussian σ

value of 0.15 provides the best SR set to be used as a repulsive potential field. APF-

SR is unaffected by the number or type of obstacles in the environment, so this

value is allowed to change based on Equation (4.23). Similarly, it is agnostic to the

rate at which obstacles switch dynamics, but the comparison methods are highly

sensitive to the rate. Thus, a switching–time–parameter of S = 20 is selected

for the remaining experiments. The best value for goal–vector is dependent upon

102

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

the environment and all remaining experiments will show a variety of goal–vector

magnitudes.

103

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Algorithm 4.7 calcControl

Input: APFvector , The current robot state (un−1, heading), maximum turn rate (α),

maximum velocity (β)

Output: u, θ

1: if robot is holonomic then

2: u = APFvector

3: θ = 0

4: else

5: Hdesired = APFvector .normalize

6: Hcurrent = (cos(heading), sin(heading))

7: if acos(Hdesired · Hcurrent) ≤ α then

8: uw = Hdesired

9: else

10: uw = Hcurrent + (cos(α), sin(α))

11: end if

12: us = β

13: u = (us, uw)

14: θ = uw

15: end if

104

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Figure 4.9: Success rate for the APF-SR, and Gaussians σ = 0.15 and σ = 0.45 vs. the
switching–time–parameter (used in Equation (4.23) to determine switching probability).
The smaller the switching–time–parameter value the faster the obstacles switch between
a line and arc (or vice versa).

105

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

0.05 0.15 0.45
0

10

20

30

40

50

60

70

80

90

100

SR Gaussian σ

S
uc

ce
ss

 R
at

e
(%

)

Figure 4.10: Success rate vs. σ used for smoothing the SR set. (With a goal–vector magni-
tude of g = 0.01)

106

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

Figure 4.11: Success rate vs. the percentage of obstacles moving in an arc trajectory, with
a goal–vector magnitude of g = 0.01 and 300 obstacles.

107

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.5.4 Holonomic Robot Experiments

In this experiment a holonomic robot must navigate across a planning space. Fig-

ure 4.12 demonstrates the success rate versus number of obstacles (300 to 900) for

varying goal–vector magnitudes. The goal–vector magnitude is important because

it affects how strongly the robot is attracted towards the goal. If the goal–vector

magnitude is too strong the robot will not effectively avoid obstacles, but if it is too

small it may not reach the goal. APF-SR (4.12a) and the two Gaussian comparison

methods (4.12b and 4.12c) show that the goal–vector has a consistent effect across

all three methods with the goal–vector magnitude of 0.01 providing on average the

best overall success rate regardless of the number of obstacles. This indicates that

there is an optimal goal–vector for APF-SR. A smaller goal–vector magnitude pro-

vides better success rates because the influence of the obstacle repulsion is higher

and thus the robot is more reactive to the moving obstacles. Second, APF-SR

does better than either of the Gaussian method parameterizations and ORCA. The

slopes in figure 4.12 are approximately the same compared within each method.

This indicates that the complexity of the problem increases linearly with the num-

ber of obstacles. APF-SR has a similar slope to the Gaussian σ = 0.15, but for 300

obstacles the success rate is higher (95% compared to 60% for a goal–vector mag-

nitude of 0.01). Interestingly, the slope for Gaussian σ = 0.45 is steeper than the

other methods, but it has a success rate of 89% for 300 obstacles, which indicates

that the greater repulsion region aids in path planning for sparse environments

but prevents the robot from navigating in cluttered environments. Finally, OCRA

has a success rate of 80% to 45% (20% less than APF-SR for 900 obstacles). Thus,

APF-SR is impacted less by the number of obstacles than the comparison methods,

because its structured potential field allows for more informed path planning.

Total path length is affected by how much the robot is forced to deviate from

the path because of the obstacles. Figure 4.13 shows the average path length ver-

108

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

sus the number of obstacle for APF-SR and the two comparison methods (only

recorded for successful runs). Figure 4.13 shows that, as expected, the path length

increases as the goal–vector gets smaller. This indicates that if the goal–vector is

too strong the robot does not react enough to the obstacles’ potential fields, but if

the goal–vector is turned off in the presence of obstacles (the black dashed line) the

robot does not make enough progress towards the goal and spends too much time

in the obstacle field which increases the likelihood of collision. This trend holds

for APF-SR and the two Gaussian comparisons, however its scaled relative to the

potential fields used. The Gaussian (σ = 0.45) has the widest field and as such is

affected the most by the obstacles. The Gaussian (σ = 0.15) is more similar in size

to APF-SR but it does not consider the obstacle trajectory, thus its path lengths are

similar but its success rate is lower. The shaped potential field of APF-SR allows

the robot to navigate around obstacles in a safe manner by avoiding entering the

obstacle trajectory (like the large Gaussian method) but still have a relatively small

field which allows it to move between dense obstacle clusters (like the Gaussian

σ = 0.15).

Finally, which situations cause APF-SR to fail are investigated. Figure 4.14

shows a histogram of the number of nearby obstacles when each method fails.

Of the eight recorded collisions during the 100 trials, one of the collisions was

due to a single obstacle. The rest of the collision were due to multiple obstacle

interactions. Note that APF-SR is based on SR sets, which provides a probability

of collision for areas inside the set. Thus, the robot does not receive any repulsion

information until it is already inside the set. This means that once the robot is

under an obstacle’s repulsive force, there exists a probability of collision. Also,

since the SR sets are only computed for single obstacle interactions, there is no

guarantee of success when planning for more than one nearby obstacle. Figure

4.14 confirms this, as the APF-SR method fails most often when multiple obstacles

are nearby. These obstacle create situations with conflicting APF gradients that

109

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

cause the APF-SR method to collide.

In contrast, the Gaussian σ = 0.15 in Figure 4.14 collides mostly with single

obstacles. Whereas, the larger Gaussian (σ = 0.45) collides about evenly with

all types of interactions. This is because the wider Gaussian provides a larger

buffer between the robot and single obstacles but it still does not make the best

possible planning decisions, as it does not take into account the relative robot-

obstacle interaction.

110

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

300 450 600 750 900
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles

S
uc

ce
ss

 R
at

e
(%

)

g=0.1
g=0.01
g=0.001
toggled

(a) APF-SR

300 450 600 750 900
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles
S

uc
ce

ss
 R

at
e

(%
)

g=0.1
g=0.01
g=0.001
toggled

(b) Gaussian σ = 0.15

300 450 600 750 900
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles

S
uc

ce
ss

 R
at

e
(%

)

g=0.1
g=0.01
g=0.001
toggled

(c) Gaussian σ = 0.45
(d)

ORCA

Figure 4.12: Holonomic robot success rate for (a) APF-SR, (b) Gaussian σ = .15 (c)
Gaussian σ = 0.45 and (d) ORCA. g is the goal–vector .magnitude g = toggled indicates,
that the goal–vector is set to 0 when the robot is under the influence of an obstacle’s APF
and set to 0.01 when it is not being influenced by any obstacles.

111

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles

P
at

h
Le

ng
th

g=0.1
g=0.01
g=0.001
toggled
Min

(a) APF-SR

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles

P
at

h
Le

ng
th

g=0.1
g=0.01
g=0.001
toggled

(b) Gaussian σ = 0.15

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles

P
at

h
Le

ng
th

g=0.1
g=0.01
g=0.001
toggled

(c) Gaussian σ = 0.45

Figure 4.13: Holonomic robot path length for (a) APF-SR, (b) Gaussian σ = .15 and (c)
Gaussian σ = 0.45. The dashed line at Path Length 72 indicates the theoretical shortest
path possible (ie. straight line from the start to the goal). The dashed line at path length
200 indicates a cutoff point where the run is considered a failure. g is the goal–vector. g =
toggled indicates, that the goal–vector is set to 0 when the robot is under the influence of
an obstacle’s APF and set to 0.01 when it is not being influenced by any obstacles.

112

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Nearby Obstacles (#)

O
cc

ur
an

ce
s

(#
)

APF−SR
Gaussian σ = 0.15
Gaussian σ = 0.45

Figure 4.14: Histogram showing the number of nearby obstacle when the APF-SR
method, Gaussian σ = 0.15 and Gaussian σ = 0.45 fail due to a collision. An obstacle
is nearby if the distance between the robot and the obstacle is less than 3 units.

113

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.5.5 Unicycle Robot Experiments

In this last set of experiments, the robot’s dynamics are changed from holonomic

to a non-holonomic unicycle. This increases the difficulty of the problem as the

robot cannot instantly change heading to avoid a collision.

The robot is limited to a turning rate of π
12 per ∆. Figure 4.15 shows that APF-SR

and the Gaussian comparison methods all have lower success rates than the holo-

nomic case. However, the Gaussian methods suffer much more than the APF-SR

method. The best Gaussian success rate (for 300 obstacles) went from 90% in the

holonomic case to 62% in the unicycle case but APF-SR went from 95% to 84% suc-

cess rate. Furthermore, as the number of obstacles increase the Gaussian methods

quickly approach 0% success rate. Note, that ORCA cannot be directly applied to

non-holonomic robots without significant modifications, thus an ORCA compari-

son is not shown.

For the holonomic case a goal–vector magnitude of 0.01 was on average better

than any other goal attraction. However, for the unicycle case, success rates for a

goal–vector magnitude of 0.01 and 0.1 oscillate. This is likely due to the increased

difficulty of the problem which greatly increases the probability of collision the

longer the robot is in the environment. Furthermore, the success rate slope for

APF-SR is the steepest. While this indicates that APF-SR’s success degrades faster

with increasing number of obstacles, the success rate is still higher than the Gaus-

sian comparison methods.

Figure 4.16 shows the path length for the unicycle robot versus the number

of obstacles. Again, as expected the path length increases as the goal–vector de-

creases, and the path length increases as the number of obstacles increases. In-

terestingly, in almost every case, the comparison methods became lost, whereas

none of the APF-SR trials became lost. This trend combined with the success rate

114

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

indicates that APF-SR is producing plans which not only avoid the obstacles but

still make progress towards the goal, where the Gaussian methods may avoid the

obstacles but are not able to make progress towards the goal.

These experiments have shown that APF-SR is able to path plan in environ-

ments that have up to 900 hybrid dynamic moving obstacles with a very high suc-

cess rate. Furthermore, APF-SR is significantly more robust to the hybrid dynam-

ics than the comparison methods and the increased success is due to encoding the

relative obstacle robot dynamics in the SR set used to produce the potential fields

for the obstacles. Thus, APF-SR is able to make more informed path planning

decisions and more easily avoids moving obstacles

While these results demonstrate that APF-SR outperforms comparable meth-

ods, there are two key limitations. First, the point-mass robot model is a simpli-

fication of actual robot motion. However, methods such as [33] and [25] exist,

which extend APF methods to non-point robots. A more realistic robot model

can be easily incorporated into the SR set calculation, but with additional com-

putational cost. Second, note that the SR set must be recalculated if the obstacle

dynamics within a continuous state change. One solution is to maintain a SR set

database and to then match obstacle motion to sets as [60] does with funnel li-

braries. Another solution is to use a method similar to [27] and learn to predict

moving obstacle motions. Neither of these limitations are insurmountable, and

these results maintain that the improved performance of APF-SR as compared to

other approaches merits its use in many scenarios.

The goal–vector magnitude is the final important consideration. The results

presented here indicate that the magnitude must be tuned to the problem as no

particular value was always dominant. However, this is not an insurmountable

task and the difference in success rates between with different goal–vector magni-

tudes was minor.

115

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

4.6 Conclusion

The incorporation of the formal SR sets into the ad-hoc APF method produces a

more accurate representation of the relative robot-obstacle dynamics, which leads

to an increased success rate during path planning. APF-SR has a success rate at

least 30% higher than other methods used for comparison, even with 900 obsta-

cles. The SR set informs the APF-SR algorithm of the direction and velocity of

the obstacle, which is used to generate a repulsive potential that reflects the prob-

ability of collision. Hence the APF-SR algorithm can make informed planning

decisions in the presence of multiple moving obstacles. Here, it is shown that

APF-SR is robust to the primary parameters in the method, and demonstrated

that the method is capable of path planning in highly complex and dynamic envi-

ronments with obstacles that can switch dynamics from line to arc or arc to line.

Here, SR sets were combined with planning method and shown on a small

range of environments. However, the method can be generalized to other environ-

ments and other obstacle-robot dynamics as the SR set method is not dependant

on the dynamics used here.

116

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles

S
uc

ce
ss

 R
at

e
(%

)

g=0.1
g=0.01
g=0.001
toggled

(a) APF-SR

300 450 600 750 900
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles
S

uc
ce

ss
 R

at
e

(%
)

g=0.1
g=0.01
g=0.001
toggled

(b) Gaussian σ = 0.15

300 450 600 750 900
0

10

20

30

40

50

60

70

80

90

100

Number of Obstacles

S
uc

ce
ss

 R
at

e
(%

)

g=0.1
g=0.01
g=0.001
toggled

(c) Gaussian σ = 0.45

Figure 4.15: Unicycle robot success rate for (a) APF-SR, (b) Gaussian σ = .15 and (c)
Gaussian σ = 0.45 g is the attractive strength towards the goal. g = toggled indicates that
goal–vector is set to 0 when the robot is under the influence of an obstacle’s APF and set to
0.01 when it is not being influenced by any obstacles.

117

Chapter 4. Spatio-Temporal Uncertainty: Moving Obstacle Avoidance

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles

P
at

h
Le

ng
th

g=0.1
g=0.01
g=0.001
toggled
Min

Unicycle APF-SR (a) APF-SR

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles
P

at
h

Le
ng

th

g=0.1
g=0.01
g=0.001
toggled

(b) Gaussian σ = 0.15

300 450 600 750 900

72

90

108

126

144

162

180

198

216

Number of Obstacles

P
at

h
Le

ng
th

g=0.1
g=0.01
g=0.001
toggled

(c) Gaussian σ = 0.45

Figure 4.16: Unicycle robot path length for (a) APF-SR, (b) Gaussian σ = .15 and (c)
Gaussian σ = 0.45. g is the attractive strength towards the goal. g = toggled indicates
that goal–vector is set to 0 when the robot is under the influence of an obstacle’s APF and
set to 0.01 when it is not being influenced by any obstacles.

118

Chapter 5

Transition Function Uncertainty:

Integrated Planning and Learning

Transition function uncertainty exists when the mapping from action to state

is unknown by the path planning algorithm. This is a particularly challenging

problem as the only method of determining this mapping is through exploration.

Many situations would cause the transition function to be unknown, ranging from

changing environments to damaged sensors and motors. Thus, a framework must

be designed which can intelligently explore the transition function. This Chapter

presents a framework based on the work in [68] and [62].

In order to perform tasks, robots must be able to adapt to changing environ-

ments and problems. In order to process real world information, online plan-

ning has to process higher volumes of data with tighter deadlines at every time

step. The planning is subject to hardware imperfections and errors in reading

© 2014 TCMS. This section is reprinted, with permission, from Nick Malone, Aleksan-
dra Faust, Brandon Rohrer, Ron Lumia, John Wood, Lydia Tapia, Efficient Motion-based
Task Learning for a Serial Link Manipulator, Transactions on Control and Mechanical Sys-
tems, Vol. 3, Num. 1, January 2014.

119

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Figure 5.1: Whole Arm Manipulator (WAM).

sensory information. Online reinforcement learning (ORL), a machine learning

technique, is a useful tool for robotics motion learning and planning. It provides

a closed-loop feedback system continuously incorporating current environment

information into the planning and producing the motions required to perform a

task. However, online reinforcement learning comes with several challenges that

make it potentially problematic to use on a physical system.

Implementation of an ORL algorithm must be carefully designed to be safe for

the robot both in terms of collision avoidance and producing motions that don’t

strain hardware. Training the ORL agent from scratch on physical hardware can

cause wear and tear to the hardware and thus change the dynamics of the system.

Furthermore, motions take longer time to execute on hardware than in simula-

tion, and the training phase could become impractically lengthy. Lastly, because

the state-space grows exponentially with the number of degrees of freedom, the

sheer size of real world state-spaces and physical laws of motion that need to be

processed at every time step in real-time could make ORL prohibitively computa-

tionally expensive even for serial link manipulators with as little as 3 DoFs [63].

Reinforcement learning (RL) learns action (motion) sequences that maximize

accumulated reward over the agent’s lifetime. RL learns a policy, a mapping be-

120

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

tween robot’s states and its actions with respect to some observed, and unknown

to the agent, reward signal. The outcomes of the action-taking, transitions be-

tween the states, are also unknown a priori and are learned through experience.

The RL problem is defined by specific state and action spaces, the ability to ob-

serve action effects on the states, and the reward associated with states. To accom-

plish task learning with RL, the reward structure that corresponds to the task, the

state-space that corresponds to the possible robot configurations, and the actions

space that corresponds to possible robot motions all need to be engineered.

Two major classes of RL methods are available, online and offline. Offline

methods analyze and derive policy from an experience batch. Online RL, on

the other hand, derives policy in an ongoing manner. It improves and changes

the policy with every step. The advantage of the online RL is that it naturally

adapts to the changing environment, something offline RL is not capable of do-

ing. The adaptation comes at the price of longer convergence times to thresh-

old performance. Being more computationally expensive, online RL is potentially

prohibitive for systems with high degrees of freedom. In this Chapter, the slow

convergence time of online RL is addressed with dimensionality reduction using

PRMs for improved scalability, and with learning transfer by training first in sim-

ulation and moving goals.

Consolidating from previous work [63, 68], this Chapter presents a frame-

work based on ORL that successfully overcomes the challenges above and learns

motion-based tasks suitable for a physical robot. To jump-start the learning on

hardware, and avoid a lengthy training phase, knowledge is transfered from an

agent trained in simulation. To achieve performance suitable for a physical sys-

tem, ensure the safety of the system, and address state-space scalability, proba-

bilistic roadmaps (PRM) are used for dimensionality reduction. The state-space

information reduced by the PRM is passed to the learning agent, which learns

121

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

to produce efficient motion plans. Here, a Brain-Emulating Cognition and Con-

trol Architecture (BECCA) [88] agent is used. It is an adaptive online reinforce-

ment learning algorithm paired with an unsupervised hierarchical feature creator.

BECCA’s algorithm contains a decay feature, allowing the agent to forget features

and motion plans over time. This feature is especially useful for changing environ-

ments, as the agent continuously learns and updates plans based on the current

feedback from the environment.

To demonstrate the framework, a pointing task on a 7 DoF WAM (Figure 5.1)

using all 7 degrees of freedom is implemented. The robot needs to autonomously

learn how to point at a target location in its environment regardless of the start

position. The task is first formulated in terms of RL, and four sets of experiments

are performed. First, the learning scalability with and without the PRM dimen-

sionality reduction as a function of degrees of freedom is compared. In the second

series of the experiments, learning transfer impact is assessed on a stationary tar-

get. The performance of the framework is assessed by measuring how well the

agent adapts to hardware imperfections and measurement noise. In the third se-

ries of experiments the target location moves and the adaptability is evaluated.

Lastly, the performance of the framework is examined by looking into time sav-

ings obtained by using transfer learning.

The results show that the system task performance does not change with in-

crease in dimensions, and shows near-identical performance between simulation

and transferred hardware runs. Results show between 100 to 600 time steps of

savings obtained by using transfer learning, and demonstrate an agile agent that

quickly adapts to the new environment within 500 time steps.

The rest of this Chapter is organized as follows: Section 5.1 provides necessary

background. Section 5.2 discusses the methodology, and section 5.3 presents the

experimental results. Finally, section 5.4 concludes the Chapter with the frame-

122

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

work’s benefits to online, reactive motion-based learning.

5.1 Preliminaries

The robot hardware used in this Chapter is the same as that used in Chapter 3.5.

However, in this Chapter a learning agent is used to learn motion controls to com-

plete a task.

5.1.1 BECCA

Creating a general learning machine has been one of the grand goals of artifi-

cial intelligence (AI) since the field was born. Efforts to achieve this goal may be

divided into two categories. The first category uses a depth first approach, solv-

ing problems that are complex, yet limited in scope, such as playing chess. The

assumption underlying these efforts is that an effective solution to one problem

may eventually be generalized to solve a broad set of problems. The second cat-

egory emphasizes breadth over depth, solving large classes of simple problems.

The assumption underlying these efforts is that a general solution to simple prob-

lems may be scaled up to address more complex ones. An example of the first

category would be a master level chess playing agent, while an example of the

second category would be an agent with the capabilities of an bee worker.

The work described here falls into the second category, focusing on breadth.

The motivating goal for this work is to find a solution to natural world interaction,

the problem of navigating, manipulating, and interacting with arbitrary physical

environments to achieve arbitrary goals. In this context, environment refers both

to the physical embodiment of the agent and to its surroundings, which may in-

clude humans and other embodied agents. The agent design presented here is

123

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

loosely based on the structure and function of the human brain and is referred to

optimistically as a Brain-Emulating Cognition and Control Architecture (BECCA)

[88], [89].

A Brain-Emulating Cognition and Control Architecture agent interacts with

the world by taking in actions, making observations, and receiving reward (see

Figure 5.2). Formulated in this way, natural world interaction is a general rein-

forcement learning problem [99], and BECCA is a potential solution. Specifically,

at each discrete time step, it performs three functions:

1. reads in an observation, a vector o ∈ ℜm | 0 ≤ oi ≤ 1.

2. receives a reward, a scalar r ∈ ℜ | −∞ ≤ r ≤ ∞.

3. outputs an action, a vector a ∈ ℜn | 0 ≤ ai ≤ 1.

Because BECCA is intended for use in a wide variety of environments and

tasks, it makes very few assumptions about the environment beforehand. Al-

though it is a model-based learner, it must learn an appropriate model through

experience. There are two key algorithms to do this: an unsupervised feature

creation algorithm and a tabular model construction algorithm.

The feature creator component identifies repeated patterns in the input vector

[88]. It then groups loosely correlated elements of the input vector. The groups are

treated as subspaces and unit vectors of these subspaces are features [88]. New in-

puts are also projected onto existing features and the single feature in each group

which has the greatest response is turned on while all others in that group are

turned off [87, 88, 90].

The reinforcement learning component receives feature activity, reward, and

direct input from the environment. Each feature is associated with an approximate

124

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Figure 5.2: At each timestep, the BECCA agent completes one iteration of the sensing-
learning-planning-acting loop, consisting of six major steps: 1) Reading in observations
and reward, 2) Updating feature set, 3) Expressing observations in terms of features, 4)
Predicting likely outcomes based on an internal model, 5) Selecting an action based on
the expected reward of action options, and 6) Updating the model.

reward. It keeps track of recent actions and recent features in working memory

which is then used to update the model. The actual model is a table of cause-

effect pairs. The cause is the working memory and the effect is the current feature.

Considering this in standard reinforcement learning language, the model can be

thought of as a sequence of state-action pairs. Entries in the table which are rarely

observed are deleted from the model [87, 88, 90].

To chose an action the reinforcement learner compares the current working

memory to the entries in the model and selects the entry which both matches the

current working memory and which has the highest recorded reward. With a set

probability, an exploratory action is chosen instead [87, 88, 90].

In the context of traditional Markov Decision Process (MDP)-based reinforce-

ment learning, the cause-effect pairs are equivalent to action-state pairs. The

cause-effect table with the working memory and its expected reward roughly

125

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

corresponds to a Q-function in traditional MDP-based reinforcement learning.

However, BECCA’s model does not assume the Markovian property and might

depend on more than one previous state. As time progresses, less frequently

observed cause-effect transitions are removed from the cause-effect table. This

makes BECCA inherently able to adapt to new situations and environments at the

cost of a steeper learning curve. The learning curve is steeper because it depends

on more than the current state and because BECCA could potentially remove crit-

ical states that are rarely observed.

5.1.2 Transfer Learning

Transfer learning typically refers to utilizing information learned in the past on a

task in the present [101]. This past learning can be transferred to a new task or

to the same task under different constraints. Transfer learning has also been uti-

lized in transferring knowledge from one robot to another robot that may have a

different internal architecture to represent the world [101]. Taylor and Stone [101]

define jump-start and time-to-threshold performance as two metrics for transfer

learning. Jump-start defines the amount of gain an agent initially receives from

transferred knowledge. Time-to-threshold performance defines the amount of

time it takes an agent to reach the threshold performance, which is the best the

agent can do at a given task.

5.2 Methods

Here a framework is presented for online motion-based task learning. Figure 5.3

shows the framework’s main components. Task definition describes process of

constructing the reward structure, and state-action space encoding to describe the

126

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Figure 5.3: Task learning Framework

task. PRM creation segment generates a roadmap for a given environment and

physical system. With the roadmap constructed and task encoded, the BECCA

agent is deployed on a simulated system. Once the simulated agent’s performance

meets the satisfactory criteria, the entire agent is transferred to the physical system

for ongoing task performing.

5.2.1 Probabilistic Roadmaps Creation

This Chapter uses PRMs combined with learning agent techniques to build a

roadmap for the reinforcement learning agent to navigate by randomly sampling

joint positions. The vertices in the roadmap are connected to k nearest neighbors

using a straight line local planner. The learning agent’s state-space is reduced

to roadmap vertices, and actions are limited to edges between the vertices. The

agent (robot) is constrained to making straight line movements along the edges

in the adjacency matrix, thus constraining the reinforcement learner to learn how

to navigate the roadmap. During a transfer, the previously learned roadmap is

preserved. The PRM is the underlying state-space provided to the learning agent.

127

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

5.2.2 Task definition

While BECCA is mostly automated, an engineer must design a task to interface

with BECCA via sending sensory vectors and interpreting action vectors. Such an

interface is called a task. A task simply defines what information from the world

will be sent to the agent, and in what format. Note that BECCA is agnostic to the

task semantics. The task also defines how to read an action vector and move the

robotic actuators. Again, note that BECCA is agnostic to how this is defined, and it

will learn whatever format the engineer devises. To demonstrate the framework,

two pointing tasks are defined and their setup explained.

Task with Stationary Target

The sensory vector is a n element binary vector, since the PRM contains n vertices.

Each vertex represents a feasible, collision-free configuration of the robotic arm.

When the robot is at a particular configuration the corresponding element in the

sensory vector is set to 1.

Algorithm 5.8 shows how the pointing task is constructed. The action vector

is a k element long binary vector and is parsed by the interpret function. In this

task, BECCA has been constrained to only return a single 1 in the action vector.

The interpret function in Algorithm 5.8 does the following: The 1 in the action

vector represents BECCA selecting to move to one of the k neighbors, and the (k+

1)th element is interpreted as staying at the current configuration. For example the

action vector [0, 1, 0, 0] is interpreted by the task as selection to move to the second

neighbor of the current configuration in the roadmap. The function then returns

the configuration of the selected neighbor.

The reward structure for the PRM task assigns a reward of 100 to the target

128

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

vertex, a reward of 10 to all neighbors of the target vertex, and a reward of 1 to the

neighbors of the neighbors. Every other vertex is given a reward of 0.

Pointing Task with Non-stationary Target

The formulation and the setup of the non-stationary target task is the same as in

Section 5.2.2. The reinforcement learner is trained on an initial pointing task and

then transferred to hardware, however upon being transferred the goal state is

changed. Thus, the learning agent must compensate for the changed goal, while

learning to adapt to the dynamics of the hardware system. Specifically, for this

task the goal state is moved to one of the neighbors in the roadmap of the sim-

ulation goal state. The reward structure is changed so that the new goal state is

reward 100 and the neighbors of the new goal 10 and the neighbors of the neigh-

bors 0.1.

Algorithm 5.8 Task Step

Require: Task

1: Task.agent.action = [0, 0, 0, 0]

2: while not coverging do

3: newLocation ← interpret(task.agent.action)

4: sendToWAM(newLocation)

5: task.currentPosition ← read current WAM location

6: task.SensoryInput ← task.currentPosition

7: task.reward ← task.calculateReward()

8: task.agent ← agentstep(SensoryInput, Reward);

9: end while

129

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

5.2.3 Transfer Learning from Simulation to Hardware

Taylor and Stone define a taxonomy of transfer learning in the reinforcement

learning domain in [101]. Using that terminology, the source task is a simulated

pointing task. There are two target tasks. In one, the target task has the same goal

and algorithm in both simulation and hardware runs. In the other the target is

moved but it still has the same algorithm. The transferred knowledge is a set of

feature groups and a cause-effect pairs.

The method transfers learned knowledge of a single task between a perfect

simulation of a robot to imperfect robotic hardware. In simulation the robot al-

ways receives the exact same joint angles for a particular state, but in hardware

the joint angles are subject to small error so re-entering the same state will not have

the exact same state information. The source task uses the same learning agent,

parameters, and reward function as the target task. The only difference is that the

source task interacts with the WAM simulator while the target task interacts with

the WAM hardware.

When performing the transfer, the entire agent is transferred with all its inter-

nal states and accumulated experience. Only the world model, which it interacts

with from the simulator or the WAM interface, is changed.

5.2.4 WAM Simulator

The WAM simulator is a simple kinetic simulator, representing the arm with seven

points each corresponding to one degree of freedom. The arm moves in the simu-

lator by simply adding the state and action vectors. The simulator does not inject

noise, and performs perfect movements. The WAM arm, on the other hand, per-

forms the movements as described in the Section 5.2.5. The resulting motion is

130

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

subject to error in performing the movement.

5.2.5 WAM Interface

The WAM is connected to a xPC Target Kernel running Matlab Simulink 7.7.0

R2008b [71]. The controller for the WAM is written in Simulink and interfaces with

remote computers via the reflective memory network. The Simulink code respon-

sible for directly issuing commands to the WAM, henceforth the WAM controller,

receives a command vector by reading a specific block of reflective memory. The

command vector is a length seven vector containing the desired joint angles in

radians of each for the seven WAM joints.

The WAM controller, upon receiving a command vector, places the command

vector into a buffer, which only stores one move. The command vector is first

sanitized so that each entry is within the WAM’s joint limits. If the WAM is not

executing a move, it compares its current location to the command vector buffer.

If the command vector buffer is sufficiently different from the current location,

the WAM controller computes a linear interpolation in joint space between the

two joint angles and executes the path within the allowable WAM workspace.

Where significantly different is |norm(ˆvdesired − ˆvcurrent)| > .01 However, the ve-

locity follows a fifth-order smooth polynomial as seen in Fig 5.4, and is used both

for safety and for mimicking biological motion [28]. Slow beginnings and endings

to moves provide safe joint torques. In the current architecture a move cannot be

interrupted.

131

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Velocity vs Time

Time (s)

V
el

oc
ity

(m
/s

)

Figure 5.4: Example Velocity Profile for a Single Joint.

5.3 Experiments

There are four experiments. Two experiments involve the stationary target point-

ing task, one is a non-stationary pointing task, and the last evaluation assesses

the training time benefits of the framework. First, the utility of the dimensionality

reduction using PRMs over standard state-space binning is examined. Then, the

benefits of transfer learning, including performance adaptability, is examined. All

experimental results are averaged over five executions. Throughout the experi-

ments, the performance on the learning agent is measured via cumulative reward.

When the learning agent is transitioned from simulation to physical hardware, it

is placed in a configuration that is as far as possible from the goal configuration.

The performance of the learning agent on hardware is compared to perfor-

mance in simulation. The agent executes in time steps but the graphs are shown

in blocks, where 1 block equals 100 time steps. The time savings brought on by

using transfer learning, and the initial boost of performance that was obtained by

knowledge transfer are evaluated. In case of the non-stationary task, the time it

takes the agent to react to a change in environment and recover to the previous

level of performance are presented.

Each experimental run is executed on a new roadmap of 50 configurations

132

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

generated using PRMs. Each configuration is connected to 3 neighbors and itself.

A random point in the 50 configurations is chosen as the goal. The goal vertex is

given a reward of 100. the neighbors of the neighbors are given a reward of 0.1.

All other configurations are given a reward of 0.

5.3.1 Dimensionality reduction utility

This Section evaluates learning scalability when the state-space is reduced to PRM

vertices. The goal of incorporating PRMs is to help guide the searching. The state-

space dimensionality increases exponentially with DoFs. In [68], it was shown

that BECCA can learn up to 3 DoF pointing tasks with binned state-space repre-

sentation. Beyond that, the learning takes impractically long, and the results are

affected. Incorporating PRMs allows us to reduce the state-space for 3-DoF tasks

to the number of vertices in the roadmap. For the results shown, the state-space

has 50 vertices, but the number of vertices can be adjusted.

The learning performance of the PRM based task is compared with two vari-

ants of the stationary pointing task (Section 5.2.2). The task is reduced to 3 DoFs

by limiting the WAM to use only three joints.

Joints 1, 2, and 3, are mapped into a 3 dimensional C-space. Then, fifty random

points are sampled in the C-space using a uniform distribution. The fifty points are

then connected probabilistically based on the distance between the points, such

that closer points have a higher probability of being connected. Figure 5.5 shows

an example of a PRM generated for the 3-DoF task.

Figure 5.6 shows the cumulative reward per block for BECCA operating on

the 3-DoF PRM task. The maximum reward that can be received per iteration is

100, making the maximum per block 10,000 units of reward. The PRM covers a

wide area in the WAM’s range of motion, but only takes 900 iterations to reach a

133

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

very high cumulative reward. 900 iterations is significantly fewer than the 5,000

iterations required for the 2-DoF task to converge [68], which indicates that PRM’s

are very effective at reducing the convergence time of BECCA.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.5

1

1.5

2

2.5

3

3.5

J1
J2

J4

Figure 5.5: Probabilistic Roadmap for a 3-DoF WAM Task. Vertices are possible configu-
rations. Edges are possible transitions between configurations.

To compare the PRM based task to non-PRM tasks, two 3-DoF tasks are cre-

ated, a Simple and a Hard task. The Simple 3-DoF task has 3 bins per joint, and an

action vector of length 12. The Hard 3-DoF task has 4 bins per joint, and an action

vector of length 18.

The reward structure for both, the Simple and Hard tasks, parallel to the PRM

task. It has a maximum reward of 100 per iteration and thus 10,000 per block. The

Simple task has 27 possible states. The Hard task has 64 possible states and the

PRM has 50 states. Thus, the Simple and Hard tasks frame the PRM in number

of states. However, it is important to note that the Simple and Hard tasks have

larger action vectors than the PRM task, 12 and 18 actions vs. 4.

134

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Figure 5.6: The Cumulative reward that the learning agent achieves per blocks of 100
iterations using the PRM state-space.

Figure 5.7 shows that the PRM method converges much faster than either the

Simple 3-DoF or Hard 3-DoF task. The PRM method has reached the optimal of

7,000 units of reward by around 1,000 iterations while, the Simple 3-DoF task has

only reached approximately 6,000 units of reward by 7,000 iterations. The 3-DoF

Hard task has only reached approximately 3,500 by 7,000 iterations. Thus it can

be seen that the PRM task converges much faster than either the Simple or Hard

task.

Figure 5.8 which plots the average reward of 10 runs for each DoF from 1 to

7 further shows the scalability of the PRM approach. This graph confirms that

PRM-BECCA is unaffected by the Degrees of Freedom with a constant number of

vertices. However, there is a problem with just testing the Degrees of Freedom

and holding the number of vertices constant. By holding the number of vertices

135

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

0 10 20 30 40 50 60 70
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations (in blocks of 100)

C
um

la
tiv

e
R

ew
ar

d

PRM

3DOF Hard

3DOF Simple

Figure 5.7: Cumulative reward for PRM, 3-DoF Simple, and 3-DoF Hard tasks. The 3-
DoF Simple task has 3 bins per joint, giving a state-space of 33. The 3-DoF Hard task has
4 bins per and an action vector length of 18, giving a state-space of 43. The PRM task has
50 points which correspond to 50 states.

in the PRM constant, the density of vertices decreases as the DoF increases. Thus,

BECCA must also be investigated with a varying number of vertices to see how

BECCA scales with the number of vertices.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

7−DoF
6−DoF
5−Dof
4−DoF
3−DoF
2−DoF
1−DoF

Figure 5.8: Cumulative Reward per Block of 1-DoF to 7-DoF with PRMs.

In the following experiments the number of vertices are varied from 60 to 200

in steps of 20, and the k neighbor parameter is set to 4. Since the previous experi-

136

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

ment showed that BECCA would converge at the same number of steps regardless

of DoF , 3 DoF was chosen. Again 10 runs are done for each number of vertices,

and the results are averaged. Figure 5.9 shows the average cumulative reward

for each test. It shows that BECCA may converges at the same time regardless

of number of vertices in the graph. Figure 5.9 is very similar to Figure 5.8, thus

showing that BECCA converges at the same rate regardless of DoF and regardless

of the number of vertices in the PRM.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

60 Nodes
80 Nodes
100 Nodes
120 Nodes
140 Nodes
160 Nodes
180 Nodes
200 Nodes

Figure 5.9: Reward per Block for Varying Number of Vertices.

It is important to note that this is a novel use of PRMs. In previous work,

they have been used to plan the motions for complex robot systems [36, 37, 80].

However, by integrating PRMs with BECCA, automatic learning of controls can

be achieved in complex problems.

5.3.2 Transfer Learning on Pointing Task with Stationary Target

This Section assesses the effect of the transfer learning to the system performance.

Learning is first done in simulation and then the entire task is transferred to the

physical system (Section 5.2.3).

137

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Table 5.1: Average cumulative rewards in simulation and on hardware after the stabi-
lization for 7DoF task with a stationary target and 7DoF task with a non-stationary target.
Note that reward is unitless.

Task Simulation Hardware
Stationary Target 7460.3 7614.8

Nonstationary Target 7460.3 7491.5

Figure 5.10 shows the cumulative reward of the pointing task with the station-

ary target in simulation and on hardware. The vertical line indicates the transition

from the simulation to the hardware. The results show near-seamless transition,

and the average performance of the agent on hardware very close to the perfor-

mance in the simulation.

Table 5.1 shows the average cumulative reward for each experiment after sta-

bilization, before and after transition to the physical hardware. Stabilization in

simulation occurs at 20 blocks. The performance of the agent on the hardware

outperforms the agent in simulation by 154 units of reward.

To better demonstrate the advantages of using the transfer learning in the

framework, the pointing task with stationary target experiments were run again in

a different manner. Five completely untrained learning agents were run on hard-

ware for 20 blocks and the results averaged together. Then five agents which were

trained for 100 blocks in a simulation were run on hardware for 20 more blocks

and averaged together. Figure 5.11 shows the comparison of the stationary point-

ing task using transfer to the same task without using transfer. The advantages of

using transfer are seen primarily in the jump-start and the time to threshold met-

rics. Table 5.2 shows the transfer metrics for the three experiments. Jump-start

shows the immediate gain from using the transfer. The pointing task starts very

close to the threshold performance using the transfer and has a jump-start gain

of 5716. In all random runs, the transferred learning agent outperforms the non-

transferred learning agent (Table 5.2). Furthermore, the transferred task reaches

138

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

the threshold performance in 2 blocks compared to 7 blocks without transfer (Fig-

ure 5.11). It is important to note the time saved by using transfer learning. Table

5.3 shows the run times for simulation versus hardware for 20 blocks. It is clear

that simulation is faster by up to 1 hour and 55 minutes. Using transfer learning

it takes significantly less physical time on the robotic hardware for the agent to

perform the given task as near optimal levels. This not only saves valuable time

but it also saves valuable wear and tear on the hardware.

It is important to note that the learning algorithm is not executing pre-planned

paths. It learns from experience which paths lead to highest reward and attempts

to follow those paths. The agent is learning which actions in a given state will

lead to high reward. The paths learned in simulation provide BECCA with a

strong foundation to work from, however each execution of the learning problem

finds different paths due to the randomness of exploration. Thus, it is possible

to witness executions of BECCA on the same underlying roadmap with slightly

varying performances.

0 20 40 60 80 100 120
1000

2000

3000

4000

5000

6000

7000

8000

9000
7 DoF Task

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Figure 5.10: Cumulative reward for the pointing task with stationary target per time step.
The vertical line indicates where the learning agent was transitioned from simulation to
physical hardware.

139

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Without Transfer
With Transfer
Threshold Performance

Jump
Start

 Time to
Threshold

Figure 5.11: Cumulative reward for the pointing task running on hardware with sta-
tionary target task with transfer and without transfer per time step. Transfer is when an
agent trained in simulation is transferred to hardware. Jump-start shows the initial gain
obtained by using the transferred knowledge. Time-to-threshold indicates the time that
the task without the transfer needs to achieve the same level of performance as the task
with the transfer.

Table 5.2: Transfer Metrics for stationary and non stationary tasks. Jump-start shows
the gain from using transfer. Threshold gain shows the reduction in time steps needed to
reach the threshold performance.

Task Metric Average min max

Stationary
Jump Start (reward) 5716 2757 9280

Threshold Gain (steps) 500 200 700

Non-stationary
Jump Start (reward) 1313 364 1702

Threshold Gain (steps) 100 100 400

Table 5.3: Average time in minutes to run 20 blocks in simulation and on hardware for
7DoF task with a stationary target and 7DoF task with a non-stationary target.

Task Simulation (min) Hardware (min)
Stationary Target 23 122

Non-stationary Target 24 121

140

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

5.3.3 Pointing Task with Non-stationary Target

In this experiment the reinforcement learner is trained on an initial pointing task

and then transferred to hardware. However, upon being transferred, the goal

state is changed. Thus, the learning agent must compensate for the changed en-

vironment. The goal state is moved to one of the neighbors in the roadmap of

the simulation goal state. The reward structure is changed so that the new goal

state is reward 100 and the neighbors of the new goal 10 and the neighbors of the

neighbors 0.1.

Figure 5.12 shows the results of 100 blocks of simulation and then 20 blocks of

running on hardware where the goal has changed. Initially there is a steep per-

formance drop, but the reward does not drop to zero. The agent quickly recovers

and learns the new reward structure within 6 blocks. This shows the online na-

ture of the BECCA algorithm. It is able to first learn one environment and when

placed into a slightly different environment it is able to quickly compensate for

the change.

0 20 40 60 80 100 120
1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Figure 5.12: Cumulative reward for running in simulation and then transferring the task
to hardware. The transfer occurs at 100 blocks.

141

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Figure 5.13 is a comparison between the agent having previously learned a

pointing task in a modified environment, to an agent without any prior knowl-

edge. However, the agent with knowledge has learned to point to a different goal

in simulation before being run on hardware. The untrained agent is also run on

hardware but has a stationary target. Thus, the transferred agent has some infor-

mation about the structure of the environment but it does not have the exact re-

ward structure as the goal was moved before being placed on physical hardware.

The figure shows that the agent with prior knowledge has a small jump-start of

1313 units of reward and reaches the threshold performance 1 block faster than

the agent without transferred knowledge.

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Without Transfer
With Transfer
Threshold PerformanceJump Start

Time to Threshold

Figure 5.13: Cumulative reward for the pointing task running on hardware with a non-
stationary target task with transfer and without transfer per time step. Jump-start shows
the initial gain obtained by using the transferred knowledge. Time-to-threshold indicates
the time that the task without the transfer needs to achieve the same level of performance
as the task with the transfer.

142

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Figure 5.14 shows a variant on the moving target. In this experiment the agent

is trained in simulation until convergence to the threshold performance. After

convergence in simulation, the agent is moved to physical hardware with an un-

changed goal (just like the stationary target experiments). The agent is then al-

lowed to adapt to the hardware for 10 blocks, at which point the goal is moved

while still on hardware. The agent must then adapt to this change in hardware.

Figure 5.14 shows that the agent does very well with the initial transfer and does

better when the goal is moved than Figure 5.12, where the agent is not allowed

to adapt to the hardware before the goal is moved. The threshold performance is

restored after 6 time-blocks, as previously. But, the minimal reward of 2080 at that

time-frame, is higher than the minimal reward of 1313 when the environment is

changes right after the task transfer from the simulation to the hardware.

143

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations (in blocks of 100)

C
um

ul
at

iv
e

R
ew

ar
d

Time to
Threshold

Figure 5.14: Cumulative reward for the pointing task initially trained in simulation then
transferred to the robot at the solid black bar. While running on the robot the goal is then
changed at the red dashed line.

5.3.4 Timing

Timing data is collected by simply measuring the difference between start time

and stop time for runs. Table 5.3 shows the timing data for running the learning

algorithm in simulation versus running on physical hardware. The run time on

hardware is approximately 5 times longer due to the amount of time it takes to for

the arm to move between configurations. Each move on the WAM takes approx-

imately 3.5 seconds to compute and execute. This computation time includes the

feature extraction and action decision time for the learning algorithm. In contrast,

in simulation it only takes 0.5 seconds of time to execute a complete move.

Since BECCA is an online learning algorithm, it can adapt to changes in real

144

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

time. However, because it is an unsupervised learning agent it still requires re-

peated examples of the new environment.

The amount of time it takes to converge to the threshold performance is

the most indicative parameter. This time is important because it represents the

amount of time in which the robot is learning instead of performing the desired

task. This metric is recorded by simply measuring the difference between the

start time of run and the time of each step. Table 5.4 shows the average time for

reaching the threshold performance with and without transfer learning. This ta-

ble shows that transfer learning reduces the learning time by 29 minutes for a

stationary target and 8 minutes for a non-stationary target.

For the experiment with both stationary and non-stationary targets, Table 5.4

shows the convergence time after the target is changed for simulations training

and without simulation training. This experiment first transfers the simulation to

the robot with a station target, and then after stabilizing the target is moved (like

the non-stationary test). The version without simulation runs the whole experi-

ment on the physical robot. The times for the recovery are very similar, which is to

be expected as they are just showing the recovery from the changed target exper-

iment. At this point both the transfer run and the no-transfer run have the same

knowledge and thus exhibit the same amount of recovery time. This demonstrates

the online nature of the algorithm. However, the total run-time is very different

as the transfer agent does 1400 iterations in simulation (11.44 minutes vs. 58.30

minutes). This is a difference of 47.37 minutes.

145

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

Table 5.4: Average Time for Convergence to Threshold Performance.

Task w/o Transfer (min) w/ Transfer (min)
Stationary Target 40.8 11.7

Non-stationary Target 41.1 33.0

Task w/o Transfer (min) w/ Transfer (min)
Both Targets: recovery 25.9 24.7
Both Targets: total time 129.5 82.1

5.4 Discussion

Here an efficient online motion-based task learning framework based on rein-

forcement learning is demonstrated. The framework works in high-dimensional

spaces in real-time, is reactive to changes in the environment, performs safe hard-

ware motions, and efficiently learns on hardware. The framework is demon-

strated by implementing it on a 7 DoF WAM using all joints to produce point-

ing motions with both stationary and non-stationary targets. The framework is

robust and extensible to other robotics systems as well as with different model

formulations, and for a large variety of tasks as well.

Dimensionality reduction and collision checks can be handled through PRMs

for any motion-based task. When PRMs are used in this manner, they impose

hard limits on the system. For example, self-collision states tend to be invariant to

the type of environment or the task, and are good candidates to be precomputed

ahead of time. When there is error in the model used for simulation caused by

noisy sensor data, the robot can explore the validity of the simulation’s roadmap

and learn how to efficiently navigate in the physical environment.

Transfer learning can be used to avoid early learning phases when the agent’s

performance tends to be erratic, to reduce wear and tear on robot, and to speed

up the learning process on the physical robot. It can be a powerful techniques to

mitigate the long convergence times of reinforcement learning. Combining trans-

146

Chapter 5. Transition Function Uncertainty: Integrated Planning and Learning

fer learning, reinforcement learning and probabilistic roadmap methods produces

a powerful framework for solving complex robotic tasks. By harnessing each

method’s strengths, the weaknesses of the other methods can be mitigated.

147

Chapter 6

Conclusions and Future Work

Uncertainty is a challenging problem that must be carefully considered in the

path planning problem. This work has shown that directly incorporating un-

certainty into the planning algorithms themselves provides superior solutions in

terms of clearance and success rates compared to methods which do not consider

uncertainty. This body of research presents solutions for three common types of

uncertainty faced in robotic motion planning tasks. First, Safety-PRM provides

a method for path planning with an inaccurate workspace model. Second, SR-

Query and APF-SR provide techniques for path planning with moving obstacles.

Finally, BECCA combined with PRMs demonstrates a technique for path plan-

ning with an unknown transition function. These methods all provide a first step

in moving robotics from controlled environments to uncontrolled and uncertain

real world situations.

This thesis presented three methods and evaluated them under strenuous con-

ditions. For Safety-PRM the amount of error in the model was increased beyond

current sensor technology error amounts. SR-Query and APF-SR had the number

of obstacles increased until the algorithm was no longer able to reliably produce

148

Chapter 6. Conclusions and Future Work

successful plans. Finally, BECCA combined with PRMs was stress tested by in-

creasing the number of DoF and changing the goal in the middle of a run. These,

tests both in simulation and the real world demonstrate that the methods pre-

sented are applicable to real robots and applications such as adapting to changing

environments.

For modeling uncertainty, directly encoding uncertainty into the roadmap us-

ing Safety-PRM provides a tunable and high clearance method at reduced runtime

cost compared to similar methods. This thesis showed that Safety-PRM was an or-

der of magnitude less expensive than MAPRM in terms of collision detection calls.

It also showed that the success rate of Safety-PRM reached 100% with a distortion

amount of σ = 10 for all roadmap sizes with γ > 0.9. However, the comparison

method MAPRM, which is known for high clearance paths, only reached 100%

success rate for the largest roadmap size of 2000 vertices. This shows that Safety-

PRM is a powerful method for handling inaccurate workspace models.

For moving obstacles, the incorporation of the formal SR sets into the ad-

hoc APF method produces a more accurate representation of the relative robot-

obstacle dynamics, which leads to an increased success rate during path planning.

SR sets combined with APF were shown to reach a 95% success rate with 300 mov-

ing obstacles compared to an 80% success with ORCA, a method for multi-robot

maneuvering in highly cluttered dynamic spaces.Thus, the incorporation of SR

sets allows path planning methods to construct more informed paths.

Finally, for transition function uncertainty, an online reinforcement learning

algorithm is a suitable candidate for a planner when paired with sampling based

techniques. Such a reinforcement learner continuously learns and updates its pol-

icy by incorporating the most recent experience from the environment and pro-

duces motion plans that are adaptive, real-time, and reactive. Combining PRMs

with reinforcement learning created an agent that was more agnostic to the state-

149

Chapter 6. Conclusions and Future Work

space size as shown by BECCA-PRM reaching the threshold performance within

600 iterations regardless of the number of joints used (1-DoF to 7-DoF). In contrast,

without using PRMs, BECCA never reached the threshold performance for just 3

joints despite being allowed to run for 70,000 iterations. This indicates that sam-

pling based techniques are a useful tool for reducing the state-space of learning

agents.

Each method is complementary to the others as each presents a solution to

a specific type of uncertainty. While these methods are useful by themselves,

there is still a leap to be made in order to bring fully autonomous robotics into

real world situations. The next logical extension of this work is to combine all

three methods into a single overarching framework to handle all three uncertainty

types simultaneously. This framework would bring robotics another step closer

to widespread use for free linkage, free rigid body, and fixed linkage robots.

150

References

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automat-
ica, pages 2724–2734, 2008.

[2] A. Agha-mohammadi, S. Chakravorty, and N.M. Amato. On the probabilis-
tic completeness of the sampling-based feedback motion planners in belief
space. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3983–3990, 2012.

[3] Rami Al-Hmouz, Tauseef Gulrez, and Adel Al-Jumaily. Probabilistic road
maps with obstacle avoidance in cluttered dynamic environment. In IEEE
Intelligent Sensors, Sensor Networks and Information Processing Conf., pages
241–245, 2004.

[4] R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion roadmap:
A sampling framework for planning with markov motion uncertainty. In
Robotics: Science and Systems, pages 246–253. Citeseer, 2007.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3D workspaces. In Robotics: The Algorithmic Per-
spective, pages 155–168, Natick, MA, 1998. A.K. Peters. Proc. Third Work-
shop on Algorithmic Foundations of Robotics (WAFR), Houston, TX, 1998.

[6] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and map-
ping (slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117,
2006.

[7] J. Barraquand, L. E. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and
P. Raghavan. A random sampling scheme for path planning. Int. J. of Rob.
Res, 16(6):759–774, 1997.

[8] E. Bertin. Diagrammes de Voronoi 2D et 3D: applications en analyse d’images.
PhD thesis, Grenoble, France, 1994.

151

References

[9] E. Bertin, S. Marchand-Maillet, and J. M. Chassery. Optimizations in
Voronoi diagrams. In J. Serra and P. Soille, editors, Mathematical Morphology
and Its Applications to Image Processing, pages 209–216. Kluwer Academic,
Dordrecht, The Netherlands, 1994.

[10] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci.,
2005.

[11] R. Bohlin and L. E. Kavraki. Path planning using Lazy PRM. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pages 521–528, 2000.

[12] Robert Bohlin. Path planning in practice; lazy evaluation on a multi-
resolution grid. In Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, volume 1, pages 49–54. IEEE, 2001.

[13] Oliver Brock and Oussama Khatib. Elastic strips: Real-time path modifica-
tion for mobile manipulation. International Symposium of Robotics Research,
8:5–13, 1997.

[14] Brendan Burns and Oliver Brock. Sampling-based motion planning with
sensing uncertainty. In Robotics and Automation, 2007 IEEE International Con-
ference on, pages 3313–3318. IEEE, 2007.

[15] Omer Cetin, Sefer Kurnaz, Okyay Kaynak, and Hakan Temeltas. Poten-
tial field-based navigation task for autonomous flight control of unmanned
aerial vehicles. International Journal of Automation and Control, 5(1):1–21,
2011.

[16] S. Chakravorty and S. Kumar. Generalized sampling-based motion plan-
ners. IEEE Trans. Sys., Man, Cybern., 41(3):855–866, 2011.

[17] Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi, and Lydia
Tapia. Aggressive moving obstacle avoidance using a stochastic reachable
set based potential field. Workshop on the Algorithmic Foundations of Robotics,
2014.

[18] Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi, and Lydia
Tapia. Path-guided artificial potential fields with stochastic reachable sets
for motion planning in highly dynamic environments. In Proc. IEEE Int.
Conf. Robot. Autom.(ICRA), 2015.

[19] H. Choset and J. Burdick. Sensor-based exploration: The hierarchial gener-
alized voronoi graph. Int. J. Robot. Res., 19(2):96–125, 2000.

152

References

[20] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wol-
fram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA,
June 2005.

[21] Howie Choset, Sean Walker, Kunnayut Eiamsa-Ard, and Joel Burdick.
Sensor-based exploration: Incremental construction of the hierarchical gen-
eralized voronoi graph. Int. J. Robot. Res., 19(2):126–148, 2000.

[22] Jory Denny and N.M. Amato. Toggle prm: Simultaneous mapping of c-free
and c-obstacle - a study in 2d -. In Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, pages 2632–2639, 2011.

[23] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, pages 269–271, 1959.

[24] J. Ding, E. Li, Haomiao Huang, and C.J. Tomlin. Reachability-based synthe-
sis of feedback policies for motion planning under bounded disturbances.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2160–2165, 2011.

[25] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Path planning for autonomous vehicles in unknown semi-structured envi-
ronments. The International Journal of Robotics Research, 29(5):485–501, 2010.

[26] N. Engelharda, F. Endresa, J. Hessa, J. Sturmb, and W. Burgarda. Real-time
3d visual slam with a hand-held rgb-d camera. In Proc. of the RGB-D Work-
shop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Swe-
den, volume 2011, 2011.

[27] Sarah Ferguson, Brandon Luders, Robert C Grande, and Jonathan P How.
Real-time predictive modeling and robust avoidance of pedestrians with
uncertain, changing intentions. International Workshop on the Algorithmic
Foundations of Robotics, 2014.

[28] Tamar Flash and Neville Hogans. The coordination of arm movements:
An experimentally confirmed mathematical model. Journal of neuroscience,
5:1688–1703, 1985.

[29] Jodi Forlizzi and Carl DiSalvo. Service robots in the domestic environment:
a study of the roomba vacuum in the home. In Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pages 258–265. ACM,
2006.

153

References

[30] Mark Foskey, Maxim Garber, Ming C. Lin, and Dinesh Manocha. Sm01-
144: A voronoi-based framework for motion planning and maintainability
applications. Technical report, University of North Carolina, 2001.

[31] Open Perception Foundation. Point cloud library, 2014.

[32] Shuzhi S. Ge and Yun J Cui. Dynamic motion planning for mobile robots
using potential field method. Autonomous Robots, 13(3):207–222, 2002.

[33] Shuzhi Sam Ge and Yan Juan Cui. New potential functions for mobile robot
path planning. IEEE Transactions on robotics and automation, 16(5):615–620,
2000.

[34] R. Geraerts and M. H. Overmars. Creating high-quality roadmaps for mo-
tion planning in virtual environments. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 4355–4361, 2006.

[35] Jeremy H. Gillula, Gabriel M. Hoffmann, Huang Haomiao, Michael P. Vitus,
and Claire J. Tomlin. Applications of hybrid reachability analysis to robotic
aerial vehicles. Int. J. Robot. Res., pages 335–354, 2011.

[36] Sani Hashim and Tien-Fu Lu. A new strategy in dynamic time-dependent
motion planing for nonholonomic mobile robots. In IEEE International Con-
ference on Robotics and Biomimetics (ROBIO), pages 1692–1697, Dec 2009.

[37] Kris Hauser, Timothy Bretl, Jean-Claude Latombe, and Brian Wilcox. Mo-
tion planning for a six-legged lunar robot. In Srinivas Akella, NancyM.
Amato, WesleyH. Huang, and Bud Mishra, editors, Algorithmic Foundation
of Robotics VII, volume 47 of Springer Tracts in Advanced Robotics, pages 301–
316. Springer Berlin Heidelberg, 2008.

[38] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using
depth cameras for dense 3d modeling of indoor environments. In the 12th
International Symposium on Experimental Robotics (ISER), 2010.

[39] John Hopcroft, Deborah Joseph, and Sue Whitesides. Movement problems
for 2-dimensional linkages. SIAM Journal on Computing, 13(3):610–629, 1984.

[40] John E Hopcroft and Gordon T. Wilfong. Reducing multiple object motion
planning to graph searching. SIAM Journal on Computing, 15(3):768–785,
1986.

[41] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic
motion planning with moving obstacles. In Proc. Int. Workshop on Algorith-
mic Foundations of Robotics (WAFR), pages SA1–SA18, 2000.

154

References

[42] D. Hsu, J-C. Latombe, and Hanna Kurniawati. Foundations of probabilis-
tic roadmap planning. In Proc. Int. Workshop on Algorithmic Foundations of
Robotics (WAFR), 2006.

[43] A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and
N. Roy. Visual odometry and mapping for autonomous flight using an rgb-
d camera. In Int. Symposium on Robotics Research (ISRR),(Flagstaff, Arizona,
USA), 2011.

[44] Yifeng Huang and Kamal Gupta. Rrt-slam for motion planning with mo-
tion and map uncertainty for robot exploration. In Intelligent Robots and Sys-
tems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 1077–1082.
IEEE, 2008.

[45] Barrett Technollogy Inc. Wam arm, 2015.

[46] L. Jaillet and T. Simeon. A PRM-based motion planner for dynamically
changing environments. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), 2004.

[47] Léonard Jaillet, Juan Cortés, and Thierry Siméon. Sampling-based path
planning on configuration-space costmaps. Robotics, IEEE Transactions on,
26(4):635–646, 2010.

[48] Leonard Jaillet and Thierry Siméon. Path deformation roadmaps: Com-
pact graphs with useful cycles for motion planning. I. J. Robotic Res., 27(11-
12):1175–1188, 2008.

[49] M. Kamgarpour, J. Ding, S. Summers, A. Abate, J. Lygeros, and C. Tom-
lin. Discrete time stochastic hybrid dynamical games: Verification and con-
troller synthesis. In IEEE Conf. on Decision and Cont., pages 6122–6127, 2011.

[50] R. Katz, N. Melkumyan, J. Guivant, T. Bailey, J. Nieto, and E. Nebot. In-
tegrated sensing framework for 3d mapping in outdoor navigation. In In-
telligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages
2264–2269. IEEE, 2006.

[51] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. Robot. Automat., 12(4):566–580, August 1996.

[52] Lydia E Kavraki and Jean-Claude Latombe. Probabilistic roadmaps for
robot path planning. 1998.

[53] Oussama Khatib. Real-time obstacle avoidance for manipulators and mo-
bile robots. The international journal of robotics research, 5(1):90–98, 1986.

155

References

[54] T. Khuswendi, H. Hindersah, and W. Adiprawita. Uav path planning using
potential field and modified receding horizon a* 3d algorithm. In Electrical
Engineering and Informatics (ICEEI), 2011 International Conference on, pages
1–6, July 2011.

[55] K. Konolige. Projected texture stereo. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 148–155. IEEE, 2010.

[56] Hanna Kurniawati and Vinay Yadav. An online pomdp solver for uncer-
tainty planning in dynamic environment. ISRR, 2013.

[57] Chi-Pang Lam, Chen-Tun Chou, Kuo-Hung Chiang, and Li-Chen Fu.
Human-centered robot navigation towards a harmoniously human–robot
coexisting environment. Robotics, IEEE Transactions on, 27(1):99–112, 2011.

[58] Heon-Cheol Lee, Touahmi Yaniss, and Beom-Hee Lee. Grafting: a path re-
planning technique for rapidly-exploring random trees in dynamic environ-
ments. Advanced Robotics, 26(18):2145–2168, 2012.

[59] Stephen R Lindemann and Steven M LaValle. Current issues in sampling-
based motion planning. In Robotics Research, pages 36–54. Springer, 2005.

[60] A. Majumdar and R. Tedrake. Robust online motion planning with regions
of finite time invariance. In Algorithmic Foundations of Robotics, pages 543–
558. Springer, 2013.

[61] Nick Malone, Hao-Tien Chiang, Kendra Lesser, Steven Cutlip, Nathan
Rackley, Meeko Oishi, and Lydia Tapia. Hybrid dynamic moving obstacle
avoidance using a stochastic reachable set based potential field. In Under
submission.

[62] Nick Malone, Aleksandra Faust, Brandon Rohrer, Ron Lumia, John Wood,
and Lydia Tapia. Efficient motion-based task learning for a serial link ma-
nipulator. Transaction on Control and Mechanical Systems, 3(1), 2014.

[63] Nick Malone, Aleksandra Faust, Brandon Rohrer, John Wood, and Lydia
Tapia. Efficient motion-based task learning. In Robot Motion Planning Work-
shop, IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct
2012.

[64] Nick Malone, Kendra Lesser, Meeko Oishi, and Lydia Tapia. Stochastic
reachability based motion planning for multiple moving obstacle avoid-
ance. In Hybrid Systems: Computation and Control. HSCC, 2014.

156

References

[65] Nick Malone, Kasra Manavi, Ron Lumia, John Wood, and Lydia Tapia. Mo-
tion planning using roadmaps that incorporate workspace modeling errors.
In Under submission.

[66] Nick Malone, Kasra Manavi, John Wood, and Lydia Tapia. Construction
and use of roadmaps that incorporate workspace modeling errors. In Proc.
IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 1264–1271, 2013.

[67] Nick Malone, Kasra Manavi, John Wood, and Lydia Tapia. Construction
and use of roadmaps that incorporate workspace modeling errors. In In-
telligent Robots and Systems, 2013. (IROS 2013). Proceedings. 2013 IEEE/RSJ
International Conference on, pages 1264–1271, 2013.

[68] Nick Malone, Brandon Rohrer, Lydia Tapia, Ron Lumia, and John Wood.
Implementation of an embodied general reinforcement learner on a serial
link manipulator. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 862–
869, May 2012.

[69] K. Margellos and J. Lygeros. Hamilton-Jacobi formulation for reach-avoid
problems with an application to air traffic management. Amer. Cont. Conf.,
pages 3045–3050, 2010.

[70] Mauro Massari, Giovanni Giardini, and Franco Bernelli-Zazzera. Au-
tonomous navigation system for planetary exploration rover based on ar-
tificial potential fields. In Proceedings of Dynamics and Control of Systems and
Structures in Space (DCSSS) 6th Conference, pages 153–162, 2004.

[71] MathWorks. MATLAB version 7.7.0 r2008b, 2008.

[72] MATLAB. version 7.7.0 R2008b. The MathWorks Inc., 2007.

[73] Microsoft. Kinect sensor, 2015.

[74] Patrycja E Missiuro and Nicholas Roy. Adapting probabilistic roadmaps to
handle uncertain maps. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
1261–1267, 2006.

[75] I.M. Mitchell, A. Bayen, and C.J. Tomlin. A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games. Trans. on Auto.
Cont., pages 947–957, 2005.

[76] Toshiharu Mukai, Shinya Hirano, Hiromichi Nakashima, Yo Kato, Yuki
Sakaida, Shijie Guo, and Shigeyuki Hosoe. Development of a nursing-care
assistant robot riba that can lift a human in its arms. In Intelligent Robots and

157

References

Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 5996–6001.
IEEE, 2010.

[77] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev. Anytime
safe interval path planning for dynamic environments. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 4708–
4715. IEEE, 2012.

[78] Chuong V Nguyen, Shahram Izadi, and David Lovell. Modeling kinect
sensor noise for improved 3d reconstruction and tracking. In 3d Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second
Conference on, pages 524–530. IEEE, 2012.

[79] Dennis Nieuwenhuisen, Jur van den Berg, and Mark Overmars. Efficient
path planning in changing environments. In Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), pages 3295–3301, 2007.

[80] Jung-Jun Park, Ji-Hun Kim, and Jae-Bok Song. Path planning for a robot
manipulator based on probabilistic roadmap and reinforcement learning.
International Journal of Control, Automation, and Systems, 5(6):674–680, 2007.

[81] Sachin Patil, Jur Van Den Berg, Sean Curtis, Ming C Lin, and Dinesh
Manocha. Directing crowd simulations using navigation fields. Visualization
and Computer Graphics, IEEE Transactions on, 17(2):244–254, 2011.

[82] Romain Pepy and Alain Lambert. Safe path planning in an uncertain-
configuration space using rrt. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 5376–5381. IEEE, 2006.

[83] S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief
space by factoring the covariance. The Int. Journal of Robotics Research, 28(11-
12):1448–1465, 2009.

[84] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path plan-
ning and control. In In Proc. of the International Conference on Robotics and
Automation, pages 802–807, 1993.

[85] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, et al. Bigdog,
the rough-terrain quadruped robot. In Proceedings of the 17th World Congress,
volume 17, pages 10822–10825, 2008.

[86] Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. A framework for
planning motion in environments with moving obstacles. In Proc. IEEE Int.
Conf. Intel. Rob. Syst. (IROS), 2007.

158

References

[87] B. Rohrer. Biologically inspired feature creation for multi-sensory percep-
tion. In Proc. Int. Conf. on Biologically Inspired Cognitive Architectures, volume
233 of Frontiers in Artificial Intelligence and Applications, pages 305–313. IOS
Press, Nov 2011.

[88] B. Rohrer. A developmental agent for learning features, environment mod-
els, and general robotics tasks. In IEEE Conference on Development and Learn-
ing and Epigenetic Robotics, Aug 2011.

[89] Brandon Rohrer. An implemented architecture for feature creation and gen-
eral reinforcement learning. In Workshop on Self-Programming in AGI Syst.,
Int. Conf. on Artificial General Intelligence, Aug 2011.

[90] Brandon Rohrer. BECCA: Reintegrating AI for natural world interaction.
In AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI
2012, Mar 2012.

[91] M. S. Branicky S. M. Lavalle and S. R. Lindemann. On the relationship be-
tween classical grid search and probabilistic roadmaps. Int. J. Robot. Res.,
23(7–8):673–692, 2004.

[92] Z. Shiller, K. Yamane, and Y. Nakamura. Planning motion patterns of hu-
man figures using a multi-layered grid and the dynamics filter. In Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), volume 1, pages 1–8, 2001.

[93] Zvi Shiller, Frederic Large, and Sepanta Sekhavat. Motion planning in dy-
namic environments: obstacles moving along arbitrary trajectories. In Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), volume 4, pages 3716–3721, 2001.

[94] T. Simeon, J.-P. Laumond, and C. Nissoux. Visibility-based probabilistic
roadmaps for motion planning. Advanced Robotics, 14(6):477–493, 2000.

[95] G. Song, S. L. Miller, and N. M. Amato. Customizing PRM roadmaps at
query time. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1500–1505,
2001.

[96] Qiang Song and Lingxia Liu. Mobile robot path planning based on dynamic
fuzzy artificial potential field method. International Journal of Hybrid Infor-
mation Technology, 5(4), 2012.

[97] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard,
D. Cremers, and R. Siegwart. Towards a benchmark for rgb-d slam evalua-
tion. In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cam-
eras at Robotics: Science and Systems Conf.(RSS), Los Angeles, USA, volume 2,
page 3, 2011.

159

References

[98] Sean Summers, Maryam Kamgarpour, John Lygeros, and Claire Tomlin. A
stochastic reach-avoid problem with random obstacles. In Proc. Int. Conf.
Hybrid Sys.: Comp. and Cont. (HSCC), pages 251–260, 2011.

[99] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Adap-
tive Computation and Machine Learning. MIT Press, MIT, 1998.

[100] R. Takei, Haomiao Huang, J. Ding, and C.J. Tomlin. Time-optimal multi-
stage motion planning with guaranteed collision avoidance via an open-
loop game formulation. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
323–329, 2012.

[101] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement
learning domains: A survey. J. Mach. Learn. Res., 10:1633–1685, Dec 2009.

[102] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the
new millennium, 1:1–35, 2003.

[103] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3d mapping. In Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol-
ume 1, pages 321–328. IEEE, 2000.

[104] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT press, 2005.

[105] Goce Trajcevski, Ouri Wolfson, Klaus Hinrichs, and Sam Chamberlain.
Managing uncertainty in moving objects databases. ACM Transactions on
Database Systems (TODS), 29(3):463–507, 2004.

[106] Dugan Um, Marco A Gutiérrez, Pablo Bustos, and Sungchul Kang. Simulta-
neous planning and mapping (spam) for a manipulator by best next move
in unknown environments. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 5273–5278. IEEE, 2013.

[107] Prahlad Vadakkepat, Kay Chen Tan, and Wang Ming-Liang. Evolutionary
artificial potential fields and their application in real time robot path plan-
ning. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on,
volume 1, pages 256–263. IEEE, 2000.

[108] Kimon P Valavanis, Timothy Hebert, Ramesh Kolluru, and Nikos
Tsourveloudis. Mobile robot navigation in 2-d dynamic environments using
an electrostatic potential field. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 30(2):187–196, 2000.

160

References

[109] Jur Van Den Berg, Dave Ferguson, and James Kuffner. Anytime path plan-
ning and replanning in dynamic environments. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), pages 2366–2371, 2006.

[110] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Recip-
rocal n-body collision avoidance. In Robotics research, pages 3–19. Springer,
2011.

[111] Jur P van den Berg, Dennis Nieuwenhuisen, Léonard Jaillet, and Mark H
Overmars. Creating robust roadmaps for motion planning in changing en-
vironments. In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 1053–1059,
2005.

[112] Jur P Van Den Berg and Mark H Overmars. Roadmap-based motion plan-
ning in dynamic environments. IEEE Transactions on Robotics, pages 885–897,
2005.

[113] Su Weijun, Meng Rui, and Yu Chongchong. A study on soccer robot path
planning with fuzzy artificial potential field. In Computing, Control and In-
dustrial Engineering (CCIE), 2010 International Conference on, volume 1, pages
386–390, June 2010.

[114] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), volume 2, pages 1024–1031, 1999.

[115] Y. Wu. An obstacle-based probabilistic roadmap method for path planning.
Master’s thesis, Department of Computer Science, Texas A&M University,
1996.

[116] Eiichi Yoshida and Fumio Kanehiro. Reactive robot motion using path re-
planning and deformation. In ICRA, pages 5456–5462, 2011.

161

	University of New Mexico
	UNM Digital Repository
	12-1-2015

	High-Dimensional Motion Planning and Learning Under Uncertain Conditions
	Nick D. Malone
	Recommended Citation

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Contributions

	Related Work
	Motion Planning
	Validation
	Motion Planning with Uncertainty
	Modeling Environments With Sensors
	Clearance-informed Roadmaps
	Modifiable Roadmap Methods

	Moving Obstacles
	Planning With Uncertainty

	Stochastic Reachability

	Modeling Uncertainty: Inaccurate Workspaces
	Safety-PRM Method
	Vertex Generation
	Vertex Connection

	Experiments
	Simulated Noise with Rigid Bodies and Linkages
	Environments
	Rigid Bodies
	Linkages

	Varying Level of Noise in the Environment Model
	Error Models
	Environments
	Spherical Error Model
	Gaussian Error Model
	Log-Normal Error Model

	Kinect Reconstructed Environment with Physical Robot Validation
	Whole Arm Manipulator
	Environment
	WAM Validation
	Dynamic Replanning

	Conclusions

	Spatio-Temporal Uncertainty: Moving Obstacle Avoidance
	SR-Query
	Preliminaries
	Methods
	SR for Collision Avoidance
	Experiments
	Conclusions

	APF-SR
	Modeling and Stochastic Reachability Analysis
	Robot Dynamics
	Obstacle Dynamics
	Relative robot-obstacle dynamics
	Stochastic Reachable Sets for Collision Avoidance

	Methods
	Experiments
	Experimental Setup
	Stochastic Reachable Set Approximation
	Method and Environmental Parameter Evaluation
	Holonomic Robot Experiments
	Unicycle Robot Experiments

	Conclusion

	Transition Function Uncertainty: Integrated Planning and Learning
	Preliminaries
	BECCA
	Transfer Learning

	Methods
	Probabilistic Roadmaps Creation
	Task definition
	Transfer Learning from Simulation to Hardware
	WAM Simulator
	WAM Interface

	Experiments
	Dimensionality reduction utility
	Transfer Learning on Pointing Task with Stationary Target
	Pointing Task with Non-stationary Target
	Timing

	Discussion

	Conclusions and Future Work
	References

