
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2009

Learning condition-specific networks
Sushmita Roy

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Roy, Sushmita. "Learning condition-specific networks." (2009). https://digitalrepository.unm.edu/cs_etds/6

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/6?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Learning condition-specific networks

by

Sushmita Roy

B.E., University of Pune, 2000
M.S., Computer Science, University of New Mexico, 2005

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009

c©2009, Sushmita Roy

iii

Dedication

To my mother for her strength and inspiration.

iv

Acknowledgments
This dissertation is not complete without its acknowledgements. The list is long, and
rightfully so. The work described in this dissertation lies in the intersection of Computer
Science and Biology, and would not be possible without two important people: Dr. Terran
Lane and Dr. Margaret Werner-Washburne. I am thankful to Dr. Lane for introducing
me to machine learning and artificial intelligence, for sharing many lessons, including
those about life in general, on how to be a good researcher and a good scientist, and
for being a person with inexhaustible patience and encouragement. I am thankful to Dr.
Washburne for introducing me to the logic within cells, for teaching me to appreciate all
life, unicellular and multicellular, to ask the questions that matter, for her faith in me and
for her immensely inspiring positive attitude. I would also like to thank the rest of my PhD
committee (Dr. Melanie Moses and Dr. Susan Atlas) for the many exchanges we have had
in reading groups, for being interested in my research and for taking the time to be on my
committee.

I thank the various funding agencies (National Institute of Health, National Science
Foundation, Howard Hughes Medical Institute) for granting us funds to pursue the ideas
described in this dissertation. In particular, I would like to acknowledge the grants from
NIMH (1R01MH076282-03) and NSF (IIS-0705681) to Dr. Lane, from NIH (GM-67593)
and NSF (MCB0734918) to Dr. Washburne and from HHMI-NIH/NIBIB (56005678) to
the Program in Interdisciplinary Biological and Biomedical Sciences (PIBBS).

I would like to thank Dr. Bruce Birren for introducing me to Dr. Manolis Kellis, and
to Dr. Kellis, for giving me the opportunity to spend a summer in his lab where I learned
about comparative genomics. I would like to thank Dr. Alexander Stark for introducing
me to the fly model organism and to important bioinformatics resources that are available
for fly.

I am thankful to my professors in the UNM Computer science department, from whom
I have taken classes, for introducing me to the various facets of computer science research,
which are important to obtain a well-rounded perspective of the field of Computer science.

I would like to thank the friendly staff at the Computer science department for helping
me with administrative issues and to the Computer science systems group for allowing
me to take humongous amounts of disk-space, and for giving me access to CPU resources
without which a lot of the experimental work described here would be difficult.

I am thankful to researchers, including those from our lab, who have made their data
available for other people to apply their algorithms for novel biological pattern recognition
and discovery. I am also thankful to researchers establishing and maintaining databases in
a readily downloadable and parsable manner.

I am thankful to past and present members machine learning research group at UNM
for sharing and brain-storming papers and discussing important ML concepts, many of
which have been important in this work. I am also thankful to the members of the bioinfor-
matics reading group for contributing and brain-storming ideas from biology and computer

v

science. I am also thankful to the past and present members of the Werner-Washburne lab-
oratory for their co-operative and collaborative spirit, and being wonderful colleagues. I
am thankful to the PIBBS community at UNM for being such a great group of interdisci-
plinary researchers.

I am thankful to my friends, Sergey, Eva, and Sahar, for their help and support, for
giving me advice and encouragement and listening to my ravings, complaints and frustra-
tions.

I am thankful to my family, my sister, my mother and my father, for their love and faith
in me and taking pride in everything thing I have done and telling me from time to time
that I am a nerd.

Last, but not the least, I am thankful to Andreas, my friend, philosopher, and soulmate,
for his patience, love and support, and for being there for me.

vi

Learning condition-specific networks

by

Sushmita Roy

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009

Learning condition-specific networks

by

Sushmita Roy

B.E., University of Pune, 2000
M.S., Computer Science, University of New Mexico, 2005

PhD., Computer Science, University of New Mexico, 2009

Abstract

Condition-specific cellular networks are networks of genes and proteins that describe func-

tional interactions among genes occurring under different environmental conditions. These

networks provide a systems-level view of how the parts-list (genes and proteins) interact

within the cell as it functions under changing environmental conditions and can provide

insight into mechanisms of stress response, cellular differentiation and disease susceptibil-

ity. The principle challenge, however, is that cellular networks remain unknown for most

conditions and must be inferred from activity levels of genes (mRNA levels) under differ-

ent conditions. This dissertation aims to develop computational approaches for inferring,

analyzing and validating cellular networks of genes from expression data.

This dissertation first describes an unsupervised machine learning framework for in-

ferring cellular networks using expression data from a single condition. Here cellular

networks are represented as undirected probabilistic graphical models and are learned us-

ing a novel, data-driven algorithm. Then several approaches are described that can learn

viii

networks using data from multiple conditions. These approaches apply to cases where the

condition may or may not be known and, therefore, must be inferred as part of the learning

problem. For the latter, the condition variable is allowed to influence expression of genes

at different levels of granularity: condition variable per gene to a single condition variable

for all genes.

Results on simulated data suggest that the algorithm performance depends greatly on

the size and number of connected components of the union network of all conditions.

These algorithms are also applied to microarray data from two yeast populations, qui-

escent and non-quiescent, isolated from glucose starved cultures. Our results suggest

that by sharing information across multiple conditions, better networks can be learned for

both conditions, with many more biologically meaningful dependencies, than if networks

were learned for these conditions independently. In particular, processes that were shared

among both cell populations were involved in response to glucose starvation, whereas the

processes specific to individual populations captured characteristics unique to each popu-

lation. These algorithms were also applied for learning networks across multiple species:

yeast (S. cerevisiae) and fly (D. melanogaster). Preliminary analysis suggests that shar-

ing patterns across species is much more complex than across different populations of the

same species and basic metabolic processes are shared across the two species.

Finally, this dissertation focuses on validation of cellular networks. This validation

framework describes scores for measuring how well network learning algorithms capture

higher-order dependencies. This framework also introduces a measure for evaluating the

entire inferred network structure based on the extent to which similarly functioning genes

are close together on the network.

ix

Contents

List of Figures xvi

List of Tables xxi

1 Introduction 1

1.1 Overview of the learning condition-specific networks 6

1.1.1 Information flow in biological systems 6

1.1.2 Condition-specific network learning framework 7

1.2 The computational challenges of learning networks 8

1.3 Computational contributions of this dissertation 12

1.4 Biological challenges of condition-specific networks 12

1.5 Biological contributions of this dissertation 15

1.6 Organization of this dissertation . 16

2 Background and related work 18

2.1 Cellular networks . 18

x

Contents

2.1.1 Network classification: node type 20

2.1.2 Network classification: edge semantics 23

2.2 Condition-specific response . 24

2.2.1 Network-based methods of condition-specific response 24

2.3 Approaches of network learning . 28

2.4 Modeling biological networks as probabilistic graphical models 32

3 Evaluation framework of unsupervised learning of biological networks 35

3.1 Simulation framework for generating realistic data 36

3.1.1 Transcriptional regulatory network generator 37

3.1.2 Example network . 38

3.2 Structural comparison of inferred network structures 40

3.2.1 Topological comparison of higher-order structures 41

3.2.2 Structural comparison of multiple networks 43

3.3 Functional comparison of inferred networks 44

3.3.1 Pseudo likelihood . 44

3.3.2 Symmetric Kullback-Leibler (KL) divergence 45

3.4 Biological validation . 46

3.4.1 Annotation topological measure 47

3.4.2 Gene ontology enrichment analysis 49

3.4.3 Semantic similarity . 50

xi

Contents

4 Learning undirected graphical models for biological networks 51

4.1 Representing biological networks as undirected probabilistic graphs . . . 52

4.1.1 Markov random fields . 53

4.1.2 Markov blanket search (MBS) algorithm 54

4.1.3 Family of potential functions . 57

4.1.4 Results . 60

4.2 Scalable learning of large networks . 66

4.2.1 Speeding up structure search using Cluster and Infer Networks (CIN) 67

4.2.2 Results . 69

4.3 Conclusion . 74

5 Higher-order dependencies: what’s the deal 77

5.1 Higher-order dependencies in biological networks 78

5.2 Experimental strategy . 79

5.3 Results . 80

5.4 Discussion . 82

6 Different formulations of learning condition-specific networks 86

6.1 Learning independent networks for each condition 86

6.1.1 Data pre-processing . 87

6.1.2 Experimental methods . 87

xii

Contents

6.1.3 Results . 90

6.1.4 Modular organization in quiescent, non-quiescent and exponential

cells. 90

6.1.5 Fine grained analysis of the cell populations 92

6.2 Learning condition-specific networks that incorpor-ate shared information 97

6.2.1 Network Inference with Pooling Data (NIPD) 97

6.2.2 Experiments . 107

6.2.3 Learning condition-specific networks with unobserved condition . 113

6.3 Experimental setup . 127

6.4 Results . 128

6.4.1 Generative model comparison 128

6.4.2 Effect of different network topology on model performance . . . 132

6.4.3 Parameter tying . 150

6.5 Discussion . 151

7 Application to condition-specific and species-specific networks 163

7.1 Learning condition-specific networks in yeast stationary phase 164

7.1.1 NIPD identified more biologically meaningful dependencies . . . 165

7.1.2 Shared metabolic and regulatory processes in yeast stationary phase 167

7.1.3 Wiring differences capture population-specific starvation

response . 169

xiii

Contents

7.1.4 NIPD identified several deletion combinations 172

7.2 Condition-specific networks for learning inter-species networks 173

7.2.1 Data processing . 175

7.2.2 Results . 175

7.3 Suitability of methods for different condition-specific network learning

problems . 180

7.4 Conclusion . 182

8 Conclusions 191

8.1 Discussion . 191

8.2 Future work . 197

Appendices 201

A Equivalence of Markov blanket and per-variable canonical parameters 202

A.1 Hammersly-Clifford theorem and canonical potentials 202

A.2 Markov blanket canonical parameterization 203

A.2.1 Per-variable MB canonical factors 204

B Deriving the normalization term and quantifying the correction 208

B.1 Correction for the unnormalized score 211

C Deriving a decomposable pseudo likelihood score in the MUG model 216

xiv

Contents

D Parameter tying in the conditional Gaussian mixture 219

E Supplementary GO information of quiescent and non-quiescent populations 222

Glossary 230

References 235

xv

List of Figures

1.1 Information flow in biological systems 4

1.2 Overview of the framework of learning condition-specific networks. . . 5

1.3 Different formulations of condition-specific network learning. 10

2.1 Building blocks of condition-specific networks 19

2.2 Biological networks at different resolutions of detail 28

3.1 Example network from RENCO with gene and protein time courses. . . 39

3.2 G4 time course under knock out combinations of G0, G1 and G2) 40

4.1 Performance comparison of different models for the conditional distribu-

tion. The x-axis is for datasets. 62

4.2 Run time for different algorithms; lower runtimes are better. 71

4.3 Match scores for different algorithms; higher scores are better. 72

4.4 Number of subgraphs that were enriched in a GO slim process term at a

specific p-value. 74

xvi

List of Figures

4.5 ATS measure of real and random networks at different p-values. Lower

ATS is better. Results are shown on log-log scale. 74

5.1 Topological properties of networks as a function of p. 80

5.2 Performance of ARACNE and MBS on the ECOLI dataset. 82

5.3 Performance of ARACNE and MBS on the YEAST dataset. 83

5.4 Performance of ARACNE and MBS on the G75 dataset. 84

5.5 Performance comparison of ARACNE and MBS using pathwise scores . 85

6.1 Coarse modular organization of networks inferred from the quiescent and

non-quiescent populations. 91

6.2 Coarse modular organization in the network inferred from exponentially

growing cells. Figure legend is the same as Fig 6.2 92

6.3 Structure comparison on the two sets of networks using the NIPD-PROD

and INDEP models. 109

6.4 Structure comparison on the two sets of networks using the NIPD-WTSUM

and INDEP models. 110

6.5 Structure comparison on the two sets of networks using the NIPD-WT-

LEARN and INDEP models. 111

6.6 Comparison of different algorithms using match of shared edges. 112

6.7 Mixture models controlling condition-specificity at different levels of

granularity. 116

6.8 Union networks for the network pairs used in the simulations. 130

xvii

List of Figures

6.9 Structural comparison of different models on network pair NET12. . . . 135

6.10 Structural comparison of different models on network pair NET12 contd. 136

6.11 Structural comparison of different models on network pair NET16. . . . 137

6.12 Structural comparison of different models on network pair NET16 contd. 138

6.13 Structural comparison of different models on network pair NET12-66. . 139

6.14 Structural comparison of different models on network pair NET12-66

contd. 140

6.15 Structural comparison of different models on network pair NET12 using

the MUGs generative model. 141

6.16 Structural comparison of different models on network pair NET16 using

the MUGs generative model. 142

6.17 Structural comparison of different models on network pair NET12-66

using the MUGs generative model. 143

6.18 Structural comparison of different models on network pair NET12 using

the INDEP generative model. The remaining legend is same as 6.9. . . . 144

6.19 Structural comparison of different models on network pair NET16 using

the INDEP generative model. 145

6.20 Structural comparison of different models on network pair NET12-66

using the INDEP generative model. 146

6.21 Structural comparison of PVEM versus MUG on networks with different

topologies. 147

6.22 Structural comparison of GC-COND versus MUG on networks with dif-

ferent topologies. 148

xviii

List of Figures

6.23 Structural comparison of PVEM versus GC-COND on networks with dif-

ferent topologies. 149

6.24 Functional comparison of PVEM versus MUG models on networks with

different topologies. 155

6.25 Functional comparison of GC-COND versus MUG models on networks

with different topologies. 156

6.26 Functional comparison of PVEM versus GC-COND models on networks

with different topologies. 157

6.27 Structural comparison of models with and without parameter tying on

network pairs with varying similarity. 158

6.28 Functional comparison of models with and without parameter tying on

network pairs with varying similarity. 159

6.29 Comparison of GC-COND and GC-CONDSH models using number of

shared edges that are captured correctly. 160

6.30 Comparison of GC-COND and GC-CONDSH models using stability of

the network structure. 161

6.31 Comparison of GC-COND and GC-CONDSH models using stability of

the network structure. 162

7.1 Coverage analysis of different annotation categories. 186

7.2 Number of inferred edges as a function of semantic similarity. 187

7.3 Semantic similarity of inferred graphs from different methods. 188

xix

List of Figures

7.4 Comparison of the inferred networks by our different condition-specific

network learning approaches against the networks inferred by the Stuart

et al. study. 188

7.5 Decision tree for selecting different models based on dataset attributes.

PVEM has a ∗ because our placement of PVEM in the decision tree is

based only on simulated data. 190

E.1 GO processes and TF targets for subgraphs from the NIPD-inferred net-

works using the quiescent population. 223

E.2 GO processes and TF targets for subgraphs from the NIPD-inferred net-

works using the non-quiescent population. 227

E.3 GO processes and TF targets for subgraphs from the INDEP-inferred net-

works using the quiescent population. 228

E.4 GO processes and TF targets for subgraphs from the INDEP-inferred net-

works using the non-quiescent population. 229

xx

List of Tables

4.1 Description of simulated datasets generated from RENCO. 61

4.2 Comparison of MBS algorithm against existing algorithms for directed

and undirected graphs. 64

4.3 Comparison of MBS pruning against Sparse candidate and L1 MB regu-

larization. 65

4.4 Different statistics of the number of genes per cluster in the quiescent and

non-quiescent populations. 73

6.1 Relative enrichment of clusters. 92

6.2 Number of common subgraphs across populations. 93

6.3 Subgraphs specific to individual populations. Same legend as Table 6.2. 94

6.4 Processes exclusively up regulated in different populations 94

6.5 Hub nodes and their most enriched processes 96

6.6 Enrichment of human disease gene homologs in hubs. 97

6.7 Experimental design to analyze the different questions. Generative mod-

els are used to generate the data and test models are learned. 129

xxi

List of Tables

6.8 Number of shared edges in each network pair. The percentage of shared

edges is the smallest of the two networks. 129

6.9 Summary of structure match comparison using CONSTR generative model.131

6.10 Summary of structure match comparison using MUG generative model. 132

6.11 Summary of structure match comparison using INDEP generative model. 132

6.12 Summary of structure and function comparison of the MUG, GC-COND

and PVEM models on networks of different topology. 150

7.1 Number and percentage of subgraphs associated with a GO process using

the quiescent and non-quiescent populations 167

7.2 Specic GO biological processes identied by each method in the quiescent

(Q), non-quiescent (NQ) or both populations (QNQ). 171

7.3 Transcription factors with targets enriched in inferred subgraphs in the

quiescent (Q), non-quiescent (NQ) and both (QNQ) populations. 172

7.4 Knock-out combinations identified by NIPD in the quiescent and non-

quiescent populations. 174

7.5 Number and percentage of subgraphs associated with a GO process using

the yeast and fly networks. 178

7.6 Biological processes specific to yeast or fly or shared between the two

species . 189

E.1 GO Slim process, function and cellular component using the different

condition-specific network learning algorithms. 224

xxii

List of Tables

E.2 GO processes in which subgraphs identified by different methods are en-

riched. 226

xxiii

Chapter 1

Introduction

Central to the proper functioning of living systems is the ability to accurately sense en-

vironmental cues and respond to changing conditions [48]. This ability of producing dif-

ferent condition-specific responses involves global changes at different levels of cellular

organization including the transcriptomic, metabolic and proteomic levels. An understand-

ing of condition-specific responses to changing extracellular environments is important to

characterize the cellular mechanisms pertaining to growth, maintenance, and cellular dif-

ferentiation, as well as the failed mechanisms resulting in metabolic and genetic diseases

including cancer [78, 124].

Advances in high-throughput technology have led to genome-wide measurements of

the activity levels of the cellular parts under different conditions [25, 47], and parts that are

differentially expressed are thought to be involved in a condition-specific response [108].

However, the parts lists identified, based only on differential expression, is likely to be in-

complete, because there may be genes that individually are not differentially expressed but

may be subtly involved in a pathway required for a specific response [30]. More impor-

tantly, while differential expression analysis tells us which parts are involved, without the

knowledge of interactions, we do not know how they are involved. To gain a systemic un-

1

Chapter 1. Introduction

derstanding of condition-specific responses, we need to capture condition-specific behav-

ior not as lists of genes but as networks of functional interactions among genes. Condition-

specific networks describe functional interactions among genes and other macromolecules

under different conditions, providing a systemic view of condition-specific behavior in

organisms.

Because we are still technologically limited in our ability to measure the fine-grained

interaction patterns among the parts, cellular networks remain unknown for most condi-

tions. Fortunately, statistical machine learning offers us a variety of probabilistic frame-

works that reverse engineer the functional interaction network of genes from their activity

levels (mRNA) [91, 40, 125, 18, 24, 44, 87]. However, learning condition-specific net-

works is not a straightforward application of these algorithms, because condition-specific

network learning is a multiple network learning problem where networks from different

conditions may have varying levels of shared parts. This dissertation identifies the com-

putational and biological challenges in learning condition-specific networks and describes

novel machine learning algorithms and their applications for addressing these challenges.

Existing approaches for network-based analysis often infer coarse bi-partite graphs be-

tween transcription factors and condition-specific targets [125, 18]. These approaches do

not capture the fine-grained interaction patterns among the target genes. Other approaches

learn independent networks for different conditions and identify shared and unique parts

of the network as a post-processing step [113, 13, 131]. Such approaches do not incorpo-

rate the shared information across conditions during network learning and often focus on

pairwise co-expression networks. We develop approaches that overcome limitations of ex-

isting approaches by (a) simultaneously learning networks from multiple conditions, and

(b) learning networks capturing general, higher-order statistical dependencies subsuming

co-expression relationships. In particular, we extend the multi-net framework of learning

multiple Bayesian networks, one for each class (condition) variable [52], to incorporate

shared information during network learning. We also describe several methods based on

2

Chapter 1. Introduction

mixtures of graphs that infer the condition variable during network learning and incorpo-

rate sharing at different granularities, from individual genes to the entire network. Our

approaches based on the mixture of graphs do not require the condition to be specified

as input giving us the flexibility to apply to situations where conditions may or may not

be known with certainty. Finally, we describe validation approaches of network inference

algorithms for both single as well as multiple networks.

To demonstrate the value of our approach we applied our algorithms to simulated data

from networks of known topology, as well as two real-world examples of the condition

variable: cell populations and species. Experiments on simulated data gave us a controlled

setting to systematically assess the strengths and benefits of our approach and indicated

that the topology of the union graph of the condition-specific networks significantly af-

fects performance in addition to the generative model. Application of our algorithms to

learn population-specific networks for two yeast stationary-phase cell populations, quies-

cent and non-quiescent, identified shared processes involved in respiration to be shared

across both populations. Application of our algorithms to learn species-specific networks,

yeast and fly, showed that basic metabolic processes are conserved across both species.

Importantly, population-specific and species-specific networks represent examples at two

ends of a spectrum of condition-specific network learning problems and demonstrate the

wide applicability of the class of algorithms developed in this work.

To summarize, this dissertation provides a novel, general formulation of learning

condition-specific networks that treats the condition variable as an abstract, global variable

allowing us to consider existing problems of context-specific learning, including those

from biology, as instances of our framework. This formulation of condition-specific net-

work learning makes contributions to both machine learning and biology. On the machine

learning side, we describe novel algorithms that allow us to learn multiple networks from

noisy biological data that exhibit different amounts and complexities of sharing patterns

across conditions. On the biological side, we capture and characterize conserved and

3

Chapter 1. Introduction

unique behavior of populations and species that agree with existing biological knowledge

and propose new hypotheses of population and species-specific behaviors that can be val-

idated via future experiments. Our learning framework lays the ground work for exciting

future possibilities of learning condition-specific networks across environmental stimuli,

cell types, species and diseases that has potential implications in understanding systems-

level behavior at the cell, tissue and organism-wide levels of organization.

NO GLUCOSE

C
o

n
d

it
io

n
 R

e
s

p
o

n
s

e
 M

a
c

h
in

e
ry

!"#$%&%"#'()*!%+%!,-*()"#(*,

).,

)/,

SIGNALING
INTERACTION

SIGNALING PROTEIN

)0,)1,

PROTEIN
INTERACTION

TRANS. FACTOR

METABOLIC
ENZYME

METABOLIC
INTERACTION

)2,

3, 4

METABOLITE

)5,)6,

7//, 7/8, 7/0,

)//,)/8,)/0,

OTHER PROTEINS

76,72, 75,

REGULATORY
INTERACTION

GENE

)/1,

7/1,

)9,

79,

):,

)/.,

7/.,

)/:,

HIGH TEMP

!

"

#

$

%

Figure 1.1: Information flow in biological systems for responding to different environmen-
tal conditions. Examples are shown of condition variables as stress responses: no glucose
and high temperature. The machinery is composed of signaling interactions (1) among
signaling proteins that are sensitive to changes in the extra-cellular environment and trans-
mit this information to downstream transcription factors. Transcription factors alone or via
protein interactions (2) regulate target genes via regulatory interactions (3). These target
genes can code for metabolic enzymes (4) or proteins involved in other condition-specific
response function and can ultimately feed back into the system (5).

4

Chapter 1. Introduction

Biological

discovery

Cells in

condition A

Wet-Lab

experiments

Known

predictions

Novel predictions

Hidden

network wiring

!"#$%&'&()*(%+#&,(&,#-)"#.%(/0#&+(

!"#"$

%#&%'%!($

1+$+#&+()*(+2,.#3-)"4.+&'&,#",(

516!('"(&,#-)"#.%(/0#&+(

7#330#.)5%3+&(3+.+8'&'#+(/.)9:3+&(

#(5#&&'8+('"3.+#&+('"(,.#"&3.'/,(

#;:"9#"3+('"(.+&/)"&+(,)(&,.+&&<(

)#&"*+,&)%#$

-+&+.+/"/$

Network

validation

analysis

Cells in

condition B

Condition-

specific network

learning

PAPERS

PROTEIN

GENE

PHYSICAL

INTR.

FUNCTIONAL INTR.

GENE

01234516$17851339:;$9;$+$ 01234516$17851339:;$9;$.$

{A} {B}

{A,B}

=

>

?

Figure 1.2: Overview of the framework of learning condition-specific networks with the
example scenario of two environmental stresses from Fig 1.1. (1)The cell responds to
these stresses by global changes in the cellular machinery driven by re-wiring of a hidden
physical network, one for each condition as described in Fig 1.1. The different node
shapes in the physical network distinguish the gene and protein nodes. The edges of
the physical network represent physical interactions (protein-protein and protein-DNA).
Although the network is hidden, we can measure activity levels of (some of) the network
nodes using microarrays or other high-throughput genome-wide assays. The activity levels
of the genes are the outputs of the network re-wiring. (2) The structure of the networks
have parts that are shared in both stress networks (orange), and parts that are unique to
each network (green or blue). Our goal is to infer functional networks from the observed
expression levels, which represent an abstraction of the true hidden physical interactions.
(3) After inference, we perform network validation analysis, which validates some of the
functional interactions and identifies novel predictions that can be experimentally tested
and eventually lead to biological knowledge discovery.

5

Chapter 1. Introduction

1.1 Overview of the learning condition-specific networks

1.1.1 Information flow in biological systems

Before we proceed with the challenges of learning condition-specific networks, we provide

a brief description of the information processing machinery within living cells that is re-

sponsible for accurate and timely production of condition-specific responses (Fig 1.1). For

ease of exposition we consider two conditions, each representing environmental stresses

(No glucose and high temperature) experienced by the unicellular organism, yeast, S. cere-

visiae. The response to these stresses begins with signaling proteins sensing the changes

in the extra-cellular environment and transmitting this information via a cascade of sig-

naling interactions to activate a special class of proteins called transcription factors. The

signaling interactions typically involve some form of post-translational modifications such

as phosphorylation that change the transcription factors from inactive to active form.

The transcription factors bind to regulatory regions of specific genes to transcription-

ally activate the genes. These interactions are called regulatory interactions and bring

about the activation of target genes, which code for proteins involved in various functions

such as catalyzing a metabolic reaction or downstream transcription factors activating or

repressing genes further down the machinery. These proteins can also feed back into the

system to maintain the condition-specific response.

The set of physical interactions (signaling1, protein-protein and regulatory interac-

tions) are all part of the physical network. These interactions, which are induced in re-

sponse to a condition cause a re-wiring of the physical network. The different re-wirings

have shared edges producing shared sub-networks that occur in both high temperature or

no glucose conditions, as well as edges that occur only in one condition producing the

response unique to each condition. Unfortunately the majority of the physical interactions

1signaling interaction is a type of protein-protein interaction but is directed

6

Chapter 1. Introduction

cannot be measured under most conditions making the physical network effectively hid-

den. However, we can measure the change in expression of some of the network nodes

(genes), which can be used to infer a functional network where edges represent statisti-

cal dependencies. The goal of our condition-specific network learning framework is to

infer the functional networks representing condition-specific responses which provides an

abstraction of the true wiring of the hidden physical network (Fig 1.2).

1.1.2 Condition-specific network learning framework

Our condition-specific network learning framework defines a condition to be a global vari-

able that can represent different environmental stresses, tissues, diseases or even different

species. For each value of this condition variable there exists a physical network of cellular

parts (genes, proteins and metabolites) that drives genome-wide changes at the transcrip-

tomic, metabolic and proteomic levels. However, we cannot measure the network in each

condition itself, but we can obtain genome-wide measurements of the activity levels of

genes (proteins and metabolites), which is the output of the network re-wiring. Further,

the structure of the networks have parts that are shared in both stress networks (orange

edges), and parts that are unique to each network.

We abstract out the physical networks such that the nodes represent the entities (typ-

ically genes) that can be measured under each condition and edges representing func-

tional interactions measured by statistical dependencies among the nodes. The problem

of condition-specific network learning is defined as inferring the functional interactions

among genes using expression measurements of cells under those conditions. After learn-

ing the networks, we must analyze them in concert with existing literature from published

research, annotation and interaction databases. Some of the sub-networks are expected

to be consistent with existing literature (known predictions), while some represent novel

relationships among the genes that can be tested in the laboratory leading to biological

7

Chapter 1. Introduction

knowledge discovery.

This dissertation addresses problems in learning condition-specific networks, and val-

idating them using existing knowledge. Further validation and discovery via laboratory

experiments is important, but is beyond the scope of this dissertation.

1.2 The computational challenges of learning networks

The problem of learning networks from observed measurements is a well-studied problem

in machine learning [42]. The framework for probabilistic graphical models is a widely

used framework for representing and learning biological networks because of their nat-

ural ability to handle noise and uncertainty [73]. We will review these models in depth

in Chapter 2, so we describe them only briefly here. Probabilistic graphical models are

composed of two parts: a graph structure describing which nodes interact and a set of

functional components, which describe mathematically the nature of dependence. Nodes

of the graph represent random variables encoding expression values of genes. However,

when we apply this framework to a real-world noisy setting, several questions arise:

Importance of higher-order dependencies Networks in complex domains, including

biological systems, have higher-order statistical dependencies – dependencies that occur

among more than two random variables [110, 101]. However, mathematical characteriza-

tion of a higher-order dependency also requires more parameters as opposed to pairwise

dependencies, which occur only among two variables. This in turn influences the amount

of training data we need to reliably estimate the parameters and the dependencies in the

data. In real-world domains, data paucity is common place. This raises the question of

how beneficial is it to attempt learning higher-order dependencies when we are limited

by data. Are there realistic scenarios where higher-order dependencies are clearly desired

over pairwise dependencies? If so, how do we identify such scenarios?

8

Chapter 1. Introduction

Learning undirected graph structures Biological networks can be represented as di-

rected as well as undirected graphs. We select undirected graphs over directed graphs

because we want to identify cyclic dependencies [80], and because of the ambiguity of

whether a directed edge in a Bayesian network indicates correlation or causation. Graph

structure learning typically requires us to design a score for a candidate graph, and be able

to efficiently compute the score for a large number of candidate graphs [65, 63]. Typi-

cally in directed graphs, the score is a decomposable function of the likelihood of the data

given the graph. Decomposability allows the overall score of the graph to be efficiently

computed as a summable composition of local graph structures. However, general undi-

rected graphs do not have a decomposable likelihood-based score associated with them

[1, 122, 35]. This is because to obtain a valid joint probability distribution we need to

compute a partition function, which is NP-hard to compute [1].

Learning multiple networks with shared information We have data from multiple

conditions and our goal is to infer a network that describes the condition-specific response.

This problem can be formulated in two ways: (a) the condition variable is known (Fig 1.3,

Panels (a) and (b)), (b) the condition variable is hidden and must be inferred (Fig 1.3,

Panels (c) and (d)). In a machine learning setup, we can use multi-net learning frameworks

to address [52] (a) and a mixture of graphs to address (b). However, multi-net frameworks

do not share information across conditions, which is limiting in our situation because the

networks across conditions are likely to share certain properties among them. We want

models that are data-efficient, and can exploit the shared data to learn better, more robust

networks. Regarding (b), although mixture of graphs are feasible models in theory, it has

been shown in practice only with directed graphs [134] and with decomposable graphs

[99]. In contrast, we want to learn mixtures for general undirected graphs. Efficient use

of data and parameter sharing can also be achieved by tying the parameters of related

probability distributions [125, 41]. Can we learn condition-specific network models that

exploit shared information across conditions using either data pooling, mixture models, or

9

Chapter 1. Introduction

parameter tying?

!"#$%&&'()*')*+* !"#$%&&'()*')*,*

-!./0123*4!1*50-67.70-*8!+1-!6*

7-6!4!-6!-.89*

Condition is observed

!"#$%&&'()*')*+* !"#$%&&'()*')*,*

,0.:*-!./0123*8!+1-!6*

37;<8.+-!0<389**

{A} {B} {A,B}

,0.:*-!./0123*8!+1-!6*

37;<8.+-!0<389*

Pooled expression data

! "

Condition is observed

! "

#$
Hidden condition variable

,0.:*-!./0123*8!+1-!6*

37;<8.+-!0<389*

Pooled expression data

#$

Multiple hidden condition variables
affecting different parts of the network

#$

(a) (b)

(d) (c)

Figure 1.3: Different formulations of condition-specific network learning. Different pan-
els represent types of condition-specific network learning. Panels (a) and (b) show models
with observed condition variable. Colors in panels (a) and (b) discriminate the networks
for each condition. Orange is for the shared part. Panels (c) and (d) show models where
the condition variable is hidden. Panel (a) is the simplest case of observed variable, and
networks per condition are learned independently. Panel (b) represents an extension to
multi-nets where we pool data to better incorporate shared information across conditions.
Panel (c) is the simplest case of hidden condition variable, with a single condition vari-
able influencing the entire network. The black-white network shows the union of the two
condition-specific networks, and different assignments of the condition variable selects
different parts of the union graph demarcated by the dashed lines. Panel (d) represents a
more complex type of hidden condition variable setting. Here different connected compo-
nents of the union graph are controlled by different condition variables.

10

Chapter 1. Introduction

Condition-specific networks of different granularities We consider the case where the

condition variable is inferred (Fig 1.3, Panels (c) and (d)). In this situation, it is unclear

if having a single condition variable for the complete data point (joint assignment to all

random variables) captures the finer subtleties of condition-specific response. It is likely

that for a given data point some values may be generated from the shared part of the

network, whereas some values may be generated from specific parts of the network. This

kind of fine-grained sharing requires us to have multiple hidden variables per datapoint.

A related issue to consider is if, and, how the underlying graph topology constrains the

number and values of condition variables. Do more connected graphs favor some types of

mixture models, and sparsely connected graphs favor other models?

Statistical validation The problem of inferring networks from expression data whether

in, one or multiple conditions, is essentially an instance of unsupervised learning. This

raises the important question of how we can validate the models we learn from data. This

question is especially difficult for network learning because the data may be equally likely

to be generated from multiple networks. How then can we evaluate the structures we learn?

Because probabilistic models have both a structural and functional component, how can we

account for the functional component during method comparison? It is common practice

to use data likelihood as a yard-stick for comparison, but what can we use if we do not

have the ability to compute likelihood? Do approximations of likelihood, such as pseudo

likelihood serve as effective measures of comparison?

Identifying the target problem A computational method is of little use if it is not

demonstrated on a real-world dataset. In our setting, we need to demonstrate the practical

utility of our condition-specific network learning problem on a real biological problem.

Because we want to learn multiple networks, one per condition, irrespective of data shar-

ing or not, we need enough samples per condition so as to reliably learn these networks.

We therefore need to identify suitable datasets that satisfy our problem description, and

11

Chapter 1. Introduction

that can lead to biological discovery on applying our algorithms.

1.3 Computational contributions of this dissertation

This dissertation solves the above challenges by accomplishing the following goals:

• Develops an algorithm for learning the structure of general undirected probabilistic

graphical models and extensions to it for efficiently learning large networks.

• Extends existing multi-net learning frameworks to learn multiple networks in a more

data-efficient manner, and in an undirected graphical modeling framework.

• Develops an algorithm for learning a mixture model of general undirected graphs.

• Develops algorithms for inferring condition assignments at different levels of gran-

ularity.

• Empirically analyzes the performance of mixture models of condition-specific net-

works as function of the underlying graph topology.

• Empirically analyzes algorithms learning pairwise versus higher-order dependen-

cies.

• Develops a validation framework for evaluating the quality of inferred networks

using both structure of the network and the functions computed by the network.

1.4 Biological challenges of condition-specific networks

Learning condition-specific networks for describing system wide condition-specific re-

sponse poses the following biological challenges and questions:

12

Chapter 1. Introduction

Constraints in networks representing condition-specific response Modularity is a de-

sign principle of most cellular networks that allows a cell to achieve its myriad functions

by re-using different combinations of these components [101, 110, 75]. This component

re-usability in cells imposes constraints on the structure of the networks that must be incor-

porated within our network learning framework. Imposing such constraints are especially

important for learning networks from biological datasets where data sparsity is a norm

more than an exception. In particular, small perturbations to the data can result in dramat-

ically different network structures, producing many more differences than what are likely

to be biologically meaningful, and almost always we will incorrectly conclude that net-

works from different conditions have undergone a non-trivial amount of re-wiring. Hence,

to accurately identify the network structure, including the networks parts that are unique

and shared across the different conditions, it is crucial for our algorithms to incorporate

and exploit these constraints.

Validation of results The problem of validation also arises in a biological context. Un-

like statistical validation which assesses the robustness and non-randomness of our meth-

ods, this type of validation assesses quality of the inferred networks based on the number

of biologically meaningful dependencies present in the network. This relies on biological

knowledge of genes and includes validating both pairwise dependencies as well higher-

order dependencies. Because we consider multiple biological categories, this naturally

raises issues of multiple hypothesis testing [130]. How do we assess the statistical signif-

icance of our results in the face of multiple hypotheses? Further, the significance of our

results depends upon our definition of a background or null distribution [20]. How do we

generate realistic models of the null distribution such that we have high recall and without

sacrificing on precision and false discovery rates?

Interpretation of results Our ultimate goal is to get a better understanding of how cells

behave under different conditions. Given that there is prior domain knowledge about

13

Chapter 1. Introduction

the behavior of the cells under certain conditions, a central challenge is to integrate the

new information conveyed in network structures with the existing knowledge. This is not

straightforward because our networks use only gene expression data, which may not nec-

essarily represent the behavior at proteomic and metabolic levels [56]. Further, the prior

knowledge is available at different levels of organization of the cell, ranging from cellular

phenotype (such as cell size, density and granularity), to precise information of key genes

involved in the pathways. How do we interpret our results such that it fits and extends the

overall picture of cellular behavior under a particular condition?

Condition-specific networks for yeast stationary phase Yeast stationary phase is a

state of cultures where there is no net change in the culture density and is induced by

starving cells for glucose [55]. Contrary to “stationary”, which has a danger of implying

that nothing is happening in stationary phase cultures, this phase is a highly regulated, and

conserved process [4, 94]. Recent research has shown that yeast stationary phase cultures

have a complex heterogeneous population structure composed of at least two types of

cells, quiescent and non-quiescent, that differ at the morphological and expression levels

[3, 5]. How can we obtain a finer understanding of the differentiation processes of these

cells, that captures information beyond differential expression? Can we learn quiescent

and non-quiescent networks to identify fine-grained functional interactions among genes

using expression data from these cells? Do the similarities and differences at the network

level of two cell populations provide insight into the differentiation mechanisms of these

cells?

Species-specific networks: another example of condition-specific networks? Identi-

fication of evolutionarily conserved signals at the DNA level has been one of the important

questions of comparative genomics [76]. Evolutionary conservation at the sequence level

provides only one aspect of the multitude of information in living systems, and this was

demonstrated by Stuart et al and Bergmann et al. who identified conserved co-expression

14

Chapter 1. Introduction

relationships among orthologous pairs of genes [131, 13]. However, such functional re-

lationships need not be restricted to pairs and co-expression. Can our condition-specific

network learning algorithms identify higher-order functional relationships that are con-

served and specific to different species?

1.5 Biological contributions of this dissertation

This dissertation addresses the above challenges by accomplishing the following goals:

• Develops an approach for learning networks, not only for one condition but for any

subset of conditions. This allows us to robustly identify both shared and unique

components of condition-specic cellular networks.

• Draws upon expert evidence for interpretation of results. Our model organism for

the cell population case is yeast, and for the species-specific networks are fly and

yeast. Both these organisms are well-studied and have associated organism-specific

databases that we leverage to interpret results to construct the big picture.

• Applies our condition-specific network learning algorithms to two yeast cell pop-

ulations to understand how two morphologically dissimilar populations respond to

the same starvation stress. We identified several functional interactions that suggest

respiration-related processes are shared across the two conditions. We also identi-

fied interactions specific to each population including regulation of epigenetic ex-

pression in the quiescent population, consistent with known characteristics of these

cells. We found several high confidence cases of combinatorial interaction among

single gene deletions that can be experimentally tested using double gene knock-

outs, and contribute to our understanding of differentiated cell populations in yeast

stationary phase.

15

Chapter 1. Introduction

• Applies our condition-specific network learning algorithms to microarray datasets

from two species: yeast and fly. Analysis of the inferred networks from the two

species suggests that sharing patterns in networks from two species are much more

complex than in networks from two populations of the same species. Our results

from comparing species-specific networks suggest that basic metabolic processes

(fatty acid oxidation, pyruvate metabolism, IMP bio-synthesis) are conserved be-

tween yeast and fly, and the processes unique to each species include fungi-specific

(filamentous growth) and higher animal-specific (oocyte fate determination) func-

tions. These results are consistent with existing biological knowledge and also in-

clude novel discoveries.

1.6 Organization of this dissertation

This dissertation is organized as follows: Chapter 2 performs a literature survey of the

existing work on condition-specific networks. This includes related work on both ma-

chine learning approaches for learning networks, which may not have been necessarily

applied to biological domains, and work specifically focussing on networks in biology. We

also give background material on biological networks and probabilistic graphical models.

Chapter 3 focuses on validation of network structure, both statistically and biologically.

We describe simulation frameworks that generate realistic data from networks of known

topology and that can be used for performance comparison of different algorithms. Chap-

ter 4 discusses the problem of learning a single network using an unsupervised structure

learning algorithm. We compare our algorithm against several state-of-the-art network

learning algorithms for both directed and undirected networks and demonstrate that our

algorithm outperforms the majority of the compared algorithms. We discuss choices of

different conditional probability distributions, which are important modeling questions to

address before we tackle the general problem of condition-specific network learning. We

16

Chapter 1. Introduction

then describe an enhancement to the basic learning framework that can efficiently learn

genome-wide networks.

Chapter 5 performs an in-depth analysis of the importance of higher-order dependen-

cies in biological networks. In particular, we identify characteristic of the graph struc-

ture that indicate higher-order dependencies. Chapter 6 describes approaches for learning

condition-specific network models that provide a network view of condition-specific re-

sponse. The first part of the chapter describes a simple approach to condition-specific

network analysis. In particular, we show that we can learn separate networks using data

from two conditions and perform comparative analysis to identify the similarities and dif-

ferences in the networks. Although this approach finds meaningful dependencies, it is a

first cut approach, which does not exploit shared information across conditions. We then

consider a more general formulation of condition-specific network learning and describe

models with both observed and unobserved conditions. We also consider several version

of models with the unobserved condition, which vary in the granularity of the condition

variable affecting gene expression. We empirically analyze the effect of the underlying

network topology on the performance of different models.

Chapter 7 describes application of our different condition-specific network learning

algorithms to address two problems in biology: learning condition-specific networks for

two yeast populations, learning species-specific networks for the yeast and fly species. We

conclude in Chapter 8 summarizing the main contributions of this work and propose future

extensions.

17

Chapter 2

Background and related work

The work described in this dissertation is based on two important ideas: (a) inference and

analysis of biological networks, and (b) analysis of condition-specific response. Both these

ideas have been one of the core themes in systems biology and molecular cell biology and

therefore a vast amount of literature is related to this dissertation. An in-depth survey

of all computational and biological approaches of network biology and condition-specific

specific response is beyond the scope of this disseration. Instead, we focus on the most

relevant areas: the semantics of cellular networks, computational approaches for learning

networks from data, and the connection between network models and condition-specific

behavior.

2.1 Cellular networks

Living cells are complex, dynamic systems that respond to changing environmental con-

ditions by integrating and processing information at various levels of intra-cellular organi-

zation. Systems biology views this information processing system in cells as a network of

bio-chemical entities (genes, proteins and metabolites) that interact and exchange informa-

18

Chapter 2. Background and related work

Figure 2.1: Biological modules representing the building blocks of condition-specific net-
works

19

Chapter 2. Background and related work

tion, in a time and space-dependent manner to accomplish the myriad cellular functions.

Networks may be of different types based on the class of nodes that are interacting

(protein interaction networks versus regulatory networks), or on the basis of the edge se-

mantics (physical versus functional networks). We first describe the different types of

networks based on the class of nodes and then describe which of these can be considered

as physical versus functional interaction networks.

2.1.1 Network classification: node type

Protein interaction networks

A protein complex is a set of two or more proteins that physically interact to accomplish a

specific biological function. In network terminology, a protein complex is described as a

clique, with proteins as the nodes and the protein interactions as undirected edges (Fig. 2.1

(a)). For a protein complex to be clique, it must be the case that all proteins in the complex

interact with each other. Since this is not always true, a protein complex is often described

as a dense subgraph with a large number of interactions among the proteins.

Transcription factor complexes are well-known examples of protein complexes. In

yeast there are approximately 200 transcription factor complexes [59]. Other protein com-

plexes form structural units in the cell responsible for specific functions such as translation,

RNA processing, cellular transport etc [59, 126].

Regulatory networks

A regulatory module is a building block of the regulatory network and is composed of a

set of transcription factors that regulate a set of common target genes (Fig. 2.1(c)). The

transcription factors regulate their target genes by binding to the 5′ region upstream of the

20

Chapter 2. Background and related work

coding region. Some of the genes may code for transcription factor proteins and others

may produce non-coding RNA that eventually is processed into microRNA.

Regulatory module (TF based): A regulatory module is composed of two types of

nodes, transcription factor protein nodes and target gene nodes. The edges of the regu-

latory module are also of two types, undirected edges between the transcription factors

indicating the formation of a transcription factor complex, and directed edges from tran-

scription factors to target genes. The edges between the transcription factors are optional.

The edges between the transcription factor and the target genes also have a sign, which

indicates the type of regulation of the transcription factor on the genes. The type of regu-

lation is activating or repressing.

Both the type of regulation and the number of transcription factors regulating the target

genes in the regulatory module varies with the environmental conditions [61]. For example

the Rap1p transcription factor in yeast is known to bind different targets under diferent

environmental conditions [22]. As a result the regulation of the transcription factors on

the target genes is highly combinatorial in nature.

An example of a regulatory unit with interactions between the transcription factors is

the SAGA complex in yeast, composed of 17 proteins that must interact to start transcrip-

tion. Exams of regulatory units that do not have protein interactions include transcription

factors that simultaneously bind to different binding sites of the target genes such as the

MCM1 and STE12 transcription factors.

Regulatory module (miRNA based): These regulatory modules also capture gene ex-

pression regulation, but, at the post-transcriptional level (Fig. 2.1(d)). A transcription fac-

tor acts on the gene’s DNA sequence to allow or inhibit transcription, whereas, a miRNA

acts on the gene’s mRNA product, which is produced after transcription. The nodes in

these modules are the regulating microRNA and the target genes, and the edges are the

regulatory interactions. The regulatory interactions are typically repressive in nature, al-

21

Chapter 2. Background and related work

though, we cannot rule out activating actions.

Metabolic networks

A metabolic pathway is composed of a set of metabolic reactions that constitute a small

part of larger metabolic pathways such as the yeast galactose pathway or the nitrogen

metabolism pathway. The role of a metabolic enzyme is to catalyze a particular metabolic

reaction that converts a substrate metabolite to a product metabolite. There are two ways

of describing metabolic networks. In the first, nodes in the metabolic pathway are the

metabolic enzymes and the metabolites (Fig. 2.1(e)). The edges are inserted between a

metabolic enzyme and a metabolite if the metabolite is either a substrate or a product of

a reaction catalyzed by the metabolic enzyme. In the second, nodes are only metabolic

enzymes and edges are inserted between two nodes if the product of one enzyme is the

substrate of the other.

Signaling networks

Signaling pathways, also known as signal transduction pathways, are linear or tree-like

connections of proteins, which are responsible for transmitting changes in the extracellular

environment to the regulatory network (Fig. 2.1(b)) [128]. Similar to a protein complex, a

signaling pathway is composed of proteins as nodes and interactions as edges. However,

the edges of a signaling pathway are directed, indicating the flow of information.

Signaling pathways are composed of a membrane protein on one end and a transcrip-

tion factor on the other end. The membrane proteins monitor the extracellular environment

and send signals to proteins downstream via post-translational modifications, terminating

in the activation of transcription factor. These transcription factor proteins then bind to

upstream regions of their target genes and cause their activation or repression. Examples

of such pathways include the yeast pheromone response pathway, cell wall integrity path-

22

Chapter 2. Background and related work

way (PKC), hyperosmolar pathways (HOG), mitogen activated protein kinase pathways

(MAPK) [128, 97].

2.1.2 Network classification: edge semantics

Networks can also be classified based on the semantics of the edge. There are two main

types of networks based on edge semantics: (a) physical interactions, (b) functional in-

teractions. Physical interaction networks are those where the edge represents a physical

contact among the interaction nodes, for example, in protein interaction (especially pair-

wise interactions) networks, and transcriptional regulatory interactions which represent

interactions from a transcription factor protein and a target gene. Functional interactions

describe a functional rather than a physical mechanism of interaction. Such functional

interactions may be a cascade of physical interactions, or parallel pathways that must

function in concert. In general, functional networks represent a wide range of interactions

including regulatory, protein and metabolic interactions. Two well-known examples of

functional networks are genetic networks and expression networks.

Genetic networks are networks where an edge is indicative of a significant, often lethal,

phenotype that occurs only when both genes are knocked out, but not when either one

is knocked out. Expression networks are by far the most ubiquitous type of networks

that are constructed using microarray-based expression profiles of genes. These networks

can be grouped into co-expression networks, where edges represent statistical correlation

(in terms of Pearson’s or Spearman’s correlation coefficient), and dependency networks,

where edges represent general statistical dependencies such as mutual information which

represents both correlation and anti-correlation. Dependency networks can be further clas-

sified into those that have pairwise dependencies (among two genes), and those that have

higher-order (among more than than two genes) and pairwise dependencies.

23

Chapter 2. Background and related work

2.2 Condition-specific response

Condition-specific response is a genome-wide phenomenon which involves almost all lay-

ers of organization in the cell. To fully characterize how a cell behaves under a condition

we need to measure the genes, proteins and the metabolites within a cell. However, for the

vast majority of conditions, we have only gene expression data because proteome-wide

and metabolome-wide measurements are much harder to obtain. Our methods focus on

describing condition-specific behavior using gene expression data. We realize that this is

incomplete, but our methods are easily applicable to protein and metabolite expression as

they become available.

2.2.1 Network-based methods of condition-specific response

The simplest approach of characterizing condition-specific response is to identify the set of

differentially expressed genes in the condition of interest. However differential expression

analysis only identifies a list of genes, and were originally developed for situations with

a few measurements per gene. Advancement in high-throughput sequencing technologies

such as RNASeq [139], in collaboration with the ModENCODE project (http://www.

modencode.org/) are producing massive amounts of data per tissue and per condition.

While differentially expressed genes are still informative, these datasets give us the ability

to extract more complex patterns of interactions, beyond differentially expressed lists of

genes. The advantages of network-based description of condition-specific responses was

recently demonstrated by Chuang et al. who identified disease-specific subgraphs that

included genes that were not necessarily differentially expressed [30]. We now describe

approaches for capturing condition-specific response that incorporate network structure of

genes at some stage of their analysis.

One example of a comprehensive analysis of transcription factor activity under differ-

24

Chapter 2. Background and related work

ent environmental conditions has been done by Harbison et al. [61]. This analysis used

ChIP-chip analysis to study the binding activities of 85 transcription factors in yeast under

twelve different environmental conditions. By incorporating different environmental con-

ditions, the authors discovered several condition-specific patterns for transcription factor

regulation. Although, this work provided deep insight into the effect of environmental

conditions to binding patterns of transcription factors, it did not take into account the tran-

script abundance, which is important to understand the effect of different binding patterns

on the dynamics of gene expression under different environmental conditions. Further-

more, this focuses on the re-wiring of the transcriptional regulatory network, whereas it is

important to consider re-wiring at the metabolic or more general functional network level.

McCord et al. combined gene expression with transcription factor binding data to

study condition-specific behaviour of transcription regulation under a large number of en-

vironmental conditions [98]. Using a novel protein binding array technology, they identi-

fied a large number of target genes for yeast transcription factors. The differential expres-

sion of the target genes under different environmental conditions was then used to predict

the conditions in which a transcription factor is likely to be active. Although, this approach

incorporates gene expression to predict condition-specific functions of transcription fac-

tors, it also is targeted to the transcriptional regulatory network.

Purely computational approaches are based on bi-clustering, which cluster genes and

conditions simultaneously [133, 14, 36, 18], and identify sets of genes that are co-regulated

in sets of conditions. More advanced approaches additionally identify transcription mod-

ules (set of transcription factors regulating a set of target genes) that are co-expressed in a

condition-specific manner [9, 123, 10, 51]. The GRAM algorithm by BarJoseph et al. in-

fers transcriptional modules, which have simple network topologies (bipartite graphs) with

edges from transcription factors to target genes. Segal et al.’s COPR model uses module

networks to build transcriptional programs with slightly more complex topology (decision

trees). However, these approaches focus on the transcriptional regulatory network, and do

25

Chapter 2. Background and related work

not provide fine-grained interaction structure that explains the condition-specific response

of genes.

Rachlin et al. described a new graphical construct to add context information in the

analysis of protein interaction networks [111]. These “context-specific” networks make

use of biological annotation of the protein functions to provide contextual meaning to

the protein interactions. However, this approach does not account for gene and protein

expression and is focussed to the protein interaction layer.

Other approaches by Kim et al. [77] and Tuck et al. [136] explicitly capture the

condition-specific activity of the edges in the transcriptional regulatory networks. The for-

mer focuses on microarray data of yeast cells under different environmental conditions,

whereas the latter focuses on microarray data from different healthy and cancer human

cells. However, these models used a discriminative rather than a generative approach to

highlight the condition-specific behaviour of the networks and require that the condition

variable be known for each dataset. Discriminative approaches also highlight the differ-

ences between, whereas identification of similarities is equally important.

Approaches for differential expression analysis have also started incorporating the net-

work structure. The graph-based iterative group analysis method constructs a bi-partite

evidence graph [21], where nodes represent both genes and Gene Ontology annotation

categories. Edges connect genes to annotation category nodes. This is collapsed into a

simple graph comprising only gene nodes by adding edges between two genes connected

to the same category node. Each node is assigned a rank inversely related to differential ex-

pression, followed by identification of local minima nodes that all have lower ranks than

their immediate neighborhoods. The algorithm then proceeds iteratively from the local

minima nodes to include nodes with the smallest rank in the neighborhood, and comput-

ing a hypergeometric p-value assessing the statistical significance of the minimum rank of

the subgraphs. The subgraph with the smallest p-value is considered as differentially regu-

lated and the procedure is repeated for all local minima nodes. This approach is attractive

26

Chapter 2. Background and related work

because of the direct incorporation of annotation information during differential enrich-

ment analysis. However, this relies on the existing literature annotation and no network

learning is performed.

A related approach is Guido et al’s the Mixture Model on Graphs [119], which uses

a Bayesian framework to infer the posterior probability of the differentially enriched sub-

graphs. The main idea here is to consider a mixture model for three components, one for

highly expressed, one for lowly expressed and one for no change. Gene expression of

each gene is assumed to be generated from this mixture model. The genes themselves are

connected in a network of known structure, which is incorporated into a prior probability

distribution of the hidden class variable. Specifically, the prior probability is a multinomial

vector estimated from a weighted, regularized sum of the class assignments of the neigh-

bors. The likelihood model uses the mixture model to generate the observed expression.

This approach also assumes the graph is given and focuses on differential expression in

experimental versus test conditions.

Recently the differential dependency network approach was proposed by Zhang et al.

[146] which identifies differentially expressed neighborhoods of genes. This approach

identifies multiple sufficiently good neighborhoods per gene for each condition separately.

Differential expression of a neighborhood is measured by the difference in the coefficient

of determination estimated on the two datasets using the same neighborhood. The co-

efficient of determination approximates the reduction in the variance of gene expression

by the neighborhood. A neighborhood that is highly differentially expressed will have

a significantly different coefficient of determination on the two datasets. A permutation

test-based strategy is used to assess statistical significance of differential expression. Al-

though this approach finds networks, it is focused on differential expression. Further the

permutation strategy and the algorithm itself are very computationally intensive requiring

enumeration of all subsets of the complete random variable set up to size K.

27

Chapter 2. Background and related work

Figure 2.2: (a) A pure gene expression network. Here edges mean a functional relation-
shop. (b) A gene regulatory network, where the edges imply a regulatory action of genes
coding for transcription factor proteins. (c) A gene, protein expression network. Here
edges imply a regulatory action (Protein-DNA) or a undirected protein interaction. (d) A
gene, protein, metabolite network. This is the highest resolution network, integrating the
different layers of condition-specific networks.

2.3 Approaches of network learning

The structural and functional aspects of biological networks are usually unknown for dif-

ferent environmental conditions. Algorithms for biological network inference aim to re-

28

Chapter 2. Background and related work

construct the structural and functional components of networks using measured attributes

of the network nodes. The resolution of an inferred biological network is defined as the

extent to which the network captures the structural and functional aspects of the true net-

work. We group algorithms used for network inference based on the resolution of the

networks inferred by the algorithms.

A high-resolution network is one in which the network edges have a direct physical in-

terpretation, such as a protein-protein interaction or a protein-DNA interaction. The edges

of a high-resolution network have several physical attributes such as edge directionality,

edge sign etc. A low-resolution network is one in which the network edges represent func-

tional or phenomenological relationships between genes, without explicitly accounting for

the physical interpretation of these relationships.

The simplest type of inferred network is a gene expression network, which is con-

structed de-novo from gene expression data (Fig. 2.2(a)). The nodes correspond to the

genes and the edges represent a functional interaction between two genes, where the

strength of interaction is quantified by a measure of statistical dependency. These networks

are considered low resolution because the edges indicate functional interactions, which is

an approximation of some complex bio-chemical phenomenon such as protein interactions

or cascades of signaling reactions. These networks provide a high-level, system-wide view

of the interaction pattern among genes.

Bayesian networks1 are directed, probabilistic, graphical models and are well known

models for generating networks at this level of resolution [43, 127, 143, 109]. Although

the edges of a Bayesian network are directed, the directionality usually implies correla-

tion and not causality. Other examples of this class of models are Boolean networks [93],

differential equation models [18], Algorithm for Accurate Reconstruction of Cellular Net-

works (ARACNE) [91], regression models [137, 46], conditional-correlation models [72]
1Bayesian networks are a very general class of probabilistic graphical models, and de novo

network inference is one of the many ways in which Bayesian networks may be used. It is possible
to infer higher resolution models using Bayesian networks also.

29

Chapter 2. Background and related work

and graphical Gaussian models [140]. These models differ in the type of dependency they

capture, the amount of prior information about network structure that can be incorporated,

and the values that can be taken by the network nodes. ARACNE, for instance uses mu-

tual information between pairs of random variables denoting genes, whereas all the other

models can capture higher order dependencies. Boolean networks require that nodes take

only binary values, whereas regression models require that the nodes take continuous val-

ues. Finally, Bayesian networks can incorporate a large amount of prior information about

the network structures. In fact, Bayesian networks are a very general class of models and

incorporate most of the features of the other network reconstruction algorithms in this

category. However, they do not perform quite as well in tasks that other algorithms are

designed to optimize. For example, if we are interested in only pairwise dependencies

then ARACNE is much better and faster than Bayesian networks.

The next class of algorithms incorporate other sources of data to provide more se-

mantics to the edges than de novo construction (Fig 2.2(b)). The nodes still correspond

to genes, but the edges imply a regulatory action, which is either activating or repress-

ing. Gene regulatory networks are examples of networks inferred at this level of reso-

lution. The models that infer networks with this level of resolution use protein-protein

and protein-DNA interaction data, in addition to gene expression data. Examples of these

models are Yeang et al.’s physical network model for explaining perturbations in the gene

and metabolic layers [142]. These models are based on undirected graphical models, fac-

tor graphs, that use physical interaction data to explain perturbations at the regulatory and

metabolic levels. Although, this model infers a large number of physical attributes such as

edge directionality and sign, it does not incorporate protein expression, and assumes that

the structure of the network is essentially fixed.

Other examples of detailed models include Genomica and its successor, the co-regulat-

ed overlapping processes (COPR) model [123, 10]. These models are based on module

networks, which is a class of directed graphical models to capture relational data [125]. In

30

Chapter 2. Background and related work

these models, edges are inferred between transcription factors and target genes. These

models combine known transcription factors with transcription factor binding site se-

quences to build detailed regulatory networks. However, these models do not account for

protein expression and are targeted toward the regulatory network rather than the complete

physical network.

The next level of models incorporate gene and protein expression in addition to known

protein-protein and protein-DNA interactions (Fig. 2.2(c)). Learning these models is dif-

ficult because protein expression is not available for most experimental conditions. How-

ever, there are some approaches of inferring the expression of transcription factor proteins

from the gene expression of target genes [81, 50].

Although, there are very few models that combine protein and gene expression to infer

networks, there are signaling networks that have been inferred using solely protein expres-

sion data [141, 116]. However, these models are targeted to specific signaling pathways

triggered in human cells, for which it is possible to measure phosphorylation levels of

signaling proteins.

The most detailed class of networks incorporate expression information at the protein,

gene and metabolite levels and physical interaction information such as protein-protein,

protein-DNA microRNA-mRNA interactions (Fig. 2.2(d)). Gat-Viks et al. have proposed

a factor graph based model that makes extensive use of biological literature to build a de-

tailed network for a particular biological pathway: yeast osmotic stress pathway [49]. This

approach refines regulatory functions capturing relationships between transcription factors

and target genes and uses inference techniques to estimate protein expression. Although,

this method develops highly detailed networks, it requires the basic network structure to

be determined from literature. Because of its heavy reliance on literature, it cannot be used

for all biological pathways, and therefore cannot be used to infer the complete network.

31

Chapter 2. Background and related work

2.4 Modeling biological networks as probabilistic graph-

ical models

Mathematical models for representing condition-specific networks, must have the follow-

ing properties: (a) capture different types of dependencies among network nodes including

pairwise, cyclic and higher-order dependencies, (b) account for noise and uncertainties in

the data, (c) provide a generative framework characterizing the space of node values un-

der a specific environmental condition, (d) allow tractable computation of global functions

(such as joint probability distributions) over the complete condition-specific network. Us-

ing such a generative framework we can generate and predict expression states of the

network nodes under different perturbations.

Biological networks have been represented using different mathematical models, such

as boolean networks [92], regression models [46] and probabilistic graphical models

(PGMs) [40, 123, 91]. See [16, 34] for reviews. We focus on PGMs because similar to

boolean networks and regression models, they capture the structual and functional aspects

of networks. However, PGMs offer additional flexibility of using either discrete or contin-

uous variables and provide well-founded semantics for handling uncertainty and noise.

A probabilistic graphical model is associated with two components: a graph G and a

set of functions F . Nodes represent genes or proteins and random variables encode the

expression level of the nodes. The edges of G describes the statistical dependency struc-

ture among the network nodes. A function fi ∈ F describes the functional relationship

between a random variable Xi and its neighbors. The two well known classes of PGMs

are directed graphical models and undirected graphical models.

Learning in PGMs includes two tasks: parameter estimation on a fixed network struc-

ture, and structure learning where both the structure and the parameters of the model need

to be estimated. Learning the parameters given the structure of the network is tractable

32

Chapter 2. Background and related work

for directed graphical models. Learning the structure for PGMs is NP hard as it involves a

search over the space of possible graphs. This space is super-exponential (O(2(N
2))) in N ,

the number of nodes in G [28]. However, greedy search algorithms have been proposed

that find a structure optimizing a likelihood-based score describing the model fit to the

data [44]. These scores usually correspond to the posterior likelihood of the model given

the observed data:

P (G|D) ∝ P (D|G)P (G) = P (G)

∫
P (D|θ,G)P (θ|G)dθ

Here, D is the observed data, P (G) specifies a prior probability distribution on the graph

structure, P (D|θ,G) is the likelihood of the data given the model, θ is the set of parameters

associated withF . Depending upon the parametric form of the prior and θ, different scores

can be derived. These scores often introduce a regularization term for penalizing complex

structures.

In directed graphical models such as Bayesian networks, the functions fi describe the

conditional distribution of Xi given its parent variables. The global joint distribution of

all random variables is given by the product of each fi. This decomposability of joint dis-

tribution function over the local fi makes Bayesian networks a very convenient model for

biological networks because the complete structure can be learned by optimizing the local

fis. The fis in turn can capture pairwise and higher-order dependencies. For completely

observed data, Bayesian score-based structure learning algorithms are tractable and yield

reasonably good solutions. Examples of such scores include the Bayesian Information

Criterion (BIC) [19, 132] and Bayesian Dirichlet (BDe) scores [31, 65]. Unfortunately,

Bayesian networks cannot explicitly cyclic dependencies, which is limiting for modeling

biological networks.

In undirected graphical models, the fi correspond to potential functions, one for each

clique in G. Unlike directed models, the product of these potentials does not yield a

consistent joint distribution. A valid joint distribution requires the computation of a nor-

malization factor called the partition function. Computation of the partition function for

33

Chapter 2. Background and related work

the general class of undirected models is computationally intractable (NP-hard) [1]. As a

result both parameter estimation and structure learning in these models is hard. The learn-

ing problem is made tractable by imposing constraints on the structure or by using scores

other than likelihood such as pseudo likelihood [15, 68, 1]. Examples of these models

with tractable learning algorithms include limiting the maximal degree of a node in a fac-

tor graph [1], bounding the tree-width of a Markov network [104], constraining the graph

structure to be a tree [29], or estimation of lower-order (often pairwise) functions [91].

Pairwise models are also attractive because they scale to networks of several thousands of

nodes. However, approximation of higher-order dependencies via pairwise functions may

cause these algorithms to identify spurious dependencies.

An intermediate between directed and undirected graphical models are dependency

networks [64, 121]. Similar to directed models, fi represents a conditional distribution,

and similar to undirected models, the graph structure need not be acyclic. The structure is

learned by estimating the best neighborhood of each variable independently, which makes

the learning problem computationally efficient. Unfortunately, the final structure may be

inconsistent (i.e. Xi may be in Xj’s neighborhood but Xj may not be in Xi’s neighbor-

hood) and may not produce a consistent joint probability distribution. Although, in the

limit of infinite data it is possible to learn both consistent structures and distributions, the

biological domain almost always suffers from limited data.

34

Chapter 3

Evaluation framework of unsupervised

learning of biological networks

The problem of learning networks from expression data is essentially unsupervised in

nature. This means that there is no known ground truth against which we can compare to

assess if our learning algorithm was able to learn the network correctly. To address this

problem it is common to use a simulation framework where data (expression of genes)

is generated from a network of known topology. Learning algorithms are applied to the

simulated data and the inferred networks are compared to the original network to assess

how well the algorithms modeled the relationships in the data. This raises two important

issues: (a) generation of a realistic simulation framework for generating data that is close

to the domain of interest: biological networks, (b) scores for measuring the similarity

between the true and inferred networks.

This chapter addresses these two questions. We first describe regulatory network sim-

ulator which generates simulated networks as well as the data from these networks. We

then describe various measures for comparing how close the inferred and true networks

are. We then describe methods of assessing the quality of inferred networks in biology

35

Chapter 3. Evaluation framework of unsupervised learning of biological networks

using existing biological annotation.

3.1 Simulation framework for generating realistic data

With the increasing availability of genome-scale data, a plethora of algorithms are being

developed to infer regulatory networks [8]. Because of the absence of “ground truth” of

regulatory network topology, these algorithms are evaluated on artificial networks gener-

ated via network simulators [120, 100, 91, 79].

Since gene regulation is a dynamic process, existing network simulations employ

systems of ordinary differential equations (ODEs) that describe the kinetics of mRNA

and protein concentrations as a function of time. Some approaches construct highly de-

tailed models, but require large amounts of user-specified information [120, 79]. Other

approaches generate large networks but use simpler models by making the mRNA con-

centration of target genes dependent upon mRNA concentration, rather than on protein

concentration of transcription factors [100]. In real biological systems, protein expression

may not correlate with gene expression, especially at steady-state, due to different trans-

lation and degradation rates [12]. These approaches also do not model protein interaction

edges and, the combinatorics resulting from these interactions.

We developed a regulatory network generator, REgulatory Network generator with

COmbinatorial control (RENCO), that models genes and proteins as separate entities, in-

corporates protein-protein interations among the transcription factor proteins, and gen-

erates ODEs that explicitly capture the combinatorial control of transcription factors.

RENCO accepts either pre-specified network topologies or gene counts, in which case it

generates a network topology. The network topology is used to generate ODEs that capture

combinatorial control among transcription factor proteins. The output from RENCO is in

SBML format, compatible with existing simulators such as Copasi [67] and RANGE [88].

Time-series and steady-state expression data produced from the ODEs from our generator

36

Chapter 3. Evaluation framework of unsupervised learning of biological networks

can be leveraged for comparative analysis of different network inference algorithms.

3.1.1 Transcriptional regulatory network generator

RENCO works in two steps: (a) generate/read the network topology, and, (b) generate the

ODEs specifying the transcription kinetics. For (a) proteins are connected to each other via

a scale-free network [2], and to genes via a network with exponential degree distribution

[95].

Modeling combinatorial control of gene regulation

We model combinatorial control by first identifying the set of cliques, C, up to a maximum

of size t in the protein interaction network. Each clique represents a protein complex

that must function together to produce the desired target regulation. A target gene, gi is

regulated by k randomly selected such cliques, where k is the indegree of the gene. These

k cliques regulate gi by binding in different combinations, thus exercising combinatorial

gene regulation. We refer to the set of cliques in a combination as a transcription factor

complex (TFC). At any time there can be several such TFCs regulating gi. The mRNA

concentration of a target gene is, therefore, a function of three types of regulation: within-

clique, within-complex, and across-complex regulation. Within-clique regulation captures

the contribution of one clique on a target gene. The within-complex regulation captures the

combined contribution of all cliques in one TFC. Finally, the across-complex regulation

specifies the combined contribution of different TFCs.

We now introduce the notation for ODEs generated by RENCO. Mi(t) and Pi(t) de-

note the mRNA and protein concentrations, respectively, of gene gi, at time t. V M
i and vM

i

denote the rate constants of mRNA synthesis and degradation of gi. V P
i and vP

i denote the

rate constants of protein synthesis and degradation. Cij and Tij denote a protein clique

37

Chapter 3. Evaluation framework of unsupervised learning of biological networks

and a TFC respectively, associated with gi. Qi denotes the set of TFCs associated with gi.

Xij , Yij and Si specify the within-clique, within-complex and across-complex regulation

on gi.

Based on existing work [100, 120], the rate of change of mRNA concentration is the

difference of synthesis and degradation of Mi: dMi(t)
dt = V M

i Si − vM
i Mi(t). Similarly for

protein concentration, dPi(t)
dt = V P

i Mi(t)− vP
i Pi(t).

The across-complex regulation, Si is a weighted sum of contributions from |Qi| TFCs:

Si =
∑|Qi|

q=1 wqYiq, where wq denotes the TFC weight. The sum models “or” behaviour

of the different TFCs because all TFCs need not be active simultaneously. The within-

complex regulation, Yij is a product of within-clique actions in the TFC Tij , Yij =
∏|Tij |

c=1 Xic. The product models “and” behaviour of a single TFC because all proteins

within a TFC must be active at the same time. Finally, the cliques per gene Cij are ran-

domly assigned activating or repressing roles on gi. If Cij is activating:

Xij =

∏|Cij |
p=1 Pp(t)

∏|Cij |
p=1 Kaip +

∏|Cij |
p=1 Pp(t)

,

otherwise,

Xij =

∏|Cij |
p=1 Kiip

∏|Cij |
p=1 Kiip +

∏|Cij |
p=1 Pp(t)

.

Kaip and Kiip are equilibrium dissociation constants of the pth activator or repressor of gi.

All degradation, synthesis and dissociation constants are initialized uniformly at random

from [0.01, Vmax], where Vmax is user-specified.

3.1.2 Example network

We used RENCO to analyze : (a) mRNA and protein steady-state measurements, and, (b)

combinatorial gene regulation, in a small example network.

38

Chapter 3. Evaluation framework of unsupervised learning of biological networks

!50 0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Timestep

G
e

n
e

 E
x
p

re
s
s
io

n

G0

G1

G2

G3

G4

(b)

!50 0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

Timestep

P
ro

te
in

 E
x
p

re
s
s
io

n

P0

P1

P2

P3

P4

(a) (c)

Figure 3.1: (a). Example network. Dashed edges indicate regulatory actions. Wild-type
gene (a) and protein (b) time courses.

Importance of modeling protein expression

The example network has 5 genes and 5 proteins (Fig 3.1 a). The gene G4 is regu-

lated via different combinations of the cliques {P2}, {P0, P1}. We find that the wild-type

time courses of individual mRNA expressions are correlated with corresponding proteins

(Fig 3.1b and c). But because different genes and proteins have different degradation and

synthesis rate constants, the mRNA population as a whole does not correlate well with

the protein population (Spearman’s correlation = 0.3). Because of the dissimilarity in the

steady-state mRNA and protein expression populations, genes appearing to be differen-

tially expressed at the mRNA level may not be differentially expressed at the protein level.

This highlights the importance of modeling mRNA and protein expression as separate

entities in the network.

39

Chapter 3. Evaluation framework of unsupervised learning of biological networks

!50 0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

Timestep

G
e

n
e

 E
x
p

re
s
s
io

n

WT

G0

G1

G2

G0!G1

G0!G2

G1!G2

G0!G1!G2

Figure 3.2: G4 time course under knock out combinations of G0, G1 and G2)

Combinatorics of gene regulation

We analyzed combinatorial control in our network by generating the G4 time course under

different knockout combinations of the G4 activators, P0, P1 and P2 (Fig 3.2). Because all

the regulators are activating, G4 is downregulated here compared to wild-type. We note

that each knock out combination yields different time courses. In particular, knocking out

either G0 or G1 in combination with G2 is sufficient to drive the G4 expression to 0. This

phenomenon is because of the clique, P0, P1. This illustrates a possible combinatorial

regulation process to produce a range of expression dynamics using a few transcription

factors.

3.2 Structural comparison of inferred network structures

Performance comparison of different structure learning algorithms is important to iden-

tify the best algorithm. Unfortunately, this is difficult because the true network is rarely

known, and therefore there is no ground truth to compare predicted structures against. Ex-

isting comparison techiques use network simulation systems to generate artificial network

topologies and associated node measurements. Different inference algorithms are then

used to infer networks from the node measurements and compared against the original

40

Chapter 3. Evaluation framework of unsupervised learning of biological networks

network topology. However, scores used to compare different algorithms do not highlight

the strengths and weaknesses of different algorithms because: (i) they are based on edge-

wise precision and recall [91] and do not account for higher-order structures involving

more than two nodes, which are common in biological networks, (ii) they only compare

inferred topologies without considering the functional relationships among the network

nodes.

We describe two novel types of higher order scores, pathwise and subgraph score, that

account for higher-order structures in the network topology (Section 3.2.1). We also de-

scribe an approach to perform functional comparison between the outputs of the structure

inference algorithms (Section 3.3).

3.2.1 Topological comparison of higher-order structures

Pathwise scores

The standard precision and recall scores, referred to as “edgewise scores”, are based on

matching individual edges between the true and inferred network. The pathwise scores

extend the edgewise scores by comparing paths and edges. The pathwise precision mea-

sures how well edges in the inferred network are supported by paths in the true network.

We define pathwise precision, Pp = 1
N

∑N
i=1 Si, where N is the number of edges in the

inferred network and Si measures the support of the ith inferred edge in the true network.

Specifically, Si = 1
1+(li−1) , where li is the length of the shortest path in the true network

between the nodes of the ith edge. If no path exists, li = M +1, where M is the number of

network nodes. This definition of precision allows more flexibility in cases where edges

in the inferred network are not matched exactly by edges in the true network. Recall is

defined in a similar way where edges in the true network are matched with paths in the

inferred network.

41

Chapter 3. Evaluation framework of unsupervised learning of biological networks

Subgraph scores

We introduce subgraph scores to evaluate how well algorithms for network structure in-

ference capture higher-order dependencies. Similar to the network motif community [58,

101, 85], we assume meaningful higher-order dependencies to correspond to subgraphs

of the true network, true subgraphs. However, unlike the network motif finding problem,

we need not solve the subgraph-isomorphism problem for which no efficient solution is

known. The subgraphs and the target graphs that we compare are labeled requiring us

to solve a restricted version of the subgraph-isomorphism problem: matching the edge

connectivity between the vertices from the true and inferred subgraphs.

We define two types of subgraph scores: Edge set match (E-score) and Vertex set

match (V-score). E-scores measure how well edges of the true subgraphs are captured in

the inferred network. V-scores measure how well vertex degrees of the true subgraphs are

captured in the inferred network. While E-scores measure the overall ability of algorithms

to capture correct subsets of edges, V-scores penalize algorithms that predict edges that

are not part of the subgraphs. We enumerate different types of subgraphs such as cycles

of length r (r-C), shortest-path reachable neighborhood (SPN) and r-radius neighborhood

(r-N).

These subgraph scores measure how well subgraphs in the inferred network are match-

ed to those in the true network. Both E and V-scores have a precision and recall definition.

We use a “weight” per score, proportional to the subgraph size, which gives more impor-

tance to higher-order structures that are generally harder to match.

The E-score recall is:

RES =
∑

g∈St

w̄g
|Eg ∩ Êg|
|Eg|

, (3.1)

where St denotes a set of subgraphs of type t (E.g. t = SPN for shortest path, t = r-RDN

for r-radius neighbourhood, t = r-C for cycles), w̄g = |Vg |P
f∈St

|Vf |
and Vg is the vertex set

42

Chapter 3. Evaluation framework of unsupervised learning of biological networks

of subgraph g. Eg is the edgeset of g, and Êg is the inferred edge set among v ∈ Vg. The

E-score precision is defined similarly, except, Eg in the denominator is replaced by Êg.

The V-score recall is: RV S =
∑

g∈St
w̄g

P
v∈Vg

hv
P

v∈Vg
hv+mv

, where hv and mv are the num-

ber of neighbours of v, matched and missed, respectively, between the true and inferred

networks. The V-score precision is defined similarly except mv is replaced by m̂v, the

number of false neighbours of v.

These scores lie in the interval [0, 1], and equal 1 when there is perfect match for all

subgraphs. The above described scores are motivated by the walk-kernel used in the graph-

kernel literature [114, 45]. In the walk-kernel the inner-product between two graphs is

computed by a score very similar to Eq 3.1 but the fraction is replaced by 1 or 0 depending

upon whether g exists in the two graphs.

3.2.2 Structural comparison of multiple networks

The above section assumes that we have one true and inferred network. That is we have

data from only one condition. However for comparing networks across multiple conditions

we need to adapt our structural comparison scores. Assume we have c true networks,

one for each condition. Condition-specific network learning approaches have to learn c

networks for all the conditions. An additional problem arises when we do not know the

condition variable, and therefore do not which inferred network corresponds to which the

condition. Our network structure comparison for multiple networks compares each true

network with all of the inferred networks. We describe how we do this in practice using the

1-N subgraphs. Assume we are focusing on the ith node in the jth network, 1 ≤ j ≤ c. Let

Eij be the set of edges connected to this node in its radius 1 neighborhood. The F-score

FESij of matching Eij is defined as:

FESij = maxj′FESij′ , (3.2)

43

Chapter 3. Evaluation framework of unsupervised learning of biological networks

where FESij′ is the F-score from j′th inferred network. The F-score itself is a harmonic

mean of precision (PESij′) and recall (PESij′). The recall RESij′ is defined as

RESij′ =
|Eij′ ∩ Eij|

|Eij|
, (3.3)

where Eij′ is the edge set of i’s 1-N subgraph in the j′th inferred network. The precision

is defined similarly except the denominator is |Eij′|.

By computing match scores for each node in the graph, we perform a more localized

structure comparison by comparing the neighborhood of individual nodes. This allows

us to compare algorithm A versus B based on the number of nodes on which A had sig-

nificantly higher per-node neighborhood F-scores than B. In our comparisons of different

algorithms for condition-specific network inference in Chapter 6, this is the method we

use.

3.3 Functional comparison of inferred networks

The graphical models that we use to represent biological networks are composed of two

parts: the graph structure and the potential functions describing the mathematical forms

of the conditional distributions. The structural comparison described in the above sections

only match the graph structure part. Comparison of the models also requires us to account

for the functional part of the model. We now describe two scores of functionally comparing

undirected graphical models.

3.3.1 Pseudo likelihood

Pseudo likelihood based model comparison is done by computing the pseudo likelihood of

a hold-out test set given a model [64, 105]. This is similar in flavor to model comparison

based on data likelihood [65]. The pseudo likelihood of a graph over random variable set

44

Chapter 3. Evaluation framework of unsupervised learning of biological networks

X with parameters θ = {θ1, · · · , θN} is an approximation to likelihood of data given an

undirected graphical model:

P (X = x) =
N∏

i=1

P (Xi = xi|Mi = mi) (3.4)

where Mi denotes the Markov blanket of Xi, x is an assignment to X. Log of pseudo

likelihood gives us a decomposable score for a graph:

PLL(D; θ) =
D∑

d=1

N∑

i=1

logP (Xi = xdi|Mi = mdi, θi) (3.5)

Here D is the hold out test set. To compare two learned models from two different meth-

ods, we compare again perform a localized comparison on a per-variable basis. In par-

ticular, we compare each variable’s contribution to the overall pseudo log likelihood. Let

PLLV(Xi,Mi) denote the contribution of Xi to the overall pseudo log likelihood, that is

PLLV(Xi,Mi) =
∑|D|

d=1 = P (Xi = xdi|Mi = mdi). For each method, we learn different

models on different folds of the training data, compute the PLLV(Xi,Mi) for each fold,

and then compare the average PLLV(Xi,Mi) across folds. A method is said to be bet-

ter if it has more variables with significantly higher pseudo log likelihood than the other

method.

3.3.2 Symmetric Kullback-Leibler (KL) divergence

Symmetric KL divergence provides another method of evaluating different learned mod-

els. Symmetric KL divergences can be used as a measure of distance between the distri-

butions specified by the true and the inferred models. Let p and q denote two probability

distributions. The KL divergence between these two distributions is

KL(p, q) =

∫
p(x)log

p(x)

q(x)
dx

45

Chapter 3. Evaluation framework of unsupervised learning of biological networks

This is usually asymmetric, that is, KL(p, q) '= KL(q, p). Symmetric KL divergence is

defined as

SymmKL(p, q) = KL(p, q) + KL(q, p)

The integral can be computed in closed form only for special forms for p and q, such as

Gaussians. For the majority of the cases, we need to numerically estimate the integral

using a large hold out test set D:

SymmKL(p, q) =
D∑

d=1

p(Xi = xdi)log
p(Xi = xdi)

q(Xi = xdi)
+ q(Xi = xdi)log

q(Xi = xi)

p(Xi = xi)

Here p is the conditional probability distribution of Xi given its Markov blanket in the

true model, and q is the conditional distribution of Xi in the inferred model. Similar to

the pseudo log likelihood case, we compute symmetric KL divergence for each variable

per method, over different folds of the training data and compare the average symmetric

KL divergence of the two methods. Unlike pseudo log likelihood, a method is better than

another if it has more variables with significantly lower symmetric KL divergence. This is

because symmetric divergence measures the distance between the true and inferred models

and a good inferred model must be as close in distance as possible to the true model.

3.4 Biological validation

Biological validation is the process of validating inferred networks using existing litera-

ture, and controlled vocabulary based annotation of genes [6]. We applied several novel

and existing measures of biological validation of our inferred networks. We defined the

Annotation-Topological Similarity, a novel global measure of assessing the quality of the

inferred network structure, based on the agreement between annotation and topological

similarity of two subgraphs. The existing validation methods are based Gene Ontology

46

Chapter 3. Evaluation framework of unsupervised learning of biological networks

[6], a controlled vocabulary for annotating genes, and semantic similarity of genes con-

nected in the inferred network [89]. We describe these validations below.

3.4.1 Annotation topological measure

We developed a global measure of validation of the entire graph structure, Annotation-

Topological Similarity (ATS), which assesses if subgraphs that are topologically close in

the inferred network, are also similarly annotated. The Annotation Topological similar-

ity computes the correlation between annotation and topological similarity for pairs of

subgraphs.

Annotation similarity

Annotation similarity, aij between two subgraphs Si, and Sj measures the similarity be-

tween the subgraphs in annotation space. For each Si, we compute an enrichment p-value

using the hypergeometric distribution for each of the 33 Gene Ontology Slim (GOSlim)

process terms. Thus in annotation space, each subgraph is represented by a 33 dimensional

vector, Ai, where the kth element, Ai(k), is the logarithm of the p-value of enrichment in

the kth term using genes from Si. The annotation similarity, aij between Si and Sj , is

given by the Pearson’s correlation value between their respective annotation enrichment

vectors Ai and Aj .

Topological similarity

The topological similarity, tij between two subgraphs Si and Sj captures how close these

subgraphs are on the complete graph. We use two definitions of topological similarity. The

first is based on the average shortest path distance between the vertices of Si to vertices of

Sj:

47

Chapter 3. Evaluation framework of unsupervised learning of biological networks

tij =

∑
v∈Vi,u∈Vj

2 ∗ d(u, v)

|Vi| ∗| Vj|
, (3.6)

where Vi and Vj are the vertex sets of Si and Sj respectively.

The second definition is obtained from Lee et al. [83], and is based on the number of

edges that cross between vertices of Si and Sj:

tij =
lij

ni + nj
(3.7)

where lij is the sum of number of nodes common between Si and Sj , and the number of

edges across Si and Sj . ni and nj are the vertex counts in subgraphs, Si and Sj . Subgraphs

that are not connected in the graph are not considered for computing the ATS measure.

Finally, the ATS measure is the Pearson’s correlation between the annotation and topo-

logical similarity over all pairs of subgraphs. If our measure of topological similarity is the

shortest path distance, we expect the topological distance and annotation similarity to be

anti-correlated, producing a negative correlation coefficient. Therefore the more negative

the coefficient, i.e. small values of tij , the more likely it is for two subgraphs with similar

function to be close together, and two subgraphs with different function to be far apart. If

our measure of topological similarity is from Lee et al., we expect the topological distance

and annotation similarity to be correlated, producing a positive correlation coefficient, and

the more positive the coefficient, the better the quality of the inferred dependencies.

In our application of the ATS score, we considered subgraphs generated from each

vertex and its neighbors that are 1 step away. These subgraphs had to be maximal, that

is no vertex set of a subgraph could be completely contained within another vertex set.

ATS was the Pearson’s correlation coefficient between two vectors, vA and vT , each of

length
(|S|

2

)
, where S is the set of subgraphs generated from the inferred network. Each

dimension, vA(r) is the annotation similarity for rth subgraph pair, where 1 ≤ r ≤
(|S|

2

)
.

Similarly, each dimension, vT (r) is the topological distance for rth subgraph pair. We now

define annotation and topological distance.

48

Chapter 3. Evaluation framework of unsupervised learning of biological networks

We also evaluated the statistical significance of the ATS measure per inferred network

using a background distribution of ATS from random networks. Specifically, for each

inferred network, we generated 100 random networks using a randomization technique that

preserved the degree distribution of the networks [101], computed ATS for each random

network, and generated the histogram of the ATS values.

3.4.2 Gene ontology enrichment analysis

Gene ontology (GO) is a hierarchically organized, controlled vocabulary used to annotate

the genes of an organism [6]. Gene ontology has three types of terms: (a) biological

process, (b) cellular location, and (c) molecular function. We assess biological importance

of an inferred subgraph using a p-value enrichment of GO term. The p-value tells the

probability of observing by random chance hi out of gi genes in the ith subgraph associated

with a term t, given that there are na out of nb genes associated with t. We use the hyper-

geometric distribution for computing this p-value.

We use false-discovery rate (FDR) to avoid the problem of multiple hypothesis correc-

tion. FDR is estimated using a simulation strategy similar to Boyle et al. [20]. Briefly,

assume we sample s = 1000 random subsets of size k from the entire gene set. We com-

pute their p-values for each GO term. The FDR is associated with the number of terms

enriched in a subgraph at a particular p-value. For example, if a subgraph of size k is

enriched in u terms at p < 10−4, FDR is u′

u , where u′ is the average number of terms en-

riched in a random subgraph of size k at p < 10−4. We used an FDR of ≤ 0.05 to identify

significant enrichments.

49

Chapter 3. Evaluation framework of unsupervised learning of biological networks

3.4.3 Semantic similarity

We use the definition of semantic similarity from Lord et al. [89]. Semantic similarity is

defined between two annotation terms using the maximal amount of information present

in a common ancestor of the terms. For GO terms the information is inversely proportional

to the number of genes that are annotated with a term. Hence, a very specific term with

few genes has more information than a broader term that has many more genes annotated

with it. The semantic similarity of two genes is defined using the semantic similarity of

sets of terms associated with the two genes. Let gi and gj be two genes connected by an

edge in our inferred network. Let Ti and Tj be the set of GO process terms with which the

genes gi and gj are annotated, respectively. We compute an average semantic similarity,

simgi, gj for all pairs of terms as:

sim(gi, gj) =
1

|Tp| ∗|Tq|
∑

tp∈Ti,tq∈Tj

semsim(tp, tq),

where semsim(tp, tq) = −log(mina∈Ppqpa), and Ppq is the set of common ancestors of the

terms tp and tq in the GO process “is-a” hierarchy. pa is the probability of the term, and

is defined as the ratio of the number of genes annotated with the term a to the total num-

ber of genes with a GO process assignment, and −log(pa) is the amount of information

associated with a term a.

50

Chapter 4

Learning undirected graphical models

for biological networks

In this chapter, we investigate the ability of undirected probabilistic graphical models to

represent biological networks. The work described in this chapter is necessary to (a) justify

the class of models that we will use to represent condition-specific networks, (b) pin-down

modeling questions about the probability distributions used to mathematically represent

the statistical dependencies. We describe two novel algorithms for learning the structure of

the undirected models. The first algorithm is based on finding consistent Markov blanket

structures and the second algorithm describes a scalable framework for learning these

networks. We then present results using simulated data and discuss issues related to the

representation of the conditional probability distributions.

51

Chapter 4. Learning undirected graphical models for biological networks

4.1 Representing biological networks as undirected prob-

abilistic graphs

Probabilistic graphical models (PGMs) representing real-world networks capture impor-

tant structural and functional aspects of the network by describing a joint probability dis-

tribution of all node measurements. The structure encodes conditional independence as-

sumptions allowing the joint probability distribution to be tractably computed. When the

structure is unknown, likelihood-based structure learning algorithms are employed to infer

the structure from observed data.

Likelihood-based structure learning of directed acyclic graphs (DAGs), such as Bayes-

ian networks, is widely used because the likelihood score can be tractably computed for

all candidate DAGs. However, in many domains such as biology, causal implication of

directed edges is difficult to ascertain without perturbations, leaving only a correlation

implication. In such situations, undirected graphical models are a more natural represen-

tation of statistical dependencies. Unfortunately, likelihood-based structure learning of

these models is much harder due to the intractability of the partition function [1].

To overcome this issue, researchers have opted several alternatives: learn graphical

Gaussian models where the likelihood can be computed tractably [87]; restrict to lower

order, often pairwise functions, [91, 84]; use pseudo-likelihood as structure score instead

of likelihood [15]; learn dependency networks [64, 121]; or learn Markov blanket canoni-

cal factors [1]. Pairwise models are scalable, but, approximate higher-order dependencies

by pairwise functions, which is limiting for domains where higher-order dependencies oc-

cur commonly. While dependency networks are scalable, each variable neighborhood is

estimated independently, resulting in inconsistent structures when the data sample size is

small. This is problematic for real-world data which often lack sufficient samples to guar-

antee a consistent joint probability distribution for the learned structure. Finally, Markov

blanket canonical parameterization requires exhaustive enumeration of variable subsets up

52

Chapter 4. Learning undirected graphical models for biological networks

to a pre-specified size l, which is not scalable for networks with hundreds of nodes.

We have developed a new algorithm for learning undirected graphical models, that pro-

duces consistent structures and is scalable to be applicable for real-world domains. Our

algorithm, Markov blanket search (MBS) is inspired by Abbeel et al.’s Markov blanket

canonical parameterization, which established an equivalence between global canonical

potentials and local Markov blanket canonical factors (MBCFs) [1]. We extend Abbeel

et al.’s result to establish further equivalence between MBCFs and per-variable canon-

ical factors. Because per-variable canonical factors require learning Markov blankets

per-variable, rather than all subsets up to size l, we save O(nl−1) computations during

structure learning, where n is the number of variables. The equivalence of per-variable

canonical factors and global canonical factors has been observed before [107]. However,

we are the first to use per-variable canonical factors in the context of MRF structure learn-

ing to learn consistent MRF structures. Enforcing structural consistency during search,

guarantees the structure to be a MRF, and also the existence of a joint distribution for the

individual conditional distributions. Thus we need not perform additional post-processing

to guarantee consistent structures [121].

4.1.1 Markov random fields

A Markov random field (MRF) is an undirected, probabilistic graphical model that repre-

sents statistical dependencies among a set of random variables (RVs), X = {X1, · · · , Xn}.

A MRF consists of a graph G and a set of potential functions ψ = {ψ1, · · · , ψm}, one for

each clique in G. The graph structure describes the statistical dependencies, and the poten-

tials describe the functional relationships between the RVs. The RVs encode the observed

measurements for each node, Xi ∈ R. The joint probability distribution of the MRF is

defined to be: P (X = x) = 1
Z

∏m
i=1 ψi(Fi = fi), where x is a joint assignment to X,

Fi ⊆ X is the variable set in the ith clique, associated with ψi; fi ⊆ x is a joint assignment

53

Chapter 4. Learning undirected graphical models for biological networks

to Fi. Z is the partition function and is defined as a summation over all possible joint

assignments of X.

Structure learning of MRFs using likelihood is difficult in general because of Z [1].

This is because estimating Z requires a sum of exponentially many joint configurations

of the RVs, making it intractable for real-world domains. To overcome this problem,

researchers have proposed approaches that use pseudolikelihood [15, 64], or, have used

Markov blanket canonical parameterization (MBCP) [1]. We use an approach similar to

MBCP, which requires the estimation of optimal Markov blankets for RV subsets, Y ⊆ X,

|Y| ≤ l, where l is a pre-specified, maximum subset size. However, we learn local per-

variable factors, requiring estimation of Markov blankets of only individual RVs. Avoiding

Markov blanket estimation of all subsets, makes our approach scalable to domains with

hundreds of nodes. We give details of the proof in the Appendix A and we now proceed

with the algorithm description.

4.1.2 Markov blanket search (MBS) algorithm

The MBS algorithm learns the structure of a MRF by finding the best neighborhood or

Markov blanket (MB) for each RV. To identify the best MB, we need to optimize a score,

S(Xi|Mi) per RV Xi, which quantifies dependence between a RV and its MB. Examples

of such scores include pseudolikelihood (dependency networks) or conditional entropy

(MBCP) [32]. For example, the best MB identified via conditional entropy, H(Xi|Mi)

is: Mi = arg mincMi
H(Xi|M̂i). Best MB via pseudolikelihood, PLL(Xi|Mi), is: Mi =

arg maxcMi
PLL(Xi|M̂i)

Dependency networks and MBCP identify the best MB per RV by independently op-

timizing S(Xi|Mi) per RV1. However, optimizing S(Xi|Mi) per RV independently, may

1In MBCP estimation, MBs of variable sets are identified independently. MBCP requires an
additional subset consistency check: if X ⊂ Y, then MX ⊂ (MY ∪ (Y \X))

54

Chapter 4. Learning undirected graphical models for biological networks

Algorithm 1 Markov Blanket Search
Input:

Random variable set, X = {X1, · · · , X|X|}

maximum neighborhood sizes, kmax, khard

Output:

Inferred graph structure G

for k = 1; k ≤ kmax; k + + do

for Xi ∈ X do {Add stage}

Find best new MB variable Xj that maximizes ∆Sij s.t. |Mi| ≤ k (Eq 4.1)

end for

for Xi ∈ X do {Swap stage}

for Xj ∈ M̂i
k

do

for Xq ∈ X \ (M̂i
k
∪ {Xi}) and |M̂q

k
| ≤ khard and Xq /∈ tabulist(Xi) do

Delete {Xi, Xj}, add {Xi, Xq}, add Xj to tabulist(Xi) if swapping Xq for Xj gives

maximal score improvement.

end for

end for

end for

end for

result in inconsistent MBs. In particular, we cannot guarantee that if Xj ∈ Mi, then

Xi ∈ Mj . This inconsistency can be handled as a post-processing of the learned MBs

[121]. However, our experiments suggest that a post-processing approach produces lower

quality MBs (Section 4.1.4).

We propose a different approach that finds consistent MBs during the search process.

To find consistent MBs, we search MBs, not only using the improvement in S(Xi|Mi) on

adding Xj , but also the score change in S(Xj|Mj) if Xi was added to Mj . This is done

by computing the net score gain per candidate MB for Xi. Let M̂i

k−1
denote the best MB

55

Chapter 4. Learning undirected graphical models for biological networks

for Xi obtained so far. Then the score gain is:

∆Sij = S(Xi|M̂i

k−1
)− S(Xi|M̂i

k−1
∪ {Xj})

+S(Xj|M̂j

k−1
)− S(Xj|M̂j

k−1
∪ {Xi}) (4.1)

Our approach is similar to Hofmann & Tresp’s edge-based score for guaranteeing consis-

tency [66]. However, their search strategy starts from a fully connected network and re-

moves edges, whereas we add and replace edges starting with a completely disconnected

network. For real-world domains, growing larger neighborhoods from smaller neighbor-

hoods is more feasible than shrinking large neighborhoods, because we may not have

enough data for reliably learning large neighborhoods.

The MBS structure learning algorithm uses Eq 4.1 to greedily identify the best MB

for each variable (Algo. 1). Each iteration uses a combination of add and swap operations

to learn the best structure. In the add stage of the kth iteration, we make one variable

extensions to the current M̂i

k−1
of each Xi, restricting to at most k ≤ kmax RVs per MB.

Instead of adding one edge at a time, we add all possible edges that could be added to the

current graph Gk. Thus, we first propose candidate extensions for each variable given the

current graph Gk, and then make edge additions in order of decreasing score improvement.

In the swap stage, we revisit all variables Xj ∈ M̂i

k
for each Xi, and consider other

RVs, Xq /∈ ({Xi}∪ M̂i

k
), which if swapped in instead of Xj , gives a score improvement.

If so, we replace Xj by Xq with the maximal score improvement, in M̂i

k
, and store Xj

in the tabu list of Xi. This prevents Xj from being included in Xi’s MB in subsequent

iterations. In the swap stage, a variable can be present in > kmax MBs. However, no

variable can be in more than khard = 20 MBs. Thus, nodes in our inferred networks have

degrees ≥ khard, which reasonably models hub nodes in most domains.

The per-variable canonical factor equivalence exploited by MBS to identify the MRF

structure does not make any specific assumptions of the parametric form of the conditional

probability distributions. MBS only requires that the candidate MBs be scored using the

56

Chapter 4. Learning undirected graphical models for biological networks

conditional probability distributions. So MBS can potentially be instantiated with any

probability distribution and choice of score. For empirical evaluation of our framework,

we selected P (Xi|Mi) to be conditional Gaussians and S(Xi|Mi) to be the regularized

conditional entropy for each Xi: S(Xi|Mi) = H(Xi|Mi) + λlog(|Mi|). λlog(|Mi|)

penalizes large MBs and 0 ≤ λ ≤ 1 is a regularization coefficient. We discuss in the next

section how different types of conditional distributions can be used.

4.1.3 Family of potential functions

We implemented the MBS algorithm with three types of functions for representing po-

tential distributions. These are regression trees, kernel density estimators and multivari-

ate Gaussians. In all these cases we need to be able to compute the joint entropy, be-

cause from the joint entropy the conditional entropy H(Xi|Mi) can be easily computed as

H(Xi|Mi) = H(Xi,Mi) + H(Mi).

Multi-variate Gaussians

Information-theoretic measures such as entropy can be computed in closed form for multi-

variate Gaussians. Specifically from Cover and Thomas [32], the joint entropy of {Xi} ∪

Mi is given by

H(Xi,Mi) =
1

2
(l(1 + log2π) + |Σi|) (4.2)

where l = |Mi| + 1, Σi is the covariance matrix for the multivariate Gaussian describing

the joint distribution of {Xi}∪Mi. The conditional entropy can be easily computed from

joint entropy as H(Xi|Mi) = H(Xi,Mi)−
∑

Y ∈{Xi}∪Mi
H(Y).

57

Chapter 4. Learning undirected graphical models for biological networks

Kernel density estimators

Kernel density estimators (KDE) are non-parameteric families of probability distribution.

We first define KDE estimators for univariate probability distribution of a random variable

X . The KDE estimates the probability of X taking value x as a sum, P (X = x:

P (X = x) =
1

nh

n∑

j=1

K(
x− xj

h
) (4.3)

where K is a kernel function, h is the width of the kernel and n is the number of data

points our data set. h determines the smoothness of the estimation. Well known examples

of the kernel function are Gaussian kernels, exponential kernels or the simplest histogram

kernels. Entropy estimation for probability distributions represented by KDE cannot be

computed in closed form and several approximations have been proposed [11]. We esti-

mate the marginal entropy, H(X) of X as the following:

H(X) = − 1

n

n∑

j=1

logP (X = x) (4.4)

where P (X = x) is obtained from the KDE estimator. The entropy can be considered as

an expectation of X , and the above estimate computes the expected value with respect to

the uniform distribution.

However, in our setup we need KDE estimators for multi-variate distributions. To

accomplish this efficiently, we use the Figtree library [102]. The joint entropy of a set of a

set of random variables X is given by a similar formula:

H(X) = − 1

n

n∑

j=1

logP (X = x) (4.5)

An important issue in KDE is selecting h. We use a hold-out set of estimating h in our

experiments.

58

Chapter 4. Learning undirected graphical models for biological networks

Regression trees

Regression trees are another non-parametric family for representing the probability dis-

tribution associated with each family [64, 125]. Regression trees allow us to directly

represent the conditional distribution, P (Xi|Mi). Each non-leaf node of the regression

tree represents a split on one of the variables Xi ∈ Mi. The conditional probability

P (Xi = xi|Mi = mi) is given by tracing the path down the regression tree based on the

joint assignment mi. At each leaf node l we have a univariate Gaussian with mean µil and

variance σil, which are estimated using the values of Xi that fall into the node l. For the re-

gression tree we compute the conditional entropy directly, as opposed to the multi-variate

Gaussian and KDE. The conditional entropy, H(Xi|Mi) is given by the formula:

H(Xi|Mi) = −
∫

P (Mi)logP (Xi|Mi) (4.6)

Again, this integral cannot be computed in closed form, but we approximate it by summing

over all the leaf nodes. This is because the structure of the regression tree associated with

this conditional distribution, partitions assignments to Mi into the sets, where each set

is consistent with one path of the regression tree leading to a leaf node. Therefore the

probability P (Mi) is the normalized count of the number of assignments to Mi that are

consistent with a path, which in turn is the number of data points residing in the leaf node.

Thus the conditional entropy using the regression tree is

H(Xi|Mi) = −
|Li|∑

l=1

nl∑
o no

1 + log(2πσil)

2
(4.7)

The last term is the marginal entropy of Xi using the data points assigned to the lth leaf

node. An issue in the regression tree is that of controlling the size of the tree. Very large

trees can describe the data well but can result in to over-fitting the data. We treat p as

an additional regularization term and learn networks for a wide range of p. Although we

did have the regularization of the size of the Markov blanket, λ, its effect was minimal

compared to the p. Hence, in our experiments we fixed the value of λ.

59

Chapter 4. Learning undirected graphical models for biological networks

4.1.4 Results

The goal of our experiments was (a) to identify the most appropriate form of conditional

probability distributions for the MBS algorithm, (b) compare MBS against other existing

algorithms for learning both directed and undirected graphical models, (c) demonstrate the

importance of incorporating Markov blanket consistency during network structure learn-

ing.

Dataset description

All experiments described in this section were done on simulated data from networks

of known topology enabling a direct validation of the inferred structures. The datasets

were generated by a gene regulatory network simulator using differential equations for

describing gene and protein expression dynamics [115]. The simulator models combina-

torial control among regulator proteins to generate expression data resembling data from

real-world networks. We generated six datasets using three networks of different sizes

(Table 4.1). Each sample consists of steady-state expressions reached after perturbing the

kinetic constants of the genes. Networks for G50 and G75 were generated de novo by the

simulator. The network for ECOLI belongs to the bacteria, E. coli.

As the true network topologies for these data are known, our comparisons were based

on the match between the inferred and true network structures. We used various scores

described in Chapter 3 to compare the true and inferred graphs. Briefly, we extracted

subgraphs of different types (e.g. cycles, neighborhood) from the true network and used

an F-score measure to match the vertex neighborhood and edge set per subgraph. We

refer to the scores for vertex neighborhood as V-scores and for edge set as E-scores. We

use shortest path neighborhoods (SPN), r-radius neighborhoods comprising a vertex and

its neighbors ≤ r steps away (r ∈ {1, 2}, denoted by 1N and 2N), and cycles of size r

(r ∈ {3, 4}, denoted by 3C and 4C). ECOLI datasets did not have any cycles.

60

Chapter 4. Learning undirected graphical models for biological networks

Network Number of Nodes Datasets
G50 100 G50-ALL, G50-TF
G75 150 G75-ALL, G75-TF

ECOLI 188 ECOLI-ALL, ECOLI-TF

Table 4.1: Description of simulated datasets generated from RENCO. The ALL datasets
were generated by perturbing kinetic constants of all genes, and the TF datasets were
generated by perturbing kinetic constants of only the regulator genes.

Effect of different potentials

We performed preliminary experiments to evaluate the performance of the MBS algorithm

with different types of potential functions for the conditional distribution (Fig 4.1). These

experiments were performed on MBS without the swap stage. The kernel width, h for the

KDE was estimated on a hold-out set which optimized the MBS score by varying the h in

the range 1e− 10 ≤ h ≤ 1, changing h by a factor of 5 at each step. The leaf node size, l

of the Regression tree was varied in l ∈ {10, 30, 50, 70}.

We found MBS with multi-variate Gaussian to have the best performance on the E

scores. The regression tree was occasionally better than the KDE model especially for

the TF datasets. On the V scores, the multi-variate Gaussian was outperformed for a few

cases (G50-ALL, neighborhood scores), but in general was at par or better than the MBS

versions using other probability distribution forms. The regression tree was closer to the

multi-variate Gaussian than the KDE. In summary, we found the multi-variate Gaussians

to have the best performance. The experiments described in the following sections were

done using MBS with multi-variate Gaussians.

Comparison of MBS against other algorithms

We compared our Markov Blanket Search (MBS) algorithm against existing algorithms for

undirected and directed graphs on simulated data described in Section 4.1.4. We compared

61

Chapter 4. Learning undirected graphical models for biological networks

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/ 012!)

)
34
5
6
78

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/ 012!9

9
34
5
6
78

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/
:2!)

)
34
5
6
78

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/ :2!9

9
34
5
6
78

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/

,2!)

)
34
5
6
78

!"#!$%%!"#!&'!("!$%%!("!&')*!$%%)*!&'
#

#+,

#+-

#+.

#+/
,2!9

9
34
5
6
78

!"#!$%% !"#!&' !("!$%% !("!&'
#

#+,

#+-

#+.

;*!)

)
34
5
6
78

!"#!$%% !"#!&' !("!$%% !("!&'
#

#+:

#+,

#+;

#+- ;*!9
9
34
5
6
78

!"#!$%% !"#!&' !("!$%% !("!&'
#

#+,

#+-

#+.
-*!)

)
34
5
6
78

!"#!$%% !"#!&' !("!$%% !("!&'
#

#+:

#+,

#+;

#+- -*!9

9
34
5
6
78

3

3

<9!$=00 >?) @)!&@))

Figure 4.1: Performance comparison of different models for the conditional distribution.
The x-axis is for datasets.

MBS to two undirected algorithms: ARACNE [91], and a Lasso regression-based Graph-

ical Gaussian model (GGLAS) [87]. We also compared MBS against several directed

models provided in the DAGLearn software2: full DAG search (FULLDAG), LARs based

order search (ORDLAS), DAG search using Sparse candidate for pruning (SPCAND), and

DAG search using L1 regularization based Markov blanket estimation (L1MB) [121]. Be-

cause L1MB does not learn consistent Markov blankets, a post-processing step is required

to make the structures consistent. The AND post-processing removes Xi from Mj if

2http://www.cs.ubc.ca/˜murphyk/Software/DAGlearn/

62

Chapter 4. Learning undirected graphical models for biological networks

Xj /∈ Mi, where Mi and Mj are Xi’s and Xj’s MB, respectively. The OR post-processing

includes Xi in Mj if Xj ∈ Mi. We refer to L1MB with AND and OR post-processing as

MBAND and MBOR, respectively. We also included an implementation of order MCMC

(ORDMC) for Bayes net search (http://www.bioss.ac.uk/staff/.adriano/

comparison/comparison.html).

Our comparison used E and V-scores averaged over four runs per algorithm corre-

sponding to different settings of an algorithm-specific parameter. This parameter is λ in

MBS (Section 4.1.2), data processing inequality d in ARACNE, and hyper-prior parameter

for the variance in GGLAS. For all DAG searches other than ORDMC, we used different

random restart probabilities to generate different candidate graphs. In our experiments,

λ ∈ {1e− 5, 3e− 5, 5e− 5, 7e− 5} and d ∈ {0, 0.3, 0.5, 0.7}. All simulated experiments

used 1 ≤ kmax ≤ 11. For ORDMC, we varied the edge posterior probability. For each pa-

rameter setting, the graph with the highest average of E and V score is used. We compare

the best graph per algorithm across different parameter settings.

Our complete results are summarized in Table 4.2. For all datasets other than ECOLI-

ALL, MBS significantly beats all algorithms at least as often as it is beaten (Student’s t-

test, p-value ≤ 0.05). On ECOLI-ALL, ARACNE outperforms all algorithms, suggesting

that ECOLI-ALL likely does not contain many higher-order dependencies. There is no

significant difference between MBS and ARACNE on ECOLI-TF, which is generated from

the same network as ECOLI-TF using different perturbations.

We find that the performance margin between MBS and the DAG learning models

is greater than undirected learning algorithms, suggesting undirected graphs may be bet-

ter representations for this domain. Overall, MBS does a better job of learning the net-

work structures compared to both directed and undirected algorithms for majority of the

datasets. Although the score improvements are marginal, they are statistically significant.

63

Chapter 4. Learning undirected graphical models for biological networks

MBS ARACNE ORDMC FULLDAG ORDLAS SPC MBAND MBOR GLASSO
G

50
-A

LL

E

SPN 0.550 0.418 0.415 0.535 0.492 0.446 0.416 0.406 0.463
1N 0.661 0.44 0.552 0.621 0.636 0.456 0.446 0.428 0.836
2N 0.589 0.444 0.44 0.519 0.532 0.510 0.534 0.438 0.562
3C 0.800 0.400 0.438 0.790 0.792 0.784 0.783 0.250 0.866
4C 0.645 0.440 0.475 0.636 0.630 0.580 0.638 0.367 0.721

V

SPN 0.308 0.345 0.326 0.248 0.264 0.262 0.292 0.338 0.379
1N 0.352 0.426 0.330 0.284 0.285 0.276 0.348 0.416 0.35
2N 0.335 0.361 0.344 0.265 0.273 0.261 323 0.353 0.356
3C 0.328 0.251 0.201 0.301 0.284 0.287 0.401 0.233 0.259
4C 0.324 0.246 0.205 0.267 0.281 0.275 0.356 0.230 0.248

G
75

-A
LL

V

SPN 0.493 0.363 0.31 0.436 0.424 0.455 0.423 0.304 0.430
1N 0.577 0.475 0.573 0.576 0.573 0.521 0.535 0.478 0.811
2N 0.504 0.444 0.457 0.502 0.497 0.475 0.495 0.469 0.509
3C 0.6 0.604 0.588 0.590 0.637 0.621 0.529 0.45 0.824
4C 0.573 0.516 0.492 0.602 0.609 0.610 0.506 0.375 0.755

E

SPN 0.367 0.377 0.29 0.252 0.253 0.328 0.297 0.283 0.262
1N 0.417 0.439 0.299 0.268 0.267 0.335 0.342 0.379 0.303
2N 0.377 0.381 0.323 0.266 0.254 0.322 0.298 0.32 0.334
3C 0.345 0.339 0.225 0.214 0.23 0.313 0.246 0.263 0.216
4C 0.306 0.351 0.193 0.257 0.272 0.354 0.258 0.192 0.182

EC
O

LI
-A

LL E
SPN 0.747 0.753 0.729 0.718 0.703 0.759 0.758 0.729 0.729
1N 0.751 0.776 0.700 0.725 0.690 0.778 0.748 0.705 0.700
2N 0.726 0.752 0.719 0.701 0.679 0.749 0.746 0.724 0.719

V
SPN 0.514 0.567 0.522 0.271 0.303 0.354 0.43 0.520 0.522
1N 0.608 0.667 0.639 0.289 0.326 0.396 0.485 0.627 0.639
2N 0.591 0.622 0.594 0.272 0.308 0.376 0.454 0.585 0.594

EC
O

LI
-T

F E
SPN 0.68 0.592 0.55 0.504 0.522 0.608 0.542 0.507 0.730
1N 0.655 0.56 0.591 0.46 0.486 0.574 0.5 0.448 0.700
2N 0.618 0.532 0.48 0.418 0.454 0.542 0.493 0.456 0.719

V
SPN 0.460 0.449 0.359 0.194 0.183 0.307 0.293 0.369 0.523
1N 0.479 0.474 0.307 0.196 0.179 0.289 0.301 0.401 0.639
2N 0.447 0.439 0.37 0 0.182 0.164 0.266 0.282 0.376 0.594

Table 4.2: Comparison of MBS algorithm against existing algorithms for directed and
undirected graphs. Results from four datasets are shown. Rows give different structure
scores; columns are different structure learning algorithms; each entry is an E or V score.
blue and red indicate that MBS performs significantly better or worse than the algorithm
compared. SPN: shortest path neighborhood, 1N, 2N:r = 1 and r = 2 neighborhood, 3C,
4C: cycles of size 3 or 4.

64

Chapter 4. Learning undirected graphical models for biological networks

Structural consistency for pruning DAGs

To assess the value of enforcing consistency during learning, rather than as a post-process-

ing step, we used the MBS-learned Markov blankets as family constraints in DAG search

algorithms. We compared the DAG structures constrained using MBS Markov blan-

kets against those constrained by Sparse candidate (SPCAND) and L1 MB regularization

(L1MB). L1MB uses either an OR or AND of the Markov blankets to generate consistent

Markov blankets.

We used the maximum size of L1MB AND and OR Markov blankets as the neighbor-

hood size, k, for MBS and SPCAND. We first compared L1MB with OR post-processing

(MBOR) using k = 11 for both G50-ALL and G75-ALL (Table 4.3). We found the DAGs

constrained by MBS-learned Markov blankets to significantly outperform both SPCAND

or L1MB-constrained DAGs more often than being outperformed. Using L1MB AND

(k = 4, 6 for G50-ALL and G75-ALL, respectively) MBS outperformed SPCAND or

L1MB with a greater margin. This indicates that enforcing consistency, during structure

learning produces higher-quality Markov blankets, than as a post-processing step.

Table 4.3: Comparison of MBS pruning against Sparse candidate and L1 MB regulariza-
tion. Legend same as Table 4.2.

G50 G75
MBS SPCAND MBOR MBS SPCAND MBOR

E

SPN 0.504 0.48 0.458 0.435 0.349 0.404
1N 0.561 0.516 0.523 0.567 0.467 0.523
2N 0.538 0.466 0.485 0.486 0.424 0.474
3C 0.556 0.465 0.414 0.612 0.498 0.481
4C 0.532 0.508 0.463 0.595 0.458 0.447

V

SPN 0.348 0.27 0.27 0.257 0.269 0.299
1N 0.413 0.295 0.328 0.256 0.288 0.331
2N 0.367 0.274 0.296 0.247 0.27 0.287
3C 0.318 0.274 0.316 0.241 0.247 0.241
4C 0.327 0.256 0.276 0.279 0.274 0.22

65

Chapter 4. Learning undirected graphical models for biological networks

4.2 Scalable learning of large networks

Algorithms for inference of genome-scale networks comprising thousands of nodes are

expensive in time and memory. Structure inference of biological networks is further com-

plicated by the lack of sufficient data to reliably learn graphs over thousands of nodes.

Some approaches for addressing the data sparseness problem identify variable clusters

and replace the clusters by pseudo variables [125, 18]. These approaches pool the data

from several variables to robustly estimate parameters. However, they do not capture the

fine-grained structure within a cluster.

We present a novel, tractable approach to learn the structure of functional networks

represented as undirected graphical models. Our approach, Cluster and Infer Networks

(CIN), clusters the nodes into smaller groups and learns separate networks per cluster. By

partitioning the nodes into smaller groups, we avoid searching over the complete node

set, resulting in runtime benefits. Furthermore, learning smaller networks using the same

amount of data alleviates the data sparseness problem. Because the initial clustering may

not be perfect, we iteratively reassign nodes to clusters to improve the quality of the node

neighborhoods, repeating the procedure until convergence. As this revisiting has extra

computational cost, we make it optional by specifying the number of nodes to be revisited

as an input parameter to CIN. The complete network structure is obtained by combining

the networks inferred per cluster.

CIN is a meta-algorithm and can work with any existing algorithm for learning net-

work structure. We used the Markov blanket search (MBS) algorithm for learning the

structure of undirected graphs (specifically, Markov random fields). We compared CIN

with and without cluster re-assignment, against standard MBS that infers networks over

the entire, unpartitioned node set. This comparison was done on simulated data gener-

ated from networks of known structure. CIN gave significant speed improvements without

significant accuracy loss of the inferred structures. Adding cluster reassignment further

66

Chapter 4. Learning undirected graphical models for biological networks

improved performance, still keeping CIN faster than MBS with no clustering.

We applied CIN to two yeast microarray compendia of glucose-starvation induced sta-

tionary phase [5]. We also compared the properties of the learned graphs against random

graphs with same degree distributions as the learned graphs. Our inferred graphs had

significantly more subgraphs that were enriched in at least one GO term. We found that

subgraphs that were topologically close (measured by the number of edges across the sub-

graphs) also exhibited similar process enrichments. The correlation between topological

and annotation similarity was significantly higher than random suggesting that the inferred

subgraphs were representing biologically meaningful dependencies.

Overall CIN has the following advantages: (a) we provide a scalable approach to learn

generic statistical dependencies in biological networks, (b) our approach captures fine-

grained dependencies, which cannot be captured by simple clustering approaches, and, (c)

subgraphs in our inferred networks represent significantly more biologically meaningful

dependencies than in random networks.

4.2.1 Speeding up structure search using Cluster and Infer Networks

(CIN)

We demonstrate the CIN framework using the Markov blanket search algorithm (MBS)

described is Section 4.1.2. Due to the exponential complexity of optimal structure search,

most structure learning algorithms, including MBS, learn networks with bounded neigh-

borhood size, k [1, 40]. Although this reduces the structure search space, there are still

exponentially many candidate networks to be evaluated (O(2knlogn)) [42]. Hence, when n

becomes very large (several hundreds) and k is of any interesting size (2 ≤ k ≤ 10), as is

the case for genome-scale networks, these algorithms become prohibitively expensive in

time and memory.

67

Chapter 4. Learning undirected graphical models for biological networks

We introduce the CIN approach to further speed up structure learning of graphical

models, enabling efficient learning of these models for genome-scale data. CIN comprises

two steps: (a) cluster variables, and (b) infer graph structures per cluster. An optional

revisit step is included where cluster assignment of variables with poor neighborhoods is

updated. In CIN, variables can be clustered using any clustering approach. We use k-

means with absolute value of Pearson’s correlation as the similarity measure between two

variables [62].

CIN is a meta-approach that works with any structure learning algorithm that identifies

the best neighbor set (or parent set for Bayesian nets). We illustrate CIN with the MBS

algorithm (Algorithm 2). The algorithm takes as input the gene expression data matrix

D = {x1, · · · ,x|D|}, where xd, 1 ≤ d ≤ |D|, represents a joint assignment to X from the

dth datapoint. The number of clusters, c, maximum neighborhood size, k, and the number

of variable neighborhoods to be revisited, r, are additional inputs to the algorithm.

The algorithm begins with partitioning the n RVs into c clusters, Ci, 1 ≤ i ≤ c. This

is followed by inferring the structure per cluster Ci independently. In MBS this entails

identifying the MB for each Xi, MXi , such that |MXi| ≤ k and the conditional entropy,

H(Xi|Xi) is minimized.

The revisit step is executed if r > 0. This selects r variables with the worst neigh-

borhoods (high conditional entropy in MBS) and stores them in Y. For each Y ∈ Y, we

compute the change in conditional entropy, SY Z = H(Y |MY) − H(Y |MY ∪ {Z}), on

adding new variables Z to MY . Z is selected from clusters other than the current clus-

ter of Y , curr cluster(Y). MY is updated to include the variable with the maximal score

improvement, Z∗. After considering all Y ∈ Y, the cluster assignments are updated to

incorporate the MB modifications. This in effect creates modified, possibly overlapping

clusters. In the actual implementation of CIN with MBS, the revisit step is executed for

every l, 1 ≤ l ≤ k. We do not include this iteration in Algorithm 2 for ease of exposition.

68

Chapter 4. Learning undirected graphical models for biological networks

As structures are inferred per cluster, which are much smaller than the total number

of variables, we have more data to learn smaller graphs, thus producing robust structures.

The speed up in CIN increases with n. Assuming that we have c clusters each of size m

such that cm = n, the speed up is O(m
n 2knlognab), where a = 1− 1

c and b = c
1
c . Thus, CIN

becomes increasingly advantageous with increasing values of n.

4.2.2 Results

The goal of our experiments was two fold: (a) compare the performance of Cluster and

Infer Networks (CIN) against standard graph structure learning algorithms, using both

running time and quality of inferred structures, (b) evaluate the biological significance of

structures inferred using CIN on real microarray data.

We address (a) using simulated data from artificial regulatory networks generated from

a network simulator [115], allowing us to compare the inferred structures against ground

truth. These datasets are described in Section 4.1.4. We used small networks (< 200

nodes) so that the structure could be learned using the standard graph structure learning

algorithms in reasonable time. We address (b) on two microarray datasets from yeast under

glucose starvation conditions [5].

CIN has significant speed benefits without substantial performance loss on simulated

data

We compared three approaches to infer networks: (a) CIN with MBS with no cluster

reassignment (Norevisit), (b) CIN with MBS with cluster reassignment (Revisit), and (c)

standard MBS (Nocluster). For (a) and (b) we specified the number of clusters to the

k-means algorithm to be 5.

We evaluated the inferred network quality using: (a) edge-wise scores to match edges

69

Chapter 4. Learning undirected graphical models for biological networks

Algorithm 2 MBS with CIN
Input:

Expression data of n genes, D = {x1, · · · ,x|D|}

maximum neighborhood size, k

number of clusters, c

convergence threshold, ε

number of variables for revisit, r

Output:

Inferred graph structure G.

Partition n variables into c clusters C = {C1, · · · ,Cc}, using datapoints as attributes.

while Score change ≥ ε do

/*Infer structure per cluster*/

for Ci ∈ C do

Learn best structure for Ci s.t. ∀Xj ∈ Ci, |MXj | ≤ k.

end for

/*Revisit*/

if r > 0 then

Y = r variables with worst MBs

for Y ∈ Y do

SY Z=H(Y |MY)−H(Y |MY ∪ {Z}), s.t. curr cluster(Z) '=curr cluster(Y)

Z∗ = arg max
Z

SY Z

MY = MY ∪ {Z∗}

end for

Update C to account for MB modifications of Y ∈ Y

end if

end while

in the true and inferred networks, (b) pathwise scores to match edges in the true network

to paths in the inferred network and vice-versa, (c) subgraph scores 1-n and 2-n subgraphs

per vertex from the true network with the inferred network.

70

Chapter 4. Learning undirected graphical models for biological networks

The running time of CIN with MBS, Norevisit and Revisit, is significantly smaller

than standard MBS (Fig. 4.2). Further, the speed up for ECOLI (with 188 nodes) is much

greater than G50 (with 100 nodes) corroborating our observation that CIN becomes in-

creasingly advantageous with the number of nodes in the network.

The quality of the inferred networks using both CIN approaches are comparable to

MBS on the complete variable set (Fig. 4.3). We show all results other than 1-n subgraphs,

which is similar to 2-n. Overall, we found that CIN had significant speed benefits over

standard MBS. Revisiting clusters improved results at additional runtime cost, but was

still faster than standard MBS.

G50!ALL G50!TF G75!ALL G75!TF G50!ALL G50!TF
0

5

10

15

20

25

30
Runtime

Datasets

T
im

e
(s

e
c
s
)

Nocluster

Norevisit

Revisit

Figure 4.2: Run time for different algorithms; lower runtimes are better. Algorithms were
compared using three networks of known structure. Per network, two datasets were gener-
ated by either perturbing all genes (ECOLI-ALL, G75-ALL, G50-ALL) or only transcrip-
tion factor genes (ECOLI-TF, G75-TF, G50-TF).

CIN-inferred networks from microarray data have non-random topological proper-

ties

We applied CIN with MBS to two recently generated microarray compendia of yeast in

stationary phase [5]. For both datasets, we specified k = 4 as the maximum neighborhood

71

Chapter 4. Learning undirected graphical models for biological networks

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/ 012!!

34546756

!
86
9
:
;7

8

8

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/
012!<

34546756

<
86
9
:
;7

8

8

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/

=2!!

34546756

!
86
9
:
;7

8

8

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/

=2!<

34546756

<
86
9
:
;7

8

8

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/

,2!!

34546756

!
86
9
:
;7

8

8

!"!#$$!"!%& '()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/

,2!<

34546756

<
86
9
:
;7

8

8

'()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/ >"!!

34546756

!
86
9
:
;7

8

8

'()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+=

)+,

)+>

)+- >"!<

34546756

<
86
9
:
;7

8

8

'()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+,

)+-

)+.

)+/ -"!!

34546756

!
86
9
:
;7

8

8

'()!#$$ '()!%& '*(!#$$ '*(!%&
)

)+=

)+,

)+>

)+- -"!<

34546756

<
86
9
:
;7

8

8

2:9?@657; 2:;7AB6B5 C7AB6B5

Figure 4.3: Match scores for different algorithms; higher scores are better. Nocluster:
MBS algorithm without pre-clustering. Norevisit: CIN with MBS without cluster reas-
signment. Revisit: CIN with MBS with cluster reassignment.

size, and c = 20 as the number of k-means clusters. Various statistics of the clusters are

reported in Table 4.4. As the true network is not known for these data, we used Gene

Ontology (GO) for validation [6].

We first computed the number of 1-n subgraphs that were enriched in a Gene Ontology

slim (GO slim) process term as a function of decreasing p-value (Fig 4.4). GO slim process

72

Chapter 4. Learning undirected graphical models for biological networks

Dataset Mean Median Stdev Max Min
Quiescent 140.9 146.0 46.69 214 26

Non-quiescent 140.9 147.0 77.41 300 22

Table 4.4: Different statistics of the number of genes per cluster in the quiescent and non-
quiescent populations.

is a collapsed single level view of the complete GO biological process, providing high

level information of the types of biological processes involving a set of genes. For both

datasets, the number of subgraphs enriched in a term was significantly higher than random

networks. The results belong to CIN with the revisit step. Results without the revisit step

are similar.

We then computed the Annotation-Topological Similarity (ATS) at each p-value using

the subgraphs that had an enrichment at that p-value (Fig 4.5). ATS provides a global

measure of biological validity of the inferred networks by evaluating to see if subgraphs

that are close together (small average shortest path length) also participate in the same set

of biological processes. The lower the ATS score is, the more meaningful the dependencies

captured in the graph.

We found that the inferred networks had lower ATS than random networks, and this

was significantly lower (p < 0.05, simulation) at GO slim enrichment p-value, 10−3 < p <

0.05. As the p-value decreased the error bars increased due to too few random subgraphs

satisfying the threshold. The low ATS in the inferred networks indicates that subgraphs

that are topological close, also participate in similar biological processes suggesting that

the inferred topology correctly captures the functional relationships among sets of genes.

Overall, the networks learned by CIN capture significantly more biologically meaningful

dependencies than expected in random networks, and the global network structure of the

networks captures the biological intuition that topologically close subgraphs participate in

similar processes.

73

Chapter 4. Learning undirected graphical models for biological networks

!"#$%

"#$%

&#$%

'#$%

(#$%

&#)!"*%&#)!"$%&#)!"+%&#)!"(%&#)!"'%&#)!"&%

!"
#
$%
&"
'&
(
)
*
#
+,
-
.
/0
&

12,!)3/&

4567(879:&

;<9=9>&

69?7;;7=&9>&

!"#$%

"#$%

&#$%

'#$%

(#$%

&#)!"*%&#)!"$%&#)!"+%&#)!"(%&#)!"'%&#)!"&%

!"
#
$%
&"
'&
(
)
*
#
+,
-
.
/0
&

12,!)3/&

4546789:(;:4<&
=>4?&4@&

94A:==:?&4@&

Figure 4.4: Number of subgraphs that were enriched in a GO slim process term at a specific
p-value. Line with errorbars shows the average number of subgraphs enriched in random
networks at that p-value. Results are shown on log-log scale.

!"#$%

!"#&%

"%

"#&%

'#(!")%'#(!"&%'#(!"*%'#(!"+%'#(!"'%

!
"
#
$

%&'()*+$

,-./#0/1"$ 2!1314$

.15/22/3$14$

!"#$%

!"#&%

"%

"#&%

'#(!")%'#(!"&%'#(!"*%'#(!"+%'#(!"'%

!
"
#
$

%&'()*+$

,-,./012#32,"$ 4!,5$,6$

1,724425$,6$

Figure 4.5: ATS measure of real and random networks at different p-values. Lower ATS
is better. Results are shown on log-log scale.

4.3 Conclusion

An important first step to learning condition-specific networks is to identify the appropriate

modeling framework that we will use to represent and learn condition-specfic networks.

We select undirected probabilistic models because the biological networks that we want

to learn are complex and are likely to contain different types of dependencies including

pairwise, higher-order and cyclic dependencies. While directed graphical models such as

Bayesian nets capture higher-oder dependencies, there is no easy way to capture cyclic de-

pendencies. Undirected graphical models capture all these types of dependencies and are

74

Chapter 4. Learning undirected graphical models for biological networks

especially suitable when we are interested in correlative rather than causal dependencies.

We presented two novel approaches for learning undirected probabilistic graphical

model structure. The first approach, Markov Blanket Search (MBS) learns the structure of

MRFs by finding structurally consistent graph structures. The second approach, Cluster

and Infer Networks (CIN), provides a faster approach for learning probabilistic graphical

models (PGMs) for genome-scale expression data comprising thousands of nodes. At the

heart of CIN is a divide and conquer strategy, where the problem of learning a single large

graph is replaced by a set of problems, each learning smaller graphs. The MBS algorithm

alone and within the CIN framework allows us to capture generic statistical dependencies

among arbitrarily sized groups of genes. On simulated data with known ground truth of

networks, we find that the MBS algorithm indeed is beneficial compared to the algorithms

compared.

Although undirected graphical models provide a natural representation of interaction

structure in complex domains such as ours, the intractability of computing the partition

function poses a major challenge. We address this problem by extending an existing frame-

work based on Markov blanket canonical parameters that allows us to efficiently learn the

structure of these networks. Further, we work with approximations of likelihood, pseudo

likelihood and information theoretic measures that allow us to avoid computing the parti-

tion function. While we do not claim that our learning algorithms produce models of as

good quality if we were using data likelihood, our experiments indicate that we are able to

perform equally well as existing directed models which do use likelihood based scores.

An important modeling question that arises in most probabilistic graphical models is

the assumptions of the probability distribution. We performed preliminary experiments

for evaluating different forms of conditional probability distributions: (a) Multi-variate

Gaussians, (b) Non-parametric kernel density estimators (KDE) and (c) regression trees.

Surprisingly, we found that the multi-variate Gaussians, despite their simplicity gave the

best overall performance, followed closely by regression trees. Although both KDE and

75

Chapter 4. Learning undirected graphical models for biological networks

regression trees make fewer assumptions of the probability models than the multi-variate

Gaussian, they do have hyper-parameters (kernel width in KDE and leaf node size in

regression trees) that need to be tuned to model the underlying distribution correctly. We

suspect that this additional complexity makes the training of these parameters difficult and

may cause problems with over-fitting.

To conclude, in this chapter we have established the ground-work for learning conditi-

on-specific networks by determining that undirected graphical models provide an appro-

priate framework for representing biological networks. We have developed algorithms for

learning the structure of these undirected models and we have also determined that condi-

tional distributions based on multi-variate Gaussians are good choices for mathematically

representing the functional dependencies between a variable and its immediate neighbor-

hood. The work described in the subsequent chapters relies on the results of this chapter

in that our algorithms use the MBS framework for representing and learning condition-

specific networks and we use Gaussian-based distributions for capturing the functional

dependencies among the network nodes.

76

Chapter 5

Higher-order dependencies: what’s the

deal

Statistical algorithms for learning biological networks can be roughly categorized into

those that learn only pairwise dependencies: dependencies among two variables, and those

that learn higher-order dependencies: dependencies among more than two variables. The

ARACNE algorithm, which learns pairwise dependencies works surprisingly well on bio-

logical networks given its simplicity. Specifically, in Chapter 4 we found that ARACNE

outperformed the Markov blanket search (MBS) algorithm on the ECOLI dataset. We

conjectured in Chapter 4 that the ECOLI dataset does not have very many higher order

dependencies and therefore the additional parameter complexity of MBS does not get bal-

anced with the complexity of the network to be learned. This begs the question what con-

stitutes “higher-order dependencies” in biological networks, and if there are topological

characteristics of biological networks that we could associate with higher-order depen-

dencies. While it is well-understood that protein complexes would constitute a candidate

higher-order dependency, it has not been shown in practice how this affects performance

of algorithms learning different types of dependencis. In this chapter, we investigate the

performance of the MBS and ARACNE algorithms as a function of two topological char-

77

Chapter 5. Higher-order dependencies: what’s the deal

acteristics which may represent higher-order dependencies in biological networks: (a) the

in-degree of a target gene in a regulatory network, (b) the size of a transcription factor

complex. Our results suggest that algorithms which learn higher-order dependencies are

better for networks with nodes with high in-degree or large transcription factor complexes.

5.1 Higher-order dependencies in biological networks

Higher-order dependencies are statistical dependencies that exist among more than two

nodes. Higher-order dependencies arise in biological networks via the formation of protein

complexes or via interactions among transcription factors regulating a target gene.

The in-degree of a node is defined as the number of incoming edges to a node. In our

simulated networks, which comprise both regulatory and protein-protein interactions, the

in-degree is associated with a node corresponding to a gene and specifies the number the

transcription factors regulating the gene. When a gene is regulated by more than one tran-

scription factor, combinatorial interactions among the transcription factors may result in

higher-order dependencies. These transcription factors may further physically interact via

protein interactions to exert an additional layer of complexity to the regulatory program.

The RENCO simulator we developed captures the complex combinatorial interactions

among the transcription factors. Here we investigate the performance behavior of two

algorithms as we vary the extent of combinatorial control on the target genes. This is done

using three RENCO generated datasets, in two of which we simply vary the in-degree, and

in the third we keep the same in-degree but vary the number of interactions among the

transcription factor proteins.

78

Chapter 5. Higher-order dependencies: what’s the deal

5.2 Experimental strategy

We considered three networks: ECOLI, YEAST and G75. The ECOLI and YEAST net-

works are a subset of the regulatory networks of the bacteria E. coli and the yeast S. cere-

visiea, respectively. The G75 network is generated de novo from RENCO. We define a

configuration parameter p, 0.1 ≤ p ≤ 0.9, which influences the proportion of higher-order

dependencies in the networks. For the ECOLI and YEAST networks p controls the pro-

portion of nodes with in-degree > 1, i.e., nodes that have at least two transcription factors

controlling it. A high in-degree node is that which has > 1 transcription factors regulating

it. Higher values of p cause more nodes with high in-degrees.

For the G75 network, p controls the proportion of protein interactions among the tran-

scription factors. Higher values of p cause more nodes more transcription factor cliques

regulating a gene node. We vary p ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (actually for the ECOLI net-

work we have p only till 0.7). The topological characteristics of the networks as a function

of p are described in Fig 5.1. Note p controls the proportion of higher-order dependencies

in the generated networks, and therefore automatically adjusts the number of higher-order

dependencies as a function of the number of nodes.

We used the different scores of measuring higher-order dependencies over different

folds of the data described in Chapter 3. We first considered the higher-order scores based

on shortest path (SPN), and neighborhoods of radius r = 1 (1N) and r = 2 (2N). We

measured both the edge set score (E score) and vertex set score (V score).

MBS and ARACNE were compared using average scores generated from structures

learned on different settings of the regularization parameter λ for MBS, and the data pro-

cessing inequality for ARACNE. For ECOLI we used four settings for these parameters,

and G75 and YEAST we used eight settings. For each parameter setting MBS learned 11

different graphs with the maximum size of the Markov blanket, k ranging 1 ≤ k ≤ 11.

For ARACNE we varied the mutual information threshold to obtain 11 graphs.

79

Chapter 5. Higher-order dependencies: what’s the deal

0 2 4 6 8
0

10

20

30

40

50

60

Indegree

#
 o

f
N

o
d
e
s

ECOLI

p=0.1

p=0.3

p=0.5

p=0.7

0 5 10 15
0

20

40

60

80

100

120

140

160

Indegree

#
 o

f
N

o
d
e
s

YEAST

p=0.1

p=0.3

p=0.5

p=0.7

p=0.9

1 2 3
0

20

40

60

80

100

120

Size of protein clique

#
 o

f
c
liq

u
e
s

G75

p=0.1

p=0.3

p=0.5

p=0.7

p=0.9

Figure 5.1: Topological properties of simulated networks as a function of p. The top two
figures show the distribution of the number of nodes as a function of p for the YEAST and
ECOLI networks. Higher values of p result in more nodes with high in-degree > 1. The
bottom figure shows the size of transcription factor complexes for different values of p for
the G75 network. Higher values of p result in more transcription factor cliques of size > 1
regulating a gene.

5.3 Results

On the ECOLI dataset (Fig 5.2), MBS has a higher performance than ARACNE, but is

statistically significant for higher values of p (p = 0.5 for SPN E score, p = 0.5, p = 0.7

80

Chapter 5. Higher-order dependencies: what’s the deal

for 2N E score). Both algorithms had similar performance on the V score. On the YEAST

dataset (Fig 5.3), both algorithms were very similar in performance, with the exception

of SPN E score where MBS again was better than ARACNE for high values of p (p =

0.5, p = 0.7). On the G75 dataset (Fig 5.4), we found that ARACNE was significantly

better on the V score, but this was concentrated on lower values of p. Specifically, for both

1N and 2N scores, we found that ARACNE was significantly better than MBS on the V

score for p = 0.3, whereas MBS was significantly better than ARACNE for higher values

of p.

We also considered the pathwise score which measures the match between an edge

in the true graph with the shortest path connecting the two vertices in the inferred graph

(Fig 5.5). Although there is no significant change in behavior in the ECOLI and YEAST

datasets, on the G75 dataset, MBS performs significantly better when the true network has

more nodes being regulated by size 2 cliques (p = 0.7, p = 0.9). This is consistent with our

observation that high in-degree or clique size results in more higher order dependencies,

which in turn is modeled better in algorithms capturing higher-order dependencies.

Overall, this suggests that as we increase the number of higher-order dependencies

in the network, either by increasing the in-degree or by increasing the number of size 2

transcription factor cliques, the advantage of the MBS algorithm increases. The MBS

algorithm learns higher-order dependencies and therefore as the networks get more com-

plex in terms of the dependencies, we observe a increasing benefit of using an algorithm

which learns higher-order dependencies. In contrast, when there are fewer higher-order

dependencies, the ARACNE algorithm does a better job of capturing the dependencies,

especially the shortest path dependencies.

81

Chapter 5. Higher-order dependencies: what’s the deal

0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

Prob of High Indegree

E
 s

c
o
re

SPN E score

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

Prob of High Indegree

V
 s

c
o
re

SPN V score

0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8
1N E score

Prob of High Indegree

E
 s

c
o
re

0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

Prob of High Indegree
V

 s
c
o
re

1N V score

0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7
2N E score

Prob of High Indegree

E
 s

c
o
re

0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

Prob of High Indegree

V
 s

c
o
re

2N V score

ARACNE MBS

**

* *

Figure 5.2: Performance of ARACNE and MBS on the ECOLI dataset. Performance using
the different higher-order scores was measured as a function of increasing probability
of high in-degree. ∗ denote statistical significance, ∗ implies p < 0.05 and ∗∗ implies
p < 0.01. Green ∗ indicates that MBS is significantly better than ARACNE and blue ∗

indicates ARACNE is better than MBS.

5.4 Discussion

Algorithms for network inference can be roughly grouped into two categories based on

the order of the dependencies they can infer. Algorithms learning pairwise dependencies

are popular because of their speed benefits and also because they have fewer parameters

to learn. Algorithms learning higher-order dependencies can capture more general depen-

82

Chapter 5. Higher-order dependencies: what’s the deal

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

Prob of High Indegree

E
 s

c
o
re

SPN E score

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

Prob of High Indegree

V
 s

c
o
re

SPN V score

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1N E score

Prob of High Indegree

E
 s

c
o
re

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

Prob of High Indegree

V
 s

c
o
re

1N V score

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
2N E score

Prob of High Indegree

E
 s

c
o
re

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

Prob of High Indegree

V
 s

c
o
re

2N V score

ARACNE MBS

*

*

Figure 5.3: Performance of ARACNE and MBS on the YEAST dataset. Figure legend is
same as in Fig 5.2.

dencies, but do so at the cost of runtime and more parameters. In this Chapter, we asked if

there are certain properties of the biological network topology that are amenable to algo-

rithms capturing either higher-order or pairwise dependencies. In particular we considered

two properties: (a) the in-degree of a gene, (b) the size of TF complexes per gene.

We systematically varied the number of nodes participating in higher-order dependen-

cies, either by increasing nodes with in-degree greater than 1, or by increasing physical

interactions among the transcription factor proteins, and measured the performance of the

ARACNE and the MBS algorithms. We found that it was indeed the case that as the

83

Chapter 5. Higher-order dependencies: what’s the deal

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

Prob of High Indegree

E
 s

c
o
re

SPN E score

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

Prob of High Indegree

V
 s

c
o
re

SPN V score

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

Prob of High Indegree

E
 s

c
o
re

1N V score

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5
1N E score

Prob of High Indegree

V
 s

c
o
re

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6
2N V score

Prob of High Indegree

E
 s

c
o
re

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

Prob of High Indegree

V
 s

c
o
re

2N E score

ARACNE MBS

*

**

*

*

** ****

*

*

*

*

Figure 5.4: Performance of ARACNE and MBS on the G75 dataset. Figure legend is same
as in Fig 5.2.

number of nodes with high in-degree nodes increased, MBS had a greater tendency to

significantly beat ARACNE. A similar trend was seen also for the G75 dataset where we

increased nodes being regulated by TF cliques of size > 1. In contrast, ARACNE had a

tendency, albeit to a lesser extent, to beat MBS on networks with lower values of p. This

suggested that MBS and other higher-order dependency learning algorithms are likely to

be more beneficial when there are expected to be many nodes that are highly regulated.

Although our conjecture was validated on some cases, we were surprised that a simple

pairwise learning algorithm like ARACNE performs so well. It is often assumed that

84

Chapter 5. Higher-order dependencies: what’s the deal

0 0.2 0.4 0.6 0.8
0.54

0.56

0.58

0.6

0.62

0.64

0.66

Prob of High Indegree

P
a
th

w
is

e
 s

c
o
re

ECOLI

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
a
th

w
is

e
 s

c
o
re

Prob of High Indegree

YEAST

0 0.5 1
0.4

0.45

0.5

0.55

0.6
G75

Prob of High Indegree

P
a
th

w
is

e
 s

c
o
re * *

Figure 5.5: Performance comparison of ARACNE and MBS on all three datasets. Results
are obtained using the pathwise score.

higher-order learning algorithms subsume and outperform pairwise algorithms. However,

our experiments show that this is not universally true and there are situations where it is

beneficial to use a simple pairwise algorithm. Furthermore, our experiments suggest that

in-degree and the size of the transcription factor complex regulating a gene may represent

higher-order dependencies, which in turn affects the performance of different algorithms.

85

Chapter 6

Different formulations of learning

condition-specific networks

In this chapter we delve deeper into the problem of learning condition-specific networks.

We first describe the simplest approach of learning networks for condition-specific re-

sponse, and then present cases of increasing difficulty. In the simplest approach, the

networks are learned independently from two conditions and then compared to identify

similarities and differences across conditions. Next, we introduce a layer of complexity

such that networks are not learned independently, but, we assume that the condition vari-

able is observed. Finally, we describe the most general case, where conditions are not

known and must be inferred during structure learning. We describe several variations on

the last case and discuss the tradeoff of different models under different situations.

6.1 Learning independent networks for each condition

A straightforward approach to condition-specific networks is to learn separate networks

for each condition, and then compare the network structures to identify condition-specific

86

Chapter 6. Different formulations of learning condition-specific networks

behavior at the network level. In this framework we can use any algorithm for learning

network structures, including our Markov Blanket Search (MBS) algorithm. As a first step

to condition-specific network learning, we applied MBS to learn networks from three mi-

croarray datasets in yeast. Two of these datasets measure gene expression of quiescent and

non-quiescent cells under genetic mutations. The third dataset measures gene expression

of exponentially growing cells to genetic and chemical perturbations. Thus, we have three

conditions: two corresponding to the quiescent and non-quiescent populations respectively

and the third corresponding to exponentially growing cells.

6.1.1 Data pre-processing

We applied our algorithm to two yeast, S. cerevisiae, datasets from quiescent and non-

quiescent cells [5], and one dataset from exponentially growing cells [69]. We included

only genes with < 20% missing data in all three datasets. As the quiescent and non-

quiescent datasets had biological replicates, we filtered the genes further to discard not-

reproducible genes. Our final datasets comprised n = 2, 818 genes, with 170, 186, and,

300 measurements per gene in the quiescent, non-quiescent and exponential populations

respectively.

6.1.2 Experimental methods

Generation of coarse modules: To obtain a high-level view of the inferred networks, we

generated local subgraphs and clustered them into coarse modules. We excluded clusters

of size < 5 and connected the remaining clusters into high-level graphs (Fig 6.1, Sec-

tion 6.1.4).

We generated subgraphs by considering a node, and its neighbors reachable by r links.

We refer to these subgraphs as 1-n subgraphs, denoting a neighborhood reachable by

87

Chapter 6. Different formulations of learning condition-specific networks

traversing one link (r = 1). We computed a topological similarity for each pair of sub-

graphs, {Si, Sj}, tij = lij
ni+nj

, where lij is the sum of number of vertices common between

Si and Sj , and the number of edges across Si and Sj . ni and nj are the vertex counts in

subgraphs, Si and Sj , respectively [83].

To obtain coarse modular organization, we first clustered the subgraphs using hier-

archical clustering with average linkage [39]. We selected clusters to optimize between

including majority of the genes, and to have clusters of size ≥ 5. This resulted in 230,

214 and 179 clusters, with n = 2630, 2551 and 2651 genes in quiescent, non-quiescent

and exponential cells respectively. We then used topological similarity as edge weights for

each pair of clusters.

We used the Annotation-Topological Similarity (ATS) measure (Chapter 3), to assess

if clusters that were topologically close were also similarly annotated. Briefly, ATS is the

Pearson’s correlation coefficient between two vectors, vA and vT , each of length
(|Cx|

2

)
,

where Cx is the set of clusters generated for population x. Each dimension vA(r) (vT (r))

was the annotation (topological) similarity for rth cluster pair, where 1 ≤ r ≤
(|Cx|

2

)
.

To compute annotation similarity, fij , for each cluster pair, {Ci, Cj}, we obtained GO

slim process enrichment vector, ei per cluster. Each dimension ei(r) was the logarithm of

p-value enrichment for each process term. The annotation similarity between Ci and Cj

was the Pearson’s correlation coefficient between ei and ej .

We use the definition of topological similarity from Lee et al. (Chapter 3, [83]), which

specifies the topological similarity for each pair {Ci, Cj}, as tij = lij
ni+nj

, where lij is the

sum of number of nodes common between Ci and Cj , and the number of edges across Ci

and Cj . ni and nj are the vertex counts in subgraphs, Ci and Cj .

We define relative enrichment among two populations x and y that tests if x is equally,

less or more annotated than y. Let py be the proportion of y’s clusters that are enriched

(< 10−2) in any slim term. Assuming r out of s clusters of x are enriched, we compute the

88

Chapter 6. Different formulations of learning condition-specific networks

probability of observing ≤ r out of s using the binomial with parameter py. The smaller

the probability the more depleted is x as compared to y. Similarly, the probability of

≥ r out of s enriched clusters estimates how annotated x is as compared to y. Smaller

the probability the more annotated x is w.r.t to y. We repeat this for testing y’s relative

enrichment w.r.t x. We do this analysis for all population pairs such as quiescent versus

exponential, quiescent versus non-quiescent, etc.

Identification of up or down-regulated subgraphs: We analyzed the 1-n subgraphs for

significant up-regulation or down-regulation at expression level using a similar approach

to Chuang et al. [30] Each subgraph was assigned the average of the mean expression of

the subgraph genes. For each dataset and subgraph size, we estimated a null distribution of

subgraph expression by randomly sampling s = 100, 000 subsets of all genes. A p-value

< 0.05 was considered as significantly up or down-regulated.

Identification of conserved and specific subgraphs: To identify conserved subgraphs

among two cell populations, A and B, we computed a match score for each 1-n subgraph,

SA
i ∈ SA generated from A’s network, using B’s network structure. This score is the

harmonic mean of recall, RA
i , and precision, PA

i , per subgraph SA
i . For each SA

i ∈ SA,

RA
i = |EA

i ∩EB
i |

|EA
i | , where EA

i is the edgeset of SA
i in A’s network, and EB

i is the edge set

among SA
i ’s vertices in B’s network. Similarly, PA

i = |EA
i ∩EB

i |
|EB

i | . The match of SA
i in

B’s network is FA
i = 2∗P A

i ∗RA
i

P A
i +RA

i
. We assumed an FA

i > 0 to indicate SA
i is a conserved

subgraph in B’s network. The set of conserved subgraphs between A and B is SM
A ∪ SM

B ,

where SM
A ⊆ SA and SM

A ⊆ SB. Each SA
i ∈ SM

A has FA
i > 0, when compared with B’s

network, and each SB
j ∈ SM

B has FB
j > 0, when compared with A’s network. A subgraph

was considered specific to a particular population if it had a match score of zero for the

remaining populations.

Gene ontology (GO) enrichment and false discovery rate: For each 1-n subgraph (or

cluster), we used the hyper-geometric distribution to compute GO term enrichment. We

sampled s = 1000 random subsets of size k from the n = 2818 genes, and computed their

89

Chapter 6. Different formulations of learning condition-specific networks

p-values for each term. The false discovery rate (FDR)[20] is associated with the number

of terms enriched in a subgraph at a particular p-value. For example, if a subgraph of size

k is enriched in u terms at p < 10−4, FDR is u′

u , where u′ is the average number of terms

enriched in a random subgraph of size k at p < 10−4. We used an FDR of ≤ 0.05 to

identify significant enrichments.

6.1.3 Results

We applied our Markov Blanket Search (MBS) algorithm to three microarray datasets,

measuring gene expression of quiescent, non-quiescent and exponential cells. We ana-

lyzed the inferred networks to identify coarse and fine-grained network properties that

discriminate the quiescent from non-quiescent cells, and both of these cells from expo-

nential cells. Specifically, we performed: (a) a high-level cluster analysis of the inferred

networks to identify coarse differences, (b) fine grain analyses of the subgraphs using Gene

ontology process, and (c) analysis of hubs in the inferred networks.

6.1.4 Modular organization in quiescent, non-quiescent and exponen-

tial cells.

To obtain a high-level view of inferred networks, we clustered the subgraphs from in-

ferred networks per population, followed by GO slim process enrichment of the clusters

(Figs 6.1,6.2). We found good correlation between annotation and topological similarity

for exponential (0.51) and non-quiescent cells (0.49), suggesting that similarly functioning

genes are topologically close in the inferred networks. Quiescent cells had relatively lower

correlation (0.26), suggesting that gene expression is more informative for non-quiescent

and exponential cells than for quiescent cells. Quiescent cells may employ additional

mechanisms, including post-translational modification, to respond to stresses [4, 5]. The

90

Chapter 6. Different formulations of learning condition-specific networks

Quiescent Non-Quiescent

Figure 6.1: Coarse modular organization of networks inferred from the three populations.
Each node represents a cluster of genes. The node size is proportional to the gene count per
cluster. The color indicates if cluster genes are more expressed (red) or repressed (green).
The edge thickness is proportional to the similarity between two clusters. The nodes are
labeled with processes enriched in the member genes. AAM: amino acid and deriv. ACM:
aromatic comp CM: carb. meta CB: cell budding CC: cell cycle CH: cellular homeostasis
CR: cellular resp. CWOB: cell wall org. & biogen. CMP: cofactor metab. C: conjugation
CK: cytokinesis CSOB: cytoskeleton org. & biogen. DM: DNA metab. process GPME:
gen. of pre. metab. &energy HM: heterocycle metab. LM: lipid metab. M: meiosis MOB:
membr. org. & and biogen. NOB: nuclear org. & biogen. OOB: organelle org & biogen.
UNK &other PC: protein catab. PF: protein folding PM: protein modif PG: pseudohyphal
growth RCS: resp. to chemical stimulus RS: response to stress RBA: ribosome biogen
& assem RM: RNA metab ST: signal transduction SP: sporulation TR: transcription TL:
translation T: transport TP: transposition VMT: vesicle-mediated transport VM: vitamin
metabolic process.

presence of post-translational modification is further supported by up-regulation of a qui-

escent cluster enriched in protein modification (PM).

Both quiescent and non-quiescent cells have significantly fewer annotated clusters than

exponential (Table 6.1). Quiescent is also less annotated than non-quiescent. This high-

lights the fact that yeast quiescence is a relatively under-studied process, motivating further

investigation of these cells.

91

Chapter 6. Different formulations of learning condition-specific networks

Figure 6.2: Coarse modular organization in the network inferred from exponentially grow-
ing cells. Figure legend is the same as Fig 6.2

Population Enriched/Total clusters wrt EXP wrt Q wrt NQ
↑ ↓ ↑ ↓ ↑ ↓

Exponential 32/179 – – 3e-4 1.0 0.02 0.98
Quiescent 19/230 1 7e-5 – – 0.98 0.02

Non-quiescent 27/214 0.97 0.03 0.01 0.99 – –

Table 6.1: Relative enrichment of clusters. ↑ and ↓ denote enrichment and depletion p-
value, respectively, of annotated clusters. Each row corresponds to a population and spec-
ifies the relative enrichment of all other populations with respect to this population. See
Section 6.1.2 for details.

6.1.5 Fine grained analysis of the cell populations

To identify similarities and differences among the populations, we obtained GO process

enrichment for individual 1-r subgraphs.

92

Chapter 6. Different formulations of learning condition-specific networks

Population pair Subgraphs Enr Up Down Enr & Up Enr & Down
Q-NQ 833 97 26 95 4 27

NQ-EXP 288 99 7 25 5 16
Q-EXP 311 98 11 27 0 24

Table 6.2: Number of common subgraphs, where two subgraphs are considered common
using per-subgraph match score. Enr is the number of subgraphs enriched in a gene ontol-
ogy process. Up and Down specifies the number of subgraphs that are significantly up or
down regulated, respectively, in gene expression. Up & Enr are the number of subgraphs
that are both enriched in a gene ontology process and up regulated in gene expression.
Down & Enr are the number of subgraphs that are both down regulated and enriched in
gene expression.

Processes that are similarly enriched in quiescent and non-quiescent cells indicate

global starvation response

To identify similarly enriched processes, we obtained conserved subgraphs among two

populations. For each subgraph, we assessed GO process enrichment, and whether it

agreed in expression – both up or both down-regulated – in the two populations being

compared.

There were a large number subgraphs common between quiescent and non-quiescent

(Table 6.2). These subgraphs were enriched in glycolysis, fermentation, translation and

fatty acid oxidation processes. However, only half agreed in expression. Several of these

subgraphs had both positive and negative correlation, resulting in an overall subgraph

expression that was neither significantly high nor low. These heterogeneous dependencies

indicate more complex relationships not likely to be captured by co-expression.

We also identified several subgraphs conserved between quiescent and non-quiescent

populations, that were up-regulated, but did not have term enrichment. The majority of the

genes from these subgraphs were associated with unknown biological process, emphasiz-

ing the importance of studying these cells.

Non-quiescent and exponential cells had several common subgraphs enriched in telom-

93

Chapter 6. Different formulations of learning condition-specific networks

Population Subgraphs Enr Up Down Enr and Up Enr and Down
Q 2295 70 174 160 7 17

NQ 2317 74 171 186 10 11
EXP 2570 232 327 206 54 44

Table 6.3: Subgraphs specific to individual populations. Same legend as Table 6.2.

Population Process genes

Q
RAS signal transduction IRA1, SPG3, YGR026W, BCY1, PFK2
Sporulation GPA2, GSC2, OSW2, CAF120, YOR277C
de novo pyrimidine base ARF1,DIG1,
biosynthetic process URA1,URA3,YHR003C

NQ hyperosmostic response TRS120, MSB2, YHR100C, PBS2, RSF2
regulation of DNA PIM1, DIG2, BCK2,SSL2,
metabolic process DPB11, PLB3, HST1, YNG1

EXP

ATP biosynthesis COX20, QCR10,QCR8, ATP2, ATP7
cell wall organization & AFR1, SKN1,GFA1,
biogenesis KTR2, DFG5
amino acid IDP1, ARO3, HOM2, YGL117W, YSC83,
biosynthesis ARG4,SIP4, CPA2,ARG1, SER1, SSU1
response to toxin AAD10,AAD16, AAD4,BAP2,MID2,

TAT1,TYR1

Table 6.4: Processes exclusively up regulated in different populations

ere maintenance, DNA packaging, chromatin assembly and mitotic recombination. These

findings are consistent with previous knowledge that non-quiescent cells have unstable

genomes due to damaged DNA and can rapidly incur mutations [3]. Comparison of qui-

escent and exponential cells did not identify any processes enriched in the up-regulated

subgraphs. The processes enriched in down-regulated subgraphs included glycolysis, glu-

coneogenesis and ribosomal biogenesis.

Overall, the subgraph analysis suggests that quiescent and non-quiescent cells are more

similar to each other than either is to exponential cells. There are several subgraphs com-

mon to quiescent and non-quiescent cells, but not all agree in expression. The processes

that are common between these cells suggest global environmental response as the cells

transition from fermentable to non-fermentable carbon sources for energy.

94

Chapter 6. Different formulations of learning condition-specific networks

Differences in quiescent and non-quiescent cells suggest population-specific response

We examined GO enrichment of subgraphs that occurred only in one population. Both

quiescent and non-quiescent cells had fewer subgraphs with enriched processes than ex-

ponential (Table 6.3). The quiescent cells were exclusively enriched in sporulation and

negative regulation of the RAS signal transduction pathway (Table 6.4). Down regulation

of this pro-growth pathway indicates mechanisms to conserve energy expended in growth

conditions. Furthermore, subgraph genes that are not annotated with signal transduction

(SPG3, PFK2), are all important for stationary phase. SPG3 is required for survival under

high temperatures and PFK2 is essential for anaerobic growth.

The non-quiescent cells exhibited processes involved in osmotic stress response and

regulation of DNA recombination. This is consistent with these cells trying to cope with

environmental changes and that they have unstable genomes. However, unlike quiescent

cells, most of the processes up-regulated in non-quiescent cells, also occurred in exponen-

tial cells.

The exponential cells were enriched in response to chemical stresses, biosynthesis of

amino acids and ATP biosynthesis. ATP biosynthesis was down-regulated in both qui-

escent and non-quiescent cells. The up-regulation of these energy producing pathways

suggests that exponential cells expend a large amount energy to make relevant mRNA in

response to different stresses. In contrast, as quiescent cells are formed in response to a

starvation condition, they are likely to sequester mRNA for rapid release in response to

different stresses [4].

Non-quiescent hubs are enriched in disease causing genes

We analyzed the inferred networks to identify network hubs, nodes with degree ≥ 7. A

significant overlap between quiescent and non-quiescent hubs (n=29) implied similarities

among these cells due to global starvation response, consistent with Section 6.1.5.

95

Chapter 6. Different formulations of learning condition-specific networks

Population Hubs Exclusive Processes
Q 215 167 cell wall organization & biogenesis

signal transduction, carbohydrate metabolism,
organelle organization and biogenesis,
generation of precursor metabolites

NQ 166 116 vesicle-mediated transport, response to stress,
membrane organization & biogenesis

EXP 318 273 aminoacid & derivative process, cellular respiration
ribosome biogenesis & assembly

Table 6.5: Hub nodes and their most enriched processes

The non-quiescent cells have been hypothesized as models for studying diseases in

humans due to the instability of their genomes [5]. We asked if hubs from different cell

populations were enriched in human disease causing gene homologs [60] (Table 6.6). Of

the n = 2818 genes used to infer networks, there were n = 225 yeast genes, homologous

to different human disease genes1. We found that hubs in non-quiescent cells are more

likely to be enriched in disease homologs than either quiescent or exponential cells. This

provides preliminary empirical evidence for the hypothesis that these cells can provide

insight into human disease causing conditions.

We found network hubs from quiescent cells to be enriched (p-value <0.05) in sev-

eral GO slim processes such as signal transduction and cell wall biogenesis (Table 6.5).

Among the quiescent hubs was SNF1, known to be crucial for the formation of quies-

cent cells. The non-quiescent hubs were enriched in stress response and vesicle mediated

transport. Finally the exponential hubs were enriched in amino acid processes and cellular

respiration. The enrichment of different processes further illustrates the underlying bio-

chemical characteristics that discriminate these cells, and how they respond to different

stresses.

1We downloaded human-yeast homologs from http://www.biomart.org/index.
html

96

Chapter 6. Different formulations of learning condition-specific networks

Population Total Hubs Homologous Disease Hubs Pval
NQ 166 26 1e-4
Q 215 22 0.147

EXP 318 10 0.395

Table 6.6: Enrichment of human disease gene homologs in hubs.

6.2 Learning condition-specific networks that incorpor-

ate shared information

In this framework our goal is to exploit the shared information across conditions during

network structure learning. We consider two variations of this problem: in the first, the

condition variable is known and we describe algorithms that exploit the shared information

by using a new kind of parameterization of the conditional probability distributions. In the

second, the condition variable is hidden and we develop several models based on mixtures

of graphs that automatically take into account the sharing of information across conditions.

6.2.1 Network Inference with Pooling Data (NIPD)

The NIPD framework assumes that condition variables are observed and uses a novel score

that evaluates candidate networks with respect to data from any subset of conditions, pool-

ing data for subsets with more than one conditions. To motivate the NIPD approach, we

consider a hypothetical example from a biological setting. Consider two yeast environ-

mental stimuli, with glucose (G+) and without glucose (G-). A regulatory yeast gene,

HAP4 can regulate a target COX8 either only in G+ or in both G+ and G-2. Thus, the edge

{HAP4−COX8} occurs in the singleton condition set {G+} as well as in set {G+, G-}. In

general, the NIPD approach works on the following idea: for an edge to exist in condition,

c, it can exist in any subset C ⊆ C such that c ∈ C, where C is the set of conditions.

2This is a completely synthetic example and is used here only for the sake of exposition

97

Chapter 6. Different formulations of learning condition-specific networks

This approach of enumerating over all subsets allows us to simultaneously identify the

edges that are present exclusively in one condition, and also the edges that are shared in

any subset of conditions. In essence, this means we have as many networks as the size of

the power set of C. This obviously raises the question of the computational and statistical

feasibility of learning so many networks. To deal with the computational complexity we

restrict k to a small number. To deal with the statistical issue of sparse data, we pool the

data for any non-singleton condition case and we use conditional probability distributions

that capture the pooling affect. We now describe the problem more formally.

Probabilistic graphical modeling framework

Let C denote the set of k conditions and let D1, · · ·Dk denote the datasets for each condi-

tion. Our goal is to learn k graphs, G1, · · · , Gk for the k conditions. The problem of learn-

ing these k graphs simultaneously can be solved in a Bayesian framework of maximizing

the posterior probability of the hidden graphs, G1, · · · , Gk, P (G1, · · · , Gk|D1, · · · , Dk).

Applying Bayes rule:

P (G1, · · · , Gk|D1, · · · , Dk) ∝ P (D1, · · · , Dk|G1, · · · , Gk)P (G1, · · · , Gk) (6.1)

P (D1, · · · , Dk|G1, · · · , Gk) is the likelihood of data given the model. P (G1, · · · , Gk) is

a prior over graph structures that biases the search of graphs. Typically a uniform prior or

a prior that favors less complex structures is used. We use the minimum description length

(MDL) principle to selects graphs that give good data likelihood and are the simplest

in complexity. A full Bayesian solution to computing P (D1, · · · , Dk|G1, · · · , Gk) will

require us to solve the integral:

P (D1, · · · , Dk|G1, · · · , Gk) =

∫
P (D1 · · · , Dk|θ1, · · · , θk)

P (θ1, · · · , θk|G1, · · · , Gk)dθ1, · · · , θk (6.2)

98

Chapter 6. Different formulations of learning condition-specific networks

where θc, 1 ≤ c ≤ k is the parameter set for the lth graph. Instead we use a most likely

point estimate of the parameters, aka maximum likelihood (ML) estimates, allowing us to

compute the likelihood as:

P (D1, · · · , Dk|G1, · · · , Gk) = P (D1, · · · , Dk|θ̂1, · · · , θ̂k)P (θ̂1, · · · , θ̂k|G1, · · · , Gk),

where θ̂1, · · · , θ̂k = arg max
θ1,··· ,θk

P (D1 · · · , Dk|θ1, · · · , θk)P (θ1, · · · , θk|G1, · · · , Gk)

To avoid clutter in notation, we drop the distinction between θc and θ̂c and let θc denote

the ML estimates. This gives the following score for the k graphs in the MDL framework:

S(G1, · · · , Gk) = P (D1, · · · , Dk|θ1, · · · , θk)P (θ1, · · · , θk|G1, · · · , Gk)−MDL Penalty

(6.3)

We assume P (Dc|θ1, · · · , θk) = P (Dc|θc), that is, Di are independent of each other, given

their respective parameters. Thus, P (D1, · · · , Dk|θ1, · · · , θk) =
∏k

c=1 P (Dc|θc). Because

our graphs are undirected graphs, we use pseudo likelihood instead of data likelihood [15].

We expand the complete condition-specific parameter set θc, to {θc1, · · · , θcN}. Each

θci specifies the parameters of the conditional distribution of each variable Xi, 1 ≤ i ≤ N

and its neighborhood (Markov blanket) in condition c. We make the typical parameter

independence assumption for each variable [64], which states that the parameters of each

conditional distribution are independent of each other given the Markov blanket of each

variable:

P (θ1, · · · , θk|G1, · · · , Gk) =
N∏

i=1

P (θ1i, · · · , θki|M1i, · · · ,Mki) (6.4)

Here Mki denotes the Markov blanket of variable Xi in condition c and θci represents the

parameters of the conditional distribution of P (Xi|Mci). Note the parameters of condi-

tional probabilities of individual random variables are independent, but we have not made

any independence assertions about the parameters per variable across conditions. Ideally,

we need a prior distribution over the parameters such that the dependence between the pa-

rameters per condition are obtained. We do not have a way to specify this prior probability

99

Chapter 6. Different formulations of learning condition-specific networks

distribution over the θci, but instead we specify the structure of θci in a way that enforces

dependencies among the parameters across conditions.

To enforce dependency among the θci, we make Mci depend on all the neighbors of

Xi in condition c and all sets of conditions that include c. To convey the intuition behind

this idea, let us consider the two condition case C = {A, B}. A variable Xj can be in

Xi’s MB in condition A, either if it is connected to Xi only in condition A, or if it is

connected to Xi in both conditions A and B. Let M∗
Ai be the set of variables that are

connected to Xi only in condition A but not in both A and B. Similarly, let M∗
{A,B}i

denote the set of variables that are connected to Xi in both A and B conditions. Hence,

MAi = M∗
Ai ∪ M∗

{A,B}i. For each of these MBs, we have parameters, θ∗Ai and θ∗{A,B}i,

for the conditional distributions P (Xi|M∗
Ai, θ

∗
Ai) and P (Xi|M∗

{A,B}i, θ
∗
{A,B}i). Because

θAi depends upon Mci, θAi = {θ∗Ai, θ
∗
{A,B}i}. Similarly, for condition B, MBi = M∗

Ai ∪

M∗
{A,B}i, implying θBi = {θ∗Bi, θ

∗
{A,B}i}. The dependency between the parameters of Xi

in A and B, θAi and θBi, is imposed by the shared dimension θ∗{A,B}i.

More generally, for any c ∈ C, Mci =
⋃

E∈powerset(C) : c∈E M∗
Ei, and θci =

⋃
E : c∈E θ∗E .

Here M∗
Ei denotes the neighbors of Xi only in condition set E. To incorporate this depen-

dency in the structure score, we need to define P (Xi|Mci) such that it takes into account

all subsets E, c ∈ E. We propose two forms of representing the conditional probability

distribution: product model and weighted sum model.

The product model defines the conditional probability distribution of a variable Xi

given its Markov blanket Mci as:

P (Xi|Mci, θci) ∝
∏

E∈powerset(C):c∈E

P (Xi|M∗
Ei, θ

∗
ci), (6.5)

This model assumes that the MBs, M∗
Ei, independently influence Xi. This allows us to

write P (Xi|Mci) as a product: P (Xi|Mci) ∝
∏

E∈powerset(C) : c∈E P (Xi|M∗
Ei). We refer

to NIPD with product model as NIPD-PROD. The proportionality sign can be eliminated

by dividing the product by a normalization constant. Assuming a conditional Gaussian

100

Chapter 6. Different formulations of learning condition-specific networks

for the form of the conditional probability distribution, this normalization constant can be

obtained by writing out the complete RHS of Eq 6.5, which has the form:

N
(

x1id|
µ1idσ2

3i + µ3idσ2
1i

σ2
3i + σ2

1i

;
σ1iσ3i√
σ2

1i + σ2
3i

)
N (µ1id|µ3id;

√
σ2

1i + σ2
3i)

The first Gaussian gives the normalized conditional probability distribution and the nor-

malization term is 1
Z1id

= N (µ1id|µ3id, σ2
1i+σ2

3i)), where σ2
3i is the standard deviation from

the condition set {1, 2}, µ1id = wT
1im

∗
1id, is the mean of the conditional Gaussian using

the dth data point in condition 1 (See Appendix B).

However, we work directly with the product of conditionals, that is, the un-normalized

conditional probability distribution for two reasons: (a) the score improvement can be

computed very efficiently, and (b) the second Gaussian acts as a smoothing term over the

parameter µ1id. In particular, if we were estimating a new parameter µ1id, the second

Gaussian specifies the probability of the new µ1id using a Gaussian centered around the

mean computed from the pooled dataset preferring network structures with means µ1id

closer to the shared mean µ3id. Our preliminary experiments showed that this score has

better performance than if we were to subtract out the normalization term.

The weighted sum model uses a linear combination model that sums up the conditional

probability of Xi from all the relevant condition sets:

P (Xi|Mci) =
∑

E∈powerset(C):c∈E

wEP (Xi|M∗
Ei), (6.6)

where
∑

E:c∈E wE = 1, and wE > 0. The above expression can be interpreted as an

expected conditional probability, where the wE represent a (prior) probability over the

different MBs, P (M∗
Ei) : P (Xi|Mci) =

∑
E wEP (Xi|M∗

Ei) = EP (M∗
Ei)

[P (Xi|M∗
Ei)].

The weights wE can be set a variety of ways. We consider two scenarios: (a) fixed

weights (NIPD-WTSUM), (b) learned weights (NIPD-WT-LEARN). For (a) we set the

weights to be equal. For (b), weights are estimated for each variable and are proportional

101

Chapter 6. Different formulations of learning condition-specific networks

to the contribution of the variable to the overall pseudo likelihood of the data from the

condition set:

wE ∝
|DE|∑

d=1

P (Xi = xid|Mi = mid), where DE = ∪e∈EDe. (6.7)

We refer to NIPD with fixed and learned weights as NIPD-WTSUM and NIPD-WT-

LEARN, respectively.

This weighted sum definition of the conditional probability distribution is motivated by

a voter model where we have several predictors for the test variable (Xi in our case) [27],

and we take an average of the predicted values of Xi from all the individual predictors.

This model is also similar to a hierarchical mixture of experts model [70], where data from

each class is generated via a mixture model, but the components of the mixture are shared

across classes.

During structure learning (described in detail in the next section) we maintain a con-

ditional distribution for every RV, Xi, for every set C ∈ powerset(C). We consider

the addition of an edge {Xi, Xk} in every set C and compute the change in the score

due to addition of an edge. This edge addition will affect the conditionals of Xi and

Xj in all conditions c ∈ C. Let PLLV denote Xi’s contribution to the overall pseudo-

likelihood and is defined, including a minimum description length (MDL) penalty, as

PLLV(Xi,Mci, c) =
∑|Dc|

d logP (Xi|Mci) + |θci|log(|Dc|)
2 . The net score improvement of

adding an edge {Xi, Xj} to a condition set E is given by:

∆Score{Xi,Xj},C =
∑

e∈C

|De|∑

d=1

PLLV(Xi,Mei ∪ {Xj}, e)− PLLV(Xi,Mei, e) +

PLLV(Xj,Mej ∪ {Xi}, e)− PLLV(Xj,Mej, e)(6.8)

Depending upon which definition of P (Xi|Mci) we use, we will have different ways of

102

Chapter 6. Different formulations of learning condition-specific networks

computing the score improvement. We first consider the product model. Note in this case

Markov blanket variables per condition set independently influence the conditional,the

pseudo-likelihood PLLV(Xi,Mei, e) decomposes as
∑

E s.t: e∈E PLLV(Xi,M∗
Ei, e). Be-

cause of this decomposability, all terms other than those involving the Markov blanket

variables in condition set E remain unchanged producing the score improvement:

∆Score{Xi,Xj},C = PLLV(Xi,M
∗
Ci ∪Xj,C)− PLLV(Xi,M

∗
Ci,C)

+PLLV(Xj,M
∗
Cj ∪Xi,C)− PLLV(Xj,M

∗
Cj,C) (6.9)

This score decomposability allows us to efficiently learn networks over condition sets.

Now we consider the weighted sum model. In this case the pseudo likelihood has a log

of sums and does not decompose over condition sets. Specifically the pseudo likelihood

contribution of each RV, Xi is given by

PLLV(Xi,Mci, c) =
|Dc|∑

d

log

∑

E∈powerset(C):c∈E

wEP (Xi|M∗
Ei, θEi)

 (6.10)

The score improvement computation requires us to enumerate over all conditions in the

condition set of interest and computationally is more expensive than the product model.

The weights can also be estimated using an EM machinery of mixture of Gaussians, but

we leave this for future work.

103

Chapter 6. Different formulations of learning condition-specific networks

Structure learning approach for k graphs

Our score for structure learning is based on the pseudo likelihood of the data given model

and requires us to compute the conditional probability distribution of each variable in a

condition c. Assuming one of the conditional models above, our pseudo-likelihood score

is defined as:

S(G1, · · · , Gk) =
∑

c

PLL(Dc|θc) + MDL Penalty (6.11)

where

PLL(Dc|θc) =
|Dc|∑

j

N∑

i

logP (Xi = xij|Mci = mci, θci) (6.12)

Note θci is composed of parameters obtained from data in condition c as well as any subset

of C that includes c and has an edge connected to Xi.

Our structure learning algorithm begins with k empty graphs and proposes edge addi-

tions for all variables, for all subsets of the condition set C. The while loop iteratively

makes edge modifications until the score no longer improves. The outermost for loop

(Steps 4-17) iterates over variables Xi to identify new candidate MB variables Xj in a

condition set E. We iterate over all candidate MBs Xj (Steps 5-15) and condition sets E

(Steps 6-14) and compute the score improvement for each pair {Xj,E} (Step 16). In Steps

7-9 we add a check that if a variable Xj is already present in any subset or superset D of

E, we do not include it as a candidate. This check prevents double counting of edge in

overlapping condition sets. If the current condition set under consideration has more than

one conditions, data from these conditions is pooled and parameters for the new distribu-

tion P (Xi|M∗
Ei) is estimated using the pooled dataset (Steps 10-12). A candidate move

for a variable Xi is composed of a pair {X ′
j,E

′} with the maximal score improvement over

all variables and conditions (Step 16). After all candidate moves have been identified, we

attempt all the moves in the order of decreasing score improvement (Step 18). Each move

104

Chapter 6. Different formulations of learning condition-specific networks

adds the edge {Xi, X ′
j} in condition set E′. However, if either Xi or X ′

j was already up-

dated in a previous move, we ignore the move. Because not all candidate moves are made,

by sorting the move order in decreasing score improvement, we enable moves with the

highest score improvements to be attempted first. The algorithm converges when no edge

addition improves the score of the k graphs.

105

Chapter 6. Different formulations of learning condition-specific networks

Algorithm 3 NIPD
1: Input:

Random variable set, X = {X1, · · · , X|X|}

Set of conditions C

Datasets of RV joint assignments, {D1, · · · , D|C|}

2: Output:

Inferred graphs G1, · · · , G|C|

3: while Score(G1, · · · , G|C|) has not converged do

4: for Xi ∈ X do {/*Propose moves*/}

5: for Xj ∈ (X \ {Xi}) do

6: for E ∈ powerset(C) do

7: if Xj ∈ M∗
iD, s.t either D ⊂ E or E ⊂ D then

8: Skip Xj .

9: end if

10: if |E| > 1 then

11: Estimate parameters for new conditional P (Xi|M∗
Ei ∪ {Xj}) using

pooled dataset DE obtained from merging all De s.t. e ∈ E.

12: end if

13: compute ∆Score{XiXj}E.

14: end for

15: end for

16: Store {Xi, X ′
j,E

′} as candidate move for Xi, where {X ′
j,E

′} =

arg max
j,E

∆Score{XiXj}E

17: end for

18: Make candidate moves {Xi, X ′
j,E

′} in order of decreasing score improvement /*At-

tempt moves to modify graph structures*/

19: end while

106

Chapter 6. Different formulations of learning condition-specific networks

6.2.2 Experiments

We did some preliminary experimental analysis to compare our condition-specific learning

approaches with the different parameterizations against the independent network learning

approach. The independent network learning approach is referred to as INDEP.

Experimental setup: data description

We generated simulated datasets using two sets of networks of known structure, HIGH-

SIM and LOWSIM. All networks had the same number of nodes n = 68 and were ob-

tained from the E. coli regulatory network [117]. To generate the network topologies we

first obtained a sub network of n = 68 nodes, G1, from the E. coli regulatory network.

We then generated two networks, G2 and G3, by swapping 40% and 80% of G1’s edges,

respectively while preserving the degree distribution of G1. Swapping takes two edges

{u, v} and {x, y}, and replaces it by {u, x} and {v, y}, where u '= v '= x '= y. {G1, G2}

comprised HIGHSIM and {G1, G3} comprised LOWSIM. For each pair of networks, we

generated initial datasets using a differential equation-based gene regulatory network sim-

ulator [100]. We then split the data into two parts, learned two INDEP models for each

partition, and generated data from these models. We repeated this procedure four times

producing eight sets of simulated data with different parameters but the same network

topology. It was possible to generate all eight sets from the regulatory network simulator

by perturbing the kinetic constants, but our current data generation procedure was faster.

Results

Product model gets best structure especially in the face of limited training data We

compared the overall structure of inferred networks using simulated data from two sets

of networks, each set with two networks (Figs 6.3, 6.4, 6.5). In the first, HIGHSIM,

107

Chapter 6. Different formulations of learning condition-specific networks

the networks shared a larger portion (60%) of the edges, and in the second, LOWSIM,

the networks shared a smaller (20%) portion of the edges. We compared the networks

inferred by all the NIPD approaches to those inferred by INDEP by assessing the match

between true and inferred node neighborhoods. Briefly, we split the data into p partitions,

where p ∈ {2, 4, 6, 8, 10}, learned networks for each partition. The size of the training data

decreased with increasing p. We obtained the number of nodes on which one approach was

statistically significantly better (t-test p-value, < 0.05) in capturing its neighborhood, as a

function of p.

We found that the NIPD-PROD approach is the best for getting the overall structure.

The other NIPD approaches are beaten by INDEP. However, when we learn the weights

(NIPD-WT-LEARN) as opposed to fixing them beforehand (NIPD-WTSUM), the perfor-

mance margin from INDEP is smaller, indicating that learning weights is beneficial.

All NIPD models get better shared structure than INDEP We also compared the

performance of the NIPD approaches against INDEP using the number of shared edges

that were correctly captured (Fig 6.6). This is important because it is harder to get the

similarities right especially in the case of limited data. We found the NIPD approaches get

shared edges better than INDEP, regardless of the amount of sharing in the networks from

each condition.

Discussion

Overall, we found that the NIPD-PROD approach was the best. It is surprising that this

was the best because it was the simplest, and makes independence assumptions of the

condition sets. The difference between the product and weighted sum models is that in

the product model an edge needs to give improvement in the subset under consideration,

whereas in the sum models the edge addition must have an improvement over all subsets.

As a result the sum models may miss out on the weak shared edges because its contribution

108

Chapter 6. Different formulations of learning condition-specific networks

! " # $ % & '
!&

!

&

"!

"&

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!&

!

&

"!

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

:;<=!<>?=

;:=@<

! " # $ % & '
!#

!

#

%

'

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!#

!

#

%

'

()*+,-.,/01)2)23,41/1
5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

:;<=!<>?=

;:=@<

Figure 6.3: Structure comparison on the two sets of networks using the NIPD-PROD
(NIPD with the product conditional) and INDEP models. The left column is for HIGHSIM
and the right column is for the LOWSIM. x-axis corresponds to number of folds of training
data. The size of training data in each fold decreases with the increasing fold count. y-axis
is the number of variables on which one method is better than the other.

to the overall sum may be small. We attribute its good performance to its ability to capture

those shared edges that may be missed because they are too weak to represent a benefit

in the sum models. However, the fact that all models were able to get shared edges well

in the face of limited training data is promising because finding shared patterns is harder

under limited training datasets.

109

Chapter 6. Different formulations of learning condition-specific networks

! " # $ % & '
!"!

!

"!

#!

$!

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!&

!

&

"!

"&

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

:;<=!>?(@A

;:=B<

! " # $ % & '
!"!

!

"!

#!

$!

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!&

!

&

"!

"&

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

:;<=!>?(@A

;:=B<

Figure 6.4: Structure comparison on the two sets of networks using the NIPD-WTSUM
(NIPD with the weighted sum of conditionals) and INDEP models. The left column is
for HIGHSIM and the right column is for the LOWSIM. x-axis corresponds to number of
folds of training data. The size of training data in each fold decreases with the increasing
fold count. y-axis is the number of variables on which one method is better than the other.

110

Chapter 6. Different formulations of learning condition-specific networks

! " # $ % & '
!

"

#

$

%

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!!:&

!

!:&

"

":&

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

;<=>!?@!ABCD;

<;>B=

! " # $ % & '
!

"

#

$

()*+,-.,/01)2)23,41/1
5
,-
.,
6
1
0
)1
7
8+
9

2+/"

,

,

! " # $ % & '
!

!:&

"

":&

#

()*+,-.,/01)2)23,41/1

5
,-
.,
6
1
0
)1
7
8+
9

2+/#

,

,

;<=>!?@!ABCD;

<;>B=

Figure 6.5: Structure comparison on the two sets of networks using the NIPD-WT-LEARN
(NIPD with the weighted sum of conditionals with learned weights) and INDEP models.
The left column is for HIGHSIM and the right column is for the LOWSIM. x-axis corre-
sponds to number of folds of training data. The size of training data in each fold decreases
with the increasing fold count. y-axis is the number of variables on which one method
is better than the other. NIPD-WT-LEARN for LOWSIM and net1 of HIGHSIM is never
able to outperform INDEP and therefore is on top on the x-axis.

111

Chapter 6. Different formulations of learning condition-specific networks

HIGHSIM

! " # $ %
&'$%

&'%

&'%%

&'(

&'(%

&')

&')%

&'*

+,-./01/234,5,56/7424

+
8
4
3.
7
/9
7
6
.
/:
!
;
<
0
3.

=>?@!?AB@

/

/

! " # $ %
&'$%

&'%

&'%%

&'(

&'(%

&')

&')%

&'*

+,-./01/234,5,56/7424

+
8
4
3.
7
/9
7
6
.
/:
!
;
<
0
3.

=>?@!CD+EF

/

/

! " # $ %
&'$%

&'%

&'%%

&'(

&'(%

&')

&')%

&'*

+,-./01/234,5,56/7424

+
8
4
3.
7
/9
7
6
.
/:
!
;
<
0
3.

=>?@!CD!G9HA=

/

/

LOWSIM

! " # $ %
&'"%

&'#

&'#%

&'$

&'$%

&'%

()*+,-.,/01)2)23,41/1

(
5
1
0+
4
,6
4
3
+
,7
!
8
9
-
0+

:;<=!<>?=

,

,

! " # $ %
&'"%

&'#

&'#%

&'$

&'$%

&'%

()*+,-.,/01)2)23,41/1

(
5
1
0+
4
,6
4
3
+
,7
!
8
9
-
0+

:;<=!@A(BC

,

,

! " # $ %
&'"%

&'#

&'#%

&'$

&'$%

&'%

()*+,-.,/01)2)23,41/1

(
5
1
0+
4
,6
4
3
+
,7
!
8
9
-
0+

:;<=!@A!D6E>:

,

,

Figure 6.6: Comparison of different algorithms using match of shared edges. x-axis corre-
sponds to number of folds of training data. The size of training data in each fold decreases
with the increasing fold count. y-axis is the F-score of the shared edges in the true and
inferred pairs of networks.

112

Chapter 6. Different formulations of learning condition-specific networks

6.2.3 Learning condition-specific networks with unobserved condi-

tion

The above section assumed that the condition variable is known. However, in many real-

world data situations we may not have the condition variable, because of two reasons:

(a) dataset heterogeneity, and (b) to enable modeling complex sharing patterns. The first

case arises when we are combining data from multiple related but not identical experi-

mental setups, where it is difficult to ascertain the condition variable for each data point

(joint assignment to all the random variables in our setup). An example of this scenario

is combining expression data from different patients [74], or brain imaging data from the

neuroscience domain [71].

The second case, where we deliberately choose to not enforce the condition variable

assignment to a data point, gives us more flexibility to model different types of sharing

patterns. Such complex sharing patterns can arise in biological networks because of mod-

ularity and component re-use [75, 101]. For example, master regulators such as Twist

and Mef2 combinatorially regulate overlapping sets of genes during different stages of fly

muscle development [118]. More examples of such cis-regulatory circuits can be found in

the yeast transcriptional network [61], and other developmental networks [33, 23]. From

a modeling perspective, these sharing patterns may cause a data point to be associated

with multiple hidden variables. This kind of flexibility is not available if we have a single,

observed condition variable for the entire data point.

Whether it be by necessity or by choice, it is clear that we need models that can in-

fer the condition variable during structure learning. We now describe different models

that capture different types of sharing and specificity. We also address the question of

parameter tying to incorporate sharing within the parameter structure of the conditional

distributions. We first begin with the simplest model, mixture of graphs model, in which

there is a single, hidden condition variable. We then consider the other extreme, with a

113

Chapter 6. Different formulations of learning condition-specific networks

different condition variable for each random variable, and then finally we consider the

middle-ground model, where we have one variable for every graph component.

Modeling condition-specificity at different levels of granularity: An example

Before proceeding with the technical details of the different models we provide an overvi-

ew of the basic differences in the different models (Fig 6.7). We assume that for each data

point, the condition variable is not known and must be inferred. We know the number

of conditions and our goal is to learn a network for each condition. However the models

differ in the extent to which different parts of the network are controlled by a condition

variable. We consider condition-specificity at level of the entire graph, at the level of

individual variables and at the level of graph components. The corresponding models

are the Mixture of Undirected Graphs (MUGs), Per-variable Expectation Maximization

(PVEM) and the Graph Component with CONDitional model (GC-COND).

In Fig 6.7 we highlight the main differences between the three models. We use z (with

or without subscript) to denote the condition variable. The value of z determines which

set of neighbors must be used to generate the sample of a variable in a data point. This

decision of selecting the value of z can be made for different parts of the network. We

consider the case of two conditions C = {1, 2}, where 1 is denoted by red and 2 by green.

The example graph has five variables {X1, · · · , X6}. The red and green edges specify the

connections in the different condition-specific graphs, that is, all the red edges specify the

graph for condition 1 and all the green edges specify the connections in condition 2. The

assignment to the z variable determines which graph the sample for a random variable is

generated. The union of all these edges is called the union graph.

In the MUG model, there is a single z variable associated with the entire graph struc-

ture. The decision about which condition a sample is from is made for all the random

variables simultaneously by the assignment of the z variable. While this is a simple and

114

Chapter 6. Different formulations of learning condition-specific networks

intuitive model, it does not allow for fine-grained control of condition-specificity for dif-

ferent sets of variables. For example, we may have a situation where some genes are more

shared and some genes are more specific to each condition. By having a single variable

for all variables, we cannot incorporate this information.

In the PVEM model, every random variable has its own condition variable zi. The

condition from which a sample is generated is selected for each variable independently.

This is the most general type of model, allowing each variable to have its own level of

sharing between the different conditions. However, while this model is the most general,

in order to make it tractable to learn we must infer the condition variables independently

for each random variable. This causes some consistency violations in the inference of the

condition variables. The last kind of model which takes care of the consistency problem

and also allows sufficient granularity, is the GC-COND model. In this model, we have

a condition variable for each connected component of the union graph. The example in

Fig 6.7 has two components and therefore there are two condition variables z1, z2.

Mixture of (non-decomposable) undirected graphs

The mixture of undirected graphs (MUG) model is a mixture model for defining proba-

bility distribution over a high-dimensional random variable [62, 99, 122, 35]. This high-

dimensional random variable is the set X of random variables X1, · · · , XN , where each

Xi itself is representing a gene. The MUG model is similar to a mixture of directed acyclic

graphs (DAGs) [134], with the exception that we learn undirected graphs. As described

above, we have data from K conditions, but we do not know the condition labels of each

dataset. In our gene expression case each data point is a microarray measuring the ex-

pression of N genes. The generative model assumes that the data is generated as follows:

there is a hidden stochastic process that randomly selects an assignment to the condition

variable and thus a graph model, which in turn determines the gene expression of all genes

in that condition, and then generates samples for all the genes using the selected model.

115

Chapter 6. Different formulations of learning condition-specific networks

!"

#$"

#%"

#&" #'" #("

#)"

!"#

!$#

!%# !&# !'#

!(#

)"#)%#)&#)'#

)$#
)(#

(a) (b)

!"#

!$#

!%# !&# !'#

!(#

)"#)$#

*+,"# *+,$#

(c)

Figure 6.7: Mixture models controlling condition-specificity at different levels of granu-
larity. (a) MUGs, (b) PVEM, (c) GC-COND. The colored undirected edges distinguish
the networks for each condition: red for one condition and green for another condition.

MUG in detail Let X = {X1, · · · , XN} represent the set of observed random variables.

Each joint assignment x to X is generated using a mixture of K undirected graphs as

follows:

• k ∼ Multinomial(α1, · · · , αF)

• x ∼ P (X1, · · · , XN |Gk, θk), where Gk is the graph structure and θk is the set of

parameters corresponding to the kth mixture component.

The joint probability distribution of this mixture model is

P (X = x) =
K∑

k=1

αkP (x|Gk, θk) (6.13)

We rewrite the full joint as product of local conditionals

P (X = x|Gk, θk) =
N∏

i=1

P (Xi = xi|Mki = mki, θki).

116

Chapter 6. Different formulations of learning condition-specific networks

If each Gk is a Bayesian network, Mki are the set of parents of Xi in Gk and the product

yields the likelihood of the data given model. However, in our case Gk is an undirected

graph Mki is the Markov blanket of Xi and the product yields the pseudo likelihood of

the data given model. As described in the previous chapters, this is a commonly used

approximation and enables us to perform search in a tractable fashion without having to

compute the partition function [64, 105].

The goal of structure learning is to find the best G = {G1, · · · , GK} and θ1, · · · , θK

such that likelihood of data D = {D1, · · · , DK} given this mixture of graphs is maxi-

mized. That is,

(G∗, θ∗1, · · · , θ∗K) = arg max
G

max
θ1,··· ,θK

P (D|G, θ1, · · · , θK) (6.14)

where D is our data. Assuming the data are independently and identically distributed (IID)

and using the definition of pseudo likelihood we have

logP (D|G, θ1, · · · , θK) =
|D|∑

d=1

log

(
K∑

k=1

αk

(
N∏

i=1

P (Xi = xdi|Mki = mkdi, θki)

))

(6.15)

We refer to the left hand side as PLL(D). The problem here is the sum inside the log,

which prevents the objective from decomposing into anything tractable. To get around

this problem we use the typical Expectation Maximization (EM) framework where we

augment each xd with an additional dimension zd which stores the mixture component

from which xd was generated. We let z = {z1, · · · , zd}, Z = {Z1, · · · , Z|D|}. Assuming

G1, · · · , Gk are fixed, we only need to estimate the parameters θ1, · · · , θK . We refer to

these parameters collectively as Θ. Now we write the expected pseudo likelihood of the

completed data as follows, where the expectation is w.r.t to the conditional distribution

P (Z|D, Θ′), where Θ′ is the current estimate of parameters (from a prior or previous

117

Chapter 6. Different formulations of learning condition-specific networks

iteration) :

EP (Z|D,θ′)[PLL(Θ; z,D)] =
∑

z∈Z

P (Z|D, Θ′)logP (Z,D|Θ) (6.16)

Here Z is the set of possible assignments to Z. We rewrite the above as

Q(Θ, Θ′) =
∑

z∈Z

P (Z|D, Θ′)logP (D|Z, Θ)P (Z|Θ) (6.17)

After doing some algebra (Appendix C) we derive a decomposable pseudo likelihood score

which decomposes into pseudo likelihood scores of a variable and its neighborhood:

Q(Θ, Θ′) =
N∑

i=1

K∑

k=1

|D|∑

d=1

γdklogα
1
N
k P (Xi = xid|Mki = mkdi, θki) (6.18)

The sum decomposes over each variable, indicating we can optimize this sum by indepen-

dently optimizing over each variable.

Unfortunately, this alone does not help during structure search. This is because the

γ’s are computed with respect to the current network set G and parameters Θ′. When

we change any network of any component by, say, adding an edge, the γ’s would need

to be recomputed, and as a result we would need to re-estimate the parameters of all

variables, even if they are not getting modified structurally. Therefore, we make another

approximation. When we consider the addition of a new edge, {Xi, Xj} to model l, we

use the γ’s from the previous iteration and re-estimate parameters for the proposed edge

using these old γ’s. Then we identify the best set of moves (edge additions) using the score

improvement, ∆S = ∆SXi + ∆SXj where

∆SXi =
K∑

k=1

|D|∑

d=1

γdklogα
1
N
k P (Xi = xid|Mki ∪ {Xj} = mkid ∪ {xkjd}, θ′ki)

−
K∑

k=1

|D|∑

d=1

γdklogα
1
N
k P (Xi = xid|Mki = mkid, θki) (6.19)

Here θ′ki = θki if k '= l. Otherwise θli is re-estimated after adding the new neighbor Xj to

Xi’s neighborhood in graph Gl. That is, we re-use all parameters other than the parameters

of the conditional associated with Xi.

118

Chapter 6. Different formulations of learning condition-specific networks

We now describe the algorithm steps (Algorithm 4). In the top for loop we assume the

γkid are fixed and search for the next possible Markov blanket variable for a variable Xi.

Note this search happens over all the model graphs and produces a pair {Xj, l} specifying

the next Markov blanket addition in the graph Gl. We also impose a maximum size of the

Markov blanket of each variable in each condition. The moves are then made in increasing

order of the score improvement such that the moves that have the maximal score improve-

ment are attempted first. Note that a proposed move becomes invalid if either Xi or Xj has

been modified in any of the graphs in a preceding move. After all the graph modifications

have been done, we fix the graph structure and do EM-based parameter estimation until the

score does not change. Because the conditionals take the form of conditional Gaussians,

the update equations for γkid and the parameters all use the standard multi-variate Gaus-

sian mixture model framework. During the maximization step we take the graph structure

into account while estimating the co-variance matrix for the Gaussian. We also smooth

the γkid with a small correction term ε = 1E-5 to avoid data stealing.

Per-variable EM (PVEM) model

In this approach we add more flexibility to the model by allowing each variable Xi to have

a separate condition variable. This model is similar to modeling different interventional

distributions [38], where different parameters are selected based on the assignment of the

intervened variable. However, we handle a more general case where the condition variable

influences the neighborhood structure, and therefore also the parameters. Each condition

variable determines the set of neighbors that influence a random variable at any point in

time. The dth sample is generated is as follows: For each Xi

• k ∼ Multinomial(α1, · · · , αk)

• xid ∼ P (Xi|Mki = mkid)

119

Chapter 6. Different formulations of learning condition-specific networks

Algorithm 4 MUG structure learning
Input:

Random variable set, X = {X1, · · · , X|X|}

Dataset of RV joint assignments, D = {D1, · · · , DK}

Output:

Inferred graphs G = {G1, · · · , Gk}

while Score not converged do

/*Modify graph structure*/

for Xi ∈ X do

Find best new pair {Xj , l}, 1 ≤ l ≤ K that maximizes ∆Sij using Eq 6.19

end for

Update graphs by adding edges in decreasing order of ∆Sij .

/*EM on parameters*/

while Score not converged do

Expectation step to re-estimate γkid, 1 ≤ k ≤ K, 1 ≤ i ≤ N, 1 ≤ d ≤ |D|

Maximization step to re-estimate αk and parameters of the conditionals P (Xi|Mki) using

the new γkid’s

end while

end while

where Mik is the MB of Xi in condition k, mkid is the assignment to Mki in the dth data

point3.

We apply the pseudo likelihood decomposition before applying the EM framework

logP (D|G, θ1, · · · , θk) =
|D|∑

d=1

N∑

i=1

logP (Xi = xdi|Mi = mdi) (6.20)

3This requires that we already have the assignment for all the variables in Mik, which may not
be true depending on the ordering of the variables during sampling. However, data is generated
using a Gibbs sampling framework where a variable Xj ∈ Mik may have the assignment from the
previous iteration or the current iteration.

120

Chapter 6. Different formulations of learning condition-specific networks

Here Mi = ∪K
k=1Mki, where Mki are the set of neighbors of Xi in graph Gk. Assuming

a conditional Gaussian for each conditional distribution, we have a mixture of conditional

Gaussians for each variable Xi. The kth component of the mixture describes a conditional

Gaussian density P (Xi|Mki = mkid):

P (Xi|Mki = mkid) = N (Akimkid + bki, σki)

Here Aki is a vector of coefficients for the linear combination of the neighbor set val-

ues, and σki is the conditional variance of Xi. It is assumed to be the same for all joint

assignments of Mki. The complete pseudo likelihood score of the graphs is

logP (D|G, θ1, · · · , θk) =
|D|∑

d=1

N∑

i=1

log

(
K∑

k=1

αkiN (Akimkid + bki, σki)

)
(6.21)

where Mi =
⋃

k Mki and αki are the standard mixing weights for each component.

We now need to do EM for every variable Xi. We introduce the typical hidden variables

zkid specifying the model from which the assignment to Xi is obtained in datapoint d. γkid

specifies the expected value of zkid = 1, that is, generating Xi’s value in the dth datapoint

from the kth mixture component. The mixture of conditional Gaussians for each variable

is given by:

P (Xi = xid|Mi = mid) =
K∑

k=1

αik
1√

2πσik
exp

(
(xid −Akimkid − bki)2

−2σki

)
(6.22)

Applying the EM crank the expected pseudo-likelihood for each variable is:

Q(θki, θ
′
ki) =

|D|∑

d=1

∑

k

γkid

(
logαki

1√
2πσki

− 1

2σki
(xid −Akimkid − bki)

2

)
(6.23)

The update equations for the different parameters σki,Aki and bki can be obtained by

deriving Q(θki, θ′ki) with respect to each parameter, setting to 0 and solving.

1. ML estimate of σki

σki =

∑|D|
d=1 γkid(xid −Akimkid − bki)2

∑|D|
d=1 γkid

121

Chapter 6. Different formulations of learning condition-specific networks

2. ML estimate of Aki

Aki =

∑|D|
d=1 γkid(xid − bki)mT

kid∑|D|
d=1 γkidmkidmT

kid

(6.24)

Structure learning in this model is much harder than the MUG model because of the

presence of more hidden variables (Algorithm 5). However, unlike the MUG model where

scoring a single move would have required us to re-estimate all the parameters of the con-

ditionals because of a single γkd for all random variables, in this case we can re-compute

the γkid for each proposed move for each conditional independently. For every candidate

neighbor we do an EM run for estimating the parameters given the proposed structure

(Algorithm 6 for scoreMoveEM). Since every step of EM is guaranteed to improve the

likelihood, we need not run EM to convergence, but to a fixed q number of steps. We then

compare the candidate structures based on the score computed from parameters after q EM

steps. The overall structure learning algorithm is similar to the original MBS algorithm.

The main difference is the introduction of an EM sub-routine to score candidate moves.

MUG per connected component

The standard mixure of undirected graph model imposes a single condition variable for all

the random variables. In contrast, the PVEM model has a condition variable for each ran-

dom variable. While the PVEM model gives the maximum amount of flexibility, it violates

some consistency in the assignments of the condition of a variable and of the conditions of

the Markov blanket variables. This is because the condition variable is inferred for each

random variable independently. The constraint that we must impose is that if a variable

Xj in a datapoint d is being generated from model l, then to guarantee that the dependency

between Xj and another variable Xi is maintained in condition l, Xi too must be gener-

ated from the lth model in Xi’s mixture. However this constraint between the different

condition variables prevents us from inferring the condition variables independently. This

122

Chapter 6. Different formulations of learning condition-specific networks

Algorithm 5 PVEM structure learning
Input:

Random variable set, X = {X1, · · · , X|X|}

Dataset of RV joint assignments, D = {D1, · · · , DK}

Output:

Inferred graphs G = {G1, · · · , Gk}

while Score not converged do

for Xi ∈ X do

for Xj ∈ X and Xj '= Xi do

for l ∈ C do

∆SXi = scoreMoveEM(Xj , l, Xi)

∆SXj = scoreMoveEM(Xi, l, Xj)

∆S{Xi,Xj},l = ∆SXi + ∆SXj

end for

end for

{Xj , l} = arg max
X′

j '=Xi,l′
∆S{Xi,X′

j},l′

end for

Update graphs by adding edges in decreasing order of score improvement.

end while

problem is much harder to solve because now the dimensionality of the hidden variables

corresponding to the conditions increases exponentially because we have to jointly infer

the condition variables. We instead propose a simpler solution, which is based on keeping

the number of condition variables flexible during structure learning. In particular we will

have a hidden condition variable for each connected component of the union graph. Be-

cause we are doing structure learning, the graph structure changes, and so does the number

of connected components.

Our model now has MUG model for every connected component. Let Ĝ = ∪kGk

represent the union graph that can exist in any of the K conditions. Let CC bG denote the

123

Chapter 6. Different formulations of learning condition-specific networks

Algorithm 6 Sub-routine scoreMoveEM
Input:

Variable Xi and candidate MB variable Xj

Condition variable l

Output:

Score improvement if Xj were added to Xi’s MB in condition l

Initialize parameters θijl for P (Xi|Mli ∪ {Xj})

iter = 0

repeat

Estimate γijk ∀k using existing θijl′ , l′ '= l and the new θijl

Estimate αik ∀k using new γijk’s

Compute pseudo likelihood score for P (Xi|Mil ∪ {Xj})

iter + +

Update all parameters θijk ∀k.

until iter = q or pseudo likelihood score does not change

connected components of Ĝ. Now the data is generated is as follows:

• For each Gc ∈ CC bG, k ∼ Multinomial(α1, · · · , αK)

• For each Xi ∈ VertexSet(Gc), Xi ∼ P (Xi|Mki)

The joint probability distribution can be written as

P (X = x) =

|CC bG|∏

c=1

P (Xc = xc) (6.25)

where Xc is the vertex set of cth connected component of Ĝ. We now have a MUG model

for every connected component:

P (X = x) =

|CC bG|∏

c=1

K∑

k=1

αckP (Xc = xc|θck) (6.26)

124

Chapter 6. Different formulations of learning condition-specific networks

the inner joint can be written as a product of conditionals if we use pseudolikelihood:

P (X = x) =

|CC bG|∏

c=1

K∑

k=1

αck

|Xc|∏

i=1

P (Xi = xi|Mki = mki, θki) (6.27)

We introduce a hidden variable for each data point, d and each connected component c,

Zdc. Applying the EM crank for each MUG for each components produces the following

decomposition:

Q(Θ, Θ′) =

|CC bG|∑

c=1

|Xc|∑

i=1

|D|∑

d=1

K∑

k=1

γcdklogα
1

|Xc|
ck P (Xi = xdi|Mki = mkdi, θki) (6.28)

Structure learning of this model is again harder than the MUG model. The problem

is because of not knowing the structure Ĝ, and therefore the connected components of Ĝ

either. Currently, during learning a single MUG model, we make use of the γ’s from the

previous E step to estimate score of the new model. The old γ’s are also used to estimate

the parameters of the new conditional distribution. But now since each datapoint could

have potentially many γ’s, one for each connected component, we need to decide which

one to use during network scoring and parameter estimation of the new conditional. This

issue can be addressed in two ways, which we describe below.

One way is to re-estimate the γ’s every time two different graph components can

merge. For example, say Xi currently belongs to component Gp and Xj belongs to com-

ponent Gq. To compute the score improvement for the addition of the edge {Xi, Xj},

we first merge Gp and Gq into Cr, erase all γpdk and γqdk and re-estimate a new γrdk for

this new component and estimate the score on this component. Initially, when the graph

is completely disconnected, we would have to re-estimate γ’s for almost every proposed

structure modification. However, as the graph would get more connected, the number of

re-estimations would get reduced.

Another more efficient way is to approximate new γ’s by taking a weighted mean of

the original γ’s from component Gp and component Gq, and then estimate the parameters

125

Chapter 6. Different formulations of learning condition-specific networks

of the conditional using the new estimated γ’s. For example in the above example γrdk =

wpγpdk + wqγqdk. This is more computationally efficient as we do not reestimate the γ’s

at all. We can set the weights to be proportional to the contribution of component to the

overall pseudo likelihood, wp ∝ PLL(V ertexSet(Gp)), or even to the size the of each

component. In our implementation we briefly experimented with both approaches and

found the weighted approach, with weights proportional to connected component size, to

be much better in terms of inferred structure quality.

In general, before we compute the score improvement for a new edge, we need to make

sure that we have graph component for the edge. Assuming that the new edge will affect

or create component Gr, the score improvement is given by a similar formulation as in the

previous section: ∆S{Xi,Xj},l = ∆SXi + ∆SXj , where

∆SXi =
K∑

k=1

D∑

d=1

γrdklogα
1

|Gr |
rk P (xdi|mkdi ∪ {xdj}, θ′ki)

−
K∑

k=1

D∑

d=1

γrdklogα
1

|Gr |
rk P (xdi|mkdi ∪ {xdj}, θki) (6.29)

The overall structure learning algorithm is similar to the MUG model and described in

Algorithm 7.

GC-COND with parameter tying

Sharing of information across conditions can also be done by parameter tying of the con-

ditional distributions [41, 125]. The parameters that are tied or shared across conditions

are estimated jointly from the different conditions and exploit the shared information more

efficiently. This also reduces the number of parameters that are associated with the model.

We now describe how to implement parameter tying using the conditional Gaussian frame-

work. To explicitly represent the shared neighbor in the parameters of our model, we force

the dimension of the weight vectors, Aki corresponding to the shared neighbor to have

126

Chapter 6. Different formulations of learning condition-specific networks

the same value. However, because of this sharing constraint, the ML estimates of each

Aki, cannot be derived independently. To incorporate this sharing constraint, we split the

weight vector into the shared and unshared parts, and take derivatives with respective to

these parts. Let Aki represent the weight vector for variable Xi in condition k. We write

Ak = [BkiCi], where Bki represents the weights for neighbors of Xi specific to condition

k, and C represent the weight vector for the shared neighbors across conditions. Simi-

larly we write mkid, which is the joint assignment to neighbors of Xi in condition k from

datapoint d as, mkid = [pkidqid], where pkid represents the assignment to the condition

k-specific neighbors of Xi and qid represents the assignment to the shared neighbors of

Xi. We provide the equation for the two condition case C = {1, 2} and show details in

Appendix D. The general form can be derived from here.

• ML estimate of shared parameters C We assume Xi belongs to the cth graph

component. Therefore all the γ’s associated with Xi are γckd.

C =

∑|D|
d=1 γc1d

(
(xid−B1ip1id−b1i)qT

id
σ1i

)
+ γc2d

(
(xid−B2ip2id−b2i)qT

id
σ2i

)

∑|D|
d=1

γc1dqidqT
id

σ1i
+

γc2dqidqT
id

σ2i

• ML estimate of unshared parameters Bk

Bk =

∑|D|
d=1 γckd(xid −Cqid − bki)(pT

kid)∑|D|
d=1 γckdpkidpT

kid

6.3 Experimental setup

We had three main goals of our experiments: (a) assess the model performance when

the model generating the data is different from the model being learned, (b) assess the

effect of union graph topology on network structure inference, (c) assess the benefit of

parameter tying. We execute all experiments on simulated data using networks of known

ground truth. For (a) we consider three pairs of networks, NET12, NET16 and NET12-66

127

Chapter 6. Different formulations of learning condition-specific networks

(Fig 6.8). These three pairs of networks have different topologies of the underlying union

graph. Using each pair of networks we generate data using three generative models: (a)

Constrained (CONSTR), (b) MUG and (c) Independent (INDEP). The CONSTR genera-

tive model uses a PVEM generative model but makes sure that during data generation the

condition assignments of variables are consistent within a single data point. The MUG

model is the mixture of undirected graphs and the INDEP model just generates two in-

dependent datasets for the two networks. We first compare the performance of PVEM,

MUGs, INDEP, GC-COND models on the CONSTR datasets. We then compare the per-

formance of MUG, GC-COND and INDEP models on the MUG and INDEP datasets.

For (b) we consider an additional network pair NET12-79 as this together with the

existing three pairs of networks gives us a range of networks with different topologies of

the union graph. We examine the PVEM, GC-COND and MUG models on the CONSTR

datasets.

For (c) we consider only the CONSTR datasets but on several network pairs, NET12,

NET13, NET14 and NET16. These networks have different topologies and vary in the

number of shared edges (Table 6.8). We compare parameter tying versus no tying in the

GC-COND model. The model with parameter tying is referred to as GC-CONDSH. Our

complete experimental design is described in Table 6.7.

6.4 Results

6.4.1 Generative model comparison

We first compared the performance of all four models (INDEP, MUGs, PVEM, GC-

COND) on the three networks pairs NET12, NET16 and NET12-66 with data from the

CONSTR model (Figs 6.9,6.11,6.13, summarized in Table 6.9). All models outperformed

128

Chapter 6. Different formulations of learning condition-specific networks

Experiment Network pairs Generative Model Test Models
Model NET12 CONSTR, MUGs, PVEM,MUGs,

assumption NET16 INDEP GC-COND,INDEP
NET12-66

Topology of NET12 CONSTR PVEM,MUGs,
union graph NET16 GC-COND

NET12-66
NET12-79

Parameter NET12, NET13 CONSTR GC-COND, GC-CONDSH
tying NET14, NET16

Table 6.7: Experimental design to analyze the different questions. Generative models are
used to generate the data and test models are learned.

Network Node NET1 Edge NET2 Edge Shared Edge % of
Pair Cnt Cnt Cnt shared edges

NET12 68 49 49 29 60%
NET13 98 79 81 38 47%
NET14 99 79 82 24 29%
NET16 68 51 55 11 20%

Table 6.8: Number of shared edges in each network pair. The percentage of shared edges
is the smallest of the two networks.

the INDEP model, especially at small training dataset sizes, suggesting that when the data

is mixed, a model which assumes the label to be given has poor performance. Compar-

ison of the other models showed surprising results. We expected that the PVEM model

would have the best performance since the generative model was closest to PVEM. How-

ever, we found that the MUGs model performs the best followed by the GC-COND, and

GC-COND occasionally outperformed the PVEM model. One reason why this might be

happening is that structure of the union graph imposes constraints on the condition labels,

which is automatically imposed in the MUGs model. In contrast the GC-COND model

must infer this and the PVEM model does not even impose this constraint. The learning

task for GC-COND and PVEM is much harder than MUGs model.

We then compared the performance of three models (INDEP, MUGs, GC-COND) on

129

Chapter 6. Different formulations of learning condition-specific networks

NET16 NET12

NET12-66 NET12-79

Figure 6.8: Union networks for the network pairs used in the simulations. The edge colors
indicate the condition-specificity, with red for condition 1, green for condition 2 and blue
denoting a shared edge between conditions 1 and 2.

the three network pairs using MUGs as the generative model (Figs. 6.15, 6.16, 6.17, sum-

marized in Table 6.10). As expected the MUGs and the GC-COND models were better

than INDEP. The MUGs model was also much better than GC-COND which is not sur-

prising as the generative model obeys the assumptions of the MUGs model.

Finally, we compared the INDEP, MUGs, and GC-COND models on the three net-

130

Chapter 6. Different formulations of learning condition-specific networks

NET12 NET16 NET12-66
MUG GC-COND PVEM MUG GC-COND PVEM MUG GC-COND PVEM

INDEP 0/10 0/9 1/1 0/5 0/10 0/5 0/4 0/2 0/1
MUG 0/0 9/0 2/0 7/0 0/0 1/0

GC-COND 10/0 7/0 0/0

Table 6.9: Summary of structure match comparison using CONSTR generative model.
The numbers p/q in each cell specify the number of times the algorithm in the row (p)
beats the algorithm in the column, and the number of times the algorithm in the column
beats the one in the row (q).

works using INDEP as the generative model (Figs. 6.18, 6.19, 6.20, summarized in Ta-

ble 6.11). Interestingly, although INDEP was expected to do the best because the training

data was from the INDEP model, the difference between the INDEP and MUGs model

was marginal. In particular, INDEP beat MUGs on no more than 4 variables. This sug-

gests that the MUGs model is able to correctly infer the condition labels. We also found

that the MUGs model was again better than GC-COND.

In summary, considering all generative models and networks, the MUGs model has

the most benefit. Even though INDEP beats MUGs when the generative model is INDEP,

MUGs beats INDEP by a far greater margin when the generative model is MUGs. This was

a somewhat surprising result given the simplicity of this model compared to GC-COND

which is more flexible. This suggests that the additional flexibility in the GC-COND and

PVEM models is not beneficial for these networks. Instead, the additional cost associated

with learning such complex models outweighs the benefit that would be gained with the

flexibility. However, we did notice that the performance margin between the different

networks had a tendency to decrease as the network became more fragmented (Fig 6.8).

This led to our next set of experiments where we analyze the behavior of the different

models on networks of different topologies.

131

Chapter 6. Different formulations of learning condition-specific networks

NET12 NET16 NET12-66
MUG GC-COND MUG GC-COND MUG GC-COND

INDEP 0/10 0/10 0/10 0/10 0/10 0/10
MUG 6/0 9/0 4/0

Table 6.10: Summary of structure match comparison using MUG generative model. The
numbers p/q in each cell specify the number of times the algorithm in the row (p) beats
the algorithm in the column, and the number of times the algorithm in the column beats
the one in the row (q).

NET12 NET16 NET12-66
MUG GC-COND MUG GC-COND MUG GC-COND

INDEP 1/0 10/0 1/0 10/0 0/0 10/0
MUG 9/0 10/0 9/0

Table 6.11: Summary of structure match comparison using INDEP generative model. The
numbers p/q in each cell specify the number of times the algorithm in the row (p) beats
the algorithm in the column, and the number of times the algorithm in the column beats
the one in the row (q).

6.4.2 Effect of different network topology on model performance

To test our hypothesis that the number of components in the union graph affects model

performance we obtained structural and pseudo likelihood-based functional scores on a

new network, NET12-79 (Fig 6.8). This network has many more connected components

than the previous networks. For ease of comparison we include the scores on all four

networks (Figs 6.21, 6.22, 6.23) and summarized in Table 6.12.

Using structural comparison we found that although the MUGs model was better than

PVEM and GC-COND on NET16 and NET12, PVEM and GC-COND models were sim-

ilar to MUG on the NET12-66 and both outperformed MUGs on NET12-79 networks.

We note that the union graph of NET16 is completely connected, whereas the number of

components increase in NET12-66 and NET12-79.

Using functional comparison (Figs 6.24, 6.25, 6.26), we found that although PVEM

was better in general than MUGs, the number of cases on which PVEM outperformed

132

Chapter 6. Different formulations of learning condition-specific networks

MUGs increased for the NET12-66 and NET12-79 networks. A similar trend was ob-

served on comparing GC-COND against MUGs. Comparison of PVEM against GC-

COND showed that GC-COND tended to have better structure match whereas PVEM

tended to have functional scores. The better functional scores of the PVEM model is

likely due to the generative model being more similar to PVEM than GC-COND.

The overall message from these results is that the MUGs model tends to outperform

more complex models when the underlying structure of the union graph has a single gi-

ant component. However, as the number of connected components increase, models that

account for more fine-grained granularity of condition-specificity do better.

133

Chapter 6. Different formulations of learning condition-specific networks

Algorithm 7 Search procedure for GC-COND
Input:

Random variable set, X = {X1, · · · , X|X|}

Dataset of RV joint assignments, D = {D1, · · · , DK}

Output:

Inferred graphs G = {G1, · · · , Gk}

Initialize CC bG to size 1 graph components, one component per variable

while Score not converged do {/*Modify graph structure*/}

for Xi ∈ X do

for Xj ∈ X \ {Xi} do

for l ∈ C do

if Xi and Xj are not in the same component then

Estimate new γ’s as the weighted sum of the γ’s of the graph component of

Xi and Xj .

end if

Estimate the score improvement using Eq 6.29

end for

end for

{Xj, l} = arg max
X′

j '=Xi,l′
∆S{Xi,X′

j},l′

end for

for Xi ∈ X do

Find best new pair {Xj, l}, 1 ≤ l ≤ K that maximizes ∆Sij using Eq 6.19

end for

Update graphs and CC bG by adding edges in decreasing order of score improvement.

while Score not converged do {/*EM on parameters*/}

Expectation step to re-estimate γkcd, 1 ≤ k ≤ K, 1 ≤ c ≤ |CC bG|, 1 ≤ d ≤ |D|

Maximization step to re-estimate αkc and parameters of the conditionals

P (Xi|Mki) using the new γkcd’s

end while

end while

134

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

GC−COND
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net2

GC−COND
INDEP

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
INDEP

PVEM
INDEP

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.9: Comparison of different models on network pair NET12. Generative model is
CONSTR and comparisons are based on structural match to the true network. x-axis is the
increasing folds of the training data. The training data set size decreases with increasing
fold count. y-axis is the number of variables on which one method is significantly better
than the other. Continued on next page

135

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

PVEM
GC−COND

PVEM
GC−COND

Figure 6.10: Comparison of different models on network pair NET12 contd. Generative
model is CONSTR and comparisons are based on structural match to the true network.
x-axis is the increasing folds of the training data. The training data set size decreases
with increasing fold count. y-axis is the number of variables on which one method is
significantly better than the other.

136

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
0

10

20

30
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
0

2

4

6

8

10
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
INDEP

PVEM
INDEP

0 1 2 3 4 5 6
−2

0

2

4

6
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.11: Comparison of different models on network pair NET16. Generative model
is CONSTR. The remaining legend is same as 6.9. Continued on next page.

137

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

Figure 6.12: Comparison of different models on network pair NET16 contd. Generative
model is CONSTR. The remaining legend is same as 6.9.

138

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10
net1

0 1 2 3 4 5 6
−5

0

5

10
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
0

5

10

15

20
net1

PVEM
INDEP

0 1 2 3 4 5 6
0

5

10

15
net2

PVEM
INDEP

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.13: Comparison of different models on network pair NET12-66. Generative
model is CONSTR. The remaining legend is same as 6.9. Continued on next page.

139

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

Figure 6.14: Comparison of different models on network pair NET12-66 contd. Genera-
tive model is CONSTR. The remaining legend is same as 6.9.

140

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
0

10

20

30
net1

0 1 2 3 4 5 6
0

10

20

30

40
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
0

5

10

15
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.15: Structural comparison of different models on network pair NET12 using the
MUGs generative model. The remaining legend is same as 6.9.

141

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−20

0

20

40

60
net1

0 1 2 3 4 5 6
−10

0

10

20

30

40
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−20

0

20

40

60
net1

0 1 2 3 4 5 6
−10

0

10

20

30

40
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.16: Structural comparison of different models on network pair NET16 using the
MUGs generative model. The remaining legend is same as 6.9.

142

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10

15

20
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.17: Structural comparison of different models on network pair NET12-66 using
the MUGs generative model. The remaining legend is same as 6.9.

143

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2
net1

0 1 2 3 4 5 6
−0.5

0

0.5

1
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15

20
net1

0 1 2 3 4 5 6
0

10

20

30
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.18: Structural comparison of different models on network pair NET12 using the
INDEP generative model. The remaining legend is same as 6.9.

144

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−2

0

2

4

6
net1

0 1 2 3 4 5 6
−1

0

1

2

3

4
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.19: Structural comparison of different models on network pair NET16 using the
INDEP generative model. The remaining legend is same as 6.9.

145

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−1

0

1

2

3
net1

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5
net2

MUG
INDEP

MUG
INDEP

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
INDEP

GC−COND
INDEP

0 1 2 3 4 5 6
−5

0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
MUG

GC−COND
MUG

Figure 6.20: Structural comparison of different models on network pair NET12-66 using
the INDEP generative model. The remaining legend is same as 6.9.

146

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

PVEM
MUG

PVEM
MUG

NET16 NET12

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
0

10

20

30
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
MUG

PVEM
MUG

NET12-66 NET12-79

Figure 6.21: Structural comparison of MUGs vs PVEM on networks with different topolo-
gies. x-axis is the increasing folds of the training data. The training data set size decreases
with increasing fold count. y-axis is the number of variables on which one method is
significantly better than the other.

147

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−2

0

2

4

6
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

NET16 NET12

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
−5

0

5

10

15

20
net2

GC−COND
MUG

GC−COND
MUG

0 1 2 3 4 5 6
−10

0

10

20

30

40
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

GC−COND
MUG

GC−COND
MUG

NET12-66 NET12-79

Figure 6.22: Structural comparison of GC-COND vs MUG on networks with different
topologies. x-axis is the increasing folds of the training data. The training data set size
decreases with increasing fold count. y-axis is the number of variables on which one
method is significantly better than the other.

148

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

0 1 2 3 4 5 6
−10

0

10

20

30
net1

0 1 2 3 4 5 6
−10

0

10

20

30
net2

PVEM
GC−COND

PVEM
GC−COND

NET16 NET12

0 1 2 3 4 5 6
0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

NET12-66 NET12-79

Figure 6.23: Structural comparison of PVEM vs GC-COND on networks with different
topologies. x-axis is the increasing folds of the training data. The training data set size
decreases with increasing fold count. y-axis is the number of variables on which one
method is significantly better than the other.

149

Chapter 6. Different formulations of learning condition-specific networks

Structure match Functional match
NET16 NET12 NET12-66 NET12-79 NET16 NET12 NET12-66 NET12-79

MUG/PVEM 7/0 9/0 1/0 0/10 0/4 0/2 0/10 0/10
MUG/GC-CO 2/0 0/0 0/0 0/8 0/0 0/3 0/10 0/9
PVEM/GC-CO 0/7 0/10 0/0 0/0 4/0 6/0 0/0 8/0

Table 6.12: Summary of structure and function comparison of the MUG, GC-COND and
PVEM models on networks of different topology. The numbers p/q in each cell specifies
the number of times algorithm before the ’/’ is better than the algorithm after the ’/’.

6.4.3 Parameter tying

We compared the graph component models with (GC-CONDSH) and without

(GC-COND) parameter tying on four network pairs with different amounts of shared

edges (Table 6.8). The two models were compared based on overall structure and pseudo

likelihood-based functional match (Figs 6.27 and 6.28). We did not find parameter tying

to have significant advantage over the model without parameter tying.

Next, we compared these models based the number of correctly captured shared edges

as a function of decreasing amounts of training data (Fig 6.29). We found that although

GC-COND had a tendency to outperform GC-CONDSH for NET12, both models were

at par on NET13 and GC-CONDSH was better than GC-COND on NET16. Although

NET14 appeared to not obey this trend, on the whole this suggest that as we decrease

the number of shared edges in the networks, GC-CONDSH does a better job of getting

the shared edges right. The task of finding the shared edges is harder for NET16 than it

is for NET12. The fact that GC-CONDSH does a better job of getting the shared edges

when the amount of similarity between networks decreases indicates that parameter tying

is beneficial for learning shared structure

Finally, we examined the stability of the inferred networks by the two methods (Figs.

6.30 and 6.31). Here we obtained the average F-score between all pairs of networks

learned using different folds of the data. For example for t = 4 folds, there are six pairs

150

Chapter 6. Different formulations of learning condition-specific networks

of network 1 and six pairs of network 2. We computed the F-score for these pairs and

took their average. A higher F-score suggests more stability of the inferred structures. We

performed this procedure first considering all edges (Fig 6.30), and then considering only

edges that matched with the true networks (Fig 6.31). We found that GC-CONDSH had

a tendency to get more stable structures, especially when considering only the matched

edges. This suggests that parameter tying may also be useful for learning more stable

structures.

In summary, we found that although parameter tying did not give us overall better

structures, it does help to learn shared edges better, especially when the amount of similar-

ity between the involved networks is small. Parameter tying also enables us to learn more

stable structures.

6.5 Discussion

In this chapter we have described and evaluated different methods for learning condition-

specific networks. All these models learn networks providing fine-grained interaction in-

formation among the random variables (genes) underlying condition-specific response.

These models extend the INDEP learning model in different directions.

The various NIPD approaches that assume the condition variable for each dataset is

known, extends existing approaches by allowing us to infer networks for any subset of

conditions. For example, if we have two conditions A and B, existing approaches either

find only the patterns that are exclusive or specific to A and specific to B, or find only

the patterns that are both common to A and B. In contrast, we are able to simultaneously

find the patterns both unique and common to different conditions. When we consider

learning in subsets of conditions, we automatically pool the data from these conditions.

We demonstrated using simulated data that the NIPD approaches are able to learn better

quality structures and also learn the shared structure much better especially in the face of

151

Chapter 6. Different formulations of learning condition-specific networks

limited training data. These results highlight the benefits of exploiting shared information

by data pooling during structure learning.

The important modeling question that arises when working with these models is to be

able to describe the conditional distributions of each of the random variables that exploits

the subset information. We derived two main variations to the conditionals and found

that both forms were better at capturing shared structure. However, the model that uses a

product of the different condition-set-specific Markov blankets had the best performance.

This was the simplest model and the reason of it success is likely to be its ability to capture

weakly shared edges that are identified only when we consider a condition set alone, but

not when we include the subsets within it as done by the weighted sum model.

We then considered models that extend the INDEP model by having the flexibility of

automatically inferring the condition variable for each data point. We consider several

variations of these hidden condition variable models, where the condition variable is al-

lowed to influence different parts of the network. The MUGs model is the simplest, with

a single condition variable for the entire graph. The PVEM model is the most complex,

with a condition variable for each random variable. Finally, the GC-COND model is in-

termediate between the MUG and PVEM models and has a condition variable for each

connected component of the union graph. Comparative analysis of these models on simu-

lated data yielded some surprises. In particular, we found that the MUG model performed

better than the GC-COND and PVEM models, even when the data was generated from

the CONSTR generative model, which is more similar to PVEM (and GC-COND) than it

is to MUG. MUG was also close to INDEP when the generative model was the same as

INDEP. This made MUG, the simplest model, to be the overall winner when compared

on the NET12 and NET16 datasets. However the performance difference was small when

on the NET12-66 dataset. One reason for this behavior is that both NET12 and NET16

had the majority of nodes connected in a single giant component within the union graph,

whereas NET12-66 had two medium sized components. This led us to ask if the topology

152

Chapter 6. Different formulations of learning condition-specific networks

of the union graph influences the model performance.

If the union graph has only one or a single giant component, the condition assignment

to all the nodes in the networks from the two conditions gets constrained. In particular, if

a node X1 is connected to X2 in condition A and to X3 in condition B, if X1’s condition

is assigned to A, then for the {X1, X2} dependency to hold in condition A, X2 must also

be assigned condition A. Similarly, while considering the condition assignment to X3, be-

cause the dependency {X3, X1} must hold only in condition B, and X1 is already assigned

to A, for the dependency to not hold, X3 must be assigned condition B. If X3 is assigned

B while X1 is assigned A, while drawing a sample for X3 we will use X1’s value from

condition A, but in reality X1’s value should be from condition B. In general this suggests

that the condition variable of the entire connected component of the union graph is con-

strained. This constraint is automatically imposed in the MUGs model if the true union

graph had a single connected component. In contrast, the PVEM and GC-COND models

must infer these and impose the constraints. PVEM does not impose any constraints, and

therefore suffers more than GC-COND. But both models are more complex than MUGs,

and the benefits of model complexity are not as much as the difficulty in learning a con-

strained network required for the NET12 and NET16 datasets. In contrast the constraints

imposed by the union graphs in both NET12 and NET16 are easily satisfied by the MUGs

model which infers a single condition variable anyway forcing all nodes in the network to

be assigned the same condition.

We tested the hypothesis that model performance depends upon the topology of the

union graph by using a new network pair, NET12-79 which had many connected compo-

nents. We found that both GC-COND and PVEM models had better performance on this

network. This suggests that the conditions where the union graph is fragmented are likely

to exhibit complex condition-specific behavior with different subsets of genes having dif-

ferent condition-specific behavior. These are the types of cases where the GC-COND and

PVEM models are likely to be beneficial.

153

Chapter 6. Different formulations of learning condition-specific networks

We finally assessed the benefit of parameter tying in the GC-COND model. The overall

structures and associated functional scores were not significantly different in models with

and without parameter tying. However, when the amount of similarity between networks

of the two conditions decreased, GC-CONDSH, which implements parameter tying, was

better at learning shared edges than GC-COND, which does not perform any parameter

tying. In datasets with low proportion of shared edges among the network structures,

capturing the shared part is harder than in datasets with high proportion of shared edges.

Being able to capture shared edges in network pairs with low similarity suggests that

parameter tying helps to capture shared edges when it is harder to do so. We also found that

the GC-CONDSH to produce more stable structures. However, the GC-CONDSH models

are more complex than GC-COND. Our results were only modestly encouraging for the

GC-CONDSH model. It may be that the learning problems in our simulations were simple

enough to be learned without parameter tying, and the benefit fine-tuned data pooling done

by parameter tying in the GC-CONDSH is not necessary. Instead this imposes additional

overhead of learning the parameters in a tied situation (split weight vectors), and may lead

to less accurate parameters.

154

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
MUG

PVEM
MUG

NET16 NET12

0 1 2 3 4 5 6
0

10

20

30
net1

0 1 2 3 4 5 6
0

10

20

30
net2

PVEM
MUG

PVEM
MUG

0 1 2 3 4 5 6
0

10

20

30

40
net1

0 1 2 3 4 5 6
0

10

20

30

40
net2

PVEM
MUG

PVEM
MUG

NET12-66 NET12-79

Figure 6.24: Functional comparison of PVEM vs MUG models on networks with dif-
ferent topologies. Generative model is CONSTR and comparisons are based on pseudo
likelihood match to the true distribution. The x-axis corresponds to the number of folds
of the training data. The training data size decreases as we increase the number of folds.
y-axis is the number of variables on which one algorithm has a significantly higher pseudo
likelihood score than the other.

155

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
MUG

GC−COND
MUG

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

GC−COND
MUG

GC−COND
MUG

NET16 NET12

0 1 2 3 4 5 6
0

10

20

30
net1

0 1 2 3 4 5 6
0

10

20

30
net2

GC−COND
MUG

GC−COND
MUG

0 1 2 3 4 5 6
0

10

20

30

40
net1

0 1 2 3 4 5 6
0

10

20

30

40
net2

GC−COND
MUG

GC−COND
MUG

NET12-66 NET12-79

Figure 6.25: Functional comparison of GC-COND vs MUG model on networks with dif-
ferent topologies. Generative model is CONSTR and comparisons are based on pseudo
likelihood match to the true distribution. The x-axis corresponds to the number of folds
of the training data. The training data size decreases as we increase the number of folds.
y-axis is the number of variables on which one algorithm has a significantly higher pseudo
likelihood score than the other.

156

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
GC−COND

PVEM
GC−COND

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
GC−COND

PVEM
GC−COND

NET16 NET12

0 1 2 3 4 5 6
0

5

10

15

20
net1

0 1 2 3 4 5 6
0

5

10

15

20
net2

PVEM
GC−COND

PVEM
GC−COND

0 1 2 3 4 5 6
0

5

10

15

20

25
net1

0 1 2 3 4 5 6
0

5

10

15

20

25
net2

PVEM
GC−COND

PVEM
GC−COND

NET12-66 NET12-79

Figure 6.26: Functional comparison of PVEM vs GC-COND models on networks with
different topologies. Generative model is CONSTR and comparisons are based on pseudo
likelihood match to the true distribution. The x-axis corresponds to the number of folds
of the training data. The training data size decreases as we increase the number of folds.
y-axis is the number of variables on which one algorithm has a significantly higher pseudo
likelihood score than the other.

157

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
−2

0

2

4

6

8
net1

0 1 2 3 4 5 6
−5

0

5

10

15
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
−5

0

5

10
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

NET12 NET13

0 1 2 3 4 5 6
−5

0

5

10

15
net1

0 1 2 3 4 5 6
−2

0

2

4

6
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0 1 2 3 4 5 6
−2

0

2

4

6
net1

0 1 2 3 4 5 6
−5

0

5

10
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

NET14 NET16

Figure 6.27: Structural comparison of models with (GC-CONDSH) and without parameter
tying (GC-COND) on network pairs with varying similarity (NET12, NET13, NET14,
NET16). x-axis corresponds to training data folds and y-axis corresponds to number of
variables one method is significantly better than another.

158

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6
0

5

10

15
net1

GC−COND
GC−CONDSH

0 1 2 3 4 5 6
0

5

10

15
net2

GC−COND
GC−CONDSH

0 1 2 3 4 5 6
5

10

15

20

25
net1

0 1 2 3 4 5 6
5

10

15

20

25
net2

PVEM
MUG

PVEM
MUG

NET12 NET13

0 1 2 3 4 5 6
0

5

10

15
net1

0 1 2 3 4 5 6
0

5

10

15
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0 1 2 3 4 5 6
0

2

4

6

8

10
net1

0 1 2 3 4 5 6
0

5

10

15
net2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

NET14 NET16

Figure 6.28: Pseudo likelihood based functional comparison of models with (GC-
CONDSH) and without parameter tying (GC-COND) on network pairs with varying sim-
ilarity (NET12, NET13, NET14, NET16). x-axis corresponds to training data folds and
y-axis corresponds to number of variables one method is significantly better than another.

159

Chapter 6. Different formulations of learning condition-specific networks

0 1 2 3 4 5 6

0.4

0.5

0.6

0.7
NET12

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5
NET13

GC−COND GC−CONDSH

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5
NET14

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4
NET16

Figure 6.29: Comparison of GC-COND and GC-CONDSH models using number of
shared edges that are captured correctly. x-axis corresponds to training data folds and
y-axis corresponds to the F-score match between the shared edges in the true network pair
versus the inferred network pair.

160

Chapter 6. Different formulations of learning condition-specific networks

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.35

0.4

0.45

0.5

0.55
NET12−NET1

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7
NET12−NET2

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.25

0.3

0.35

0.4
NET13−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.25

0.3

0.35

0.4
NET13−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.3

0.4

0.5
NET14−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.25

0.3

0.35

0.4

NET14−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.25

0.3

0.35

0.4
NET16−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.25

0.3

0.35

0.4
NET16−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

Figure 6.30: Comparison of GC-COND and GC-CONDSH models using stability of the
network structure. x-axis is the number of folds of the training data. y-axis is the average
F-score comparing a network from one fold to all other folds.

161

Chapter 6. Different formulations of learning condition-specific networks

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.6

0.7

0.8

0.9
NET12−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.6

0.7

0.8

0.9
NET12−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4

0.45

0.5

0.55

0.6

NET13−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4

0.45

0.5

0.55

0.6

NET13−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4

0.45

0.5

0.55

0.6

NET14−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4

0.5

0.6

0.7

0.8
NET14−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7
NET16−NET1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.3

0.4

0.5

0.6

NET16−NET2

GC−COND
GC−CONDSH

GC−COND
GC−CONDSH

Figure 6.31: Comparison of GC-COND and GC-CONDSH models using stability of the
network structure. We consider only the edges that are correctly captured across different
folds.

162

Chapter 7

Application to condition-specific and

species-specific networks

In this chapter, we apply our condition-specific network learning algorithms to real mi-

croarray data. We consider the problem of condition-specific network learning in the con-

text of two biological questions: (a) what are the condition-specific and generic patterns

in two different yeast cell populations, that are both under the same starvation stress, (b)

what information can be captured at the network level about shared and specific features

across different species. We address the (a) using the microarray datasets introduced in

Chapters 5 and 6 measuring the gene expression of two yeast populations, quiescent and

non-quiescent, isolated from glucose-starved stationary phase cultures. We address (b)

using microarray data collected under diverse conditions from yeast and fly.

163

Chapter 7. Application to condition-specific and species-specific networks

7.1 Learning condition-specific networks in yeast station-

ary phase

The main biological question we asked here was how two different cell populations be-

have, at the network level, in response to the same starvation stress. The two cell pop-

ulations are quiescent (QUIESCENT) and non-quiescent (NON-QUIESCENT), isolated

from glucose starvation-induced stationary phase cultures [5]. The two cell populations

are in the same media but have differentiated physiologically and morphologically, sug-

gesting that each population is responding differently. We learned networks using the two

types of approaches used for condition-specific network inference. The first type which

assumes the condition variable to be given, includes the Independent learner (INDEP) and

the Network Inference with Pooling Data (NIPD) approaches. The second type which in-

fers the condition variables includes Mixture of Undirected Graphs (MUG), Per-variable

EM (PVEM), Graph component with conditional Gaussians (GC-COND) and GC-COND

model with parameter tying (GC-CONDSH).

Because each array in the dataset was obtained from a single gene deletion mutant,

the networks were constrained such that genes with deletion mutants connected to the

remaining genes1. Hence, the INDEP networks described in this chapter are different

from the ones described in Chapters 4 and 6. The inferred networks from the different

methods were evaluated using information from Gene Ontology (GO) process, GO Slim

[6] and transcriptional regulatory networks [90]. We also analyzed combinations of genes

with deletions that were in the neighborhood of other non deletion genes.

1This is not a bi-partite graph because the genes with deletion mutants are allowed to connect
to each other.

164

Chapter 7. Application to condition-specific and species-specific networks

7.1.1 NIPD identified more biologically meaningful dependencies

To determine if one network was more biologically meaningful than the other, we exam-

ined the networks based on Gene Ontology (GO) slim category (process, function and

location), transcription factor binding data and GO process, referred as GOSLIM, TFNET

and GOPROC, respectively (Fig 7.1). Network quality was determined by the number

of GOSLIM categories (or TFNET or GOPROC) with better coverage than random net-

works. Briefly, coverage allows us to measure network quality based on the number of

annotation categories a network has better coverage than random networks with the same

degree distributions (See Chapter 3 for details). We used all Gene ontology slim categories

(process, function and location).

We found that the approaches that were given the condition variable (NIPD, INDEP)

were much better than the approaches that had to infer the condition variable (MUG,

PVEM, GC-COND, GC-CONDSH). This comes as no surprise because the datasets are

labeled and there is no ambiguity about a data point about which condition it belongs.

Thus the models that must infer the condition labels have a difficult learning job and do

not perform as well.

INDEP and NIPD were equivalent on GOSLIM, with INDEP outperforming NIPD

in QUIESCENT and NIPD outperforming INDEP on NON-QUIESCENT. NIPD outper-

formed INDEP with a larger margin than was outperformed on TFNET categories from

NON-QUIESCENT. NIPD was consistently better than INDEP on GOPROC categories.

GO Slim processes are described in detail in Appendix E, Table E.1.

We also evaluated the biological meaningfulness of the edges in each of the inferred

networks using the average semantic similarity of genes connected in the networks [89]

(Fig 7.2). A network that is more biologically meaningful has many more edges for a

given semantic similarity than a network that is not as meaningful. With the exception

of PVEM on NON-QUIESCENT, all networks had significantly more number of edges at

165

Chapter 7. Application to condition-specific and species-specific networks

a particular semantic similarity than random networks. Further, PVEM-inferred network

had significantly more edges than random at high values semantic similarity. This suggests

that all inferred networks captured many more biologically meaningful dependencies than

similarly structured random networks.

We then compared the semantic similarity of the various methods among themselves

(Fig 7.3). We found that on both populations, NIPD had the highest number of edges with

a specific semantic similarity, indicating that NIPD overall was learning the best quality

networks. Interestingly, on QUIESCENT majority of the models inferring the condition

variable had more edges with high semantic similarity than INDEP. This suggests that

despite the fact that these models had to infer the condition variable, the dependencies

inferred by these algorithms are atleast as biologically meaningful as INDEP, to which the

condition variable is given as input.

Finally, we estimated the percentage and the number of 1-n subgraphs that were sig-

nificantly enriched in a GO process (Table 7.1) at a false discovery rate (FDR) < 0.05. An

inferred network is considered good if it has many subgraphs that satisfy the FDR cutoff

and also if these subgraphs constitute a high proportion of the total subgraphs considered.

NIPD had almost twice the number of sub-graphs than INDEP on QUIESCENT, at com-

parable levels of subgraph proportion (86% vs 90%). Both MUG and PVEM performed

at par with INDEP. The graph component models inferred slightly more subgraphs, which

corresponded to the same proportion of subgraphs as NIPD.

NIPD also identified more subgraphs than INDEP on NON-QUIESCENT. PVEM per-

formed poorly in both number and the percentage of subgraphs. Although GC-CONDSH

and MUG had 100% of subgraphs that satisfied the FDR, the number of subgraphs was

much less than of both NIPD and INDEP.

In summary, NIPD was the best algorithm for both QUIESCENT and NON-QUIES-

CENT. The other approaches performed similarity on QUIESCENT, but INDEP was better

166

Chapter 7. Application to condition-specific and species-specific networks

Population Method # of Subgraphs % of Subgraphs

QUIESCENT

INDEP 10 91%
NIPD 19 86%
MUG 9 91%
PVEM 9 90%

GC-COND 11 85%
GC-CONSH 12 80%

NON-QUIESCENT

INDEP 9 82%
NIPD 12 80%
MUG 5 100%
PVEM 3 50%

GC-COND 6 75%
GC-CONDSH 5 100%

Table 7.1: Number and percentage of subgraphs associated with a GO process using the
quiescent and non-quiescent populations

than the approaches inferring the condition variable on NON-QUIESCENT. The fact that

approaches that had to infer the condition variable performed as well as INDEP on QUI-

ESCENT was promising.

7.1.2 Shared metabolic and regulatory processes in yeast stationary

phase

We performed a more fine-grained analysis of the specific GO processes that the subgraphs

were enriched in and complemented it with enrichment in the target sets of transcription

factors (TFs). Using an FDR cutoff of 0.05, we identified many more subgraphs in the net-

works inferred by NIPD than by any of other approaches including INDEP to be enriched

in a GO process or in targets of TFs (Tables 7.2, 7.3, Supplementary Table E.2 has the

genes for each subgraph, Supplementary Figs E.1, E.2 show subgraphs for NIPD-inferred

networks, E.3 and E.4 show subgraphs from INDEP-inferred networks). NIPD identified

many more shared processes among two populations (aerobic respiration, mitochondrial

167

Chapter 7. Application to condition-specific and species-specific networks

electron transport, protein folding, fatty acid metabolism, ethanol metabolic process) than

did any of the other approaches. Specifically shared processes identified by the other

approaches were either identified by NIPD or were a child or parent term of a process

identified by NIPD. (e.g. fatty acid beta oxidation found in GC-COND and INDEP is a

child of fatty acid metabolism). The only difference was mono-carboxylic acid metabolic

process which was found in both populations by GC-COND.

Analysis of the inferred networks on the basis of TFs indicated that all but the GC-

CONDSH-inferred network had subgraphs involved in respiration to be also enriched in

targets of HAP4, a global activator for respiration genes. The presence of HAP4 targets

in both cell populations makes sense because both populations are experiencing glucose

starvation and must switch to respiration for deriving energy. Additionally, some methods

(NIPD, GC-COND, MUG) found the TFs, MSN2, MSN4, and HSF1, regulating sub-

graphs involved in protein folding. These TFs activate stress responses and are known to

activate genes involved in heat, oxidative and starvation stress. NIPD also found targets

of SIP4 in both populations. SIP4 is a transcriptional activator of gluconeogenesis [138],

expressed highly in glucose repressed cells [86], and therefore would be expected to be

present in both quiescent and non-quiescent cells.

We conclude that NIPD captures the shared information among the two populations

the best, identifying more networks that were biologically relevant and informative about

glucose starvation response than did any of the methods. Majority of the approaches in-

ferring the condition variable identified more shared TFs than did INDEP, indicating that

our mixture models were beneficial for capturing shared information.

168

Chapter 7. Application to condition-specific and species-specific networks

7.1.3 Wiring differences capture population-specific starvation

response

NIPD identified several processes associated exclusively with quiescent cells. This in-

cluded regulatory processes (regulation of epigenetic gene expression, and regulation of

nucleobase, nucleoside and nucleic acid metabolism) and metabolic processes (pentose

phosphate shunt). These were novel predictions that highlight differences between these

cells based on network wiring. INDEP identified only one population-specific GO pro-

cess (response to reactive oxygen species2 in NON-QUIESCENT). An INDEP identified

subgraph specific to QUIESCENT (protein de-ubiquitination), was actually a subset of the

NIPD-identified subgraph involved in epigenetic gene expression regulation, indicating

that NIPD subsumed most of the information captured by INDEP.

Because NIPD was the best approach so far, we compared the approaches inferring

the condition variables with respect to the NIPD findings. MUG identified protein fold-

ing and fatty acid oxidation to be specific to QUIESCENT, but it is likely that these are

shared processes. GC-COND found regulation of gluconeogenesis to be specific to QUI-

ESCENT, which is consistent with the result that NIPD identified TFs affecting gluconeo-

genesis in QUIESCENT. GC-COND additionally found pyruvate metabolism to be spe-

cific to QUIESCENT. Both GC-COND and GC-CONDSH found pentose phosphate shunt

to be QUIESCENT-specific, which agrees with NIPD. GC-CONDSH found coenzyme A

biosynthetic transport, which agrees with the presence of acetyl-CoA in QUIESCENT by

NIPD.

NIPD-inferred QUIESCENT networks contained subgraphs enriched exclusively in

targets of SKO1, and AZF1. Both of these are zinc finger TFs, with AZF1 protein ex-

pressed highly under non-fermentable carbon sources [129], and SKO1 which regulates

low affinity glucose transporters [135], and are both consistent with the condition expe-

2This was present in NIPD, but did not satisfy our FDR cutoff

169

Chapter 7. Application to condition-specific and species-specific networks

rienced by these cells. Unlike NIPD, which identified SIP4 to be associated with both

populations, INDEP identified SIP4 only in QUIESCENT. However, as we describe in

the previous section, it is more likely that SIP4 is involved in both QUIESCENT and

NON-QUIESCENT populations. INDEP also found the TFs YAP7 and AFT2 exclu-

sively in QUIESCENT and NON-QUIESCENT, respectively. YAP7 is involved in general

stress response and would be expected to have targets in both QUIESCENT and NON-

QUIESCENT. AFT2 is required under oxidative stress and is consistent with the over-

abundance of reactive oxygen species in NON-QUIESCENT population [3]. Both MUG

and PVEM’s list of TFs was a subset of NIPD.

GC-COND agreed with INDEP on HSF1, and on HAP4 and MSN2 with NIPD. Un-

like both INDEP and NIPD, GC-COND identified SIP4 to be specific to Q. GC-CONDSH

found all TFs associated with QUIESCENT, which is likely not correct. However GC-

CONDSH found a novel TF, ASH1 and together with GC-COND, TF MCM1 to be impor-

tant in QUIESCENT. ASH1 is involved in cell-fate determination localizing specifically

in the daughter cells. This is consistent with the previous knowledge that the quiescent

population is primarily composed of daughter cells [3]. The presence of both MCM1 and

ASH1 is interesting, because both TFs are involved in specifying cell-fate, a key process

for cellular differentiation. Experimental validation of these predictions may provide new

insight into the cell-fate determination of Q versus NQ cells.

Overall, the NIPD inferred networks were of the highest quality capturing key differ-

ences and similarities in metabolic and regulatory processes, which are consistent with

existing information about these cell populations [3, 5]. INDEP found many differences,

but they are likely to be spurious. MUG captured a subset of processes and regulatory

relationships captured by NIPD, and therefore had high precision, but low recall. PVEM

did not have a significantly better advantage over other models inferring condition vari-

ables. The GC-COND and GC-CONDSH methods did have some discrepancies compared

to NIPD, we found several novel processes and TFs that can provide new insight into star-

170

Chapter 7. Application to condition-specific and species-specific networks

vation response in yeast.

INDEP NIPD MUG PVEM GC-COND GC-CONDSH
17 22 8 10 11 15

aerobic respiration QNQ QNQ QNQ QNQ QNQ NQ
ammonium transport QNQ QNQ NQ QNQ QNQ QNQ
nitrogen utilization QNQ QNQ NQ QNQ Q QNQ
carboxylic acid biosynthetic process Q Q Q Q NQ
organelle ATP synthesis coupled electron transport QNQ QNQ QNQ QNQ QNQ
mitochondrial electron transport, NQ QNQ NQ QNQ NQ
ubiquinol to cytochrome c
protein folding NQ QNQ Q Q
oxidative phosphorylation QNQ QNQ QNQ Q
carnitine metabolic process Q NQ NQ
fatty acid beta-oxidation QNQ QNQ
pentose-phosphate shunt Q Q
polyamine catabolic process NQ QNQ
beta-alanine biosynthetic process NQ QNQ
pyruvate metabolic process NQ Q
energy derivation by oxidation of organic compounds QNQ QNQ
negative regulation of biosynthetic process Q
coenzyme A biosynthetic process Q
carboxylic acid transport Q
ethanol metabolic process QNQ
pentose metabolic process Q
acetyl-CoA metabolic process Q
pentose-phosphate shunt, oxidative branch Q
fatty acid metabolic process QNQ
protein deubiquitination Q
fatty acid oxidation Q
monocarboxylic acid metabolic process QNQ
regulation of gene expression, epigenetic Q
regulation of gluconeogenesis Q
regulation of nucleobase, nucleoside, Q
nucleotide and nucleic acid metabolic process
response to metal ion Q
tricarboxylic acid cycle intermediate metabolic process Q
alcohol metabolic process NQ
amine catabolic process NQ
ATP synthesis coupled proton transport NQ
generation of precursor metabolites and energy NQ
ion transport NQ
mitochondrial electron transport, succinate NQ
to ubiquinone
NADH regeneration Q
N-terminal protein myristoylation NQ
regulation of DNA replication NQ
response to reactive oxygen species NQ
septin ring assembly NQ

Table 7.2: Specic GO biological processes identied by each method in the quiescent (Q),
non-quiescent (NQ) or both populations (QNQ).

171

Chapter 7. Application to condition-specific and species-specific networks

INDEP NIPD MUG PVEM GC-COND GC-CONDSH
8 8 5 4 5 5

HSF1 NQ QNQ QNQ Q NQ Q
HAP4 QNQ QNQ QNQ QNQ QNQ
MSN2 NQ QNQ QNQ QNQ Q
SIP4 NQ QNQ Q NQ Q
MSN4 NQ QNQ QNQ Q
MCM1 Q Q
HAP2 Q QNQ
AZF1 Q
HAP1 Q
ASH1 Q
SKO1 Q
YAP7 Q
AFT2 NQ

Table 7.3: Transcription factors with targets enriched in inferred subgraphs in the quiescent
(Q), non-quiescent (NQ) and both (QNQ) populations.

7.1.4 NIPD identified several deletion combinations

The microarrays used in this study measured expression profile of single gene deletions

that were previously identified to be highly expressed at the mRNA level in stationary

phase. We constrained the inferred networks to identify neighborhoods of genes compris-

ing only the genes with deletion mutants, allowing us to identify combinations of such

deletion mutants and their targets. Such combinations can be validated in the laboratory

to verify cross-talk between pathways. We found that NIPD-inferred networks contained

significantly more deletion combinations compared to random networks for both the qui-

escent and non-quiescent populations (p-value < 3E-7), which was not the case for the

any of the other inferred networks.

We performed a more stringent analysis of the knock-out combinations by comparing

the semantic similarity between a gene, gi and the set of knock-out genes that are con-

nected to it, Ki. We assumed GO process terms for the set Ki to be the union of all terms

associated with the genes, gj ∈ Ki. We then computed the semantic similarity between the

172

Chapter 7. Application to condition-specific and species-specific networks

term set associated with gene gi and the union of terms associated with Ki and assessed

statistical significance from a background distribution estimated from random networks

with the same degree distributions.

This stringent analysis of the knock-out combinations identified several double knock-

out and target gene candidates (Table 7.4). We also found more deletion combinations

in NON-QUIESCENT compared to QUIESCENT. This is consistent with the identifica-

tion of many more mutants affecting non-quiescent than quiescent cells [5]. In QUIES-

CENT, we found three genes that were all likely down-stream targets of a COX7-QCR8

double knock-outs, all involved in the cytochrome-c oxidase complex of the mitochon-

drial inner membrane. Other deletion mutant combinations were involved in mitochon-

drial ATP synthesis and ion transport. Many of these genes have been shown to be re-

quired for quiescent/non-quiescent cell function, viability and survival [94, 5]. In NON-

QUIESCENT, we found several knock-out combinations involved in oxidative phospho-

rylation, aerobic respiration etc, including a novel combination, YMR31 and QCR8, con-

nected to TPS2. All three genes are found in the mitochondria, which play a critical and

complex role in starved cells, but the exact mechanisms are not well-understood. Exper-

imental analysis of this triplet can provide new insights into the role of mitochondria in

glucose-starved cells.

7.2 Condition-specific networks for learning inter-species

networks

The second application of our condition-specific network learning framework asks what

shared and specific subnetworks can be identified among orthologous genes from different

species. In this application we treat the condition variable as different species. We consider

two species: yeast (S. cerevisiae) and fly (D. melanogaster). This question of finding

173

Chapter 7. Application to condition-specific and species-specific networks

Deletion combinations Downstream effect Process
QUIESCENT

COX7∗, QCR8 COX13, QCR6, QCR9 ATP synthesis coupled
electron transport

ADY2∗, CTA1∗ ATO3 ion transport
ETR1∗, ACS1 AYR1 carboxylic acid metabolic process

NON-QUIESCENT
ATP12, SDH2∗ ATP16 oxidative phosphorylation
YMR31, QCR8 TPS2 trehalose bio-synthesis,

mitochondrial function
ADY2∗, YAL054C ATO3 ion transport
NQM1, QCR8 COX13 aerobic respiration
COX7∗, QCR8 QCR9 electron transport
SIP18, YGR236C AZR1 response to stimulus
ETR1∗, ADH2 LSC2 energy derivation by oxidation

Table 7.4: Knock-out combinations identified by NIPD in the quiescent and non-quiescent
populations. Genes with ∗ have been shown to have a phenotype in stationary phase or in
quiescent and non-quiescent cells in [94, 5].

conserved interactions across species is an important question of comparative genomics

and has been addressed at the level of co-expression by Stuart et al. [131] and Bergmann

et al. [13]. However, we address the problem in a more general setting where we identify

conserved higher-order dependencies among the two organisms.

Following Stuart et al., we consider only genes that are orthologs of each other, that is,

genes that share a common ancestor species and are likely performing the same function

in both organisms. These orthologs are identified by high sequence similarity between

genes of one organism and genes of another organism. Orthologs are the individual genes

that are conserved across different organisms. By learning networks across species using

orthologs, we identify functional relationships that are conserved across organisms.

174

Chapter 7. Application to condition-specific and species-specific networks

7.2.1 Data processing

We used the datasets assembled by Stuart et al. [131], which consist of microarrays from

both organisms measuring genome-wide expression profile of yeast and fly genes under

different environmental conditions of yeast or different life-cycle stages of fly. Only genes

with orthologs were considered in both datasets. An orthologous pair of genes was re-

ferred as meta-gene. A random variable in our framework represents a meta-gene in both

organisms. It is possible that a gene in one organism has multiple orthologous hits. In

that case, we consider the gene with the maximal number of microarray measurements.

Thus we have a single pair of orthologs for each gene. We had a total of 923 genes in our

datasets after this processing. After network learning, we expand the network to include

multiple hits by adding edges among all orthologous pairs of a gene, if the pair in the

inferred network is predicted to be connected. Specifically, assume gene AFLY has corre-

sponding orthologous genes in yeast AYEAST1 and AYEAST2. Assume we selected AYEAST1

during network inference. After network inference is complete, if AFLY is inferred to be

connected to AYEAST1, we introduce an additional edge between AFLY and AYEAST2.

7.2.2 Results

We selected four models for learning networks for the yeast and fly species. Two of these

are INDEP and NIPD approaches, which assume condition variable is given. The remain-

ing two are the GC-COND and GC-CONDSH models, which infer the condition variable.

We excluded PVEM from this analysis because our simulated data experiments indicated

that the graph component models had better performance overall compared to PVEM. We

excluded MUG because application to yeast stationary phase suggested that although the

structures were high quality, they were very sparse.

The goals of our analysis of the inferred networks were (a) to evaluate the quality of

the networks, and (b) to assess the extent of organism-specific and conserved relationships.

175

Chapter 7. Application to condition-specific and species-specific networks

We address (a) using the GO process enrichment of subgraphs in the inferred networks

and by comparing against a meta-gene co-expression network inferred by Stuart et al.,

and (b) by identifying the shared and specific processes in which the subgraphs from each

organism-specific network are enriched.

Graph component models identify a high proportion of biologically meaningful de-

pendencies

Similar to our analysis of networks inferred from yeast stationary phase, we obtained the

proportion of 1-n subgraphs that were enriched in a GO process at an FDR < 0.05 (Ta-

ble 7.5). We found that on the YEAST network GC-CONDSH was better than INDEP

(high number and proportion of subgraphs). While GC-COND too had a high proportion

of subgraphs, the number of subgraphs was lower than the other methods. We note that

unlike the yeast stationary phase, where each method despite its high proportion identified

very few subgraphs, in this case the methods do identify a non-trivial number of subgraphs

(>100). Thus for this dataset, we can use the proportion to be a good indicator of method

superiority. On FLY also, the graph component models had a better performance than IN-

DEP. The fact that GC-CONDSH is able to learn better networks than GC-COND for this

application is promising because it demonstrates the advantages of fine-grained parameter

tying-based information sharing.

We further compared the structure of our inferred networks with the meta-gene net-

work inferred by the Stuart et al. study which considered conserved co-expression rela-

tionships (Fig 7.4). Because the networks learned by our approaches impose an upper

limit (k = 8) on the size of the neighborhood of each gene, we constrained the meta-gene

network by considering only the best k = 8 genes connected to a gene. Because this pro-

duces inconsistencies in the network structure, that is gene A may be connected to gene

B, but not vice-versa, we apply an AND or OR processing to each gene’s neighborhood

to produce consistent graphs. In the AND processing, if A is in B’s neighborhood, but

176

Chapter 7. Application to condition-specific and species-specific networks

not vice-versa, we delete A from B’s neighborhood. In the OR processing, if A is in

B’s neighborhood, but not vice versa, we add B to A’s neighborhood. This type of post-

processing is the same as described in Chapter 4, which is required to make the network

structures consistent. We refer to the complete yeast-fly co-expression network inferred

by Stuart et al. as the UNCONST, the constrained network with OR post-processing as

KNN-OR3 and with AND processing as KNN-AND.

Both NIPD and INDEP had more agreement with the existing meta-gene network than

GC-COND and GC-CONDSH on YEAST, regardless of whether we were comparing

the neighbor size-constrained networks or the unconstrained networks. However, GC-

CONDSH had more agreement than GC-COND. In contrast to YEAST, GC-COND and

GC-CONDSH-inferred FLY networks had a better match than both INDEP and NIPD

when considering the KNN-OR and KKN-AND networks. GC-COND and GC-CONDSH

had a better match than INDEP and were similar to NIPD, on the unconstrained network.

Overall, we found the GC-COND and GC-CONDSH models to perform as well or

better than the INDEP model in the majority of the comparisons. This suggested that when

constructing networks across species, models that infer the condition variable are more

beneficial than models that do not perform any type of sharing. Further, GC-CONDSH

performs better than GC-COND suggesting that cross-species data contain more subtle

sharing patterns that can be captured by models incorporating complex sharing patterns

via fine-grained parameter-tying.

Biological processes conserved and unique to different species

We compared the inferred networks to identify the shared and unique processes in each

organism Table 7.6. We first consider the shared processes between yeast and fly. Inter-

estingly, we found that in this case GC-CONDSH identified the largest number of shared

3KNN: K nearest neighbors

177

Chapter 7. Application to condition-specific and species-specific networks

Species Method # of Subgraphs % of Subgraphs

YEAST

INDEP 170 61%
NIPD 213 71%

GC-COND 124 89%
GC-CONSH 185 86%

FLY

INDEP 147 78%
NIPD 176 81%

GC-COND 120 79%
GC-CONDSH 138 80%

Table 7.5: Number and percentage of subgraphs associated with a GO process using the
yeast and fly networks.

processes (18), followed by NIPD (15), GC-COND (10) and INDEP (8).

Examination of the individual processes from each method indicated that NIPD identi-

fied several metabolic processes (glycine catabolic process, fatty acid oxidation, pyruvate

metabolism) and ribosome functions (rRNA processing and RNA elongation) and energy

related processes (oxidative phosphorylation). Existing work of Stuart et al. identified ri-

bosome biogenesis conserved between yeast and fly. We additionally identified fatty acid,

pyruvate metabolism and IMP biosynthesis to be conserved between yeast and fly. Pyru-

vate metabolism and fatty acid metabolism have been implicated to play a central role in

alcoholism studies in fly [103]. Because yeast is such a well-studied model organism, the

conservation of this process in yeast and fly allows us to extrapolate the knowledge avail-

able in yeast to fly and potentially further our understanding in alcoholism in humans.

IMP, which means inosine monophosphate is the end-product of purine bio-synthesis, the

pathway responsible for the production of building blocks of RNA and DNA molecules,

and is consistent with being conserved in yeast to fly. All processes identified by INDEP

were detected by NIPD.

GC-COND and NIPD had some overlap (6) including ribosome function and ubiquitin

catabolism and energy derivation by oxidation. GC-COND also identified protein amino

acid phosphorylation. Phosphorylation is a key mechanisms of activating and inhibiting

178

Chapter 7. Application to condition-specific and species-specific networks

proteins and enzymes and therefore it is expected to be conserved across a diverse species.

GC-CONDSH and NIPD also had several processes (9) in common (fatty-acid beta ox-

idation, pyruvate metabolism and IMP bio-synthesis). However, it included several novel

processes (GTPase mediated signal transduction, phospholipid biosynthesis, protein fold-

ing) that were conserved between fly and yeast. The specific yeast genes in subgraphs

enriched in GTPase mediated signal transduction were involved in signaling pathways in

nutrient limiting conditions and other pathways involving rapamycin and MAPK signaling

pathways. The fly-specific genes in the enriched subgraphs were involved in Ras signal

transduction and growth regulation, which are all important for cell proliferation and dif-

ferentiation. The identification of these conserved processes makes biological sense be-

cause these processes are fundamental to system survival at the cell, tissue and the entire

organism.

Overall, our results suggested that a method that does not do any type of sharing (IN-

DEP) missed out of biological processes that are both biologically meaningful and impor-

tant to identify. Although the methods with some type of sharing did not completely agree

on the set of shared processes, they all made biological sense.

We also identified processes to be specific to each species. We note that the identifi-

cation of true differences across species is tricky. Because fly is not as well annotated as

yeast, identifying a particular process in yeast, but not in fly, may not necessarily mean

the process is yeast-specific. In particular, there are two reasons why an identified process

may not necessarily be yeast-specific: (a) the process does exist in fly, but the fly genes

involved in the process are not in our dataset, (b) no fly gene has yet been identified for

the particular process. To address (a), we consider only those processes to be truly yeast-

specific if no fly gene has been annotated with that process. While (b) is harder to address,

we make the assumption that if there is no gene annotated yet with a process, then the

process does not exist in fly. Further, we consider only those processes that are found by

at least three methods. A similar strategy was used to identify fly-specific process. How-

179

Chapter 7. Application to condition-specific and species-specific networks

ever, because yeast is far more studied than fly, the processes we predictions of fly-specific

processes are more likely to be true than the predictions of the yeast-specific processes.

Based on the above strategy, we found most of the yeast-related processes were in-

volved in glucose metabolism (pentose-phospate shunt, trehalose catabolism, regulation of

cAMP biosynthesis) and filamentous growth. The fly-specific processes included animal-

specific processes (heme transport, blood-brain barrier, oocyte fate determination). Al-

though these processes capture meaningful species-specific behavior, we did have some

surprises. For example, even though small GTPase mediated signal transduction was found

to be a conserved process, we found subgraphs that were specific to yeast involved in the

negative regulation of the cAMP biosynthetic process. It is possible that this difference is

due to the incompleteness in the fly annotation, because the fly ortholog of the yeast genes

involved in the negative regulation of cAMP, Neurofibromin, is involved in a variety of

regulatory processes, including RAS signal transduction. However, the fly-specific pro-

cesses and the remaining fungi-specific processes agree with biological intuition and are

likely to be true positives.

7.3 Suitability of methods for different condition-specific

network learning problems

In this section, we consider the suitability of different algorithms for learning condition-

specific networks depending upon the dataset attributes. This analysis is based on both

the results on simulated data from Chapter 6 as well as results on real data from this

Chapter. The selection of an algorithm for a dataset depends upon the attributes of the

dataset (Fig 7.5). We describe a dataset using three attributes: (a) condition variable, (b)

similarity in the underlying networks, (c) dataset complexity. The condition variable can

take the values: known and unknown. The expected similarity in the underlying networks

180

Chapter 7. Application to condition-specific and species-specific networks

can take values: high similarity and low similarity. The dataset complexity can take values:

simple and complex.

The first two attributes are self-explanatory. The dataset complexity attribute requires

more explanation. This attribute provides a coarse way of describing the experimental

conditions under which the dataset is generated. In particular, an experimental condition

is said to be simple if we vary only the condition variable but make all measurements

under the different condition values in a similar way. Such simple datasets are obtained,

for example, when we have the same cell population under different stress conditions,

or we have two different cell populations under the same environmental stress as in the

quiescent and non-quiescent population. An experimental condition is said to be complex,

if the data under the different values of the conditions are not collected in a similar way.

These cases arise when the data is generated from different organisms or from different

laboratories.

We realize that this may be an overly simplified way of describing datasets, but it

allows us to provide guidelines to users of our algorithms to determine the applicability

of our different methods based on their knowledge of the datasets. Because the network

similarity attribute may not be known beforehand, we allow this attributes to take the

unknown value and also describe the most suitable method under this scenario.

When the dataset is simple, and the condition variable is observed we suggest the use

of NIPD, MUG or GC-COND. We suggest the MUG or GC-COND models to allow some

amount of freedom for handling complex sharing patterns. We suggest the use of both

models because while the MUG model had good performance on the simulated data, it

found very few sub-networks on microarray data from yeast stationary phase. In con-

trast, the GC-COND model was beaten on a few simulated data cases, but retrieved many

more biologically meaningful dependencies on the microarray data. Thus both models

have strengths that may prove beneficial under simple dataset cases. When the dataset is

complex, GC-CONDSH or PVEM models should be selected. Although, we do not have

181

Chapter 7. Application to condition-specific and species-specific networks

results of the PVEM models on the species-specific networks, the fact that it works well

on the NET12-79 networks suggests that both PVEM and GC-COND models are good

candidates of capturing complex sharing patterns. However, the PVEM model has the

longest training time and therefore should be used if the networks are small in size and

time is not a major constraint. If additionally the condition variable is observed, NIPD

model is a good candidate. The majority of our simulated datasets are examples of simple

datasets. However, even in these cases, if the network similarity is low and we want to find

similarities, GC-CONDSH model should be selected.

7.4 Conclusion

The problem of learning condition-specific networks is an important, yet challenging prob-

lem of systems biology. One challenge is the complexity of the sharing patterns across

conditions, which depends upon the definition of a condition. In this chapter, we apply

our different approaches for learning condition-specific networks to address two biolog-

ically motivated questions that each present a different instance of the condition-specific

network learning problem. In the first, we ask how two different yeast populations behave

at the network level under the same stress. In the second, we ask what types of functional

relationships are conserved among orthologous genes of two distant species: yeast and

fly. The application of our network learning approaches identified shared and unique as-

pects of the networks that agree with existing biological knowledge and also include novel

discoveries.

Application of our approaches to understand glucose starvation stress response in two

morphologically dissimilar yeast populations, identified several strengths and weaknesses

of the different algorithms. The methods that infer the condition variables are very general

that can be applied to any problem of condition-specific network learning. However, the

generality comes at the computational overhead of inferring the condition variables, which

182

Chapter 7. Application to condition-specific and species-specific networks

for the yeast stationary phase data was too high. In particular, we found that the NIPD ap-

proach to which we specify the condition variable (NIPD) and which incorporates sharing

by pooling data, is significantly better than the approaches that infer the condition variable.

Compared to INDEP, which does not perform any sharing, these models captured shared

information as well or better, suggesting that at least these models are benefitted by shar-

ing information. However, the excessive long training times of these models are hardly

justified by the modest improvements in capturing shared information. Comparison of the

models inferring the condition variables among each other showed that although MUG had

a lot of agreement with NIPD, suggesting high precision, it identified very few processes

producing high false negatives. In contrast, the graph component models did have some

disagreements with NIPD, but the differences were often biologically meaningful.

One of the strengths of an approach that shares data (NIPD) in comparison with that

an approach that does not (INDEP), was the ability to identify more complex interactions

such as pairs of gene deletions and downstream targets using data from individual gene

deletions. Amazingly, several of these gene deletions are already known to have a phe-

notypic effect on stationary phase cultures and often on quiescent or non-quiescent cells

[5, 94]. These predictions are therefore good candidates for future experiments using dou-

ble deletion mutants, and are a drastic reduction of the space of possible combinations

of sixty-nine single gene deletions. Identification of population-specific malfunctions in

signaling pathways via experimental analysis of these multiple deletions can provide new

insight into aging and cancer studies using yeast stationary phase as a model system.

Application of our approaches to learn species-specific networks, not only demon-

strated another formulation of condition-specific network learning, but also identified an

example dataset, which is complex enough to justify the use of more general models in-

ferring the condition variables. In particular, graph component models (GC-COND and

GC-CONDSH) identified many more similarities than INDEP and often NIPD. Interest-

ingly, the GC-CONDSH model was able to identify key shared processes and also had bet-

183

Chapter 7. Application to condition-specific and species-specific networks

ter agreement with an existing meta-gene co-expression network, than GC-COND. This

supported our conjecture in the last chapter that benefits of the GC-CONDSH are not ap-

parent because our simulation datasets did not have complex shared patterns, which would

be captured by the GC-CONDSH model.

Learning networks across different organisms (species-specific networks) is more chal-

lenging than learning networks across two conditions from the same organism. Because

the organisms are so different from each other, identification of similarities and differences

is more complicated than learning networks from the same organism. The fact that any

model with some type of sharing, regardless of whether the condition variable is hidden

or not, is better than a model that learns networks from the conditions independently, is

suggestive of the complex sharing patterns in the species-specific networks. This is further

supported by the improved performance of the GC-CONDSH model, which additionally

performs fine-tuned sharing via parameter tying. However, these are preliminary results,

which are susceptible to the relative incompleteness in the amount of known information

for the different species, making validation of the true differences versus differences due to

the absence of knowledge difficult. Further experimentation and validation is a direction

of future research.

In summary, the two datasets analyzed in this chapter represent two points on a spec-

trum of datasets of varying shared pattern complexity. The yeast stationary phase dataset

is one where the networks are likely to be highly similar because of the shared global

starvation stress. The species-specific dataset is one where the networks, coming from

different organisms, are very different with complicated sharing patterns. For all datasets,

models with some type of sharing are better than learning networks for the conditions in-

dependently. Our preliminary analysis on the species-specific networks suggests that GC-

CONDSH model is suitable for capturing such complexities in the shared information. On

datasets where the underlying networks are highly similar, or where the condition variable

has a similar influence on the entire network, the benefits of a general model inferring the

184

Chapter 7. Application to condition-specific and species-specific networks

condition variable are likely outweighed by the run time and parametric complexity of the

models. In such datasets, models that accept the condition variable as input and incorpo-

rate sharing across conditions are more beneficial than more general methods. However,

in datasets similar to the species-specific datasets, where different parts of the network are

influenced differently by the condition variable, the mathematical complexity is justified,

and often, needed to learn better condition-specific networks.

185

Chapter 7. Application to condition-specific and species-specific networks

Fi
gu

re
7.

1:
C

ov
er

ag
e

an
al

ys
is

of
di

ff
er

en
ta

nn
ot

at
io

n
ca

te
go

rie
s.

Ea
ch

ce
ll

i,
j

sp
ec

ifi
es

th
e

lo
g

of
th

e
ra

tio
of

th
e

nu
m

be
r

tim
es

al
go

rit
hm

i
be

at
s

th
e

al
go

rit
hm

j
to

th
e

nu
m

be
ro

ft
im

es
al

go
rit

hm
j

be
at

s
al

go
rit

hm
i.

i
an

d
j

co
rr

es
po

nd
to

ro
w

an
d

co
lu

m
n

re
sp

ec
tiv

el
y.

Th
e

m
or

e
re

d
a

ce
ll

th
e

m
or

e
lik

el
y

is
i

be
tte

rt
ha

n
j.

Th
e

m
or

e
bl

ue
th

e
m

or
e

lik
el

y
is

j
be

tte
rt

ha
n

i.

LO
W

ER
co

rr
es

po
nd

s
to

th
e

qu
ie

sc
en

tc
el

ls
an

d
U

PP
ER

co
rr

es
po

nd
s

to
no

n-
qu

ie
sc

en
tc

el
ls

.

186

Chapter 7. Application to condition-specific and species-specific networks

! !"# !"$!"% !"& ' '"#
!'

(

)

*
+
,
-+
.-
/
0
,
1
-2

345/6-7

! !"# !"$!"% !"& ' '"#
!'

(

)
4365-7

! !"# !"$!"% !"& ' '"#
!'

(

)
89:-7

! !"# !"$!"% !"& ' '"#
!'

(

)
6;/8-7

! !"# !"$!"% !"& ' '"#
!'

(

)
:<!<=45-7

! !"# !"$!"% !"& ' '"#
!'

(-

)-

:<!<=45>?-7

! !"# !"$!"% !"& ' '"#
!'

(

)
345/6-47

! !"# !"$!"% !"& ' '"#
!'

(

)
4365-47

! !"# !"$!"% !"& ' '"#
!'

(

)
89:-47

! !"# !"$!"% !"& ' '"#
!'

(

)
:<!<=45-47

! !"# !"$!"% !"& ' '"#
!'

(

)

>1@ABCDE-FD@DGAHDCI

:<!<=45>?-47

! !"# !"$!"% !"& ' '"#

!

#

$

%

6;/8-47

Figure 7.2: Number of inferred edges as a function of semantic similarity. The blue line
indicates the number of edge in the inferred network and red line is the mean number of
edges in random networks with the same degree distribution as the inferred network. Q:
Quiescent, NQ: Non-quiescent.

187

Chapter 7. Application to condition-specific and species-specific networks

! !"# !"$!"% !"& ' '"# '"$
'

#

(

$

)

%

*

+,-./012341-15.6107

8
9
:
39
;3
<
=
:
,
3>

?@A<+B<CD

3

3

ACE<F

CAFE

G@H

FI<G

HB!BJCE

HB!BJCE+K

! !"# !"$!"% !"& ' '"# '"$
'

#

(

$

)

%

*

+,-./012341-15.6107
8
9
:
39
;3
<
=
:
,
3>

?@?!ABC<+D<?E

3

3

C?F<G

?CGF

HBI

GJ<H

ID!D@?F

ID!D@?F+K

Figure 7.3: Semantic similarity of inferred graphs from different methods.

!"

!#!$"

!#!%"

!#&'"

!#&("

)*+,-" *)-+" ./0/1*+" ./0/1*+23"

4,526"!"#$"%&'

("")$*'

("")+",'

!"

!#!$"

!#!%"

!#&'"

!#&("

)*+,-" *)-+" ./0/1*+" ./0/1*+23"

456"!"#$"%&'

("")$*'

("")+",'

Figure 7.4: Comparison of the inferred networks by our different condition-specific net-
work learning approaches against the networks inferred by the Stuart et al. study.

188

Chapter 7. Application to condition-specific and species-specific networks

INDEP NIPD GC-COND GC-CONDSH
ATP synthesis coupled proton transport FLY YEAST-FLY YEAST YEAST-FLY
’de novo’ IMP biosynthetic process YEAST-FLY YEAST-FLY YEAST-FLY YEAST-FLY
DNA replication initiation YEAST-FLY YEAST-FLY YEAST-FLY YEAST-FLY
fatty acid beta-oxidation YEAST-FLY YEAST-FLY FLY YEAST-FLY
glutamine family amino acid biosynthetic process YEAST YEAST-FLY FLY FLY
glycine catabolic process YEAST YEAST-FLY YEAST-FLY YEAST-FLY
mitochondrial electron transport, ubiquinol to cytochrome c YEAST-FLY YEAST-FLY FLY YEAST-FLY
mitotic chromosome condensation FLY FLY FLY YEAST-FLY
oxidative phosphorylation YEAST-FLY YEAST-FLY FLY FLY
pre-replicative complex assembly YEAST-FLY YEAST-FLY FLY YEAST-FLY
protein amino acid phosphorylation FLY FLY YEAST-FLY FLY
pyruvate metabolic process FLY YEAST-FLY YEAST YEAST-FLY
RNA processing FLY YEAST YEAST-FLY YEAST-FLY
rRNA processing YEAST YEAST-FLY YEAST-FLY YEAST
sulfur amino acid biosynthetic process FLY FLY FLY YEAST-FLY
transcription from RNA polymerase II promoter YEAST YEAST FLY YEAST-FLY
ubiquitin-dependent protein catabolic process YEAST-FLY YEAST-FLY YEAST-FLY YEAST-FLY
tRNA aminoacylation for protein translation YEAST-FLY YEAST-FLY YEAST-FLY
energy derivation by oxidation of organic compounds YEAST YEAST-FLY
cellular protein metabolic process YEAST-FLY YEAST-FLY
vesicle docking during exocytosis YEAST YEAST-FLY
phospholipid biosynthetic process YEAST YEAST-FLY
protein folding YEAST YEAST-FLY
small GTPase mediated signal transduction YEAST-FLY
cellular biosynthetic process YEAST-FLY
RNA elongation YEAST-FLY
ceramide biosynthetic process YEAST YEAST YEAST YEAST
negative regulation of cAMP biosynthetic process YEAST YEAST YEAST YEAST
negative regulation of ubiquitin-protein ligase activity YEAST YEAST YEAST YEAST
during mitotic cell cycle
pentose-phosphate shunt, oxidative branch YEAST YEAST YEAST YEAST
septin checkpoint YEAST YEAST YEAST YEAST
signal transduction during filamentous growth YEAST YEAST YEAST YEAST
trehalose catabolic process YEAST YEAST YEAST YEAST
UDP-glucose metabolic process YEAST YEAST YEAST YEAST
protein-RNA complex assembly YEAST YEAST YEAST
heteroduplex formation YEAST YEAST YEAST
cell wall chitin biosynthetic process YEAST YEAST YEAST
methylglyoxal catabolic process to D-lactate YEAST YEAST YEAST
secretory pathway YEAST YEAST YEAST
establishment of blood-brain barrier FLY FLY FLY FLY
glutamate catabolic process to 2-oxoglutarate FLY FLY FLY FLY
heme transport FLY FLY FLY FLY
cellular biopolymer biosynthetic process FLY FLY FLY
germarium-derived oocyte fate determination FLY FLY FLY
oocyte microtubule cytoskeleton polarization FLY FLY FLY
oxidation reduction FLY FLY FLY

Table 7.6: Biological processes specific to yeast (YEAST) or fly (FLY) or shared between
the two species (YEAST-FLY). The leftmost column is the process and the remaining
columns are for each of the algorithms. For processes that are specific to each population,
we consider only those processes that are identified by at least three of the four methods.

189

Chapter 7. Application to condition-specific and species-specific networks

!"#$%&"#'

Known Unknown

()*)+,*'

!"-./,0%*1'

()*)+,*'

!"-./,0%*1'

High Low

2,*3"45'

6%-%/)4%*1'

High Low/

Unknown

278('

9!:!;2(6<'

8=>?@'

278('

9!:!;2('

?A9'

278('

72(>8'

9!:!;2('

?A9'

High Low

9!:!;2(6<'

8=>?@'
2,*3"45'

6%-%/)4%*1'

High/

Unknown
Low

9!:!;2('

?A9'
9!:!;2('

9!:!;2(6<'

?A9'

Figure 7.5: Decision tree for selecting different models based on dataset attributes. PVEM
has a ∗ because our placement of PVEM in the decision tree is based only on simulated
data.

190

Chapter 8

Conclusions

Inference and analysis of cellular networks has been one of the cornerstones of systems bi-

ology. This dissertation developed and applied approaches from statistical machine learn-

ing for learning condition-specific networks that describe condition-specific behavior of

cells at a systems level. Development of these approaches required us to address some

general questions in network learning and some questions that are specific to the problem

of learning condition-specific networks. In this chapter, we discuss the work described in

the previous chapters and relate it to the big picture of condition-specific network learning.

8.1 Discussion

Representing biological networks as undirected graphs One of the first modeling

questions for learning condition-specific networks concerns the framework used to rep-

resent biological networks. Because we focus on identifying general statistical dependen-

cies, which are correlative rather than causative, undirected probabilistic graphical models

provide a natural representation of biological networks. However, structure learning of

these models using likelihood score-based methods is difficult because the normalization

191

Chapter 8. Conclusions

constant required to generate a valid joint distribution is intractable. To address this prob-

lem, we establish an equivalence between the Markov blanket canonical parameterization

(MBCP) of Abbeel et al. and local per-variable canonical parameters. We then develop

a structure learning algorithm based on this equivalence that learns the structure by find-

ing the best consistent Markov blanket of each random variable. Although this idea of

learning structure via Markov blanket estimation is well-known in graphical model struc-

ture learning, the work described in Chapter 4 makes two important contributions: (a)

we derived our algorithm from Abbeel et al.’s structure learning algorithm, establishing a

connection between MBCP-based structure learning and Markov blanket estimation algo-

rithms, (b) we demonstrated that imposing structural consistency is important for learning

high-quality network structures.

Although we discuss the benefits of undirected graphical model representation for bi-

ological networks, it is important to empirically justify our model of choice over directed

graphical models, which have also been used to represent biological networks. We eval-

uated the quality of the inferred networks using both directed and undirected graphical

models, and empirically demonstrated on simulated datasets with known ground truth,

undirected graphs indeed capture the network structure better than directed graphs.

Validation The problem of network learning is essentially unsupervised in nature: we

don’t know the true answer. This makes validation of the inferred dependencies a difficult

problem. We addressed this issue by : (a) developing a simulation framework that gener-

ates the network and the data to be used for network inference and subsequent comparison

with the true networks, (b) developing metrics for evaluating how well algorithms capture

higher-order dependencies – dependencies among three or more random variables. Al-

though the use of a simulation framework to validate unsupervised learning algorithms is

a common technique in machine learning, developing a simulation framework that real-

istically models biological networks is a non-trivial challenge. Our differential-equation

192

Chapter 8. Conclusions

based regulatory network simulator constructs networks that are more biologically plau-

sible than existing simulators by: (a) accounting for protein expression levels and (b)

formulating kinetic models that capture the combinatorial control among the transcription

factors.

While there is no doubt that biological networks have higher-order dependencies [101,

110, 75], it was not clear if this affects the performance of different algorithms, and, there-

fore the choice of models. Using our validation framework we measured performance

of different algorithms as a function of the extent of higher-order dependencies in the

network structure. We compared algorithms capturing higher-order dependencies as well

as those that approximated higher-order dependencies via pairwise dependencies. Our

results suggested that high-indegree and size of transcription factor (TF) complexes are

characteristics of biological networks that influence algorithm performance. In particular,

algorithms capturing higher-order dependencies performed well on networks with high

proportions of nodes with high indegree, or with many large TF complexes, whereas algo-

rithms capturing pair-wise dependencies performed well on networks consisting mostly of

nodes with low indegree (= 1).

Hidden versus observed condition variables The condition variables are global vari-

ables that affect the wiring of the underlying network. Because the values of the condition

variables may not be known a priori, general models that can infer the condition variables

are required. We developed several approaches based on mixture models that can auto-

matically infer the condition value for each data point, but we found that the generality

of these models comes at a cost. In particular, if the datasets from the two conditions

are highly similar, a model that is given the condition variable is able to perform much

better than a model that must infer the condition variable. However, knowing the con-

dition variable is not enough, as evidenced in the independent learner (INDEP) results,

which did not capture the shared information as well as NIPD and some of the regulatory

193

Chapter 8. Conclusions

processes identified by both NIPD and the approaches based on mixture-model (MUG,

PVEM, GC-COND). Because the mixture model framework automatically shares the data

points among the component models, it captures the shared parts of the networks as well

or better than INDEP.

Different granularities of condition-specificity Condition-specific behavior is com-

plex, which requires networks driving this behavior to be modular and to be composed

of reusable parts [75]. It is likely that certain parts of the network are universally required

in any kind of condition, and certain parts are unique to a condition. For example, if con-

ditions were stresses, components of the network involved in post-translational modifica-

tion may be shared across a large set of conditions, whereas respiration related processes

may be triggered only under aerobic conditions. This shared response pattern is further

supported by the presence of target genes under the control of single master regulators.

If conditions are species, the shared parts could correspond to evolutionarily conserved

core processes, and the unique parts to the processes necessary for accomplishing species-

specific functions. To mathematically model the different types of sharing, we formulated

different types of models in Chapter 6, where a condition variable was allowed to influence

different proportions of the network. Note that this flexibility is not available in models

that assume the condition variable is observed, because the condition variable is specified

for the entire set of measurements per microarray (data point) and not for subsets of genes.

A surprising result from our comparative analysis of different algorithms was that even

if the generative and target models come from the same family of distributions, the target

model may not necessarily perform the best. In particular, there are characteristics of

the underlying union network such as the connectivity of the graph, that also influence

algorithm performance. We found that, on simulated data, the Mixture of Graphs model

(MUG), in which a single condition variable influences the entire network, performed well

on networks with a large giant component, irrespective of the generative model. In con-

194

Chapter 8. Conclusions

trast, the Per-variable EM (PVEM) model, where each network node has its own condition

variable, did not perform as well, even though the simulated data was generated from a

model that closely obeyed the assumptions of PVEM. The poor behavior of the PVEM

model was again due to the overly complex model that did not obey the constraints of the

condition assignments. The MUG model performed so well because by having a single

condition variable, it naturally obeyed the constraints of the condition variable. In con-

trast, when the underlying union network had several connected components, PVEM and

the graph component models were able to capture the sharing patterns much better than

the MUG model.

In addition to this observation of how the topology and the generative model together

influence algorithm performance, this work also produced some contributions to the field

of machine learning. In particular, we developed and implemented structure learning algo-

rithms for each of these models, which are all based on some form of mixture modeling on

graphs. Prior to this work, the only mixture model over graphs is the mixture of directed

graphs. Our PVEM model is similar in nature to models describing interventional distri-

butions [38]. However, the intervention variable selects different parameter sets, whereas

we select different structures, and, therefore also parameters. The NIPD model, too, is an

extension to the existing multi-net framework, where we incorporate explicit data pooling

between the conditions.

Information sharing across conditions Component re-use is one of the principles of

software design, and the same is true for living systems. One of the questions we asked

in this dissertation was how to capture and exploit the shared information that arises from

component re-use across conditions. As discussed above, we developed several models

that can capture shared information either by explicitly pooling data from non-singleton

sets, by using mixture models (which allows data points to be shared across the networks),

or by more fine-grained sharing via parameter tying.

195

Chapter 8. Conclusions

Regardless of the condition variable being observed or not, we found that a model that

did perform sharing was beneficial. Approaches such as INDEP that learn networks for

each condition independently and then compare the resulting networks, are more likely

to learn different networks, making it difficult to identify the similarities across condi-

tions. Application of INDEP and NIPD to microarray data from two yeast populations

showed that many of subgraphs that would be considered specific to each population by

INDEP were actually shared biological processes that must be activated in both popula-

tions, irrespective of their morphological and physiological differences. Application to

species-specific networks also demonstrated the potential benefits of models exploiting

shared information. This suggests that models that explicitly share information are bene-

ficial for capturing the shared parts of the networks and to learn better condition-specific

networks.

Biological implications of this work Analysis of condition-specific response is a central

theme of molecular biology. In this dissertation, we provided a general framework for

viewing condition-specific response as a network and the condition as a global variable that

triggers changes in the wiring of the cellular networks. We demonstrated the feasibility of

this framework on two examples of the condition variable: one representing different cell

populations and the other representing different species. In both, we identified biologically

meaningful dependencies including some that are consistent with existing knowledge, and

some novel findings.

In particular, in yeast stationary phase we found respiration-related processes to be

conserved in both populations, and we identified several regulatory and metabolic pro-

cesses that capture key physiological characteristics of the quiescent and non-quiescent

populations. We also identified candidate triplets that can be experimentally tested us-

ing double gene knock-outs, and that contribute to our understanding of differentiated

cell populations in yeast stationary phase. In species-specific networks, we found sev-

196

Chapter 8. Conclusions

eral metabolic processes (pyruvate metabolism, fatty acid biosynthesis) to be conserved in

yeast and fly. The implication of this is that these processes could be studied in yeast, a

model organism with the widest collection of genome-scale reagents, and the experimental

findings can be transferred from the yeast model system to the fly model system.

The results from our application to these diverse definitions of what a condition means,

has hopefully convinced the reader of the generality of our framework and of condition-

specific network learning as such. Different tissues and diseases represent yet more exam-

ples of different conditions, and learning networks for such conditions will provide insight

into developmental body plan and insights into the mechanisms and causes of different

diseases.

8.2 Future work

This dissertation establishes ground-work for important future enhancements that will al-

low us to systematically identify the parts, and the wiring among them, that determine

stage-specific, tissue-specific, and disease specific behavior in whole organisms. We ex-

pand on them below:

Taking condition-specificity to tissues, diseases and metagenomes In this dissertation,

we demonstrated our approach on conditions representing cell populations and species.

However, our general approach to condition-specific network learning applies to a wider

class of problems in biology. One application of our condition-specific network learning

approaches is to consider tissues as different conditions and learn tissue-specific networks

[37], which can provide insights into cell-fate determination and development in higher

organisms.

Our approaches can also be applied to infer disease-specific networks from genome-

197

Chapter 8. Conclusions

wide measurements of human transcripts, which can identify differences and similarities

among diseases and help diagnosis of new types of disease [30, 26]. On a similar note,

our methods apply to genome-wide association studies, which are rapidly growing thanks

to next generation sequencing [96]. These studies assay genotypic variation from popu-

lations of people to identify genetic markers of disease susceptibility. Learning networks

from these data, treating each population type as a condition, can identify higher-order

relationships among the markers that likely influence disease susceptibility.

Finally, our approaches are applicable to metagenomic data [54, 57], which capture

metabolic or transcriptomic profiles of different eco-systems of multiple species, most of

which cannot be cultured or sequenced in the lab. We can treat each species as a random

variable in our networks, and different eco-systems as condition variables. The inferred

dependencies among the species can then be used to obtain a better understanding of novel

species and eco-systems as a whole.

Inferring causal, condition-specific networks Fixing a broken system requires us to

find the cause of the failure. Similarly, to understand life we need to understand what

causes cells to transition between different disease and healthy states. In this work, we

have developed approaches for obtaining probabilistic network descriptions of the average

state of the cell. The next step is to specify the causes and the effects in the network.

However, traditional methods of identifying causal interactions require many expensive

perturbations and assume no hidden variables, which is unrealistic for real biological sys-

tems. Fortunately, recently available expression QTL data can be used to infer causal

interactions under the assumption that changes in gene expression are caused by changes

in the DNA sequence [112]. Integration of these type of genotypic and phenotypic data

within the framework of condition-specific network learning will allow us to identify the

causal mechanisms governing the condition-specific responses.

198

Chapter 8. Conclusions

Computational complexity of exhaustive enumeration of condition sets Several of

our models for condition-specific network learning exhaustively enumerate over all sub-

sets of the condition sets. This poses serious computational challenges for moderately

sized (dozen) condition sets. This is compounded with the statistical challenges of data

sparsity arising from learning exponentially (in the size of the condition set) many net-

works. Although such datasets are not available as of the present, with next generation

sequencing, datasets assaying dynamics of gene expression over time per tissue or devel-

opmental stage are a near possibility. This requires us to devise both fast search algorithms

for network structure and heuristics that enable us to avoid exhaustive enumeration of the

condition sets.

Relaxing the topologies of the inferred networks The undirected graphical models

that are inferred using our algorithms constraint the size of the Markov blanket to a fixed

k. While this allows us to tractably learn the network structure, it tends to produce net-

works topologies that are regular. A possible extension to our work is to incorporate a

per-variable regularization term that uses a more flexible regularization of each random

variable [121]. The per-variable regularization term can be used in an automatic MDL

setting or can be based on biological prior knowledge of genes that are likely to have high

degrees e.g. transcription factors. This extension would allow us to more easily capture

skewed distributions of many biological networks.

A more general hierarchical Bayesian framework for parameter sharing Our pa-

rameter tying approach to sharing data across conditions is based on a simplistic idea

of constraining weights and applies only for the conditional Gaussian case. However,

the general idea of information sharing across conditions is well-known in the multi-task

learning field of machine learning [106]. These approaches share data across conditions by

using a hierarchical Bayesian framework [53], where a global hyper-prior is used to share

information across parameter vectors for each component of the mixture model. This pro-

199

Chapter 8. Conclusions

vides a more principled framework to parameter sharing and has been recently extended to

a non-parametric setting via Gaussian processes [145, 144, 82]. However, most of multi-

task learning approaches solve related regression problems, rather than solving the more

difficult problem of learning network structures. Further, in this framework, the task (or

condition) label is assumed to be known for each datapoint. Extending our condition-

specific network learning algorithms to a hierarchical Bayesian framework is a fruitful

direction of future research, which can make contributions to machine learning and also

address a wider range of problems in biology.

Generative model of edges rather than expression variables The work done in this

dissertation is based on probabilistic generative models of gene expression. In this for-

mulation, a random variable models the expression value of each gene. An alternate for-

mulation to the problem is to treat the edges themselves as random variables and develop

generative mixture models for the edges. In particular, we want a mixture model over

network edges, similar to a Latent Dirichlet Allocation (LDA) model for text documents

[17]. To draw an analogy, each word corresponds to an edge, a document corresponds to

a network and the topics correspond to the hidden conditions. An example of this idea

was implemented by Aukia et al. for a large social network describing music selections

[7]. However, this approach assumes that the network structure is known and the only

inference problem is inferring the component assignment for each edge. Implementing

this kind of a generative model in our target problems, where the network structure is not

known, will require novel extensions to both LDA models and network structure learning.

Our understanding of the biology of the cell is advancing from a single gene to the

entire genome, and functional networks have been key in obtaining this systemic view

of the cell. Inference and analysis of condition-specific networks provides yet another

stepping stone in our quest for knowledge about the inner-workings of a living system.

200

Appendices

A Equivalence of Markov blanket and per-variable canonical parameters 1

B Deriving the normalization term and quantifying the correction 2

C Deriving a decomposable pseudo likelihood score in the MUG model 3

D Parameter tying in the conditional Gaussian mixture 4

E Supplementary GO information of quiescent and non-quiescent populations 5

201

Appendix A

Equivalence of Markov blanket and

per-variable canonical parameters

In this appendix we give some background information of Markov random fields (MRFs).

We describe the Hammersley Clifford theorem, the original canonical parameterization

and Markov blanket canonical parameterization (MBCP), and then give the proof of equiv-

alence between the MBCP and the per-variable canonical parameters.

A.1 Hammersly-Clifford theorem and canonical poten-

tials

The Hammersly-Clifford theorem establishes a one-to-one relationship between MRFs

and strictly positive distributions such as the Gibbs distributions. The canonical potentials

(also called N -potentials [107]) are used together with the Möbius inversion theorem to

prove the Hammersly-Clifford theorem [80]. The canonical potential for a subset D ⊆ X

202

Appendix A. Equivalence of Markov blanket and per-variable canonical parameters

is defined using a default joint instantiation, x = {x1, · · · , x|X|} to X as:

ψ∗
D(D = d) =

exp

(
∑

U⊆D

(−1)|D\U|logP (X = σ(U,X,d))

)

where σ(A,B, c) is an assignment function to variables Xk ∈ B such that σ(A,B, c)[k] =

ck, if Xk ∈ A and σ(A,B, c)[k] = xk if Xk /∈ A. σ returns an assignment for all variables

in B.

The Mobius inversion states that for any real functions f and g over subsets A,B and

C

f(A) =
∑

B⊆A

g(B), is true iff,

g(B) =
∑

C⊆B

(−1)|B\C|f(C) (A.1)

The joint probability distribution for a MRF using canonical potentials is defined to be:

P (X = x) = P (x)
∏

D∈C ψ∗
D, where C is the set of maximal cliques in the graph. This is

true by an application of the Möbius inversion and setting ψ∗
D = 0 for all D /∈ C [80, 107].

A.2 Markov blanket canonical parameterization

The computation of the canonical potentials is not feasible for real-world domains as they

require the estimation of the full joint distribution [1]. Markov Blanket canonical param-

eterization, developed by Abbeel et al., allows the computation of global canonical po-

tentials over X, using local conditional functions called Markov blanket canonical factors

(MBCFs).

The MBCF, ψ̃ for a set D ⊆ X is estimated using D and its Markov blanket (MB).

The MB, Mi of a variable Xi, is the set of immediate neighbors of Xi in G and renders

203

Appendix A. Equivalence of Markov blanket and per-variable canonical parameters

Xi conditionally independent of other variables, i.e., P (Xi|X \ {Xi}) = P (Xi|Mi). The

MB, MD of a set D, is
(⋃

j Mj

)
\D for all Xj ∈ D. The MBCF, ψ̃ for D is also defined

using the default joint instantiation, x = {x1, · · · , x|X|} as:

ψ̃D(D = d) = exp
(∑

U⊆D

(−1)|D\U|logP (D = σ(U,D,d)|

MD = σ(U,MD,d))
)

, (A.2)

For MRFs of unknown structure, MBCFs are identified by searching exhaustively among

all subsets Fi ⊂ X, up to size l and finding MBs for each Fi. Unfortunately, exhaustive

enumeration of variable subsets becomes impractical for moderately sized networks [1].

We show that the MBCFs can be further reduced to smaller per-variable canonical factors,

which are computed using an RV and its Markov blanket.

A.2.1 Per-variable MB canonical factors

We now show that the MBCFs can be replaced by smaller, local functions: per-variable

MB canonical factors, which does not require enumeration of all subsets up to size l.

Specifically, for every MB canonical factor ψ̃ there exists an equivalent per-variable canon-

ical factor ψ+. To illustrate how the per-variable factors are derived from MBCFs, we first

consider a specific case of D = {Xi, Xj} in Eq A.2 (Section A.2.1), followed by a proof

for the general case (Section A.2.1).

Special case of two variables

Let D = {Xi, Xj} and d = {xi, xj}. Note, because D ∩MD = ∅, σ(U,MD,d) = md,

the default instantiation to MD from x. We first expand the sum inside the exponential of

204

Appendix A. Equivalence of Markov blanket and per-variable canonical parameters

Eq A.2 with D = {Xi, Xj}:

∑

U⊆D

(−1)|D\U|logP ({Xi, Xj} =

σ(U, {Xi, Xj},d)|MD = md)

= (−1)|{Xi,Xj}|logP (Xi = xi, Xj = xj |MD = md)

+(−1)|{Xj}|logP (Xi = xi, Xj = xj |MD = md)

(−1)|{Xi}|logP (Xi = xi, Xj = xj |MD = md)

+(−1)|∅|logP (Xi = xi, Xj = xj |MD = md) (A.3)

where the first term corresponds to U = ∅, the second term corresponds to U = {Xi} and

so on. Applying the chain rule to every term in the RHS:

= log[P (Xi = xi|Xj = xj ,MD = md)

P (Xj = xj |MD = md)]

−log[P (Xi = xi|Xj = xj ,MD = md)

P (Xj = xj |MD = md)]

−log[P (Xi = xi|Xj = xj ,MD = md)

P (Xj = xj |MD = md)]

+log[P (Xi = xi|Xj = xj ,MD = md)

P (Xj = xj |MD = md)]

We find that all logP (Xj|MD) terms cancel producing:

= logP (Xi = xi, |Xj = xj ,MD = md)

−logP (Xi = xi|Xj = xj ,MD = md)

−logP (Xi = xi|Xj = xj ,MD = md)

+logP (Xi = xi|Xj = xj ,MD = md) (A.4)

205

Appendix A. Equivalence of Markov blanket and per-variable canonical parameters

This allows ψ̃ to be rewritten as:

ψ̃D(D = d) = exp
(∑

U⊆D

(−1)|D\U|logP (Xi =

σ(U, {Xi},d)|{Xj} ∪MD = σ(U, {Xj} ∪MD,d))
)

(A.5)

We assert further independence in Eq A.5 because Xi is independent of all variables other

than Mi. This allows us to write the original MBCF for {Xi, Xj} as the per-variable

canonical factor:

ψ+
D(D = d) = exp

(∑

U⊆D

(−1)|D\U|logP (Xi =

σ(U, {Xi},d)|Mi = σ(U,Mi,d))
)

(A.6)

Thus we have equivalent the per-variable canonical factor, ψ+ from the original MBCF ψ̃

in Eq A.2.

General case

We now state the equivalence between per-variable and MB canonical factors more for-

mally:

Theorem A.2.1 Every MBCP, ψ̃D, of the form in Eq A.2 possesses an equivalent per-

variable factor, ψ+
D(D = d) = exp

(∑
U⊆D(−1)|D\U|logP (Xi = σ(U, {Xi},d)|Mi =

σ(U,Mi,d))

)
, where Xi ∈ D.

Proof The proof of this equivalence involves two steps: (a) deriving ψ+ from ψ̃ for any

general D, and (b) identifying neighbors of an RV and making independence assertions

described by the graph structure.

206

Appendix A. Equivalence of Markov blanket and per-variable canonical parameters

To prove (a) we select an arbitrary Xi ∈ D. We replace each logP (D|MD) in ψ̃

by log(P (Xi|D \ {Xi} ∪ MD)P (D \ {Xi}|MD)). We have 2|D| number of logP (D \

{Xi}|MD) terms, one for each U ⊆ D. Xi does not occur in these terms, as we have

conditioned on it. These terms can be grouped into two sets, Sod and Sev, where Sod

and Sev correspond to subsets of D with odd and even number of elements, respectively.

Assuming |D| is even, all elements in Sod have a −ve sign and all elements in Sev have

a +ve sign. Further, for every t ∈ Sev corresponding to U ⊆ D there exists t′ ∈ Sod

corresponding to U′ ⊆ D, such that U and U′ differ only in Xi. Because Xi does not

occur in either t or t′, these two terms cancel. Applying this to all elements of Sod and Sev,

the two subsets cancel each other, thus proving (a). If |D| is odd, elements of Sod and Sev

have +ve and −ve signs, respectively, and the rest of the argument follows.

The final step is to identify the neighbors of Xi and using the local Markov property,

P (Xi|D \ {Xi} ∪MD) = P (Xi|Mi), for strictly positive distributions [80] !.

The equivalence of the per-variable factors and MBCFs implies that, instead of searching

over all size l subsets of X, we can estimate canonical factors by searching for MBs of

individual RVs. Assuming that the MBs are estimated correctly, Eq A.6 will produce the

same canonical factors as Eq A.2. Our structure learning algorithm therefore requires the

estimation of MBs of each RV. We only need to ensure structural consistency. Searching

for n MBs, as opposed to nl MBs in MBCF, saves us O(nl−1) computations.

The per-variable canonical factors and MBCFs do not deny the hardness of computing

likelihood in MRFs [1]. This is because computing P (X = x) is equivalent to computing
1
Z .

207

Appendix B

Deriving the normalization term and

quantifying the correction

Our conditional distribution for each variable Xi in condition c is

P (Xi = xcid|Mci = mcid) ∝
∏

E∈powerset(C) : c∈E

P (Xi|M∗
Ei),

Consider the case where we have two conditions C = {1, 2}. The conditional for condition

1 is

P (Xi = x1id|M1i = m1id) ∝ P (Xi = x1id|M∗
1i)P (Xi = x1id|M∗

3i)

where 1 and 3 denote the condition sets {1} and {1, 2}. Assuming conditional Gaussians

for each condition set

P (Xi = x1id|M∗
1i = m∗

1id) =
1√

2πσ2
1i

exp
(

(x1id −wT
1 m∗

1id)
2

−2σ2
1i

)

We let µ1id denote wT
1 m1id, that is the mean for the conditional Gaussian. The product of

conditionals in 1 and 3 is

1

2πσ1iσ3i
exp

(
(x1id − µ1id)2

−2σ2
1i

+
(x1id − µ3id)2

−2σ2
3i

)

208

Appendix B. Deriving the normalization term and quantifying the correction

=
1

2πσ1iσ3i
exp

(
−1

2

[
(x1id − µ1id)2σ2

3i + (x1id − µ3id)2σ2
1i

σ2
1iσ

2
3i

])

=
1

2πσ1iσ3i
exp

(
−1

2

[
(x2

1id + µ2
1id − 2x1idµ1id)σ2

3i + (x2
1id + µ2

3id − 2x1idµ3id)σ2
1i

σ2
1iσ

2
3i

])

=
1

2πσ1iσ3i
exp

(
− 1

2σ2
1iσ

2
3i

[(x2
1id + µ2

1id − 2x1idµ1id)σ
2
3i

+(x2
1id + µ2

3id − 2x1idµ3id)σ
2
1i]

)

=
1

2πσ1iσ3i
exp

(
− 1

2σ2
1iσ

2
3i

[(x2
1id(σ

2
3i + σ2

1i)− 2x1id(µ1idσ
2
3i + µ3idσ

2
1i)

+µ2
1idσ

2
3i + µ2

3idσ
2
1i]

)

=
1

2πσ1iσ3i
exp

(
− σ2

3i + σ2
1i

2σ2
1iσ

2
3i

[(x2
1id −

2x1id(µ1idσ2
3i + µ3idσ2

1i)

σ2
3i + σ2

1i

+
µ2

1idσ
2
3i + µ2

3idσ
2
1i

σ2
3i + σ2

1i

]
)

Completing the square

1

2πσ1iσ3i
exp

(
− σ2

3i + σ2
1i

2σ2
1iσ

2
3i

[
(x2

1id −
2x1id(µ1idσ2

3i + µ3idσ2
1i)

σ2
3i + σ2

1i

+
(µ1idσ2

3i + µ3idσ2
1i)

2

(σ2
3i + σ2

1i)
2

−(µ1idσ2
3i + µ3idσ2

1i)
2

(σ2
3i + σ2

1i)
2

+
µ2

1idσ
2
3i + µ2

3idσ
2
1i

σ2
3i + σ2

1i

])

1

2πσ1iσ3i
exp

(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

[(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2

− (µ1idσ2
3i + µ3idσ2

1i)
2

(σ2
3i + σ2

1i)
2

+
µ2

1idσ
2
3i + µ2

3idσ
2
1i

σ2
3i + σ2

1i

])

209

Appendix B. Deriving the normalization term and quantifying the correction

=
1

2πσ1iσ3i
exp

(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2)

exp
(
− σ2

3i + σ2
1i

2(σ2
1iσ

2
3i)

[
−(µ1idσ2

3i + µ3idσ2
1i)

2 + (µ2
1idσ

2
3i + µ2

3idσ
2
1i)(σ

2
3i + σ2

1i)

(σ2
3i + σ2

1i)
2

]
)

=
1

2πσ1iσ3i
exp

(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2)

exp
(
− 1

2σ2
1iσ

2
3i

[
−µ2

1idσ
4
3i − µ2

3idσ
4
1i − 2µ1idµ3idσ2

3iσ
2
1i + (µ2

1idσ
2
3i + µ2

3idσ
2
1i)(σ

2
3i + σ2

1i)

σ2
3i + σ2

1i

]
)

=
1

2πσ1iσ3i
exp

(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2)

exp
(
− 1

2σ2
1iσ

2
3i

[
−2µ1idµ3idσ2

3iσ
2
1i + µ2

3idσ
2
1iσ

2
3i + µ2

1idσ
2
3iσ

2
1i

σ2
3i + σ2

1i

]
)

=
1

2πσ1iσ3i
exp

(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2)

exp
(
− 1

2
[
−2µ1idµ3id + µ2

3id + µ2
1id

σ2
3i + σ2

1i

]
)

=
1√

2π σ1iσ3i√
σ2
1i+σ2

3i

exp
(
− 1

2
σ2
1iσ

2
3i

σ2
3i+σ2

1i

(
x1id −

µ1idσ2
3i + µ3idσ2

1i

σ2
3i + σ2

1i

)2)

1√
2π(σ2

1i + σ2
3i)

exp
(
− 1

2
[
−2µ1idµ3id + µ2

3id + µ2
1id

σ2
3i + σ2

1i

]
)

210

Appendix B. Deriving the normalization term and quantifying the correction

Thus we can think of P (Xi|M1i)P (Xi|M3i) as a product

N (x1id|
µ1idσ2

3i + µ3idσ2
1i

σ2
3i + σ2

1i

;
σ1iσ3i√
σ2

1i + σ2
3i

)N (µ1id|µ3id;
√

σ2
1i + σ2

3i)

The normalization constant is therefore N (µ1id|µ3id;
√

σ2
1i + σ2

3i). The valid probabil-

ity distribution is given by the first Gaussian and this is what on which we must compute

the pseudo likelihood. However, we work directly with the product of conditionals and

this has two ramifications: (a) the score improvement can be computed very efficiently,

(b) the second Gaussian acts as a smoothing term over the parameter µ1id. In particular,

if we were estimating a new parameter µ1id, the second Gaussian specifies the probability

of the new µ1id using a Gaussian centered around the mean computed from the pooled

dataset. Finally the change in score improvement due to this term is a ratio of Gaussians

and does not affect the overall score of our model significantly. In our experiments, we

find this score to have better performance than if we were to subtract out this term.

B.1 Correction for the unnormalized score

Because the MB per condition set independently influence the conditional, the pseudo

likelihood PLLV(Xi,Mci, c) decomposes as
∑

E s.t. c∈E PLLV (Xi,M∗
Ei, c). The net score

improvement of adding an edge {Xi, Xj} to a condition set C as given by:

∆Score{Xi,Xj},C =
∑

c∈C

|Dc|∑

d=1

PLLV(Xi,Mci ∪ {Xj}, c)− PLLV(Xi,Mci, c) +

PLLV(Xj,Mcj ∪ {Xi}, c)− PLLV(Xj,Mcj, c)(B.1)

Considering only the effect on Xi. Let C = 1, 2, C = {1}.

∆Score{Xi,Xj},1 = PLLV(Xi,M1i ∪ {Xj}, 1)− PLLV(Xi,M1i, 1) (B.2)

211

Appendix B. Deriving the normalization term and quantifying the correction

P (Xi = x1id|M1i = m1id) =
1

N (µ1id|µ3id,
√

σ2
1 + σ2

3)

∏

E∈powerset(C) : c∈E

P (Xi|M∗
Ei),

where µ1id = wT
1im1id and µ3id = wT

3im3id. Here µ3id and σ3i are the parameters of the

conditional Gaussian from condition set {1, 2}. The pseudo likelihood of D1 is

PLL =
|D1|∑

d=1

logP (Xi = x1id|M1i = m1id). (B.3)

which for the conditional Gaussian model is

PLL =
|D1|∑

d=1

log
1

N (µ1id|µ3id,
√

σ2
1i + σ2

3i)

P (Xi = x1id|M∗
1i = m∗

1id)P (Xi = x1id|M∗
3i = m∗

3id). (B.4)

PLLold = −
|D1|∑

d=1

logN (µ1id|µ3id,
√

σ2
1i + σ2

3i)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
1i = m∗

1id)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
3i = m∗

3id). (B.5)

Now lets look at the score improvement on adding Xj to Xi’s Markov blanket in condition

1. This changes M∗
1i to M∗

1i ∪ {Xj}. Let σ+
1i and also w+

1i be the new parameters of the

212

Appendix B. Deriving the normalization term and quantifying the correction

conditional for Xi on adding Xj to M∗
1i. The new pseudo likelihood is

PLLnew = −
|D1|∑

d=1

logN (µ+
1id|µ3id,

√
σ2+

1i + σ2
3i)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
1i ∪ {Xi} = m∗

1id ∪ {x1jd})

+
|D1|∑

d=1

logP (Xi = x1id|M∗
3i = m∗

3id). (B.6)

The score improvement PLLnew − PLLold is given by

∆PLL = −
|D1|∑

d=1

logN (µ+
1id|µ3id,

√
σ2+

1i + σ2
3i)

+
|D1|∑

d=1

logN (µ1id|µ3id,
√

σ2
1i + σ2

3i)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
1i ∪ {Xi} = m∗

1id ∪ {x1jd})

−
|D1|∑

d=1

logP (Xi = x1id|M∗
1i = m∗

1id) (B.7)

We already take into account the last two terms. The correction we need to add is

Corr = −
|D1|∑

d=1

logN (µ+
1id|µ3id,

√
σ2+

1i + σ2
3i) +

|D1|∑

d=1

logN (µ1id|µ3id,
√

σ2
1i + σ2

3i)

(B.8)

Corr = −
|D1|∑

d=1

log
N (µ+

1id|µ3id,
√

σ2+
1i + σ2

3i)

N (µ1id|µ3id,
√

σ2
1i + σ2

3i)
(B.9)

213

Appendix B. Deriving the normalization term and quantifying the correction

Now lets consider the case where we are adding the edge {Xi, Xj} to condition set

{1, 2}. In this situation, the new parameters are w+
3id and σ+

3id. Because this affects both

conditions 1 and 2, the score improvement needs to take into account both D1 and D2.

Let PLL1
old be the old pseudo likelihood in condition 1, and PLL2

old be the old pseudo

likelihood in condition 2. Let PLL1
old be the same as in equation B.5. PLL2

old is given by

a similar equation

PLL2
old = −

|D1|∑

d=1

logN (µ2id|µ3id,
√

σ2
2i + σ2

3i)

+
|D2|∑

d=1

logP (Xi = x2id|M∗
2i = m∗

2id)

+
|D2|∑

d=1

logP (Xi = x2id|M∗
3i = m∗

3id). (B.10)

The new PLL in condition 1 is

PLL1
new = −

|D1|∑

d=1

logN (µ1id|µ+
3id,

√
σ2

1i + σ2+
3i)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
1i = m∗

1id)

+
|D1|∑

d=1

logP (Xi = x1id|M∗
3i ∪ {Xj} = m∗

3id ∪ {x1jd}). (B.11)

The correction term will now includes two addition terms

Corr = −
|D1|∑

d=1

logN (µ1id|µ+
3id,

√
σ2

1i + σ2+
3i) +

|D1|∑

d=1

logN (µ1id|µ3id,
√

σ2
1i + σ2

3i)

−
|D2|∑

d=1

logN (µ2id|µ+
3id,

√
σ2

2i + σ2+
3i) +

|D2|∑

d=1

logN (µ2id|µ3id,
√

σ2
2i + σ2

3i)

(B.12)

214

Appendix B. Deriving the normalization term and quantifying the correction

which on simplification is

Corr = −
|D1|∑

d=1

log
N (µ1id|µ+

3id,
√

σ2
1i + σ2+

3i)

N (µ1id|µ3id,
√

σ2
1i + σ2

3i)

−
|D2|∑

d=1

log
N (µ2id|µ+

3id,
√

σ2
2i + σ2+

3i)

N (µ2id|µ3id,
√

σ2
2i + σ2

3i)

(B.13)

215

Appendix C

Deriving a decomposable pseudo

likelihood score in the MUG model

Here we begin with the expected pseudo log likelihood and derive a score that decomposes

over the individual random variables. Recall from Chapter 6, Section 6.2.3, the expected

pseudo likelihood of the completed data is as follows, where we take the expectation wrt

to the conditional distribution P (Z|D, θ′), where θ′ is the current estimate of parameters

(from a prior or previous iteration) :

EP (Z|D,θ′)[PLL(θ; z,D)] =
∑

z∈Z

P (Z|D, θ′)logP (Z,D|θ) (C.1)

Here Z is the set of possible assignments to Z. We rewrite the above as

Q(θ, θ′) =
∑

z∈Z

P (Z|D, θ′)logP (D|Z, θ)P (Z|θ) (C.2)

We can assume that P (Z|D, θ′) = P (Z1, · · · , Z|D||D, θ′) =
∏|D|

d=1 P (Zd|xd, θ′). Sim-

ilarly, P (D|Z, θ) =
∏|D|

d=1 P (xd|Zd, θ), and P (Z|θ) =
∏|D|

d=1 P (Zd|θ), producing:

Q(θ, θ′) =
∑

z∈Z

|D|∏

d1=1

P (Zd1|xd1 , θ
′)

|D|∑

d=1

logP (xd|Zd, θ)P (Zd|θ) (C.3)

216

Appendix C. Deriving a decomposable pseudo likelihood score in the MUG model

Q(θ, θ′) =
∑

Z1

∑

Z2

. . .
∑

Z|D|

|D|∏

d1=1

P (Zd1|xd1 , θ
′)

|D|∑

d=1

logP (xd|Zd, θ)P (Zd|θ) (C.4)

Taking the product inside the sum of d,

Q(θ, θ′) =
∑

Z1

∑

Z2

. . .
∑

Z|D|

|D|∑

d=1

|D|∏

d1=1

P (Zd1 |xd1 , θ
′)

 logP (xd|Zd, θ)P (Zd|θ) (C.5)

In fact we can move the sum of d to be the outermost sum

Q(θ, θ′) =
|D|∑

d=1

∑

Z1

∑

Z2

. . .
∑

Z|D|

|D|∏

d1=1

P (Zd1|xd1 , θ
′)

 logP (xd|Zd, θ)P (Zd|θ) (C.6)

Let us consider one particular datapoint e and reorder the sums of Zd :

∑

Ze

∑

Z1

· · ·
∑

Ze−1

∑

Ze+1

· · ·
∑

Z|D|

|D|∏

d1=1

P (Zd1|xd1 , θ
′)

 logP (xe|Ze, θ)P (Ze|θ)

Rearranging terms

∑

Ze

logP (xe|Ze, θ)P (Ze|θ)

∑

Ze−1

∑

Ze+1

· · ·
∑

Z|D|

|D|∏

d1=2

P (Zd1|xd1)

(

∑

Z1

P (Z1|x1, θ
′)

)

∑
Z1

P (Z1|x1, θ′) = 1. Similarly all the terms inside the outermost parenthesis become 1

leaving behind terms only for eth datapoint,
∑

Ze
logP (xe|Ze, θ)P (Ze|θ). Thus we have

Q(θ, θ′) =
|D|∑

d=1

∑

Zd

P (Zd = k|xd, θ
′)logP (Zd = k|θ)P (xd|Zd = k, θ) (C.7)

The P (Zd = k|xd, θ′) are the expected probabilities γkd of xd being generated from the kth

model given the previous parameters θ′. Further, P (Zd = k|θ) = αk. Finally, P (xd|Zd =

k, θ) = P (xd|θk)

217

Appendix C. Deriving a decomposable pseudo likelihood score in the MUG model

Q(θ, θ′) =
|D|∑

d=1

∑

Zd

γdklogαkP (xd|θk) (C.8)

Using our pseudo likelihood definition of P (xd):

Q(θ, θ′) =
|D|∑

d=1

∑

Zd

γdklogαk

N∏

i=1

P (Xi = xid|Nki = nkdi, θki) (C.9)

which decomposes into pseudo likelihood scores of a variable and its neighborhood:

Q(θ, θ′) =
|D|∑

d=1

K∑

k=1

γdk(logαk +
N∑

i=1

logP (Xi = xid|Nki = nkdi, θki)) (C.10)

Q(θ, θ′) =
K∑

k=1

|D|∑

d=1

γdk(logαk +
N∑

i=1

logP (Xi = xid|Nki = nkdi, θki)) (C.11)

Q(θ, θ′) =
K∑

k=1

|D|∑

d=1

γdk(
N∑

i=1

logαk

N
+

N∑

i=1

logP (Xi = xid|Nki = nkdi, θki)) (C.12)

Q(θ, θ′) =
K∑

k=1

|D|∑

d=1

γdk(
N∑

i=1

logα
1
N
k P (Xi = xid|Nki = nkdi, θki)) (C.13)

Reordering the summations

Q(θ, θ′) =
N∑

i=1

K∑

k=1

|D|∑

d=1

γdklogα
1
N
k P (Xi = xid|Nki = nkdi, θki) (C.14)

The sum decomposes over each variable, indicating we can optimize this sum by inde-

pendently optimizing over each variable. Compare this with the score in Eq 6.15 we had

prior to introducing Zd, where it was not clear how to optimize over each variable:

logP (D|G, θ1, · · · , θK) =
|D|∑

d=1

log

(
K∑

k=1

αk

(
N∏

i=1

P (Xi = xdi|Nki = nkdi, θki)

))
(C.15)

218

Appendix D

Parameter tying in the conditional

Gaussian mixture

In this approach, we force the dimensions of the weight vector Aki to be the same for

shared parents, where Aki represents the weight vector for variable Xi in condition k.

To derive ML estimates of Aki we split the weight vector into the shared and unshared

parts, and take derivatives with respective to these parts. Because the derivation holds

for any Xi, we drop the subscript i for notational clarity. Thus, Aki = Ak. We write

Ak = [BkC], where Bk represents the weights for neighbors of X specific to condition k,

and C represent the weight vector for the shared neighbors across conditions. Similarly we

write mkj , which is the joint assignment to neighbors of X in condition k from datapoint

j as, mkj = [pkjqj], where pkj represents the assignment to the condition k-specific

neighbors of X and qj represents the assignment to the shared neighbors of X . Putting

this in the case of k = {1, 2}

• ML estimate of shared parameters C

δ

δC
=

|D|∑

j=1

γj1

(
δ

δB

(x1j −A1m1j − b1)2

−2σ1

)

219

Appendix D. Parameter tying in the conditional Gaussian mixture

+γj2

(
δ

δC

(x1j −A2m2j − b2)2

−2σ2

)

We replace A1m1j = B1p1j + Cqj and A2m2j = B2p1j + Cqj:

δ

δC
=

|D|∑

j=1

γj1

(
δ

δC

(x1j −B1p1j −Cqj − b1)2

−2σ1

)

+γj2

(
δ

δC

(x1j −B2p2j −Cqj − b2)2

−2σ2

)

=
|D|∑

j=1

γj1

(
2(x1j −B1p1j −Cqj − b1)(−qT

j)

−2σ1

)

+γj2

(
2(x1j −B2p2j −Cqj − b2)(−qT

j)

−2σ2

)

Canceling the 2 and the signs and grouping terms with and without C

=
|D|∑

j=1

γj1

(
(x1j −B1p1j − b1)qT

j

σ1

)
+ γj2

(
(x1j −B2p2j − b2)qT

j

σ2

)

−γj1

(
CqjqT

j

σ1

)
− γj2

(
CqjqT

j

σ2

)

Setting to 0 and solving for C gives

C =

∑|D|
j=1 γj1

(
(x1j−B1p1j−b1)qT

j

σ1

)
+ γj2

(
(x1j−B2p2j−b2)qT

j

σ2

)

∑|D|
j=1

γj1qjqT
j

σ1
+

γj2qjqT
j

σ2

• ML estimate of unshared parameters B1

δ

δB1
=

|D|∑

j=1

γj1

(
δ

δB1

(x1j −B1p1j −Cqj − b1)2

−2σ1

)

+γj2

(
δ

δB1

(x1j −B2p2j −Cqj − b2)2

−2σ2

)

220

Appendix D. Parameter tying in the conditional Gaussian mixture

=
|D|∑

j=1

γj1

(
2(x1j −B1p1j −Cqj − b1)(−pT

1j)

−2σ1

)

Grouping terms with and without B1

=
|D|∑

j=1

γj1

(
(x1j −Cqj − b1)(pT

1j)

σ1

)
−

|D|∑

j=1

γj1B1p1jpT
1j

σ1

Setting to 0 and solving for B1 gives the same estimate as in the completely unshared

case

B1 =

∑|D|
j=1 γj1(x1j −Cqj − b1)(pT

1j)
∑|D|

j=1 γj1p1jpT
1j

221

Appendix E

Supplementary GO information of

quiescent and non-quiescent populations

222

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

Figure E.1: GO processes and TF targets for subgraphs from the NIPD-inferred networks
using the quiescent population. The text below each subgraph indicates the process. The
diamonds represent the TFs. A TF is connected to the subgraph which is enriched in the
targets of the TF. The circular nodes represent the genes in the network and color represents
the extent of differential expression, red: up-regulated, green: down-regulated.

223

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

INDEP NIPD MUG PVEM GC-COND GC-CONDSH
GOSLIM Process

amino acid and derivative QNQ QNQ Q Q
metabolic process
carbohydrate metabolic Q Q
process
cell wall organization Q Q
and biogenesis
cellular respiration QNQ QNQ Q QNQ QNQ QNQ
cofactor metabolic process Q Q NQ
generation of precursor QNQ QNQ QNQ QNQ QNQ QNQ
metabolites and energy
lipid metabolic process QNQ QNQ NQ Q Q
protein catabolic process Q
protein folding QNQ QNQ QNQ QNQ
response to chemical Q Q Q NQ
stimulus
sporulation Q Q Q NQ
vesicle-mediated transport Q Q
vitamin metabolic process QNQ NQ

GOSLIM Function
DNA binding Q NQ QNQ
enzyme regulator activity Q Q NQ NQ
ligase activity Q Q
lyase activity QNQ QNQ Q NQ Q
oxidoreductase activity QNQ QNQ Q QNQ QNQ Q
peptidase activity Q Q
protein binding QNQ QNQ Q Q Q
transporter activity QNQ QNQ QNQ QNQ QNQ Q

GOSLIM Component
cell cortex QNQ Q
cell wall QNQ
endomembrane system Q
endoplasmic reticulum NQ NQ
mitochondrial envelope QNQ QNQ Q QNQ QNQ QNQ
peroxisome Q QNQ Q QNQ QNQ Q
plasma membrane NQ NQ QNQ
ribosome NQ NQ NQ Q
vacuole Q

Table E.1: GO Slim process, function and cellular component using the different
condition-specific network learning algorithms. Q: Quiescent only, NQ: Non-quiescent
only and QNQ: Quiescent and Non-quiescent.

224

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

aerobic respiration

GC-COND YDR327W,WBP1,QCR6,COX13,QCR10,QCR8,CYC1
MUG UBC8,QCR6,YGL088W,QCR9,QCR8
INDEP YET3,NDE2,KGD1,SDH2,AAT2

QCR7,UBC8,THO1,YGL088W,QCR9,QCR8
NIPD QCR7,UBC8,THO1,ILV1,QCR6,YGL088W,COX13,QCR9,QCR8

QCR6,COX13,QCR9,AVT7,COX7,SNC2
PVEM HMRA2,TSC13,HNT1,RIP1,KGD1,SDH2

QCR7,UBC8,QCR9,QCR8,CYC1,GCD1

ammonium
transport

GC-COND OM14,ADY2,ATO3,ALD4
SHM1,ADY2,YRB1,BMH2,ATO3,YMR114C

GC-CONDSH ACS1,ADY2,ATO3,ADH2
ADY2,VCX1,BMH2,ATO3,YGR146C,RNR4

INDEP ADY2,ATO3,ADH2
NIPD ADY2,CTA1,ATO3

REG2,ADY2,ATO3,FOX2,PXA1
PVEM ACS1,OM14,ADY2,ATO3

ADY2,ATO3,ECI1,TEF1

organelle ATP
synthesis coupled
electron transport

GC-COND COX13,QCR8,COX7
YDR327W,WBP1,QCR6,COX13,QCR10,QCR8,CYC1
RIP1,SDH2,COX8

GC-CONDSH AGX1,COX8,COX5A
QCR6,COX13,QCR9,HXT4,QCR8,CYC1,ACO1,GTO3
ATP16,HNT1,SDH4,RIP1,FAS1,YKL199C,GAP1,SDH2,IDI1

MUG UBC8,QCR6,YGL088W,QCR9,QCR8
COX9,COX13,SIP4,MEF2,COX7

NIPD QCR7,UBC8,THO1,ILV1,QCR6,YGL088W,COX13,QCR9,QCR8
QCR6,QCR8,COX7
QCR9,QCR8,COX7
COX13,QCR8,COX7
QCR6,COX13,QCR9,AVT7,COX7,SNC2

PVEM HSP30,COX9,COX8
ATP3,COX9,INH1,TIM13,COX8,ATP20
QCR7,UBC8,QCR9,QCR8,CYC1,GCD1

oxidative
phosphoryl-ation

GC-COND ATP1,CRF1,AFG1,ATP2,PUS5,NDI1,TAF9,GAS5
INDEP ATP3,INH1,COX8

QCR6,COX13,AVT7,COX7
QCR7,UBC8,THO1,YGL088W,QCR9,QCR8

NIPD ERV46,ATP16,CDC48,YGR001C,MIR1,ATP2,CCW12,IDP2,NDI1
ATP3,INH1,NBP2,COX8,YOR052C,ATX2

PVEM ATP3,COX9,INH1,TIM13,COX8,ATP20
ECM32,QCR6,COX13,COX7,YOR292C,ATP15

nitrogen utilization GC-COND OM14,ADY2,ATO3,ALD4
GC-CONDSH ACS1,ADY2,ATO3,ADH2
INDEP ADY2,ATO3,ADH2
NIPD ADY2,CTA1,ATO3

REG2,ADY2,ATO3,FOX2,PXA1
PVEM ACS1,OM14,ADY2,ATO3

ADY2,ATO3,ECI1,TEF1

polyamine catabolic process NIPD GDH3,UTR1,SWP1,ALD3,ALD2
YDR154C,YJL016W,EMP46,YMR090W,ALD3,ALD2

225

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

carboxylic acid biosynthetic
process

MUG ETR1,FMP37,AYR1
INDEP ETR1,YIL039W,AYR1,PEX11,MSS18
NIPD ACS1,ETR1,AYR1
PVEM ETR1,FMP37,SOD2,AYR1,YHM2
GC-CONDSH YBR016W,TAT1,BMH1,YJL217W,YHM2,PUT4,ODC1

monocarboxylic acid
metabolic process

GC-CONDSH YAT1,YAT2,JEN1
POT1,YIR016W,PHO84,HRP1,PEX11
YAT1,YBR014C,YAT2,NUP82,OPI3,ZRT2,YLR179C,ERG10

ethanol metabolic process NIPD CAT2,ADH2,ALD4
MUQ1,PDC1,PDC5,YMR144W,PAI3,SIP18,YMR187C

acetyl-CoA metabolic process NIPD YET3,NDE2,LPD1,SDS23,KGD1,FAS1,KNS1,SDH2,AAT2
carboxylic acid transport GC-CONDSH YBR016W,TAT1,BMH1,YJL217W,YHM2,PUT4,ODC1
pentose metabolic process NIPD HSP26,RDH54,SOL4,YJR096W,SOD1
pentose-phosphate shunt GC-CONDSH TKL2,KNH1,YDL218W,RPS13,CHO2,GND2

NIPD TKL2,YDL218W,RPL2A,GND2,FYV7,YMR118C
pentose-phosphate shunt, GC-COND YAL061W,VHS1,GRH1,
oxidative branch SOL4,GND2,YKL151C,GAD1
protein folding MUG HSP78,PMP3,HSP104,SIS1,STI1

NIPD HSP42,HSP78,YDR266C,BIO2,HSP104,SIS1,YDJ1,STI1
PVEM OST4,HSP78,SSA2,HSP104,SIS1,MRPS18,STI1

protein deubiquitination INDEP DOA4,PUF4,UBP10

Table E.2: GO processes in which subgraphs identified by different methods are enriched.
The first column shows the process, the second column the method, and the third column
describes the genes within each of the subgraphs.

226

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

Figure E.2: GO processes and TF targets for subgraphs from the NIPD-inferred networks
using the non-quiescent population. Legend is similar to Fig E.1

227

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

Figure E.3: GO processes and TF targets for subgraphs from the INDEP-inferred networks
using the quiescent population. The text below each subgraph indicates the process. The
diamonds represent the TFs. A TF is connected to the subgraph which is enriched in the
targets of the TF. The circular nodes represent the genes in the network and color represents
the extent of differential expression, red: up-regulated, green: down-regulated.

228

Appendix E. Supplementary GO information of quiescent and non-quiescent populations

Figure E.4: GO processes and TF targets for subgraphs from the INDEP-inferred networks
using the non-quiescent population. Legend is similar to Fig E.3

229

Glossary

condition A global, discrete variable that influences the changes in

gene, protein and other macromolecular expression at a

genome-wide scale.

microarrays A glass slide on which the complete genome of an organ-

ism is printed.

gene expression mRNA level of a particular gene used to quantify the ac-

tivity level of a gene.

genome The collection of the functional elements of a DNA, typ-

ically referring to the complete set of genes.

proteome The collection of all proteins in a cell.

metabolome The collection of all metabolites within a cell.

phenotype Literally derived from the words “phenomenon” and de-

scribes physical, observable characteristic of an organism

in response to a genetic perturbation. Ideally, we want

identify the gene causing a phenotype.

transcription factors Proteins which activate or repress, often combinatorially,

the process of transcription – making of mRNA from the

230

Glossary

DNA sequence of gene.

master regulator Transcription factors that are generic and control a vari-

ety of target genes, often involved in developmental reg-

ulatory networks or in stress response.

physical network A network of bio-chemical entities (genes, proteins, me-

tabolites), with edges representing interactions where the

nodes physically interact. Examples are two proteins in-

teracting to form a protein dimer.

Gene ontology Controlled vocabulary of hierarchically arranged terms a

used to annotate genes in different model organisms.

ortholog A gene from one species is said to be an ortholog of a

gene from another species, if they have high sequence

similarity and have been inherited from a common an-

cestor.

functional network A network of genes, and other macro-molecules, where

the edges correspond to a functional or phenomenologi-

cal relationship. The relationship is often specified by the

amount of statistical dependence between the network

nodes.

network inference The problem of identifying the structure (the edges) and

function (type of statistical dependency) among network

nodes using measured attributes of the network nodes.

graph A mathematical object composed of a set of nodes

(genes, or random variables) and a set of edges connect-

ing the nodes. Undirected graphs are those where edges

231

Glossary

don’t have directionality and directed graphs are those

where edges do have directionality. Nodes of the graph

are also called vertices.

Markov blanket A concept used in probabilistic graphical models, used to

specify the immediate neighborhood of a node.

Shortest path A path between two vertices of an network is a set of

edges which connect one vertex to another.

Connected component A concept from graph theory, which specifies the part of

the graph where every vertex is connected, or has a path,

to every other vertex.

Vertex degree The number of immediate neighbors of a vertex.

Indegree A concept in a directed graph defined for each vertex, v.

The indegree is the number of nodes with edges pointing

to v.

Outdegree A concept in a directed graph defined for each vertex, v.

The outdegree is the number of nodes with edges point-

ing away from v.

Hidden variables Random variables that are part of the model, but do not

correspond to anything that is measurable. Typically, hid-

den variables influence the state of the observed vari-

ables: the variables corresponding to measurable quan-

tities.

Expectation maximization An iterative meta-algorithm used often in machine learn-

ing to learn parameters of a model with hidden variables.

Hidden variables are assigned their expected values and

232

Glossary

parameters are estimated using the combined set of ex-

pected and observed values of the variables.

Probabilistic graphical models A class of models from machine learning which are used

to represent statistical relationships among multiple enti-

ties. The model has two components: a graph structure

describing which entities are dependent on each other,

and a set of probabilistic functions describing the type of

statistical dependency. Some examples of types are lin-

ear, non-linear, pairwise, higher-order etc.

Markov random fields A class of probabilistic graphical models in which the

graph structure is undirected. These models can capture

cyclic dependencies.

Bayesian networks A type of probabilistic graphical model in which the

graph structure is directed. The graph structure is con-

strained to prevent cycles, and therefore cannot capture

cyclic dependencies.

EM Expectation maximization

PLL Pseudo log likelihood.

MRF Markov random field.

MBS Markov Blanket Search.

CIN Cluster and Infer Networks.

PGM Probabilistic graphical model.

NIPD Network inference with pooling data.

233

Glossary

INDEP INDEPendent learner of graphs from two or more condi-

tions, one per condition.

MUG Mixture of graphs.

PVEM Per-variable Expectation Maximization model.

GC-COND Graph component with CONDditional distributions.

GC-CONDSH GC-COND model with parameter tying-based data shar-

ing.

234

References

[1] Pieter Abbeel, Daphne Koller, and Andrew Y. Ng. Learning factor graphs in poly-
nomial time and sample complexity. JMLR, 7:1743–1788, 2006.

[2] Reka Albert and Albert-Laszlo Barabasi. Topology of evolving networks: local
events and universality. Phys. Rev. Lett., 85:5234–5237, 2000.

[3] C. Allen, S. Büttner, A. D. Aragon, J. A. Thomas, O. Meirelles, J. E. Jaetao,
D. Benn, S. W. Ruby, M. Veenhuis, F. Madeo, and M. Werner-Washburne. Iso-
lation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J
Cell Biol, 174(1):89–100, July 2006.

[4] A. D. Aragon, G. A. Quiñones, E. V. Thomas, S. Roy, and M. Werner-Washburne.
Release of extraction-resistant mrna in stationary phase saccharomyces cerevisiae
produces a massive increase in transcript abundance in response to stress. Genome
Biol, 7(2), 2006.

[5] Anthony D. Aragon, Angelina L. Rodriguez, Osorio Meirelles, Sushmita Roy,
George S. Davidson, Chris Allen, Ray Joe, Phillip Tapia, Don Benn, and Margaret
Werner-Washburne. Characterization of differentiated quiescent and non-quiescent
cells in yeast stationary-phase cultures. Molecular Biology of the Cell, 2008.

[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet, 25(1):25–29, May 2000.

[7] Janne Aukia, Samuel Kaski, and Janne Sinkkonen. Inferring vertex properties from
topology in large network. In NIPS 2007 Workshop on Statistical Network Models,
2007.

235

References

[8] Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego
di Bernardo. How to infer gene networks from expression profile. Molecular Sys-
tems Biology, 3(78), 2007.

[9] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo, F. Robert, D. B.
Gordon, E. Fraenkel, T. S. Jaakkola, R. A. Young, and D. K. Gifford. Computational
discovery of gene modules and regulatory networks. Nat Biotechnol, 21(11):1337–
1342, November 2003.

[10] A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular
processes and their regulation. J Comput Biol, 12(7):909–927, September 2005.

[11] J. Beirlant, E. J. Dudewicz, L. Györfi, and E. C. Meulen. Nonparametric entropy
estimation: An overview. International Journal of the Mathematical Statistics Sci-
ences, 6:17–39, 1997.

[12] Archana Belle, Amos Tanay, Ledion Bitincka, Ron Shamir, and Erin K. O’Shea.
Quantification of protein half-lives in the budding yeast proteome. PNAS,
103(35):13004–13009, August 2006.

[13] S. Bergmann, J. Ihmels, and N. Barkai. Similarities and differences in genome-wide
expression data of six organisms. PLoS Biol, 2(1), January 2004.

[14] Sven Bergmann, Jan Ihmels, and Naama Barkai. Iterative signature algorithm for
the analysis of large-scale gene expression data. Physical review. E, Statistical,
nonlinear, and soft matter physics, 67(3 Pt 1), March 2003.

[15] Julian Besag. Efficiency of pseudolikelihood estimation for simple gaussian fields.
Biometrika, 64(3):616–618, December 1977.

[16] Alexandre Blais and Brian David Dynlacht. Constructing transcriptional regulatory
networks. Genes and Development, 19, 2005.

[17] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet
allocation. Journal of Machine Learning Research, 3, 2003.

[18] Richard Bonneau, David J Reiss, Paul Shannon, Marc Facciotti, Leroy Hood,
Nitin S Baliga, and Vesteinn Thorsson. The inferelator: an algorithm for learning
parsimonious regulatory networks from systems-biology data sets de novo. Genome
Biology, 2006.

[19] R. R. Bouckaert. Probabilistic network construction using the minimum description
length principle. Lecture Notes in Computer Science, 747:41–??, 1993.

236

References

[20] Elizabeth I. Boyle, Shuai Weng, Jeremy Gollub, Heng Jin, David Botstein,
Michael M. Cherry, and Gavin Sherlock. Go::termfinder-open source software for
accessing gene ontology information and finding significantly enriched gene ontol-
ogy terms associated with a list of genes. Bioinformatics, 20(18):3710+, 2005.

[21] Rainer Breitling, Anna Amtmann, and Pawel Herzyk. Graph-based iterative group
analysis enhances microarray interpretation. BMC Bioinformatics, 5(1):100+, July
2004.

[22] Michael J. Buck and Jason D. Lieb. A chromatin-mediated mechanism for speci-
fication of conditional transcription factor targets. Nat Genet, 38(12):1446–1451,
December 2006.

[23] Brian W W. Busser, Martha L L. Bulyk, and Alan M M. Michelson. Toward a
systems-level understanding of developmental regulatory networks. Current opin-
ion in genetics & development, October 2008.

[24] Robert Castelo and Alberto Roverato. A robust procedure for gaussian graphical
model search from microarray data with larger than . Journal of Machine Learning
Research, 6:2621–2650, 2006.

[25] Juan I. Castrillo, Leo A. Zeef, David C. Hoyle, Nianshu Zhang, Andrew Hayes,
David C. J. Gardner, Michael J. Cornell, June Petty, Luke Hakes, Leanne Wardle-
worth, Bharat Rash, Marie Brown, Warwick B. Dunn, David Broadhurst, Kerry
O’Donoghue, Svenja S. Hester, Tom P. J. Dunkley, Sarah R. Hart, Neil Swainston,
Peter Li, Simon J. Gaskell, Norman W. Paton, Kathryn S. Lilley, Douglas B. Kell,
and Stephen G. Oliver. Growth control of the eukaryote cell: a systems biology
study in yeast. Journal of Biology, 6:4+, April 2007.

[26] Jeffrey T. Chang, Carlos Carvalho, Seiichi Mori, Andrea H. Bild, Michael L. Gatza,
Quanli Wang, Joseph E. Lucas, Anil Potti, Phillip G. Febbo, Mike West, and
Joseph R. Nevins. A genomic strategy to elucidate modules of oncogenic pathway
signaling networks. Molecular Cell, 34(1):104–114, April 2009.

[27] Shann C. Chen, Geoffrey J. Gordon, and Robert F. Murphy. Graphical models
for structured classification, with an application to interpreting images of protein
subcellular location patterns. J. Mach. Learn. Res., 9:651–682, 2008.

[28] David M. Chickering, Dan Geiger, and David Heckerman. Learning Bayesian Net-
works is NP-Hard. Technical Report MSR-TR-94-17, Microsoft research, Novem-
ber 1994.

[29] C. Chow and C. Liu. Approximating discrete probability distributions with depen-
dence trees. Information Theory, IEEE Transactions on, 14(3):462–467, 1968.

237

References

[30] Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee, and Trey Ideker.
Network-based classification of breast cancer metastasis. Mol Syst Biol, 3, October
2007.

[31] G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilis-
tic networks from data. Machine Learning, 09(4):309–347, October 1992.

[32] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

[33] Eric H. Davidson. The regulatory genome : gene regulatory networks in develop-
ment and evolution. Academic, Burlington, MA, 2006.

[34] H. de Jong. Modeling and simulation of genetic regulatory systems: a literature
review. J Comput Biol, 9(1):67–103, 2002.

[35] Amol Deshpande, Minos N. Garofalakis, and Michael I. Jordan. Efficient stepwise
selection in decomposable models. In UAI ’01: Proceedings of the 17th Conference
in Uncertainty in Artificial Intelligence, pages 128–135, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[36] Karthik Devarajan. Nonnegative matrix factorization: An analytical and interpretive
tool in computational biology. PLoS Comput Biol, 4(7):e1000029+, July 2008.

[37] Radu Dobrin, Jun Zhu, Cliona Molony, Carmen Argman, Mark Parrish, Sonia Carl-
son, Mark Allan, Daniel Pomp, and Eric Schadt. Multi-tissue coexpression net-
works reveal unexpected subnetworks associated with disease. Genome Biology,
10:R55+, May 2009.

[38] Daniel Eaton and Kevin Murphy. Belief net structure learning from uncertain inter-
ventions. JMLR Special Topic on Causality, 2008.

[39] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and dis-
play of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25):14863–
14868, December 1998.

[40] Nir Friedman. Inferring cellular networks using probabilistic graphical models.
Science, 303:799–805, 2004.

[41] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic
relational models. In IJCAI, pages 1300–1309, 1999.

[42] Nir Friedman and Daphne Koller. Being bayesian about network structure. In UAI
’00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence,
pages 201–210, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

238

References

[43] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian
networks to analyze expression data. Journal of Comp. Biol., 7(3-4):601–620, 2000.

[44] Nir Friedman, Iftach Nachman, and Dana Pe’er. Learning bayesian network struc-
ture from massive datasets: The sparse candidate algorithm. In Uncertainty in
Artificial Intelligence, 1999.

[45] Thomas Gaertner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness
results and efficient alternatives. In 16th Annual Conference on Computational
Learning Theory and 7th Kernel Workshop, 2003.

[46] Timothy S. Gardner, Diego di Bernardo, David Lorenz, and James J. Collins. In-
ferring genetic networks and identifying compound mode of action via expression
profiling. Science, 2003.

[47] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz,
D. Botstein, and P. O. Brown. Genomic expression programs in the response of
yeast cells to environmental changes. Mol Biol Cell, 11(12):4241–4257, December
2000.

[48] Audrey P. Gasch and Margaret Werner-Washburne. The genomics of yeast re-
sponses to environmental stress and starvation. Functional & integrative genomics,
2(4-5):181–192, September 2002.

[49] I. Gat-Viks and R. Shamir. Refinement and expansion of signaling pathways: the
osmotic response network in yeast. Genome Res, 17(3):358–367, March 2007.

[50] I. Gat-Viks, A. Tanay, and R. Shamir. Factor graph network models for biological
systems. In RECOMB, 2005.

[51] Irit Gat-Viks, Amos Tanay, Daniela Raijman, and Ron Shamir. A probabilistic
methodology for integrating knowledge and experiments on biological networks.
Journal of Computational Biology, 13(2):165–181, March 2006.

[52] Dan Geiger and David Heckerman. Advances in probabilistic reasoning. In Pro-
ceedings of the seventh conference (1991) on Uncertainty in artificial intelligence,
pages 118–126, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[53] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman
and Hall, 1995.

[54] Tara A. Gianoulis, Jeroen Raes, Prianka V. Patel, Robert Bjornson, Jan O. Korbel,
Ivica Letunic, Takuji Yamada, Alberto Paccanaro, Lars J. Jensen, Michael Sny-
der, Peer Bork, and Mark B. Gerstein. Quantifying environmental adaptation of

239

References

metabolic pathways in metagenomics. Proceedings of the National Academy of
Sciences, 106(5):1374–1379, February 2009.

[55] Joseph V. Gray, Gregory A. Petsko, Gerald C. Johnston, Dagmar Ringe, Richard A.
Singer, and Margaret Werner-Washburne. ”sleeping beauty”: Quiescence in sac-
charomyces cerevisiae. Microbiol. Mol. Biol. Rev., 68(2):187–206, June 2004.

[56] D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein. Comparing protein
abundance and mrna expression levels on a genomic scale. Genome Biol, 4(9),
2003.

[57] Elizabeth A. Grice, Heidi H. Kong, Sean Conlan, Clayton B. Deming, Joie Davis,
Alice C. Young, Nisc Comparative Sequencing Program, Gerard G. Bouffard,
Robert W. Blakesley, Patrick R. Murray, Eric D. Green, Maria L. Turner, and Ju-
lia A. Segre. Topographical and temporal diversity of the human skin microbiome.
Science, 324(5931):1190–1192, May 2009.

[58] Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph
enumeration and symmetry-breaking. In RECOMB, 2007.

[59] U. Gueldener, M. Muensterkoetter, G. Kastenmueller, N. Strack, J. van Helden,
C. Lemer, J. Richelles, S. J. Wodak, J. Garcia-Martinez, J. E. Perez-Ortin,
H. Michael, A. Kaps, E. Talla, B. Dujon, B. Andre, J. L. Souciet, J. De Montigny,
E. Bon, C. Gaillardin, and H. W. Mewes. Cygd: the comprehensive yeast genome
database. Nucleic Acids Res, 33(Database issue), January 2005.

[60] A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKusick.
Online mendelian inheritance in man (omim), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res, 33 Database Issue, January 2005.

[61] Christopher T. Harbison, D. Benjamin Gordon, Tong Ihn Lee, Nicola J. Rinaldi,
Kenzie D. Macisaac, Timothy W. Danford, Nancy M. Hannett, Jean-Bosco Tagne,
David B. Reynolds, Jane Yoo, Ezra G. Jennings, Julia Zeitlinger, Dmitry K.
Pokholok, Manolis Kellis, P. Alex Rolfe, Ken T. Takusagawa, Eric S. Lander,
David K. Gifford, Ernest Fraenkel, and Richard A. Young. Transcriptional regu-
latory code of a eukaryotic genome. Nature, 2004.

[62] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer, August 2001.

[63] David Heckerman. A Tutorial on Learning Bayesian Networks. Technical Report
MSR-TR-95-06, Microsoft research, March 1995.

240

References

[64] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-
thwaite, and Carl Myers Kadie. Dependency networks for inference, collaborative
filtering, and data visualization. Journal of Machine Learning Research, 1:49–75,
2000.

[65] David Heckerman, Dan Geiger, and David M. Chickering. Learning bayesian net-
works: The combination of knowledge and statistical data. In KDD Workshop,
pages 85–96, 1994.

[66] Reimar Hofmann and Volker Tresp. Nonlinear markov networks for continuous
variables. In NIPS ’97: Proceedings of the 1997 conference on Advances in neural
information processing systems 10, pages 521–527, Cambridge, MA, USA, 1998.
MIT Press.

[67] S Hoops, S Sahle, R Gauges, C Lee, J Pahle, N Simus, M Singhal, L Xu, P Mendes,
and U Kummer. Copasi – a complex pathway simulator. Bioinformatics, 22:3067–
3074, 2006.

[68] Funchun Huang and Yosihiko Ogata. Generalized pseudo-likelihood estimates for
markov random fields on lattice. Annals of the Institute of Statistical Mathematics,
54(1):1–18, March 2004.

[69] T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Ar-
mour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R.
Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte,
K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend. Functional discovery via a
compendium of expression profiles. Cell, 102(1):109–126, July 2000.

[70] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffry E. Hinton.
Adaptive mixture of local experts. Neural Computation, 3:79–87, 1991.

[71] S. Jbabdi, M. W. Woolrich, and T. E. Behrens. Multiple-subjects connectivity-
based parcellation using hierarchical dirichlet process mixture models. NeuroIm-
age, 44(2):373–384, January 2009.

[72] Rice J. Jeremy, Tu Yuhai, and Stolovitzky Gustavo. Reconstructing biological
networks using conditional correlation analysis. Bioinformatics, 21(6):765–773,
March 2005.

[73] Michael I. Jordan. Learning in graphical models. MIT Press, 1998.

[74] Naftali Kaminski and Ziv Bar-Joseph. A patient-gene model for temporal expres-
sion profiles in clinical studies. In Research in Computational Molecular Biology,
pages 69–82. Springer Verlag, 2006.

241

References

[75] Nadav Kashtan and Uri Alon. Spontaneous evolution of modularity and network
motifs. Proceedings of the National Academy of Sciences of the United States of
America, 102(39):13773–13778, September 2005.

[76] Manolis Kellis, Nick Patterson, Matthew Endrizzi, Bruce Birren, and Eric S. Lan-
der. Sequencing and comparison of yeast species to identify genes and regulatory
elements. Nature, 423(6937):241–254, May 2003.

[77] Hyunsoo Kim, William Hu, and Yuval Kluger. Unraveling condition specific gene
transcriptional regulatory networks in saccharomyces cerevisiae. BMC Bioinfor-
matics, 2006.

[78] Hiroaki Kitano. Systems biology: A brief overview. Science, 295(5560):1662–
1664, March 2002.

[79] Hiroyuki Kurata, Nana Matoba, and Natsumi Shimizu. CADLIVE for constructing
a large-scale biochemical network based on a simulation-directed notation and its
application to yeast cell cycle. Nucl. Acids Res., 31(14):4071–4084, 2003.

[80] Steffen L. Lauritzen. Graphical Models. Oxford Statistical Science Series. Oxford
University Press, New York, USA, July 1996.

[81] Neil Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional
regulation using gaussian processes. In NIPS 2006, 2006.

[82] Neil D. Lawrence and John C. Platt. Learning to learn with the informative vector
machine. In ICML ’04: Proceedings of the twenty-first international conference on
Machine learning, pages 65+, New York, NY, USA, 2004. ACM.

[83] I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A probabilistic functional
network of yeast genes. Science, 306(5701):1555–1558, November 2004.

[84] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure learning of
markov networks using l1-regularization. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 817–824.
MIT Press, Cambridge, MA, 2007.

[85] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M.
Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings,
H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert,
E. Fraenkel, D. K. Gifford, and R. A. Young. Transcriptional regulatory networks
in saccharomyces cerevisiae. Science, 298(5594):799–804, October 2002.

242

References

[86] P. Lesage, X. Yang, and M. Carlson. Yeast snf1 protein kinase interacts with sip4, a
c6 zinc cluster transcriptional activator: a new role for snf1 in the glucose response.
Molecular and cellular biology, 16(5):1921–1928, May 1996.

[87] Fan Li and Yiming Yang. Using modified lasso regression to learn large undirected
graphs in a probabilistic framework. In AAAI, pages 801–806, 2005.

[88] James Long and Mitchell Roth. Synthetic microarray data generation with range
and nemo. Bioinformatics, November 2007.

[89] P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble. Investigating semantic sim-
ilarity measures across the gene ontology: the relationship between sequence and
annotation. Bioinformatics, 19(10):1275–1283, July 2003.

[90] Kenzie Macisaac, Ting Wang, D. Benjamin Gordon, David Gifford, Gary Stormo,
and Ernest Fraenkel. An improved map of conserved regulatory sites for saccha-
romyces cerevisiae. BMC Bioinformatics, 7(1):113+, March 2006.

[91] A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera,
and A. Califano. Aracne: An algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics, (Suppl 1): S7,
2005.

[92] Martin, Shawn, Zhang, Zhaoduo, Martino, Anthony, Faulon, and Jean-Loup.
Boolean dynamics of genetic regulatory networks inferred from microarray time
series data. Bioinformatics, 23(7):866–874, April 2007.

[93] Shawn Martin, Diana Roe, and Jean-Loup Falon. Predicting protein-protein intera-
tions using signature products. Bioinformatics, 21(2):218–226, 2005.

[94] M. Juanita Martinez, Sushmita Roy, Amanda B. Archuletta, Peter D. Wentzell,
Sonia S. Anna-Arriola, Angelina L. Rodriguez, Anthony D. Aragon, Gabriel A.
Quinones, Chris Allen, and Margaret Werner-Washburne. Genomic analysis of
stationary-phase and exit in saccharomyces cerevisiae: Gene expression and iden-
tification of novel essential genes. Mol. Biol. Cell, 15(12):5295–5305, December
2004.

[95] Sergei Maslov and Kim Sneppen. Computational architecture of the yeast regula-
tory network. Physical Biology, 2:s94–s100, 2005.

[96] Mark I. Mccarthy, Goncalo R. Abecasis, Lon R. Cardon, David B. Goldstein, Julian
Little, John P. A. Ioannidis, and Joel N. Hirschhorn. Genome-wide association
studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet,
9(5):356–369, May 2008.

243

References

[97] Megan N N. McClean, Areez Mody, James R R. Broach, and Sharad Ramanathan.
Cross-talk and decision making in map kinase pathways. Nat Genet, January 2007.

[98] Rachel P. Mccord, Michael F. Berger, Anthony A. Philippakis, and Martha L. Bulyk.
Inferring condition-specific transcription factor function from dna binding and gene
expression data. Mol Syst Biol, 3, 2007.

[99] Marina Meila and Michael I. Jordan. Learning with mixtures of trees. Journal of
Machine Learning Research, 1:1–48, 2000.

[100] Pedro Mendes, Wei Sha, and Keying Ye. Artificial gene networks for objective
comparison of analysis algorithms. Bioinformatics, 19:122–129, 2003.

[101] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[102] Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C. Raykar, Ramani Duraiswami,
and Larry S. Davis. Automatic online tuning for fast gaussian summation. In Ad-
vances in Neural Information Processing Systems (NIPS), 2008.

[103] Tatiana V. Morozova, Robert R. Anholt, and Trudy F. Mackay. Transcrip-
tional response to alcohol exposure in drosophila melanogaster. Genome biology,
7(10):R95+, October 2006.

[104] Mukund Narasimhan and Jeff Bilmes. Pac-learning bounded tree-width graphical
models. In Proceedings of the 20th conference on Uncertainty in artificial intelli-
gence, pages 410–417, Arlington, Virginia, United States, 2004. AUAI Press.

[105] Jennifer Neville and David Jensen. Relational dependency networks. J. Mach.
Learn. Res., 8:653–692, 2007.

[106] Alexandru Niculescu-Mizil and Rich Caruana. Inductive transfer for bayesian net-
work structure learning. In Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, 2007.

[107] Rupert D. Paget. Nonparametric Markov random field models for natural texture
images. PhD thesis, University of Queensland, 1999.

[108] Wei Pan. A comparative review of statistical methods for discovering differentially
expressed genes in replicated microarray experiments. Bioinformatics, 18(4):546–
554, April 2002.

244

References

[109] Dana Pe’er, Amos Tanay, and Aviv Regev. Minreg: A scalable algorithm for learn-
ing parsimonious regulatory networks in yeast and mammals. J. Mach. Learn. Res.,
7:167–189, 2006.

[110] Yuan Qi and Hui Ge. Modularity and dynamics of cellular networks. PLoS Com-
putational Biology, 2(12):e174+, December 2006.

[111] John Rachlin, Dikla D. Cohen, Charles Cantor, and Simon Kasif. Biological context
networks: a mosaic view of the interactome. Mol Syst Biol, 2, November 2006.

[112] Matthew V. Rockman. Reverse engineering the genotype-phenotype map with nat-
ural genetic variation. Nature, 456(7223):738–744, December 2008.

[113] Rokhlenko, Oleg, Wexler, Ydo, Yakhini, and Zohar. Similarities and differences
of gene expression in yeast stress conditions. Bioinformatics, 23(2):e184–e190,
January 2007.

[114] Jan Roman and Thomas Gaertner. Expressivity versus efficiency of graph kernels.
In First International Workshop on Mining Graphs, Trees and Sequences, 2003.

[115] Sushmita Roy, Margaret Werner-Washburne, and Terran Lane. A system for gener-
ating transcription regulatory networks with combinatorial control of transcription.
Bioinformatics (Oxford, England), April 2008.

[116] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P.
Nolan. Causal protein-signaling networks derived from multiparameter single-cell
data. Science, 2005.

[117] Heladia Salgado, Socorro Gama-Castro, Martin Peralta-Gil, Edgar Diaz-Peredo,
Fabiola Sanchez-Solano, Alberto Santos-Zavaleta, Irma Martinez-Flores, Veron-
ica Jimenez-Jacinto, Cesar Bonavides-Martinez, Juan Segura-Salazar, Agustino
Martinez-Antonio, and Julio Collado-Vides. Regulondb (version 5.0): Escherichia
coli k-12 transcriptional regulatory network, operon organization, and growth con-
ditions. Nucleic Acids Research, 34:D394, 2006.

[118] Thomas Sandmann, Charles Girardot, Marc Brehme, Waraporn Tongprasit, Viktor
Stolc, and Eileen E. M. Furlong. A core transcriptional network for early mesoderm
development in drosophila melanogaster. Genes & Development, 21(4):436–449,
February 2007.

[119] Guido Sanguinetti, Josselin Noirel, and Phillip C. Wright. Mmg: a probabilistic tool
to identify submodules of metabolic pathways. Bioinformatics, 24(8):1078–1084,
April 2008.

245

References

[120] Maria J. Schilstra and Hamid Bolouri. The logic of gene regulation. In Poster
abstract for Third International Conference on Systems Biology, 2002.

[121] Mark Schmidt, Alexandru Niculescu-Mizil, and Kevin Murphy. Learning graphi-
cal model structure using l1-regularization paths. In Twenty second international
conference on AI, 2007.

[122] Anton Schwaighofer, Mathäus Dejori, Volker Tresp, and Martin Stetter. Structure
learning with nonparametric decomposable models. In ICANN (1), pages 119–128,
2007.

[123] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman.
Module networks: identifying regulatory modules and their condition-specific reg-
ulators from gene expression data. Nat Genet, 34(2):166–176, June 2003.

[124] Eran Segal, Nir Friedman, Naftali Kaminski, Aviv Regev, and Daphne Koller. From
signatures to models: understanding cancer using microarrays. Nature genetics, 37
Suppl, June 2005.

[125] Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, and Nir Friedman. Learning
module networks. Journal of Machine Learning Research, 6:557–588, April 2005.

[126] Victor Spirin and Leonid A. Mirny. Protein complexes and functional mod-
ules in molecular networks. Proceedings of the National Academy of Sciences,
100(21):12123–12128, 2003.

[127] P. Spirtes, C. Glymour, and R. Scheines. Constructing bayesian network models of
gene expression networks from microarray data, 2000.

[128] M. Steffen, A. Petti, J. Aach, P. D’haeseleer, and G. Church. Automated modelling
of signal transduction networks. BMC Bioinformatics, 3, November 2002.

[129] T. Stein, J. Kricke, D. Becher, and T. Lisowsky. Azf1p is a nuclear-localized zinc-
finger protein that is preferentially expressed under non-fermentative growth condi-
tions in saccharomyces cerevisiae. Current genetics, 34(4):287–296, October 1998.

[130] J. D. Storey and R. Tibshirani. Statistical significance for genomewide studies. Proc
Natl Acad Sci U S A, 100(16):9440–9445, August 2003.

[131] Joshua M. Stuart, Eran Segal, Daphne Koller, and Stuart K. Kim. A gene-
coexpression network for global discovery of conserved genetic modules. Science,
302(5643):249–255, October 2003.

246

References

[132] Joe Suzuki. Learning bayesian belief networks based on the minimum description
length principle: An efficient algorithm using the b & b technique. In International
Conference on Machine Learning, pages 462–470, 1996.

[133] Amos Tanay, Roded Sharan, Martin Kupiec, and Ron Shamir. Revealing modularity
and organization in the yeast molecular network by integrated analysis of highly
heterogeneous genomewide data. Proceedings of the National Academy of Sciences
of the United States of America, 101(9):2981–2986, March 2004.

[134] Bo Thiesson, Christopher Meek, David M. Chickering, and David Heckerman.
Learning mixtures of dag models. In Uncertainty in Artificial Intelligence. Pro-
ceedings of the Fourteenth Conference (1998), pages 504–513. Morgan Kaufmann
Publishers, 1998.

[135] Lidia Tomás-Cobos, Laura Casadomé, Glòria Mas, Pascual Sanz, and Francesc
Posas. Expression of the hxt1 low affinity glucose transporter requires the coor-
dinated activities of the hog and glucose signalling pathways. The Journal of bio-
logical chemistry, 279(21):22010–22019, May 2004.

[136] D. P. Tuck, H. M. Kluger, and Y. Kluger. Characterizing disease states from topo-
logical properties of transcriptional regulatory networks. BMC Bioinformatics, 7,
2006.

[137] E. P. van Someren, L. F. A. Wessels, and M. J. T. Reinders. Linear modeling of ge-
netic networks from experimental data. In Proceedings of the Eighth International
Conference on ISMB, pages 355–366, 2000.

[138] O. Vincent and M. Carlson. Sip4, a snf1 kinase-dependent transcriptional activator,
binds to the carbon source-responsive element of gluconeogenic genes. The EMBO
journal, 17(23):7002–7008, December 1998.

[139] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool
for transcriptomics. Nat Rev Genet, 10(1):57–63, January 2009.

[140] Werhli, V. Adriano, Grzegorczyk, Marco, Husmeier, and Dirk. Comparative eval-
uation of reverse engineering gene regulatory networks with relevance networks,
graphical gaussian models and bayesian networks. Bioinformatics, 22(20):2523–
2531, October 2006.

[141] J. Woolf, Prudhomme Wendy, Daheron Laurence, Q. Daley, and A. Lauffenburger.
Bayesian analysis of signaling networks governing embryonic stem cell fate deci-
sions. Bioinformatics, 21(6):741–753, March 2005.

247

References

[142] C. H. Yeang, Trey Ideker, and T. Jaakkola. Physical network models. Journal of
Comp. Biol., 11(2-3):243–246, 2004.

[143] Jing Yu, Anne A. Smith, Paul P. Wang, and Alexander J. Hartemink. Advances
to bayesian network inference for generating causal networks from observational
biological data. Bioinformatics, 20(18):3594+, 2004.

[144] Kai Yu, John Lafferty, Shenghuo Zhu, and Yihong Gong. Large-scale collaborative
prediction using a nonparametric random effects model. In ICML ’09: Proceedings
of the 26th Annual International Conference on Machine Learning, pages 1185–
1192, New York, NY, USA, 2009. ACM.

[145] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning gaussian processes from
multiple tasks. In ICML ’05: Proceedings of the 22nd international conference on
Machine learning, pages 1012–1019, New York, NY, USA, 2005. ACM.

[146] Bai Zhang, Huai Li, Rebecca B. Riggins, Ming Zhan, Jianhua Xuan, Zhen Zhang,
Eric P. Hoffman, Robert Clarke, and Yue Wang. Differential dependency network
analysis to identify condition-specific topological changes in biological networks.
Bioinformatics, pages btn660+, December 2008.

248

	University of New Mexico
	UNM Digital Repository
	12-1-2009

	Learning condition-specific networks
	Sushmita Roy
	Recommended Citation

	tmp.1469198166.pdf.5HbxU

