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Abstract

Cache injection is a viable technique to improve the performance of data-intensive paral-

lel applications. This dissertation characterizes cache injection of incoming network data

in terms of parallel application performance. My results show that the benefit of this tech-

nique is dependent on: the ratio of processor speed to memory speed, the cache injection

policy, and the application’s communication characteristics.

Cache injection addresses the memory wall for I/O by writing data into a processor’s

cache directly from the I/O bus. This technique, unlike data prefetching, reduces the

number of reads served by the memory unit. This reduction is significant for data-intensive

applications whose performance is dominated by compulsory cache misses and cannot be

alleviated by traditional caching systems.

vii



Unlike previous work on cache injection which focused on reducing host network stack

overhead incurred by memory copies, I show that applications can directly benefit from

this technique based on their temporal and spatial locality in accessing incoming network

data. I also show that the performance of cache injection is directly proportional to the ra-

tio of processor speed to memory speed. In other words, systems with a memory wall can

provide significantly better performance with cache injection and an appropriate injection

policy. This result implies that multi-core and many-core architectures would benefit from

this technique. Finally, my results show that the application’s communication characteris-

tics are key to cache injection performance. For example, cache injection can improve the

performance of certain collective communication operations by up to 20% as a function of

message size.

viii



Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Thesis statement and contributions of this work . . . . . . . . . . . . . . 3

1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Cache injection 7

2.1 What is cache injection? . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cost considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Comparing cache injection and data prefetching . . . . . . . . . . . . . . 12

2.3.1 Experimental framework . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Limitations of cache injection . . . . . . . . . . . . . . . . . . . . . . . 18

ix



Contents

2.4.1 The Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Performance using blind injection . . . . . . . . . . . . . . . . . 20

2.5 Injection policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Experimental infrastructure 25

3.1 Cluster simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Test environment 37

4.1 Platform and simulated system configuration . . . . . . . . . . . . . . . . 37

4.2 Injection policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Parallel applications and performance analysis tools . . . . . . . . . . . . 40

4.3.1 AMG from the Sequoia acceptance suite . . . . . . . . . . . . . . 40

4.3.2 FFT from the HPC Challenge benchmark suite . . . . . . . . . . 41

4.3.3 mpiP: an MPI profiling library . . . . . . . . . . . . . . . . . . . 42

4.3.4 IMB: Intel MPI benchmarks . . . . . . . . . . . . . . . . . . . . 42

5 Results and analysis 43

5.1 Memory and processor speed . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Cache injection policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Application’s communication characteristics . . . . . . . . . . . . . . . . 51

5.3.1 Collective operations . . . . . . . . . . . . . . . . . . . . . . . . 55

x



Contents

5.4 Putting it all together: cache injection and the LogGP model . . . . . . . 58

6 Related work 62

6.1 Consumer-driven techniques for the memory wall . . . . . . . . . . . . . 63

6.2 Producer-driven techniques for intra-processor communication . . . . . . 64

6.3 Producer-driven techniques for inter-processor communication . . . . . . 65

6.4 Past architectures for direct data transfer . . . . . . . . . . . . . . . . . . 67

7 Conclusions and future work 69

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 72

xi



List of Figures

2.1 Memory write operation initiated by the NIC. . . . . . . . . . . . . . . 9

2.2 Cache injection operation initiated by the NIC. . . . . . . . . . . . . . . 10

2.3 Base architecture for cache injection (based on IBM’s Power5). . . . . . 11

2.4 Memory bandwidth utilization. . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Jacobi problem domain for process k. . . . . . . . . . . . . . . . . . . . 20

3.1 The shim layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The implementation of MPI on a single simulated machine. . . . . . . . 31

3.3 The parallel cluster simulator. . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 NAS IS benchmark on four nodes. . . . . . . . . . . . . . . . . . . . . 34

3.5 NAS IS benchmark on 16 nodes. . . . . . . . . . . . . . . . . . . . . . 35

5.1 Performance of AMG solve phase as a function of memory and processor

speed, cache injection policy, and number of processors. . . . . . . . . . 45

xii



List of Figures

5.2 AMG’s number of memory reads carried out by the memory unit as a

function of memory and processor speed, cache injection policy, and

number of processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 AMG’s number of NIC to host communication events for a 2.1GHz pro-

cessor as a function of memory speed and number of MPI processes. . . 49

5.4 AMG’s number of memory reads carried out by the memory unit for a

2.1GHz processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Impact of cache injection policies on the performance of HPCC’s FFT. . 52

5.6 Communication characteristics of AMG and FFT. . . . . . . . . . . . . 53

5.7 Sensitivity of certain MPI collective operations to cache injection. . . . . 56

5.8 MPICH’s scatter algorithm for 32KB and n = 8. . . . . . . . . . . . . . 57

5.9 MPICH’s broadcast algorithm for 32KB and n = 8. . . . . . . . . . . . 58

xiii



List of Tables

2.1 Prefetching vs. cache injection. . . . . . . . . . . . . . . . . . . . . . . 13

2.2 System configuration parameters. . . . . . . . . . . . . . . . . . . . . . 16

3.1 A shim interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 MIAMI API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Simulated system configuration . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Memory speeds as a function of processor speed. . . . . . . . . . . . . . 44

xiv



Chapter 1

Introduction

For almost two decades, the growing disparity of processor to memory speed has affected

applications with poor temporal locality in their ability to benefit from improvements in

processor speed. This disparity known as the memory wall [58], makes memory speed

the limiting factor in the performance of a system. Even in systems with perfect caches,

the memory wall affects application performance due to compulsory cache misses on data

with poor locality. Data prefetching may not alleviate this problem in applications where

the memory bus is already saturated, or those with not enough computation in between

memory accesses to mask memory latency.

Examples of applications affected by the memory wall include scientific, cryptographic,

signal processing, string processing, image processing, and some graphics computations [42].

More recently, many high-end, real-world scientific applications showed a strong depen-

dence on the memory characteristics of a system [48, 47]. These applications show poor

locality by accessing large amounts of unique data (data-intensive applications). This

data generates compulsory cache misses resulting in an increased dependency on memory

speed.

Cache injection alleviates the memory wall by placing data from an I/O device directly
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Chapter 1. Introduction

into the cache [6, 28, 12]. The benefits of this technique are reducing memory access

latency and reducing memory pressure (the number of requests issued to the memory con-

troller per unit of time). In current architectures, I/O data is transferred to main memory,

and cached copies of old values are invalidated. Accessing I/O data results in compulsory

cache misses and, thereby, accesses to main memory. To hide memory latency, prefetching

can overlap memory accesses with computation [4, 44]. Prefetching anticipates memory

accesses based on usage patterns or specific instructions issued by the compiler, the OS or

the application. Prefetching can hide memory latency, but unlike cache injection, it does

not reduce and may increase traffic over the already saturated memory bus, a precious re-

source for memory-bound applications. Prefetching is more widely applicable than cache

injection, but the latter provides better performance for I/O. Recent Intel architectures pro-

vide a similar mechanism to cache injection called Prefetch Hint [51]. This mechanism

allows early prefetching of I/O data initiated by the NIC. Like prefetching, this technique

does not reduce memory bandwidth utilization.

The impact of cache injection on application performance is dependent on several fac-

tors including timely use of data, the amount of data, the type and frequency of commu-

nication primitives, the application’s data usage patterns, and the underlying architecture.

For example, injecting data into a cache may evict the application’s working set, and in

a multiprocessor system, an incorrect choice of processor/cache may increase overhead

(local memory may be closer than another processor’s cache).

Appropriate injection policies must be made to account for these factors. Injection

policies answer the questions of what, when, and where to inject. The impact of cache

injection on application performance is dependent on the policies that determine the con-

sumer processor/core and the appropriate level in the memory hierarchy. The information

needed by these policies is distributed throughout the system, in the application, the OS,

the communication library, the compiler and the caches. For example, the mapping of

processes to processors/cores is held by the OS; the application and/or the compiler can

2



Chapter 1. Introduction

provide hints of data usage; information about the implementation of collective communi-

cation operations may reside in the communication library and/or the NIC.

In this work, I show how cache injection can improve the performance of parallel ap-

plications as a function of processor to memory speed ratio, injection policy, and commu-

nication characteristics of applications. This characterization of cache injection provides

a framework to identify applications which may benefit from this technique.

In the next section, I present my thesis statement and contributions of this work, fol-

lowed by a description of my research approach. An outline of the overall thesis is pre-

sented in Section 1.3.

1.1 Thesis statement and contributions of this work

Cache injection can improve the performance of parallel scientific applica-

tions as a function of the ratio of processor to memory speed, the injection

policy, and the application’s communication characteristics.

The major contribution of this work is to show that cache injection can improve the

performance of parallel scientific applications. This improvement is dependent on: (1) the

processor to memory speed ratio; (2) the injection policy; and (3) the communication char-

acteristics of applications. Cache injection addresses the memory wall for data intensive

applications with a significant amount of communication.

To adequately build the foundations of this work, I developed micro-benchmarks to

investigate the benefits and limitations of cache injection and created a scalable infrastruc-

ture to analyze the impact of this technique on application performance. I compared and

contrasted the benefits of cache injection and data prefetching. I showed that, unlike data

prefetching, cache injection can reduce memory bandwidth utilization. To illustrate the

3



Chapter 1. Introduction

main limitation of cache injection, I showed an example where this technique may cre-

ate cache pollution. To address this limitation, I proposed cache injection policies based

on OS, application and compiler information. I implemented a subset of these policies

tailored for MPI and analyzed their impact on application performance using an infras-

tructure to study the impact of cache injection and other novel architectural features on

application performance at scale.

A more detailed list of the contributions of this work follow:

• The performance of cache injection is directly proportional to the processor to mem-

ory speed ratio. The higher the memory wall, the greater the benefit.

• Injecting communication meta-data improves the performance of latency-sensitive

applications.

• Injecting application data improves the performance of bandwidth-sensitive appli-

cations that show temporal and spatial locality in using incoming network data.

• Cache injection can improve the performance of applications using a significant

number of collective operations. Cache injection can improve the performance of

MPI_Allgather, MPI_Alltoall, MPI_Allreduce, and MPI_Bcast operations.

This work is unique in relating cache injection of application data to application perfor-

mance. Previous work focused on using cache injection to reduce the overhead of memory

copies incurred by the network stack. High-performance communication systems typically

use zero-copy implementations which do not benefit from this.

1.2 Research approach

Using simulation, I characterize the impact of several injection policies on the performance

of two applications. The following steps summarize my research approach.

4



Chapter 1. Introduction

1. Characterize the benefits of cache injection. I developed a micro-benchmark to

show, experimentally, the benefits of cache injection compared to data prefetch-

ing. These experiments measured execution time and memory pressure incurred

by the micro-benchmark. Unlike data prefetching, cache injection reduces memory

bandwidth utilization [13, 14].

2. Characterize the limitations of cache injection. Using the Jacobi iteration, I demon-

strated, analytically, that cache injection can pollute the cache and decrease appli-

cation performance [12]. In this case, the NIC and the application compete for the

cache. The working set of the application may be evicted by incoming network data

written by the NIC.

3. Design injection policies to address the limitations of cache injection. I proposed a

set of policies to minimize the amount of pollution introduced into the cache. These

policies answer the questions of what, when, and where to inject. Using simulation,

I implemented a subset of policies tailored for MPI.

4. Design and implement a scalable infrastructure to execute parallel scientific appli-

cations on a cluster of cache injection nodes. I coupled hundreds of instances of an

existing cycle-accurate, full-system simulator with cache injection using a model

of a high-performance network [18]. I showed that the resulting distributed in-

frastructure can accurately simulate application performance on a parallel, high-

performance machine [19].

5. Characterize the impact of cache injection on parallel application performance. Us-

ing the cluster simulator mentioned above, I measured the performance of selected

applications using a set of injection policies tailored for MPI. The results showed

that cache injection is particularly effective on machines with a memory wall. Fur-

thermore, the performance of cache injection is dependent on the application’s com-

munication characteristics and the injection policy.

5



Chapter 1. Introduction

1.3 Thesis outline

The rest of this document is organized as follows. Chapter 2 presents a detailed study of

cache injection. This study includes a demonstration of an upper bound on the perfor-

mance benefits of this technique; a comparison with data prefetching; an example where

cache injection without an appropriate policy can be decremental to application perfor-

mance; and a description of policies based on OS, compiler, communication library, and

application information to improve the performance of applications. Chapter 3 describes

the experimental infrastructure developed to execute parallel applications using MPI with

and without cache injection. This infrastructure is based on simulation and leverages

current cycle-accurate simulators into a distributed and scalable cluster simulator. Even

though the simulated system cannot be validated against a real machine (because it does

not exist), I developed a set of experiments using unmodified parallel applications that

show the cluster simulator is accurate. Chapter 4 describes the test environment including

the platform used for running the cluster simulator, the simulated system configuration, the

injection policies implemented, and the applications and analysis tools used in this study.

Chapter 5 illustrates the impact of different injection policies on application performance.

It also analyzes the relationship between cache injection performance and the ratio of pro-

cessor to memory speed and the application’s communication characteristics. Chapter 6

describes related work. Finally, Chapter 7 summarizes the results and contributions of this

work, as well as a discussion of possible directions for future research.

6



Chapter 2

Cache injection

Cache injection [6, 28] is one of several techniques to mitigate the imbalance between

processor and memory speeds [44, 46, 42]. This technique reduces memory access latency

and memory pressure by placing data from I/O devices directly into the cache.

In current architectures, data from I/O devices is written to the system’s main mem-

ory. When an application requests this data, the processor fetches it into a local cache.

Fetching data can be done ahead of time by a prefetch engine which may anticipate ac-

cesses to blocks of memory based on usage patterns. With prefetching [44], data latency

is reduced by overlapping memory reads with computation. Unlike prefetching, cache

injection reduces memory pressure by reducing the number of accesses to main memory.

The performance of cache injection is dependent on several factors including timely

usage of data, the amount of data, and the application’s data usage patterns. In a multi-

processor system, the consumer processor has to be identified so that data is written into

the appropriate cache. If the application does not use the injected data promptly, cache

injection may result in cache pollution, evicting the application’s working set from the

cache. This motivates the need for injection policies that determine the consumer pro-

cessor and the appropriate level of the memory hierarchy where data may be written (L2

7
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cache, L3 cache or main memory). The information needed for such policies may come

from different sources including the OS, the compiler, the application, and the communi-

cation library. For example, the OS is responsible for assigning software threads/processes

to cores/processors and maintaining this information.

In this chapter, I provide: (1) experimental results showing that cache injection can

reduce memory bandwidth utilization as compared to data prefetching; (2) an example

where cache injection without an appropriate policy can be harmful to application perfor-

mance; and (3) injection policies based on OS, compiler, and application information that

can overcome the limitations of this technique.

2.1 What is cache injection?

In current architectures, data from I/O devices is written to main memory. Before the

processor can use this data, it is fetched to the cache by the processor or by a prefetch

engine. With cache injection, data from I/O devices is placed directly from the I/O bus

into a processor’s cache. Cache injection reduces memory latency by satisfying memory

requests from cache, and it reduces memory pressure by reducing the number of requests

to the memory controller.

Cache injection is a producer-driven and non-binding technique. It is producer-driven

because the data transfer is initiated by the producer of data, in this case an I/O device.

When a block of data is written or injected into the cache, it follows the cache’s replace-

ment and coherency protocol. This operation is non-binding because data is not bound to

a particular block in the cache.

Producer-driven mechanisms can be classified as implicit or explicit [10] depending

on whether the producer knows the identity of the consumer. Cache injection is an explicit

method, the consumer or target of data must be identified before the injection operation

8



Chapter 2. Cache injection

takes place. The target can be an L2 cache, L3 cache, or main memory. Also, the con-

sumer processor must be identified to determine the appropriate cache or memory. In the

remainder of this document, I use cache injection of incoming network messages to pro-

vide a specific example of this technique, even though cache injection can be used with

other DMA devices.

Figure 2.1 depicts the steps a traditional cache-coherent architecture follows when

receiving data from the network. For each cache block, a write-invalidate operation is per-

formed, i.e., write to memory and invalidate the appropriate cache block. This operation

results in compulsory cache misses, thereby incurring memory latency for incoming net-

work data. Although prefetching can overlap memory latency with computation, memory

bandwidth is still used.

2

3

1

CacheProcs

MCIOCNIC

Mem

Invalidate

Write

Fetch/
Prefetch2

Figure 2.1: Memory write operation initiated by the NIC. In step 1, incoming network data
arrives at the NIC which in turn initiates the transfer to memory through the IO controller
(IOC); in step 2, cached copies are invalidated and data is written to main memory through
the memory controller (MC); in step 3, the processor or the prefetch engine fetches data
from main memory into the cache.

Figure 2.2 depicts the steps to move data from the network to a processor using cache

injection. Cache injection transfers incoming network data directly from the NIC to a

processor’s cache. When this data is used promptly by the processor, memory latency

and memory pressure are significantly reduced. Fetching incoming network data from

memory is no longer necessary and, thus, requests issued to the memory controller are

decreased. Reducing memory traffic may translate into performance improvements for

9
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memory-bound applications.

CacheProcs

MCIOCNIC

Mem2

1

Update/Allocate

Write

2

Figure 2.2: Cache injection operation initiated by the NIC. Unlike the memory write oper-
ation, step 2 allocates/updates incoming network data into the cache. If the processor uses
this data promptly, there is no need to fetch it from main memory.

2.2 Cost considerations

The benefits of cache injection on application performance stem from reducing memory

latency and memory pressure. Cache injection, however, presents costs that have to be

considered. In this section, I analyze these costs. The base architecture in consideration is

based on a Power5 architecture [54]. This system represents a modern multi-core system

with an integrated, on-chip memory controller (see Figure 2.3).

Modern systems provide a hierarchy of caches, some local to a particular core, and

others shared by a number of cores. One of these caches must be selected when using

cache injection. Selecting a local cache provides lower latency at the expense of lower

capacity. Targeting a local cache may require information from the OS about the location

of the consumer of data. A simpler implementation of cache injection may target a shared

cache. A shared cache provides greater capacity at the expense of higher latency. This

greater capacity reduces the probability of evicting the application’s working set.

10
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Inter-chip

Core Core

L2

Fabric Ctrl

L3 
Dir

Mem
Ctrl

I/O
Ctrl NICL3

Mem

Figure 2.3: Base architecture for cache injection (based on IBM’s Power5).

Major architectural modifications to the individual caches are not needed to implement

cache injection. The caches in the base architecture are snooping associative caches and

implement an extension of the MESI coherency protocol. When cache injection is enabled,

data is written to main memory and allocated into the cache. The state of the appropriate

cache block is set to clean-exclusive. If cache injection only writes to the cache, the state of

the block can be set to modified-exclusive. Thus, when it is evicted from the cache, it will

be written back to main memory. Both of these states are part of the existing coherency

protocol. Cache replacement policies remain the same (pseudo LRU). Also, caches are

expected to be at least 8-way associative [28] to reduce evictions of recently injected data.

The base architecture implements a 10-way L2 cache and a 12-way set associative L3

cache.

As shown in Figure 2.3, the base architecture already provides data and control paths to

the cache through the fabric controller. In the base architecture, the NIC issues invalidation

requests to the cache and data requests to main memory when moving incoming network

data to the host. The fabric controller forwards the invalidation requests to the cache and

the data requests to the memory controller. Cache injection replaces invalidation requests

11
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with allocate requests. Thus, cache injection does not need any additional control or data

paths.

The major modifications when enabling cache injection are implemented on the NIC.

Each transaction issued by the NIC adds an identifier of the target device. In other words,

the NIC determines the data’s destination (L2, L3 or main memory) using this identifier.

The chipset should be able to route transactions from the NIC to the specified device.

Also, the NIC’s firmware has to be modified to implement a particular injection policy.

An injection policy determines when and what to inject into the cache. These policies,

as shown later in this chapter, may require information from the OS, the application, and

the compiler. The communication library will also require modifications to communicate

this information to the NIC. The operating system and applications, however, can run

unmodified.

In summary, minor architectural changes are necessary to enable cache injection in

modern architectures. The NIC, however, requires sufficient resources to implement the

injection policy of interest and may also need information from the host that can be pro-

vided by the communication library. The OS and applications can run unmodified.

2.3 Comparing cache injection and data prefetching

In the previous section, I analyzed the architectural and system costs of implementing

cache injection. In this section, I provide the context for this technique by comparing it

with data prefetching. Prefetching is a well-know, widely implemented technique to hide

memory latency. Using simulation and a micro-benchmark, I show that cache injection,

unlike prefetching, can reduce memory traffic due to network data. This reduction in

memory bandwidth usage is significant for applications whose memory bus is already

saturated.
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Cache injection and data prefetching strive to reduce data latency by moving data into

the cache before it is needed. Unlike prefetching, which provides a general technique

to reduce memory latency, cache injection can only be applied to data from I/O devices.

Prefetching is a consumer-driven technique—initiated by the application, the OS, or the

compiler, while cache injection is producer-driven—initiated by an I/O device, e.g., a NIC.

Many studies have shown that prefetching can be an effective technique to reduce data

latency. However, prefetching has a significant disadvantage when compared to cache

injection. Prefetching data from I/O devices consumes memory bandwidth due to two

transactions: (1) transfer of data from the I/O producer to memory (while invalidating

cached copies); and (2) fetching data from memory when demanded by the consumer.

With cache injection, the second transaction is not necessary (assuming that the data is

used promptly), decreasing the amount of data that has to go over the memory bus.

Both techniques may not perform optimally. Certain applications may not use suffi-

cient computation instructions in between memory accesses to allow prefetching to hide

memory latency. Both techniques are prone to cache pollution if data brought to the cache

is not used promptly (see Section 2.4). Table 2.1 summarizes the differences between

prefetching and cache injection.

Table 2.1: Prefetching vs. cache injection.
Prefetching Cache injection

Resources

1) write to memory 1) write to
cache2) fetch to cache

use memory bw reduce bw usage
reduce data latency

Fails when data is not used promptly
Applicability general-purpose limited to I/O

Type consumer-driven producer-driven

In the next two sections, I provide experimental results comparing cache injection and

data prefetching. Section 2.3.1 describes the testing environment, while Section 2.3.2

describes the methodology and results.
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2.3.1 Experimental framework

In this section, I describe the infrastructure to compare, experimentally, cache injection

and data prefetching. Since no architecture exists that implements cache injection, I use

simulation.

The experimental infrastructure is based on simulation and consists of two compo-

nents: the base architecture and a high-performance communication system. The base

architecture is based on IBM’s Mambo full-system simulator [7]. Mambo has been ex-

tended with an implementation of cache injection to the L3 cache [6]. The simulated

machine is based on a cache-coherent, distributed shared memory architecture.

The high-performance communication system consists of a simulated high-performance

NIC that attaches to Mambo and an OS-bypass zero-copy network stack [18]. The NIC is

capable of running arbitrary functionality. It interacts with the host system through con-

ventional write-invalidate memory operations and through non-binding write-allocate/update

cache injection operations.

The network stack provides an unreliable datagram connectionless service with a UDP-

like interface. I implemented this interface using an OS-bypass, zero-copy design which

is common in high-performance networks. This implementation, Fast UDP [17], consists

of code running on the host and code running on the NIC. The code running on the host

is a user-level library that virtualizes NIC resources to applications. The code running on

the NIC implements message matching and checksum processing.

In commodity UDP implementations, when a packet arrives from the network, the NIC

copies the message to a kernel buffer and raises an interrupt to notify the kernel about its

arrival. The OS processes the packet through the UDP/IP stack and then copies the payload

to user space. In Fast UDP, the NIC has been instrumented to partially process UDP

packets so that the payload is transferred directly from the NIC to user space, while the

header (control information) is copied to a kernel buffer. Thus, the kernel remains aware
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of incoming network packets, but does not incur overhead of processing application’s data

(including an extra copy to user space).

Like UDP, message matching semantics of Fast UDP are based on an IP address and a

port. Unlike conventional UDP implementations, this operation in Fast UDP is performed

on the NIC. The information about receive UDP buffers is shared by the OS with the NIC

when a user posts a UDP receive. When a UDP packet arrives from the network, the NIC

matches the packet using its destination port, and if a user has posted a receive for that

port, the payload will be delivered to the user buffer. UDP checksum on the packet is

performed on the NIC to avoid the transfer of erroneous data to the user.

2.3.2 Experimental evaluation

Using the infrastructure described in the previous section, I compare quantitatively cache

injection and data prefetching by measuring memory bandwidth and execution time of a

micro-benchmark in three configurations: (1) base case with no optimizations; (2) base

configuration with prefetching; and (3) base configuration with cache injection. The

micro-benchmark performs a linear traversal of incoming network data in calculating a

reduction operation. This micro-benchmark represents a stage of computation that is lim-

ited by memory bandwidth and provides an optimal case for prefetching (linear traversal

of data).

The machine configuration for these experiments is shown in Table 2.2. The simulated

machine is based on a Power5 architecture [54] with a non-binding cache injection imple-

mentation to the L3 cache. The processor chip includes an L2 cache, a memory controller,

and an I/O controller. The L3 cache is a victim cache [24] and is implemented off-chip.

Data prefetching is implemented in hardware by the architecture. Data is prefetched into

the L1 data cache by first fetching it into the L2 cache and then from the L2 to the L1

cache. The operating system is IBM’s K42 research kernel [3].
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Table 2.2: System configuration parameters.
Simulator Mambo PowerPC full-system simulator
OS K42
Transport Fast UDP
Architecture Power5 with cache injection to L3
Processor 1.65GHz frequency
L1 I/D cache 64KB/32KB 2-way/4-way
L2 cache 1.875MB 3-slice 10-way 10 cycle latency
L3 cache 36MB 3-slice 12-way 80 cycle latency
Cache line 128B
Main memory 512MB 230 cycle latency

First, I measure the memory bandwidth used by the micro-benchmark in terms of the

number of memory reads issued to the memory controller. As shown in Figure 2.4, the

base case and the prefetching configuration perform equally as prefetching has to fetch in-

coming network data from memory. Prefetching anticipates data accesses correctly due to

the sequential access pattern used by the application. Cache injection reduces the number

of memory reads by up to 96% as all application accesses to incoming network data hit

the L3 cache.
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Figure 2.4: Memory bandwidth utilization.

Second, I measure the execution time of the application in processor cycles. As shown
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in Figure 2.5, cache injection and prefetching outperform the base case as they both reduce

the number of cache misses on network data. Prefetching reduces execution time by up to

37% while cache injection by up to 30%. Prefetching performs better because it fetches

blocks to the L2 cache, while the cache injection implementation targets the L3 cache [13,

14, 12].
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Figure 2.5: Execution time.

Since cache injection reduces memory pressure for incoming network data, its benefits

are dependent on the ratio of incoming network data and local data used by the application.

The communication traffic and granularity of communication vary from application to ap-

plication and, thus, the improvements on performance will vary. Several high-performance

computing applications will likely benefit from cache injection as they exchange a signif-

icant amount of network messages. For example, SMG2000 [9], a memory intensive

application, at 384 tasks spends almost 75% of the overall application aggregate time in

communication operations [57].

In summary, cache injection reduces memory bandwidth utilization compared to data

prefetching. The results presented in this section represent an upper bound on the benefits

provided by cache injection.
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2.4 Limitations of cache injection

In the previous section, I showed that cache injection can reduce memory pressure signif-

icantly. Also, previous work [6, 28] showed that cache injection can provide significant

performance improvements for a particular type of application, namely TCP/IP protocol

processing. In this case, the kernel consumes the injected data right after it is written,

signaled by an interrupt to the processor.

Cache injection, however, presents challenges intrinsic to the explicit and producer-

driven nature of this technique, namely timely transfer and identifying the consumer of

data. For example, data may be transferred too early before the consumer can fetch it

from cache, or data may be written to the cache of a processor which is not executing the

consumer thread. In the former, cache pollution may occur, and in the latter, depending

on the architecture, transfer from one cache to another may incur higher overhead than

writing to main memory.

Cache injection requires explicit knowledge about the identity of the consumer. The

NIC, the producer of data, has to choose quickly between a set of potential consumers.

Even in a uni-processor system, the choice between an L2 cache, L3 cache or main mem-

ory has to be made. In a multiprocessor system, a core/processor has to be chosen. An

incorrect choice of the target may result in higher delays than a conventional system with-

out cache injection.

I refer to the process of transferring data from the NIC to a processor’s cache directly

without any knowledge of the application’s usage patterns nor the state of the system as

blind cache injection. In the remaining of this section, I show an application based on the

Jacobi method in which cache injection without an appropriate injection policy (i.e., blind

injection) suggests loss of performance. This motivates the study of injection policies,

which are directly related to the effectiveness of this technique.
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2.4.1 The Jacobi method

The Jacobi method [23] is an iterative algorithm used to solve a partial differential equation

called the Laplace equation. This method can be used, for example, in calculating the tem-

perature of a body represented by a multidimensional grid. At each time step, the Jacobi

method computes the temperature of all interior points or cells based on their neighbors’

values. The algorithm continues to refine the temperature values until a specific threshold

is reached. The boundary points are fixed and set by boundary conditions.

A simple parallel implementation of this algorithm on a two-dimensional grid (n, n),

may partition the problem domain into sub-domains that can be assigned to individual

processes. Figure 2.6 shows the problem domain for a specific process. Given p processes,

the grid is decomposed into sets of n/p rows. Every process is in charge of computing n2/p

points. To compute the values in the first and last rows for a particular process, the values

of the boundary rows from its preceding and following neighbors’ processes are needed.

This requires data exchange between processes. At each time step, each process sends the

values of its first and last rows (2N values) to its neighboring processes accordingly. In

a message-passing communication paradigm such as MPI [21], an algorithm (per process

per iteration) that overlaps computation and communication can be outlined as follows:

1. MPI_Isend row boundary interior cells

2. MPI_Irecv ghost cells

3. Calculate interior cell values

4. MPI_Wait for ghost cells to arrive

5. Calculate boundary interior cell values

The steps of this algorithm can be classified into communication and computation

stages. Steps 1, 2 and 4 are communication steps, and steps 3 and 5 are computation steps.

19



Chapter 2. Cache injection

m,m'+1

m,m'

i,j+1

i-1,j i,j i+1,j

i,j-1

0,1 1,1

1,0

Pr
oc

es
s 
k

k+
1

k-
1

m+1,m'

Ghost cells

Interior cells

Figure 2.6: Jacobi problem domain for process k.

2.4.2 Performance using blind injection

Assume that the algorithm outlined above is running in a cluster of nodes, where one pro-

cess runs in one node and each node is connected through a NIC to the cluster’s network.

At the beginning of execution, each process executes communication steps 1 and 2. Since

the communication operations are non-blocking, each process continues executing step 3

even if the previous operations have not been completed. Also, assume that while exe-

cuting step 3, ghost cells arrive to the NIC and are written to main memory (overlap of

computation and communication). If step 3 is long enough for the communication stage to

complete, then step 4 completes immediately, and the system continues to execute the last

step. Otherwise, the process waits for the requested data to arrive and at that point moves

to the last step.

In a system with blind cache injection, i.e., data is moved directly from the NIC to
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a processor’s cache as soon as it arrives, the overlap of communication and computation

steps may be problematic. While the processor is working on local data, the NIC cache

injection operation may be taking the application’s working set out of the cache. Thus, the

application has to fetch its working set again possibly replacing those blocks written by

the NIC. After completion of step 3 and if the network data has arrived, the processor has

to fetch the network data back to the cache to execute the last step. The effects of blind

injection in this case result in the overhead of unnecessarily evicting the application’s

working set from the cache and then fetching this data back to the cache. This overhead

increases memory bandwidth traffic as well as data latency. The conventional system

without cache injection performs better.

The performance penalty incurred by blind injection is due to the producer-driven na-

ture of this technique. In other words, data is written to the cache as soon as it is produced

(when it arrives from the network), which happens to be too early for the application to

take advantage of it. To leverage the data latency and memory bandwidth benefits of this

technique, injection policies to make informed decisions about when to inject data to the

cache are necessary.

Two simple policies can overcome this problem: (1) for incoming network data whose

size exceeds a specific threshold, write data to the L3 cache, otherwise write data to the L2

cache; and (2) if the consumer thread or process is blocked waiting for data, write into the

L2, otherwise write to main memory. The first policy is appealing considering the growing

size of L3 caches, e.g., a Power5 machine contains a 36MB cache. The second policy

requires OS information and may improve performance by speeding up the completion of

step 4 (wait step).

Thus, if the consumer thread does not use the injected data promptly, blind cache

injection may create cache pollution resulting in loss of performance. The performance

benefits of this technique rely on informed injection policies. This information is based on

the usage pattern of applications, the OS, the compiler and the communication library.
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2.5 Injection policies

To leverage the performance improvements that can be provided by cache injection, ad-

equate policies are needed. The goal of these policies is twofold: (1) to determine the

appropriate place in the memory hierarchy for incoming network data; and (2) to iden-

tify the appropriate processor that will consume this data. In this section, I present a set

of policies based on information from the OS, the compiler, and the application to make

adequate decisions about what, when, and where to inject incoming network data.

Processor-direction Inject to the processor/cache where the consumer thread is executed.

This information is provided by the OS and can be included in the memory descrip-

tors that the NIC will use to match incoming messages. When a buffer is registered

(pinned in memory) for communication, the OS adds the identifier of the consumer

processor to the memory descriptor. MPI processes on a node are not expected to

migrate. However, if they do, the OS can update the NIC with this information so

that messages can be routed to the appropriate processor. This policy depends on

the specific architecture where cache injection is implemented and it should take

into consideration the latency for cache-to-cache transfers inside and outside a chip,

and between chips as well as memory-to-cache latencies between chips and within

a chip. Based on these parameters, the NIC can make a better decision to place in-

coming network data into the appropriate target to reduce memory bandwidth usage

and data latency.

Application/Compiler-driven Inject to the target cache when the application, communi-

cation library and/or compiler explicitly solicits the data. This policy uses software

injection which is analogous to software prefetching. With software injection, hints

are passed to the NIC to indicate that specific messages should be injected into the

cache. These hints can be automatically generated from the compiler using exist-

ing prefetching techniques, or they can be specifically indicated by the application
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and/or communication library.

On-wait Inject to the target cache when the consumer thread is blocked waiting for in-

coming network data. The communication library may notify the NIC when the

application is about to block waiting for network data. The notification may include

a token identifying a particular memory descriptor on the NIC. When a matching

message arrives from the network, the NIC writes to the cache if the receiving mem-

ory descriptor indicates that the application is waiting. Otherwise, data is written to

main memory.

In-cache Inject to the target cache if the line is present. This policy requires querying

the cache for a particular line or set of lines. Searches in a cache can be an expen-

sive operation since the whole cache may be traversed. Smart searches [33] can be

employed to determine rapidly if a line is not in the cache. However, the search

algorithm is prone to false-hits. In other words, the search may indicate a hit when

the line is not cached. Smart searches use an array located in the cache controller

to store partial tag bits. Depending on the number of bits, false-hits are less prob-

able to occur at the cost of extra space in the smart search array. The cost of this

policy is directly related to the overhead of a cache search and is dependent on the

architecture.

Meta-data Inject to the target cache the header or information about the payload of a

message. In MPI, for example, the header is represented by the message envelope

and may be used by the communication library shortly after written to the cache.

The library may be polling a message notification queue, or it may be scheduled to

run explicitly after a network interrupt issued by the NIC.

Size-dependent Inject to the L2 cache, L3 cache, or main memory depending on the size

of the caches and the size of the incoming message. For medium or large messages,

this policy may inject to the target cache the first part of a message and write the
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rest to main memory. The idea is to let the prefetch engine fetch the rest of the

message to the cache as it is needed. This policy reduces data latency by potentially

overlapping computation on the first part of the message with memory latency for

the rest of the message. In this case, there are no savings on memory bandwidth for

the second part of the message.

The performance of these policies on application performance is dependent on several

factors including the size and frequency of messages, the type of communication opera-

tions, and the ratio of communication to computation.
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Experimental infrastructure

In Chapter 2, I described the benefits and limitations of cache injection from first princi-

ples. I analyzed the architectural and system costs of implementing this technique; showed

that cache injection reduces memory bandwidth utilization compared to prefetching using

a micro-benchmark; demonstrated that cache injection can decrease application perfor-

mance without an appropriate policy; and proposed policies to address the limitations of

cache injection.

In this chapter, I describe the experimental infrastructure to demonstrate the effect of

cache injection on application performance. The requirements of this infrastructure in-

clude cycle-accurate simulation of nodes (including cache injection), execution of unmod-

ified message-passing applications at scale (hundreds of nodes), and functional and time-

accurate simulation of the network. The resulting infrastructure is a distributed, cache

injection cluster simulator that allows the execution of unmodified MPI applications at

scale.

The study of cache injection at scale is part of a broader problem to simulate novel

architectural features on many computational nodes. Researchers are exploring poten-

tial architectural changes for clusters, including a wide range of techniques such as hard-
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ware matching support for scalable communication libraries [8] and radical architectural

changes like processor-in-memory [53]. Unfortunately, the impact of such changes are

difficult to predict analytically due to complex interactions between the architecture, oper-

ating system, system libraries, and applications.

Architectural simulators that examine the impact of system changes on application

performance have not historically scaled well. For example, coarse-grained simulators

skew dramatically when these changes are scaled up over tens or hundreds of systems.

Similarly, cycle-accurate simulators, which can model each event to nanosecond accuracy

in a single system, scale up poorly. Their running time increases dramatically even for a

small number of processors. This limits designers in their ability to study how architectural

changes affect scientific application performance as a cluster grows in scale.

To address this problem, I present an MPI-based cluster simulator designed to enable

studies of architecture/operating system/application interactions on current and future ar-

chitectures. Unlike previous work, my cluster simulator architecture uses existing clusters

to simulate future clusters by coupling a cycle-accurate full-system node simulator1 with

an MPI-based high-performance network model. The resulting MPI-based cluster sim-

ulation system can be used to predict the impact of architectural changes such as cache

injection.

In the following section, I describe the cluster simulator in detail followed by validation

results showing that this simulator is accurate.

1A full system in this context means all the components that make up the compute engine of a
cluster node: CPUs, caches, main memory, and the components that connect these parts.
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3.1 Cluster simulator

To study the impact of cache injection on scientific applications at scale, I built an appara-

tus to simulate a cluster of machines based on a cycle-accurate simulator which leverages

the parallel computation capabilities of current clusters. The simulated cluster is simulated

on an actual cluster. A number of simulated nodes are run per physical node depending on

the node’s available resources. Communication between simulated nodes entails commu-

nication between physical nodes. By decoupling the simulation of individual nodes and

the simulated interactions between them, a true parallel implementation can be achieved.

The NIC and network model are distributed among the simulated nodes, resulting in a

scalable simulator.

This apparatus consists of the following components: (1) a multiprocessor, multicore

full-system simulator that simulates one computational node; (2) an OS, communication

libraries and MPI applications for the simulated node; (3) a shim layer to bridge between

a simulated node and a physical node; (4) a modeled NIC to communicate between sim-

ulated nodes; (5) a modeled network that models the network between simulated nodes;

and (6) a message-passing communication system on the physical cluster that allows the

launching and communication capabilities of the simulated cluster. I use the following

terms for the rest of this chapter: a node refers to a physical host within the physical clus-

ter; a machine refers to a full-system simulator (simulated node) running on a node; and a

NIC refers to a modeled NIC that connects machines within the simulated cluster.

The simulated cluster is launched on a physical cluster by executing one instance of

the full-system simulator per node. The machines communicate with each other over a

modeled network through a modeled NIC. The NIC serves as a bridge between a (simu-

lated) machine and a (physical) node. The NIC uses the existing messaging system (MPI)

on the physical cluster to communicate with NICs running on other machines.

The full-system simulator provides a cycle-accurate simulation of a single-node, mul-

27



Chapter 3. Experimental infrastructure

tiprocessor system. This machine provides a platform to study architectural features and

configurations not yet available in current hardware. My goal in developing a cluster ap-

paratus is not to create such single-node simulators, but to leverage their capabilities in

a cluster setting. Communication between machines is achieved through a modeled NIC

that can be loaded dynamically into the simulator and communicates with other machines

through their associated NICs.

The specific simulator I use for this infrastructure is an augmented version of IBM’s

Mambo full-system simulator [7] with cache injection of incoming network messages [6].

The simulated machine is based on a Power5 architecture [54]. This architecture provides

three levels of cache. The L1 and L2 caches are on board the processor chip, while the L3

cache is off-chip. The memory controller and L3 directory are also on board. The L2 is

inclusive of the L1 cache, and the L3 is a victim cache (cache blocks evicted from the L2

are allocated in the L3 cache). Every machine runs the K42 research OS [3].

A simulated machine and its modeled NIC interact through a shim layer [18]. This

layer provides a bidirectional path between the simulated machine and the NIC (see Fig-

ure 3.1). On one side, a machine communicates with its NIC through memory mapped

registers. Using this mechanism, a user process can interact with the NIC directly, bypass-

ing the OS and/or Hypervisor if needed. Access to these registers is controlled by the OS

and/or Hypervisor. On the other side, a NIC communicates with its machine through a

well-defined interface called the shim interface (see Table 3.1). This interface allows the

NIC to write to the host’s main memory and caches, to perform computation using the

host’s timing model, and to provide the appropriate functions to execute on accesses to

memory mapped registers. In addition, the shim interface provides functions to load and

unload network interface controllers and other devices at run time.

A modeled NIC connects its associated machine with the rest of the simulated ma-

chines running on the cluster. In addition, it functions as a bridge between its machine

and the physical node it is running on. A NIC communicates with its associated machine
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Figure 3.1: The shim layer provides the glue between the system simulator and the mod-
eled NIC.

Table 3.1: A shim interface

Function Description

memory_read/write read/write to host memory
cache_write write to L2/L3 cache
schedule_job launch async task
delay_cycles time delay on host
raise_interrupt I/O interrupt
memory_mapped_I/O functions to trigger on regs

through the shim layer and to other machines (running on other nodes) using the physical

node’s transport layer.

The NIC is capable of reading and writing to host memory and writing to the L2 and

L3 caches. Writing to memory is performed by issuing write-invalidate bus transactions.

Writing to a cache is performed in chunks of one cache block, and the state of the resulting

block is set to clean exclusive [55]. Writes of less than one block are handled by a write

with flush operation (flush the cache line first and then write the data into memory). Writes

to a cache require the physical address of the destination to be block-aligned. Thus, writing

incoming network data to a cache may involve writing the first few words using write with

flush until the destination address is cache aligned, then writing full blocks to the cache.
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Currently, all writes to the cache also update main memory under the assumption that most

accesses to network data are read operations (no write-back operations are necessary). A

different approach could be used for applications that frequently update incoming network

data. Cache injection would only write to the cache, setting the state of incoming cache

blocks to modified exclusive (dirty). When the values of these blocks are evicted, they are

written back to memory.

The NIC uses the same timing model used by the machine simulator through the shim

interface. For example, to perform a specific checksum on a particular packet, the NIC

launches an asynchronous job (running in parallel with the simulated host) and assigns

a particular delay (in terms of host processor cycles) to this task. Since every simulated

machine runs asynchronously of each other, it is possible for one machine to move for-

ward faster than others depending on the resources available for the simulator provided by

its physical node. To set an upper bound on the time difference between any two simu-

lated machines, the NIC synchronizes all simulated clocks every few tens of thousands of

simulated cycles. The exact number is set based on the model of the network.

Each message sent between simulated machines is augmented by the NIC with a times-

tamp and delay information about the modeled network. The NIC then sends that informa-

tion together with the machine’s payload using the transport layer provided by the physical

node. The receiving NIC waits to deliver the message to its simulated machine until its

clock reaches the message’s timestamp plus the modeled network delay [36]. This is pos-

sible because the network of the physical cluster appears lightning fast in comparison to

the very slowly running simulated machines (in real time). The modeled NIC can deliver

messages at any specified latency and bandwidth in simulated time, allowing the simulated

cluster to use any type of network (physically possible or not). In this work, I use a Cray

XT-3 network model based on Seshat [52], an execution-driven discrete event simulator to

study application behavior under varying network characteristics.

The simulated cluster uses MPI to communicate between simulated machines. My
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MPI implementation is based on MPICH [26] and MIAMI (Minimal Interface for An

MPI Implementation). As shown in Table 3.2, the MIAMI API abstracts message-passing

functionality into a small number of operations that can be implemented by the NIC. MPI

operations are translated into MIAMI operations at the host communication library (see

Figure 3.2). The library invokes MIAMI operations implemented by the NIC. The modeled

NIC supports OS-bypass and allows for zero-copy MPI transfers.

Table 3.2: MIAMI API

Function Description

init initialize
finalize clean up
size number of processes in job
rank my rank in job
clock time in seconds
tx_start start a send
stx_start synchronous send
tx_done check send completion
rx_start post a receive
rx_done check receive completion
rx_probe probe for message arrival

Mambo Simulator

Shim
Layer

MIAMI

NIC

Shim Interface

K42

Application

MPI-MIAMI

Network

Figure 3.2: The implementation of MPI on a single simulated machine.

The communication between the simulated machine and its NIC through the MIAMI

API is implemented with a user-level event queue. Each call to the MIAMI user library
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generates an entry into this queue with the appropriate parameters. Once the event is

written, a write to memory-mapped registers is performed to signal the NIC about this

new event. The user queue is pinned in memory, cache block-aligned and each entry is

one cache block in size.

To launch the simulated machines into the physical cluster and to communicate be-

tween nodes, I use the physical cluster’s MPI library. The resulting MPI-based cluster

simulation system is depicted in Figure 3.3 and its parameters shown in Table 3.3.

Shim  

Mambo Simulator

NIC

K42

Application

MPI

OpenMPI Physical
Network

Launch

Cray XT-3 
Red Storm 
Network

Transport

Node A

Shim  

Mambo Simulator

NIC

K42

Application

MPI

OpenMPI

Launch
Transport

Node B

Figure 3.3: The parallel cluster simulator is simply an MPI job running on a physical
cluster.

3.2 Validation

My cluster simulation system is based on a validated host simulator [7] and an accurate

network model [52]. Even though I cannot validate this infrastructure against a real archi-

tecture, because such architecture does not exist, I provide evidence that this infrastructure

is accurate.

I examine how the simulator could be used to study the effect of a simple architectural

change (throttled network bandwidth) on cluster application performance and compare it
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Table 3.3: Simulated system configuration

Feature Configuration

Simulator Mambo PowerPC full-system simulator
Architecture Power5 with cache injection
Processor 1.65GHz frequency
Memory 825MHz on-chip controller, 275MHz DDR2
L1 I/D cache 64KB/32KB 2-way/4-way
L2 cache 1.875MB 3-slice 10-way 10 cycle latency
L3 cache 36MB 3-slice 12-way 80 cycle latency
Cache line 128B
Main memory 512MB 230 cycle latency
OS K42
Comm. Lib. MPICH-MIAMI w/OS-bypass & 0-copy
Network Cray XT-3 Red Storm

against previous work [41, 16]. Because my system configuration is not identical to that

of previous work, however, I cannot formally validate this result.

Network throttling is achieved by changing the parameters of the underlying modeled

network. I also use these results to study how various simulation modes affect simulation

times and how to verify that simulator behavior was consistent across different underlying

execution platforms. I use two simulation modes: loose and accurate. In loose mode, the

Mambo PowerPC simulator does not simulate the contents of the cache nor the behavior

of the system using those caches which saves a lot of simulation time. In accurate mode,

all the components of the system are simulated and, thereby, simulation time is slow.

In the following experiments, I use IS from the NAS parallel benchmark suite version

2.4 [5]. This code is a well-known integer sort benchmark. I chose IS because it was used

in the previous work that I include for comparison. The runtime of IS is small, making it

suitable for cycle-accurate simulations which take many thousand times longer to finish

than the native execution time of the tested benchmark. In addition, I chose (small) NAS

class A and B data sets for testing IS as opposed to the larger class C and D data sets for
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the same reason.

Figure 3.4 is a comparison of IS on four nodes. I compare the results from running

IS class A in loose and accurate modes and the class B results. I use the result of the

unmodified bandwidth run as the 100% marker. I then plot the runs with fractions of that

bandwidth and show the execution time IS reports as a percentage of the execution time

when it is run at 100% bandwidth.
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Figure 3.4: NAS IS benchmark on four nodes.

The plot lines in Figure 3.4 show very similar trends. The class A and class B runs

show almost perfect overlap. The class A run in accurate mode is shifted to the right

but shows a similar trend. I believe this shift is due to the changed CPU floating point

performance to network bandwidth ratio when running in loose mode which alters the

simulated processor performance.

In Figure 3.5, I repeat these IS simulations on sixteen nodes. I see a similar shift to the

right of the accurate run versus the loose run as shown in Figure 3.4 for four nodes.

Figure 3.5 also includes the results from [15, 16]. In that work, the authors ran IS on
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Figure 3.5: NAS IS benchmark on 16 nodes.

sixteen nodes and artificially slowed down the bandwidth of the network on a real system.

This was done by introducing delays in the firmware of the Myrinet network cards in the

cluster used for those experiments. I used the numbers obtained in those experiments and

normalized them. The resulting line in Figure 3.5 does show a general similarity to the

simulations ran on my simulator. Due to a different compute power to network bandwidth

ratio, that line is much farther to the left. However, it does show about the same rate of

decline in IS performance as the network bandwidth decreases.

These results combined with past work validating Mambo and Seshat show that the

simulation infrastructure described in Section 3.1 can be used to predict how system

changes would affect the performance of cluster applications. Also, I have shown else-

where [19] that my simulator can accurately simulate a scalable machine by looking at

a scalable application, and I show that it continues to scale when run inside my environ-

ment. My simulator has been able to scale to hundreds of nodes. In that work, I also

demonstrated that the application’s execution time starts to diverge as I increase the syn-

chronization interval. As long as the synchronization interval does not exceed a specific
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threshold (application dependent), applications perform deterministically. This behavior

was also observed by previous work [20]. These, and other experiments, indicate that my

simulator is accurate. Nonetheless, until I can simulate an existing system, direct valida-

tion cannot be done.
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Test environment

My evaluation of cache injection consists of executing MPI applications on a cache injec-

tion cluster simulator (see Section 3.1) over a variety of simulated system configurations.

In this section, I describe the hardware and software environment used for this evalua-

tion. This includes a description of the platform used for executing the cluster simulator,

the simulated system base configuration, the cache injection policies implemented on the

modeled NIC, the two parallel applications I ran on the cluster simulator, and the analysis

tools used to gather application performance data and MPI collectives performance data.

4.1 Platform and simulated system configuration

I ran the cluster simulator on two cluster systems: Phoenix, a 16-node cluster at the Uni-

versity of New Mexico and Thunderbird, a much larger machine at Sandia National Lab-

oratories. Phoenix is comprised of 16 compute nodes. Each node has two 2.20 GHz Intel

Xeon processors and 1 GB of memory. A Gigabit Ethernet serves as the interconnect fab-

ric. Phoenix uses the OpenMPI library [25] version 1.2.4 to transmit messages between

nodes. The nodes run the Ubuntu Linux distribution using a 2.6.20 kernel. Thunderbird
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is comprised of 4,480 compute nodes. They are dual 3.6GHz Intel EM64T processors

with 6 GB of RAM. Thunderbird’s network is an Infiniband fabric with a two level Clos

topology. The nodes run Red Hat Enterprise Linux with a 2.6.9 kernel and use Lustre as

the parallel file system. I used OpenMPI version 1.2.7 and OFED version 1.3.1 to connect

to the Infiniband fabric.

The experimental results are gathered from a simulated cluster with very different char-

acteristics than those systems on which the cluster simulator is executed. The simulated

system configuration is shown in Table 3.3. This cluster is based on IBM eServer p550

nodes with cache injection running the K42 operating system. The nodes are intercon-

nected with a Cray XT-3 Red Storm network.

4.2 Injection policies

In this section, I describe a subset of the policies from Section 2.5 that I implemented on

the simulated system to evaluate cache injection. These policies are implemented on the

NIC and place incoming network data and associated communication events into the ap-

propriate level of the memory hierarchy (L2, L3 or main memory). The following policies

are tailored for MPI and use the techniques outlined more generally in Section 2.5.

The first policy called header or hl2 writes message headers (communication events)

to the L2 cache. This policy is an instance of the meta-data and size-dependent policies,

and is based on the interaction between the communication library (MIAMI) and the NIC.

The host library and the NIC communicate through a queue of communication events

residing on the host and pinned in memory. An event in the queue is used by the library to

invoke a particular communication operation on the NIC. The library writes the operation’s

parameters to an event and signals the NIC about this operation using memory mapped

registers. The NIC pulls the event from host memory, initiates the requested operation,
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and writes a response to the appropriate event. When the headers policy is used, the

response is written into the L2 cache. Since the user library polls the queue for responses

from the NIC, the communication events are fetched directly from the L2 cache. The size

of an event is exactly one cache block (128 bytes), and the user queue is block-aligned.

The choice of L2 is appropriate because data is consumed promptly after it is injected and

its size is small. To ensure the application’s working set is not evicted from the cache, only

one cache line is injected into the L2 cache per communication event.

Although I described a particular implementation of this meta-data policy, it can be

generalized to other communication libraries where the NIC writes a small amount of data

with information about a particular communication operation (header). Most architectures

follow this model either by issuing an interrupt or by polling a queue. In my implemen-

tation, I use polling. Even though a similar policy has been explored by writing TCP/IP

headers to the cache [28, 35], this work has been limited to two machines and to replaying

traces on a single machine, lacking information about the global impact of cache injection

on application performance.

The second policy called payload is an instance of the on-wait and application-dependent

policies and injects application data (payload) into the L3 cache. The L3 cache is an appro-

priate target for application data due to its size (36 MB), the size of application messages,

and to avoid polluting the L2 cache. The trade-off is a potentially higher data latency than

the L2. This policy does not inject message payloads of more than half the size of the

cache (18 MB) to avoid cache pollution.

To better control the injection of messages that are likely to be used quickly by the ap-

plication, I further divide this policy into preposted (message has a matching receive) and

unexpected messages. An application is more likely to use data sooner from a message

matching a preposted receive than one that is unexpected. The preposted policy provides

an approximation of the on-wait policy. Implementing an exact on-wait policy may in-

volve communicating with the NIC frequently each time the application spins waiting for
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a message. The communication library may infer the state of the application by identi-

fying certain operations invoked by the application, e.g., MPI_Waitall. Passing hints to

the NIC may be a costly operation since this information must cross the I/O bus. Thus,

the preposted policy provides a reasonable trade-off of accuracy versus performance. The

preposted and unexpected policies depend on the number of unexpected and preposted

messages, e.g., if there are no unexpected messages, the unexpected policy has no effect.

Finally, the third policy called message or hl2p is simply the union of both the payload

and header policies, i.e., inject communication events or headers to the L2 cache, and inject

application payload to the L3 cache.

4.3 Parallel applications and performance analysis tools

In this section, I describe the applications and tools used to evaluate cache injection. All of

these MPI codes were written in C, ran unmodified, and were built using a custom version

of GNU’s GCC 3.3.3 cross-compiler for PowerPC-64.

4.3.1 AMG from the Sequoia acceptance suite

AMG is an “algebraic multigrid solver for linear systems arising from problems on un-

structured grids” [37]. It is one of several benchmarks used by Lawrence Livermore Na-

tional Laboratory (LLNL) in its request for proposals and acceptance of the Sequoia su-

percomputer. Sequoia will be LLNL’s next Advanced Simulation and Computing (ASC)

machine.

The communication and computation patterns of AMG exhibit the surface-to-volume

relationship common to many parallel scientific codes [27]. I chose AMG because it is a

communication-intensive application which can, for large problem sizes, spend 90% of its
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execution time using the MPI library to transfer messages. AMG uses collective operations

and point-to-point messages of relatively small size (2 – 10 KB) [37].

AMG provides several solvers that can be selected from the command line. The data

presented in this document is from solver 0 (the default—PCG solver). I chose this solver

because it appears to place more demand on the memory subsystem than the other solvers.

This solver may have better sensitivity to cache injection than the others available in AMG.

AMG has three distinct phases of operation. The solver runs in the third phase (solve

phase), while the first two phases are used for problem setup. I augmented AMG to run

in fast-forward mode (without simulating the caches) for the first two phases and enabled

cache simulation before the third phase. Cache simulation is started hundreds of thousands

of cycles before the solve phase to allow the caches to warm-up. Since the phase of interest

is the solve phase, this allows me to advance the simulation quickly and to enable fully-

accurate simulation just for the phase of interest.

I ran this code in weak-scaling mode with the default problem (a Laplace-type problem

on an unstructured domain with an anisotropy in one part), setting the refinement factor

for the grid on each processor in each direction to 1 (rx = ry = rz = 1).

4.3.2 FFT from the HPC Challenge benchmark suite

HPCC’s FFT is one of seven benchmarks designed to examine the performance of HPC

architectures using kernels with more challenging memory access patterns than previous

benchmarks (HPL). These benchmarks were designed to bound the performance of many

real applications as a function of memory access characteristics, such as spatial and tem-

poral locality [40].

FFT (Fast Fourier Transform) measures the floating point rate of execution of double

precision complex one-dimensional Discrete Fourier Transform (DFT). I chose FFT be-
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cause it requires all-to-all communication and stresses inter-processor communication of

large messages. FFT runs in weak-scaling mode maintaining the same amount of work

per processor. Each processor computed a vector of size 65536.

4.3.3 mpiP: an MPI profiling library

mpiP is a profiling library for MPI applications [56]. It gathers statistical information

about point-to-point and collective operations. This information includes number, type

and amount of time spent on communication operations, as well as message sizes. I use

this tool to relate the performance of cache injection to the communication characteristics

of an application. For a given application, I gather the communication to computation

ratio, the sizes of the messages exchanged, as well as the communication primitives that

consume most of the time in the MPI library.

4.3.4 IMB: Intel MPI benchmarks

IMB is a suite of benchmarks [29] designed to measure the performance of certain MPI

communication operations. These operations include point-to-point and collective oper-

ations. I use these benchmarks to determine the impact of cache injection on individual

collective operations. For example, if cache injection improves the performance of All-

gather operations, then it is likely that applications spending a significant amount of time

in these operations may show an improvement as well.
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Results and analysis

In this chapter, I describe the impact of cache injection on the performance of parallel

applications. The performance of cache injection is a function of the memory and proces-

sor speed, cache injection policy, and the communication characteristics of applications.

To determine application sensitivity to cache injection, I measure application performance

in terms of execution time and floating-point operations per second (flops). Application

performance is measured under a variety of configurations varying the factors of interest:

memory and processor speed, injection policy, and application communication character-

istics. To determine sensitivity to the last factor, I use two applications, AMG and FFT,

whose communication signatures differ significantly. I conclude this chapter by associat-

ing cache injection performance with the communication parameters used in the LogGP

model of parallel computation. The LogGP model provides a useful vocabulary to deter-

mine whether a particular application is sensitive to cache injection by solely analyzing

its communication parameters. While this represents a useful approximation, the benefits

of cache injection cannot be fully expressed by this model because characteristics such as

message locality cannot be represented.
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5.1 Memory and processor speed

In this section, I show the impact of memory and processor speeds on the performance of

cache injection in relation to application performance. The experiments consist of measur-

ing AMG’s running time using different cache injection policies, memory and processor

speeds, and numbers of MPI processes.

The baseline for the different memory speeds is based on a Power5 architecture as

shown in Table 3.3. The memory speed is a function of the processor speed: the on-chip

memory controller frequency is 1/2, and the DRAM DDR2 memory frequency is 1/6. A

2.1GHz processor has a 1050MHz (2100/2) memory controller and a 350MHz (2100/6)

DRAM. The memory speeds considered for these experiments are shown in Table 5.1.

Table 5.1: Memory speeds as a function of processor speed.
Slowdown Controller DRAM

1.0 1/2 1/6
2.5 1/5 1/15
5.0 1/10 1/30
7.5 1/15 1/50

I consider four cache injection policies: base, hl2, hl2p and payload. The base policy

is the null hypothesis, i.e., no cache injection. Figure 5.1 shows the performance of AMG

using different memory and processor speeds, numbers of processors, and injection poli-

cies. The graphs on the left show application performance normalized to cache injection’s

base case. The data plotted is the minimum of three runs. The graphs on the right show the

median running time of three runs. As shown by the normalized graphs, the improvement

provided by cache injection is inversely proportional to memory speed, i.e., the slower the

memory system, the higher the benefit. This is the result of satisfying memory reads due

to communication by the cache instead of main memory. The slower the memory system,

the more expensive a cache miss becomes.

As demonstrated by the graphs on the right side, processor speed has a significant
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(a) AMG’s execution time at 8 nodes.
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(b) AMG’s execution time at 16 nodes.
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(c) AMG’s execution time at 64 nodes.

Figure 5.1: Performance of AMG solve phase as a function of memory and processor
speed, cache injection policy, and number of processors. The graphs on the left show ex-
ecution time normalized to cache injection’s null hypothesis, i.e., no cache injection. The
graphs on the right show execution time. Cache injection’s improvement on performance
is inversely proportional to memory speed.
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impact on the performance of this application. This indicates that for this input problem

size, the application is computationally-bound. However, processor speed does not play a

significant role in the performance of cache injection (as shown by the normalized graphs).

The reason is that memory speeds are fixed ratios of the processor speed. In other words,

the ratio of processor to memory speed is constant across processors. For example, a

2.5 slowdown memory system for a 900Mhz processor has a 900/(2*2.5)Mhz memory

controller, while a 2100Mhz processor has a 2100/(2*2.5)Mhz controller.

The important factor is not processor speed but the ratio of processor to memory speed

(the memory wall in action). The higher the ratio, the higher the impact of cache injec-

tion on application performance. In other words, cache injection performance is directly

proportional to the ratio of processor to memory speed. This result is significant even for

multi-core architectures where the ratio of aggregated computational power to memory

speed is high.

5.2 Cache injection policy

In this section, I show the impact of cache injection policy in the performance of AMG.

The experiments consist of measuring the application’s execution time using different

cache injection policies, numbers of MPI processes, and memory and processor speeds. As

discussed in the previous section, Figure 5.1 shows application performance improvement

with hl2, hl2p, and payload policies. This improvement stems from a reduction of mem-

ory reads from the memory unit (memory controller and DRAM) due to communication

events. In this section, I describe how each individual policy affects performance.

As described earlier, the NIC communicates to the host through memory using two

types of writes: communication events (headers) and data (payload). Event writes are

issued to the host event queue to notify the result of a specific communication operation
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(small writes –one cache line); and data writes are issued to host buffers posted by the

MPI application. The injection policies analyzed in this section are: hl2, write to the L2

cache all notifications to the host due to communication events (headers); payload, write

application data (payload) to the L3 cache; and hl2p, write headers to the L2 cache and

payload to the L3 cache. Data larger than half of the cache size is written to main memory

for all policies.

The hl2 policy (and therefore hl2p) can be very effective if there is a significant num-

ber of communication events because the host MPI library reads communication responses

immediately after they are issued by the NIC (MPI library polls the event queue). Thus,

the response may still be in the cache. The payload policy is independent of the commu-

nication event responses issued by the NIC. It relies on the amount of data received and

the timely consumption of this data by the application. Since the application’s data is not

bounded to a particular size, data is injected to the L3 cache to avoid polluting the L2

cache. The hl2p policy combines both approaches by injecting headers and payload. This

approach is useful when there is a significant number of communication events as well as

when the application consumes its data promptly after arrival.

To understand the impact of these policies on application performance, I analyze the

number of reads issued to the memory controller for each policy. Figure 5.2 shows mem-

ory reads as a function of the injection policy, memory and processor speeds, and the

number of MPI processes. The hypothesis is that reducing the number of reads results

in an overall improvement in application performance. However, this is not true for all

cases. For example, Figure 5.2(c) shows a higher number of reads than the base case

for the hl2 and hl2p policies and 5.0 and 7.5 memory speed slowdowns. But according

to Figure 5.1(c), these policies, under the same memory configurations, actually improve

performance. Another issue that needs to be addressed is that at low scale the number of

memory reads decrease for hl2 and hl2p policies as a function of the memory slowdown,

while at a higher scale the number of reads is independent of the memory slowdown factor.
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This is clearly expressed in the 2.1GHz processor data in figures 5.2(a) and 5.2(c).
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(b) AMG memory reads at 16 nodes
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(c) AMG memory reads at 64 nodes

Figure 5.2: AMG’s number of memory reads carried out by the memory unit as a function
of memory and processor speed, cache injection policy, and number of processors.

First, I address the higher number of reads for the header policies. An example may

help clarify this issue. The MPI_Wait operation blocks until a particular communication

event has completed, e.g., a receive event. The host implements the wait operation by

continuously issuing requests to the NIC about the status of the event. The NIC writes a

response into the appropriate entry in the host event queue. The host reads the response

from the event queue. From the start to the completion of the wait operation, a number

of memory reads are issued by the host to read the NIC responses. For the hl2 and hl2p

policies, the host issues a higher number of memory reads than the base case because it

reads the event notifications from the L2 cache and can issue the next request faster.
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As shown in Figure 5.3, the number of event notifications to the host increases sig-

nificantly for the hl2 and hl2p policies, especially at lower memory speeds. This graph

also shows that the number of memory reads issued under the hl2 and hl2p policies are

independent of the memory unit speed because most of the memory accesses hit the L2

cache. This also explains the higher number of memory reads in Figure 5.2 for low mem-

ory speeds, such as 5.0 and 7.5. For this application and input size, the number of memory

reads is directly proportional to the communication events written by the NIC to the host.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

1.0 2.5 5.0 7.5 1.0 2.5 5.0 7.5
 100

 150

 200

 250

 300

 350

C
om

m
un

ic
at

io
n 

ev
en

ts
 to

 h
os

t (
ki

lo
)

Memory speed slowdown

base hl2 hl2p payload

64 nodes8 nodes

Figure 5.3: AMG’s number of NIC to host communication events for a 2.1GHz processor
as a function of memory speed and number of MPI processes. The left hand side uses the
left ’y’ axes and was gathered using 8 nodes; the right side uses the right ’y’ axes and was
gathered using 64 nodes.

The payload policy, as shown in Figure 5.2, behaves similar to the base case but with a

lower number of memory reads. This reduction stems from cache hits on payload data. The

decrease of memory reads across memory speeds (fewer reads with slower memory) for

both the base case and payload policy can be explained using the wait example above. The

number of reads the host can issue over a fixed period of time (waiting for the completion

of a particular operation) decreases with lower memory speeds. As Figure 5.3 shows, the

number of communication events is almost the same for both base and payload policies

(communication events are written to main memory for both policies).
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Second, I examine the issue related to the rate difference in memory reads to mem-

ory speed for low and high scale. This issue is demonstrated with a 2.1Ghz processor and

header policies in figures 5.2(a) and (c). To better understand this issue, Figure 5.4 isolates

these two graphs and provides a breakdown of the memory reads into useful and specu-

lative reads. The memory reads issued to the memory controller are simply the number

of reads carried out by the memory unit. Some of the reads may be speculative and their

result might be discarded if the data is provided by a cache. As shown in the 8-node bars,

the hl2 policy has a significant number (shown in red) of reads that are satisfied by the

memory system, making this policy sensitive to the memory unit speed. In the 64-node

case, most of the reads are provided by the cache and, thus, are independent of the mem-

ory unit speed. The decrease in the number of memory-satisfied reads stems from a higher

percent of reads due to communication and a lower percent due to local data. Reads due

to communication increase with the number of MPI processes due to the higher number of

incoming packets.

 0

 10

 20

 30

 40

 50

 60

 70

1.0 2.5 5.0 7.5 1.0 2.5 5.0 7.5
 0

 100

 200

 300

 400

 500

 600

 700

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

ba
se

hl
2

hl
2p

pa
yl

oa
d

M
em

or
y 

re
ad

s 
(k

ilo
)

Memory speed slowdown

Useful, 8 nodes
Spec, 8 nodes

Useful, 64 nodes
Spec, 64 nodes

Useful-hl2
Spec-hl2

                     64 nodes                     8 nodes
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In summary, the headers policies perform well for applications issuing a significant
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number of communication events. The data injected by this policy is expected to be read

by the host promptly after it is written to the cache. Even though these policies may

actually increase the number of reads issued to the memory controller, most of these new

reads are satisfied by the cache. In other words, the reads satisfied by the memory unit

are reduced. The header policies perform better than the payload policy due to the larger

fraction of bytes generated by the communication events in comparison to the data used

by the application. The payload policy improves application performance, indicating that

the application consumes its data shortly after arrival from the network.

5.3 Application’s communication characteristics

In this section, I show the impact of the communication characteristics of applications on

the performance of cache injection in relation to application performance. To study this

effect, I use two parallel applications, AMG and FFT, whose communication signatures are

different (see Figure 5.6). The experiments consist of measuring application performance

using different cache injection policies and numbers of MPI processes. The performance

of AMG is measured, as before, in terms of execution time. The performance of FFT

is measured in terms of gigaflops (one-billion floating-point operations per second), as

specified by the HPC challenge benchmark suite.

From previous sections, I showed that the header policies improve the performance

of AMG and provided higher improvement than the payload policy. The performance of

these policies are actually dependent on the application, in particular its communication

characteristics. As I will show, the impact of cache injection on the performance of FFT

differs significantly. As shown by the left histogram of Figure 5.5, the hl2 policy provides

no improvement, while the payload (and hl2p) policy improves performance between 6%

and 8%. The right histogram shows the number of reads issued to the memory controller.

This figure clearly shows that a reduction in memory reads results in performance im-
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provement. The hl2 policy does not significantly reduce the reads to memory.
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Figure 5.5: Impact of cache injection policies on the performance of HPCC’s FFT. The
histogram on the left show the gigaflops improvement (or degradation if negative) of the
different injection policies. The histogram on the right show the number of memory reads
issued to the memory controller. The performance improvement is inversely proportional
to the number of reads.

The reduction in memory reads by the header policy stems from the communication

characteristics of the application, in particular, the type of communication operations is-

sued. As shown in Figure 5.6(c), AMG spends more than 20% of its communication time

in MPI_Waitall operations. As mentioned before, wait operations result in continuous

polling of NIC responses from memory. Reading these responses from the cache allow

the host to process communication events faster. The more wait operations there are, the

higher the improvement by the header policies. Thus, the performance of the header poli-

cies is directly related to the time an application spends in wait operations (test, wait, wait-

all, etc.). Other operations in the communication time of AMG (see Figure 5.6(c)), such

as MPI_Allreduce and MPI_Allgather, do not affect the performance of cache injection

since they use little time relative to the overall communication time as scale increases.

The payload policy, unlike the header policies, allows an application to access its com-

munication messages faster (fetching them from the L3 cache rather than main memory).
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(b) FFT’s comm. to computation ratio.
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(c) AMG’s communication operations.
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(d) FFT’s communication operations.
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(e) AMG’s sent data by comm. operation.

 0

 20

 40

 60

 80

 100

4 8 16

Se
nt

 d
at

a 
(%

)

Number of nodes

Alltoall
Others

2.62e+05 1.31e+05 6.55e+04

(f) FFT’s sent data by comm. operation.

Figure 5.6: Communication characteristics of AMG and FFT. Figures (e) and (f) show
the amount of data sent by each communication operation. The numbers inside the bars
indicate the average message size sent (in bytes) by the appropriate operation. The differ-
ence in communication signature between AMG and FFT affect the performance of cache
injection.
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The improvement provided by this policy is related to the number of messages received

and their size. As Figure 5.6(e) shows, most of the data sent by AMG uses point-to-point

operations (MPI_Isend).

As mentioned above, the effect of cache injection is different for FFT. The hl2 policy

does not provide any improvement since no wait operations are issued. Figures 5.6(d)

and 5.6(e) show that more than 80% of the communication time is spent in MPI_Alltoall

operations with sizes varying in the low hundred kilobytes. These operations provide a

significant improvement in the performance of the payload policy. Even though there is

only 6% to 8% improvement (see Figure 5.5) in the overall application performance, this

is significant because only 10% of the application’s time is spent in communication (see

Figure 5.6(b)).

In summary, the performance of the different injection policies is dependent on the

communication characteristics of the application: type of communication operations, mes-

sage sizes, and communication to computation ratio. As exemplified by AMG and FFT,

header policies showed positive sensitivity to wait operations while payload policies showed

positive sensitivity to data intensive operations, such as MPI_Alltoall. In general, the per-

formance of these policies depends on the ratio of meta-data to data of an application. In

the AMG case, this ratio is high, most of the data written by the NIC is MPI’s data. In

the case of FFT, the ratio is low, most of the data written to the NIC is application’s data.

Another significant result is that unlike meta-data, which is expected to be read shortly af-

ter injection by the MPI library, application’s data can also be read from the cache. In the

rest of this section, I show how cache injection affects the performance of other collective

operations.
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5.3.1 Collective operations

FFT showed positive sensitivity to cache injection largely because of the significant amount

of time spent in collective operations, specifically MPI_Alltoall. In this section, I examine

the effect of other collective operations on the performance of cache injection. This infor-

mation can be used to identify other applications that may benefit from cache injection,

and it aids in understanding the sensitivity of applications to cache injection based on the

type of communication operations performed and the size of the messages exchanged.

For this evaluation, I use Intel’s MPI benchmarks (IMB). I run a selected subset of

these benchmarks in two configurations: a null hypothesis or base case and an injection

of the payload of MPI messages into the L3 cache. For each benchmark, I measure its

execution time and use the average of 5 runs.

Results

Figure 5.7 shows the performance improvement of certain collective operations on 4 and 8-

nodes. Allgather, Allreduce, Bcast, and Scatter were executed using a number of message

sizes. There is a similar trend for both 4 and 8-node runs. Allgather, Allreduce and Bcast

show overall improvements that increase with message size. The peak improvement of

20% is reached for messages of size around 512MB, where the increase in performance

starts to flatten. The Scatter operation does not appear to gain sustained performance

benefits with cache injection and, in some cases, show performance loss. The performance

degradation shown for small message sizes is within the margin of error of these results. A

source for performance degradation may also include evicting data from the application’s

working set.
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Figure 5.7: Sensitivity of certain MPI collective operations to cache injection. Allgather,
Allreduce, and Bcast show improvements up to around 20%, while Scatter does not seem
to gain sustained benefits.

Analysis

To understand the sensitivity of these collective operations to cache injection, I exam-

ine the algorithms used in MPICH. The particular algorithm chosen for each collective

depends mostly on the size of the communicator (n) and the size of the message. The

version of MPICH used in this work implements collectives on top of point-to-point op-

erations. The scatter operation uses a tree-based algorithm splitting data down the tree

until the leaves are reached. The leaves receive only their piece, but intermediate nodes

get more data than requested. Figure 5.8 shows an example of this algorithm for 8 nodes.

The outbound degree per node is O(log2n). It is highest at the root, log2n, and decreases
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down the tree to 0 at the leaves. The inbound degree is O(1), being 1 at the leaves and

2 everywhere else. Any benefit provided by cache injection can only be exercised dur-

ing receive operations. Due to the small number of receives per node, the higher ratio of

sends to receives per node, and the overlap of sends and receives, there is little to no gain

provided by cache injection for this operation (see Figure 5.7).
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Figure 5.8: MPICH’s scatter algorithm for 32KB and n = 8. The outbound degree per
node is O(log2n), while the inbound degree is O(1) (at most 2). Message sizes along the
edges are given in KB.

The broadcast algorithm is also tree-based, but unlike the scatter operation, the in-

bound degree per node is O(log2n). Figure 5.9 shows an example of this algorithm on

8 nodes. Considering the number of incoming messages per node and the size of the

messages, receive operations consume a significant portion of the overall time of this op-

eration, thereby this algorithm shows positive sensitivity to cache injection. A similar

argument can be made for Allgather and Allreduce operations.

In summary, collective operations affect the performance of cache injection. MPI_All-

gather, MPI_Allreduce, and MPI_Bcast show performance increases as a function of mes-

sage size, while MPI_Scatter does not provide sustained improvement. The performance

improvement is related to the number and size of messages received at every node as spec-

ified by the operation’s algorithm. Parallel applications with a significant communication
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Figure 5.9: MPICH’s broadcast algorithm for 32KB and n = 8. Both outbound and
inbound degrees per node are O(log2n). Message sizes along the edges are given in KB.

component spent on collective operations of sizes ranging from a few kilobytes to a few

megabytes (depending on cache size) could potentially increase their performance using

cache injection (payload policy).

5.4 Putting it all together: cache injection and the LogGP

model

The results presented in this chapter showed how cache injection affects the performance

of parallel applications based on the ratio of processor to memory speed, the injection

policy, and the application’s communication characteristics. In this section, I discuss the

performance of cache injection in terms of a well-known model of parallel computation

based on the results presented above.

The LogGP model of parallel computation [2], an extension of the LogP model [11],

abstracts a parallel architecture into five parameters:

Latency (L) an upper bound on the time to transmit a short message from source to des-
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tination.

overhead (o) the time that a host processor is engaged in sending or receiving a message

and cannot do any other work. Since send and receive operations are often not

symmetrical, I further consider send and receive overhead [15].

gap (g) the minimum time interval between consecutive message transmissions or consec-

utive message receptions at a node. The reciprocal of g corresponds to the available

per-node communication bandwidth for short messages.

Gap (G) the gap per byte for long messages. The reciprocal of G corresponds to the

available per-node communication bandwidth for long messages.

Processors (P) the number of processors.

The performance of parallel applications can be described using these parameters.

Thus, to understand the impact of cache injection on application performance, I focus

on studying the relationship between communication parameters and cache injection per-

formance.

Cache injection, through header policies, improves the performance of latency–

sensitive applications. Communication latency affects applications whose performance

is dependent on timely arrival of short messages. Short messages are frequently used in

synchronization operations such as barriers and all-reduce operations. All of the mes-

sages exchanged carry payloads of small size including no payload (zero-size). Also,

other latency-sensitive applications may use point-to-point operations to synchronize with

a subset of nodes (e.g., neighbor communication). The message exchange may occur by

using asynchronous send/receive operations with their corresponding complete (wait) op-

erations, or synchronous (blocking) operations. The performance of these operations is

highly dependent on the communication library, since most of the message processing is

done in the library. The involvement of the application is minimal because there is little
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application data to process. In many instances, the involvement of the application is lim-

ited to receiving a notification from the communication library about the completion of a

particular operation.

Cache injection, through the header policies, improves message processing in the com-

munication library by reducing data latency on accessing incoming message headers. Data

latency is reduced by an order of magnitude (tens of cycles vs. hundreds of cycles) by writ-

ing message headers to the L2 cache directly from the network. I showed an example of

this improvement when analyzing the performance of cache injection on AMG. AMG (for

the specific input size used in this study) uses small messages, and over 20% of its commu-

nication time is spent in wait operations. The header policies improved AMG performance

due to the latency-sensitive nature of this application for this problem size.

Cache injection, through header policies, improves the performance of receive

overhead–sensitive applications. As described above, the header policies improve the

performance of the communication library by reducing the latency of accessing headers

needed to process incoming network messages. This data latency is a significant com-

ponent of the model’s overhead parameter (the amount of time spent processing network

data). The improvement provided by cache injection frees CPU cycles from network pro-

cessing so that they can be used for the application’s work. Examples of applications

whose performance is dominated by communication overhead can be found in the litera-

ture [41, 16].

Cache injection, through payload policies, can improve the performance of Gap–

sensitive applications. The Gap parameter represents the available communication band-

width per node as a function of message size. In other words, applications whose perfor-

mance is dominated by communication bandwidth are affected by this parameter. These

applications exchange medium and large messages using point-to-point or collective oper-

ations. A common characteristic of these applications is that a significant amount of time

in the processing of messages is spent in the application as opposed to the communication
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library. This case is perfectly exemplified by high performance communication systems

(such as the one shown in this work), where there is no memory copies from system com-

munication buffers to application buffers. Application data flows directly from the NIC

to end user memory. In these systems, the majority of the time is spent fetching message

data from main memory to the cache.

Cache injection, through payload policies, improves message availability by writing

message payloads directly to the L3 cache. This improvement can be leveraged by appli-

cations with high message temporal and spatial locality, i.e., applications that use incoming

network data promptly after arrival and show spatial locality in using this data. Unfortu-

nately, an application’s message locality cannot be expressed using the LogGP model, thus

cache injection can improve the performance of Gap–sensitive applications if they show

message temporal and spatial locality. I showed an example of the effect of cache injection

on this type of applications using the FFT benchmark. FFT’s performance is known to be

dominated by communication bandwidth [16]. This application uses mostly all-to-all op-

erations of medium and long messages. The payload policies improve the performance of

FFT by 7% even though it spends only 10% of its time in communication.

Cache injection may or may not improve the performance of applications as a

function of the number of processors. The source of improvement or performance degra-

dation of cache injection stems from incoming network communication. The higher the

number of incoming network messages or the number of incoming network bytes, the

higher the impact of cache injection on application performance. This impact may be

related to the number of processors involved in communication depending on the applica-

tion’s communication characteristics. If an application uses a large number of collective

operations, then increasing the number of processors/nodes will increase the amount of

communication and, thus, the greater the impact of using cache injection. The extent to

which cache injection affects performance for these applications is then dominated by the

other communication parameters as discussed above.

61



Chapter 6

Related work

Cache injection is a technique to address the memory wall [58] specifically for I/O. Other

techniques have been studied to address the memory wall from different perspectives. In

this chapter, I describe this related work in the context of producer and consumer-driven

techniques [10] to fetch data into a processor’s cache. The consumer of data is a processor

(on behalf of an application) while the producer can be any device that creates data for the

consumer, for example I/O devices or other processors. In a consumer-driven approach,

data is fetched when the consumer requests this data. For example, hardware prefetching

starts fetching data, likely to be used by the consumer, based on the consumer’s data access

patterns. In a producer-driven approach, the producer sends data directly to the consumer

under the assumption that the consumer will process it soon after arrival. For example, in

cache injection, the NIC (producer) writes data into a processor’s cache directly from the

network.

In Section 6.1, I describe consumer-driven techniques to address the memory wall.

Unlike cache injection, all of these incur memory latency and memory bandwidth usage

for I/O communication. In Section 6.2, I describe producer-driven techniques for intra-

processor communication. These techniques reduce data latency using data forwarding.
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In data forwarding, both the consumer and the producer of data are processors within a

computational node. In cache injection, these two reside in two different nodes connected

through network interface controllers. The producer of data in cache injection can be

thought of as either the NIC or a processor in a different computational node. Some ideas

from data forwarding could potentially be used in cache injection taking into account the

much higher latency between processors in different nodes. In Section 6.3, I describe

producer-driven techniques for inter-processor communication. In particular, I describe

previous work on cache injection. In this work, data is written into the cache from the I/O

bus regardless of the state of the system. As shown here, this is prone to degradation of

application performance. I build upon this work to overcome the shortcomings of cache

injection by using policies to write data into the cache. Finally, in Section 6.4, I describe

past architectures that precede cache injection for direct data transfer.

6.1 Consumer-driven techniques for the memory wall

Several techniques currently exist to manage the imbalance between processor and mem-

ory speeds. Data caching reduces memory latency for data access patterns exhibiting spa-

tial or temporal locality. However, for computations with poor locality, caching does not

help. Prefetching moves blocks of data into the cache before a processor’s request. This

technique overlaps memory latency with computation to improve processor performance.

Hardware prefetching [4, 22] is based on usage patterns at run-time. The algorithms im-

plemented by a prefetch engine have an overhead before detecting a particular pattern and

cannot anticipate accesses of poor-locality computations. In software prefetching [44, 45],

the compiler or the application inserts instructions into the code to start fetching data that

will be used in the next few instructions. Software prefetching can only be used on ar-

chitectures that provide prefetch instructions. This technique does not improve memory

bandwidth.
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Software access ordering [46] improves memory bandwidth by changing the order of

memory accesses at compile time. This technique, however, is limited to static information

and cannot take advantage of run-time access patterns of data. Hardware-assisted access

ordering [42] decouples the order of requests issued by the processor from those issued

to the memory system. This technique strives at minimizing the average latency over

a coherent set of accesses dynamically. Unlike cache injection, all of these techniques

incur memory latency and memory bandwidth usage for data from I/O devices. In current

architectures, accesses of I/O data incur in compulsory cache misses since data has to be

fetched from main memory. Cache injection can reduce memory latency and memory

bandwidth usage by placing data directly into cache from the I/O bus.

6.2 Producer-driven techniques for intra-processor com-

munication

The Stanford Dash multiprocessor [39] included two producer-initiated operations update-

write and deliver. The former writes data directly to all processors’ caches that store the

data, while the latter to a specific group of processors (cluster). In Poulsen’s work [50],

data is forwarded to other processor’s caches to optimize shared accesses. Data forward-

ing is implemented by the forwarding write operation. Abdel-Shafi’s work [1] also uses

data forwarding in the form of remote write operations to reduce memory latency for

fine-grain communication. IBM’s POWER4 systems support cache-to-cache transfers (in-

terventions) for all dirty lines and a subset of lines in the shared state [55].

Milenkovic [43] uses a combination of data forwarding and prefetching. The consumer

uses a prefetch-like instruction (lprefetch) to fetch data likely to be used in the near fu-

ture. Unlike prefetching, this instruction only records the requested data in an injection

list that resides in the cache controller. At the producer side, a forward-like instruction
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(write_back) is used to send data over the bus when it becomes available. Consumers

snoop the bus and store the data if it matches an entry in the injection list. The lprefetch

and write_back instructions are inserted by the compiler. Unlike the studies mentioned

above, the target architecture of Milenkovic’s work uses a bus for interprocessor commu-

nication. This architecture has inherent scalability problems for more than a few proces-

sors. To my knowledge, the work by Milenkovic on bus based multiprocessors is the first

to use the term cache injection. Milenkovic’s preliminary data shows a reduction on cache

miss ratio and bus traffic when using cache injection. The literature on producer-initiated

mechanisms is extensive [10]. I outlined here only the most relevant for my work.

The difference between data forwarding and my work on cache injection is the pro-

ducer and consumer of data. In data forwarding, both processors reside in the same compu-

tational node. In cache injection, the producer and consumer processors reside in different

computational nodes linked together by a high performance network. This architectural

difference must be accounted for in the timings of injection policies. Some ideas used in

data forwarding about when to write data into the cache can potentially be applied to cache

injection.

6.3 Producer-driven techniques for inter-processor com-

munication

The work in the previous section focuses on reducing data latency for intra-processor

communication within a computational node. The following studies focus on reducing

data latency and memory bandwidth usage for inter-processor communication between

computational nodes.

Bohrer et al. [6] proposed and analyzed cache injection as a mechanism to reduce data

latency for incoming network TCP/IP packets. Using simulation and micro-benchmarks
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for network and disk communication, the authors showed significant improvements in

execution time. Huggahalli et al. [28] provided a more thorough study showing a sig-

nificant reduction in both data latency and memory bandwidth usage for the benchmarks

SPECWeb9, TPC-W and TPC-C. Their work also uses simulation, focuses only on TCP/IP,

and their injection policy is to always inject the whole packet (header and payload) to the

L2 cache. Huggahalli used the term Direct Cache Access (DCA) to deliver inbound net-

work traffic directly to the cache.

A common characteristic of these two and unlike my work, is that data is always in-

jected into the cache and does not adapt to the application’s needs because the immediate

consumer of this data is not the application itself. The processing of TCP/IP packets is a

desirable target for this blind injection policy (see Section 2.4) since network processing

occurs immediately after writing the packet to the cache (signaled by an external inter-

rupt). A significant portion of the improvements provided by DCA stems from improving

the copy of a packet’s payload from a system buffer to a user one. However, in a high-

performance environment the payload may be delivered directly to the user and without

issuing costly interrupts. As shown by my work, cache injection does provide benefits for

certain applications in this environment.

A more recent study by Kumar et al. [35], provides an initial evaluation of DCA on

a real machine. They use an architecture based on Intel’s I/O Acceleration Technology

(I/OAT) [51] which provides an approximation to DCA called prefetch hint. With prefetch

hint, data from the network is written to main memory, and a hint is passed to the cur-

rent prefetch engine to start fetching data into the cache. Unlike cache injection, this

technology does not reduce memory bandwidth usage (this reduction may be the most

significant for memory-bound applications). Their study shows that prefetch hint reduces

a significant amount of processor utilization for certain micro-benchmarks and is limited

to experiments between two nodes directly connected. Their target environment is a data

center where many applications may be running at once in the same node. Therefore, ap-
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plying DCA to the processing of network packets may increase processor availability for

other applications. In my work, I relate the effects of cache injection to the performance

of the parallel application which consumes the incoming network data.

Khunjush et al. [32, 31] added a network cache and architectural extensions to manage

it to avoid memory copies (from system to user buffers) due to network stack processing.

Incoming network data of small size (a cache line) is written into the network cache,

while other messages are written to main memory. When an unexpected message (in

network cache) is bound to a particular MPI process, the tag is changed to point to the

corresponding user buffer. Initially, the unexpected message points back to a system buffer.

When the message in the network cache is evicted, the cache line is written back into the

correct memory location. For preposted receives of small size, a cache line is allocated in

the network cache pointing to the corresponding user buffer.

The authors gathered traces from a real system and replay them into one simulated

node which implements their architectural modifications. The benefits of this approach

are limited to small size packets with the additional overhead of implementing and search-

ing another cache in the system. This study is also limited to the analysis of one node.

Introducing an additional cache to the system avoids polluting the current caches but at a

costly architectural change.

6.4 Past architectures for direct data transfer

A few distributed shared memory multiprocessor machines were constructed with the goal

of reducing data latency due to interprocessor communication. The CM-5 machine [38]

provided a logical connection between the network controller and the cache. Since there is

no physical connection between these two, the processor is in charge of the data transfer,

hindering its ability to overlap communication and computation.
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The AP1000 machine [30] provided physical access between the network and the

cache. Among several data transfers, it provided line sending which allowed data to

be transfered directly from the cache to the network. The Alewife shared memory ma-

chine [34] allowed direct access to the underlying message-passing mechanism, providing

both paradigms: shared memory and message-passing. This machine provided physi-

cal access between the network and the cache through a single-chip of communications

and memory management unit (CMMU). Among other data transfers, it provided direct

register-to-register transmission reducing data latency even more so than cache injection.

However, the applicability of this type of operation is limited, as there are a few number

of registers, and data should be consumed shortly after it is written.

Pakin’s work [49] studied the impact of message traffic on memory performance for

message-passing, distributed memory systems. Through simulation, he analyzed two con-

figurations to logically connect the NIC with the memory system. The first configuration

connected the NIC with main memory just as traditional systems do; the second connected

the NIC to an off-chip cache as cache injection does. The first configuration used DMA

to transfer data, allowing the processor to do work while messages are being transfered.

The second configuration used the processor to transfer data. Unlike cache injection, this

configuration does not have a physical connection between the NIC and the cache, but

instead has the processor move data between these two.
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Conclusions and future work

7.1 Conclusions

In this work, I present a study of the effect of cache injection on the performance of

parallel applications. This effect is a function of the processor to memory speed ratio,

the injection policy, and the application’s communication characteristics. Unlike previous

work, where injected data was used by the host network stack to reduce the overhead

of memory copies, my results show that applications can directly use incoming network

data injected to the cache. For example, the performance of HPCC’s FFT improves by

8%. This improvement is significant since this application spends only 10% of its time in

communication operations.

My results also show that the effect of cache injection on application performance

is directly proportional to the ratio of processor to memory speed. This result makes

cache injection a viable technique to improve the performance of applications dominated

by the memory wall. This also suggests that cache injection can alleviate the imbalance

of aggregated processing power to memory speed in multi-core architectures. I expect

that cache injection with an appropriate policy, e.g., processor direction, can improve the
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performance of communication- and data-intensive applications in these architectures.

The choice of injection policy is also an important factor in the performance of cache

injection. For example, injecting communication meta-data information improved the per-

formance of AMG, while injecting application’s data improved the performance of FFT.

The meta-data and application’s data policies are not cache intrusive due to the small foot-

print of meta-data events (one cache line) injected to the L2 cache and the large size of the

L3 cache to which the application’s data was injected. The growing capacity of modern

caches may reduce the intrusiveness of cache injection.

Application’s communication characteristics greatly affect the performance of cache

injection. For example, collective operations such as MPI_Alltoall, MPI_Allreduce, MPI_Bcast,

and MPI_Allgather show positive sensitivity (up to 20% improvement) to cache injection

as a function of message size. Collective operations benefit from cache injection due to the

aggregated speed-ups in processing the appropriate data in a tree-like fashion. I expect that

memory-bound applications with a significant amount of collective operations of medium

message sizes can improve their performance significantly.

To conclude, cache injection is a viable technique to improve the performance of paral-

lel scientific applications. This improvement is dependent on the application’s sensitivity

to the memory wall, the type of communication operations, and message size. Cache in-

jection is likely to improve the performance of applications dominated by the memory wall

and with significant use of medium and large size collective operations.

7.2 Future Work

There are several avenues of future work. First, I would like to investigate the performance

of other policies outlined in Section 2.5, in particular, the processor-direction policy for

multi-core architectures. While the results in this study suggest that these systems would
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prove an ideal platform for cache injection (high ratio of aggregated processing power to

memory speed), an actual study on these architectures would provide further insight.

Second, I would like to investigate dynamic policy reconfiguration: can bad policies

be detected on-line and thus reconfigured? can the NIC use packet information to auto-

matically choose a particular policy? what information does the NIC need to reconfigure

and implement good policies?

Third, I am interested in analyzing a wider range of applications. While the applica-

tions used here show that my hypothesis is true, studying a wide variety of applications

would allow me to characterize the impact of other communication characteristics on the

performance of cache injection. Also, using a wide-range of problem sets and input sizes

would further this characterization.

Fourth, I am also interested in studying the balance of flops to memory speed to

network-bandwidth in multi-core systems. This type of architecture will become prevalent

in the next-generation supercomputers and will significantly change the flops to network

band- width ratio. I want to evaluate the impact of such an architecture on parallel appli-

cation performance.

Last, I would like to use Intel’s DCA (direct-cache-access) architecture to implement

some of the injection policies I proposed in a real machine. Even though DCA does not

reduce memory bandwidth utilization, it provides an approximation to cache injection

(NIC prefetch hint) that is available now and can be used to improve the performance of

applications.
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