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Abstract

The purpose of this study was to evaluate the use of one-third tubular plates for the

treatment of benign defects in the medial distal metaphysis of the femur. Benign

cysts are a common occurrence in long bones, and are of concern in load-bearing

bones, such as the tibia and femur. These space-occupying growths are removed by

curettage of the affected region. Numerous post-curettage management options have

been described in the literature, which generally include filling the defect with either

synthetic or biological materials. Unfortunately, complications, such as infectious

disease transmission, thermal injury, and a robust inflammatory have all been re-

ported in the literature. In response to these concerns, a number of studies reported

successful healing of benign cortical defects in long bones with no augmentation af-

ter curettage, however, the lack of structural support results in an increased risk of

fracture through the defect site. Therefore, it is advantageous to investigate a treat-

ment option that adds structural support to the defect site and permits the use of

osteoconductive and osteoinductive materials within the bone cavity. The purpose of
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this thesis was threefold: First, a quasi-static experimental comparison of intact and

cortical defect specimens was conducted to determine the structural consequences

incurred by the introduction of a 15 mm cortical defect under isolated axial and tor-

sional loads. Second, an experimental combined axial/torsional fatigue analysis was

employed to further analyze the behavior of the defect specimens, and to determine

the structural stiffness regained by the addition of a one-third tubular plate. Third,

a numerical approach was used to consider the structural consequences of varying

sized defects under isolated and combined quasi-static axial and torsional loading,

and to further analyze the results of adding the plate to the defect specimens. This

study revealed that a one-third tubular plate might be a clinically viable option for

structural support of small cortical defects in the distal femur. Furthermore, the

loss in stiffness by the defect is exacerbated under combined axial/torsional loading.

This is a more physiologically relevant loading mode and may provide more clinically

useful results.

vii



Contents

List of Figures xii

List of Tables xix

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6

2.1 The Femur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Benign Bone Tumors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Structrual Consequences of Cortical Defects in Long Bones . . . . . . 12

2.4 Current Methods for Treatment of Benign Lesions in Long Bones . . 19

2.5 Synthetic Bones in Orthopaedic Research . . . . . . . . . . . . . . . . 23

2.5.1 Synthetic Versus Cadaveric . . . . . . . . . . . . . . . . . . . 23

viii



Contents

2.5.2 1st Generation Composite Bones . . . . . . . . . . . . . . . . 24

2.5.3 2nd Generation Composite Bones . . . . . . . . . . . . . . . . 24

2.5.4 3rd Generation Composite Bones . . . . . . . . . . . . . . . . 25

2.5.5 4th Generation Composite Bones . . . . . . . . . . . . . . . . 26

2.6 Finite Element Modeling in Orthopaedics . . . . . . . . . . . . . . . . 29

2.6.1 The Finite Element Method . . . . . . . . . . . . . . . . . . . 29

3 Experimental Methods, Results, & Discussion 38

3.1 Experimental Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Test Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Loading Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Preliminary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Loading Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Measurement of Axial Stiffness . . . . . . . . . . . . . . . . . 45

3.5.2 Measurement of Torsional Stiffness . . . . . . . . . . . . . . . 47

3.5.3 Load to Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Fatigue Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



Contents

3.6.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Loading Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.4 Damage Accumulation . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Fatigue Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 Patterns of Failure . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.2 Fatigue Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Numerical Methods 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Three-Dimensional Femur Model . . . . . . . . . . . . . . . . 80

4.2.2 Boundary Conditions and Material Assignment . . . . . . . . 83

4.2.3 Finite Element Mesh . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Loading Conditions . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.5 Parameterization of Defect Size . . . . . . . . . . . . . . . . . 86

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Parameterization of Defect Size . . . . . . . . . . . . . . . . . 92

4.3.3 Plate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



Contents

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Conclusions 100

Appendices 105

A Axial Load Versus Displacement Plots for Cycle 10 106

B Torsional Load Versus Rotation Plots for Cycle 10 115

C Axial Damage Versus Cycle Number 124

D Torsional Damage Versus Cycle Number 133

References 142

xi



List of Figures

2.1 Image showing femur from posterior view of thigh region . . . . . . 7

2.2 Image showing the anatomical landmarks of the femur. . . . . . . . 8

2.3 Image showing the mechanical axis of the femur. . . . . . . . . . . . 9

2.4 Percent original ultimate torque, rotation, and energy for varying

sized defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Worst case error versus remaining cortical wall for a range of mea-

surement errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Endosteal defect in the cylindrical femur diaphysis model. . . . . . . 30

2.7 Intact strength results for four-point testing of endosteal defects and

predictions from FEA and beam theory. . . . . . . . . . . . . . . . . 31

2.8 Plot showing the % intact strength results for torsional testing of

transcortical drill holes and predictions from FEA and beam theory. 33

2.9 Image of finite element model of femoral shaft from QCT scans. . . . 35

2.10 Image of the third generation composite femur model. . . . . . . . . 37

3.1 Potting fixture. (a) Anterior-posterior view (b) Medial-lateral view . 39

xii



List of Figures

3.2 Loading fixture on the servohydraulic testing machine. . . . . . . . . 42

3.3 Axial force (kN) vs. displacement (mm) . . . . . . . . . . . . . . . . 46

3.4 Torsional load (N-mm/degree) vs. internal rotation (deg). (a) Neat.

(b) Defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Torsional load (N-mm/deg) vs. external rotation (deg). (a) Neat.

(b) Defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Internal torsional load to failure (N-mm/deg) versus rotation (deg)

of neat and defect specimens. . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Neck and spiral fracture failure modes. . . . . . . . . . . . . . . . . 53

3.8 Statistical power (1 − β) versus sample size for varying minimum

detectable differences for T-Test: σ1 6= σ2. . . . . . . . . . . . . . . . 54

3.9 Statistical power (1 − β) versus sample size for varying minimum

detectable differences for T-Test: σ1 = σ2. . . . . . . . . . . . . . . . 54

3.10 Statistical power (1 − β) versus sample size for varying minimum

detectable differences for ANOVA: σ1 = σ2. . . . . . . . . . . . . . . 55

3.11 Spiral fracture through treated defect. (a) Anterior oblique me-

dial/lateral view. (b) Posterior oblique medial/lateral view. . . . . . 61

3.12 Axial force (kN) versus displacement (mm) at the 10th cycle for

Specimen 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Axial force (kN) versus cycle number for survived and fractured spec-

imens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.14 Axial force (kN) versus displacement (mm) for Specimen # 7 in the

treatment group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



List of Figures

3.15 Axial hardening versus cycle number for a failed and unfailed specimen. 67

3.16 Torsional moment (N-mm/deg) versus rotation(deg) at the 10th cycle. 69

3.17 Torsional moment (N-mm/deg) versus cycle number for a defect and

treatment specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.18 Torsional damage versus cycle number for a failed and unfailed spec-

imen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.19 Torsional moment (N-mm/deg) versus rotation (deg) at varying cy-

cles for a defect and treatment specimen. . . . . . . . . . . . . . . . 72

3.20 Torsional damage versus cycle number with second order fit for (a)

hardened—Specimen 1.7 and (b) damaged—Specimen 2.3 specimens. 74

4.1 Cortical (left) and cancellous (right) bone models with defect in place. 81

4.2 Complete experimental fixture model including defect, plate, and

screws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Distal femur with 15mm cortical defect and 1/3 tubular plate model. 83

4.4 Mesh refinement at the pin/acetabulum and the pin/bone interfaces. 87

4.5 Mesh refinement at the pin/acetabulum and the pin/bone interfaces. 88

4.6 Finite element model validation of the neat femur under axial loading. 89

4.7 Finite element model validation of the neat femur under external

rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Finite element model validation of the neat femur under internal torsion 91

4.9 Percent reduction in stiffness versus defect size. . . . . . . . . . . . . 92

xiv



List of Figures

4.10 Percent reduction in stiffness versus defect size. . . . . . . . . . . . . 93

4.11 Results of FE plate model under axial compression. . . . . . . . . . 94

4.12 Results of FE Plate model under external torsional loading. . . . . . 95

4.13 Results of FE Plate model under internal torsional loading. . . . . . 96

4.14 Normal stresses at screw/bone interface. . . . . . . . . . . . . . . . . 96

4.15 Shear stresses at screw/bone interface. . . . . . . . . . . . . . . . . . 97

A.1 Axial force versus displacement at the 10th cycle for Specimen 1.1. . 107

A.2 Axial force versus displacement at the 10th cycle for Specimen 1.2. . 107

A.3 Axial force versus displacement at the 10th cycle for Specimen 1.3. . 108

A.4 Axial force versus displacement at the 10th cycle for Specimen 1.4. . 108

A.5 Axial force versus displacement at the 10th cycle for Specimen 1.5. . 109

A.6 Axial force versus displacement at the 10th cycle for Specimen 1.6. . 109

A.7 Axial force versus displacement at the 10th cycle for Specimen 1.7. . 110

A.8 Axial force versus displacement at the 10th cycle for Specimen 1.8. . 110

A.9 Axial force versus displacement at the 10th cycle for Specimen 2.1. . 111

A.10 Axial force versus displacement at the 10th cycle for Specimen 2.2. . 111

A.11 Axial force versus displacement at the 10th cycle for Specimen 2.3. . 112

A.12 Axial force versus displacement at the 10th cycle for Specimen 2.4. . 112

A.13 Axial force versus displacement at the 10th cycle for Specimen 2.5. . 113

A.14 Axial force versus displacement at the 10th cycle for Specimen 2.6. . 113

xv



List of Figures

A.15 Axial force versus displacement at the 10th cycle for Specimen 2.7. . 114

A.16 Axial force versus displacement at the 10th cycle for Specimen 2.8. . 114

B.1 Torsional moment versus rotation at the 10th cycle for Specimen 1.1. 116

B.2 Torsional moment versus rotation at the 10th cycle for Specimen 1.2. 116

B.3 Torsional moment versus rotation at the 10th cycle for Specimen 1.3. 117

B.4 Torsional moment versus rotation at the 10th cycle for Specimen 1.4. 117

B.5 Torsional moment versus rotation at the 10th cycle for Specimen 1.5. 118

B.6 Torsional moment versus rotation at the 10th cycle for Specimen 1.6. 118

B.7 Torsional moment versus rotation at the 10th cycle for Specimen 1.7. 119

B.8 Torsional momement versus rotation at the 10th cycle for Specimen

1.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.9 Torsional moment versus rotation at the 10th cycle for Specimen 2.1. 120

B.10 Torsional moment versus rotation at the 10th cycle for Specimen 2.2. 120

B.11 Torsional moment versus rotation at the 10th cycle for Specimen 2.3. 121

B.12 Torsional moment versus rotation at the 10th cycle for Specimen 2.4. 121

B.13 Torsional moment versus rotation at the 10th cycle for Specimen 2.5. 122

B.14 Torsional moment versus rotation at the 10th cycle for Specimen 2.6. 122

B.15 Torsional moment versus rotation at the 10th cycle for Specimen 2.7. 123

B.16 Torsional moment versus rotation at the 10th cycle for Specimen 2.8. 123

C.1 Axial damage versus cycle number for Specimen 1.1. . . . . . . . . . 125

xvi



List of Figures

C.2 Axial damage versus cycle number for Specimen 1.2. . . . . . . . . . 125

C.3 Axial damage versus cycle number for Specimen 1.3. . . . . . . . . . 126

C.4 Axial damage versus cycle number for Specimen 1.4. . . . . . . . . . 126

C.5 Axial damage versus cycle number for Specimen 1.5. . . . . . . . . . 127

C.6 Axial damage versus cycle number for Specimen 1.6. . . . . . . . . . 127

C.7 Axial damage versus cycle number for Specimen 1.7. . . . . . . . . . 128

C.8 Axial damage versus cycle number for Specimen 1.8. . . . . . . . . . 128

C.9 Axial damage versus cycle number for Specimen 2.1. . . . . . . . . . 129

C.10 Axial damage versus cycle number for Specimen 2.2. . . . . . . . . . 129

C.11 Axial damage versus cycle number for Specimen 2.3. . . . . . . . . . 130

C.12 Axial damage versus cycle number for Specimen 2.4. . . . . . . . . . 130

C.13 Axial damage versus cycle number for Specimen 2.5. . . . . . . . . . 131

C.14 Axial damage versus cycle number for Specimen 2.6. . . . . . . . . . 131

C.15 Axial damage versus cycle number for Specimen 2.7. . . . . . . . . . 132

C.16 Axial damage versus cycle number for Specimen 2.8. . . . . . . . . . 132

D.1 Torsional damage versus cycle number for Specimen 1.1. . . . . . . . 134

D.2 Torsional damage versus cycle number for Specimen 1.2. . . . . . . . 134

D.3 Torsional damage versus cycle number for Specimen 1.3. . . . . . . . 135

D.4 Torsional damage versus cycle number for Specimen 1.4. . . . . . . . 135

D.5 Torsional damage versus cycle number for Specimen 1.5. . . . . . . . 136

xvii



List of Figures

D.6 Torsional damage versus cycle number for Specimen 1.6. . . . . . . . 136

D.7 Torsional damage versus cycle number for Specimen 1.7. . . . . . . . 137

D.8 Torsional damage versus cycle number for Specimen 1.8. . . . . . . . 137

D.9 Torsional damage versus cycle number for Specimen 2.1. . . . . . . . 138

D.10 Torsional damage versus cycle number for Specimen 2.2. . . . . . . . 138

D.11 Torsional damage versus cycle number for Specimen 2.3. . . . . . . . 139

D.12 Torsional damage versus cycle number for Specimen 2.4. . . . . . . . 139

D.13 Torsional damage versus cycle number for Specimen 2.5. . . . . . . . 140

D.14 Torsional damage versus cycle number for Specimen 2.6. . . . . . . . 140

D.15 Torsional damage versus cycle number for Specimen 2.7. . . . . . . . 141

D.16 Torsional damage versus cycle number for Specimen 2.8. . . . . . . . 141

xviii



List of Tables

2.1 Common benign bone tumor classifications with age and body location 11

2.2 Table of conditions simulating primary benign bone tumors with age

and body location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Table of 4th generation composite and human cadaveric femur ma-

terial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Material properties for 4th generation composite femurs . . . . . . . 41

3.2 Load to failure results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Summary of fatigue results . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Summary of material property assignments in FE model. . . . . . . 84

4.2 Summary of FE contacts. . . . . . . . . . . . . . . . . . . . . . . . . 85

xix



Chapter 1

Introduction

1.1 Introduction

Benign bone cysts are non-cancerous growths that form within bone. They are most

common in young patients under the age of 30, and commonly occur in the femur,

tibia, humerus, and pelvis. These growths occur in a number of forms, including

tumors and non-neoplastic (i.e., not a tumor) bone simulating conditions. While

these benign cysts are not direct evidence of cancer, they can pose risk to the pa-

tient. Large cysts in weight-bearing regions are at high risk of fracture and may

be removed prophylactically to mitigate the risk of injury to the patient. Some be-

nign tumors, in particular giant cell tumors, are highly aggresive and while they

are non-cancerous, they can cause significant pain and damage to the surrounding

bone. [1, 2] The preliminary step in treating these growths involves monitoring the

size and growth rate of the tumor prior to surgical intervention. If the tumor is

large, it may compromise structural integrity, especially in weight-bearing bones. If

growth persists, the physician proceeds to surgical treatment with the goal of re-

moving the tumor and restoring the structural integrity of the bone. Generally, the

1



Chapter 1. Introduction

growth is surgically removed by curettage, or physical scraping, of the affected region

of the bone. Consequently, once the space-occupying growth has been removed, a

large hole, or defect, remains at the site. A number of post-curettage management

options have been described in the literature. Previous studies reported successful

healing of the defect with no augmentation after curettage, while others reported

success after filling of the defect with biological and synthetic materials, such as au-

togenous bone graft, allogenic bone graft, poly(methyl-methacrylate) bone cement,

and artificial bone substitutes. High success rates have been reported for many of

these methods, however, most restrict the patient to no weight-bearing immediately

post-operatively. Bone responds positively to mechanical loading, therefore faster

time to weight-bearing may result in proportionally faster healing rates.

This study investigates the use of a 1/3 tubular plate for structural reinforcement

of cortical defects after curettage. The 1/3 tubular plate is a small, non-locking

stainless steel plate that has the form of 1/3 of the circumference of a cylinder. They

are 1 mm thick, 9 mm wide, and range from 2 to 12 holes (25–145 mm, respectively)

in length. Due to their small size, they have a lower strength than large plates, such

as locking compression plates, and are easily contoured to the surface of the bone.

This plate is proposed as a way to provide structural reinforcement to the defect,

sufficient for immediate weight-bearing, while still permitting the use of bone graft

as a filler to promote adequate healing. This combined treatment method may result

in better healing outcomes with lower rates of post-operative fracture through the

defect than current treatment methods.

1.2 Problem Statement

The goal of this thesis was to assess the proposed treatment method. Our intent

was to assess the structural viability using an integrated experimental and compu-
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tational approach. In the first phase of experimental work, synthetic femurs were

used to compare intact specimens with no defect against specimens with a small

post-curettage cortical defect on the medial, distal metaphysis. Initial experiments

revealed the structural effect of the defect under quasi-static loading (isolated axial

and torsional loading) and a torsional load-to-failure. The second phase of experi-

mental work utilized two groups of synthetic femurs: the first group was subjected

to the same defect with no structural reinforcement, and the second group was sub-

jected to the defect, then augmented with a 3-hole 1/3 tubular plate. The two groups

were assessed under combined axial and torsional cyclic loading.

A computational model, using the finite element method, was developed in paral-

lel with the experimental work. The results of the experiments were used to develop

validated finite element models of the femur with no defect. The femur with a defect

and no treatment, and the femur with a defect and treatment were then modeled

to visualize localized stresses and strains. Furthermore, the validated models were

used to make predictions by varying parameters within the model. The final results

of the experimental and numerical methods were used to understand the viability of

the proposed treatment method.

This study was presented with numerous research challenges in both the experi-

mental and numerical work. Quasi-static isolated stiffness testing and isolated load

to failure analyses (i.e., pure compression, pure torsion, or pure bending) are often

used to consider the structural effects of orthopaedic implant and bone constructs.

This study employed isolated quasi-static stiffness testing, isolated load to failure

analyses, and combined axial-torsional cyclic loading in a full bone model. The com-

bined axial-torsional loading needed to accurately represent the physiological loads

imposed on the femur during everyday activity. This included off-axis loading of the

femur through the mechanical axis, loading the femoral head in a way the models

the hip, and capturing the rigid characteristics of the knee. Next, the removal of
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the intramedullary cyst was challenging to simulate in a way that was accurate and

repeatable. Both cortical and cancellous bone needed to be removed in ways that

represented the cortical window and cancellous bone removed by curettage of the

defect site. Because only a small defect was introduced, it became challenging to

elucidate clear differences between groups, thus requiring rigorous testing and anal-

ysis. Finally, the numerical analysis was conducted using the finite element method

on a full bone model that identically replicated the experimental loading conditions,

including the simulated hip and knee joints. The use of a full bone model introduced

highly nonlinear geometry and body-to-body contacts that significantly increased

the model complexity. Thus, a highly complex and sophisticated numerical model

was required to accurately replicate the experimental conditions.

The results of this study contribute to the orthopaedic community by evaluating

the viability of a novel augmentation method for small cortical defects in the distal

femur. Similarly, the experimental and numerical analyses contribute to orthopaedic

surgeons and researchers by further elucidating the effects of varying sized defects.

Previous studies have evaluated the effects of defects in isolated experimental loading

conditions, such as bending and torsion. Similarly, previous studies have evaluated

these defects under isolated loads in simplified finite element models, such as repre-

sentation of the diaphysis as a simple cylinder. This study was the first to evaluate

the effects of cortical defects under combined axial and torsional loads. This loading

configuration replicates physiologically relevant loads (combined compression, ten-

sion, and torsion) that are imposed on the femur during normal gait. Few studies

use full bone models to evaluate the viability of orthopaedic constructs. This study

reveals that combined loading yields different results that isolated conditions. This

may motivate future research studies to employ such conditions when evaluating or-

thopaedic constructs. The results of this study have implications among orthopaedic

clinicians and researchers.
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1.3 Structure of Thesis

This thesis is structured into four main chapters: Chapter 2 describes the anatomy of

the femur, benign tumors, a review of research on cortical defects in bone, a review of

current methods for treatment of benign growths, a background of the finite element

method, and applications of the finite element method in orthopaedics. Chapter 3

outlines the experimental methods and results, and concludes with a discussion of

the experimental results. Chapter 4 describes the methods, results, and discussion

of the finite element simulations. Finally, the thesis is concluded in Chapter 5 with a

final discussion, remarks on the study limitations, and suggestions for areas of future

research.
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Chapter 2

Literature Review

2.1 The Femur

The femur, shown in Figure 2.1, is the bone of the thigh and is the longest and

strongest bone in the body. [3,4] The femur is an exceptional structure for its ability

to withstand large dynamic and static forces over sustained periods of time. It

possesses a long shaft, and articulates with the hipbone at the proximal end and

with the knee at the distal end. The femur is separated into three distinct regions:

the proximal region, including the greater and lesser trochanters, the neck, and the

head; the diaphysis, or the shaft; and the distal region, including the metaphysis

(region connecting shaft and epicondyles), and condyles, or articulating surfaces, of

the knee. [3, 4] These anatomical landmarks are illustrated in Figure 2.2.

The structure of the femur is unique in that its mechanical and anatomical axes

are not co-linear. As can be seen in Figure 2.1, the proximal region of the femur (hip)

is more lateral to the anterior-posterior (sagittal) plane of the body than the distal

end (knee). The mechanical axis, shown in Figure 2.3, is the line that connects the

femoral head to the intercondylar notch, and is the axis of weight bearing through
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Figure 2.1: Image showing femur from posterior view of thigh region. The femur is
highlighted in red. Image adapted from BodyParts3D. [5]

the femur. This leads to off axis, eccentric loading that imposes a large bending

mode about the fixed point of the knee. The bending load creates a combination

of compressive forces along the medial surface and tensile forces along the lateral

surface. Additionally, the femoral head is loaded under internal and external torsion

during walking and running.

There is large variation in femur anatomy and alignment between individuals

that leads to slight differences in loading mechanics. A study was conducted in 1987

by Yoshioka et al. [6] that investigated the general anatomy and functional axes of

32 cadaver femurs. Within the specimens they observed an average length of 46.6

cm (± 22.8 cm) among males and 44.2 cm (± 27.7 cm) in females. A neck-shaft

angle (the angle between the axis through the neck and the axis through the shaft)

of 129◦ (± 7.3◦) was observed in males and 133◦ (± 6.6◦) was observed in females.

A tibio-femoral angle (angle between femur’s anatomical axis and mechanical axis,

shown in Figure 2.3) of 5◦ was observed for both males and females (± 0.9◦;± 1.1◦,
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Figure 2.2: Image showing the anatomical landmarks of the femur. Image adapted
from Pearson Education, Inc.

respectively). Finally, they measured the degree of anteversion, or forward twist of

the femoral neck from the medial-lateral (coronal) plane. A forward twist of the

neck of 7◦ (± 6.8◦) was observed in males and 8◦ (± 8◦) was observed in females,

which corresponds to an overall average of 13.1◦ of anteversion using traditional mea-

surement techniques1. These anatomical parameters, specifically tibio-femoral angle

and anteversion, are closely replicated in the experimental configuration described

in Section 3.3.

1Previous researchers have measured anteversion using a slightly different method that
results in a greater degree of measured anteversion. In the methods section, anteversion is
a parameter that is considered for mechanical loading of the femur. The second method
that results in a larger measurement is the method used for the experimental configuration
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Figure 2.3: Image showing the mechanical axis of the femur. Image adapted from
Gugenheim et al. [7]

2.2 Benign Bone Tumors

Tumors are masses of tissue that form due to unregulated cell growth and prolifer-

ation, and can be classified as malignant (cancerous) or benign. [1, 8] Cancer is a

group of diseases that is characterized by six distinctive characteristics, often called

the “Six Hallmarks of Cancer”: Cancer cells: 1) possess growth signal autonomy, or

rapid cell growth independent of external proliferation signals; 2) elude growth inhi-

bition from external inhibitory signals; 3) resist apoptosis, or normal programmed

cell death, which regulates the number of cells in a tissue; 4) have unlimited cell
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replication potential; 5) can form vascularized tumors through angiogenesis, mean-

ing cancerous masses form new blood vessels to maintain cell viability throughout

the tumor; and 6) metastasize, or invade, other regions of the body, altering nor-

mal cell function, which generally leads ultimately to death. [8, 9] Although benign

tumors possess many of these characteristics, they are not direct evidence of cancer,

due primarily to their inability to metastasize.

Primary bone tumors (cancer originating in the bone) are very rare, with an inci-

dence of less than 0.2% of all cancer cases in the United States in 2014. The American

Cancer Society estimates 3,020 primary bone cancer cases resulting in 1,460 deaths

in 2014, based on cancer statistics from 1995-2010. [10] Cancerous lesions in bone

can commonly arise as secondary tumors from primary metastatic cancer originating

in other regions of the body, including the breasts, lungs, and prostate. [11] The

majority of primary bone tumors are benign and generally asymptomatic, and are

usually only detected by radiographic examination of the region. [12] Therefore, a

precise incidence rate of benign bone tumors is difficult to determine. Benign bone

tumors are commonly observed as small defects originating in the medullary canal,

and often do not breach the cortex. On the contrary, malignant bone tumors are

often associated with significant cortical damage. Benign bone growths also com-

monly occur as bone-simulating non-neoplastic conditions that appear, upon initial

radiographic evaluation, as primary bone malignancies.

A number of factors play an important role in the pathologist’s diagnosis of bone

tumors, including cytologic evaluation, tumor architecture, and the type of matrix

produced by the tumor. Generally, age, location, and size offer preliminary insight to

the pathologic state of the tumor. The common age and anatomical site distributions

of many common benign bone tumors and non-neoplastic bone simulating conditions

are summarized in Tables 2.1 and 2.2, respectively. Although insightful, an adequate

diagnosis is not complete without the results of a thorough tissue examination.
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Table 2.1: Common benign bone tumor classifications with age and body location.

Adapted from Davies et al. [12] and the World Health Organization [13].

Histologic Type Peak Age Common Location

Cartilage Tumors

Osteochondroma 10–30
Distal femur, proximal tibia, proximal

humerus, rarely in flat bones

Enchondroma 10–40 Hands,feet,long tubular bones

Periosteal chondroma 10–40
Proximal humerus, distal femur, hip

region, pelvis

Chondroblastoma 10–30

Distal femur, proximal tibia, proximal

humerus, calcaneus; typically epiphy-

seal

Chondromyxoid fibroma 10–30
Proximal tibia, distal femur, pelvis,

metatarsals
Osteogenic Tumors

Osteoid osteoma 5–25 Proximal femur, most long bones

Osteoblastoma 10–40 Spine, long tubular bones, jaws

Fibrogenic tumors

Desmoplastic fibroma 10–30 Mandible, femur, pelvis; all very rare

Fibrohistiocytic tumors

Benign fibrous histiocytoma 20–60
Pelvis, femur; usually diaphyseal or

metaphyseal

Giant cell tumors

Giant cell tumor 20-45
Distal femur, proximal tibia, distal ra-

dius, sacrum; often epiphyseal
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Table 2.2: Table of conditions simulating primary benign bone tumors with age and

body location. Adapted from Davies et al. [12]

Histologic Type Peak Age Common Location

Aneurysmal bone cyst 5–20 Femur, tibia, humerus, vertebrae

Simple bone cyst Infancy–20
Proximal femur, humerus and tibia, calca-

neus, ilium

Fibrous dysplasia 5–30 Long bones, jaws, skull, ribs

Non-ossifying fibroma 5–20 Distal femur, proximal and distal tibia

Osteofibrous dysplasia Infancy–20 Tibia

2.3 Structrual Consequences of Cortical Defects

in Long Bones

The structural consequences of cortical defect size and shape have long been debated

by researchers and clinicians. Structural defects can impose consequences by affecting

either the cancellous regions, cortical regions, or both, and can be introduced via

natural or man-made methods. As described in Section 2.2, benign tumors are

generally endosteal and do not penetrate the cortex. Therefore, we will focus on

the existence of man-made defects such as screw holes and biopsy windows. We

know from mechanics of materials that stress concentrations can take place at holes,

slots, notches, threads, or any general changes in geometry or material properties. [14]
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These stress risers result in increased localized stress that ultimately leads to yielding

at the defect site. While the bulk of the component may remain elastic and the global

stress is lower than the yield point, the introduction of the stress concentration will

result in localized yielding and ultimately, catastrophic failure at the site. This

concept is foundational in the analysis of bone defects as stress concentrations. A

number of studies have sought to quantify critical defect size and risk of pathologic

fracture of metastatic lesions in long bones. [15–17] Beals et al. [15] reviewed 338

patients with pathologic femoral fractures through lytic lesions. They concluded that

defects greater than 2.5 cm should be prophylactically stabilized. Parrish and Murray

[16] and Fidler [17] reviewed patients with impending fractures through metastatic

lesions. Both studies recommended prophylactic fixation of defects encompassing

50% or more of the cross-sectional area of the cortex. Although these guidelines

were setforth following review of metastatic bone defects, a number of in vitro studies

have investigated these claims using biomechanical analyses of human and animal

long bones. These studies were conducted in the absence of cancerous defects and

therefore offer insightful results regarding periosteal and endosteal cortical defects.

Dr. Charles Bechtol first described the importance of engineering in orthopaedics

in 1952. [18] In his iconic article, he noted the weakening effects of small drill holes,

and made predictions regarding the size and shape of small stress concentrations

in bone. Numerous in vitro studies investigated his predictions using human and

animal bone. Brooks et al. demonstrated in canine femora that 2.8 mm and 3.6

mm drill holes are capable of reducing the energy-absorption capacity of a bone by

up to 55%. [19] Clark et al. investigated the effect of biopsy-hole shape and size

on bone strength in paired human cadaver femora. [20] Three window geometries

were investigated: Group 1) a rectangular hole with square corners, Group 2) a

rectangular hole with rounded corners, and Group 3) an oblong hole with rounded

ends. The specimens were divided into two groups so that Group 1 was compared

to Group 2 on paired specimens, and Group 2 was compared to Group 3 on paired

13



Chapter 2. Literature Review

specimens. The femurs were loaded to failure in torsion at a rate of 50◦/minute

according to a protocol described by Burstein and Frankel. [21] All specimen failures

resulted from a spiral fracture through the biopsy window. They found that the

oblong hole (Group 3) was able to withstand 44% more torque and 83% more energy

(taken as the area under the linear torque–displacement curve) than the rectangular

hole with round corners (Group 2, p <0.01). Bechtol predicted that a rectangular

hole with rounded holes would resist failure more than a rectangular hole with square

corners due to high stress concentrations at the corner points. [18] This, however, was

disproved by Burstein, who reported that there is no statistical difference between the

two groups. They continued their analysis by investigating the effect on torsional

stiffness and energy absorption of varying hole length and width in the Group 3

geometry. They compared three groups of six specimens each2 at a fixed length

and varying width. Additionally, they considered three groups of six specimens each

with defects of varying length and fixed width. Their results show that varying

the width of the hole results in a statistically significant decrease in stiffness and

energy absorption. They found no statistical reduction in either stiffness or energy

absorption due to lengthening the cortical window. Clark et al. [20] completed their

analysis by demonstrating that approximately 4% more material is removed for a

window with parallel cuts versus an oblong hole with rounded ends. Interestingly,

this resulted in a corresponding 4% decrease in torsional stiffness and a 4% increase in

calculated stress. In order to remove an adequate biopsy sample, a large enough piece

of cortex must be removed. They conclude that although the rectuangular windows

permit greater access to the medullary canal, the reduction in stiffness results in a

great structural disadvantage; therefore, an oblong window with rounded edges, a

narrow width, and necessary length, should be used to remove a large enough sample

for biopsy.

2One specimen in one of the groups was discarded due to the incidence of a hairline
fracture during creation of the defect.
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McBroom and Hayes [22] tested small bony defects using four-point bending and

observed a reduction in strength of 70% for defects involving 30% of the cortex.

They also observed that bone strength decreases linearly as the hole size increases

linearly. [22] It was predicted that prophylactic intervention was only required for

defects involving destruction or removal of greater than 50% of the cortex. This

prediction, however, was not tested until years later. Edgerton et al. tested similar

defects in torsion and found a 72% decrease in strength for circumferential defects

involving 20% of the cortex. They also concluded that the ratio of defect diameter to

bone diameter was an accurate predictor of the weakening effects of cortical defects

and could be used for quantifying critical sizes in future studies. [23] Following these

studies, Leggon et al. sought to quantify the strength reduction and effects of diaphy-

seal defects on long bones involving 50% of the anterior cortex. [24] Although a 50%

defect was hypothesized to be of critical size for prophylactic intervention, no study

had yet quantified the strength reduction incurred by a defect of this size. They

utilized paired canine femora to consider six total groups including intact bones,

bones with 50% cortical defects (oblong in shape, 1.9 cm in length, cut back until

one half of the cross-sectional area was removed), and 50% cortical defects treated

with a variety of treatment options. They observed a reduction in bone strength of

87.3% as a consequence of the defect. Similarly, McBroom et al. [25] investigated

the flexural strength reductions imposed by eight varying sized drill holes in the di-

aphysis of paired canine femora. They varied the defects such that the ratio of drill

hole to bone diameter (a/D) ranged from 0.1 to 0.8. They observed a progressive

reduction in strength as the ratio of a/D increased. The 0.1 a/D defect resulted in

80% of the intact bone strength, whereas the 0.8 a/D defects retained only 30% of

the flexural strength. The decrease in strength was observed to be linear, except

for the line between 0.1 and 0.2, which displayed a much more drastic reduction in

stiffness than the other ratios. The authors compared their results to predictions us-
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ing beam theory and finite element analyses3. They observed that the beam theory

and non-linear finite element predictions correlated well with the in vitro results as

well as previously published data on stress concentration factors for circular holes

in a cylindrical tube. These results are further described in Section 2.6. Similarly,

Edgerton et al. [26] investigated posterior uni-cortical femoral defects ranging from

10–60% of the mediolateral bone diameter. The 60% defect was equal to the diam-

eter of the medullary canal, and thus no damage was done to the adjacent cortices

(medial and lateral). The specimens were loaded to failure in internal rotation at

a rapid rate of 30◦/second. Their results show that there is a steady decrease from

100% of the ultimate torque to only 30% of the ultimate torque for a 60% defect.

They observed the same trend as McBroom et al. [25], where the slope between the

10% and 20% cortical defects (m = -3.5) was approximately four times greater than

the decrease from 20–60% (m = -0.85). An energy loss of 60% was observed from

increasing the defect size from 10% to 20%. Interestingly, for a 10% defect, they

observed no difference in ultimate torque and an increase in ultimate rotation and

ultimate energy when compared to the intact contralateral specimens. Their results

for ultimate torque, rotation, and energy are shown in Figure 2.4.

Endosteal defects that do not completely penetrate the cortical wall can still pose

a particular risk to the structural integrity of the bone. Hipp et al. investigated the

flexural strength reduction due to partial-thickness endosteal defects of varying di-

ameter in matched canine femora. [27] The defects were introduced into the diaphysis

of one of the matched specimens. The defect was 11 mm in length and uniformly

thinned along the endosteal surface, with the exception of the center, where a larger

spherical volume was removed. The contralateral specimen remained intact and the

results were utilized for comparison to a negative control. Their results demonstrated

3The finite element method is a numerical approach to solving complex analytical me-
chanics problems. The finite element method and its applicability in orthopaedics is de-
scribed in greater detail in Section 2.6
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Figure 2.4: Percent original ultimate torque, rotation, and energy for varying sized
defects. Data adapted from Edgerton et al. [26]. The error bars shown on the original
plots were not included in this adaptation.

a linear decrease in bone strength in both modes of loading as the size of the defect

increases (i.e., the cortical wall becomes thinner). They observed strength reductions

up to 78% in the presence of a larger endosteal defect. Their results correlated well

with predictions from beam theory and a finite element analysis, which were then

utilized to consider the effects of eccentrically positioned defects (described in further

detail in Section 2.6). For a centrally located defect tested experimentally, a reduc-

tion in cross-sectional area of 50% resulted in a 60% loss in strength. In the case of

an eccentrically positioned defect, a defect size of 20–60% intact cortex will have the

same flexural strength as a centrally placed defect with only 20% remaining cortex.

This finding is particularly interesting for consideration in the clinic where proper

multi-plane imaging must be used to properly diagnose the location and size of the
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defect. If, for example, the defect is assumed to be centrally placed, but is instead

eccentrically located such that one cortex is much thinner than the other, the patient

may be at high risk for fracture due to underestimated weakening. The authors per-

formed an evaluation of the worst case error (Re) for a range of measurement errors

(Me) using a 4 mm cortical wall thickness. The error (Re) was determined as

Re =
D −Me

C −Me

(2.1)

where Me is the measurement error, D is the minimum intact wall thickness and C

is the actual wall thickness. This model was used to calculate the worst case error

for a range of measurement errors of remaining cortical wall. The results of the their

predictions are shown in Figure 2.5. In a study of cortex thickness in human cadaveric

femurs, Smith et al. [28] reported measurement discrepancies of 0.18–0.6 mm in

radiographic measurements. As shown in Figure 2.5, measurement errors of 0.6 mm

results in incorrect estimations off by up to 25%. Thus, it is important to accurately

quantify the size of both periosteal and endosteal defects. The previous studies have

reported the structural impact of periosteal and endosteal defects in human and

animal bone. Prior to intervention, it is important to understand the consequences

of cortical defects in order to implement the optimal treatment in the operating

room. These studies demonstrate that even small cortical defects negatively affect

the structural integrity of bone in axial compression, bending, and torsion, which

are all physiological relevant loads imposed on the distal femur. Similarly, we see

that endosteal defects can have catastrophic outcomes if not properly characterized.

Thus, proper intervention must be investigated to determine methods of treatment

that will result in the greatest patient outcomes.
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Figure 2.5: Worst case error versus remaining cortical wall for a range of measurement
errors. Adapted from Hipp et al. [27]

2.4 Current Methods for Treatment of Benign Le-

sions in Long Bones

The objective of treatment of benign lesions in bone is to remove the tumor and

restore the structural integrity of the bone. This is especially of concern in load-

bearing bones, such as the tibia and femur. Benign lesions that are free of pain

and in non-load-bearing regions generally do not require intervention and are of-

ten left alone. In load bearing regions, however, prophylactic intervention is often

recommended and even required. Benign bone tumors are often removed by intrale-

sional curretage, which results in the creation of a bone defect. Large defects and

cavities are often reinforced with fillers and bones substitutes, such as autologous
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bone grafts [29, 30], allografts [31–34], poly (methyl-methacrylate) (PMMA) bone

cement [35–37], and other bone substitutes [30, 38]. Each of these methods have

their respective advantages and limitation.

Autogenous bone graft is one of the most effective methods for promoting healing

and restoration of bone defects due to their osteoconductive (graft material serves as

scaffold for new bone ingrowth) and osteoinductive (graft stimulates osteoprogenitor

cells to differentiate into osteoblasts) properties. [30] This graft material is available

either as vascularized or nonvascularized cortical bone or as bone marrow grafts.

Cancellous bone graft is highly vascularized and very easily incorporated into the

defect, however, due to loose packing and low stiffness, it is only effective as a space

filler that provides very little structural support. This makes it most effective as a

supplementary filler, or as a graft for endosteal defects with little to no cortical bone

damage. Once incorporated, however, it is capable of ultimately achieving strength

equal to cortical graft after approximately 6–12 months. [30] Cortical bone graft is

most often harvested from the iliac crest but can also be taken from other bones

such as the fibula or ribs. Cortical bone graft is mostly osteoconductive and pro-

vides excellent structural support within the defect, but has very low osteoinductive

properties. Interestingly, cortical bone grafts lose their initial structural strength

and often must be supported with additional fixation to maintain proper stability.

Both cortical and cancellous bone grafts provide excellent outcomes with low rates

of disease transmission. Unfortunately, there is limited supply of autologous bone

graft and if an excess amount is removed, there is risk for donor site morbidity.

Allograft, or allogenic bone, is available in many forms, each with distinct bio-

logical properties. Demineralized bone matrix consists of crushed or pulverized bone

and is osteoconductive and slightly osteoinductive. It vascularizes very rapidly and

is a very suitable material for filling defects, however, it offers no structral support to

the cavity. Other forms include cancellous and cortical allografts, which can be used
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as supplementation or as an alternative to autograft, and even whole bone segments.

Allograft materials can eliminate or alleviate the demand for autogenous bone graft,

however, a small risk of infectious disease transmission has been reported. [30,33]

PMMA bone cement is a common bone filler that is used to provide instant

stability, and is especially useful in larger, more unstable defects. However, PMMA

is not a bioactive material and may not be the most suitable biological method for

filling defects. [35]. Another concern is that the setting of PMMA is an exothermic

reaction, which releases a large amount of heat directly to the defect site. This may be

advantageous by killing residual tumor cells within the cavity [35]; however, thermal

injury near to the surface of the joint may damage surrounding chondrocytes [39],

which has been associated with degenerative arthritis. [40,41] A long-term follow-up

study published in 2007 revealed that the cementation of giant cell tumors did not

greatly increase the risk of osteoarthritis, although some relationship was observed.

[42]

Materials such as hydroxyapatite and β-tricalcium phosphate are common bone

substitutes used for filling defects. Theses materials are classified as polycryastilline

ceramics and naturally occur in bone. Ceramics are naturally brittle in nature and

possess poor tension properties, therefore they are best suited for uses such as filling

and supporting compressive loads. These ceramics are osteoconductive materials

that provide very little mechanical stability to the defect site. For best results, they

should be packed densely within the defect with direct contact to the surrounding

bone to maximize new bone ingrowth. [43] Hydroxyapatite has been reported for

use in filling defects after curretage [44, 45], however some reports have shown that

this material stimulates a robust inflammatory cytokine response. [46, 47] Similarly,

Hirata et al. [48] reported successful filling of defects after curettage with β-tricalcium

phosphate. Both hydroxyapatite and β-tricalcium phosphate require months of time

for incorporation [45,48], and neither provide much structural stability.
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Recently, Hirn et al. [49] and Yanagawa et al. [50] investigated the outcomes of

patients with defects in the lower extremity that were left unfilled after curettage.

Among 51 patients, Yanagawa et al. [50] observed 3 post-operative fractures; one

was deemed avoidable if perioperative weight bearing had been limited, while two

occurred through local tumor reoccurrances. A total of 9 patients had local reoccur-

rance with 7 occurring from giant cell tumors. The volume of the tumors removed

ranged from 3–31 cm3. The patients were restricted to no weight or partial weight

bearing for up to 3 months after the procedure. Hirn et al. [49] conducted curretage

of benign tumors in the knee region (proximal tibia or distal femur) with no defect

augmentation in 146 patients. The average tumor volume was 63 cm3 (range: 1–

240 cm3) with 44% of the defects under 5 cm in diameter and the remaining 66%

having a diameter of 5 cm or greater. 6 patients had preoperative fracture while

14 had postoperative fracture through the defect. They observed that there was

significant difference (P = 0.003) in average size of defect sites that fractured versus

those that did not (108 cm3 and 60 cm3, respectively). They concluded that the risk

of fracture for defects with diameter less than 5 cm was 3% while the risk increased

to 15% for defects greater than 5 cm in diameter. However, the average time to

full weight bearing for defect with diameter less than 5 cm was 5.4 weeks while the

average time for defects greater than 5 cm was 6.7 weeks. Overall, 9 patients were

observed to have unsatisfactory outcomes resulting in a 94% success rate. Kreicbergs

et al. [51] reviewed outcomes of patients with benign defects treated by curettage,

with some treated by curettage alone and some with defect augmentation. They ob-

served similar outcomes of 95% success in patients with curettage as the sole method

of treatment.

The outcomes of patients after curretage vary greatly, including average time

to weight-bearing, pre- and post-operative fracture risk, and tumor reoccurrance.

Each method of defect augmentation (or lack thereof) after curretage possesses its’

own advantageous and disadvantageous, however, it is clear that other methods of
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treatment should be investigated to improve overall patient outcomes.

2.5 Synthetic Bones in Orthopaedic Research

2.5.1 Synthetic Versus Cadaveric

Synthetic bone models are becoming increasingly popular for use in orthpaedic re-

search and education. Traditionally, human cadaver specimens have been utilized

for these purposes. While cadaver specimens are still the quintessential model for

both applications, researchers and educators acknowledge that there may be substan-

tial benefits of using synthetic bone analogues. Human cadaver specimens possess

three properties that are undesirable in both settings: 1) cadaver specimens are

very expensive—nearly three times the cost of composite models [52], 2) there is

high variability between specimens, and 3) they are challenging to store and han-

dle. The demand for cadaver specimens is often met through the use of unclaimed

deceased, often elderly or infermed persons, who become possessions of the state

post-mortum [53, 54]. Consequently, these specimens may not be an accurate rep-

resentation of the behavior of an orthopaedic construct for a young healthy person

who presents with orthpaedic trauma. Due to limited inventory, it may be diffi-

cult to procure the required number of specimens for validation in a healthy bone

model. A number of studies have sought to validate the use of composite specimens

in orthopaedic research as means to minimize costs, control variability, and simplify

handling.
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2.5.2 1st Generation Composite Bones

The first biomechanically equivalent human bone analogues were introduced in the

late 1980’s by Pacific Reserach Laboratories, Inc. These models consisted of a rigid

polyurethane foam cancellous region and a glass braided cylinder reinforced with

epoxy for the cortex. It was quickly learned that these models were not an ideal

representation of human bone due to delamination of the braided glass fibers and

epoxy, however, some similarities were observed in later testing. [55] Szviek et al. [56]

tested the material properties of a polyurethane foam similar to the rigid foam core of

the 1st generation bone analogues. Their results were in the range (although on the

low end) of Young modulus values reported in a previous study of human trabecular

bone. [57] Although the material properties indicated by the manufacturer matched

values for cortical bone, the issue of bonding the two materials was a greater concern

and led to disapproving reports of use of the 1st generation model.

2.5.3 2nd Generation Composite Bones

The 2nd generation model, introduced in the early 1990’s, contained a cortex con-

structed from e-glass fiber cloth, mat, and roving that was layered around a rigid or

cellular polyurethane core. [58] The outer cortex was formed by pressure-injecting

epoxy into the e-glass fabric, resulting in a glass-fabric-reinforced epoxy, thus pro-

moting greater integration of the two materials. These models were created at the

expense of no medullary canal and technical, labor-intensive construction. Despite

the added manufacturing cost, the second generation model proved to be a more

accurate representation of human bone. Szivek et al. [59] were the first to report

the deformation response of the new analogues under single-leg loading. Their re-

sults revealed that the structural stiffnesses were in reasonable agreement with real

bone stiffness values, and may be a valid model under a single leg loading stance.
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Cristofolini et al. [60] measured the viscoelastic and strain response of 2nd genera-

tion composite, fresh frozen cadaver, and dried-rehydrated cadaveric femurs under

axial loading, four-point bending, and torsion. They found no significant differences

between the groups, and reported that the composite specimen properties fell in the

range of the cadaveric groups. Additionally, they reported a decerease in variabil-

ity among composite specimens 20-200 times lower than the cadaver groups. This

result indicates that a smaller detectable difference can be observed when using syn-

thetic bones. Cristofolini and Viceconti [61] conducted a similar study, investigating

anatomical dimensions and the axial, torsional, and bending stiffness of synthetic

and cadaveric tibias. They concluded that the synthetic models are most suitable

for flexural and axial loading; however, torsional stiffness values exceeded those of

normal human bone. Large inter-specimen variability as high as 99.9% was reported

for the cadaveric group compared to 0.1% variability within the synthetic group.

The authors comment that geometrical comparison resulted in satisfactory similari-

ties, however, the endosteal surface is too narrow and results in a more “stove-pipe”

geometry than actual human tibias. Shortly after, a new design of the 2nd genera-

tion model was introduced that utilized a short-glass fiber-reinforced (SGFR) epoxy

rather than the GFR epoxy for the cortical region. It was hypothesized that this

would offer an improvement in material uniformity, simplify manufacturing, and per-

mit greater anatomic detail. Heiner and Brown [62] investigated the axial, bending,

and torsional response of the SGFR model compared to the GFR model. They

found that SGFR models were significantly less stiff than the FFR specimens and

additionally, resulted in lower variability than the FFR group under axial loading.

2.5.4 3rd Generation Composite Bones

The results of the previous study led to the innovation of the 3rd generation model,

which utilized a SGFR epoxy that is pressure injected around the polyurethane

25



Chapter 2. Literature Review

core [63]. The molds for the pressure injection were cast directly from bones of

an adult male cadaver. This improved overall anatomical precision including gross

size, cortical wall thickness, topographical features, and inclusion of a medullary

canal. The anisotropy of cortical wall thickness was simulated by serial sectioning

of the specimens, which was then utilized to build appropriate heterogeneity into

the model. Heiner and Brown [62] reported stiffness values in the range of human

bone, including the response torsional loading which was previously reported to be

significantly higher [61], which demonstrates an improvement in material properties

from the FFR epoxy to the SGFR epoxy.

2.5.5 4th Generation Composite Bones

The current 4th generation composite bone model employs the same fabrication,

utilizing injection-molded SGFR epoxy around a polyurethane core, with only alter-

ations to the epoxy resin component. The primary changes of the cortical layer are

primarily for enhancement of the fracture toughness, fatigue life, tensile and com-

pressive strength and modulus, thermal stability, fatigue crack resistance, implant

subsidence, and moisture resistance. [64] Select material properties of the 4th gener-

ation composite femurs and human cadaver femurs are shown in Table 2.3. Chong et

al. [65] investigated the fracture toughness and fatigue crack propagation rate of the

4th generation cortical material in comparison to the 3rd generation. They evaluated

ultimate tensile strength and elastic modulus (E) using injection-molded dog-bone

specimens (ASTM D638034). Subsequently, the authors investigated the fracture

toughness (KIC) and fatigue crack resistance using compact tension specimens

4American Society for Testing and Materials (ASTM) is an international organization
that establishes technical standards in one of six categories: 1) specification, 2) test
methods, 3) practice, 4) guide, 5) classification, and 6) terminology. Over 12,000 ASTM
published standards are currently referenced within the technical community. [66]
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Table 2.3: Table of 4th generation composite and human cadaveric femur material

properties. The value in parenthesis represents the coefficient of variation (= stan-

dard deviation ÷ mean). Flexural rigidity AT = anterior cortex in tension; Flexural

rigidity LT = lateral cortex in tension; UTS = ultimate tensile strength; ETensile

= Young’s modulus in tension;“L” and “T” represent longitudinal and transverse,

respectively. †Only a range of values was provided; coefficient of variation not calcu-

lated.

Property 4th Generation Study Cadaver Study

Axial

stiffness
(N/mm)

1860 (7.5%) [67] 1387 (14.6%) [60]

1230 (16.3%) [68] 2480 (25.0%) [67]

Torsional

stiffness
(N·m2/deg)

3.21 (2.6%) [67] 4.41 (37.0%) [67]

4.14 (5.3%) [68] 3.35 (32.2%) [57]

Flexural

Rigidity AT
(N·m2)

241 (4.5%) [67] 317 (23.0%) [67]

252 (3.6%) [68] 369 (42.7%) [60]

Flexural

Rigidity LT
(N·m2)

273 (5.8%) [67] 290 (42%) [67]

305 (5.6%) [68] 277 (29.2%) [60]

UTS (MPa) 107 (5.4%) [65]
L: 132.0 (12.2%)

[69]
T: 57.9 (9.5%)

ETensile (GPa)
15.8 (1.3%)

[65]
L: 17.7 (22.0%)

[69]
T: 13.1 (23.6%)

Fracture

Toughness
(MPa·m1/2) 4.07 (7.6%) [65] 1.6–8.3† [70]
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under plane strain conditions.5 Their results revealed an increase of approximately

40% for the ultimate tensile strength and modulus of elasticity and nearly 50% in

fracture toughness from the 3rd to the 4th generation composite bones. Their values

fall within the ranges of previously published data on fresh frozen cadaveric bones,

matching more closely than 3rd generation material properties. [69–71]

Subsequently, Chong et al. [72] compared the in vitro fatigue performance of 3rd

and 4th generation femurs implanted with a cemented total hip arthroplasty (THA)

construct. The experiments were carried out under in vivo conditions, including

submersion in a physiological-temperature water bath in a cyclic, single-leg stance

loading configuration. The 3rd generation constructs averaged failure at 3.16 ±

1.54 million cycles, whereas all 4th generation constructs survived beyone the cease

of the experiments at 10 million cycles. Heiner followed these studies by report-

ing the axial stiffness, torsional rigidity, and flexural rigidity (anterior-posterior and

lateral-medial loading). [67] These values were reported to align more closely with

previously reported values for cadaveric specimens than the 3rd generation compos-

ite bones. [62] The 4th generation models are available with solid rigid and cellular

polyurethane foam cores. Zdero et al. [73] compared screw pullout force, shear stress,

and energy-to-pullout in the cancellous regions of 4th generation composite and ca-

daveric human bones. Their results revealed no statistical difference between any of

the groups, concluding that the cancellous material in either composite model is an

appropriate substitute for human bone. Similarly, Zdero et al. investigated corti-

cal screw purchase in the distal, diaphyseal, and proximal regions of 3rd generation

femurs (16 mm diameter canal), 4th generation femurs (16mm and 20mm diameter

5In mechanics of materials, plane stress and strain are defined as states in which the
shear and normal vectors are assumed to be zero, respectively. In thick bodies, we argue
that at a point, a large force must be exerted to move material in the thickness direction;
therefore, the strains are expected to be very small in the thickness direction and thus
small enough to be neglected. The assumption of plane strain is a method of simplifying
the mathematical analysis.
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canals), and human bone. They observed no statistical difference between any of

the groups, although the 4th generation models with the 20 mm diameter medullary

canals more closely represented human cortical bone. The results of these studies

demonstrate that the 4th generation composite femurs have material properties cor-

responding more closely to natural human bone than previous models. Generally,

these properties lie at the high end of the ranges for natural human bone; therefore,

the 4th generation may be best suited to studies involving healthy human bone.

Numerous studies in the literature have utilized these composite bones for compar-

ison of fracture management and fixation constructs. There is evidence that the

reduced variability between groups and the high level of material and geometrical

consistencies of the composite bones may provide a reliable and informative platform

for orthopaedic biomechanics research, especially for a comparison of means between

similar groups. [52]

2.6 Finite Element Modeling in Orthopaedics

2.6.1 The Finite Element Method

The finite element method (FEM) is a numerical tool used for developing solutions

to complex, analytical engineering and physics mathematics problems. [74] FEM has

been used in a wide range of applications, including structural analysis, thermody-

namics (fluid flow, heat transfer, mass transfer), and electromagnetics. The FEM

provides a method to develop approximations for challenging analyses involving com-

plicated geometries, load conditions, material properties, etc. in which an analytical

solution is not obtainable.

In 1989, Hipp et al. [27] used experimental and finite element methods to evaluate

the effects of endosteal defects under bending and torsional loads. The experimen-
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tal methods and results of this study are described in Section 2.3. The four-point

bending setup was modeled exactly like the model developed by McBroom et al. [25].

Because torsional loading is not exclusively uniaxial loading, one-half of a cylinder

was required to observe all the stresses. A number of endosteal defects were inves-

tigated using the FEA: 1) four endosteal defects of varying size, 2) one elongated

defect, and 3) one defect modeled eccentrically within the canal. Figure 2.6 shows

an illustration of the diaphyseal model with endosteal defect. These were investi-

gated using both linear, orthotropic cortical bone properties and nonlinear, isotropic,

elastic-plastic properties. The endosteal defects were modeled with varying cortical

wall thickness ratios (minimum cortical wall thickness at defect/intact wall thickness

outside of defect) of 0.2, 0.4, 0.6, and 0.8. In order to simulate weakened regions

of cortical bone within the defect, the material properties along the endosteal wall

were represented by isotropic elements with reduced elastic modulus. This region is

illustrated in Figure 2.6 as the shaded elements within the defect. The results of this

Figure 2.6: Endosteal defect in the cylindrical femur diaphysis model. Figure adapted
from Hipp et al. [27]
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analysis revealed that both the nonlinear and linear FEA correlated well with the

experimental data. These results are similar to McBroom et al. [25], showing that the

linear FEA underestimated the intact strength, while the beam theory predictions

overestimated slightly. The nonlinear FEA showed the greatest agreement with the

experimental results. Figure 2.7 shows the results of four-point bending experiments

and the three prediction methods.

Figure 2.7: Intact strength results for four-point testing of endosteal defects and
predictions from FEA and beam theory. The black line represents the experimental
data and the dashed lines are the 95% confidence interval. Figure adapted from Hipp
et al. [27]

It was observed that the loss in strength linearly decreases as a function of the

degradation of the material properties in the cortical wall. [27] An interesting obser-

vation from their four-point bending results revealed that asymmetric defects have

structural consequences comparable to much larger, centrally located defects. Once

validated, the model was expanded to consider torsional stresses on the bone; no
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experimental data were collected under torsional loads. The FEA results revealed

that the highest stresses occurred at the thinnest region of the cortex when exposed

to torsional loads. The same trend showing that asymmetric defects have larger con-

sequences than centrally placed defects of the same size was observed in the torsional

analysis. Their predictions of the consequences of incorrect measurements are shown

in Figure 2.5 in Section 2.3. Because no experimental data were used to validate

their results, future work was required to evaluate the validity of the model under

torsional loads.

In 1990, Hipp, Edgerton, and Hayes [75] used a FEA to investigate the structural

consequences of transcortical holes on long bones loaded in torsion. This study

utilized the experimental results of loading sheep femora with transcortical drill holes

to failure in torsion. [23] The authors considered both a linear elastic, orthotropic

model and a non-linear, isotropic, elastic-plastic material model. They evaluated the

torsional consequences due to: 1) varying drill hole sizes, 2) varying wall thickness

at fixed drill hole diameters, 3) asymmetric wall thicknesses, 4) curvature along

the long axis of the bone, and 5) oblong defect holes with varying defect length.

Reasonable agreement was observed between the predictions and the experimental

data. Both the linear FEA and the beam theory predictions overestimated the loss

in strength, while the non-linear FEA underestimated the loss in torsional strength.

Figure 2.8 shows the results of the experimental data and the FE and beam theory

predictions.

A number of clinically relevant conclusions were drawn from the results. Fidler

et al. [17] had suggested prophylactic intervention for defects encompassing 50% of

the cross-section. This study revealed that transcortical holes encompassing 40% of

the cross-sectional area reduced the torsional strength by 70%. Second, as many

authors have concluded, these results will vary significantly for weaker bones with

thinner cortices, such as osteoporotic bone. Third, defect geometry plays a large role
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Figure 2.8: Plot showing the % intact strength results for torsional testing of transcor-
tical drill holes and predictions from FEA and beam theory. Figure adapted from
Hipp et al. [75]. The experimental data were adapted from Edgerton et al. [23]

in strength reduction, and therefore the results of this study were not conclusive for

other geometries. Some differences were observed between the analytical results and

the experimental data from Edgerton et al. [23] The authors considered a number of

study weaknesses that may have affected the results, including modeling technique

and assumptions. For example, only one element was utilized through the thickness

of the cortical wall. Greater mesh refinement may have reduced the predicted values

of strength reduction, bringing the analytical results in closer agreement with the

experimental data. Additionally, they recognized the weakness in single cycle, single

load boundary conditions. The results will likely vary since the femur is loaded in

combined axial compression, bending, and torsion.

Finite element modeling has been significantly improved by the increased accu-

racy in bone material properties through quantitative computed tomography (QCT).
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The models allow for specimen specific models that accurately model geometry and

bone density. QCT differs from routine CT by the inclusion of a calibration phan-

tom, which provides known reference material property data. QCT data has been

used to improve beam theory predictions and finite element models by permitting

individual stiffness assignment at each element. Keyak and colleagues presented the

integration of QCT data and FE models for improved predictions in a number of pa-

pers. [76–79] In 2005, Keyak et al. [80] presented predictions of strength of femoral

shafts with and without femoral lesions using QCT and FEA. Unlike many of the

in vitro studies, the researchers obtained cadaveric femoral shafts from donors with

history of malignant cancers (breast, prostate, and lung). The diaphysis was isolated

from the femur and the section was imaged using QCT. The shafts were imaged to

observe the presence of visible metastases. They ranged from undetectable to mixed

lytic and blastic regions. They developed a finite element model of the shaft using

the resolution data with 1-mm cube-shaped elements, as shown in Figure 2.9. The

material properties of each element was calculated from the density determined in

the QCT scans. The shaft in the FE model were loaded in four-point bending and

the cadaveric specimens were loaded under the same conditions to failure.

They observed a strong correlation between the predicted and measured force

outputs, and discovered the model remained accurate regardless of the presence of

tumor involvement. They concluded that their failure loads are in agreement with

previous researchers and that cancerous lesions significantly reduce the strength of

the shaft. However, because of the presence of actual metastases, they found that

the material properties of cancerous regions were significantly reduced. Therefore,

the strength of the shaft was not directly correlated the geometry of the defect,

but rather the material properties adjacent to the lesion. Consequently, they were

unable to provide further geometric guidelines on the consequences of lesions in

long bones. This technique may be applicable for studying benign tumors, however,

the structural consequences of metastatic lesions are clearly incomparable to those
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Figure 2.9: Image of finite element model of femoral shaft from QCT scans. Image
adapted from Keyak et al. [80]

imposed by equally sized benign lesions. Thus, a separate FE investigation is required

to determine the structural consequences of varying defect size and geometries.

A number of studies, including the previous studies, have developed FE mod-

els for cadaveric specimens. The challenge associated with cadaveric work is high

variability, thus making accurate FE model validation challenging. With the advent

of synthetic bone analogues, simpler, validated FE models can be used to make ac-

curate predictions. In 1996, after the introduction of synthetic bone analogues, a

standardized geometry computer model was proposed by Viceconti et al. [81] to im-

prove orthopaedic FE simulations. Recently, Cheung et al. [82] developed a computer

model based on the improved third-generation model—a previous three-dimensional

model was developed for the initial third-generation composite femur, however, due

to geometrical and material changes, this computer model was no longer applica-

ble. Cheung et al. constructed the model from CT scans of the third-generation

composite femur. This model was later made available for free download and can

be found in the Bel Repository at BiomedTown’s website. [83] The authors loaded a

third-generation composite femur under an axial load with the femur oriented 11◦ in
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abduction. They fixed strain gauges to the surface of the outer cortex to measure the

strain at varying locations along the surface of the femur. The bone was removed

and was then implanted with a titanium intramedullary nail. The original strain

gauges were left in place and additional gauges were added to the surface of the

nail. The specimens were loaded again under axial compression in the 11◦ abduction

position. The FE model was setup to duplicate the experimental loading conditions

for the bone with and without the nail. Although the purpose of this study was not

to focus exclusively on the development of the model, they did comment on the good

agreement regarding strain measurements observed between the experimental and

FE data.

Soon after, Papini et al. [84] compared the FE results using the third-generation

composite femur against cadaveric and synthetic femurs under axial and torsional

loads. An image of the model is shown in Figure 2.10. The length, mid shaft

diameter, neck angle, and neck to shaft angle were measured for all the cadaveric

specimens. The cadaveric femurs were loaded in axial compression at a rate of 8

mm/min up to a maximum of 1.5 kN while the synthetic femurs were loaded at

the same rate up to a max displacement of 2 mm. In torsion, the human femurs

were loaded up to 12 N-m of torque at a rate of 0.1 deg/sec in external and internal

rotation. The synthetic femurs were at a rate of 0.1 deg/sec up to a maximum

rotation of ±1.5 deg. The third generation composite femur model was given the

material properties of the synthetic femurs provided by the manufacturer. They

observed that the medium composite femur was larger than the average cadaveric

specimen, so the model was scaled down to match the average shaft diameter.

The researchers observed that very good agreement was achieved between the FE

model and the experimental data when small adjustments were made to the material

properties in the model. They comment that the model can be “calibrated” to fit

a variety of bone qualities, ranging from poor to excellent, by simply modifying the
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Figure 2.10: Image of the third generation composite femur model in simulated
acetabulum for axial and torsional loading. Image adapted from Papini et al. [84]

Young’s modulus to match the experimental data. This study validated the use of the

third-generation composite femur model, and has been used in a number of studies

that utilize the synthetic femurs. Furthermore, since only the material properties

were changed in the fourth-generation composite femur, the same model can be

used when using synthetic specimens. One primary limitation of this model is the

assumption that the bone has linear, isotropic behavior. In real bone, one can expect

nonlinear, anisotropic, and viscoelastic behavior, varying greatly depending on the

quality of the bone. If, however, these specimens are being utilized for a comparison

of groups, such as treatment A versus treatment B, these specimens, along with the

computer model, may be useful for determining small differences between groups

while eliminating larger interspecimen variability.
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Experimental Methods, Results, &

Discussion

3.1 Experimental Objectives

The purpose of this study was to determine the structural consequences of a 1.5 mm

cortical defect on the medial aspect of the distal metaphysis of the femur. This defect

was chosen as a model to simulate a small cortical window for the removal of a benign

cyst that occupies space, but does not affect the overall quality of the bone. Next, the

proposed treatment of augmenting the defect with a 3-hole 1/3 tubular plate was

investigated under physiological loading conditions. Fourth-generation composite

femurs were chosen to compare fully intact (i.e., no defect), defect, and treated

specimens. We hypothesized that the defect would significantly reduce the axial

and torsional stiffnesses, and that the plate would restore the structural integrity of

the defect bones back to the intact state. This hypothesis was investigated using

quasi-static axial and torsional loading, load-to-failure torsion testing, and combined

axial/torsional fatigue testing.
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(a)

(b)

Figure 3.1: Potting fixture. (a) Anterior-posterior view (b) Medial-lateral view
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3.2 Test Specimens

4th generation composite femurs were utilized for biomechanical analysis in this

study. The superior most important property used in determining the choice of

specimens was to minimize variability. Synthetic specimens offer accurate and con-

sistent geometry and material properties with minimal variability, especially when

compared with cadaveric specimens. The purpose of this study was to compare stiff-

ness, fatigue, and load to failure results for three groups: a) neat specimens (i.e., no

defect and thus no treatment), b) defect specimens with no treatment, and c) defect

specimens augmented with the proposed treatment method.

4th generation medium left composite femurs were obtained from the manufac-

turer (Sawbones Model #3403, Pacific Research Laboratories, Vashon Island, WA).

The 4th generation model is made of a short glass fiber reinforced epoxy resin that

is injection-molded around a 17 pcf solid rigid polyurethane foam core, creating the

cortical and cancellous regions, respectively. Material properties of the 4th gener-

ation models used in this study, provided by the manufacturer [64], are shown in

Table 3.1.

3.3 Loading Configuration

The primary loads imposed on the femur are bending, axial compression, and tor-

sion. Additionally, previous studies have reported these as the primary modes of

experimental loading for quantification of defect consequences on the stiffness and

rigidity femur. [21] True physiological loading combines an eccentric axial/bending

load during weight bearing and internal to external torsional loading (caused by

weight shift) during the full gait cycle. In order to accurately simulate physiologi-

cal loading conditions, a custom fixture was utilized to direct the load through the
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Table 3.1: Material properties for 4th generation composite femurs. σ = Strength;

E = Modulus. [64]

Simulated cortical bone

Tensile Compressive

Density (g/cc) σ (MPa) E (GPa) σ (MPa) E (GPa)

Longitudinal
1.64

106 16.0
157 16.7

Transverse 93 10.0

Simulated cancellous bone

Tensile Compressive

Density (g/cc) σ (MPa) E (MPa) σ (MPa) E (MPa)

Solid 0.27 — — 6.0 155

Cellular 0.32 — — 5.4 137

femoral head along the mechanical axis. A custom aluminum simulated acetabulum

was previously employed by our laboratory for loading of a femur in axial compres-

sion, torsion, and bending. [85] This fixture, modeled after the fixture demonstrated

by Papini et al. [84], permits accurate loading for axial and torsional stiffness and

fatigue testing. In order to simulate the rigid characteristics of the knee, the femur

was cast distally in a thermo-setting liquid plastic (Smooth-Cast R© 321; Smooth-On,

Inc., Easton, PA) to restrict all translational and rotational motion. The femur was

oriented with the anatomical axis 6◦ off the mechanical axis. The potting config-

uration is shown in Figure 3.1. The specimens were loaded onto an an MTS 858

Mini Bionix II (MTS Systems Corporation, Eden Prairie, MN) servohydraulic test-

ing machine for testing. The distal cast was placed in a vice fixed atop a 15 kN
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axial/torsional load cell. The acetabulum was oriented so the femoral head was 15◦

in anteversion [84,86] and lowered until minimal contact was made with the femoral

head. The actuator head was raised slightly and a 3.2mm Krischner-wire (Zimmer

Inc., Warsaw, IN) was placed through the head to fix the proximal end within the

acetabular cup.

Figure 3.2: Loading fixture on the servohydraulic testing machine.
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3.4 Preliminary Methods

3.4.1 Sample Preparation

The purpose of the preliminary experiments is to develop an understanding of the

torsional and axial effects imposed by the defect prior to any fatigue loading. Pre-

liminary results will be used to conduct a power analysis for determining sample

size for the fatigue analysis. Ten 4th generation medium left composite femurs were

utilized for preliminary analysis. The specimens were split into two groups: Group A

consisting of neat femurs with no defect and no treatment, and Group B specimens

consisting of femurs with a defect and no treatment. The defect was created on the

medial cortex, centered between the anterior and posterior surfaces, 55 mm from the

distal articular surface. It is hypothesized that approximately a 15 mm diameter

cortical window is the maximum sized defect that a 3-hole 1/3 tubular plate will

sufficiently support. The femur was rigidly mounted in a vice with the medial cortex

exposed for drilling of the defect. A 5/8-inch (≈ 15 mm) steel drill bit was used to

create a cylindrical defect through the cortex until the medullary canal was breached.

Curettage was simulated using a 3/4-inch (≈ 20 mm) spherical ball end router bit.

One half of the bit was ground off to ensure that it would fit through the cortical

window. A volume of 4189 mm3 (Vsphere = 4
3
πr3 ; r = 10 mm) was removed from

the cancellous analog material in the canal.

3.4.2 Loading Protocol

The specimens were loaded in three test configurations: a) axial compression, b) tor-

sion in internal rotation (anterior directed load through femoral head), and c) torsion

in external rotation (posterior directed load through the femoral head). For axial

loading, each specimen was pre-loaded with 100-N in compression and then subjected
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to an axial displacement of 2-mm at a rate of 8-mm/min. [84] In torsional loading,

the proximal end was subjected to rotational displacements of ±1.5◦ (internal and

external rotation) at a rate of 0.1◦/s. Each specimen was loaded first from 0◦ to

1.5◦ (external) then unloaded to zero in 1 second. After three repetitions, the test

alternated to -1.5◦ with an unloading rate of 1 second. All three tests were repeated

consecutively for three repetitions and the mean value of the three tests was used

to represent specimen stiffness. The stiffness was calculated from the linear region

on the force-displacement curve for axial loading and the torque-rotation curve for

torsional loading (described in further detail in Section 3.4.3). Following stiffness

testing, all specimens were loaded to failure in internal rotation. The specimens

were pre-loaded with 100-N in compression and rotationally displaced at a rate of

0.1◦/s until catastrophic failure occurred.

3.4.3 Statistical methods

Ordinary least squares (OLS) regression, or simple linear regression, was utilized to

calculate the regression line for the independent (torque/axial force) and dependent

variables (linear/rotational displacement) in the load-displacement plots. Given two

vectors, xi and y1, we can calculate the OLS regression solution using the following

equation:

yi = β0 + β1xi + ei (3.1)

Where β0 and β1 represent the y-intercept and slope, respectively, and ei represents

the error. For a solution passing through the origin, the OLS solution resolves to:

yi = β1xi + ei (3.2)

From this, we can calculate the slope of the regression as β̂:

β̂ =
ΣxiYi
Σx2

i

(3.3)
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The solution for β̂ can be determined using as a linear algebra formulation:

β = x−1
i Yi (3.4)

Equation 3.4 was utilized to calculate the stiffness, or slope passing through the

origin, for the force-displacement and torque-rotation curves. One-way analysis of

variance (ANOVA) was used to statistically compare the stiffness and load to failure

results between groups for each of the test configurations. No comparison was made

between axial and torsional stiffness within or between groups (e.g., Group A axial

to Group A torsional). For axial and load to failure, only two groups were compared;

therefore, the results are equal to a two sample student t-test. Torsional stiffness

was compared between groups (e.g., Group A internal to Group B internal) and

within groups (e.g., internal to external within Group A). A level of p
√ ≤ 0.05 was

considered statistically significant.

3.5 Preliminary Results

3.5.1 Measurement of Axial Stiffness

The mean stiffness of the neat group Group A was 1.23 ± 0.07 kN/mm (Figure 3.3a),

while the stiffness of the defect group Group B was only 1.16 ± 0.08 kN/mm (Fig-

ure 3.3b), resulting in a reduction in stiffness of ≈ 6%. However, statistical analysis

revealed no statistical difference in axial stiffness between the two groups (p = 0.086).

Overall, there was a 5.5% coefficient of variation (COV = standard deviation/mean)

for stiffness in the neat group among all 15 collected values (ngroup = 5 × 3 tests

each). Similarly, a COV = 7.0 % was observed for measurements of axial stiffness

in the defect group. Figure 3.3 shows the axial force versus displacement curves for

the neat and defect specimens. The solid black line represents the linear least square

regression of force and displacement.
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Figure 3.3: Axial force (kN) vs. displacement (mm)
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3.5.2 Measurement of Torsional Stiffness

The internal torsional stiffness was measured as the linear relationship between the

torque and the rotation for an anterior directed load through the femoral head,

and the external rotation was for a posterior directed load through the femoral

head. The mean internal torsional stiffness of the neat group, Group A, was 4.92 ±

0.42 N· mm/degree (Figure 3.4a), while the internal torsional stiffness of the defect

group Group B was only 4.53 ± 0.56 N·mm/degree (Figure 3.4b). The introduction

of the defect resulted in a reduction in stiffness of ≈ 8%. The mean stiffness of

external torsional stiffness for the neat specimens was 5.16 ± 0.26 N·mm/degree

(Figure 3.5a). The external torsional stiffness of the defect group reduced to 4.67 ±

0.32 N·mm/degree (Figure 3.5b), resulting in ≈ 10% loss in stiffness. No statistical

difference was detected between the neat and defect specimens in internal rotation

(p = 0.14). There was, however, a statistical difference between the groups for

external rotation (p = 0.006). No statistical difference was detected between internal

and external rotation within groups (Group A: p = 0.5 ; Group B : p = 0.4), indicating

that the two rotational tests are statistically equivalent within specimen types. The

greatest inter-specimen variation in stiffness was observed for internal rotation of

the neat specimens with a COV = 8.4 %, followed by internal rotation of the defect

specimens with a COV = 7.3 %. Lower variation was observed in the defect stiffness

tests than in the neat stiffness tests, which was likely due to the introduction of a

stress concentration. No plastic deformation was observed in any of the specimens.
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3.5.3 Load to Failure

No specimens were failed or permanently damaged during preliminary stiffness test-

ing. Figure 3.6 shows the load to failure torque-displacement plots for all ten speci-

mens. Load to failure analysis was conducted to determine the maximum load, de-

noted as ultimate load (τU), that the specimen can withstand prior to catastrophic

failure. The values of τU , mean τU per group, final rotation at τU (δR), and the

statistical difference between groups can be found in Table 3.2. The load to failure

tests also reveal the failure locations for each group, which in addition to τU , provides

important clinical information about the significance of introducing the defect.
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Figure 3.6: Internal torsional load to failure (N-mm/deg) versus rotation (deg) of
neat and defect specimens.

All neat specimens failed through catastrophic fracture of the femoral neck. Four

of the five defect specimens failed through a spiral fracture propagating from the
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anterior cortex, through the center of the defect, and ending approximately 250 mm

proximal to the defect in the diaphysis. One defect specimen failed through the

fracture of the femoral neck, however, the value of τU was not significantly affected.

Figure 3.7 shows the two modes of failure observed.

Table 3.2: Load to failure results including ultimate loads, rotation at ultimate, mean

per group, and statistical difference between ultimate loads.

Specimen # τU (N-mm/deg) δR(deg) < τU > (N-mm/deg) P-value

Neat

1 87.9 19.1

67.8 ± 27.5

2 106.0 23.0


0.42

3 51.2 10.2

4 44.3 10.2

5 49.5 10.0

Defect

1 63.6 14.3

56.0 ± 13.4

2 76.0 18.0

3 47.8 10.0

4 44.9 10.2

5 47.8 10.2

3.5.4 Power Analysis

A sample-size selection power analysis was conducted with the preliminary results

for ultimate load. The power analysis is used to predict the minimum number of

specimens needed to observe a statistically significant difference between both groups.

The analysis was completed using two different methods: a) a student t-test for the

two groups tested b) a one-way analysis of variance (ANOVA) for the two groups

tested plus a third estimated group. A statistical hypothesis was developed using a
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t-test for the neat and defect groups, which assumes

Ho : µ1 = µ2

Ha : µ1 6= µ2

α = 0.05

(3.5)

where the subscripts o and a denote the null and alternative hypotheses, respectively.

Since we do not know the variances of the groups to be tested, assumptions of

both equal and unequal variances were tested using the t-test. By testing both

conditions, a more thorough prediction of sample size can be made, that accounts

for both possible statistical circumstances. A similar hypothesis was developed for

the ANOVA:

Ho : µ1 = µ2 = µ3

Ha : µ1 6= µ2 6= µ3

α = 0.05

(3.6)

where the neat, defect, and treatment group are all being considered. This analysis

assumes a standard deviation of unity, σ = 1, for all groups. An analysis was

conducted for both tests in which the minimum detectable difference was varied along

an array of sample sizes n = 3 : 10. The minimum effect size, or minimum detectable

difference, is the difference in the measured variable that is detectable between groups

using the chosen statistical methods. An analysis was iterated through each value of

n at each effect size. A power ≥ 0.80 (i.e., the probability of not making a β error,

or wrongfully accepting Ho) was considered for sample size selection. This allows

for a confident choice of sample size that provides a high probability of detecting a

statistical difference between groups. A sample size of N = 3–10 was considered so

that a statistical analysis could be conducted for the experiments. The results of

the power analysis for each test are shown in Figures 3.8, 3.9, and 3.10. The regions

above the black lines indicate a statistical power ≥ 0.80.
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(a) (b)

Figure 3.7: Neck and spiral fracture failure modes. (a) Neck fracture in absence of
defect. (b) Spiral fracture through defect.

3.6 Fatigue Analysis Methods

3.6.1 Sample Preparation

A total of 16 specimens were divided into two groups of 8 femurs. All 16 specimens

were subjected to the 1.5-cm cortical defect as described in Section 3.4.1. 8 of

the specimens were not treated with any method of stabilization. The remaining 8

specimens were treated with a 3-hole 1/3 tubular plate (Stryker R©, Kalamazoo, MI).

After the creation of the defect, the curettage bit was removed and replaced with

a 0.098-inch (2.5-mm) drill bit, according the manufacturer’s recommendations for
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screw pilot holes. The bone remained in place while the pilot hole was drilled through

the center of the defect. The bone was removed from the vice and one 3.5-mm non-

locking cortical screw was placed through central hole of the plate and into the pilot

hole in the far cortex. The holes on the proximal and distal sides of the defect were

measured and aligned directly through the anatomical axis of the femur. The plate

was left loose while the two pilot holes were drilled with the drill press. The remaining

two non-locking screws were hand-tightened with a torque limiting screw driver up

to the manufacturers specifications. Finally, the central screw was tightened down

until the contour of the plate followed the natural curvature along the distal-medial

cortex of the specimen. The recommended torque value was not achieved for the

central screw since the near cortex was not in place to provide resistance for the

head of the screw. The test was repeated for a total of eight specimens.
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3.6.2 Loading Protocol

The specimens were loaded under combined axial-torsional loads for up to 10,000

cycles, or until catastrophic failure occurred. 10,000 cycles is the approximate num-

ber of cycles in a 6 month period of use—if healing has not occurred by this time,

revision surgery may be required to achieve proper outcomes. Each specimen was

pre-loaded with 15-N in compression and no torsional pre-load. The specimens were

cycled between 50–500-N in axial compression and between ±6◦ for torsion at a rate

of 2-Hz for both. [85] The running time, axial force, axial displacement, torque, and

rotation were recorded during the duration of the cyclic test at a rate of 1000-Hz

(≈ 500 data points per cycle). In order to separate the data more easily, the same

output variables were recorded at cycles 10, 100, and every 100th cycle thereafter

until the completion of the test.

3.6.3 Data Analysis

The stiffness was evaluated as the linear portion of the loading region of the fatigue

curves. For consistency, the initial stiffness was determined as the slope, calculated

between 75 data points on the loading curve, of the 10th cycle of all the force-

displacement curves. The internal and external torsional stiffnesses were determined

independently on the loading curves of the torque-rotation curves in each direction.

Ordinary least squares linear regression, as described in Section 3.4.3, was used to

fit the two vectors. For the fatigue analysis, a two-sample student t-test was utilized

to determine the statistical difference between time to failure (in cycles) between the

treated and un-treated groups.
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3.6.4 Damage Accumulation

The effects of fatigue loading prior to catastrophic failure of a material are chal-

lenging to observe, and therefore must be characterized separately. Fatigue loading

of a material induces local stresses and strains of the individual elements within

the volume. In metals, this takes the form of dislocations, resulting in microcracks

and voids. In organic materials, this process occurs as the alteration of intermolec-

ular bonds. Regardless of the form, the resulting irreversibility in microstructural

characteristics after the fatigue process is the fundamental phenomenon of damage.

According to Lemaitre and Chaboche, A material is said to be free of damage if it

is devoid of cracks and cavities at the microscopic scale, or from a more pragmatic

point of view, if its deformation behaviour is that of the material formed under the

best conditions. [87] The theory of damage provides us with the ability to characterize

the evolution of material from the initial state to the state at which crack initiation

has occurred. This principle can be extended into the characterization of bones and

bone-implant assemblies over a period of cyclic loading. We will utilize the damage

principles described herein, adapted from Lemaitre and Chaboche [87], to character-

ize the evolution of damage in the femoral specimens after being subject to cyclic

loading. According to the uniaxial elastic damage law, we describe an initial stress

state as σ′ and a damaged stress state as σ , where

σ′ =
σ

1−D
= Eε0 (3.7)

or

σ = E(1−D)ε0 (3.8)

where E is the modulus of elasticity in the absence of any damage, then

D = 1− σ

Eε0
(3.9)
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If we consider a damaged state, then

σ = E ′ε0 (3.10)

Therefore, damage can be represented by

D = 1−
(
E ′

E

)
(3.11)

and torsional damage

D = 1−
(
G′

G

)
(3.12)

where G is the modulus of rigidity. The subsequent solutions for axial and torsional

damage have been adapted from Lemaitre and Chaboche. [87]

Axial Damage

We begin with a relationship for displacement:

∆ =
PL

AE
(3.13)

where P is the load, L is the length of the specimen, A is the cross-sectional area,

and E is Young’s modulus. Recalling that the stiffness is the force divided by the

displacement, we can define the initial Young’s modulus in terms of the initial, or

effective, stiffness.

E =
keffL

A
(3.14)

The effective stiffness was calculated as the line connecting the displacements at the

minimum and maximum forces on the force-displacement curve of the tenth cycle.

The use of the tenth cycle permits pre-conditioning of the construct while retaining

reasonable estimates for stiffness prior to the onset of permanent damage. We can

then use the relationship in Equation 3.14 to calculate the Young’s modulus for any
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cycle thereafter, denoted as E ′. Substituting the values of Young’s modulus into

Equation 3.11, we determine a relationship for the damage as a function of change

in modulus.

D = 1−

(
knL

A

)
(
keffL

A

) (3.15)

where keff = kcycle 10 and kn is the stiffness of any cycle thereafter. However, we

observe from this equation that if we make the assumption that the length, L, and the

area, A, remain constant throughout the duration of the fatigue analysis, the equation

of damage reduces to a relationship involving only the stiffness of the construct:

D = 1− kn

keff

(3.16)

We see from this result that if the material stiffness changes, the value of damage

approaches 1, indicating complete failure or loss of stiffness. If, however, the damage

trends towards negative values of damage, the stiffness of the material is increasing,

and thus the construct is likely undergoing hardening.

Torsional Damage

A similar argument can be made for the characterization of fatigue behavior after

torsional loading. Instead of the linear displacement we consider the rotation, or

angle of twist, defined as φ.

φ =
TL

JG
(3.17)

where T is the torque, L is the length, J is the polar moment of inertia, and G is the

torsional rigidity. After algebraic manipulation, we find:

G =
TL

φJ
(3.18)
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Similarly, we recall that the torsional stiffness can be evaluated as torque divided by

the rotation, or

keff =
T

φ
(3.19)

Substituting this into Equation 3.18, we find an expression for the torsional rigidity

at cycle 10:

G =
keffL

J
(3.20)

and the damaged rigidity

G′ =
knL

J
(3.21)

at any cycle n thereafter. Substituting these relationships into Equation 3.12, we

find that:

D = 1−

(
knL

J

)
(
keffL

J

) (3.22)

Making the same assumption as for axial damage, the length and polar moment of

inertia cancel, resulting in an equation for damage dependent only on the torsional

stiffness:

D = 1− kn

keff

(3.23)

The torsional stiffness was calculated as the line connecting the minimum and maxi-

mum torque of the torque-rotation loading curve for each 100th cycle after cycle 10.

The results of the damage analysis will reveal an increase in damage (approaching

the value of 1) as the stiffness of the construct decreases over the fatigue period. In

the same way as the axial damage analysis, if the stiffness increases, the damage will

decrease below zero, indicating that the construct is hardening.
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3.7 Fatigue Analysis Results

3.7.1 Patterns of Failure

A summary of the results of the fatigue analysis are shown in Table 3.3. Among

the defect specimens, 5 of 8 specimens failed catastrophically by a spiral fracture

through the cortical defect. Two specimens survived all 10,000 cycles without any

crack formation or failure. Finally, one specimen failed along the k-wire through

the femoral head. Among the treated specimens, three specimens survived all 10,000

cycles, however, cracking through the defect was observed in all three. Two specimens

failed catastrophically by a spiral fracture through the defect, as shown in Figure

3.11. Finally, three specimens failed by fracture of the femoral neck, and two of

the specimens had small cracks formed through the defect. The results of the two-

sample student t-test revealed no statistical difference (P = 0.5087) in time to failure

between the two groups.

(a) (b)

Figure 3.11: Spiral fracture through treated defect. (a) Anterior oblique me-
dial/lateral view. (b) Posterior oblique medial/lateral view.
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Table 3.3: Summary of fatigue results including time and mode of failure.

Group Spec. # Life Mode of Failure

Defect

1 1,311 Spiral fracture through defect

2 10,000 No failure or cracking

3 450
Spiral fracture through defect. Crack formed

by 100 cycles

4 6,750 Fracture through femoral head along k-wire

5 1,205 Spiral fracture through defect

6 4,500 Spiral fracture through defect

7 10,000 No failure or cracking

8 2,129 Spiral fracture through defect

Plate

1 10,000
No failure. Visible crack formed on anterior

side of defect around 9,000 cycles

2 3,006
Fracture through femoral neck. Crack formed

through defect

3 6,708
Fracture through femoral neck. Long crack

formed through defect

4 10,000 No failure. Small crack formed by 8000 cycles

5 515 Spiral fracture through defect

6 717
Fracture through femoral neck. No crack

formed through defect

7 10,000
No failure. Very long fracture line through de-

fect
8 6,250 Spiral fracture through defect
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3.7.2 Fatigue Behavior

Axial Fatigue

Although axial and torsional cyclic tests were conducted simultaneously, the data

for each test were isolated and analyzed separately. In this section, the axial data is

analyzed to observe the behavior of the axial fatigue period. The initial stiffness was

determined as the linear region of the loading curve of the 10th cycle. This permitted

pre-conditioning of the construct yet the stiffness was determined prior to the onset

of damage. Figure 3.12 shows plots of the axial compression versus displacement

for defect and treatment specimens at the 10th cycles. The bold region is the area

of the loading curve used to determine the initial, or effective, stiffness. The mean

effective stiffness of the defect group was 1.27 kN/mm (SD: ± 0.43; range: 0.85–2.32

kN/mm) with a COV = 33.6 %. Interestingly, the treatment group had a lower mean

effective stiffness of 1.07 kN/mm (SD: ± 0.16; range: 0.80–1.31 kN/mm) with a COV

=15.1 %. A two-sample student t-test revealed no statistical significance between

the average effective stiffnesses of the defect and treatment groups (p = 0.27). It is

important to compare the initial stiffness results to the values of stiffness determined

under quasi-static axial loading, in the absence of a torsional load. The neat speci-

mens had an axial stiffness of 1.23 kN/mm while the defect specimens had a stiffness

of 1.16 kN/mm. Although the values vary slightly, an analysis of variance revealed

no statistical difference between any of the four groups (p = 0.52). The results of the

axial fatigue experiments reveal a general trend towards change in the non-controlled

variable, displacement. Figures 3.13a and 3.13b show the axial displacement over the

course of the fatigue analysis for fractured and non-fractured specimens, respectively.

Figure 3.13a shows the displacement behavior of a specimen that failed catastrophi-

cally by a spiral fracture through the defect site. The mean displacement increased

slightly until ≈ 4500 cycles when the bone failed catastrophically.
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Figure 3.12: Axial force (kN) versus displacement (mm) at the 10th cycle for Speci-
men 2.7. The stiffness is emphasized by the bold region.

This is indicated by the large increase in displacement cycle amplitude from

≈ 0.5-mm to ≈ 0.65-mm. During failure, the specimen failed by a spiral fracture

propagating proximally and posteriorly from the posterior edge of the medial defect

in a clockwise direction. Generally, a small piece of the cortex remained intact

on the anterior surface, which permitted the bone to still resist the axial load at

the expense of a greater displacement. This can be observed in Figure 3.13a by

the increase in displacement after cycle 4500. Figure 3.13b shows a specimen that

survived the 10,000 cycle test. It can be observed that while the amplitude of each

cycle remained constant throughout the test (≈ 0.325 mm), the mean displacement

increased by ≈ 0.1-mm. This indicates the onset of material change occurring within

the construct over the course of the experimental life. The onset of change in the

construct is further illustrated in the force-displacement plots of varying cycles over
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Figure 3.13: Axial force (kN) versus cycle number for survived and fractured speci-
mens. (a) Specimen 1.6—Failed by a spiral fracture through the defect. (b) Specimen
2.7—Survived 10,000 cycles but large crack formed.
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the period of the fatigue analysis, as shown in Figure 3.14. This change induces a

shift in mean displacement for the same compression range, resulting in a lateral

shift along the displacement axis of the force-displacement plots. These data can be

compared to cycle versus displacement data for the same specimen shown in Figure

3.13b to observe the onset of material change.
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Figure 3.14: Axial force (kN) versus displacement (mm) for Specimen # 7 in the
treatment group.

The methods described in Section 3.6.4 are employed to determine if the construct

is undergoing damage or hardening. Figure 3.15 shows the damage plots of two

specimens: a failed specimen (1.6—solid red) and an unfailed specimen (2.4—dashed

blue), respectively. We see from this figure that the constructs in fact undergo

hardening. The solid line shows the progressive hardening of the specimen until

≈ 4500 cycles, when the specimen failed completely through the defect. The dashed

line shows the progressive hardening of specimen 2.4 over the course of all 10,000

cycles. The material hardens by ≈ 50%, but successfully survives the test period.
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The described definition of damage considers the change in stiffness relative to the

initial stiffness. Intuitively, it make sense that hardening is likely to occur. As

the construct is loaded under compression, the small voids and spaces are likely

filled with surrounding material. This leads to a more condensed material with

fewer voids, and thus a higher stiffness. This may also explain the lateral shift

in mean displacement under the same loading constraints. As the voids are filled,

the material compresses and shortens, causing the mean displacement of the actuator

head to increase relative to the starting position. Ultimately, the construct is likely to

become brittle after significant hardening. This may explain why 3 of the 8 treated

specimens failed through fracture of the femoral neck prior to failure through the

defect. The phenomenon of hardening will be further investigated in Chapter 4

through a numerical stress analysis.
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Figure 3.15: Axial hardening versus cycle number for a failed and unfailed specimen.
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Torsional Fatigue

The defect and treatment specimens were exposed to rotations of ±6◦ to simulate

the internal and external rotations of the femoral head during the gait cycle. The

torsional effective stiffnesses of the constructs were determined as the linear region

of the loading curves in both the internal and external rotational directions. Figure

3.16 shows a representative torque-rotation curve for a one of the specimens in the

untreated defect group. The bold region was used to determine the construct’s

effective stiffness in each direction.

The mean torsional stiffness of the defect specimen in the +6◦ direction was 6.67

± 0.48 N-mm/degree (COV = 7.25 %) and the mean stiffness in the −6◦ direction

was 5.88 ± 1.98 N-mm/degree (COV = 33.8 %). The treatment group had a mean

stiffness of 6.58 ± 0.35 N-mm/degree in the +6◦ direction (COV = 5.37 %) with

a mean stiffness of 5.90 ± 2.01 N-mm/degree in the −6◦ direction (COV = 34.1

%). Recalling the stiffness results from quasi-static testing, one can observe that

the stiffness of the neat specimens in the (+) direction (external rotation) was 5.16

N-mm/degree. The stiffness of the defect specimen in external rotation was 9.5% less

than the neat specimen with a value of 4.67 N-mm/degree. In internal rotation, the

neat specimens had a stiffness of 4.92 N-mm/degree, while the defect specimens had

a stiffness of 4.53 N-mm/degree (-7.9%). Analysis of variance of the external rotation

results revealed a statistical difference between all four groups of p < 0.001. A pair-

wise comparison revealed statistical differences between multiple groups: the mean

stiffness of the fatigue defect group was statistically higher than the neat specimens

and the defect preliminary group; the mean stiffness of the treatment fatigue group

was statistically higher than both the neat and defect specimens from the preliminary

tests.

Following the stiffness analysis, we analyze the torsional behavior of the con-
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Figure 3.16: Torsional moment (N-mm/deg) versus rotation (deg) at the 10th cycle
for specimen 1.3. The stiffness region is emphasized by the bold markers.

structs over their fatigue life. Figure 3.17 shows the torsional moment versus cycle

number for failed and unfailed specimens from the defect and the treatment groups,

respectively. Figure 3.17a shows the data for a specimen that failed at ≈ 4, 500

cycles. It can be observed that the torsional moment is mostly constant leading up

to this point of catastrophic failure. Leading up to the point of failure, the specimen

seemed to undergo minimal damage accumulation. At the failure point, the speci-

men underwent brittle failure by a spiral fracture through the defect. Figure 3.17b

shows the torsional moment of a treatment specimen that survived all 10,000 cycles.

It can be observed that the amplitude of the torque output reduces slightly until ap-

proximately 9,000 cycles. At this time, a visible crack formed on the anterior cortex

of the defect. This dramatically reduced the torsional moment, however, failure did

not occur by the end of the 10,000 cycle test.
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Figure 3.17: Torsional moment (N-mm/deg) versus cycle number for a defect and
treatment specimen. (a) Specimen 1.6. (b) Specimen 2.1.
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The change in torsional load in damaged specimens is further illustrated by ob-

serving the torsional moment versus rotation plot for varying cycles across the fatigue

life. Figure 3.19a shows the torsional moment versus rotation for the same specimen

in Figure 3.17a. It can be observed that very little damage, or change in the hys-

teresis loop, has occurred leading up to the point of failure. Since failure occurred

between cycles 4500–4600, there is a dramatic reduction in torsional moment be-

tween these two loops. In contrast, a specimen such as that represented in Figure

3.17b undergoes visible damage over the course of the test. In the torsional moment

versus rotation plot, shown in Figure 3.19b, in can be observed that there is very

little change in the behavior up until the 9,000 cycle. After this point, a rapid onset

of damage occurring over the next 1,000 cycles can be observed by the dramatic

decrease in the torsional moment required to achieve the desired rotation.
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Figure 3.18: Torsional damage versus cycle number for a failed and unfailed specimen.
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Figure 3.19: Torsional moment (N-mm/deg) versus rotation (deg) at varying cycles
for a defect and treatment specimen. (a) Specimen 6.1. (b) Specimen 2.1. The higher
slopes represent the earlier cycles, while the lower slopes represent later cycles.
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The onset of damage is best illustrated by plotting the calculated construct dam-

age versus number of cycles, as determined by the methods described in Section

3.6.4. We previously observed that the specimens actually undergo the phenomenon

of hardening as a result of axial cyclic testing. Since many specimens failed, we

predict that some damage must occur as a consequence of torsional loading. Figure

3.18 illustrates the calculated damage over the cyclic test period. It can be observed

in Figure 3.18 that very little damage occurred up to the point of failure for the

specimen represented by the solid line. After this point, the damage spontaneously

approached a value of 1, indicating that complete damage has occurred. Similar

behavior is observed for the specimen represented by the dashed line. However, it is

evident that some damage has gradually accumulated up to the point of visible crack

formation. Around 9,000 cycles a small crack formed in the proximal-posterior edge

of the defect. This is illustrated by the sharp increase in damage around this point.

Complete failure did not occur by 10,000 cycles. This is illustrated by the relatively

high damage that has accumulated at the completion of the test.

The mean maximum damage value for the defect specimens was 66.5% (standard

deviation: 40.3%; range: -5.4–98.8%). Among these specimens, one specimen actu-

ally hardened to a value of 5.4%. If the hardened specimen is excluded, the mean

maximum damage was 76.8% (standard deviation: 30.1%; range: 11.1–98.78%). The

mean maximum damage value for the treatment group was 34.2% (standard devia-

tion: 43.6%; range: -6.5–99.6%). Among the treatment specimens, two specimens

were observed to harden up to 1.7% and 6.5% ( -1.7% and -6.5% damage, respec-

tively). If these two specimens are excluded from the mean maximum damage, the

treatment group achieved an mean maximum damage of 46.9% (standard deviation:

43.3%; range: 8.72–99.6%). It can be observed that there is a trend towards lower

construct damage in the treatment group, however, the difference of means with

and without the hardened specimens were not statistically different (P > 0.05). A

number of the data sets exhibited clear damage behavior with easily determined

73



Chapter 3. Experimental Methods, Results, & Discussion

0 2000 4000 6000 8000 10000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Cycle Number

D
a

m
a

g
e

 

 

Data

Fitted Curve

(a)

0 2000 4000 6000 8000
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Cycle Number

D
a
m

a
g
e

 

 

Data

Fitted Curve

(b)

Figure 3.20: Torsional damage versus cycle number with second order fit for (a)
hardened—Specimen 1.7 and (b) damaged—Specimen 2.3 specimens.
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maximum damage values, such as those shown in Figure 3.18. Some of the data

sets, however, were very noisy and much more difficult to interpret. A second order

polynomial was used to fit the noisy data sets to elucidate a more clear behavioral

trend. An example of the curve fitting is shown in Figure 3.20 for a hardened and

damaged specimen.

3.8 Discussion

The results of the experimental work provide evidence that the introduction of the

defect may comprise the structural stability of the femur in both axial and torsional

loads. The quasi-static loading revealed that there is a trend towards a reduction in

both axial and torsional stiffness, although these were generally not statistically dif-

ferent. Similarly, there was no statistically significant difference in ultimate torsional

moment between the neat and defect groups, however, there was also a trend to-

wards weakening in the defect group. There was good agreement on the slope of the

load-displacement curves during the load-to-failure experiments for both the defect

and the neat group. The ultimate torsional moment, however, has highly variable,

and provided very little conclusive evidence that the defect has significant weakening

effects.

The results of the fatigue analysis revealed no statistically significant differences

for time of failure between groups in either axial compression or torsion. During

the axial fatigue testing, it was observed that the constructs underwent hardening

over the fatigue period. There is no evidence that the human femur undergoes this

phenomenon in cadaveric form. Similarly, there is no evidence that this particular

geometry contributes to construct hardening. Therefore, it is possible to conclude

that the synthetic femurs themselves are undergoing hardening as a consequence of

their material properties. Work hardening is the process of material strengthening
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by plastic deformation. In this case, the synthetic femurs are hardening, likely due to

the onset of plastic deformation. The cortical layer of the 4th generation composite

femurs is made of glass-fiber reinforced epoxy resin. A number of materials studies

have revealed that epoxy will undergo work hardening under certain strain conditions.

[88–90] Tao et al. [88] concluded that the uni-axial fatigue behavior of epoxy is

directly related to the strain-rate of loading. They found that at high strain-rates, the

materials will soften over time. However, under low strain-rates, epoxy will undergo

the phenomenon of hardening. Song et al. [90] and Jordan and Spowart [89] observed

the same behavior for multi-phase particulate epoxy composites. The composite

femurs in this study are loaded under a low strain-rate protocol, therefore, it is likely

that epoxy hardening is occurring.

The results of the torsional fatigue analysis revealed the occurrence of true dam-

age accumulation in all but three specimens. Among the three that exhibited hard-

ening behavior, the maximum that occurred was only 6.5%. The hardening observed

in axial compression far exceeded the hardening of the torsional experiments. There-

fore, it is not possible to conclude that torsional hardening is a predicted mode of

behavior. This observation of torsional damage accumulation is in agreement with

the mode of failure (spiral fracture through the defect) observed in the failed speci-

mens. Qualitative observations revealed large deformation in the proximal, posterior

edge of the defects prior to crack initiation through this region. Overall, the torsional

load was the primary initiator of crack formation and propagation.

Previous studies have reported the use of the fourth-generation composite femurs

for fatigue analysis of orthopaedic constructs. Chong et al. reported far superior

fracture toughness [65] and fatigue performance [72] of the fourth-generations femurs

over the third-generation femurs. They observed better agreement in the measured

actuator displacement in the axial fatigue analysis among specimens, however, there

still was variation observed among select specimens. Similarly, the report was only
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a comparison of the third-generation to the fourth-generation specimens. This does

not provide adequate insight to the use of the fourth-generation specimens to com-

pare groups. Our study reveled large variation and overlap of data that resulted

in no statistical difference between groups. The lack of statistical significance may

indicate that the groups are very similar, however, the large variation within groups

did not facilitate gathering concrete conclusions. This may be due to the inadequacy

in the fatigue performance of composite femurs for a comparison of two very sim-

ilar groups, where the majority of the load is distributed through the native bone

material. Recent studies have reported good results for fatigue analysis of simulated

fractures with orthopaedic construct augmentation in fourth-generation composite

femurs. [91–93] Because the femurs were augmented with large metal constructs, a

significant portion of the load was likely distributed through the implant, thus re-

ducing the load on the femur. This distribution of stress may permit more consistent

fatigue behavior within each of the construct groups.

Although the results were highly variable, significant clinical conclusions can be

drawn from both the isolated and combined loading results. The primary mode

of failure under both loading conditions was either a vertical fracture through the

femoral neck or a spiral fracture through the defect. Both fracture patterns are

frequently observed in the clinic. The fracture through the defect propagated clock-

wise and proximally, initiating from the proximal-posterior edge of the defect. This

revealed that large shear stresses were occurring due to the torsional loading. The

shear causes large diagonal tension forces (pulling proximally and distally at an an-

gle), resulting in an upward and posteriorly propagating fracture. This reveals that

although the defect exists on the medial cortex, adequate tension resistance must

be applied to the posterior cortex to prevent cracking (fracture). Due to complex

neurovascular anatomy on the anterior and posterior aspects of the femur, tension re-

sistance on these cortices must be applied through the medial and lateral aspects. In

the load to failure analysis, it was observed that the crack would form and propagate
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to the point of failure almost simultaneously. This brittle fracture occurs when the

shear stresses (resulting in diagonal tension through the elements on the posterior

cortex) exceeds the ultimate shear stresses of the material. In the fatigue analysis, it

can observed that the crack formed and propagated slowly until complete failure oc-

curred. During physiological loading (i.e., gait), compression, tension, and torsional

are applied to the femur. The torsion introduces large tension forces in the bone,

however, these are mitigated by the compression applied during weight-bearing. This

results in reduced tension on the cortex, thus slowing crack growth. Without the

ability to predict healing, it is difficult to make conclusions on the efficacy of this

treatment method. A large locking plate would likely reduce the shear forces on the

posterior cortex and prevent crack formation on the defect. This treatment, however,

is large and invasive and may be reserved for more unstable fractures. Therefore, it

is important to find a construct that will reduce these forces while reducing the cost

and incision required for prophylactic stabilization. Future work may consider the

locking equivalent of a one-third tubular plate with both fixed and variable angle

screw trajectories.

The experimental work revealed that the defect acts as a stress concentration that

increases the local stresses and strains, thus facilitating failure. The time to failure

was not significantly altered by the addition of the plate, however, qualitatively, we

see a trend towards longer time to failure. Based on the experimental analysis, the

addition of the plate does not negatively nor positively affect the structural stability

of the defect bone. Based on the results, immediate full weight-bearing may not be

feasible until some bone regrowth has occurred. The effects of the defect and the

addition of the plate will be further investigated in Chapter 4 using the finite element

method.
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Numerical Methods

4.1 Introduction

The finite element method (FEM) was used to accomplish two main objectives: 1) To

observe the stresses and strains in the system and explain phenomena observed in the

experiments, and 2) to develop predictions for the consequences of a cortical window

with an increasing diameter. The model was developed using a three-dimensional

(3D) rendering of the femur, experimental fixture, and the implant that was modeled

using the computer-aided drawing (CAD) software, SolidWorks (Dassault Systémes

SolidWorks Corporation, Waltham, MA, USA). After the experimental conditions

were fully rendered, the model was imported into the commercial FE software pack-

age, ANSYS Workbench (ANSYS, Inc., Canonsburg, PA, USA). Each of the model

components was assigned their respective material properties, and the appropriate

boundary conditions were applied to the system. The model was subjected to sim-

ulated loads representative of the experimental test conditions. The model was first

validated to confirm its ability to accurately simulate the construct behavior. The

model was then used to conduct a parametric analysis of the cortical defect diameter.
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As described in Sections 2.3 and 2.6, a number of studies have sought to characterize

the structural consequences of cortical defects experimentally and computationally.

Most of the models that used a FE analysis utilized simplified models, such as cylin-

ders to model the diaphysis, and few of these were experimentally validated. This

study is the first to use a fully validated, full bone model to test varying sized de-

fects in the distal femur. Additionally, this model provides insightful information

regarding the proposed treatment method for a 15 mm distal metaphyseal defect.

4.2 Numerical Methods

4.2.1 Three-Dimensional Femur Model

The numerical component of this study utilizes the finite element (FE) method to

analyze behavior of three-dimensional femur models representative of the groups

tested in the experimental work. This study utilizes the “standardized femur” model

developed for the third and fourth generation composite femurs by Papini et al.

(described in Section 2.6). [84] The surface geometry and cortical thickness match

the fourth generation composite bones used in this study. The cancellous region is

modeled as an isolated region that completely fills the cortical shell.

The 3D “standardized femur” model was obtained from the Biomechanics Euro-

pean Laboratory (BEL) Repository from biomedtown.org. [83] The cancellous and

the cortical regions, shown in Figure 4.1, were assembled to form the full femur.

A medullary canal with a diameter of 13-mm (according to the dimensions pro-

vided by the manufacturer [64]) was created in the bone, originating from the prox-

imal metaphysis and ending below the condyles. This left a hole in the distal end of

the specimen identical to the physical specimens. The experimental loading fixture

was modeled using computer aided drawing (CAD) software. The acetabulum was
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Figure 4.1: Cortical (left) and cancellous (right) bone models with defect in place.

modeled using the original CAD drawings. [94] The stainless steel pin was modeled

as a long cylinder with a diameter of 4 mm and a length of 200 mm—for simplic-

ity the threaded tip was excluded from the model. The distal cast was modeled as

a rectangular block that encapsulated the region 5 mm below the condyles up the

center of the epicondyles. A boolean subtraction was used to remove the cortical ge-

ometry from the block to create the cast of the distal region. The defect was created

55 mm from distal articular surface with a diameter of 15 mm. Due to proprietary

regulations, the implant was reverse engineered and modeled after plate contouring

occurred. The plate was modeled as a 1 mm thick rectangular protrusion along the

contour of the cortex directly over the cortical window. A boolean subtraction was

used to remove geometry of the bone from the plate, thus allowing the plate to per-
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fectly contour with the bone, as was done experimentally. Three model assemblies

were developed: 1) The intact model, 2) the defect model with no treatment, and 3)

the defect model with the 1/3 tubular plate. Figure 4.2 shows the complete assembly

of the defect specimen with the implant in place.

Figure 4.2: Complete experimental fixture model including defect, plate, and screws.
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Figure 4.3: Distal femur with 15mm cortical defect and 1/3 tubular plate model.

4.2.2 Boundary Conditions and Material Assignment

The femur and loading fixture were modeled to replicate the experimental loading

conditions as closely as possible. The femur was oriented with the anatomical axis

6◦ off the mechanical axis and the femoral head 15◦ in anteversion, as described in

Section 3.3. The acetabulum was oriented with the loading axis directly along the

mechanical axis of the femur. The pin was placed concentrically through the hole

in the acetabulum, directly into the femoral head, and out of opposite hole in the

acetabulum. The bottom surface of the cast material was fixed to replicate the cast

within the vice.

The cortical and cancellous regions of the femur were assigned the material prop-

erties provided by the manufacturer. [64]. The acetabulum was assigned the material

properties for aluminum alloy and the pin was assigned stainless steel properties.

Both were found in the FE package’s material library. Finally, the cast material was

assigned properties based on the manufacturer’s technical specifications. [95] The
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material properties used for the system are summarized in Table 4.1.

Table 4.1: Summary of material property assignments in FE model. ρ = Density;

ETensile = Modulus in tension; ECompress = Modulus in compression; “S” and “C” rep-

resent solid and cellular, respectively. “—” = Information not used or not provided

by manufacturer.

Property Cortical Cancellous Stainless Aluminum PMMA

ρ (kg/m3) 1640
S: 270

7750 2770 —
C: 320

ETensile (GPa) 16 — 160 71 0.3

ECompress (GPa) 16.7
S: .155

— — —
C: .137

σTensile (MPa) 106 — 207 280 21

σCompress (MPa) 157
S: 6.4

207 280 25
C: 5.4

The cancellous and cortical regions were bonded together with asymmetric con-

tact and solved using the multi-point constraint (MPC) formulation. The remainder

of the contact interfaces were governed by symmetric frictional contact and solved

using an augmented Lagrange formulation. The frictional contacts were based on

published frictional coefficients between the two materials in contact. Small adjust-

ments were made to the coefficients to facilitate convergence and model accuracy.

The coefficient of friction between the distal cast and the epoxy cortex in the model

was much higher than published data for contact between the two materials. In the
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experimental fixture, the distal cast was compressed around the distal region of the

femur with a vice. However, because the cast only potted the region below middle of

the epicondyles, small motions were likely to occur as a consequence of the bending

moment applied during compression. Therefore, bonded contact was not an appro-

priate contact assignment. Thus, a large coefficient of friction was used to make the

contact more rigid, while still permitting some motion between the two surfaces. A

summary of the contacts and the coefficients of friction used are listed in Table 4.2.

Table 4.2: Summary of FE contacts for neat, defect, and plate models.

Contact Target Type Friction Coefficient Formulation

Cancellous Cortical Bonded —
Multi-point

constraint

Cortical Acetabulum

Frictional

0.05

Augmented

Lagrange

Distal Cast Cortical 0.8

Cortical Pin 0.2

Cancellous Pin 0.2

Acetabulum Pin 0.05

Cortical Screw

Frictional

0.3

Augmented

Lagrange

Cancellous Screw 0.2

Cortical Plate 0.3

Plate Screw 0.3

4.2.3 Finite Element Mesh

The FE mesh is the result of discretizing the model into finite elements. The initial

FE mesh was automatically generated using 10 noded tetrahedral structural solid
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elements, a fine relevance center with default element size, and medium smoothing.

Additional mesh refinement using 20 noded hexahedral elements was applied to the

contact interfaces. The mesh and model quality were assessed using the mesh metrics

and the Newton-Raphson residual force results. The mesh metric results provide in-

formation regarding the overall distribution of element quality. The Newton-Raphson

residual force results reveal areas of force–reaction force imbalance.

4.2.4 Loading Conditions

The finite element loading conditions were simulated to replicate the experimental

loads. The preliminary stiffness results were evaluated under quasi-static loading,

with axial and torsional stiffnesses evaluated independently. For axial compression,

the top surface of the acetabulum was displaced up to 2 mm in a total of 8 steps

along the mechanical axis of the femur. In torsion, the acetabulum was rotated about

the mechanical axis up to ±1.5◦ in 8 steps for each direction. The force and moment

reaction forces were determined at the bottom surface of the distal cast to replicate

the location of the axial-torsional load cell used in the experiments.

4.2.5 Parameterization of Defect Size

The quasi-static loading models were used to develop predictions for the structural

consequences of larger defects in axial and torsional loads. The FE simulation was

conducted with no defect, and with defects ranging from 15 to 40 mm in diameter.

The specimens were loaded under the aforementioned loading conditions. Normal

stresses and strains, shear stresses, overall deformation, reaction force at the fixed

surface, and the reaction moment at the fixed surface were collected for analysis.
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4.3 Numerical Results

4.3.1 Model Validation

The final mesh of the neat specimens consisted of 9,854 element. The final mesh for

the femurs with the defect and the plate resulted in a final element count of 12,458.

The final mesh metrics revealed a good distribution of quality 10-noded tetahedral

and 20-noded hexahedral elements. Figure 4.4 shows the mesh refinement at the

pin/acetabulum and the pin/bone interfaces.

Figure 4.4: Mesh refinement at the pin/acetabulum and the pin/bone interfaces.

This mesh refinement was required in the plate specimens, however additional

refinement was required around the defect site and on the plate. Figure 4.5 shows

the refinement on the plate/bone interfaces.

The results of the intact model correlated well with the experimental results.

The results of the neat model validation are shown in Figures 4.6a, 4.7a, and 4.8a for

axial compression, external torsion, and internal torsion, respectively. The femurs
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Figure 4.5: Mesh refinement at the pin/acetabulum and the pin/bone interfaces.

were subjected to the 15 mm defect without any further changes to the model, such

as boundary conditions and material properties. The 15 mm defect model predicted

results within the the experimental COVs under axial and torsional loads. The

results of the 15 mm defect model validation are shown in Figures 4.6b, 4.7b, and

4.8b for axial compression, external torsion, and internal torsion, respectively.

The highest normal stresses and strains and shear stresses were observed at both

the bone/pin and acetabular/pin interfaces. Similarly, the highest deformation was

observed at the pin edges due to a large bending moment within the pins. In axial

compression, it was observed that the pin would cut through the cancellous region

upon reaching the maximum displacement.
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Figure 4.6: Finite element model validation under axial loading. (a) Neat (b) 15 mm
Defect.
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Figure 4.7: Finite element model validation under external rotation. (a) Neat (b) 15
mm Defect.
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Figure 4.8: Finite element model validation under internal rotation. (a) Neat (b) 15
mm Defect.
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4.3.2 Parameterization of Defect Size

The results of the defect size parameterization revealed a progressive decrease in

axial stiffness of 27% for up to a 40 mm diameter defect. Similarly, there was also

a 22% decrease in external torsional stiffness and 24% in internal torsional stiffness

for a 40 mm diameter defect. These results are shown in Figure 4.9
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Figure 4.9: Percent reduction in stiffness versus defect size.

The consequences of varying sized defects were investigated under combined ax-

ial/torsional loading. The stiffness of the 15mm defect specimens was used to validate

the accuracy of the model. The model predicted an axial stiffness of 1.38 kN/mm.

The experiments revealed a stiffness of 1.27 N/mm with a COV of 33.6%. In torsion,

the model was yielded a stiffness of 6.43 N-mm/deg in the +6◦ while the experi-

ments revealed a stiffness of 6.67 N-mm/deg (COV = 7.25%). In the -6◦ direction,
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the model yielded a stiffness of 6.17 N-mm/deg while the experiments revealed a

stiffness of 5.88 N-mm/deg (COV = 33.8%). All the predicted values were within

the COVs of the experimental results. The combined axial torsional results revealed

a more drastic reduction in stiffness as a consequence of the defect. Increasing the

defect size resulted in a linear decrease in stiffness in axial compression, internal

rotation, and external rotation. The combined imposed a larger stress due to higher

rotation and combined with axial compression. At a diameter of 45 mm, there was

a loss in stiffness of approximately 45–50% in all three loading modes.

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Defect Size (mm)

P
e

rc
e

n
t 

In
ta

c
t 

S
ti
ff

n
e

s
s
 (

%
)

 

 

Axial Stiffness

External Stiffness

Internal Stiffness

Figure 4.10: Percent reduction in stiffness versus defect size.
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4.3.3 Plate Model

Next, the significance of adding a plate to the defect location was investigated using

the fully assembled FE model. The specimens with the defect and plate were exper-

imentally investigated under quasi-static loads. However, using the fully validated

model, the femur/plate construct was tested in the FE simulations. The observed

axial stiffness under combined axial/torsional loading was 1.07 kN/mm. The finite

element model revealed
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Figure 4.11: Results of FE plate model under axial compression.

an axial stiffness of 1.21 kN/mm, which was still within the experimental COV.

Slight over-estimations of assembly stiffness of the FE model were observed when

compared with experimental observations. This might be attributed to linear elas-

tic assumptions of the system and to negligence of minor frictional effects between
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components of the assembly. In the model, the plate restores the axial stiffness of

the femur to within 3% of the fully intact stiffness. The torsional models revealed

stiffnesses of 6.77 kN-mm/deg in external rotation and 6.07 kN-mm/deg in internal

rotation. Both of these were within the experimental COV. The internal FE results

varied by 8%, however, because of such a high experimental COV, the results fell

within the range for observed experimental values. The results of the bone/plate con-

struct FE model validation are shown in Figures 4.11, 4.12, and 4.13. The highest

stresses for the plate model were also observed at the pin-bone interfaces, however,

high stresses were observed at the screws. Figure 4.14 shows normal stresses of 10–12

MPa at the screw/bone interface. Similarly, Figure 4.15 shows shear stresses of 5–6

MPa at the bone/screw interface.
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Figure 4.12: Results of FE Plate model under external torsional loading.
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Figure 4.13: Results of FE Plate model under internal torsional loading.

Figure 4.14: Normal stresses at screw/bone interface.
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Figure 4.15: Shear stresses at screw/bone interface.

4.4 Discussion

The results of the quasi-static isolated axial and torsional models reveal that the

defect size gradually decreased the axial and torsional stiffnesses. At a size of 40

mm in diameter, there was approximately a 25% decrease in stiffness in all modes of

loading. Under combined axial/torsional loading, the defect caused a much greater

reduction in stiffness. A defect with a diameter of 40 mm resulted in a 45% reduction

in stiffness in all three loading modes. This is likely to the large torsional rotation

(±6◦) and high stresses at the defect edges. The combination of axial and torsional

loading creates a combination of compression and tension, resulting in higher shear

and normal stresses around the defect site. This analysis considered the effects

of increasing the defect size under isolated quasi-static axial and torsional loads.

Under isolated modes, the defect did not play a significant role in weakening the

specimens (≈ 25%). This study revealed that when the isolated loads imposed on the
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femur are very low, the defect does not result in a significant reduction in individual

stiffness. While these loads are within physiologically relevant loads, they generally

do not occur under isolated conditions. Therefore, the combined axial/torsional

loading provides more insightful results regarding the consequences of increasing

sized defects. This study was the first to consider the effect of these defects under

quasi-static aixal and torsional loads and conbined axial/torsional loading.

The addition of the plate restored the stiffnesses back to slightly greater than

the original values. The addition of the plate revealed stress concentrations at each

of the screws, however, the stresses at the pin were still much higher. The shear

stresses at the screw/bone interface are of greatest concern when considering the

risk of periprosthetic fracture. Maximum shear stresses of 5–6 MPa were at the

bone/screw interface. According to Zdero et al. [96], shear stresses ranging from

24–35 MPa were observed at the bone/screw interface in 3rd generation composite

femurs. Previous studies of stresses at bone/screw interfaces in cadaveric femurs

reported maximum shear stress of 24–39 MPa. [97–99]. The values observed in this

study were approximately 20–25% of the shear stresses observed at failure. Similarly,

these stresses may be slightly higher than the actual values present. As observed be-

fore, the negligence or over-approximation of frictional contact between components

of the assembly resulted in higher values of predicted stiffness. High frictional values

at the screw/bone interface will certainly result in respectively higher shear stresses.

Nonetheless, the shear stress are well below the reported values, and thus it unlikely

that failure will occur through the bone/screw interface. This study reveals that the

plate may be a feasible treatment option that restores the stiffness of the bone while

not imposing high stress concentrations that are likely to result in fracture.

Previous studies have revealed a far greater reduction in stiffness under much

larger isolated loads. Fidler et al. [17] revelaed that a hole encompassing 40% of

the cortex resulted in a loss of strength of 70%. Similarly, Edgerton et al. found
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a 60% reduction in torsional strength for the same sized defect. [23] McBroom et

al. [22] found that a 50% defect results in a loss of torsional strength of 87%. These

studies have all considered the effects of the defect under load-to-failure conditions.

These will undoubtedly reveal a significantly greater loss in strength than quasi-static

isolated stiffness testing. The results of the combined/axial torsional loading revealed

a much greater loss in stiffness, however, it was still lower than values observed under

load-to-failure conditions. This model did not investigate load-to-failure behavior. It

will be useful to consider the defect under larger torsional moments to see the effects

of the defect size. Finally, a Monte-Carlo simulation can be used to determine the

risk of fracture at varying defect sizes and bone densities. This technique has been

used by previous researchers to provide highly insightful results. [100]
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Conclusions

Benign cysts are a common occurrence in long bones, and are of concern in load-

bearing bones, such as the tibia and femur. Numerous post-curettage management

options have been described in the literature, which generally include filling the de-

fect with either synthetic or biological materials. [29–38, 44, 45] These studies have

reported successful healing of the defect, however, complications, such as infectious

disease transmission from allogenic bone [30, 33], thermal injury from exothermic

polymer reactions [39–41], and a robust inflammatory response to synthetic materi-

als [46,47] have all been reported. In reponse to these concerns, a number of studies

reported successful healing of benign cortical defects in long bones with no augmen-

tation after curettage. [49–51]. The additional concern associated with leaving the

defect unfilled—or filled with structurally insignificant materials, such as grafts or

synthetic bone substitutes—is the lack of structural support to the defect site. The

risk of fracture increases as the defect size increases, especially for defects over 5 cm

in diameter. [49] Therefore, it is advantageous to investigate a treatment option that

adds structural support to the defect site and permits the use of osteoconductive

and -inductive materials within the bone cavity. In combination, this may provide

a faster time to healing with a reduced risk of post-operative fracture through the
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defect site than currently employed method. The treatment of these defects with a

1/3 tubular plate was proposed to accomplish the aforementioned objectives.

The purpose of this thesis was threefold: First, a quasi-static experimental com-

parison of intact and cortical defect specimens was conducted to determine the struc-

tural consequences incurred by the introduction of a 15 mm cortical defect. Second,

an experimental fatigue analysis was employed to further analyze the behavior of

the defect specimens, and to determine the structural stiffness regained by the ad-

dition of a 1/3 tubular plate. Third, a numerical approach was used to consider the

structural consequences of varying sized defects under quasi-static axial and torsional

loads, combined axial/torsional loading, and to further analyze the results of adding

the plate to the defect specimens.

The quasi-static axial and torsional loading revealed that the introduction of

the 15 mm cortical defect does not result in a statistically significant reduction in

stiffness in most loading modes. In axial compression, the defect resulted in a 6% loss

in stiffness. In torsional loading there was an 8% loss in stiffness in external rotation,

and a 10% loss in stiffness in internal rotation—only the reduction in stiffness in the

internal direction was statistically significant. The use of the composite specimens

resulted in good correlation among specimens within groups. The highest COV

was 7% in axial loading and 8% in torsional loading. There was a trend towards

higher variation among specimens under torsional loading. No plastic deformation

was observed in any of the specimens. The load-to-failure analysis did not reveal a

statistically significant difference between the neat and treatment groups. The neat

group had an average ultimate torsional moment of 67.8 N-mm/deg (COV = 40.6%)

while the defect group had an ultimate torsional moment of 56.0 N-mm/deg (COV

= 23.9%).

Next, the addition of the plate was investigated under combined axial/torsional

cyclic loading. No statistically significant difference was observed for number of

101



Chapter 5. Conclusions

cycles to failure or for construct stiffnesses. However, there was a trend in the tests

for the plate specimens to have higher stiffnesses and a longer time to failure. Among

the failed specimens, cracks generally propagated from the proximal-posterior edge

of the defect, resulting in clockwise rotating spiral fracture. The failed specimens

exibited rapid failure upon the onset of cracking. The damage analysis revealed that

many of the specimens underwent hardening in axial compression and damage under

torsional loading. The onset of hardening was associated with material itself and

not related the construct behavior. Epoxy has been shown to harden under low,

repetitive strain-rates, and thus it is likely that the bones used in this study were

following this behavior.

Both the isolated and combined loading experiments resulted in failure through

the femoral neck or through the defect. This spiral fracture through the defect is

associated with high shear stresses that results in large tension forces on the pos-

terior cortex. Unfortunately, it is not clinically feasible to apply a tension-reducing

construct directly to the posterior or anterior aspects of the femur. Therefore, it

is important use a construct that will reduce the tension, yet allows enough load

through the bone to promote new bone growth. The locking version of a one-third

tubular plate may provide adequate tension reduction to prevent crack propagation

on the posterior cortex of the bone.

The numerical analysis using the finite element method revealed that under quasi-

static isolated loads, the defect gradually decreases the stiffness to 25% of the initial

stiffness for a 45 mm (≈ 45% cortex) diameter cortical window. Because the femur is

not generally loaded under low, isolated quasi-static loads or isolated load-to-failure

conditions, the axial/torsional behavior may provide the most insightful results. The

combined axial/torsional results revealed that a 45 mm cortical window results in

a 45% loss in stiffness. This is a far greater reduction in stiffness than observed

under isolated quasi-static stiffness testing, and may be grounds for prophylactic
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intervention. The FE model revealed that the plate restores the stiffness of the bone

to approximately the stiffness of the intact state. No significant stress concentrations

were observed at the screw holes that may result in high risk of fracture. Therefore,

the use a 1/3 tubular plate may be a feasible option for structural support of a 15

mm cortical defect in the distal femur.

This study had limitations that may be addressed in future studies. First, the

use of synthetic bones is a useful way to compare groups, however, they may not ac-

curately represent the bones fracture and damage behavior. Similarly, because most

of the load was carried through the femur, the behavior was largely governed by the

behavior of the epoxy. It was observed that the epoxy material underwent hardening

under repetitive load conditions when damage would be expected. It is predicted

that hardening would not be observed in natural bone. The advantage of using

synthetic bones was the ability to develop a validated FE model using the experi-

mental data. This, however, only considers uniform material properties throughout

the bone. Natural bone is highly heterogenous in material properties, and thus a CT

based 3D model of cadaveric bones may provide more accurate results. The use of

cadaveric specimens would likely yield more physiologically accurate results in the

experiments. These cadaveric bones could be imaged using CT, then reconstructed

with varying material property assignment throughout the volume of the bone based

on a calibrated bone density measurements. This would facilitate the development of

a higher quality mesh based on the CT reconstruction of the cadaveric bones. Using

this method, FE models could be developed for each cadaveric specimen used, thus

permitting the use of greater statistical tools for comparison of results. Furthermore,

a FE model that predicts healing may provide better results when considering the

efficacy of treatment options over a healing period.

Future work will consider varying defect sizes experimentally in cadaveric spec-

imens under combined axial/torsional loading. Furthermore, specimen specific FE
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models will be developed to create a sample group for computational analysis. Based

on these results, a locking equivalent of a one-third tubular plate may provide the

stability requirements for prophylactically stabilizing a small cortical defect on the

distal femur. These plates, with both fixed and variable-angle screw trajectories, will

be investigated in future work.
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Figure A.1: Axial force versus displacement at the 10th cycle for specimen 1.1.
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Figure A.2: Axial force versus displacement at the 10th cycle for specimen 1.2.
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Figure A.3: Axial force versus displacement at the 10th cycle for specimen 1.3.
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Figure A.4: Axial force versus displacement at the 10th cycle for specimen 1.4.
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Figure A.5: Axial force versus displacement at the 10th cycle for specimen 1.5.
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Figure A.6: Axial force versus displacement at the 10th cycle for specimen 1.6.
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Figure A.7: Axial force versus displacement at the 10th cycle for specimen 1.7.
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Figure A.8: Axial force versus displacement at the 10th cycle for specimen 1.8.
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Figure A.9: Axial force versus displacement at the 10th cycle for specimen 2.1.
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Figure A.10: Axial force versus displacement at the 10th cycle for specimen 2.2.
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Figure A.11: Axial force versus displacement at the 10th cycle for specimen 2.3.
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Figure A.12: Axial force versus displacement at the 10th cycle for specimen 2.4.
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Figure A.13: Axial force versus displacement at the 10th cycle for specimen 2.5.
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Figure A.14: Axial force versus displacement at the 10th cycle for specimen 2.6.
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Figure A.15: Axial force versus displacement at the 10th cycle for specimen 2.7.
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Figure A.16: Axial force versus displacement at the 10th cycle for specimen 2.8.
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Figure B.1: Torsional moment versus rotation at the 10th cycle for specimen 1.1.
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Figure B.2: Torsional moment versus rotation at the 10th cycle for specimen 1.2.
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Figure B.3: Torsional moment versus rotation at the 10th cycle for specimen 1.3.
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Figure B.4: Torsional moment versus rotation at the 10th cycle for specimen 1.4.
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Figure B.5: Torsional moment versus rotation at the 10th cycle for specimen 1.5.
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Figure B.6: Torsional moment versus rotation at the 10th cycle for specimen 1.6.

118



Appendix B. Torsional Load Versus Rotation Plots for Cycle 10

−10 −5 0 5 10
−40

−30

−20

−10

0

10

20

30

40

Rotation (deg)

T
o
rq

u
e
 (

N
−

m
m

/d
e
g
)

Figure B.7: Torsional moment versus rotation at the 10th cycle for specimen 1.7.
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Figure B.8: Torsional momement versus rotation at the 10th cycle for specimen 1.8.
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Figure B.9: Torsional moment versus rotation at the 10th cycle for specimen 2.1.
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Figure B.10: Torsional moment versus rotation at the 10th cycle for specimen 2.2.
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Figure B.11: Torsional moment versus rotation at the 10th cycle for specimen 2.3.
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Figure B.12: Torsional moment versus rotation at the 10th cycle for specimen 2.4.
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Figure B.13: Torsional moment versus rotation at the 10th cycle for specimen 2.5.
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Figure B.14: Torsional moment versus rotation at the 10th cycle for specimen 2.6.
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Figure B.15: Torsional moment versus rotation at the 10th cycle for specimen 2.7.

−10 −5 0 5 10
−50

−40

−30

−20

−10

0

10

20

30

40

50

Rotation (deg)

T
o
rq

u
e
 (

k
N

−
m

m
)

Figure B.16: Torsional moment versus rotation at the 10th cycle for specimen 2.8.
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0 200 400 600 800 1000 1200 1400
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Cycle Number

D
a

m
a

g
e

Figure C.1: Axial damage versus cycle number for specimen 1.1.
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Figure C.2: Axial damage versus cycle number for specimen 1.2.
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Figure C.3: Axial damage versus cycle number for specimen 1.3.
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Figure C.4: Axial damage versus cycle number for specimen 1.4.
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Figure C.5: Axial damage versus cycle number for specimen 1.5.
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Figure C.6: Axial damage versus cycle number for specimen 1.6.
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Figure C.7: Axial damage versus cycle number for specimen 1.7.
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Figure C.8: Axial damage versus cycle number for specimen 1.8.
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Figure C.9: Axial damage versus cycle number for specimen 2.1.
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Figure C.10: Axial damage versus cycle number for specimen 2.2.

129



Appendix C. Axial Damage Versus Cycle Number

0 1000 2000 3000 4000 5000 6000 7000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Cycle Number

D
a

m
a

g
e

Figure C.11: Axial damage versus cycle number for specimen 2.3.
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Figure C.12: Axial damage versus cycle number for specimen 2.4.
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Figure C.13: Axial damage versus cycle number for specimen 2.5.
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Figure C.14: Axial damage versus cycle number for specimen 2.6.
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Figure C.15: Axial damage versus cycle number for specimen 2.7.
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Figure C.16: Axial damage versus cycle number for specimen 2.8.
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Figure D.1: Torsional damage versus cycle number for specimen 1.1.

0 2000 4000 6000 8000 10000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Cycle Number

D
a

m
a

g
e

Figure D.2: Torsional damage versus cycle number for specimen 1.2.
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Figure D.3: Torsional damage versus cycle number for specimen 1.3.
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Figure D.4: Torsional damage versus cycle number for specimen 1.4.
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Figure D.5: Torsional damage versus cycle number for specimen 1.5.
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Figure D.6: Torsional damage versus cycle number for specimen 1.6.
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Figure D.7: Torsional damage versus cycle number for specimen 1.7.
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Figure D.8: Torsional damage versus cycle number for specimen 1.8.
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Figure D.9: Torsional damage versus cycle number for specimen 2.1.
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Figure D.10: Torsional damage versus cycle number for specimen 2.2.
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Figure D.11: Torsional damage versus cycle number for specimen 2.3.
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Figure D.12: Torsional damage versus cycle number for specimen 2.4.
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Figure D.13: Torsional damage versus cycle number for specimen 2.5.

0 100 200 300 400 500 600 700
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Cycle Number

D
a

m
a

g
e

Figure D.14: Torsional damage versus cycle number for specimen 2.6.
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Figure D.15: Torsional damage versus cycle number for specimen 2.7.
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Figure D.16: Torsional damage versus cycle number for specimen 2.8.
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