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Evolution of mammal life histories

Eric L. Charnov

Department of Biology, The University of New Mexico, Albuquerque,
NM 87131-1091, USA

ABSTRACT

If we assume that adult life span and age-at-maturity are described correctly by quarter power
allometries across (typical) mammal species, we are tempted to look for some fundamental
explanation. The explanation must acknowledge that within-species growth is sigmoid and not
a power function at all, and that natural selection probably sets the age at maturity in the face of
externally imposed mortality, while also allowing some mortality adjustment due to internal
factors. This paper develops hypotheses to account for the above scaling rules and it predicts the
numeric values of several new dimensionless numbers that interrelate growth, mortality and
investment in cellular maintenance.

Keywords: allometry, dimensionless life histories, scaling rules, stationary populations.

INTRODUCTION

It is widely accepted that across-species plots of life-history variables, such as adult life span
(Z−1), age-of-first birth (α) and yearly mass devoted to reproduction versus adult female
mass (m), are linear on a log/log scale with slopes of ≈ ¼ (life span, maturation age) or
≈ ¾ (mass to reproduction). The best data set for α and Z is that of Purvis and Harvey
(1995); Fig. 1 shows the results. Body mass is measured with much less error than either
life span or maturation age, so type I regression is used with species treated as data points.
With both variables (yi) scaling as m0.25, their ratio is, of course, invariant, as shown
in Fig. 1c. (These plots exclude known atypical mammals – bats and primates – although
Fig. 1c would be the same with them included.)

This paper extends my earlier work (Charnov, 1991, 1993) to again ask what meaning can
be attached to the existence of quarter power allometries (Fig. 1a,b) across mammals
species. Kozlowski and Weiner (1997) suggested that the plots of Fig. 1 contain no particu-
larly basic information about the forces that structure mammal life histories and that,
indeed, the 0.25 exponent has no fundamental meaning. Kozlowski’s own approach to plots
like Fig. 1 involves life-history evolution modelling with a large number of adjustable
parameters. While I appreciate Kozlowski’s thoughtful criticism of my original, perhaps
overly simplistic, mammal life-history model, his own strikes me as both too complex and
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arbitrary; I think we must take seriously the quarter power allometries and invariance in
α ·Z (Fig. 1), and we must examine more deeply the structure of body size growth, mortality
and other aspects of physiology in the hope that good biological reasons exist for greatly
limiting our choice of functional forms.

This paper develops a new model for evolution of life histories for female mammals,
in the spirit of the previous two paragraphs. The development will be to contrast Charnov
(1991, 1993) (CH) and Kozlowski and Weiner (1997) (KW) to the new model; the com-
parison is briefly summarized in Table 1.

INDIVIDUAL PRODUCTION AND GROWTH

CH assumed that individual growth (production) follows a 0.75 power function, dm/dt =
am0.75 (equation 1a), where m = body mass and a is similar among various mammals species.
This equation integrates (m ≈ 0 at t = 0) to yield t = [4/a]m0.25 (equation 1b), an automatic
0.25 allometry for t within a collection of species with similar a values. KW pointed out that
this equation has no fastest growth rate prior to adult size, and that sigmoid growth better
characterizes body size growth in mammals (Purvis and Harvey, 1997). While many
sigmoid equations have been used to describe body size growth (Reiss, 1989), KW choose
dm/dt = a ·mδ1 − b ·mδ2 (equation 2), with a, b, δ1 and δ2 relatively arbitrary in numeric value
(constrained only by δ1 < δ2 ≤ 1); a ·mδ1 is assimilation of food, while b ·mδ2 is the respiration
cost. The equation has an inflection point (max dm/dt) always less than about 35% of the
asymptote (m at dm/dt = 0), but adult size is at a size less than the asymptote, too, since
initiation of reproduction diverts self-growth to offspring production; adult size in CH
follows the same diversion of growth-to-reproduction idea. Since equation (2) is not a
power function, across-species plots of time to maturation (α) will look like power functions
only for some distributions of parameter values and evolutionary rules for the onset of
production. Furthermore, the exponent of a between-species plot has no particular basic
meaning.

Accepting that growth is sigmoid (Purvis and Harvey, 1997), is it really true that we can
place no constraints on growth equations like equation (2)? West et al. (in press) have pro-
posed a new body size growth equation that derives net production of mass from the first
principles of energy intake minus maintenance and activity cost. Their argument, developed
here in an appendix, leads to an equation for change-in-mass (prior to reproduction) of
the form dm/dt = a ·m0.75 − b ·m (equation 3), where a is expected to be similar for species
with similar metabolic scaling (and body temperature, i.e. within mammals). b is equal to
the maintenance metabolic rate per existing body cell divided by the cost of building a
new cell. Equation (3) excludes reproductive allocation and would result in sigmoid growth
to an asymptotic size (M = (a/b)4), as shown in Fig. 2. There is a fastest growth rate, an
inflection point, at 0.316 ·M (which is (0.75)4). As noted before, nothing precludes an adult
size (mα) well before the asymptotic size (M), so the size at the inflection point, relative to
adult size, tells us where the adult size (mα) is relative to M: if mα = µ ·M, then the size
at fastest growth (mi) is at mi = 0.316 ·M = 0.316 · (mα/µ) or mi/mα = 0.316/µ [example µ =
0.7; mi/mα ≈ 0.45].

Equation (3) is like equation (2), except we have good biological reasons (derivation in
Appendix) to constrain the parameters (i.e. δ1 = 0.75, δ2 = 1, a ≈ similar among species).
Equation (3) may be integrated to yield (m ≈ 0 at t = 0):
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Fig. 2. Schematic diagram of the growth model (dm/dt, m = mass) from the Appendix. Growth
follows the domed curve until size-at-reproduction (mα). Asymptotic size (dm/dt = 0) is at M = (a/b)4,
while the fastest growth rate (mi at max dm/dt) is at 0.316M, so that mi relative to mα tells us the
mα/M ratio, too.

Table 1. Comparison of three life-history models

Charnov (1991)
Kozlowski and
Weiner (1997) This paper

Body size
growth law

dm/dt = a ·m0.75, a ≈
constant between
species

dm/dt = a ·mδ1 − b ·mδ2,
δ1 < δ2 ≤ 1, otherwise a,
b, δ1, δ2 show relatively
arbitrary distributions.
a ·mδ1 = assimilation of
food, b ·mδ2 = respiration
(whole-body loss)

dm/dt = a ·m0.75 − b ·m;
a ≈ constant between
species; b is the cellular
maintenance rate and is
adjusted by natural
selection. See Fig. 2 and
Appendix

Offspring
production
relation

∝ a ·mα
0.75, where mα

is size at maturity
∝ dmα/dt ∝ a ·mα

0.75, resource for
offspring production is
not the same as resource for
personal growth

Mortality Constant over feasible
ages-at-maturity; no
body size effect

Generally decreases with
increasing body size over
ontogeny

Constant over feasible
ages-at-maturity; no body
size effect (see Fig. 4).
Mortality inversely related
to b within a species (see
Fig. 6)

Fitness
measure

Maximize R0 by choice
of mα

Maximize R0 by choice
of mα

Maximize R0 by choice of
mα and b (see above)
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�mt

M�0.25

= 1 − e(−a · t/4) ·M−0.25 (4)

Since µ = mα/M, equation (4) may be rewritten (setting t = α) as:

µ0.25 = 1 − e(−a ·α/4)(µ/mα)0.25

or

α = �−ln(1 − µ0.25)

µ0.25 ��4

a�m0.25
α

(5)

Equation (5) looks just like equation (1b), with an additional term in µ. Thus, species with
similar a (as is expected) will show a 0.25 allometry for α if they also have similar µ values.
Under the West et al. (in press) growth model, the 0.25 allometry for α, as shown in
Fig. 1a, points to a new invariance rule for mammals; they are similar in µ. As also just
noted, similarity (invariance) in µ will show up as similarity (invariance) in mi/mα, the size at
the fastest growth rate (mi) relative to adult size (mα). A slightly different form of equation
(4) is displayed in equation (5) of the Appendix.

Since I believe that the growth model of equation (3) is based on much deeper principles
than the arbitrary form of equation (2), I suggest we (tentatively) accept it and base a life-
history model on it. To foreshadow the rest of this paper: invariance in µ, suggested by
equation (5) and Fig. 1a, is a key result.

YEARLY OFFSPRING PRODUCTION

Estimates of the biomass devoted to offspring production are usually rather imprecise,
commonly measured as litter size times litters per year times offspring size. Since offspring
size at weaning is proportional (across species) to birth size, consistent use of one or the
other in the above plot yields a rough measure of (or proportional to) yearly mass devoted
to reproduction. Across-species plots of this versus adult female mass are usually log/log
linear with a slope near 0.7; Fig. 3 shows one such plot. It is easy to see how CH would
produce this relation, since at adult size (mα) self-production (dm/dt) is simply diverted to
offspring production; thus offspring production is proportional to a ·mα

0.75, a 0.75 scaling
for species having similar a values. Since KW also have offspring production being diverted
to self-growth, offspring production is likewise ∝ dm/dt = a ·mδ1 − b ·mδ2 (evaluated at mα);
it is more difficult to see how this necessarily yields an across-species scaling rule with a (≈)
0.75 exponent. At first sight, the growth model adopted here (dm/dt = a ·m0.75 − b ·m) may
not appear to be much better, but, surprisingly, it can be rewritten as:

dm

dt
= a ·m0.75[1 − µ0.25] (6)

If offspring production is simply diverted self-growth (∝ dm/dt), the species with similar
a and µ values will show a 0.75 allometry of offspring production across species, since
equation (6) is to be evaluated at mα.

This argument again suggests a role for invariance in µ leading to an allometry across
species. Later in this paper I provide a numerical argument for why I think equation (6)
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is not correct for getting at offspring production. Although it seems logical to assume that
resource for offspring is simply resource diverted from self-growth, growing one’s self
may not be the same thing as growing offspring. To grow self, one delivers resources to all
body cells via the fractal branching network of the vascular systems (West et al., 1997,
in press); offspring are grown by handing them food or by delivery of resources to a
specialized location (breasts, teats) that turns it into milk. It is quite possible that the use
of adult activity to gather and deliver resources to offspring allows greater yield than is
apparent in the ∝ dm/dt idea; West et al. (in press) suggest something like this, as they
propose that offspring production is not self-growth, but relies on a scope for activity (to
gather and process) resource that lies at least partly outside the dm/dt calculation. If
equation (6) is not the source of resource for growing offspring, where does the offspring
production allometry (Fig. 3) come from? For this paper, offspring production will
shut down personal growth but is assumed proportional to a ·m0.75. Since a ·m0.75 is itself
proportional to total metabolic rate (see Appendix), this offspring production assumption
is that resources for offspring are a multiplier of total metabolic rate.

STRUCTURE OF MORTALITY

Evolutionary models for α (or mα) typically assume that the capacity to reproduce increases
within a species as maturation is delayed, but with a mortality cost (i.e. the greater the delay,
the greater the chance of dying before adulthood is reached) (Stearns, 1992). The optimal
α (mα) balances these two. Let Z(x) be the instantaneous mortality rate at age x. CH
assumes that Z(x) is high (and most likely density-dependent) at small x, and that Z(x)
drops to some constant value prior to feasible ages of maturity. (It may go up again late in

Fig. 3. Yearly production (mass) of offspring estimated as (litter size) · (litters per year) · (birth weight
of an offspring) scales as ≈ 0.7 with adult female mass for a sample of 192 mammal species (excluding,
as usual, primates and bats). Data from Nowak (1991); figure courtsey of Dr Sarah Morgan Ernest.
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life.) KW believe that Z(x) is unlikely to be size- (m) or age-independent within an ontogeny
and they suggest a general form Z(m) = v ·mλ, where λ < 0 is about the only constraint
assumed. This size dependence of mortality has a plausible ring to it, although other
assumptions also seem plausible (e.g. Z increases as dm/dt increases; Stearns and Crandall,
1981). Neither CH nor KW allow mortality to go up after the onset of reproduction (but see
Charnov, 1993, p. 95), a concession to the idea that mortality ought not to change just
because production is reallocated from self to offspring.

Is there evidence to support the assumption of KW that Z is size-dependent within an
ontogeny? The only broad-scale comparison I know of is for fish, which show indeter-
minant growth; they typically initiate reproduction and then keep growing. Typical data put
mα at 25% or less of some asymptotic size; do fish show Z(m) to decrease with increasing
size (or age) within an ontogeny? For the vast majority of species examined, the answer
surprisingly is no (e.g. Gunderson, 1997); mortality is independent of size/age over the
post-mα growth. Of course, egg, larval and juvenile mortality are higher, and mortality
typically increases late in life. What I conclude from the fish data is that mortality may not
decline with increasing size within an ontogeny. Perhaps mammals are like fish in this way
and I suggest that size independence for Z may not be an unrealistic assumption. The
Z assumption adopted here is shown in Fig. 4. Since time (x) begins at conception, the
early parental care period should have lower Z. Z should show a spike after weaning and
I assume that Z(x) decreases to some fixed value prior to feasible ages of maturity (α).

FITNESS MAXIMIZATION

CH and KW both assume that natural selection maximizes R0, the net reproductive rate.
Both models thus assume non-growing populations; CH is specific in putting density
dependence into survival of the young shortly after independence from the mother. With
age independence of adult mortality and fecundity, R0 can be written as (Charnov, 1993,
1997):

R0 =
Sα · f (α)

Z
(7)

where Sα = the survival chance to age of first reproduction (α), f = fecundity in daughters per
unit of time, Z−1 = the average adult life span (Z is the adult instantaneous mortality rate).
Recalling Fig. 4 for Z(x), Sα can be written as

Sα = e− �
α

0 Z(x)dx

and R0 expressed as:

ln R0 = −� α

0 Z(x)dx + ln f (α) − ln(Z) (8)

Since ln(Z) is a constant with respect to α (Fig. 4),

∂ln R0

∂α
= −Z(α) +

∂ln f (x)

∂α

Z(α) is the adult Z, and α and x in ∂ln f (x)/∂α are simply both time; so ∂ln R0/∂α = 0 when:
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Z =
∂ln f

∂α
(9)

Now, for the sake of argument, suppose f ∝ dm/dt = a ·m0.75 − b ·m, the resource for
personal growth is also the resource for growing offspring. (Recall that CH simply puts
b = 0.) Write f = C (a ·m0.75 − b ·m); then ln f = ln C + ln (a ·m0.75 − b ·m) and

∂ln f

∂t
=

a ·0.75 ·m−0.25 (dm/dt) − b(dm/dt)

a ·m0.75 − b ·m
= a ·0.75 ·m−0.25 − b

Thus, equation (9) becomes (where m is mα):

Z = a ·0.75 ·mα
−0.25 − b (10)

This equation has an interesting form. Divide both sides by b to yield Z/b = (a/b) ·
0.75 ·mα

−0.25 − 1; recall that a/b = M0.25 (M = the asymptote in Fig. 2), so the equation
becomes Z/b = 0.75 (M/mα)

0.25 − 1, or Z/b = 0.75/µ0.25 − 1. As Z/b is a positive number,
0.75/µ0.25 > 1 or µ0.25 < 0.75; or µ < 0.316, the inflection point on Fig. 2. This, of course,
implies that all species begin reproduction before 0.316M, which is clearly not true, since if
they did individual growth would show no inflection point, a major fact KW criticized CH
for ignoring.

This result strongly suggests that either: (1) f is not proportional to dm/dt or (2) (maybe)
mortality decreases with increasing m, which would push mα to a value higher than implied
by equation (9). As noted earlier, with reference to data on fish, (2) appears less likely; this
paper proposes that f ∝ a ·m0.75, a new offspring production model for mammals.

Fig. 4. The instantaneous mortality rate Z(x) is externally imposed (but see Fig. 6) and is assumed
age- and size-independent over most of the life span. See the text for justification and a detailed
discussion.
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If f = C ·m0.75,

∂ln f

∂t
=

0.75

m

dm

dt
=

0.75

m
[a ·m0.75 − b ·m] = 0.75[a ·m−0.25 − b]

Putting this into equation (9) (and setting time to age α) yields the rule:

Z = 0.75 ·a ·mα
−0.25 − 0.75b (11)

If we set b = K ·Z, equation (11) can be rewritten as:

Z−1 = �1 + 0.75K

0.75 ·a �mα
0.25 (12)

It is clear that species with similar a values will have Z−1 ∝ mα
0.25 (as shown in Fig. 1b) only if

b = K ·Z among the species.
But there is more here, since it is straightforward to estimate K: rewrite equation (11)

as Z/b = (0.75 ·mα
−0.25)(a/b) − 0.75 and recall again that a/b = M0.25; thus equation (13) Z/b =

0.75[µ−0.25 − 1] and so the predicted Z/b is solely a function of µ, the size at maturity (mα)
relative to the asymptotic size (M) of Fig. 2. Figure 5 plots Z/b versus µ (= mα/M). To
summarize to this point: a 0.25 allometry for adult life span (Z−1) requires that Z/b be an
invariant across species, which proves to be equivalent to µ being an invariant (all under
the optimization argument and its assumptions); this is, of course, the same requirement
needed for α to show a 0.25 allometry (Fig. 1a and equation 5). Equation (12) and equation
(5) together show that α ·Z is solely a function of µ (since Z/b [or K ] is solely a function
of µ). Figure 5 also plots α ·Z as a function of µ; thus, a fixed α ·Z follows from a fixed Z/b.

Fig. 5. Optimization of the age-at-first-birth (α, or mα; equation 11) says that, for a fixed Z/b ratio,
α ·Z will take on a fixed value, and so will the relative size at maturity (µ = mα/M). Since α ·Z is known
to be ≈ 0.7, we can predict µ ≈ 0.7 and Z/b ≈ 0.07.
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As first noted by Charnov (1991), the ‘height of the growth curve’ (here a of equations
3 and 5) drops out of the equation predicting α ·Z; this is probably why the r2 is higher in
Fig. 1c than in Figs 1a,b (where between-species variation in a will cause variation around
the allometry).

We can now use the observed α ·Z to predict µ and Z/b. Figure 1c is a loge/loge plot of Z
versus α for the mammal data, and shows a −1 slope, indicating that α ·Z is indeed an
invariant across species. The average α ·Z for the 57 species of mammals is 0.70. Figure 5
shows that α ·Z = 0.7 is predicted to correspond to µ ≈ 0.7 and Z/b ≈ 0.07. Thus, the life-
history model may be combined with the observed α ·Z value to predict the numeric values
of two new dimensionless invariants for mammals. Of course, the other way to say this
is that, if Z/b is an invariant, the optimal life history (equation 12) makes µ and α ·Z
invariants; this makes both α and Z−1 show a 0.25 allometry for species with similar a values.
Note that I have imposed Z/b = constant as a side condition; why might Z/b be an invariant
across species?

EVOLUTION OF Z AND b?

KW and CH, as well as many other life-history evolution models, take the production
function (equation 2 or 3) as given and only allow processes like the shunting of production
from personal growth to reproduction. But the condition Z/b = constant is a strong hint
that somehow b, and thus the production function, must also be adjusted by natural selec-
tion in relation to mortality, Z. b is the maintenance cost per unit of time of a cell divided by
the cost of a new cell; it is the investment per unit of time in a cell before that cell yields any
net production. So why would any organism build cells that are expensive to maintain (high
b)? I suggest that, within a species, the individual can decrease its death rate (Z) by increas-
ing investment in cellular maintenance; increasing b lowers Z. Figure 6 shows this trade-off
assumption, illustrated for species 1 and species 2. Note that the species fall on different
trade-off curves, with species 2 having higher Z at any b value; external sources of mortality
set the height of the trade-off curves, while (internal) adjustment of b allows the species
to change Z along a trade-off curve. Recall that what we are looking for between species is
Z = K−1 ·b, a positive relation, so we wish to ask what would force the various species
to move to positions on their respective negative trade-off relations so that Z = K−1 ·b
between trade-off relations. I have no particular intuition as to the shape of these Z versus
b trade-offs within species, except to note that an interior solution for the optimization
problem probably requires they be bowed down as in Fig. 6. Fitness (R0) can be written as:

R0 =
e−� α

0
Z(x)dx ·C ·m0.75

Z
 (where f = C ·m0.75) (14)

or

ln R0 = −�α

0 Z(x)dx + ln C + 0.75 ln m − ln Z (15)

Setting ∂ln R0/∂b = 0 (with α held constant) yields:

0 = −�α

0

∂Z(x)

∂b
dx + 0.75

∂ln m

∂b
−

1

Z

∂Z

∂b
(16)
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The first term in equation (16) could be very complicated, since it asks how changing
b alters Z(x) at every age, and then requires that we integrate over them. I will (first) make
the simplest assumption and assume no age effect: ∂Z(x)/∂b = ∂Z/∂b = −k (equation 17),
where −k is the slope of the trade-off near the optimum (see Fig. 6). Thus, the first term of
equation (16) becomes �α

0 kdx = k ·α (equation 18). Equation 4 allows us to write:

m0.25 =
a

b
[1 − e(−b/4) ·α]

or

ln m = 4 ln α − 4 ln b + 4 ln (1 − e(−b/4) ·α)

and

∂ln m

∂b
= −

4

b
+

α e(−b/4) ·α

1 − e(−b/4) ·α
(19)

Using equations (17), (18) and (19), condition (16) may be written as:

0 = k(α ·b) + k
b ·α

Z ·α
+ 0.75�−4 +

α ·b e(−b/4) ·α

1 −e(−b/4) ·α � (20)

Equation (20) must be satisfied for ∂ln R0/∂b = 0; it is a function of three dimensionless
numbers: k, α ·b, and α ·Z. Recall that −k is the slope of the Z − b trade-off in the neigh-
bourhood of the optimum, and so k will probably change as Z/b changes. For the optimal
life history (∂ln R0/∂α = 0 and ∂ln R0/∂b = 0) to make Z/b an invariant (the condition for
α ·Z to be invariant), k must take on a similar value near the same Z/b value across species.
Equation (9) for ∂ln R0/∂α = 0, with f ∝ m0.75, can be written as:

Fig. 6. b is the maintenance metabolic rate per cell (divided by the cost of a new cell) and so is the
investment per time per cell before that cell yields any net production. We assume here that, within a
species, higher b leads to lower Z. Various species (here 1 and 2) differ in the height of the trade-off

curves, and so natural selection can lower Z by more investment in cellular maintenance (i.e. higher
b). The slope of the trade-off curve (−k) is a dimensionless number, and the life-history model done
here requires that k be similar at similar Z/b ratios across species. The text discusses this and provides a
numerical estimate for k (≈ 0.1).
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α ·Z =
0.75 ·α ·b ·e(−b ·α)/4

1 − e−α · (b/4)
(21)

which gives a second function relating α ·Z to b ·α. Since we know the value of α ·Z is ≈ 0.7
(Fig. 1c), equation (21) allows us to solve for α ·b, and then use the α ·b and α ·Z values in
equation (20) to solve for k, which is predicted to equal ≈ 0.1, a new dimensionless invariant
for mammals, and one which relates how internal investment in cellular maintenance (b)
results in adjustment of the adult death rate (Z) within a species.

The assumption ∂Z/∂b = −k, independent of age, may well be too simple; of course, it also
does not explain why the separate trade-off curves illustrated in Fig. 6 should show similar k
values near the same Z/b values. We could study various parametric forms for the trade-offs.
Consider a power function Z = A ·b−h, which has ∂Z/∂b = −h[Z/b] and so automatically
yields the same slope at the same Z/b for species with the same exponent, h. But ∂Z/∂b is now
no longer age-independent, since (Fig. 4) Z changes with age while b does not. However, all
is not lost since the first term of equation (16) contains the only age-dependence and it now
becomes:

−� α

0

∂Z(x)

∂b
dx =

h

b
� α

0 Z(x)dx = (−ln Sα)�h

b�
(Recall equation 7 for Sα.) Straightforward enumeration of the other terms in equations (16)
and (21) (with α ·Z = 0.7) shows that for the adult Z, ∂Z/∂b equals ≈ −0.085 (if Sα ≈ 0.4, as
is known for mammals; Charnov, 1993). Thus, a power function for the trade-offs yields
similar slopes at similar Z/b values and predicts that k = −∂Z/∂b ≈ 0.1, just as in our
much more simplified model for k (equation 17).

TWO PRODUCTION INVARIANTS: G/Z and (G − b)/Z

The ‘height of the production curve’ – the total metabolism fuelling growth and main-
tenance – is a ·m0.75 (from equation 3). If we express this as a per-unit-mass measure (G),
it will have units of (time)−1: Gα = a/mα

0.25. We can multiply G by the average adult life span
(Z−1) as given by equation (12) to form the dimensionless number G/Z, which equals:

Gα

Z
=

1 + 0.75(b/Z)

0.75
(22)

This makes the average adult life span (Z−1) inversely proportional to Gα, the mass-specific
metabolism fuelling growth at maturity.

The growth rate at maturity is dm/dt = α ·mα
0.75 − b ·mα, so the mass-specific growth rate

is dm/(m ·dt) = Gα − b. Multiplied by the adult life span (Z−1), this gives G/Z − b/Z, a
dimensionless invariant that relates the growth rate per unit mass just at adulthood to the
adult life span.

ONE SPECIAL PREDICTION: αα ·Z versus µµ

While it seems sensible to treat α ·Z as an approximate invariant (≈ 0.7), the number does
vary somewhat among species. The previous mammal model (Charnov, 1991, 1993) at first
seemed to predict this variation, but later analysis (Purvis and Harvey, 1995) failed to
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support it. The model developed here predicts (Fig. 5) that α ·Z will be negatively related
to µ, which makes α ·Z positively related to mi/mα; the theory makes an exact numeric
prediction. It may be possible to test this if mi/mα can be estimated for the species which also
have estimated α ·Z values (Purvis and Harvey, 1995, 1997).

DISCUSSION

Perhaps the most observable and straightforward prediction is that µ ≈ 0.7 (Fig. 5); this,
of course, puts the inflection point (mi) at about 45% of the adult size (mα), since mi/mα =
0.316/µ = 0.45. Most sigmoid growth curves fit to data are parametric (Reiss, 1989) and thus
assume some fixed mi/mα value. So testing the µ ≈ 0.7 prediction will require data fitting that
allows mi/mα to take on arbitrary values. It is also unclear how unique this prediction is.
(I suspect that the predicted values of Z/b, (G − b)/Z and the Z − b trade-off slope are more
powerful predictions. Perhaps someone can suggest how to measure them.)

CONCLUSION

The model developed here takes seriously the 0.25 allometries for α and Z−1, and tries to
justify limitations on the functional forms (for growth, Z(x), offspring production) put into
the life-history evolution scheme. (It may be wrong; for example, perhaps we should retain
f ∝ dm/dt and force mα beyond 0.316M by a mortality advantage to size; of course, this must
yield Z−1 ∝ mα

0.25 across species to give α ·Z invariance.) What I like about the new model is
that it tells us to pay attention to a whole new suite of dimensionless numbers (e.g. Z/b,
(G − b)/Z, mi/mα, k) that characterize growth, mortality and, even, investment in cellular
maintenance. The relative size at the fastest growth rate mi/mα is assigned a very special
meaning in this conceptual scheme. Only time (and data analysis) will tell if this is the light
and the way, or a temporarily well-lit alley.
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APPENDIX: THE PRODUCTION/GROWTH MODEL

West et al. (in press) expand their previous work (1997) on whole-organism metabolic rate to
encompass growth; their argument follows. Their basic starting point is the balance of energy flow
within an organism. Incoming energy and materials from the environment are transported via
hierarchical branching network systems to supply all cells. In general, these resources are transformed
into metabolic energy, which is utilized for life-sustaining activities such as maintenance of existing
biomass. During ontogeny, however, some fraction of the total metabolic energy is allocated to the
production of new tissue. In general, then, the rate of energy transformation is the sum of two terms,
one representing the maintenance of existing tissue, the other the creation of new tissue. This can be
expressed by the dynamic conservation of energy equation:

B = NcBc + Ec

dNc

dt

(2)

where the incoming rate of energy flow, B, is the average metabolic rate of the whole organism at some
time t. The whole organism is composed of fundamental units, cells, subscripted c. The metabolic rate
of a single cell is denoted by Bc and the metabolic energy required to create such a cell by Ec. Nc is
the total number of cells; here we consider some average, typical cell as the fundamental unit. The
first term of equation (2), Nc ·Bc, is simply the power needed to sustain the organism in all of its
activities, whereas the second term is the power allocated to the production of new cells and therefore
to growth. Ec, Bc and the mass of the cell, mc, are assumed to remain constant throughout growth and
development.

At any time, t, the total body mass m = mc ·Nc, so equation (2) can be written as:

dm

dt
= �mc

Ec
�B − �Bc

Ec
� m (3)

Now, the whole-organism metabolic rate scales (West et al., 1997) as B = B0m
¾, where B0 is constant

for a given taxon. This immediately leads to the general growth/production equation:

dm

dt
= a ·m¾ − b ·m (4)
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The argument leading to equation (4) is similar to the original argument for the classic Bertalanffy
growth equation, which differs in having a 2⁄3 rather than a ¾ exponent. Whereas Bertalanffy had
absorption of food by the gut (assumed a 2⁄3 scaling) limit material (energy) delivery to cells, West
et al. (1997, in press) put the delivery limit in the functioning of the hierarchal branching networks
(e.g. blood) that supply cells (hence, a ¾ scaling).

Equation (4) may be integrated (m ≈ 0 at t = 0) to give:

mα = �α

b�
4

·�1 − e(−α ·b)/4�
4

(5)

which is equivalent to equation (4) in the text.
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