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ABSTRACT 

 Understanding how diversity is partitioned across the landscape can provide 

perspectives related to the environmental processes that have influenced the evolutionary 

history of organisms.  This main idea, often termed phylogeography, serves as the 

backdrop to my research where I explore three broad concepts including historical 

biogeography, cryptic diversity and ecology, and conservation phylogenetics.  I address 

various questions in each of these concepts by using a set of mammals that are associated 

with montane and mesic environments of North America.  More specifically, I focus on 

the jumping mice (Zapodidae) to test hypotheses that scale to the broader community.  

This approach allows for a more refined understanding and interpretation of how species 

have responded to geophysical changes of the past that may be useful for predicting how 

future environmental pressures may influence geographically oriented lineages.  By 

integrating across multiple disciplines of population genetics, phylogenetics, 

phylogeography, distribution modeling, and paleoclimatology, I assess how 

environmental change has left an imprint on the genetics and ecology of various 

organisms.  Signatures of the past are useful to forecast conservation issues of the future. 
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INTRODUCTION 

 Systematics is undergoing a burgeoning resurgence (Wiley and Lieberman 2011) 

largely due to advancements in molecular sequencing technologies and novel 

phylogenetic reconstruction techniques that have provided unprecedented resolution in 

the study of evolutionary relationships (Edwards 2009; Hillis and Bull 1991; Knowles 

2009; Knowles and Maddison 2002; Maddison 1997; Moritz and Hillis 1996). 

Consequently, intraspecific diversification, set within a broad geographic context, can 

now be explored in finer detail through phylogeographic studies (Avise 2000; Avise 

2009; Hickerson et al. 2010). Frequently, historical biogeographic models are explored 

which are central to understanding how diversity is partitioned across the landscape 

(Riddle and Hafner 2007; Smith 2007; Wiens and Donoghue 2004).  Increasingly 

integration of multiple forms of evidence (e.g. molecular phylogenies, fossils, and species 

distribution models – SDMs) are used to more finely delineate among alternative models 

(Carstens and Richards 2007) by explicitly testing phylogeographic hypotheses via 

statistical phylogeography (Knowles 2009), an approach developed over the last decade, 

but not without controversy (Beaumont et al. 2010; Templeton 2010).  Statistical 

phylogeography, which is rooted in coalescent-based frameworks (Wakeley 2008), offers 

the necessary context to develop and test models of diversification and more clearly 

delineate among alternative evolutionary relationships. 

 Another emerging set of ideas focuses on the delimitation of species boundaries 

based largely on genetic information (Fujita et al. 2012), but bolstered by multiple forms 

of evidence within a general lineage context (de Queiroz 1998, 2007).  Using only 

genetic information to describe geographic variation has been contentious (e.g., (Bauer et 
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al. 2010; Fujita and Leache 2010; Leache and Fujita 2010), but approaches that integrate 

across genetic, morphological and ecological niche datasets may provide the most 

powerful means of assessing species boundaries (Fujita et al. 2012; Zhang et al. 2011) 

and developing a fully integrated taxonomy (Padial et al. 2010).  An integrated taxonomy 

enhances our ability to explore processes of incipient diversification, rather than relying 

on the end products of diversification (e.g., identifying pre- and post-zygotic isolation 

mechanisms).  Multiple, independently evolving loci, coupled with innovative methods 

of species-tree inference has fostered the identification of novel or cryptic species.  Often 

lineages of organisms diverge at both genes and niches but may fail to be recognized by a 

morphologically-based taxonomy.  Consequently, the general increase in the number of 

species has reinvigorated the call for consistency in taxonomy (Agapow et al. 2004; Isaac 

et al. 2004).  However, others have argued that taxonomic consistency cannot be based 

on inaccurate phylogenetic understanding and can only be stabilized within an integrative 

context (Fujita et al. 2012; Padial et al. 2010). 

 In this dissertation, I test phylogenetic and phylogeographic hypotheses related to 

the evolution of North American zapodids.  More specifically I assess historical 

biogeography, cryptic diversity and ecology, conservation phylogenetics within a broader 

phylogeographic and systematics context to better understand speciation within this 

group.  Zapodids are widely distributed across North America and tend to inhabit regions 

characterized as cool and mesic or humid continental (Köppen climate type D - (Frey and 

Malaney 2009; Peel et al. 2007).  Jumping mice habitats often coincide with riparian 

corridors, and especially mesic areas in montane regions in the dry climates of the 

interior west.  Consequently, due to the isolation of montane regions and patchy 
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distribution of riparian habitats, allopatric divergence is predicted to be common in 

jumping mice.  Mammalian taxonomists (Holden and Musser 2005) recognize 4 species, 

the Woodland Jumping Mouse (Napaeozapus insignis), the Meadow Jumping Mouse 

(Zapus hudsonius), the Western Jumping Mouse (Z. princeps), and the Pacific Jumping 

Mouse (Z. trinotatus).  Within the 4 species, 32 subspecies (Hall 1981; Krutzsch 1954) 

are recognized suggesting substantial geographic variation that can be assessed using 

phylogeographic hypothesis testing and, more broadly, an ideal system to better 

understand the roles of climate fluctuations in evolutionary diversification.  

 My dissertation presents three intergrated studies of zapodids that are based 

within an historical phylogenetic context to better explore the processes of diversification 

in a western North American montane associated mammal.  Specifically, I use a 

statistical framework to assess alternative modes of incipient speciation by contrasting 

recent (Chapter 1) versus deep and persistent (Chapter 2) histories.  In Chapter 3, I 

explore whether conservation practices for zapodids are based on a robust assessment of 

extant diversity and if they protect important processes and products of diversification.  

With these goals as background, I focus on assessing if the taxonomy accurately reflects 

phylogeographic variation within a multi-locus coalescent-based context using a species-

tree. In the conclusions chapter, I propose an updated taxonomy using a hierarchical 

approach to species delimitation. Finally, jumping mice relationships are set within the 

broader context of North American boreal mammal biogeographic history using a 

comparative phylogeographic approach. 
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Overview 

 In the first chapter of my dissertation (Malaney et al. 2012), I tested alternative 

historical biogeographic hypotheses related to the diversification of a montane mammal 

endemic to the American Southwest. Specifically I used the parametric bootstrap based 

on sequence variation in two mitochondrial genes (cytb and control region) to test 

alternative models of ancient vicariance, sequential colonization, or recent fragmentation 

as the most plausible scenario of regional divergence. Each scenario had been proposed 

as historical-biogeographic hypotheses for several southwestern montane-associated 

species, but with conflicting evidence for each. When coupled with SDMs and the fossil 

record, I revealed that the New Mexico meadow jumping mouse (Zapus hudsonius 

luteus) represents a neo-endemic that colonized eastward from the Edwards Plateau since 

the Late Pleistocene followed by recent fragmentation since the LGM. Further these 

efforts highlighted four conservation implications for this taxon: (1) Z. h. luteus is a 

monophyletic lineage on an independent evolutionary trajectory; (2) Z. h. luteus shared a 

recent common ancestor with Z. h. pallidus (not Z. h. preblei); (3) mtDNA does not 

reflect recent population declines; and (4) coalescent simulations and species distribution 

models reflect Holocene fragmentation. 

 In the second chapter, I focus on the montane regions of western North America 

and explore historical signals of persistent allopatric versus recent admixture (Knowles 

and Carstens 2007). Understanding how diversity is partitioned across the landscape can 

provide perspectives related to the environmental process that may have influenced 

evolutionary history and also provides an essential framework for conservation.  Western 

North America has a diverse biota that is the product of complex evolutionary and 
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environmental processes (Lomolino et al. 2006) and this region has experienced 

fluctuations tied to glacial cycling that may have left genetic imprints (Riddle and Hafner 

2006). Significant intraspecific genetic variation in mammals across the west is also 

hypothesized to have been shaped by extreme topographic heterogeneity. Previous 

molecular investigations of western mammals provided novel views related to 

diversification, occasionally revealing unexpected genetic architectures (Alvarez-

Castañeda and Patton 2004; Galbreath et al. 2010; Hornsby and Matocq 2011; Matocq 

2002; Riddle et al. 2000).  Documentation of geographic molecular variation in 

organisms, when combined with assessments of demography, historical biogeography, 

and niche variation, can provide insight into key questions related to climate change, 

post-Pleistocene colonization, habitat fragmentation, and possible future response to 

changing environments (Avise 2000; Avise 2009; Hickerson et al. 2010).  In this chapter, 

I explore phylogeographic structure in the western jumping mouse (Zapus princeps) as a 

window into the biogeographic history of western North America. Specifically, I test 

alternative models of evolutionary history and then analyze spatial demography and niche 

divergence in this group. 

 The third chapter of my dissertation shifts from single marker (mtDNA) 

hypothesis tests into multi-locus coalescent-based assessments, but with a direct 

conservation application. This study points to the value of shifting conservation 

assessment from piecemeal appraisals of limited phylogenetic components (e.g. 

geographically proximal subspecies) to an expanded lineage-based assessment that places 

ecological and evolutionary divergence within a broader comparative framework. By 

using comprehensive sampling of taxonomic units across the geographic range of taxa, 
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multiple genetic loci and the fossil record coupled with niche and population 

demographic assessments, I am better able assess conservation status. This assessment of 

zapodids highlights that conservation is often predicated on a weak understanding of 

taxonomic relationships and systematics coupled with biogeographic history should play 

a more central role in management actions. 
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ABSTRACT 

Aim  

To test alternative biogeographic hypotheses related to the diversification of a montane 

mammal (Zapus hudsonius luteus) endemic to the American Southwest.  

Location  

Southwestern United States. 

Methods  

We used statistical phylogeographic analyses of mitochondrial DNA (1512 bp; two 

genes) from 93 individuals from 6 geographic regions to test diversification hypotheses.  

Species distribution models of climate and fossil records were integrated to assess 

contemporary and historical distributions and barriers to gene flow.  We calculated dates 

of divergence and examined historical demography using coalescent simulations.   

Results 

We documented monophyly of Z. h. luteus represented by 19 segregated haplotypes.  

Predicted current distribution generally coincided with known localities while predicted 

paleodistributions suggested that this lineage was widespread throughout lower 

elevations of the American Southwest and on the Edwards Plateau (as documented by the 

fossil record).  Population size did not change substantially during a westward shift in 

range that occurred in the last 100k generations.  Results supported fragmentation of a 

common ancestor during the Holocene as the most plausible explanation for genetic 

structure. 
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Main conclusions  

Monophyletic Z. h. luteus reflects fragmentation of a common ancestor with recent 

(Holocene) upslope colonization of disjunct montane areas.  We refute the hypotheses of 

in situ divergence or origins from a Colorado Piedmont ancestor.  Instead, westward 

colonization from the Edwards Plateau during the Wisconsin followed by Holocene 

fragmentation which serves as a generalized biogeographic hypothesis for species 

associated with mesic graminoid habitats in the American Southwest.  Further 

exploration of these signatures using independent nuclear DNA is warranted.   Key 

conservation implications: 1) Z. h. luteus is a monophyletic lineage on an independent 

evolutionary trajectory; 2) Z. h. luteus shared a recent common ancestor with Z. h. 

pallidus (not Z. h. preblei); 3) mtDNA does not reflect recent population declines; 4) 

coalescent simulations and species distribution models reflect Holocene fragmentation. 

 

Keywords American Southwest, coalescent parametric bootstrap, species distribution 

modelling, fossils, montane biogeography, Zapus hudsonius luteus. 
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INTRODUCTION 

 Climate oscillations that change local environmental conditions often cause 

species distributions to shift, expand or contract along latitudinal or elevational gradients 

(Hewitt, 2001, 2004).  Whenever species track fluctuating environmental conditions, 

populations may experience alternating periods of either isolation or connectivity 

(Hewitt, 1996; Wiens, 2004; Wiens & Graham, 2005).  Genetic signatures often reflect 

the response of organisms to changing environments.  These signatures may reveal 

episodes of range shifts (e.g. expansion), admixture of previously isolated populations, or 

range contraction sustaining population divergence.  Teasing apart the influence of 

complex historical processes has proven difficult, but statistical phylogeography 

enhances our ability to test specific hypotheses related to the evolution and biogeography 

of organisms (Knowles, 2009). 

 Climate change during the Pleistocene is hypothesized to have shaped the 

distributions, divergence patterns, and historical demography of species in western North 

America.  Cooler, mesic conditions extended to lower elevations and latitudes during 

glacial periods, but subsequently retreated upslope and to higher latitudes during warmer 

and more xeric interglacial periods.  Cyclic glacial/inter-glacial episodes were repeated 

>20 times during the Pleistocene culminating in the diversification of North American 

terrestrial mammals via the Rancholabrean faunal events (Bell et al., 2004). These 

processes sequentially led to complex historical patterns revealed by distinctive genetic 

signatures.  For example, longhorn beetles (genus Moneilema) and jumping spiders 

(genus Habronattus) exhibit a genetic signature of divergence on isolated Madrean sky 

islands in the Southwest (Maddison & McMahon, 2000; Masta, 2000; Smith & Farrell, 
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2005).  Southwestern canyon tree frogs (Hyla arenicolor) have deep divergence but 

repeated episodes of hybridization with closely related taxa (Barber, 1999; Bryson et al., 

2010; Klymus et al., 2010).  Mountain snails (Oreohelix sp.) show signatures of long-

term isolation, possibly through multiple glacial cycles (Weaver et al., 2006), while 

montane salamanders (Plethodon ouachitae) show structure  developed through a 

stepping stone dispersal along an east-west axis (Shepard & Burbrink, 2008).  Finally, 

montane grasshoppers (Melanoplus sp.) were isolated on mountains but subsequent 

expansion during interglacials led to complex, admixed signatures (Knowles, 2001b, a; 

Knowles et al., 2007).  Thus, genetic signatures reflect diverse histories ranging from 

deep and structured to ephemeral and stochastic.  An alternative possibility is that 

populations persisted in isolation during glacial cooling and then tracked changing 

environments into new regions with warming and drying conditions.  This alternative 

vicariance hypothesis for the American Southwest (Findley, 1969; Patterson, 1980; Frey 

et al., 2007) has yet to be empirically tested using phylogeographic methods.  The sky 

islands of the North American Southwest are rich reservoirs of biological diversity 

(Merriam, 1890), that long have been the focus of naturalists and served as the empirical 

foundation for various hypotheses on origins, diversification, and biogeographic history 

of the biota of the region (Brown, 1971).  This system is ideal for exploring population 

genetic variation within the context of paleo-environmental fragmentation. 

 The mammalian fauna of the mountains of the American Southwest is an 

assemblage of primarily Cordilleran and Boreo-Cordilleran species of northern origins 

(Armstrong, 1972), although a minority of the assemblage also includes representatives 

from elsewhere (Patterson, 1989).  There has been debate whether the processes that 
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produced these assemblages were the result of vicariance (isolation) of prior widespread 

pluvial communities (Findley, 1969; Patterson, 1980; Sullivan, 1994; Ditto & Frey, 2007; 

Frey et al., 2007) or postglacial colonization (immigration and mixing, Davis et al., 1988; 

Lomolino et al., 1989; Lomolino & Davis, 1997).  Not previously considered is the 

possibility that mesic grasslands to the east of this region provided a source for 

colonization of high elevation mesic sites during the Holocene.  These scenarios form the 

basis of three alternative hypotheses of historical biogeography that are expected to 

produce unique demographic signatures reflected in the DNA as detected using 

calculations of the coalescent.  Integration of information from current and historical 

distributions based on independent data, such as fossils and species distribution models 

(SDMs), can further support alternative hypotheses.  The first hypothesis (i.e., ancient 

vicariance - AV) of long-term isolation of communities reflects sustained segregation 

through alternating climate cycles associated with multiple pluvial and interglacial 

periods (Findley, 1969; Brunsfeld et al., 2001).  The second hypothesis (i.e., sequential 

colonization - SC) is colonization via a stepping stone process from a northern source 

(Davis et al., 1988; Lomolino et al., 1989; Lomolino & Davis, 1997).  The third 

hypothesis (i.e., recent fragmentation - RF) is a single recent vicariant event 

corresponding to the current interglacial in which fragmentation of more widespread 

pluvial communities has occurred since the Wisconsin (McDonald & Brown, 1992; 

Hafner, 1993; Patterson, 1999; Smith & Brown, 2002; Frey et al., 2007). 

Ample fossil evidence suggests that several species that today are associated with 

mesic grasslands in the eastern US, had a wider distribution further west during the 

Pleistocene (Harris & Findley, 1964; Harris, 1970; Findley et al., 1975; Harris, 1990; 
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Hafner, 1993; Harris, 1993; Lear & Harris, 2007).  Fossils provide an important direct 

link (albeit often incomplete) to historical distributions.  New approaches in 

phylogeography that combine coalescent-based analyses of historical demography with 

species distribution modelling and direct fossil evidence allow formal tests regarding how 

contemporary faunas were assembled including rates of migration, divergence history 

(timing and patterns), and demographic changes.  Genetic signatures thus allow tests 

among three alternative historical biogeographic hypotheses. 

 The New Mexico meadow jumping mouse (Zapus hudsonius luteus) is a 

morphologically and genetically distinctive mammal restricted to riparian habitats in the 

southwestern United States (Miller, 1911; Hafner et al., 1981; Morrison, 1992; King et 

al., 2006; Frey & Malaney, 2009).  Originally described as a distinct species, Z. luteus, 

based on unique pelage and cranial morphology (Miller, 1911), it was reclassified as a 

subspecies of Z. princeps (Krutzsch, 1954) and later as a subspecies of Z. hudsonius 

(Hafner et al., 1981).  Genetic studies identified three fixed allozyme alleles in 

comparisons with other subspecies of Z. hudsonius (Hafner et al., 1981). Reciprocal 

monophyly of mtDNA haplotypes (Ramey et al., 2005; King et al., 2006; Vignieri et al., 

2006) further suggests that Z. h. luteus may warrant status as an independent species. 

 Zapus h. luteus has been extirpated from most historical locations due to 

degradation of riparian habitats primarily as a function of livestock grazing (Frey & 

Malaney, 2009) and in December 2007, was listed as a candidate for protection under the 

federal Endangered Species Act.  Current conservation status for the subspecies includes 

“Endangered” on the state list for New Mexico and “Threatened” in Arizona. The species 

has a Natural Heritage conservation status of “Globally Rare” and "Critically Imperiled 
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(S1)” in Arizona, Colorado, and New Mexico.  Although the IUCN  Red List of 

Threatened Species (http://www.iucnredlist.org/apps/redlist) lists Z. h. luteus as “Lower 

Risk, Near Threatened (LR, NT)”, that listing was based on an earlier assessment that 

recommended further study (Yensen et al., 1998).  Subsequently, molecular 

genetic analyses have led to a better appreciation of genetic distinctiveness of the 

taxon (Ramey et al., 2005; King et al., 2006; Vignieri et al., 2006).  

Further, comprehensive field surveys and ecological studies have revealed dramatic 

declines in distribution and abundance of the taxon due to ongoing severe threats 

of drought, catastrophic wildfires, and harmful land management practices, which 

together warrant a change in listing to "Critically Endangered (CR)" (IUCN, 2001; Frey 

& Malaney, 2009). 

In general, Z. hudsonius (Findley et al., 1975; Hall, 1981; Frey & Malaney, 2009) 

is found in habitats identified as humid continental (Köppen climate type D)(Peel et al., 

2007; Frey & Malaney, 2009) but these habitats are highly restricted in the dry climates 

of the interior west.  Consequently, at its southwestern margin this species is restricted to 

riparian corridors with cool, mesic habitats.  Disjunct populations of Z. h. luteus are 

known from the San Juan, Jemez, Sangre de Cristo, Sacramento, and White mountains.  

However, unlike other montane specialists in the region Z. h. luteus also occurs in low-

elevation riparian habitats along major rivers (Fig. 1), including the Rio Grande and 

principal tributaries of the San Juan River (Findley et al., 1975; Hoffmeister, 1986; 

Hafner, 1993; Frey & Malaney, 2009). 

Hafner and colleagues (Hafner et al., 1981; Hafner, 1993) hypothesized that Z. 

hudsonius colonized the American Southwest either southward from the Colorado 

http://www.iucnredlist.org/apps/redlist
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Piedmont or westward from the Edwards Plateau, during glacial maxima when cool, 

mesic grasslands existed across central and southern New Mexico and further northeast 

and east.  Westward colonization is supported by late Wisconsin fossils of Z. hudsonius 

from central Texas (Dalquest et al., 1969; Hafner, 1993) and early Holocene subfossils in 

southwestern New Mexico (Scarbrough, 1986), indicating a broad potential distribution 

throughout the lowlands east of current Z. h. luteus distribution.   

Our goal is to test alternative biogeographic hypotheses of diversification with 

statistical phylogeography by integrating coalescent-based modelling (Richards et al., 

2007; Buckley, 2009; Franklin, 2010), fossil evidence, and SDMs.  Specifically, we test 

models of spatiotemporal diversification for Z. h. luteus linking low elevation populations 

with montane congeners of the American Southwest.  First, we test whether each 

geographically isolated population is a distinct evolutionary unit.  Second, we assess 

whether contemporary or historical barriers to gene flow can be identified based on 

SDMs.  We estimate dates of divergence and then use coalescent simulations to test if 

divergence is consistent with paleodistribution models and Late Pleistocene fossils.  

Fourth, we use coalescent simulations to test three alternative hypotheses of historical 

biogeography.  Finally, we explore historical demography for Z. h. luteus to tease apart 

the effects of fluctuating climate on historical population size (NE) and to assess 

landscape genetic diversity.  We conclude by summarizing empirical and simulated data 

that refute alternative colonization or in situ diversification hypotheses and establish a 

management framework for the conservation of Z. h. luteus (Richardson & Whittaker, 

2010; Scoble & Lowe, 2010).    
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METHODS 

 DNA extraction, PCR and sequencing 

 We obtained mitochondrial DNA sequences from 93 Z. h. luteus representing 22 

localities and 6 spatially distinct geographic regions (Fig. 1, Appendix S1) to address 

phylogeographic questions and explore historical demographic parameters that influence 

conservation efforts.  We sequenced a fragment of the mitochondrial control region (CR 

– 372 bp) and the complete cytochrome b gene (cyt b – 1140 bp).  Genomic DNA was 

extracted from frozen (-80ºC) or ethanol (95% EtoH) preserved heart or liver tissue using 

Qiagen DNeasy Kit extraction protocols (QIAGEN, Inc.). We used CR primers L15926 

and H16498 and cyt b primers L14398A and H15634A (King et al., 2006) for all PCR 

reactions which contained 2 µl of ~50ng/µl of template DNA, 1.25 µl of primer (10mM), 

0.5 µl of dNTP's (10 mM), 2 µl MgCl2 (25 mM), 2 µl of 10x polymerase reaction buffer, 

0.08 µl of Taq polymerase (Applied Biosystems, Foster City, CA) and adjusted to a final 

volume of 25 µl with ddH20. Thermal-cycling profile followed: 180 s at 94ºC; 30 cycles 

of 60 s at 94ºC, 60 s at 50ºC, and 120 s at 72ºC.  

 Bi-directional sequencing reactions used the BIGDYE Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, CA) and with an automated sequencer 

(Model 3130, Applied Biosystems, Inc., Foster City, California) using the original 

primers plus cytbIF2 and cytbIR2 internal primers for the cyt b gene (King et al., 2006).  

Sequences were cleaned with ethanol precipitation and edited with SEQUENCHER ver. 4.5 

(GeneCodes) and compared to a reference sequence (GenBank No. AF119262; Z. 

trinotatus).  Sequences were aligned using MUSCLE ver. 3.7 (Edgar, 2004) available at the 
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European Bioinformatics Institute web services 

(http://www.ebi.ac.uk/Tools/webservices/) and validated by eye.  Individual genes were 

deposited in GenBank (JN546435 - JN546538; Appendix 1).  Sixteen Z. h. luteus and 8 

individuals from related subspecies (two of each: Z. h. campestris, Z. h. intermedius, Z. h. 

pallidus, Z. h. preblei) were obtained from GenBank (Appendix S1). 

 Phylogeography 

 We evaluated phylogenetic heterogeneity using the partition homogeneity test in 

PAUP* ver. 4.0b10 (Swofford, 2002).  Given the lack of significant differences between 

these linked markers, all subsequent phylogeographic analyses were completed with a 

concatenated dataset with two non-independent data partitions (CR – non-coding and cyt 

b – coding).  Phylogenies for Z. h. luteus were compared to closely related subspecies to 

identify the most recent common ancestor (MRCA, Appendix S1, Fig. 2; (Ramey et al., 

2005; King et al., 2006).  Phylogenetic inference was based on Maximum Parsimony 

(MP), Maximum Likelihood (ML), and Bayesian inference (Posterior probability - PP).  

MODELTEST ver. 3.7 (Posada & Crandall, 1998) estimated the best-fit model of nucleotide 

substitution by the Akaike Information Criterion (AIC) resulting in a general-time 

reversible plus gamma (GTR + Γ) used in character state analyses.  All phylogeny 

reconstructions were conducted using the University of Alaska Fairbanks Life Science 

Informatics Portal (http://biotech.inbre.alaska.edu/portal/).  Trees from MP, ML, and PP 

were comparable with the most credible inferences of relationships confined to nodes of  

nonparametric bootstrap support (MP, ML) or posterior probability (PP) values (Hillis & 

Bull, 1993; Felsenstein, 2004). 

http://www.ebi.ac.uk/Tools/webservices/
http://biotech.inbre.alaska.edu/portal/
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For phylogeny reconstruction, we performed maximum parsimony analyses using 

PAUP* ver. 4.0b10 (Swofford, 2002), through heuristic searches using 1,000 random 

addition sequence replicates involving tree bisection-reconnection (TBR) branch 

swapping. Transitions and transversions were treated equally and gaps were treated as a 

5
th

 state.  We assessed statistical support for clades with nonparametric bootstrap analysis 

(Felsenstein, 1985) using 1,000 bootstrap replicates, each with 100 random addition 

sequence replicates and TBR branch swapping. 

Maximum likelihood topologies and associated support were obtained with GARLI 

ver. 0.960 (Zwickl, 2006) using parameter estimates from MODELTEST.  Support was 

evaluated using 1,000 bootstrap replicates (Felsenstein, 1985).  Bayesian inference was 

implemented in MRBAYES ver. 3.1.2 (Huelsenbeck & Ronquist, 2005).  Metropolis-

coupled Markov chain Monte Carlo (MCMCMC) sampling was performed using four 

chains run for 1,000,000 generations, with default parameters and sampling every 1000
th

 

generation.  Three independent searches were performed to ensure convergence for each 

analysis. 

NETWORK ver. 4.2 (http://www.fluxus-technology.com) was used to generate a 

median joining network representing the genealogical relationships among haplotypes of 

Z. h. luteus because incipient speciation may violate methods used in phylogenetic 

reconstructions (Posada & Crandall, 2002).  Haplotype (h) and nucleotide (π) diversity 

and mean pairwise nucleotide differences (K) were calculated in DNASP ver. 5.10.00 

(Librado & Rozas, 2009).  We used Analysis of Molecular Variance (AMOVA) to 

identify variation within and between distinct geographic regions of Z. h. luteus.  Results 

of AMOVA were compared to original geographic regions (Fig. 1).   
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 Species Distribution Modelling 

 We downloaded raster coverage’s for 19 bioclimatic variables from the 

WorldClim database (http//www.worldclim.org) for contemporary and last glacial 

maximum (LGM) at 30 arc-seconds resolution (Hijmans et al., 2005).  We followed 

modelling procedures from previous studies (Waltari et al., 2007; Waltari & Guralnick, 

2009), and reduced the dataset to the eleven most biologically meaningful and 

uncorrelated coverages for North America (Rissler & Apodaca, 2007).  Localities for Z. 

h. luteus were obtained from original field-collected GPS coordinates or georeferencing 

through a review of field notes and other information associated with museum specimens.  

Localities for the sister taxon, Z. h. pallidus, were downloaded from MANIS (8 Jan 

2010).  Localities with >0.5km
2
 uncertainty were discarded resulting in 92 Z. h. luteus, 

and 60 Z. h. pallidus localities (Fig. 3). 

We constructed SDMs for both contemporary and paleodistributions (at LGM) for 

both Z. h. luteus and Z. h. pallidus and the combined distribution of Z. h. luteus/pallidus 

using the default settings in the program MAXENT ver. 3.3.3a (Elith et al., 2006; Phillips 

et al., 2006).  We ran 20 replicates with 20th percentile training presence criteria and 

depicted the results using the point-wise bootstrap mean of the models.  Localities 

represent the known distribution for Z. h. luteus and Z. h. pallidus to identify the 

variables constituting the fundamental niche of each individually (Hutchinson, 1957; 

Soberon & Peterson, 2005; Holt, 2009; Soberon, 2010) and the combined potential 

paleodistribution was used to identify potential overlap between lineages.  A threshold 

value of 0.70 was used to interpret predicted distributions and structure a priori 

hypotheses for coalescent simulations to establish divergence patterns at the LGM.  Basic 
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assumptions of SDMs include niche conservatism (Wiens & Graham, 2005), 

environmental data adequate to generate predictions of a species’ distribution (Kozak et 

al., 2008; McCormack et al., 2010), and adequate records of occurrence that encapsulate 

the species niche (Pearson et al., 2007). 

 Timing of Divergence 

 Fossil deposits in South Dakota, Nebraska, and Kansas, identify the most recent 

common ancestor for Z. hudsonius (Z. sandersi) in the middle Pleistocene ~1.0 Myra 

(Kurtén & Anderson, 1980).  We chose a conservative divergence point of 1.0 Myr BP for 

Z. hudsonius from Z. sandersi and calculations of molecular sequence evolution was 

3.14% per Myr (95%CI = 1.70% & 4.58%).  A Bayesian coalescent approach 

implemented in BEAST ver. 1.5.3 was used to estimate the timing of divergence 

(Drummond & Rambaut, 2007).  The GTR+ Γ model of evolution with four rate 

categories was used with priors of an uncorrelated lognormal tree, constant population 

size, and an assumed relaxed lognormal clock scaled to 100 ky BP (Drummond et al., 

2006).  All other parameter settings were default.  Analyses estimated tree shape and 

divergence dates for nodes and sampled every 1000 iterations for 50 million generations 

with 10% of the initial samples discarded as burn-in.  Results were analyzed in TRACER 

ver. 1.5 (Drummond & Rambaut, 2007) to check for appropriately large Effective Sample 

Size (ESS) values, convergence of results, and performance of operators. 

 Coalescent Simulations 

Coalescent simulations were conducted to test specific historical biogeographic 

hypotheses (AV, SC, RF) with MESQUITE ver. 2.7 (Maddison & Maddison, 2009) using a 
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likelihood based or frequentist approach (Knowles & Maddison, 2002; Hickerson et al., 

2010) versus estimating parameters not directly related to our questions (Beaumont et al., 

2002).  Gene matrices were simulated with 1,000 replicates for each hypothesis using 

ancestral NE(f) (84,395) from our estimate of the parameter θw, one-year generation time, 

and divergence estimate for Z. h. luteus/pallidus (17.5 kya) obtained in BEAST.  We 

evaluated the validity of these models by using upper and lower confidence intervals 

(90%) of θw (Knowles et al., 2007). 

We constructed genealogies from each matrix in PAUP* heuristic parsimony 

searches with 10 random addition replicates, tree bisection-reconnection branch swapping 

and max-trees set to 100.  Each search produced a majority-rule consensus tree from 

which we calculated s (Slatkin & Maddison, 1989), a measure of discord between the 

reconstructed gene tree and the assignment of individuals into separate lineages. When 

lineage assignment is treated as a character that is mapped parsimoniously onto the gene 

tree, s is the number of observed character state changes. Higher values of s for a specific 

locus indicate that sequences are paraphyletic with respect to their lineage association, a 

possible indication of either gene flow or incomplete lineage sorting. The test statistic of 

empirical data was compared against simulated data and considered to be significant 

(two-tailed) if the empirical values occur outside of the 90% CI generated via simulation 

tests. 

Our θ estimates (effective population size scaled to the neutral mutation rate) 

were calibrated to recent fossil dates (100 kyr BP) using the equation θ = 4NE(f)µ, 

assuming µ = 3.14 substitutions per Myr calculated in BEAST.  Scaled branch widths of θ 

were used for each of the biogeographic hypotheses. 
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 Historical demography 

 Historical demography was reconstructed with Bayesian Skyline Plots (BSP; 

(Drummond et al., 2005) as implemented in BEAST which estimates θ through time and 

does not require a specified demographic model (e.g. constant size, exponential growth, 

logistic growth, or expansive growth). We used the same parameters as timing of 

divergence and applied five grouped coalescent intervals (m).  

 Finally, we tested for non-neutral mutational changes with Tajima’s D (Tajima, 

1989), Fu’s FS (Fu, 1997), which were calculated in DNASP ver. 5.10 (Librado & Rozas, 

2009) and significance was tested with 10,000 coalescent simulations. For these historical 

demographic analyses, we used a reduced dataset of 56 individuals representing coding 

region (cyt b) of sequence data as these tests are sensitive to synonymous versus non-

synonymous changes and missing data.   

 Landscape genetics 

We tested the null hypotheses of no population differentiation among all sampled 

sites (FST = 0) using 10,000 permutations in ARLEQUIN.  To examine the relationship 

between geographic distance and genetic distance we performed Mantel tests and 

interpolation of genetic landscape shape using Alleles in Space (AIS, (Miller, 2005). 
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RESULTS 

 DNA extraction, PCR and sequencing 

 Using the concatenated dataset of 1514 bp (i.e., 1512 plus 2 insertions), we 

documented 19 haplotypes, with 36 variable sites of which 17 were parsimony 

informative for Z. h. luteus (Table 1).  We re-sequenced 8 individuals for CR given 

differences reported between Ramey et al. (2005) and King et al. (2006) datasets and 

added sequences from cyt b for these individuals. We further compared CR & cyt b 

sequences with King et al. (2006) for 13 individuals.   We documented no discordance 

with either dataset downloaded from GenBank when compared to our Z. h. luteus 

sequences but identified and then corrected errors in reporting museum catalogue 

numbers and localities (Appendix S1).   

 Phylogeography 

 Zapus h. luteus was monophyletic but showed little geographic structure (Fig. 2). 

Tree topologies were consistent across methods MP, ML, and PP.   Median joining 

network (Fig. 4) identified a common haplotype in the Jemez Mountains (Hap 1) that is 

shared with the Sacramento Mountains and upper Rio Grande.  The most divergent 

haplotype (Hap 12) differs by 8 mutations and occurs in the Sangre de Cristo Mountains. 

The tree topologies identified Z. h. pallidus as sister taxon to Z. h. luteus (Fig. 2). This 

agrees with previous findings by Ramey et al. (2005; based on mtDNA sequence and 

nuclear microsatellites), shared characteristic haplotypes (Vignieri et al., 2006), and more 

extensive mtDNA sequence and nuclear microsatellite data (King et al., 2006). 
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 Species Distribution Modelling 

 Distribution models performed well (i.e., AUC > 0.95) with variables of annual 

mean temperature (Bio1) and precipitation of the driest month (Bio15) contributing most 

to the model (Bio1 – 45.2%, Bio15 – 11.0%, Bio17 – 9.1%, Bio7 – 8.0%, Bio9 – 7.6%, 

Bio8 – 7.0%, others <5.0%).  Annual mean temperature was the most informative 

variable alone based on the jackknife test of variable importance.  In general, this model 

accurately predicted the location of 4 of 6 known regions (Jemez, Sangre de Cristo, 

White, Sacramento).  However, the model failed to predict occupied areas along major 

low-elevation rivers in arid areas (i.e., lower Rio Grande, San Juan River tributaries), 

perhaps because suitable microclimate in these river systems is extremely limited (Fig. 

3).  In addition, the model predicted suitable climate in several areas where Z. h. luteus is 

not known to occur such as the Mogollon Mountains and Black Range in southwestern 

New Mexico. 

 The LGM model predicted wider (compared to current) potential 

paleodistributions for Z. h. luteus (Fig. 3).  Most of this predicted distribution is outside 

the currently occupied range.  Fossils for this lineage of Z. hudsonius are available from 

Hall, Schulze, and Zesch caves on the Edwards Plateau (Fig. 3; (Dalquest et al., 1969; 

Hafner, 1993; Sagebiel, 2010), and from Tonk Creek in the North-central plains (Pfau, 

1994), all of which date to the late Wisconsin.  Scarbrough (1986) identified fossil teeth 

of Z. hudsonius from Bat Cave, Plains of San Augustin (= Agustín) in southwestern New 

Mexico that date to the early Holocene (approximately 8000y BP; Harris, 1990).  

Additional older fossils are available for Zapus sp. in Kansas and Oklahoma dating from 

the Middle Pleistocene into the Pliocene (Krutzsch, 1954; Hibbard, 1956; Klingener, 
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1963).  Finally, there are several Holocene and Pleistocene faunas throughout the 

American Southwest where Zapus are absent (Kurtén & Anderson, 1980; Harris, 1990). 

 Timing of Divergence 

 The MRCA of Z. h. luteus dates to the Late Pleistocene 17.5kyr BP (95% CI, 3.0 – 

38.7kyr BP) which diverged from the most recent common ancestor of Z. h. pallidus 

roughly 25kyr BP (95%CI, 7.1 – 62.4kyr BP) from an average mutation rate of 3.14% 

(95% CI, 1.71% – 4.58%) per million years. We calculated Θw = 0.0053 resulting in an 

ancestral NE of 84,395.   

 Coalescent Simulations 

 The recently fragmented ancestor hypothesis could not be rejected and alternative 

hypotheses (AV and SC) of diversification were rejected.  These results are based on the 

observed value of Slatkin and Maddison’s s as compared to simulated values (s = 56; Fig. 

2; Slatkin and Maddison, 1989). 

 Historical demography 

 All coalescent calculations of neutrality failed to reject the null hypothesis of 

static demography (Table 2).  Zapus h. luteus populations were static for the last 175k 

years but began increasing roughly 25kyr BP, or at the LGM and entering into the current 

interglacial (i.e., early Holocene; all ESS values > 300; Fig. 4). That period coincides 

with the split of Z. h. luteus/pallidus (Fig. 2).  A slight increase in effective population 

size from the late Pleistocene through the Holocene corresponds to the range shifts 

documented between the paleodistribution and the contemporary distribution of Z. h. 
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luteus (Fig. 3).  We do not detect a significant signature of population demographic 

expansion using these techniques.   

 Landscape Genetics 

Results of AMOVA revealed that 66% of the variation is within populations of Z. 

h. luteus with a lower than expected fixation index (FST = .3394, P < 0.01) for Z. h. 

luteus.  The correlation of genetic distance to geographic distance was low (r = 0.034) 

with little chance of observing values greater (P = 0.4396) or less (P = 0.5614).  Barriers 

to gene flow, based on landscape shape interpolation, exist in the northern distribution of 

Z. h. luteus (Fig. 4). 



32 

 

DISCUSSION 

 Biogeographic History 

Based on an array of independent evidence including phylogeny, coalescent 

simulations, SDMs, and fossils, the recently fragmented ancestor model was supported.  

We rejected alternative models of sequential colonization and the ancient vicariance with 

persistent isolation.  The ancestor of Z. h. luteus occurred on the Edwards Plateau and 

eastern edge of the Southern Plains during the LGM, a conclusion supported by both 

SDMs and direct fossil evidence.  We postulate that the ancestor then shifted distribution 

westward as it tracked warming climate of the Holocene, eventually resulting in 

vicariance into multiple populations as it retreated to mesic riparian refugia in mountains 

or along major rivers.  Given the close association of Z. h. luteus with riparian areas (Frey 

& Malaney, 2009), we hypothesize the use of  river systems (e.g., the Rio Grande or 

Pecos River) or ancient lake shores (Plains of San Agustín) as colonization routes due to 

the dense herbaceous cover required and these areas coincide with the potential 

distributions at LGM.  The only fossils of Z. hudsonius from the American Southwest are 

those from the Plains of San Agustín in southwestern New Mexico, which are dated to 

the Holocene (8000kyr BP).  The appearance of Z. hudsonius fossils at this time and place 

suggests the early Holocene colonization of New Mexico, because this species is absent 

from multiple earlier fossil deposits in this region (Kurtén & Anderson, 1980; 

Scarbrough, 1986; Harris, 1990).  We detected signatures of recent fragmentation and 

shifting distributions to higher elevations but failed to detect a strong signature of 

demographic expansion.  The Bayesian skyline plot showed that effective population size 

remained constant for several thousand generations.  Further, there was no departure from 
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neutrality typically indicative of populations experiencing rapid demographic change 

(Lessa et al., 2003; Lessa et al., 2010).  Consequently, we conclude Z. h. luteus shifted 

distribution since the LGM with minor historical fluctuations in population size, and have 

only recently (i.e., last 10kyr) been fragmented to their current distributions.   

Hafner et al. (1981) suggested that the ancestor of Z. h. luteus instead occurred in 

the north (inferring close relationship with Z. h. preblei, which is the geographically 

closest conspecific populations to Z. h. luteus).  These ancestors were hypothesized to 

have colonized Arizona and southern New Mexico during pluvial maxima via southward 

movement through the plains east of the Southern Rocky Mountains.  Hafner et al. (1981) 

cited prior studies (Harris & Findley, 1964; Harris, 1970; Harris et al., 1973) that 

suggested broad occurrence of cool, moist-grasslands throughout central and southern 

New Mexico as supporting evidence.   However, upon discovery that LGM fossils of 

Zapus from the Edwards Plateau were Z. hudsonius rather than Z. princeps, Hafner 

(1993) modified this scenario to suggest that Z. hudsonius spread south and west to 

colonize the American Southwest.  In doing so, he also refuted the earlier paleo-

reconstruction hypothesis that the flora and fauna of the Edwards Plateau were 

continuously distributed across the High Plains to the Rocky Mountains through alpine 

meadow habitat (Dalquest et al., 1969).  Thus, Hafner (1993) concluded that the flora and 

fauna of the Edwards Plateau resulted from eastern grassland influence, rather than 

western boreal influences.  Our study provides broad support for Hafner’s (1993) 

conclusions, but refutes the earlier southward colonization model of Hafner et al. (1981).   

First, and in agreement with previous studies (Ramey et al., 2005; King et al., 2006; 

Vignieri et al., 2006), Z. h. luteus is most closely related to Z. h. pallidus, not Z. h. 
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preblei.  Secondly, there are no fossils to suggest either a Z. h. luteus/preblei ancestor on 

the Colorado Piedmont or an in situ lineage of Z. h. luteus in the American Southwest 

before the Holocene. The fossil record is consistent with a Z. h. luteus/pallidus ancestral 

lineage.  Finally, divergence of Z. h. luteus and Z. h. pallidus coincided with the LGM 

when the recent ancestor of Z. h. luteus colonized north-westward during the warm, arid 

phase of the Holocene (Harris, 1990), while the Z. h. pallidus lineage shifted north and 

east.  It seems likely that the phylogeographic history of Z. h. luteus may apply to other 

species that occur in the American Southwest but that have northeastern affinities (e.g., 

southern redbelly dace [Phoxinus erythrogaster], meadow vole [Microtus 

pennsylvanicus]).  

 Potential current distributions for Z. h. luteus were predicted from several areas 

(e.g. Mogollon Mountains and Black Range) where there are no records (Findley et al., 

1975; Hafner et al., 1981; Morrison, 1992; Frey & Malaney, 2009; Frey, 2010).  Three 

possibilities emerge: 1) these regions were colonized and subsequently went extinct 

(Findley, 1969; Patterson, 1980), 2) populations currently exist but have yet to be 

documented (Udvardy, 1969; Frey, 2009), or 3) colonization never occurred (Lomolino, 

1993; Lomolino & Davis, 1997).  Holocene fossils of Z. hudsonius from the Plains of San 

Agustín located near the northern edge of the Mogollon Mountain-Black Range massive 

and the edge of Pleistocene Lake San Agustín (Scarbrough, 1986) suggest Z. h. luteus 

was extirpated from this region. 

 Vicariance and Dispersal 
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Minimal genealogical structuring (Fig. 2) across the spatially disjunct populations 

of Z. h. luteus in the southwestern United States reflects a shallow demographic history 

without demographic expansion or contemporary gene flow (Excoffier et al., 2009).  

Frey’s (1994) cladistic analysis of allozyme data uncovered an unresolved polytomy and 

she concluded that Z. h. luteus diverged as a result of vicariance through the peripheral 

isolates model of speciation.  Understanding the timing of these processes is critical 

because some of the patterns we documented, including low structure, shared haplotypes, 

no isolation by distance, and non-significant population increase, could alternatively be 

interpreted as signatures of recent gene flow.  However, our explicit tests of hypotheses 

of historical biogeography demonstrate that there is no gene flow among currently 

isolated regions.  

Brown (1971) hypothesized that boreal mammals in the Great Basin were island-

bound Pleistocene relicts that are now survivors of more widespread ancestors, a 

paradigm which has persisted, albeit strongly challenged, for nearly four decades.  

Subsequent researchers have suggested many boreal species are capable of traversing the 

intervening desert habitats with high success (Davis & Dunford, 1987; Lawlor, 1998; 

Floyd et al., 2005) thereby allowing persistent gene flow among islands.  Timing of 

original establishment (extinction driven), or alternatively, timing of immigration among 

islands (colonization driven), is of critical importance in making sound conclusions about 

historical biogeography and conservation (DeChaine & Martin, 2006; Shepard & 

Burbrink, 2008, 2009).  Indeed, there may be little genetic divergence among recently 

isolated regions because the coalescent process takes time and may be locally discordant 

(Rosenberg & Nordborg, 2002).  But, concluding there is ongoing gene flow without 
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entertaining alternatives can be problematic (Knowles, 2009; Beaumont et al., 2010).  

Colonization-driven processes would exhibit different signatures than those reflected in 

Z. h. luteus.   

Colonization or immigration-mediated signatures may reflect three different 

processes: 1) shared haplotypes among geographic localities resulting in multiple, 

sequentially structured haplotypes from a repetitive source, 2) a structured event (e.g. 

ancient vicariance) which is now mixed geographically, 3) or hybridization.  Marmots 

(Marmota flaviventris) in the Great Basin appear to have sequential structure (Floyd et 

al., 2005) whereas tree frogs (Hyla arenicolor/H. wrightorum) in the Grand Canyon have 

experienced recent hybridization (Bryson et al., 2010).  Finally, ongoing gene flow 

should result in haplotypes shared across geographic localities as detected in California 

voles (Microtus californicus; (Conroy & Neuwald, 2008; Adams & Hadly, 2010) and 

Pacific jumping mice (Z. trinotatus; (Vignieri, 2005).  We document a low level of 

haplotype sharing between nearby regions which is due to a lack of lineage sorting, rather 

than ongoing gene flow. 

 Management Recommendations 

 As demonstrated here, isolated populations are not always highly divergent but 

may still retain distinctive signatures worth preserving as they reflect the complex history 

of the lineage.  Zapus h. luteus has experienced recent rapid decline with extirpations of 

populations as a consequence of anthropogenic land use practices and drought (Frey & 

Malaney, 2009), however these recent declines were not reflected in the genetic 

signatures as the coalescent does not always detect very recent processes (Arbogast et al., 
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2002; Wakeley, 2008).  Mesic habitats, including riparian areas, are limited in the xeric 

Southwest and projected to experience significant declines within the next century 

(Moritz et al., 2008).  Management actions that aim to maintain or bolster populations of 

Z. h. luteus may be required.  Repatriation efforts, in particular, will need to be properly 

planned to insure the genetic integrity of populations.  Hence, we recommend additional 

studies using independent nuclear markers, given the shortcomings of a single-locus 

mtDNA data set, to more fully assess the relationships and diversification of 

geographically isolated populations (Brito & Edwards, 2009; Edwards, 2009).  For 

example, some regions that we initially expected to be genetically similar, were not 

(northern and middle Rio Grande populations) while others show genetic distances that 

generally parallel landscape distances (Fig. 4).  Finally, consequences of repatriation and 

artificial admixture of populations in attempts of genetic rescue (Hedrick, 2004) could 

have profound implications for altering the course of diversification for organisms that 

have begun independent evolutionary trajectories in contemporary isolation, thereby 

erasing early signatures of incipient speciation and biogeographic history.  Consequently, 

conservation should preferentially focus on restoration of habitats and in situ expansion 

of remaining remnant populations with repatriation considered only as secondary 

measures.   
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APPENDIX 

Appendix S1 – GenBank accession numbers for taxa used in the manuscript with 

associated museum and tissue numbers; CR – mitochondrial control region and cyt b – 

mitochondrial cytochrome b gene.  Geographic regions: JMZ - Jemez Mountains, MRG - 

Middle Rio Grande Valley, SAC - Sacramento Mountains, SDC - Sangre de Cristo 

Mountains, SAJ - San Juan Mountains, URG - Upper Rio Grande Valley, WHT - White 

Mountains.  Haplotypes are listed that correspond with Fig. 4 and associated samples 

cited in the text with sampling localities represented as geographic coordinates (latitude 

and longitude).   
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

  DMNH 8630 Z. h. luteus  AY598192.1    9 SDC 36.99667 -104.36750 

  DMNH 8631 Z. h. luteus  AY598193.1    10 SDC 37.00111 -104.35833 

  DMNH 8632 Z. h. luteus  AY598194.1    11 SDC 37.00056 -104.36083 

  DMNH 8633 Z. h. luteus  AY598195.1    11 SDC 37.00056 -104.36083 

  DMNH 8634 Z. h. luteus  AY598196.1    11 SDC 37.00056 -104.36083 

  DMNH 8635 Z. h. luteus  AY598197.1    11 SDC 37.00056 -104.36083 

MSB 37154   Z. h. luteus  AY598172.1    11 SAC 33.00437 -105.65555 

MSB 40949 NK 1584 Z. h. luteus  JN546447  JN546501 13 WHT 33.78980 -109.41290 

MSB 40950 NK 1585 Z. h. luteus  JN546448  JN546502 13 WHT 33.78980 -109.41290 

MSB 40951 NK 1592 Z. h. luteus  JN546449  JN546503 14 WHT 33.78980 -109.41290 

MSB 40952 NK 1593 Z. h. luteus  JN546450  JN546504 13 WHT 33.78980 -109.41290 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 40953 NK 1594 Z. h. luteus  JN546451  JN546505 14 WHT 33.78980 -109.41290 

MSB 40954 NK 1595 Z. h. luteus  JN546452  JN546506 13 WHT 33.78980 -109.41290 

MSB 40956 NK 1598 Z. h. luteus  JN546453  JN546507 14 WHT 33.78980 -109.41290 

MSB 40994 NK 1603 Z. h. luteus  JN546454  JN546508 13 WHT 33.78980 -109.41290 

MSB 40995 NK 1604 Z. h. luteus  JN546455  JN546509 14 WHT 33.78980 -109.41290 

MSB 40996 NK 1605 Z. h. luteus  JN546456  JN546510 13 WHT 33.78980 -109.41290 

MSB 40997 NK 1606 Z. h. luteus  JN546457  JN546511 13 WHT 33.78980 -109.41290 

MSB 40998 NK 1607 Z. h. luteus  JN546458  JN546512 15 WHT 33.78980 -109.41290 

MSB 41055 NK 856 Z. h. luteus  JN546461  JN546515 1 JMZ 35.88434 -106.72327 

MSB 41058 NK 878 Z. h. luteus  JN546469  JN546523 1 SAC 32.95170 -105.70409 

MSB 41059 NK 879 Z. h. luteus  JN546470  JN546524 1 SAC 32.95170 -105.70409 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 41060 NK 874 Z. h. luteus  JN546465  JN546519 1 SAC 32.95170 -105.70409 

MSB 41061 NK 877 Z. h. luteus  JN546468  JN546522 1 SAC 32.95170 -105.70409 

MSB 41062 NK 876 Z. h. luteus  JN546467  JN546521 1 SAC 32.95170 -105.70409 

MSB 41063 NK 873 Z. h. luteus  JN546464  JN546518 1 SAC 32.95170 -105.70409 

MSB 41064 NK 875 Z. h. luteus  JN546466  JN546520 1 SAC 32.95170 -105.70409 

MSB 41065 NK 871 Z. h. luteus  JN546462  JN546516 1 SAC 32.95170 -105.70409 

MSB 41066 NK 872 Z. h. luteus  JN546463  JN546517 1 SAC 32.95170 -105.70409 

MSB 41223 NK 884 Z. h. luteus  JN546471  JN546525 19 MRG 33.80214 -106.86759 

MSB 41224 NK 885 Z. h. luteus  JN546472  JN546526 19 MRG 33.80214 -106.86759 

MSB 41225 NK 886 Z. h. luteus  JN546473  JN546527 19 MRG 33.80214 -106.86759 

MSB 41226 NK 887 Z. h. luteus  JN546474  JN546528 19 MRG 33.80214 -106.86759 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 41227 NK 888 Z. h. luteus  JN546475  JN546529 19 MRG 33.80214 -106.86759 

MSB 41228 NK 889 Z. h. luteus  JN546476  JN546530 19 MRG 33.80214 -106.86759 

MSB 41229 NK 890 Z. h. luteus  JN546477  JN546531 19 MRG 33.80214 -106.86759 

MSB 41230 NK 892 Z. h. luteus  JN546478  JN546532 19 MRG 33.80214 -106.86759 

MSB 41231 NK 893 Z. h. luteus  JN546479  JN546533 19 MRG 33.80214 -106.86759 

MSB 41232 NK 894 Z. h. luteus  JN546480  JN546534 19 MRG 33.80214 -106.86759 

MSB 41233 NK 895 Z. h. luteus  JN546481  JN546535 19 MRG 33.80214 -106.86759 

MSB 41234 NK 896 Z. h. luteus  JN546482  JN546536 19 MRG 33.80214 -106.86759 

MSB 41235 NK 897 Z. h. luteus  JN546483  JN546537 19 MRG 33.80214 -106.86759 

MSB 56979 NK 3832 Z. h. luteus  DQ664623.1  DQ664979.1 1 JMZ 35.88434 -106.72327 

MSB 56980 NK 3835 Z. h. luteus  DQ664626.1  DQ664981.1 1 JMZ 35.88434 -106.72327 



61 

 

Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 56981 NK 3837 Z. h. luteus  DQ664628.1  DQ664983.1 1 JMZ 35.88434 -106.72327 

MSB 56982 NK 3826 Z. h. luteus  DQ664618.1  DQ664973.1 1 JMZ 35.88434 -106.72327 

MSB 56983 NK 3833 Z. h. luteus  DQ664624.1    1 JMZ 35.88434 -106.72327 

MSB 56984 NK 3830 Z. h. luteus     DQ664977.1 1 JMZ 35.88130 -106.71880 

MSB 56985 NK 3838 Z. h. luteus  DQ664629.1  DQ664984.1 1 JMZ 35.85686 -106.75928 

MSB 56986 NK 3842 Z. h. luteus  DQ664633.1  DQ664988.1 1 JMZ 35.93195 -106.79207 

MSB 56987 NK 3844 Z. h. luteus  DQ664635.1  DQ664990.1 1 JMZ 35.99404 -106.71312 

MSB 56988 NK 3845 Z. h. luteus  DQ664636.1  DQ664991.1 1 JMZ 35.99404 -106.71312 

MSB 56989 NK 3843 Z. h. luteus  DQ664634.1  DQ664989.1 1 JMZ 35.99404 -106.71312 

MSB 56990 NK 3839 Z. h. luteus  DQ664630.1  DQ664985.1 1 JMZ 35.99404 -106.71312 

MSB 56991 NK 3840 Z. h. luteus  DQ664631.1  DQ664986.1 1 JMZ 35.94228 -106.64365 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 56992 NK 3841 Z. h. luteus  DQ664632.1  DQ664987.1 1 JMZ 35.94228 -106.64365 

MSB 56993 NK 3827 Z. h. luteus  DQ664619.1  DQ664974.1 1 JMZ 35.92680 -106.70280 

MSB 56994 NK 3828 Z. h. luteus  DQ664620.1  DQ664975.1 1 JMZ 35.92680 -106.70280 

MSB 56995 NK 3831 Z. h. luteus  DQ664622.1  DQ664978.1 1 JMZ 35.88434 -106.72327 

MSB 56996 NK 3829 Z. h. luteus  DQ664621.1  DQ664976.1 1 JMZ 35.88434 -106.72327 

MSB 56997 NK 3834 Z. h. luteus  DQ664625.1  DQ664980.1 1 JMZ 35.88434 -106.72327 

MSB 58368 NK 9976 Z. h. luteus  JN546484  JN546538 19 MRG 34.88138 -106.71688 

MSB 58369 NK 9995 Z. h. luteus  AY598178.1    1 URG 36.09970 -106.14141 

MSB 58370 NK 9993 Z. h. luteus  AY598179.1    1 URG 36.05861 -106.08245 

MSB 61684   Z. h. luteus  AY598174.1    1 SAC 32.95170 -105.70409 

MSB 61690   Z. h. luteus  AY598175.1    1 SAC 32.81698 -105.77523 



63 

 

Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 61693   Z. h. luteus  AY598176.1    1 SAC 32.77649 -105.67578 

MSB 61696   Z. h. luteus  AY598173.1    1 SAC 32.85526 -105.59927 

MSB 61712   Z. h. luteus  AY598177.1    1 SAC 32.81047 -105.64305 

MSB 62096 NK 17857 Z. h. luteus  AY598185.1    1 JMZ 35.78882 -106.73233 

MSB 62103   Z. h. luteus  AY598186.1    19 MRG 34.57234 -106.75696 

MSB 86344 NK 31194 Z. h. luteus  JN546459  JN546513 16 WHT 33.77000 -109.43726 

MSB 89194 NK 10218 Z. h. luteus  AY598169.1    17 WHT 33.77051 -109.46096 

MSB 91627 NK 10198 Z. h. luteus  AY598170.1    17 WHT 33.88827 -109.47548 

MSB 91675 NK 31195 Z. h. luteus  JN546460  JN546514 16 WHT 33.77000 -109.43726 

MSB 154917 NK 156087 Z. h. luteus     JN546499 18 SAJ 37.23880 -107.75859 

MSB 155117 NK 156132 Z. h. luteus     JN546500 18 SAJ 37.23880 -107.75859 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

MSB 212593 NK 3836 Z. h. luteus  DQ664627.1  DQ664982.1 1 JMZ 35.88434 -106.72327 

MSB 212976 NK 1475 Z. h. luteus     JN546498 19 MRG 34.88138 -106.71688 

  FT 353  Z. h. luteus   JN546435  JN546485 1 JMZ 35.92505 -106.70552 

  FT 358  Z. h. luteus   JN546436  JN546486 2 SAC 32.70958 -105.67150 

  FT 359  Z. h. luteus  JN546437  JN546487 1 SAC 32.99900 -105.66298 

  FT 360  Z. h. luteus  JN546438  JN546488 1 JMZ 35.88402 -106.64775 

  FT 506  Z. h. luteus  JN546439  JN546489 3 SDC 36.97457 -104.39480 

  FT 507  Z. h. luteus  JN546440  JN546490 4 SDC 36.97937 -104.37553 

  FT 520  Z. h. luteus  JN546441  JN546491 5 SDC 36.95765 -104.38635 

  FT 521  Z. h. luteus  JN546442  JN546492 6 SDC 36.95768 -104.38632 

  FT 528  Z. h. luteus  JN546443  JN546493 7 SDC 36.97173 -104.39448 
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

  FT 541  Z. h. luteus  JN546444  JN546494 8 SDC 36.99058 -104.38128 

  FT 604  Z. h. luteus  JN546445  JN546495 12 SDC 36.16980 -105.23218 

  FT 605  Z. h. luteus  JN546446  JN546496 12 SDC 36.17153 -105.23340 

  FT 613  Z. h. luteus     JN546497 1 JMZ 35.85437 -106.76382 

  Zhc_032 Z. h. campestris DQ664704.1  DQ665046.1     

  Zhc_087 Z. h. campestris DQ664758.1  DQ665100.1     

  Zhi_011 Z. h. intermedius DQ664780.1  DQ665113.1     

  Zhi_015 Z. h. intermedius DQ664784.1  DQ665116.1     

  Zhp_007 Z. h. preblei  DQ664804.1  DQ665133.1     

  Zhp_019 Z. h. preblei  DQ664812.1  DQ665142.1     

  Zhpa_002 Z. h. pallidus  DQ664845.1  DQ665173.1     
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Museum # Tissue # Taxon   CR   cyt b  Hap Region Latitude Longitude  

  Zhpa_006 Z. h. pallidus  DQ664849.1  DQ665177.1   
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FIGURES  

Figure 1.  Distribution of all known records (circles) for the New Mexico meadow 

jumping mouse (Zapus hudsonius luteus) in the American Southwest with elevation 

shading above 2000 m in dark grey and over 3000 m in light grey.  Holocene fossil record 

from the Plains of San Agustín is indicated by a square.  Inset map shows the distribution 

of Z. hudsonius in North America (modified from Frey & Malaney, 2009).
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Figure 2. Bayesian inference majority rules consensus tree produced using GTR + Γ 

model for 93 individuals of Z. h. luteus and sister taxa for 1514 bp of concatenated 

mitochondrial CR and cyt b genes.  Stars at nodes correspond to posterior probabilities 

(>0.95, PP) from 50k post burn-in trees and 1k non-parametric bootstraps (>.95 ML, >.70 

MP).  Grey bars around nodes reflect the 95% CI for lineage divergence time with a 

relaxed molecular clock calibrated by fossils.  Demographic hypotheses inset – 

Alternative hypothesis parametric bootstrap (coalescent modelling) tests for Z. h. luteus 

with 90% confidence intervals and effective population size scaled to each contemporary 

population.  The arrow highlights the empirical tree value for Slatkin and Maddison's s. 
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Figure 3. Species Distribution Models – (A) contemporary SDM for 92 records (circles) 

of Zapus hudsonius luteus based on point-wise mean logistic bootstrap prediction with 20 

replicates.  Thresholds for probability of occurrence are white <0.5, light grey 0.5 – 0.7, 

dark grey > 0.7.  (B) Paleodistribution models of Z. h. luteus and 60 records (stars) of 

sister taxon Z. h. pallidus.  Thresholds for probability of occurrence are >0.70 for all 

models.  Light grey is Z. h. pallidus, dark grey is Z. h. luteus, and medium grey is 

combined Z. h. luteus + Z. h. pallidus.  Fossil records are indicated by a square 

(Holocene; Plains of San Agustín) and triangles (Wisconsin glaciation – Late 

Pleistocene). 
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Figure 3 (a)
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Figure 3(b) 
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Figure 4 – Left panel: A graphical interpolation-based representation of the genetic 

structure for Zapus hudsonius luteus in the American Southwest. Corners represent 

geographic coordinates, while surface heights indicate genetic distances between adjacent 

locations.  Peaks (darker) and valleys (lighter) are indicative of areas with high or low 

(respectively) pair-wise genetic distances between samples over the geographical 

landscape.  Right panel: Median joining network of Z. h. luteus for mitochondrial DNA 

with respect to sampling localities.  Haplotypes are listed in Appendix S1.  Individual tick 

marks represent one polymorphic site (mutation).  Dashed lines represent shared 

haplotypes between localities (no mutation).  Localities with multiple haplotypes present 

have no more than two mutations among haplotypes.  Bayesian skyline plot inset – 

Effective population size since 175kyr BP for Z. h. luteus.  Time is in units of thousands 

of years (i.e. 0.50 = 50kyr BP). 
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TABLES 

Table 1 – Polymorphism data for the full 1514 bp of concatenated control region (CR) 

and cytochrome b (cyt b) genes for 49 individual Zapus hudsonius luteus.  Data are either 

partitioned or combined (Total) for analyses. S = polymorphic sites,  = total number of 

mutations, Hap = number of haplotypes, Hd = haplotype diversity,  = nucleotide 

diversity (per site), k = average number of nucleotide differences, n = Theta-W per site 

from S, g = Theta-W per sequence.  

Gene Sites S  Hap Hd   k  n 

 g 

CR 372 4 4 4 0.67 0.0026  0.9558  0.0024 

 0.8971 

cyt b 1140 32 32 15 0.83 0.0040  4.5629  0.0063 

 7.1768 

Total 1514* 36 36 19 0.88 0.0037  5.5187  0.0053 

 8.0739 

* Plus two insertions in the CR dataset 
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Table 2 – Coalescent simulations (10,000 replicates) of neutrality tests for 49 individual  

Zapus hudsonius luteus with complete 1514 bp of concatenated control region and 

cytochrome b genes (no missing data).  Values correspond to calculations based on Theta 

() and S for the test statistics Tajima's D and Fu's Fs.   

    D     Fs 

     S     S 

Observed Statistic  -1.072     -3.520 

Average (P-value) -0.036 (0.1290) 0.083(0.1190)  -0.228(0.1310) -0.364(0.1570) 

95% CI  -1.637 to 1.926 -1.622 to 1.871  -6.268 to 7.751 -7.296 to 7.576 
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ABSTRACT 

 Understanding how diversity is partitioned across the landscape provides perspectives on 

the environmental processes that have influenced the evolutionary history of organisms.  We 

analyzed spatial demography, historical biogeography, and niche divergence of the western 

jumping mouse (Zapus princeps) using molecular DNA sequences of the mitochondrial 

cytochrome-b gene and nuclear glucocerebrosidase and myosin heavy chain 2 markers recovered 

from 7 of the 11 subspecies in western North America.  Phylogeographic structure within Z. 

princeps was partitioned across 5 clades (Boreal, Northern Sierra, Southern Rockies, Southern 

Sierra, and Uinta).  Two lineages detected in the Sierra Nevada's of California (Northern Sierra 

and Southern Sierra) were more closely allied to Z. trinotatus than to other lineages of Z. princeps 

and species distribution models mirror these phylogenetic signatures by detecting wide overlap in 

niches for Sierran jumping mice and Z. trinotatus as compared to other Z. princeps.  Four 

southern lineages are deeply divergent and limited to highly disjunct mesic and montane habitats 

within the xeric southwestern United States, while the fifth lineage is widespread, extending from 

Wyoming to Alaska and reflecting expansion northward following deglaciation, a common 

pattern in boreal mammals.  
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INTRODUCTION 

 Western North America has a diverse biota that is the product of complex evolutionary 

and environmental processes (Lomolino et al. 2006).  Significant intraspecific genetic variation in 

mammals in the region is hypothesized to have been shaped by extreme topographic 

heterogeneity and repeated glaciations during the Quaternary (Riddle and Hafner 2006).  

Molecular investigations of western mammals have provided new views of diversification, 

occasionally revealing unexpected genetic architectures (Alvarez-Castaneda and Patton 2004; 

Galbreath et al. 2010; Matocq 2002b; Riddle et al. 2000).  Documentation of geographic 

molecular variation in organisms, when combined with assessments of demography, historical 

biogeography, and niche variation, can provide insight into key questions related to climate 

change, post-Pleistocene colonization, habitat fragmentation, and possible future response to 

changing environments (Avise 2000).  We assess phylogeographic structure in the western 

jumping mouse (Zapus princeps) to further explore the biogeographic history of western North 

America.   

The western jumping mouse is an inhabitant of mesic and montane habitats ranging from 

New Mexico and central California northward through most of western North America (Fig. 1)  

to southeast Alaska and southern Yukon Territory (Hafner et al. 1981; Hall 1981; Jones 1981; 

Krutzsch 1954).  Because much of this widespread range was glaciated during the late 

Quaternary, the patterns and levels of connectivity of the mesic environments they inhabit have 

changed, potentially leaving an imprint on molecular variation in the species (Hewitt 1996, 2000; 

Waltari and Guralnick 2009).  The dynamic geologic history, variable topography, and patchy 

mesic environments of western North America provide a series of evolutionary experiments as 

multiple mountain ranges may represent replicated isolation events.  We explore historical-

biogeographic questions related to the effects of Pleistocene fragmentation on mesic-associated 

biota by testing two primary ideas using molecular variation and niche modeling in jumping 
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mice.  First, we explore lineage divergence related to glacial cycling by asking whether jumping 

mice lineages were in wide contact during glaciations or if they remained geographically isolated, 

similar to their current distribution.  Second, given that their contemporary northern range was 

blanketed by ice until the end of the Pleistocene, we test the scenario that southern lineages of Z. 

princeps reflect signatures of genetic structure that are deeper (due to persistence) than northern 

lineage(s) which presumably expanded (ephemeral) from the south following the latest 

Pleistocene deglaciation. 

Two mutually exclusive and competing hypotheses, related to lineage divergence and 

historical biogeography, are plausible.  The admixture (AM) scenario, with populations of 

jumping mice isolated during interglacials on montane islands (e.g., the contemporary condition) 

but in wide contact during glacial advances, predicts genetic signatures should reflect high levels 

of exchange.  Previous studies in western montane environments have identified different forms 

and levels of mixing (admixture, introgression, hybridization) in grasshoppers (Knowles 2001), 

birds (Mettler and Spellman 2009; Spellman and Klicka 2007), pika (Galbreath et al. 2009, 2010), 

and rodents (Good and Sullivan 2001; Spaeth et al. 2009).  Alternatively, jumping mice lineages 

may have remained independent and evolved in situ due to sustained geographic isolation or 

persistent allopatry (PA).  Evidence for the persistent allopatry scenario would include 

geographically structured lineages.  Signatures of genetic divergence and geographically 

structured variation in montane organisms have been recorded for alpine stonecrops (DeChaine 

and Martin 2005b), foxtail pine (Eckert et al. 2008), kittentails (Marlowe and Hufford 2008), 

alpine butterflies (DeChaine and Martin 2005a), birds (Spellman et al. 2007), and various 

mammals (Demboski and Cook 2001; Hornsby and Matocq 2011; Sullivan et al. 2000).   

North American environments have not been static and organisms have presumably 

tracked climate change (Hewitt 2000), with many species dispersing northward following glacial 

retreat (Anderson and Borns 1994; Lessa et al. 2003).  In Canada and Alaska, northern 
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populations of Z. princeps are likely the result of post-Pleistocene colonization of deglaciated 

terrains as observed in other mammals (Arbogast 1999; Conroy and Cook 2000b; Runck and 

Cook 2005).  Southwestern peripheral populations of jumping mice, in contrast, are 

comparatively more fragmented and largely restricted to dense alder (Alnus spp.), willow (Salix 

spp.), and aspen (Populus spp.) stands typically associated with riparian systems and high 

elevation mesic habitats (Frey and Malaney 2009; Hart et al. 2004; Krutzsch 1954; Quimby 

1951).  Because these habitats are limited in extent and isolated within predominantly xeric 

environments, populations of montane mesic-associated mammals are hypothesized to exhibit a 

deeper divergence than their northern counterparts.  For example, genetic breaks across arid 

barriers such as the Columbia and Wyoming Basins (Carstens et al. 2005; Carstens and Richards 

2007; DeChaine and Martin 2005b; Nielson et al. 2001) suggest that isolation during warm 

interglacial periods may contribute to allopatric divergence in mammals (Demboski and Cook 

2001; Demboski and Sullivan 2003; Galbreath et al. 2010; Good et al. 2008; Hornsby and Matocq 

2011).   Persistent allopatric divergence is expected to result in deeper genetic distance and 

lineage cohesion suggesting limited or no mixing through multiple glacial cycles (DeChaine and 

Martin 2006; Nielson et al. 2001, 2006).  

We begin by assessing how past events influenced the phylogenetic signature, 

demography, and historical biogeography of the western jumping mouse.  We test if the 

phylogenetic signal is the result of admixture (AM) or persistent allopatry (PA) using coalescent 

simulations.  Next, we examine the existing taxonomic framework for Z. princeps, originally 

based on morphological features (Krutzsch 1954), and then assess environmental variation with 

species distribution models (SDMs) and test for niche and range overlap among paraphyletic 

clades.  Finally, we propose a set of alternative biogeographic hypotheses based on allopatric 

modes of speciation that may account for the observed phylogenetic signal. 
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METHODS 

DNA Extraction and Sequencing.– We included specimens from the Museum of 

Southwestern Biology (MSB – University of New Mexico – Albuquerque), the Museum of 

Vertebrate Zoology (MVZ – University of California – Berkley), and the University of Alaska 

Museum of the North (UAM – University of Alaska – Fairbanks; Appendix I).  Specimens 

represent 7 of the 11 subspecies (Z. p. idahoensis, Z. p. minor, Z. p. oregonus, Z. p. pacificus, Z. 

p. princeps, Z. p. saltator, Z. p. utahensis) recognized by Krutzsch (1954) and Hall (1981) and 

range from southeast Alaska and Yukon Territory southward throughout most western states to 

the species' southern limits in California and New Mexico (Fig. 1).  Detailed information related 

to voucher specimens is available through the ARCTOS database 

(http://arctos.database.museum/SpecimenSearch.cfm).  The mitochondrial (mtDNA) cytochrome-

b (cytb – 1140bp) gene was obtained for 91 specimens (see Appendix) representing 46 locations 

across the range of Z. princeps.  In addition, samples of Z. trinotatus (4), Z. hudsonius (6), and 

Napaeozapus insignis (1) were included.  Independent perspectives were gained by sequencing 

two nuclear (nuDNA) markers to test major lineage breaks identified by mtDNA; 

glucocerebrosidase (GBA – 347bp) and myosin heavy chain 2 (MYH2 – 267bp).   

Total genomic DNA was extracted from frozen or ethanol preserved tissues (heart or 

liver).  Amplification of the cytb gene was conducted with primers L14724 and H15915 (Irwin et 

al. 1991) or with a combination of MVZ05-MVZ16 and MVZ127-MVZ108 (Leite and Patton 

2002; Smith and Patton 1993) using protocols previously established (Halanych et al. 1999; Lessa 

and Cook 1998; Patton et al. 2008).  PCR products were sequenced using BigDye Terminator 

Cycle Sequencing Ready Reaction mix. v. 3.1 (Applied Biosystems) with combinations of 

amplification primers.  Heavy and light strands were sequenced in both directions using an 

Applied Biosystems 3100 automated DNA sequencer in the Molecular Biology Facility, Biology 

Department, University of New Mexico, Albuquerque, or at the Museum of Vertebrate Zoology, 
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University of California, Berkeley.  Sequences were analyzed using SEQUENCHER 4.9 (Gene 

Codes) with a reference sequence from GenBank (Z. trinotatus, AF119262).   

We sequenced two fragments of nuclear introns (GBA and MYH2) for several specimens 

using published primers and protocols (Lyons et al. 1997).  We sequenced a minimum of 2 

randomly selected individuals from mitochondrial clades of Z. princeps (30 GBA and 14 MYH2), 

Z. trinotatus (2), and Z. hudsonius (2) with 1 Napaeozapus insignis used to root phylogenies.  All 

individuals were sequenced in both directions. Heterozygous positions were identified and 

polymorphic alleles were assessed using PHASE 2.1 (Stephens and Scheet 2005; Stephens et al. 

2001) in DNASP (Librado and Rozas 2009; Rozas et al. 2003) with haplotypes inferred from 

multi-allelic loci using a Bayesian framework with 0.90 cutoff and 10,000 iterations.  Unresolved 

haplotypes were coded as missing data. 

 Alignments were completed using default parameters and algorithms of CLUSTAL X 

(Larkin et al. 2007) in the program MEGA 5.05 (Tamura et al. 2011).   Contigs for all genes (un-

phased) are available on GenBank (Appendix). 

Diversity Measures.– Molecular diversity and demographic estimates from each marker 

were determined for putative Z. princeps (Table 1).  Neutrality and population equilibrium were 

assessed via Tajima’s D and Fu’s FS tests and 10,000 coalescent simulations to assess 

significance.  The mtDNA dataset was partitioned into clades to assess demographic change.  Net 

sequence divergence (dA) was calculated between the observed mtDNA clades (Nei 1987).  We 

calculated segregating sites (S), haplotypes (h), haplotype diversity (), and nucleotide diversity 

() for each marker with DNASP (Librado and Rozas 2009; Rozas et al. 2003). 

 Phylogenetic and Phylogeographic Analyses.– Our aligned mitochondrial and 

nuclear data were processed via MRMODELTEST (Nylander 2004) performing hierarchical 

likelihood ratio tests (hLRT) and calculating Akaike Information Criterion (AIC); both 
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measures agreed for all genes.  General Time Reversal (Tavaré 1986) plus gamma 

(1.6506) plus proportion (0.4875) of invariant sites model (GTR+ log likelihood = -

5760.9790, K = 10, AIC = 11541.9580) was selected as the most appropriate 

evolutionary model for the mitochondrial marker and subsequently used in Bayesian 

inference and maximum likelihood analyses.   The Kimura (1980) model (K80, log 

likelihood = -661.0489, K = 1, AIC = 1324.0778) was selected for the GBA gene.  The 

Hasegawa, Kishino, and Yano (1985) plus proportion (0.9085) invariant sites model 

(HKY+I, log likelihood = 436.1803, K = 5, AIC = 882.3607) was identified for the 

MYH2 gene.   

Bayesian reconstruction was performed using MRBAYES 3.1.2 (Huelsenbeck and Ronquist 

2001; Lakner et al. 2008) beginning with random trees and Markov chain sampled every 1000
th
 

tree for 2 million generations and 4 chains run simultaneously with temperature set to 0.20 for 3 

chains and 1 cold chain.  Three replicate runs were completed to confirm consistency and each 

marker was run with distinct priors set from MRMODELTEST output.  Chain stationarity was 

assessed by inspecting the standard deviation of split frequencies consistently below 0.05 and 

confirmed complete via the graphical output from the initial 50,000 generations with 0.20 of each 

replicate discarded as burn in (Huelsenbeck and Imennov 2002).  Nodal strength (posterior 

probability – PP) was identified in the consensus of the residual trees and the midpoint rooted 

majority rule consensus tree was visualized in FIGTREE ver.1.3.1 (Fig. 2). 

Maximum likelihood (ML) optimality criteria were used for phylogenetic reconstruction 

using GARLI v2.0 Parallel (Zwickl 2006).  We considered all characters as unordered with 4 

possible states (A, C, G, T) with heuristic searches.  Distinct models of evolution were applied to 

each marker with discrete base frequencies and rate categories for each from MRMODELTEST.  

Tree bisection-reconnection (TBR) branch swapping was employed with 100 random stepwise 
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additions.  Three runs were conducted to ensure consistency and non-parametric bootstrap 

support (Felsenstein 1985) was evaluated with 1000 pseudo-replicates (Fig. 2). 

The median joining statistical parsimony algorithm (Bandelt et al. 1999) in the program 

NETWORK ver. 4.2 (Fluxus engineering, Suffolk, U.K.) was employed to produce a haplotype 

network (Fig. 3) for each marker given that intraspecific phylogenetic methods may fail (Posada 

and Crandall 2002).  This algorithm calculates the similarity between haplotypes into a network 

where the combined probability is >95% (Templeton et al. 1992). 

Taxonomic Evaluation.– We compared the morphological taxonomic classification of Z. 

princeps (Krutzsch 1954) against the mitochondrial framework using the Shimodaira-Hasegawa 

(1999) test.  A maximum-likelihood tree constrained to reflect monophyly of Z. princeps, Z. 

trinotatus, and Z. hudsonius was compared to the unconstrained best maximum-likelihood tree 

using PAUP* v.4.0b10 (Swofford 2003), GTRmodel of nucleotide substitution, and 10,000 

resampling of estimated log-likelihoods (RELL) bootstrap replicates (Hasegawa and Kishino 

1994).   

Coalescent Simulations.–We conducted coalescent simulations using the parametric 

bootstrap method (Goldman et al. 2000).  Our aim was to test alternative hypotheses of admixture 

(AM) versus persistent allopatry (PA) using a likelihood based or frequentist approach 

(Hickerson et al. 2010; Knowles and Maddison 2002) with coalescent simulations in the program 

MESQUITE (Maddison and Maddison 2009).  Alternative hypothesized phylogenies (AM vs. PA) 

were simulated for 1000 replicates to produce gene matrices using ancestral NE(f) (183,779) from 

our estimate of the parameter θw (calculated in DNASP), branches scaled to branching pattern, 

one-year generation time (Brown 1970; Cranford 1983), and ancestral divergence estimates from 

zapodid fossil records (Hafner 1993; Kurtén and Anderson 1980; Ruez and Bell 2004). To assess 
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the validity of each model and determine overlap between models, we used upper and lower 

confidence intervals (90%) of θw (Knowles and Carstens 2007) on independent runs. 

From the 1000 gene matrices, we constructed genealogies in PAUP* using heuristic 

parsimony searches with 10 random addition replicates, TBR branch swapping with max-trees set 

to 100, and produced a majority-rule consensus tree.  Next we calculated the discord between the 

reconstructed gene tree and the assignment of individuals into separate lineages using Slatkin and 

Maddison's s (1989) as implimented in MESQUITE.  Finally, assessment of our two-tailed test was 

considered significant if the empirical data occur outside of the 90% CI of the simulation data. 

Our θ estimates (effective population size scaled to the neutral mutation rate) were 

calibrated to recent fossil dates using the equation θ = 4NE(f)µ, assuming µ = 3.14 substitutions per 

million years as calculated by Malaney et al. (2011) and scaled branch widths of θ were used for 

the competitive hypotheses. 

 Species Distribution Modeling.– Climate variables such as temperature and precipitation 

are known to effect the metabolic rates of jumping mice (Cranford 1975) and can provide insight 

into the spatial distribution of environmental characteristics for monophyletic lineages.  We 

obtained bioclimatic variables from 2.5 minute (4km) resolution coverages from the WorldClim 

database (http//www.worldclim.org; Hijmans et al. 2005).  Torpor in jumping mice is impacted 

by elevation (Cranford 1978; Muchlinski and Rybak 1978), so we included this coverage. 

 We followed species distribution modeling (SDM) procedures from previous studies 

(Waltari and Guralnick 2009; Waltari et al. 2007) by clipping the coverages to the study area 

(North America) and reducing the dataset (Rissler and Apodaca 2007) to the 12 most biologically 

meaningful and uncorrelated coverages (Bio1 - Annual Mean Temperature, Bio2 - Mean Diurnal 

Range, Bio3 - Isothermality, Bio7 - Temperature Annual Range, Bio8 - Mean Temperature of 

Wettest Quarter, Bio9 - Mean Temperature of Driest Quarter, Bio15 - Precipitation Seasonality, 
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Bio16 - Precipitation of Wettest Quarter, Bio17 - Precipitation of Driest Quarter, Bio18 - 

Precipitation of Warmest Quarter, Bio19 - Precipitation of Coldest Quarter, and elevation).  

Localities for Z. princeps and Z. trinotatus were downloaded from MANIS (8 Jan 2010).  

Localities with >0.5km
2
 uncertainty were discarded and several records were georeferenced 

(JLM) using BioGeomancer (http://bg.berkeley.edu/, Guralnick et al. 2006).  To account for 

sampling biases (Reddy and Davalos 2003) which may result in model over-fitting and subjective 

outcome, we spaced localities at least 10km by removing intervening records.  To test if the 

Sierra Nevada lineages reflect phylogenetic signal in niche occupancy, we further partitioned 

localities of Z. princeps (see below).  We constructed SDMs using the default settings in the 

program MAXENT version 3.3.3a (Elith et al. 2006; Phillips et al. 2006) and ran 20 replicates with 

randomized 20th percentile training presence and depicted results using the point-wise bootstrap 

mean.  

To identify overlap between taxonomic divisions and establish whether Sierra Nevada 

clades occupy analogous environments to Z. trinotatus or other Z. princeps, we completed a 

series of niche tests.  Localities were partitioned into three groups reflecting DNA phylogenetic 

signal:  Z. trinotatus, Sierran (Southern and Northern Sierra) clades, and remaining Z. princeps 

(Boreal, Southern Rockies, Uinta) clades.  First, we calculated the proportion of pixels (km
2
) 

where overlap between suitable niches occur using ARCGIS v.10.0.  Threshold values were 

determined from the conservative “last sample included” criterion and were 0.21 for Z. princeps, 

0.24 for Z. trinotatus, and 0.28 for Sierran.  Quantifying niche overlap was accomplished with 

three metrics using ENMTOOLS (Warren et al. 2010); Schoener's D (Schoener 1968), Warren's I 

(Warren et al. 2008), and relative ranks (RR; Warren and Seifert 2011).  Each measure identifies 

pair-wise niche overlap values between 0 (none) and 1 (full).  We calculated 100 pseudo-

replicates of niche models (Warren et al. 2008, 2010) and corresponding measures of niche 

overlap among lineages following methods of Pyron and Burbrink (2009).  This conforms to a 
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one-tailed test to identify if niche models are significantly different from a null distribution by 

randomly assigning lineage membership to the occurrence points for any two lineages.  All SDMs 

have basic assumptions including niche conservatism (Wiens and Graham 2005), whether 

coverages (environmental data) are adequate to generate predictions of a species’ distribution 

(Kozak et al. 2008; McCormack et al. 2010), and adequate occurrence points to encapsulate the 

range of environmental conditions in the species niche (Pearson et al. 2007). 
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RESULTS 

Molecular Diversity.– The cytb gene was obtained for 91 Z. princeps specimens, 4 Z. 

trinotatus, 6 Z. hudsonius, and 1 Napaeozapus insignis (Appendix).  Excluding N. insignis, there 

were 157 segregating sites (Table 1).  Nucleotide composition (28.4% adenine, 32.0% thymine, 

26.9% cytosine, and 12.7% guanine), transition:transversion ratio (R = 4.73), and codon position 

changes (6-1
st
 position, 0-2

nd
 position, 39-3

rd
 position) among Zapus lineages were consistent 

with other measures of genuine cytb gene for mammals (Irwin et al. 1991).   

Twenty-seven (GBA) and 20 (MYH2) randomly selected individuals of Z. princeps from 

the 5 mitochondrial clades were sequenced for the nuclear introns (Lyons et al. 1997) plus 2 Z. 

hudsonius, 2 Z. trinotatus, and 1 N. insignis.  For the GBA marker nucleotide composition was 

21.6% adenine, 24.1% thymine, 28.3% cytosine, and 26.0% guanine.  There were 22 segregating 

sites, 1 site with more than 2 variants, transition:transversion ratio of 2.26, plus an 2 bp insertion-

deletion between Zapus - Napaeozapus.  The MYH2 marker had 20.3% adenine, 25.2% thymine, 

28.1% cytosine, and 26.4% guanine, 16 segregating and 2 multi-variant sites.  

Transition:transversion ratio was 2.11 with 9 positions represented by insertion-deletions. 

Phylogenetic and Phylogeographic Divergence.– Phylogenetic reconstructions using 

maximum likelihood (ML) and Bayesian (PP) techniques and the parsimony network indicated 

congruent topologies (Fig. 2 & 3) for all genes.  Seven clades were recovered including discrete 

Z. trinotatus and Z. hudsonius, plus 5 putative Z. princeps clades (Boreal, Northern Sierra, 

Southern Rockies, Southern Sierra, Uinta; Fig. 2 & 3).  Each of the 7 clades identified in the 

phylogram (Fig. 2) reflect high bootstrap support (ML) and posterior probabilities (PP) for major 

nodes.  Both of the nuclear perspectives reflect deep nodes but provided less resolution near the 

tips.  Current taxonomy of Z. princeps (Holden and Musser 2005) showed a polyphyletic 

relationship with respect to Z. trinotatus based on both the mitochondrial and nuclear data, with 
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Northern and Southern Sierra clades more closely related to Z. trinotatus than to other Z. princeps 

(Boreal, Southern Rockies, Uinta; Fig. 2 & 3).    

There were 42 unique cytb haplotypes in our dataset (Hd = 0.993; Fig. 3) with 14 

haplotypes representing the Boreal clade, 5 in the Northern Sierra, 7 in the Southern Rockies, 5 in 

the Southern Sierra, 3 in the Uinta, and 3 in Z. trinotatus. Five other haplotypes including 4 in Z. 

hudsonius and 1 in N. insignis were identified (haplotypes 38-42 not displayed in Fig. 3).  No 

widespread haplotype sharing was documented (Fig. 2 & 3) but a few haplotypes were shared 

between adjacent sampling localities within clades.  Further, no haplotypes were co-located at a 

single locality from distinct clades.  Several polymorphic sites define each lineage of jumping 

mice, with highest geographic structure across the 4 southern lineages (Northern Sierra, Southern 

Rockies, Southern Sierra, Uinta; Fig. 3).  For example, >100 steps separated the Uinta from the 

Southern Rockies and Boreal clades, while at least 47 steps segregated haplotypes of the Boreal 

and Southern Sierra clades.  The Northern Sierra clade and Z. trinotatus are segregated by <60 

mutational steps.   Between Z. princeps (Uinta) and Z. trinotatus there are 136 steps, while there 

are at least 147 mutational steps between Z. trinotatus and Z. hudsonius. Almost 300 mutational 

steps separated Z. hudsonius (haplotype 2; Z. h. luteus) and the Uinta Z. princeps (haplotype 51).  

Haplotype structure for the independent nuclear genes was less pronounced (fewer segregating 

sites) but consistent with the mtDNA signature.   

Neutrality tests for mitochondrial lineages (Tajima’s D and Fu’s Fs; Table 1) for the 

Boreal and Southern Sierra clades were significantly negative, suggesting deviation from 

mutation-drift equilibrium and may suggest population expansion (Excoffier et al. 2009).  

Neutrality tests for the Southern Rockies clade was not significant and small sample sizes from 

the Northern Sierra and Uinta clades precluded population-level analyses.  



89 

 Intra-clade Diversity.– Patterns of intra-clade genetic diversity differed across clades 

(Table 1).  Within the Boreal and Southern Sierra clades, haplotypes showed a “star–like” 

phylogeny (Fig. 2 & 3) with relatively few mutational steps between haplotypes than other clades.  

In contrast, the Southern Rockies clade showed higher structure and a greater number of 

mutational steps between haplotypes.  For example, within the Southern Rockies there were 16 

steps separating haplotype 16 (Jackson Co., Colorado) and haplotype 21 (Santa Fe Co., New 

Mexico) over a geographic distance of 500 km.  In the Boreal clade there were only 8 steps 

between haplotypes 11 (Yellowstone National Park) and 4 (Unuk River, Alaska) over a 

geographic distance of >2000 km (Fig. 3).  The Uinta clade was represented by 4 specimens from 

the same locality (Strawberry Reservoir) and 3 unique haplotypes with 5 mutations.  The 5 

haplotypes from the Northern Sierra clade were distributed among 3 localities segregated by 4 

mutational steps over 250 km.  The Southern Sierra clade was represented by 11 unique sampling 

localities and 5 haplotypes within 200 km.   

 Taxonomic Evaluation and Coalescent Simulations.– A tree constrained for monophyly 

of Z. princeps was significantly worse (P < 0.001) than the unconstrained maximum likelihood 

topology that showed paraphyly of these lineages (MLbest = -4635.7099; MLconstraints = -8266.8500; 

Shimodaira and Hasegawa 1999).  Results of the parametric bootstrap test of alternative 

hypotheses confirmed the persistent allopatry (PA) hypothesis as the best match to the empirical 

data (Fig. 4).  The empirical data had an s value of 13 that was significantly different (2-tailed) 

from the admixture (AD) hypothesis. 

Species Distribution Models.–Modeling procedures had high AUC scores (>0.95 for each 

model).  Models were based from 170 Z. trinotatus and 499 putative Z. princeps localities; of 

these, 66 Sierra Nevada localities (Z. p. pacificus) were partitioned from other Z. princeps 

lineages.  Niche overlap and range overlap (threshold value >0.20) was higher for the Sierran 

jumping mice and Z. trinotatus than the Sierran jumping mice and other Z. princeps (Fig. 5).  All 
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pair-wise comparisons using pseudo-replicates reflected values significantly different than 

predicated from random among lineages.   
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DISCUSSION 

We documented a history of demographic and range expansion for the Boreal clade that 

contrasts with long-term persistent southern clades (Northern Sierra, Southern Rockies, Southern 

Sierra, Uinta).  This spatial and temporal contrast reflects distinctive demographic processes 

across the distribution of jumping mice of the west. The phylogeny and wide niche overlap 

between Sierran jumping mice and Z. trinotatus are inconsistent with current taxonomy that 

identifies the former as Z. princeps (Hall 1981; Holden and Musser 2005; Krutzsch 1954).  

Finally, the coalescent-based tests provide clarity on the historical biogeography of jumping mice 

over multiple glacial cycles. 

Spatial Demography. –For species with broad latitudinal distributions in North America, 

a common pattern of deep southern (persistent) and shallow northern (ephemeral) structure has 

been documented.  This signature is common to other rodents with similar latitudinal range such 

as Z. hudsonius (King et al. 2006), red-backed voles, Myodes gapperi (Runck and Cook 2005), 

long-tailed voles, Microtus longicaudus (Conroy and Cook 2000a), deer mice, Peromyscus 

maniculatus (Dragoo et al. 2006), woodrats, Neotoma cinerea (Hornsby and Matocq 2011), 

chipmunks, Tamias amoenus and T. ruficaudus (Demboski and Sullivan 2003; Good et al. 2003, 

2008; Good and Sullivan 2001), red squirrels, Tamiasciurus hudsonicus, (Arbogast et al. 2001; 

Wilson et al. 2005), and flying squirrels, Glaucomys sabrinus and G. volans (Arbogast 1999). 

Similarly soricomorphs, such as Sorex cinereus, S. monticolus, and S. palustris (Demboski and 

Cook 2001, 2003; Himes and Kenagy 2010) and lagomorphs (e.g., Ochotona princeps; Galbreath 

et al. 2009, 2010) also show this latitudinal signature suggesting a common set of processes has 

influenced diversification across these montane organisms. 

Characteristic signatures of population expansion following glacial retreat (Excoffier et 

al. 2009; Hewitt 2004, Lessa et al. 2003, 2010) include minimal haplotype sorting, low nucleotide 
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diversity, lack of equilibrium between mutation-drift and migration-drift, and star-like phylogeny 

which were detected for the Boreal clade of jumping mice.  Specific results of tests of neutrality 

(Table 1) are suggestive of demographic instability since the Last Glacial Maximum (LGM).  

Ancestors of the Boreal clade likely expanded northward in the Holocene due to glacial retreat 

(Graham et al. 1996; McGill et al. 2005) and in this case, a few closely related haplotypes typify 

populations ranging from Wyoming (Yellowstone National Park) northward to south-coastal 

Alaska (Fig. 3), probably the most recently colonized region.  At that northern limit, populations 

separated by 100 km share haplotypes.  Post-Pleistocene glacial retreat and the signature of 

genetic expansion (Table 1) suggest smaller ancestral population size.  Ancestral populations 

were likely restricted to refugia as documented for other mammals (Sommer and Zachos 2009; 

Waltari et al. 2007).  The newly formed populations at higher latitudes in Canada and southeast 

Alaska potentially originated from a source refugium in the south, as reflected by minimal 

differentiation of haplotypes among populations that span this large area.  With the warming 

climate and retreating glaciers, jumping mice populations likely closely tracked newly available 

habitats (Hewitt 2004).  There is no signal of an isolated refugium in southeast Alaska as 

proposed by Jones (1981) for jumping mice and hypothesized for other mammals (Cook et al. 

2006).   

We documented prolonged isolation (Arenas et al. 2012) for the southern clades which 

reflect expected patterns of complete haplotype sorting, deep genetic divergence across the 

landscape (Fig. 3), high nucleotide and haplotype diversity, and, in general, mutation-drift and 

migration-drift equilibrium (except Southern Sierra, Table 1).  The Southern Sierra clade, 

however, reflects a significant departure from neutrality suggestive of a smaller ancestral 

population (e.g. bottle-neck) and a more complex history than our simple hypotheses (ephemeral 

vs. persistent).  Genetic footprints of population expansion documented for the Boreal and 

Southern Sierra clades  are likely due to different mechanisms (e.g., latitudinal expansion versus 
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elevational expansion), but this comparison will require more detailed analyses of 

paleoenvironments and expanded sampling.   Elevation fluctuations and concordant genetic 

signatures have been documented for alpine plants, pika, and woodrats (Beever et al. 2010; 

DeChaine and Martin 2005b; Galbreath et al. 2009, 2010; Matocq 2002b) accross western North 

America.  However, the magnitude of range shifts may differ for species living in montane 

(elevational shifts) versus more homogeneous environments (latitudinal shifts; Guralnick 2007) 

and these alternative signatures should be explored further (Rubidge et al. 2012, Parmesan 2006).  

Shifts in elevation and latitude are projected to correspond to changing temperatures (Parmesan 

2006; Petit et al. 2008; Walther et al. 2002) and several species in the Sierras have declined over 

the last century including jumping mice (Moritz et al. 2008).  Other species have shown recent 

extirpations such as alpine pika (Beever et al. 2010, Galbreath et al. 2009, 2010) with declines 

also common elsewhere (Albach et al. 2006; DeChaine and Martin 2005a; Haubrich and Schmitt 

2007; Knowles and Richards 2005) including jumping mice (Frey and Malaney, 2009).   

 Niche Overlap. – The Sierran jumping mice and Z. trinotatus overlap in niche space more 

than either does with other lineages of Z. princeps (Fig. 5). This overlap may mirror their close 

evolutionary relationship (Fig. 2); however, overlap may simply reflect the spatial proximity and 

ecological similarity of the two regions.  Still, there is significantly more niche divergence 

between lineages than expected by chance based on pseudo-replicates of background niche 

space.  Because organisms can shift niche preferences through time (Hadly et al. 2009; Peterson 

2011), the roles of niche conservatism (Warren et al. 2008; Wiens 2004; Wiens and Graham 

2005) or niche divergence (Raxworthy et al. 2007; Rissler and Apodaca 2007) in speciation 

warrants further exploration.  Both have been shown to operate at various temporal and spatial 

scales in Mexican Jays (genus Aphelocoma; McCormack et al. 2010), common kingsnakes 

(Lampropeltis getula; Pryon and Burbrink 2009), and deer mice (Peromyscus maniculatus; 

Kalkvik et al. 2011).  Jumping mice are presumed to have diverged in allopatry based on 



94 

coalescent simulations (see below, Fig. 4) with both niche conservatism and divergent selection 

playing roles in the evolution of western jumping mice. 

 Taxonomic Implications. –Western jumping mice represent a more complex taxonomic 

assemblage than previously documented.  Deep molecular divergence discovered among southern 

populations of the western jumping mouse, including paraphyly with respect to Z. trinotatus, 

significantly alters our understanding of species limits in this group (Hall 1981; Holden and 

Musser 2005; Krutzsch 1954).  Hall (1981) recognized 11 subspecies of Z. princeps and 4 

subspecies of Z. trinotatus following Krutzsch’s (1954) extensive review of morphological 

characters.  Our molecular and niche assessment suggests that the initial alignment of the Sierra 

Nevada populations (Elliot 1898; Howell 1920; Preble 1899) close to Z. trinotatus is appropriate.  

Gene trees based on mtDNA may not always reflect species limits due to historical mitochondrial 

introgression (Good et al. 2008; Runck et al. 2009), but in this case, the independent nuclear 

perspectives corroborate mtDNA and demonstrate the need for revision of species limits in 

western jumping mice.  A comprehensive re-evaluation of morphological variation across 

nominal Z. princeps and Z. trinotatus coupled with development of additional nuclear markers 

and exploration of finer scale niche variation might provide clarity on the spatiotemporal aspects 

of diversification. 

 Historical-biogeographic Patterns. – Phylogeographic structure in the Sierran jumping 

mice appears to reflect long-term sustained faunal isolation, north-south division of lineages, and 

elevational shifts with warming climates (Moritz et al. 2008).  Other vertebrates in the Sierra 

Nevada's also show a pronounced north-south split such as wood rats (Matocq 2002a, 2002b; 

Matocq and Murphy 2007; Matocq et al. 2007), salamanders, and newts (Tan and Wake 1995; 

Wake 1997).  A concordant signature among several species may reflect the influence of glaciers 

and pluvial lakes formed during the Pleistocene that impeded gene-flow (Gillespie and Zehfuss 

2004; James et al. 2002).  Further evaluation of shifts in elevation through glacial cycles, in 
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combination with comparative assessments of temporal and spatial congruence in lineage 

diversification across co-distributed taxa, is needed for the region.   

In general, Southern clades of Z. princeps demonstrate strong phylogeographic structure 

that reflects long periods of isolation without mixing of lineages.  There were no haplotypes 

shared among geographic regions (Fig. 3) with molecular signatures (Table 1) indicative of long-

term segregation during the LGM in a series of isolated refugial areas across western North 

America.  Coalescent simulations reject an admixture hypothesis but not the persistent allopatric 

hypothesis (Fig. 4).  Jumping mice lineages exhibit higher levels of mtDNA divergence than 

documented for many other sister-species comparisons in mammals (Baker and Bradley 2006).  

Further, segregation may have persisted over multiple glacial cycles.  Multi-locus data, coupled 

with fossil calibration and relaxed molecular clocks (Drummond et al. 2006; Heled and 

Drummond 2010), have been used to establish initial isolation events in birds and mammals in 

western North America (McCormack et al. 2011; Reid et al. 2011).   Independent lines of 

evidence suggest there is a common process of allopatric divergence, with historical vicariance 

via intervening xeric environments, responsible for phylogeographic signatures in DNA and 

niches among co-distributed taxa (Arbogast and Kenagy 2001; Carstens et al. 2005; Sullivan et al. 

2000; Zink 2002).  Implications of a common signature suggest shared biogeographic processes 

(Gutierrez-Garcia and Vazquez-Dominguez 2011; Ronquist and Sanmartin 2011) at the 

community level.  Thus, projected climate change and potential shifts in distribution may have 

more profound (community level) effects that previously considered (Ackerly et al. 2010; Moritz 

et al. 2008; Thomas et al. 2004). 

 In conclusion, deep molecular divergence within Z. princeps is accentuated over the 

southern portion of its current distribution.  The wide latitudinal range of Z. princeps provides 

future opportunities to test hypotheses of incipient speciation using multi-locus models and 

coalescent techniques (Carstens et al. 2005; Lessa et al. 2003).  Refinement of the persistent 



96 

allopatric hypothesis includes testing among vicariant speciation models but serves as a working 

hypothesis to explore concerted signatures among co-distributed species.  These preliminary data 

suggest geographic separation between southern lineages has been a dominant and persistent 

force shaping divergence within Z. princeps and presumably sympatric mammals.  Whether these 

vicariant signatures are suggestive of a common process that is spatially and temporally shared 

across co-distributed mammals, versus simply idiosyncratic responses to fluctuating climate, 

should be explored. 
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APPENDIX 

 Specimens examined are listed by scientific name, collection localities, source museums (museum catalog number), and 

corresponding GenBank accession numbers  (mitochondrial DNA cytochrome b [cytb], nuclear DNA glucocerebrosidase gene [GBA] 

and myosin heavy chain 2 [MYH2], or - for not applicable) for jumping mice samples used in this study.  Acronyms for museum 

accessions are MSB - Museum of Southwestern Biology - University of New Mexico, Albuquerque; MVZ - Museum of Vertebrate 

Zoology - University of California, Berkley; UAM - University of Alaska Museum of the North, Fairbanks.  Locality abbreviations: 

Apache Sitgreaves National Forest (ASNF), Inyo National Forest (INF), Kings Canyon National Park (KCNP), Lassen National 

Forest (LNF), Lassen Volcanic National Park (LVNP), Peppers Lake Recreation Area (PLRA), Point Reyes National Seashore 

(PRNS), Powdermill Nature Reserve (PNR), Routt National Forest (RNF), Santa Fe National Forest (SFNF), Yellowstone National 

Park (YSNP), Voyageurs National Park (VNP), Yosemite National Park (YNP). 

Species Subspecies State/Province Locality GenBank accession (cytb,GBA,MYH2) 

no.(s) 

Museum accession no.(s) 

Z. princeps saltator Alaska Chickamin River xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,-,-; 

xxx.xxx,xxx.xxx,- 

UAM-22750; UAM-22760; UAM-22771; 

UAM-22773 

Z. princeps saltator Alaska Gwent Cove xxx.xxx,-,-; xxx.xxx,-,- UAM-33121; UAM-33122 

Z. princeps saltator Alaska mouth of Unuk River xxx.xxx,xxx.xxx,-; xxx.xxx,-,-; xxx.xxx,-,- UAM-22765; UAM-22748; UAM-22749 

Z. princeps saltator Alaska Reflection Lake xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,xxx.xxx,- UAM-71051; UAM-71052; UAM-71139 
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Z. princeps saltator Alaska Stikine River xxx.xxx,-,-; xxx.xxx,xxx.xxx,- UAM-20805; UAM-20789 

Z. princeps saltator Alaska Tyee xxx.xxx,-,- UAM-52172 

Z. princeps minor Alberta 4 km N, 38 km W Sundre xxx.xxx,xxx.xxx,xxx.xxx MSB-55774 

Z. princeps minor Alberta PLRA xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,xxx.xxx,- 

MSB-55775; MSB-55776 

Z. princeps saltator British Columbia Nass River Valley xxx.xxx,-,- UAM-52267 

Z. princeps pacificus California Fresno Co., Bullfrog Lake, KCNP xxx.xxx,-,- MVZ-224516 

Z. princeps pacificus California Mariposa Co., 3.2 mi E Chinquapin, YNP xxx.xxx,-,- MVZ-201664 

Z. princeps pacificus California Mariposa Co., Bridalveil Creek, YNP xxx.xxx,-,- MVZ-201648 

Z. princeps pacificus California Mariposa Co., Crane Flat, YNP xxx.xxx,xxx.xxx,xxx.xxx MVZ-201646 

Z. princeps pacificus California Mariposa Co., Merced Grove, YNP xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,-,-; 

xxx.xxx,-,- 

MVZ-201639; MVZ-201640; MVZ-216663; 

MVZ-216664 

Z. princeps pacificus California Mariposa Co., Monroe Meadows, YNP xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,xxx.xxx,xxx.xxx; xxx.xxx,-,-; 

xxx.xxx,xxx.xxx,- 

MVZ-201649; MVZ-201650; MVZ-201658; 

MVZ-201659 

Z. princeps pacificus California Mariposa Co., Yosemite Creek, YNP xxx.xxx,-,- MVZ-201647 

Z. princeps pacificus California Mono Co., Bohler Creek xxx.xxx,-,- MVZ-208346 

Z. princeps pacificus California Mono Co., Sweetwater Canyon xxx.xxx,xxx.xxx,xxx.xxx MSB-53415 

Z. princeps pacificus California Mono Co., Walker Lake xxx.xxx,-,- MVZ-216676 

Z. princeps pacificus California Mono Co., Warren Fork of Lee Vining Creek xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,-,- MVZ-208347; MVZ-208348; MVZ-208350 

Z. princeps pacificus California Nevada Co., Sagehen Research Station xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,xxx.xxx,xxx.xxx 

MVZ-193108; MVZ-193109 
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Z. princeps pacificus California Plumas Co., Willow Lake Campground, LNF xxx.xxx,-,- MVZ-200067 

Z. princeps pacificus California Tehama Co., LVNP xxx.xxx,xxx.xxx,xxx.xxx; xxx.xxx,-,- MVZ-199204; MVZ-199205 

Z. princeps pacificus California Tulare Co., Little Brush Meadow, INF xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,-,-; 

xxx.xxx,-,- 

MVZ-224512; MVZ-224513; MVZ-224514; 

MVZ-224515 

Z. princeps pacificus California Tuolumne Co., North Crane Creek, YNP xxx.xxx,-,- MVZ-201636 

Z. princeps pacificus California Tuolumne Co., upper Lyell Canyon, YNP xxx.xxx,xxx.xxx,-; xxx.xxx,-,- MVZ-201665; MVZ-201666 

Z. princeps pacificus California Tuolumne Co., Glen Aulin, YNP xxx.xxx,xxx.xxx,-; xxx.xxx,-,- MVZ-201672; MVZ-201673 

Z. princeps pacificus California Tuolumne Co., McGee Lake, YNP xxx.xxx,-,- MVZ-201674 

Z. princeps pacificus California Tuolumne Co., Dorothy Lake, YNP xxx.xxx,-,-; xxx.xxx,-,- MVZ-216654; MVZ-216655 

Z. princeps pacificus California Tuolumne Co., Grace Meadow, YNP xxx.xxx,-,- MVZ-216657 

Z. princeps pacificus California Tuolumne Co., Virginia Canyon, YNP xxx.xxx,-,-; xxx.xxx,-,- MVZ-216665; MVZ-216666 

Z. princeps princeps Colorado Jackson Co., Connor Creek xxx.xxx,xxx.xxx,-; xxx.xxx,-,-; 

xxx.xxx,xxx.xxx,- 

MSB-76672; MSB-76673; MSB-76674 

Z. princeps princeps Colorado Routt Co., RNF, Reed Creek xxx.xxx,-,-; xxx.xxx,-,- MSB-76593; MSB-76595 

Z. princeps idahoensis Montana Gallatin Co., Hyalite Creek xxx.xxx,-,-; xxx.xxx,-,- MSB-56732; MSB-56733 

Z. princeps princeps New Mexico Mora Co., 8 mi N, 6 mi E Tres Ritos xxx.xxx,xxx.xxx,- MSB-43520 

Z. princeps princeps New Mexico Santa Fe Co., 5 mi N, 8 mi E of Santa Fe xxx.xxx,-,- MSB-41124 

Z. princeps princeps New Mexico Santa Fe Co., SFNF, Ski Basin Rd. xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,xxx.xxx,-; xxx.xxx,xxx.xxx,- 

MSB-72781; MSB-72783; MSB-72785 

Z. princeps princeps New Mexico Taos Co., 4 mi NE of Tres Ritos xxx.xxx,xxx.xxx,xxx.xxx MSB-41242 

Z. princeps princeps New Mexico Taos Co., 4 mi N, 11 mi E Arroyo Hondo xxx.xxx,-,- MSB-41333 
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Z. princeps utahensis Utah Wasatch Co., Strawberry Reservoir xxx.xxx,-,-; xxx.xxx,-,-; 

xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,xxx.xxx,xxx.xxx 

MSB-77223; MSB-77224; MSB-77225; MSB-

77226 

Z. princeps princeps Wyoming Carbon Co., Battle Creek,  xxx.xxx,xxx.xxx,- UAM-51347 

Z. princeps princeps Wyoming Carbon Co., Snowy Range DQ665221,-,-  

Z. princeps idahoensis Wyoming Park Co., YSNP, Blacktail Cabin xxx.xxx,-,-; xxx.xxx,xxx.xxx,xxx.xxx; 

xxx.xxx,-,-; xxx.xxx,xxx.xxx,- 

MSB-72296; MSB-72297; MSB-72298; MSB-

72299 

Z. princeps idahoensis Wyoming Park Co., YSNP, Lamar Creek xxx.xxx,-,- MSB-72294 

Z. princeps idahoensis Wyoming Park Co., YSNP, Slough Creek xxx.xxx,-,-; xxx.xxx,-,-; xxx.xxx,-,-; 

xxx.xxx,xxx.xxx,-; xxx.xxx,-,- 

MSB-72300; MSB-72301; MSB-72302; MSB-

72303; MSB-72304 

Z. hudsonius alascensis Alaska Murray Lake xxx.xxx,xxx.xxx,xxx.xxx MSB-247097 

Z. hudsonius hudsonius Minnesota St Louis Co., VNP xxx.xxx,xxx.xxx,xxx.xxx MSB-73498 

Z. hudsonius luteus Colorado La Plata Co., Florida River JN546499,xxx.xxx,xxx.xxx MSB-154917 

Z. trinotatus orarius California Marin Co., Abbott's Lagoon, PRNS xxx.xxx,xxx.xxx,xxx.xxx MVZ-191736 

Z. trinotatus trinotatus Oregon Benton Co., Prairie Mountain xxx.xxx, xxx.xxx,xxx.xxx; AF119262,-,- UAM-67563; UAM-67564 

N. insignis insignis New Brunswick 

 

Kings Co. xxx.xxx,xxx.xxx,xxx.xxx MSB-229713 
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FIGURES 

 

FIG. 1.– Distribution and range limits of North American zapodids - Zapus hudsonius 

(grey), Z. princeps (hashes), and Z. trinotatus (stipples) modified from Hall (1981).  

Currently recognized sub-species 1) Z. p. chrysogenys, 2) Z. p. cinereus, 3) Z. p. curtatus, 

4) Z. p. idahoensis, 5) Z. p. kootenayensis, 6) Z. p. minor, 7) Z. p. oregonus, 8) Z. p. 

pacificus, 9) Z. p. princeps, 10) Z. p. saltator, 11) Z. p. utahensis, a) Z. t. trinotatus, b) Z. 

t. montanus, c) Z. t. eureka, d) Z. t. orarius. Sub-species of Z. hudsonius not shown. 
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FIG. 2.– Phylogram of Bayesian inference majority rules consensus tree produced using 

GTR+I+Γ model and samples of Z. princeps and other taxa for the mitochondrial cytb 

gene.  Stars at nodes correspond to posterior probabilities (>0.95, PP) from 50k post 

burn-in trees and 1k non-parametric bootstraps (>.90 ML).   
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FIG. 3.– Median joining statistical parsimony networks for jumping mice mtDNA (cytb) 

with respect to geography and nDNA (GBA and MYH2 - inset).  Individual tick marks 
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represent one polymorphic site or mutation (step) and squares represent missing or 

ancestral haplotypes.  Note multiple haplotypes per locality in southern lineages 

reflecting deep phylogenetic history but haplotypes shared among geographic locations in 

the most northern populations of the Boreal clade reflecting recent demographic history.   
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FIG. 4.– Alternative demographic hypotheses for Zapus princeps using the parametric 

bootstrap test (coalescent simulations) of divergence patterns in jumping mice with 90% 

confidence intervals.  Hypotheses of persistent allopatry (PA, grey) versus admixture 

(AM, white) with the arrow highlighting the empirical tree value for Slatkin and 

Maddison's s (1989; s = 13). Numbers correspond with geographic ranges and clades in 

PA (1 = Z. trinotatus, 2 = N. Sierra, 3 = S. Sierra, 4 = Boreal, 5 = Uinta, 6 = S. Rockies) 

but clades are represented geographically (mixed) in AM. 
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FIG. 5.– Phylogenetically-informed species distributions models using MAXENT based on 

point-wise mean logistic bootstrap prediction from 20 replicates and minimum training 

presence threshold rule (>0.20) from 12 environmental variables for Z. princeps, Z. 

trinotatus, and Sierran jumping mice.  Geographic overlap was calculated in km
2
 for each 

pair and indices (D, I, RR; Warren et al. 2008, 2010) with significance (* < 0.05, **< 

0.001) via 100 pseudo-replicates using ENMtools.  
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TABLES 

Table 1. – Molecular diversity indices of mtDNA (cytb) and nDNA (GBA and MYH2) for North American jumping mice calculated in 

DNASP; N = Number of individuals sampled, S = polymorphic sites, h = number of haplotypes, = haplotype diversity and standard 

deviation (sd),  = nucleotide diversity (per site), and neutrality estimates.  Tajima's D and Fu's Fs were calculated with coalescent 

simulations (10,000 replicates) with values that correspond to calculations based on the Waterson estimator theta ( W).  Stars 

represent significance *<0.05, **<0.01.  Napaeozapus excluded from cytb analyses.  

 N S h 

(sd) 

 D Fs  

cytb gene 101 157 41 .933 

(0.018) 

0.093 1.303 6.981 

    Boreal 32 75 14 0.986 

 (0.013) 

0.010 -1.710* -11.732** 
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    Northern Sierra 5 11 5 1.000 

(0.126) 

0.005   

    Southern Rockies 14 30 7 0.846 

 (0.061) 

0.011  0.992 4.720 

    Southern Sierra 36 15 5 0.546  

(0.094) 

0.005 -1.626* -5.789** 

    Uinta 4 3 3 0.833 

(0.222) 

0.002   

    Z. trinotatus 4 20 3     

    Z. hudsonius 6 82 4     

GBA gene 32 (64) 22 18 0.895 0.010 -1.030 -5.893* 
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MYH2 gene 25 (50) 16 17 0.938 0.014 -0.305 -9.214* 



133 

 

CHAPTER 3 

USING HISTORICAL BIOGEOGRAPHY TO INFORM CONSERVATION: THE CASE OF 

PREBLE’S MEADOW JUMPING MOUSE 

Jason L. Malaney 
a,1

, Joseph A. Cook 
a
 

a 
Museum of Southwestern Biology, Department of Biology, University of New Mexico, 

Albuquerque, NM 87131 

 

1
 Correspondence should be sent at the address: Museum of Southwestern Biology, 

Department of Biology, University of New Mexico, Albuquerque, NM 87131 or E-mail: 

jmalaney@gmail.com 

 

  



134 

 

ABSTRACT 

The last Pleistocene deglaciation shaped temperate and boreal biotic communities in 

North America. Rapid northward expansion into high latitudes created distinctive spatial 

genetic patterns including distant populations of widespread species that are closely 

related while adjacent populations, especially those near the southern periphery, often are 

distinctive due to long-term disjunction. Across a spatial expanse that includes both 

recently colonized and long-occupied regions, we analyzed molecular variation in 

zapodid rodents to explore how historical climate shifts influenced diversification in this 

group. By combining molecular analyses with species distribution modeling and tests of 

ecological exchangeability, we show that the lineage including the Preble's meadow 

jumping mouse (Zapus hudsonius preblei), a federally listed taxon of conservation 

concern, is not restricted to the southern Rocky Mountains. Rather, populations along the 

Front Range are part of a single lineage of ecologically indistinct populations that extends 

to the far north. Of the 21 lineages identified, this Northern lineage has the largest 

geographic range and relatively low measures of genetic diversity, consistent with recent 

northward expansion. Comprehensive sampling combined with coalescent-based analyses 

and niche modeling lead to a radically different view of geographic structure within 

jumping mice and indicates the need to re-evaluate their management. Our study 

highlights a fundamental principle in conservation biology, that biogeographic history 

should be central to establishing conservation priorities for sound management initiatives.  

 

keywords. conservation prioritization | evolution | niche modeling | phylogeography | 

speciation  
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INTRODUCTION 

 Historical biogeography provides the spatiotemporal context to document 

geographic variability and to explore processes responsible for generating diversity (1, 2). 

A growing body of knowledge from fossils (3) and DNA analyses (4) demonstrates 

massive pole-ward shifts (5, 6) of biota since the last glacial maximum (LGM 26.5-19.0 

ka; (7)), reflecting the role of Pleistocene climate fluctuations in shaping present-day 

distributions and patterns of diversity. Analogous shifts to higher elevations with 

warming conditions are also documented (8, 9). In North America, molecular signatures 

reveal that across multiple species, many high-latitude populations share recent ancestry 

with distant low-latitude populations due to rapid northward colonization following 

glacial retreat (4). Conversely, adjacent low-latitude populations are often genetically 

divergent, reflecting enduring spatial disjunction. Identifying distinct evolutionary 

lineages and their spatial distribution is central to understanding the processes that lead to 

biological diversification, but these entities are also the units that are the target of 

conservation action. Deciphering molecular signatures across the entire range of a species 

should be an essential first step toward executing effective conservation and management 

strategies, but this step requires broad sampling across multiple components (taxonomic, 

genetic, geographic, ecological) to ensure variation and historical signatures are 

rigorously assessed (10-12). 

 The federal Endangered Species Act (ESA) is a cornerstone of management 

practices in the United States and often guides conservation spending, however, 

implementation of the ESA can be problematic (13-15). Debate persists on how best to 

assess imperilment, but a foundational principle is to conserve diversity, often by 
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identifying evolutionarily divergence (16-19). Limited ranges also are widely considered 

to increase conservation concern (20, 21). Conservation decisions often need to be made 

quickly and, thus, using available information, which can often be datasets based on a 

single character type (usually morphology) analyzed decades ago, before the 

sophisticated quantitative methods available to modern studies. Consequently, 

conservation efforts frequently rely on antiquated intraspecific taxonomy (i.e., 

subspecies) as the primary roadmap identifying diversity (22), yet federal managers are 

bound by statute to follow the ‘best-available science’. Allocation of finite conservation 

resources should hinge on the ability to define geographic variation (e.g., Evolutionarily 

Significant Units – ESU) within species (23, 24) and assess ecological exchangeability 

within and among ESUs (25-27). These goals depend on adequate sampling across genes 

to identify units of significant evolutionary distinction and across the spatial and 

ecological breadth of lineages (28-30) to ensure evolutionary history is well established. 

We implement conservation phylogenetic methods (31-34) by integrating genetic and 

ecological approaches to assess whether genetic subdivisions are consistent with jumping 

mice taxonomic hypotheses. Then we develop conservation priorities that reflect a 

historical-biogeographic perspective (35-38) predicated on extinction threats. 

Conservation phylogenetic techniques have been developed (39, 40) in an effort to more 

objectively prioritize protection efforts. We explore the historical signatures (genetics and 

niches) of jumping mice and simultaneously test alternative hypotheses of evolutionary 

independence across this group to better inform conservation action. 

 Broadly, our aim is to highlight that unraveling biogeographic signatures of the 

past is an essential step in conservation efforts. Our specific goal is to examine whether 
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geographic structure of evolutionary diversity is reflected in taxonomy which is the 

current foundation of the politically-charged management of zapodid rodents in North 

America (41, 42). Specifically we integrate phylogeographic structure, including 

historical demographic signals and spatial shifts, into conservation prioritization. 

Through a coalescent-based approach (43, 44), populations of the Preble's meadow 

jumping mouse (Zapus hudsonius preblei, Fig. 1B) along the Front Range of Colorado 

and Wyoming (45, 46) are minimally diverged from populations extending far northward 

to western Canada and Alaska (Fig. 1A, 2). Since 1998, controversy regarding the federal 

listing of this subspecies has led to rancorous debates in popular press (47, 48), science 

(49-55), policy (56, 57), and law (58). Conservation efforts for Z. h. preblei in the past 

were estimated at nearly $172 million (59) and may cost an additional $268 million in the 

next 2 decades (60, 61). Our work extends previous efforts to test the distinctiveness of 

this subspecies (49, 55) by placing Z. h. preblei populations within an expanded context 

of evolutionary diversification and ecological variation across all zapodid taxa, not just 

adjacent subspecies.  
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METHODS 

 Our generalized workflow began with sequencing genes from all jumping mice 

taxa using samples from natural-history museums and targeted fieldwork (2007 and 

2010) to obtain topotypes, but also considering a broader phylogenetic context. Single 

gene and multilocus phylogeny reconstructions (e.g. species-tree) were used to identify 

lineages (e.g. ESUs). Coalescent-based population summary statistics (mtDNA) and 

multilocus Extended Bayesian Skyline analyses were conducted to document historical 

demographic change for each lineage. Phylogenetically-informed species distribution 

models (SDM) were constructed from contemporary locality records and projected to the 

past (66, 80, 112, 121) to identify potential paleodistributions (i.e. at LGM). Fossils were 

integrated for the species-tree phylogeny and to independently confirm 

paleodistributions. Finally, evolutionary distinctiveness (i.e. monophyly), population size 

change (contemporary and past), contemporary range size, historical range size, and 

existing risks were integrated to define extinction threats (SI Appendix, Table S1) and 

each lineage was assigned an updated regional IUCN score (117). IUCN scores were then 

converted using ranks-to-extinction probability transformations and applied to the 

taxonomy-based species-tree phylogeny (33, 39) to more objectively measure and assess 

conservation priorities.   

Genetic Data. We obtained DNA sequences for 762 jumping mice across North America 

from existing natural-history collections and targeted fieldwork at type localities (i.e. 

topotypes) of subspecies. We extracted and sampled DNA from 430 individuals and 

sequenced the complete mitochondrial cytochrome b gene (cytb – 1140 bp). To more 

fully explore genomic diversity, we also sequenced a subset of these specimens for 2 
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nuclear introns and 2 nuclear exons. Partial introns included Apolipoprotein B (APOB) 

and Glucocerebrosidase (GBA), and partial exons Breast Cancer Susceptibility (BCRA1), 

and the beta-myosin heavy chain (MYH7). Partial (1006 bp) cytb data were obtained 

from GenBank for 332 samples (predominantly Z. hudsonius) from previous molecular 

studies (49, 55). Samples were partitioned by species; 31 N. insignis (5 subspecies), 455 

Z. hudsonius (12 subspecies), 223 Z. princeps (10 subspecies), and 53 Z. trinotatus (4 

subspecies) to address conservation-phylogenetic and historical-biogeographic questions 

and assess if phylogeographic structure is reflected in the existing taxonomy (41, 42, 85); 

Fig. 2, SI Appendix, Fig. S1). Polymerase chain reactions (PCR) and cycle sequencing 

followed protocols previously established (84, 122, 123) and heterozygous positions were 

scored using the IUPAC nucleic acid code. 

 Specific nDNA alleles were identified using statistical methods with haplotypes 

inferred from multi-allelic loci using a Bayesian framework via PHASE (124, 125) in 

DNASP v. 5.10.01 (126). We conducted three independent runs for each locus for 1k 

iterations with alterations in block size for the partition-ligation procedure. Individual 

haplotypes that could not be statistically resolved (<90% posterior probability) were 

coded as missing data. Homologous sequences were aligned using MUSCLE v. 3.7 (127) 

and validated visually. Individual contigs were deposited in GenBank (xxxx.xxxx-

xxxx.xxxx). 

Phylogenetic Analyses. We conducted phylogenetic analyses using a Bayesian inference 

(BI) framework for each locus with MRBAYES v. 3.1.2 (128, 129). Aligned datasets were 

subjected to alternative models of sequence evolution in jModelTest (130) where 

Bayesian information criterion (BIC) (131) was used to determine the best-fit nucleotide 
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substitution model (SI Appendix, Table S4). Phylogenetic reconstructions were initiated 

with random trees, run with 4 chains (default heating values) for 5 million generations, 

with sampling every 5k generations. Convergence diagnostics were completed with the 

program AWTY (132) and optimal parameter estimates were examined in TRACER (133). 

Nodal support (posterior probability – PP) was identified in the consensus of the residual 

trees with the first 5k trees discarded (134) and three independent runs were performed to 

ensure replicated convergence and trees were depicted with FIGTREE. 

 Given that tree-based methods may fail to reveal reticulate evolution (135) often 

inherent to recent divergences, we also conducted a phylogenetic statistical-parsimony 

network analysis (120) for each species and each gene using TCS v. 1.21 (119). For Cytb, 

we detected 102 haplotypes in our Z. hudsonius dataset, and 33 within the Northern 

lineage as a distinct network with a significant (95%) limit at 5 steps (other networks not 

presented). We failed to detect haplotype H from King et al. (49) and the reported sample 

is identical to A. We document 4 other errors in reporting data. In Douglas Co. Colorado, 

both haplotypes C and I were reported, but all available datasets reflect only haplotype J 

at this locality. GenBank does not return haplotypes E or S, but reported F and V have 2 

distinct haplotypes each that we inferred respectively (highlighted with an asterisk in SI 

Appendix, Fig. S4). We detected the widespread I haplotype from two new locations plus 

one additional haplotype in Colorado. Twelve closely related haplotypes were detected in 

the far North.   

Species-Tree Estimation and Divergence. Single-gene analyses often indicate a lack of 

monophyly at the species level and may vary in comparisons among loci (136), so we 

estimated the phylogeny with *BEAST (65) using a subset of the molecular data from 
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each subspecies (topotypes). We used species-tree methods (136) to assess if 

phylogeographic structure is reflected by the morphologically-based subspecies 

taxonomy of North American jumping mice (42). We sampled at least one representative 

individual topotype for each subspecies but generally >3 representatives for all genes 

conforming to a multilocus, multispecies, coalescent-based framework. Analyses were 

setup in BEAUti v. 1.7.0 and run with BEAST v.1.7.0. Fossil calibration points for 

divergences were used at several nodes (137), Fig. 2) of the species-tree from well-dated 

fossils of North American zapodids (92, 116, 138-141) and correspond to 

paleodistribution reconstructions (see below) and established estimates of spatiotemporal 

divergence. A strict molecular clock (0.05) was used for the mtDNA dataset and 

estimated clocks for nDNA. Models of sequence evolution were used for each locus with 

remaining parameters set to default. Runs were conducted for 50M generations, sampled 

every 5k, and we examined ESS values (>200) in TRACER and split frequencies across the 

Markov-chain in AWTY (132) indicating stabilization. 

Demographic Tests. Molecular diversity indices (142) were calculated in DNASP and 

determined for each gene, by species, and by lineage (Table 2; only mtDNA presented) 

including segregating sites (S), number of haplotypes (Nh), haplotype (h) and nucleotide 

(π) diversity, and mean nucleotide differences (K). Population equilibrium tests for the 

mtDNA dataset were conducted by each lineage and included Tajima’s D (143) Fu’s FS 

(144), and R2-test (88), and significance was assessed using a null distribution of 10,000 

coalescent-based simulations. Population equilibrium tests (D, FS, R2) have high power 

for revealing demographic change under a model of sudden expansion (88) where 

significant negative values of D and FS and small positive values of R2 are indicative of 
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population growth. Tajima’s D (large sample size) and the R2-test (small sample size) 

estimates demographic change using information from segregating sites whereas Fu’s Fs 

uses information from haplotype frequencies based on Ewens’ (145) sampling 

distribution. 

 Given that single gene summary statistics (e.g. D, FS, R2) may not accurately 

capture or assess all historical demographic information, we also analyzed the changes in 

population size through time using the Bayesian-skyline (single locus(90)) and extended 

Bayesian-skyline (multilocus (89)) analyses. These coalescent-based approaches 

calculate the posterior distribution of effective population size at intervals along the 

phylogeny. We performed analyses for each zapodid lineage using the model of 

nucleotide substitution, fixed the mtDNA substitution rate to 1 (substitution per site) and 

maintained a strict molecular clock, but estimated clocks for the nDNA datasets. Default 

setting for the skyline model (constant) and number of groups (10, except n-1 for Coastal, 

Northern Sierra, Okanogan, and Southern Cascade) were retained.  

Species Distribution Modeling. We used SDM to assess niche envelopes of each lineage 

with 2.5 minute (4km) resolution, bioclimatic variables (146) from the WorldClim 

database (http//www.worldclim.org) for contemporary and LGM. Modeling procedures 

followed previous studies (68, 147) by clipping the coverages to the study area (North 

America). Niche variables may be highly correlated and influence projections, so we used 

the 11 most biologically meaningful and uncorrelated coverages (Bio1-3, 7-9, 15-19; 

(82). Localities for each taxon were downloaded from MANIS (Jan 2011) and updated 

using biogeomancer workbench (148). To account for sampling biases (149) that may 

result in model over-fitting, we discarded localities with >0.5km
2
 uncertainty and down-
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sampled (aka culled) records so that only a single record was represented within 10 km
2
. 

We partitioned localities by species-tree lineages rather than nominal subspecies to 

reconstruct SDMs for contemporary and ancestral conditions. However, one exception 

includes a finer analysis of the Northern lineage to test if Z. h. preblei is ecologically 

exchangeable (see below) with conspecifics (i.e. Z. h. alascensis, Z. h. tenellus; SI 

Appendix, Table S2). Partitioned SDMs were used to inform regional IUCN rankings for 

each lineage (see below, SI Appendix, Table S1). 

SDMs were constructed using default settings in the program MAXENT version 

3.3.3a (114, 121) with 20 replicate runs. When possible, localities with genetic data were 

used as an alternative training dataset. When insufficient genetic samples were available, 

we randomly reserved 20% of available localities as training datasets. Models used the 

point-wise bootstrap median of replicated runs with the ‘90% of the samples included’ as 

the projection criterion. Given that changes in population size and range size are 

correlated (87, 91), we relate LGM and contemporary predicted SDM to historical and 

contemporary Ne that were then incorporated into IUCN rankings (see below). 

Niche conservation is a continuum (69, 150) where closely related taxa (i.e. 

lineages) generally share niche space more frequently than randomly expected, but rarely 

are environmental envelopes identical. Ecological exchangeability is expected when 

niches are sufficiently similar (26). To detect the degree of ecological exchangeability 

among jumping mice we assessed niche overlap between pairs of lineages using two 

metrics: the I statistic (69) and relative rank (RR; (151). With both metrics, pairwise 

overlap values range from 0.0 (completely discordant) to 1.0 (identical environmental 

envelopes). We also conducted ‘niche identity tests’ to assess if environmental envelope 
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overlap is significantly different (one-tailed test) from a null expectation for populations 

within the Northern lineage. Niche identity tests randomize sample points and reconstruct 

an expected degree of niche overlap from an underlying distribution. ENMTOOLS v.1.3 

(152) was used to assess niche overlap (I, RR) and conduct randomized tests (niche 

identity) using 100 pseudoreplicates for each analysis (SI Appendix, Table S2). 

Conservation Prioritization. Regional IUCN rankings were updated using established 

criteria (21, 117) and applied to each lineage to address both risk of extinction and 

conservation priority. Rankings are characterized by threats to extinction (SI Appendix, 

Table S1), which simultaneously incorporates independent datasets. These include 

current conservation concerns, phylogenetic distinctiveness, SDMs reflecting current 

range size and range size change since LGM relative (to conspecifics), plus contemporary 

and historical change in population size (84, 86, 104). IUCN rankings included: Critically 

endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least 

Concern (LC). The rankings Extinct, Extinct in the Wild, and Regionally Extinct 

(EX/EW/RE) and Data Deficient, Not Applicable, and Not Evaluated (DD/NA/NE) were 

not implemented in this study. 

 Next, regional IUCN ranks were converted using the IUCN100 (39, 98) ranks-to-

extinction probability transformations with the TUATARA module (153) in MESQUITE 

v.2.75 (154). There are several ranks-to-extinction transformations, but the IUCN100 (Fig. 

3) is thought to most accurately reflect threats to extinction within the next 100 years 

considering ongoing and future anthropogenic pressure (98). 
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RESULTS 

Sampling. Using museum collections and targeted fieldwork, we obtained range-wide 

samples that represented all extant zapodid taxa (i.e. complete taxon sampling, 32 

subspecies of 4 extant species), and then sequenced multiple genetic loci and inferred 

niche space to assess if genetic structure accurately reflects the nominal taxonomy (41, 

42). We simultaneously tested the genetic structure against the existing taxonomy and set 

the historic framework with a species-tree phylogeny (62-65). Then, by sampling niches 

using phylogenetically-informed SDMs (66, 67), we explored potential contemporary and 

paleodistributions (68) to assess ecological exchangeability (25, 26, 69).  

Phylogenetic Analyses. Bayesian gene-tree analyses of individual loci produced 

different estimates of divergence (SI Appendix, Fig. S1) and varying degrees of lineage 

sorting among phylogeographic groups (i.e. lineages). The mtDNA dataset had the 

strongest phylogenetic signal and support values (posterior probabilities ≥ 0.95) 

identifying 12 clades as deeply divergent. Phylogenetic analyses for the nuclear loci 

reflect some degree of allele sharing across the range of jumping mice, but in general, 

alleles are well partitioned among species and lineages (SI Appendix, Fig. S1).  

Species-Tree Estimation and Divergence. Our taxonomy-based species-tree reflected 

strong support for 21 phylogeographic lineages, but failed to document significant 

support for all morphologically-based subspecies (Fig. 2). Further, the species-tree 

revealed novel intraspecific relationships. For example, past assessments of the validity 

of Z. h. preblei focused on geographically proximate taxa that were assumed to be close 

phylogenetic relatives (SI Appendix, Fig. S2). Instead, far northern (geographically 
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distant) subspecies (i.e. Z. h. alascensis, Z. h. tennellus, and western populations of Z. h. 

hudsonius) form a closely related clade with Front Range Z. h. preblei (Fig. 2). This 

widespread lineage separated from the Southern Plains lineage (Z. h. campestris, Z. h. 

hudsonius, Z. h. intermedius) at the end of the last glacial period. This distilled 

understanding of shared biogeographic history and wide range of closely related 

haplotypes may alter conservation priorities for Front Range jumping mice.  

Demographic Tests. Assessments of changes in effective population size Ne were 

evaluated using both single-locus (mtDNA) and multi-locus techniques, with signatures 

for both generally concordant (Table 2, SI Appendix, Fig. S3). Ten lineages experienced 

significant shifts in Ne. The Northern lineage experienced the most pronounced historical 

demographic expansion signatures (Table 2, Fig. 1D, SI Appendix, Fig S3B), while the 

Uinta lineage reflected historical demographic declines (SI Appendix, Fig. S3C).  

Species Distribution Modeling. Climate-based SDMs predicted for each lineage reflect 

geographically restricted populations with varying degrees of niche overlap, but generally 

over-prediction was minimal (SI Appendix, Fig. S2). An exception is the Northern 

Cascade and Southern Cascade lineages that show niche overlap (I = 0.875, RR = 0.929), 

but deep divergence (middle Illinoisan; Fig. 2). Reconstructed SDMs fail to predict 

separation at the Columbia River. Relative influences of environmental parameters are 

typically lineage specific (SI Appendix, Table S3) but not for the Northern Cascade and 

Southern Cascade lineages. For example, Mean Temperature of Driest Quarter (Bio9), 

Precipitation of Coldest Quarter (Bio19), and Precipitation Seasonality (Bio15) had 

similar combined contributions (82.7% and 83.2%) for these lineages, a pattern that 

typifies niche models for recently diverged lineages (e.g. Acadian and Allegheny). Tests 
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of niche evolution (69) for subspecies within the Northern lineage suggest there is 

minimal differences among populations across this wide range (SI Appendix, Table S2).  

Conservation Prioritization.  Key metrics (SI Appendix, Table S1; (20)) that elevate 

conservation ranking include genetic distinctiveness (Fig. 2), comparatively low Ne 

(Table 2, SI Appendix, Fig. S3), population declines (historical or contemporary), spatial 

declines (Table 1), non-overlapping niches (i.e., not ecologically exchangeable; SI 

Appendix, Table S2), and existing management efforts (e.g., Z. h. preblei). We defined 

the risk of extinction for all lineages by first establishing genetic distinctiveness (Fig. 2), 

then calculating effective population sizes (Ne; Table 2, SI Appendix, Fig. S3), population 

declines (historical and contemporary), spatial shifts in distribution (Table 1), and overlap 

in niche space (i.e., ecologically exchangeability) among lineages. Risks of extinction 

ranged from Least Concern (0.0001) to Critically Endangered (0.999) and were applied in 

a phylogenetic context to determine conservation priority. The lineage that includes the 

federally threatened subspecies Z. h. preblei has low priority (Fig. 3) while other lineages 

without protection are identified as high priority (i.e., high extinction threat of a divergent 

lineage). 
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DISCUSSION 

This study highlights how historical biogeography can be used to lay a foundation 

for conservation action. Specifically, the federally listed Z. h. preblei is part of the wide-

ranging Northern lineage, composed of closely related populations that expanded north- 

and westward following the last deglaciation of North America. Under a variety of well-

established conservation criteria, this widespread set of populations would hold lower 

conservation priority than other lineages that are genetically divergent, ecologically 

distinct, and geographically restricted units (i.e., endemic lineages) with molecular 

signatures indicative of declines (34, 70-72). We suggest that management plans for 

species-of-concern should, at a minimum, require comprehensive sampling of a species 

range coupled with phylogeographic analyses to establish a broad spatial and temporal 

perspective on diversity as a strong foundation for prioritizing conservation efforts. 

Second, inadequate sampling can lead to a failure to identify and test relevant taxonomic 

hypotheses, and thus fail to rigorously assess signatures of diversification and 

demography. Third, conservation phylogenetics (32), set within a broader lineage-based 

context that explicitly integrates historical signatures (e.g. demographic and spatial 

shifts), provides a more objective means of prioritizing management efforts (33). Finally, 

museums harbor an irreplaceable wealth of spatiotemporal data for deciphering changing 

conditions and informing conservation (9, 73). 

Comprehensive sampling reveals diversification that informs conservation. A 

requisite, but often overlooked, first step in any conservation study is establishing the 

systematic relationships and geographic limits of the taxon of concern (20). A key 

assumption in systematics is complete taxon sampling (29, 74, 75) to distinguish among 
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alternative phylogeographic hypotheses (11, 76, 77). By using comprehensive taxon 

sampling, assessing variation across multiple genetic loci (78, 79), and implementing an 

integrative approach that includes niche characterization (66, 80), we uncovered 21 

divergent lineages across North American jumping mice (Fig. 2). Generally, lineages 

differed in niche space (SI Appendix, Table S3) and these are interpreted as ecologically 

inexchangeable. For example, the Uinta lineage (Z. p. utahensis), is sufficiently 

distinctive based on genetic and niche variation to warrant specific status via classic 

measures (81-84) and within a generalized lineage context (43, 44). Similarly, using this 

approach, and accounting for limited morphological variation (42), Z. h. preblei would be 

considered synonymous with Z. h. alascensis and Z. h. tenellus. We suggest that jumping 

mice taxonomy (41, 85) currently under-represents species-level variation with both 

phylogenetic and niche datasets implying management should focus on lineages (84, 86), 

rather than subspecies, as the requisite backdrop to conservation action. More 

specifically, several divergent lineages other than the one including Z. h. preblei should 

be carefully assessed and monitored.  

Signatures of diversification and demography contradict taxonomic assumptions. 

We used extended Bayesian sky-line analyses to assess historic demographic signals (Fig. 

1D). The integrated molecular and niche approach reveals spatial shifts since the LGM 

(latitudinal, longitudinal, or elevational) that can be placed into four general models. [i] 

Demographic (4, 87) & Spatial (latitudinal) Expansion. The genetic signatures of 

Acadian, Appalachian, Boreal, Canadian, Great Plains, Northern (including Z. h. preblei), 

and the Northern Plains lineage (Table 2, Fig. 1D) significantly deviate from neutrality 

(88) with comparatively lower nucleotide diversity, increased haplotype diversity (87), 



150 

 

and recent population increases (SI Appendix, Fig. S3, (89, 90). Further, each lineage 

reflects spatial expansion from disjunct late-Pleistocene ancestral ranges (Fig. 1C, Table 

1, SI Appendix, Fig. S2). [ii] Demographic & Spatial Contraction (91). Conversely, the 

low-latitude and montane-associated Great Basin, Northern Sierra, Okanogan, Southern 

Cascades, Southern Rockies, and the Uinta lineages reflect signatures of demographic 

stasis or contraction with concordant spatial contraction during Holocene warming. [iii] 

Demographic Expansion with Elevational Shift. The Southern Sierra lineage recently 

experienced demographic expansion to higher elevations (not latitudes) since the LGM 

(86). [iv] Demographic Stability but Spatial Shift (84). Finally, the Coastal, Southern 

Plains, and the Southwestern lineage shifted from ancestral ranges, but experienced no 

significant demographic change. 

 The Northern lineage extends from Colorado northwest to the Alaskan Peninsula 

(Fig. 1A), a distance of >4700 km and the broadest distributional range of all jumping 

mice (Table 1). Among 16 lineages with >5 haplotypes, the Northern lineage has the 

lowest haplotype diversity (h), lowest nucleotide diversity ( ), and fewest nucleotide 

differences (K). Together (Table 2) these metrics indicate recent demographic growth (4, 

87). Further, populations across this wide range appear ecologically exchangeable (i.e., 

occupy equivalent niche space, SI Appendix, Table S2). Fossils dated to the Late 

Pleistocene from the Great Plains coincide with the paleodistribution models (Fig. 1C) 

(92) with the hind-cast narrow-range agreeing with low-density ancestral effective 

population sizes (Table 2, Fig. 1D). During the early Holocene as glaciers retreated, 

ancestors of the Northern lineage may have tracked suitable conditions westward from 

the Great Plains to regions along the Front Range of the Southern Rockies (49, 51, 55) 
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and northward to Alaska. Northward expansion signatures were detected in 6 other 

jumping mice lineages (Table 2), mirroring a common process (1, 4, 6, 87). However, no 

other zapodid reflects demographic expansion metrics near the magnitude of the Northern 

lineage (Table 2; Fig. S3).  

 Morphologically-based taxonomy (41, 42) and previous molecular studies of 

Preble’s jumping mice (49, 55) assumed that spatially adjacent subspecies were most 

closely related, leading to limited sampling of taxa (1/2 subspecies) and geographic 

breadth (<1/4 Z. hudsonius range) as the basis for the federal listing (52). In this case, 

spatially proximal subspecies are not necessarily closely related.  Zapus h. preblei was 

described in 1954 based on 4 adult specimens (42). Although diagnostic morphological 

characters (42) broadly overlap with northern subspecies (i.e., Z. h. alascensis and Z. h. 

tenellus), those subspecies were never directly compared, likely due to their tremendous 

geographic distance from the southern Rocky Mountain populations. Instead taxonomic 

evaluation of the jumping mice (49, 51, 53, 55) compared Southern Rocky Mountains 

with adjacent Plains and Southern subspecies (i.e., Z. h. preblei against Z. h. campestris, 

Z. h. intermedius, Z. h. luteus, Z. h. pallidus). This study reinforces the need to assess 

evolutionary variation within a comprehensive historical-biogeographic context, as a first 

step in evaluating conservation status (23, 39, 93, 94) or exploring other processes (25, 

26). Further, observations of morphological similarity across jumping mice were part of 

the basis for a proposal to remove recognition of all Z. hudsonius subspecies (95), but 

that conclusion was not incorporated in a formal taxonomic revision. Our tests of 

adaptive niche variation are across multiple populations of the Northern lineage that 

showed no statistically significant ecological differences (SI Appendix, Table S2). To 
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fully address conservation of North American jumping mice, a comprehensive taxonomic 

re-evaluation of all lineages and subspecies is needed and should include a set of tests 

that encompasses the emerging historical-biogeographic perspective, and more finely 

assesses hypotheses of both evolutionary independence and adaptive variation. 

Conservation prioritization informed by historical factors. Over seventy-five percent 

(16/21) of jumping mice lineages rank higher in conservation priority than the Northern 

lineage that includes the state and federally listed subspecies Z. h. preblei (Fig. 3). 

Furthermore, the 7 lineages (Acadian, Appalachian, Boreal, Canadian, Great Plains, 

Northern, Northern Plains) that experienced Model [i](i.e. Demographic and Spatial 

Expansion) are among the lowest conservation priorities (Fig. 3). Each of these lineages 

are recently diverged (Fig. 2, since Late-Pleistocene), have wide ranges that spatially 

expanded since LGM, reflect comparatively large Ne, and experienced recent 

demographic growth (Table 2; SI Appendix, Fig. S3). Moreover, Z. h. preblei is 

ecologically exchangeable with far northern subspecies (e.g. Z. h. alascensis and Z. h. 

tenellus). Combined, these metrics and regionally updated IUCN scores, suggest the 

Northern lineage is Least Concern (LC = 0 threats; Weights = 0.001 (40). However, 

given the ongoing management concerns in the Front Range of Colorado and Wyoming, 

we used the Near Threatened (NT = 0+ threats; Weights = 0.05, Fig. 3) for this lineage. 

 In contrast, lineages that are endemic to southern mountains and mesic coasts 

have remained relatively stable over glacial cycles (Model iv) or contracted to higher 

elevations (Model iii). Both are histories that largely preserved accrued genetic variation 

and ecological differentiation. These signatures demonstrate that climate-mediated 

demographic histories (96, 97) are mirrored in genes and niches with the 5 jumping mice 
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lineages with highest extinction threat over the next century (Fig. 3) are endemic to low-

latitude montane regions (Allegheny, La Sal, Southwestern, and Uinta) and the Redwood 

Coast of California (Coastal). Among these, the neoendemic Southwestern lineage 

(USFWS candidate Z. h. luteus) has an order of magnitude higher conservation priority 

(Fig. 3) than the Northern lineage (using IUCN100 (40, 98). The Allegheny (N. i. 

roanensis) lineage should have comparable priority over the Northern lineage, but has no 

protected status. Other jumping mice exhibiting higher conservation metrics, yet no 

protected status, include two populations of the La Sal lineage (Z. p. chrysogenys), the 

contracting Uinta lineage (Z. p. utahensis), and relict populations of the Coastal lineage in 

California (Z. t. eureka + Z. t. orarius). Thus, existing management plans targeting only 

Z. h. preblei may be missing key elements of evolutionary history. An integrative 

approach to conservation of zapodids should target distinct lineages at higher risk of 

extinction, particularly those that are endemic to regions with critical land use issues. 

Shrinking mesic habitats at lower latitudes are due to the synergy (99) between climate 

change (100-102) and anthropogenic fragmentation (103) that may precipitate jumping 

mice declines (84, 104). Conversely, high-latitude lineages of zapodids are the result of 

expanded ranges during the warming phase of the Holocene epoch (4) and generally have 

lower extinction risk because of more limited human use of these landscapes.  

 Taken together, these data may counter the proposed listing of Z. h. preblei under 

the ESA (105, 106) based on traditional measures of rarity, such as limited range for an 

ecologically and genetically discrete taxon (107, 108). Conservation efforts targeting 

jumping mice within the Front Range of Colorado and Wyoming (109) should be 

carefully re-evaluated in light of the projected wide distribution of the Northern lineage. 



154 

 

Localized population declines, as reported for Z. h. preblei (45, 110, 111), are 

problematic for mesic-associated organisms throughout the xeric environments of the 

West (104). These analyses identified lineages elsewhere with higher conservation 

priority, reinforcing the premise that management efforts should first identify and 

preserve the most ecologically and genetically divergent units (112). Furthermore, these 

results suggest management action should not rely principally on taxonomy that may be 

in need of revision (22) to more accurately reflect ecological distinction and evolutionary 

history. 

Specimen-based conservation remains undervalued. Finally, we underscore the point 

that museum collections directly facilitate and inform conservation efforts by providing 

temporal, spatial, and taxonomic breadth of samples. Integrative conservation analyses 

directly depend on widespread specimen representation in two phases: georeferenced 

occurrence records to project SDMs (113, 114) and high-quality specimens that preserve 

tissues and morphological features.  Specimens link genes to the phenotype and the 

organism to the environment providing the necessary framework to refine our 

understanding of how phenotypes are interacting with changing conditions. Analyses that 

are spatiotemporally anchored by fossil specimens further highlight the value of 

integration across independent datasets to build robust taxonomies (43) and falsifiable 

measures of diversity, critical for any conservation effort (115).  
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FIGURES 

  

Fig. 1. (A) Potential contemporary distribution of the Northern lineage (includes USFWS 

threatened Z. h. preblei.) (B) Photograph of Preble’s jumping mouse. (C) SDM for 

Northern lineage at the LGM. Note a significant expansion from ancestral range(s) to 

both high latitudes (e.g., Alaskan Peninsula) and Front Range of Colorado and Wyoming 

during the Holocene. Fossils (  ) dated to LGM on the Great Plains are consistent with the 

paleodistribution reconstruction with a narrow-range hind-cast projection. (D) Shallow 

divergence, wide range, and recent population changes (coalescent-based demographic 

tests: multilocus Extended Bayesian Skyline Plot and mtDNA summary statistics) all 

reflect significant demographic and spatial expansion following Pleistocene deglaciation. 
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This common historical-biogeographic process led to widespread and genetically similar 

populations that represent a low extinction threat of the lineage.   
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Fig. 2.  Coalescent-based Bayesian fossil-calibrated multilocus species-tree phylogeny 

(79) for North American jumping mice. Open circles (  ) at nodes represent >.95 posterior 

probability (PP), with skulls denoting fossil calibrations (92, 116) and bars highlighting 

95% highest posterior density interval (HPD) of divergence time. Background shading 

corresponds to species with tips reflecting the 32 subspecies + 2 cryptic, significantly 

divergent lineages (*). Tip shapes represent 21 significantly divergent historical-

biogeographic lineages and correspond with other Tables and Figures. Taxa of 

conservation concern include (t) the federally threatened subspecies (Z. h. preblei) and (c) 

the federal candidate subspecies (Z. h. luteus). Grey boxes below reflect interglacial (H–

Holocene; S–Sangamonian) and glacial periods (blue; I–Illinoian; W–Wisconsinan) 

Napaeozapus insignis 

Zapus hudsonius 

Zapus princeps 

Zapus trinotatus 
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through the Pleistocene and corresponding Irvingtonian and Rancholabrean North 

American land mammal stages.  
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Fig. 3. Conservation prioritization (Evolutionarily Distinct + Globally Endangered – 

EDGE vs. May’s Distinctness) scores contrasted for 21 divergent North American 

jumping mice lineages. The lineage that includes the federally threatened taxon (Z. h. 

preblei – green cross) is among the lowest conservation priorities using the IUCN100 

ranks-to-extinction probability transformation (40, 98).
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TABLES 

Table. 1. Lineages with associated subspecies, range areas (km
2
) and furthest distributed range (km) using 90% minimum presence 

threshold for contemporary and LGM median SDMs (see Fig. 1 and SI Appendix, Fig. S2), and updated regional IUCN100 scores (40, 

98, 117) following the ranks-to-extinction probability transformation.  *Cryptic and un-described taxa (86). #Current range area based 

on georeference and associated uncertainty (118). 

Species & Lineage subspecies Current km
2
 

area 

LGM   km
2
 

area 

km range IUCN100 

N. insignis      

Acadian  insignis  499,470 687,711 1,486 0.01 

Allegheny  roanensis 450,840 645,627 926 0.667 

Canadian  abietorum 

frutectanus 

saguenayensis 

990,523 204,610 2,329 0.001 
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Z. hudsonius      

Appalachian  
acadicus 

americanus 

ladas  

907,822 53,898 2,744 0.1 

Can. Shield  canadensis 1,505,480 989,855 2,080 0.1 

Northern  
alascensis 

preblei  tenellus  

2,421,006 914,388 4,701 0.01 

N. Plains  
campestris 

hudsonius 

intermedius  

2,166,740 1,020,983 2,559 0.001 

S. Plains  pallidus 430,561 789,993 958 0.1 

Southwestern  luteus     208,817 429,565 787 0.999 

Z. princeps      
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Boreal  idahoensis 

saltator  

710,746 131,824 2,624 0.001 

Great Basin  cinereus  

curtatus 

oregonus  

206,593 536,630 877 0.1 

Great Plains  minor 

kootenayensis 

624,282 525,904 1,703 0.001 

La Sal  chrysogenys 36 
#
 N/A 13 0.1 

Okanogan  Un-described* 38,523 60,880 220 0.1 

S. Rockies  princeps 204,470 473,724 1,031 0.01 

Uinta  utahensis 89,441 190,592 596 0.667 

Z. trinotatus      

Coastal  eureka   orarius 7,861 38,909 481 0.667 
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N. Cascade  trinotatus 115,012 356,987 577 0.01 

S. Cascade  montanus  83,659 322,589 473 0.1 

N. Sierra  Z. p. pacificus 29,675 66,584 449 0.1 

S. Sierra  Z. p. pacificus* 14,781 68,989 361 0.1 
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Table. 2.  Species and intraspecies, lineage-based molecular diversity indices for 762 mtDNA samples (cytb gene). Indices include 

segregating sites (S), number of haplotypes (Nh), haplotype (h) and nucleotide (π) diversity, mean nucleotide differences (K), plus 

population equilibrium tests Tajima’s D, Fu’s FS, and Ramos-Onsins and Rozas R
2
. *=P<0.05, **=P<0.01. 

Species
a
 & Lineage N S Nh h π K D FS R2 

N. insignis 31 162 28 0.991 0.0617 70.389    

   Acadian  14 31 13 0.992 0.0045 5.1416 -1.8635* -9.980** 0.0676* 

   Allegheny  2
b
  2       

   Canadian  15 29 13 0.971 0.0064 7.2571 -1.0068 -4.661** 0.1007 

Z. hudsonius 455 178 102
c
 0.952 0.0312 31.374    

   Appalachian  21 36 13 0.924 0.0056 6.4095 -1.4093 -2.32 0.1003 

   Canadian Shield  2
b
  2       

   Northern  182 33 33 0.830 0.0018 1.5670 -2.0939** -32.556** 0.0244* 

   N. Plains  130 50 40 0.866 0.0030 3.0552 -2.0651** -32.310** 0.0287* 
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   S. Plains  49 18 9 0.842 0.0030 3.1000 -0.7325 0.442 0.0880 

   Southwestern  71 12 8 0.649 0.0023 2.2913 -0.2155 0.587 0.0935 

Z. princeps 223 313 130
 c
 0.992 0.0863 86.778    

   Boreal  62 101 47 0.983 0.0069 7.9038 -2.2426** -37.499** 0.0334** 

   Great Basin  48 83 27 0.959 0.0235 26.8221 1.2550 -3.906* 0.1058 

   Great Plains  21 27 16 0.971 0.0036 4.0619 -1.8452* -9.315** 0.0601* 

   La Sal  4
b
  3       

   Okanogan  6 2 3 0.733 0.0008 0.8667 -0.0500 -0.427 0.2291 

   S. Rockies  42 63 29 0.967 0.0120 12.0260 -0.7304 -7.935* 0.0877 

   Uinta  40 61 24 0.971 0.0051 5.8320 -2.1341** -10.271** 0.0535* 

Z. trinotatus 53 167 31 0.970 0.0351 39.964    

   Coastal   7 19 5 0.905 0.0054 6.0950 -1.1987 0.678 0.2366 
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   N. Cascade  1
b
  1       

   N. Sierra  5 11 5 1.000 0.0049 5.6000 0.4362 -1.167 0.1916 

   S. Cascade  8 14 5 0.857 0.0052 5.9050 0.1835 0.617 0.1699 

   S. Sierra  32 22 15 0.929 0.0025 2.8508 -1.6620* -6.685** 0.0648* 

a
 Species level demographic tests not conducted (violation of population assumption). 

b
 Sample size <5 and thus not tested for population indices. 

c
 Smaller values are due to the reduced (1006 bp) dataset of King et al. (49) – missing data excluded.  
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SUPPLEMENTARY INFORMATION 
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Fig. S1. Bayesian gene trees with posterior probabilities indicated on branches next to 

supported nodes (  ). Branches are colored for each species: grey – N. insignis, green – Z. 

hudsonius, blue – Z. princeps, red – Z. trinotatus. Genes include the mitochondrial 

cytochrome b gene (Cytb – 1006-1140 bp) and 4 nuclear introns and exons, including 

346 bp of Apolipoprotein B (APOB), 824 bp of Breast Cancer Susceptibility (BCRA), 

347 bp of Glucocerebrosidase (GBA), and 267 bp of the beta-myosin heavy chain 

(MYH2).  Subspecies are indicated on the Cytb gene-tree for all monophyletic lineages 

(i.e. all nodes significant) but statistics removed for clarity (*).   
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     Subspecies Taxonomy       Current SDM  Paleodistribution 

 

N. insignis  

Z. hudsonius  

Z. princeps  
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Fig. S2. Subspecies (32 taxa) taxonomy and species distribution models (current & 

LGM) for 21 lineages of North American jumping mice (see Table 1). Left: The 

subspecies of each taxon is identified with an alphabetically ordered numerical hexagon, 

stars depict the type locality for each subspecies, grey symbols are sampling localities for 

constructing the species tree (e.g. topotypes), and small black symbols reflect mtDNA 

(cytb) geographic samples used in demographic tests. Napaeozapus insignis: 1) N. i. 

abietorum, 2) N. i. frutectanus, 3) N. i. insignis, 4) N. i. roanensis, 5) N. i. saquenayensis.  

Zapus hudsonius: 1) Z. h. acadicus, 2) Z. h. alascensis, 3) Z. h. americanus, 4) Z. h. 

campestris, 5) Z. h. canadensis, 6) Z. h. hudsonius, 7) Z. h. intermedius, 8) Z. h. ladas, 9) 

Z. h. luteus, 10) Z. h. pallidus, 11) Z. h. preblei, 12) Z. h. tenellus. Zapus princeps: 1) Z. 

p. cinereus, 2) Z. p. chrysogenys, 3) Z. p. curtatus, 4) Z. p. idahoensis, 5) Z. p. 

kootenayensis, 6) Z. p. minor, 7) Z. p. oregonus, 8) Z. p. pacificus, 9) Z. p. princeps, 10) 

Z. p. saltator, 11) Z. p. utahensis. Zapus trinotatus: 1) Z. t. eureka, 2) Z. t. montanus, 3) 

Z. t. orarius, 4) Z. t. trinotatus. Note Z. p. pacificus range depicted given cryptic diversity 

recently documented in the Sierra Nevada’s (86) and the Okanagan lineage has no 

described subspecies but overlaps with the far northeastern range of Z. h. trinotatus. 

Center: Current SDMs for lineages of each species. Symbols are localities used in 

Z. trinotatus  
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constructing the model and correspond with other Tables and Figures. Right: Projected 

Paleodistributions of lineages for each species. Diamonds depict fossils that correspond 

to the Late Pleistocene and Early Holocene transition period (92) for each species.  
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Fig. S3. Bayesian skyline plots (mtDNA) for North American jumping mice lineages 

showing effective population size (scaled by mutation rate) plotted as a function of time. 

Time 0 (present) begins on the left and progresses to the right in substitutions per million 

years. Colored (mean) and dashed (median) lines reflect estimates effective population 

size with gray lines denoting the 95% credibility interval (CI). The position of the Last 

Glacial Maximum (~21 ka) is indicated with a blue vertical line. [A] Napaeozapus 

insignis lineages, [B] Zapus hudsonius lineages, [C] Zapus princeps lineages, [D] Zapus 

trinotatus lineages.  

A 

B 

C 

D 
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Fig. S4. [A] Northern lineage, mtDNA cytochrome b gene haplotype network via 

statistical parsimony (119, 120). This dataset was spatially and taxonomically sampled 

[B] and reveals recent demographic expansion to the Front Range of the southern 

Rockies and the far North for the Northern lineage. Capital letters reflect data (20 

haplotypes) from King et al. (49) and lower case letters (13 haplotypes) were detected in 

this study. Asterisks (*) are inferred haplotypes due to data discrepancies (see methods 

and materials). Size is proportional to frequency with those >10 placed inside the symbol. 

Colors mirror morphological-based nominal (42) subspecies (dark grey = Z. h. 

alascensis, white = Z. h. preblei, light grey = Z. h. tenellus) and each branch is 

proportional to one mutation.  
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Table. S1.  Conservation phylogenetics, within a broader coalescent framework, was used to define priority scores by updating 

regional IUCN scores and then ranking divergent jumping mice lineages. Population size changes include, I – increasing, S – stable, D 

– declining, and ? – unknown. High threats to extinction (red) include declining population(s) or small range(s), low threats (orange) 

are stable populations and medium ranges (or unknown - ?), and non-threats (white) include increasing populations and large range. 

Plus symbols (+) associated with threats highlight the condition where taxa meet the lower criteria but localized population(s) 

experience a threat. For example, the Northern lineage meets the Least Concern (LC) criteria but given localized declines and defined 

conservation concerns in the Front Range (i.e. Z. h. preblei) permits using Near Threatened (NT; i.e. 0.001 to 0.01). Other criteria 

include Threatened (TH), Endangered (EN), and Critically Endangered (CE). Weighting (W) scheme follows the IUCN100 ranks-to-

extinction probability transformation (98). 

W 

0.999 

Threats 

3+ = CE 

Historical Δ in 

population size 

                 

    I         S(?)       D         

Contemporary Δ in 

population size 

  I           S(?)         D 

Relative Range 

Lg          Md        Sm 

Historical Range Δ 

  

                 0.667 2+ = EN 

0.1 1+ = TH 

0.01 0+ = NT 

0.001 0   = LC 
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Table. S2. Measures of niche overlap (ecological exchangeability), Warren’s I and Relative Ranks (RR) between subspecies 

comprising the Northern lineage. Values near 1.0 are considered highly exchangeable versus near 0.0 are considered inexchangeable. 

Significance (niche identity) tests were conducted with 100 pseudo-replicates of randomized localities for paired taxa but no 

comparison was significantly different suggesting niche space is analogous across all taxa pairs (figure). Jumping mice populations 

along the Front Range appear to be ecologically exchangeable with populations in the far north.  

 

  

Northern lineage taxa pairs I RR 

Z. h. alascensis vs. Z. h. preblei 0.7493 0.9665 

Z. h. alascensis vs. Z. h. tenellus 0.8657 0.9604 

Z. h. preblei vs. Z. h. tenellus 0.8444 0.9669 
Fr

eq
u
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Table. S3a-d. Bioclimatic variables ranked according to their overall model contribution, highest, lowest, and decreased gain based on 

a jackknife test of variable importance, plus mean area under receiver operating curve (AUC) and standard deviation from 20 replicate 

Maxent runs for the North American jumping mice lineages, separated by nominal species. Asterisks (*) highlight the variable with 

the highest permutation importance. 

Table S3a. Napaeozapus insignis lineages 

Rank    Acadian     Allegheny     Canadian  

1 52.0 – Bio1* 48.3 – Bio1* 26.6 – Bio1 

2 29.3 – Bio15 34.9 – Bio15 20.2 – Bio17 

3 10.2 – Bio17 5.8 – Bio18 15.2 – Bio9 

4 6.6 – Bio9 4.4 – Bio17 8.3 – Bio15 

5 1.1 – Bio8 4.3 – Bio8 6.0 – Bio7 

6 0.3 – Bio18 2.1 – Bio9 5.5 – Bio16 

7 0.2 – Bio7 0.1 – Bio7 5.2 – Bio2 
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8 0.2 – Bio3 0.0 – Bio2 4.1 – Bio19 

9 0.1 – Bio16 0.0 – Bio19 3.8 – Bio8 

10 0.1 – Bio2 0.0 – Bio16 3.1 – Bio3* 

11 0.0 – Bio19 0.0 – Bio3 1.9 – Bio18 

Highest Gain Bio15 Bio15 Bio17 

Lowest Gain Bio9 Bio9 Bio8 

Decreased Gain Bio15 Bio15 Bio1 

AUC  0.988 (0.007) 0.989 (0.009) 0.955 (0.066) 
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Table S3b. Zapus hudsonius lineages 

Rank Appalachia  Canadian Shield     Northern     N. Plains     S. Plains  Southwestern  

1 58.4 – Bio15 39.2 – Bio9 21.4 – Bio3 40.3 – Bio1 40.9 – Bio1 39.3 – Bio1* 

2 10.5 – Bio1 20.9 – Bio17 21.1 – Bio9 15.5 – Bio9 25.9 – Bio9 24.0 – Bio3 

3 7.3 – Bio17* 10.5 – Bio15 12.1 – Bio18 12.4 – Bio8 13.4 – Bio15 10.3 – Bio17 

4 7.2 – Bio3 10.2 – Bio19* 9.3 – Bio15 9.6 – Bio16 6.0 – Bio3* 9.5 – Bio2 

5 5.0 – Bio16 6.7 – Bio1 6.9 – Bio1 6.4 – Bio7 5.8 – Bio18 6.7 – Bio9 

6 4.6 – Bio19 5.6 – Bio8 6.5 – Bio8 5.9 – Bio18 3.0 – Bio7 4.9 – Bio9 

7 2.3 – Bio2 2.4 – Bio3 6.1 – Bio7* 4.3 – Bio19* 2.8 – Bio16 3.2 – Bio15 

8 1.6 – Bio18 1.6 – Bio16 5.6 – Bio2 3.0 – Bio15 1.1 – Bio17 0.8 – Bio19 

9 1.5 – Bio7 1.2 – Bio18 4.2 – Bio17 1.2 – Bio17 0.6 – Bio8 0.6 – Bio7 

10 1.0 – Bio9 1.1 – Bio2 4.0 – Bio19 1.2 – Bio2 0.4 – Bio19 0.6 – Bio16 
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11 0.6 – Bio8 0.4 – Bio7 2.6 – Bio16 0.3 – Bio3 0.2 – Bio2 0.2 – bio18 

Highest Gain Bio15 Bio19 Bio9 Bio8 Bio1 Bio3 

Lowest Gain Bio8 Bio7 Bio2 Bio15 Bio15 Bio18 

Decreased Gain Bio1 Bio9 Bio9 Bio1 Bio1 Bio3 

AUC  (SD) 0.980 (0.015) 0.974 (0.006) 0.952 (0.020) 0.980 (0.009) 0.995 (0.001) 0.997 (0.002) 
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Table S3c. Zapus princeps lineages 

Rank Boreal  Great Basin    Great Plains    Okanogan  S. Rockies     Uinta  

1 32.1 – Bio1 43.6 – Bio9 56.2 – Bio1 40.9 – Bio9 40.1 – Bio3 33.4 – Bio1 

2 31.0 – Bio3 19.9 – Bio18* 9.4 – Bio16* 36.4 – Bio8 31.9 – Bio1 16.9 – Bio15 

3 10.0 – Bio8 11.5 – Bio1 6.9 – Bio2 8.1 – Bio1 7.1 – Bio15 10.6 – Bio18 

4 9.4 – Bio15 5.6 – Bio8 6.3 – Bio19 4.4 – Bio15 4.6 – Bio2 8.7 – Bio8 

5 6.1 – Bio7 4.9 – Bio17 6.1 – Bio18 4.3 – Bio18 3.8 – Bio7 7.1 – Bio3 

6 3.6 – Bio19 3.9 – Bio15 5.7 – Bio15 3.7 – Bio3* 3.2 – Bio16 6.7 – Bio9 

7 2.8 – Bio17 3.3 – Bio2 3.4 – Bio9 1.6 – Bio2 3.1 – Bio18 6.1 – Bio2 

8 2.4 – Bio18* 2.7 – Bio3 1.7 – Bio3 0.6 – Bio16 2.7 – Bio17 4.7 – Bio16 

9 1.6 – Bio16 2.5 – Bio19 1.5 – Bio7 0.0 – Bio17 1.3 – Bio19 4.0 – Bio17 

10 0.9 – Bio2 1.2 – Bio16 1.5 – Bio17 0.0 – Bio19 1.3 – Bio9 1.1 – Bio7 
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11 0.1 – Bio9 0.9 – Bio7 1.4 – Bio8 0.0 – Bio7 0.9 – Bio8 0.8 – bio19 

Highest Gain Bio3 Bio9 Bio1 Bio8 Bio3 Bio3 

Lowest Gain Bio16 Bio16 Bio8 Bio2 Bio8 Bio16 

Decreased Gain Bio3 Bio9 Bio1 Bio8 Bio3 Bio1 

AUC  0.987 (0.003) 0.960 (0.041) 0.967 (0.043) 0.999 (0.001) 0.995 (0.002) 0.995 (0.002) 
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Table S3d. Zapus trinotatus lineages 

Rank    Coastal   N. Cascade  N. Sierra  S. Cascade     S. Sierra  

1 25.7 – Bio18 38.4 – Bio9 29.8 – Bio9* 30.9 – Bio9 31.7 – Bio8 

2 24.8 – Bio24.8 32.9 – Bio19 26.4 – bio18 29.9 – Bio19 17.0 – Bio15 

3 20.9 – Bio7 11.4 – Bio15 23.2 – Bio19 22.4 – Bio15 16.9 – Bio9 

4 19.5 – Bio9 6.8 – Bio18 7.3 – Bio15 4.0 – Bio1 9.6 – Bio19 

5 3.8 – Bio15 6.1 – Bio17 3.5 – Bio2 3.9 – Bio18* 9.5 – Bio18 

6 2.1 – Bio8 2.5 – Bio2 3.1 – Bio16 3.0 – Bio17 7.7 – Bio1* 

7 1.7 – Bio1 1.2 – Bio7 2.8 – Bio17 2.4 – Bio7 4.4 – Bio2 

8 0.9 – Bio2 0.3 – Bio1* 1.6 – Bio8 1.7 – Bio16 2.0 – Bio17 

9 0.3 – Bio3 0.2 – Bio16 1.4 – Bio1 1.4 – Bio3 1.1 – Bio7 

10 0.2 – Bio17* 0.1 – Bio8 0.8 – Bio3 0.4 – bio8 0.1 – Bio3 
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11 0.1 – Bio16 0.1 – Bio3 0.0 – Bio7 0.0 – Bio2 0.0 – Bio16 

Highest Gain Bio19 Bio19 Bio19 Bio19 Bio8 

Lowest Gain Bio2 Bio18 Bio17 Bio2 Bio2 

Decreased Gain Bio18 Bio18 Bio18 Bio18 Bio1 

AUC  0.997 (0.001) 0.994 (0.001) 0.986 (0.036) 0.997 (0.001) 0.998 (0.001) 
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Table. S4. Molecular data, character variation, and nucleotide substitution model selected using Bayesian Information Criterion (BIC) 

for 92 samples of North American jumping mice.  

 

Molecular marker Characters Variable characters Parsimony informative characters Substitution model 

APOB 
367 22 19 T92 +  

BCRA1 789 204 204 HKY +  

Cytb 1140 442 421 GTR + I +  

GBA 346 26 26 JC +  

MYH2 267 28 25 T92 +  
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CONCLUSIONS 

Summary 

 In chapter 1 (Malaney et al. 2012), I tested alternative historical biogeographic 

scenarios proposed for a southwestern montane endemic using coalescent simulations 

(e.g. Parametric Bootstrap). Then, using SDMs and projecting models into the past I 

reconstruct the LGM paleodistribution and link fossils as spatiotemporal anchors to 

establish the origination of the New Mexico Meadow Jumping Mouse (Zapus hudsonius 

luteus).  Results suggest Z. h. luteus diverged from Z. h. pallidus (not Z. h. preblei) at the 

LGM on the Edwards Plateau followed by colonization of the montane regions of the 

American Southwest. 

 In chapter 2 (Malaney et al. in press), I tested alternate models of divergence, 

again using coalescent simulations, to establish that populations of the Western Jumping 

Mouse (Z. princeps) in the western United States have been long divergent in an 

allopatric model.  However, not all populations have been stagnant as northern 

populations have a shallower history with demographic signatures consistent with 

Holocene expansion.  I also detected cryptic variation in the Sierra Nevada’s of 

California where these populations reflect a signal of diversification closer to the coastal 

Pacific Jumping Mouse (Z. trinotatus) than other populations of Z. princeps.  

 In chapter 3 (Malaney and Cook in review), I used complete taxon sampling 

across all North American jumping mice subspecies and across geography, but coupled 

with contemporary and paleodistributions (SDMs) to identify the signatures of various 

lineages that may be important in conservation prioritization. Signatures detected and 

implemented in conservation assessment include recent and historic declines in both 
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population size and geographic range. When signatures are coupled with the phylogeny 

we are better able to objectively assess extinction threats for both recently and anciently 

diverged lineages.  Results from this work have important implications given that 

conservation planning is often predicated on a taxonomy that generally lacks an 

understanding of the dynamic biogeographic past and often fails to account for 

evolutionary history. Whereas, linking comprehensive sampling, coalescent-based 

analyses, species distribution modeling, and fossil evidence points to a drastic shift in 

understanding conservation priorities and highlights a fundamental concept: systematics 

coupled with biogeographic history should inform conservation. 
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Taxonomic implications 

EXPLORING THE SPECIES DELIMITATION (AND DEFINITION) CONTINUUM USING AN 

INTEGRATIVE APPROACH 

 The three chapters of my dissertation are linked by a broader set of ideas related 

to incipient speciation and species delimitation.  Species definitions and operational 

criteria reflect variations on how evolutionary diversification is described and species 

delimitation can be controversial as evidenced by rancorous debates related to the species 

definition (de Queiroz 1998, 2007).  Jumping mice serve as an example of this debate due 

to the controversial listing of Preble’s Jumping Mouse (Z. h. preblei).  In 1998, this 

subspecies was listed as federally threatened (USFWS 2002, 2010, 1998).  Subsequent to 

listing efforts and in response to concerns about whether Front Range populations were a 

discrete subspecies, two studies found contradicting evidence of subspecies validity using 

analogous datasets (King et al. 2006; Ramey et al. 2005).  Both studies implemented a 

limited sampling strategy predicated on the assumption that geographically adjacent 

subspecies were most closely related.  Following these contradictory studies, further 

debates around this controversial listing boiled over into the incipient-species taxonomic 

debate (Crifasi 2007; Ramey et al. 2006; Vignieri et al. 2006).  Still, others debated the 

use of statistics (Brosi and Biber 2009; Skalski et al. 2008) and issues related to policy 

advocacy (Carolan 2008; Scott et al. 2007) and economic impacts (Foulke et al. 2010; 

Industrial Economics 2010, 2002) that now are projected to top $440 million by the end 

of 2030.  

 Here, I aim to update the taxonomy of North American jumping mice using sound 

theoretical and statistical contexts that account for evolutionary history and echoes the 
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perspective of Adaptive Evolutionary Conservation (AEC; (Fraser and Bernatchez 2001).  

My efforts also reflect the need for an integrative taxonomy (Fujita et al. 2012; Padial et 

al. 2010).  However this study differs from previous research by using a comprehensive 

taxon sampling approach (all subspecies) and implementing a coalescent-based context 

that harnesses the strength of multiple independent molecular datasets to assess 

evolutionary relatedness and divergence times.  Once the phylogeny is established, I use 

phylogenetically-informed species distribution modeling (SDM) to assess if ecological 

variation mirrors evolutionary divergence. The advantage of this approach is that it 

emphasizes evolutionary relationships and accounts for ecological differences within the 

broader context of all jumping mice while simultaneously assessing if taxonomy 

accurately reflects phylogeographic variation. 

 Jumping mice have received national attention and have been considered iconic 

for conservation definitions and actions implemented by the USFWS (Foulke et al. 2010). 

However, in chapter 3, I highlighted (Malaney and Cook in review) there are other, more 

divergent, jumping mice lineages that potentially face serious threats, but that currently 

have no conservation status.  Consequently, I apply the General Lineage Concept to 

update the taxonomy of the North American jumping mice (Zapodidae) and identify 14 

statistically significantly divergent lineages (genetic and niche) that should be elevated to 

species level (Fig 1 & 2). I also explore a hierarchical set of ideas to include Evolutionary 

Significant Units (ESUs) within species and Distinct Population Segments (DPSs) within 

ESUs.  For example, Z. h. preblei may be considered a DPS in the Front Range, within a 

broader Northern lineage (ESU; Fig 3). However the Northern lineage is divergent from 
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neighboring Northern Plains and Canadian Shield lineages (see Chapter 3) reflecting 

deeper histories and combined the three make up neo Z. hudsonius.   

 My dissertation data suggest two specific conclusions related to North American 

jumping mice taxonomy.  First, the morphological-based jumping mice taxonomy 

significantly under represents geographic variation in both DNA and niches and fails to 

reflect evolutionary and biogeographic history; a type I error (Felsenstein 2008; Skalski 

et al. 2008).  Second, conservation predicated on morphological-based taxonomic 

understandings (i.e. subspecies) is potentially missing alternative units important for 

preservation with a changing climate; a type II error (Brosi and Biber 2009).  These 

results echo the need to reduce ambiguity associated with subspecies-level classification 

(Haig et al. 2006) given the poor philosophical backbone, inconsistent execution, 

trinomial handicap (requires frequent taxonomic revisions), and most important, explicit 

lack of historical perspective. Consequently, I advocate abandoning the subspecies 

taxonomic distinction and provide an empirical example of where hierarchical divisions 

(i.e., species → ESU → DPS) can be placed within a more-powerful integrative context.  

More broadly, my results reflect the perspective that a more objective, yet integrative, 

taxonomic scope is needed to aid in identifying imperiled organisms and better clarify 

conservation considerations that may enhance ESA decisions.  Further, an integrative and 

hierarchical approach should facilitate communication related to the classification across 

the taxonomic continuum, more fully explore the processes of speciation, and undercut 

the species (and infraspecies) concept debate, that combined, may provide fewer 

impediments to conservation efforts. 
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 In conclusion, my dissertation detected deep molecular divergence across Z. 

princeps and Z. trinotatus that is accentuated over the southern portion of current 

distributions in western North America, reflecting deeper, allopatric divergence 

(Fitzpatrick et al. 2009; Fitzpatrick and Turelli 2006; Wiley and Lieberman 2011).  

Conversely, Z. hudsonius reflects a signature of latitudinal fluctuations over the last 

glacial cycle and preliminary signals of repetitive secondary contact may suggest the 

homogenization hypothesis (Nosil 2008) resulting in shallower molecular phylogenetic 

signal.  The wide range of jumping mice provides opportunities to test hypotheses related 

to incipient speciation using multi-locus models and coalescent techniques (Carstens et 

al. 2005; Lessa et al. 2003) and further refined questions related to environmental drivers 

of diversification.  Refinement of the persistent allopatric hypothesis includes testing 

among specific vicariant speciation models but also serves as a working hypothesis to 

explore concerted signatures among co-distributed species.  My data suggest geographic 

separation between southern lineages has been a dominant and persistent force shaping 

divergence in jumping mice and presumably other sympatric mammals.  Whether these 

vicariant signatures are suggestive of a common process that is spatially and temporally 

shared across co-distributed mammals, versus simply idiosyncratic responses to 

fluctuating climate is explored and summarized next.  These data place jumping mice 

divergence within the context of montane mammal diversification in North America. 

 

  



211 
 

Comparative phylogeography 

LINKING SIGNATURES ACROSS JUMPING MICE AND HIGHLIGHTING BIOGEOGRAPHIC 

PROCESSES OF DIVERGENCE IN NORTH AMERICAN BOREAL MAMMALS 

 Processes resulting in speciation or extinction and mechanisms of community 

assembly across the landscape have long fascinated biogeographers (Lomolino et al. 

2006; Merriam 1895; Simpson 1940; Wallace 1876).  Isolated systems have provided the 

foundations for biogeographic theory in identifying the principal processes of 

colonization versus extinction that both explain and predict factors affecting species 

richness of natural communities (Brown 1971; Lomolino et al. 1989; Lomolino and 

Davis 1997).  Key factors contributing to the study of island biogeography include the 

spatial and temporal histories of organisms (Lomolino 1984; MacArthur and Wilson 

1967) which suggests that some communities may be structured or persistent over the 

long-term.  Conversely, fossil evidence suggests there were few historical communities 

that are analogs of today, implying populations and species distributions are dynamic and 

ephemeral (Graham et al. 1996) but not all agree (Lyons 2003).  Comparative 

phylogeography is well suited to test specific hypotheses of spatial and temporal 

dynamics responsible for structuring communities, especially communities restricted to 

geographic regions such as the montane island systems of the West (Avise et al. 1987; 

Gutierrez-Garcia and Vazquez-Dominguez 2011; Hickerson et al. 2010).  In general, 

these systems (Fig. 4) have been referred to as montane- or sky-islands (DeChaine and 

Martin 2005; Knowles 2000; McCormack et al. 2009).  
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Western North America has a diverse biota that is the product of complex 

evolutionary and environmental processes (Lomolino et al. 2006).  A suite of boreal 

mammals (Fig. 4) are distributed from the ‘sky islands’ of the American southwest and 

Great Basin northward through most of mountainous western North America to northern 

Canada and Alaska (Hall 1981; McCormack et al. 2009; Merriam 1892).  Given the vast 

range, variable topography and dynamic glacial history, this community is likely to have 

complex demographic signatures reflected in DNA because levels of connectivity and 

population sizes have changed (Hewitt 1999, 2001; Waltari and Guralnick 2009).  My 

aim is to characterize and summarize the phylogeographic relationships among boreal 

mammals to provide a set of insights into the historical events responsible for triggering 

lineage diversification, the timing and directionality of lineage expansion or contraction, 

and phylogenetic congruence (or lack thereof) among mammals in major geographic 

areas in western North America.   

Using phylogenetic techniques, I documented a consistent set of phylogenetic 

signatures across boreal mammals (Fig. 5) indicative of spatial breaks and temporal 

events that may have shaped the geographic distribution of genetic diversity. More 

specifically, northern populations are the result of post-Pleistocene re-colonization of 

deglaciated terrains (Hewitt 2004; Lessa et al. 2003; Runck and Cook 2005) and these 

populations are generally less disjunct, than southern peripheral populations that are 

isolated at higher elevations at lower latitudes (Brown 1971; Malaney et al. in press).  I 

documented significant demographic expansion across all boreal mammals for the 

northern lineages, which is a common signature (Lessa et al. 2003).  However, the 

isolated montane habitats within xeric western environments harbor populations of boreal 
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associated mammals that reflect a deeper history of divergence (i.e., a signature of 

ancient vicariance).  These community level analyses suggest that boreal mammals 

evolved over the last several glacial periods largely as a cohesive unit, with exceptions, 

rather than as independent species with idiosyncratic responses.  

In all taxa, I document a distinct east-west split that generally dates to Middle 

Pleistocene and precedes subsequent divergence of the Late Pleistocene.  The southern 

clade is always closer to the eastern/continental clade than to the western/coastal clade 

and where present, tends to be older than eastern/continental clade.  Continental clades 

extending into the Pacific Northwest generally originate from further east and not from 

southern or western clades.  Pulses of diversification include a progression of an early 

eastern lineage, followed by a coastal and continental split further west, and a subsequent 

southwestern divergence. Timing of divergent splits is coincident with periodicity of 

Pleistocene cycling (Fig. 1D). Among the taxa I examined, all reflect cladogenic events 

coincident with warmer interglacial periods and not cooler glaciations. Given many 

species are known to maintain niche conservatism (Hadly et al. 2009; Wiens 2004; Wiens 

and Graham 2005), boreal mammals may have shifted to higher elevations during 

warmer interglacial periods reinforcing geographic variation during isolation coupled 

with reduced effective population sizes.  Recolonizations of northern deglaciated (leading 

edge) areas are typically via populations that represent the continental clade from the 

Midwest. These northern populations tend to exhibit significant signatures of 

demographic and range expansion during the Holocene across boreal mammals.  

However, in other organisms within the region significant signatures of demographic 

expansion do not always coincide with range expansion reflecting a complex signature in 
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Northwestern North America (Brunsfeld et al. 2001; Carstens et al. 2005).  A 

fundamental understanding of the processes shaping geographic variation is critical for 

addressing questions ranging from community assembly to speciation, and also applied to 

conservation management. 

The deep mitochondrial divergence observed in some taxa would warrant species 

status with the lineage-based taxonomic framework (see taxonomic implications above), 

but should be tested with independent nuclear markers, and combined with niche models, 

morphology, and natural history criteria.  However, these deeper signatures have 

conservation implications for boreal mammals as many clades are isolated at the highest 

elevations, and presumably relatively smaller population sizes.  With projections of 

generally warmer conditions over the next century and dwindling high elevation montane  

and riparian  habitats in the west (Ackerly et al. 2010), conservation efforts and 

monitoring programs should focus on the future of these species and lineages. Over the 

last century, mammals have generally moved to higher elevations (Moritz et al. 2008) 

and continued anthropogenic mediated climate change will likely force some species 

extinctions (Beever et al. 2010).  Species that persist will likely face genetic erosion as 

observed in alpine organisms (Rubidge et al. 2012) with dwindling populations.  

Continued efforts to systematically monitor and preserve these deep evolutionary legacies 

within the ‘sky-islands’ of the west should be a management priority.  
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FIGURES 

Figure 1. Bayesian multilocus coalescent-based fossil calibrated molecular species-tree 

phylogeny of 14 North American jumping mice. Bars represent 95% credible intervals of 

divergence time.  All nodes have ≥0.95 posterior probability and probability of 

speciation.  
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Figure 2. Reproduced from Malaney and Cook (in review). [A] Northern lineage (ESU), 

mtDNA cytochrome b gene haplotype network via statistical parsimony that was [B] 

spatially and taxonomically sampled. In this dataset, Southern populations may be 

considered a Distinct Population Segment (DPS) due to geographic separation from 

Northern populations (DPS). Intervening areas (?) need further sampling to test if this 

system represents a widespread set of populations or geographically Northern and 

Southern isolates (DPS). 
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Figure 3. Species distributions for each proposed taxonomic species (see Fig. 1).  All 

models have significantly different niches. [A] Blue = N. abietorum, Red = N. insignis; 

[B] Blue = Z. americanus, Green = Z. hudsonius, Brown = Z. luteus; [C] Black = Z. 

okanaganensis, Orange = Z. princeps, Yellow = Z. utahensis, Pink = Z. minor, Purple = 

Z. nevadensis; [D] Spruce = Z. alleni, Grey = Z. orarius, Navy = Z. trinotatus.  
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Figure 4. [A] Major biotic communities of North America with emphasis on boreal (dark 

green) and cold temperate forests (olive) distributed in the West.  [B] Generic geographic 

ranges of 10 boreal mammals illustrating the broad overlap and opportunity to test for 

concordant patterns of geographic variation in molecular data among taxa. [C] Glaciated 

areas of North America at Last Glacial Maximum with potential refugial areas 

(highlighted in red) presented in the literature and tested here with comparative 

phylogeography. [D] Pulses of diversification for 8 species though glacial cycles of the 

Quaternary tested in a Bayesian framework with relaxed molecular clock and calibrated 

with fossils (glacial chart from Wikipedia December 2010).  Bar heights correspond to 

number of cladistic events.  Example: 6 cladistic events during the Sangamon 

interglacial.  
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Figure 5. Mitochondrial DNA (cytochrome-b gene) genealogies for 9 boreal mammals in 

western North America.  Major clades correspond with specific geographic regions: 

Green = Midwest/Continental, Red = West/Coastal, Blue = Southwest, Orange = Eastern.  

Eastern lineages are typically a separately described species (ex. Zapus hudsonius = 

eastern lineage).  Certain species are lacking good range-wide sampling (ex. Mustela 

erminea & Myodes gapperi lack SW sequence data).  Distinct east-west splits generally 

precede other splits.  Exceptions: Sorex cinereus has no evident western coastal clade; 

Microtus longicaudus has a basal southern clade.  Southern clade is always closer to the 

eastern/continental clade than to the western/coastal clade and where present, tends to be 

older than eastern/continental.  Continental clades extending into the Pacific Northwest 

generally originate from further east and not from southern or western clades (see GLSA, 

MUER, SOCI, MILO, MYGA). Pulses of diversification 1) Eastern lineage, 2) Costal 

and Continental in West, 3) Southwestern with divergence timing coincident with 

periodicity of Pleistocene cycling.  Recolonization and expansion of the continental clade 

from the Midwest and clades occupying deglaciated areas exhibit significant expansion 

(stars).  
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