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ABSTRACT 

The largest and most dominant kangaroo rat species in the Chihuahuan Desert is 

the banner-tailed kangaroo rat (Dipodomys spectabilis). This keystone species constructs 

mounds containing a complex burrow system around which their ecosystem engineering 

activities are centered. I studied a population of banner-tailed kangaroo rats at the 

Sevilleta National Wildlife Refuge, New Mexico from 2005-2009. Specifically, I 

examined how banner-tailed kangaroo rats: 1) modify their mounds in response to 

seasonal conditions; 2) spatially affect harvester ants (Pogonomyrmex rugosus) through 

ecosystem engineering activities; and 3) differ in timing of natal dispersal between sexes. 

I used mark-recapture, genetic, experimental, and spatially-explicit methods to address 

these areas of interest. I observed that kangaroo rats remodeled their mounds seasonally 

in relation to changes in predation risk, seed spoilage risk, and metabolic costs. My 
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results documented an additional keystone effect of banner-tailed kangaroo rats in the 

Chihuahuan Desert, a facilitatory impact on the spatial structure and dynamics of 

harvester ant colonies. I also experimentally determined that physiological cues influence 

timing of natal dispersal in males and females differently.  
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Chapter 1 
 

Extreme makeover: kangaroo rats remodel burrows in relation to 
seasonal tradeoffs in thermoregulation, predation, and cache spoilage 

 

Andrew J. Edelman 

Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA 

 

Abstract 

Architecture of animal burrows including depth, complexity, orientation, and entrances 

can enhance specific functions such as food caching and protection from environmental 

extremes and predators. My objective was to examine how banner-tailed kangaroo rats 

(Dipodomys spectabilis) modify burrow entrances of mounds in response to seasonal 

variation in temperature, predation risk, and vulnerability of caches to spoilage. For three 

years, I monitored fluctuations of burrow entrances in kangaroo rat mounds in relation to 

seasonal climate change. I found that number of entrances in mounds was tightly linked 

with changes in soil temperature and precipitation. As soil temperature decreased, so did 

the number of entrances. Compared to summer, mounds in winter had approximately 

50% fewer entrances and plugged entrances were common. The highest numbers of 

entrances corresponded to summer months with the greatest amount of rainfall. Seasonal 

variations in burrow entrances likely reflect tradeoffs between thermoregulation, 

predation risk, and seed cache preservation. Ambient and burrow air temperatures are 
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frequently near or below freezing during the winter, requiring a significant increase in 

metabolic rate for kangaroo rats. Fewer burrow entrances during winter would reduce 

convective heat loss in mounds, create a warmer microclimate, and result in substantial 

energy savings. During the summer, thermoregulatory costs are low, but predation risk 

from snakes increases. Additional burrow entrances would reduce predation risk by 

increasing escape options. Increases in burrow entrances after large rainfall events would 

speed evaporation within mounds and reduce spoilage of critical seed caches. 

 

Introduction 

Burrows serve many functions for animals; they provide a location for rearing 

young, sleeping, hibernation, food storage, and protection from predators and 

environmental extremes (Reichman and Smith 1990, Kinlaw 1999). Architectural 

features of burrows such as depth, complexity, orientation, and number of entrances can 

enhance specific functions critical to the occupant’s fitness. In particular, burrow 

architecture across many taxa and habitats plays a major role in thermoregulation (Korb 

and Linsenmair 1998, 2000, Kleineidam et al. 2001, Bulova 2002). The soil surrounding 

burrows creates a buffering effect, which shields occupants from diurnal fluctuations in 

surface temperature and humidity (Burda et al. 2007). Depth and ventilation affect the 

degree of buffering from surface conditions and can be adjusted by occupants to create 

microclimates closer to optimum conditions (Roper and Kemenes 1997, Bulova 2002, 

Shimmin et al. 2002, Roper and Moore 2003). As a result, semi-fossorial animals can 

avoid physiologically stressful surface conditions of extreme temperatures and water loss 
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by taking refuge in burrows (King 1980, Reichman and Smith 1990, Prakash 1997, 

Kinlaw 1999). 

Animals may also configure burrows to reduce predation risk. Both comparative 

and experimental studies indicate that semi-fossorial rodents in habitats with high 

predation risk have greater burrow complexity and larger numbers of burrow entrances, 

which likely confuse pursuing predators and aid in escape (Harper and Batzli 1996, 

Jackson 2000). In addition, many semi-fossorial animals rely on cached food to survive 

through prolonged periods of scarcity. Burrow architecture can be altered to provide 

suitable microclimates for food preservation, reducing cache losses from decomposers 

(Vander Wall 1990). Seasonal variation in climate, predation risk, and caching behavior 

suggests that burrow architecture may be modified by occupants in response to 

fluctuations in environmental conditions. However, evidence of seasonal modification is 

limited to anecdotal observations of plugged burrows during thermally stressful 

conditions (Luckenbach 1982, Kawamichi 1989, Arnold et al. 1991) or use of burrows at 

different depths during summer and winter (Bartholomew and Hudson 1961, Ghobrial 

and Hodieb 1973, Scheibler et al. 2006).  

Kangaroo rats (Dipodomys spp.) are a model organism for observing variation of 

burrow architecture in response to seasonal conditions because their burrow environment, 

physiology, and behavior have been well documented (Genoways and Brown 1993). 

These nocturnal, non-hibernating rodents inhabit semi-arid ecosystems of western North 

America (Holdenried 1957, Kenagy 1973, Kay and Whitford 1978, French 1993, 

Schmidly et al. 1993). One of the largest and most behaviorally complex species in this 
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genus is the banner-tailed kangaroo rat (Dipodomys spectabilis), found in grass- and 

shrub-lands of the southwestern United States and northern Mexico (Best 1988, Jones 

1993). This solitary species constructs and aggressively defends mounds containing a 

complex burrow system (Schroder 1979). Mounds are typically 4 m in diameter and 30 

cm in height with multiple entrances (Fig. 1.1)(Holdenried 1957, Reichman et al. 1985). 

The burrow system is a labyrinth of tunnels and chambers extending up to 4 stories and > 

90 cm in depth (Vorhies and Taylor 1922). Mounds provide thermal refugia for kangaroo 

rats from extreme surface temperatures that range from near 40ºC during summer to 

below freezing during the winter. On average, air temperature in burrows is 3-10ºC 

cooler than surface air temperature (Kay and Whitford 1978). Thermoregulatory costs for 

kangaroo rats are highest during the winter, when ambient temperature drops below 

thermoneutrality (Carpenter 1966, Kenagy 1973, Hinds and MacMillen 1985).  Within 

mounds, kangaroo rats larder hoard up to 5 kg of collected seeds to survive periods of 

resource scarcity. Caching occurs most frequently during spring-fall, when seed 

availability is highest (Vorhies and Taylor 1922, Monson 1943). Maintaining a low-

moisture microclimate within mounds is critical to seed preservation because high-

moisture conditions (e.g. after large rainfall event) lead to cache loss due to germination 

and toxic fungal infections (Reichman et al. 1985, Frank 1988, Valone et al. 1995). A 

variety of terrestrial and aerial vertebrates prey on banner-tailed kangaroo rats and annual 

adult survivorship is low (< 50%)(Vorhies and Taylor 1922, Nader 1978, Waser and 

Jones 1991). Predation risk also varies seasonally because snakes are not active during 

the colder half of the year. Snakes are one of the few predators that enter mounds in 

pursuit of kangaroo rats (Randall and Stevens 1987).  
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My objective was to examine how banner-tailed kangaroo rats modify burrow 

entrances of mounds in response to seasonal variation in temperature, predation risk, and 

vulnerability of caches to spoilage. During the winter, thermoregulatory costs for 

kangaroo rats are high, and risk of predation and cache spoilage are lower. Conversely, 

during the summer, thermoregulatory costs are low, and risk of predation and cache 

spoilage are higher. Kangaroo rats would be hypothesized to increase the number of 

burrow entrances in mounds during summer and reduce them during winter in response 

to these tradeoffs. 

     

Materials and Methods 

Study area 

The study area was located at the Sevilleta National Wildlife Refuge, near 

Socorro, New Mexico, USA (34° 24´ 24.8' N, 106° 36´ 20.5' W, 1600 m elevation). The 

site encompassed 18 ha of Chihuahuan Desert and short grass steppe vegetation 

dominated by grama grass (Bouteloua eriopoda and B. gracilis), burrograss (Scleropogon 

brevifolius), and sand dropseed grass (Sporobolus cryptandrus). Soil was classified as 

deep clayey loam.  

Mound census 

The study area contained 165 kangaroo rat mounds of varying condition and size. 

Each mound was mapped and uniquely marked. From March 2005-February 2008 

(excluding March, April, and June 2006 and January 2007), I performed a monthly 
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census of the banner-tailed kangaroo rat population on the study area. Each month, all 

mounds were assessed for signs of kangaroo rat activity (e.g., fresh digging and feces, 

burrow entrances free of debris)(Jones 1984). At each, I counted the number of opened 

and plugged burrow entrances approximately ≥ 5 cm in diameter, the minimum size 

entrance I observed kangaroo rats to enter. A plugged burrow entrance was a soil-filled 

area on the mound, which retained the visible outline of the former opening. 

All mounds exhibiting active kangaroo rat sign were trapped for 3 consecutive 

nights. Two to four live traps (Model XLK, H.B. Sherman Traps, Tallahassee, FL, USA) 

were baited with sweet feed (oats, corn, and barley mixed with molasses) and placed at 

each mound (Cross and Waser 2000). I opened live traps at dusk and examined them 3-7 

hrs after sunset. All individuals were marked with a uniquely numbered Passive 

Integrated Transponder (PIT) tag (Model 1440ST, Biomark, Boise, Idaho, USA), which 

was injected subcutaneously. I recorded gender, age, reproductive status, and mass of all 

captured individuals each month. All animals were handled in accordance with the 

guidelines of the University of New Mexico Institutional Animal Care and Use 

Committee (Protocol No. 04MCC00507 and UNM048-TR-100261). 

Adult banner-tailed kangaroo rats are solitary and highly territorial. An individual 

captured most frequently at a mound could reliably be considered the occupant (Schroder 

1979, Jones 1984). During this study, I considered a mound occupied by an individual if 

it was caught at the mound: (1) > 1 month; (2) ≥ two times during 3 consecutive months; 

and (3) more frequently than any other adult (Jones 1984, Waser et al. 2006).  
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Statistical analysis 

 All statistical analyses were conducted using R version 2.10.0 (R Development 

Core Team 2009). Precipitation and mean, minimum, and maximum air and soil 

temperature at 10 cm were recorded hourly by a data logger (Model CR10X, Campbell 

Scientific Inc., Logan, Utah, USA) located 6.6 km from study area in grassland habitat 

(1650 m elevation). Mean soil temperature at 10 cm has been shown to closely match 

mean burrow air temperature at depths < 30 cm in banner-tailed kangaroo rat mounds 

(Kay and Whitford 1978). Hourly readings for mean temperature data were averaged and 

maximum and minimum temperature was determined for each day. For each month, I 

calculated a time series dataset containing mean daily air temperature and soil 

temperature at 10 cm (minimum, mean, and maximum), total precipitation, and number 

of burrow entrances (based on all occupied mounds). To ensure a complete time series 

for mounds, missing census data (4 months) were estimated by linear approximation 

between the previous and following months. Data in the time series exhibited significant 

autocorrelation between consecutive months. Therefore, I used generalized least squares 

(GLS) regression with autocorrelated errors to examine how number of burrow entrances 

varied in response to possible explanatory variables. Autocorrelated errors (ρ) were 

modeled in GLS regression as a first-order autoregressive process, preventing 

underestimation of standard errors and inflated P-values for effects in regression models 

(Venables and Ripley 2002, Cowpertwait and Metcalfe 2009). I tested for long-term 

trends individually for each climate variable by comparing the fit of models with (full 

model) and without a long-term trend component (null model) using a likelihood ratio 

test. Both the full and null models contained a harmonic seasonal component that allowed 
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climate variables to change seasonally (Cowpertwait and Metcalfe 2009, Crawley 2009). 

To choose variables (soil temperature, air temperature, precipitation, and time) that 

predicted variation in burrow numbers, I performed a backward selection process with 

cut-off P-values of 0.05 for exclusion in the final regression model.  

I examined how individual kangaroo rats varied number of burrow entrances in 

their mounds between summer (July) and winter (December) by fitting a linear mixed 

model. Fixed effects were sex, year, and month (July or December) and the random effect 

was identity of kangaroo rats. Only mounds that were occupied by the same individual 

during July and December of the same year were included in the model. Effects included 

in the final model were selected using a backward selection process with cut-off P-values 

of 0.05 for exclusion. GLS regression and linear mixed models were fitted using the 

maximum likelihood method for use in likelihood ratio tests and the variable selection 

process; final models were fitted using the less-biased restricted maximum likelihood 

method. I used a Pearson chi-square test to compare proportion of mounds with and 

without plugged burrow entrances between July and December. All data met the 

assumptions of parametric tests and only two-tailed P-values were reported.  

To quantify how variations in ambient temperature would affect metabolic 

processes, I used published allometric equations for desert heteromyid rodents (Hinds and 

MacMillen 1985) to estimate basal metabolic rate (BMR) and evaporative water loss 

(EWL) for banner-tailed kangaroo rats. BMR (ml O2/g h) was calculated at 5ºC, 15ºC, 

and thermoneutrality (25-35ºC) using the following equations:  

571.0
5 938.27 −
° = MBMR     (1) 
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508.0
15 720.15 −
° = MBMR     (2) 

271.0993.2 −= MBMRTN     (3) 

where M is body mass. BMR at 0ºC was estimated through linear regression of BMR at 

higher temperatures. EWL was calculated at 5-25ºC and 35º using the following 

equations: 

368.0
255 267.5 −
°− = MEWL     (4) 

211.0
35 711.4 −
° = MEWL     (5) 

Mass was fixed at 141.4 g in all equations, the combined mean of male and female 

banner-tailed kangaroo rats during this study. 

In order to estimate the effect of surface conditions on burrow air temperatures in 

this study, I used the published equation  

AB TT 88.012.2 +−=      (6) 

for the observed relationship between surface air temperature (TA) and burrow air 

temperature (TB) in banner-tailed kangaroo rat mounds (Kay and Whitford 1978). The 

equation is based on TB measured at a variety of depths (10-90 cm) and should be 

interpreted as an average TB of the mound. In general, TB in mounds varies little with 

depth during winter, but tends to be 2-5ºC higher at shallower depths during the rest of 

the year (Kay and Whitford 1978).  
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Results 

Mean number of burrows in occupied mounds exhibited a strong seasonal pattern, 

ranging from a high of 10-12 during the summer months to a low of 4-6 during winter 

months depending on the year (Fig. 1.2). Number of occupied mounds each month 

ranged from 35 in March 2005 to 103 in August and September 2005 (Χ  ± SE = 62.6 ± 

3.3 occupied mounds). Fluctuations in mean number of burrow entrances closely 

matched variation in soil temperature at 10 cm (Fig. 1.2a) and air temperature (Fig. 1.2b). 

The peaks in number of burrow entrances each year corresponded to months when total 

precipitation exceeded 60 mm (Fig. 1.2c). Burrow entrances on mounds also tended to 

increase slightly in number over time (Fig. 1.2). However, GLS regression models 

indicated there were no long-term trends for any climate variables over the duration of 

the study. For soil temperature at 10 cm, air temperature, and precipitation GLS 

regression models containing only a harmonic seasonal component were a better fit 

(Likelihood ratio tests, all P > 0.71) than models with a long-term trend component also 

included. Across years, estimated burrow air temperatures ranged from a high of 20 to 

23ºC during June and July to a low of -2 to 1ºC during December and January (Fig. 1.3). 

Burrow air temperatures were slightly below mean surface air temperatures all year, but 

the difference between them was greatest at high surface temperatures (Fig. 1.3).  

The best-fitting regression model allowed mean number of burrow entrances to 

vary with mean soil temperature at 10 cm and precipitation (Fig. 1.4, Table 1.1; residual 

standard error = 1.43). During the variable selection process, mean air temperature and 

time were not significant effects and were removed from the final regression model. 
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Mean number of burrow entrances in occupied mounds decreased with mean soil 

temperature at 10 cm and increased with precipitation. For each 6.5°C (95% CI = 4.8-

11.1°C) decrease in soil temperature, number of burrow entrances decreased by an 

average of about 1, whereas 77 mm (95% CI = 48-333 mm) of precipitation resulted in a 

mean increase of 1 burrow entrance. 

The best fitting linear mixed model contained a significant interaction effect 

between month and year (Table 1.2), but sex was not a significant effect and was 

removed from the final model. Total numbers of mounds occupied by the same kangaroo 

rat during both July and December on site were 46 in 2005, 27 in 2006, and 42 in 2007. 

Mound owners decreased the number of burrow entrances by an average of 45% to 52% 

(4-7 burrow entrances) from July to December across all years (Fig. 1.5, Tukey-Kramer 

test, P < 0.05). Number of burrow entrances in July differed among some years with 2007 

greater than both 2005 and 2006 (Tukey-Kramer test, P < 0.05), but did not differ in 

December among years (Tukey-Kramer test, P > 0.05). Plugged burrow entrances were 

difficult to detect because kangaroo rats usually covered the area completely with soil, 

erasing any evidence of the former entrance. However, plugged burrow entrances at 

mounds occupied by the same individual were almost never detected in July (2%, 2 of 

119 mounds) and were more commonly found in December (35%, 41 of 119 mounds) for 

all years combined (n = 238, χ1 = 43.2, P < 0.0001). 

Estimated metabolic costs at different ambient temperatures were substantial. 

Compared to thermoneutrality, estimated BMR of banner-tailed kangaroo rats increased 

by > 60% at 15ºC, > 110% at 5ºC, and 140% at 0ºC (Fig. 1.6). Evaporative water loss 
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increased by 115% from 25ºC to 35ºC (Fig. 1.6). Kangaroo rats can minimize both BMR 

and EWL by remaining at ambient temperatures toward the lower end of thermoneutrality 

(25ºC). 

 

Discussion 

 Banner-tailed kangaroo rats modified burrow architecture on a seasonal time 

scale. These alterations in burrow design closely mirrored variation in air temperature, 

soil temperature, and precipitation (Fig. 1.2). Decreases in burrow entrances were tightly 

linked to drops in soil temperature at 10 cm; compared to summer, mounds in winter had 

half as many openings. Modifications of architecture were intentional, because mounds 

occupied by the same kangaroo rat differed in burrow openings between winter and 

summer. Changes in burrow architecture were likely adaptive responses by kangaroo rats 

to seasonal tradeoffs in thermoregulatory costs, predation risk, and seed spoilage.   

Fewer entrances in winter reduce heat loss from air convection and increase the 

buffering effect of soil creating a more stable and warmer microclimate within burrows 

(Roper and Kemenes 1997, Bulova 2002, Shimmin et al. 2002, Roper and Moore 2003). 

At cold surface temperatures, warm air in burrows convectively rises and escapes 

aboveground and colder air from the surface sinks into burrows reducing the buffering 

effect of the surrounding soil (Nikol'skii and Savchenko 2002). Thus, kangaroo rats can 

reduce incursion of cold air into burrows by sealing entrances during the winter months. 

Winter burrow temperatures of banner-tailed kangaroo rat mounds at lower elevation 

sites in southern New Mexico averaged 5-10°C (Kay and Whitford 1978, French 1993). 
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Estimated burrow temperatures at my higher elevation and latitude site were even lower 

ranging from -2 to 1ºC during December and January (Fig. 1.3) which is below the lower 

limit of thermoneutrality by about 25ºC (Fig. 1.6). At these temperatures, Estimated 

BMR of banner-tailed kangaroo rats was about two and half times higher than at 

thermoneutrality with resulting requirements for increased food consumption for 

thermoregulation (Fig. 1.6)(Hinds and MacMillen 1985). Modification of burrow 

architecture to increase burrow temperatures would result in significant energy savings 

through lower BMR and decrease the rate at which seed caches were depleted. For 

example, maintaining burrow air temperatures 5ºC warmer than minimum surface air 

temperatures during the winter would reduce metabolic rate by about 15% (Fig. 1.6).   

During the summer, thermoregulatory costs of kangaroo rats are relatively lower 

than the winter, but evaporative water loss can increase if temperatures are above 25ºC 

(Fig. 1.6). Burrow temperatures of banner-tailed kangaroo rats at lower elevations were 

between 25-30ºC, within the thermoneutral zone (Kay and Whitford 1978). At my site, 

estimated burrow temperatures were lower, ranging from 20-22ºC during June and July 

(Fig. 1.3). While these temperatures are slightly below thermoneutrality, soil 

temperatures at 10 cm indicated that burrows at depths < 30 cm would be within the 

range of 29-33ºC (Fig. 1.2a). Given this range of temperatures, banner-tailed kangaroo 

rats should be able to move vertically within the burrow system to seek temperatures that 

minimize both BMR and evaporative water loss (about 25ºC; Fig. 1.6), as observed in 

other kangaroo rat species (Kenagy 1973).  
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More burrow entrances on mounds at warm temperatures may be a strategy by 

kangaroo rats to reduce predation risk, which is greater during warmer periods when 

snakes are active. From approximately October to early April, large snakes such as the 

western diamondback rattlesnake (Crotalus atrox) are dormant on my study site. Only 

mammalian and avian predators are active and most of these cannot enter kangaroo rat 

burrows (personal observation). During the rest of the year, snakes prey on kangaroo rats 

and enter mounds to pursue them. More burrow entrances during the summer may 

decrease predation success by providing additional escape routes (Bronner 1992). 

Banner-tailed kangaroo rats typically flee from snakes by exiting from entrances on the 

opposite side of mounds from where snakes enter (Randall and Stevens 1987). Other 

rodent species also exhibit increased burrow complexity when at higher predation risk. In 

whistling rats (Parotomys spp.), species in habitats with higher predation risk had more 

burrow entrances than species in habitats with lower predation risk (Jackson 2000). Voles 

(Microtus spp.) in pens with predators (including snakes) built more complex burrows 

with additional entrances than in pens without predators suggesting burrow complexity 

reduces predation risk (Harper and Batzli 1996).  

Peaks in number of burrow entrances corresponded closely with months of high 

rainfall (> 60 mm) on the study site (Fig. 1.2c). High levels of toxic fungal infections in 

seed caches within mounds of banner-tailed kangaroo rats often occur after heavy rainfall 

(Reichman et al. 1985). Kangaroo rats may have attempted to reduce germination and 

fungal growth in seed caches during wet periods by adding entrances. More entrances 

would increase passive ventilation of mounds (Vogel and Bretz 1972, Vogel et al. 1973) 

and speed evaporation of water from burrow soil and caches. Maintaining seed caches are 
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critical to survival and reproduction of kangaroo rats during periods of resource scarcity, 

and especially during the winter months (Monson 1943, Vander Wall 1990). Fungal 

contamination of seed caches with mycotoxins are implicated in the near-extirpation of 

banner-tailed kangaroo rats following a rainfall event of 129 mm in Arizona (Valone et 

al. 1995).  

There is only scant quantitative evidence on how non-hibernating, semi-fossorial 

mammals modify burrows in response to seasonal variation in environmental conditions. 

This is likely due to absence of long-term monitoring of burrow systems. Most detailed 

studies of burrow architecture are necessarily destructive, eliminating the possibility of 

comparisons between seasons. Monitoring surface architecture of burrows is a non-

destructive technique, which can provide insight into an animal’s reaction to variations in 

climate, predation risk, and other environmental conditions. Kangaroo rats are well 

known for their physiological and morphological adaptations to arid environments 

(Brylski 1993, French 1993). My results highlight how behavioral adaptations are also 

critical to their success at surviving in these extreme habitats. 
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Table 1.1. Parameter estimates of generalized least squares regression model with 
autocorrelated errors for number of burrow entrances in occupied banner-tailed kangaroo 
rats mounds from March 2005-February 2008.  

Model parameters Coefficient 95% CI F1,38 P 

Intercept 4.43 2.83-6.03 123.71 <0.0001 

Soil temperature at 10 cm 0.15 0.09-0.21 32.14 <0.0001 

Precipitation 0.013 0.003-0.024 6.33 0.017 

Autocorrelation (ρ) 0.80 0.43-0.94   
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Table 1.2. Parameter estimates of linear mixed model for number of burrow entrances in 
mounds of individual banner-tailed kangaroo rats during July and December from 2005-
2007. 

Fixed effects Coefficient 95% CI F1,146 P 

Intercept -1422.19 -2753.63– -

90.75 

709.48 <0.0001 

Month -2269.80 -3832.08– -

707.52 

227.64 <0.0001 

Year 0.71 0.05-1.38 22.11 <0.0001 

Month*Year 1.13 0.36-1.91 8.28 0.005 

Random effects SD 95% CI   

Identity 2.36 1.86-3.01   

Residual 2.66 2.37-2.98   
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Figure 1.1 
Banner-tailed kangaroo rat mound during winter. Visible burrow entrances are marked 
with white arrows. For scale, the child in the picture is approximately 1-m tall.
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Figure 1.2 
Relationship between mean number of burrow entrances (solid line) in occupied banner-
tailed kangaroo rat mounds and a) mean daily soil temperature at 10 cm, b) mean daily 
air temperature, and c) total precipitation each month from March 2005-February 2008. 
Precipitation and mean daily temperatures are represented by dashed lines and mean daily 
minimum and maximum temperatures by dotted lines. 
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Figure 1.3 
Estimated burrow air temperatures (solid line) in banner-tailed kangaroo rat mounds and 
surface air temperatures (dashed line = mean, dotted lines = minimum and maximum) 
from March 2005-February 2008. Temperatures are calculated from an equation of the 
observed relationship between surface air temperature and burrow air temperature (Kay 
and Whitford 1978). 
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Figure 1.4 
Fitted values (dashed line) from generalized least squares regression model compared to 
observed values (solid line) for number of burrow entrances in banner-tailed kangaroo rat 
mounds from March 2005-February 2008. 
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Figure 1.5 
Number of burrow entrances (least squares means ± SE) at occupied banner-tailed 
kangaroo rat mounds during July (white bars) and December (grey bars) from 2005-2007. 
Only mounds occupied by the same banner-tailed kangaroo rat in July and December of 
the same year were included.  
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Figure 1.6 
Relationship of mass-specific basal metabolic rate (solid line) and evaporative water loss 
(dashed line) to ambient temperature for banner-tailed kangaroo rats. Lines are calculated 
from allometric equations of desert heteromyid rodents (Hinds and MacMillen 1985) 
based on a body mass of 141.4 g. Thermoneutral zone occurs from 25-35ºC. 
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the Chihuahuan Desert 

 

Andrew J. Edelman1 and R. Emerson Tuttle2 

1Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA 

2Department of Biology, Middlebury College, Middlebury, VT 05753 USA 

 

Abstract 

In the Chihuahuan Desert, a keystone kangaroo rat species facilitates harvester ants 

through ecosystem engineering and foraging. We used spatially explicit techniques and 

behavioral observations to examine the effects of banner-tailed kangaroo rats (Dipodomys 

spectabilis) on rough harvester ants (Pogonomyrmex rugosus). We mapped kangaroo rat 

mound and harvester ant colonies as well as monitored extinction and founding of ant 

colonies. We also quantified resource abundance and foraging behavior of harvester ants 

with respect to distance from kangaroo rat mounds. We tested support for a scale-

dependent facilitative interaction by fitting spatial point process models to locations of 

mounds and colonies. In addition, we built logistic models of colony extinction risk that 

included spatial effects of mounds and tested their ability to predict spatial patterns of 

surviving colonies. Best-fitting spatial models exhibited small-scale aggregation (< 10 m) 

between kangaroo rat mounds and both older and newly-founded colonies, implying a 
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positive interspecific interaction. Colony extinction risk was affected by colony age, size, 

and intraspecific competition in both newly founded and older colonies, but proximity to 

a kangaroo rat mound also decreased extinction risk for newly founded colonies. Seed 

abundance at the soil surface was greater and foraging time was shorter for colonies near 

mounds than for those farther away. Our results indicate that kangaroo rats facilitate 

harvester ants in the Chihuahuan Desert. The scale-dependent effect of mounds on colony 

founding, extinction, resource abundance, and foraging is likely due to kangaroo rats 

increasing abundance of ants’ preferred food source, small-seeded annuals, around 

mounds. Colonies within close proximity to an occupied mound have access to more 

abundant food resources resulting in higher survivorship during the first several years 

after founding.  

 

Introduction 

Facilitation occurs when one species enhances the environment and performance 

of another species (Bronstein 2009). This positive interaction can arise directly through 

ecosystem engineering of the abiotic environment (e.g., solar radiation, water, or soil 

nutrients) or indirectly through effects on secondary species (e.g., suppressing a 

competitor or increasing abundance of prey) (Stachowicz 2001, Bruno et al. 2003). 

Species interactions, such as facilitation, are usually scale-dependent reflecting spatial 

heterogeneity of abiotic and biotic factors (Wiens 1989, Levin 1992). For example, the 

facilitative effects of nurse plants are highly localized and diminish with distance 

(Callaway 1995). Species interactions, along with other scale-dependent processes, affect 
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population dynamics, which in turn influence the distribution of individuals and species 

across the landscape. 

Seed predation and ecosystem engineering activities by kangaroo rats (Dipodomys 

spp.), have disproportionally large effects in the Chihuahuan Desert and arid grassland 

ecosystems (Brown and Heske 1990, Brown et al. 2001). Long-term experimental 

research on these keystone rodents has demonstrated the impact of their selective 

foraging and mound building activities on plant diversity and composition (Davidson et 

al. 1985, Brown and Heske 1990, Samson et al. 1992, Heske et al. 1993, Guo 1996). 

However, experiments examining interactions between kangaroo rats and another 

abundant group of granivores, harvester ants, have yielded only equivocal results (Brown 

and Davidson 1986, Galindo 1986, Valone et al. 1995). Kangaroo rats are hypothesized 

to indirectly facilitate harvester ants through their effects on prey species of ants. 

Kangaroo rats preferentially harvest seeds of large-seeded winter annuals, whereas 

harvester ants specialize on seeds of small-seeded annuals (Brown and Davidson 1977, 

Brown et al. 1979, Davidson et al. 1980, Inouye et al. 1980). Large-seeded annuals are 

superior competitors and removal experiments have shown that kangaroo rats indirectly 

facilitate small-seeded annuals by suppressing large-seeded annuals (Inouye 1980, Inouye 

et al. 1980, Davidson et al. 1985, Samson et al. 1992). While abundance of harvester 

ants’ preferred seed species decreases greatly with kangaroo rat removal, the expected 

decrease in ant abundance does not occur. Lack of response to kangaroo rat removal may 

be due to harvester ants compensating by utilizing relinquished seed resources (Davidson 

et al. 1985, Samson et al. 1992).  
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The largest and most influential kangaroo rat species in the Chihuahuan Desert is 

the banner-tailed kangaroo rat (Dipodomys spectabilis)(Davidson et al. 1980, Brown et 

al. 2001). This species creates semi-permanent structures around which their ecosystem 

engineering activities are centered. Banner-tailed kangaroo rats excavate soil to construct 

mounds (Fig. 1.1a), which are typically 4 m in diameter and 30 cm in height (Holdenried 

1957, Reichman et al. 1985). Within the mound is a labyrinth of tunnels and chambers 

extending up to 4 stories and > 90 cm in depth containing large seed caches (Vorhies and 

Taylor 1922). Individuals have circular home ranges of about 0.05 ha (12-m radius), with 

the majority of their active period spent < 6 m from the mound (Schroder 1979). Mounds 

are occupied for many generations, but only one adult resides in the mound at a time 

(Holdenried 1957, Schroder 1979, Reichman et al. 1985). Impacts on plant communities 

by banner-tailed kangaroo rats are highly localized around mounds. Biomass of small-

seeded annuals are greatest at distances within 4 m of mounds with highest densities 

directly on mounds (Guo 1996). Thus, facilitative effects of banner-tailed kangaroo rats 

on harvester ants would be predicted to decrease with distance from mounds. 

Within the ant community, the dominant granivorous ant is the rough harvester 

ant (Pogonomyrmex rugosus). This large-bodied species is ideal for studying the potential 

facilitative effects of banner-tailed kangaroo rats on harvester ants because colonies are 

numerous and conspicuous. Each colony builds an underground nest, with a single 

entrance in the center of a surface disc (averaging 1 m in diameter), which is cleared of 

vegetation and covered with small pebbles (Fig. 1.1b) (Whitford et al. 1976, Schooley 

and Wiens 2003). Colonies consist of several thousand workers founded by a single 

queen (Hölldobler 1976a). Mortality is high for Pogonomyrmex founding queens and 
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young colonies, but established colonies can persist for ≥ 15 years (Johnson 2000, 

MacMahon et al. 2000). Pogonomyrmex forage for seeds in coordinated groups and store 

collected food in granaries within colonies (Davidson 1977, MacMahon et al. 2000). 

Foraging activity decreases exponentially with distance from colonies with most foraging 

occurring < 10 m from colonies (Whitford 1976, De Vita 1979, Crist and MacMahon 

1991). Intraspecific aggression between workers of neighboring colonies is common and 

workers kill founding queens if encountered (Hölldobler 1976b, Johnson 2000).  

The hypothesized facilitative effect of banner-tailed kangaroo rats on rough 

harvester ants is expected to decrease with distance from mounds because ant colonies 

nearest mounds will benefit most from higher levels of seed resources. Thus, the 

relationship between kangaroo rats and harvester ants can be viewed as a scale-dependent 

interaction that decreases in strength with distance from centralized structures. By 

studying the spatial relationship between these species, we can infer whether facilitation 

or other interspecific interactions occur (Barot et al. 1999, Fortin and Dale 2005, Tuda 

2007). The spatial interaction between kangaroo rats and ants can be examined as a point 

process, where a stochastic mechanism such as facilitation determines the density (i.e., 

point pattern) of structures built by these species across the landscape through spatially 

dependent founding and extinction of ant colonies (Fortin and Dale 2005, Illian et al. 

2008). We used point patterns of mounds and colonies to determine whether banner-

tailed kangaroo rats facilitated rough harvester ants. Specifically, we tested whether 

facilitation of harvester ants by kangaroo rats occurred by examining three hypotheses: 
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1) Kangaroo rat mounds and harvester ant colonies will be spatially aggregated 

around each other at scales < 10 m. 

2) Spatial aggregation will occur because of higher founding and lower 

extinction rates of ant colonies near mounds. 

3) Seed abundance will be greater and foraging time will be lower for colonies 

close to a mound. 

To test these hypotheses, we mapped mounds and colonies built by banner-tailed 

kangaroo rats and rough harvester ants, respectively, and monitored extinction and 

founding of ant colonies. We also measured abundance of seed resources and foraging 

time of colonies that were near and far from mounds. We used two spatially explicit 

approaches to explore the scale-dependent effects of kangaroo rats on ant populations: 1) 

comparison of statistical point process models to determine if an interspecific interaction 

affected distribution of kangaroo rat mounds and existing and newly founded colonies; 

and 2) logistic models that examined whether colony extinction was spatially dependent 

on mounds. We followed a deductive model comparison approach by a priori selecting 

biologically appropriate statistical models and parameters based on the known ecology of 

both species (Mcintire and Fajardo 2009). 
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Materials and Methods 

Study area 

The study area was located at the Sevilleta National Wildlife Refuge, near 

Socorro, New Mexico, USA (34° 24´ 24.8' N, 106° 36´ 20.5' W, 1600 m elevation). The 

site encompassed an 8.7-ha rectangular plot (397 × 220 m) of Chihuahuan Desert and 

short grass steppe vegetation dominated by grama grass (Bouteloua eriopoda and B. 

gracilis), burrograss (Scleropogon brevifolius), and sand dropseed grass (Sporobolus 

cryptandrus).  

Mapping 

We used a global positioning system (GeoXT, Trimble Navigation Ltd., 

Sunnyvale, California, USA) to map all banner-tailed kangaroo rat mounds and rough 

harvester ant colonies on the study site. Coordinates of structures were real-time 

differentially corrected using a local base station allowing for sub-meter accuracy of 

mapped locations. 

Banner-tailed kangaroo rat mounds were located by walking adjacent 5-m 

transects throughout the study area during March 2005. From March 2005-February 2008 

(excluding January 2007), we performed a monthly census of the banner-tailed kangaroo 

rat population on the study area. Each month, all mounds were assessed for signs of 

kangaroo rat activity (e.g., fresh digging and feces, burrow entrances free of debris) 

(Jones 1984). Any newly built mounds were also mapped at this time. All mounds 

exhibiting active kangaroo rat sign were trapped for 3 consecutive nights. Two to four 

live traps (Model XLK, H.B. Sherman Traps, Tallahassee, FL, USA) were baited with 
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sweet feed (oats, corn, and barley mixed with molasses) and placed at each mound (Cross 

and Waser 2000). We opened live traps at dusk and examined them 3-7 hrs after sunset. 

Individuals were marked with a uniquely numbered Passive Integrated Transponder (PIT) 

tag (Model 1440ST, Biomark, Boise, Idaho, USA), which was injected subcutaneously. 

All animals were handled in accordance with the guidelines of the University of New 

Mexico Institutional Animal Care and Use Committee (Protocol No. 04MCC00507 and 

UNM048-TR-100261). 

Adult banner-tailed kangaroo rats are solitary and territorial. Thus, an individual 

captured most frequently at a mound could reliably be considered the occupant (Schroder 

1979, Jones 1984). During this study, we considered a mound occupied during a month 

by an individual if it was caught at the mound: (1) > 1 month; (2) ≥ two times during 3 

consecutive months; and (3) more frequently than any other adult (Jones 1984, Waser et 

al. 2006). A mound was considered occupied during a year, if it was occupied ≥ 1 month 

during a 12-month occupancy period. In 2007 and 2008, the occupancy period was July 

2006-June 2007 and July 2007-June 2008, respectively. In 2009, the occupancy period 

was shorter, July 2008-February 2009, because monthly monitoring of mounds ended in 

February 2009. To compensate for the shorter occupancy period, we visually surveyed all 

mounds for signs of kangaroo rat activity in September 2009 and included additional 

occupied mounds (n = 2) in the 2009 occupied group. Only occupied mounds were used 

in analyses because cessation of kangaroo rat activity leads to changes in plant 

communities around unoccupied mounds (Chew and Whitford 1992, Hawkins and 

Nicoletto 1992, Guo 1996). 
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The entire site was surveyed for P. rugosus colonies in June-September 2007 and 

again in August-September 2008. We walked 3-m transects across the study area and 

visually searched for signs of colonies. New colonies found in 2008 were assumed to 

have first been established by dispersing queens in the summer 2007 and were not large 

enough to be detected until the following year (Gordon and Kulig 1996). Surveys were 

conducted during conditions of high ant activity (e.g., sunny weather and warm surface 

temperatures). Colonies were identified by the presence of a pebbled disc, nest entrance, 

and/or presence of workers. Pogonomyrmex rugosus workers are easily recognized by 

their large size (> 8-mm total length) and dark brown head and mesosoma with a lighter 

colored gaster (MacKay and MacKay 2002). We marked all colonies and measured 

diameter of colony disc. In August 2008 and September-October 2009, we again checked 

all marked colonies for activity and measured disc diameter. Colonies were classified as 

active or inactive based on the presence of P. rugosus. In 2007 and 2008, inactive 

colonies were verified by disturbing the nest entrance to elicit an alarm response from 

workers (Schooley and Wiens 2003). In 2009, inactive colonies were verified by digging 

into the disc and looking for workers. In addition, we revisited inactive colonies 1–2 

weeks later and repeated the verification process. Inactive colonies were considered to 

have died between yearly surveys.  

Seed abundance and foraging observations 

 During summer 2008, 30 active harvester ant colonies on the study site were 

selected for observing foraging time based on a blocked design. All colonies with a disc 

diameter between 0.7 and 1.1 m were placed in two distance groups, < 10 or > 20 m from 

an occupied mound. Fifteen colonies were then randomly selected from each distance 
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group (30 total). Colonies from different distance groups with the shortest distance 

between them were paired together to reduce spatial variation between groups. We 

quantified foraging behavior of 8 workers per colony. Foraging observations were 

conducted only at times of high ant activity, typically warm, sunny weather and before 

noon. Paired colonies were monitored simultaneously to reduce temporal variation 

between distance groups, and all observations were completed within a week of each 

other. At each colony, we randomly selected a worker leaving the nest entrance as our 

focal individual, followed it, and recorded the total time spent outside the nest on that 

foraging trip. We did not attempt to distinguish between unsuccessful and successful 

foraging trips, because workers rarely return to the colony until a food item has been 

found (Gordon 1993). The distribution of worker foraging times at colonies exhibited 

strong positive skew. As a result, we analyzed the median instead of the mean foraging 

time per colony. 

 Seed abundance in soil surfaces near colonies was quantified for 26 (13 pairs) of 

the colonies used for foraging observations. From each colony, we took one soil sample 

by removing the upper 1 cm of the soil surface in an12.5 × 12.5 cm area at 5 m from the 

nest entrance in a random direction. Soil samples were separated by mechanical sieving 

(mesh sizes 0.5-2.5 mm) and the smallest seeds were extracted by floatation. Seeds were 

then dried and sorted using a dissecting scope (Gutiérrez and Meserve 2003). Total mass 

of dried seeds was determined for each sample. Foraging time and seed number and total 

mass were analyzed using two-tailed paired t-tests. Seed number and mass were log-

transformed prior to testing, but means and SE from untransformed values are presented 

in results. 
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Spatial Analysis 

Spatial statistics 

The spatial relationships among mounds and colonies during 2007 and mounds 

and new colonies in 2008 were characterized using the bivariate Ripley’s K-function. 

This spatial statistic determines the scales at which two point patterns, in this case 

mounds and colonies, exhibit either complete spatial randomness (CSR), segregation, or 

aggregation. The bivariate K-function totals the number of points of the opposing species 

within a radius r of a focal point (mound or colony): 
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Biologically, ( )rL12

∧

 for two point patterns can be interpreted as exhibiting, with respect 

to each other, CSR when zero, aggregation when > 0, and segregation when < 0 (Fortin 

and Dale 2005). ( )rL12

∧

 was calculated for distances up to 20 m and a translation edge 

correction was implemented. 

Candidate models 

For each observed point pattern, we conducted a formal hypothesis test for the 

existence of an interspecific interaction between mounds and colonies. We compared the 

fit of a full model with an interspecific interaction and a null model without an 

interspecific interaction. The candidate model was chosen based on the known 

intraspecific interactions that occur within species. Banner-tailed kangaroo rats and 

harvester ants exhibit strong intraspecific competition, which results in segregated 

distributions of mounds and colonies through repulsion of conspecifics at short distances 

(< 30 m for kangaroo rats and < 20 m for harvester ants). Both species also exhibit a 

hard-core property, meaning that > 1 structure cannot physically exist at the same 

location (Schooley and Wiens 2001, 2003). This ecological information indicates the 

suitability of a Gibbs point process model, a flexible class of parametric models that can 

include interpoint interactions, spatial trends, and dependence on covariates (Stoyan and 

Penttinen 2000). These models can test for the existence of both negative (e.g., 

competition) and positive interactions (e.g., facilitation) between points. Gibbs models 

are specified in terms of conditional intensity, λ (or density), which determines the 

conditional probability of finding a point at given location based on information provided 

about the rest of the point process (e.g., interactions, covariates, and marks) (Baddeley 
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and Turner 2006). We chose the multi-type Strauss hard-core (MSHC) process with 

spatial covariates as our candidate model. This model allows multiple discrete marks 

(e.g., mounds and colonies), hard-core properties, and both positive and negative spatial 

dependence within and between marks. Let y = {(x1, m1),…, (xn, mn)} denote a multi-type 

point pattern of a point process in a bounded region W ⊂   with a set of M possible 

marks, where xi ∈W are the points and mi ∈M the corresponding marks. The MSHC 

model with spatial covariates where u ∈  W and k ∈  M, has a conditional intensity 

function of 
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where the interaction between a pair of points u and x with marks k and m is determined 

by the function 
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The four main parameters that define the MSHC model are Bk(u), hkm, rkm, and γkm (all 

must be > 0). Function Bk(u) determines the intensity of the process for each mark and 

includes spatial trends and dependence on covariates at point u. The hard-core distance, 

hkm, specifies the distance between which two points cannot occur. The interaction 

distance, rkm, determines the distance between points in which an interaction occurs and 

must be > hkm. The interaction parameter, γkm, specifies the strength and direction of the 
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interaction between points. For pairs of points with distances between hkm and rkm the 

interaction parameters are biologically interpreted as attraction when γkm > 1, no 

interaction if γkm = 1, and repulsion if 0 ≤ γkm < 1. The hard-core distances, interaction 

distances, and interaction parameters are all symmetrical (e.g., γkm = γmk) (Baddeley and 

Turner 2006).  

Model fitting 

We used the R package spatstat version 1.17-5 to fit non-stationary point process 

models with conditional intensity estimated as a log-linear function. The model-fitting 

algorithm used a maximum pseudolikelihood method with a translation edge correction 

(Baddeley and Turner 1998, 2005). We fitted MSHC models to observed point patterns 

of all colonies and occupied mounds during 2007 and occupied mounds and new colonies 

during 2008. New colonies were defined as those founded on the study area during 2008, 

whereas old colonies were first present during 2007. All points were marked as either 

kangaroo rat mounds or harvester ant colonies, denoted as K and A respectively. The 

MSHC model had 11 total parameters; 5 regular parameters (BK(u), BA(u), γKK, γAA, and 

γKA) and 6 irregular parameters (hKK, hAA, hKA, rKK, rAA, and rKA). Irregular parameters 

were estimated using the maximum-likelihood and maximum-pseudolikelihood methods 

outlined below. Regular parameters were estimated as part of the model-fitting algorithm. 

Depending on the model, functions BK(u) and BA(u) included 1-2 spatial covariates. As a 

result, these functions took the log-linear form  

( ) ( ) ( )( )uZuSuBk 210exp βββ ++=       (4) 
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where the coefficient parameters unique to each mark are β0, β1, and β2 and S(u) and Z(u) 

are the covariates at point u. A covariate based on the distance to nearest unoccupied 

mound, S(u), was included in all models because previous research indicated a negative 

interaction with occupied mounds (Schroder and Geluso 1975, Schooley and Wiens 

2001). Because founding of harvester ant colonies is strongly affected by the presence of 

existing colonies (Gordon and Kulig 1996, Schooley and Wiens 2003), we added a 

covariate based on distance to nearest old colony, Z(u), to models including new colonies. 

We created covariates by dividing the entire study area into 1 × 1-m pixels and assigning 

pixel values as the distance from each pixel to the nearest relevant point (e.g., unoccupied 

mound or old colony).  

We used the maximum likelihood method to estimate hard-core distances, which 

corresponded to minimum interpoint distances (e.g., minimum observed distance between 

ant colonies). We used the profile pseudolikelihood method with a translation edge 

correction to estimate interaction distances (Baddeley and Turner 2005, 2006). This 

method found the interaction distance with the maximum pseudolikelihood between the 

hard-core distance and a set distance in steps of 0.1 m. We set the upper distance limit in 

profile pseudolikelihood method as 30 m and 20 m for intraspecific interactions of 

kangaroo rats and harvester ants, respectively, and 10 m for interspecific interactions. 

These distances were a priori selected based on the hypothesized scale of interactions 

within and between species.  
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 Model validation 

The null model was the same as the full model except there were no interaction 

terms (γKA, hKA, and rKA) between points of different species. We performed a Monte 

Carlo test with the log pseudolikelihood ratio, ∆, as the test statistic to determine whether 

to reject the null model (Baddeley and Turner 2006). The Metropolis-Hastings algorithm 

with 100,000 iterations was implemented to generate 999 simulations of the null model. 

For each simulation, we fitted the full and null models and calculated ∆. Finally, we 

determined the P value of the Monte Carlo test by ranking the observed ∆ in the set of 

simulation ∆’s. We examined the interspecific interaction terms (γKA, hKA, and rKA) of the 

best-fitting models to interpret the biological significance of the spatial processes 

between mounds and colonies. The goodness-of-fit of the best fitting model for each 

point pattern was examined by comparing the ( )rL12

∧

 of the observed point pattern to 

95% critical envelopes based on 999 Monte Carlo simulations of the selected model with 

a translation edge correction (Baddeley and Turner 2005, Perry et al. 2006).  

Extinction risk models 

Extinction of harvester ant colonies is dependent on colony age, size, and 

neighborhood characteristics. Older colonies and larger colonies are less likely to go 

extinct compared to newly founded and smaller colonies (Gordon and Kulig 1996, 1998, 

Schooley and Wiens 2003). Neighborhood characteristics such as high colony density can 

also increase extinction risk of colonies (Gordon and Kulig 1998). We used stepwise 

logistic regression with cut-off P values of 0.05 for inclusion and 0.1 for exclusion to 

select variables that predicted extinction of 1-year-old and > 1-year-old colonies between 
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2008 and 2009 (period of highest extinction). One-year-old colonies were those first 

detected in 2008 and > 1-year-old colonies were the unknown age colonies found during 

2007. Thus, variables included in stepwise selection process for 1-year-old and > 1-year-

old colony extinction models were disc diameter and influence index. Influence index 

was a measure of competitive influence calculated as  

∑
<

=
10mdist

dist/ n,fnf DI       (5) 

where Dn is disc diameter of a neighboring colony, and distn,f is the distance between a 

neighboring colony and focal colony (Woods 2000). Disc diameter was used as an index 

of colony size because it is positively correlated with number of workers in a colony 

(Wiernasz and Cole 1995, Schooley and Wiens 2003). Due to age differences in foraging 

ranges (Gordon 1995), we calculated influence index for 1-year-old colonies at distances 

< 10 m and for > 1-year-old colonies at distances < 20 m. To test the effect of kangaroo 

rat neighborhood characteristics on colony extinction risk, distance to nearest 

neighboring mound was included in the stepwise selection process. We used the log-

likelihood ratio to evaluate the overall model significance. JMP version 7.0.2 (SAS 

Institute Inc., Cary, North Carolina, USA) was used to fit logistic regression models. 

 We tested whether the logistic extinction model or a random extinction model 

(i.e., null model) was a better predictor of the spatial structure of surviving colonies in 

2009. Each model was tested by comparing the univariate version of the homogeneous 

modified K-function between observed and 95% critical envelopes generated by 999 

Monte Carlo simulations of the extinction model. The univariate modified K-function is 
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calculated and interpreted similarly to the bivariate version except it only characterized 

the spatial association between colonies. The modified K-function was calculated for 

distances up to 20 m and a translation correction was used to adjust for edge effects. Each 

Monte Carlo simulation randomly thinned the 2008 point pattern based on an assigned 

probability of deletion. The resulting number of surviving colonies was the same as the 

number observed in 2009. Probability of deletion for the random extinction model was 

equal to the proportion of extinct colonies in 2009 and the same for all colonies, whereas 

in the logistic extinction model probability of deletion for each colony was the fitted 

value of the logistic model (Olano et al. 2009). We used spatstat to perform spatial 

analyses and the R-package ecespa version 1.1-3 to compute the critical envelopes of the 

K-function from extinction models (De La Cruz 2008). 

 

Results 

Demography 

Colony density, founding, and extinction varied between years (Table 2.1). The 

number of colonies on the site increased by 77% from 2007-2008. Colony extinction was 

very low during 2007-2008, but increased during 2008-2009. Newly-founded colonies 

experienced higher rates of extinction than older colonies during 2008-2009 (Pearson’s 

chi-square test, χ2 = 24.7, P < 0.0001). Old colonies had a significantly larger disc 

diameter than new colonies during both 2008 and 2009 (Table 2.1, two-tailed t-test, all P 

< 0.0001). Disc diameter increased with age for both existing and newly founded 

colonies (Table 2.1, paired t-test, all P < 0.001). The number of kangaroo rat mounds 
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occupied varied slightly between years: 48 in 2007, 44 in 2008, and 42 in 2009. In total, 

56 different mounds were occupied from 2007-2009. The majority of mounds were 

occupied all three years (65%) and at least two out of three years (84%).  

Interspecific spatial patterns 

Both existing and newly-founded colonies were aggregated with occupied 

mounds at small scales as a result of a positive interspecific interaction implying 

facilitation. In 2007, the full model with a positive interaction between species was a 

significantly better fit than the null model for mounds and colonies even after controlling 

for intraspecific interactions and location of unoccupied mounds (∆ = 50.4, P = 0.001). 

Based on the full model’s parameters, mounds and colonies were aggregated at small 

scales (hKA = 1 m, rKA = 5.1 m, γKA = 3.65). Conditional intensities of mounds and 

colonies were more than three and half times greater at scales of 1-5.1 m around opposing 

species sites than at larger scales. In 2008, the full model was also a better fit than the 

null model for mounds and newly founded colonies after controlling for effects of 

intraspecific interactions and locations of existing colonies and unoccupied mounds (∆ = 

40.5, P = 0.003). Mounds and newly founded colonies were aggregated around each 

other with conditional intensities over two times greater at scales of 2.3-8.1 m around 

opposing species sites (hKA = 2.3 m, rKA = 8.1 m, γKA = 2.24). Comparison of observed 

L12(r) to 95% critical envelopes for both 2007 and 2008 point patterns confirmed that the 

full model closely matched the observed spatial pattern (Fig. 2.2). Both the mean 

simulation and observed L12(r) values exhibited aggregation (L12(r) > 0) between species 

at small scales.  
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Colony extinction risk 

1-year-old colonies had lower extinction risk near kangaroo rat mounds. Three 

parameters, including one based on spatial relationship to neighboring mounds, were 

selected in stepwise logistic regression of 1-year-old colony extinction risk from 2008-

2009 (Table 2.2). Extinction risk of 1-year-old colonies decreased as disc diameter 

increased and distance to nearest mound and influence index decreased (Model P < 

0.0001). The observed point pattern of 1-year-old colonies in 2009 was most consistent 

with the logistic extinction model. The observed L(r) function was completely enclosed 

by the 95% critical envelopes generated by the logistic extinction model (Fig. 2.3a, 

dashed lines). The simulations of the logistic extinction model exhibited similar levels of 

small-scale segregation between colonies (L(r) < 0) as the observed point pattern. In 

addition, simulations of the logistic extinction model resulted in a small-scale hard-core 

property (i.e., minimum distance between points) that was also present in the observed 

point pattern. The random extinction model was a poor predictor of the observed point 

pattern of new colonies in 2009, particularly at small-scales (Fig. 2.3a, dotted lines). The 

observed L(r) function exceeded the 95% critical envelopes generated by the random 

extinction model several times at distances of 5-10 m and failed to develop a consistent 

hard-core property. The L(r) function of the random extinction model simulations also 

tended to produce weaker segregation between colonies than the observed point pattern. 

Extinction risk of older colonies was not affected by kangaroo rat mounds. Two 

parameters were selected as predictors of 2008-2009 extinction risk for > 1-year-old 

colonies; however, no variables related to neighboring mounds were selected (Table 2.2). 

Extinction risk of > 1-year-old colonies decreased as disc diameter increased and 
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influence index decreased (Model P < 0.0001). The logistic extinction model was a better 

predictor of the spatial structure of old colonies in 2009 than the random extinction model 

(Fig. 2.3b). The observed L(r) function was completely enclosed by the 95% critical 

envelopes of the logistic extinction model at all scales, whereas it exceeded the envelopes 

of the random extinction model at distances > 10 m. The simulations of the random 

extinction model failed to produce as strong segregation between colonies as the 

observed point pattern and the logistic extinction model. 

Seed abundance and foraging time 

 Distance from an occupied mound affected both seed abundance and foraging of 

colonies. Seed abundance in the soil surface was 3 times greater at colonies less than10 m 

from occupied mounds than colonies located greater than 20 m away (Fig. 2.4a; t12 = -

2.72, P = 0.019). Total dried mass of seeds did not significantly differ between distance 

groups (Fig. 2.4b; t12 = -0.99, P = 0.34), indicating that the increase in seed abundance at 

colonies near mounds was primarily due to small seeds. Median foraging time was 27% 

shorter for colonies located less than 10 m from an occupied mound than those located 

greater than 20 m away (Fig. 2.5; t14 = 5.08, P = 0.041).  

 

Discussion 

Our results demonstrated another keystone effect of banner-tailed kangaroo rats in 

the Chihuahuan Desert; kangaroo rats facilitate the dominant harvester ant, P. rugosus. 

Colony founding, extinction, resource availability, and foraging costs were all spatially 

dependent on kangaroo rat mounds. Existing and newly founded colonies occurred at 
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higher densities around mounds at small scales (< 10 m), which was consistent with best-

fitting spatial models showing a positive interspecific association, implying facilitation. 

Extinction of young colonies decreased with increasing proximity to a mound (Table 

2.2). Spatial patterns of surviving 1-year-old colonies were accurately predicted by 

logistic models of extinction risk containing distance to nearest mound (Fig. 2.3). 

Patterns of colony spacing and dynamics appear to be due to the benefits of being close to 

areas of high kangaroo rat activity. Abundance of seeds in the soil surface was greater 

and foraging costs lower for colonies in close proximity to an occupied mound as 

expected from the facilitation hypothesis. The most parsimonious mechanism for these 

spatial and behavioral patterns is the indirect facilitation of harvester ants due to impacts 

of banner-tailed kangaroo rats on seed abundance. 

Founding of colonies 

The best-fitting model for observed point patterns of mounds and 1-year-old 

colonies included a positive spatial interaction at distances of 2.3-8.1 m between species. 

Several possible mechanisms could result in aggregation of newly founded colonies 

around kangaroo rat mounds at this scale. Founding and early survival of harvester ant 

colonies are affected by a variety of factors including soil conditions, intraspecific 

competition, and location of breeding leks. The facilitative effects of kangaroo rats on the 

abiotic and biotic environment around mounds likely contribute to higher founding and 

survivorship rates of young colonies. Soils around mounds are typically cleared of 

vegetation and have more soil nitrogen, salts, and organic matter and finer-textured and 

looser soils than areas away from mounds (Greene and Murphy 1932, Greene and 

Reynard 1932). These soil conditions may attract new queens to settle near mounds. 
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Dispersing Pogonomyrmex queens land in areas with bare soil and high surface 

reflectance (Nagel and Rettenmeyer 1973) similar to the soil characteristics surrounding 

mounds. While harvester ant colonies did not occur directly on mounds, we observed 

they were common in areas surrounding mounds (A. J. Edelman, personal observation). 

Other ant species also favor areas disturbed by burrowing mammals. The western 

harvester ant (P. occidentalis) locates new colonies more frequently on areas disturbed by 

pocket gophers (Thomomys talpoides) than other areas (Hopton 2001). Yellow meadow 

ants (Lasius flavus) colonize European mole hills (Talpa europaea), which produce nests 

that are more resistant to erosion (Mellanby 1973).  

The greater resource abundance and lower foraging costs we observed at colonies 

near mounds likely contribute to the higher density and survivorship of young colonies at 

these sites. Considerable mortality of newly-founded colonies had probably already 

occurred by the time 1-year-old colonies were detected. In other Pogonomyrmex species, 

the extinction rate from establishment of a burrow by a founding queen to a colony 1 year 

of age is close to 99% (Gordon and Kulig 1996). During this vulnerable time period, 

location near a kangaroo rat mound with higher resource abundance likely provided a 

significant advantage for colony establishment and contributed to the aggregated pattern 

between species.  

In the closely related P. barbatus, 1-year-old colonies are more likely to occur 

near younger, existing colonies probably because of reduced competition from larger 

colonies (Gordon and Kulig 1996). Intraspecific competition also appears to affect colony 

establishment in our study because newly founded colonies tended to be farther away 
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(paired t-test, t161 = 3.67, P = 0.0003) from nearest-neighboring large colonies > 96 cm in 

diameter (Χ  ± SE = 19.0 ± 0.7 m, n =112) compared to nearest-neighboring small 

colonies ≤ 96 cm in diameter (Χ  ± SE = 15.3 ± 0.7 m, n = 92). However, we were able 

to control for the spatial effect of existing colonies on founding in our study by including 

them as a covariate in the MSHC model. We found that intraspecific spatial interactions 

alone were unable to account for the aggregation between kangaroo rats and 1-year-old 

colonies and only a model containing an interspecific interaction between these species 

could explain observed spatial patterns. 

Pogonomyrmex typically breed in centralized leks above tall objects such as hills 

> 7 m in height and newly founded colonies tend to be clumped around these areas 

(Wiernasz and Cole 1995). Our study site was relatively flat with no tall objects in the 

immediate vicinity to indicate possible lekking foci. Kangaroo rat mounds are raised 

slightly above the surrounding soil surface suggesting they could be used for leks, but 

they are far shorter than the typical height requirement. Their commonness across the 

landscape may also make them unsuitable for drawing a significant number of 

reproductive ants to any one mound to form a lek. Furthermore, use of a few mounds as 

lek sites would not result in the widespread aggregation of new colonies and mounds that 

we observed.  

Colony extinction risk 

Extinction risk of harvester ant colonies has been shown to decrease sharply with 

increasing age and colony size. In addition, density of other colonies can also increase 

extinction risk, particularly for small colonies (Gordon and Kulig 1996, 1998, Schooley 
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and Wiens 2003). We observed the same effects of age and density on extinction risk in 

our study. Extinction rates were highest in 1-year-old colonies (30%) and survivorship in 

all colonies was influenced by colony size and competitive effects from neighboring 

colonies. However, unlike older colonies, survivorship of 1-year-old colonies was also 

linked to spatial association with mounds. Stepwise logistic regression revealed that 

extinction risk of these colonies was lower as distance to nearest mound decreased even 

after controlling for effects of colony size and competition with neighboring colonies 

(Table 2.2). In addition, this logistic extinction model accurately predicted spatial 

patterns of surviving 1-year-old colonies (Fig. 2.3). Thus, kangaroo rat mounds impact 

colonies when young and more susceptible to extinction.  

Older colonies have low extinction risk and effects of mounds on annual colony 

survivorship were absent. Stepwise logistic regression of > 1-year-old colonies did not 

include distance to nearest mounds in the best-fitting model (Table 2.2). However, older 

colonies appear to have also gone through the same extinction patterns as experienced by 

younger colonies. Older colonies were aggregated with mounds and best-fitting spatial 

models included a significant positive interaction at distances of 1-5.1 m. In addition, 

spatial models indicated that densities of > 1-year-old colonies were greater than 1-year-

old colonies (γKA was 3.65 vs. 2.24) around kangaroo rat mounds. This difference is likely 

caused by the additional period of mortality that older colonies have experienced. Further 

research is necessary to determine if mounds may affect long-term survivorship or 

reproductive success of colonies.  
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Some observed founding and extinction events may have actually been colonies 

that moved locations. In P. barbatus, no more than 10% of colonies relocate per year 

(Gordon 1992). Whether colonies moved or went extinct in our study, the underlying 

implications remain unchanged. Colonies become aggregated around kangaroo rat 

mounds over time through dynamics of founding, extinction, or perhaps even relocation. 

Facilitation of harvester ants by kangaroo rats 

 Our results supported the hypothesis that banner-tailed kangaroo rats facilitate 

harvester ants, due at least in part to effects on prey species. As expected under 

facilitation, seed abundance was higher in the soil surface near mounds. While we did not 

categorize seeds by size, the lack of a corresponding increase in total seed mass in 

samples indicates that the greater numbers of seeds were from small-seeded species that 

ants preferentially harvest. Kangaroo rats indirectly facilitate harvester ants preferred 

food source, small-seeded annuals, by selectively foraging on competitively superior 

large-seeded annuals (Davidson et al. 1985, Samson et al. 1992). Banner-tailed kangaroo 

rats may also directly facilitate small-seeded annuals through ecosystem engineering 

effects. Soil on and near mounds is heavily disturbed by kangaroo rats allowing wind-

dispersed small-seeded annuals to colonize these gaps earlier than other species (Guo 

1996). As a result of foraging and disturbance effects, small-seeded winter annuals are 

more abundant on and near banner-tailed kangaroo rat mounds than inter-mound areas 

(Moorhead et al. 1988, Guo 1996). Colonies near mounds appeared to benefit from 

higher seed availability because we observed that their workers spent less time per 

foraging trip than those at distant colonies. Reduction in foraging time results in lower 

metabolic costs to foragers in Pogonomyrmex (Fewell 1988). 
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Kangaroo rats could also directly facilitate harvester ants by increasing 

accessibility to seeds through larder hoarding. Harvester ants are known to forage for 

seeds on mounds (Schooley and Wiens 2001), but have not been observed to enter 

mounds to raid kangaroo rat seed caches. Banner-tailed kangaroo rats may protect against 

theft via ants by wedging unwieldy seed stems in cul-de-sacs within mounds (Herrera et 

al. 2001). 

The facilitation appears to be unidirectional, with kangaroo rats affecting the 

distribution of harvester ant colonies, but not vice versa. In the Chihuahuan Desert, no 

dramatic changes in plant communities or rodent populations were detected when 

harvester ants were removed (Davidson et al. 1985, Samson et al. 1992). While founding 

of new harvester ant colonies is common (Schooley and Wiens 2003), new kangaroo rat 

mounds are rarely built in established populations. Instead, mounds are occupied by 

different individuals over many generations of kangaroo rats (Holdenried 1957, 

Parmenter and Van Devender 1995b). Total number and identity of occupied mounds 

varied little over the study period in comparison to colonies. Thus, the distribution of ant 

colonies would be expected to respond more quickly than kangaroo rat mounds to 

variations in environmental conditions.  

There is little evidence that kangaroo rats and harvester ants compete strongly and 

directly for seed resources in the Chihuahuan Desert, as was observed in the Sonoran 

Desert (Brown et al. 1979). None of the best-fitting point process models included a 

negative interspecific interaction parameter (e.g., γKA < 1) as expected if strong 

competition existed between species. Furthermore, the logistic extinction model indicated 
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a positive rather than negative spatial influence of mounds on new colony survival. 

Differences in seed preferences and activity patterns between kangaroo rats and harvester 

ants likely reduced the potential of direct competition (Brown and Davidson 1977, 

Inouye et al. 1980, Davidson et al. 1985, Samson et al. 1992). 

Conclusions 

Spatial point pattern analysis has rarely been applied to the study of animal spatial 

patterns and typically inductive pattern analysis has been used. This study is the one of 

the first applications of a deductive model comparison approach to understanding animal 

interactions using statistical point process modeling and logistic modeling of extinction 

spatial patterns. As such, it demonstrates the usefulness of these techniques in teasing 

apart scale-dependent processes in animal communities. Previous experimental research 

failed to detect a positive interaction between kangaroo rats and harvester ants (Davidson 

et al. 1985, Valone et al. 1994) possibly because scale was not explicitly included in 

analyses.  

Banner-tailed kangaroo rats have well-known direct effects on community 

structure of plants, mammals, arthropods, and reptiles through their ecosystem 

engineering and selective seed predation (Bowers and Brown 1992, Hawkins and 

Nicoletto 1992, Brown et al. 1997, Schooley et al. 2000, Brown et al. 2001, Davidson and 

Lightfoot 2007). Our study adds yet another keystone effect of this species, a facilitatory 

impact on the spatial structure and dynamics of harvester ant colonies. 
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Table 2.2. Logistic regression models of 2008-2009 extinction risk for 1-year-old (n = 
162) and > 1-year-old harvester ant colonies (n = 204). 

Colony type Model parameters Coefficient SE P 

1-year-old colonies Intercept 1.275 0.451 0.0047 

 Disc diameter -0.029 0.008 0.0002 

 10-m Influence index 0.073 0.027 0.0067 

 Nearest mound distance 0.037 0.017 0.0271 

     

> 1-year-old colonies Intercept 1.045 0.866 0.23 

 Disc diameter -0.025 0.006 <0.0001 

 20-m Influence index 0.045 0.022 0.044 
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Figure 2.1 
Banner-tailed kangaroo rat mound (a) and rough harvester ant colony disc (b). For scale, 
the child is 1-m tall and the disc of the colony is approximately 1.5 m in diameter.

b) 
a) 
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Figure 2.2 
Goodness-of-fit of best-fitting spatial models of the relationship between kangaroo rat 
mounds and harvester ant colonies. Bivariate modified K-function of point patterns for: 
(a) all occupied kangaroo rat mounds and harvester ant colonies during 2007; and (b) all 
occupied kangaroo rat mounds and newly founded harvester ant colonies during 2008. 
Solid black line represents the observed and dotted lines are the 95% critical envelopes 
and dashed lines the means generated from 999 Monte Carlo simulations of the best-

fitting point process model. Biologically, ( )rL12

∧

 for two point patterns can be interpreted 
as exhibiting with respect to each other complete spatial randomness (CSR) when zero, 
aggregation when > 0, and segregation when < 0. 
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Figure 2.3 
Spatial relationship of observed colony locations and locations simulated from extinction 
risk models. Modified K-function of point patterns of harvester ant colonies on the study 
area during 2009 for: (a) 1-year-old colonies; and (b) > 1-year-old colonies. Solid black 
lines represent the observed L(r) functions. Dotted lines are the 95% critical envelopes of 
L(r) functions generated from 999 Monte Carlo simulations of the random extinction 
model applied to the 2008 colony and mound pattern. Dashed lines are the 95% critical 
envelopes of L(r) functions generated from 999 simulations of the logistic extinction 
model applied to the 2008 colony and mound pattern. 
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Figure 2.4 
 Effects of proximity to a banner-tailed kangaroo rat mound on seed resources in the soil 
surface around harvester ant colonies. Estimates (± SE) of seed abundance (a) and total 
dried seed mass (b) from soil samples (156.25 cm3) taken at the ground surface (1-cm 
depth) for colonies near (< 10 m) and far (> 20 m) from an occupied mound. 
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Figure 2.5 
Effect of colony location on foraging time of harvester ant workers. Median foraging 
time (Χ  ± SE) of workers at colonies near (< 10 m) and far (> 20 m) from an occupied 
banner-tailed kangaroo rat mound. 
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Chapter 3 
 

Sex-specific effects of size and condition on timing of natal dispersal in 
kangaroo rats 

 

Andrew J. Edelman 

Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA 

 

Abstract 

The effect of proximal cues in eliciting natal dispersal should vary between males and 

females because of differences in reproductive strategies. I monitored the effect of food 

supplementation on timing of natal dispersal in banner-tailed kangaroo rats (Dipodomys 

spectabilis), which lack sex-biased dispersal. I provided additional food to a subset of 

mothers and dependent offspring at their maternal mounds from lactation through natal 

dispersal. All supplemented offspring, regardless of sex, grew faster, were in better 

condition, and had higher survivorship than unsupplemented offspring. Food 

supplementation affected the timing of natal dispersal, but only in males. Sons who 

received food supplements dispersed almost 2 months earlier than unsupplemented sons 

indicating that timing of natal dispersal was related to size and condition. Timing of natal 

dispersal in daughters was unaffected by food supplementation suggesting that size and 

condition do not affect dispersal behavior. These sex-specific responses to resources 

match the intersexual differences in reproductive strategies and parental investment 
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patterns of mammals. My results support the hypothesis that sons remain at the natal site 

until a certain threshold of size and condition is reached. Male reproductive success is 

strongly dependent on body size, which affects their ability to find and defend mates. By 

allowing sons to remain at the natal mound until this threshold is attained, mothers likely 

increase the fitness of their sons. Daughters appear to disperse at the youngest age 

possible regardless of size or condition. Female reproductive success is influenced more 

by securing resources than body size. Thus, dispersing as early as developmentally 

feasible would allow daughters to secure an existing mound and begin caching food for 

future reproduction.   

 

Introduction 

Natal dispersal, the permanent movement of offspring from the natal site, has 

substantial effects on the genetic structure, population dynamics, social organization, and 

spatial distribution of animals (Clobert et al. 2001). Proposed evolutionary causes for 

natal dispersal include inbreeding avoidance, reduction in intraspecific and kin 

competition for resources and mates, and environmental stochasticity (Moore and Ali 

1984, Waser 1985, Chepko-Sade and Halpin 1987, Lambin et al. 2001, Perrin and Goudet 

2001). Males and females can differ in how these evolutionary forces shape the costs and 

benefits of natal dispersal. As a result, sex-biased dispersal, where one sex disperses 

farther or more often, is common in many species. Which sex disperses is likely caused 

by the natal site imparting a greater fitness advantage to the non-dispersing sex 

(Greenwood 1980, Pusey 1987, Lambin 1994, Clarke et al. 1997).  
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Proximal causes of natal dispersal are less well understood, but are important to 

determining how environmental and physiological conditions affect dispersal behavior. A 

number of variables potentially determine if and when offspring disperse. Dispersal can 

be triggered or delayed by socioecological factors such as population density, habitat 

quality, conspecific aggression, and competition or physiological factors including age, 

condition, size, and hormones (Holekamp 1986, Nunes and Holekamp 1996, Nunes et al. 

1997, Smale et al. 1997, Lambin et al. 2001). The effect of socioecological and 

physiological cues in eliciting dispersal can also vary between males and females because 

of intersexual differences in reproductive strategies and parental investment (Greenwood 

1980, Clutton-Brock 1991, Lambin 1994). 

In endotherms without male parental care, timing of natal dispersal in males 

should be closely related to size and condition, whereas females should be dependent 

more on factors dealing with resource competition and quality. Male reproductive success 

is limited by their ability to defend and copulate with mates, and larger males presumably 

are more competitive and able to mate with more females. Female reproductive success is 

limited by their ability to convert resources into offspring and larger body size is less 

important to reproductive success because they produce low, relatively fixed litter sizes 

(Trivers 1972, Wilson 1975, Crook et al. 1976, Clutton-Brock 1991). Therefore, sons 

should be under stronger selection to maximize parental investment and achieve a larger 

body size before independence through increasing the time spent under the parents’ care 

and the amount of resources extracted (Clutton-Brock 1991). While this strategy may 

result in a parent-offspring conflict, parents should also be more willing to invest in male 

offspring. Parental investment can have a larger impact on sons’ than daughters’ 
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reproductive success as well as their own number of grand offspring produced because of 

greater variance in male reproductive success (Trivers 1972, 1974, Clutton-Brock 1991). 

Studying sex differences in timing of dispersal within a species can be difficult because 

many endotherms have sex-biased dispersal (Nunes et al. 1997). In addition, comparison 

of parental investment between males and females in species with sex-biased dispersal is 

complicated by the possibility of differential investment at different life stages (Clutton-

Brock 1991).  

 In mammals, male-biased dispersal is the most dominant form of natal dispersal. 

However, a small number of mammals, typically solitary, do not exhibit sex-biased 

dispersal (Greenwood 1980, Waser and Jones 1983). Absence of sex-biased dispersal is 

hypothesized to occur because of similarity in the influences of socioecological variables 

on reproductive success of both sexes (Smale et al. 1997). Species lacking sex-biased 

dispersal are ideal for comparing differences in timing of dispersal and parental 

investment between sons and daughters.  

One well-studied mammal that does not exhibit sex-biased dispersal is the banner-

tailed kangaroo rat (Dipodomys spectabilis), a solitary species native to desert grasslands 

of the southwestern U.S. and northern Mexico (Best 1988). This nocturnal rodent 

aggressively defends territories surrounding a mound that contains a complex burrow 

system and seed caches (Vorhies and Taylor 1922, Schroder 1979, Randall 1987, 2001). 

Mounds are constructed through excavation of soil and can persist for > 50 years 

(Holdenried 1957, Reichman et al. 1985, Parmenter and Van Devender 1995a). Young 

are usually born in small litters (1-3 offspring) during early spring, weaned at 3-4 weeks 
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old, and remain with mothers until at least 2 months old, dispersing before reproductive 

maturity the following winter (Holdenried 1957, Jones 1984, Waser et al. 2006). 

However, there is considerable variation (2 months to 1 year of age) in timing of 

dispersal with respect to both age, sex, and body mass (Jones 1984, Waser et al. 2006). 

Offspring receive substantial parental care after weaning because mothers allow them 

access to natal mounds and the seed caches within (Jones 1986, Jones et al. 1988). 

Mounds are critical resources for kangaroo rats, and offspring must obtain a mound to 

survive and reproduce. New mounds are rarely built, likely because they are costly and 

time consuming to construct (Best 1972). Both males and females disperse relatively 

short distances (< 100 m) from natal sites, typically to the closest available mound (Jones 

1986). Juveniles sometimes remain at the natal mound into reproductive maturity as a 

result of inheritance through the death of the mother or by bequeathal through mothers 

dispersing (Jones 1984). There is likely a minimum age threshold of age or size that 

offspring must reach before dispersing, because juveniles experimentally forced to 

disperse at a young age have lower survivorship than juveniles that naturally disperse 

(Waser 1988). Habitat saturation also affects natal dispersal resulting in shorter dispersal 

distances (Jones et al. 1988, Waser et al. 2006). While timing of dispersal has not been 

directly measured in banner-tailed kangaroo rats, juvenile males tend to be trapped at 

natal mounds later in the year than females (Waser et al. 2006). Banner-tailed kangaroo 

rats exhibit sexual dimorphism and males actively defend estrus females suggesting that 

male size contributes to reproductive success (Best 1988, Randall 1991).  

My objective was to manipulate resources of banner-tailed kangaroo rat mothers 

to examine the proximal causes of natal dispersal in males and females. I monitored 
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timing of dispersal, growth, condition, and survivorship of offspring from mounds with 

and without experimentally supplemented food supplies. I hypothesized that 

supplemented offspring compared to control offspring would generally: 1) grow faster; 2) 

be in better condition; and 3) disperse earlier. Earlier dispersal of supplemented offspring 

would be predicted if timing of dispersal was determined by size and condition. In 

addition, I expected timing of dispersal in sons to be more closely dependent on size and 

condition than in daughters due to relative differences in reproductive strategies and 

parental investment.  

 

Materials and Methods 

Study area 

The study area was located at the Sevilleta National Wildlife Refuge, near 

Socorro, New Mexico, USA (34° 24´ 24.8' N, 106° 36´ 20.5' W, 1600 m elevation). The 

site encompassed 18 ha of Chihuahuan Desert and short grass steppe vegetation 

dominated by grama grass (Bouteloua eriopoda and B. gracilis), burrograss (Scleropogon 

brevifolius), and sand dropseed grass (Sporobolus cryptandrus). The study area contained 

165 kangaroo rat mounds of varying condition and size. 

Mark-recapture and experimental methods 

The banner-tailed kangaroo rat population was monitored monthly from March 

2005 to February 2008 (excluding January 2007). Each month, all mounds were assessed 

for signs of kangaroo rat activity (e.g., fresh digging and feces, burrow entrances free of 
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debris) (Jones 1984). All mounds exhibiting active kangaroo rat sign were trapped for 3 

consecutive nights. Two to four live traps (Model XLK, H.B. Sherman Traps, 

Tallahassee, FL, USA) were baited with sweet feed (oats, corn, and barley mixed with 

molasses) and placed at each mound (Cross and Waser 2000). I opened live traps at dusk 

and examined them 3-7 hrs after sunset. All individuals were marked with a uniquely 

numbered Passive Integrated Transponder (PIT) tag (Model 1440ST, Biomark, Boise, 

Idaho, USA), which was injected subcutaneously. I recorded gender, age, reproductive 

status, mass, tail length, and hind foot length of all captured individuals each month. All 

animals were handled in accordance with the guidelines of the University of New Mexico 

Institutional Animal Care and Use Committee (Protocol No. 04MCC00507 and 

UNM048-TR-100261). 

Adult banner-tailed kangaroo rats are solitary and highly territorial. An individual 

captured most frequently at a mound could reliably be considered the occupant (Schroder 

1979, Jones 1984). During this study, I considered a mound occupied by an individual if 

it was caught at the mound: (1) > 1 month; (2) ≥ two times during 3 consecutive months; 

and (3) more frequently than any other adult (Jones 1984, Waser et al. 2006).  

All mounds occupied by adult females in February 2008 (n = 24) were randomly 

assigned to control or treatment groups. Beginning on February 28, 2008, I added 500 ml 

of mixed seed (millet, cracked corn, and sunflower seeds) weekly to 12 treatment 

mounds. At the beginning of the experiment, most females had either recently given birth 

or were in the late stages of pregnancy (16 of 24). The 12 control mounds were visited 

each week, but no seed was added (i.e., sham treatment). I poured seeds directly into 
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burrows to avoid removal by other granivore species. Females rapidly transferred seeds 

into the interior of the mound, typically within a few hours of supplementation (personal 

observation). I ended food supplementation on July 3, 2008. At this time, > 90% of 

juveniles had dispersed from natal mounds (32 of 35 offspring).  

Gestation in banner-tailed kangaroo rats lasts 3-4 weeks and females rapidly gain 

15-20 g prior to birth and lose a similar amount post-partum (Bailey 1931, Holdenried 

1957). Pregnancy is only detectable from normal mass fluctuations within the last two 

weeks of gestation. Thus, based on monthly patterns of mass gain and loss and visible 

reproductive signs, I was able to establish during which trapping period a female was 

pregnant. To provide a more refined estimate of birth date for each female, I added a 

specific number of days to the date of known pregnancy based on the amount of mass 

gained between trapping periods: 1) < 10 g gained, added 14 days; 2) ≥ 10 g and < 15 g 

gained, added 7 days; and 3) ≥ 15 g gained, no days added. I calculated age at first 

capture for each juvenile by subtracting estimated birth date from date of first capture. 

Age at first capture was used as a measure of the onset of aboveground activity by 

juveniles. I determined the length of delayed dispersal for all juveniles first captured at an 

age < 120 days (n = 32) by estimating the maximum possible time spent at the natal 

mound with mothers. Juveniles differed in completeness of trapping history and 

philopatry. Therefore, I standardized the time spent at the natal mound among juveniles 

based on a set of mark-recapture criteria. For juveniles with a continuous trapping history 

that also dispersed, the date of first capture away from the natal mound was used as the 

independence date. For juveniles with a discontinuous trapping history (i.e., disappeared 

or had a time gap between capture at their natal mound and another mound), the census 
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date after the last capture at the natal mound was used as the independence date. For 

juveniles that inherited or were bequeathed a natal mound because the mother died or 

dispersed, I used the census date following the last capture of the mother at the natal 

mound as the date of independence. The maximum time spent at the natal mound was 

then calculated by subtracting the juvenile’s estimated independence date from its 

estimated birth date. Dispersal distances were defined as the distance between the natal 

mound and the first mound where a dispersing juvenile was captured. Individuals that 

were no longer captured were assumed to have died between trapping periods. Based on 

telemetry and trapping studies, this assumption has been shown to only slightly 

underestimate survivorship  in banner-tailed kangaroo rats because of their short dispersal 

distances and high recapture rates (Jones 1986, Cross and Waser 2000). Using this 

criteria, I estimated survivorship to natal dispersal (first capture away from natal mound) 

and to December 2008.  

Maternity analysis 

A total of 44 banner-tailed kangaroo rat juveniles were captured during 2008. 

Tissue was excised from the ears of each animal upon first capture and dried. Tissue 

samples of putative mothers and juveniles were then sent to a private laboratory (Wildlife 

Genetics International, Nelson, Canada) for analysis following standard protocols. All 

samples were extracted using QIAGEN’s DNeasy Tissue kits (Valencia, California, 

USA) following the manufacturer’s instructions. I used 9 microsatellite loci to 

characterize individuals: DS1, DS3, DS19, DS28, DS46, DS98, DS107, DS109, and 

DS163 (Davis et al. 2000, Waser et al. 2006). A single base was added to the 5’ end of 

the unlabelled primer of all loci except two (DS107 and DS163) to reduce the risk of 
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single-base stutter by encouraging complete adenylation of the PCR product (Brownstein 

et al. 1996). I determined maternity of juveniles using a mixture of exclusion and 

likelihood-based inference (Waser et al. 2006). Candidate mothers were the 24 adult 

females of the control and treatment groups. I first used the X-linked marker DS19 to 

exclude incompatible mothers for each juvenile. Next, I used CERVUS version 3.0.3 to 

infer maternity based on the 8 autosomal loci (Kalinowski et al. 2007). The genotype 

error rate was set at 1% in CERVUS. I accepted all mother-offspring matches assigned 

by CERVUS at the 95% confidence level. I accepted matches at the 80% confidence 

level if the juvenile was first captured at the putative mother’s mound. 

Statistical analysis 

All statistical analyses were conducted using R version 2.10.0 (R Development 

Core Team 2009). I used two-tailed versions of Wilcoxon rank sum tests, t-tests, and 

Fisher’s exact tests to compare reproduction of females, dispersal, and survivorship 

between control and treatment groups. Differences in body measurements at first capture 

and condition index at capture nearest independence age between control and treatment 

groups were examined using analysis of covariance (ANCOVA) tests with age at first 

capture, sex, and interaction effects as covariates. Condition index was measured as the 

residuals of ordinary least squares regression of log-transformed and standardized body 

mass and tail length at capture nearest to independence age (Schulte-Hostedde et al. 

2005). Time spent at the natal mound with mothers was compared with a two-way 

analysis of variance (ANOVA) test with treatment group, sex, and an interaction effect. A 

backward selection process with cut-off p values of 0.05 for exclusion was used to 

determine if sex and interaction effects were included in final ANOVA and ANCOVA 
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models. Identity of mothers was originally included as a random factor in models, but 

was removed because there was no statistically significant improvement in fit and 

accounted for almost none of the variance. 

I used nonlinear regression to fit individual growth curves to capture data grouped 

by sex and experimental treatment (4 total curves). In order to provide a more complete 

record of growth at different ages, multiple captures per individual were included in 

datasets. Iterative least squares criterion was used to fit a modified monomolecular 

equation 

(1) 

where Mt is mass at age t, A is an asymptotic mass, B is birth mass, and T is time required 

to complete major part of growth. Generally, T approximates the time period necessary to 

achieve 90% of A and is a measure of growth rate (Richards 1959, Leberg et al. 1989). 

The monomolecular growth equation, rather than a sigmoidal-based equation as used for 

many mammals, was chosen because growth rate in kangaroo rats has been shown to 

decrease from birth onward (Chew and Butterworth 1959, Butterworth 1961, Lackey 

1967). Birth mass was fixed at 8 g based on published data from this species (Holdenried 

1957). I used Wald statistics to calculate 95% confidence intervals for parameter and 

prediction estimates to compare between sexes and experimental groups (Ritz and 

Streibig 2008).  

To examine further how growth varied between groups, I fitted monomolecular 

growth models which allowed parameters (A and T) to vary by treatment, sex, or both. 

( ) ( )t/T
t eA-BA-M 2−=
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Fits of all 13 possible model configurations were compared using residual standard error 

(RSE) and Akaike information criterion with second order correction for small sample 

sizes (AICc) which ranks models on goodness-of-fit and minimization of parameters. I 

selected the model with the lowest AICc (Ritz and Streibig 2008). 

 

Results 

Food supplementation of mothers affected whether they reproduced successfully 

confirming that resources were limiting on control sites, but did not influence other 

reproductive variables (Table 3.1). Maternity analysis assigned 35 juveniles to mothers 

on the study area (34 at 95% confidence level, 1 at 80% confidence level). Control and 

treatment females did not differ in timing of pregnancy, proportion pregnant, proportion 

producing a second litter, or litter size. Overall, proportion of females that reproduced 

successfully (i.e., at least one confirmed offspring) was lower for the control than 

treatment females. Mothers that produced offspring tended to have reduced survival to 

December 2008 (Fisher’s exact test, P = 0.074) in the treatment group (n = 12) than those 

in the control group (n = 7).  

 Juveniles from the treatment group grew faster than those from the control group. 

At first capture, treatment juveniles averaged 25% heavier than control juveniles (Fig. 

3.1a; F1,28 = 82.4, P < 0.001) after adjusting for age at capture (F1,28 = 26.1, P < 0.001). 

Foot and tail length of treatment juveniles averaged 5% (F1,28 = 41.4, P < 0.001) and 11% 

(F1,28 = 59.3, P < 0.001) longer than control males upon first capture, respectively (Fig. 

3.1b), adjusting for age at capture (foot length: F1,28 = 11.6, P = 0.002; tail length: F1,28 = 



73 

 

 

37.0, P < 0.001). Sex and interaction effects were not statistically significant for any 

measurements.  

Based on the parameter estimates of different growth curves (Table 3.2, Fig. 3.2), 

food supplementation increased growth rate of all juveniles, but had no effect on 

asymptotic mass. Period of major growth (T) for females with supplemented natal 

resources was 50% shorter than non-supplemented females. For males, period of major 

growth was 29% shorter for supplemented than non-supplemented juveniles. Males, 

regardless of treatment, had a longer period of major growth than females and grew to a 

larger asymptotic mass. Asymptotic mass (A) did not significantly differ among 

treatments, but was about 20% greater for males than females, contributing to the 

additional time necessary for males to reach adult mass. The best fitting nonlinear model 

allowed asymptotic mass to vary by sex and period of major growth to vary by both sex 

and treatment (AICc = 1239.95, RSE = 8.5, d.f. = 165) indicating that asymptotic mass 

was similar between treatments within sexes, but that length of growth period differed 

among treatments and sexes.  

Control juveniles were active aboveground at an earlier age and had lower 

survivorship while at the natal mound than treatment juveniles indicating they were likely 

foraging more and at greater predation risk than treatment juveniles. Control juveniles 

were almost 3 times as likely to be captured at natal mounds prior to dispersal and 

averaged about 23 days younger at first capture than treatment juveniles (Table 3.1). 

Almost all treatment juveniles (n = 23) survived to disperse, whereas only about half of 

control juveniles (n = 12) survived (Fig. 3.4, Fisher’s exact test, P = 0.0033). 
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Food supplementation affected length of dependency in males, but not females. A 

significant interaction effect between sex and treatment (F1,28 = 14.6, P < 0.001) indicated 

that effect of food supplementation on timing of dispersal differed between males and 

females (Fig. 3.3). One outlier, a control male, was removed from the dataset to improve 

estimates because he was bequeathed a natal mound at a young age when his mother 

dispersed. However, statistical significance of the interaction effect was not affected by 

inclusion of this outlier. Control and treatment females did not differ from each other or 

from treatment males in the number of days spent at natal mounds (Tukey’s test, P > 

0.05). However, control males stayed at the natal mound an average of 70% longer than 

treatment males and 77% and 82% longer than control and treatment females, 

respectively (Fig. 3.3; Tukey’s test, P < 0.05). Predicted mass at independence from 

growth models was 16% greater for treatment females and 13% less for treatment males 

than control juveniles of the same sex (Table 3.2). Food-supplemented juveniles were in 

better condition than non-supplemented juveniles. Condition index of treatment juveniles 

(Χ  ± SE = 0.17 ± 0.10) was higher than control juveniles (Χ  ± SE = -0.32 ± 0.14) at 

capture nearest to age of independence (F130 = 7.6, P = 0.01; age, sex, and interaction 

effects were not significant). 

 Experimental groups did not differ in dispersal distance or inheritance of the 

natal mound. Less than 20% of juveniles inherited or were bequeathed the natal mound in 

both control and treatment groups (Table 3.1). Dispersal distance did not differ between 

control and treatment juveniles (Table 3.1). After dispersal, survivorship to December 

2008 was similar between control (n = 6) and treatment juveniles (n = 22) indicating that 
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food supplementation did not have a long-term effect on mortality (Fig. 3.4, Fisher’s 

exact test, P = 1.0).  

 

Discussion 

 Males and females exhibited different dispersal behavior in response to resource 

supplementation (Fig. 3.3). These sex-specific responses match the intersexual 

differences in reproductive strategies and parental investment patterns of mammals. 

Timing of male dispersal was earlier in supplemented offspring, which had faster growth 

and were in better condition than controls (Fig. 3.2). Thus, my results support the 

hypothesis that size and condition cues are important to triggering dispersal in males. 

Size and condition likely affect the reproductive success of male kangaroo rats through 

their ability to find and defend mates. Male banner-tailed kangaroo rats engage in 

competitive mate searching and direct competition for access to estrus females (Randall 

1991). Females did not disperse earlier when food supplemented even though they had 

faster growth rates and were in better condition (Fig. 3.2). Timing of dispersal in females 

is predicted to be more influenced by resource quality and competition than body size. 

Competition for existing mounds was low during this study because population density 

on the study site was less than half that of high-density years (2.5 vs. 5.7 individuals/ha) 

and more than half of mounds were unoccupied (unpublished data). Thus, females were 

able to disperse at the youngest age possible (2-3 months old) in order to secure a mound 

and begin provisioning it with seed caches. As observed in this study, seed caches are 

critical to female reproductive success and survivorship of offspring. Mothers with 
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supplemented seed caches reproduced successfully more often and had higher juvenile 

survivorship during the dependency period than controls. 

The exact timing of dispersal in banner-tailed kangaroo rats appears to be 

controlled by a mix of cues related to size, age, and condition. Minimum age of dispersal 

may be set by ontological processes that are not affected by resources. For example, 

supplemented females did not disperse earlier than control females even though they 

reached > 80% of adult mass by independence. Thus, other factors such as behavioral 

development may necessitate a minimum length of dependency before juveniles can live 

independently. Most juvenile kangaroo rats remained at the natal mound until at least 2 

months old and usually closer to 3 months old both in this and other studies (Waser et al. 

2006) suggesting that dispersal is generally not feasible before this age. In males, there 

may be a tradeoff between the effect of size and condition on the timing of dispersal. 

Although males at food-supplemented mounds dispersed earlier than those at non-

supplemented mounds, they also dispersed at a slightly lower percent of adult mass on 

average. However, their body condition was higher than in controls. Thus, supplemented 

juveniles may have compensated for the smaller body size through better condition. 

Dispersing at a younger age when possible may be advantageous to males because they 

face reduced competition for mounds compared to later dispersing juveniles.  

Parental care by banner-tailed kangaroo rat mothers differed between sons and 

daughters under non-supplemented conditions. Additional parental investment should 

benefit sons more than daughters because body size has a larger influence on 

reproductive success in males (Clutton-Brock 1991). Thus, mothers can increase the 
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reproductive success of sons by allowing them to remain for longer periods at the natal 

mound. Due to small sample sizes, I was not able to measure whether sons were more 

costly in terms of fitness to kangaroo rat mothers, but presumably mothers had to 

relinquish additional resources to support them. Parent-offspring conflict could arise if 

sons tried to extract more resources than mothers were willingly to provide (Trivers 

1974). However, males should not attempt to stay longer than necessary to reach a critical 

size or condition threshold because obtaining their own mound is essential to survival and 

reproduction.  

Socioecological factors are also known to affect dispersal behavior in banner-

tailed kangaroo rats. Habitat saturation causes banner-tailed kangaroo rats to disperse 

shorter distances (Jones et al. 1988) and delay dispersal longer (unpublished data). 

During periods of habitat saturation mothers can increase survivorship of offspring by 

allowing them to remain at natal mounds until a suitable vacancy becomes available 

(Jones 1984, 1986, Jones et al. 1988). Mounds are a critical resource for kangaroo rats, 

which can take up to 2 years to construct (Best 1972, Parmenter and Van Devender 

1995a); without a suitable mound, kangaroo rats are unable to survive and reproduce. 

Periods of high density in animal populations often coincide with high food abundance 

confounding the effects of habitat saturation and resources on timing of dispersal. I was 

able to decouple the effect of resources from habitat saturation during this experiment 

because density was well below saturation levels on the study site. These proximate 

factors appear to affect timing of dispersal differently because habitat saturation caused 

later dispersal and increased resources resulted in earlier dispersal. The more extreme 
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instances of delayed dispersal (> 7 months) observed in other studies are probably 

attributable to habitat saturation (Jones et al. 1988).  

Comparison of banner-tailed kangaroo rat dispersal patterns to other mammal 

species is complicated by the prevalence of sex-biased dispersal. However, sciurids, in 

particular Belding’s ground squirrels (Spermophilus beldingi), which exhibit some 

flexibility in sex-biased dispersal provide the most comparable example (Smale et al. 

1997). Similar to male banner-tailed kangaroo rats, food-supplemented male Belding’s 

ground squirrels disperse earlier, but at a comparable mass and condition as control males 

(Nunes and Holekamp 1996). Unlike banner-tailed kangaroo rats in which both sexes 

must disperse, female Belding’s groups squirrels are often philopatric, but disperse more 

often when food supplemented, likely because competition for non-food resources 

increases (Nunes et al. 1997). By examining sex differences in banner-tailed kangaroo 

rats that lack sex-biased dispersal, I was able to directly compare the effect of food 

supplementation on dispersal between males and females. My results confirm that 

differences between sexes in timing of dispersal are likely related to sex-specific 

reproductive strategies and parental investment patterns common in mammals.    
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Table 3.1: Effects of food supplementation on female reproduction and juvenile dispersal 
for banner-tailed kangaroo rats. Means ± SE are presented with sample sizes in 
parentheses.  

aProduced ≥ 1 known offspring

Response variable Control (n) Treatment (n) Test statistic P 

Female reproduction     

Percent pregnant 83% (12) 100% (12) Fisher’s exact 0.48 

Percent reproduced 

successfullya 

58% (12) 100% (12) Fisher’s exact 0.037 

Percent producing 2nd 

litter 

0% (12) 25% (12) Fisher’s exact 0.26 

Mean Julian day of first 

pregnancy 

65.2 ± 4.4 (10) 66.1 ± 6.1 (12) Z = -0.13 0.90 

Litter size 1.7 ± 0.3 (7) 1.6 ± 0.2 (12) Z = 0.33 0.71 

Juvenile dispersal     

Age at first capture 

(days) 

69.7 ± 7.4 (11) 83.6 ± 3.8 (21) t = 1.86 0.037 

Percent caught at natal 

mound 

82% (11) 29% (21) Fisher’s exact 0.008 

Percent philopatric 17% (12) 13% (23) Fisher’s exact 1.0 

Median dispersal 

distance (m) 

65.8 ± 17.9 (7) 46.9 ± 14.2 (22) Z = -0.05 0.96 
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Figure 3.1 
Effects of food supplementation on body measurements of juvenile banner-tailed 
kangaroo rats. Measurements shown are mass (a) and hind foot and tail length (b, white 
bars = control group, shaded bars = treatment group) of control (n = 11) and treatment 
groups (n = 21) at first capture (least squares means ± SE adjusted for age at capture 
through ANCOVA).  
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Figure 3.2 
Growth of banner-tailed kangaroo rats separated by sex and experimental group. Solid 
lines are monomolecular growth curves fitted to mass data (circles). Dashed lines are 
95% confidence intervals. Arrows indicate parameter T, age at which approximately 90% 
of asymptotic mass was reached. Parameter estimates of growth curves are presented in 
Table 3.2.  
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Figure 3.3 
Effects of food supplementation on length of dependency for female and male juvenile 
banner-tailed kangaroo rats. Estimated days spent at natal mound with mother (least 
squares means ± SE) for control (white bars) and treatment groups (shaded bars) are 
shown. Samples sizes are: control females = 6, control males = 4, treatment females = 9, 
and treatment males = 12.  
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Figure 3.4 
Proportion of juvenile banner-tailed kangaroo rats that survived to natal dispersal and to 
December 2008 in control (white bars) and treatment groups (shaded bars). 
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