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ABSTRACT

Admixture is a form of gene flow that occurs when long separated populations come

into contact and exchange mates. Admixture has been a primary mechanism in the for-

mation of many modern human populations. The genetic characteristics of an admixed

population are intermediate to, yet distinct from, those of its ancestors. In this disserta-

tion, I investigate biological and statistical factors that enter into the analysis of admixed

populations using genetic marker data. In chapters one and two, I use genotype data from

published sources that contain 618 microsatellite loci. In chapter three, I simulate geno-

types of 500 microsatellite loci.

In chapter two, I present an analysis of genetic diversity within and among 17 pop-

ulations in the Americas that were formed by admixture among continental Indigenous

Americans, Africans and Europeans. This is the first application of a new method to parti-

tion the genetic distance between pairs of populations into components related to ancestry

and genetic drift. I show that the genetic relationships among the continental sources and

genetic drift occurring after population formation strongly influence the genetic structure

of these populations.

In chapter three, I investigate a new strategy to find modern populations to serve as

models for ancestors in admixture events that occurred in the past. This is a long-standing
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challenge to admixture studies. This chapter focuses on the Cape Coloured people of

South Africa, a population that formed by mixture of indigenous Africans, Europeans,

and Asians. I propose a series of models for their ancestry and use the Akaike Information

Criterion to choose the best model. This method from information theory identifies a sim-

ple model that proposes only African and Asian ancestors. I interpret this result in terms of

both the principle of parsimony and the evolutionary recent common ancestor of the human

species.

In chapter four, I use computer simulations to assess bias in ancestry fractions estimated

by using maximum likelihood. These novel simulations were designed to produce data sets

that mimic actual patterns of variation in human populations. I have found sampling strate-

gies that produce reasonably unbiased results, despite the potential for maximum likelihood

to produce biased estimates.
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Chapter 1

Introduction

In this dissertation, I use a common statistical approach for my admixture analyses.

Tang et al. (2005) developed the statistical method using maximum likelihood to estimate

ancestry in admixed populations from genotype data obtained from contemporary popula-

tions.

lnL(θ) =
S∑

s=1

NS∑
i=1

L∑
l=1

Jl∑
j=1

[gsilj × ln(ysilj)] (1.1)

where

ysilj =
K∑
k=1

pjlkmik

is the predicted allele for the jth allele at the lth locus in the ith individual in the sth sample.

The genotype data gsilj are the counts of the jth allele (j = 1...Jl), observed at the lth

locus (l = 1...L) from the ith person (i...Ns), belonging to the sth sample (s = 1...S). The

parameters (θ = [p,m]) are pjlk the frequency of the jth allele, from the lth locus, from the

kth source population (k = 1...K), and mik the fraction of ancestry from the kth source

population contriubted to the ith individual.
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Researchers previously collected the genotype data from many contemporary popula-

tions found throughout the world (Cann et al., 2002; Rosenberg et al., 2002, 2006; Wang

et al., 2007, 2008; Tishkoff et al., 2009). These genotypes consist of microsatellite loci.

Pemberton et al. (2013) worked to centralize the data collected from other researchers into

a single data set by calibrating the loci of more than 2,500 individuals from 248 world-

wide populations. My research uses a subset of these samples and loci for all individuals

included in my analyses.

There are several assumptions associated with maximum likelihood, which relate to

biological and statistical factors in admixture analyses. First, each allele in a genotype of

an individual represents an independent draw from one of the source populations. Second,

contemporary individuals derive from populations that are in Hardy-Weinberg equilibrium,

when conditioned on ancestry fractions. Third, marker loci are in linkage equilibrium,

when conditioned on ancestry fractions. Fourth, ancestry is estimated from the true ances-

tral source populations. Finally, gene flow in the form of admixture is the only evolutionary

process operating in this system.

I use maximum likelihood to address and overcome challenges in admixture analy-

ses. The challenges involve proper identification of ancestral source populations that con-

tributed to the admixture event. There are three primary challenges confronting the proper

identification of ancestral source populations. (1) Admixture events that formed many con-

temporary populations began or occurred entirely in the past. (2) Ancestral source popula-

tions may no longer exist, or they have evolved since the time of the admixture event. (3) A

sparse historical record prevents us from fully knowing the source populations. These chal-

lenges are ubiquitous in my research as well as in all other admixture analyses. I present

ways to overcome these challenges, and address particular model assumptions in each of

my dissertation chapters.

In chapter two, I analyze the genetic diversity within and among 13 Latin American and

four African-American populations in the Americas. The admixture of continental Indige-
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nous Americans, Africans, and Europeans formed the mixed populations. My analysis uses

genotype data at 618 microsatellite loci from 949 individuals from 49 genetically sampled

populations to estimate the ancestry and ancestral allele frequencies that contributed to the

formation of these admixed groups. This analysis partitions Nei’s minimum genetic dis-

tance into components of ancestry and genetic drift among the admixed populations (Nei,

1973, 1987). I partition genetic distance through a series of matrix calculations. First, I

calculate Nei’s minimum genetic distance. Then I calculate the expected minimum ge-

netic distances from the expected allele frequencies of the sampled admixed populations

and contemporary populatoin samples that serve as pseudo-ancestors, which are obtained

using the likelihood method of Tang and colleagues (2005). The expected minimum dis-

tance values are the partitioned ancestry distances of the admixed populations. I obtain the

genetic drift partition from matrix subtraction, which is simply the difference of the ances-

try partition from Nei’s minimum genetic distance. Recall an assumption of the likelihood

model; admixture is the only evolutionary process operating in the model. I show, from this

research, that genetic drift plays a prominent role in shaping the genetic diversity of the ad-

mixed populations, which provides a fuller perspective of the effect of the evolutionary

process in these populations.

In chapter three, I investigate how to choose contemporary populations to serve as an-

cestral sources in admixture analyses of ancestry. This work addresses the challenge of

using what Tang and colleagues (2005) call pseudo-ancestors. Pseudo-ancestors are pop-

ulations that are closely related to the ancestral sources that contributed to the formation

of an admixed population, but who did not aid directly in the formation of the admixed

population (Tang et al., 2005). The use of pseudo-ancestors is necessary because of the

challenges in admixture analyses. First, source populations may no longer exist or have

evolved since the time of the admixture event. Second, a sparse historical record prevents

us from fully knowing who the true ancestors of an admixed population were. I construct

26 models of proposed ancestry for the Cape Coloured population of South Africa who

3



serve as a focal admixed population to test this method. The method I use is the Akaike

Information Criterion (AIC) to choose the best model from the 26 that estimate ancestry

for the Cape Coloured population (Akaike, 1973, 1974). These models contain between

two and five ancestral source populations, which include the Khoesan, Bantu speakers,

European, South Asian, and East Asian. Each ancestral source population is comprised

of genotype data containing 618 microsatellite loci of individuals from two contemporary

population samples.

In chapter four, I investigate the concept of pseudo-ancestors further. I use coalescent

simulations to examine ancestry proportion estimates of an admixed population (Excoffier

and Foll, 2011). In knowing the relationships of the pseudo-ancestors to the true ancestors,

I will determine if genotype data from pseudo ancestral sources in lieu of the true ancestors

biases estimates of ancestry. This research addresses several challenges inherent in admix-

ture analyses. Primarily, these challenges are admixture events that formed many contem-

porary populations began or occurred entirely in the past; and ancestral source populations

may no longer exist, or they have evolved since the time of the admixture event. I begin by

constructing a simulated consensus tree of pseudo-ancestors to serve as ancestral sources

used to estimate ancestry proportions in an admixed population. The pseudo-ancestors in

the tree mimic observed levels of genetic diversity from contemporary samples of actual

African, European, and Indigenous American populations.

I then simulate the formation of an admixed population from a single admixture event

between two of the pseudo-ancestral populations. I construct a series of eight models

whereby ancestry proportions are estimated from varying pseudo-ancestors in the tree. The

first four models estimate ancestry from the continental sources of Africa and Europe in the

formation of an African-American population. The last four models estimate ancestry from

European and American continental sources in the formation of a Latin American popu-

lation. I estimate ancestry proportions from simulated genotype data, which contains 500

loci from the individuals of each pseudo-ancestral population, as well as the focal admixed
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population. For each model, I vary the sample sizes for the ancestral source populations,

as well as for the admixed population. The first sampling scenario samples 100 individuals

among all populations, for each of the two ancestral sources and for the admixed popula-

tion. The second sampling scenario samples 100 individuals from the admixed population,

and 20 individuals from each of the ancestral source populations. The third sampling sce-

nario estimates ancestry from a sample of 20 individuals from the admixed population, and

100 individuals from each of the ancestral source populations.
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Chapter 2

The Contributions of Admixture and

Genetic Drift to Diversity Among

Post-Contact Populations in the

Americas

2.1 Overview

Objective: We present a partition of Nei’s minimum genetic distance in admixed popu-

lations into components of admixture and genetic drift. We applied this technique to 17

admixed populations in the Americas to examine how admixture and drift have contributed

to the patterns of genetic diversity.

Materials and Methods: We analyzed 618 short tandem repeat loci in 949 individuals

from 49 population samples. Thirty-two samples serve as proxies for continental ances-

tors. Seventeen samples represent admixed populations: (4) African-American and (13)

6



Latin American. We estimate ancestry fractions and allele frequencies for all populations.

We partition genetic distance and calculate fixation indices and principal coordinates to

interpret our results.

Results: The partition of genetic distance shows that both admixture and genetic drift con-

tribute to patterns of genetic diversity. The admixture component of genetic distance pro-

vides evidence for two distinct axes of continental ancestry. However, the genetic distances

show that ancestry contributes to only one axis of genetic differentiation. The drift com-

ponent of genetic distance indicates that modest founder effects accompanied admixture in

the formation of these populations.

Discussion: Our results show that the genetic structure of admixed populations in the

Americas reflects more than admixture. We show that the evolution of the source popu-

lations influenced the genetic structure of the admixed populations. Notably, the history of

serial founder effects constrains the impact of admixture on allele frequencies to a single

dimension. Founder effects in the admixed populations imposed a new level of genetic

structure onto that created by admixture.

2.2 Introduction

European colonization of the Americas beginning in the late 15th century had a major im-

pact on the human species by bringing people living in Europe and Africa to the Americas.

Populations on these continents had been isolated from each other for thousands of years

before this. The result of re-contact was the formation of new genetically mixed popula-

tions that trace their recent ancestry to two or more continental regions. Many mixed popu-

lations formed and each one constituted a unique gene pool. The mixed populations resided

in geographic locations dispersed throughout the Americas, and to varying degrees, the

populations were isolated from each other. Each newly formed population had its genetic

diversity structured by factors such as the composition of African, European, and Indige-
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nous American ancestors, and their specific degree of isolation. Many population genetic

studies have compared the fractions of continental ancestry across admixed populations in

the Americas (Shriver et al., 2003; Bonilla et al., 2004, 2005; Galanter et al., 2012). Re-

cent efforts have linked admixed populations to subpopulations of the continental ancestral

groups (Wang et al., 2008; Moreno-Estrada et al., 2014). However, ancestry fractions, no

matter how fine-grained, do not fully account for the patterns of genetic diversity in the ad-

mixed populations. A full account requires consideration of other evolutionary processes,

notably genetic drift. The Indigenous American population experienced dramatic decline

and rebound in the relatively short timeframe since European contact (Livi-Bacci, 2006;

O’Fallon and Fehren-Schmitz, 2011). Many of the admixed populations formed during

the time of Indigenous American decline, and necessarily grew from small to large size in

their early generations. In essence, the foundation of these populations would have encom-

passed both mixing of continental ancestry and founder effects. No study heretofore has

connected the genetic diversity within and among the mixed populations to the combination

of continental ancestry and genetic drift. To this end, we developed a model and methods

of analysis to partition genetic distance into ancestry and drift components. We analyzed

a diverse set of admixed populations in North and South America. We found that demo-

graphic forces that go beyond admixture, which are related to genetic drift, have played a

prominent role in shaping patterns of diversity within and among admixed populations in

the Americas.

2.3 Population Genetic Model

Figure 2.1 presents the basics of our model and its main parameters. For the purpose of

explanation, we consider a pair of recently formed populations that we will label A and

B. Both A and B have ancestry from two continental sources that we will label 1 and 2.

We assume that the continental source populations have been isolated from each other for

8



enough time to allow their allele frequencies to diverge by genetic drift.

Nei’s minimum genetic distance is a principal quantity in the formulation of our model

(Nei, 1973, 1987). For a single genetic locus, this genetic distance is a function of allele

frequencies computed according to the formula,

D2
hi =

1

2

∑
j

(phj − pij)
2 (2.1)

where, phj and pij represent the frequency of the jth allele in the hth and ith populations, re-

spectively. The summation is taken over all alleles at the locus. Minimum genetic distances

are typically reported as averages over many genetic loci.

Figure 2.1: Schematic showing the independent contributions of admixture and genetic drift to genetic dis-
tance.

Our goal for the populations A and B is to partition their minimum genetic distance

into two components, one representing ancestry and the other representing genetic drift. To

accomplish this, we construct allele frequencies in A and B using allele frequencies in the

source populations, ancestry fractions, and a contribution by genetic drift (Long, 1991). For

the purpose of exposition, we will assume that 1 and 2 are the only ancestral populations

9



of A and B. This restriction can be relaxed and our methods generalize to any number

of source populations that contributed ancestors to any number of mixed populations. We

construct allele frequencies in the admixed populations according to the formulas

pAj = p2j +mA1(p1j − p2j) + εAj

pBj = p2j +mB1(p1j − p2j) + εBj (2.2)

where, mA1 and mB1 are the proportions of ancestry in populations A and B that were

contributed by parental population 1. Since all ancestry in A and B must trace back to 1 or

2, we construct mA2 = 1 − mA1 and mB2 = 1 − mB1. The frequencies of the jth allele

in the source populations are represented by p1j and p2j , respectively. The final terms, εAj

and εBj represent the deviations of the allele frequency from that which a pure admixture

process would produce. We assume that these terms represent genetic drift occurring in the

mixed populations during, or after, the admixture process.

To obtain the genetic distance between A and B in terms of our admixture and drift

model, we substitute the allele frequency formulas from Eqs. 2.2 into Eq. 2.1

D2
AB =

∑
j

(p2j +mA1(p1j − p2j) + εAj − p2j −mB1(p1j − p2j) − εBj)
2 (2.3)

After collecting terms and simplifying,

D2
AB = (mA1 −mB1)

2D2
12 +

∑
j

(εAj − εBj)
2

= ∆AB + EAB (2.4)

10



The component ∆AB represents the portion of genetic distance related to admixture, while

the component EAB represents the portion of genetic distance related to drift, following

admixture. It is clear from the admixture component of genetic distance that the impact of

admixture depends on the level of differentiation of the source populations.

This model for genetic distance requires two assumptions. First, genetic drift and ad-

mixture are the only processes that have influenced allele frequencies in the admixed pop-

ulations. Second, the effects of genetic drift and admixture have operated independently.

Neis minimum genetic distance is one of the simplest measures of genetic distance (Nei,

1987). We have chosen it as our primary metric because it is easy to partition into additive

components related to the distinct processes of admixture and genetic drift. Moreover, this

distance makes it easy to relate population differentiation to genetic phenomena such as

homozygosity and heterozygosity. Some other measures of genetic distance (Shriver et al.,

1995; Goldstein et al., 1995; Nei, 1973) utilize the mutation rate to measure divergence

times in phylogenetic models. At best, these genetic distance measures provide indirect

information about admixture. They are unsuited to the populations in this analysis because

admixture produces genetic outcomes that are distinct from the outcomes of population

fissions and phylogenetic radiation. We feel mutation is unlikely to influence the results for

recently founded populations. In this light, we favor a method that is simple to interpret

and likely to produce accurate results.

2.4 Materials and Methods

The focus of our analyses is a set of 17 populations of mixed ancestry in the Americas. This

set includes 13 populations labeled in original sources as Mestizo (Wang et al., 2008) and

four populations labeled in original sources as African-American (Tishkoff et al., 2009).

Various investigators collected these samples in North and South America. To guide our

analyses of mixed populations we include four populations labeled in original sources as
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European, two populations labeled in original sources as Sub-Saharan African, and 26 pop-

ulations labeled in original sources as Indigenous American (Cann et al., 2002; Rosenberg

et al., 2002; Wang et al., 2007). The original investigators collected the African, European,

and Indigenous American samples on their respective continents of origin. The primary

sources for our data are (Cann et al., 2002; Rosenberg et al., 2002; Wang et al., 2007, 2008;

Tishkoff et al., 2009). Tables 2.1 and 2.2 give the population names, geographic coordi-

nates, sample sizes, and primary references for all 49 populations.

We analyze genotypes at 618 autosomal short tandem repeat (STR) loci. The genotyp-

ing service at the Marshfield Clinic performed the laboratory analyses for all of the original

studies. The Marshfield Clinic selected these loci for linkage mapping in other studies. The

loci are spaced on the genetic map approximately 5 cM to 10 cM apart. We use data from

the set that Pemberton et al. (2013) created by calibrating allele sizes and combining across

the original studies.

To test the statistical significance of genetic distance estimates between samples, we

constructed confidence intervals using the jackknife method (Efron and Tibshirani, 1993).

We rejected the null hypothesis of zero genetic distance if the confidence interval for an

estimate did not span zero. One-sided confidence intervals are appropriate for these tests

because genetic distance cannot be negative.
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Table 2.1: Sampled contemporary populations that serve as ancestral proxies in our analyses, along with their
associated sample sizes, global locations, and primary references.

Population Name Sample Size GPS Coordinates Primary Reference
Orcadian 16 59°N −3°E Cann et al. (2002); Rosenberg et al. (2002)
French 29 46°N 2°E Cann et al. (2002); Rosenberg et al. (2002)
Italian 13 46°N 10°E Cann et al. (2002); Rosenberg et al. (2002)
Russian 25 61°N 40°E Cann et al. (2002); Rosenberg et al. (2002)
Mandenka 24 12°N −12°E Cann et al. (2002); Rosenberg et al. (2002)
Yoruba 25 8°N 4°E Cann et al. (2002); Rosenberg et al. (2002)
Yoruba 25 7.9°N 5°E Tishkoff et al. (2009)
Pima 25 29°N −108°E Cann et al. (2002); Rosenberg et al. (2002)
Mixtec 19 17°N −97°E Wang et al. (2007)
Zapotec 17 16°N −97°E Wang et al. (2007)
Mixe 20 17°N −96°E Wang et al. (2007)
Maya 25 19°N −91°E Cann et al. (2002); Rosenberg et al. (2002)
Kaqchikel 12 15°N −91°E Wang et al. (2007)
Cabecar 20 9.5°N −84°E Wang et al. (2007)
Guaymi 16 8.5°N −82°E Wang et al. (2007)
Kogi 16 11oN −74°E Wang et al. (2007)
Arhuaco 16 11°N −73.8°E Wang et al. (2007)
Waunana 20 5°N −77°E Wang et al. (2007)
Embera 11 7°N −76°E Wang et al. (2007)
Zenu 18 9°N−75°E Wang et al. (2007)
Inga 16 1°N −77°E Wang et al. (2007)
Quechua 20 −14°−74°E Wang et al. (2007)
Aymara 18 −22°N −70°E Wang et al. (2007)
Huilliche 19 −41°N −73°E Wang et al. (2007)
Kaingang 5 −24°N −52.5°E Wang et al. (2007)
Guarani 10 −23°N −54°E Wang et al. (2007)
Wayuu 17 11°N −73°E Wang et al. (2007)
Piapoco-Curripaco 13 3°N −68°E Cann et al. (2002); Rosenberg et al. (2002)
Ticuna Tarapaca 18 −4°N −70°E Wang et al. (2007)
Ticuna Arara 15 −4°N −70°E Wang et al. (2007)
Karitiana 24 −10°N −63°E Cann et al. (2002); Rosenberg et al. (2002)
Surui 21 −11°N −62°E Cann et al. (2002); Rosenberg et al. (2002)
Ache 17 −24°N −56°E Wang et al. (2007)
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Table 2.2: Sampled admixed populations used in our analyses, along with their associated sample sizes,
global locations, and primary references.

Population Name Sample Size GPS Coordinates Primary Reference
Oriente 19 14.63°N −89.7°E Wang et al. (2008)
Mexico City 19 19.4°N −99.2°E Wang et al. (2008)
CVCR 20 11.5°N −84.1°E Wang et al. (2008)
Quetalmahue 20 −42.4°N −73.5°E Wang et al. (2008)
Paposo 20 24°N −70°E Wang et al. (2008)
Catamarca 12 −29.3°N −65.8°E Wang et al. (2008)
Salta 19 −24.8°N −65.4°E Wang et al. (2008)
Tucuman 19 −27°N −65.2°E Wang et al. (2008)
RGS 20 −31°N −54°E Wang et al. (2008)
Pasto 19 1°N −78.5°E Wang et al. (2008)
Peque 20 7.6°N −73°E Wang et al. (2008)
Medellin 20 5.4°N −74.4°E Wang et al. (2008)
Cundinamarca 19 3.2°N −74.1°E Wang et al. (2008)
Chicago 15 42°N −87.9°E Tishkoff et al. (2009)
Pittsburgh 21 40.5°N −80.2°E Tishkoff et al. (2009)
Baltimore 44 39.2°N −76.7°E Tishkoff et al. (2009)
North Carolina 18 35.9°N −78.8°E Tishkoff et al. (2009)

Fitting our population genetic model requires us to estimate each component of allele

frequency given by Eq. 2.2. The following estimation steps underlie our analysis. (1) We

identify source populations. (2) We estimate allele frequencies for the sources. (3) We

estimate for the mixed populations the fraction of their ancestry attributable to each source

population. (4) We estimate expected allele frequencies for each mixed ancestry popula-

tion. The expected allele frequencies for a mixed population are the averages of source

population allele frequencies weighted by the fractions of ancestry in mixed populations

that are attributable to the sources. (5) We estimate the drift deviations for each allele fre-

quency, in each mixed population, as the difference between the observed and expected

allele frequencies.

We use the maximum likelihood approach of Tang and colleagues to make the estimates

described in the previous paragraph (Tang et al., 2005). This method assumes a population

model in which the ancestry in a mixed group traces back to a pre-specified number K of
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ancestral sources. The method assumes that each allele in each genotype of an individual

with mixed ancestry represents an independent draw from one of the source populations.

This is equivalent to assuming that genotypes in mixed populations are in Hardy-Weinberg

equilibrium when conditioned on the ancestry fractions. The method requires us to assume

that the STR marker loci are also in linkage equilibrium when conditioned on ancestry

fractions.

We have written new software for the method to accommodate STR data. We wrote this

software using the Bloodshed Development Environment (http//www.bloodshed.net) in the

C++ language. Prior implementations of Tang’s method are restricted to single nucleotide

polymorphism data (Alexander et al., 2009; Tang et al., 2005). The likelihood function is of

extremely high dimension when applied to genomic scale data. Maximizing this function

requires estimating thousands of parameters, consisting of allele frequencies and ancestry

fractions. Our program uses the EM algorithm described by Tang and colleagues (2005) as

a numerical method to obtain asymptotic results from the likelihood equation. Alexander

and colleagues (2009) note that a stringent convergence criterion is necessary to obtain

precise results.

Determining the number of source populations is a special case of determining the num-

ber of clusters in a mixture. This is a long-standing problem in statistics and population

genetics. Following Tang et al. (2005), we intend that our source populations represent

populations that were isolated on different continents in pre-Columbian times, but we in-

vestigate the possibility that alternative models with more source populations per continent

may fit the data better than a model with one source per continent. To distinguish models,

we apply the standard approach of tracking the increase in model likelihood that occurs

with increasing the number of source populations, i.e., increasing K. However, we take

some additional steps too. We perform multiple runs and of the program and check for

consistency in the maximized likelihood across runs. Then, we check the individual mixed

populations to be certain that they make the same overall contribution to the overall like-
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lihood across runs. Finally, we check the individual mixed populations to make sure the

contributions of the source populations remain constant across replicate runs of the same

model. In light of the complexity in identifying actual source populations and estimat-

ing their allele frequencies, we follow the precedence of recognizing these putative source

populations as pseudo-ancestors (Tang et al., 2005).

We take the following steps to partition unbiased estimates of genetic distance into ad-

mixture and drift components. These equations allow any number of K ancestral source

populations. First, we calculate Nei’s unbiased estimate of minimum genetic distance be-

tween admixed populations A and B. Second, we create expected allele frequencies for

each admixed sample according to

p̂Aj =
K∑
s=1

m̂Asp̂sj (2.5)

where, p̂Aj is the expected frequency of the jth allele in the Ath admixed population, and

m̂As is the estimated contribution of the sth ancestral source population to the Ath admixed

population. Third, we compute the admixture portion of the estimated genetic distance

between admixed populations A and B as

∆̂AB =
∑
j

(p̂Aj − p̂Bj)
2 (2.6)

Fourth, we compute the drift portion of the estimated genetic distance as

ÊAB = D̂AB − ∆̂AB (2.7)

where, D̂AB is the estimate of Nei’s minimum genetic distance.

We use original scripts written for the R statistical computing environment to manip-

ulate allele frequency output from our likelihood program, to compute genetic distance

matrices and their partitions, and to produce graphs (R Core Team, 2014).

To facilitate interpretation of our results, we use two supplemental approaches. First,
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we compute the fixation index FST to help assess the extent of genetic drift in admixed

populations (Wright, 1951; Nei, 1987; Long, 1991). We use the general formula,

F̂ST =
ĤT − ĤO

ĤT

(2.8)

for estimation, where ĤT is the estimated heterozygosity in a base population and ĤO is

the estimated heterozygosity in an observed sample. For the pseudo-ancestors, we compute

ĤT from the allele frequencies estimated for the specific continental source population, and

for the admixed populations we compute ĤT from the allele frequencies expected from the

admixture process. Second, we use principal coordinates to represent distance matrices

in lower dimension (Gower, 1966). We use the multidimensional scaling function in R to

compute principal coordinates.

2.5 Results

We estimated genetic ancestry and allele frequencies twice. First, we assumed that K=3

ancestral source populations contributed to the 49 contemporary samples, and second we

expanded to K=4 ancestral sources. We constructed these analyses in a partially supervised

fashion. We constrained individuals from the four European samples to have 100% ancestry

from one source population, and individuals from the two African samples to have 100%

ancestry from a second source population. This construction obligated source one to rep-

resent European ancestors, and source two to represent African ancestors, and by default,

sources three and four represented Indigenous American ancestors. We estimated ancestry

in the populations labeled Indigenous American because prior research shows mixed con-

tinental ancestry in some of these samples (Hunley and Healy, 2011). All models necessi-

tated estimating 6,333 independent allele frequencies per ancestral source population, and

ancestry fractions for 792 individuals. In total, K=3 required estimating 20,583 parameters,

and K=4 required estimating 26,916 parameters. To fit models, we used random starting

17



values for all parameters, and iterated the EM procedure until the likelihood changed by

less than 10−6 between successive steps.

With K=3, we were able to replicate the highest likelihood in several runs of the ances-

try estimation program using different starting values. Importantly, our ancestry estimates

for individuals and populations were consistent across runs, generally not differing by more

than 0.001. By contrast, our results for models with K=4 were less successful. Although,

running the program with K=4 always yielded higher likelihoods than running it with K=3,

we could not replicate the best likelihood on independent runs. Moreover, we found with

K=4 that parameter estimates could be quite different from runs of the program that pro-

duced similar likelihoods. In light of our limited success with K=4, we preformed all

subsequent analyses of ancestry and drift contributions to genetic distance using maximum

likelihood estimates with K=3.

Table 2.3 gives sample size and estimates of continental ancestry for the 17 post-contact

populations. The African-American populations have ancestry proportions similar to each

other (approximately, 80% African and 20% European). By contrast, the Latin American

populations vary widely in their ancestry; average African ancestry varies from 0% to 9%,

average European ancestry varies from 33% to 73%, and average Indigenous American

ancestry varies from 18% to 64%. The wide variation in ancestry within Latin American

populations, and between Latin American and African-American populations, makes our

questions about the contribution of variation in ancestry to genetic distance particularly

salient.
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Table 2.3: The post-contact populations included in our analyses with their associated sample sizes, inferred
average continental ancestry, FST , and log likelihood estimates.

Sample n African European Indigenous American FST lnL(i)
Chicago 15 0.788 0.2 0.012 0.0006 -29,968
Pittsburgh 21 0.79 0.196 0.014 0 -43,142
Baltimore 44 0.828 0.158 0.014 0 -89,668
North Carolina 18 0.775 0.204 0.021 0 -36,181
Mexico City 19 0.035 0.621 0.344 0.0001 -35,594
Oriente 19 0.069 0.456 0.474 0.0002 -35,687
CVCR 20 0.044 0.711 0.245 0.0007 -38,385
Peque 20 0.051 0.437 0.512 0.0199 -37,423
Medellin 20 0.093 0.697 0.211 0.0042 -38,857
Cundinamarca 19 0.02 0.529 0.451 0.0051 -35,443
Pasto 19 0.035 0.457 0.508 0.0053 -34,909
Salta 19 0.024 0.332 0.644 0.0054 -33,878
Paposo 20 0.018 0.499 0.483 0.0176 -35,948
Tucuman 19 0.044 0.698 0.258 0 -35,164
Catamarca 12 0.027 0.594 0.379 0.0082 -22,480
RGS 20 0.094 0.731 0.175 0 -38,371
Quetalmahue 20 0.004 0.564 0.432 0.0293 -36,803

Table 2.3 also gives estimates of FST , which measures the drift of allele frequencies

in each post-contact population from the expectations set by admixture of intercontinental

sources. The four African-American populations independently show minimal influence

from genetic drift based on FST . The Latin American populations show varying impact of

genetic drift. FST is less than 0.001 for five populations, and greater than 0.01 for three

populations. The remaining five Latin American populations show intermediate impact of

drift, 0.001 ≤ FST ≤ 0.01. While FST in this intermediate range seems low, it is typical of

populations on the European continent.

We calculated the matrix of Nei’s minimum genetic distances among pairs of the 49

populations analyzed (17 post-contact populations and 32 indigenous continental popula-

tions). The 17 post-contact populations (4 African-American and 13 Latin American) yield

136 pairs. The genetic distance was statistically significant with p-values below 0.05 for

135 of these pairs. The highest p-value was 0.06 between the African-American popula-
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tions in Pittsburgh and Baltimore. The p-value was below 0.0001 for 116 of the pairwise

comparisons. A p-value of 0.0004 is required for a conservative Bonferroni correction

for multiple comparisons (Sokal and Rohlf, 2012). To visualize patterns, we extracted

the Eigen vectors produced by multidimensional scaling to summarize patterns of genetic

distance among these 49 populations.

Figures 2.2 and 2.3 show the outcomes of our ancestry and genetic distance analyses.

Figure 2.2 displays ancestry estimates for the 49 populations in a triangle plot. As ex-

pected, the continental populations are concentrated on the vertices. The 17 post-contact

populations occupy intermediate locations. The four African-American samples cluster

tightly on the axis between continental African and continental Europeans. The 13 Latin

American populations disperse along the axis between European and Indigenous American

populations.

Figure 2.2: Proportions of continental ancestry fill a two-dimensional space defined by the constraint that
ancestry fractions sum to 1.0. Ancestry estimates are presented for 49 populations. African (blue) and
European (red) samples were constrained to 100% ancestry from their respective continental sources. The
ancestry of contemporary Indigenous Americans (gold) was estimated from a three-way admixture model to
account for recently introduced European and African ancestry. Samples from African-American populations
are shaded dark green. Samples from Latin American populations shaded light green shading.
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Figure 2.3 plots the first two principal coordinates of the matrix of genetic distances

among the 49 populations. Population positions along the first axis, which accounts for

50% of the dispersion, correlate with continental ancestry. African populations occupy

one extreme and Indigenous American populations occupy the other extreme. European

populations lie intermediate to the other two continental groups. African-Americans lie

between the African and European populations. Latin Americans lie between European and

Indigenous American populations. Unexpectedly, the second principal coordinate separates

a pair of Indigenous American population. The next several axes primarily differentiate

Indigenous Americans.

Figure 2.3: Only the first principal coordinate of the genetic distance matrix shows the ancestry pattern of
continental populations and their post-contact descendants formed by admixture. The second, and subsequent
coordinates, primarily reveal the extreme divergence of Indigenous Americans from a continental gene pool.
The color conventions are those established in Figure 2. The dots containing crosses represent the putative
ancestral populations for the continental sources.
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We present Nei’s minimum genetic distances for the 17 post-contact population in the

Americas (Table 2.4). We partitioned the matrix of Nei’s minimum genetic distances

among the 17 post-contact populations into a matrix of admixture distances and a ma-

trix of drift distances (Tables 2.5, and 2.6). Then we used the Eigen vectors produced by

multidimensional scaling to summarize patterns within the distance matrices (fig. 2.4).
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Table 2.4: Nei’s minimum genetic distance for all the admixed populations included in our analyses.

MC OR CR PQ MD CN PS SL PP TC CT RGS QT BL CH NC PT
MC 0 0.0041 0.0048 0.0235 0.0066 0.0042 0.0082 0.0156 0.0149 0.0049 0.006 0.0047 0.02 0.0523 0.0509 0.0465 0.0466
OR 0.0041 0 0.0096 0.0175 0.0125 0.0028 0.0056 0.0106 0.0144 0.0085 0.0058 0.013 0.0225 0.0573 0.0532 0.0503 0.0528
CR 0.0048 0.0096 0 0.0223 0.0043 0.007 0.0152 0.0248 0.02 0.0044 0.0112 0.0039 0.0247 0.0463 0.0464 0.0416 0.0416
PQ 0.0235 0.0175 0.0223 0 0.0237 0.0168 0.0212 0.0256 0.0303 0.0241 0.0214 0.0307 0.0353 0.0764 0.0753 0.0691 0.0711
MD 0.0066 0.0125 0.0043 0.0237 0 0.0094 0.0155 0.0281 0.0226 0.0052 0.0093 0.0026 0.0296 0.0424 0.0437 0.0394 0.0402
CN 0.0042 0.0028 0.007 0.0168 0.0094 0 0.0046 0.0116 0.0153 0.0078 0.0067 0.0131 0.021 0.0613 0.059 0.0567 0.0577
PS 0.0082 0.0056 0.0152 0.0212 0.0155 0.0046 0 0.0095 0.0151 0.0124 0.009 0.0183 0.0196 0.0647 0.0623 0.0592 0.0587
SL 0.0156 0.0106 0.0248 0.0256 0.0281 0.0116 0.0095 0 0.0181 0.0209 0.0135 0.0305 0.0256 0.0801 0.0783 0.0757 0.0747
PP 0.0149 0.0144 0.02 0.0303 0.0226 0.0153 0.0151 0.0181 0 0.0195 0.0166 0.0252 0.0261 0.0738 0.0721 0.0699 0.0698
TC 0.0049 0.0085 0.0044 0.0241 0.0052 0.0078 0.0124 0.0209 0.0195 0 0.0059 0.005 0.0246 0.0458 0.0439 0.0413 0.041
CT 0.006 0.0058 0.0112 0.0214 0.0093 0.0067 0.009 0.0135 0.0166 0.0059 0 0.0119 0.0196 0.0564 0.0548 0.0535 0.0521

RGS 0.0047 0.013 0.0039 0.0307 0.0026 0.0131 0.0183 0.0305 0.0252 0.005 0.0119 0 0.0287 0.0387 0.0371 0.0334 0.0354
QT 0.02 0.0225 0.0247 0.0353 0.0296 0.021 0.0196 0.0256 0.0261 0.0246 0.0196 0.0287 0 0.0787 0.0796 0.0761 0.0748
BL 0.0523 0.0573 0.0463 0.0764 0.0424 0.0613 0.0647 0.0801 0.0738 0.0458 0.0564 0.0387 0.0787 0 0.0048 0.003 0.0016
CH 0.0509 0.0532 0.0464 0.0753 0.0437 0.059 0.0623 0.0783 0.0721 0.0439 0.0548 0.0371 0.0796 0.0048 0 0.0043 0.0048
NC 0.0465 0.0503 0.0416 0.0691 0.0394 0.0567 0.0592 0.0757 0.0699 0.0413 0.0535 0.0334 0.0761 0.003 0.0043 0 0.004
PTa 0.0466 0.0528 0.0416 0.0711 0.0402 0.0577 0.0587 0.0747 0.0698 0.041 0.0521 0.0354 0.0748 0.0016 0.0048 0.004 0

aMC=Mexico City, Mexico; OR=Oriente, Guatemala; CR=Central Valley, Costa Rica; PQ=Peque, Colombia; MD=Medellin, Colombia; CN=Cundinamarca,
Colombia; PS=Pasto, Colombia; SL=Salta, Argentina; PP=Paposo, Chile; TC=Tucuman, Argentina; CT=Catamarca, Argentina; RGS=Rio Grande do Sul, Brazil;
QT=Quetalmahue, Chile; BL=Baltimore, United States; CH=Chicago, United States, NC=North Carolina, United States; PT=Pittsburgh, United States
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Table 2.5: Ancestry partition of Nei’s minimum genetic distance for the admixed populations included in our analyses.

MC OR CR PQ MD CN PS SL PP TC CT RGS QT BL CH NC PT
MC 0 0.0021 0.0011 0.0033 0.002 0.0013 0.003 0.01 0.0021 0.0008 0.0001 0.0031 0.0009 0.0516 0.0474 0.0456 0.0475
OR 0.0021 0 0.0061 0.0002 0.0076 0.0003 0.0002 0.0031 0.0002 0.0055 0.0013 0.0098 0.0006 0.0561 0.0523 0.0504 0.0524
CR 0.0011 0.0061 0 0.008 0.0003 0.0046 0.0076 0.0175 0.0061 0 0.0019 0.0006 0.0038 0.0471 0.0427 0.0411 0.0429
PQ 0.0033 0.0002 0.008 0 0.0098 0.0005 0 0.0019 0.0002 0.0072 0.0021 0.0122 0.001 0.061 0.0572 0.0551 0.0572
MD 0.002 0.0076 0.0003 0.0098 0 0.0063 0.0095 0.0203 0.008 0.0004 0.0031 0.0001 0.0054 0.041 0.0368 0.0354 0.037
CN 0.0013 0.0003 0.0046 0.0005 0.0063 0 0.0004 0.0042 0.0001 0.0041 0.0006 0.0082 0.0001 0.0596 0.0555 0.0535 0.0556
PS 0.003 0.0002 0.0076 0 0.0095 0.0004 0 0.002 0.0001 0.0069 0.0019 0.0119 0.0008 0.0624 0.0585 0.0564 0.0585
SL 0.01 0.0031 0.0175 0.0019 0.0203 0.0042 0.002 0 0.0029 0.0164 0.0078 0.0238 0.0052 0.077 0.0733 0.0709 0.0732
PP 0.0021 0.0002 0.0061 0.0002 0.008 0.0001 0.0001 0.0029 0 0.0055 0.0012 0.0102 0.0003 0.0622 0.0581 0.0561 0.0582
TC 0.0008 0.0055 0 0.0072 0.0004 0.0041 0.0069 0.0164 0.0055 0 0.0016 0.0008 0.0033 0.0475 0.0431 0.0415 0.0433
CT 0.0001 0.0013 0.0019 0.0021 0.0031 0.0006 0.0019 0.0078 0.0012 0.0016 0 0.0045 0.0003 0.0543 0.0501 0.0482 0.0502

RGS 0.0031 0.0098 0.0006 0.0122 0.0001 0.0082 0.0119 0.0238 0.0102 0.0008 0.0045 0 0.0072 0.0403 0.0361 0.0347 0.0363
QT 0.0009 0.0006 0.0038 0.001 0.0054 0.0001 0.0008 0.0052 0.0003 0.0033 0.0003 0.0072 0 0.0601 0.0558 0.0538 0.0559
BL 0.0516 0.0561 0.0471 0.061 0.041 0.0596 0.0624 0.077 0.0622 0.0475 0.0543 0.0403 0.0601 0 0.0001 0.0002 0.0001
CH 0.0474 0.0523 0.0427 0.0572 0.0368 0.0555 0.0585 0.0733 0.0581 0.0431 0.0501 0.0361 0.0558 0.0001 0 0 0
NC 0.0456 0.0504 0.0411 0.0551 0.0354 0.0535 0.0564 0.0709 0.0561 0.0415 0.0482 0.0347 0.0538 0.0002 0 0 0
PTa 0.0475 0.0524 0.0429 0.0572 0.037 0.0556 0.0585 0.0732 0.0582 0.0433 0.0502 0.0363 0.0559 0.0001 0 0 0

aMC=Mexico City, Mexico; OR=Oriente, Guatemala; CR=Central Valley, Costa Rica; PQ=Peque, Colombia; MD=Medellin, Colombia; CN=Cundinamarca,
Colombia; PS=Pasto, Colombia; SL=Salta, Argentina; PP=Paposo, Chile; TC=Tucuman, Argentina; CT=Catamarca, Argentina; RGS=Rio Grande do Sul, Brazil;
QT=Quetalmahue, Chile; BL=Baltimore, United States; CH=Chicago, United States, NC=North Carolina, United States; PT=Pittsburgh, United States
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Table 2.6: Drift partition of Nei’s minimum genetic distance for the admixed populations included in our analyses.

MC OR CR PQ MD CN PS SL PP TC CT RGS QT BL CH NC PT
MC 0 0.0019 0.0037 0.0202 0.0046 0.0029 0.0052 0.0057 0.0128 0.0041 0.0058 0.0016 0.0191 0.0007 0.0035 0.0009 0
OR 0.0019 0 0.0035 0.0174 0.0049 0.0025 0.0054 0.0075 0.0142 0.003 0.0045 0.0032 0.0219 0.0012 0.0009 0 0.0004
CR 0.0037 0.0035 0 0.0143 0.004 0.0024 0.0075 0.0072 0.0138 0.0044 0.0093 0.0033 0.021 0 0.0037 0.0005 0
PQ 0.0202 0.0174 0.0143 0 0.0139 0.0162 0.0212 0.0237 0.0301 0.0169 0.0192 0.0185 0.0343 0.0154 0.0181 0.014 0.0139
MD 0.0046 0.0049 0.004 0.0139 0 0.0032 0.006 0.0078 0.0146 0.0048 0.0061 0.0025 0.0242 0.0014 0.0069 0.0041 0.0032
CN 0.0029 0.0025 0.0024 0.0162 0.0032 0 0.0042 0.0074 0.0152 0.0037 0.0062 0.0049 0.021 0.0017 0.0035 0.0032 0.0022
PS 0.0052 0.0054 0.0075 0.0212 0.006 0.0042 0 0.0075 0.015 0.0055 0.0071 0.0064 0.0188 0.0023 0.0039 0.0028 0.0002
SL 0.0057 0.0075 0.0072 0.0237 0.0078 0.0074 0.0075 0 0.0152 0.0045 0.0057 0.0067 0.0204 0.0031 0.005 0.0048 0.0015
PP 0.0128 0.0142 0.0138 0.0301 0.0146 0.0152 0.015 0.0152 0 0.014 0.0154 0.015 0.0258 0.0116 0.014 0.0138 0.0116
TC 0.0041 0.003 0.0044 0.0169 0.0048 0.0037 0.0055 0.0045 0.014 0 0.0044 0.0042 0.0214 0 0.0008 0 0
CT 0.0058 0.0045 0.0093 0.0192 0.0061 0.0062 0.0071 0.0057 0.0154 0.0044 0 0.0074 0.0193 0.0021 0.0047 0.0053 0.0019

RGS 0.0016 0.0032 0.0033 0.0185 0.0025 0.0049 0.0064 0.0067 0.015 0.0042 0.0074 0 0.0215 0 0.001 0 0
QT 0.0191 0.0219 0.021 0.0343 0.0242 0.021 0.0188 0.0204 0.0258 0.0214 0.0193 0.0215 0 0.0186 0.0238 0.0223 0.0189
BL 0.0007 0.0012 0 0.0154 0.0014 0.0017 0.0023 0.0031 0.0116 0 0.0021 0 0.0186 0 0.0046 0.0028 0.0015
CH 0.0035 0.0009 0.0037 0.0181 0.0069 0.0035 0.0039 0.005 0.014 0.0008 0.0047 0.001 0.0238 0.0046 0 0.0043 0.0048
NC 0.0009 0 0.0005 0.014 0.0041 0.0032 0.0028 0.0048 0.0138 0 0.0053 0 0.0223 0.0028 0.0043 0 0.004
PTa 0 0.0004 0 0.0139 0.0032 0.0022 0.0002 0.0015 0.0116 0 0.0019 0 0.0189 0.0015 0.0048 0.004 0

aMC=Mexico City, Mexico; OR=Oriente, Guatemala; CR=Central Valley, Costa Rica; PQ=Peque, Colombia; MD=Medellin, Colombia; CN=Cundinamarca,
Colombia; PS=Pasto, Colombia; SL=Salta, Argentina; PP=Paposo, Chile; TC=Tucuman, Argentina; CT=Catamarca, Argentina; RGS=Rio Grande do Sul, Brazil;
QT=Quetalmahue, Chile; BL=Baltimore, United States; CH=Chicago, United States, NC=North Carolina, United States; PT=Pittsburgh, United States
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We partitioned the matrix of Nei’s minimum genetic distances among the 17 post-

contact populations into a matrix of admixture distances and a matrix of drift distances.

Then we used the Eigen vectors produced by multidimensional scaling to summarize pat-

terns within the distance matrices.

The admixture distance matrix produced one Eigen vector that explained 98.6% of the

dispersion (Figure 2.4-top). The positions of the 17 post-contact populations on this axis

correlate strongly with ancestry fractions. R2 = 0.91 between position and either African

ancestry or Indigenous American ancestry. R2 = 0.37 with European ancestry; however,R2

= 0.96 when computed between European ancestry and the absolute value of axis position.

Because our model includes three sources of continental ancestry - African, European, and

Indigenous American - we expected to find two principal axes of ancestry. However, the

genetic diversity among continental sources forms a linear gradient that projects into the

mixtures among sources.

Ten Eigen vectors explained the drift distance matrix. However, most of the dispersion

was concentrated in the first three Eigen vectors (Figure 2.4-bottom). It is easy to see

how these Eigen vectors relate to drift by comparing the positions of populations to their

population specific estimates of FST (Table 2.3). The populations with the highest values

of FST occupy the terminal positions on the first axis. The second axis draws a contrast

between the population with the third highest estimate of FST and the two populations with

higher FST . The next three axes contrast populations with middle levels of FST . Axes seven

through ten explain small amounts of dispersion, and do not reflect a coherent pattern.
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Figure 2.4: (Top) Positions of the 17 post-contact populations along the principal Eigen vector of the ancestry
component of the genetic distance matrix. The shading represents increased European ancestry. (Bottom)
Positions of the 17 populations along ten principal Eigen vectors of the drift component of the genetic distance
matrix. The shading is proportional to FST .

Finally, we can relate the patterns found in our decomposition of genetic distances

back to the patterns evident in the total distance matrix. The positions of populations on

the first Eigen vector of the total distance matrix correlate highly with their positions on

the principal Eigen vector of the admixture distance matrix (R2 = 0.97). Moreover, the

first Eigen vector of the total distance shows little correlation with any of the ten Eigen

vectors of the drift distance matrix (0.00 < R2 < 0.07). The positions of populations on

the second Eigen vector of the total distance matrix are uncorrelated with the Eigen vector

of the admixture distance matrix. However, they show strong correlation with positions of

populations on the first Eigen vector of the drift genetic distance matrix (R2= 0.88) and

little correlation with positions on the remaining Eigen vectors of genetic drift (0.00 <
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R2 < 0.03). In a similar vein, the third Eigen vector of the total distance matrix shows

high correlation with the second Eigen vector of the drift distances (R2 = 0.74) and little

correlation with positions on the remaining Eigen vectors of genetic drift (0.00 < R2 <

0.14).

Figure 2.5 shows some interesting unexpected patterns involving the role of genetic

drift in the differentiation of post-contact populations in the Americas. Overall, the trend

is negative - the greater the genetic distance the less genetic drift has contributed to it.

However, this negative trend is absent in all three groupings of populations, when viewed

individually. African-American - by - African-American comparisons show a strong pos-

itive relationship (R2 = 0.69), although the number of comparisons is small, and the trend

is not statistically significant. When comparing pairs of Latin American populations, there

is no relationship between the total genetic distance and the percent that genetic drift ac-

counts for (R2 = 0.00). For example, among Latin American populations showing the least

differentiation, between 20% and 100% of the total differentiation owes to drift. Similarly,

among Latin American populations showing the most differentiation, between 20% and

100% of the total differentiation owes to drift. Finally, genetic drift can be important to dif-

ferentiation, even when comparing a Latin American population with an African-American

population.

28



Figure 2.5: Percent genetic distance owing to genetic drift plotted against total genetic distance. Points are
color-coded to identify three levels of comparison: African-American by African-American (orange), Latin
American by Latin American (blue), and Latin American by African-American (green).

2.6 Discussion

Estimating the allele frequencies of source populations has been a significant issue through-

out the history of genetic admixture studies (Reed, 1969; Cavalli-Sforza and Bodmer, 1971;

Adams and Ward, 1973). There are two significant problems. First, the populations that

mixed may be unidentified, or no longer exist (Chakraborty, 1986). Second, the source pop-

ulations may have evolved since the time of mixing. Modern statistical methods partially

ameliorate both these problems. The likelihood method from Tang et al. (2005) apportions

allele frequencies from the mixed samples back to the ancestral sources. However, allele

frequencies from modern proxies guide the apportionment, and poor choices for the prox-

ies can bias the ancestry estimation. Allele frequency drift in the proxies may also skew

the apportionment. Despite this potential problem, we found an admixture model that fits

this large data set well. FST is below 0.001 in all four African-American samples, and five

of the thirteen Latin American samples. FST exceeds 0.01 in only three Latin American
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samples. Nonetheless, the three populations that show the most drift enter into about a third

of the pairwise distance comparisons.

There are different ways to characterize the genetic structure of admixed populations.

One approach is in the space defined by proportions of ancestry from different continen-

tal source populations. Another approach is in the space defined by allele frequencies

in the admixed populations. These vantage points are connected, both evolutionarily and

methodologically. From the perspective of evolution, a population receives its alleles from

its ancestors. From the methodological perspective, we estimate ancestry from the alleles

contained in samples from populations. The results of this study seem paradoxical in light

of the fundamental connection between ancestry and allele frequencies in admixed popula-

tions. Notably, the plot of ancestry proportions in Figure 2.2 looks distinct from the plot of

genetic distance coordinates in Figure 2.3. The triangle plot of ancestry fractions in Figure

2.2 fills a two-dimensional space, whereas ancestry correlates with only one major axis of

allele frequencies summarized as genetic distances. We can graphically resolve the two

plots by projecting the apex of the triangle, which represents European ancestry, onto the

axis between African and Indigenous American ancestry. We can also resolve the apparent

disparity analytically and evolutionarily.

The ancestry component of genetic distance (Fig. 2.1 and Eq. 2.4) is complicated by

the fact that differences in ancestry between the admixed populations are modulated by

genetic distances between the sources. In other words, the degree to which differences in

ancestry contribute to the genetic differentiation of mixed populations depends on the lev-

els of differentiation among the ancestral source populations (Cavalli-Sforza et al., 1994).

The single axis of ancestry that we see in the principal coordinate plot reflects the recent

evolution of human diversity. Genetic differentiation on the intercontinental scale has been

driven by a series of founder effects (Ramachandran et al., 2005; Hunley et al., 2009). The

entire species traces back to a population that lived in Africa approximately 200,000 years

ago. A founder effect led to the habitation of Eurasia more recently, less than 100,000
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years ago. The peopling of the Americas resulted from a subsequent founder effect from a

population residing in Eurasia. A consequence of this history is that populations living in

Africa have the greatest diversity, in terms of both the kinds of alleles and heterozygosity.

Eurasian populations have a subset of the allelic types found in Africans and lower het-

erozygosity. Indigenous American populations have a subset of the allelic types found in

Eurasians and lower yet heterozygosity (Li et al., 2008; Long et al., 2009). Ultimately, loss

of variation via the founder effects created a single trajectory of genetic distances among

populations on different continents. The ancestry of admixed populations will determine

their placement on the axis, but it cannot introduce new axes of variation.

A full account of the genetic structure of admixed populations requires us to look at

the effects of genetic drift, in addition to admixture. The principal coordinates of the drift

distance matrix display two principal findings for the 13 Latin American populations. First,

these Latin American populations have drifted independently. There is no evidence for a

concerted pattern that a phylogenetic radiation from a single founding event would produce.

It is likely that Latin American populations were founded independently by admixture in

many locations. The proportions of continental ancestry differed among the populations.

In a few populations, such as the Peque, Paposo, and Quetalmahue, high values of FST

indicate that modest founder effects after, or during, the formation of populations (Table

2.3). These founder effects superimposed a new level of genetic structure on that created by

admixture. Second, the drift and ancestry fractions contribute about equally to the pattern

of genetic differentiation among the Latin Americans (Fig. 2.5). We do not observe a corre-

lation between genetic distance and the impact of drift. Drift may predominate the distance

between either closely related, or distantly related, populations. These two findings lend

further support to the position expressed by Tishkoff and Kidd (2004) that anthropologists

and geneticists cannot conceive of Latin Americans as a homogeneous genetic population.

Our analysis shows that the genetic structure of Latin Americans involves more than vary-

ing proportions of continental ancestry.
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Drift accounts for over 90% of the genetic distance among the four African-American

populations. However, it should be noted that small differences characterize the popula-

tions analyzed here. Broader coverage of African-American populations, perhaps includ-

ing the Gullah of South Carolina (Parra et al., 2001), and African-Americans living on the

West Coast (Reed, 1969), could increase genetic distances and show instances where both

admixture and drift drive patterns of differentiation.

Genetic drift plays a less dominant role in the genetic differentiation between African-

American populations and Latin American populations (Fig. 2.5). A large role for con-

tinental ancestry is unsurprising because all of the 13 Latin American populations have

below 10% African ancestry, while the African-American populations have above 75%

African ancestry. However, it is notable that genetic drift accounts for up to a third of the

distances between the most divergent populations.

In conclusion, this research introduces a new method to assess genetic diversity in ad-

mixed populations. Specifically, we show how to partition the minimum genetic distance

between a pair of admixed populations into two components, one related to differences in

continental ancestry and the other related to genetic drift in the admixed population. This

partition allows greater precision in identifying how the recent evolutionary process has

shaped modern human diversity. Our work paves the way for future investigations of geo-

graphic regions such as the Caribbean where many populations were formed by a complex

combination of admixture and founder effects.
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Chapter 3

Identifying the Number of Source

Populations and Their Identities in

Genetic Ancestry Analyses

3.1 Overview

Objective: We investigate the ancestry of a mixed population whose ancestry is uncertain.

We propose multiple ancestry models that differ in the number of populations that con-

tribute to the mixed population, and use the Akaike Information Criterion to choose the

best model. Our focal admixed population is the Cape Coloured of South Africa. The Cape

Coloured exemplify the challenges associated with estimating genetic ancestry.

Materials and Methods: We provide a history of South Africa to describe the develop-

ment of the Cape Coloured. We analyzed the genotypes of 207 individuals from 11 con-

temporary populations at 618 autosomal microsatellite loci. Using maximum likelihood,

we estimate allele frequencies for the ancestral sources, ancestry proportions and expected
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allele frequencies among the Cape Coloured. We construct 26 models, ranging from two

to five ancestral sources, and use AIC to determine the best fitting model.

Results: The ancestry estimates of the Cape Coloured fluctuate based on which ancestral

sources are included in each model. AIC indicates the best fitting model consists of two

ancestral sources, the San and East Asians, and estimated 9,712 parameters. The fit for each

model decreased as the number of parameters increased. All models have high R2 values

for the observed and predicted Cape Coloured allele frequencies, ranging from 0.930 to

0.951.

Discussion: We demonstrate the utility of AIC in multi-model hypothesis testing for ad-

mixture research. Our analyses support the concept of parsimony. The best fitting models

have a minimal number of parameters, and contain two ancestral sources.

3.2 Introduction

A goal in admixture analyses is to estimate the contributions of ancestors to admixed indi-

viduals and populations. This is typically achieved by constructing allele frequencies in a

mixed sample as a linear combination of allele frequencies in populations that contributed

ancestors to the mixed sample. Estimating the allele frequencies of the ancestors is a chal-

lenging problem because the true sources of ancestry may no longer exist, or may not have

been genetically sampled, or are otherwise unavailable for study. Tang et al. (2005) recom-

mend a solution to this problem which consists of constructing pseudo-ancestors, who are

descendants from close relatives of the true ancestors. However, for populations such as

the Cape Coloured, it can be difficult to choose pseudo-ancestors because the number and

identities of the true ancestral sources is unknown.

Here we describe an approach to investigate the ancestry of a contemporary mixed pop-

ulation when there is uncertainty about the sources of ancestry. In this approach, we pro-

pose multiple models that differ in the number of populations that contribute ancestry to the
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mixed population and we use the Akaike Infromation Criterion (AIC) to choose the best

model. Our focal admixed population to which we apply the AIC is the Cape Coloured of

South Africa. Coloured is a nationally recognized ethnic group in South Africa. The Cape

Coloured exemplify the challenges in analysis of genetic ancestry in an admixed popula-

tion. Population geneticists have designated the Cape Coloured as a population of mixed

ancestry (Tishkoff et al., 2009), and have also classified them as Afro-Europeans of mixed

ancestry (Pemberton et al., 2013). However, Cape Coloured history suggests that such la-

bels are too simple because the Cape Coloured people are likely to have ancestors from

as many as five ethno-geographic populations, including non-Africans and non-Europeans.

Two recent studies of Cape Coloured ancestry have postulated different ethno-geographic

sources of ancestry, and, as should be expected, produced differing results (Patterson et al.,

2010; de Wit et al., 2010).

Research design and statistical methods play an important role in the identification of

sources of ancestry. All designs and methods have a similar recognition of the population

genetic process. Allele frequencies in an admixed individual, or population, are a linear

combination of allele frequencies in the ancestral sources, and the coefficients of the linear

combination represent ancestry fractions. Two distinct strategies emerge from this common

starting point.

Strategy #1: First, assemble a meta-sample that combines individuals from a focal

mixed population with samples from regional populations throughout the world. Second,

fit cluster models that treat the meta-sample as a mixture of a predefined number of ances-

tral source populations. Third, run a sequence of cluster analyses that increase the number

of ancestral sources for the meta-sample, until the regional populations appear as having

approximately homogeneous ancestry, while the individuals from the focal mixed popu-

lation have varying degrees of ancestry from the ancestral sources (Pritchard et al., 2000;

de Wit et al., 2010).

Strategy #2: First, predetermine the sources of ancestry for the admixed population
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through ethno-historical analysis, or a screening method such as principal components.

Second, apply a regression-like method to estimate the allele frequencies in the ancestral

source populations and the ancestry fractions in the mixed sample (Patterson et al., 2010).

Both of the above strategies run a risk of producing over-determined ancestry models

for populations with complex histories. We show that the AIC can guide researchers to

models that fit the data well and are parsimonious. We conclude the paper with recom-

mendations for sampling designs for ancestry analyses when there is uncertainty about the

sources of ancestry.

3.3 Founding of the Cape Coloured People

The Cape Coloured people formed by the genetic mixing of individuals from African in-

digenous populations with European colonists and their slaves, and Asian people who mi-

grated to South Africa. Figure 3.1 presents a summary of the major dates of the Cape

Colony that impacted the founding of the Cape Coloured people.

Figure 3.1: Timeline of the major historical events of the Cape Colony that contributed to the formation of
the Cape Coloured people.
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Three prominent indigenous groups of Southern Africa that may be involved in the

formation of the Cape Coloured (Thompson, 2014). The first are the San foragers. His-

torically, the San were a heterogeneous group that spoke a variety of languages (Elphick,

1977). The second was the Khoekhoe who practiced pastoralism, and spoke a single lan-

guage throughout Southern Africa (Elphick, 1977; Thompson, 2014). Researchers believe

the Khoekhoe and San are distant genetic relatives who share similar languages; they are

often collectively referred to as Khoesan (Elphick, 1977; Meyer, 2014). A third poten-

tial source are Bantu-speaking populations found throughout Southern Africa (Thompson,

2014). These Bantu speakers practiced pastoralism, and agriculture (Thompson, 2014).

The indigenous Khoesan and Bantu speaking peoples potentially intermixed prior to the

entry of Europeans to the region (Elphick, 1977; Meyer, 2014; Thompson, 2014).

European contact with South Africa began when the Portuguese arrived at Mossel Bay

in 1487 (Elphick, 1977; de Villiers, 2014a; Thompson, 2014). At this early stage, Euro-

peans undertook short-term trade with the indigenous groups to resupply their ships and

continue to further East. The early Portuguese visitors never established a permanent

colony (Elphick, 1977). In 1652, the Dutch East India Company (VOC) sent 80 employees

to Cape Town, South Africa to establish a replenishing station for ships traveling to and

from India and Southeast Asia (Davenport and Saunders, 2000; de Villiers, 2014a; Thomp-

son, 2014). The VOC paid passage for Dutch men and French Huguenots, to assist with

the way station (Keegan, 1996; de Villiers, 2014a).

European colonists imported 63,000 slaves to the Cape colony between 1658 and 1808,

26.3% were from Africa, 25.1% were from Madagascar, 25.9% were from India, and 22.7%

were from Indonesia (Shell, 2014). The slaves of local origin often had mixed ancestry

(Keegan, 1996). European admixture began when European men fathered a high proportion

of children born to slave women (Keegan, 1996). The British took over the colony in 1806

(Davenport and Saunders, 2000). In the early 1800s, British Parliament passed several

laws, which improved the conditions for slaves and labor classes in the colony. In 1808,
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the British stopped the importation of slaves to the colony (Davenport and Saunders, 2000;

Keegan, 1996; Shell, 2014; Thompson, 2014). In 1828, the British passed a law giving free

blacks and indigenous groups equal standing to whites in the colony, and released them

from enforced labor (Thompson, 2014; Visagie, 2014a). The British abolished slavery in

the Cape colony in 1834 (Davenport and Saunders, 2000; de Villiers, 2014b; Thompson,

2014).

The VOC granted some employees free burgher status these people played a pivotal

role in the formation of the Cape Coloured People. The free burghers became known

as the Boers. The Boers are the ancestors of contemporary Afrikaners (Davenport and

Saunders, 2000; Keegan, 1996; Thompson, 2014; Visagie, 2014a). As the number of free

burghers increased they moved ever further into the frontier. Trekboers encountered the

Bantu-speaking Xhosa in 1813 (Keegan, 1996). These interactions set into motion a series

of nine Frontier wars with the Xhosa that lasted for nearly a century (Davenport and Saun-

ders, 2000; Thompson, 2014). These wars were perpetuated by increasing tensions due to

colonial encroachment along the frontier. In 1820, an additional 4,000 British moved to the

Cape colony, many of whom moved to the frontier (de Villiers, 2014b; Thompson, 2014).

The largest migration of colonists to move to the frontier occurred during the Great Trek

(Visagie, 2014b). The Great Trek consisted of over 15,000 trekboers who, due to grievances

with the colony, left between 1834 and 1840 to settle the frontier as Voortrekkers (Daven-

port and Saunders, 2000; Visagie, 2014b). Finally, in 1894, the last of the Frontier wars

brought the Xhosa under colonial control (Grobler, 2014). The Bantu-speaking Venda was

affected by Voortrekker expansion beginning in 1848 (Grobler, 2014). The Voortrekker and

Venda interactions were friendly for a long period, until 1898, when the Boers attacked and

defeated the Venda, marking the end of independent indigenous societies in South Africa

(Grobler, 2014).

Dutch colonists originally brought about 16,300 slaves from Bengal and southern India

to the Cape between 1657 and 1808 (Shell, 2014; Vahed, 2014). The majority of Indi-
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ans in South Africa today descend from nearly 150,000 Indians who migrated between

1860 and 1911 (Vahed, 2014). The first Indians who migrated during this period came to

South Africa as indentured laborers and spoke Tamil and Telegu of South India (Vahed,

2014). Later, in the 1870s, many Gujarati immigrated independently to South Africa (Va-

hed, 2014). The Chinese had a minimal presence in South Africa before 1900, but between

1904 and 1910, nearly 64,000 Chinese served as indentured laborers in the gold mines of

the Eastern Cape (Joubert, 2014). The South African government, during the apartheid

era, annexed the Chinese to a subgroup of the Coloured class (Joubert, 2014). Indonesians,

numbering 14,300, were brought to the Cape Colony as slaves between 1652 and 1808

(Shell, 2014). Indonesians are a population that feature prominently in South Africa to this

day.

Class structure and demography provided ample potential for genetic mixing to occur

in the Cape colony. Our review of the history of the Cape Coloured population shows many

mixtures and proportions were possible, but the history does not provide all the details and

combinations that did in fact occur. Early on, the majority of colonists were men, who

sought partners outside their cultural and class groups. This practice was more prominent

along the frontier, which formed new cultural groups derived from a mix of indigenous and

European ancestry (Davenport and Saunders, 2000; Keegan, 1996; Thomas, 2014; Thomp-

son, 2014; Visagie, 2014b). As early as the 1850s mixed ancestral groups began to identify

as Afrikanders (Thomas, 2014). By 1880, they came to be known as the Coloured people,

which is the current identification of people derived from mixed ancestry in South Africa

(Thomas, 2014).

3.4 Materials and Methods

We employ the maximum likelihood approach for admixture analysis devised by Tang et al.

(2005). This method assumes a population model in which the ancestry of a mixed pop-
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ulation derives from a specified number of ancestral sources. The genotype data consist

of samples of individuals from the admixed group, as well as from contemporary popu-

lations who serve as proxies for the ancestors of the admixed group. Tang et al. (2005)

identify these proxies as pseudo-ancestors. Ideally, the pseudo-ancestors have descended

from close relatives of the true ancestors, but for populations such as the Cape Coloured,

the appropriate samples to serve as pseudo-ancestors are uncertain.

We write the likelihood equation as

lnL(θ) =
S∑

s=1

NS∑
i=1

L∑
l=1

Jl∑
j=1

[gsilj × ln(ysilj)] (3.1)

where

ysilj =
K∑
k=1

pjlkmik (3.2)

is the predicted allele for the jth allele at the lth locus in the ith individual in the sth sample.

The data gsilj are the counts of the jth allele (j = 1...Jl), observed at the lth locus

(l = 1...L) from the ith person (i...Ns), belonging to the sth sample (s = 1...S). The

parameters (θ = [p,m]) are pjlk the frequency of the jth allele, from the lth locus, from the

kth source population (k = 1...K), and mik the fraction of ancestry from the kth source

population contributed to the ith individual.

The likelihood function is of extremely high dimension when genomic scale data are

used. Maximizing this function requires estimating thousands of parameters, consisting of

allele frequencies and ancestry fractions. Our program uses the Expectation Maximiza-

tion algorithm described by Tang et al. (2005) as a numerical method to obtain asymptotic

results from the likelihood equation. We follow the recommendation of Alexander and col-

leagues (2009) and use a strict convergence criterion of 10−6 to ensure convergence to the

maximum. We used the Bloodshed Development Environment (http://www.bloodshed.net)
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in the C++ language to write new software for the method to accommodate microsatellite

data. Other implementations of this likelihood method are restricted to single nucleotide

polymorphism data (Alexander et al., 2009; Tang et al., 2005).

The model in Equation 3.1 is implicitly a regression analysis because it constructs the

admixed allele frequencies as a linear combination of source population allele frequencies.

Plotting the actual allele frequencies in the admixed population against the predictions from

the admixture model is a simple way to assess the goodness of fit of the admixture model.

R2 serves as a familiar way to describe and compare such plots.

Correlation in allele frequency among pseudo-ancestors is an important factor in fitting

the admixture model. We assess the extent of such correlations by calculating Pearson cor-

relation coefficients of allele frequencies within and between all pairs of pseudo-ancestors.

While other statistics such as FST typically serve this purpose in population structure anal-

ysis, we feel that the Pearson correlation coefficient is appropriate here because of the

connection between admixture analysis and linear regression.

Based on our historical outline of the Cape Coloured, previously published genetic

analyses, and available samples (de Wit et al., 2010; Patterson et al., 2010; Pemberton et al.,

2013), we consider five populations as potential sources of ancestry for the Cape Coloured

people. The five source populations are Khoesan, Bantu speaking peoples of South Africa,

European, South Asian, and East Asian. Each of the five potential source populations is

represented by two samples (Table 3.1). Each sample consists of individuals from which

we analyzed genotypes at 618 autosomal microsatellite loci. The genotyping service at the

Marshfield Clinic performed the laboratory analyses for the original studies. The loci were

selected for linkage mapping and are spaced on the genetic map approximately 5 cM to

10 cM apart. We use the data set that Pemberton et al. (2013) created by calibrating allele

sizes across three original studies. The original studies from which these samples came are

listed in Table 3.1. We developed 26 models, in total, as hypotheses for the ancestry of the

Cape Coloured population 3.2. The models consist of all combinations of two, three, four,

41



and five of the potential sources for the ancestors of the Cape Coloured people.

Table 3.1: Populations used in our analyses, samples obtained from Pemberton et al. (2013).

Population Name Sample Size Ancestral Source Primary Reference
Cape Coloured 33 Mixed Ancestry Tishkoff et al. (2009)
San 7 Khoesan Cann et al. (2002); Rosenberg et al. (2002)
!Xun Kxoe 6 Khoesan Tishkoff et al. (2009)
Xhosa 27 Bantu Tishkoff et al. (2009)
Venda 11 Bantu Tishkoff et al. (2009)
French 29 European Cann et al. (2002); Rosenberg et al. (2002)
Orcadian 16 European Cann et al. (2002); Rosenberg et al. (2002)
Hindi 28 S. Asian Cann et al. (2002); Rosenberg et al. (2006)
Tamil 29 S. Asian Cann et al. (2002); Rosenberg et al. (2006)
Han North China 10 E. Asian Cann et al. (2002); Rosenberg et al. (2002)
Cambodian 11 E. Asian Cann et al. (2002); Rosenberg et al. (2002)

We introduce a novel research design here. First, we start with data from individuals

in a focal mixed population, and samples from a set of regional populations throughout the

world. The regional samples will serve as pseudo-ancestors for sources of ancestry in the

mixed sample. Second, we postulate a series of ancestry models that specify a pre-defined

number of ancestral sources for the mixed sample. We construct a separate data set for each

model that contains data from only the mixed sample and the appropriate pseudo-ancestors

for the ancestral sources in the model. For example, we would not include samples from

Europe, East Asia, and Africa, if our model specifies only two sources of ancestry, because

three continental populations would imply three ancestry sources. Third, we fit a cluster

model with the appropriate number of sources for the data set. Fourth, we test the fit of

each cluster model to the mixed sample by comparing the observed allele frequencies to

the allele frequencies predicted from inferred source populations. Fifth, we use the Akaike

Information Criterion (AIC) to decide on which ancestry model is the most appropriate

representation of the data amongst the 26 models evaluated. We provide the equation for

AIC below.

AIC = −2lnL(θ̂) + 2P (3.3)
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The AIC is a measure of information contained within a fitted model, and is calculated

from the natural log likelihood penalized by the number of parameters estimated in the

model (Akaike, 1973, 1974, 1981a,b, 1983; Anderson, 2008; Burnham et al., 2011). The

best ranking model has the lowest AIC value. We order the AIC values for the 26 models

from lowest to highest, and then calculate the difference between each model and the model

with the lowest AIC.

∆i = AICi − AICmin (3.4)

where, AICi is the Akaike Information Criterion for the ith model, and AICmin is the

minimum AIC. From the ∆ values, we assess the level of support of each mode in relation

to the best-supported model following established guidelines. A ∆ value less than two

means that a model carries as much information as the highest-ranking model (Burnham

et al., 2011). If a ∆ value ranges between nine and 11, then it provides low support for

the highest-ranking model relative to the alternative. A model carries no additional support

relative to the highest-ranking model if the ∆ value is greater than 20 (Burnham et al.,

2011).
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Figure 3.2: Twenty-six models, which serve as hypotheses in testing ancestry among the Cape Coloured
population of South Africa. The number of allele frequency and ancestry fraction parameters estimated per
model are shown. Red denotes the ancestral source populations included in each model. White denotes the
ancestral source populations omitted from each model.

3.5 Results

Table 3.2 provides the log likelihood, R2, AIC, ∆, and ancestry coefficients for our 26

models proposed for the ancestry of the Cape Coloured population. The log likelihood,

AIC, and ∆ values are reported from the portion of the analysis involving only the Cape

Coloured population because we are primarily concerned with the evaluation of the model
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in regards to the admixed group. If we consider these statistics for the entire model, then

we may be evaluating the models in terms of their fit to their pseudo-ancestors. We will

return to the concept of pseudo-ancestors in the Discussion section.

Table 3.2: Model rankings for the putative ancestry for the Cape Coloured people, which includes all possible
models with two or more, and as many as five ancestral populations. [1 < ancestralpopulations ≤ 5]

Rank Khoesan Bantu European S. Asian E. Asian lnL AIC ∆ Par. R2

1 0.447 - - - 0.553 -62629 143812 0 9277 0.951
2 0.756 0.244 - - - -62273 144036 224 9745 0.949
3 - - 0.243 - 0.757 -62850 144322 510 9311 0.943
4 0.479 - 0.512 - - -62622 144354 542 9555 0.948
5 - - - 0.219 0.781 -62857 144808 996 9547 0.946
6 - 0.531 - - 0.469 -62716 144834 1022 9701 0.948
7 0.427 - - 0.573 - -62778 145154 1342 9799 0.948
8 - 0.531 0.469 - - -62790 145378 1566 9899 0.946
9 - 0.498 - 0.502 - -62834 145886 2074 10109 0.951

10 - - 0.834 0.166 - -64040 147486 3674 9703 0.930
11 0.409 - 0.342 - 0.249 -62572 154634 10822 14745 0.950
12 0.088 0.447 - - 0.465 -62580 155358 11546 15099 0.947
13 - - 0.186 0.103 0.711 -62812 155396 11584 14886 0.943
14 0.407 - - 0.418 0.175 -62731 155552 11740 15045 0.948
15 - 0.474 0.286 - 0.240 -62566 155558 11746 15213 0.947
16 0.423 - 0.221 0.356 - -62641 155798 11986 15258 0.950
17 0.136 0.404 0.461 - - -62609 155956 12144 15369 0.944
18 - 0.469 - 0.338 0.193 -62683 156314 12502 15474 0.949
19 0.124 0.374 - 0.502 - -62628 156540 12728 15642 0.947
20 - 0.495 0.199 0.306 - -62713 156746 12934 15660 0.951
21 0.396 - 0.227 0.208 0.168 -62571 166596 22784 20727 0.948
22 0.101 0.383 0.301 - 0.216 -62409 166664 22852 20923 0.949
23 0.107 0.371 - 0.362 0.16 -62551 167556 23744 21227 0.947
24 - 0.474 0.191 0.176 0.159 -62597 167632 23820 21219 0.950
25 0.117 0.378 0.194 0.311 - -62516 167966 24154 21467 0.948
26 0.100 0.379 0.198 0.176 0.147 -62430 179304 35492 27222 0.951

The R2 values between expected (model-based) and observed allele freqquencies are

high for all models. They fall into a narrow range, from 0.930 to 0.951. Figure 3.3 presents

the scatter plots from three models, which include two models with the highestR2 of 0.951,

and the model with the lowestR2 = 0.930. In these plots the predicted allele frequencies are

plotted along the abscissa, and the observed allele frequencies are plotted on the ordinate.

The predictions in Figures 3.3a and 3.3b are made from two ancestral source populations.
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The predictions in Figure 3.3c derive from five ancestral source populations. The broader

distribution coupled with a few highly dispersed points explains the lower R2 value (fig.

3.3b). The R2 values do not provide the resolution to discriminate between models.
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Figure 3.3: Three scatter plots and their associated R2 values. a) The scatter plot contains the Khoesan and
East Asians as the pseudo-ancestral populations and has an R2 of 0.951. b) The scatter plot for the model
with the lowest R2 of 0.930, which contains Europe and South Asia as proxies for two ancestral source
populations. c) The scatter plot containing all five ancestral source populations, and has an R2 of 0.951.

These high R2 values are explained by multicollinearity, which is a common phe-

nomenon in regression analyses. Multicollinearity occurs when the predictor variables
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in a regression model are correlated (Kutner et al., 2005). In our case, the allele frequen-

cies of the ancestral source populations serve as the predictor variables in the regression

model. Table 3.3 shows the Pearson correlations of the observed allele frequencies within

and among the five ancestral source populations constructed in our analyses. We see that

a correlation exists between each pair of ancestral sources, and high correlation is present

among the non-African ancestral source populations.

Table 3.3: The correlation values of the observed allele frequencies among the pseudo-ancestral sources.

Khoesan Bantu European S.Asian E.Asian
Khoesan 1 0.732 0.584 0.609 0.555
Bantu 0.732 1 0.697 0.721 0.661
European 0.584 0.697 1 0.896 0.785
S.Asian 0.609 0.721 0.896 1 0.844
E.Asian 0.555 0.661 0.785 0.844 1

By contrast to R2, the ∆ values discriminate among the 26 models. The log likelihood

is the first factor of AIC in determining the rank of each model in the proposed set of

models. The log likelihood values fall into a narrow range, from -62,273 to -64,040. It is

notable that the model with the lowest R2 also had the lowest log likelihood. The number

of parameters estimated for a model is the second factor in determining the model’s AIC.

The AIC accounts for the number of parameters to serve as a penalty to reduce the risk

of a model overfitting the data (Anderson, 2008; Burnham et al., 2011). The number of

parameters range widely, from 9,277 to 27,222. In examining Table 3.2, we see that model

rank falls out according to the number of ancestral source populations. All two ancestral

source models rank higher than three ancestral source models. All models containing three

ancestral source populations rank higher than the four ancestral source models. All other

models rank higher than the global model, which contains five ancestral source populations.

Recall that a ∆ value greater than 20 carries no additional support for the highest-ranking

model (Burnham et al., 2011). The next closest ∆ value to the highest-ranking model in

our model set is 224. Therefore, none of the models provide additional information to the
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highest-ranking model.

In addition, Table 3.2 includes the ancestry estimated for each source in the models.

The ancestry estimated from a source varies highly based on the other sources of ancestry

in a model. Figure 3.4 shows the distribution of ancestry fraction estimates among four of

the ancestral source populations: Khoesan, Bantu, Europe, and East Asia. Each ancestral

source appears in 15 of the 26 models analyzed. Thus, the frequency (ordinate) of each

ancestral source sums to 15 (fig.3.4). For any source, the wide distribution of ancestry

estimates is alarming because all models have a similar goodness of fit for the predicted

allele frequencies. The Khoesan ancestry estimates vary widely, and range from 0.088 to

0.756. The ancestry fraction estimates of the Bantu are the most centralized, however, they

still range from 0.244 to 0.531.

Figure 3.4: The distribution of ancestry fraction estimates among the source regions, across all models. Each
ancestral source was used in 15 of the 26 models.
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3.6 Discussion

All 26 of our proposed models fit the Cape Coloured data well (Table 3.2). The R2 values

fell into the narrow range [0.930 ≤ R2 ≤ 0.951]. Moreover, the four different models

shared the highestR2 value. Despite the uniformly highR2 values, the ancestry coefficients

were inconsistent. For example, the estimated fraction of Khoesan ancestry varied between

10.0% and 75.6% among the 15 models that postulated Khoesan as a source of ancestry

(Figure 3.4). By contrast to R2, the AIC criterion clearly separates the 26 models. There

is one unequivocal best model. This model is surprisingly sparse, consisting of only two

sources of ancestry, represented by Khoesan and East Asians as pseudo-ancestors. It is

clear that AIC separates these models by the number of parameters they estimate (Table

3.2). The model most favored by AIC required the estimation of 9,277 parameters while

the model least favored by AIC required the estimation of 27,222 parameters. Ironically,

these two models were tied for R2 = 0.951.

It is important to resolve why models with such different ancestral populations do

equally well in predicting allele frequencies in the Cape Coloured. The solution to this

problem comes from recognizing that genetic ancestry analysis is a generalized regression

problem (see Equation 3.2) where allele frequencies in the ancestral sources serve as the

predictor variables, and the allele frequencies in the admixed sample serve as the response

variables. In the case of the human species, allele frequencies among the pseudo-ancestors

are highly correlated, even among the most diverged populations such as Khoesan and East

Asian. This phenomenon is due to the evolutionary history of our species, whereby genetic

diversity was shaped by a series of founder effects (Ramachandran et al., 2005). Popula-

tions located in Africa have the highest levels of gene diversity, both in allelic types and

heterozygosity in the world. Eurasian populations contain a subset of the alleles found in

Africa, and have lower heterozygosity. Indigenous American populations contain a subset

of alleles found in Eurasians with reduced heterozygosity. The evolutionary pattern of hu-

man diversity manifests statistically because the correlation of allele frequencies result in
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the multicollinearity of regression models in admixture analyses.

We should point out that the ancestry fractions estimated from two earlier studies of

the Cape Coloured do not agree well with each other (de Wit et al., 2010; Patterson et al.,

2010). The results from our study do not match either of the previous two. The estimates

of African ancestry (combined San and Bantu speaking peoples) illustrate this. de Wit

et al. (2010) estimated 61.9% African ancestry, Patterson et al. (2010) estimated 36.9%

African ancestry, and we estimate 47.9% African ancestry. It is difficult, if not impossible,

to pinpoint what accounts for the differences between the three studies. For example, the

studies differ in (1) the genetic markers analyzed, (2) the choice of populations to fill the

role of pseudo-ancestors, (3) sample sizes for the Cape Coloured and the pseudo-ancestors,

and (4) and the statistical methods employed for ancestry estimation. However, we believe

that the issue of choosing pseudo-ancestors deserves some scrutiny. de Wit et al. (2010) use

the first research design that we identified in the introduction. With four ancestral sources,

samples from East Africa, Europeans living in the United States, and Melanesia serve as

pseudo-ancestors that contribute to their estimated component of ‘European’ ancestry in

the Cape Coloured. If the genes in these diverse populations represent the same source

of ancestry, then this ancestor must have existed deep in the past, and would have little

relevance to the recent founders of the Cape Coloured people. Similar to Patterson et al.

(2010), we recommend using known history to guide the choice of pseudo-ancestors.

The key to identifying sources of ancestry lies in the formulation of AIC, Equation

3.3. The ultimate goal should be to design models that will increase the negative log like-

lihood without a concomitant increase in the number of parameters. Model discrimination

will be achieved by increasing the number of individuals sampled for a fixed number of

genetic markers, and it will be thwarted by increasing the number of genetic markers for a

fixed number of individuals. The challenge for future studies will be to find the appropriate

balance between the correct number of markers and individuals. Large numbers of indi-

viduals for both the admixed sample and the pseudo-ancestors will be desirable, but large
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samples may be impossible to collect given the accessibility to the groups in question. One

possibility to manage the number of markers for a given sample size is to use Ancestry

Informative Markers (AIMs). However, this strategy has two limitations. First, the choice

of which AIMs to use requires some knowledge of the true sources of ancestry, which is

the main question for groups such as the Cape Coloured. Second, there may not be AIMs

that distinguish the sources of ancestry, depending on how closely they are related, e.g.,

Europeans and South Asians.

Recent increases in our ability to collect molecular data and to evaluate computationally

intensive models have taken studies of genetic ancestry and admixture to a new level. Our

analyses of the Cape Coloured population of South Africa show that these advances have

not removed the danger of producing ambiguous results. Methods such as AIC for mea-

suring information, and for comparing competing models, are a useful addition to existing

methods of model fitting and goodness-of-fit tests.
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Chapter 4

Using Contemporary Populations as

Pseudo-Ancestors to Estimate Ancestry

Fractions

4.1 Overview

Objective: We investigate bias associated with using maximum likelihood to estimate ge-

netic ancestry proportions. We use coalescent simulation to simulate eight models of a sin-

gle admixture event. Models one through four simulate admixture of an African-American

population. Models five through eight simulate admixture of a Latin American population.

Materials and Methods: We recapitulate the gene identities of African, European, and

Indigenous American populations in these simulations. For each model, we vary sample

sizes among the admixed population and proxies for their ancestral sources at (i) 100 in-

dividuals for each population; (ii) 100 admixed individuals and 20 individuals for each

source; and (iii) 20 admixed individuals and 100 individuals for each source. We make an-
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cestry estimates directly from the populations that contributed to the admixture event. We

also estimate ancestry from pseudo-ancestral sources. Pseudo-ancestors are related to the

parental population but did not contribute to the admixed population. We assess the bias of

ancestry estimates, by comparing the observed estimates to their parameter values.

Results: Our results show low bias among all models that estimate ancestry from the direct

descendants in all sampling scenarios. We observe varying levels of bias under sampling

scenario (i) when estimating ancestry from ancestral proxies. Bias exists when we estimate

ancestry from sampling scenario (ii). Sampling scenario (iii) presents overestimation of

minor ancestry contributions and an underestimation of major ancestry contributions across

all models.

Discussion: These findings show that using pseudo-ancestors in admixture analyses causes

biased ancestry estimates. To minimize biases in ancestry estimation, we recommend using

large sample sizes that represent ancestral source populations.

4.2 Introduction

Admixture is a type of gene flow in which populations that have been isolated for a long

period come into contact and exchange mates (Cavalli-Sforza and Bodmer, 1971; Cavalli-

Sforza et al., 1994). A common goal in admixture analyses is to estimate the ancestral

contributions of mixed populations, and estimate the timing of mixing events (Adams and

Ward, 1973; Chakraborty, 1986).

The allele frequencies in an admixed population are a linear combination of allele fre-

quencies in the ancestral source populations (Long, 1991). The coefficients of the linear

combination reflect ancestry proportions in the mixed population contributed by the respec-

tive ancestral source populations. We employ the maximum likelihood method developed

by Tang et al. (2005) to estimate the allele frequencies of ancestral source populations, and

the fractions of ancestry in admixed populations using microsatellite genotype data from
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contemporary populations. Tang et al. (2005) developed the concept of pseudo-ancestors.

In this concept, contemporary genotype samples are used to estimate ancestry in an ad-

mixed population. Thus, the samples are consturcted as pseudo-ancestors. These samples

are closely related to the ancestors that contributed to the founding of the mixed population

(Tang et al., 2005).

In admixture analyses, the statistical method of maximum likelihood requires specific

properties from the data. The sample sizes included in the analyses must be large. The

samples must contain genotype data from both the admixed population, and its ancestral

source populations. The evolutionary model is constrained in that admixture is assumed to

be the only evolutionary force that has shaped allele frequencies in the mixed population.

Here we investigate if failing to meet the requirements of these data biases ancestry estima-

tion. A statistic is an unbiased estimator of a parameter when the long-term average of that

statistic computed over replicate data sets is equal to the parameter (Hogg et al., 2013).

The factors we consider of the data used in maximum likelihood estimation of ances-

try fractions include: (i) How large of a sample is considered sufficiently large? (ii) How

estimates are affected if we sample from populations that are not the true ancestors. This

consideration is pertinent because the true ancestral populations may no longer exist. In

addition, a sparse historical record prevents us from fully knowing the true ancestral popu-

lations. (iii) How ancestry estimates are affected by genetic drift since the founding of the

mixed population. Even if the ancestral populations still exist, allele frequency drift has

occurred since the admixture event (Chakraborty, 1986).

We use the maximum likelihood method of Tang and colleagues (2005). We first es-

timate the gene identities of nine contemporary populations from genotype samples us-

ing 618 microsatellite loci. Next, we simulate a population tree to match patterns of ge-

netic diversity from contemporary populations using FASTSIMCOAL. The simulated tree

is constructed using genotype data composed of 500 microsatellite loci from contemporary

genotype samples. The contemporary samples serve as pseudo-ancestors. We then simu-
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late a single admixture event between two pseudo-ancestral groups from distinct regions.

Finally, we estimate ancestry in the admixed populations from varying pseudo-ancestral

contributors. In using simulated data, we know the relationships of the pseudo-ancestors

to the true ancestors. From this knowledge, we are able to determine if genotype data from

pseudo-ancestral populations in lieu of the true ancestors biases estimates of ancestry.

4.3 Materials and Methods

We developed eight genetic models using simulated data to estimate the ancestry fractions

in admixed populations. The simulated data was generated using FASTSIMCOAL (Ex-

coffier and Foll, 2011). We use FASTSIMCOAL to simualte parameters for (i) the demp-

graphic history of the ancestral sources, (ii) the admixture event, and (iii) the ancestry

fractions in the admixed population. Each model uses 500 microsatellite loci to estimate

the ancestry fractions of an admixed population that formed from a single admixture event

between two ancestral source populations. Models one through four simulate the formation

of admixed African-American population. Models five through eight simulate the forma-

tion of an admixed Latin American population.

The first step in our analysis is to establish parameters to simulate data that resembles

those of pseudo-ancestors that will be used in analyses of actual African-American and

Latin American populations. To do this, we chose nine reference populations, three from

Africa, three from Europe, and three from the Americas. The African populations we in-

cluded are the Yoruba, Brong, and Mandenka. We chose these populations because they are

all located in West Africa, and are related to the people who were brought to the Americas

as slaves. The European populations we included are the French, Orcadians, and Italians.

The European populations we chose are dispersed across central, southern and western

Europe. The Indigenous Americans we included in the tree are the Pima of Mexico, Kari-

tiana, and Guaymi. We chose these Indigenous American populations because they are
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broadly dispersed throughout Central and South America, and they possess greater than

95% Indigenous American ancestry (Hunley and Healy, 2011).

We calculated a gene identity matrix from 618 loci for the nine actual population sam-

ples (Cann et al., 2002; Rosenberg et al., 2002; Wang et al., 2007; Tishkoff et al., 2009). We

used the data set that combined these data from their original studies and were calibrated

according to allele size (Pemberton et al., 2013). We used the neighbor joining method

to estimate a tree from the observed gene identity matrix. We used generalized hierarchi-

cal modeling (GHM) to estimate branch lengths and root position within the tree (fig.4.1)

(Long et al., 2009). We used a step-wise model in FASTSIMCOAL with a microsatellite

mutation rate of 9×10−5 to find appropriate effective population sizes, and separation times

that would recreate the observed tree, and its branch lengths.

Figure 4.1: A population tree that serves as a reference for our simulations. Using FASTSIMCOAL, we
simulate the population histories of this respective tree to recapitulate the gene identities in our simulated
coalescent tree. We then simulated an admixture event from specific populations from this simulated tree to
determine the potential bias associated with ancestry fraction estimates in varying sampling strategies.

We have written new software for the likelihood method developed by Tang et al. (2005)
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to accommodate microsatellite data. We wrote this software using the Bloodshed Develop-

ment Environment (http//www.bloodshed.net) in the C++ language. Other available imple-

mentations of Tang et al. (2005) method are restricted to single nucleotide polymorphism

data (Alexander et al., 2009; Tang et al., 2005). The likelihood function is of extremely

high dimension when applied to genomic scale data. Maximizing this function requires

estimating thousands of parameters, consisting of allele frequencies and ancestry fractions.

Our program uses the EM algorithm described by Tang and colleagues (2005) as a nu-

merical method to obtain asymptotic results from the likelihood equation. Alexander and

colleagues note that a stringent convergence criterion is necessary to obtain precise results

(2009). In our simulation, we used a convergence criterion of 10−4.

For each model, we examined ten levels of admixture with 100 replicate data sets each.

The ancestry fraction estimates range from 0.05 to 0.95 in intervals of 0.10. We calculated

the bias associated for each ancestry fraction estimate, which is simply the mean of 100

replicates for each ancestry estimate minus its parameter value. We repeated this process

for each model so that each model consists of 10 ancestry fraction estimates, and the bias

associated with each estimate.

In models one through four, “Simulated African 1” and “Simulated European 1” are

descended from the true ancestral source populations that formed the admixed African-

American population. In this instance “Simulated African 1” mimics the gene identity of

the contemporary Yoruba, and “Simulated European 1” mirrors the gene identity of the con-

temporary French. The populations denoted the blue boxes represent the pseudo-ancestors

from whom we make ancestry estimates. Model one estimates ancestry from the psuedo-

ancestors who are the descendants of the true ancestral source populations (Figure 4.2,

left). In model two, we estimate ancestry fractions from pseudo-ancestors that are closely

related to the actual source contributors, which are “Simulated African 2” and “Simulated

European 2” (Figure 4.2, right). These simulated populations mirror the gene identities of

the Brong and Italians, respectively.

58



Figure 4.2: Model one (left) estimates ancestry fractions from pseudo-ancestors who are the descendants of
the actual sources that form a simulated admixed African-American population. Model two (right) estimates
ancestry fractions from closely related pseudo-ancestral sources that formed a simulated admixed African-
American population.

In model three, we estimate ancestry fractions from more distantly related populations

from the actual ancestry source contributor in each region (Figure 4.3, left). Therefore, we

will estimate ancestry fractions of the admixed population from “Simulated African 3” and

“Simulated European 3”, whose gene identities mirror the Mandenka and Orcadian con-

temporary samples. In model four, we estimate the ancestry fractions of the admixed pop-

ulation from continental regional proxies (Figure 4.3, right). In this instance, we estimate

the ancestry fractions by pooling the simulated populations that mimic the gene identities

of the Brong and Mandenka, and the Italian and Orcadian contemporary samples. Our

ancestral sources are composed of four simulated contemporary populations. The African

ancestral source contains “Simulated African 2” and “Simulated African 3”. The European

ancestral source contains “Simulated European 2” and “Simulated European 3”.
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Figure 4.3: Model three (left) estimates ancestry fractions of the simulated African-American population
from the most distantly related source proxy of the true source contributor within Africa and Europe. Model
four (right) estimates ancestry fractions of the admixed African-American population from multiple pseudo-
ancestors within Africa and Europe.

In models five through eight, the true ancestral sources of the admixed population

are ancestors of the “Simulated European 1” and “Simulated American 1” populations.

In model five, we estimate the ancestry of the admixed population from the descendant

pseudo-ancestors, which are the contemporary “Simulated European 1” and “Simulated

American 1” samples (Figure 4.4, left). These simulated populations mirror the gene iden-

tities of the French and Guaymi. In model six, we estimate the ancestry of the admixed pop-

ulation from the most closely related populations of the true ancestors in the tree (Figure

4.4, right). In the case of the European cluster, we make this estimate from the “Simulated

European 2” sample. The closest relation to the “Simulated American 1” in the Americas

from our tree is the “Simulated American 2”.
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Figure 4.4: Model five (left) estimates ancestry of a simulated Latin American population from pseudo-
ancestors that are the descendants of the true ancestors. Model six (right) estimates ancestry fractions from
closely related pseudo-ancestors sources that formed an admixed Latin American population.

In model seven, we make ancestry estimates based on the most distantly related popula-

tions for each region from the tree (Figure 4.5, left). In this instance, we estimate ancestry

from the “Simulated European 3” and “Simulated American 3” even though the known

ancestors of the admixed population are those of the “Simulated European 1” and “Simu-

lated American 1”. In model eight, we estimate the ancestry of the admixed population by

combining the pseudo-ancestral populations from both Europe and the Americas (Figure

4.5, right). In this instance, we use the “Simulated European 2”, “Simulated European 3”,

“Simulated American 2”, and “Simulated American 3” contemporary samples as pseudo-

ancestors to estimate the ancestry fractions in the admixed population.
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Figure 4.5: Model seven (left) estimates ancestry fractions of an admixed Latin American population from the
most distantly related pseudo-ancestral source of the true source contributor within Europe and the Americas.
Model eight (right) estimates ancestry fractions of an admixed Latin American population from multiple
pseudo-ancestors sources within Europe and the Americas.

We also simulate other scenarios within each of these models. We vary the sample sizes

among both the admixed population and the source proxies. Therefore, each model we

will present three scenarios for these sampling scenarios. The sampling scenarios that we

present include: (1) equal sampling of 100 individuals for the admixed population, as well

as the pseudo-ancestral sources; (2) 100 individuals sampled in the admixed population,

and 20 individuals from each of the two pseudo-ancestral sources; and (3) 20 individuals

sampled from the admixed population, and 100 individuals from each of the two pseudo-

ancestors. In addition to these sampling scenarios, we change the timing of the admixture

event to account for the effect of genetic drift among the ancestral source proxies. We vary

the timing of the admixture event at one generation, ten generations, and twenty generations

in the past. We present our findings according to the sample size scenarios for each model,

with the timing of the admixture event plotted according to the ancestry fraction estimate.

Thus, there are 9,000 simulations per model, which consist of 100 simulations per ancestry

62



fraction estimate.

4.4 Results

Model one adheres to all but one of the assumptions of our model. The violation oc-

curs when we estimate ancestry fractions within the admixed African-American population

from the descendants of the true ancestral sources, which are contemporary samples from

the “Simulated African 1” and “Simulated European 1”. The upper left panel of Figure

4.6 displays model one as explained in our methods section. Specifically, Figure 4.6a and

Figure 4.6 c, we see a lack of bias, because the estimated ancestry fraction values nearly

equal their parameter values. The ancestry fraction estimates are measured from the first

ancestral source population in all of our simulations. Thus, in models one through four

we present the ancestry estimates for the simulated African ancestral source. Genetic drift

is more prominent in Figure 4.6a and b than in Figure4.6c. The effect of genetic drift is

apparent when the timing of the admixture event occurs further back in time. Figure 4.6b,

samples 100 admixed individuals and only 20 individuals from the ancestral source proxy

populations. Through this sampling scenario, we see a broad distribution of bias based on

the timing of the admixture event. The ancestry fraction estimates for an admixture event

one generation in the past are relatively unbiased. We see the bias is more prevalent in

smaller ancestry fraction estimates, those less than 0.45. The bias for all ancestry fraction

estimates increases as the admixture event occurs further in the past. However, all estimates

are nearly unbiased with nearly equal contributions from the ancestral sources, which we

see with estimates of 0.45-0.55.
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Figure 4.6: Results from model one, which estimates ancestry from the pseudo-ancestors that are the descen-
dants of the the ancestral sources. Each panel contains three series of simulations that vary the timing of the
admixture event, 1 generation in the past (black), 10 generations in the past (gray), and 20 generations in the
past (white). (a) We sample 100 individuals from the contemporary admixed African-American population,
and each of the contemporary populations serving as ancestral proxies. (b) We sample 100 individuals from
the contemporary admixed African-American population, and 20 individuals from each of the contempo-
rary populations serving as ancestral proxies. (c) We sample 20 individuals from the contemporary admixed
African-American population, and 100 individuals from each of the contemporary populations serving as
ancestral sources.

Figure 4.7 presents the results from model 2. Figure 4.7a, contains an inset of the

model 2, which we presented in our methods section. Model 2 violates the assumption

of our model, whereby it makes ancestry fraction estimates from pseudo-ancestors. In the

case of model 2, the pseudo-ancestral sources are “Simulated African 2” and “Simulated

European 2”. In violating this assumption, model 2 has more biased ancestry fraction es-

timates compared to model 1, although both models use the same sampling parameters.

Figure 4.7a, presents the results of model 2 with equal sample sizes of 100 individuals for

both the admixed population and the ancestral source proxies. The results from Figure 4.7a

show us that the ancestry fractions underestimate their parameter values. In addition, the

effect of genetic drift is apparent as bias increases in the simulations that have the admix-

ture event occurring further in the past. Figure 4.7b shows the ancestry fraction estimates

when we sampled 100 individuals from the admixed population, and 20 individuals from

each of the ancestral source proxies. Under this sampling scenario, we see a high level of

bias for all estimates at every time for the occurrence of the admixture event. There is a

clear underestimation of ancestry fractions less than 0.65. The ancestry fractions above the
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parameter value of 0.65 are overestimated. Figure 4.7c samples 20 individuals from the

admixed African-American population and 100 individuals from each of the source prox-

ies. In addition, we see that the lowest ancestry fractions, 0.05-0.15, are an overestimate of

their parameter values. The ancestry fraction estimates at 0.25 are unbiased. The ancestry

fractions are increasingly biased and underestimating their parameter values from 0.35 to

0.95. The effect of genetic drift is nominal when we alter the timing of the timing of the

admixture event from one generation to 20 generations in the past.

Figure 4.7: Results from model two, which estimates ancestry fractions from ancestral proxies that are closely
related contemporary populations to the actual ancestral sources. Each panel contains three series of simu-
lations that vary the timing of the admixture event, 1 generation in the past (black), 10 generations in the
past (gray), and 20 generations in the past (white). (a) We sample 100 individuals from the contemporary
admixed African-American population, and each of the contemporary populations, which serve as ancestral
proxies. (b) We sample 100 individuals from the contemporary admixed African-American population, and
20 individuals from each of the contemporary populations, which serve as ancestral proxies. (c) We sample
20 individuals from the contemporary admixed African-American population, and 100 individuals from each
of the contemporary populations, which serve as ancestral sources.

Figure 4.8 shows the results from model 3, which makes ancestry fraction estimates

from the pseudo-ancestral samples of the “Simulated African 3” and “Simulated European

3”. Recall that the true source contributors are the ”Simulated African 1” and “Simulated

European 3”. The details of the model are displayed in the top left of Figure 4.8a. Figure

4.8a samples 100 individuals from each of the admixed population, as well as both source

proxies. In this sampling scenario, we see little bias associated with the ancestry estimates

occurring one generation in the past. The bias of the ancestry fraction estimates increase as

the admixture event occurs further in the past. Figure 4.8b samples 100 individuals from
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the admixed population and only 20 individuals from each of the two source proxies. We

see from this sampling scenario that the ancestry fraction estimates are extremely biased.

Essentially none of the ancestry fraction estimates are close to their parameter values. In

addition, under this scenario, we see much dispersion of the ancestry fraction estimates per-

taining to the change in timing of the admixture event. The only estimates that do not vary

greatly with the timing of the admixture event occur at 0.05, 0.15, 0.85, and 0.95. Figure

4.8c shows us that the ancestry fractions of overestimated from 0.05 to 0.25. The ances-

try fraction estimates at 0.35 are unbiased. We see increasing bias as the ancestral source

contributions from source population one increase from 0.35 to 0.95. In this instance, the

ancestry fractions are underestimated compared to their parameter values.

Figure 4.8: Results from model three, which estimates ancestry from distantly related pseudo-ancestors to
the actual ancestral sources in their continental regions. Each panel contains three series of simulations that
vary the timing of the admixture event, 1 generation in the past (black), 10 generations in the past (gray), and
20 generations in the past (white). (a) We sample 100 individuals from the contemporary admixed African-
American population, and each of the contemporary populations, which serve as ancestral proxies. (b) We
sample 100 individuals from the contemporary admixed African-American population, and 20 individuals
from each of the contemporary populations, which serve as ancestral proxies. (c) We sample 20 individ-
uals from the contemporary admixed African-American population, and 100 individuals from each of the
contemporary populations, which serve as ancestral sources.

Figure 4.9 displays the results for model four. Here we sample pseudo-ancestral sources

from each continental region to estimate the ancestry fractions among the admixed pop-

ulation. The upper left panel of Figure 4.9 a depicts model four, whereby the African

pseudo-ancestors consist of samples simulated to resemble the gene identity of the Brong

and Mandenka. The simulated African samples are “Simulated African 2” and “Simulated
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African 3”. The European pseudo-ancestors consist of samples simulated to recapitulate

the gene identity of the Italians and Orcadians. The simulated samples we use were “Sim-

ulated European 2” and “Simulated European 3”. Recall that our simulations mirror the

gene identities of the Yoruba and the French, “Simulated African 1” and “Simulated Eu-

ropean 1”, who serve as the true ancestral sources that provided the allele frequencies to

the admixed group. In making ancestry fraction estimates from two ancestral source pop-

ulations per continental region, we are doubling our sample size for the ancestral sources.

Figure 4.9a depicts 100 admixed individuals sampled from the admixed African-American

population. In addition, we sampled 200 individuals that serve as ancestral source proxies

in each continental region. Figure 4.9a shows that the underestimates the ancestry fractions

in the admixed population, as in prior models. However, this model appears more stable,

lacking a larger underestimation around 0.45 as in models two and three. In these prior

models, we consider only a single ancestral proxy per continental region to estimate an-

cestry fractions. Figure 4.9b shows the same pattern as prior models under this sampling

scheme, even though there are twice as many individuals sampled among each ancestral

source proxy. The ancestry fraction estimates vary widely from their parameter values.

The effect of genetic drift, based on the timing of the admixture event, also varies widely

under this sampling scenario. Figure 4.9c shows us that the ancestry fraction estimates are

unbiased at 0.25 and 0.35 in the African source. There is a consistent overestimation of

ancestry when the African source is the minor contributor in the formation of the admixed

population across all models thus far. In addition, there is a consistent underestimation of

ancestry when the African source is the major contributor.
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Figure 4.9: Results from model four, which estimates ancestry in a simulated African-American population
using multiple related pseudeo-ancestors from their continental regions. Each panel contains three series of
simulations that vary the timing of the admixture event, 1 generation in the past (black), 10 generations in
the past (gray), and 20 generations in the past (white). (a) We sample 100 individuals from the contemporary
admixed African-American population, and 200 individuals from each of the contemporary populations,
which serve as ancestral proxies. (b) We sample 100 individuals from the contemporary admixed African-
American population, and 40 individuals from each of the contemporary populations, which serve as ancestral
proxies. (c) We sample 20 individuals from the contemporary admixed African-American population, and
200 individuals from each of the contemporary populations, which serve as ancestral sources.

Figure 4.10 shows the results of model 5 in which the “Simulated European 1” and

“Simulated American 2” are the descendants of the ancestral sources that contributed to

the admixture event. This scenario conforms to the assumptions of our model in that the

pseudo-ancestral sources are the descendants of the known ancestors that formed the ad-

mixed population in the Americas. Figure 4.10a samples 100 individuals in the admixed

population and both source populations. We see in this scenario that the ancestry fraction

estimates are relatively unbiased. We see the most biased estimates in Figure 4.10a are

when the admixture event occurred 20 generations in the past. At 20 generations there is

an underestimation of the parameter value when the when the first ancestral source is the

minor contributor. We see this in the parameter values ranging between 0.05 and 0.25.

There is an overestimation in ancestry fractions when the first ancestral source proxy is the

major contributor. We see this in the parameter values ranging from 0.65 to 0.95. Figure

4.10b samples 100 individuals from the admixed population and 20 individuals from each

of the ancestral source proxies. Figure 4.10b shows us that the ancestry fraction estimates

are biased when the first ancestral source proxy is the minor contributor. The ancestry
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fraction estimates less biased when the ancestral source proxy is the major contributor to

the admixture event. Genetic drift has a larger effect on bias in this scenario as we see

from changes in the timing of the admixture event. The change in the timing of the admix-

ture event is notable with the minor ancestral contributions when the parameter values are

less than 0.35. Figure 4.10c samples 20 individuals from the admixed population and 100

individuals from each of the ancestral source proxies. We see from this scenario that all

ancestry fraction estimates are unbiased. The changes in the timing of the admixture event

have no effect on the bias related to the ancestry fraction estimates.

Figure 4.10: Results from model five, which estimates ancestry in a simulated Latin American population
from the contemporary descendants of the ancestral sources. Each panel contains three series of simulations
that vary the timing of the admixture event, 1 generation in the past (black), 10 generations in the past (gray),
and 20 generations in the past (white). (a) We sample 100 individuals from the contemporary admixed
Latin American population, and each of the contemporary populations serving as ancestral proxies. (b)
We sample 100 individuals from the contemporary admixed Latin American population, and 20 individuals
from each of the contemporary populations serving as ancestral proxies. (c) We sample 20 individuals from
the contemporary admixed Latin American population, and 100 individuals from each of the contemporary
populations serving as ancestral sources.

Figure 4.11 presents the results for model six. The ancestry fraction estimates come

from simulated pseudo-ancestral sources, “Simulated European 2” and “Simulated Amer-

ican 2”, which mirror the gene identities of Italians and Karitiana. The actual source con-

tributors have gene identities that mirror the French and Guaymi. Our simulation samples

are identified as “Simulated European 1” and “Simulated American 1”. The ancestry esti-

mates present a distinct picture from our previous simulations. Figure 4.11a samples 100

individuals from the admixed population and each of the ancestral source proxies. Figure

69



4.11a shows that the polar estimates are relatively unbiased. Here for the first time in our

simulations, we see an overestimation of ancestry fractions toward the middle parameter

values. We see this overestimation in the parameter values ranging from 0.15 to 0.85 for

first ancestral source. Figure 4.11b samples 100 individuals from the admixed population

and 20 individuals from each of the ancestral source proxies. In this scenario, we see a poor

fit of the ancestry fraction estimates to their parameter values. We see that the ancestry frac-

tions are underestimated when the first ancestral source proxy is the minor contributor with

parameter values less than 0.25. The ancestry fraction estimates for the parameter values

greater than 0.25 are greatly overestimated. Figure 4.11c uses sample sizes of 100 indi-

viduals from each ancestral proxy, and 20 individuals from the admixed population. The

ancestry fraction estimates are biased except for the highest parameter value. All other

ancestry fractions in this scenario are overestimated.

Figure 4.11: Results from model six, which estimates ancestry in a simulated Latin American population from
contemporary samples that serve a pseudo-ancestors that are closely related to the actual ancestral sources.
Each panel contains three series of simulations that vary the timing of the admixture event, 1 generation in
the past (black), 10 generations in the past (gray), and 20 generations in the past (white). (a) We sample
100 individuals from the contemporary admixed Latin American population, and each of the contemporary
populations, which serve as ancestral proxies. (b) We sample 100 individuals from the contemporary admixed
Latin American population, and 20 individuals from each of the contemporary populations, which serve as
ancestral proxies. (c) We sample 20 individuals from the contemporary admixed Latin American population,
and 100 individuals from each of the contemporary populations, which serve as ancestral sources.

Figure 4.12 shows us the ancestry fraction estimates from model seven. Recall that

this sampling scenario assumes the true ancestral sources are those simulated populations

that mirror the gene identities of the French and Guaymi. The simulated samples, in this
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instance are “Simulated European 1” and “Simulated American 1”. In this model, we esti-

mate ancestry from simulated populations whose gene identities mirror the Orcadians and

Pima, which are “Simulated European 3” and “Simulated American 3”, repectively. Fig-

ure 4.12a samples 100 individuals from the admixed population, and each of the pseudo-

ancestral sources. This figure shows us an initial underestimation of ancestry fractions at

parameter values 0.05 and 0.15. The other parameter values, 0.25 to 0.95, show an overes-

timation of the ancestry fractions. We see the greatest bias in the estimates ranging from

0.35 to 0.55. Figure 4.12b samples 100 admixed individuals and 20 individuals from each

of the pseudo-ancestral sources. Figure 4.12b shows us that using this sampling scenario

with the following pseudo-ancestral sources produces highly biased results. The only esti-

mates that are near their parameter values are seen at 0.35. However, we see that genetic

drift has a large effect when we change the timing of the admixture event at this parameter

value. Figure 4.12c samples 20 individuals from the admixed population and 100 individu-

als from each of the two ancestral proxies. Figure 4.12c shows a consistent overestimation

of ancestry fractions ranging from 0.05 to 0.45. The bias of ancestry fractions, although

decreasing, is still overestimated from 0.55 to 0.75. The ancestry fraction estimates are

the least biased at the parameter value 0.85, and are slightly underestimated. The ancestry

fraction that is clearly underestimated occurs at 0.95.
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Figure 4.12: Results from model seven, which estimates ancestry in a simulated Latin American population
from pseudo-ancestors that are distantly related to the actual ancestral sources. Each panel contains three
series of simulations that vary the timing of the admixture event, 1 generation in the past (black), 10 gen-
erations in the past (gray), and 20 generations in the past (white). (a) We sample 100 individuals from the
contemporary admixed Latin American population, and each of the contemporary populations, which serve
as ancestral proxies. (b) We sample 100 individuals from the contemporary admixed Latin American popu-
lation, and 20 individuals from each of the contemporary populations, which serve as ancestral proxies. (c)
We sample 20 individuals from the contemporary admixed Latin American population, and 100 individuals
from each of the contemporary populations, which serve as ancestral sources.

Figure 4.13 presents the results from model eight. Recall that model eight samples

two pseudo-ancestral sources from each continental region, Europe and the Americas, re-

spectively. We simulated the gene identities of these ancestral proxies to recapitulate the

genetic qualities of the Italians, Orcadians, Karitiana, and Pima. Our simulations mirror

these samples and are designated as “Simulated European 2”, “Simulated European 3”,

“Simulated American 2”, and “Simulated American 3”. We estimate ancestry fractions in

a simulated Latin American population from these pseudo-ancestral sources. For Figure

4.13a, we estimated the ancestry fractions by sampling 100 individuals from the simulated

Latin American population, and 200 individuals from the pseudo-ancestors form each con-

tinental region. Here, we see a similar pattern of ancestry fraction estimates as models six

and seven. However, the bias in model 8 is not as pronounced as models six and seven. In

all three simulations (Fig. 4.13a), we see the most biased estimate at 0.45. The most bi-

ased of these occurred with the admixture event 10 generations in the past. The estimate of

the parameter is 0.5505, thus the bias of the estimate is 0.1005. In Figure 4.13b, we sam-

pled 100 individuals from the simulated Latin American population, and 40 individuals

72



from each of the ancestral proxies from Europe and the Americas. The ancestry estimates

at 0.05 and 0.15 have as much bias as the estimates themselves. The estimate at 0.05 is

0.0008, and the associated bias is -0.0492. The ancestry estimate at 0.15 is 0.0093, and

bias of this estimate is -0.01407. The negative values show that these are underestimates of

the parameter values. This sampling scenario demonstrates high bias is ancestry estimation

as none of the estimates is close to their parameter values. In Figure 4.13c, we sampled 20

individuals from the simulated Latin American population, and 200 individuals from each

of the ancestral proxies from Europe and the Americas. The ancestry fraction estimates are

biased when the first ancestral source is the minor ancestral contributor. For the parameter

values from 0.05 to 0.35, the bias of the estimates is near 0.10 for all. The least biased

estimates in this scenario occur at the 0.85 and 0.95 parameter values. The bias of these

estimates is approximately 0.01 and -0.01, respectively.

Figure 4.13: Results from model eight, which estimates ancestry in a simulated Latin American population
from multiple pseudo-ancestors that from each continental region. Each panel contains three series of simu-
lations that vary the timing of the admixture event, 1 generation in the past (black), 10 generations in the past
(gray), and 20 generations in the past (white). (a) We sample 100 individuals from the contemporary admixed
Latin American population, and 200 individuals from each of the contemporary populations, which serve as
ancestral proxies. (b) We sample 100 individuals from the contemporary admixed Latin American popula-
tion, and 40 individuals from each of the contemporary populations, which serve as ancestral proxies. (c) We
sample 20 individuals from the contemporary admixed Latin American population, and 200 individuals from
each of the contemporary populations, which serve as ancestral sources.

There are consistent patterns of bias seen among our models based on the results. These

patterns of bias are related to the selection of pseudo-ancestral sources from which we es-

timate ancestry fractions in the admixed population, the timing of the admixture event, and
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the sample size of the populations from which we make these estimates. In models one and

five, we estimated ancestry fractions from contemporary populations that descended from

the true ancestral sources. We see that all ancestry fraction estimates are close to the pa-

rameter values, thus they are the least biased. This is because the assumptions of our model

are met, and the ancestry fraction estimates come from the populations that contributed to

the admixture event. The other models, two through four and six through eight, violate the

assumption in our model, in that the ancestral sources did not contribute to the formation

of the admixed population. Models two through four simulate the formation of an admixed

African-American population. The ancestral proxies we used come from have the lowest

simulated gene identities in our analyses, which reflect African and European origins. Re-

call that Figure 4.7a and Figure 4.8a sample 100 individuals from both pseudo-ancestors

and the contemporary admixed population, and the ancestry fractions are underestimated

in all of these models. Figure 4.12a and Figure 4.13a simulate the formation of an admixed

Latin American population from European and Indigenous American pseudo-ancestors.

These Latin American simulations overestimate ancestry fractions with the same sample

sizes as Figure 4.7a and Figure 4.8a. The only difference in these models is the simulated

gene identities of the source proxies used to estimate ancestry. In all of these simulations,

we see the effect of genetic drift increases as the timing of the admixture event occurs fur-

ther in the past. The results show us that sampling more admixed individuals than those that

serve as the ancestral proxies produces highly biased ancestry fraction estimates. These bi-

ased estimates are only exacerbated the further back in time the admixture event occurred.

In the simulations that use pseudo-ancestors that are not descended from the populations

that contributed to the admixture event and mirror African-American admixture. We see

ancestry fractions in this case are overestimated when ancestral source one is the minor

contributor (fig. 4.7c, fig. 4.8c, and fig. 4.8c). In the simulations that recapitulate the

formation of an admixed Latin American population, the majority of ancestry fractions are

overestimated (fig 4.11c, fig 4.12c, and fig. 4.13c). The models using ancestral proxies,
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and sample a large number of individuals from each proxy, have the least amount of bias.

In other words, all models that combined ancestral proxies from their respective continents

fared better than those models that used only one.

4.5 Discussion

The allele frequencies of an admixed population are a linear combination of allele frequen-

cies found in the ancestral source populations (Long, 1991). The coefficients of the linear

combination reflect ancestry fractions in the mixed population attributed to each ancestral

source population. For this reason, maximum likelihood is a common statistic used in the

estimation of ancestry fractions in genetically mixed populations (Tang et al., 2005). Here,

we have addressed several factors relevant to the structure of data used in maximum likeli-

hood estimation of genetic ancestry. Specifically, we investigated how the structure of the

data may bias ancestry estimation.

The first factor of the data that we considered in estimating ancestry of admixed pop-

ulations was sample size. We worked to determine how large a sample size must be to

sufficiently obtain unbiased estimates of ancestry. The sampling scenarios presented com-

pelling and consistent results. In sampling 100 individuals from each of the populations

that serve as ancestral sources and for the admixed group, we saw that bias was present

when the ancestral contributions were nearly equal from each ancestral source. This pat-

tern is absent in evolutionary models one and five because these models sample individuals

that are the descendants of the actual ancestral source populations. We examined a second

sampling scenario in which we included a large sample of admixed individuals (n=100) and

a small number of individuals from each population that serve as ancestral sources (n=20).

In our evolutionary models four and eight we sampled the regional averages of 40 individ-

uals from each region that serve as ancestral sources. We were surprised by the findings of

this sampling scheme. We expected the sampling of these evolutionary models to perform
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well with the maximum likelihood method. We reasoned that a smaller number of individ-

uals sampled as the ancestral sources would merely guide the iterative likelihood method.

We anticipated the majority of information to estimate the ancestral source allele frequen-

cies and ancestry fractions came from the admixed sample. Simply put, we were wrong in

this expectation, as this sampling scenario in all eight of our evolutionary models produced

the most biased results. Our final scenario sampled 20 individuals from the admixed pop-

ulation and 100 individuals from each of the populations that serve as the ancestral source

populations. Our evolutionary models four and eight sampled the regional averages for

each region that serve as ancestral sources (n=200). The The minor ancestral contributions

in these scenarios show the most bias, while equal ancestral contributions from the samples

we selected as ancestral source populations were unbiased. Our evolutionary models four

and eight sample a regional average in the estimation of ancestry produce less biased re-

sults compared to other models that only sample a single population to serve as an ancestral

source per region. The reduction of bias occurs because of two possibilities. The first is

that taking a regional average of allele frequencies to estimate ancestry fractions provides

more information from which the likelihood method can draw. The second possibility is

due simply to sample size whereby more individuals are included into the evolutionary

model. These possibilities are confounding factors in our analyses, and will be the focus of

future investigation.

Next, we considered the misspecification of ancestral source populations. Hence, we

estimated ancestry from samples of populations in our analyses that are closely related to

the actual ancestral populations, but did not contribute to the admixture event. The mis-

specification of ancestral source populations must be considered in all admixture analyses

because it is possible that ancestral source populations no longer exist. In reality no an-

cestral source population exists unchanged from the time they contributed to an admixture

event. Ancestral source populations have been affected by allele frequency drift and have

evolved since the time of the admixture event. This point is relevant to models one and four
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in which the genetic samples we chose to serve as pseudo-ancestors are the descendants of

the true ancestors that formed the mixed group. It is for that reason that these evolutionary

models produced unbiased estimates of ancestry. Additionally, a sparse historical record

prevents us from fully knowing who the true ancestors of a mixed population were. For this

we must use contemporary genetic samples of populations to serve as proxies, i.e., pseudo-

ancestors, in the estimation of ancestry in admixed populations. Thus, all contemporary

samples serving as ancestral source populations must be considered as pseudo-ancestors in

admixture analyses.

Finally, we examined how ancestry estimates are affected by genetic drift since the

founding of the mixed population. In our evolutionary models we see that bias due to

genetic drift occurs when we sampled a large number of individuals from the mixed popu-

lation and the samples that serve as ancestral sources. The ancestry estimates are unbiased

when we simulate the time of the admixture event at one generation in the past, but bias

increases as the admixture event occurs further in the past. The second scenario, sampling a

large number of admixed individuals and fewer individuals that serve as an ancestral source

population, is highly biased. The estimates are not close to their parameter value and only

deviate from the parameter value as the admixture event occurred further back in time. The

last sampling scenario, using a small number of individuals from the admixed population

and a large sample of individuals as an ancestral source population, produced no deviation

from the parameter value as we set the admixture event to occur further in the past. The

effect of genetic drift and the timing of the admixture event are factors we must take into

consideration in our research design.

In converting unknown historical and genetic variables into known parameters, we were

able to assess the magnitude and direction of bias related to ancestry fraction estimates.

Through this research, we demonstrate the impact of using pseudo-ancestors in estimating

ancestry. The use of a single pseudo-ancestor per continental region creates bias in ancestry

fraction estimates. Increasing the number of pseudo-ancestors per continental region alle-
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viates the bias associated with the ancestry estimates. The various sample sizes we used

for each model shows that the best scenario is to incorporate more individuals to serve as

pseudo-ancestors relative to the number of admixed individuals in an analysis. This study

validates the research conducted heretofore in that multiple contemporary populations are

used to serve as proxies in the estimation of ancestry fractions among admixed populations.

This research allows us to make recommendations regarding the sampling of future

admixture studies. If possible, sample contemporary populations that are known to have

descended from the true ancestors who contributed to the admixture event. These scenarios

show the least biased ancestry estimates in our results. However, as we have demonstrated,

the true descendants are not known. This being said, we must sample a large number of

individuals from multiple contemporary populations, which serve as pseudo-ancestors. Our

simulations show that this sampling scenario reduced the biased associated with ancestry

estimation.

At first glance, it may seem that these simulations are an oversimplified approach to

address long-standing problems in genetic admixture studies. However, to examine the few

parameters we did took hundreds of computational hours. Each simulation series consisted

of 1000 simulations with 100 simulations per ancestry fraction estimate and took 4 hours

on average using FASTSIMCOAL. Running these simulations through our programs took

between 12 to 72 hours depending on the sample sizes used for each simulation. We ran

72,000 simulations to conduct this research. The average computational time for 1000

simulations took 36 hours and the total computational time spanned nearly 2,600 hours.

Given the nature of this research, we could still do much more. For instance, we

could examine other parameters within this model. These parameters could include, but

are not limited to, increasing the number of loci, further varying sample sizes, investigat-

ing changes of effective population size in the admixed population, estimating ancestry

from three or more ancestral sources, and including more pseudo-ancestors per continental

region. In addition, we could use a model of continuous gene flow to examine how pseudo-

78



ancestors to effect estimating ancestry. The benefit might be that we could improve model

selection, and the choice of pseudo-ancestors from the use of simulated data in admixture

analyses.
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Chapter 5

Conclusion

In this dissertation, I have addressed assumptions inherent in maximum likelihood es-

timation, and challenges related to admixture analyses. The primary assumption of max-

imum likelihood estimation that I examined is that gene flow in the form of admixture is

the only evolutionary process operating in this system. A difficulty involves proper identi-

fication of ancestral source populations that contributed to the admixture event. There are

three primary challenges confronting the identification of ancestral source populations. (1)

Admixture events that formed many contemporary populations began or occurred entirely

in the past. (2) Ancestral source populations may no longer exist, or they have evolved

since the time of the admixture event. (3) A sparse historical record prevents us from fully

knowing the source populations. These challenges require the use of pseudo-ancestors.

Tang and colleagues (2005) describe pseudo-ancestors as contemporary populations that

are descended from close relatives of the true ancestors of admixed populations.

In chapter two, I introduced a new method, which assesses more fully the genetic diver-

sity of admixed populations. I partitioned Nei’s minimum genetic distance into components

of ancestry and genetic drift in admixed populations of the Americas. In partitioning ge-

netic distances, I showed there are significant contributions due to the processes of admix-

80



ture and genetic drift that shape the pattern of genetic diversity within and between admixed

populations. The genetic structure of admixed populations in the Americas reflects more

than continental ancestry. Allele frequencies are another way to view the genetic struc-

ture of populations. The fact that genetic drift is active in these populations violates the

assumption that admixture is the only evolutionary process operating in the system.

The results show that both ancestry and genetic drift contribute to the genetic struc-

ture in admixed populations of the Americas, yet they manifest in varying ways. Ancestry

proportions as shown in Figure 2.2, are one way to view genetic structure. The ancestral

sources in this figure are located in the corners of the triangle plot with European ances-

tors plotted at the apex. When I use principal coordinates to examine the genetic structure

according to the genetic distance of allele frequencies, we see ancestry correlates to only

one primary axis (fig. 2.3). The second axis on the principal coordinate plot shows the

differentiation of populations due to FST . On the primary axis, the European ancestors are

in line with, and intermediate to the African and Indigenous American sources. In addi-

tion, the admixed populations fall on a line between their ancestral sources. For example,

African-American populations are located between their African and European ancestral

sources. The admixed populations are genetically intermediate to, yet distinct from their

ancestral sources (Cavalli-Sforza et al., 1994).

Figure 2.5 depicts the outcome of partitioning genetic distance into components of an-

cestry and drift. The pairwise comparisons of Figure 2.5 demonstrate how drift is a promi-

nent force among the admixed populations. For the African-American by Latin American

comparisons, we see that they have the greatest genetic distances between them. Genetic

drift has the least effect between African-American and Latin American populations, yet

genetic drift explains up to 30% of the genetic distance between some of these populations.

Thus, the genetic distances are due predominantly to differences in their ancestry fractions.

The pairwise comparisons among the Latin American populations shows high variability

in both genetic distance and the effect of drift. This dispersion is due to a lack of shared

81



common ancestry. Much differentiation exists in the proportion of ancestry each founding

group contributed to the admixed populations. In addition, independent demographic cir-

cumstances occurred among these populations, which may be explained by small effective

population sizes and relative isolation from one another. This isolation is reflected in the

FST values of both the samples that serve as pseudo-ancestors, and in the admixed pop-

ulations themselves. These findings demonstrate that Latin American populations are not

a homogeneous meta-population. They formed by a discrete independent process across

the landscape of the Americas. Latin Americans are a much more complex population,

or rather, suite of populations, than the common label of “Latin American” suggests. The

pairwise comparisons of the African-American populations show the smallest genetic dis-

tances among these populations. This fact is due in large part to a shared ancestry in both

the populations that contributed to their founding, as well as the proportion of ancestry each

ancestral contributed. The vast majority their genetic differentiation is due to genetic drift.

The pattern of this result reflects the genetic diversity of populations on a global scale

is driven by a series of founder effects (Ramachandran et al., 2005). Populations living in

Africa have the highest levels of genetic diversity, in terms of both the kinds of alleles and

heterozygosity. Eurasian populations have lower heterozygosity and possess a subset of

the alleles found in Africans. Indigenous Americans have a subset of allelic types found in

Eurasians and ever lower heterozygosity. The reduction of genetic diversity due to founder

effects created the pattern of genetic distances of populations found on different continents.

Therefore, the ancestry of admixed populations determines their placement on the axis

according to genetic distance but does not introduce new axes of variation.

In chapter three, I addressed a major goal in admixture analyses, which is to estimate

the contributions of ancestors to admixed individuals and populations. Many statistical

methods are available to estimate the number of sources and the contributions in an ad-

mixed population (Pritchard et al., 2000; Tang et al., 2005; Alexander et al., 2009). I used

maximum likelihood to estimate the number of sources in a mixture (Tang et al., 2005).
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The assessment of contributions to a mixture is typically achieved by constructing allele

frequencies as a linear combination in populations that contributed ancestors to the mixed

sample. In this line of research, I addressed many of the challenges in admixture analyses,

which include, the true ancestral sources may no longer exist, or have not been genetically

sampled, or are otherwise unavailable for study. These challenges require constructing

pseudo-ancestors as a substitute for the true ancestors in admixture analyses.

Here, I advocated for the use of the Akaike Information Criterion (AIC) to rank multi-

ple models of proposed ancestry for a focal mixed population, the Cape Coloured people

of South Africa. AIC is the sum of twice the log likelihood and two times the number of

parameters in a model (Akaike, 1974). I developed a novel strategy through this research.

I started with genotype data from individuals of a focal mixed populations, and samples

from many regional populations found throughout the world. The regional samples served

as pseudo-ancestors for sources of ancestry in the mixed sample. I constructed a series

of ancestry models that specified a predefined number of ancestral sources for the mixed

sample. Each ancestry model was composed of a separate data set, and contained data from

only the mixed sample and appropriate pseudo-ancestors that serve as ancestral sources in

the model. Then, I constructed models to estimate ancestry based on the number of ances-

tral sources in each model. I tested the fit of each model to the mixed sample by comparing

the observed allele frequencies to the allele frequencies predicted from the inferred source

populations. I used the AIC to decide on which ancestry model is the most appropriate

representation of the data.

The results showed that all 26 models of proposed ancestry fit the data of the Cape

Coloured people extremely well. The R2 values for all models fell into a narrow range

[0.930 ≤ R2 ≤ 0.951]. Despite the high R2 values, the ancestry coefficients were highly

inconsistent across models. By contrast, to R2, the AIC criterion clearly separates the

26 models. There is one unequivocal best model, which consists of only two sources of

ancestry, represented by Khoesan and East Asians as the ancestral source populations. AIC
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ranks these models according to the number of parameters they estimate. The model most

favored by AIC required the estimation of 9,277 parameters while the least favored model

required the estimation of 27,222 parameters. It is important to understand why models

with such different ancestral populations do equally well in predicting allele frequencies

in the Cape Coloured people. This effect occurs because genetic ancestry analysis is a

generalized regression problem in which allele frequencies in the ancestral sources serve

as the predictor variables. In the case of the human species, allele frequencies among the

pseudo-ancestors are highly correlated, even among the most diverged populations such as

the Khoesan and populations from east Asia.

In chapter four, I used coalescent simulations to investigate the concept of pseudo-

ancestors further. The use of data simulation allowed me to address many of the challenges

related to admixture analyses. These challenges relate to using contemporary genetic sam-

ples to gain information of historical and evolutionary processes that began or occurred in

the past. The populations that contributed to form the admixed group may no longer exist

or have evolved since the time of the admixture event. A sparse historical record exists,

which prevents us from fully knowing who the source populations were.

I addressed these challenges by using a simulated phylogenetic tree of populations that

mirrored the genetic structure of samples from contemporary populations (fig. 4.1). I con-

structed three continental regions each of which was composed of three pseudo-ancestral

populations. The simulated pseudo-ancestors in each continental region mirror the gene

identities of the Yoruba, Brong, and Mandenka in Africa; the French, Italian, and Orcadian

in Europe; and the Guaymi, Karitiana, and Pima of the Americas. These samples came

from the literature (Cann et al., 2002; Rosenberg et al., 2002; Wang et al., 2007; Tishkoff

et al., 2009). I used the data set that combined these data from original studies, which were

calibrated according to allele size (Pemberton et al., 2013). I calculated a gene identity ma-

trix from the above samples from 618 microsatellite loci, and used generalized hierarchical

modeling (GHM) to estimate branch lengths and root the tree (Long et al., 2009). I then
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used a step-wise model in FASTSIMCOAL (Excoffier and Foll, 2011) to find appropriate

effective population sizes and separation times that recreate the observed tree (fig. 4.1).

I investigated eight models to determine how the implementation of pseudo-ancestors

may bias ancestry fraction estimates. In models one through four, I simulated a single

admixture event between two pseudo-ancestors in the African and European continental

source regions. The admixture event occurred between ‘Simulated African 1’ and ‘Simu-

lated European 1’ in the formation of an African-American population. The simulated pop-

ulations mimic the gene identities of the Yoruba and French, respectively. In each model

I estimated ancestry from different pseudo-ancestors in each continental region (fig. 4.2,

fig. 4.3). In models five through eight, I simulated a single admixture event of two pseudo-

ancestors in the European and American continental source regions. The admixture event

occurred between ‘Simulated European 1’ and ‘Simulated American 1’ to form an admixed

Latin American population. The gene identities of the simulated population mirror that of

the French and Guaymi, respectively. In these models I estimated the ancestry coefficients

from different pseudo-ancestors among the European and American continental regions

(fig. 4.4, fig. 4.5).

In each model, I varied the sample sizes among the contributing ancestral source pop-

ulations and the admixed population. First, I used equal sample sizes of 100 individuals

from the admixed population, as well as each of the ancestral sources. Second, I sampled

100 individuals from the admixed population, and 20 individuals from each of the ancestral

sources. Third, I sampled 20 individuals from the admixed population, and 100 individuals

from each of the ancestral sources. The ancestry fraction estimates showed similar patterns

of bias across all models based on the sampling scenario used.

Models one and five had the least biased estimates of ancestry (fig. 4.6, fig. 4.10).

These models estimated ancestry from the descendants of the populations that actually

contributed to the admixture event. The sampling of a single pseudo-ancestor that was not

directly descended from the true ancestor from a continental region (models two, three,
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six, and seven) yielded similar results (fig. 4.7, fig. 4.8, fig. 4.11, fig. 4.12). The sampling

of multiple pseduo-ancestors (model four and eight) per continental region (fig. 4.9, fig.

4.13) alleviated much of the bias relative to a the models that sampled only a single pseudo-

ancestor per region. The sampling scenario that yielded the most biased ancestry estimates

sampled 100 admixed individuals and 20 individuals from each of the pseudo-ancestral

population.

From this research, I can make some recommendations regarding sampling methods in

future admixture studies. When possible, we must sample from contemporary populations

that have descended from the true ancestors that contributed in the formation of the admixed

population. The models that sampled from descendant pseudo-ancestors showed the least

biased ancestry estimates in my analyses. In cases in which the descendant groups are

unknown, we must sample from multiple pseudo-ancestors from each continental region

of interest. My simulations suggest that it is best to sample a large number of individuals

from multiple contemporary populations per continental region.
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