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ABSTRACT 

In recent years many researchers have been rethinking the ‘Words and Rules’ 

model of syntax (Pinker 1999), instead arguing that language processing relies on a large 

number of preassembled multiword units, or ‘prefabs’ (Bolinger 1976). A usage-based 

perspective predicts that linguistic units, including prefabs, arise via repeated use, and 

prefabs should thus be associated with the frequency with which words co-occur 

(Langacker 1987). Indeed, in several recent experiments, corpus analysis is found to be 

associated with behavioral measures for multiword sequences (Kapatsinski and Radicke 

2009, Ellis and Simpson-Vlach 2009). This dissertation supplements such findings with 

two new psycholinguistic investigations of prefabs.  

Study 1 revisits a dictation experiment by Schmitt et al. (2004), in which 

participants are asked to listen to stretches of speech and repeat the input verbatim, after 

performing a distractor task intended to encourage reliance on prefabs. I describe the 

results of an updated experiment which demonstrates that participants are less likely to 

interrupt or partially alter high-frequency multiword sequences. Although the original 

study by Schmitt et al. (2004) reported null findings, the revised methodology suggests 

that frequency indeed plays a role in the creation of prefabs. Study 2 investigates the 
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distribution of affix positioning errors (he go aheads) which give evidence that some 

multiword sequences (e.g., go ahead) are retrieved from memory as a unit. As part of this 

study, I describe a novel methodology which elicits the errors of interest in an 

experimental setting. Errors evincing holistic retrieval are induced more often among 

multiword sequences that are high in Mutual Dependency, a corpus measure that weighs 

a sequence’s frequency against the frequencies of its component words. Followup 

analyses indicate that sequence frequency is positively associated with affix errors, but 

only if component-word frequencies are included as variables in the model. 

 In sum, the studies in this dissertation provide evidence that prefabricated, 

multiword units are associated with high frequency of a sequence, in addition to 

statistical measures that take component words’ frequency into account. These findings 

provide further support for a usage-based model of the lexicon, in which linguistic units 

are both gradient and changeable with experience.  



vii 

 

 

 

TABLE OF CONTENTS 

LIST OF FIGURES ...........................................................................................................x          

LIST OF TABLES. .......................................................................................................... xi   

CHAPTER 1. INTRODUCTION .....................................................................................1 

1.0 The notions of ‘prefab,’ and frequency of co-occurrence ..............................................1 

1.1. The gradient nature of holistic retrieval ........................................................................4 

1.2 Storage vs. retrieval, frequency, and the maximalist lexicon ........................................6 

CHAPTER 2. QUANTITATIVE MEASURES OF PREFABS: BEHAVIORAL 

INVESTIGATIONS AND THEORETICAL ISSUES. ........................12   

2.0. Introduction. ................................................................................................................12         

2.1. Evidence that token frequency is associated with holistic retrieval ...........................13 

2.2. Problems with a purely token frequency-based account .............................................17 

2.3. Experimental support for relative frequency accounts ...............................................22  

2.4. Complications with Mutual Information, and Mutual Dependency as an alternative 29  

2.5. The need for absolute frequency alongside relative frequency ..................................37 

2.6. Toward an integrated model .......................................................................................42 

CHAPTER 3. PREFABS AND VERBATIM MEMORY: A DICTATION 

METHODOLOGY RECONSIDERED .................................................43 

3.0. Introduction to the dictation methodology ..................................................................43 

3.1. Critique and reanalysis of Schmitt et al. (2004) .........................................................47 

3.2. Verbatim dictation revisited: A new experiment ........................................................56 

3.2.1. Selection of stimulus sequences .......................................................................56 

3.2.2. Stimulus sentences and presentation ................................................................58 



viii 

 

 

 

3.2.3. Participants and data collection ........................................................................60 

3.2.4. Results ..............................................................................................................61 

3.2.4.1. Initial assessment and removal of outliers ..........................................61 

3.2.4.2. Quantitative results .............................................................................64 

3.2.4.3. Exceptions to the general pattern, and qualitative results ...................71 

3.3. Conclusion ..................................................................................................................82 

CHAPTER 4. HOLISTIC RETRIEVAL OF MULTI-WORD VERBS: STUDIES 

OF AFFIX POSITIONING ERRORS .................................................85 

4.0. Introduction .................................................................................................................85 

4.1. Naturally-occurring affix shift errors ..........................................................................95 

4.1.1. General methods and materials ........................................................................98 

4.1.2. Analysis 1: Comparison to all bigrams in composite spoken corpus .............100 

4.1.3. Analysis 2: Comparison to all Verb- and Noun-initial sequences in the Brown 

Corpus .............................................................................................................103 

4.1.4. Analysis 3: Frequency and Mutual Dependency in verb-initial sequences ....106 

4.1.5. Analysis 4: Comparison of early vs. late affix shifts  ....................................111 

4.2. Experimental study of affix positioning errors .........................................................114 

4.2.1 Task design  .....................................................................................................115 

4.2.2 Materials and Stimulus design  .......................................................................117 

4.2.2.1. Frequency x Mutual Dependency bins ...............................................117 

4.2.2.2. Bigram features matched across bins  ................................................121 

4.2.2.3. Additional requirements on bigram stimuli  .......................................123 

4.2.2.4. Listing of bigram stimuli  ...................................................................125 



ix 

 

 

 

4.2.2.5. Compound distractors .........................................................................126 

4.2.3. Participants and experiment setup  .................................................................128 

4.2.4. Results and Discussion: Affix shifts and other affixation errors on bigram 

stimuli ............................................................................................................130 

4.2.4.1. Participant accuracy ..........................................................................130 

4.2.4.2. Outbound shift errors, and double-marking errors ...........................132 

4.2.4.3. Combining no-marking errors with other affix errors ......................146 

4.2.5. Post hoc analyses: Examining components of the MD metric .......................150 

4.2.5.1. Post hoc analysis 1: Frequency of the verb .......................................153 

4.2.5.2. Post hoc analysis 2: Frequency of the bigram’s second word ..........155 

4.2.5.3. Post hoc analysis 3: Component frequencies together ......................157 

4.3. Conclusion: The evidence add ups ...........................................................................162 

CHAPTER 5. CONCLUSION ......................................................................................172 

APPENDICES ................................................................................................................177 

Appendix 3.1. Spoken BNC frequencies of Schmitt et al. stimuli ..................................177  

Appendix 3.2. Stimulus sentences for dictation experiment of Section 3.2 ....................178 

Appendix 4.1. Listing of the 56 stimulus sentences with verb bigrams ..........................181 

Appendix 4.2. Listing of the 56 distractor sentences with compound verbs ...................185 

Appendix 4.3. Practice sentences used before the experiment ........................................188 

Appendix 4.4. Re-presentation of the 56 bigram stimuli, including component-word 

frequencies ...............................................................................................189 

Appendix 4.5. Table of inbound errors on compound verbs ...........................................190 

REFERENCES ...............................................................................................................191 



x 

 

 

 

 

LIST OF FIGURES 

Figure 4.1. Logistic function ............................................................................................137 



xi 

 

 

 

 

LIST OF TABLES 

Table 2.1: Most frequent n-grams in the Switchboard Corpus  .........................................19 

Table 2.2: Twenty Switchboard bigrams with highest Mutual Information ......................27 

Table 2.3. Twenty Switchboard bigrams with hightest Mutual Dependency ....................34 

Table 3.1. Data for the 26 multiword sequence stimuli used in Schmitt et al. (2004) .......53  

Table 3.2. Listing of matched stimuli in the high-frequency and low-frequency sequence 

categories ...........................................................................................................58 

Table 3.3. Quantitative results for three measures in the verbatim memory task ..............65 

Table 3.4. Quantitative results on the basis of recoded data ..............................................70 

Table 3.5a. Recurring deviations in responses: High-frequency sequences. .....................73 

Table 3.5b. Recurring deviations in responses: Low-frequency sequences. .....................74 

Table 4.1. Outbound affix shift errors in the Fromkin Speech Error Database.  ...............96 

Table 4.2. Outbound shifts and double-marked errors collected by the author .................97 

Table 4.3: Contents of the 5-million word composite spoken corpus .............................100  

Table 4.4a: Error bigrams above frequency midpoint for composite spoken corpus ......102 

Table 4.4b: Error bigrams above frequency midpoint for composite spoken corpus ......102 

Table 4.5a: High-frequency verb- or noun-initial error bigrams in the Brown Corpus ...105 

Table 4.5b: Low–frequency verb- or noun-initial error bigrams in the Brown Corpus ..106 

Table 4.6. Conversational bigram errors, with Frequency and Mutual Dependency values 

based on COCA Spoken Corpus .....................................................................109 

Table 4.7 Comparison of outbound shift rates for high- and low-frequency categories .110   

Table 4.8. Comparison of outbound shift rates for high- and low-Mutual Dependency 

categories  ........................................................................................................110  



xii 

 

 

 

 Table 4.9. Comparison of outbound shifts and early shifts from conversation ..............113 

Table 4.10. Stimulus bigrams used in the elicitation experiment ....................................126 

Table 4.11. Compound verb distractors used in experiment. ..........................................127  

Table 4.12. Rejection of data across the four categories .................................................131  

Table 4.13. Distribution of affix shift errors, and double-marked affix errors collected in 

the shadowing task .......................................................................................135 

Table 4.14. Contingency table for affix positioning errors on bigrams, High and Low 

Mutual Dependency ......................................................................................136 

Table 4.15. Contingency table for affix Positioning errors on bigrams, High and Low 

Token Frequency ..........................................................................................136 

Table 4.16. Distribution of No-Marking Errors collected in the shadowing task ............147 

Table 4.17. Distribution of all affix placement errors collected in the shadowing task  .148 

 

 

 

 

 



1 

 

 

 

CHAPTER 1. INTRODUCTION 

 

 

1.0 The notions of ‘prefab,’ and frequency of co-occurrence.  

 

In 1976, Bolinger wrote that in constructing sentences, ‘speakers do at least as 

much remembering as they do putting together’ (2). In recent years, a growing number of 

writers have argued that the word-by-word assembly model of syntax is insufficient, and 

that speakers rely heavily on formulaic chunks or ‘prefabs’ during speech comprehension 

and production (Pawley and Syder 1983, Sinclair 1991, Erman and Warren 2000, Bybee 

2006; see Wray 2002 for a broader historical review). The strong version of the foregoing 

view holds that some multiword sequences are accessed HOLISTICALLY: two or more 

orthographic words may be retrieved from memory as a prepackaged unit, and the 

activation of the individual component words is diminished (Bybee 2002, 2003; 

Kapatsinski and Radicke 2009).  

Moreover, it is reasonable to predict that prefabricated units will not be 

distributed randomly, but will be associated with repeated exposure to particular 

multiword sequences. A wide range of studies demonstrate that frequency has an effect 

on linguistic representation in phonology and morphology, and that frequency is crucial 

to mechanisms of grammaticalization (Bybee 2003, 2006, 2007; Bybee and Hopper 2001; 

Ellis 2002; Krug 2003). Likewise, from a usage-based standpoint, we would expect that 

holistic units will have some basis in frequency of use. In the usage-based literature, it is 

often stated that linguistic units arise out of the ‘frequency of co-occurrence’ or 

‘frequency of collocation’ of two or more words (see Ellis 2002: 156; Bybee 2002: 317). 

Such formation of units can be explained intuitively if we imagine that repetition of 

words gradually strengthens their representation. Langacker (1987) writes: 



2 

 

 

 

 

Every use of a structure has a positive impact on its degree of entrenchment, 

whereas extended periods of disuse have a negative impact. With repeated use, a 

novel structure becomes progressively entrenched to the point of becoming a unit, 

moreover, units are variably entrenched depending on the frequency of their 

occurrence (59, emphasis added).  

 

Similarly, Bybee (2002) writes that repetition leads to the formation of syntactic 

constituents, and that ‘items that are used together fuse together’ (316). Across various 

domains, the human mind has a tendency to chunk sequences together when a pattern 

recurs, and this has the effect of rendering the system more efficient (Graybiel 1998, 

Bybee and Beckner 2010). In cognition, as well as in human-designed technologies, 

‘well-designed systems tend to have special representations for the kinds of information 

they have to process frequently’ (Anderson 1978).  

Given the foregoing, usage-based theory would predict that frequently co-

occurring sequences of words will tend to become accessed as holistic units. Yet as it 

turns out, there remain some central questions to address regarding multiword sequences. 

The notion of what ‘frequency’ actually means is perhaps more complicated than it 

would seem (Krug 2003, Schmid 2010). There are in fact (at least) two broad 

mathematical interpretations of what ‘frequency of co-occurrence’ means with respect to 

a multiword sequence. The more intuitive interpretation of co-occurrence will be referred 

to here as token frequency: an absolute frequency measure in which we simply count how 

often some sequence occurs (i.e., a word sequence, X Y) in a corpus.
1
 The alternative is to 

consider a relative frequency interpretation of co-occurrence; in this view, we take note 

of a word sequence X Y relative to all the other instances of the component words (that is, 

                                                 
1 However, as I discuss at the end of Section 1.2, this is not to suggest that an actual integer tally is 

necessarily the best way to represent token frequency. Not every past exposure to a linguistic unit carries 

the same weight, depending on the time elapsed, and the total number of exposures. However, it is often 

useful to think of the number of exposures as proxy for a more complex representation in cognition.  
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X in the absence of Y, and/or Y in the absence of X). In this second interpretation, it turns 

out that even if X Y is a relatively rare sequence, we might say that X and Y ‘frequently 

co-occur’— as long as X and Y tend to occur together.  

In many cases, token frequency and relative frequencies overlap and are 

interlinked. For instance, as the token frequency of a word sequence soars, its conditional 

probabilities get a boost; increasing the number of tokens of a sequence also increases 

internal cohesion. However, it is possible for these measures to veer apart from one 

another. A given sequence might be characterized by a high relative frequency, but have 

a relatively low token frequency (e.g., by dint of; scantily clad; vim and vigor). Other 

word sequences can have rather high token frequency but relatively low relative 

frequency because the component words appear frequently and in many different 

contexts (e.g., of it). 

In this dissertation, a recurring question is how we are to interpret ‘frequency of 

co-occurrence’ with respect to multiword sequences. Which frequency measure is (or 

which frequency measures are) important in the processing of multiword sequences, and 

in the formation of linguistic units over time? Is holistic retrieval of word sequences 

related to token frequency, related to relative frequency, or perhaps related to both? The 

distinction between token and relative frequencies is of considerable interest because 

recent experimental studies provide support for both types of measures (e.g., Tremblay, 

Derwing and Libben 2007, Kapatsinski and Radicke 2009, Ellis and Simpson-Vlach 

2009). However, these studies in fact contradict one another in some ways, and the 

various accounts presented have yet to be reconciled. In Chapter 2, I begin to sort out this 

literature; I review existing evidence for (and against) both token frequency and relative 



4 

 

 

 

frequency measures as determinants of holistic retrieval, and discuss theoretical concerns 

regarding specific co-occurrence metrics.  

A further goal of this dissertation is to supplement the behavioral evidence that 

certain multiword sequences are retrieved holistically, and thus in Chapters 3 and 4 I 

report new experimental research. In Chapter 3, I follow up on one of the experimental 

studies discussed in Chapter 2, which examines the effects of token frequency on 

verbatim recall in a dictation task. In Chapter 4, I use a new experimental methodology, 

involving the elicitation of speech errors, to examine the effects of both token frequency 

and relative frequency on holistic retrieval.     

In the remainder of this chapter, I address various preliminaries that are relevant 

to an empirical investigation of prefabs. I briefly summarize what is assumed (what is not 

assumed) in a usage-based account of holistic units, in order to inform the predictions of 

the studies in Chapters 3 and 4.  

 

1.1. The gradient nature of holistic retrieval.  

 

 In the present study, a prefabricated unit, or ‘prefab,’ should be understood to 

mean a multiword sequence which is retrieved from memory as a unit. More precisely, 

however, we might say that a prefab tends to be accessed as a unit, and gradience in this 

property is to be expected. Linguistic units of various types, from words to syntactic 

constituents to constructions are characterized by gradience rather than sharp delineation 

(Hay and Baayen 2005, Bybee and Scheibman 1999, Bybee and McClelland 2005, Croft 

2001), and prefabs are no exception. Identifying a multiword sequence as a prefab makes 

no claim that it has no internal structure, nor that it can never be assembled word-by-

word (Bybee 2010: 35 ff). Bolinger (1976) first introduces the prefab terminology with 
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the poetic suggestion that ‘our language does not expect us to build everything starting 

with lumber, nails, and blueprint, but provides us with an incredibly large number of 

prefabs’ (1). Taking this imagery a step further, we might note that the availability of 

prefabs does not mean that other modes of construction are no longer available.  

Moreover, prefabricated units may be to varying degrees analyzable, that is, the 

separate components of the unit may be accessible to some extent with respect to 

morphosyntax, and/or semantics (Langacker 1987). As one case in point, consider 

idiomatic sequences (shoot the breeze; pull strings; kick the habit), which even in 

generative models have special status in the lexicon as memorized units (Pinker 1999, 

Pinker and Ullman 2002). Nunberg, Sag and Wasow (1994) observe that many 

semantically opaque idioms are analyzable, insofar as they follow regular 

morphosyntactic patterns, and the syntactic components are interpretable. For instance, it 

is no coincidence that the idiom spill the beans takes the form of a transitive verb phrase 

(V NP), and English speakers have an understanding of what the component NP refers to. 

Moreover, although idioms are generally imagined to be fixed entities, it is possible to 

alter such sequences from their canonical form by drawing upon their analyzable 

properties. Nunberg, Sag, and Wasow (1994: 500 ff) provide many examples of idioms 

modified in context (kick the filthy habit; that touched a couple of nerves) or otherwise 

exhibiting componential structure (My goose is cooked, but yours isn’t).   

Similar properties may be found among more semantically transparent sequences 

which exhibit varying degrees of fixedness: broach the subject/topic/idea; wreak havoc; 

scantily clad. Such sequences are arguably prefabs, even though they may permit 

variation in form (e.g., wreak damage; scantily dressed). Even stronger candidates for 
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prefabs might be grammaticalized or lexicalized phrases, including English emerging 

modals (have to; used to; want to) and complex prepositions (in front of; by dint of; in 

spite of). The interpretation of complex prepositions in particular has been the subject of 

some debate, based on observations that these sequences do not pass a complete battery 

of syntactic constituency tests, often based on introspective evidence
2
 (Seppänen et al. 

1994, Huddleston and Pullum 2002). However, the corpus data indicates that in actual 

usage, speakers tend to avoid interrupting or altering sequences such as in spite of 

(Hoffmann 2005, Beckner and Bybee 2009).  

The position taken in the present dissertation is that empirical evidence for prefab 

status — whether in corpus data, or in experimental data —will be probabilistic in nature. 

While we may talk about a particular complex unit being retrieved ‘compositionally’ or 

‘holistically,’ these terms actually represent opposite ends of a continuum. In any 

particular case, the component parts of a unit may be salient to varying degrees (Hay and 

Baayen 2005). One underlying cause for such gradience is that representation of 

linguistic units is complex and redundant, and multiple modes of access are in 

competition with one another. I describe these features of the prefab model in the next 

subsection.    

 

1.2 Storage vs. retrieval, frequency, and the maximalist lexicon.  

 

Often discussions of the mental lexicon pose research questions along the lines of 

‘are prefabs/formulaic sequences stored as units?’ As one example, Schmitt, Grandage, 

                                                 
2
 For example, Seppänen et al. (1994) propose the following constructed sentence as evidence that in spite 

of fails the ‘coordination’ test: In spite of your objections and of the point raised by Dr Andersson, we feel 

confident that we can proceed with the project. 
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and Adolphs (2004) repeatedly say their research examines whether frequent multiword 

sequences ‘are stored holistically or not’ (128). However, I will argue that the important 

empirical questions involve the nature of retrieval from memory, whereas foregrounding 

storage in an either/or fashion frames the issues in a potentially misleading way. This is 

apparent if we consider that in a prefab model, the storage of linguistic units is likely to 

be vast, complex, and redundant. As it turns out, a wide range of sequences (including 

many that are not especially interesting) are likely to be ‘holistically stored’ in a sense, 

and changes in stored representations would need to commence long before holistic 

retrieval becomes possible. 

In this dissertation, I assume the basic architecture of the lexicon to be an 

exemplar system that permits rich and redundant memory storage (Langacker 1987, 

Goldinger 1996, Pierrehumbert 2001, Wedel 2006). These exemplars include multiword 

sequences that are stored whole in memory (Bybee 1998, Bybee 2010, Bod 2006), along 

with information about frequency and additional factors, such as context of use and 

semantic-pragmatic inferences. In such an exemplar system, the mental lexicon is 

dynamic and heteromorphic, including a whole array of units varying in size, fixedness, 

and generality (Bolinger 1976, Wray 2008). Although this dissertation is principally 

focused on continuous multiword sequences, the exemplar model may of course be 

expanded to incorporate more abstract linguistic elements, including constructions of 

varying degrees of abstraction (Bybee 2010, Croft 2001, Goldberg 2006).  

Memory storage in this system is truly ‘maximalist’ (Langacker 1991) insofar as 

every multiword sequence experienced leaves a trace in memory, even if the meaning of 

the sequence is entirely predictable from its component words (Bybee 2006). Speakers 
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simultaneously track the occurrence of multiword sequences of different lengths, and 

maintain exemplar categories for each of these sequences. Clearly there are some 

constraints on this system; we can assume that in processing there is some window size, 

n, which is the maximum number of words that might reasonably be grouped together.
3
 

Moreover, not every word sequence experienced takes up indefinite residence in 

memory. In exemplar models, memories decay with time (Pierrehumbert 2001), and word 

sequences that are not encountered again will fade from memory.   

All the same, the proposed exemplar-based lexicon is clearly not constrained by 

strict parsimony in storage, as would be the case in generative models (Chomsky 1995). 

With respect to multiword sequences, redundant storage will be common because both 

parts and wholes will be represented, without any requirement to ‘purge’ duplicate entries 

(Langacker 1987). Even if a multiword sequence is stored (and often retrieved) as a unit, 

this unit will remain embedded in a network of associations, thus maintaining 

connections with component words elsewhere in the lexicon (Bybee 1998, Bybee 2006). 

Multiword exemplars compete against these component words for activation during 

speech comprehension and production (a point to which I return in Chapter 2; see Hay 

2001, 2003). If component words are infrequent compared to the multiword sequence, 

that makes it more likely that the full sequence will be activated as a whole, and the 

component words will be activated to a lesser degree.  

Assuming such a model, it becomes apparent why it is problematic to ask whether 

or not a particular complex unit is stored holistically. Multiword sequences are 

                                                 
3 For example, based on working memory restrictions (Miller 1956), seven words (plus or minus two) 

might approximate an upper bound on the number of words (or chunked items) to be tracked in cognition. 

Of course, speakers can memorize much longer sequences of words verbatim, but such processes involve 

long-term memory.  
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represented as holistic units, and as assemblages of parts. Any particular activation of the 

sequence involves activating both of these memory representations to varying degrees; 

retrieval is dependent on the interaction between units in memory, and the nature of 

retrieval is gradient as a consequence.   

Equating prefabs with ‘holistically stored sequences’ leads to an additional 

problem, insofar as this account cannot explain how holistic storage might develop for a 

prefab. The difficulty arises because it is not just highly frequent sequences that are 

tracked and stored in memory. If repetition plays a role in the creation of units, in fact it 

is necessary for all multiword sequences (that is, all multiword sequences, delimited by 

constraints of size and memory decay) to be tracked in memory. An argument to this 

effect has previously been presented by Bybee (2010),
4
 as follows. If multiword 

sequences ever develop special representational status on the basis of frequency, then 

they must be stored in memory from the very first instance. If this were not the case, 

there would be no way for the multiword sequence to accrue frequency information at all. 

The logical problem is that usage cannot gradually cause a unit to be registered in 

cognition as ‘frequent,’ unless (a.) there is some representation for the unit in memory, 

and (b.) usage of this unit is tracked from the very beginning. Suppose that no frequency 

information is recorded until the one millionth exposure to a linguistic unit. How could 

this one millionth exposure ever be detected?  

                                                 
4 Bybee’s (2010) discussion is based on an argument included in a preprint version of Gurevich, Johnson, 

and Goldberg (2010), which in turn was partly based on observations in Bybee (2006). However, the 

relevant argument was omitted from the published version of Gurevich et al. (2010), and is currently not 

presented elsewhere by these authors (Adele Goldberg, p.c.). A similar argument regarding storage of 

multimorphemic words is presented in de Vaan, Schreuder and Baayen (2007), along with experimental 

evidence that a single exposure to a novel, complex word leaves a trace in memory.   
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These observations point to the necessity for a vast lexicon that contains at least a 

minimal entry for a very large number of n-grams, representing their associated 

frequencies. In a certain sense, it could be said that even very low-frequency sequences 

are ‘stored’ in memory, though this storage may be ephemeral, and the storage is not in 

itself interesting.
5
 What truly distinguishes prefabs from other sequences, then, is not 

storage. The important difference has to do with retrieval—whether the sequence is 

primarily accessed as a whole unit, or whether it is primarily assembled from parts. 

 One final clarification is in order, regarding the representation of frequencies in 

the maximalist lexicon. In saying that an immense number of n-grams have their 

frequencies ‘stored’ in memory, I am not claiming that every exposure is remembered, 

nor that the information stored is a literal integer count of these exposures. First, as 

previously noted, we expect older experiences with linguistic units to diminish with time 

(Pierrehumbert 2001, 2002; Wedel 2006). This means that over time, rarely-encountered 

sequences will fade, and their stored representations may disappear altogether. Moreover, 

the distribution of experience over time plays an additional role via the ‘power law of 

practice’: in many cognitive domains, early exposures to some item or skill have the 

greatest impact, since the amount of learning with additional exposure levels off as 

practice accrues (Anderson 1982, Ellis 2002). Similarly, small frequency differences are 

                                                 
5 The model I have sketched here proposes that whenever two linguistic units, X and Y, occur in sequence, 

this updates the frequency information for a separate unit in memory (XY). Such a ‘localist’ representation 

may give rise to concerns that memory demands in the lexicon would become intractable (Gluck and Myers 

2001, Baayen and Hendrix 2011), but alternate models are certainly possible. It may simply be that the 

frequency of the transition between X and Y is tracked in cognition — whether as a numerical 

representation of frequency, as a probability, or as a connection strength in a Simple Recurrent Network 

(Elman 1990)— without creating a separate stored unit for XY until some threshold is reached. Similarly, 

Baayen and Hendrix (2011) propose that complex units are represented indirectly via inheritance from 

simple units, and frequencies are recorded in a co-occurrence matrix. Nevertheless, these alternate models 

still require devoting resources to track the occurrence of X and Y in sequence, from the very first co-

occurrence, and frequency information is simply stored in a different form. In any of these cases, the 

central empirical question is not whether X and Y are stored as a unit, but whether X and Y are accessed 

together as a unit. 
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cognitively salient within a low-frequency range, but these same small differences 

diminish in importance in higher-frequency ranges (Hay and Baayen 2002). This 

nonlinear sensitivity to frequency can be described as a logarithmic relationship, and it 

seems there is a natural inclination for humans (and other primates) to perceive quantities 

logarithmically (Siegler and Booth 2004, Nieder and Merten 2007). Such findings are of 

interest in describing the underpinnings of memory representations; however, perhaps 

more importantly, they suggest certain methodological considerations. Often in 

behavioral research, it is appropriate to log-transform frequency counts, and I will follow 

this convention in the statistical analyses presented in this dissertation.        

 As a precursor to experimental studies of holistic retrieval (Chapters 3 and 4), in 

the following chapter I survey previous behavioral research in this domain, and delve into 

the quantitative measures of interest.  
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CHAPTER 2. QUANTITATIVE MEASURES OF PREFABS: BEHAVIORAL 

INVESTIGATIONS AND THEORETICAL ISSUES 

 

 

2.0. Introduction. 

 

 One of the earliest insights that we might empirically investigate speakers’ 

linguistic knowledge of co-occurrence patterns comes not from linguistics or psychology, 

but from information theory. Shannon (1951) observes that ‘anyone speaking a language 

possesses, implicitly, an enormous knowledge of the statistics of the language. 

Familiarity with the words, idioms, cliches and grammar enables him to fill in missing or 

incorrect letters in proof-reading, or to complete an unfinished phrase in conversation’ 

(54). Shannon investigated these ideas rather informally, with a single participant, who he 

asked to predict the next letter in a series of queries from English text. Shannon’s goal 

was to estimate natural language’s entropy— a quantity which represents uncertainty 

(vis-a-vis predictability) in a message, and which is indirectly related to certain relative 

frequency measures (Manning and Schütze 1999). Given Shannon’s focus on letter-by-

letter orthographic representation, clearly his quantitative estimates were influenced by 

the predictability within words. Nevertheless, Shannon’s observations had a broader 

scope, and he provided an early demonstration that much of English is predictable on the 

basis of linguistic knowledge.  

 In the last decade or so, there has been a resurgence in investigations of speakers’ 

knowledge of words in sequence. In the experiment of Shannon (1951), it should be 

noted that the task essentially uses a participant’s behavior to make inferences about the 

structure of language, that is, without comparing this behavior against patterns of usage 

(such as might be estimated from a corpus).  In current research, of course, we are 
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interested in comparing corpus measures against observable behaviors in an experimental 

setting. The present chapter offers a partial review of such experiments as a source of 

evidence regarding holistic retrieval. Throughout this discussion, I also discuss in detail 

the quantitative corpus metrics of interest (involving both token frequency and relative 

frequency), along with their methodological concerns.   

  

2.1. Evidence that token frequency is associated with holistic retrieval.  

 

 A number of recent experiments provide evidence that sequences that are high in 

token frequency are easier for speakers to process. Bod (2000) performs a reaction-time 

study which presents subjects with three-word sentences and asks them to indicate if they 

are acceptable. The study indeed finds that sentence frequency aids processing, since 

high-frequency sentences (such as I love you) have faster acceptance times than low-

frequency sentences (e.g., I test you).  

Similarly, Reali and Christiansen (2007) investigate the storage of two-word 

sequences, focusing on the processing of center-embedded constructions. Reali and 

Christiansen propose that it will be easier to process sentences with relative clauses if the 

embedded clause is a frequent two-word sequence. Thus, it should be easier to process 

The attorney who [I met] distrusted the detective who sent a letter on Monday night than 

The attorney who [I distrusted] met the detective who sent a letter on Monday night, 

because I met is more frequent than I distrusted. Using a word-by-word self-paced 

reading task, Reali and Christiansen find a gradual facilitation in processing over a large 

range of token frequencies.  

Tremblay, Derwing and Libben (2007) investigate self-paced reading times for 

sentences that contain ‘lexical bundles,’ the most frequent multiword sequences of a 
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particular length in a corpus (Biber et al. 1999). Tremblay et al. perform a series of self-

paced reading tasks using sentences containing either lexical bundles (LBs) or matched 

non-lexical bundle sequences (NLBs), using frequencies drawn from the full British 

National Corpus (following Biber et al. 1999). Tremblay et al. designed their NLB 

sentences by substituting for one ‘pivot word’ in each case, as in If workers don’t worry 

about it nothing will happen (LB sentence) vs. If workers don’t know about it nothing 

will happen (NLB sentence). For NLB sentences, the substituted word (i.e., know) is 

chosen so as to be more frequent than the pivot in the LB sentence. The reading times in 

the experiment give evidence that lexical bundles are processed more quickly than their 

non-lexical bundle counterparts, as long as the words are presented as multiword 

sequences or as full sentences (rather than being presented in a word-by-word fashion).  

A recent study by Arnon and Snider (2010) investigates subjects’ reaction times 

in an acceptability task. Subjects are presented with four-word sequences out of context, 

and are asked to indicate whether each item is a possible word sequence in English. The 

study finds that medium-frequency items are recognized faster than low-frequency items, 

and that high-frequency items are recognized faster than medium-frequency items. 

Moreover, Arnon and Snider (2010) pursue further analyses, in which they find that a 

binary (high/low) categorization for frequency does not provide the best fit to the data. 

Rather, they find that there is a continuous improvement in performance with relation to 

token frequency, across the whole range of frequencies considered. Thus, Arnon and 

Snider (2010) take this result as evidence for a usage-based account of multiword 

sequences, in which ‘every additional occurrence of a sequence strengthens its activation’ 

(76).  
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The foregoing studies are all consistent with the notion that as a multiword 

sequence increases in token frequency, it is more likely to be accessed holistically. 

However, these studies do not provide direct evidence for holistic retrieval
6
, because 

other models of sentence production are able to account for improved performance with 

increased frequency. As frequency measures increase for a word sequence—in particular, 

transitional probability—that means that one part of the sequence helps to predict other 

parts of the sequence. Yet, as Kapatsinski and Radicke (2009: 500) write, ‘Sensitivity to 

predictability does not necessarily imply that the predictor and the predicted fuse into a 

unit. Rather, co-occurrence may simply make the co-occurring words prime each other.’ 

(See related comments in Tremblay et al. 2007: 19-20.)  

 Thus, in addition to demonstrating that frequent sequences are easy to process, to 

support a holistic access model it is necessary to show that the component words in a 

frequent sequence are relatively difficult to access. If a sequence of words is chunked 

together into a holistic unit, the component words should have reduced status as separate 

words, making them less likely to be accessed as individual items with respect to 

phonology, morphosyntax, and semantics (Hopper 1991, Haiman 1994, Boyland 1997, 

Bybee and Scheibman 1999, Bybee 2002, Beckner and Bybee 2009). Holistic sequences 

are, by nature, best retrieved as uninterrupted wholes. Wray (2006) writes:  

Just as a pianist who practices a difficult sequence of notes will, by virtue of that 

repetition, find it easier to play in [the] future, so it is reasoned that if you become 

used to producing the articulatory movements that result in a particular routine 

expression, then this pathway will be strengthened, until it becomes not only fast 

and reliable but also rather difficult to interrupt, modify, or, if it should go wrong, 

put back on track without starting from the beginning again (592, emphasis 

added).  

 

                                                 
6 Indeed, Arnon and Snider (2010: 69) specifically acknowledge that their evidence does not address any 

claims regarding holistic retrieval.  
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Word monitoring studies provide one methodology that directly investigates 

holistic retrieval of word sequences, by looking for diminished accessibility of 

component words. Subjects are asked to monitor for a target word within word sequences 

having varying frequencies. Vogel Sosa and MacFarlane (2002) measure subjects’ 

reaction times in monitoring for the word of in a series of spoken sentences. The stimulus 

sentences are grouped into four categories with respect to the token frequency of target 

bigrams, that is, two-word sequences consisting of a variable preceding word plus the 

word of. Vogel Sosa and MacFarlane find that subjects are slower to identify of in the 

most frequent bigram category, providing evidence for the holistic retrieval hypothesis.  

Kapatsinski and Radicke (2009) perform a more extensive word monitoring study 

based on the word up. The researchers use token frequency to identify a wide range of 

Verb + up sequences, ranging from ultrahigh-frequency bigrams down to ultralow-

frequency, constructed bigrams that are rather unexpected in actual usage. Kapatsinski 

and Radicke divide these stimuli into seven frequency bins across the spectrum. The 

reaction time results take the form of a U-shaped curve: subjects are less adept at 

detecting the particle up in extremely improbable sequences, but this ability gradually 

improves as the bigram frequency increases—indicating that moderate increases in token 

frequency improve processing in a gradient way, due to increased predictability. 

However, the ability to detect up suddenly declines again in the ultrahigh frequency 

category, and in this sense the results resemble those of Vogel Sosa and MacFarlane 

(2002). With respect to this high-frequency end of the spectrum, Kapatsinski and Radicke 

write that ‘the stronger the whole, the weaker the parts’ (2009: 518). Following earlier 

proposals by Alegre and Gordon (1999) regarding a frequency threshold of storage for 
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multimorphemic words, Kapatsinski and Radicke argue that multiword sequences are 

retrieved holistically
7
 from the lexicon if they are extremely high in token frequency.  

If we are to synthesize the various results presented in this section, it is evident 

that token frequency of a multiword sequence has an effect on retrieval. A sequence 

becomes increasingly accessible as frequency increases; this is true across the entire 

spectrum of frequencies, as demonstrated by Reali and Christiansen (2007) and Arnon 

and Snider (2010). Moreover, above a certain token frequency threshold, the component 

parts of a sequence become gradually less accessible, as found by Kapatsinski and 

Radicke (2009), providing direct evidence of holistic retrieval for the sequence.  

  

2.2. Problems with a purely token frequency-based account.  

 

 Despite the evidence presented in the previous section, there are several 

complications to be addressed regarding the relationship between high token frequency 

and holistic retrieval. First, high token frequency is not a necessary condition for 

unithood of a multiword sequence. Numerous writers have observed that certain word 

sequences are ‘formulaic’ and well-known by speakers, even though their token 

frequency is quite low. For instance, Wray and Perkins (2000) discuss the ‘many 

formulaic sequences whose culturally-based familiarity belies their comparative rarity in 

real text’—for instance, That’s another fine mess you've gotten me into (7).  

 Aside from phrases with cultural significance, speakers are familiar with many 

mundane expressions that are low in frequency. Hoffmann (2005) argues that English 

                                                 
7 More precisely, what Kapatsinski and Radicke say is that ‘the highest-frequency phrases are stored in 

memory as lexical unit but... a phrase needs to be extremely frequent to be stored in the lexicon’ (2009: 

516, emphasis added). However, as I argued in Chapter 1, it is preferable to assume that some type of 

storage of multiword units commences long before holistic retrieval becomes likely. Indeed, Kapatsinski 

and Radicke consider this alternate interpretation in a footnote (2009: 516, n. 7).  
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complex prepositions such as in front of, by dint of, and in spite of are grammaticalized 

phrases, even though they are relatively rare. The corpus evidence indicates that these 

complex prepositions are relatively fixed phrases that speakers tend to retrieve without 

interruption (Hoffmann 2005, Beckner and Bybee 2009). Bybee (2010) says that prefabs 

are conventional sequences which nonetheless ‘do not need to be highly frequent. Just as 

we can learn a new word with only a few repetitions (sometimes for native speakers only 

one exposure) so also can we register a prefab after experiencing only one or two tokens’ 

(60). (See also Bybee 2007: 16).   

  Moreover, it seems that high token frequency is also not sufficient as a 

determinant of holistic retrieval. Ellis et al. (2009) observe that ‘not all high frequency n-

grams have clearly identifiable or distinctive functions or meanings; many occur simply 

by dint of the high frequency of their component words’ (64). It is true that the most 

frequent word sequences from a corpus may not be very intuitive as units, if no other 

factors are controlled. For instance, consider the ten most frequent word sequences of 

length 2, 3, 4, and 5 from the Switchboard corpus (2.9 million words, Godfrey, Holliman 

and McDaniel 1992), presented in Table 2.1
8
.   

 The results from such a purely frequency-based corpus search are rather mixed. 

There are some nice finds here: discourse-related phrases like you know; I think; I mean; I 

don’t know; as a matter of fact; and other lexicalized phrases like a lot of; and a little bit. 

However, it is clear that frequency alone does not retrieve only clear instances of 

                                                 
8 I assembled these lists by writing a Java script that tallies n-grams in a corpus, and then sorts by 

frequency. A few of the oddities in this list (like I I) arise here due to the idiosyncrasies of the Switchboard 

textfiles, which contain no punctuation. Some of these strange results disappear if we use a different corpus 

such as SBCSAE (Santa Barbara Corpus, DuBois et al. 2000-2005) that marks intonation units. However, 

counterintuitive sequences persist in the top few result for SBCSAE, including I don’t know if; I don’t 

know what; I don’t know how; and I was just.  
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formulaic or conventional phrases from a corpus: consider other very high-frequency n-

grams in this set like you know and; I don’t know I; and I don’t know if. Indeed, Biber 

(2010) writes that most of the highest-frequency n-grams in a corpus (‘lexical bundles’) 

are ‘not idiomatic in meaning and not perceptually salient,’ and they ‘usually do not 

represent a complete structural unit’ (170).  

 
BIGRAMS TRIGRAMS 4-GRAMS 5-GRAMS 

you know (34,487) a lot of I don’t know I as a matter of fact 

I think  (12,830) I don’t know I don’t know if what do you think about 

I don’t  (11,244) you know I  a lot of people I think a lot of 

and I   (9,907) uh you know and things like that one of the things that 

in the   (8,791) and you know a lot of the I don’t I don’t know 

and uh  (8,455) you know and or something like that you know a lot of 

of the   (8,401) you know the I don’t know what I don’t know I think 

I I    (8,320) I don’t think uh I don’t know I don’t know I I 

a lot   (8,128) I think that and uh you know at the end of the 

I mean  (7,256) a little bit I don’t I don’t I don’t know if you 

TABLE 2.1.  Ten most frequent n-grams in the 2.9-million-word Switchboard 

corpus, for four different spans. Token frequencies of bigrams are in parentheses, 

for purposes of comparison with Table 2.2.  
 

 

Beyond these objections on the basis of speaker intuition, there are behavioral 

studies which would seem to show that high token frequency is not associated with 

holistic retrieval of word sequences. Moreover, on first glance these studies seem to 

contradict the evidence presented in section 2.1, by indicating that there is no processing 

advantage for high-frequency sequences.  

First, I will briefly mention a speech dictation study performed by Schmitt, 

Grandage and Adolphs (2004), which the researchers interpret as yielding a null result 

with respect to token frequency of multiword sequences. In this experiment, subjects are 

asked to listen to stretches of speech and repeat the input verbatim, after performing a 

math task intended to disrupt short-term memory so as to encourage reliance on prefabs. 
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Schmitt et al. (2004) find that there is no relationship between token frequency of a word 

sequence and subjects’ accuracy in reproducing that sequence. However, this conclusion 

is questionable due to several problematic features of the study. Most notably, the coding 

conventions used to interpret the experimental data are puzzling, and even run counter to 

the researchers’ own predictions about unitary sequences. For the time being, I will defer 

a longer critique of Schmitt et al. (2004), since the verbatim memory task forms the topic 

of Chapter 3.  

Another line of evidence against token frequency accounts comes from a series of 

studies by Nick Ellis and colleagues (Ellis, Simpson-Vlach and Maynard 2008, Ellis and 

Simpson-Vlach 2009). Ellis and Simpson-Vlach (2009) perform four experiments 

examining processing of word sequences (of length 3, 4, or 5 words) in high-, mid-, and 

low-frequency categories. For each word sequence in the study, Ellis and Simpson-Vlach 

(2009) measure reaction time in an acceptability judgment task; measure fluency in 

reading the sequence aloud; measure priming of the final word using voice onset time in 

reading aloud; and measure comprehension in context, assessed through reaction time in 

an accessibility task. (Three of these studies are also described in Ellis et al. 2008). For 

all four studies, the token frequency of the n-gram was found to have no significant effect 

for native English speakers. Ellis et al. (2008) offer various explanations for why native 

speakers seem to be insensitive to token frequency. Native speakers, they argue, have 

‘reached asymptote’ in processing multiword sequences as long as they are of a certain 

minimum frequency threshold; further increases beyond that basic familiarity do not lead 

to any boost in processing (2008: 390). Moreover, high-frequency n-grams are of limited 

usefulness for reasons discussed earlier in this section: they are often incomplete units 
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(and straddle different syntactic phrases), and they have no unified or idiomatic function 

(391).  

Yet it is strange that the results in the Ellis et al. experiments are so contrary to 

existing evidence that token frequency improves processing of multiword sequences (as 

reviewed in Section 2.1). This is all the more striking because the methodologies used by 

Ellis et al. are quite similar to those used in experiments that have positive results. For 

instance, Ellis and Simpson-Vlach’s (2009) first experiment is almost identical to the 

acceptability judgment task of Arnon and Snider (2010). Ellis and Simpson-Vlach’s 

fourth experiment, involving comprehension in context, is almost identical to the self-

paced reading task in Tremblay et al. (2007).  

Thus it is worth considering whether there are important differences in 

experiment design. There are peculiarities in the design of the Ellis et al. studies which 

might make us hesitant to draw generalizations about multiword sequences in English. In 

these experiment, all of the n-grams used were ‘academic formulas,’ chosen because they 

are more frequent in academic corpora than in non-academic corpora
9
 (see Ellis et al. 

2008: 379-38, Ellis and Simpson-Vlach 2009: 64-65). Given this constraint, the 

sequences labeled as ‘high-frequency’ in the experiment might be limited to particular 

contexts, and may not be especially frequent in a speaker’s overall experience. Indeed, if 

we examine the sample stimuli listed in Ellis et al. (2008) and Ellis and Simpson-Vlach 

(2009), we encounter some cases in which the ‘high-frequency’ label is surprising, based 

                                                 
9Ellis et al. do not specify which corpora they used when they measured token frequency in the final 

classification of stimuli as high-, medium-, and low-frequency. Their full set of texts used during initial 

stimulus selection consists of 10 million words, just over half of which are from nonacademic sources (58% 

nonacademic, 42% academic text overall, including the Switchboard Corpus, FLOB, FROWN, the 

Michigan Corpus of Academic Spoken English, academic portions of the British National Corpus, and a 

database of academic journal articles).  
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on values drawn from the more wide-ranging Corpus of Contemporary American English 

(COCA, Davies 2008-). As one example, we can compare the ‘high-frequency’ sequence 

the content of (5.2 per million in COCA) with the ‘medium frequency’ sequence and at 

the (16.5 per million) and the ‘low-frequency’ sequence that the only (5.69 per million). 

Thus, in some cases, the sequence categorized as ‘high-frequency’ in fact does not seem 

to be higher in frequency than the stimuli categorized as low- or medium-frequency. In 

other cases, there seem to be no substantial frequency differences between the frequency 

categories (again, assuming we are consulting a corpus that contains comparatively little 

academic language, such as COCA). Given such complications, we should be wary of 

using these findings to draw conclusions about the general cognitive importance of token 

frequency, especially since contrary evidence exists.  

In sections 2.3 and 2.4, I discuss further details of the Ellis et al. studies.  

 

2.3. Experimental support for relative frequency accounts.  

 

 In recent years, more attention has been paid to various relative frequency 

measures as an alternative to, or supplement to, token frequency accounts. As introduced 

in Chapter 1, by ‘relative frequency,’ I typically mean a frequency measure that controls 

for the frequency of one or more component words in a multiword sequence. More 

generally, relative frequency can include any measure which reports absolute frequency 

relative to other frequencies, typically as a ratio between the frequency of a complex 

form (multiword or multimorphemic) and the frequencies of its component parts. In a 

number of studies, Hay (2001, 2002, 2003) has argued that high relative frequency best 

predicts the formation of complex units in morphology. Hay argues that there has been a 
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‘misguided’ emphasis on absolute (token) frequency in the usage-based literature and in 

much of the psycholinguistic literature (2002: 530).  

 Hay’s position is inspired by morphological race models (e.g., Frauenfelder and 

Schreuder 1992), which hold that that during activation of a complex morphological 

form, holistic access competes against access of the individual parts. Within a 

morphological race model, it is reasonable that relative frequency will have an effect on 

retrieval: which access route ‘wins’ the race depends on the frequency of the fully-

assembled form vis-a-vis the frequencies of the component parts. For Hay (2001), if a 

derived word is more frequent than its base, then the derived form is likely to be retrieved 

as a whole, rather than compositionally. For instance, im+patient is about twice as 

frequent as patient, and Hay (2001) argues that accessing the former is thus likely to 

proceed without depending on accessing the latter.   

 Hay (2001) offers several lines of evidence in support of this account. In one 

experiment, Hay (2001: 1047-8) asks subjects to assess the complexity of affixed words 

in a metalinguistic task; in each query, a derived word that is more frequent than its base 

is pitted against a derived word that is less frequent than its base. Around 65% of the 

time, subjects describe the derived word that is more frequent than its base as being less 

morphologically complex, from which we infer that there is diminished activation of the 

word’s component parts. In a second study, Hay (2001) examines dictionary definitions 

of derived words to assess semantic transparency. Here, it is assumed that derived forms 

which do not refer to their base in the definition are semantically opaque, and such forms 

are accessed holistically rather than via assembly of (semantic) components. Hay finds 

that relative frequency predicts the development of semantic opacity better than absolute 
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frequency (though see discussion in section 2.5). For instance, with respect to prefixed 

items, 38% of words in the high relative frequency category are opaque, compared with 

21% of words in the high absolute frequency category. Based on chi-squared analyses, 

Hay claims that ‘the absolute frequency of the derived form appears to have absolutely no 

effect on’ semantic opacity of derived words (2001: 1058). Hay further argues that the 

apparent effects of absolute frequency in prior studies may be secondary to more 

important effects from relative frequency, since absolute and relative frequencies are not 

independent of one another. (However, see Section 2.5 for further discussion).  

 With respect to multiword sequences, a number of writers have argued that 

relative frequency of some kind may be important in cognition, leading to the creation of 

multiword chunks. Bybee (2002, 2010) takes an inclusive approach, arguing that relative 

frequency effects probably play a role alongside token frequency. For instance, Bybee 

(2002) says that chunking occurs as a result of very high frequency, but ‘more subtle 

effects can also be found in cases of co-occurrence that are less frequent, leading me to 

hypothesize that chunking and constituency relate directly to frequency of co-occurrence’ 

(317). The quantitative measures associated with these lower-frequency cases would 

involve relative frequency, that is, frequency of a whole unit that controls for frequencies 

of the component parts.  

Transitional probability is one such measure; for a two-word sequence, the 

transitional probability is the raw frequency of the sequence, divided by the token 

frequency of the first word (Gregory et al. 1999). Transitional probability may also be 

extended to higher-order word sequences, in which case the quantity reports how likely 

the final word is to appear given that the rest of the sequence has already occurred 
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(Jurafsky et al. 2001). Beckner and Bybee (2008) show that many complex prepositions, 

such as by dint of, by way of, and in spite of, are characterized by astonishingly high 

transitional probabilities, even though the word sequences themselves are rare (Hoffmann 

2005). These high relative frequencies are one indicator that such sequences are chunked 

units, alongside other evidence such as morphosyntactic fixedness and semantic opacity 

(Beckner and Bybee 2009, Hoffmann 2005; see Chapter 1).  

Another common metric for relative frequency is Mutual Information (MI), a 

bidirectional likelihood measure over a word sequence.
10

 In its simplest form, Mutual 

Information divides the frequency of a word sequence by the frequencies of both words 

in the sequence (often log-transformed). The Mutual Information
11

 for a two-word 

sequence w1w2 would then be given by Equation 2.1, where f(x) is the token frequency of 

a word (or word sequence) (Fano 1961, Church and Hanks 1989, Oakes 1998, Gregory et 

al. 1999, Manning and Schütze 1999).  

 

         (Equation 2.1)  MI (w1w2) =   log2      f(w1w2)   

                                                       f(w1)*f(w2)  

  

 

It is sometimes said that a higher Mutual Information value indicates a ‘stronger 

cohesion’ among words (Gregory et al 1999: 9), or that it is a ‘measure of how “tightly” 

linked two words are’ (Davies 2008). More specifically, we may note that this measure 

tells us how much each word in the pair predicts the other. The ratio in Equation 2.1 

                                                 
10 One way of viewing Mutual Information for a sequence XY is that it combines the metrics of 

Transitional Probability (how predictive X is of Y) and Backward Transitional Probability (how predictive 

Y is of X) (Pelucchi, Hay, and Saffran 2009). Since MI combines two directional measures (Forward and 

Backward Transitional Probability), it is thus 'bidirectional.' 
11 The quantity described here is also known as the pointwise mutual information. In Information Theory, 

more sophisticated (and less intuitive) measures exist that are also known as Mutual Information (see 

Manning and Schütze 1999: 182). I will continue to use the term ‘Mutual Information’ to refer to pointwise 

mutual information, following the convention set by Ellis et al. (2008).  
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quantifies how often the words appear together, in contrast with how often they occur 

separately. Certainly, such a relative frequency measure (following Equation 2.1, or some 

variant) may be given a psychological interpretation in a syntactic competition model: the 

frequency of a complex form in the numerator competes against component frequencies 

in the denominator.   

There are various ways that Mutual Information may be generalized to word 

sequences longer than two words, but typically the measure will include the frequency of 

the entire multiword sequence, divided by the product of the individual word frequencies. 

The collocational analysis program Collocate (Barlow 2004) makes use of the following 

general definition for Mutual Information of an n-gram, where N is the corpus size 

(Barlow, p.c. 2010).  

 

         (Equation 2.2)  MI(w1w2w3...wn) = log2       N
n-1

 * f(w1w2w3...wn) 

                              f(w1)*f(w2)*... f(wn )  

 

 

There are several reasons Equation 2.2 includes a term for the number of words in the 

corpus (N). Including the corpus size allows us to make some broad comparisons 

between MI values drawn from different corpora: a high whole/part ratio observed in a 

corpus of 100 million words should be given more weight than the same ratio in a corpus 

of 1 million words. (Nevertheless, MI scores should always be treated with caution, as 

discussed in the following section.) Another (perhaps more practical) reason to include N 

(raised to the n-1 power) in the equation is that it makes the resulting MI scores more 

accessible to human readers. Omitting the size-of-corpus term results in negative MI 

values, since in Equation 2.1 the argument to the logarithm will almost always be less 
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than 1. However, including the N
n-1

 term as in Equation 2.2 yields more readily 

comparable, positive numbers. Consequently, in this dissertation I will generally report 

the easier-to-read MI values yielded by Equation 2.2.      

 For comparison with the token frequency results given above in Table 2.1, in 

Table 2.2 I present two-word sequences with very high Mutual Information, based on an 

automated Java search of the Switchboard corpus using Equation 2.1. The items listed 

here are the twenty bigrams with the highest Mutual Information (in descending order), 

restricting the search to bigrams that occur with a frequency of at least 10 per million. 

The token frequency of each sequence is given in parentheses.  

 

1. Los Angeles (55) 11. per se (39) 

2. et cetera (58) 12. Super Bowl (39) 

3. Saint Louis (35) 13. science fiction (33) 

4. Rhode Island (46) 14. current events (48) 

5. Star Trek (57) 15. word processing (42) 

6. Peace Corps (88) 16. General Motors (34) 

7. Soviet Union (76) 17. South Dakota (43) 

8. San Diego (30) 18. checking account (36) 

9. San Francisco (91) 19. Washington D.C. (45) 

10.San Antonio (91)  20. square feet (30) 

TABLE 2.2. Twenty Switchboard bigrams with the highest Mutual Information 

(minimum token frequency of 10 per million). Token frequencies are in parentheses.  

 

 

The results presented in Table 2.2 do in fact represent rather intuitive multiword units, 

with a strong tendency toward proper nouns. It is noteworthy that in each case, at least 

one of the words in the bigram has a restricted distribution (such as Trek in Star Trek), 

and this contributes to the especially high Mutual Information values in this set. 

  In addition to yielding intuitive word sequences, high Mutual Information values 

also prove useful in accounting for certain patterns in linguistic behavior. For instance, 
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the likelihood of tapping word-final /t/ or /d/ is best predicted by the Mutual Information 

between the stop-final first word and the second word (Gregory et al. 1999). 

 In Section 2.2, I reviewed the null experimental results of Ellis et al. (2008) and 

Ellis and Simpson-Vlach (2009), who did not find evidence that token frequency is 

associated with ease of processing (and again, who used a stimulus set that focuses on 

academic English). However, these studies find evidence that high Mutual Information 

improves speakers’ processing for 3, 4, and 5-word sequences, where Mutual Information 

is defined as in Equation 2.2. Ellis and Simpson-Vlach (2009) found significant boosts in 

processing as a result of Mutual Information, in all four tasks: reaction time in a 

grammaticality judgment task; voice onset time when reading aloud; reaction time for 

recognizing a sequence’s final word; and reaction time for comprehension in context. It 

should be noted that all four experiments address ease of processing rather than giving 

direct evidence of holistic retrieval (as discussed in Section 2.1). Indeed, Ellis and 

Simpson-Vlach (2009) make no claims regarding holistic retrieval, but do argue that they 

are investigating formulaic sequences that are characteristic of fluent, native speech.  

Regarding the difference between token frequency and relative frequency, Ellis et 

al. (2008) conclude that relative frequency of co-occurrence is more important than raw 

frequency of occurrence: ‘tuning the system according to frequency of occurrence alone 

is not enough for nativelike accuracy and efficiency. What is additionally required is 

tuning the system for coherence – for co-occurrence greater than chance’ (2008: 391). 

Ellis et al. (2008) interpret Mutual Information as described here, as ‘the degree to which 

the words in a phrase occur together more often than would be expected by chance’ 

(380). Strictly speaking, this interpretation is incorrect; there is no sense in which a 
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particular MI value reflects ‘pure chance’ and a maximum MI value would reflect ‘pure 

correlation.’ Different MI values must be assessed carefully on the basis of the token 

frequencies of the word sequences involved (Manning and Schütze 1999: 180-182), as I 

discuss below.  

 

2.4. Complications with Mutual Information, and Mutual Dependency as one 

alternative.  

 

Based on the findings of Ellis et al. (2008) and Ellis and Simpson-Vlach (2009), it 

seems that Mutual Information can provide a useful indicator of how strongly words in a 

sequence are associated with one another. Moreover, MI seems to be increasing in 

popularity as a tool used in corpus linguistics research, including Barlow’s Collocate 

software (Barlow 2004) and the set of seven online corpora at corpus.byu.edu, including 

the 450-million-word Corpus of Contemporary English (Davies 2008). Yet it is important 

to note that MI must be used with considerable caution. In the Natural Language 

Processing literature, MI is a measure with a troubled reputation, and perhaps with good 

cause.   

In short, MI must be integrated with token frequency in order to give meaningful 

results. Of course, MI already includes token frequency of a sequence as part of its 

definition (see the f(w1w2) term in Equation 2.1). But MI should also incorporate 

additional constraints from token frequency in order to avoid some troublesome results. 

As noted above, the two-word sequences in Table 2.2 were retrieved by restricting the 

search to items that occur at least 30 times in the Switchboard corpus (10 times per 

million), then sorting all items by Mutual Information. This particular frequency cutoff is 

quite arbitrary, and the value chosen influences the results. If we choose a different 
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minimum threshold (say, 3.33 per million), the search retrieves an entirely different set of 

bigrams at the top of the list (for instance, Fatal Attraction (12), Julia Roberts (10), Knots 

Landing (10), JC Penney (10)).  

Continuing this experiment further, we find that if no minimum frequency is 

imposed, a Mutual Information search yields almost worthless results, yielding many 

sequences that occur just once in the corpus. Without any frequency filtering, the highest-

ranked MI items includes rare words (or misspelled nonwords) that happened to be 

juxtaposed in this corpus just once (grooves slaps, terming emerging, automa tic). It is, 

however, true that some of the top-ranked sequences are, by chance, units of some kind 

(Davy Crockett, varicose veins, topsy turvy). Even in these cases, MI should be 

interpreted cautiously, because the measure overestimates the degree of word association. 

For instance, in the present example, MI indicates that Davy and Crockett are perfectly 

dependent, although searching a larger corpus would reveal that each of these words has 

additional uses.  

Manning and Schütze (1999: 181) observe that Mutual Information is, among 

collocational measures, especially sensitive to problems of ‘data sparseness,’ that is, the 

limits imposed by rare occurrences in small corpora. We may partially mitigate such 

problems by using larger corpora, or by filtering out low-frequency sequences altogether. 

Evert and Krenn (2001) find that Mutual Information retrieves many useless word 

sequences for low-frequency items, but performs much better in the upper ranges of 

frequency. This finding helps to account for the intuitive sequences in Table 2.2, and 

moreover, helps to account for the successful experimental results in Ellis et al. (2008) 

and Ellis and Simpson-Vlach (2009). It seems that Ellis et al. may have avoided 
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difficulties with Mutual Information by winnowing out low-frequency sequences from 

the set of possible candidates. Frequency counts are not available for individual stimuli in 

the Ellis et al. studies, but their frequency categories are designed with the following 

values: the low frequency mean is 10.9 per million; the medium frequency mean is 15.0 

per million, and the high frequency mean is 43.6 per million (2008: 380-381). It is worth 

noting that even their ‘low frequency’ category threshold is rather high in frequency. For 

comparison, in the experiment of Tremblay et al. (2007), a low-frequency (NLB) 

sequence has a frequency that is less than 10 per million for 4-word sequences, or less 

than 5 per million for a 5-word sequence. Thus, avoiding low-frequency sequences in this 

way could help circumvent some of the problems that are known to plague Mutual 

Information.    

However, we should consider further theoretical and practical concerns regarding 

MI as a measure. Manning and Schütze (1999) further observe that Mutual Information 

systematically ranks items in a counterintuitive way. Once again, the measure has a bias 

that is subject to undue influence from low-frequency events. Consider a hypothetical 

example that draws out a point from Manning and Schütze (1999: 181). Suppose there 

are two different sequences that contain perfectly-dependent word pairs (that is, words 

that always appear together): ipso facto and scantily clad. (Neither of these word pairs is 

perfectly dependent in real corpora, but idealizing the data helps to illustrate the point.)  

Suppose that ipso facto has a frequency of 100 in a corpus, and scantily clad has a 

frequency of 200. (Indeed, these numbers are comparable to real values in the 450-

million word COCA Corpus). Then the MI for ipso facto would be given by (for now, 
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dispensing with the corpus size and log-transformation to focus on proportional 

relationships): 

 

 

(Ex. 1)  MI(ipso facto) ~    f(ipso facto)    =     100      =    1     =  0.01  

                             f(ipso)*f(facto)     100 * 100    100  

 

 

Compare this to the more frequent sequence scantily clad: 

 

 

(Ex. 2) MI(scantily clad) ~    f(scantily clad)    =  200     =    1    =   0.005  

                              f(scantily)*f(clad)     200 * 200   200 

 

 

Thus, although the two sequences have the same amount of dependence (that is, perfect), 

MI would tell us that the more frequent one should be ranked far lower! That makes little 

sense; we would like the measure to at least rank the two sequences the same. This 

strange result is not just a borderline case, either; comparable problems arise when there 

is less than perfect dependence (Manning and Schütze 1999).    

One sensible countermeasure would be to multiply MI by the frequency of the 

word sequence, that is, to provide an additional contribution from the frequency of the 

multiword sequence. That is, we may define a modified Mutual Information score for 

bigrams as in Equation 2.3.  

 

        (Equation 2.3)  MD (w1w2) =   log2      f(w1w2)
2
    

                                                        f(w1)*f(w2)  

  

In the previous example, this modified measure would provide the same score to ipso 

facto and scantily clad, reflecting the fact that the bigrams exhibit the same amount of 

dependence.  
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I have labeled the quantity in Equation 2.3 as ‘MD’ to stand for ‘Mutual 

Dependency,’ a term coined by Thanapoulos et al.(2002). A number of researchers 

(Fontenelle et al. 1994, Thanapoulos et al. 2002, Bouma 2009) have independently 

suggested taking this type of approach, which compensates ‘for the bias of the original 

[Mutual Information] definition in favor of low-frequency events’ (Manning and Schütze 

1999: 182). Bouma (2009) observes that additionally, a measure such as Equation 2.3 

provides a normalized variant of Mutual Information. That is, Mutual Information as 

defined in Equation 2.1 is an unbounded quantity, but (the argument inside the logarithm 

of) Mutual Dependency as defined in Equation 2.3 is a probability between 0 and 1, and 

the measure thus has a more straightforward, probabilistic interpretation.  

Taking this notion of normalization a step further, we can extend the definition of 

Mutual Dependency to allow for sequences longer than two words. More generally, we 

would raises the frequency in the numerator to the power of n, where n is the number of 

words in the sequence. Combining the principles of Equations 2.2 and 2.3, we generalize 

the definition of Mutual Dependency as in Equation 2.4.  

 

         (Equation 2.4) MD(w1w2w3...wn) =    log2    N 
n-1

 * f(w1w2w3...wn)
n
 

            ( f(w1)*f(w2)*... f(wn )  

 

As in Equation 2.3, we also include an appropriate contribution from the corpus size, N, 

which produces easier-to-read, positive MD values.  

Mutual Dependency (MD) is still in the general family of Mutual Information-

type measures
12

, which represent in a direct way a tension between the total frequency of 

a sequence, and the frequency of the component parts. In fact, the top-ranking results of a 

                                                 
12 Indeed, Manning and Schütze (1999) really consider it to be a slightly different Mutual Information 

measure. I use the distinct name coined by Thanopoulos et al. (2002) largely for ease of reference.  
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search according to Mutual Dependency can be strikingly similar to those using Mutual 

Information. For illustration, Table 2.3 presents the twenty two-word sequences with 

highest Mutual Dependency in the Switchboard Corpus.  

 

1. et cetera (58) 11. you know (34487) 

2. Los Angeles (55) 12. death penalty (180) 

3. capital punishment (264) 13. Soviet Union (76) 

4. United States (248) 14. North Carolina (137) 

5. Star Trek (57) 15. credit cards (274) 

6. Peace Corps (88) 16. little bit (1473) 

7. Rhode Island (46) 17. credit card (275) 

8. Saint Louis (35) 18. New York (356) 

9. San Francisco (91) 19. Social Security (99) 

10. San Antonio (91) 20. per se (39) 

Table 2.3: Twenty Switchboard bigrams with the highest Mutual Dependency 

(minimum token frequency of 10 per million). Token frequencies are in parentheses.  

 

There is a noticeable amount of overlap between the Mutual Dependency items in Table 

2.3 and the Mutual Information items in Table 2.2. Perhaps the most telling difference 

between the lists involves the presence of two high-frequency items in Table 2.3: you 

know and little bit. Note that you know is an especially striking item; this sequence could 

never be a top-ranked item using Mutual Information as a measure, due to the very high-

frequency component words you and know.   

 Indeed, the most important differences between MD and MI are due to the effects 

of ultra-high-frequency component words. For purposes of illustration, let us go beyond 

the top-ranked items, and consider examples of how particular word sequences are 

ranked by each measure. For instance, consider the high-frequency sequence have to, 

which would seem to be a good candidate for a prefab in current English (as attested by 
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its reduction to hafta in casual conversation). Following Equation 2.2, have to receives a 

Mutual Information score as follows, using counts from COCA
13

 (Davies 2008):  

 

(Ex. 3) MI(have to ) = log2       464,020,256 * 241,484    = 2.19 

                                    2,097,432 * 11,737,803  

 

 

The sequence have to in fact has a rather low MI score. Compared with all two-word 

sequences in COCA with the pattern have _____, have to is ranked #1397 for Mutual 

Information. Thus, as a random contrastive example, have to has a far lower MI score 

than have coped
14

:  

 

 

(Ex. 4) MI(have coped) = log2       464,020,256 * 37       = 4.59 

                                            2,097,432 * 340 

 

 

This ranking certainly runs counter to our sense that have to is a multiword unit of some 

kind in English. The low MI score for have to arises because the words have and to are of 

very high frequency. In the following section, I argue more generally that quantitative 

measures should allow for cases in which prefabs contain highly frequent words. For 

now, let us take the foregoing example as an intuitive indicator that Mutual Information 

seems to impose excessive ‘penalties’ on sequences that contain high-frequency words.   

 A number of variations could be used to overcome this particular limitation, but 

again let us consider Mutual Dependency as one alternative. Mutual Dependency 

                                                 
13 In this equation: 464,020,256 is the corpus size for COCA; 241,484 is the frequency of have to; 

2,097,432 is the frequency of have, and 11,737,803 is the frequency of to.  
14 Readers might object that the low MI value for have to is based on inflated counts for to, since this word 

has prepositional uses in addition to the infinitival use apparent in have to VERB. However, restricting the 

frequency of to to infinitival uses yields a modified COCA MI score for have to of 2.89. This still ranks 

have to far below have coped, along with hundreds of other bigrams (for instance: have opposable (MI = 

4.60), have preliminarily (MI = 5.44), or have sinned (MI = 6.48).   
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provides an additional boost to multiword sequences which are more frequent, which 

helps to counteract the effects of high-frequency terms in the denominator. Following 

Equation 2.4, we find that Mutual Dependency ranks have to and have coped in a more 

intuitive way.     

 

 (Ex. 5) MD(have to ) = log2   464,020,256 * (241,484)
2
         = 20.07 

                                     2097432 * 11737803  

 

 

(Ex. 6) MD(have coped) = log2     464,020,256 * (37)
2
        =  9.80 

                                               2,097,432 * 340 

 

 

In reviewing Examples (6) and (7), keep in mind that Mutual Dependency scores should 

only be compared with other Mutual Dependency scores (never with Mutual Information 

scores). In any case, we find that have to receives a higher Mutual Dependency score 

than have coped, as expected from intuition. 

 A review of the NLP literature on collocation extraction hints that this particular 

example is indicative of a larger pattern. In a systematic study of bigrams in WordNet 

and a database of ‘named entities’ in a journalistic database, Mutual Dependency 

represents a considerable improvement over Mutual Information (Thanapoulos et al. 

2002). A wide array of collocation evaluation metrics are available (Evert and Krenn 

2001, Manning and Schütze 1999), but Mutual Dependency offers one rather 

straightforward quantitative representation of relative frequency, while also addressing 

some of the shortcomings of Mutual Information. Mutual Dependency will be central to 

the experiment design in Chapter 4 in this dissertation.  
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2.5. The need for absolute frequency alongside relative frequency. 

 

 Above, I have reviewed experimental evidence that both token frequency and 

relative frequency have an effect on the representation of multiword sequences. The view 

I will pursue in this dissertation (following Bybee 2010) is that we should include both 

types of measures in models of usage. Although there have been some contradictory 

results, thus far there is no convincing evidence that we should ignore either absolute 

frequency or relative frequency effects in morphosyntax.  

 The strongest statements to the contrary come from Hay, who claims to have 

‘demonstrated that relative frequency matters more than absolute frequency’ (2001: 

1066). It is certainly true that the results in Hay (2001) provide evidence in support of 

relative frequency. Consider Hay’s metalinguistic task, in which subjects decide which of 

two words is more complex. Around 65% of the time, subjects describe the word that is 

high in relative frequency as less complex. However, this finding on its own is not 

sufficient to show that absolute frequency is unimportant, and Hay (2001, 2003) does not 

report statistics that specifically address this point. Importantly, the high relative 

frequency category is matched for token frequency on average with the low relative 

frequency category (rather than being matched by item). Thus, approximately 50% of the 

high relative frequency stimuli are also higher in token frequency than their opponent 

words. In some pairings there is a quite large difference in token frequency (compare the 

high relative frequency word impatient, which has a CELEX frequency of 227, with 

imperfect, which has a CELEX frequency of 50). It seems plausible that token frequency 

could influence subjects’ judgments, and further investigation is needed to determine 
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whether high token frequency plays a role in the 35% of responses that in fact favor the 

low relative frequency item.  

 With respect to semantic opacity, it is not clear that Hay uses consistent criteria 

when comparing absolute frequency with relative frequency. In Hay’s analysis of relative 

frequency, the ‘high’ frequency category consists of derived words that are more frequent 

than their bases. This is a rather elite group of derived words; for prefixes, it represents 

the top 20.8% of words, and for suffixes, it is the top 14.8% (values here are calculated 

from Tables 5 and 6, Hay 2001: 1053-4). However, for absolute frequency, Hay defines 

‘high’ frequency as above ‘average’, that is, in the top 50%. Such an uneven choice for 

high-frequency thresholds hardly seems fair, since special retrieval mechanisms may be 

apparent only for items that are highest in frequency (see Alegre and Gordon 1999). 

Moreover, Timm (2012) reanalyzes Hay’s (2001, 2003) data, and finds that relative 

frequency actually accounts for a very small percentage of items which are semantically 

opaque, leaving the phenomenon essentially unexplained.  

 In fact, there are many reasons to believe that a relative frequency account would, 

on its own, be insufficient for describing patterns of processing and change for multiword 

sequences. First of all, relative frequency measures cannot account for many cases in 

which a multiword unit is known to have developed. In other words, high relative 

frequency is not a necessary condition for the development of multiword units.
15

 Relative 

frequency accounts would predict that complex units should be unlikely to form when 

component words are high in frequency, since wholes and parts are said to compete.  

                                                 
15 The discussion of statistical matters above already demonstrated that high relative frequency is not 

sufficient for the formation of multiword units. Relative frequency measures must be used carefully, 

because left unchecked they can retrieve word sequences of little interest.  
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 In a system driven solely by influences from relative frequency, we would expect 

to see multiword units typically arising out of low-frequency components. However, this 

is clearly not the case. For instance, Bybee (2010:47) shows that the English sequence 

have to has developed into a separate unit with a meaning of obligation, even though the 

verb have is extremely frequent (around 10 times as frequent as have to). Similarly, the 

English sequence going to has developed a future meaning, arising out of a context which 

was – relatively speaking – quite rare. In Shakespeare’s comedies, go appears in a 

purpose clause only 10% of the time, but still developed into a future marker (Bybee 

2006). Moreover, even though go is highly frequent as a verb of intransitive motion, it 

has developed a whole range of other distinct uses in prefabs, constructions, and idioms: 

go ahead and VERB, go + VERB, go it alone, go to hell, how goes it, go with one’s 

instinct.  

 In fact, what we find is that new grammatical units (including some elements that 

are multiword sequences) generally emerge out of highly frequent components. These 

component words are used in a wide range of contexts by virtue of their semantic 

generality, and in some of these contexts they develop new, particular meanings 

(Goldberg 2006, Bybee and Torres Cacoullos 2009, Bybee 2010). It is possible for such 

changes to occur because lexical categories are not fixed, monolithic entities. Rather, as a 

result of usage, an item may split off from its erstwhile category and become autonomous 

in a particular construction (Bybee and Brewer 1980, Bybee 2003). Autonomy of an item 

may be evident in new morphosyntactic patterns or in new semantic extensions. For 

instance, English speakers may say things like The tree is going to lose its leaves, or I’m 

going to go there – statements that would be nonsensical if all uses of the word go 
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represented the same lexical category (Bybee 2003: 339). Yet relative frequency 

measures are essentially incommensurable with the fact that in particular diachronic 

situations, lexical categories can split. If we are analyzing the statistical attributes of a 

sequence such as BE going to, a relative frequency measure (such as Mutual Information) 

would forever ‘penalize’ the sequence due to the high token frequencies of go(ing) and 

to. As change proceeds, it gradually becomes less and less appropriate to classify go in 

BE going to as the same item as intransitive motion verb go. Here, token frequency is 

clearly the superior measure to use, because it is ‘self-correcting’ with respect to 

increasing autonomy. Items that are high in absolute frequency are more likely to be 

autonomous, and vice-versa, with no permanent penalty imposed because a unit 

happened to originate from a high-frequency item.  

 A point related to the previous one is that relative frequency cannot, on its own, 

form the foundation for a theory of language change. To see why, let us assume that 

multiword units arise out of the productive, compositional use of words. Initially, there is 

nothing especially fixed about the words used; instead of in spite of, for instance, one 

could just as well say in defiance of, or with spite toward. This means that the sequence 

has a relative frequency very close to zero, and high relative frequency thus cannot 

provide any motivation for change. When relative frequency is high (such as might occur 

when a complex form is more frequent than its component parts), this represents a rather 

advanced stage in the formation of a multiword sequence, and we should not be surprised 

if such sequences have special mental representations. High relative frequency is a sign 

that a change has already occurred—not the impetus for the change itself. This means 
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that the mind must track other factors besides relative frequency, and these factors are 

important in the development of multiword or multimorphemic units.  

 One such factor would need to be token frequency, and we know that token 

frequency information is in fact retained regarding multiword sequences. If relative 

frequency is important, then it immediately follows that token frequency is important, 

because relative frequency depends on token frequency values. Any model of relative 

frequencies—whether represented mathematically as in Equations 2.1-2.4, as the 

deciding factor in a dual route model as in Hay (2001, 2003), or as exemplars of varying 

strengths—already presumes some mental representation for token frequency. Although 

Hay (2001) argues that absolute frequency is not independent of relative frequency, this 

criticism cuts both ways; indeed, one could make the argument that absolute frequency is 

more important than relative frequency, because the latter depends by definition on the 

former.  

In sum, it seems we need not pit token frequency and relative frequency against 

one another as theoretical adversaries (for another expression of this view, see Krug 

2003). There is no reason to assume that our minds track only one statistical measure, and 

indeed, it seems we track multiple patterns in language simultaneously (Klein and Yu 

2009). In various domains, experimental evidence shows that processing of input is 

influenced by multiple factors at once—for instance, similarity of items to previously 

encountered items, and frequency of those items (Nosofsky 1988). A number of studies 

(including Saffran et al. 1996, Saffran and Wilson 2003, Marcus et al. 1999, Perruchet 

and Desaulty 2008, Pelucchi, Hay and Saffran 2009) would indicate that the mind tracks 

a variety of statistical patterns, simultaneously and unconsciously. Language processing 
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and language change are likely to emerge out of an assortment of mechanisms that 

interact (Hopper 1987, Beckner et al. 2009, Beckner and Bybee 2009). It is reasonable to 

expect that the mind is capable of tracking both relative frequency and token frequency 

patterns, and that such factors make independent contributions to the formation of units.  

  

2.6. Toward an integrated model.  

 

In this dissertation, following Bybee (2010:46-7), I propose that both relative 

frequency and absolute frequency patterns are tracked in cognition, and are associated 

with language change. With respect to the formation of multiword units, more than one 

mechanism may lead to holistic retrieval. As a multiword sequence becomes more 

frequent in comparison to its components, then relative frequency increases, and holistic 

retrieval becomes more likely.  Alternately, high token frequency may also independently 

encourage the holistic retrieval of a multiword sequence. Bybee (2010: 46) concedes that 

Hay (2001) is correct that relative frequency is important, but also suggests ‘that at 

extremely high token frequencies, loss of analyzability and transparency will occur 

independently of relative frequency.’ It is reasonable to believe that if a complex unit is 

frequent enough, it will tend to be retrieved holistically on the basis of its strong 

representation in memory—no matter how frequent the component parts are.   

 Given the foregoing, the remaining chapters in this dissertation will seek evidence 

in support of both token frequency and relative frequency. In Chapter 3, I seek to rectify a 

null experimental result for token frequency, namely, the verbatim memory investigation 

of Schmitt et al. (2004). In Chapter 4, I present a study of syntagmatic speech errors, 

which is more ambitious insofar as there are controls for both token frequency and 

relative frequency (specifically, Mutual Dependency) as independent variables.  
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CHAPTER 3. PREFABS AND VERBATIM MEMORY: A DICTATION 

METHODOLOGY RECONSIDERED 

 

 

3.0. Introduction to the dictation methodology.  

 

In Chapter 2, I alluded to a speech dictation task performed by Schmitt, Grandage 

and Adolphs (2004), which failed to find a significant effect of token frequency on 

participants’ memory for multiword sequences. Schmitt et al. argue that their study 

‘suggests that corpus data on its own is a poor indicator of whether [multi-word] clusters 

are actually stored in the mind as wholes’ (2004: 147).
16

 In the present chapter, I will 

reexamine the Schmitt et al. dictation methodology as a source of evidence, based on 

existing data as well as newly-gathered data. In the remainder of this section, I describe 

the rationale behind using verbatim memory to provide insights into multiword units. In 

Section 3.1, I provide a critique of the dictation study as implemented by Schmitt et al. 

(2004), and I reanalyze the existing Schmitt et al. data in light of various theoretical 

considerations. Contrary to the researchers’ claims, their results provide some evidence 

that token frequency has an influence on performance in the dictation task. In Section 3.2, 

I follow up on these critiques by describing my own dictation experiment, which provides 

further evidence that token frequency does indeed play a role in the creation of prefabs.    

 Schmitt et al. (2004: 130) proposed a verbatim memory dictation task, initially 

inspired by measures used in the field of second language assessment. The use of 

dictation measures offers a potentially rich source of data regarding prefabricated units, 

since speakers’ memory for the verbatim content of text is found to be ephemeral in 

certain methodologies (Sachs 1967, though see also Gurevich, Johnson, and Goldberg 

                                                 
16 As discussed in Chapter 1, I would prefer to reframe Schmitt et al’s (2004) question here as involving 

whether certain multiword clusters are retrieved from memory as wholes.  
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2010). The contexts in which verbatim memory breaks down—and the contexts in which 

it tends to be preserved — could reveal patterns about the processing units in language. 

Bolinger (1976) writes that prefabs ‘have the magical property of persisting even when 

we knock some of them apart and put them together in unpredictable ways’ (2). Along 

these lines, we might think of the verbatim memory task as ‘knocking apart’ language in 

an experimental setting, to see which pieces remain standing. The basic methodology is 

to (i.) have participants memorize a stretch of words in sequence, containing target 

sequences of interest, then (ii.) disrupt the memory of the memorized text with a 

distractor task, and finally (iii.) ask participants to reconstruct the original text, looking 

for regularities in which target sequences tend to be reproduced intact. Schmitt et al. 

predict that frequently-encountered ‘recurrent clusters’ of words should be retrieved and 

produced quite readily as wholes, and thus the participants’ responses are expected to 

contain all (and only) the words of the original stimulus.  

In their experiment design, Schmitt et al. selected candidate stimuli from a variety 

of grammars and reference guides, including the list of lexical bundles in Biber et al. 

(1999). The researchers chose 25 ‘recurrent clusters, varying from relatively frequent to 

relatively infrequent’ (2004: 129). These target sequences varied in length between two 

words (go away; you know) to six words (to make a long story short, I don’t know what 

to do). A full listing of the stimulus sequences appears in Table 3.1, below in Section 3.1.  

It is worth reiterating that all of the sequences used in the experiment were, in the 

researchers’ estimation, ‘recurrent,’ and thus there are no matched low-frequency 

sequences for comparison. As the experimenters point out, there is indeed a range of 

frequencies represented among the stimuli; the most frequent sequence, you know, 
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appears more than 42,000 times in the British National Corpus, but the least frequent 

sequence, to make a long story short, appears only twice. However, large differences in 

frequency are to be expected across any set of n-grams if the number of words (n) is not 

held constant. By way of illustration, we can consider the most frequent n-grams of 

varying lengths in the Switchboard corpus. The most frequent two-word sequence (you 

know) occurs more than 34,000 times. The most frequent six-word sequence (it was nice 

talking to you, reflecting the rather proscribed telephone context for this corpus) occurs 

only 85 times. Despite the vast differences in corpus frequencies, it would be ill-advised 

to say you know represents ‘high frequency’ and it was nice talking to you represents 

‘low frequency,’ since they each represent the highest frequencies of their respective n-

gram types. The conflation of n-gram length with n-gram frequency thus raises certain 

concerns about the Schmitt et al. (2004) experiment design.  

Schmitt et al. embedded the 25 target sequences into sentence contexts; each 

‘burst’ to be memorized was between 20 and 24 words long. The sentences were 

constructed so as to fit into a narrative (a story about picking up a garrulous hitchhiker), 

consisting of the 25 bursts to be tested, plus an additional 14 bursts included for story 

continuity. In the experiment, participants heard a sentence burst to commit to memory, 

and immediately afterward were presented visually with two numbers to be added 

together. The distractor math task was intended to overload cognitive resources, so that 

subjects’ responses would not simply be based on a recitation from memory. Participants 

in the experiment thus needed to provide a spoken answer to the math question first (e.g., 

52 + 29 =?), after which they attempted to repeat aloud the original stimulus sentence 

word-for-word. Schmitt et al. (2004: 130, 132) reason that the intervening distractor task 
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forces participants to rely on linguistic knowledge (including formulaic sequences) to 

reconstruct the original sentence, rather than merely relying on working memory. 

 Schmitt et al. (2004) gathered data from 30 native English speakers at the 

University of Nottingham.
17

 The researchers coded responses as belonging to one of the 

following three categories: ‘produced correctly’; ‘partially incorrect’; and ‘not produced.’ 

In the ‘partially incorrect’ group, Schmitt et al. included any response which was spoken 

with a discontinuous or disfluent intonation contour. The researchers do not comment on 

the ‘not produced’ category, but it presumably includes responses which are insufficient 

(such as those in which a participant cannot remember most of the sentence), in addition 

to those in which the target sequence is replaced by an altogether different (set of) 

word(s). The three coding categories were used to compute a composite performance 

score for each item, as follows: correct responses were assigned 2 points; partially 

incorrect/disfluent responses were assigned 1 point, and responses in which the target 

sequence was fully absent received 0 points (Schmitt et al. 2004: 134). Averaging across 

the 30 participants yielded a mean performance score for each item (ranging between 0 

and 2).   

Based on the foregoing coding conventions, Schmitt et al. conclude that, contrary 

to expectations, there is ‘no reliable relationship’ between frequency of occurrence and 

mean performance in the dictation task (2004: 139). A Pearson correlation test between 

target sequence frequency in the British National Corpus and mean performance is not 

significant (p = 0.315). Similarly, the correlation is not significant if target sequence 

frequencies are drawn from the CANCODE corpus (p = 0.961). Schmitt et al. (2004) 

                                                 
17 The study also included a comparison with 45 second-language English speakers, although that 

comparison is not of immediate interest here given the null findings for native speakers.   
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acknowledge certain limitations to their study, but argue that their ‘methodology has 

successfully questioned whether recurrent clusters are holistically stored’ (146).   

Despite the conclusions reached by Schmitt et al. (2004), I argue in Section 3.1 

that caution is appropriate in interpreting these apparent null findings.    

   

3.1. Critique and reanalysis of Schmitt et al. (2004).  

 

In the Schmitt et al. data, it is true that participants were strikingly inaccurate at 

recalling several of the recurrent sequences. For instance, only three (10%) of the 

subjects were able to reproduce I see what you accurately, most often giving a ‘partially 

incorrect’ replacement (25 out of the 30 participants). Likewise, only three of the subjects 

accurately repeated in the same way as, more often giving a partially incorrect response 

(11 subjects), or, even more often, omitting the sequence (16 subjects). Other especially 

low-scoring items were as shown in figure (3 correct responses out of 30), and aim of this 

study (2 correct responses out of 30). The full tally of errors coded by Schmitt et al. is 

given below in Table 3.1.  

Several points are in order regarding lapses in verbatim memory in the 

experiment. First, we must be careful to look for frequency-based differences in memory 

performance, rather than comparing against what we imagine is a reasonable threshold 

for memory accuracy. As noted in Section 3.0, there are potential pitfalls in looking for 

statistical differences among the Schmitt et al. stimuli, since all the n-grams are recurrent, 

and items are not matched on the basis of frequency and word length. Nevertheless, we 

will see below that some meaningful statistical differences are still observable.  

Moreover, it is worth examining the contexts in which the recurrent clusters 

appeared in the experimental materials. The Schmitt et al (2004) experiment embedded 
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target sequences in a long narrative, in an attempt to situate these items into a naturalistic 

context. While the reasoning behind this feature is understandable, the effects of the 

longer narrative structure were perhaps other than what was intended. In fact, a central 

topic of the narrative was the rambling nature of a hitchhiker’s speech, and the hitchhiker 

in the story exhibits sudden shifts in topic and register. Several of the target sequences 

chosen are typically limited to written, academic contexts, but are used in the midst of an 

otherwise nonacademic narrative. Two example ‘bursts’ from the experiment are given in 

(1) and (2).  

 

(1) ‘Would you pay that? Look. This one, as shown in Figure 1 opposite.’ I 

glanced over at the page he was holding up.  

 

(2) ‘It says the aim of this study was to test human endurance.’ The hitchhiker was 

testing mine as he jumped from topic to topic.  

 

As noted above, the responses for these items tended not to be classified as ‘produced 

correctly.’ One concern may be that participants could find it difficult to reproduce 

academic sequences fluently amid a more casual conversational context.  

 More importantly, some of the target sequences in the experiment were used in 

such awkward contexts that rewording would actually be encouraged, especially given 

the time pressure imposed. We cannot assume that speakers will recall multiword 

sequences verbatim regardless of the context in which those sequences are encountered, 

and the particular ways in which participants’ responses deviate from the target may be 

revealing. Consider the three examples below.  

 

(3) I see what you would want a dam for though, so maybe they could just build a 

smaller one in its place.  
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(4) He started looking through my Cosmopolitan magazine and said, ‘It’s not too 

bad, this one, although I don’t usually read women’s magazines, you 

understand. 

 

(5) I didn’t answer, letting his voice drift over me in the same way as the snow 

drifted over the hills in the distance.  

 

In example (3), I see what you appears in the context I see what you would want a dam 

for, rather than the conversational contexts that actually make this sequence rather 

frequent (i.e., I see what you mean). Presumably, in this case, participants often 

substituted the more natural-sounding variant I see why you would want a dam.
18

 

Similarly, in example (4), it would be understandable for participants to collapse It’s not 

too bad, this one into This one’s not too bad. Moreover, with respect to frequent 

omissions of in the same way as for sentence (5), it seems likely that subjects would often 

substitute the more economical variant like. The availability of single-word substitutions 

is, in fact, commonly used as a diagnostic for syntactic constituency (Quirk and 

Mulholland 1964, Fabb 2012). Such a substitution is hardly evidence that the sequence is 

non-formulaic, even though Schmitt et al. would code it as counter-evidence.  

 Thus, a further critique of the Schmitt et al. study is that it is not attentive to the 

subtleties of subject responses. As described in Section 3.0, the coding system in their 

study considers exact verbatim responses to be evidence of formulaicity (assigning 2 

points), and assigns ‘partial credit’ (1 point) for partially correct (which is to say, partially 

incorrect) responses. However, a high proportion of partially (in)correct responses on an 

item actually indicates that participants are not processing that item as a holistic unit.  

                                                 
18 Indeed, 25 out of 30 subject responses (83.3%) were classified as ‘partially incorrect’ (Schmitt et al. 

2004: 136), which would be consistent with this pattern. However, details are not available regarding 

participants’ responses. 
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 Indeed, the scoring system used in Schmitt et al.’s quantitative analysis is 

problematic, and is at odds with the researchers’ own observations. They point out that 

‘the “Partially Incorrect” category [of responses] is probably the most telling in this 

study’ (2004: 135). More specifically, they observe that a propensity toward ‘partially 

incorrect’ responses is most indicative of non-holistic retrieval:  

 

[I]f clusters were not produced intact, when the dictation task was to reproduce 

them exactly, this indicates that they were not readily available, which would 

argue against their being stored in the lexicon... [C]lusters which were attempted, 

but not reproduced intact, give the clearest indication that those clusters were 

somehow not prominent in the mind... [W]e know that the participant was 

producing word strings similar to the cluster, and with the same semantic content, 

but not actually reproducing the cluster in the dictation. (Schmitt et al. 2004: 137, 

emphasis added)  

 

Given these observations, it is mystifying that Schmitt et al. chose to score responses 

such that partially incorrect answers received partial credit, rather than assigning a 

penalty. A reanalysis of the Schmitt et al. data seems to be in order, to investigate 

whether the quantitative results are indeed null. Although certain details of participant 

responses are not available (for instance, specific errors for each item), we have available 

the raw numbers coded into each response category (numbers ‘produced correctly,’ 

‘partially incorrect,’ and ‘not produced.’). Thus for the remainder of this subsection, I 

will present data reanalyses based on these raw numbers. 

 As a technical detail in the present reanalyses, I will use log-transformed 

frequency counts before performing statistical tests. The corpus frequencies of the target 

n-grams in British English are available from the British National Corpus; these are 

reported in Table 3.1 based on searches with BYU-BNC (Davies 2004-). In their 

correlation analyses, Schmitt et al. (2004) apparently relied on raw corpus frequency 



51 

 

 

 

counts. This can be verified by computing a Pearson correlation between the raw BNC 

counts and the values labeled ‘Schmitt mean performance score.’ This test yields a p-

value of 0.321 (r = 0.098), which is quite close to the null p-value of 0.315 reported by 

Schmitt et al.
19

 However, as discussed in Chapters 1 and 2, it is preferable to log-

transform frequencies as a precursor to statistical tests, since logged values seem to more 

closely correspond to mental representations of frequencies. Thus, although I list raw 

corpus counts in Table 3.1, all reported results are based on log-transformed (base 2) 

frequency counts.  

 Based on log-transformed BNC counts, then, we can obtain Pearson correlations 

as follows. First, consider the number of fully correct responses as a possible indicator of 

holistic retrieval (see counts in the column labeled ‘produced correctly’ in Table 3.1). 

This variable (not analyzed separately in Schmitt et al. 2004) turns out not to be 

significant in the present reanalysis: p = 0.245, r = 0.12. However, if we examine the 

number of ‘partially incorrect’ responses, the correlation is significant (p = 0.045). The 

coefficient is negative, indicating that higher-frequency sequences are less likely to 

prompt partially-correct responses, although the correlation is in the weak-to-moderate 

range (r = -0.35).  

Finally, it is worthwhile to recompute a ‘mean performance’ score based on the 

observation that partially correct responses should be assigned negative points in an 

overall assessment. I thus compute a revised composite score as follows: add 1 point for a 

                                                 
19 Simply switching from raw frequencies to logged frequencies produces a small improvement in Schmitt 

et al.'s correlation result, although the result is still not significant. A Pearson correlation test between 

logged BNC frequency and mean performance score (as calculated by Schmitt et al. 2004) yields p = 0.24 , 

r = 0.15. 
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correctly produced response, and deduct 1 point for a partially incorrect response.
20

 Zero 

points are assigned in either direction for target sequences that are ‘not produced,’ since 

this is a potentially heterogeneous category—including sequences which are fully 

substituted with other items (such as in the same way as > like), as well as those which 

are omitted for other reasons. The total number of points assigned is divided by the 

number of participants (30), resulting in average scores reported in the column labeled 

‘Reanalysis: Mean performance’ in Table 3.1. In order to emphasize the differences from 

the Schmitt et al. (2004) mean performance score (and for ease of comparison with 

values reported in Section 3.2), the figures reported here are further transformed into 

values along a [-100, 100] scale. On this scale, an item which is always recalled fully 

accurately would receive a score of 100; an item which is always recalled in a partially 

incorrect way would receive a score of -100. A Pearson correlation between (log) BNC 

frequency and the reanalyzed mean performance falls short of significance: p = 0.069, r= 

0.30. 

One concern about the foregoing analyses might be that the frequency values are 

based on a predominantly written corpus; the British National Corpus consists of only 

10% spoken English. As such, it is possible that the corpus fails to accurately represent 

the frequencies of sequences that are actually familiar to speakers of British English in 

conversation. Consider, for instance, the sequence go away, which occurs with a 

frequency of 12.44 per million words in the full BNC, but 35 per million words in the 

                                                 
20

 Clearly, an alternate approach would be to assign 2 points for each correctly produced response, 1 point 

for items which are ‘not produced’ in the response, and 0 points for ‘partially incorrect’ responses. For 

purposes of statistical analysis, such an approach would indeed be mathematically equivalent to the 

measure described above, and would more closely parallel the [0, 2] scale used by Schmitt et al. However, I 

prefer to use a [-1, 1] scale, since it more intuitively represents the fact that ‘partially incorrect’ responses 

should incur a penalty on the overall score for an item. 
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target cluster 
BNC 
Frequency 

Produced 
correctly 

Partially 
incorrect 

Not 
produced 

Schmitt et al.: 
Mean 
performance 

Reanalysis: 
Mean 
performance 

to make a long story 
short 2 23 3 4 1.633 66.67 

I don't know what to do 87 27 2 1 1.867 83.33 

to give you an example 11 8 10 12 0.867 -6.67 

as a matter of fact 377 21 4 5 1.533 56.67 

from the point of view 520 19 5 6 1.433 46.67 

in the same way as 657 3 11 16 0.567 -26.67 

is one of the most 660 27 2 1 1.867 83.33 

in the middle of the 1513 17 2 11 1.200 50.00 

aim of this study 56 2 16 12 0.667 -46.67 

it's not too bad 58 16 11 3 1.433 16.67 

I see what you  105 3 25 2 1.033 -73.33 

you've got to have 191 16 10 4 1.400 20.00 

as shown in figure 191 3 17 10 0.767 -46.67 

what I want to 270 21 6 3 1.600 50.00 

it was going to 374 21 6 3 1.600 50.00 

as a consequence of 427 13 6 11 1.067 23.33 

in a variety of 732 15 11 4 1.367 13.33 

in the number of 1019 18 9 3 1.500 30.00 

in addition to the 1191 18 10 2 1.533 26.67 

night and day 109 16 1 13 1.100 50.00 

on and off 468 25 0 5 1.667 83.33 

something like that 1245 16 5 9 1.233 36.67 

go away 1244 28 0 2 1.867 93.33 

for example 23531 18 0 12 1.200 60.00 

you know 42317 24 0 6 1.600 80.00 

TABLE 3.1. Listing of data for the 26 multiword sequence stimuli used in Schmitt et 

al. (2004).  

 

spoken portion. Similarly, you know occurs only 423 times for every million words in the 

full BNC, but 30,814 per million words in the spoken portion. It seems that the full BNC 

may under-represent the frequencies of certain conversational sequences, which 

participants in the experiment indeed remembered quite accurately (for instance, 80% full 

accuracy on you know, and 93% full accuracy on go away).  
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Thus further analysis based on spoken data would seem to be appropriate. Schmitt 

et al. (2004) report a second analysis (also null) using spoken English frequencies from 

CANCODE. The CANCODE corpus is not publicly available, and I thus present a 

second correlation analysis using log-transformed frequencies from the spoken portion 

(10 million words) of the British National Corpus (Davies 2004-). The spoken BNC 

frequency counts for the Schmitt et al. stimuli are listed in Appendix 3.1. Here, the 

Pearson correlation tests are somewhat more successful than those based on the mostly-

written BNC. First, the correlation between (log) spoken BNC frequency and the number 

of fully correct responses is positive and significant, with p = 0.02 and r = 0.41. The 

correlation between (log) spoken BNC frequency and the number of partially incorrect 

responses is significant, and as expected, negative, with p =0.017 and r = -0.43. Finally, 

the revised mean performance score (assigning a point for fully correct responses, and 

penalizing a point for partially correct responses) also yields a significant result. The 

correlation between (log) spoken frequency and the mean performance score is positive (r 

= 0.44) and significant (p = 0.014). 

 In sum, the reanalyses based on log-transformed spoken frequencies yield 

significant Pearson correlations, albeit correlations that are in the weak-to-moderate 

range. However, these correlations are somewhat improved if our analyses exclude one 

particularly questionable stimulus from the experiment. As noted above, the context for 

the sequence I see what you was rather anomalous in the experiment (I see what you 

would want a dam for though). Visual inspection of the scatterplot between (log) spoken 

frequency and performance measures in the Schmitt et al. data indicates that this item is 

an outlier. Outlier status is confirmed by examining the Pearson residuals for analyses of 
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‘produced correctly,’ ‘partially incorrect,’ and revised mean performance values. In all 

three cases, I see what you is the only item with residuals that are two standard deviations 

from the mean, and exclusion of this item is thus justified. Based on the 24 remaining 

target sequences, the Pearson correlation between (log) spoken BNC frequency and fully 

correct responses is again positive and significant (r = 0.46, p = 0.01). The correlation 

between (log) spoken BNC frequency and partially incorrect responses is moderate and 

again negative (r = -0.57, p = 0.002). Finally, the correlation for the modified mean 

performance score is positive and moderate, with r = 0.53 and p= 0.004. 

 It seems, then, that Schmitt et al. (2004) may have been premature in concluding 

that their experiment provided no evidence of a frequency effect on verbatim memory 

performance. Higher-frequency sequences were in fact more prone to be recalled 

accurately, and, more importantly, were less prone to be produced in a partial or disfluent 

fashion. Moreover, when these indicators are combined into a summary statistic (a 

revised mean performance score), higher-frequency sequences correlate with higher 

overall performance. The Pearson correlations are significant, and moderately strong, if 

the analyses are based on (logged) spoken frequencies, and if we eliminate one 

particularly troublesome item from the analysis set.   

 All the same, the reanalyzed data from Schmitt et al. (2004) may remain open to 

certain criticisms. Several of the target sequences are problematic in the experiment 

narrative, and reduced accuracy is open to interpretation without having more details 

about participant responses. Moreover, in the existing data, there are no particular 

controls for frequency (since all the multiword sequences considered were ‘recurrent’), 

and target sequences are not controlled for the number of words. It is possible to attempt 
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a post hoc control for n-gram length by separately analyzing subsets of the Schmitt et al. 

sequences, but this requires considering rather small numbers of data points, and the 

results are mixed.
21

 The verbatim memory methodology is thus in need of further 

investigation, and I describe the methods and results of a revised experiment in Section 

3.2.  

 

3.2. Verbatim dictation revisited: A new experiment 

 

 An updated experimental study is described here, which takes into account the 

various design concerns noted above regarding Schmitt et al. (2004). The present 

approach makes comparisons between matched multiword sequences in high-frequency 

and low-frequency categories, and incorporates the various assessments (number of fully 

correct responses, number of partially correct responses, and revised mean performance) 

used in the reanalyses of Section 3.1.    

 

3.2.1. Selection of stimulus sequences. 

  

The revised experiment is based on a set of 26 target multiword sequences, 

divided into a set of 13 high-frequency sequences, and a matched set of 13 low-frequency 

sequences. The target sequences range from 2-5 words, and are matched across categories 

for number of words. The sequences in each category are also matched for part of speech 

throughout, which ensures that in a traditional syntactic analysis, the sequences will have 

                                                 
21 For instance, Schmitt et al.’s set of 25 stimuli includes 10 target sequences that are 4 words long 

(assuming we exclude the problematic I see what you). A separate analysis of this set of 10 items indicates 

that measures follow the predicted patterns, and the correlations with log frequency are highly significant. 

For instance, for the revised mean performance score, r =0.91, p < 0.001. However, this pattern is not borne 

out among the (albeit smaller) set of 6 target sequences of length 5. Here, the correlation between log 

spoken frequency and revised mean performance yields r= 0.30 and p= 0.28, and the other measures are 

also not significant.  
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a similar constituent status. Thus, the high-frequency sequence in the same way as (P Det 

Adj N P) is matched with the low-frequency sequence to the same time as.  

More specifically, whenever possible, matched items contain all of the same 

words except for one ‘pivot word.’ Thus, the high-frequency sequence on the part of and 

the matching low-frequency sequence on the life of both follow the template on the N of. 

The ‘pivot word’ approach is inspired by the design of Tremblay et al. (2007), and is 

intended to ensure that the most salient cross-category frequency differences involve the 

entire multiword sequence, rather than individual words. The purpose of this precaution 

is to minimize processing advantages for the high-frequency sequences solely on the 

basis of individual word frequencies. Thus, pivot words are chosen so as to be similar in 

frequency between the two categories, or alternately, so as to bias word frequency 

differences in favor of the low-frequency category whenever possible.  

The final set of stimulus sequences, along with the relevant frequency measures, 

is listed in Table 3.2. Since the participants in the study are to be speakers of American 

English, the frequency values used are drawn from the 450-million word Corpus of 

Contemporary American English (COCA, Davies 2008-), of which 20% is spoken 

English. For each pair of matched items, it was required that the pivot word frequency for 

the low-frequency sequence needed to be at least 75% of that for the pivot word in the 

high-frequency counterpart. There is a single exception to this general requirement: the 

high-frequency sequence in the middle of contains a pivot (middle) that is considerably 

more frequent than the pivot (style) in the matched low-frequency sequence in the style 

of. However, this exception is mitigated if we take word classes into account. In the 

sequences of interest, the pivot words (middle, style) function as nouns, and in nominal 
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uses, style is somewhat more frequent than middle (with COCA counts of 37,224 and 

35,026, respectively).  

On average, the pivot words are comparable in frequency between the high-

frequency and low-frequency sequences, with a slight advantage in individual-word 

frequency among the low-frequency sequences. Based on the frequencies of the entire 

multiword sequence, the cross-category differences are far more striking: on average, the 

high-frequency sequences are more than 9 times as common as the low-frequency 

sequences.     

 

HIGH FREQUENCY SEQUENCES LOW FREQUENCY SEQUENCES 

Target Sequence 
Sequence 
frequency 

Pivot word 
frequency 

Target  
Sequence 

Sequence 
frequency 

Pivot word 
frequency 

in the same 
way as 374 475731 to the same time as  3 735572 

all of a sudden 5989 18912 all of a boy  1 73144 

as a result of  11947 68844 as the name of 55 123041 

for the sake of 3545 9948 for the child of 9 129974 

in the middle of 18926 81514 in the style of 413 37345 

on the part of 6036 224529 on the life of 248 320046 

as soon as 17561 80025 as big as 2098 208034 

in spite of 7049 7647 in fear of 369 49395 

in terms of 35474 66617 in things of 11 255025 

on top of 13298 128709 on half of 70 109457 

according to 96800 97380 looking to 5433 132824 

back to 112906 569622 through to 2960 431768 

out of 270510 11974008 out to 51709 11734566 

AVERAGE 46,186 1,061,807 AVERAGE 4,875 1,103,092 

TABLE 3.2. Listing of matched stimuli in the high-frequency and low-frequency 

sequence categories. Pivot words are highlighted in bold. All frequency counts are 

based on the full COCA corpus (450 million words, Davies 2008-).  

 

3.2.2. Stimulus sentences and presentation.  

 

 As noted previously, some of the target stimuli in the Schmitt et al. (2004) study 

were situated in awkward contexts, perhaps as a result of constraints imposed by the 

continuous narrative. Thus, in the present study, I abandon the narrative structure, and 
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instead attempt to fit each target sequence into individual, natural-sounding sentences. 

Appropriate contexts were identified by examining a sampling of usages from the COCA 

corpus, and used as the basis for constructing matched sentences. All sentences in the 

study were in the range of 19 – 24 words, which is similar to the lengths of bursts (20-24 

words) used in the Schmitt et al. study (2004: 132). Sentences were devised with a 

similar structure; each sentence contained the target sequence close to the middle of the 

sentence, after an introductory clause. Sample sentences are provided in (6) and (7).    

 

(6) The two neighbors were talking over the backyard fence, but they were 

interrupted when all of a sudden their dogs started barking.   

 

(7) The current gallery exhibit seems oddly familiar to me, because the drawings 

are  

all of a boy who lived in my neighborhood.  

 

 

The set of 26 stimulus sentences was randomized into a set sequence; the full set 

of sentences is listed (in presentation order) in Appendix 3.2, along with the math 

distractors used. The stimulus sentences and distractors were recorded digitally in 

Audacity 1.2.6, by a native speaker of American English (the author).  

Participant responses were written rather than spoken, to permit simultaneous data 

collection as described below. The use of written responses, unfortunately, does not allow 

for the analysis of disfluencies in participant responses. However, an advantage of written 

data collection is that the slower nature of responses renders the verbatim memory task 

somewhat more challenging, and encourages more overall deviation from the target 

sentences.  
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3.2.3. Participants and data collection. 

 

 Data collection was performed in an introductory Psycholinguistics course at the 

University of New Mexico. The verbatim memory activity was part of the class 

curriculum, which included sections on the nature of retrieval from the mental lexicon, 

and experimental methods in psycholinguistics. Students in the course participated in the 

exercise voluntarily, as a precursor to writing lab reports that analyzed and discussed the 

group results. Participation in the classroom exercise was not mandatory (indeed, it could 

not be, since responses were anonymous), although participating in the task did help 

students better understand the analysis assignment. 

The course instructor explained the verbatim memory task, and advised that 

everyone in the class would be given the opportunity to try out the task firsthand. 

Participants filled in their responses with paper and pencil. In a preliminary 

questionnaire, participants indicated on their answer sheets whether they were native 

English speakers, and whether they had a history of speech or hearing disorders. Once the 

task was completed, the instructor advised the class that they had a choice whether or not 

to include their responses in the analysis. Students who wished to have their data 

analyzed passed their papers forward, and those who preferred not to participate could 

simply keep their papers. No names were provided on the student papers, so the class 

instructor could not tell which students chose to participate or not participate. 

Approximately 70% of the enrolled class chose to participate and have their data 

analyzed, yielding 43 native English participants. None of these 43 participants reported a 

history of speech or hearing disorders.  
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The procedure for written responses was as follows. Subjects heard each target 

sentence once. As in the Schmitt et al. study, two seconds after the sentence completed, 

subjects heard two numbers they needed to add together. Participants were advised that 

they were allowed to calculate the sum on paper if they so wished, or ‘in their heads.’ 

The important feature of the addition task was to provide interference with verbal 

memory, which could be accomplished whether or not the two numbers were written on 

paper. After completing the addition task, subjects then wrote down the sentence they had 

previously heard, attempting to write each sentence accurately as possible on a word-for-

word basis. Even though responses were written, there was considerable time pressure for 

subjects to write answers quickly, since only a fixed amount of time was available before 

the start of the next stimulus.  

A short practice round (containing two sentences) familiarized participants with 

the task, prior to presentation of the 26 trial sentences.  

  

3.2.4. Results.  

 

3.2.4.1. Initial assessment and removal of outliers.  

 

 As an initial assessment of the suitability of participant responses, the response 

sheets for the 43 native English speakers were coded with respect to ‘fully correct’ 

responses and ‘insufficient/uncodable’ responses. This initial coding step is intended to 

exclude any participants who may not have been fully engaged in the verbatim memory 

task.  

 First, responses were coded as ‘fully correct’ if they contained all (and only) the 

words of the target sequence, in the correct order. Across the 43 subjects, the number of 

fully correct responses (out of 26 stimuli) ranged between 5 and 22. The average number 
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of fully correct responses is 12.11 (SD= 4.32) out of 26, or 46.60%. The relatively low 

accuracy perhaps attests to the general difficulty of recalling approximately 20 words 

verbatim, following a math distractor task.
22

 Nevertheless, fully correct responses were 

the most common type of response (that is more common than any particular category of 

error). Moreover, no participant scored below two standard deviations in terms of the 

number of fully correct responses, and thus this particular measure was not used to 

exclude any participants from the study.  

  Secondly, as part of the initial assessment, participant answer sheets were 

examined in order to identify responses that were insufficient or uncodable for various 

reasons. Examples of insufficient responses would be items that were left blank, or 

responses that were incomplete to such an extent that it is unclear whether the participant 

understood the sentence.  Other insufficient responses would be those in which the 

participant misheard a crucial part of the sentence (e.g., in spite of > in light of), or in 

which the participant clearly misunderstood the meaning of a sentence (for example, 

misassigning semantic roles). An example of such a response is provided in sentence 

(8b), with the original stimulus provided in (8a).   

 

(8a) TARGET: One of downtown’s most memorable landmarks is an elaborate 

church, which dates to the same time as the famous courthouse.   

 

(8b) RESPONSE: One of the town's most famous landmarks is the church whose 

clock is the same time as the courthouse's.  

 

Finally, in a few rare cases, responses had to be rejected as insufficient because the 

participant’s handwriting was illegible.  

                                                 
22 By comparison, in the Schmitt et al. (2004) study, on average the 30 native English participants were 

fully accurate 55.73% of the time.  
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Across the 43 participants, the number of insufficient responses varied between 0 

and 15, with an average of 3.49 insufficient responses (out of 26) per participant (SD= 

3.28). The average percentage of insufficient responses is thus 13.42%. However, it is 

disconcerting that some participants had up to 57.7% uncodable responses, and a decision 

was made to exclude any participants whose performance on this measure was two 

standard deviations below the mean. This criterion led to the exclusion of three 

participants.  

 Additional participant filtering was imposed on the basis of mathematical 

accuracy, to ensure that all participants were fully engaged in the math distractor task in 

addition to the verbatim memory task. On the whole, participants were quite attentive to 

the addition problem, since the average accuracy was 92.03% (mean incorrect responses 

2.07, SD = 1.67). Almost all errors were very plausible clerical mistakes which might be 

made in a high-pressure situation (with an answer either off by 1, or off by 10 from the 

target). However, there were some isolated math responses which seemed less plausible, 

and a few participants showed performance that was considerably poorer than the 

average. Analysis indicates that there were two participants whose accuracy on the 

distractor task was more than two standard deviations below the mean. Exclusion of these 

participants further reduces the total pool of participants to 38. 

Once the five participants described above are excluded (three on the basis of 

verbatim memory, and two on the basis of the distractor task), the following summary 

statistics characterize the remaining 38 participants. On average, accuracy on the math 

distractor task is 93.42%, with a mean number of incorrect responses of 1.71 (SD = 1.21). 

With respect to the verbatim memory task, among the 38 remaining participants the 
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number of fully correct responses ranges between 6 (N=2) and 22, with an average of 

12.73 (SD= 4.11), or 48.99%. The number of insufficient responses ranges among 

participants between 0 (N = 6) and 7 (N=3), with an average of 2.68 insufficient 

responses per participant (SD= 2.09), or 10.32%. All of the 38 participants remaining in 

the study have a larger number of fully correct responses than insufficient responses.    

 

3.2.4.2. Quantitative results.  

 

 Based on the 38 participants included in the study, I first present several broad 

quantitative analyses, to be followed by more in-depth qualitative discussions. For the 

sake of simplicity in these statistical tests, we can assume a three-way distinction in 

response types for each target sequence: ‘fully correct,’ ‘partially (in)correct,’ ‘not 

produced.’ Responses in which the target sequence is ‘not produced’ are distinct from 

uncodable or insufficient, since ‘not produced’ responses constitute valid dictations that 

express the original meaning of the stimulus sentence, but without using any words from 

the target sequence. As I discuss in detail below, the ‘not produced’ category includes a 

rather heterogeneous range of responses, which may or may not provide any evidence 

regarding holistic retrieval of the target sequence. For our present purposes, the prefab 

hypothesis predicts that higher-frequency sequences should be (a) more likely to be 

produced in a fully correct form, and (b) less likely to be produced in a partially 

(in)correct form. Additionally, an appropriate composite measure, the (revised) mean 

performance score as discussed in Section 3.1, should tend to be higher for higher-

frequency sequences.  
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HIGH FREQUENCY SEQUENCES LOW FREQUENCY SEQUENCES 

Target 
Sequence 

Percent 
fully 
correct 

Percent 
partially 
incorrect 

Mean 
performance 
score 

Target 
Sequence 

Percent 
fully 
correct 

Percent 
partially 
incorrect 

Mean 
performance 
score 

in the same 
way as *15.63 *68.75 *-53.13 

to the same 
time as  *40.63 *59.38 *-18.75 

all of a 
sudden 40.54 27.03 13.51 all of a boy  38.24 61.76 -23.53 

as a result 
of *28.00 16.00 *12.00 

as the name 
of *62.86 37.14 *25.71 

for the sake 
of 65.71 11.43 54.29 

for the child 
of 29.17 62.50 -33.33 

in the 
middle of 54.05 32.43 21.62 in the style of 18.75 81.25 -62.50 

on the part 
of *34.48 0.00 34.48 on the life of *47.22 30.56 16.67 

as soon as 100.00 0.00 100.00 as big as 94.74 5.26 89.47 

in spite of *40.54 0.00 40.54 in fear of *64.71 32.35 32.35 

in terms of 75.76 9.09 66.67 in things of 60.53 39.47 21.05 

on top of 92.11 7.89 84.21 on half of 25.00 65.63 -40.63 

according 
to *50.00 0.00 50.00 looking to *69.70 30.30 39.39 

back to 83.78 13.51 70.27 through to 8.82 38.24 -29.41 

out of 85.71 8.57 77.14 out to 57.14 37.14 20.00 

AVERAGE 58.95 14.97 43.97 AVERAGE 47.50 44.69 2.81 

TABLE 3.3. Quantitative results for three measures in the verbatim memory task. 

Scores of the same type (for instance, percent fully correct) should be compared for 

each matched item. Pairs marked with asterisks are those in which the observed 

scores are contrary to the expected pattern (see section 3.2.4.3 for discussion).       

 

 In Table 3.3 above, I list the quantitative results for each target sequence. For all 

quantitative results discussed here, I report observed response types as a percentage of all 

codable responses, rather than as a percentage of all responses. In other words, the 

responses considered ‘insufficient’ as described in 3.2.4.1 are excluded in order to 

provide a more accurate assessment of the likelihood of recall the entire sequence or only 

a part of it. On the whole, there are fewer insufficient responses among the high-

frequency sequences than among the low-frequency sequences; across all participants, 

there are 45 and 57 insufficient responses in the two categories, respectively. However, 

the distribution of insufficient responses is not significantly different between the two 
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categories. A one-tailed paired t-test by item yields p = 0.29, and by participant yields p = 

0.09. These null results suggest that it is reasonable to exclude insufficient responses 

from percentage calculations without influencing the results for one or the other 

categories.  

First, then, we can consider the distribution of fully correct responses with respect 

to frequency. As discussed in Section 3.2.4.1, such responses are those that contain all the 

words of the target sequence, without interruption or alteration. Among high-frequency 

sequences, 58.95% of responses are fully correct (again, as a percentage of all codable 

responses), compared with 47.50% of low-frequency responses that are fully correct. In a 

one-tailed t-test paired by item, this difference does not reach significance, with p = 0.13. 

However, in a one-tailed t-test paired within participants, the difference is highly 

significant, with p < 0.001. Likewise, a Pearson correlation between log COCA 

frequency and the percent of fully correct responses is significant and positive, with p = 

0.018, although in a weak to moderate range (r = 0.41). 

 Perhaps a more telling indicator of holistic retrieval is the likelihood of ‘partially 

incorrect’ recall among target sequences of different frequencies. As observed by Schmitt 

et al. (2004), if a target sequence is recalled in partial form, or in altered form (such as 

being interrupted, rearranged, or containing one or more substituted words), this would 

constitute evidence that the sequence is not being recalled as a holistic unit. Conversely, a 

disinclination to replace or interrupt any words in a multiword sequence may be 

considered evidence that the sequence tends to be recalled in a unitary fashion. To assess 

this variable, participant responses are coded as ‘partially incorrect’ if the response 

contains at least one word from the target sequence, but one or more other words within 
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the target sequence is replaced, inserted, rearranged, or changed morphosyntactically.
23

 

Responses incorporating any of the foregoing modifications are taken as evidence that the 

sequence was comprehended and/or recalled as a collection of individual words, rather 

than as a continuous unit. Examples of such responses from the data are below. Sentence 

(9a) presents the original stimulus sentence; in the participant’s response in (9b), an 

extraneous word is inserted, in (9c), a word from the target sequence is omitted; and in 

(9d), a word from the target sequence is replaced with a related word.     

 

(9a) TARGET: In the garden, we found insect damage on half of the plants, so 

we decided that we might have better luck next year. 

 

(9b) PARTIALLY INCORRECT RESPONSE, 1: In the garden, we found insect 

damage on over half of the plants, so we decided that we might have better 

luck next year. 

 

(9c) PARTIALLY INCORRECT RESPONSE, 2: We found insect damage on 

half the plants, so we thought we’d have better luck next year. 

 

(9d) PARTIALLY INCORRECT RESPONSE, 3: In the garden we found insect 

damage on some of the plants so we thought we would have better luck next 

year. 

 

When coded with respect to partially incorrect responses, there are significant 

differences between the high-frequency and low-frequency target sequences. As a 

percentage of all codable responses, for high-frequency sequences, 14.97% of responses 

are partially incorrect, compared with 44.69% of low-frequency sequences. This 

difference is statistically significant, as demonstrated by one-tailed, paired t-tests, which 

yield p < 0.001 whether grouped by item or by participant. Moreover, the correlation is 

significant between log frequency of each sequence and the percentage of partially 

incorrect responses, with r = -0.72 and p < 0.001. As we would predict, the correlation is 

                                                 
23 Alternate operational definitions of ‘partially incorrect’ responses are certainly possible. I discuss certain 

definitional complications in Section 3.2.4.3.  
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negative (and strong), indicating that in the verbatim memory task, higher-frequency 

sequences are less likely to be produced in a partially incorrect form.  

 Finally, as a broad quantitative measure, we may consider a composite score 

which combines the two previous measures regarding fully correct responses, and 

partially correct responses. As in Section 3.1, I compute a mean performance score by 

assigning one point for each fully correct response, and deducting one point for each 

partially incorrect response. For ease of comparison with the other measures discussed in 

this section, I calculate the score as a percentage of all codable responses. Thus, each 

mean score varies along the range from -100.0 (which would indicate that responses are 

partially incorrect 100% of the time) to +100.0 (indicating that responses are fully correct 

100% of the time). This analysis yields a mean performance score for high-frequency 

sequences of 43.97, and for low-frequency sequences of 2.81. These differences are 

statistically significant: a one-tailed t-test, paired by item yields p = 0.0043, and paired by 

participant yields p < 0.001. Across all target sequences, the correlation between log 

frequency and mean performance is also significant; p < 0.001, and the r-value is positive 

and moderate (r = 0.62).  

 As an addendum to these quantitative results, I should note that certain of the 

participant responses presented difficulties in my coding choices. As discussed above, I 

coded a response as ‘partially incorrect’ if a word from the target sequence appeared in 

the response, but one or more other words was altered in some way. This approach led to 

rejecting certain responses as being ‘partially incorrect,’ although a case could be made 

for classifying them as such. Most notably, with respect to the high-frequency sequence 

in spite of, 20 participants used despite in its place. This is a striking and noteworthy 
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pattern, which I discuss in greater depth in Section 3.2.4.3. In the data presented in Table 

3.3, I coded such responses as ‘replacements’ rather than ‘partially incorrect.’ (See 

Section 3.2.4.3 below for a discussion of sequence replacements.) Indeed, note that 

despite does not contain any analyzable morphemes, and thus it is reasonable to claim 

that its substitution for in spite of evinces no activation of spite as a separate word. 

However, it could also be argued that despite should be coded as ‘partially incorrect,’ 

since despite shares phonological material with in spite of. If one item could prime 

another on the basis of shared phonological material, irrespective of morphosyntactic 

structure, this could be considered evidence that activation of component parts outstrips 

activation of the whole.  

To investigate whether the choice of coding convention had an impact on the 

results, I recoded the data in a way that is focused on general overlaps between target 

sequence and response, moreso than overlaps that attend to orthographic word 

boundaries. In the recoded system, responses were considered to be ‘partially incorrect’ if 

phonological material from the target sequence appears in a modified form in the 

participant’s response. Thus, in addition to recoding in spite of > despite, this new coding 

system considers out of > outside and through to > into to constitute ‘partially incorrect’ 

attempts. Based on this recoding under a broader definition of partially incorrect 

responses, the revised percentages for each item are presented below in Table 3.4. (The 

‘fully correct’ tallies are unchanged by recoding, and thus are not included in this 

alternate table.)   
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HIGH FREQUENCY SEQUENCES LOW FREQUENCY SEQUENCES 

 
 
Target Sequence 

(Recoded) 
percent 
partially 
incorrect 

(Recoded) 
mean 
performance 
score Target Sequence 

(Recoded) 
percent 
partially 
incorrect 

(Recoded) mean 
performance 
score 

in the same 
way as *68.75 *-53.13 

to the same 
time as  *59.38 *-18.75 

all of a sudden 35.14 5.41 all of a boy  61.76 -23.53 

as a result of 16.00 *12.00 as the name of 37.14 *25.71 

for the sake of 11.43 54.29 for the child of 62.50 -33.33 

in the middle of 32.43 21.62 in the style of 81.25 -62.50 

on the part of 0.00 34.48 on the life of 30.56 16.67 

as soon as 0.00 100.00 as big as 5.26 89.47 

in spite of *54.05 *-13.51 in fear of *32.35 *32.35 

in terms of 9.09 66.67 in things of 39.47 21.05 

on top of 7.89 84.21 on half of 65.63 -40.63 

according to     0.00 50.00 looking to 30.30 39.39 

back to 13.51 70.27 through to 88.24 -79.41 

out of 14.29 71.43 out to 42.86 14.29 

AVERAGE 20.20 38.78 AVERAGE 48.98 -1.48 

TABLE 3.4. Quantitative results on the basis of recoded data, with a more expansive 

definition of ‘partially incorrect’ responses. Pairs marked with asterisks are those in 

which the observed scores are contrary to the expected pattern.    

 

Statistical analysis of these revised figures indicates that the alternate coding 

conventions have little effect on the quantitative findings. With respect to the percentage 

of responses which are, more broadly defined, ‘partially incorrect,’ the averages for high 

and low frequency sequences are 20.20 and 48.98, respectively. This difference is again 

statistically significant. A one-tailed t-test yields p = 0.0011 when paired by item, and p < 

0.001 when paired by participant. Likewise, the Pearson correlation between log spoken 

frequency and (revised) percentage partially correct is negative and significant, with r = -

0.59, and p < 0.001. Based on the recoded data, the mean performance scores still exhibit 

very significant differences on the basis of frequency. The average score is 38.78 for 

high-frequency items, compared with -1.48 for low-frequency items. A one-tailed t-test 
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yields p = 0.015 when paired by item, and p < 0.001 when paired by participant. A 

Pearson correlation test is also significant, with r = 0.54 and p = 0.002.  

In sum, although more than one coding convention is defensible regarding the 

identification of ‘partially incorrect’ responses, it seems that the quantitative results are 

generally not dependent on the particular convention used. Under either approach, the 

relationship between sequence frequency and likelihood of partially correct responses is 

significant and negative. Moreover, under either coding approach, there is a positive, 

significant relationship between sequence frequency and a mean performance score 

which combines measures of fully and partially accurate responses.   

 

3.2.4.3. Exceptions to the general pattern, and qualitative results. 

 

The foregoing analyses provide quantitative evidence that high frequency does, 

on the whole, have an effect on the nature of responses in a verbatim memory task. High-

frequency sequences are generally more likely to be recalled verbatim, and are less likely 

to be produced in an interrupted or altered form. Yet it is also certainly true that high 

token frequency alone does not unfailingly predict that subjects will repeat a sequence 

verbatim. In making pairwise comparisons between high- and low-frequency items, there 

are several cases in which participant performance was contrary to expectations. Such 

exceptions are most noticeable in the distribution of fully correct responses, in which 5 

pairs (out of 13) exhibited a reversed pattern. With respect to partially incorrect 

responses, there was a single exception
24

 to the expected pattern, and for mean 

performance, there were two exceptions (see asterisked items in Table 3.3).     

                                                 
24 Recoding the data with a broader definition of ‘partially incorrect’ responses adds one more exception: 

under this coding convention, in spite of is more prone to partially incorrect responses than in fear of. See 

Table 3.4.  
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Of course, the occurrence of exceptions to broader patterns is not especially 

troubling, given that the nature of the evidence is statistical, and (as discussed in Chapter 

1) it is predicted that the same sequence of words may be activated holistically or 

compositionally, to varying degrees, under different circumstances. Some sources of 

variability become apparent if we examine the particulars of participant responses. 

Toward this end, consider some of the recurring patterns in participant responses, 

summarized on the following pages in Table 3.5a (high-frequency sequences) and Table 

3.5b (low-frequency sequences). These tables lists cases in which the same response 

appeared at least twice among the 38 participants; the number of occurrences appears in 

parentheses after each response. Paired items are asterisked in cases where at least one of 

the assessments indicated an exception to the expected pattern, i.e., if the high-frequency 

item was outscored in any measure of holistic retrieval by its low-frequency counterpart. 

The middle column in the tables lists different types of ‘replacements.’ Replacements are 

responses in which the target sequence does not appear, either because the sequence was 

supplanted by another (non-overlapping) word or sequence, or because of a more general 

constructional change in the participant’s response. In the mean performance scores 

computed above, replacements were considered neither as evidence for nor against 

holistic retrieval of the sequence. The rightmost column lists partially incorrect responses 

by participants, i.e., incorrect responses which overlap with the target sequence in at least 

one word.    
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TABLE 3.5A 

HIGH-FREQUENCY SEQUENCES: RECURRING DEVIATIONS IN 

RESPONSES 

 

 

Target 

sequence 

Recurring replacements 

(with synonym 

word/sequence), or 

constructional change
 
 

 

Recurring partially (in)correct 

responses 

1. *in the same 
way as 
 

like (5)  the same as (11) 

as (5) 

2. all of a sudden 
 

suddenly (3)  all of the sudden (9) 

3. *as a result of 
 

due to (10)  because of (2)  

4. for the sake of due to (2)  for (a career) (2)  

5. in the middle of 
 
 

around (2) in (9)  

(on the floor) of (2) 

6. *on the part of 
 

from (16)  

by (2)  

 

7. as soon as   

8. *in spite of 
 

+despite (20)  

against (2)  

 

9. in terms of  in (3) 

10. on top of  on (3)  

11. *according to 
 
 

#
(family) say/said (12) 

#
(family) claim/claimed (4) 

#
(family) argued (2)  

 

12. back to  to (4)  

13. out of +outside (2)  

*One or more average scores on this item was contrary to predictions, relative to the 

corresponding score for the matched counterpart.  

+Under the alternate coding system (see Table 3.4), this response would be considered ‘partially 

incorrect.’  
#This response is accompanied by a change in the construction in which the target sequence 

appears. The response differs from true substitutions/replacements, since use of the original target 

sequence would be ungrammatical in this context.   
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TABLE 3.5B 

LOW-FREQUENCY SEQUENCES: RECURRING DEVIATIONS IN 

RESPONSES 

 

 

Target 

sequence 

Recurring replacements 

(with synonym 

word/sequence), or 

constructional change
 
 

 

Partially (in)correct responses 

1. *to the same 
time as 
  

 to the time of (5)  

to around the same time as (2) 

2. all of a boy  
 all (the drawings were) of a boy 

(12) 

3. *as the name of 
 
 

 for the name of (6) 

to be the name of (3)  

as the name for (2)  

4. for the child of  to the child of (3)  

5. in the style of 
 in the (11) 

in the traditions of (2) 

6. *on the life of 
 

#
(a screenplay) about (7)  about the life of (7) 

on (2)  

7. as big as  as tall as (2)  

8. *in fear of  afraid of (2)  

9. in things of  in such things (2)  

10. on half of 
 
 

 on half (7) 

on over half (of) (5) 

on more than half (of) (3) 

11. *looking to 
 

 looking for (4)  

look to (2)  

12. through to 
 
 

+into (13)  through (the floor) into (5) 

down to (4)  

through (the floor) to (2)  

13. out to 
 

 to (8)  

outside to (4) 

*One or more average scores on this item was contrary to predictions, relative to the 

corresponding score for the matched counterpart.  

+Under the alternate coding system (see Table 3.4), this response would be considered ‘partially 

incorrect.’  
#This response is accompanied by a change in the construction in which the target sequence 

appears. The response differs from true substitutions/replacements, since use of the original target 

sequence would be ungrammatical in this context.   
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A review of participants’ responses suggests that multiple factors may influence 

performance in the dictation task, including a need for economy under time pressure. In 

the experiment, participants faced a distractor task, after which they had to reconstruct 

the sentence as accurately as possible within a short response period. In a few cases, this 

experimental setup led them to rephrase the context surrounding the target sequence, 

resulting in a more streamlined sentence. This pattern was noticeable on one stimulus 

item in particular, provided in (10a).   

(10a) TARGET: Last year, the actor was praised for playing the famous scientist, 

but according to relatives it was not a realistic portrayal.  

 

Among the participants, 19 responses (50%) included the high-frequency sequence 

according to verbatim, but another 19 responses (50%) omitted the sequence altogether 

due to a recast of the sentence. In such responses, the participant rephrased the semantics 

of ‘according to’ with a communicative verb (say, claim, argue, state) in an active 

construction. An example of such a response is in (10b). 

 

(10b) SAMPLE RESPONSE: Last year an actor was awarded for a portrayal of 

a scientist but the family said it wasn’t realistic. 

 

For this item, the tendency for participants to change the constructional context accounts 

for the poor showing of according to on the ‘fully correct’ measure (50%); participants 

had more fully-correct responses (70%) on the low-frequency counterpart looking to. A 

recast such as (10b) seems to have little to do with the target sequence, but is instead 

motivated by participants’ preference for a more concise sentential construction. Since 

according to would no longer be grammatical in the recast sentence, the omission of this 

target sequence reveals little about the nature of processing for the item of interest. Thus, 
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in computing the mean performance score, responses which changed the surrounding 

construction were assigned neither positive nor negative points.  

Undoubtedly, a tendency to make stimulus sentences more concise also helped 

motivate many ‘partially incorrect’ deviations from the target sequences.
25

 For instance, 

consider the high-frequency sequence in the same way as, on which participants were 

especially inaccurate. The stimulus sentence is provided in (11a).  

 

(11a) TARGET: The new bill increases penalties for white-collar criminals, 

arguing they should be sentenced in the same way as other criminals.  

 

Only 16% of responses reproduced this target sequence verbatim, compared with 41% of 

responses for the low-frequency counterpart, to the same time as. For this item (alone 

among all the stimuli), the high-frequency sequence was also outscored by its low-

frequency counterpart with respect to percent partially incorrect responses, as well as the 

mean performance score.  

The low scores for in the same way as were mostly attributable to shortened 

versions of the sequence which rendered the response more concise. For instance, 11 

participants shortened the sequence to the same as, as in (11b).   

  

(11b) SAMPLE RESPONSE 1: The new bill [portion crossed out] increasing 

penalties for white-collar criminals saying they should be sentenced the 

same as other criminals.  

 

                                                 
25 Clearly, not all partially incorrect responses were motivated by economy; in some cases the participant 

merely substituted one word in the target sequence, while keeping the total number of words unchanged. 

One striking example of this is the change of all of a sudden to all of the sudden by 9 participants. 

Additionally, one participant substituted all the sudden. It is noteworthy that in addition to historical uses 

(all of the sudden is the older form), all of the sudden has been rising in frequency recently, as shown by a 

drastic climb since the mid-1980s in the Google Books N-gram Viewer. It may be that certain younger 

speakers actually perceive the target sequence as the less frequent variant, all of the sudden, due to 

phonological reduction and/or grammatical idiomaticity of all of a sudden. However, in the absence of 

additional information, all such deviations from all of a sudden are coded as ‘partially incorrect,’ for the 

sake of consistency.       
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Additionally, five participants shortened the sequence to as, as in the following example.  

 

(11c) SAMPLE RESPONSE 2: The new bill increases penalties for white-collar 

criminals arguing they should be sentenced as other criminals.  

 

Responses such as the foregoing make it apparent, in retrospect, that certain of the 

stimulus sentences may have been more cumbersome than would be ideal. The task 

facing participants in the experiment was to transcribe sentences word-for-word, to the 

best of their ability. Nevertheless, it is not terribly surprising that in a time-pressured 

situation they might inadvertently render certain sequences more concise. Moreover, 

there are isolated instances throughout the data in which participants shortened the target 

sequences, even in sentences which seem relatively concise: in the middle of the living 

room is shortened to in the living room; on top of the refrigerator is shortened to on the 

refrigerator, and so on. As discussed in Chapter 1, it is predicted that even as a sequence 

of words becomes more unit-like, the sequence need not instantaneously lose its internal 

structure, and the component words can still be perceived and accessed (Bybee 1998, 

Bybee and Scheibman 1999, Beckner and Bybee 2009). It is thus to be expected that 

when resources are limited, speakers might tend to adjust multiword sequences (for 

instance, by removing words) so as to streamline a sentence.  

Consider an additional pattern in the responses for the high-frequency sequence in 

the same way as. Five participants (16% of codable responses) replaced in the same way 

as with like, as in the following example.   

 

(11d) SAMPLE RESPONSE: The new bill increases penalties for white collar 

criminals arguing that they should be charged like everyone else.  
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In addition to the modifications discussed above, these substitutions further reduced the 

‘fully correct’ score for in the same way as. Indeed, substitutions of this sort had a 

marked effect on most
26

 of the high-frequency sequences that were outscored by their 

low-frequency counterpart. Reversals of the expected high/low frequency patterns arise 

in part due to the ready availability of synonym words or phrases that are shorter than the 

target sequence. Consider, for instance, the stimulus sentence for the high-frequency 

sequence on the part of:   

 

(12a) TARGET: The group has pushed for a more active role, but they have 

encountered resistance on the part of most family doctors. 

 

 

 The percent of fully accurate responses for on the part of (around 34%) is lower 

than the percentage for the matching low-frequency sequence (on the life of, at 47%). 

Only 10 participants recalled on the part of verbatim; a larger number (16 participants, or 

55%) rephrased the sentence so that the single word from took the place of on the part of. 

A typical response is as follows.  

 

(12b) SAMPLE RESPONSE: The group has pushed for a more active role, but 

has encountered resistance from family doctors.  

 

In addition to the 16 substitutions which followed this pattern, there were 2 responses 

which replaced on the part of with by. It is perhaps unsurprising that in a time-pressured 

task, participants would be inclined to replace a four-syllable sequence (on the part of) 

with a more concise, single-syllable equivalent (from or by)
27

.  

                                                 
26 The exception would be according to, which as previously noted, fares poorly due to syntactic factors not 

directly related to the target sequence.  
27 It might also be noted that the substituted items are also generally far more frequent than the target 

sequence, and thus may be more easily accessible in a time-pressured task. For instance, from is about 300 
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 Consider also the similar case of as a result of, presented in sentence context in 

(13a).  

 

(13a) TARGET: In general the company never liked criticism from employees, 

but eventually the policy changed as a result of the worker’s complaint.  

 

Again, fully accurate responses for this high-frequency sequence are relatively low 

(28%), compared with the low-frequency counterpart as the name of (63%). However, 

the low accuracy on as a result of is mostly attributable to replacement by a two-word 

synonym, as in (13b).   

 

(13b) SAMPLE RESPONSE: In general the company didn’t like criticism but 

eventually the policy changed due to employee complaints.  

 

Indeed, due to was more popular in the responses than verbatim transcriptions of as a 

result of (with 11 and 7 responses, respectively).   

A third high-frequency sequence which exhibits a particularly strong tendency 

toward replacement is in spite of, which was previously mentioned in Section 3.2.4.2. 

The stimulus sentence is provided in (14a).  

 

(14a) TARGET: Since I was still fond of my old car, I refused to look for a new 

one, in spite of my mechanic’s advice. 

 

Participants produced in spite of in a fully correct form only 15 times (40% of codable 

responses), compared with 22 (64%) fully correct responses for the matched low-

frequency item, in fear of. The lower accuracy for in spite of is largely due to the 

tendency to substitute despite for the target, as in (14b). 

 

                                                                                                                                                 
times as frequent as on the part of in COCA (Davies 2008). Of course, large frequency differences are to be 

expected in most cases when the substituted phrase contains a smaller number of orthographic words.   
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(14b) SAMPLE RESPONSE: Since I still valued my old car, I refused to look for 

a new one despite my mechanic’s advice.  

 

Among the participants, 20 responses (54%) replaced in spite of with despite. This 

particular substitution may be related to an ongoing shift in American English. Historical 

data from COHA (Davies 2010) and the Google Books corpus show clear trends: despite 

has been climbing in frequency for the last hundred years, and since the 1920s, in spite of 

has been declining. It may be that the concessives in spite of and despite are currently in 

competition with one another, and in everyday usage, speakers are increasingly switching 

to the more economical form. At the very least, it appears that despite is becoming 

increasingly accessible to English speakers, and it offers a natural substitution for in spite 

of in a time-pressured task.   

An open question regarding the dictation methodology is how best to interpret 

substitutions along the lines of in spite of > despite
28

, in the same way as > like, as a 

result of > due to, and on the part of > from. Such ‘full replacements’ indicate that in the 

memory task, participants were able to retrieve a synonym (or synonymous phrase) 

which does not involve activation of any of the component words from the target 

sequence. Such a replacement does not provide any evidence that the target sequence is 

accessed as a series of individual words. Indeed, in calculating mean performance scores, 

I have assumed as much, because full replacements are assigned no penalty in the 

summary score.  

Moreover, note that replaceability of a multiword sequence constitutes one source 

of evidence that the sequence comprises a syntactic constituent (Quirk et al. 1985, Fabb 

                                                 
28 For purposes of the immediate discussion, I have assumed that in spite of > despite is best regarded as a 

full replacement of the target sequence. Of course, an alternate interpretation is possible, as I discuss at the 

end of Section 3.2.4.2.  
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2012, Beckner and Bybee 2009). Of course, a sequence’s status as a syntactic unit is a 

weaker requirement than assigning it status as a holistic unit; however, unitary syntactic 

function would be a prerequisite for holistic retrieval. It is interesting that in the data, 

high-frequency sequences are more prone to full replacements of this sort. This can be 

demonstrated by examining the distribution of replacements in which the target sequence 

is replaced by a synonymous word or phrase (containing no component words of the 

target), while the surrounding syntactic context remains unchanged. (Thus, the present 

analysis does not include omissions caused by broader recasts or constructional changes.) 

Among high-frequency sequences, true replacements of this sort occur on 17.8% of all 

codable responses, compared with 4.4% among low-frequency sequences. In a t-test 

paired by item, this difference falls short of significance (p = 0.055), but when paired by 

participant, the difference is highly significant (p < 0.001). Similar results are yielded if 

we focus solely on replacements that consist of a single orthographic word, so as to 

attend more closely to typical diagnostics for syntactic constituency. In this analysis, we 

thus  include substitutions such as in the same way as > like, but exclude responses such 

as on the part of > due to, since due to consists of multiple words. This analysis indicates 

that 14.48% of responses for high-frequency sequences consist of a one-word 

replacement, compared with 3.63% of low-frequency sequences. This difference is not 

quite significant in a t-test paired by item (p = 0.078), but highly significant when paired 

by participant (p < 0.001). Thus, among high-frequency sequences, deviations from fully 

correct transcriptions are more likely to suggest that the sequence functions as a syntactic 

unit.     
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 As one final point regarding the dictation task results, we should note evidence in 

the data that it is not necessary for a sequence to be high in frequency for it to be 

reproduced quite accurately. Indeed, Schmitt et al. (2004: 131) observe that verbatim 

recall of a sequence does not prove that the sequence was retrieved holistically; it may 

simply have been assembled successfully on a word-by-word basis. Moreover, additional 

factors may aid in the successful recall of a particular sequence, on the basis of abstract 

grammatical patterns rather than holistic access of a particular, multiword chunk. A case 

in point is the low-frequency sequence as big as, presented here in sentence context.  

 

(15) TARGET: The little girl struggled to carry the branch to the campfire, 

because it was really almost as big as she was.  

 

Participants reproduced this target sequence verbatim around 95% of the time, making it 

the second-most accurate sequence overall, just behind its high-frequency counterpart, as 

soon as. The relatively low frequency of the sequence as big as is not crucial, given that 

the sequence instantiates an English comparative construction having the form as ____ 

as, where the open slot is filled by a gradable adjective or adverb. This construction 

offers a conventional way for speakers to express ‘comparison in relation to the same 

degree’ (Quirk et al. 1985: 458), and this conventionality presumably affords assistance 

to participants in reconstructing the target sentence. This striking level of accuracy again 

suggests that, in addition to token frequencies, various factors have an effect on 

participants’ performance in the dictation task.   

 

3.3. Conclusion.  

 

 Despite the null outcome reported in the Schmitt et al (2004) study, the verbatim 

memory task offers a fruitful methodology for investigating holistic processing of 
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multiword sequences. Although certain shortcomings persist in the original Schmitt et al. 

design, reanalysis of their data suggests that high frequency of a sequence is associated 

with more accurate verbatim memory, and diminished likelihood of interruption or 

modification of the sequence.  

Moreover, the new experiment using the Schmitt et al. dictation methodology 

gives evidence that higher-frequency sequences are more likely to be retrieved as wholes, 

rather than on a word-by-word basis. Most strikingly, the data show that in recalling 

high-frequency sequences, participants are significantly less likely to produce partially 

(in)correct variants which signal the decomposition of such sequences into their 

component words.  

Notwithstanding quantitative trends in the data, clearly subjects at times interrupt 

or modify high-frequency sequences in the dictation task. A review of subject responses 

reveals that there are various reasons why verbatim recall might be unsuccessful; often 

there are alternate ways of expressing the ideas found in the sentence, and these alternate 

versions may be more concise.  

The quantitative results presented in this chapter provide new evidence that 

corpus-derived frequent sequences are more likely to be retrieved as prefabs, 

supplementing prior research in this area. The present experiment was designed 

specifically to revisit the methodology and findings of Schmitt et al.’s (2004) verbatim 

memory task. As such, the current experiment is designed so as to control for a single 

independent variable, token frequency. Thus, possible roles for relative frequency (as 

considered in Chapter 2) remain an open question to be addressed in future work using 
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the dictation methodology. However, relative frequency, as measured by Mutual 

Dependency, forms a central part of the investigation discussed in the next chapter.  
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CHAPTER 4. HOLISTIC RETRIEVAL OF MULTI-WORD VERBS: STUDIES 

OF AFFIX POSITIONING ERRORS 

 

 

4.0. Introduction.  

 

The present chapter investigates evidence for prefabricated, multiword units based 

on the positioning of affixes in speech. Studies of conversational errors show that 

speakers at times insert an affix at the wrong position in a sentence, as in It probably gets 

out a little  It probably get outs a little (Garrett 1980: 202). In speech errors of this 

type, a speaker mistakenly applies an affix at the periphery of a salient word sequence 

(e.g., get-out + -s), rather than inside the sequence as intended. I propose that we might 

use such an error as evidence that the speaker has accessed the word sequence 

holistically, and treated it as a ‘wordlike’ unit with respect to morphology. Errors such as 

get outs provide one example of syntagmatic, inflectional or derivational errors generally 

called ‘affix shifts’ by Stemberger and MacWhinney (1986b).   

We might note that on occasion, young language learners exhibit speech patterns 

of this sort. For instance, in (1) – (7) below, I list a collection of novel forms I have 

observed in my own son’s speech, including age(s) of production in year;month format. 

(Items marked with a ‘+’ were observed on multiple occasions.) 

(1) That what he look likes. (2;10)  

 

(2) cool offed+ (2;10 - 2;11)  

 

(3) come offed again+ (3;0 – 3;1)  

 

(4) Why my mama miss mes? (3:1)  

 

(5) stand upped (4;9)  

 

(6) make sures, make sured+ (4;11-5;2) 
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(7) It show yous. (5;6)  

 

(8) PARENT: How’s that cleanup coming? 

   CHILD:  It’s coming! I'm playing while cleanupping! (6;5) 

 

Utterances such as the foregoing provide one line of evidence that the language learner 

has inferred different linguistic units than those of adults’ grammar
29

. Language 

acquisition requires the learner to segment speech into various kinds of units, and it is 

possible children will initially learn some multiword sequences as units that lack internal 

structure (Peters 1983). For instance, if a child interprets the sequence stand-up as a 

single English word (a verb), it is then natural to apply the English past tense pattern 

productively, thus creating the novel inflected form stand-upped.   

 In adult speech, affix shift errors exhibit the same pattern, but the underlying 

mechanisms are more gradient and transitory. When adults occasionally say things like It 

get-outs, this error is not an immediate artifact of language acquisition, but gives a 

glimpse into the workings of speech production. An adult can, on reflection, be quite 

aware of the internal structure of a multiword sequence, but nevertheless under-analyze 

the sequence during online speech processes. An affix shift error hints at holistic retrieval 

of a multiword sequence, insofar as apparently (1) there is diminished activation of the 

component words (in the above example, this would include the target verb, get, which 

fails to be inflected as a verb), and (2) prefabricated production of the word sequence as a 

wordlike unit, which receives a verbal or nominal inflection as a unit.  

The relevance of affix shift errors has been previously noted by Quirk et al. 

(1985) in a discussion of multi-word verbs, that is, multiword sequences which behave 

                                                 
29 Of course, some of the utterances in (1) – (8), in particular those produced at later ages, could certainly 

arise from mechanisms more characteristic of adults’ affix shifts, rather than being holophrastic errors of 

acquisition.  
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‘either lexically or syntactically as a single verb’ (1150). In a footnote, Quirk et al. 

remark on speech errors such as ‘The editor must do precisely as he see fits,’ observed 

during a radio interview; the ‘shift of the inflection from the verb to the adjective testifies 

to a tendency for speakers to perceive the multi-word verb as a single grammatical unit’ 

(1985: 1151, note a). Quirk et al. say that errors of this type ‘deserve attention’ in the 

study of multiword units, but do not present a study of such errors themselves (1151, note 

a). Similarly, Wray (2008) writes that grammatical indications that a multiword sequence 

has ‘morpheme equivalent status’ (that is, that the sequence lacks internal structure) 

‘often come in the form of errors’ (119).
30

 To illustrate this idea, Wray provides a single 

example, in which a Kuwaiti official produces the plural form weapon of mass 

destructions, indicating that the four-word sequence is being treated as a single lexical 

item
31

 (2008: 119). Moreover, affix shifts such as get-outs parallel a diachronic process in 

which inflections may come to be ‘externalized,’ as in sisters-in-law > sister-in-laws. 

Haspelmath (1993) writes that as certain expressions ‘come to be felt as single words, 

speakers externalize the inflection’ (289). Such changes are not frequent, but they are 

certainly attested crosslinguistically, and indeed, there are cases observed in which a 

verbal inflection moves outside a postverbal particle (Haspelmath 1993: 286-287). Thus, 

previous researchers have observed that affix shifts may provide insights into multiword 

units in the mental lexicon, but discussion has generally focused on isolated examples. 

                                                 
30 Given the gradient account of unit retrieval in Chapter 1, I would make no general claim that affix shifts 

provide evidence of ‘morpheme equivalent’ units in adult speech. My views in this chapter are more 

modest: patterns among affix shifts may provide evidence that certain multiword sequences are more likely 

to be retrieved as a unit.     
31 Wray does not comment on the language background of the speaker in question. It is possible for L2 

speakers to learn certain sequences as holistic units, in much the same way as L1 learners (Wray 2002), and 

such influences could certainly be at work in this speaker’s processing of weapon of mass destruction.   
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Based on a review of the literature, it would seem that the present chapter is the first 

systematic, quantitative study of affix shifts with respect to multiword sequences. 

The hypothesis of the present chapter is that in adult speech, affix shift errors will 

not be distributed randomly, but will be overrepresented with respect to prefabricated 

phrases. The distribution of errors, of course, is expected to be probabilistic rather than 

absolute. In addition to influences from prefabs, there may be a variety of factors which 

in fact motivate the occurrence of affix shifts
32

, but as is standard in speech error 

research, the question is whether certain classes of errors are more likely than others 

(Fromkin 1973, MacKay 1979). The predictions to be tested, then, are whether increased 

Token Frequency and/or Mutual Dependency of a multiword sequence correspond to an 

increase in the rate of affixes that are erroneously shifted outside that sequence.  

 In the present chapter, I present two studies of affix shift errors, based on data 

gathered from naturalistic as well as controlled laboratory settings. As a preliminary to 

this research, it is helpful to reiterate more precisely the class of errors of interest. Garrett 

(1980) and Stemberger and MacWhinney (1986b) broadly define an affix shift as an error 

in which an affix occurs earlier or later in the sentence than intended, without 

distinguishing between the ‘earlier’ and ‘later’ cases. However, with respect to the 

hypotheses of the present chapter, the distinction between these errors is quite important. 

We may distinguish between what I will call ‘inbound’ affix shifts, in which a suffix 

moves inside of its target (It dead ends  It dead+s end), and ‘outbound’ affix shifts, 

where an affix moves outside of its target, thus appearing outside a word sequence of 

                                                 
32 For instance, there could be priming influences from the surrounding conversational context, or there 

could be effects arising from ‘competing plans’ for an utterance (Baars 1980). As one example, the error 

‘as he see fits’ could partially arise from alternate plans for the sentence in which fit was activated as a 

verb.   
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interest (gets out  get out+s). The notion of ‘inbound’ vs. ‘outbound’ errors allows us 

to be more precise about affix position with respect to some linguistic unit, rather than 

merely saying a given affix occurs early or late in a particular shift error.
33

 However, I 

will talk about ‘inbound shifts’ with considerable care, because the terminology implies 

that a linguistic unit of some kind is involved. With respect to ‘early’ affix shifts on 

compound forms (such as deads end), an affix moves inside a lexical unit, and the 

‘inbound’ terminology would clearly be appropriate. However, in certain contexts it is 

not clear whether an affix arriving prior to its intended target has anything to do with 

linguistic units. For instance, in a speech error by President George W. Bush, a 

possessive marker arrives two words earlier than intended: The decision to put people’s 

in harm_ way. Such errors may simply be errors of morphological anticipation, and if 

unitary status is not immediately apparent, I will refrain from describing premature 

affixes as ‘inbound.’    

The hypothesis of the present study can only directly address outbound affix 

shifts, since holistic retrieval of a phrase would encourage affixes to attach outside, rather 

than inside, a chunked group of words. Inbound shifts and other premature suffixes must 

be attributed to some other mechanism, such as anticipation of a morpheme that has 

entered the speaker’s buffer memory for a later portion of the sentence (Levelt 1989).  

Several previous studies have taken note of affix shift errors (both early and late 

occurrences), but have not related such errors to the study of multiword sequences. 

                                                 
33 We may extend the principles of affix shift errors to languages other than English, and propose that the 

difference between ‘inbound’ and ‘outbound’ errors depends on the particular grammar of the language. If 

the shifted inflection were a prefix rather than a suffix, an ‘outbound’ error would be one in which the 

prefix occurred one or more words earlier than its target: word1 + [prefix-word2]  prefix- + [word1 + 

word2]. Such an outbound prefix shift would hint that word1 and word2 form a prefabricated unit. For a 

related diachronic process, see Haspelmath (1993: 287-288). 
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Stemberger (1984), Stemberger (1985), and Stemberger and MacWhinney (1986b) 

analyze naturally-occurring shift errors, but their analyses are focused on the storage of 

affixes in the lexicon. Stemberger (1984) examines lexical and affix shift errors 

generally, analyzing 203 conversational errors in which an affix or a word occurs too 

early or too late in speech, as in We tried making it We tried it making or If it breaks  

If its break (289). Stemberger finds that in general, higher-frequency items (whether 

open-class or closed-class) tend to appear early in shifts
34

, hinting that high-frequency 

items are ‘overactivated’ during speech production, and thus executed too early (297; see 

also Stemberger 1985: 87). This pattern would imply that grammatical suffixes (being 

high in frequency) have a general tendency to appear prematurely in speech, thus 

providing one mechanism to account for the occurrence of early affix shifts in English, 

such as deads end_. 

Stemberger (1985) provides some quantitative results which focus more 

specifically on affix shifts. Among a collection of 40 affix shifts collected in 

conversation, Stemberger finds that in 17 errors, an affix appears earlier than its target; in 

13 errors, an affix appears after a clitic
35

 which immediately follows the target word; and 

in 10 errors, an affix appears on some other (non-clitic) word following its target (1985: 

                                                 
34 Stemberger (1984:290) bases his conclusions about frequency on shift errors involving two open-class 

items, or one open-class and one closed-class item. In the present chapter, a large number of the shift errors 

involve a misordering of two closed-class items, as in get out-s. There are no indications that Stemberger 

(1984) performed frequency comparisons of shift errors involving two closed-class items (such as a verb 

particle and a grammatical suffix), so it is unknown whether the higher frequency/earlier activation pattern 

can be generalized to such cases.   
35 It is not entirely clear what would be included in Stemberger’s (1985) ‘clitic’ category, and a complete 

list of his errors is not available. He does include the example look- atting, which would apparently be an 

instance of an affix shifting to follow a clitic (1985: 156). In a related discussion, Stemberger (1989: 171, 

n6) refers to a separate class of affix shifts which follow a particle, as in tie-upped. However, is not 

immediately apparent that look at and tie up even represent the same type of verbal unit, nor that they 

should be separated a priori from other word sequences. Note that look at and tie up do not have identical 

grammatical properties; the former would be classified as a prepositional verb and the latter as a phrasal 

(transitive) verb (Quirk et al. 1985: 1153 ff).  
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156). Following the terminology of the present chapter, this dataset implies a general 

pattern in which outbound (late) affix shifts (n=23) are marginally more likely to occur 

than early affix shifts (n=17).
36

  

Stemberger and MacWhinney (1986b) present a quantitative study of affix shift 

errors, but devote their attention to the frequencies of individual words plus inflections. 

The aim in that study is to determine whether stems and affixes are assembled 

compositionally, even in cases where the surface frequency of a stem-plus-affix form is 

high. Stemberger and MacWhinney (1986b) thus examine the surface frequency of 

affixed forms that were involved in affix shift errors; for example, in an error like telling 

us tell-us-ing, the relevant measure is the surface frequency of telling. If high-

frequency stem/affix pairs were retrieved from memory in preassembled form, then the 

expectation is that these high-frequency pairs should be less prone to misplacement of the 

inflection, and should thus be under-represented among affix shifts. However, based on a 

collection of 41 naturally-occurring affix shift errors, Stemberger and MacWhinney find 

that high-frequency forms are actually over-represented (although the difference is not 

significant). From this null result, they conclude that even high-frequency 

morphologically complex words are assembled compositionally from the lexicon.  

 In sum, the prevalence of affix shifts in speech has been noted by a number of 

researchers in psycholinguistics, albeit outside the domain of examining multiword units 

in the lexicon. It turns out that there are three different types of affix error which may be 

                                                 
36 My analysis of this dataset differs markedly from Stemberger’s, since I merge all ‘late’ affix shifts into 

an ‘outbound’ group. As indicated in note 34, Stemberger considers the 13 errors involving a clitic + affix 

to be qualitatively different: he says these ‘should be viewed as early execution of a clitic, and should be 

distinguished from other delayed execution of affixes’ (1985: 212, n4). Thus Stemberger excludes these 13 

errors for statistical purposes, and states that ‘early execution of an affix is twice as common as late 

execution,’ apparently based on a comparison of the 17 early-shifted affixes with the 10 late-shifted affixes 

in the ‘other’ category (1985: 157). However, for purposes of the present study, it would be circular to 

assume without argument that only certain multiword sequences motivate affix shifts, while others do not.     
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of interest in the present research project. First, there are the full outbound affix shifts, 

such as It get outs and She see fits. Syntagmatic errors of this sort offer the most 

straightforward evidence in support of the strong holistic retrieval hypothesis, that is, the 

view that a complex sequence may be retrieved as a whole, while activation is diminished 

for its component parts. In full outbound shifts, the tendency for inflections to be 

‘deflected’ to the periphery of particular multiword sequences would attest that (1) the 

sequence tends to be processed as a whole unit with respect to morphosyntax, and (2) the 

morphosyntactic status of component words within the sequence is diminished.  

 Secondly, there exist more complex affix errors which provide a somewhat 

weaker form of evidence regarding holistic retrieval. In the analyses of Sections 4.1 and 

4.2, I supplement full affix shifts such as get-outs with ‘double-marked’ errors, such as It 

gets outs. Errors of this type append an affix to a sequence and to one of its words, 

implying that with respect to morphosyntax, the speaker has concurrently activated the 

multiword sequence as a whole unit, and as an assemblage of component words. Such a 

view is entirely coherent with the gradient account of activation described in Chapter 1; if 

alternate approaches to retrieval fail to resolve in time, it is reasonable that the speech 

output would give evidence of both types of retrieval. As such, errors of this type will be 

taken as indicators that the multiword sequence has been activated as a whole, in addition 

to a competing, more analytical, activation. Moreover, double-marked shifts also parallel 

a diachronic process, since double-marked affixes are attested as an intermediate (and 

often overlapping) stage of inflectional externalization (Haspelmath 1993). 

 Finally, consider more ambiguous errors in speech, such as the examples in (9)-

(11).  
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(9) I’ve never had it look at.  

 

(10)  As I've said, that's only one leg of the stool. And that these other leg of th-, legs of 

the stool will be rolled out, uh, systematically, uh, in the coming weeks. —

President Barack Obama, January 29, 2009 

 

(11)  What is the object of our study? The object of our study are, broadly speaking, 

fourfold: pronunciation, grammar, meaning, and attitudes toward language 

change. —Seth Lerer, The History of the English Language, Part I.  

 

In sentence (9), which I observed in casual conversation, the speaker clearly intended to 

say looked at (although the error went uncorrected). When grammatical affixes are 

unintentionally omitted, such slips may be described as ‘no marking errors’ (Stemberger 

and MacWhinney 1986a). In (10), it is not clear whether President Obama interrupted an 

affix shift error (these other leg_ of the stools) before it was completed, or whether he 

corrected a no-marking affix error (these other leg_ of the stool). In either case, an error 

of this sort is potentially revealing with respect to the retrieval of multiword sequences. 

At the time of the press conference of (10), ‘leg of the stool’ was a recurring metaphor 

used by Obama in discussing his administration’s plans for economic recovery. If ‘leg of 

the stool’ —in its uninflected form— was a multiword unit used in planning speech in 

this context, it would be unsurprising if the sequence proved to be slightly more resistant 

to having inflections inserted. Recall from Chapter 2 the notion that holistic sequences 

are relatively difficult to interrupt or modify (Wray 2006: 592), and this principle may 

very well apply to inserting inflections into a ‘prepackaged’ sequence.  

 Thus, it is arguable that no-marking errors may provide one line of evidence for 

holistic retrieval, on the assumption that inflections are occasionally omitted since a 

prefabricated sequence is resistant to interruption. However, such evidence must be 

interpreted cautiously, since no-marking errors are known to be more likely on low-
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frequency forms (Stemberger and MacWhinney 1986a, 1986b), apparently because it is 

easier to assemble (or retrieve pre-assembled) high-frequency base-plus-affix pairs. 

Moreover, zero-marking of third person singular verbs is a feature of nonstandard 

varieties of English (Labov 1969, Green 2002), and it is possible that absent verb 

marking will be a sociolinguistic variable rather than an indicator of holistic processing.  

While noting these caveats, in Section 4.2 I include information about loss of verb 

affixes in the context of a particular experimental task, as a further source of evidence 

about the processing of multiword sequences. An additional justification for including 

this evidence is the particular nature of the experimental task, in which participants are 

supposed to inflect a stretch of speech they have just heard. In situations where speakers 

are repeating phrases that have just been used in the context (as in examples (10) and (11) 

above), the most relevant behavior is not the omission per se— it is the failure to 

interrupt or alter a sequence which is being produced, or re-produced, as a preassembled 

unit. Indeed, it is possible for the opposite error to occur, if a speaker fails to produce an 

uninflected form, but instead repeats an inflected sequence which has just been 

encountered. As an illustration from conversation, I observed just such an error in my 

own speech. In the conversational context, the noun phrase canine teeth had been 

repeated at least three times before I said example (12) (while pointing at my mouth).   

(12) That’s a canine teeth. Canine tooth. 

A speech error of this sort is unsurprising, not just because canine teeth was prominent as 

a recurring unit in the conversation, but also because canine teeth is a reasonable 

candidate for a prefabricated, multiword unit.
37

   

                                                 
37 Indeed, ‘teeth’ are usually more salient to people as plural entities, and a quick check in COCA confirms 

that canine teeth occurs about four times as often as canine tooth.  
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A prefab model would predict that certain sequences are more prone to being 

produced as preassembled, fixed units, and that such sequences may be more difficult to 

alter (either via addition or deletion) once they have been primed as units. Since the 

experiment of Section 4.2 requires immediate repetition of word sequences, in some 

analyses I include data drawn from speakers’ failure to alter the stimuli.    

 Below, in Section 4.1, I present a systematic study of outbound affix shifts 

collected from conversation, and in Section 4.2, I present an experimental study designed 

to elicit such errors in the laboratory.       

 

4.1. Naturally-occurring affix shift errors.  

 

Although outbound affix shifts have been regularly observed by a range of speech 

error researchers, these errors are in fact rare enough in speech that quantitative study 

presents real challenges. For instance, a review of the 191 speech errors Garnham et al. 

(1981) compiled from the 170,000-word London-Lund corpus turns up no tokens of affix 

shift errors. In the speech error corpus collected by Stemberger (1985), there were 23 

outbound affix shift errors out of a total of 6300 errors. Thus, in Stemberger’s data only 

0.37% of all speech errors are outbound shifts; that is, less than one out of a hundred 

speech errors is of interest in the present study. 

Given the foregoing difficulties in assembling relevant data, it seems that 

conversational error collection may need to take place over the course of several years, 

and it is helpful to look to a variety of sources for data. Toward this end, the present 

analysis of conversational errors will examine outbound affix shifts gathered from an 

online speech error database, supplemented with a small set of errors I have collected 

myself in everyday conversations.    
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First, the Fromkin Speech Error Database (Fromkin 2000) provides a collection of 

naturalistic speech errors collected by a variety of researchers over the course of 30 years. 

The database contains a total of 6398 English speech errors sorted into various categories. 

A review of errors classified as ‘morphosyntactic shifts’ or ‘morphological shifts’ yields 

a total of 29 affix shifts, of which 18 are outbound affix shifts
38

. The 18 errors appear in 

Table 4.1. 

Apparent 

intended 

utterance 

 

Error in context, where available 

 

Type of affix involved in 

shift 

giving us a letter from Leo Scarry give us-ing  

Verbal – progressive paying for I’m pay foring it all together. 

shutting up I should be shut upping 

comes in and Rachel come ins  

 

 

Verbal – 3PSG –s 

comes on It come ons at...  

wants to come if she want to comes here 

makes sure she make sures 

adds up add ups to 

ends up he end ups 

comes up when someone come ups to me 

forgotten about I’d forgot abouten that Verbal – past participle  

parts of it some part of its are   

Nominal – plural phones rang all the phone rangs 

EPLs tend EPL tends to be  

Jerry’s Pancake Jerry Pancake’s house Nominal – possessive 

easily enough easy enoughly Derivational -ly  

highly verbal What does it mean to be high 

verbally? 

logically 

speaking 

logic speakingly Derivational -ly  

(Plus loss of –al) 

TABLE 4.1. Outbound affix shift errors in the Fromkin Speech Error Database.  

 

                                                 
38 Interestingly, these figures indicate that the 18 outbound affix shifts constitute 0.36% of the 6398 total 

speech errors in the database – a figure quite close to the 0.37% value found in Stemberger’s (1985) 

database. However, it should be noted that I have intentionally excluded two shift errors included in the 

Fromkin Database. The first of these is sanitary inspector  insanitary spector, which I exclude because 

the shifted in- syllable is not a productive prefix, and the error may thus be phonological in nature. The 

second exclusion is Ralph and my’s uncle. The English possessive marker attaches to phrases, rather than 

words (e.g., Pinker 1999: 50), and this results in confusion among speakers about prescriptive norms for 

attaching ‘s to conjoined nouns and possessive pronouns (as shown by numerous queries on Yahoo! 

Answers). Thus an utterance such as Ralph and my’s may in fact not be an error in online processing. 
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 As a supplement to the above set of errors, I have been collecting outbound affix 

shifts in everyday conversation over the course of approximately 6 years. This collection 

process confirms that outbound shifts are quite rare, since this process yields only 8 

additional errors, presented in Table 4.2.  

 

Apparent 

intended 

utterance 

 

Error in context, where available 

 

Type of affix involved in 

shift 

going for I’ll be go foring, going for a run Verbal – progressive 

gets along Everybody just get alongs great  

 

Verbal – 3PSG –s 
goes ahead He go aheads and reads it. 

?gets, goes (to) 

get 

Stay here while Daddy go gets it. 

goes home Everyone goes homes to nap.* 

comes back come backs 

kept you up We kept you upped.* Verbal – past 

rides home ride homes Nominal – plural 

TABLE 4.2. Outbound affix shift and double-marked affix errors collected by the 

author.  

 

 Note that my own collection of errors includes two of the ‘double-marked’ errors 

described in Section 4.0, that is, cases in which an affix was applied to an individual 

word in addition to a multiword sequence. These double-marked errors are indicated with 

an asterisk in Table 4.2. The Fromkin collection contained no double-marked errors, with 

the possible exception of I’d forgot abouten that. In this error, the stem is changed on the 

verb as expected (forget/forgot), but the past participle –en shifts onto the following 

word. In an effort to locate double-marked errors in the Fromkin Speech Error Database, 

I did a follow-up search for morphological and morphosyntactic perseverations, but 

located no additional errors of interest.  

 Collectively, Tables 4.1 and 4.2 contain 26 errors that are relevant to the current 

study. Unfortunately, for the sake of uniformity we must exclude a few of these errors 
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from quantitative analysis. Three of the errors (want to comes, part of its, kept you upped) 

involve cases where an affix moves two words away from its target, rather than one 

word. Thus, in most instances the relevant multiword sequences are of length 2, but we 

will exclude these three errors involving sequences of length 3. As discussed in Chapter 

3, whenever possible, it is best to make frequency comparisons among n-grams of the 

same length. The overwhelming majority of the conversational errors involve two-word 

sequences, and I limit the analysis to this set so that corpus metrics are more consistent 

across the set of items. Additionally, I will exclude the error logically speaking logic 

speakingly. This error does seem to involve the outbound shift of a derivational affix (-

ly), but the error stands apart from others in the set because an affix is deleted as well (-

al).
39

  

 

4.1.1. General methods and materials. 

 

 After removing the above exceptional cases, we are left with 22 errors which may 

be used in quantitative analyses. More specifically, we have a collection of 22 two-word 

sequences (i.e., bigrams) which are to be evaluated quantitatively in this study. The 

crucial question to consider is whether bigrams having particular corpus metrics are 

overrepresented or underrepresented in the collection of outbound shift errors. This 

question is statistically more complex than it may seem at first. We may divide the 

bigrams into ‘high’ and ‘low’ categories for Token Frequency and Mutual Dependency, 

but it is not immediately obvious how to identify the expected number of errors in the 

                                                 
39 An additional analysis is also possible, which focuses on the shift of word roots rather than affix shifts. 

Unlike most of the errors in the collection, the target utterance in this case has flexibility in the ordering of 

words: speaking logically and logically speaking would both be acceptable. This flexibility could naturally 

lead to competition between plans for the sentence (Baars 1980, 1992), and blending the plans could result 

in some of the affixed material becoming stranded from the target root (speaking logic-ally , logic-ally 

speaking  logic speaking-ly).  
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bins we define. For instance, it is insufficient to divide bigrams into arbitrary bins, and 

then simply count the raw numbers of errors in each group. Broadly speaking, a random 

sample of items drawn from speech would be expected to contain a disproportionate 

number of high-frequency items, because high-frequency items have a greater ‘number of 

opportunities’ to be selected under any criteria (Sellen and Norman 1992: 333). More 

specifically, highly frequent word sequences have a higher baseline probability of 

occurring as errors: if a particular sequence is said more often, it has a greater chance of 

being said wrong.  

Thus, my methods in this section will use several varieties of corpus analysis to 

determine what would be the expected number of bigrams in a particular category, 

assuming a random distribution. If a particular category of bigrams (specifically, a set of 

affix shift errors) differs markedly from this random distribution, that will constitute 

evidence that the category is especially likely (or unlikely, as the case may be) to result in 

outbound affix shifts. The statistical methods described here are similar to those used by 

Stemberger and MacWhinney (1986b) for individual word frequencies, although they 

leave many details of the approach unexplained in the paper. In general, such analyses 

require exhaustively tallying all the units (meeting some criterion) in a corpus, and 

weighting groups of such units by Token Frequency. In the subsections below, I describe 

three versions of such an analysis.  

Before describing these analyses, it is helpful to have general background about 

the raw corpus materials that will be cited repeatedly in this section, and in Section 4.2. 

The automated searches performed in this chapter require access to complete corpus 

textfiles. Moreover, it is best to have as large a corpus as possible, and to have the corpus 
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data be based on spoken English, since the affix errors of interest are, of course, spoken. 

Thus, I combined three different corpora of spoken American English to create a 

composite spoken corpus, containing approximately 5 million words. The breakdown of 

this composite corpus is listed in Table 4.3.      

 

Corpus Citation Approximate Word 

Count 

Switchboard Corpus  Godfrey et al (1992) 3 million words  

Michigan Corpus of 

Academic Spoken English 

(MICASE)  

Simpson et al. (2002) 1.8 million words 

Santa Barbara Corpus of 

Spoken American English, 

Parts 1- 4 

DuBois et al. (2000-2005) 378,000 words 

TABLE 4.3. Contents of the 5-million word composite spoken corpus.  

 

 Additionally, one of the analyses below requires the use of corpus text that has 

been tagged for word classes. I thus make use of a tagged version of the 1 million-word 

Brown Corpus (Francis 1965), consisting of written American English.  

 Finally, as in Chapter 3, I also frequently consult the 450 million-word Corpus of 

Contemporary American English (COCA, Davies 2008-) to check the findings from other 

corpora.  

 

4.1.2. Analysis 1: Comparison to all bigrams in composite spoken corpus.   

 

First, I describe the simplest corpus-based distributional analysis, in which I find a 

halfway dividing point among all bigram tokens in the 5 million-word composite spoken 

corpus. This analysis is performed by a program I have written in Java, taking the 

following approach:  
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(i.) Tokenize all bigrams in the corpus, that is, identify all valid two-word 

sequences (discarding any sequences that cross speaker turns, cross sentences, 

punctuation, or other pause boundaries, or which are marked as uncertain transcriptions).   

(ii.) Count the number of occurrences of each bigram, and sort all bigrams by 

frequency. There are 687,216 valid, distinct bigrams in the composite corpus, ranging in 

frequency from 1 (more than 400,000 of the bigrams occur only once each) up to 43,071 

(for you know, the most frequent bigram in the corpus).  

(iii.) Based on the sorted frequency list, find the midpoint for all bigram tokens in 

the corpus. That is, identify a frequency such that half of all bigrams are less frequent, 

and half are more frequent. There are a total of 4,187,085 valid bigram tokens in the 

corpus; the analysis identifies the midpoint frequency such that ~2,093,542 bigram 

tokens are more frequent, and ~2,093,542 bigram tokens are less frequent. 

Performing the above-described analysis yields a midpoint frequency of 105 in 

the composite corpus. Thus, in a randomly chosen set of 22 bigrams, we would expect 11 

to have corpus frequencies of 106 and above, and half to have corpus frequencies 105 and 

below.  

For the 22 naturalistic outbound shift errors in our set, the actual composite 

corpus frequencies, and the high/low category divisions, are listed below in Tables 4.4a 

and 4.4b.  The current corpus analysis yields 9 error bigrams which are above the 

midpoint frequency, and 13 which are below. This division does not significantly differ 

from the expected values (11 items per category). A chi-square goodness of fit test yields 

a p-value of 0.5271. 
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‘High Frequency’ bigrams: N = 9 

Bigram Composite frequency 

come up 494 

go ahead 474 

make sure 453 

end up 448 

come in 445 

pay for 389 

come back 384 

come on 196 

TABLE 4.4A. Error bigrams above frequency  

midpoint for composite spoken corpus. 

 

‘Low Frequency’ bigrams: N = 13 

Bigram Composite frequency 

give us 100 

go get 92 

go home 90 

get along 76 

add up 35 

forgot about 21 

shut up 20 

easy enough 10 

phone rang 7 

ride(Noun) home 1 

Jerry Pancake 0 

EPL tend 0 

high verbal 0 

TABLE 4.4B. Error bigrams above frequency  

midpoint for composite spoken corpus. 

 

As a second attempt using the same basic corpus analysis, we might consider a 

three-way frequency split across the composite spoken corpus. A slight modification to 

the Java script indicates that in the composite corpus, one-third of bigram tokens have 

frequencies between 1 and 21 (low-frequency); one-third have frequencies between 22 

and 424 (mid-frequency), and one-third have frequencies of 425 and above (high-

frequency). However, comparing with the 22 errors in our set, the results are again null 

with respect to frequency. There are 5 high-frequency bigrams, 9 mid-frequency bigrams, 
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and 8 low-frequency bigrams. This three-way distribution does not differ significantly 

from a randomly selected set of corpus bigrams, yielding a chi-square p-value of 0.5543. 

 Thus, this initial analysis finds that the bigrams in our error set do not 

significantly differ in frequency distribution from bigrams in the composite corpus, 

yielding a null result. However, this first attempt may be rather naive, insofar as the 

corpus search includes all bigrams, rather than restricting the search to two-word 

sequences which could conceivably result in an outbound affix shift. Indeed, the ‘high-

frequency’ bigram category described in the above attempts is overrun with many 

irrelevant sequences for our purposes, including a large number of sequences starting 

with (non-suffixable) closed-class words (of the; in the; and then; it was; to be; I think; 

and so on). A more selective corpus analysis would be in order; two such approaches are 

discussed in Section 4.1.3 and 4.1.4. In Section 4.1.5, I present a rather different analysis 

focusing on distinct classes of affix shifts.   

 

4.1.3. Analysis 2: Comparison to all Verb- and Noun-initial sequences in the Brown 

Corpus.  

 

In this second frequency analysis, I attempt to more meaningfully approximate the 

sample of bigrams against which our set of outbound affix shifts should be compared. 

Note that all of the errors in the set consist of bigrams beginning with a content word. 

Each of these content words, of course, can have a suffix appended to it (otherwise, an 

affix shift would not be possible). There are various ways we might converge on a sample 

which represents such bigrams in a corpus: perhaps by disallowing function words, or by 

searching for words ending in particular morphological affixes.  
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In the current analysis, I make use of an existing part-of-speech markup of the 

Brown Corpus (Francis 1965). This approach will allow me to restrict the sample of 

‘valid’ bigrams to those that have a particular part of speech as the first word. Most of the 

suffixable words in our error set (20 of the remaining 22) are nouns and verbs, and in 

order to ensure uniformity in the sample, it is on these word classes that I will focus the 

analysis. Thus, for the current analysis, we will need to discard two additional items from 

the set (easy enough and high verbal)
40

.   

A modified version of the Java script described in Section 4.1.2 then processes the 

tagged Brown Corpus as follows: 

(i.) Tokenize all bigrams in the corpus, that is, identify all valid two-word 

sequences. Impose the additional restriction of only including bigrams which begin with 

a verb, a common noun, or a proper noun.
41

   

(ii.) Count the number of occurrences of each bigram, and sort all bigrams by 

frequency. The resulting list contains 137,516 distinct noun-initial and verb-initial 

bigrams.  

(iii.) Based on the sorted frequency list, find the approximate midpoint for all 

bigram tokens included in the search. There are a total of 238,234 valid noun-initial and 

verb-initial bigram tokens in the corpus. We would like to divide this set of tokens in 

half, but due to the relatively small size of the corpus, the midpoint frequency is quite 

                                                 
40 Moreover, note that easily enough and highly verbal both involve derivational affixes. There is an 

additional case to be made that derivational affixes should in fact be excluded from all analyses. Given that 

derivational affixes tend to be more tightly bound to stems (Bybee 1985), and given that derivational 

affixes and inflectional affixes do not interact in speech errors (MacKay 1979), it is likely that derivational 

affixation corresponds to a different psychological process than inflectional affixation.  
41 It is appropriate to include proper nouns in this search, given that the error set includes proper nouns 

(EPL, Jerry). Note that the organization of the Brown Tagset already excludes from the search non-

affixable verbs and nouns, such as modals, forms of be, and pronouns, since these closed-class items are 

assigned distinctive tags.  
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low, and the exact midpoint does not lie between values. In this analysis, it turns out that 

more than half (57.8%) of the counted bigrams have Brown frequencies of 2 or less, and 

less than half (42.2%) have Brown frequencies of 3 or more.  

Weighting the frequency classes appropriately, this means for a set of 20 bigrams, 

we expect a random distribution to be represented by 8.44 items in the high-frequency 

category, and 11.56 items in the low-frequency category. However, in fact, what we find 

is that the high- frequency category is overrepresented: there are 15 bigrams in the high-

frequency group, and 5 in the low-frequency group. The categories are listed in Tables 

4.5a and 4.5b, together with the appropriate (part-of-speech restricted) Brown Corpus 

frequencies.  

  

‘High Frequency’ bigrams: N = 15 

Bigram Brown frequency 

come on 28 

make sure 27 

come back 26 

come in 25 

pay for 23 

go home 16 

come up 15 

give us 13 

get along 10 

go ahead 6 

go for 6 

shut up 5 

end up 4 

phone rang 4 

add up 4 

TABLE 4.5A. High-frequency verb- or  

noun-initial error bigrams in the Brown  

Corpus 
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‘Low Frequency’ bigrams: N = 5 

Bigram Brown frequency 

forgot about 1 

go get 1 

ride(Noun) home 0 

Jerry Pancake 0 

EPL tend 0 

TABLE 4.5B. Low-frequency verb- or  

noun-initial error bigrams in the Brown  

Corpus 

 

The distribution shown in Tables 4.5a and 4.5b in fact differs significantly from a 

random selection of verb-initial and noun-initial bigrams. A chi-square goodness of fit 

test gives a p-value of 0.0061. Focusing our analysis on the sample of verb-initial and 

noun-initial bigrams, outbound shifts are more likely to occur on high-frequency bigrams, 

even controlling for overall likelihood of occurrence. This analysis thus supports the 

prediction that high-frequency word sequences are more susceptible to outbound affix 

shift errors
42

.  

 The results from the part-of-speech tagged analysis could perhaps be questioned 

on the grounds that the Brown Corpus is written, rather than spoken, and also rather 

small. The third analysis below will in part address these concerns. Moreover, this 

analysis will broaden the scope somewhat so as to include Mutual Dependency as an 

independent variable.  

 

4.1.4. Analysis 3: Frequency and Mutual Dependency in verb-initial sequences. 

 

 In this final corpus analysis, I continue the notion of limiting valid bigrams, while 

extending to a somewhat larger composite spoken corpus. I also make a first attempt to 

                                                 
42 Note that the significant result in this section’s analysis, as opposed to the null result in Section 4.1.1, is 

not due simply to the exclusion of the two derivational errors on low-frequency sequences (easy enoughly, 

high verbally). For sake of illustration, we can in fact add these two low-frequency errors back into the set 

without losing significance (chi-square p = 0.0243).  
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include Mutual Dependency (MD) as a factor in assessing the distribution of affix shift 

errors. This is a particularly tricky task to attempt. It is not meaningful to evaluate an 

individual error in isolation; we must examine groups of errors, and be on the lookout for 

surprising asymmetries in distributions. As noted in 4.1.1, the collection of an error from 

naturalistic discourse must be assessed in the context of the frequency with which the 

utterance (in this case, a bigram) occurs. Moreover, the relationship between MD and 

frequency of occurrence is highly complex: as discussed in Chapter 2, MD is not 

independent of frequency, but it is not strictly correlated, either. It is possible for a 

sequence to be relatively low in frequency, but high in Mutual Dependency, as in cases 

where the component words of a sequence have restricted uses outside the sequence.  

 However, in the present section, I pursue an analysis based on an approximation 

of group frequency for categories we will call ‘high MD’ and ‘low MD.’ For our present 

purposes, the divisions between ‘high’ and ‘low,’ both for frequency and MD, will be to a 

certain extent arbitrary, but weighted with respect to overall frequency for the category.  

 The ‘high’ and ‘low’ bins to be used in this discussion are those devised for the 

experimental task of Section 4.2. In that section, the definition of the bins will be 

discussed in some detail, and justified on the basis of creating adequate opportunities for 

matches among experimental stimuli. For the present analysis, it suffices to note the 

following steps in defining these bigram sets. 

(i.) The bins were defined by first searching the composite spoken corpus for 

bigrams that begin with one of the 250 most frequent verbs in English. Since the corpus 

is not tagged, this filtering was performed on the basis of matching of wordforms, rather 

than checking word classes.  
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(ii.) For each bigram included in the search, Token Frequency and Mutual 

Dependency were calculated from the composite spoken corpus. The bigrams were sorted 

for each of these corpus measures. ‘High’ Token Frequency was defined as the top 10% 

of all bigram token frequencies, and ‘high’ MD was defined as the top 10% of all bigram 

MD values.  

(iii.) The resulting bins were checked against bigram searches in the COCA 

Spoken corpus (95 million words), allowing high and low category definitions to emerge 

in a larger corpus.      

 Since the bigram groupings in this corpus analysis are based on verb forms, it is 

appropriate to restrict the set of relevant bigram errors to those that begin with a verb. 

This then further reduces our set of analyzable bigrams to 16. The breakdown of the 16 

errors according to ‘High’ and ‘Low’ Token Frequency and MD categories is given in 

Table 4.6 below.  

A considerable amount of caution is needed in interpreting Table 4.6. Although I 

have already argued that naturalistic data must be interpreted in light of frequencies of 

occurrence, I will repeat that concern here in a more specific context. Because of 

differing baseline frequencies, it is not appropriate to make any pairwise comparisons of 

bins in the above 2 x 2 table. For instance, it is tempting to note that there are 13 errors in 

the High MD/High Frequency group, but 0 errors in the High MD/Low Frequency group. 

However, note that the High MD/Low Frequency category is a very select group, devised 

for purposes of the experiment in Section 4.2. This bin is very sparsely populated, both in 

terms of types (there are far fewer distinct bigram types here than in the High MD/High 

Frequency bin), and in terms of tokens (naturally so, because by definition, its bigrams 
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         LOW FREQUENCY      HIGH FREQUENCY 

 

 

 

 

 

HIGH 

MD 

Bigram Freq MD Bigram  Freq MD 

 

go ahead 10314 21.229 

make sure  10647 21.010 

come back 16991 20.735 

end up 4385 18.532 

give us 5442 18.187 

come up 7074 17.617 

pay for 4689 17.083 

come on 8795 16.716 

go home 2314 15.849 

shut up 774 15.802 

come in 6646 14.696 

add up 665 14.586 

get along 1012 14.457 

 

LOW 

MD 

forgot about 137 11.968 go for 2278 11.973 

 

go get 746 10.554 

 

TABLE 4.6. Conversational bigram errors, with Frequency and Mutual 

Dependency values based on COCA Spoken (95 million words, Davies 2008-).  

 

 

are low in Token Frequency). Thus, a scan through the composite spoken corpus reveals 

that as a group, tokens from the High MD/High Token Frequency bin are around 115 

times as likely to occur in speech as tokens from the High MD/Low Token Frequency 

bin. Thus the asymmetry in naturalistic errors between these two bins is not in itself 

surprising.    

 That being said, we may now pursue approximate, pairwise comparisons with 

respect to High and Low groupings of Token Frequency and Mutual Dependency 

independently. For this analysis, I focus on the compiled corpus metrics used in defining 

High and Low categories on the basis of the composite spoken corpus. With respect to 

Token Frequency, we can sum across all the verb-initial bigrams in the High category, 

and find a total number of 141,528 tokens in the corpus. The same analysis yields 72,204 

tokens in the Low-Frequency group. Noting from Table 4.6 that there are 15 High-
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Frequency errors and 1 Low-frequency error, this affords the following approximation of 

error rates for the two groups, computed by dividing the number of errors in the group by 

the group frequency (cf. Stemberger and MacWhinney 1986b).  

 

 No. errors in sample Group Frequency Error Rate 

HIGH FREQ 15 141528 .0106% 

LOW FREQ 1 72204 .0014% 

TABLE 4.7. Comparison of outbound shift rates for High- and Low-frequency 

categories (Composite Spoken Corpus analysis).   

 

Thus, if we weight categories with respect to baseline frequencies, we find that the 

outbound shift rate is 7.57 times higher in the High Token Frequency group than in the 

Low Token Frequency group. Based on the overall frequencies of bigrams in each group, 

we may estimate expected frequencies of errors of 10.595 for high-frequency bigrams, 

and 4.405 for low-frequency bigrams. Comparing with the observed distribution of the 16 

errors in Table 4.7 allows us to compute a chi-squared statistic (4.422, 1 df) which is 

significant (p = 0.0199). As in the analysis in Section 4.1.3, then, this corpus analysis 

provides evidence that high-frequency word sequences are more susceptible to outbound 

affix shift errors.                      

 We may perform a similar analysis with respect to Mutual Dependency, by 

summing frequencies across all items in the High and Low MD categories. This analysis 

yields the error rates in Table 4.8. 

 

 No. errors in sample Group Frequency Error Rate 

HIGH MD 13 118247 0.0109% 

LOW MD 3 95485 0.0031% 

TABLE 4.8. Comparison of outbound shift rates for High- and Low-Mutual 

Dependency categories (Composite Spoken Corpus analysis).   
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Correcting for expected frequencies, we find that high Mutual Dependency is also 

associated with an increased rate of outbound affix shifts. The values in Table 4.8 

indicate that the outbound shift rate is 3.52 times higher in the High MD category than in 

the Low MD category. Based on the estimated frequencies of bigrams in each group, with 

respect to the 16 errors we arrive at expected frequencies of 8.852 for high-MD bigrams, 

and 7.148 for low-MD bigrams. A chi-squared test confirms that the overrepresentation 

of affix errors actually observed among the high-MD bigrams is statistically significant (p 

= 0.037, chi-square = 4.351, 1 df).  

 In sum, then, frequency-weighted analyses of verb-initial bigrams in the 

composite spoken corpus indicate that outbound affix shifts are more likely on sequences 

that are high in Token Frequency, or high in Mutual Dependency.    

 

4.1.5. Analysis 4: Comparison of early vs. late affix shifts.  

 

Note that in the foregoing analyses, we have essentially been comparing the 

bigrams involved in outbound affix shifts against an entire corpus of bigrams. As one 

final analysis of naturalistic affix shift errors, we might instead compare outbound affix 

shifts with a more selective group of bigrams, specifically, bigrams in which a suffix 

occurs prior to its target.   

Recall that in the study by Stemberger and MacWhinney (1986b), all affix shifts 

(both early and late) were pooled together for purposes of studying the retrieval of affixed 

forms from memory. However, the hypothesis of the current chapter is that outbound 

shifts and inbound shifts arise from different mechanisms, and thus multiword sequences 

should have rather different characteristics in these two error sets. More precisely, as 
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discussed in Section 4.0, we cannot presume a priori that affix shifts always involve 

linguistic units. Indeed, it may be that affixes arrive early in an utterance precisely 

because no multiword chunks prevent this shift from happening. Thus in more general 

terms, we would predict that there will be striking differences between sequences with 

early affix shifts and sequences with late affix shifts.  

To investigate this hypothesis, we may consider the set of naturalistic, early affix 

shifts available from the Fromkin Speech Error Database. There are 11 such errors in the 

database; 8 of these involve two-word sequences, and can meaningfully be compared 

with the 22 outbound affix shift bigrams.
43

  

 On the following page, in Table 4.9, I again list the outbound (late) affix shift 

errors encountered previously, but this time present them alongside the early affix shifts 

and their corpus measures.  Inspection of this table reveals that the outbound affix shifts 

are characterized by quite different metrics than are the early shift errors. In the COCA 

spoken corpus, the late shift bigrams have an average frequency of 3779.5, compared 

with 235.0 for the early shift bigrams. Similarly, late shift bigrams have a higher average 

Mutual Dependency (13.597) compared with the early shift bigrams (6.278). These cross-

category differences are, moreover, statistically significant. The corpus metrics of 

bigrams are not normally distributed
44

, so parametric tests would not be appropriate. 

Instead, we can use the Mann-Whitney U test (Mann and Whitney 1947), a rank-based 

test for ordinal data which makes no assumptions about the sizes of samples or shapes of  

                                                 
43 One of the early affix shift errors is unquestionably an ‘inbound’ shift, since it actually involves two 

word roots that occur inside a single, compound word: print outs  prints out. For sake of comparison, I 

have treated print out as a two-word ‘bigram.’ To be conservative in the corpus analysis, I have counted 

compound occurrences of printout (or print-out), in addition to occurrences where print and out occur as 

successive words.  
44 Distributions of n-grams are approximately Zipfian: the ith most frequent bigram in a corpus has a 

frequency that is inversely proportional to i. See Manning and Schütze (1999: 213-214).  
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LATE (OUTBOUND) SHIFTS             EARLY SHIFTS  
Base 

Bigram 

Frequency 

(COCA 

Spoken) 

MD 

(COCA 

Spoken) 

 Error Base 

Bigram 

Frequency 

(COCA 

Spoken) 

MD 

(COCA 

Spoken) 

come up 7074 17.617 prints out printout 72 10.040 

go ahead 10314 21.229 
transducers 
array 

transducer 
array 0 0* 

make sure 10647 21.010 veryest high very high 1618 15.223 

end up 4385 18.532 build's one build one 52 6.920 

come in 6646 14.696 
workings 
paper 

working 
paper 12 6.167 

pay for 4689 17.083 Joes tell Joe tell 1 0** 

come back 16991 20.735 
keeping 
suggest 

keep 
suggest 5*** 3.834 

come on 8795 16.716 quites get quite get 120 8.042 

go for 2278 11.973         AVERAGE 235.0 6.278 

give us 5442 18.187  
go get 746 10.554 

go home 2314 15.849 

get along 1012 14.457 

add up 665 14.586 

forgot 
about 137 11.968 

shut up 774 15.802 

easy 
enough 48 9.293 

phone rang 145 17.943 

ride (N) 
home 47 10.898 

Jerry 
Pancake 0 0* 

EPL tend 0 0* 

high verbal 0 0* 

AVERAGE 3779.50 13.597 

TABLE 4.9. Comparison of outbound affix shifts (n = 22) and early affix shifts (n = 

8) from conversation. Corpus metrics refer to the base bigram in both parts of the 

table. 
*Mutual Dependency is defined here as a logarithm, which means that the MD of a sequence with 

frequency zero is mathematically undefined. For sake of comparison, I have assigned an MD score of zero 

in such cases. 

**In this particular case, the equation actually generates a negative MD score (-2.94). Given that items with 

zero frequency are assigned an MD of zero (see above), it is reasonable to say that in the present analysis, 

zero should be the minimum allowable score; thus I have set the MD for Joe tell to zero.  

***The sequence keep suggest in fact never occurs in COCA, as one might expect. However, on the chance 

that the higher frequency of keep suggesting is relevant in the present case, I have reported this value (5) 

here in order to bias the results against my predictions.    
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distributions. With respect to Token Frequency, a two-tailed Mann-Whitney test yields U 

= 36.5, p = 0.0168. For Mutual Dependency, a two-tailed Mann-Whitney test yields U = 

30, p < 0.01.  

This result indicates that early and late shift bigrams are significantly different 

with respect to both corpus measures. Such a finding is indeed what we would expect to 

see: bigrams which are highly frequent or high in MD are more likely to be retrieved as 

units, and more likely to result in repositioning a suffix to the periphery. On the other 

hand, multiword sequences which can be interrupted by a stray affix, as occurs in early 

shifts, would be expected to be less cohesive. The present corpus analysis verifies that as 

a group, the word sequences associated with early affix shifts co-occur less often than the 

word sequences associated with late (outbound) affix shifts.     

 

4.2. Experimental study of affix positioning errors. 

 

The foregoing results offer encouraging data in support of the hypothesis that 

outbound affix shift errors are more likely when words frequently co-occur in usage, 

whether this co-occurrence is measured using Mutual Dependency or Token Frequency. 

However, speech errors collected from conversational settings may always be challenged 

on the grounds that the data are subject to investigators’ perceptual limits and biases 

(Cutler 1981). Ideally, evidence for psycholinguistic phenomena will be drawn from 

complementary sources, including data from the naturalistic (but uncontrolled) setting of 

conversations, and from the controlled (but artificial) setting of the laboratory 

(Stemberger 1992). Experimental investigation of the distribution of affix shifts is 

therefore appropriate. In this section, I describe an experimental task designed to elicit 

outbound affix shifts. In addition to seeking additional evidence regarding holistic 
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retrieval, this study also affords exploration of a novel methodology for observing affix 

positioning errors.  

  

4.2.1 Task design.  

 

The experimental task is designed to elicit affix positioning errors by requiring 

participants to produce verbal responses as rapidly as possible, expanding upon 

methodologies used previously by Bybee and Slobin (1982) and Stemberger and 

MacWhinney (1986a). In the task, participants are instructed to listen to a recorded 

stimulus sentence, and to repeat back a modified version of the sentence which requires 

adding the 3
rd

 person singular marker –s on the verb. Each sentence includes the pronoun 

subject they; female participants are asked to substitute the pronoun subject she, and male 

participants are asked to substitute the pronoun subject he. Thus, for instance, if the 

stimulus sentence is Despite the ads about switching to green energy, they depend on 

contributions from the coal industry, a correct response would be Despite the ads about 

switching to green energy, she depends on contributions from the coal industry.  

The 3
rd

 singular suffix was chosen as the relevant affix in this study for a number 

of reasons. First, this affix was noted to be the most common one involved in outbound 

affix shifts in conversation; 12 out of the 26 outbound shifts in Tables 4.1 and 4.2 involve 

the placement of -s. With respect to experiment design, the 3
rd

 singular suffix also has 

advantages over possible alternatives. For instance, unlike the progressive –ing suffix, the 

3
rd

 singular marker can be inserted without the addition of auxiliary verbs (e.g., is 

running), which would introduce additional complicating factors from auxiliary errors. 

Moreover, the 3
rd

 singular marker regularly attaches only to words, not phrases, allowing 

us to draw clear inferences from how speakers position the affix. This is in contrast with 
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the possessive marker, which freely attaches to full phrases (e.g., the cat in the hat’s 

pajamas), and which thus would provide ambiguous evidence about lexical units (Pinker 

1999). Finally, the 3
rd

 singular marker is highly regular, allowing for a wide variety of 

stimulus verbs that require the insertion of an affix, rather than changes to the stem.     

As noted in Section 4.1, outbound affix shifts are quite rare in conversation, and 

thus the experiment is designed with additional distracting factors in the hopes of 

increasing the error rate. Thus, as one complication, participants are asked to ‘shadow’ 

throughout the course of the experiment (Marslen-Wilson 1973). That is, they are asked 

to begin echoing back the stimulus sentence immediately, without waiting for the 

stimulus presentation to end, thus requiring simultaneous listening and speaking during 

most of the participant’s response. Speech shadowing provides one method of 

overloading verbal capacities, thus providing ongoing interference with participants’ 

abilities to use language introspectively (Hermer-Vasquez et al. 1999), and prompting 

more automatic, less carefully analyzed speech output. Levelt (1989) argues that speakers 

monitor their own covert and overt speech, checking for well-formedness of the intended 

message. Similarly, Laver (1973) hypothesizes that a ‘Monitor’ component of speech 

production is constantly on the lookout for errors, and in most cases, manages to correct 

errors that do occur. Laver (1973) further observes that the Monitor can be impaired 

under various conditions, including situations in which there are ‘competing demands for 

attention’ (140). In the present experiment, then, the additional requirement of shadowing 

is intended to minimize the speaker’s resources for monitoring his or her own planned 

speech output.  
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A second distracting element in the experimental task is based on the Competing 

Plans Hypothesis of Baars (1980, 1992), which suggests that speakers often formulate 

alternate, parallel plans for an utterance, and competition between these plans sometimes 

results in errors. A wide range of experiments have been developed in which errors are 

elicited by ‘creating competition between alternative output plans,’ either in language or 

in other motor activities (Baars 1992: 130). Often, such approaches encourage errors 

(such as spoonerisms) by alternating unpredictably between the type of response required 

from participants. In the present experiment, we seek to increase the likelihood that 

participants will, with respect to affixation, chunk multiple orthographic words together. 

Thus, the experiment is designed so as to intermingle bigram stimuli with distractor items 

which contain more than one bound root, that is, compound verbs. In the bigrams of 

interest, any inserted affixes will be expected on the verb inside the multiword sequence, 

as in gets out, depends on, and sees fit. The Competing Plans Hypothesis predicts that we 

may encourage syntagmatic errors by priming an alternate affixation strategy, in which 

roots inside a single lexical item must be passed over: sleep_walks, safe_guards, 

play_acts, and so on. This alternate strategy may be especially influential in cases where 

the first component of the compound verb may be parsed as a verb (sleep-walk, hang-

glide, dry-clean, etc.). The selection of compound verb distractors will be discussed in 

more detail below.   

 

4.2.2 Materials and Stimulus design.  

 

4.2.2.1. Frequency x Mutual Dependency bins. 

 

 The present affix shift experiment is designed to investigate possible effects from 

Token Frequency and Mutual Dependency, both separately and together. Thus stimuli are 
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selected in a 2 x 2 design, consisting of High/Low Mutual Dependency, crossed with 

High/Low Token Frequency. For purposes of uniformity and simplicity in the design (see 

Chapter 3), I focus on two-word sequences, i.e., bigrams.  

 An extensive automated search was undertaken in order to identify a range of 

suitable candidates. This first step involved identifying, counting, and sorting all 

appropriate bigrams from the composite spoken corpus (5 million words; see Table 4. 3). 

For purposes of this affix shift study, the bigrams of interest all begin with a verb. Thus, I 

wrote a script in Java to scan through the composite corpus, tallying and cross-sorting 

any bigram beginning with one of the 250 most frequent English verbs, based on a part-

of-speech search in COCA (Davies 2008). The list of acceptable verbs excluded forms of 

be, modals, and other verbs which cannot receive a 3
rd

 person –s suffix.  

 For each bigram collected from the corpus, then, the Java script stores a total 

Token Frequency value and Mutual Dependency score. Mutual Dependency is defined as 

in Equation 2.4 from Chapter 2, where the size of the n-gram is equal to 2. For 

convenience, I repeat the definition here (noting that N is the corpus size).  

 

(Equation 4.1) MD(w1w2) = log2    N* f(w1w2)
2
  

                                                        f(w1)*f(w2)  

 

 

The full collection of bigrams is sorted in two separate lists, according to Token 

Frequency, and according to Mutual Dependency. Based on these sorts, Token Frequency 

and Mutual Dependency are each divided into High and Low categories, through a 

combination of pragmatic and partially arbitrary criteria. To define a high-frequency (or 

high-MD) class with potentially idiosyncratic features, it may prove helpful to skew the 

thresholds somewhat toward the high end of the scale (see Gordon and Alegre 1999, 
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Kapatsinski and Radicke 2009). On the other hand, it was necessary to keep the ‘High’ 

categories large enough to allow for an adequate range of candidates to be available in 

each 2 X 2 bin, for purposes of matching features between bigrams (as described below). 

Through a process of trial-and-error, I arrived at a division in which ‘High Token 

Frequency’ and ‘High Mutual Dependency’ bigrams are each defined as the top 10% of 

all types on the appropriate scale. This split then defines High Frequency bigrams as 

those having a frequency of 28 or more, and High Mutual Dependency bigrams are those 

having an MD value of 9.18 or more, based on the composite spoken corpus.   

 These corpus metric classifications were subjected to an additional step in which 

they were checked in a second, larger corpus. The purpose of this second analysis was to 

ensure that bigrams classified in High or Low bins truly exhibit similar patterns in a 

range of contexts, thus avoiding illusory effects arising in a relatively small corpus. The 

additional corpus I chose was the 95-million word spoken portion of COCA (Davies 

2008). Limiting searches to the spoken portion of COCA has the benefit of making the 

data more spontaneous and naturalistic (although parts of the data are from scripted news 

broadcasts). Moreover, focusing on the spoken portion helps to avoid an over-

representation of academic English, since the composite corpus already contains 

approximately 35% academic speech (1.8 million words from MICASE).  

The full COCA corpus is not downloadable, and thus cannot be exhaustively 

analyzed in the same way as the combined Switchboard/MICASE/Santa Barbara corpora. 

Thus, throughout the stimulus selection process, I looked up a wide range of individual 

candidate bigrams in the COCA spoken corpus. Since the COCA interface allows for 

searches to be constrained by part of speech, I limited each search to instances in which 
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the bigram’s first word was classified as a verb. This restriction added an additional 

safeguard insofar as some verb frequencies were quite low, and subject to erroneous 

classification from matches based on the wrong part of speech (such as noun instances of 

fall, freak, take, and so on). As a result of these searches, ad hoc category divisions 

gradually emerged for the COCA spoken corpus: High Frequency bigrams are defined as 

those having a frequency of 505 or more, and High Mutual Dependency bigrams are 

those having an MD value of 13.6 or more. 

In identifying potential candidates, in most cases there was agreement between 

the classifications based on the composite spoken corpus and the spoken COCA corpus. I 

generally discarded items which were not classified into the same bin by the two corpus 

analyses. However, for two items (cut out and fit in, noted in the final table below), I was 

obliged to ignore disagreement between the corpora, due to a paucity of suitable cross-

category matches in the High Frequency, Low MD bin. In these two cases, I used the 

classifications from the COCA spoken corpus, thus overriding the classifications from the 

smaller (and presumably less reliable) composite spoken corpus.  

 The process of identifying matches across the 2 X 2 categories involved a careful, 

hand-selected search for items which were controlled for numerous features. This 

approach should be contrasted with that of Ellis et al. (2008) and Ellis and Simpson-

Vlach (2009), in which items were randomly selected from within statistically-defined 

bins, without attempting to match for features such as constituency. Ellis et al. (2008) 

observe that the statistical coherence of high-Mutual Information sequences ‘tends to 

correspond with distinctive function or meaning as well as grammatical well-formedness 
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as a complete phrase’ (380). This observation is quite probably true, on average.
45

 

However, it is also true that all four bins as defined for this experiment contain some 

items which are idiomatic, and others which are semantically transparent; all four bins 

contain some items which cross constituent boundaries, and others which do not. Thus, to 

the extent possible I sought bigram stimuli which controlled for numerous features, in an 

attempt to avoid uncontrolled biases in favor of particular bins. The guidelines I used are 

listed below.   

 

4.2.2.2. Bigram features matched across bins.  

 

1. Stimuli across categories were matched with respect to the part of speech of the word 

following the verb. This approach helped to encourage cross-category uniformity for 

constituency of the sequence, given that similar sequences (for instance, Verb + 

Preposition or Verb + Adverb) will tend to have broadly similar structural features. 

Moreover, this approach helped generate many candidate matches during stimulus 

selection, which was generally accomplished by scanning or searching the 2 x 2 lists of 

bigrams created by the Java script. An attempt was made to include a range of structures 

in the searches (Verb + Pronoun, Verb + Mass Noun), with a special emphasis on the 

types of patterns known to occur in conversational errors (such as Verb + Preposition and 

Verb + Adverb; see Tables 4.1 and 4.2).  

 

                                                 
45 Indeed, I can report that finding appropriate matches across categories was near-impossible in certain 

cases, which speaks to the general validity of the observation that there are cross-category differences. 

However, the difficulties in finding matches arose not because a particular category lacked cohesive 

bigrams, but because the cohesive bigrams were not of the appropriate type. As one example, it was 

challenging to find bigrams containing prepositions in the high MD, low Frequency bin—an unsurprising 

fact, because prepositions are high in frequency, and thus most low-frequency sequences containing a 

preposition are also low in MD.    
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2. Additional heuristics were used to ensure that structural features were uniform across 

all four bins. Beyond broad similarities imposed by matching part-of-speech sequences, it 

is possible different bigrams will have varying grammatical relationships with the 

surrounding text, or will have varying degrees of morphosyntactic fixedness. Thus, items 

in the four bins were matched in categories including the following, using grammatical 

descriptions of multi-word verb categories by Quirk et al. (1985: 1152-1161). 

a. Type I (intransitive) phrasal verbs (wake up, settle down, get down). Verb + 

Adverbial sequence, with no noun object. 

b. Type II (transitive) phrasal verbs (seek out, figure out, tear apart). Verb + 

Adverbial sequence which requires a noun object. When the object is a pronoun, it 

intervenes between the Verb and the Adverb: seek it out.  

c. Prepositional verbs (worry about, arrive at, come with, fear for). Verb + 

Preposition sequences, requiring a noun phrase as an object of the preposition. The noun 

phrase groups syntactically with the preposition (arrive [at the station]), and thus in a 

traditional syntactic analysis, such sequences cross a constituent boundary. In 

prepositional verbs, pronouns do not intervene between the verb and preposition (*arrive 

it at). 

It should be noted that the same word sequence may fall into different categories 

depending on the context. For instance, wake up may be intransitive (They wake up late) 

or transitive (They wake up the children/They wake them up) (cf. Quirk et al. 1985: 1158). 

Where such variation is possible, I was careful to select a stimulus sentence which 

honored the presumed structural features of each bigram compared with its matched 

counterparts in other bins.   
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3. In all four bins, an attempt was made to include bigrams that exemplify a range of 

idiomaticity. It should be noted that Verb + Particle sequences quite typically exhibit 

some degree of semantic opacity on the particle. For instance, V + up phrasal verbs fall 

into a variety of groups including completing and finishing, approaching, or beginning, 

none of which are transparently related to the spatial/movement meanings of ‘up’ (see 

Sinclair 1989: 487-488). However, a number of bigrams selected are especially idiomatic, 

insofar as the two words collectively have a meaning that is unrelated to the literal 

meaning of the verb on its own. For these more idiomatic cases, matching cases of 

idiomatic or metaphorical use were found for all four bins.  

As was also true for structural features, verb bigrams may exhibit a range of 

idiomaticity due to polysemy. Some uses of the same sequence may be more idiomatic 

(We [work out] [at the gym]) than other uses (We work [out in the sun]). To deal with 

such cases, in the selection of stimulus sentences, idiomatic uses were matched across 

categories with idiomatic uses.  

 

4.2.2.3. Additional requirements on bigram stimuli.  

 

In addition to the above cross-category matching requirements, the following 

general requirements restricted the bigram stimuli selected. 

 

1. To allow for uniformity in the pronouns used in the stimulus sentences, verb bigrams 

(and the verbs themselves) needed to have natural-sounding uses with a human third-

person subject (they, he, she).  
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2. Bigram stimuli could not be part of a larger unit which is highly formulaic and 

predictable. I established a largely arbitrary threshold limiting acceptable bigrams to 

those that allowed variation in the following word at least 40% of the time, based on 

searches in the COCA Spoken corpus. For instance, the bigram feel free occurs 215 times 

in this corpus. Its most frequent following word is to; the trigram feel free to occurs 156 

times in the corpus, constituting 72% of all instances of feel free. Thus, feel free would be 

disqualified as a potential bigram stimulus, out of concern that the real unit of interest in 

this case would be the three-word sequence, feel free to.  

  

3. Stimuli could not include any verbs that end in a sibilant, so that there would be no 

cases in which participants had to insert [əz] rather than [s] or [z] (they miss it > he misses 

it). It proved impossible to find four matching candidates consistently so that –es was the 

appropriate allomorph to insert, and it was feared that requiring an additional syllable for 

the affix could influence the likelihood of an affix shift error. Thus for the sake of 

uniformity, I altogether ruled out sibilant-final verbs.  

   

4. Finally, once a bigram was added to the stimulus candidate list, the verb in this bigram 

was not allowed in any additional stimuli. I avoided re-using the same verb, for fear that 

word-specific priming effects would play a role. More specifically, I was concerned that 

once a participant correctly inflected a verb (fall off > falls off), priming of the inflected 

form could make subsequent errors on this verb less likely.  

 There was one controlled exception to the rule that verbs could not be re-used. 

Most of the stimuli were grouped together and presented randomly during the course of 
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the experiment. However, following this main experiment block, there was a ‘bonus 

round,’ in which four verbs were used a second time: walk, look, pay, and move. The 

purpose of the bonus round was to expand the stimulus set by four items, given that the 

‘no re-use’ requirement made finding matching items increasingly challenging. By 

including the bonus stimuli at the end of the experiment, and by matching conditions 

across the four bins, I effectively balanced out any priming effects. These bonus 

sentences were intermixed with distractor sentences, and randomized separately.  

 

4.2.2.4. Listing of bigram stimuli.  

 

The above selection criteria were used to select a total of 56 bigram stimuli. There 

were fourteen matched bigrams across the four bins (including the one ‘bonus’ item per 

bin, which re-used a previously-used verb). The items used are presented in Table 4.10.  

The stimulus bigrams were used to construct 56 stimulus sentences. Sentences 

were loosely based on usages found in the COCA corpus. Sentences were matched in 

groups of four, with respect to register, and often semantic domain, in order to prevent 

some sentences from being less accessible than others. The sentences were all 

approximately matched for length, measured in number of syllables. The verb bigrams of 

interest were always positioned close to the middle of the sentence, in order to maximize 

the cognitive demands (from simultaneous verbal listening, remembering, and speaking) 

on the participant at the time he or she utters the inflected form of the verb. Sentences 

were all similar in syntactic structure and complexity, with the verb bigram occurring 

shortly after an introductory, dependent clause. The sentences containing these bigrams 

are listed in Appendix 4.1.   
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 LOW FREQUENCY HIGH FREQUENCY 

  
  
  
  
  
  
  
 H

IG
H

 M
D

 

bigram Category Freq MD bigram Category Freq MD 

1. settle down I Phrasal 204 14.63 1. wake up I Phrasal 1865 19.28 

2. screw up* I Phrasal* 119 14.20 2. work out * I Phrasal* 1839 15.01 

3. freak out* I Phrasal* 60 13.60 3. hang out* I Phrasal* 695 15.61 

4. wrap up* T Phrasal* 276 14.97 4. add up* T Phrasal* 665 14.59 

5. tear apart T Phrasal 21 13.76 5. figure out T Phrasal 4621 20.18 

6. read aloud V Mod 24 14.36 6.make sure V Mod 10647 21.01 

7. gain weight V MassN 93 16.39 7. stay home V MassN 546 14.59 

8. interfere with V Prep 383 15.51 8. depend on V Prep 1103 16.85 

9. fall off V Prep 211 13.93 9. pay for V Prep 4689 17.08 

10. arrive at V Prep 363 14.26 10. worry about V Prep 3974 19.07 

11. insist on  V Prep 378 13.77 11. talk about V Prep 28166 21.64 

12. trust me V Pro 504 14.61 12. call it V Pro 4677 15.72 

13. recover from V X (V) 311 14.30 13 need to V X (V) 28042 19.03 

B. walk through V Prep 393 14.61 B: look at V Prep 32791 21.65 

   
   

   
   

   
   

   
   

 L
O

W
 M

D
 

1. move up I Phrasal 214 10.10 1. get down I Phrasal 986 12.24 

2. give in* I Phrasal* 296 6.67 2. fit in*+ I Phrasal* 568 12.70 

3. hold off* I Phrasal* 204 12.28 3. let go* I Phrasal* 749 11.45 

4. leave out* T Phrasal* 132 8.42 4. take on* T Phrasal* 2372 12.96 

5. seek out T Phrasal 175 12.10 5. cut out+ T Phrasal 567 12.87 

6. smell bad V Mod 11 8.61 6. look good  V Mod 833 12.59 

7. buy food V MassN 69 11.10 7 see people V MassN 708 10.08 

8. walk at V Prep 22 3.71 8. point to V Prep 824 12.20 

 9. speak in   V Prep  254  8.30  9. know of   V Prep  1631  8.26 

10. fear for V Prep 136 9.84 10. come with V Prep 813 10.15 

11. run after V Prep 35 5.93 11. agree on  V Prep 1330 13.57 

12. offer it V Pro 84 6.79 12. forget it V Pro 618 11.79 

13, resolve to V X (V) 33 4.60 13. hope to V X (V) 1773 12.51 

B. pay at V Prep 53 5.01 B. move to V Prep 1242 11.70 

TABLE 4.10. Stimulus bigrams used in the elicitation experiment. Frequency and MD 

values are based on COCA Spoken data (Davies 2008, 95 million words).  
*Matching items which are especially idiomatic (in the stimulus sentences selected).  

+Items which were classified as High Frequency, High MD in the composite spoken corpus, but grouped 

here with High Frequency, Low MD on the basis of part-of-speech constrained counts in the COCA spoken 

corpus. Even in the composite spoken corpus, these items do have markedly lower MD values than their 

counterparts in the High MD, High MD bin (fit in is lower than work out; cut out is lower than figure out).  

 

 

4.2.2.5. Compound distractors. 

 

As discussed in Section 4.2.1, the distractors in the experiment are verbs which 

contain multiple lexical roots, that is to say, compound verbs. To help increase the effects 

of interference from the distractors, it was desirable to locate many compound verbs 
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whose initial root is a verb. To assist with this process, I searched through numerous lists 

of English compound verbs in references on word-formation (Marchand 1966, Adams 

1976, Cannon 1987). Additionally, I performed searches in the Oxford English 

Dictionary online, focusing on verbs with ‘backformation’ listed in the etymology.
46

 

These searches led to the 56 compound verbs listed in Table 4.11. Asterisks indicate 

compounds in which the first root is a verb (including roots which can function as a verb, 

even if this usage is not primary, or if it arises from homonymy).   

  

test-drive* strongarm double-check* moonlight 

hotwire  deepfry bearhug* blackmail 

timetravel* fine-tune* tie-dye* earmark 

bookmark* mastermind*  overhear copyright* 

spoonfeed*  freeload* leapfrog* fundraise* 

cherry-pick brainstorm zigzag* shoplift* 

sidestep underestimate bench press globetrot 

safeguard daydream windsurf flyfish* 

jumpstart* wisecrack dryclean* waterski  

handwrite* badmouth blowdry* backtrack* 

jam-pack* panhandle* fireproof* sleepwalk* 

spotlight* house-sit wallpaper* hang-glide* 

skyrocket mass-produce forcefeed* freezedry* 

bankroll* babysit play-act* proofread* 

TABLE 4.11. Compound verb distractors used in experiment.  

 

Since the distribution of errors on compounds was not of primary interest to this study, 

there was no restriction on compounds which end in a sibilant (flyfish) or which have an 

initial root ending in a sibilant (house-sit).  

The 56 compound verbs were used to construct 56 distractor sentences, matching 

the semantic domains for the stimulus sentences. These sentences are listed in Appendix 

4.2.  

                                                 
46 Backformation from gerund compounds represents a common path whereby compound verbs enter 

English, including verb-initial compounds, as in sleep-walking > sleep-walk (V) (Adams 1976). 
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4.2.3. Participants and experiment setup.  

 

 The 56 stimulus sentences and 56 distractor sentences were recorded by a female 

native speaker of English, who was instructed to read them aloud at a normal, casual rate 

of speech. The sentence audio files were presented to participants using E-Prime, with 

randomization as follows. There were 52 stimulus sentences and 52 distractor sentences 

which constituted the main experiment trial; these were presented in random order to 

each participant. In addition, there were 4 stimulus sentences and 4 distractor sentences 

(the ‘bonus round’) which were randomized separately and presented to participants after 

the main experiment block was completed. (See Appendices 4.1 and 4.2.)  

 It was noted during pilot testing that participants often forgot to change the 

subject from they to he or she, and often mistakenly changed the verb to the past tense. 

Failing to replace the pronoun would result in loss of data. To a lesser extent, changing to 

the past tense would also result in lost data, because many of the verbs used among the 

stimuli are irregular in the past (requiring either no change, or a change to the verb stem 

rather than an affix). Thus during the instructional phase, participants were explicitly 

reminded of these pitfalls.    

The instructions to participants were as follows:  

 

1. In this experiment, you will hear a series of sentences in the headphones. For 

each sentence, you will be asked to speak aloud a variation of the original sentence where 

you have substituted the pronoun she [he] for the word THEY as the subject of the 

sentence. For instance, if you hear the sentence Using some old reel-to-reel equipment, 

they tape-record the ensemble’s performance, you would respond with: Using some old 

reel-to-reel equipment, she [he] tape-records the ensemble’s performance.  

 

2. Please note that all of the sentences you hear are in the present tense. Some 

participants are tempted to change the verb to the past tense, but please keep them in the 
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present. Also note that in every sentence, the word they only appears once, and this is the 

only time you have to insert she [he]. 

 

3. This task will be more difficult than you might expect, because you should 

begin your spoken response immediately after the audio begins. That is, you will be 

listening and speaking simultaneously, that is, ‘echoing’ the sentence you hear, plus 

making changes to insert the word she [he]. In order to keep up, you will need to start 

speaking shortly after the sentence begins. Please know that the task in this study is 

meant to be pretty challenging, and you are not being ‘evaluated’ on how good your 

performance is. Variation in responses is expected, and you should not be excessively 

concerned if you feel you made a mistake. Please just do the best you can and proceed 

with the experiment. All that being said, please do your best to ‘echo’ word-for-word as 

much of the whole sentence as possible. If you forget part of the sentence, please just 

repeat back as much as you can in the allotted time.  

 

4. There will only be a short break between successive sentences. Please attempt 

to respond with your modified version of each of them as quickly as possible, and 

complete each one before the next sentence begins. Once you hear a low tone, that means 

you are no longer being recorded, and you should prepare to respond to the next sentence. 
 

   

Before the experiment began, participants were given six practice sentences to get 

them accustomed to the echoing and substitution task. The 6 practice sentences are listed 

in Appendix 4.3. Three of the six practice sentences contain a compound main verb 

(pickpocket, spearhead, breakdance), matching the distribution of patterns in the main 

experiment. Since participants had to resist a tendency to make errors such as she 

breaksdance(s), the inclusion of compound verbs among the practice items helped to 

introduce interference from the alternate affix-insertion strategy as early as possible.    

During the experiment, participants listened to the stimulus sentences on 

headphones, and gave vocal responses into a digital microphone attached at the collar. 

Vocal responses were saved as a collection of separate audio files by E-Prime. The main 

part of the experiment took approximately 20 minutes for participants to complete. A 

short break was inserted into the middle of the trial; since the experiment required rather 

rapid speech for 20 minutes, it was felt that a self-timed break would allow participants to 
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rest their voices, and prevent loss of data due to fatigue. Thus, halfway through the 

experiment, a screen appeared telling participants that the task was half-completed, and 

they could resume with a key press whenever ready.   

 Volunteer participants were recruited from the university’s Introduction to the 

Study of Language course, and received a small amount of course credit for participating. 

A total of 29 participants enrolled in the study. Out of this group, 27 participants reported 

that English was their first language. The remaining 2 participants reported that they 

learned English before the age of 6, speak English fluently, and use it daily. No 

participants reported a history of speech or hearing disorders.  

 

4.2.4. Results and Discussion: Affix shifts and other affixation errors on bigram 

stimuli.  

  

4.2.4.1. Participant accuracy.  

 

 The experiment trial encompassed a total of 1624 responses (56 stimuli X 29 

participants). I listened to all participant responses and coded them as No Error, Affix-

Shifted, Double-Marked, Zero-Marked, or Unclassifiable. Responses with ‘No Error’ 

were those that correctly positioned the –s suffix (they arrive at > she arrives at). I also 

included cases where the participant mistakenly converted the sentence to the past tense, 

but correctly positioned a past tense suffix (they arrive at > she arrived at).
47

 

Unclassifiable responses could arise for a number of reasons. First, there were cases in 

which the participant gave an insufficient response, such as might happen if the 

participant forgot that portion of the sentence, ran out of time, reworded the sentence, 

                                                 
47 The crucial question was not whether the affix was correct, but whether or not participants positioned 

affix(es) correctly. Thus, I also considered responses correct if the participant produced a conglomeration 

of affixes (for instance, both –s and –ed) on a single verb, in the correct position. Examples of such affix 

conglomerations are provided below.  
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and/or misunderstood one or more words in the bigram of interest. Additionally, the data 

were unclassifiable when the participant’s response rendered moot the positioning of 

affixes, as in cases where the participant forgot to change the subject pronoun, or 

produced an irregular past form (they give in > she gave in).  

 Experiment participants were highly attentive to the task, and were generally able 

to give sufficient responses in spite of the time pressure. Overall, 142 responses had to be 

rejected as Unclassifiable, meaning that 1482 participant responses (91%) were codable. 

The rejection rate was relatively stable across the four bins in the experiment (chi-square 

= 4.82, p = 0.185), indicating that further analysis based on comparing raw numbers of 

errors across categories is justifiable. (See Table 4.12.) 

 

Stimulus bin 

 

Number of unclassifiable responses 

(out of 406 responses per bin) 

Low Freq, Low MD 41 

High Freq, Low MD 41 

Low Freq, High MD 35 

High Freq, High MD 25 

TOTAL 142 

TABLE 4.12. Rejection of data across the four categories.  

 

Additionally, participants’ responses were, as expected, overwhelmingly accurate. 

On average, 90% of the responses (1462 of the 1624) were coded as having No Error. 

The least accurate participants (2 participants out of the 29 total) provided accurate 

responses 77% of the time, and were deemed to be sufficiently accurate to be retained in 

the study.  
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4.2.4.2. Outbound shift errors, and double-marking errors. 

   

On the other hand, the methodology was rather successful at inducing the affix 

errors of interest in this study. The data contain 7 full outbound affix shifts; sentence (13) 

represents an example response from one participant.   

 

(13) Since there’s not much else to do before it’s time to go, she settle downs on 

the couch...before it’s time to go.   

 

 

Additionally, the data contain 9 ‘double-marked’ affix errors, in which a suffix appears 

on the verb as well as on the following word. A typical example is presented in sentence 

(14).  

 

(14) To reward the students for completing more tedious... assignments, she reads 

alouds . . . from children’s books an hour each day.   

 

 

One of the 9 double-marked errors in this set is somewhat more complex, and 

requires some discussion:  

 

(15) Despite the ads about switching to green energy, she depends onned 

([dəpɛnzɑnd]) contributions from this, from the coal industry.   

  

I have classified sentence (15) as a double-marking error, albeit a double-marking that 

involves two different suffixes. Apparently the speaker activated two distinct suffixes (3
rd

 

person singular –s, and the past –ed), and a failure to resolve competing plans for the 

sentence caused one affix to be applied to the verb (depends), and the second affix to be 

applied to the bigram (dependson-ed). Such an occurrence is not especially surprising, 

given overall patterns in participant responses. First, it was relatively common for 

participants to convert sentences into the past tense, in spite of reminders not to do so 
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during the experiment’s instruction phase. Among the stimulus bigram responses, there 

were 14 responses that unambiguously shifted to past tense (11 regular –ed verbs, plus 3 

irregular verbs that resulted in uncodable data regarding affix positioning). Additionally, 

the compound distractors generated 16 past tense responses (14 regular, and 1 irregular). 

Thus, it seems that participants may have needed to suppress an ongoing temptation to 

insert –ed rather than –s. Additionally, there were other participant responses which 

evinced the activation of multiple affixes, insofar as two affixes were appended to a 

single verb.  

 

(16) On the first day of class in the seminar for majors, she talksed about real-

world . . . [no further response from participant] 

 

(17) According to the case presented by the prosecusors [  prosecutor], she 

routinely shoplifts...ted for the thrill it brings. 

 

The processes at work in example (17) are perhaps ambiguous, since the final [t] of the 

verb is also repeated for unknown reasons. However, in example (16), it is quite clear that 

the speaker has appended –s and –ed in succession.
48

 It is thus reasonable to believe that 

speakers at times retrieved two different affixes for the same verb. Moreover, in two 

responses other than (15), a participant produced both –s and –ed on a single complex 

verb.  

 

(18) Although the visit is intended to be leisurely, she jams-packed [ɑɪ]- each day 

with errands and projects.
49

  

                                                 
48

 Although beyond the scope of this study, it may be interesting to consider whether in such errors, the 

order of the affixes reveals anything about how tightly bound different affixes are with the verb root (Bybee 

1985). Although both (13) and (14) exhibit the pattern ROOT + -s + -ed, I also observed the opposite 

pattern during pilot testing. A pilot participant made two errors of this type: calls it  call-eds it ([kal.ɛdz]) 

and moves to  moveds to ([muvdz]). 
49 The [ɑɪ]- in sentence (18) is a false start apparently unrelated to the affix positioning error. It is either a 

lexical error (a partial production of the word I), or a phonological error (involving the wrong initial vowel 

for each), although neither type of error has a clear source in the surrounding context.   
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(19) There’s little chance of tough questions at the press conference, and she 

spooned feeds the official file policy to reporters. 

 

 

The responses on (18) and (19) occurred on compound distractors, and thus are not 

included among the 9 double-marked errors discussed in this subsection. However, the 

pattern evident in sentences (15), (18), and (19) (produced by three different participants) 

seems to be the same. In all three cases, the speaker activated multiple, competing 

suffixes, and after failing to resolve the conflict in time, produced two different affixes on 

different portions of the same complex verb (or verblike unit).   

 Combining the 7 full outbound shifts with the 9 double-marked errors, there were 

16 errors of affix placement in the experiment results. Collectively, then, there were 16 

errors out of 1624 attempts, yielding an error rate of just under 1% (0.98%). In other 

words, an affix positioning error occurred on 1 out of every 102 sentences attempted in 

the experiment. This error rate indicates that the experiment methodology is highly 

effective at eliciting affix positioning errors, given how rare these errors are in 

spontaneous conversation. For comparison, note that Deese (1984: 130) estimates that 

approximately one out of 100 sentences in conversation contains a speech error of any 

kind; this estimated frequency naturally includes phonological and lexical errors, which 

are far more numerous than morphosyntactic ones. Similarly, the catalog of 191 slips 

from the 170,000-word London-Lund Corpus indicates that speech errors occur 

approximately once every 890 words (Garnham et al. 1981). Again, the London-Lund 

speech errors are predominantly phonological and lexical in nature, and the Garnham et 

al. collection contains no errors of affix positioning. Thus the rate at which errors of 

interest are observed in the present experiment— equivalent to one affix positioning error 
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approximately every 2,000 words— indeed represents a drastic increase from baseline 

error rates in conversation.     

 With respect to the MD and Frequency bins in this study, the affix positioning 

errors were not symmetrically distributed. Since all four bins are represented by an equal 

number of stimuli, if the distribution were random we would expect the errors to be 

spread evenly across four categories. However, this was clearly not the case, as is evident 

from examining the 16 affix positioning errors presented in Table 4.13.  

 

 LOW FREQ HIGH FREQ 

HIGH MD 12 errors: 

    gain weights 

    settle downs 

    settle downs 

    *wraps ups 

    read alouds 

    *reads alouds 

    *reads alouds 

    *reads alouds 

    *reads alouds 

    tear aparts 

    *tears aparts 

    *tears aparts 

4 errors:  

   make sures 

   make sures 

   *wakes ups 

   *depends onned 

 

 

LOW MD 

 

0 errors 

 

 

0 errors 

TABLE 4.13. Distribution of affix shift errors, and double-marked affix errors 

collected in the shadowing task. Double-marked errors are indicated with an 

asterisk. There are 16 total errors out of 1483 codable responses. 

 

 The most striking feature of the distribution of affix placement errors is that all 16 

of them involved bigrams classified as having High Mutual Dependency. We may verify 

that the effect of MD is statistically significant using a Fisher Exact test. For purposes of 

this analysis, the relevant comparisons involve the 1483 classifiable responses. A 

contingency table for Mutual Dependency may be prepared as in Table 4.14. 
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AFFIX 

POSITIONING 

ERRORS 

NO AFFIX 

POSITIONING 

ERROR  

TOTALS 

HIGH MD 16 737 753 

LOW MD 0 730 730 

TOTALS 16 1467 1483 

TABLE 4.14. Contingency table for affix positioning errors on bigrams, High and 

Low Mutual Dependency.   

 

Based on this Mutual Dependency data, a two-tailed Fisher Exact test yields an extremely 

significant result (p < 0.0001). As expected, bigrams with high Mutual Dependency are 

over-represented among the set of affix placement errors.  

 However, inspection of Table 4.13 also reveals that most of the affix positioning 

errors (12 out of 16) are low in Token Frequency. A contingency table summarizing the 

Token Frequency data is presented in Table 4.15.  

 

 

  

AFFIX 

POSITIONING 

ERRORS 

NO AFFIX 

POSITIONING 

ERROR  

TOTALS 

HIGH FREQ 4 743 747 

LOW FREQ 12 724 736 

TOTALS 16 1467 1483 

TABLE 4.15. Contingency table for affix positioning errors on bigrams, High and 

Low Token Frequency.  

 

With respect to Token Frequency, the distribution of affix positioning errors runs counter 

to the hypotheses of this study, and counter to the earlier findings based on naturalistic 

errors. Moreover, in a Fisher Exact test, the effect of low Token Frequency is statistically 

significant at the 0.05 level (p = 0.046).  
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The foregoing findings may be verified with additional statistical tests. Multiple 

logistic regression is a natural choice for analysis of data in which a dependent variable is 

binary (Harrell 2001, Baayen 2008, Jaeger 2008), as is the case for the occurrence or non-

occurrence of a speech error. To represent such data situations, logistic regression maps 

the variables of a linear regression onto the logistic function (Figure 4.1), such that the 

dependent variable is a probability between 0 and 1. The logistic function provides a 

mathematical representation of a relatively abrupt leap between the two binary outcomes, 

with 1 corresponding to the occurrence of the event of interest, and 0 corresponding to 

non-occurrence (Jaeger 2008). The independent variables may be categorical, or they 

may be continuous and unbounded (potentially ranging from [- , + ] on the x-axis). 

Additionally, a combination of continuous and/or categorical independent variables may 

be used in a multiple regression model (Hosmer and Lemeshow 2000, Harrell 2001).   

 

 

      
FIGURE 4.1. Logistic function, plotted in R using f(x) = 1/(1 + e

-x
).  The x-values 

may range from [- , + ], and y is bounded by [0, 1].   
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 With respect to the present dataset, it is first necessary to check that multiple 

logistic regression would provide an appropriate analysis. Logistic regression (or any 

other kind of regression) will lead to problematic analyses in the event that different 

independent variables are highly correlated with one another. The risk goes beyond 

easily-detectible associations between variables, since a broader concern is that one 

independent variable could largely be a mathematical function of other independent 

variables. The basic concern is that the independent variables may be characterized by 

‘collinearity,’ or ‘multicollinearity.’ Mosteller and Tukey (1977: 280) explain that ‘the 

idea is that we get into trouble when we try to treat one piece of information as if it were 

several pieces. This inevitably leads to arbitrariness about the allocation of the weights to 

be given the several pieces.’ More generally, the concern is that, if there are more than 

two independent variables, one of these independent variables is in fact a linear 

combination of other independent variables (Baayen 2008, Belsley et al. 1980). In such 

cases, the regression coefficients for individual variables will be unreliable (Harrell 

2001), and collinearity is exacerbated considerably if variable interactions are included 

(Aiken and West 2001, Jaeger 2008).   

In the present experiment, the principal independent variables of interest are 

Token Frequency and Mutual Dependency, and it is appropriate to be cautious about 

collinearity given that MD includes Token Frequency in its mathematical definition (see 

Equation 4.1). Thus, as a precaution, we may calculate the ‘condition number,’ κ, for 

independent variables used in regression analyses (Belsley et al. 1980). The condition 

number may be calculated using an R function called collin.fnc(). Condition 

numbers of 15 indicate moderate collinearity, and values of 30 or more indicate the 
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choice of independent variables is problematic (Baayen 2008: 182). The COCA Spoken 

Corpus values for Mutual Dependency and Token Frequency are available in Table 4.10. 

Using collin.fnc() to check these values
50

 for collinearity yields κ = 10.75, 

providing a preliminary indication that our independent variables are acceptable 

components in a logistic regression.  

However, collinearity is ultimately a problem of data, not the independent 

variables themselves. That is to say, collinearity can only be fully assessed once 

experimental data are available, because a sparse dataset will be more prone to instability 

arising from collinearity (Belsley et al. 1980: 191, Chatterjee and Hadi 2006: 222). 

Moreover, introducing variable interactions in a regression analysis often notably 

worsens problems from collinearity, because variable crossproducts will amplify any 

collinearity present among main variables (Aiken and West 1991). Thus as an additional 

safeguard, I will evaluate particular continuous regression analyses for collinearity by 

considering the Variance Inflation Factor (VIF). The VIF of a regression provides an 

assessment of how much of the standard error in the analysis is due to collinearity of the 

independent variables; lower values indicate there is less influence from collinearity 

(Belsley et al. 1980, O’Brien 2007). I will consult VIF scores for general guidance only, 

since high VIF scores are neither necessary nor sufficient indicators of variable 

collinearity (Belsley 1991, Harrell 2001, O’Brien 2007). Moreover, there is no universal 

agreement about acceptable VIF thresholds (Belsley 1991: 28). Various rules of thumb 

are proposed; for instance, in a discussion of logistic regression, Menard (2002:76) 

advises that a VIF value greater than 5 is ‘cause for concern’, and a value greater than 10 

                                                 
50 More precisely, my analysis here is based on the log2 values of Token Frequency counts, as I explain 

below. By definition, Mutual Dependency is already a logarithm of a ratio. Using the raw Token Frequency 

counts in collin.fnc actually produces a small decrease in the condition number: κ = 8.18.  
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‘almost certainly indicates a serious collinearity problem.’
51

 Often, a VIF threshold of 4 

is used as a rule of thumb (O’Brien 2007), and even more conservatively, Allison (2012) 

advises caution when the VIF score exceeds 2.5. In general, consideration of VIF metrics 

should be supplemented by additional safeguards, such as checking the reasonableness of 

regression coefficients, since collinearity may cause coefficients to be of the wrong sign 

(Chatterjee and Hadi 2006).  

First, I will present a logistic regression model in which the independent variables 

are evaluated categorically, using the 2 X 2 bins described in Section 4.2.2. In this 

analysis, however, conventional approaches to logistic regression lead to complications, 

insofar as two of the four bins contain ‘zero cells’ (see Table 4.13). In such a situation, 

the standard method in logistic regression would lead to unstable solutions in analyzing 

both main effects and interactions (Heinze and Schemper 2002, Faraway 2005). In 

categorical datasets that are small or sparse, it is common for analyses to be plagued by 

‘data separation,’ a situation in which one of the independent variables perfectly predicts 

the outcome. The problem is that standard regression methods rely on ratios between bin 

counts; when a bin contains zero items, a term in the maximum likelihood estimate goes 

to positive or negative infinity (Heinze and Schemper 2002, Zorn 2005, Gelman and Hill 

2007). Such is the case with the data in the present experiment, in which all of the errors 

belong to high MD bins. This data separation leads to unreliable results in any logistic 

regression test that uses the maximum-likelihood estimate on the 2 X 2 stimulus 

categories.  

                                                 
51

 Menard (2002) actually uses the mathematically equivalent concept of ‘tolerance,’ which is the 

reciprocal of VIF. Thus, in Menard’s approach, a VIF greater than 5 corresponds to a tolerance less than 

0.2; a VIF greater than 10 corresponds to a tolerance less than 0.1, and so on. 
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We may address the data separation problem by using an alternate algorithm for 

logistic regression analysis of categorical data, namely, the bias reduction method of Firth 

(1993). This method introduces a corrective term that counteracts unstable consequences 

from zero cells, while still yielding solutions close to the maximum-likelihood estimates 

in less problematic datasets (Faraway 2005). Firth’s solution has been implemented in an 

iterative algorithm available as an R package, called logistf (Ploner et al. 2010, 

Heinze and Schemper 2002, Heinze and Ploner 2003).  

Using the bias reduction method via logistf, logistic regression analysis of the 

16 affix positioning errors verifies that MD has an extremely significant effect (p < 

0.0001). The regression coefficient, , for MD is 3.49, corresponding to an odds ratio of 

33.09 (that is, odds of an affix error increase by a factor of 33.09 in the high MD group 

compared with the low MD group). The same logistic regression model indicates that the 

effect of Token Frequency is significant at the 0.05 level (p = 0.039). Again, the observed 

effect for Token Frequency is reversed from the predicted pattern; errors are more likely 

in the low-frequency group. For frequency, the regression coefficient, , is -1.07, giving a 

decreased odds ratio of 0.34 for errors in the high-frequency group.  

A second logistic regression model is attainable if we analyze the independent 

variables as continuous values; that is, we can base the analysis on MD and Token 

Frequency values for each stimulus (again see Table 4.10), without explicitly delineating 

membership in ‘high’ and ‘low’ 2 X 2 bins. Some explanations are in order regarding the 

conventions I assume in these continuous regression analyses. First, I will base 

continuous regressions on frequency counts from the COCA Spoken Corpus, subjected to 

a log (base 2) transformation. The decision to log-transform frequency counts is not 
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based on any a priori statistical requirements; there are no distributional restrictions (such 

as normality) on the independent variables used in a logistic regression (Harrell 2001: 

35). Nevertheless, it is common practice to log-transform frequency counts prior to 

performing a logistic regression analysis (Baayen 2008). As discussed in Chapter 1, one 

reason to do so is that the impact of frequencies in cognition may be better described by a 

logarithmic relationship, rather than a linear one. 

Moreover, I will follow the convention of not ‘centering’ the continuous 

independent variables prior to analysis. As a countermeasure against collinearity, it is 

sometimes advised that independent variables be centered at zero by subtracting a 

constant (such as the variable mean) from each value (Jaccard et al. 1990, Aiken and 

West 1991, Jaeger 2008). However, there is ongoing debate in the literature whether 

centering independent variables truly counteracts the effects of collinearity. It is true that 

centering variables would lower the VIF scores reported in this chapter, in addition to the 

condition number (κ = 10.75) reported above. Nevertheless, following Belsley (1991: 

28), I elect not to center any of the independent variables prior to regression modeling. 

Belsley (1991: 189-190) demonstrates that centering variables ‘throws away information’ 

about the data, thus masking important collinearity diagnostics. More recent research 

(Echambadi and Hess 2007, Dalal and Zickar 2012) also argues that variable centering 

does not improve collinear data. Finally, although researchers often center variables in an 

attempt to improve model significance, the practice actually does little to alter the 

regression parameters, and does not improve the detectability of variable interaction 

effects (Kromrey and Foster-Johnson 1998, Shieh 2011). 
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Use of continuous MD and (log) Frequency values allows us to perform more 

conventional logistic regression in R using the lrm()method in the rms package
52

 

(Harrell 2012; see also Harrell 2001, Baayen 2008 on the earlier Design package in R). 

This analysis again verifies that high MD is associated with an increase in affix 

positioning errors (p < 0.0001), with a positive regression coefficient (  = 0.86). High 

(log) Token Frequency is associated with a decrease in such errors (p < 0.0001), with a 

negative coefficient ( = -0.90).
53

 The lrm model described here has a reasonably good 

fit (pgof= 0.29) in a le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of 

squares test (le Cessie and van Houwelingen 1992).
54

 Moreover, lrm reports a 

coefficient of concordance, C = 0.92. This coefficient surpasses the expected threshold of 

0.80, indicating an acceptable model (Gries 2009). Moreover, the VIF test results indicate 

that collinearity of (log) Token Frequency and MD is reasonable in this model, yielding 

values of 3.76 for each variable.  

Thus, the logistic regression analyses, as well as the Fisher Exact test, indicate 

that affix positioning errors are less likely to occur on high-frequency bigrams. This 

finding is quite surprising in the context of the predictions of this study, and is contrary to 

                                                 
52 Generally speaking, similar results hold if the bias reduction method (logistf) is applied to the continuous 

values for MD and Token Frequency, rather than dichotomous values. Where possible, I focus on the more 

familiar logistic regression analyses from lrm in order to include a breadth of analyses.    
53 In the case of continuous logistic regressions, the interpretation of regression coefficients is less intuitive 

than in the categorical analysis, in part because the continuous scales in each case are logarithmic. But we 

may use the regression coefficients to estimate the change in odds ratio for each unit increase in the 

independent variable. In the present model, these coefficients provide odds ratio changes of 2.35 for each 

unit increase in MD, and 0.41 for each unit increase in log Frequency.  
54 For purposes of a goodness-of-fit test, note that we want values that are above 0.05 (or more 

conservatively, above 0.10). I use the notation ‘pgof ’ to clarify that this p-value should receive a special 

interpretation.The described sum of squares test is appropriate to sparse continuous-value data (in contrast 

with the more familiar chi-square goodness-of-fit test). The pgof values reported here are calculated using a 

function (resid(lrm.object, ‘gof’)) available in the rms package in R (Harrell 2012). For 

continuous analyses, I report goodness-of-fit scores and the coefficient of concordance, C, but do not report 

R2 values, following Hosmer and Lemeshow (2000). They point out that in logistic regressions, R2 values 

are typically quite small, and potentially confusing when compared against metrics for linear regression 

models (2000: 166-167).     
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the earlier findings regarding affix errors in high-frequency bigrams. However, it is worth 

noting that the preponderance of low-frequency bigrams among the errors arises entirely 

from bigrams that are high in Mutual Dependency. All 12 of the low-frequency bigrams 

among the affix placement errors are also in the high-MD group; no errors are observed 

when Frequency is low if MD is also low. This pattern hints at an interaction between 

independent variables in the experimental task, rather than a general effect from low 

Token Frequency.  

We may expand our logistic regression models to investigate the possibility of 

interactions between variables. However, demonstration of this interaction proves 

difficult based on the variables as described thus far. Again using the bias reduction 

method, a categorical analysis (using logistf) finds that the interaction term (for 

MD*Token Frequency) does not have a significant p-value (p= 0.61). Moreover, in this 

expanded regression model, Token Frequency is not significant (p = 1.0), while MD is 

still highly significant (p = 0.0002). The regression model is not improved by adding a 

term for interactions; the ‘model fit’ measured via likelihood ratios is worsened. 

Similarly, an interaction model over continuous values is not significant (using either the 

maximum likelihood model or the bias reduction method). For instance, the logistf 

analysis results in p = 0.02 for (log) Frequency and p = 0.03 for MD, and a non-

significant p-value of 0.32 for their interaction. Moreover, the regression coefficients hint 

at an unstable analysis. Mutual Dependency has a positive coefficient (  = 0.50), and 

Token Frequency has a negative coefficient (  = -1.38), which are both consistent with 

the data. However, the interaction coefficient is positive (0.03), which is counter to 

expectations given the opposing effects of the two independent variables.   



145 

 

 

 

Moreover, a VIF test indicates that the interaction model is subject to collinearity 

problems: the diagnostics are 10.22 for MD, 49.31 for (log) Frequency, and 81.03 for the 

variables’ interaction. Recall that with respect to collinearity, our concern is that no 

independent variable should be a linear combination of other variables (Belsley et al. 

1980). Diagnostics indicate that partial collinearity exists between the two independent 

variables used in the experiment design (MD and Frequency). However, investigating an 

interaction in essence introduces a third independent variable (Aiken and West 1991), 

and the resulting collinearity renders the present interaction model unstable. A common 

solution to collinearity in regression modeling is to remove an independent variable 

(Baayen 2008), but in the present case such an approach would not allow us to investigate 

interactions between variables.   

Thus, it seems that a variable interaction between Frequency and MD cannot be 

verified in the present logistic regression model. Nevertheless, it is quite clear that affix 

positioning errors are more prone to arise under a particular confluence of variables (Low 

Frequency and High MD). We may confirm this pattern by comparing the results of 

models in which the variables are included in isolation, as opposed to jointly as presented 

above. If we use lrm() for a continuous regression with MD as the sole variable 

(without including Frequency as a separate factor), the p-values are still significant (p = 

0.0125,  = +0.16). But the model fit is unsatisfactory: pgof = 0.03, and C= 0.70. 

Similarly, a model based solely on Token Frequency has a significant p-value (p = 0.006, 

 = -0.30), but the model fit is unsatisfactory (pgof = 0.03, C= 0.69). Yet as reported 

above, when the model includes both MD and Token Frequency, both variables have 

significant p-values, and the model fit is good (pgof= 0.29, C = 0.92). Such a result 
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indicates that the best description of the error distribution relies on both variables, even 

though no further regression interaction between these variables can be demonstrated, 

apparently due to variable collinearity.  

 

4.2.4.3. Combining no-marking errors with other affix errors.  

 

As discussed in Section 4.0, there is one additional type of affix error which might 

be associated with holistic processing of multiword sequences. Specifically, no-marking 

errors (e.g., she read aloud) could be taken as evidence that a speaker has failed to insert 

an inflection into a prefabricated sequence. As noted previously, a failure to add 

inflections could be consistent with unrelated phenomena; for instance, in some speech 

communities, the absence of a third person singular –s may be normative. 

However, in the present experiment, I proceed with reporting on the occurrence of 

missing inflections, taking note of some mitigating factors. First, review of the missing 

inflections among the study’s participants indicates that none of the speakers omit –s 

systematically. Among the bigram stimuli, there were 5 total responses involving an 

omitted –s. All 5 errors were by different speakers; that is, no speaker was responsible for 

more than one of these omissions on his or her 56 responses to the stimuli.
55

 Secondly, as 

noted previously, in the experimental task, participants must initially hear and process a 

sequence in its uninflected form (they read aloud), and a no-marking error may indicate 

that the sequence is less readily altered or interrupted. If a speaker does indeed activate a 

particular multiword sequence holistically (read aloud, for instance), the study’s 

                                                 
55 Three of the five participants in question did have at least one missing inflection on the compound 

distractors (e.g., he fly...fish). No-marking errors were quite common across all participants on the 

compound distractors.  
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hypotheses predict that it may be more difficult to insert an inflection into this sequence 

in a time-pressured task.  

 Thus, in Table 4.16 I present the 5 participant responses in which an –s suffix was 

altogether omitted.   

 

 LOW FREQUENCY HIGH FREQUENCY 

HIGH MD 3 errors  

 she... read aloud  

 she gain weight 

 she screw up  

 

1 error  

 she ca-... call it 

 

LOW MD 

 

0 errors 

 

1 error:  

 he conveniently forget it 

TABLE 4.16. Distribution of no-marking errors (n= 5) collected in the shadowing 

task.  

 

This dataset is quite small, but the distribution of errors across the four bins seems similar 

to the distribution of the other 16 affix placement errors presented in Table 4.13. Indeed, 

the Fisher Exact analyses are essentially unchanged if we pool together the 16 affix 

positioning errors of Table 4.13 and the 5 affix omissions in Table 4.16. In this pooled 

analysis, the effect of high MD is extremely statistically significant (p < 0.0001), and the 

effect of low Token Frequency is statistically significant (p = 0.025).     

 Table 4.17 presents a quantitative synopsis of the 21 combined affix errors 

observed in the shadowing experiment.   
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 LOW FREQUENCY HIGH FREQUENCY 

 

HIGH 

MD 

15 affix errors/371 codable 

responses 

   (5 affix shifts) 

   (7 double-marked affixes) 

   (3 no-marking errors) 

5 affix errors/382 codable responses 

  (2 affix shifts) 

  (2 double-marked affixes) 

  (1 no-marking error) 

 

LOW  

MD 

 

0 affix errors/365 codable 

responses 

 

 

 

1 affix error/365 codable responses  

   (1 no-marking error) 

 

TABLE 4.17. Distribution of all affix placement errors (n = 21) collected in the 

shadowing task, out of 1483 codable responses.  

 

 

 We may supplement the Fisher Exact tests of these pooled results with additional 

logistic regression analyses. With respect to zero cells, the modified dataset in Table 4.17 

provides a small improvement over Table 4.13, insofar as there is now one item in the 

Low MD/High Frequency bin. However, the dataset as a whole still exhibits ‘quasi-

complete separation’ because there are no errors observed in the Low MD/Low 

Frequency bin (Zorn 2005). Thus for a categorical analysis, a more conservative 

approach to logistic regression will again incorporate bias reduction, rather than using the 

maximum likelihood estimate (Firth 1993, Heinze and Schemper 2002, Heinze and 

Ploner 2003). Based on the 21 affix errors summarized in Table 4.17 (compared with the 

1483 total codable responses), logistic regression of the categorical data (using 

logistf) yields extremely significant positive results for Mutual Dependency 

(coefficient  = 2.62, p = 0.00002), and negative results for Token Frequency which are 

significant at the 0.05 level (coefficient  = -0.92, p = 0.042). Similarly, analysis of the 

continuous data (using lrm) yields extremely significant results for both Mutual 

Dependency and Token Frequency (p < 0.0001 for both variables), with an acceptable 
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model fit (pgof= 0.27, C=0.86). Moreover, collinearity is acceptable, since the VIF 

diagnostic (2.52) is within range of the most conservative benchmarks (Allison 2012).  

 For the 21 errors in Table 4.17, logistic regression of variable interaction is again 

problematic due to variable collinearity. Using the bias reduction method for categorical 

data, the interaction term (MD*Token Frequency) falls short of significance (p= 0.16). In 

this model, MD is still extremely significant (p < 0.0001), but Token Frequency is not 

significant (p = 0.47). The regression coefficients make intuitive sense in this interaction 

model: MD has a positive coefficient (  = 3.46), and Token Frequency also has a small 

positive coefficient (1.10), representing the fact that when MD is low (corresponding to a 

zero term), Token Frequency has a small positive effect on the occurrence of errors. The 

MD * Frequency interaction coefficient is negative (-2.19), as we expect given that the 

effects of High Frequency and High MD on errors are opposed to one another. 

Likelihood ratio tests over the interaction and main effects models indicates that the 

interaction model (LR = 23.88) represents an improvement over the simplified model 

(LR = 23.34), but this improvement falls short of significance (chi-square = 1.07, df =1, p 

= 0.30).  

Using lrm, an interaction model of the continuous data also fails to reach 

significance. In this expanded model, MD is significant (p = 0.02), with a positive 

coefficient (0.68). Token Frequency is not significant (p = 0.20), and has a negative 

coefficient (-0.63). The interaction is also not significant (p = 0.86), with a very small 

negative coefficient (-0.005). However, the VIF diagnostics are notably unacceptable for 

the interaction model, with values of 11.06 for MD, 38.65 for Frequency, and 72.99 for 
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the variables’ interaction, hinting that variable collinearity may interfere with the 

investigation of interactions. 

As in the smaller dataset, even though demonstrating variable interactions 

remains problematic, the best description of the 21 affix errors considers both 

independent variables in tandem. That is, errors increase with Low Frequency and High 

Mutual Dependency, but either variable alone results in an unsatisfactory regression 

model. For instance, in an lrm() model with MD as the sole variable, the p-value is 

significant (p = 0.01, = +0.14), but the fit is poor (pgof = 0.01, and C= 0.70). Likewise, 

an lrm() model of Token Frequency alone has a significant p-value (p = 0.044,  = -

0.27), but the model fit is poor (pgof = 0.04, C= 0.68). Yet as demonstrated above, an 

lrm()model including both variables is significant, and has a good fit (pgof= 0.27, 

C=0.86). Thus, for the expanded set of 21 errors, it again seems that affix errors are more 

likely to arise under a particular confluence of variables, namely High MD and Low 

Frequency.    

 

4.2.5. Post hoc analyses: Examining components of the MD metric 

 

In sum, the foregoing analyses demonstrate that higher Mutual Dependency of a 

bigram is associated with increased likelihood of affix errors, implying that such 

multiword sequences are more likely to be retrieved as units, and/or less amenable to 

interruption with inflections in a time-pressured task. This result is as predicted, and 

consistent with the earlier findings from affix errors collected in naturalistic settings. 

However, these analyses also indicate that higher Token Frequency is associated with a 

decrease in these same types of affix errors. As noted, this pattern is observable only 

among bigrams high in MD, but logistic regression models cannot directly verify variable 
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interactions, apparently due to collinearity in the interaction term, or a relative paucity of 

error data, or both. Moreover, the ‘backwards’ frequency effect is a counterintuitive 

finding which is contrary to the conversational error results, and in need of further 

investigation. In the following post hoc analysis sections, I address these concerns in 

several ways.  

 To help make sense of the Token Frequency data, in this reanalysis I consider the 

possibility that confounding variables may in fact be driving the reversed effects from 

frequency.  Indeed, retracing the experiment design reveals that additional cross-category 

frequency differences may be relevant. Specifically, frequencies of the component words 

in each bigram are a noteworthy factor in the experiment, and asymmetries are apparent 

if we focus on the set of stimuli which is most prone to affix errors (Low Token 

Frequency, High Mutual Dependency). For instance, comparing the frequency of the verb 

in the bigrams in the four stimulus categories reveals that there are rather striking 

category differences. The rounded average verb frequency (from the COCA Spoken 

Corpus) for items in the Low Frequency, High MD bin is 3308; this contrasts markedly 

with averages of 13395, 87953, and 30346 for the other three bins.  

Similarly, the second word of each bigram’s second word is, on average, lower in 

the Low Frequency, High MD bin. The average second-word frequency for this bin is 

224559; this is markedly lower than the averages in the other three bins (572268, 688406, 

and 1119300). Listings of the bigrams’ component-word frequencies are provided in 

Appendix 4.4.  

All four bins contain a considerable range of verb frequencies, and there are 

overlaps in values across all the bins, but there is a clear overall trend: on average, lower-
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frequency words occur in the category which is most prone to affix errors. Here it should 

be noted that component-word frequencies were not left to vary in an uncontrolled way in 

the experiment design. Rather, during stimulus selection it was noted that there would 

necessarily be cross-category differences in component-word frequencies. More 

specifically, the bigrams in the Low Token Frequency/High MD bin are, in large part, 

categorized as such due to the relatively low frequencies of their component words. To 

understand why this is the case, note from Equation 4.1 that the MD value is calculated 

on the basis of three corpus measures: frequency of the bigram; frequency of the bigram’s 

first word (that is, F(V)), and frequency of the bigram’s second word (F(w2)).
56

 Items in 

the Low Token Frequency/High MD bin are restricted to those having a relatively low 

bigram frequency (otherwise, obviously they would be classified as ‘High Token 

Frequency’). Thus the only way for these items to surpass the ‘High Mutual Dependency’ 

threshold, while maintaining low frequency for the overall sequence, is for the bigram to 

consist of lower-frequency component words. More precisely, in each bigram in this bin, 

F(V) needs to be quite low, or F(w2) needs to be quite low, or both words need to be 

moderately low in frequency).  

In the analyses below, I present evidence which suggests that the apparent 

backward effect from Token Frequency is in fact an effect from these low component 

word frequencies; that is, the overrepresentation of low-frequency words in the Low 

Frequency/High MD bin accounts for the finding that affix errors are more likely on 

Low-Frequency bigrams. It is not surprising that component word frequencies may play 

an important role in holistic access, which necessarily involves diminished activation of 

                                                 
56 The fourth variable in the equation is the corpus size, N, which is of course constant for all items in the 

stimulus set, and merely helps scale MD values to be greater than zero. 
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the individual components. Below I examine frequency effects from the bigrams’ first 

word (the verb), followed by frequency effects from the bigrams’ second word. Finally I 

present alternate analyses based on considering the frequencies of both component words 

together. These analyses are based on a variety of additional logistic regression analyses 

that directly include component word frequencies as a variable. In general, rather than 

creating ad hoc ‘high’ and ‘low’ categories for these measures, I focus on continuous 

analyses in lrm() based on log-transformations of the component-word frequency 

counts.   

 

4.2.5.1. Post hoc analysis 1: Frequency of the verb. 

 

 With respect to verb frequencies, there are quite intuitive mechanisms which 

would explain why lower-frequency verbs might be more prone to affix errors in the 

experiment. In general, it is reasonable to expect that if speakers have more practice with 

particular verbs (i.e., high-frequency verbs), these items will be less prone to result in 

affix errors. As I explain in more detail below, relevant influences may arise from online 

demands in production, and/or comprehension, in the experiment. To investigate such 

effects, I consider two measures of verb frequency. First, there is the frequency of the 

verb’s base form (abbreviated as F(V)), such as the corpus frequency of bare stems such 

as settle or talk. This uninflected verb frequency is the measure used directly in the 

calculation of Mutual Dependency (represented as F(w1) in Equation 4.1). It is reasonable 

that lower F(V) could increase the rate of errors in the present experiment, first of all, 

because the task requires segmentation of the verb as a precursor to inserting an 

inflection. If lower-frequency verbs are segmented less readily as separate words (and 
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activated less as independent units), they may be more prone to errors in which an 

inflection is delayed or omitted. More generally, the relevant frequency metric might be 

said to be the verb lemma frequency, that is, combined corpus frequencies of settle, 

settles, settled, settling, and so on, because this combined frequency would be relevant to 

how readily a verb is segmented from continuous input. However, in the present analysis, 

I focus on F(V) as a proxy for this more general frequency metric, on the assumption that 

participants are expecting a bare verb stem.    

Secondly, we may consider the frequency of the verb’s inflected form, that is, the 

frequency of settles, talks, and so on, which I abbreviate as F(Vs). The frequency of 

inflected verb-forms loosely correlates (in a log-linear fashion) with the verb’s base 

frequency, but we can identify particular psychological factors with respect to F(Vs) 

which could be relevant to the distribution of affix errors. Specifically, it is reasonable to 

anticipate that when verbs occur very frequently in their inflected form, the base + 

inflection may in fact be retrieved as a unit or as a well-practiced sequence, and thus 

high-frequency inflected units may be characterized by easier, error-free production (see 

Stemberger and MacWhinney 1986b). 

 To investigate these dynamics in the experiment’s dataset, it is worthwhile to 

verify first that these variables have some effect on affix error probabilities. Thus, I 

initially consider models which incorporate only verb frequency in isolation. Indeed, 

continuous logistic regression analyses provide some evidence that this is the case, and 

these models yield negative coefficients which indicate that lower verb frequencies are 

associated with an increase in affix errors. The effects do not reach significance for the 

smaller set of 16 affix positioning errors, however. For this dataset, a logistic regression 
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of bare verb stem frequency, F(V), has a p-value of 0.15 ( =-0.14, pgof =0.73, C=0.62 ), 

and inflected verb frequency, F(Vs), has a p-value of 0.11 ( =-0.16, pgof=0.96, C=0.65). 

The results are somewhat better on the expanded set of 21 affix errors that includes no-

marking errors. Here, a regression model of F(V) approaches significance, with p = 0.09 

( =-0.14, pgof =0.70, C= 0.61). A regression model of F(Vs) reaches significance at the 

0.05 level, with p= 0.03 ( =-0.19) and an acceptable model fit (pgof=0.91, although C= 

0.63).  

These findings do support the general prediction that affix errors are more likely 

on bigrams that start with a low-frequency verb. Of course, an accurate regression model 

should include all significant variables, and the use of a sole model variable may account 

for the low coefficient of concordance scores above. In discussions later in this section, I 

integrate verb frequencies into more inclusive regression models.   

 

4.2.5.2. Post hoc analysis 2: Frequency of the bigram’s second word. 

 

Let us consider now the possibility that the distribution of affix errors is 

influenced by F(w2), the frequency of the bigrams’ second word. This account would 

imply, for instance, that the sequence settle down is more prone to being processed as a 

holistic unit if down is a low-frequency word. In fact, post hoc regression analyses imply 

that F(w2) is a significant factor, with negative regression coefficients indicating that 

lower-frequency (second) words are more likely to result in an affix error. This is initially 

evident if we propose logistic regression models using F(w2) as the sole independent 

variable. For the set of 16 affix errors, the coefficient is negative ( =-0.37), and the 

regression is extremely significant (p<0.0001). This single-variable regression model 

passes goodness-of-fit diagnostics (pgof =0.21, C=0.85). Similar results obtain for the 
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expanded set of 21 errors. Again, the regression coefficient is negative ( =-0.34), as 

expected, and the p-value is highly significant (p <0.0001). Moreover, the model fit is 

good (pgof =0.63, C=0.80). 

 These results would indicate that in the experimental task, if a bigram’s second 

word is a low-frequency item, it is activated to a lesser degree as an independent unit 

(thus resulting in errors such as tear aparts and tears aparts). This finding is interesting, 

because it helps to rule out a possible alternate explanation for the affix errors in this 

experiment. Recall that Stemberger (1984, 1985) presents an account in which certain 

grammatical units occur early because they are ‘overactivated,’ and are thus uttered 

earlier in speech than their targets. This is indeed a plausible explanation for ‘early’ affix 

shifts such as If its break. With respect to the 3
rd

 singular –s inflection, for instance, this 

suffix is far more frequent than all but the top few words
57

, and it is plausible that –s 

might arise in speech in advance of some of these less readily-available words (for 

instance, break).  

 Consider, then, the occurrence of affix shifts along the lines of gain weights and 

settle downs. How can we be certain that such errors are not merely a consequence of 

early activation? That is, there is a possible interpretation of full affix shifts, in which the 

second word in the bigram (such as weight or down) is activated prematurely, resulting in 

uttering this word prior to the –s inflection. However, the frequency analysis of F(w2) 

provides evidence to make such an alternate account less plausible. If ‘overactivation’ of 

the second word, w2, were a crucial factor, we would expect higher-frequency words to 

                                                 
57 For instance, searching the COCA spoken corpus for relevant 3rd singular verbs (following the pattern 

*s.[v?z*]), and subtracting non-affixed forms such as is, indicates that this inflection occurs almost 900,000 

times in the corpus. This makes the suffix far more frequent than all English words, with the exception of 

the following: the, to, and, a, of, that, I, you, in, it, is, and we.   
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be more prone to occurring early. But this is hardly the case: in fact, lower-frequency 

words are more likely to occur early in this error set. Thus it seems more reasonable to 

postulate that early production of w2 involves characteristics of the bigram (w1w2), rather 

than characteristics of w2 as an independent word.    

 Moreover, note again that the errors of interest in this study include double-marked 

errors such as settles downs, in addition to full affix shifts such as settle-downs. There are 

9 double-marked errors, along with 7 full affix shifts. Both of these types of error are 

more likely among the High MD, Low Token Frequency bin, and indeed there is no 

distinguishable difference in the distributions of the two error types. It is difficult to see 

how the frequency of w2 could have an effect on the tendency for affixes to occur 

redundantly on the second word, in addition to the verb (w1 in the bigram). More likely, it 

seems that the distribution of both error types arises from a more general phenomenon 

involving the bigram characteristics.  

  

4.2.5.3. Post hoc analysis 3: Component frequencies together. 

 

 Preliminary analyses thus indicate that regressions based on component word 

frequencies are as we expect: bigrams containing low-frequency words are more likely to 

result in affix errors in the experiment, implying that such sequences are more prone to 

being activated as whole units. For a more thorough synthesis, these component-word 

frequencies should be incorporated into broader regression models. Given the choice 

among five or more independent variables, a multitude of possibilities present themselves 

as candidates for regression models to pursue. A naive approach might be simply to add 

F(w2) and F(V) (or alternately, F(Vs)) into the regression alongside the design variables, 

MD and Token Frequency. However, such an approach would be ill-advised; note that 
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MD is essentially an algebraic combination of the other three variables (Token 

Frequency, and two different word frequencies). Thus, collinearity would run rampant in 

such a model; indeed, inspecting this variable combination using collin.fnc() 

yields a diagnostic that is orders of magnitude above usual benchmarks,
58

 and lrm() 

actually fails to converge on a result.  

 Thus, in this section, I focus on two reanalyses which provide an alternate 

perspective on the apparently paradoxical effects of Token Frequency. First, consider a 

regression model which includes bigram MD, in addition to component-word frequencies 

(F(V) and F(w2)) as an alternative to Token Frequency of the bigram.
59

 An initial 

inspection of MD, (log) F(V), and (log) F(w2) using collin.fnc() indicates that 

variable collinearity is within acceptable limits, with a condition number κ = 22.74. This 

alternate approach generates models with significant results, in which the three regression 

variables have the appropriate coefficient sign.  A regression over the set of 16 affix 

errors produces a model with a good coefficient of concordance (C = 0.93) and a 

(marginally) acceptable goodness-of-fit (pgof =0.09). Mutual Dependency has a positive 

effect on the occurrence of affix shift errors ( =+0.36), as we have generally seen in 

various regression models, and the effect is very significant (p = 0.0093). Both (log-

transformed) component word frequencies have a negative, significant effect on errors, 

matching our expectation that infrequent words may be processed less readily as 

independent units. For F(V),  = -0.30, and p = 0.0299; and for F(w2),  = -0.45, and p < 

                                                 
58 Specifically, if you’re curious, the condition number generated is 16,984,801,961, which is of course 

somewhat larger than the value of 30 which typically indicates problematic collinearity.  
59 I focus here on F(V) to the exclusion of F(Vs) in order to constrain the wide range of combinatoric 

possibilities for regression models. Results are generally similar in models based on MD, F(Vs), and F(w2). 
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0.0001. Collinearity is not a concern in this reanalyzed model (VIF scores are 1.84 for 

MD, 1.57 for F(V), and 1.77 for F(w2)).  

 Similar results are found using the expanded set of 21 errors. Mutual Dependency 

has a positive, significant effect on affix errors ( =+0.24, p = 0.0113). Verb frequency 

(F(V)) has a negative, significant effect (  = -0.23, p = 0.0345), and frequency of the 

second word has a negative, highly significant effect (  = -0.38, p <0.0001). This 

regression model’s diagnostics are good (pgof =0.59, C = 0.87), and collinearity is not a 

concern (VIF scores are 1.30 for MD, 1.26 for F(V), and 1.26 for F(w2)).
60

 

 The foregoing reanalyses thus present a plausible, alternate account of why in the 

experimental data, lower-frequency bigrams are more prone to affix errors. The errors of 

interest are clustered on a particular set of stimuli—those which are high in Mutual 

Dependency, and low in Token Frequency. Yet these bigrams are also lower in 

component-word frequencies, and the reanalysis demonstrates that individual word 

frequencies perform well in regression analyses alongside Mutual Dependency. 

Moreover, aside from improvements in terms of theoretical plausibility, the models 

incorporating F(V) and F(w2) offer other improvements over the original models based on 

bigram token frequency. Using Likelihood Ratio tests in lrm(), we may compare the fit 

of the original two-variable model (MD and Token Frequency) against the reanalyzed, 

three-variable model using component-word frequencies (MD, F(V), and F(w2)). For the 

set of 16 affix errors, this comparison reveals that the reanalyzed, three-variable model 

represents an improvement, with a Likelihood Ratio chi-square of 2.98, although this 

                                                 
60 I will not investigate address variable interactions at length regarding the present reanalyses. As a general 

observation, in the present context, an analysis of interactions (requiring the inclusion of 5 or more total 

variables) leads to null results, and moreover, all the main variable effects lose significance when 

interactions are included. It is likely that variable collinearity plays a role in this problem, since VIF 

diagnostics often rise to 200 or more. 
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difference is not quite significant (p = 0.08, with 1 degree of freedom). However, the 

same comparison across models of the expanded set of 21 errors does reach significance. 

Here, the Likelihood Ratio chi-square difference is 4.34, with p= 0.037 (with 1 degree of 

freedom between the two models). This test indicates that the model based on MD and 

component-word frequencies is not only plausible; it represents a significant 

improvement over the model based on MD and Token Frequency.   

 Nevertheless, there are further compelling findings if we perform additional 

reanalyses which do include Token Frequency as an independent variable. Here, I present 

the results of analyses which include Token Frequency of the bigram, along with 

component-word frequencies (F(V) and F(w2)). As always, all corpus frequency values 

are log-transformed as a preliminary step. The three variables in this reanalysis are 

acceptable with respect to collinearity; for Token Frequency, F(V), and F(w2), a 

collin.fnc() test yields κ = 23.01.  

In the present reanalyses, Mutual Dependency is not included explicitly, but we 

may think of individual word frequencies as a proxy for this measure; i.e., when 

combined with Token Frequency, the frequencies of the component words allow for a full 

mathematical expression of the corpus metrics that vary with Mutual Dependency (see 

Equation 4.1). To put this another way, the present selection of variables includes all 

three corpus frequency elements—in atomic form as frequency counts, rather than as a 

summary ratio — that are used in the definition of Mutual Dependency, Mutual 

Information, or other relative frequency measures.  

This selection of variables yields lrm() regressions with significant effects for 

all three variables. Moreover, the results are rather interesting; once individual word 
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frequencies are included explicitly in regressions, the apparent backward effect from 

Token Frequency vanishes. For instance, based on the set of 16 affix positioning errors, 

the regression coefficient for Token Frequency is now positive (  = + 0.73), and the 

result is very significant (p = 0.0093). This result obtains, apparently, because the 

reversed effects associated with Token Frequency are already better accounted for by the 

other variables in the model. As expected, the component-word frequencies have 

negative regression coefficients: for F(V), = -0.67, and p = 0.0068; while for F(w2),  = 

-0.81, and p < 0.0001. The fit of this model is acceptable, albeit marginally so (pgof 

=0.09), and the coefficient of concordance is good (C= 0.93). Variable collinearity is 

rather high (VIF scores are 11.24 for bigram frequency, 4.86 for F(V), and 11.02 for 

F(w2)), although this in itself does not seem to justify rejecting the model (O’Brien 2007).  

 Similarly, based on the expanded set of 21 affix errors, this configuration of 

regression variables indicates that higher Token Frequency results in an increase in affix 

errors. For Token Frequency, the coefficient is positive (  = +0.49) and significant (p = 

0.0113). Once again, the component-word frequencies have negative coefficients. For 

F(V), = -0.47 (p = 0.0057), and for F(w2), = -0.62 (p<0.0001). This regression 

approach has solid measures with respect to model fit (pgof =0.59, C= 0.87), although 

variable collinearity does exceed the more conservative benchmarks (VIF scores are 6.75 

for Token Frequency, 3.17 for F(V), and 6.29 for F(w2)).  

 In sum, then, a reanalysis of the data incorporating component-word frequencies 

yields expected effects for all variables – including Token Frequency. This approach 

actually offers a moderate statistical improvement over the original regression models 

based on Mutual Dependency alongside Token Frequency. Again, we may verify this 
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using Likelihood Ratio comparisons between the original, two-variable model (MD, 

Token Frequency), and the three-variable, reanalyzed model (Token Frequency, F(V), 

and F(w2)). For the set of 16 errors, the three-variable model represents an improvement, 

although it is not statistically significant (chi-square = 2.98, 1 df, p = 0.084). For the set 

of 21 errors, however, there is a statistically significant improvement (chi-square = 4.34, 

1 df, p = 0.037). 

 Thus, there is statistical support for this second approach to reanalyzing the 

experimental data. The distribution of errors is as expected for all three variables included 

in the model: frequency of the bigram, frequency of the first word, and frequency of the 

second word. Lower frequencies of individual words within each bigram are associated 

with an increase in affix errors. Once these component frequencies are expressly included 

in the model, we can see that higher bigram frequency is also associated with an increase 

in affix errors. As noted above, the present data reanalysis offers an alternate way of 

approaching the measure of interest in Mutual Dependency (or other relative frequency 

scores), by including the components of this quantity as separate elements. When seen in 

this light, it becomes apparent that the distribution of errors is indeed as predicted by the 

theory: errors evidencing holistic processing increase when the whole unit is more 

accessible, or when its component parts are less accessible.   

 

 

4.3. Conclusion: The evidence add ups. 

 

In Chapter 1, I argued that access units in the lexicon will generally be honed with 

practice, so as to efficiently retrieve items that tend to co-occur. Indeed, in most cases, 

experimental investigation of prefabs finds that elements which frequently co-occur are 
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more prone to fluent and error-free retrieval (e.g., Reali and Christiansen 2007, Tremblay 

et al. 2007, Arnon and Snider 2010). However, in investigating holistic retrieval, it is also 

possible to turn this notion on its head, and investigate special cases in which the retrieval 

of preassembled units actually interferes with a task that requires morphosyntactic 

analysis. Such is the certainly the case in monitoring studies (Vogel Sosa and MacFarlane 

2002, Kapatsinski and Radicke 2009), in which participants are slower to recognize a 

target word within a well-practiced unit.  

Similarly, the investigations of this chapter were proposed on the assumption that 

holistic units are more likely to be associated with certain inflectional errors, both in 

naturalistic settings and in an experimental task. These first forays into a systematic study 

of affix positioning errors have indeed shown that bigrams are more prone to being 

retrieved as a unit when the two words frequently co-occur. The results are promising, 

but discussion is needed to reconcile the quantitative findings from the naturalistic and 

experimental studies.  

First, it is encouraging that Mutual Dependency proves to be predictive with 

respect to affix errors from conversation, as well as those elicited experimentally. In the 

two analyses of conversational errors which included MD as a variable, this measure is 

found to be statistically significant. Based on analyses of verb-initial bigrams, high-MD 

sequences are overrepresented among naturalistic outbound shifts (such as come backs). 

A second analysis indicates that bigrams that occur in conversation with outbound shifts 

(come ups) have significantly higher MD scores than bigrams that contain early shifts 

(quites get). Likewise, in the experimental task, high-MD bigrams are overwhelmingly 

more likely to prompt shift errors that indicate the sequence is activated as a unit, 
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including outbound shifts (gain weights) and double-marking errors (wraps ups). These 

positive findings are concordant with earlier studies by Ellis et al. (2008) and Ellis and 

Simpson-Vlach (2009), which provide empirical support for the related relative 

frequency measure, Mutual Information. Like Mutual Information, Mutual Dependency 

provides a mathematical representation of competition between the activation of whole 

units (the measure’s numerator) and the activation of component units (the denominator). 

The current findings suggest that Mutual Dependency is a useful summary statistic 

worthy of further investigation.   

The findings with respect to Token Frequency turn out to be rather more 

complicated. Among the conversational errors, high Token Frequency sequences are 

more likely to prompt the affix errors of interest. High-frequency bigrams are 

overrepresented among outbound affix shifts, as indicated by analyses of verb- and noun-

initial bigrams in the Brown corpus, and verb-initial bigrams in the COCA corpus. 

Moreover, outbound affix shifts occur on bigrams that are higher in Token Frequency 

than the bigrams containing early affix shifts, indicating that the former bigrams are more 

cohesive. These results from naturalistic errors agree with earlier findings that higher-

frequency sequences are more likely to be accessed holistically (e.g., Kapatsinski and 

Radicke 2009).   

However, these findings are not immediately borne out among the 

experimentally-induced errors. Initial quantitative analyses indicate that, contrary to 

expectations, bigrams that are low in Token Frequency are more likely to prompt affix 

positioning errors, due to a tendency for errors to arise among items that are low in Token 

Frequency, but high in MD. Followup analyses (Section 4.2.5) suggest that the 
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anomalous frequency pattern is in part an artifact of the experiment design. In the 

experimental stimuli, Token Frequency of the bigram is confounded with frequencies of 

the component words, and these component word frequencies turn out to be essential to 

the distribution of affix positioning errors. Indeed, one of the post hoc analyses (Section 

4.2.5.3) indicates that higher-frequency bigrams are more likely to prompt affix 

positioning errors—but this finding is only observable if we take into account the effects 

of component word frequencies. In the experimental task, bigrams containing infrequent 

words (an effect involving both the first and second words) are more likely to result in 

affix errors indicative of holistic retrieval. The importance of component-word 

frequencies in the experimental task lends support to relative frequency accounts of 

processing, in which units containing low-frequency components are more likely to be 

processed holistically (Frauenfelder and Schreuder 1992; Hay 2001, 2003).     

These reanalyses raise further questions regarding the integration of findings from 

naturalistic and experimental data. Among the naturalistic data, to what extent might 

component word frequency be a contributing factor in the distribution of affix shifts? We 

have evidence that naturalistic affix errors are more likely on bigrams that are high in 

Mutual Dependency. Yet a bigram’s MD can be high in some cases because the bigram’s 

token frequency is very high, or in other cases because the component words are 

infrequent. Among experimental affix errors, the indications are that low component 

frequencies are quite important. For conversational errors, a full analysis of component-

word frequencies is beyond the scope of this chapter, but an initial examination hints that 

these component word frequencies are not as crucial to the occurrence of affix errors in 

naturalistic contexts. Among the naturalistic errors (Tables 4.1 and 4.2), note the 
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occurrence of a number of verbs of extreme high frequency: give us-ing; want to comes; 

go for-ing. As a case in point, we may focus on the 12 conversational errors involving a 

misplaced 3
rd

 singular –s inflection. Among this set, some of the same ultra-frequent 

verbs recur repeatedly: come is represented by four errors (come ins, come ons, come ups, 

come backs), and go is represented by three errors (go aheads, go gets, goes homes). 

Moreover, if we use corpus analysis
61

 to split observed tokens of VERB+s  into ‘high 

frequency’ (the top half of all tokens) and ‘low frequency’ (the bottom half), 10 out of the 

12 verbs are high-frequency. Thus in natural speech, there does not seem to be a tendency 

for outbound shifts to occur among lower-frequency verbs.          

Why might some differences be observed between the patterns of affix errors in 

natural settings, compared with those induced in the experiment? Consider the demands 

facing speakers in the time-pressured experimental task, compared with the demands of 

normal conversational speech. The shadowing methodology explored here requires 

participants to perceive speech, segment it into words, and almost immediately echo it 

back, while monitoring continuously for the appropriate site to insert a verbal inflection.  

Since speech production occurs in such short succession after comprehension (typically 

with a lag of just 1-2 seconds), it is reasonable that segmentation errors might result in 

syntagmatic production errors.
62

 Of course, speech comprehension (including word 

segmentation) is still relevant to the study of prefabricated units; indeed, such processes 

                                                 
61 In this particular case, I used the spoken portion of COCA (Davies 2008), rather than the Brown Corpus, 

because for single words it is possible to retrieve an exhaustive, part-of-speech constrained list of 

frequencies from COCA.  
62 By referring to ‘errors’ of segmentation, I do not mean to imply that there must be a definitive word 

boundary, which the speaker happens to overlook. As discussed in Chapter 1, boundaries between words 

are expected to be gradient, and this principle applies during comprehension as well as production.   
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are at the core of other experimental investigations of holistic retrieval (e.g., Vogel Sosa 

and MacFarlane 2002, Kapatsinski and Radicke 2009).  

However, it is worth acknowledging that the affix errors induced under the 

present shadowing methodology give a glimpse into the joint effects of comprehension 

and production. Future work in this area may benefit from a revised methodology that 

focuses more exclusively on speech production. This may be accomplished by allowing 

participants to hear the target sentence in its entirety before repeating it back from 

memory. Along these lines, pilot work indicates that outbound affix shifts may also be 

induced experimentally, if participants are asked to insert an inflection into a memorized 

sentence while performing an unrelated distractor task (specifically, phoneme 

monitoring). However, it remains to be seen whether such an approach will be as 

effective as the shadowing methodology in prompting affix positioning errors.           

One general goal of this chapter has been to investigate a new experimental 

methodology, with potential for the quantitative study of multiword units. The findings 

thus far are encouraging, insofar as outbound affix shifts and double-marked inflections 

are induced on approximately one out of a hundred attempts — orders of magnitude more 

frequent than what we observe in casual speech. Nevertheless, the collection of 

experimental data in the current task is labor-intensive, insofar as each response requires 

a participant to repeat aloud an entire sentence, and many attempts must be made for 

every successful error elicitation. There thus remains a certain needle-in-the-haystack 

quality to the elicitation experiment. A much larger set of errors would be useful in 

addressing a wider range of quantitative questions, such as whether affix shifts are 
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distributed evenly across the frequency spectrum (or MD spectrum), or whether a U-

shaped curve exists (cf. Kapatsinski and Radicke 2009).            

 Toward this end, to locate a larger number of needles, it may be helpful to 

supplement experimental work by looking in much larger, text-searchable haystacks. One 

approach is to gather affix shift errors from large online corpora such as COCA (Davies 

2008), which yields a handful of relevant errors from a few searches. Unfortunately, it is 

not possible to retrieve an exhaustive sample of all affix shifts from a corpus. Note, for 

instance, that part-of-speech taggers tend to assign word classes unpredictably when affix 

shifts occur, and existing tags thus cannot be used to identify candidate errors. However, 

collections of errors can be assembled in a piecemeal fashion, such as by obtaining all 

sequences with the form _____ ups or _____ upped, and then filtering to identify actual 

errors. In expanding the dataset, it will turn out to be useful to include affix errors from 

written sources. Typos may arise for many unsystematic reasons (e.g., a random finger-

slip onto the <s> key), but the patterns of interest could be observable in a large enough 

sample. Inclusion of written data needs to be selective, however; the texts should be as 

close to casual conversation as possible, so that typing errors are less subject to offline 

editing. Various corpora of online discourse (e.g., the 30 billion-word Westbury Lab 

USENET corpus; Shaol and Westbury 2010) may provide a rich source of data.  

 On the other hand, the experimental task described in this chapter may have 

applications that go beyond the original research questions of this dissertation. It turns out 

that errors such as gain weights and tears aparts were not the most common ones 

observed in participants’ responses. Inbound affix shifts on distractor items actually 

outnumbered the outbound errors that motivated this study. I will conclude this chapter 
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by briefly acknowledging this serendipitous finding, which should prove useful in future 

studies of word structure.  

Collectively, on the distractor sentences, the 29 participants produced 20 ‘early 

shift’ responses in which the –s inflection appears on the first word of the compound 

verb. An example appears in (20).   

 

(20) As the office participates in a teambuilding exercise, she plays-act at various 

situations that might arise. 

 

Such utterances are true ‘inbound’ shifts, as introduced in Section 4.0, since the 

inflection is inserted inside a lexical item. A tally of the errors for each item observed 

appears in Appendix 4.5. Additionally, there are 37 double-marked errors among the 

compound verb responses. One example is given in (21).      

 

(21) There’s little chance of tough questions at the press conference, and she 

spoonsfeeds... official policies to reporters. 

 

Responses of this sort are, in one sense, quite different from double-marked errors 

observed among the bigram stimuli (she wraps ups), since double-marked compounds 

require that an inflection interrupt a normative lexical unit. On the other hand, the double-

marking errors also speak to a certain commonality between the bigram stimuli and the 

compound verb: when such errors occur, they indicate the speaker is activating the 

complex unit as a whole (spoonfeed-s, wrap up-s) and as an assemblage of parts (spoon-s 

+ feed, wrap-s + up).  

Among the compound verbs, the shadowing methodology proves to be 

surprisingly effective at prompting early shifts, as in (19), and double-markings, as in 

(20). For ease of reference, I will refer to both of these error types as ‘inbound shifts,’ 
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since in both cases an inflection intrudes into a complex lexical unit. Almost every 

participant in the experiment produced at least one inbound shift; the average number of 

shifts is 1.93 per participant. Moreover, almost half of the compound verbs prompted an 

error, with 19 out of the 56 compounds producing at least one inbound shift.
63

 Thus, the 

affix-insertion task may afford a rich source of information about the online processing of 

compound words, which would be of interest in current research on retrieval and 

decomposition of compound words (Badecker 2001, Libben 2005, Baayen et al. 2010).  

A full analysis of the existing compound data is beyond the scope of this 

dissertation. However, a few preliminary observations are possible, offering a kind of 

mirror-image correspondence with the error patterns observed among bigram stimuli. 

First, inbound errors are more likely to occur on compounds that are low in frequency: 

playact, spoonfeed, flyfish, globetrot. Such a distribution is unsurprising; if a complex 

form such as globetrot has a weaker representation in memory, it will be more 

challenging to correctly inflect the whole unit. Secondly, if the first compound-internal 

word is very frequent as a verb, then the unit is more likely to be parsed into two words, 

and the compound-internal component is more prone to attract an inflection: playact, 

blowdry, sleepwalk, flyfish. Further, we can expect that the components of each 

compound will be activated to varying degrees, and there will be competition between 

holistic retrieval ([playact]VERB) and compositional retrieval ([[play]VERB? + [act] VERB?]]). 

Due to competition between parts and wholes, then, we would predict inbound shifts to 

be most prevalent if the compound form is infrequent, or the first word within the 

                                                 
63 Note further that 14 of the 56 compound verbs are poor candidates for prompting or detecting inbound –s 

inflections, since these items contain a sibilant at the word-internal morpheme boundary: force#feeds, 

wise#crack, side#steps, baby#sits, etc. I have thus excluded these items from the table in Appendix 4.4, and 

they are excluded from the quantitative analysis below.  
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compound is a frequent verb, or both.
64

 These predictions can be verified by investigating 

an independent variable that represents competition between wholes and parts, calculated 

by dividing the (log) frequency of the compound’s first word (e.g., the COCA frequency 

of [play] VERB) by the (log) frequency of the compound (e.g., the combined COCA 

frequencies of playact, play-act, and play act). A logistic regression using this summary 

statistic in fact yields significant results for the distribution of inbound affix shifts. The 

regression coefficient ( = 0.39) is positive, indicating that inbound shifts increase as the 

first word’s frequency increases in relation to the compound’s frequency.  The p-value 

for the regression is significant (p = 0.0005), and the fit is acceptable (pgof = 0.72).  

 Further study of experimentally-induced inbound affix shifts is warranted, and 

may proceed in tandem with additional investigations of affix errors on multiword 

sequences. It is hoped that inbound-type shifts (on compounds) and outbound-type shifts 

(on multiword sequences) can be encompassed under a broader theory of gradient 

analyzability for complex  units. The evidence suggests that frequent complex units 

(whether bigrams, or compounds) are generally more prone to being accessed as wholes. 

When components of the complex unit are themselves frequent, competition from these 

components makes compound-internal affixation more likely (or, in the case of verb-

initial bigrams, makes affixation of the verb occur readily). Conversely, when 

components of the complex unit are infrequent, diminished activation of these 

components makes holistic retrieval more likely.   

                                                 
64

 There are undoubtedly additional important factors, including, for instance, the phonotactic boundary 

within the compound word. Inbound shifts also appear to be more likely in cases where an improbable 

phonotactic transition (leap#frog, black#mail, spot#light, book#mark) encourages analysis of the compound 

as a sequence of separate words (cf. Hay 2001).    
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CHAPTER 5. CONCLUSION 

 

Generative approaches to syntax have persistently held to the view that whenever 

possible, speech will be produced or comprehended following abstract rules (Pinker and 

Ullman 2002), such that frequencies (or probabilities) are largely irrelevant to the 

grammar (Chomsky 1957, 1969). In this view, the mental lexicon contains nothing more 

than a list of ‘exceptions,’ that is, information that cannot be predicted by rule (Chomsky 

1995: 6, 235). However, it is increasingly recognized that speakers have much more fine-

grained linguistic knowledge than a parsimonious storage model would predict, and 

redundancy is rampant in the lexicon (e.g., see Jackendoff 2010: 590). Moreover, 

empirical evidence in numerous domains demonstrates that frequency is an essential 

factor in language processing and language change (Ellis 2002, Bybee 2007), including 

the representation of multiword sequences in memory.  

The view emerging from current research makes no demand that we do away with 

abstractions. However, it is clear that alongside more abstract generalizations must exist a 

complex system that is influenced by the frequencies of various units.  In Chapter 1, I 

presented an argument that if emerging units are not represented at intermediate stages 

(in some form or another), it is not clear how they can ever get stored. That is, if 

frequency of a unit ever makes a difference in cognition, frequency must always make a 

difference. Every experience has some effect, albeit small, on mental representations 

(Bybee 2006). This is hardly to say that frequency of a complex unit is the only factor 

relevant in storage and processing, since component frequencies may also be important. 

Along these lines, this dissertation set out to investigate behavioral correlates of two 

different approaches to measuring frequency of co-occurrence—involving absolute and 
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relative measures—and found evidence for both of them, supplementing other 

psycholinguistic evidence for prefabricated multiword units.   

The dictation experiment of Chapter 3 is focused on token frequency (that is, 

absolute frequency) of multiword sequences. In the verbatim memory task, significant 

differences are evident in performance between high- and low-frequency sequences. 

Most strikingly, among high-frequency multiword sequences, it is on the whole less 

likely subjects will retrieve only incomplete or disconnected parts of the sequence. These 

results indicate that absolute frequency indeed plays a role in the development of prefabs. 

Based on the current body of research, it would seem premature to reject token frequency 

as a measure of interest for multiword sequences. Although there are claims of null 

findings for token frequency in the experimental literature (Schmitt et al. 2004, Ellis et al. 

2008), these claims must be considered alongside similar studies showing that token 

frequency is a significant factor in processing multiword units, including Kapatsinski and 

Radicke (2009), Arnon and Snider (2010), and Chapter 3 in this dissertation.  

There is thus experimental support for the basic insight from usage-based theory 

that frequency of exposure is associated with the development of units (Langacker 1987). 

All the same, research into complex units may benefit from a broader perspective that 

allows for the possibility that frequencies of parts and wholes interact and compete. 

Various relative frequency measures may be used to investigate such dynamics 

quantitatively, but many prior psycholinguistic studies (Chapter 3 among them) do not 

include these metrics. Exceptions may be found in the studies by Ellis et al. (2008) and 

Ellis and Simpson-Vlach (2009), which control for Mutual Information alongside Token 

Frequency. The Mutual Information results are quite promising, but it should again be 
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noted that there are potential pitfalls in the use of MI due to a scoring bias in favor of 

low-frequency events. This problem can be partially mitigated by including only high-MI 

items which are also relatively high in absolute frequency (Evert and Krenn 2001), and 

indeed, such an approach was implemented (without comment) in Ellis et al. (2008) and 

Ellis and Simpson-Vlach (2009). It seems that the relative frequency of multiword 

sequences is not entirely separable from absolute frequency, since these measures are 

entangled in multiple ways: relative frequency is defined on the basis of token 

frequencies, and token frequency must further be taken into account to avoid spurious 

results.   

One alternate approach is to allow an additional boost from token frequency, as in 

the Mutual Dependency measure explored in this dissertation. Mutual Dependency would 

seem to be a promising summary statistic, since it provides a relatively intuitive 

representation of the competition between wholes and parts, while also being 

mathematically sound. In the studies of Chapter 4, Mutual Dependency offers a useful 

account of the distribution of outbound affix shifts and related errors. Across the errors 

collected from naturalistic contexts as well as the experimental setting, high MD is the 

measure which consistently predicts the retrieval of two-word sequences as units.  

 Nevertheless, the quantitative analysis of the affix error data is unquestionably 

problematic when Token Frequency and Mutual Dependency are included in the same 

model—perhaps due to the definitional overlap between Token Frequency and MD, and 

associated collinearity. Among the experimentally-induced errors, initial analyses 

indicate that the frequency pattern is contrary to expectations, with affix errors most 

likely among bigrams that are low in Token Frequency (as well as being high in MD). 
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Post hoc analysis based on individual component frequencies may provide the clearest 

picture of the different factors involved in the experimental affix shifts. This followup 

analysis indicates that a two-word sequence is more likely to be processed as a unit when 

the component words are infrequent, and the sequence itself is frequent. That is, Token 

Frequency is positively associated with holistic retrieval when component-word 

frequencies are taken into account. Indeed, this regression model has the best fit when all 

component frequencies are included (frequency of the whole sequence, and frequency of 

the two component words), and the model fit is superior to that of the original model 

including Mutual Dependency alongside Token Frequency. Such componential frequency 

analyses thus seem to be promising for future research.      

 In sum, the studies presented in this dissertation provide evidence that the 

frequencies of complex units, in addition to the frequencies of their component parts, are 

registered in cognition. It is reasonable to maintain that absolute and relative frequencies 

both have effects on the processing and retrieval of multiword sequences. Some of these 

effects may be overlapping, given that relative frequencies can be said to arise from the 

competition between absolute frequencies of different units. Other effects may be 

separate, based on evidence from the grammaticalization of complex units that contain 

highly-frequent parts. As argued in Chapter 1, it may be possible for multiword 

sequences that are of extreme high frequency to be retrieved holistically, irrespective of 

high frequencies among component words (Bybee 2010).  

Moreover, the simultaneous tracking of absolute and relative frequencies may 

actually be part of a bigger, and more complex, picture. Note for instance that syntactic 

constructions can be primed (Bock 1986), and that language processing is sensitive to the 
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frequencies of particular syntactic constructions (Jurafsky 1996). Thus, the occurrence 

and frequencies of more abstract grammatical patterns must be registered in cognition as 

well, and syntactic competence may actually arise from higher-order statistical operations 

over abstract types (Seidenberg et al. 2002). Perhaps most importantly, the registering of 

higher-order co-occurrence patterns may be essential to the development of new 

semantic-pragmatic associations, and the development of new multiword units. The 

recurrence of multiple items in sequence is, in its own right, the impetus for gradual 

change (Bybee 2002), but certainly the registering of higher-order patterns (e.g., 

observing when units X and Y occur in sequence, in context Z) may allow associations to 

form with a larger communicative context (Bybee 2010).  

The multifaceted account of frequencies sketched here may seem to be needlessly 

baroque, if one starts from the viewpoint that frequency should be excluded from 

grammatical knowledge. Yet these various dynamics are matters for empirical inquiry, 

and explanation is needed when quantitative patterns of usage (inferred from corpus 

analysis) correspond to observable differences in behavior, whether in casual speech or in 

experimental settings. The studies in this dissertation support the basic insight that 

language structure and language usage are intertwined, and this interrelationship includes 

the gradual development of new multiword units.    

 

 

 

 

 

 

 

 

 

 



177 

 

 

 

APPENDICES  

 

Appendix 3.1. Spoken BNC frequencies of the target sequences in Schmitt et al. 

(2004). The experiment data from Schmitt et al., previously presented in Table 3.1, 

is re-presented here for ease of comparison.  

 

target cluster 

Spoken 
BNC 
Frequency 

Produced 
correctly 

Partially 
incorrect 

Not 
produced 

Schmitt Mean 
performance 

Reanalysis: 
Mean 
performance 

to make a long story 
short 0 23 3 4 1.633 66.67 

I don't know what to do 45 27 2 1 1.867 83.33 

to give you an example 7 8 10 12 0.867 -6.67 

as a matter of fact 56 21 4 5 1.533 56.67 

from the point of view 54 19 5 6 1.433 46.67 

in the same way as 39 3 11 16 0.567 -26.67 

is one of the most 18 27 2 1 1.867 83.33 

in the middle of the 172 17 2 11 1.200 50.00 

aim of this study 0 2 16 12 0.667 -46.67 

it's not too bad 50 16 11 3 1.433 16.67 

I see what you  71 3 25 2 1.033 -73.33 

you've got to have 151 16 10 4 1.400 20.00 

as shown in figure 0 3 17 10 0.767 -46.67 

what I want to 111 21 6 3 1.600 50.00 

it was going to 72 21 6 3 1.600 50.00 

as a consequence of 15 13 6 11 1.067 23.33 

in a variety of 14 15 11 4 1.367 13.33 

in the number of 22 18 9 3 1.500 30.00 

in addition to the 32 18 10 2 1.533 26.67 

night and day 11 16 1 13 1.100 50.00 

on and off 66 25 0 5 1.667 83.33 

something like that 923 16 5 9 1.233 36.67 

go away 350 28 0 2 1.867 93.33 

for example 1106 18 0 12 1.200 60.00 

you know 30814 24 0 6 1.600 80.00 
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Appendix 3.2. Stimulus sentences for the dictation experiment of Section 3.2.  

 

Practice sentences:  

P1. Later that night we drove along the famous Sunset Boulevard, which had an amazing 

view although the traffic was extremely slow.  

23 + 44 = ___ 

 

P2. Yesterday the Chief Justice simply announced that the case was pending, to the 

disappointment of those who had hoped for a quick ruling.  

56 + 37 = ___ 

 

Trials:  

 

1. In general the company never liked criticism from employees, but eventually the policy 

changed as a result of the worker’s complaint.  

14+ 38 = ___ 

 

2. Once Sam realized he had misplaced his glasses, he turned the car around and went 

back to the bank.  

82+19=___ 

 

3. One of downtown’s most memorable landmarks is an elaborate church, which dates  

to the same time as the famous courthouse.   

33 + 17 =___ 

 

4. Even though dad complained about the constant clutter, the kids left their shoes lying 

in the middle of the living room. 

21 + 56 = ___ 

 

5. These days, architects see the appeal of traditional building materials, and are  

looking to the past for more creative alternatives. 

14 + 77 = ___ 

 

6. The panel accused the organizers of using bribes to influence the decision, including 

one scholarship for the child of an official.  

38 + 26=___ 

 

7. The two neighbors were talking over the backyard fence, but they were interrupted 

when 

all of a sudden their dogs started barking.    

57 + 41=___ 

 

8. I do not yet know if I will attend the meeting, but I will give you an answer as soon as I 

can.  

34+67=___ 
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9. I tried to talk with my neighbor about politics and current events, since he showed 

interest 

 in things of that nature.  

67+ 29=___ 

 

10. As the violent blizzard raged on, the farmer still had to walk out to the shed to get 

firewood.   

44 + 49=___ 

 

11. The group has pushed for a more active role, but they have encountered resistance 

 on the part of most family doctors.   

15+37 =___ 

 

12. Since I was still fond of my old car, I refused to look for a new one, in spite of my 

mechanic’s advice.  

77+18= ___ 

 

13. When the phone rang, I set my book on top of the refrigerator, then spent most of an 

hour trying to find it again.  

25+59 =___ 

 

14. The musicians asked the audience to shout out suggestions, and they chose the best 

one as the name of their band.  

13+47 = ___ 

 

15. After the tenants overflowed the tub, the water flooded over the bathroom floor and 

dripped through to the basement.  

57+16= ___ 

 

16. The new bill increases penalties for white-collar criminals, arguing they should be 

sentenced in the same way as other criminals.  

33+38=___ 

 

17. Although it shows increasing signs of a change, Mobile is a city rooted firmly 

in the style of the Deep South.  

64+ 27=___ 

 

18. Last year, the actor was praised for playing the famous scientist, but according to 

relatives it was not a realistic portrayal.  

82+17=___ 

 

19. The study finds that more people are deciding to postpone having children, usually 

making this choice for the sake of a career.   

24+ 58=___ 

 

20. The current gallery exhibit seems oddly familiar to me, because the drawings are  
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all of a boy who lived in my neighborhood.  

49 + 29=___ 

 

21. The ongoing research project will be the largest in the department’s history, if we 

describe it in terms of total expenses. 

16+56=___ 

 

22. The little girl struggled to carry the branch to the campfire, because it was really 

almost  

as big as she was.  

24+ 74=___ 

 

23.When his savings and work schedule permitted it, the baker would spend time  

out of the country visiting family.  

37 + 24=___ 

 

24. The president argued that there was no real peace in the region if small countries 

lived 

in fear of more powerful neighbors. 

47 + 36=___ 

 

25. In the garden, we found insect damage on half of the plants, so we decided that we 

might have better luck next year.  

68 + 23=___ 

 

26. The actor took time off from his usual profession, and wrote a screenplay based on 

the life of his own father.   

18+ 45=___ 
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APPENDIX 4.1. Listing of the 56 stimulus sentences containing the verb bigram 

stimuli. Sentences are presented in matched groups of four. The following bin labels 

apply throughout: 

(a.) Low Token Frequency, Low Mutual Dependency 

(b.) High Token Frequency, Low Mutual Dependency 

(c.) Low Token Frequency, High Mutual Dependency 

(d.) High Token Frequency, High Mutual Dependency 

 

1. Intransitive Phrasal; Verb + Adv. Domain: miscellaneous domestic. 

a. When the apartment fills with the odor of burnt pasta, they move up to the roof to 

breathe some clean air.  

b. Although gardening used to seem like an awful chore, these days they get down in the 

dirt, happy to pull weeds.  

c. Since there’s not much else to do before it’s time to go, they settle down on the couch 

with the remote control.  

d. Because the noise from the train tracks is almost nonstop, they wake up in the 

morning feeling groggy and dazed. 

 

2. Intransitive Phrasal; Verb + Adv (Idiomatic). Domain: jobs/employment.  

a. It’s a constant source of frustration around the office, but they give in whenever the 

boss asks for overtime.  

b. The restaurant is short of cooks during the night shift, so they fit in very well with the 

rest of the team.  

c. By not remembering the time zone difference, they screw up the time for the 

teleconference.   

d. It’s hard to find time to exercise during the week, so they work out during lunch 

breaks whenever possible. 

 

3. Intransitive Phrasal; Verb + Adv (Idiomatic). Domain: miscellaneous social, 

leisure. 

a. Although it’s tempting to go on vacation immediately, they hold off until gas prices 

start to decline again.  

b. Once the yanking on the leash becomes truly painful, they let go and the dog chases 

after the squirrel.  

c. The long hike turns out to be easier than expected, but they freak out about having no 

cell phone service.  

d. Instead of going to the library as originally planned, they hang out at the beach to 

enjoy the weather.  

 

4. Transitive Phrasal; Verb + Adv. (Idiomatic/metaphorical). Domain: news, 

politics, legal. 

a. In the editorial about the upcoming political race, they leave out the fact that the 

candidate was later found not guilty. 

b. Although it may prove to be costly in the election, they take on the issue of raising the 

minimum wage statewide.  

c. Even though the topic of energy has not been addressed, they wrap up the closed 
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session with state lawmakers. 

d. Now that the testimony from both sides is complete, they add up the evidence for and 

against the defendant.  

 

5. Transitive Phrasal; Verb + Adv. Domain: miscellaneous domestic.  

a. When the neighborhood party is left without a coordinator, they seek out potential 

volunteers to be in charge.  

b. When the date for the annual yard sale approaches, they cut out yellow letters to 

create distinctive signs.  

c. After the thunderstorm knocks out the electricity, they tear apart the junk drawer 

searching for a candle.  

d. After checking in with the city planning department, they figure out the reason that 

street traffic is increasing.  

 

6. Verb + Modifier (Adj or Adv). Domain: miscellaneous social, informal.  

a. After spending the afternoon turning the backyard compost, they smell bad enough to 

draw stares from everyone on the bus.  

b. The agency spends a week editing photos to send to the magazine, but they look good 

in just about all the pictures to start with.  

c. To reward the students for completing more tedious assignments, they read aloud 

from children’s books an hour each day.   

d. While planning the surprise for the kids’ birthday party, they make sure no one is 

watching before sneaking off to the store.  

 

7. Verb + mass noun direct object. Domain: holidays, parties, social.  

a. To avoid having to wait in long lines at the store, they buy food for the party during 

the previous weekend.  

b. Attending the concert no longer seems reasonable once they see people camped out 

waiting for tickets.  

c. Because the treats back home are always so delicious, they gain weight over the 

holidays with little regret.  

d. Although New Year’s Eve used to be a huge deal every year, now they stay home all 

evening with the two sleeping kids.  

 

8. Verb + Prepositional Phrase. Domain: political, legal.  

a. To avoid the throngs of reporters on the steps, they walk at a brisk pace toward the 

packed courtroom.  

b. As the senator listens and jots a few notes, they point to a variety of problems with the 

old law.  

c. To stall for time while the bill is being revised, they interfere with the process of 

bringing it to the floor.  

d. Despite the ads about switching to green energy, they depend on contributions from 

the coal industry.  

 

9. Verb + Prepositional Phrase. Domain: miscellaneous social, informal.  

a. As the conversation veers onto more personal topics, they speak in rapid bursts with 
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infectious enthusiasm.  

b. It might not be necessary to post a listing on the internet, because they know of 

someone who likes to collect antiques. 

c. Suddenly the game erupts into a pillow fight, and they fall off the bed, laughing and 

unable to breathe.  

d. The school group’s spirits are noticeably raised once they pay for everyone to play a 

round of miniature golf.  

 

10. Verb + Prepositional Phrase. Domain: arts, media, pop culture. 

a. In this age of Twitter, Facebook, and nonstop viral videos, they fear for the future of 

serious art and literature.   

b. Suddenly the late night studio is crowded with groupies and agents, because they 

come with an entourage to every public appearance.  

c. Even though the interview is before 9:00 on a Sunday, they arrive at the hotel acting 

surprisingly perky.  

d. Although the new movie project is attracting a new audience, they worry about 

abandoning faithful viewers of the series.   

 

11. Verb + Prepositional Phrase. Domain: academic interactions.  

a. As students dodge one another in the busy hallway, they run after the professor to 

learn when grades would be posted.  

b. Although the specific details will have to be debated, they agree on the timetable for 

syllabus revisions.  

c. Based on the overall performance on the midterm exam, they insist on having a 

review session before the final.  

d. On the first day of class in the seminar for majors, they talk about real-world 

experiences that are relevant.  

 

12. Verb + Pronoun. Domain: social, food.  

a. When no one seems interested in the day-old doughnut, they offer it to the dog sitting 

under the table.  

b. Though bringing dessert is part of the dinner party ritual, they conveniently forget it 

when the expert is invited.   

c. After the success of last year’s Thanksgiving turkey, they finally trust me enough to 

put me in charge.  

d. When inviting friends over for the following Sunday, they call it a brunch even though 

it will be mid-afternoon.  

 

13. Verb + X (+ Verb). Domain: travel, vacation.  

a. The Pacific Crest Trail has always seemed very alluring, and they resolve to hike it by 

the end of the decade. 

b. After many hours of driving the kids are restless, and they hope to find a hotel that 

has an outdoor pool.  

c. It’s been a long trip on airplanes and rental cars, so they recover from traveling by 

resting all day.  

d. Because the blinding rain floods onto the highway, they need to drive at a crawl for 
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more than an hour.  

 

14. [Bonus round.] Verb + Prepositional Phrase. Domain: miscellaneous informal.  

a. When it suddenly becomes urgent to leave, they pay at the register to speed things 

along.  

b. Since the hometown job prospects are not promising, they move to another city to try 

to find work.   

c. The old neighborhood seems like a distant memory as they walk through an 

overgrown parking lot. 

d. During a relaxing stroll in the orchard, they look at all the buds opening on the trees.  
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Appendix 4.2. Listing of the 56 distractor sentences containing compound verbs. 

Although it’s unlikely any cars will be affordable, they test-drive a couple new models to 

try them out. 

In the car theft roleplaying video game, they hotwire the sportscar while the owner is 

distracted.  

In the series of young adult science fiction novels, they timetravel using what appears to 

be an old couch.  

After learning about the genealogical website, they bookmark the page for future 

reference.  

There’s little chance of tough questions at the press conference, and they spoonfeed the 

official policy to reporters.  

The department claims to be free of any bias, but they cherry –pick the data to reach a 

conclusion.  

During the interview, the scandal is unavoidable, but they sidestep all those questions 

rather abruptly.   

By phoning sources and verifying information, they safeguard against journalistic 

carelessness and fraud.  

At first it seems like the ignition is completely dead, but they jumpstart the car with old 

cables from the garage.  

After rejecting the idea of sending an email, they hand-write a thank-you note since it 

seems more personal.   

Before heading to the barbecue at the park, they doublecheck the rules about whether 

pets are allowed. 

Although the visit is intended to be leisurely, they jam-pack each day with errands and 

projects. 

The afternoon radio show features diverse music, and today they spotlight the new 

album from a ska band.    

After years of performing in relative obscurity, they skyrocket to fame on the basis of 

one hit single.   

When the grant money fails to materialize as planned, they bankroll the exhibit to save it 

from being canceled.  

With an angry tirade about not returning past favors, they strongarm the club owner 

into booking a gig.  

After considering many ways to cook the chicken, they deepfry it in spite of all the health 

concerns. 

The pie recipe has evolved over many years, and they still fine-tune it every once in a 

while.  

Based on years of planning organic meals at home, now they mastermind intricate 

dinners at the cafe.  

Despite not being invited to the winetasting, they freeload samples from the event in the 

lobby.  

To decide on possible directions for the paper, they brainstorm ideas with the professor 

for an hour.  

Although a fifteen-page limit seems long enough, they underestimate the depth of the 

paper topic.  

In the middle of a long philosophy lecture, they daydream about adventures during 
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Spring Break. 

While chatting during the break in the seminar, they wisecrack about having to 

purchase the teacher’s textbook.  

In private conversations when everyone is honest, they badmouth the corner neighbor 

for being meddlesome.  

Despite the security hired by the business owners, they panhandle aggressively out in 

the parking lot.  

After earning a reputation for doing a good job, they housesit when anyone in the 

complex travels.  

To prepare for all the impending rental turnovers, they mass-produce welcome packets 

for new tenants.  

Sometimes if there’s a late-night gathering, they babysit the kids to earn some extra 

cash.  

The party is festive and full of warmth, and they bearhug all the arriving friends and 

relatives.  

To throw together some clothes for the festival, they tie-dye a few shirts in the washing 

machine.  

In the middle of the crowded and noisy bar, they overhear an acquaintance telling a 

partial truth.  

While drinking several pots of strong coffee, they leapfrog from topic to topic in a long 

discussion.   

To learn how to maneuver the old kayak, they zigzag all over the pond for an entire 

morning.  

After four weeks of the intense exercise program, they bench press almost twice as much 

as before. 

Although the open ocean might be more exciting, they windsurf in the bay where waves 

are moderate. 

Though usually it doesn’t seem worth the effort, they dryclean the heirloom jacket to be 

extra careful.  

After soaking and scrubbing the stain on the carpet, they blowdry it carefully so no one 

will notice.  

In anticipation of a dangerous, dry season, they fireproof the house by replacing the 

roof tiles.  

So that the guest room seems more inviting to children, they wallpaper the room with a 

cloud and bunny design.  

Whenever the copier mechanism jams, they forcefeed the blank paper in manually. 

As the office participates in a teambuilding exercise, they playact at various situations 

that might arise.  

In addition to having more steady employment, they moonlight in a country band on 

most weekends.  

According to a rumor in the company, they always blackmail the boss to receive 

promotions.  

Even though the practice has been much criticized, they earmark funds for a special 

project in two districts.  

Based on advice from the book agent’s lawyer, they copyright the manuscript before 

mailing it out.  
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Because the candidate is a long-time acquaintance, they fundraise for the campaign as 

volunteers.  

According to the case presented by the prosecutor, they routinely shoplift for the thrill it 

brings.   

Because the frequent flyer miles will expire soon, they globe-trot for weeks to seize the 

opportunity.    

The cabin rental by the river is miles from town, and they flyfish all afternoon to provide 

dinner. 

Now that the boat restrictions have been lightened, they waterski every year at the 

artificial lake.  

After missing the exit ramp on the dark highway, they backtrack for many miles before 

finding the road.   

Distractors for bonus round at end of experiment:  

According to a series of local legends, they sleepwalk to the river when the moon is full.  

In fulfillment of a longstanding ambition, they hang-glide over the valley on a spring 

day.   

Because there is such an enormous harvest this year, they freezedry most of the berries 

from the garden.  

In response to the embarrassing typo on the cover, now they proofread every manuscript 

twice before printing. 
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Appendix 4.3. Practice sentences used before the experiment.  

Both for the sake of exercise and reducing expenses, they bike the 6-mile commute every 

weekday. 

Though it’s usually better to schedule an appointment, they also accommodate more 

spontaneous visits.  

To draw attention to less familiar menu items, they choose something to feature as a 

nightly special.  

As part of a crusade against spending waste, they spearhead the investigation into failed 

programs.  

On the busy corner throughout the summer season, they breakdance in front of excited 

spectators.  

Out in plain view but escaping everyone’s notice, they pickpocket sneakily through the 

crowd of tourists.  
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Appendix 4.4.  Re-presentation of the 56 bigram stimuli, including frequency counts 

of the bigram components (from Spoken COCA). Corpus searches pertaining to 

F(V) are constrained by part of speech.  
 

 
LOW FREQUENCY 

  
                          HIGH FREQUENCY 

   
   

   
   

   
   

   
   

   
   

 H
IG

H
 M

D
 

BIGRAM 
BIGRAM 
FREQ 

BIGRAM 
MD F(V)  

 
F(w2) BIGRAM 

BIGRAM 
FREQ 

BIGRAM 
MD F(V) 

 
F(w2) 

1.settle 
down 204 14.63 1734 

 
90508 1.wake up 1865 19.28 2225 

 
233482 

2.screw up 119 14.20 308 
 
233482 2 work out  1839 15.01 36216 

 
270881 

3.freak out 60 13.60 102 
270881 

3.hang out 695 15.61 3391 
270881 

4.wrap up 276 14.97 971 
 
233482 4.add up 665 14.59 7344 

 
233482 

5.tear apart 21 13.76 679 
 
4478 5.figure out 4621 20.18 6326 

 
270881 

6.read aloud 24 14.36 18227 
 
143 6.make sure 10647 21.01 103464 

 
49506 

7.gain 
weight 93 16.39 1857 

 
5165 7. stay home 546 14.59 22242 

 
51792 

8.interfere 
with 383 15.51 550 

 
546640 8.depend on 1103 16.85 1459 

 
673655 

9.fall off  211 13.93 4413 61799 9.pay for 4689 17.08 20493 737067 

10.arrive at 363 14.26 1584 
 
405469 

10.worry 
about 3974 19.07 6638 

 
411223 

11.insist on  378 13.77 1446 
 
673655 11 talk about 28166 21.64 56472 

 
411223 

12.trust me 504 14.61 4374 
 
220828 12.call it 4677 15.72 27512 

 
1401667 

13.recover 
from 311 14.30 1390 

 
329733 13.need to 28042 19.03 54108 

 
2590553 

B.walk 
through 393 14.61 8675 

 
68125 B.look at 32791 21.65 76959 

 
405469 

MEAN 238.6 14.49 3307.9 
 
224559.2 MEAN 8880.0 17.9 30346.4 

 
572268.7 

   
   

   
   

   
   

   
   

   
   

  L
O

W
 M

D
 

1. move up 214 10.10 17015 
 
233482 1.get down 986 12.24 211305 

 
90508 

2. give in 296 6.67 52448 1560158 2. fit in 568 12.70 2963 1560158 

3. hold off 204 12.28 12947 61799 3.let go 749 11.45 112634 169428 

4. leave out 132 8.42 17881 270881 4.take on 2372 12.96 99948 673655 

5. seek out 175 12.10 2455  5.cut out 567 12.87 15082 270881 

6. smell bad 11 8.61 1051 
28028 

6.look good  833 12.59 76959 
 
139555 

7. buy food 69 11.10 13644 
 
15179 7.see people 708 10.08 139252 

 
316865 

8. walk at 22 3.71 8675 405469 8.point to 824 12.20 5301 2590553 

 9. speak in  254 8.30 12507 1560158 9.know of  1631  8.26 401401 2055523 

10. fear for 136 9.84 2606 
 
737067 10.come with 813 10.15 101723 

 
546640 

11. run after 35 5.93 19821 
 
96897 11.agree on  1330 13.57 20638 

 
673655 

12. offer it 84 6.79 4341 1401667 12.forget it 618 11.79 7350 1401667 

13.resolve to 33 4.60 1648 2590553 13.hope to 1773 12.51 19776 2590553 

B.pay at 53 5.01 20493 405469 B.move to 1242 11.70 17015 2590553 

MEAN 122.7 8.1 13395.1 688406.3 MEAN 1072.4 11.8 87953.4 1119300 
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Appendix 4.5. Table of inbound errors (early shifts and double-marked) on compound 

distractors. Frequency counts are drawn from COCA (450 million words). This table 

excludes 15 items which were unsuitable for quantitative analysis: 14 contained sibilants at 

the morpheme boundary, and yielded no detectable errors. One additional item (finetune) 

was excluded, even though it generated 9 errors. Post-experiment discussions with 

participants indicated the item was often perceived as find tune, thus making quantitative 

analysis of fine questionable.    

COMPOUND 

VERB 

FREQUENCY 

OF COMPOUND 

FREQ. OF 

COMPOUND’S 1ST 

WORD (as a verb) 

# EARLY 

SHIFTS 

(plays-acts) 

#DOUBLE 

MARKINGS 

(plays-acts) 

TOTAL 

INBOUND 

SHIFTS 

playacts 18 85877 6 5 11 

blowdry 245 8242 2 3 5 

blackmail 880 154 2 3 5 

leapfrog 306 2229 2 3 5 

bookmark 237 696 1 3 4 

spoonfeed 25 978 0 4 4 

flyfish 63 16944 3 0 3 

sleepwalk 66 20310 1 2 3 

spotlight 4780 4051 0 3 3 

globetrot 5 0 1 1 2 

handwrite 19 1840 0 2 2 

bankroll 234 660 0 2 2 

timetravel 523 3382 1 0 1 

backtrack 315 6370 0 1 1 

jampack 8 1219 0 1 1 

deepfry 85 0 0 1 1 

underestimate 1658 0 0 1 1 

bearhug 250 13729 0 1 1 

tie-dye 106 6381 0 1 1 

hotwire 95 0 0 0 0 

dryclean 62 4807 0 0 0 

fireproof 171 6758 0 0 0 

wallpaper 1812 6758 0 0 0 

moonlight 2831 167 0 0 0 

earmark 353 1 0 0 0 

copyright 8090 2351 0 0 0 

fundraise 60 4491 0 0 0 

shoplift 88 3602 0 0 0 

hangglide 13 16041 0 0 0 

proofread 458 82 0 0 0 

cherrypick 77 0 0 0 0 

safeguard 1536 0 0 0 0 

doublecheck 373 3885 0 0 0 

skyrocket 360 22 0 0 0 

strongarm 340 0 0 0 0 

mastermind 773 2429 0 0 0 

freeload 24 6460 0 0 0 

daydream 451 10 0 0 0 

badmouth 97 0 0 0 0 

panhandle 892 1232 0 0 0 

overhear 422 5 0 0 0 
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