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Caustics and virtual cathodes in electron beams
By EVANGELOS A. COUTSIAS

Department of Mathematics and Statistics, University of New Mexico, Albuguergue,
New Mexico 87131, U.S.A.

{Received 22 April 1987)

A simplified model is discussed that captures the basic physics of the
phenomenon of oscillatory virtual cathodes in electron beams. A monoenergetic
non-relativistic one-dimensional electron beam is injected through a conducting
grid into a semi-infinite drift space. Attraction from image charges (and.
possibly. an adverse externally applied electric field) cause particle reflection
and the formation of a caustic where the charge density has an integrable
singularity. The steady-state solution of the Vlasov equation deseribing the
flow is known from numerical simulation to be unstable. but analytical
demonstration of this instability has proved intractable. Here we derive an
integral-delay equation describing the time-dependent evolution of the electron
beam under the assumption that the caustic accelerates much more slowly than
the electrons in its neighbourhood and thus at most two streams are present
at each point. Under this assumption we show that the charge singularity is
~ |lz—z in the presence of an external field, exactly what it would be for
non-intera?t-ing particles, but in the absence of applied field it is weaker,
~ (x—x,)7%. Our methods can be used to estimate the charge singularity, and
thus the collisionless ‘shock conditions” for virtual cathodes in any geometry.
The importance of delay effects for the onset of beam oscillations is
demonstrated in an exactly solvable version of the model in which the
interaction between the two streams is ignored. This solution, although
unphysical, can provide a means for testing the performance of numerical
schemes, which have difficulties in problems of this type due to the charge
singularity.

1. Introduction

Virtual cathode oscillations were first encountered in the study of diode tubes
(Birdsall & Bridges 1966). Their occurrence in all space-charge-limited devices
(Miller 1982) makes them an essential feature of non-neutral plasma flows
interacting with conducting walls. Current interest in this phenomenon is due
mainly to applications of intense charged particle beams in inertial confinement
fusion (Kuhn 1984) and microwave generation (Sullivan ef al. 1984). Fer a more
detailed discussion see Coutsias & Sullivan (1983) and references therein. Miller
(1982) is an excellent introduction to the subject. providing all the necessary
background material, while Whitham (1976) supplies the necessary mathe-
matical techniques.

In this study we consider the simplest physical arrangement in which virtual
cathode (VC) oscillations oceur (figure 1j: a non-relativistic monoenergetic
electron beam is injected in the positive x-direction in a semi-infinite vacuum,
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$=0

FiGure 1. Schematie of model : a mononergetic electron heam is injected through an infinite
planar grounded conducting grid from the left against an adverse electric field E.

through an infinite grounded conducting grid at = = 0. A constant electric field
E_ is applied, repelling the electrons towards the grid. The injection velocity of
the electrons is u(0.t) = u, and charge density n{0,!) =n;. A very strong
magnetic field in the z-direction, B, ~ o, ensures that the beam stays one-
dimensional. If we ignore radiation effects (which should be included if one
wants to study microwave generation) and collisions (justified for typical beam
densities of 107" em™) the flow is deseribed by the one-dimensional Viasov
equation (Davidson 1974)

Ouf +u 8 f— (B + Epu) 8,/ =0, (L.1)

where f = f(u, z. 1) is the electron velocity distribution function, from which the
electron charge density = is found as

nlz, t) = J Sflu, x, t)du. (1.2)
The self-consistent electric field satisfies
3 1
OB oy) = Z—ny, (1.3)
i €0

so that the total electric field is given by

E=E_+-%| ndx. (1.4)
€ &

@

We assume a monoenergetic beam. so that the distribution function has the
form

Jlu, z. 1) = Sayfz, 1) fu—uz, ). (1.5)
i
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The reason we consider a Vlasov equation instead of a Huid description lies
in the fact that we expect the presence of multiple streams. This means that the
functions » and u in (1.3)-(1.5) are expected to be multi-valued in general. and
the summation in these expressions is over the various streams present at each
point of the space.

Introduecing the dimensionless variables

" E : i v @ B
E=——m— " uw=—, =z =——ux,
E, i, m oug - (1.6)
{,:-8_&!! n’ = H_' '__f_,
m g [l |7l
(1.1)-(1.4) become
def+ua f'+Eé,f =0, (1.7a)
fO,u, y=—é8(u"—1) (v >0), (1.75)
E= 1+;1E,--[ n;ds, n'=J [ du, (1.7¢c-d)
=T u’
ith _ uglngl
= (e/m)e, B2 (L.8)

a dimensionless parameter measuring the ratio of self-consistent to external
field. In the subsequent discussion we deal with (1.7a-d). dropping the primes
for convenience.

In §2 we derive the steady-state solution and we see that it is a double-
streaming state with electrons coming to rest at some distance x = z_ from the
grid and then being accelerated back to the grid. The charge density becomes
infinite at x,. but the singularity is integrable, of type ~ (r,—z)*. In the limit
of vanishing external field the singularity is weaker, ~ {xm—x}‘%, but still
integrable.

A Lagrangian description of the flow in terms of particle trajectories shows
that in a space—time diagram the trajectories have an envelope at x = x,, which
we shall refer to as a caustic, using the terminology of geometrical optics (figure
2). Simulations show that this flow is numerically unstable and, at least in the
case £_ = 0 of no imposed field, that there is no unique caustic for the time-
dependent state (see figures 6-8 of Dunn & Ho 1963). Any effort to prove the
instability of the steady state analytically must take account of the density
singularity in perturbing around the steady state, and the fact that in time-
dependent states the singularity moves and might break into several branches.
However, it is possible to give a discussion for the case of perturbations of the
steady state that result in modulations of the caustic preserving the double-
streaming property. A sufficient condition for such a perturbation is that the
acceleration of the caustic be much smaller than the acceleration of the particles
passing through each of its points. This is because in this case (see figure 2) the
particle trajectories in the (x, f) diagram will stay always on the grid side of the
caustic.

Under this assumption, we formulate a double-streaming model of the flow
with a gently modulated caustic. We close §2 with the derivation of an exact

=]
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FicUre 2. The beam envelope: the points shown have Eulerian co-ordinates (1, r) as follows:
(1) (83, 0)3 (2) (8, +T(sy). Ylsy (5,005 (3) (L )5 (4) (83 = S7(L ), 0): (B) (8, + Rfs,). 0).

system of equations that describe the time-dependent behaviour of the caustic.

This system seems extremely difficult to solve in general, but it can be used to

draw several conclusions.

In §3 we present a linearized analysis of this system for the special case of no
externally imposed field (A— 20). Since our main purpose is to show the
difficulties involved in such analyses, we do not present the case for general A
We conjecture that for small enough A the steady state is stable, since in this |
limit the self-interaction that is responsible for destabilization becomes
arbitrarily weak. We have not been able to find a rigorous proof of this
assertion. We derive an integral equation that can be analysed, in principle.
with the help of the computer to yield a “dispersion relation’ for the small-
amplitude behaviour of double-streaming perturbations of the steady state.

In §4 we show how to derive the form of the charge singularity at the caustic.
It turns out that the charge singularity on a weakly accelerating caustic is the
same as for the steady state.

. In §5, by ignoring the interaction between the two streams, we produce an
exact solution of the integral equations found in §2. For A sufficiently small
there is a steady state that is stable, and we find its domain of attraction. There
is also an unsteady oscillatory state that eventually leads to a breakdown of our
assumptions. Above a critical value of A (= {), the domain of attraction of the
steady state vanishes and the oscillatory state disappears. The solution grows
until a point where, again, the assumptions leading to our model break down.
In any case. we obtain a time-dependent solution valid for a certain finite |
time. ]

2. The two-stream model

In this seetion we present a formulation based on a Lagrangian (charac-
teristic) description that assumes the presence of two streams. The discussion
of the steady-state solutions of (1.7) given at the end of the section will help to
further clarify the reasons for this choice.
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In Lagrangian coordinates each point in space is represented in terms of the
particles that occupy it at a given time by

r=xz(s. ). t=1, (2.1)

where ¢ is the physical time and s is the entry time of the particle passing by the
position x at time £ Obviously, in the case of multiple streams, the
transformation (2.1) is many-to-one. Throughout we shall assume that the
shape of the trajectories in an (x, t) diagram is typified by figure 2, i.e. there is
an envelope, x = 1/(f). so that there are always two trajectories crossing every
point with x < i and for = = i the trajectories are tangent to the envelope. We
see that when two trajectories cross at some point (z < (). t), say withs = s,
and s =5, > s,, then all the particles (sheaths) that entered the drift space
between ! =3, and {=s, are further from the grid than z. In the one-
dimensional geometry we consider the self-consistent field on a particle at z is
due only to the total charge further away from the grid than x (and its image)
and is independent of distance. We may think of our particles as sheaths of
charge.

We shall use the convention that a particle is on the ascending (+) phase of
its motion before its encounter with the caustic and on the descending (—)
phase after that encounter. The expressions S'¥(t, s) (figure 2) give the entry
time of the descending (ascending) particle crossing the trajectory of the
ascending (descending) particle that entered at time ¢ and is at the point with
Eulerian co-ordinates (z, f).

We define 7'(s) to be the time it takes for the particle entering at t = s to reach
the caustic, so that (see figure 2)

z(s+T(s), 5) = Y(s+T(s)), (2.2)

and £(s) to be the time it takes for the particle entering at { = s to return to the
grid:

| z(s+ R(s), s) = z(s, s) = 0. (2.3)
' For convenience, we define
0 < AX(L, 8) = H(S%(t, 5)—s). (2.4)
In these co-ordinates we also have that
r(s.5)=1 (2.5)
is the entry velocity ; x,(s+7(s). 5) =Y (s +T(s)) (2.6)
guarantees that particle trajectories are tangent to the caustic: and
z(s+T(s),8) =0 (2.7)

is the geometric condition that the trajectories have an envelope. In the last two
expressions no distinction is’ made as to whether we speak of ascending or
descending trajectories. First derivatives of the trajectories are continuous on
the caustic, but self-interaction introduces discontinuities in higher derivatives.

R
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With these definitions, the equation describing particle trajectories (the
equation for the characteristics of (1.7)) becomes

é’x =

=r=—1-28%(,3), (2.8)
where the top SIgn (—) is taken if s €1 < s+7T(s) (ascending phase) and the
bottom sign (+) is taken if s+T(s) << s+ R(s) (descending phase). This
equation simply expresses the fact that the collective force on a sheath at
position z is proportional to the total number of sheaths whose distance from
the grid is greater than x (figure 2).

Integrating (2.8) subject to the conditions (2.2)-(2.7), we find for the particle

trajectories the expressions

x(t, 5) =—§(!—s)2+{i—s)—AJ‘(f—g)A'(g, s)df fors<t<s+T(s), (2.9)
z(t, s) = =4t =s=T(s) PP+ (s +T(s)) [t=s=T(s)]+ (s +T(s))
—Af (I—&)A™(E, s)dE fors+T(s) <t<s+R(s). (2.10)
£+ T () x

These expressions, when supplemented by the compatibility conditions

[#(t, s—A(1,8) (s <t <s+T(s)). (2.11)

1,
e 2t s+A%(. 8) (s4+7(s) < T < s+R(s)) (2.12)

that must be satisfied by crossing trajectories, and the obvious relations
A7 (s4+T(s). 5) = 0= A7 (s+T(s), 5). (2.13)
AT(s+ R(s), s) = R(s). (2.14)

lead to two coupled integral equations for A* and A™.

Since these are very complicated they will not be presented here. We shall
only mention that, in principle, (2.2), (2.3), (2.6), (2.7) and (2.9)—(2.14) provide
a closed system of integral-delay equations for y({) that might be studied to
provide us with the behaviour of the caustic as the external field is varied. We
close this section with a discussion of steady-state solutions of this system

For steady solutions, symmetry arguments show that ¢, T" and R = 2T are
constant and that x and A< are functions of z = {—s. It is easy to see that

Al s) =2(z—T) (T <z<27).
A (t,s)=2(T—z2) (0<z<T).

[IA2— (AT +3) 242 0=<z<T). (2.15a)

Silse e T\ -Re-TP—Ye-Ty+y (T <z<2T). (2.15b)
Applying (2.6) to (2.15a), we find

—AT*—-T+1=0, (2.16)
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so that T=_l+;;+4‘”'_ —
and (2.2) in (2.15a) gives

U =T +2). (2.18)
Utilizing (2.16) and (2.18) in (2.15a, b). we find
z(z) = 2R (=-TP-1:=—-T) +v, (2.19)

with (+) if z<7T and (—) if 2> T, so that the third derivative of r is
discontinuous at the caustic if A £ 0.

The natural question now is whether the steady state found above for
0 < A < o is stable for all A, as it obviously is if A = 0. In the next section we
formulate (after appropriate rescaling) the problem of linearized stability of the
steady state for the case A o (vanishing external field). This will help to
demonstrate the difficulties that must be surmounted in studying the stability
of the steady solution (17)-(19) for any A.

3. Linearized stability

We now investigate some of the stability properties of the two-streaming
solutions discussed in §2. Specifically, we wish to examine the case most
commonly considered in practice, in which there is no external electric field. For
this, we need to consider the limit A = cc. We define

=54l
" =ﬁ“*'=&( o ) (3.1)

uy \Inglm

and we introduce new dimensionless variables 7, {”, 5", T, etc., related to the
dimensionless variables defined in §1 by a scaling by g, i.e.

zr =—x, =1t’, s"=ls’, T"=£T’, ete., (3.2)
# K H H

where, to avoid confusion, we have reinstated the primes in the dimensionless
variables defined by (1.6). This sealing amounts to a transformation

E”:i( S )iE,
g \l1gl m

1
1 H
ot (e), oo (),
uy \Egm Eym

where ¢ scales by the plasma frequency. In the new variables. (2.8)—(2.10)
become (again the primes are conveniently dropped)

0

art

=—p—A%( 5), (3.3)
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integrating to

z(t, 8) = —%p{t—s)z-i-(t—s)—.r(f—_E}.T(g, s)ds (3.4)
]

fors < <s+T(s), (3.5)

z(t, §) = =5 {1—s—T(s)*+ P (s +T(s)) [t—s=T(s)]

+:,’r(s+T{sn—f (I—E)A*(E. 5)dE (3.6)

£+T(0)
for s+7T(s) <1< s+ R(s). (3.7)
The steady state in this scaling is given by
T=Y—p+E+p]. Y=1TE+ul), (3.6a, b)
x(g}:i%{z—TP—%ﬂ(Z-TF‘l‘ g’. {366)
while, as before, A%(z) = +2(—T) (3.6d)

(+)T<z<27T, (—)if 0 < z<7T). To study the (linearized) stability of the
steady state given by (3.6a—d), we limit our discussion to the case u = 0. We
let

¢ T(s)=1+€T e, R(s) =2+€eR ™, (3.7a. b)

Y(s+1) =L+e¥e™. AZ(l, 8) = +2(z—1—€T ) +egd(z;w) e,
(3.7¢. d)

where 7', ¥ and R are (unknown) constants, z=1—s, and € € | gives the
amplitude of the perturbations. Substituting in (3.4) and (3.5), we get (to
Ofe))

r=+3z—1)"+1

—-2’T-—J’(z—§)¢(§;w)d§ 0<=<1).
+ee™* : (3.8)

(2—1)2T+[(z—1)w+1]¢—r(z—§)¢(€;w)dC (l<sz52)
1

while (2.2) and (2.3) with (2.6), (2.13) and (2.14) give respectively (also to
Ole))

v —T—f 1-0Lu)dt, R= —2T—ft2—§) JEw)de, (39a.b)
] L)

G(l;w)=0, R=2T-¢(2:w). (3.9¢c. d)
A final relation is found by considering
§—8-(s. 8) = A~(s, 8) = R(S").
Now A7 (s, s) = 2+ 2T e"* +eg(0, w) e, so that
S87(s,8) = s—2—¢[2T + ¢(0:)] .
R(S7)=2+eR " P+ 0(e?),
giving, finally, ¢(0) = Re™**—2T. (3.9¢)
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We now utilize the above expressions in the conditions (2.11) and (2.12) for
crossing trajectories. We obtain the two integral equations

t:—1>2¢+m:1—4:+2)T—f(:—§:¢(Qd§
)

= 93'2_”{(3—1}27'-!-[{[—2) w+ l]g'}—f_z [‘2—:—(_’)g5(§}d§} for0<z<1,
I (3.10a)

(z— 1% —(z— 1T +[(z— D+ lls’f—fts—mtadc

= em—n[—(z—z)?—r‘ (2—z~§)¢(§)d§] for1 <z<2. (3.10b)
0

Each of (3.10a, b) gives a relation between valuesof ¢ forO0<z<land 1 <z
< 2. A possible strategy would be to express ¢(z) for 1 € z < 2 in terms of ¢(z)
for 0 < z <1 using (3.10a), then substitute into (3.105) to get. eventually, a
fourth-order ordinary differential equation for ¢5(z), 0 < z < 1. One then needs
to determine for which values of w this equation can be solved, subject to the
conditions (3.9a-¢) relating the constants appearing in the equation to integrals
of its solution. If a solution can be found corresponding to Rew >0 then
instability follows. but failure to find such solutions would be inconclusive since
the steady state might still be unstable to perturbations that do not preserve
a smooth envelope.

4. The charge singularity

We now examine the structure of the solutions of (2.8) in the neighbourhood
of the caustic. Since the behaviour is different when the externally applied field
vanishes, it is appropriate to study the scaled version of §3, so all the formulae
from §2 will be used in this scaling.

Referring to figure 3, we define local co-ordinates by

og=t—s—T(3), 7= .§+T[3). (4.1a,b)

Utilizing (2.13). we assume that in the neighbourhood of the caustic (i.e. for
small o), the delay terms in (2.8) can be approximated by

A=(L, 8) = A.()lal +ollo]). (4.2)

Substituting (4.2) in (2.9) and (2.10), we find, after some manipulation, that
near the caustic the particle trajectories have the form

A7)

i 1! Ly
HEer=yir ey - N e

lo**2 +o(lsF*2). (4.3)

To determine the exponent «, we utilize the compatibility conditions (2.11) or
(2.12). Referring again to figure 3, where the caustic co-ordinates are defined,
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2
m ==
—_—
o
(3)

Ficure 3. Caustic co-ordinates: (1) x = (f) = (s, + T(so)). 0= 0, Ty =5, +Ts,): (2) z =
yis, +T(s,)), 0y =0, 1, =5, +T(s5,): (3) o =1—35,—T(5,). 7 =7, =5,+T(s,) are caustic co-
ordinates of point (#, 5) found from point (1), while o =t—5,—T(s,), 7 =7, = 5, +T(s,) are
found from point (2). Here 5, = 5, + A7{l. 5,). or 55 = 8, + A (L. ;).

we see that the point (x. 1) in physical space has two distinet descriptions in
caustic co-ordinates:

(z, t) ~ (x(t, 8), 1) ~ (g, = t—5=T(s), 7,=2s+T(s)), (44a)

(@ )~ (2(t, s+AZ(L, ), 1) ~ (o = t— [+ A2 (1, 8)]—D(a+AZ(t, o)),
7, =s+A%(L, )+ T(s+ AL, 5))). (4.4b)

Nearness to the caustic is ensured by demanding that 7, —7,. ¢, &, all be small
in absolute value, while the sign +(—) is used according to 7,—7, > 0(< 0), in
which case oy > 0(< 0) and o, < 0(> 0).

We assume ¢”" and T to be small compared with the quantities considered
(where primes denote derivatives with respect to the argument). in accordance
with our assumption that the caustic accelerates much slower than the particles
crossing it. In a subsequent paper we shall discuss the effect on the singularity
of highly curved and cusped caustics, and utilize our conclusions in formulating
the bifurcation of the oscillating virtual cathode state on finite diodes.

Neglecting terms of order ", 7" and higher, we have

7y % s+ T(s) 4 (1+T") Alrgllogl +.... (4.5a)
oy = oy —(1+T") A7y )lo ]+ ... . (4.5b)

Equating the expressions (4¢.4a, b), where we substitute 7,, o, from (4.5a, b). we
find that

1. 4 4
w=L Ly~
so that AZ(L ) = H;T ah (4.6)
1 )
= 1 L == 2 3 a -
z(t, §) = Y(r)+yr (7)o —juo ~—--——-3(1+T,] |o]® + o(|a]*). (4.7)

Having the form of the trajectories near the caustic, we can estimate the
charge singularity. On every continuous stream, the continuity equation

n+(nu), =0 (8)

leads to ny+un.=—nu_.
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In characteristic co-ordinates. this is

én\ _ cuy {t:'u/e:s)l

@).- "(h): " @xfes),’ (9
or. since W= (G:.—I) , (4.10)

Iels =
we have i(c_-n_) = —ﬂ.
n\adt/, cxz/és
so that gln nE =0,
cl Cs

or n;—: = constant (4.11)

on each trajectory.

Matching the charge density in trajectory tubes at the caustic and at the
entry point, we find that the constant in (4.11) is —1) for the ascending and +1
for the descending phase, so that

Bl (4.12)
Computing the density of trajectories =, from (7).
xr, = (1+7") (x,—z,)
=—3u(1+7T')oc—3c* sgno+o(s?), (4.13)
giving n=—Ru(l+T") o+ sgno+o(c®)| L (4.14)
Now, x(t, 8)—y(t) ~ 2(7, o) —Y(1) =Y () o
= o5 Jlr 5l +ollot) (4.15)

relates o to the distance from the caustic. We distinguish two possibilities for
the behaviour of n near the caustic:

if % 0, then «
n= —]Jip(l +T")o+o(o)|?
~ .
1 +T ~— 7 Belx—9)l (4.16)
if =0 then
=
e b U a
n 13“ +T,)G3+o[la| )
3(1 +T) H o -
1+T | , T
—u( ) ) T T’)i[ —i (4.17)

Since T is assumed small, these estimates are comparable to the results for
the steady state. We see that if there is an adverse field present (x % 0), the
singularity is what we would have at a caustic in a system of non-interacting
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particles (Arnold 1984). When z = 0 the self-interaction pulls particles apart at
the caustic, weakening the singularity.

The above arguments are easily extended to other cases, and we report on the
results elsewhere.

5. Delay effects

In the previous sections we have discussed the dynamics of the two-stream
model and have seen that its linearized stability is governed by a fairly
complicated system of integral equations that could be recast as a fourth-order
ordinary differential equation. The mathematical analysis of this problem is
further complicated by the fact that some of the coefficients in this equation
actually depend on global properties of the solutions. It is also clear that in
more general cases, where a larger number of separate streams are present, one
can in principle apply similar ideas to produce equations of order equal to twice
the number of streams. This seems to be a difficulty inherent in such problems
whose resolution requires a combination of the geometrical ideas presented here
and especially designed numerical schemes.

In this section we demonstrate some of the properties of the equations
derived in §2 by deriving an exact solution subject to the following assumption:
we suppose that the electrons are removed from the drift space as soon as they
reach the caustic. Clearly, this is an unphysical situation (it requires a sink
placed at the caustic), which cannot be realized experimentally. However, the
discussion will offer some insight into the behaviour of the true, current-
conserving solution, and especially into the importance of delay effects and
interaction with the conducting walls in setting up the VC oscillations. This
exact time-dependent solution can also provide a means of testing the
performance of numerical codes, which owing to the charge singularity. might
have problems in the time-dependent regime.

Following figure 4, we define S(f) to be the entry time of the particle reaching
the caustic at time ¢. Then, in the scaling of §2, the equation of motion of the
sheath entering at time s is given by

5 (t,
$=—1—-A[s—80(1)] (5.1)

(since we-ignore particles after their encounter with the caustic).
Integrating twice and imposing the condition that éz/dt = 1 at t = 5 (i.e. at
xr=0), we find

?=—(t—8)+l—)\s(l—s)-}-a\J’So(g} dE, (5.2)
{ 5

x(t, 5) = —%(t—s}’+l—s—é:\s(l—s)’-!—/lf(f-g}So{gidg (5.3)
The condition that the trajectory reaches the caustic at { = s+7'(s) implies
;—:(3+T(s). 5) =0=[l—s—1—A(—s)*—As(l — 8) — (t — 8) Sp(8) )= s T(a:

or AT (s)—[L+ AT(S,(s)]T(s)+1 = 0. (5-4)
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(n
Ficure 4. Basic configuration for I-stream model: (t, x) co-ordinates of points shown are
(1) (5o(0), 0): (2) (2. (6D} = (35(0) = T'(55(0)). 4 (0))-

Since, by definition, we have that
So(8) +T(Sy(5)) = s, (5.5)

we can rewrite (5.4) using S, as our independent variable and solving for 7'(s)
in terms of T(S,(s)) as

AT (s) = AT (S, +T(S,)) = 1 +AT(Sy) —{[1 + AT(S) 2 — 24}, (5.6)

where the (—) sign was taken since it corresponds to the bounded solution,
T(s)=1. of (5.4) as A= 0. We can view (5.6) as a double map by defining

Se=8s o F T 5, (5.7a)
AT, = 1427, _,—[(1+AT,_,)*—2A%, (5.7b)
where we set T, =T(8,). : (5.7¢)

Since (3.7b) is independent of S, we see that it can be used to define a sequence
of iterates, which in turn can serve to give the times at which they occur

through (5.7a). Let g = LA, (5.8)

We must now study the map

Gnsr =f(0232) = 1+9,— (g5 — 20} © (B9
The steady solution of (5.1) is found in terms of the fixed point, g,, of (5.9). We

have :

9+ =f(g4+:2) = 14+g,— (g3 —21)%,
from which g = (2A+ 1)L (5.10)
This implies T= %(2A+ 1)i—1]. (5.11)

Substituting Sy(f) =t—7" into (5.3), we get the expression for the steady
trajectories in characteristic co-ordinates. Clearly, the map is defined for
g > (2A):. If for some value of g, we get g,.., = f(g,) < (2A)} then this signifies
a breakdown of our model. Also, since

7 B R e
zf'(g) =1 2] <0 (5.12)
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% o i

e 2
Ficure 5. The function flg,:A) for 2 = 1.

for g > (2A)} (with f(g) > — o0 as g— (23)}), we see that, for all g, f{g) < 1+ (2A)}
= f((2A)}). The fixed point g, = (14+2A)} lies between these two values.
Stability of this steady state (which it is not necessary to give here explicitly)
depends on the stability of the fixed point g, of the map (5.10). Following the
standard treatment (Thompson & Stewart 1986), we see that g, is stable if
I%mﬁA4<l (5.13)

and unstable if that expression becomes greater than 1. Since

qd
g

_ g
ey

we find that [g—f(g* :A)
g

=|L—ﬂA+1ﬁ, (5.14)

T T

£1,

aceording to whether AE1 (5.15)

Therefore A = } is the critical ratio of external versus seli-consistent field for this
model. If A < § (external field stronger) then the steady state is stable, while for
A > 2 (external field weaker) the steady state is destabilized.

We now show how the solution (5.3) of our model ean be constructed from the
map (5.9), from A < 3. The idea is to start with an arbitrary value of 7} at S,
= 0; then g, = 1+ AT, and T}, = [flg,) —1]/A. S, = T). Referring to figure 5, we
can arbitrarily (but in a smooth fashion) assign values for 7' in the interval S,
=0<S<S,

Further care ensures that T(s) stays smooth after the first iteration of the
map. which will ensure that it stays smooth after further iterations. It is not
hard to show that (5.9) maps the interval

et <2—(-)i<g<2+(1-N)E<1+2) (5.16)

into itself, so that choosing initial conditions in this interval guarantees that
iterates stay in the domain of definition of the map.

To get a smooth function T'{s) for all s, we take T, = [(14+2A)}—1]/A, so that
T, = T,, and we make sure that T'(s), for & near zero. is chosen so that it is
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x4

t

Ficrre 6. Evolution of the envelope for A =1 with a profile that lies between the values
corresponding to T = (1++/}). The distance between successive maxima or minima is 2,

while the distance between points of inflection is 7 = T, = v/3— 1. Since 2T, < 2, the profile
steepens and breaks.

smooth around s = T;. Then an initial profile for 7'(s). 0 < s € T} defines, by
iteration, a profile 7T'(s) for all time. Since the fixed point is stable, the profile
eventually decays to the steady-state value T},. In any case, knowledge of this
history of the profile allows us to fully determine the particle trajectories in
characteristic co-ordinates, given by (5.3). A different situation oceurs if 7'
assumes either of the values [1 4 (1 —2A)}]/A in the initial interval. Since the
map alternates between these values (they are unstable fixed points of order 2).
it follows that in this case the profile does not decay to the value T;. Instead,
since the point with value 7'(s) = 7, repeats with period 7} = [(1 4+ 2A)i—1]/A,
while the points T, = [1£(1 —2))#]/A repeat with combined period 2/A > 27T,
the profile will steepen and eventually break. This situation is reminiscent of
breaking waves, and it leads to multi-valued T'(s) (figure 6). At this point the
assumptions inherent in this model are no longer valid.

Thus, in effect. the interval (5.16) gives the domain of attraction of the steady
state. At A = £ this interval shrinks to the fixed point. which thus loses stability.
Small perturbations about T'(s) = T, will eventually grow, until either they fall
outside the domain of definition of the map, or the profile breaks. Again, our
assumptions are no longer valid at this point, and we cannot expect that the
destabilization of the steady state leads to a steady oscillation with a smooth
caustic.

The author wishes to acknowledge conversation with D. J. Sullivan and N.
Roderick. The work was supported in part by AFOSR under Grant AFOSR-82-
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