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Stimulated Brillouin scattering is investigated here under conditions characterized by high optical pump
intensity. Calculations are carried out at 1.3 and 3.8 /jm with pump intensities equal to approximately three
times the threshold. Such strong optical forcing leads to significant self-distortion of the density profile in
the material wave serving as the optical grating. The method of multiple scales is used to find a uniform
asymptotic expansion in the coupling. At the first perturbation level the resonant portion of the problem
yields abridged equations for the incident and the scattered waves with frequencies CWL and ws = L - 0 and
for the grating and its harmonics with frequencies nfl. The nonresonant portion of the first perturbation
yields field components with the frequencies WL + nfl and cos - nfl for n = 1, 2,.... Numerical solutions of
the truncated abridged system are found by a method of Chebychev collocation and indicate a reduction in
the observed phonon lifetime and a broadening of the linewidth with increasing amplitude.

1. INTRODUCTION

From the original nonlinear resonance ideas put forth
by Bloembergen1'2 to the discovery of the Riemann so-
lution to the linear problem by Wang,3 and through the
numerical algorithms4 available today, much of the un-
derstanding of stimulated scattering is based on the ap-
proximation that the scattering medium supports a linear
response to the imposed forces. Accordingly the material
wave is described by a simple sinusoid whose slowly vary-
ing complex amplitude represents a balance between the
damping force, the driving force, and the transients. But
in general a linear material response is an approximation
that cannot be entirely accurate when the pump intensity
exceeds the threshold intensity by some margin.

Although not specifically concerned with stimulated
Brillouin scattering (SBS), one of the first investigations
of electrostrictively forced nonlinear waves was carried
out by Haus and Penfield.5 More recently the effects of
ion-acoustic wave nonlinearities were investigated' thor-
oughly and were found to alter the properties of SBS
significantly in the plasmas generated during intense
laser-beam-focusing experiments. In conventional fluids
the acoustic speed is a function of the instantaneous tem-
perature in gases or the instantaneous density in liquids,
and hence the compressed regions or crests of the mate-
rial wave overtake the rarefied regions or troughs of the
wave. If this overtaking time becomes comparable with
the phonon lifetime then the material wave assumes a dis-
torted, nonsinusoidal profile.7 Since the damping rate of
the nth harmonic of the fundamental increases as n2, the
effective damping rate of the material wave increases as
the amplitudes of the higher harmonics increase in magni-

tude. This leads to an apparent decrease in the observed
phonon lifetime and a broadening of the linewidth.

To account for the nonlinear material-wave response,
we employ the nonlinear wave equation for the veloc-
ity potential function first suggested by Kuznetsov8 for
problems in nonlinear acoustics. In addition to the non-
linearity that arises from the sound speed's dependence
on the instantaneous thermodynamic state, Kuznetsov's
equation also includes a comparably sized nonlinear con-
tribution associated with an in-phase velocity gust that
adds to the speed of the wave crests and subtracts from
the speed of the wave troughs, thereby accelerating the
overtaking process. The extension of Kuznetsov's equa-
tion to electrostrictive forcing was discussed previously.7

Interestingly, the forced Kuznetsov equation does not al-
ter in a fundamental way the underlying three-wave non-
linear resonance structure of the SBS problem. The rich
multiple periodicity9 "11 of Floquet theory is still contained
in the electromagnetic wave equation with its periodic but
now nonsinusoidal coefficient. In Section 3 of this paper
we employ multiple scaling to find the modified form of
the abridged equations, including the case of a phase mis-
match (an offset in the wave number or phase-matching
condition).

In Section 4 we discuss the numerical solution of the
truncated system of equations for the fundamental and
its first three harmonics by a method of Chebychev
collocation,12 and in Section 5 we present numerical re-
sults for laser pulses of 1.315 and 3.8 m scattered in
xenon. Although there is noticeable amplitude in the
higher harmonics in both cases the longer wavelength
is, as might be expected from its longer phonon lifetime,
more strongly affected.
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2. NONDIMIENSIONAL FORMULATION

Consider an otherwise quiescent fluid with sound speed
ao and light speed c. Choose the SBS interaction zone
to lie in the interval O < z < . To the left (z < O) and to
the right (z > 1) the coupling should be thought of as be-
ing turned off, there being no grating and no scattering in
either region. Let the incident wave be incoming (in the
positive z direction) with wave number kL and frequency
W)L, the backscattered wave be outgoing (in the negative
z direction) with wave number ks and frequency cos, and
the grating modulation be traveling in the positive z direc-
tion with wave number q and frequency . To be spe-
cific, we assume that the frequency AL is specified and
that kL, ks, and ws are calculated from the nondispersive
relations of the undisturbed medium and the Doppler for-
mula, that is,

COL = cokL,

c)s = coks,

CJL - cos = ao(kL + ks).

The phase-matching condition determines q when the
mismatch parameter q, is specified,

q = (kL + ks)(1 - eqj).

Here e is a small parameter (defined below) describing
the amplitude of the grating, and q, is an order-unity
parameter determining the degree of phase offset. The
modulation frequency is then given by

fl = aoq.

For resonant behavior to occur, the phase offset must be
restricted 3 to small excursions, eql, from the center value
given by the Bragg condition, q = kL + ks.

We adopt the convention of denoting nondimensional
variables by hats and subsequently dropping the hats
when the nondimensionalization is complete. The nondi-
mensional coordinates, 2, , and X are defined as

= qz,

t = (qao)t,

r = (qco)t.

It is seen that the spatial coordinate is defined such that
the grating period is always 2ir even when qj # 0, and
the two time variables and X apply to the grating and
the optical fields, respectively.

The electric field is referenced to the square root of the
incident peak value of the intensity, IL, divided by the
speed of propagation,

E = IL/cOeoE,

and the grating amplitude is characterized by the quan-
tity vr, representing the maximum material velocity in-
duced in the grating, with the associated small-amplitude
parameter e defined as

e = Vm/aO << 1.

The scalar electric field t(z, t) then satisfies the electro-
magnetic wave equation

ETT - E = -egj(3E)TX (1)

where the hats have been dropped from the nondimen-
sional variables. The 0(1) density variable is defined
by

e5 = (p - pO)/Po,
and the scattering strength g as

g = 2pono'/no,

where no' = dno/dp. As is noted above, (z, t) has a
spatial period of 2r.

The grating modulation is described in terms of a ve-
locity potential qS whose gradient is the material velocity.
The nondimensionalization is chosen to be

qS = (ao/q)0,

which yields an 0(1) value for the gradient of 0 in the
neighborhood of the maximum grating amplitude. The
forced Kuznetsov equation7 may then be written in terms
of these nondimensional variables as

,tt - kzz = eat[(1/R)O.. - (y - 1)0t4t/2

- -A. kT + g2(E
2)/2],

where (E2) denotes the temporal average of E2 taken over
a time interval that is long compared with the optical
period but short compared with the acoustic period. The
remaining quantities are

(y - 1)/2 = d(log a)/d(log p),

R = eao/voq,

= O L 2 22 = XaoILaoCOE .

Here Xo' = dXoldp and vo is the acoustic diffusivity,'

Po = (Ao + 2 puo)/po + (Ko/pocv)(cp - c)/poao KTCv,

with A and ALO denoting the bulk and the shear viscosi-
ties, Ko the thermal conductivity, and KT the isothermal
compressibility. The quantities cp and cv are the two spe-
cific heats of the fluid. The density is then found from7

at = -0kz - eat(0tot - Xznz) (3)

after we again drop the hats. From this point forward all
variables are nondimensional and without hats. Physi-
cal parameters remain dimensional and without hats, but
there should be no confusion between the two.

Digressing for a moment, consider Eqs. (1) and (2) in-
dividually. Equation (1) is the wave equation describing
coherent optical scattering from a traveling-wave grat-
ing specified by the periodic coefficient (z, t). In lin-
ear problems this type of equation leads naturally to a
Hill differential equation for the eigenfunctions. From
Floquet theory it is known that these eigenfunctions
are either multiply periodic (stable) oscillations or ex-

(2)
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ponentially attenuated or growing (unstable) oscillations
(excluding exceptional cases corresponding to zone bound-
aries). The stable eigenfunctions describe transmission,
while unstable eigenfunctions describe reflection. In the
nonresonant problem the field is described by an eigen-
function expansion [for sinusoidal gratings 9 " these are
the Mathieu functions F)(z), one from each stability
interval n = 1,2,... with the Floquet exponent v], and
there will be multiple scattered waves at the frequencies
COL ± nfl.

On the other hand, consider Eq. (2) on its own with
(E2) thought of as a periodic, externally derived, driving
force. The underlying structure of the solution is that of
a weakly nonlinear wave experiencing viscous damping
and resonant periodic forcing. After the initial transient
dies out, the solution consists of a single traveling wave
at the forcing period whose amplitude represents a bal-
ance between viscous damping, weak nonlinearity, and
the driving force. The parameter R apportions the bal-
ance between the linear (viscous) and the nonlinear loss
mechanisms.

3. MULTIPLE SCALES

Because of the resonant nature of the three-wave inter-
action, a conventional perturbation series would be ex-
pected to fail through the appearance of algebraically un-
bounded (secular) terms growing in proportion to t at some
stage of the expansion, say at En) and +(n). In multi-
scaling, the asymptotic ordering of the series is regained
when the definitions of E(n) and 0p(n) are extended to in-
clude functional dependencies on additional independent
variables designed to capture slow changes and to avoid
the necessity of expanding exponential functions of et by
Taylor series. At the first order, multiscaling leads to
the same results as the slowly varying envelope approx-
imation, but multiscaling permits a broader view of the
underlying structure.

The expansions in powers of e are taken in the form

E = E nE (n)r(Z r; 2, , t), (4)
n=O

= Cno(n)(Z t; X

n=O

where the slow variables 2, , and 
capture the secular changes directly,

are introduced to

two sides of the equation, with different variables being
held constant. After two applications of the chain rule,
the wave operator on the left-hand side of Eq. (1) becomes

aOT azz = OTT - zz + 2e(aT: - azj) + 0(e2 ),

with a similar expression holding for the wave operator on
the left-hand side of Eq. (2) with t substituted everywhere
for r.

After substitution of the series in Eqs. (4) and (5) into
Eqs. (1)-(3) and collection of like powers of e, the 0(1)
equations are found to be

(OTT - a)E( 0) = 0,

(a t - a)p() = 0,

(6)

(7)

(8)

Collecting 0(e) terms gives

(OTT - azz)E() = -2(OTr - zO)E(° - O 7[-5(0)E(°)], (9)

(at - z)0(l) = - 2(at -z2)0(°)

+ at{(1/R)04) - (y - )[0t(°)12/2
- [(0)]2 + E()]2

The functional dependence of E(0 )(z, r; 2, r, ) and
0 )(z, t; 2, t) on the fast variables is determined at the
zeroth order, that is, by Eqs. (6) and (7). The dependence
on the slow variables is determined by the requirement
that Eqs. (9) and (10) produce no secular terms in V).
Using complex traveling-wave solutions of Eqs. (6) and (7)
to evaluate the right-hand sides of Eqs. (9) and (10) shows
that every term on the right-hand sides of the equations
generates at least one contribution in the form of a com-
plex traveling wave satisfying the homogeneous part of
Eqs. (9) and (10). The solutions for E(1)(z, ; 2, , ) and
40(l)(z, t; 2, t) would then, by necessity, contain contribu-
tions growing in proportion to T and t, respectively, unless
the offending terms on the right-hand sides of Eqs. (9)
and (10) sum to zero. Collecting like terms and setting
the sum to zero gives the conditions necessary to deter-
mine the slow-variable dependence in E(0)(z, r; , r, t)
or 0 )(z, t; 2, t).

Letting eL, es, and o-, denote undetermined coefficients
that can depend on the slow variables, we write solutions
to Eqs. (6) and (7) in the form

2 = ez,

t = et,

r= er.

Derivatives of E(n)(z, r; 2, r, t) and 0(kf)(Z' t; 2, t) are
calculated by the chain rule,

at = at + e,

and similarly for the other two variables r and z. The
differentiation indicated on the left-hand side is applied
to E(n)(z, t) or o(z, t), and the differentiations indicated
on the right-hand side are applied to E(n)(z, T; 2, F, t) or
O(n)(z, t; 2, t). Thus t has a different meaning on the

6(O) = -,° = _ o(i, i)exp(inO),
n=-x

(11)

E() = eL(2, r, )exp(ie) + es(2 , r, )exp(i77) + c.c., (12)

where
= (kL/q)(z - ),

q= (ks/q)(-z - r),

6 =z - t.
Note that

- -60 = qje 9 qO?

where = eO is another slow variable. Equation (11)
represents a period-1 (modulo the electrostrictive force)

B. S. Masson and E. A. Coutsias
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traveling wave of arbitrary profile, as was anticipated
earlier. For the moment taking qi = 0, we may rewrite
Eq. (12) as

E(°) = exp(-i,3r){eL exp[i(kL/q)6] + es exp[-i(ks/q)6]}

+ c.c.,

where /3 = 2kLks/q 2 1/2. The factor exp(-il3T) is the
Doppler-shifted harmonic time factor, and since kL/q 

ks/q 1/2, the factor in braces is just the period-2 spatial
oscillation expected in the first Floquet unstable zone.
The amplitude modulation corresponding to the real part
of the Floquet exponent is contained in the amplitude
factors eL and es.

The term [E(0)]2 in Eq. (10) generates two terms that
also satisfy the homogeneous fort of the equation and
result in secular growth in 0(l). The two are easily iden-
tified, since they may be written in terms of 0 plus slow
variables. Since 0 = - -q + 0(e), we have

[E(0)]2 = 2eLes* exp[i(e - 7)] + c.c. + .... (13)

where the dots indicate terms that do not produce
secular behavior in E('). Next consider the product
3(0)E(°) appearing in Eq. (9). The infinite series con-
tributes four terms that produce secular behavior in E(').
The four are easily identified as those that can be written
in terms of 6 plus slow variables or 77 plus slow variables.
Since = 77 + + 0(e) etc., these terms can arise only
when n = 1. We find then that

(°)E() = o,*eL exp[i(6 - 0)]

+ orles exp[i(77 + 0)] + c.c. + .... (14)

where the dots again indicate terms that avoid secular
behavior in E(').

With the suppression of secular behavior it is possible
to find the nonresonant contributions to E(') and k(l) by
solving Eqs. (9) and (10) for the forcing terms indicated
by dots in Eqs. (13) and (14). The nonresonant parts of
Eqs. (9) and (10) may be written as

(OTT - aZz)E(1) = -glaTT [eLn + escrn+l exp(i6)]
n=l

x exp{i[(n + 1)6 - n7])

+ Z [escn* + eLcrn+1* exp(-i6)]
n=l

X exp{i[(n + 1)77 - ne]} + c.c.

Neglecting terms of 0(ao/co), we find the solutions to be

E()= (gi/4) exp(ie) X [n-'(n + 1)-eLrn
n=l

+ (n + I)-(n + 2)-1esrn+1 exp(iO)]exp(in6)

+ exp(i,7) Z [n-(n + 1)-lescrn*
n=l

+ (n + l)-'(n + 2)-'eLcrn+,* exp(-i6)]

x exp(-in6) + c.c.

0.

It is seen that E(') contains the frequencies LOL + nfl and
ws - nil for n = 1, 2 ... , in agreement with the results of
Peng and Cassedy."

The resonant part of Eq. (9) is found by setting the coef-
ficients of exp(ig) and exp(iq) equal to zero and arriving
at

(aj3 + aO)eL = (i/2)(gikL/q)o-ieS exp(-iqi 4 ),

(aT - a2)es = (i12)(giks/q)orl*eL exp(iqlj),

(15)

(16)

which are the usual abridged equations for the two optical
waves. Similarly, the resonant part of Eq. (10) is found
by setting each of the coefficients of exp(in6) equal to zero.
Evaluating the individual terms in Eq. (10) in terms of
0r- gives

atp(O) = -Z ~t0n exp(ino),
n

az,40(0) = a!G-n exp(inO),
n

a, t(0) = _ n2or,, exp(ino),
n

c~t[(y - 1)[44 )]2/2 + [(O)]2]

= i[(y + 1)/2] 3 n(E cmo.n m)exp(in6).
n m

The result for n = 1 is

(01 + a0 + 1/2R)cr, - (i/4)(y + 1) f crmcl-m
m=-

= (i/2)g2 eLes* exp(iqij), (17)

and for n > 1 is

(al + aj + n2 /2R)orn - (i/4)(y + 1)n crmcrn-m = 0-
m=-

(18)

Since 0-n = o-n*, these equations account for the complete
behavior of 8(0).

4. NUMERICAL SOLUTION

Our interest lies in conditions under which the incident
pulse is long enough to permit the energy cascade to
higher modes. That is, we assume that the pulse is
slowly varying in time so that the time derivatives in
Eqs. (15) and (16) are negligible. We also assume that
the phase matching is exact, i.e., q, = 0, to maximize the
coupling through the idler. The abridged equations are
then separated into real and imaginary parts by the sub-
stitution

eL = UL exp(iOL),

es = us exp(ios),

°r, = e 1 u exp(i0n),J

n being a positive integer. The
Eqs. (15)-(18) are found to be

aCUL = -aLAuus cos ,

real parts of

(19)

aus = -asAuluL cos (I, (20)

B. S. Masson and E. A. Coutsias
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(at + f)ul - 2A Z Ul+mUm cos palm = CaiULUS cos )

(21)

(at + n2 F)un - 2nA X Un+mUm cos 4Dnm

n-1
+nA Z Un-mUm cos (Dnm = 0, (22)

with

= 22/ql - 1,

where is the length of the interaction zone and t is
actually with the hat omitted (as was done previously).
The phase angles appearing here are

( = 01 + OS - XL - /2,

(Dnm = 'kn+m - (km - Obn + iT/2,

Tnm = Obn-m + (m - n - /2,

and the nondimensional parameters are

AL = gkL/4q pono'/4no,

as = glks/4q L,

a1 = e2 g2 /2 = Xo'IL/2ao 2 (c/no),

r = oq/2ao,

A = q1,

A = (y + 1)/4.

From the imaginary parts of Eqs. (15)-(18), we find

ULObAL = -aLAuus sin ,

usrOks = asAuUL sin (D,

Uiatii - 2A E Ul+mUm sin (Dim = -Ca1ULUS sin ,
m=1

Unatbn - 2nA X Un+mum sin (4 nm
m=1

n-i
+ nA E Un-mUm sin cDnm = 0.

We assume that there is indeed a grating present, i.e.,
that the grating is organized and identifiable in the form
of a slowly modulated periodic wave. In this case it is
possible to identify a grating phase angle 00 and to con-
clude that the individual phase angles, On, must have the
form

(tin = vr/2 - n6O.

Substituting this expression into the definitions of 'Inm

and Tnm, we find that

(Dnm = nm = 0.

Then the equation for O, (the imaginary part of the equa-
tion for r1) demands that

sin cI = 0.

Of the two choices CD = 0 and CD = vr, the latter evolves
quickly to the former by means of a phase jump as u

passes through zero. cD = 0 is the usual phase condition
for maximum gain (o = Os - XL).

Our numerical results will be for the system obtained
by truncation of summations in Eqs. (21) and (22) af-
ter the fourth grating mode. In the numerical solutions
the six real-valued unknowns consisting of the two field
amplitudes and the four grating amplitudes are each rep-
resented by a 17-term expansion in spatially dependent
Chebychev polynomials, T,(>) [the definition of ; follows
Eq. (22)]. The coefficient multiplying each Chebychev
polynomial is an undetermined function of time to be
evaluated by means of spatial collocation of Eqs. (19)-
(22). This yields a set of 4 X 17 ordinary differential
equations in time for the same number of undeter-
mined coefficients. The system of differential equations
is marched forward in time, with an inversion of a full
34 x 34 matrix required at each function evaluation, to
determine the optical amplitudes.

5. RESULTS

Results are presented in this section for optical pulses
with wavelengths equal to 1.315 and 3.8 Atm. The scat-
tering cell contains 30-amagat xenon gas and is 30 cm
long. The incident pulses are Gaussian in shape with
an e-1 amplitude width equal to 20 phonon lifetimes, i.e.,
20/voq2 . Figure 1 shows an example of the temporal his-
tories of UL2 and uS2 (intensities) for the 3 .8 -/um case
with a peak incident intensity of IL = 70 MW/cm2. The
horizontal axis in the figure is measured in units of the
phonon lifetime, tvoq2 . The asymmetric compression of
the scattered wave seen here is also observed for other
conditions not near threshold. In these cases the scat-
tered wave characteristically turns on late and follows the
incident wave down to extinction. However, near thresh-
old the compression becomes more symmetric, with the
scattered wave preceding the incident wave to extinction.
Defining the reflectivity in terms of the ratio of the scat-
tered pulse energy to the incident pulse energy,

r US f u2dt/ ULdt,

provides a convenient definition of the threshold inten-
sity, ILth, as that incident peak intensity for which the re-
flectivity extrapolates to zero. Such a reflectivity curve

a

tuMq2 - time
Fig. 1. Temporal variation of optical intensity. The solid
curve is the incident 3.8-/,m Gaussian pulse, UL2. The dotted
curve is the computed scattered pulse, us 2, in xenon at 30
amagats. The relative time axis is scaled in units of the phonon
lifetime, 1/voq2, centered at the pulse peak. The peak intensity
is 70 MW/cm 2 .

B. S. Masson and E. A. Coutsias
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IL/IL,th - peak-intensity ratio
Fig. 2. Computed reflectivity for the backscattering of a 3.8-/tm
wavelength pulse in 30-amagat xenon gas as a function of the
incident pulse peak intensity. ILth is the threshold pulse peak
intensity, computed to be 20 MW/cm2.

4

.
(S

cobo
42
..

Ca

".-

0

10uR

-20.0 -10.0 0.0 10.0 20.0

tmq2 - time
Fig. 3. Temporal variation of grating fundamental at the first
node for a 3.8-,gm pulse in 30-amagat xenon. The solid curve
is the computed amplitude of the grating fundamental, ul. The
dotted curve is the quasi-steady amplitude uss. Both curves
are normalized to the temporal peak of ul 8 .

is shown in Fig. 2 plotted in terms of the ratio of inci-
dent peak values IL/IL,th. For the cases presented here,
IL/ILth - 3.

Figure 3 describes grating behavior found for the
3.8-Atm pulse. The phonon lifetime (q 2)l = 288 ns
is found by evaluation of the bulk viscosity AO, appearing
in the expression for o following Eq. (2) by use of the
equality in the Stokes relations

Ao + (2 /3 )Ao 0.

In Fig. 3 the temporal behavior of the fundamental grat-
ing amplitude il at the first node is compared with the
quasi-steady grating amplitude,

Ul8 = alUL8S/r,

which we obtain by setting the time derivative in Eq. (21)
equal to zero and neglecting the convolution sum. Both
curves are normalized to the peak value of ilss. Since il
peaks at nearly the same time as itss, the pulse lengths
used here appear to be long enough to minimize the
transient contribution, and the differences should be at-
tributed to the nonlinearity of the grating and the cascade
of acoustic energy into the higher modes. The depression
of il may be thought of as being equivalent to an increase

in the effective diffusivity above its molecular value vo.
For comparison the results for 1.315 Am at a peak in-
tensity of 110 MW/cm2 are shown in Fig. 4. The phonon
lifetime for this condition is computed to be 34.6 ns. The
stronger damping experienced by the shorter-wavelength
grating is evident from the shift of the grating peak am-
plitude to times later in the pulse than seen in Fig. 3.

The higher harmonics, 2/Ul (solid curves) and U3/U2
(dotted curves), are shown in Fig. 5. The upper pair of
curves in the figure shows the grating amplitude ratios
U2/Ul and U3/U2 for 3.8 jm, whereas the lower pair of
curves refer to the 1.315-tm case. We believe that U3/u2
is probably influenced significantly by the brutal trunca-
tion that we employed (an improvement could be based
on the results of Ref. 15). Figure 6 summarizes the re-
sults by showing the temporal peak values of U2/U1 found
at various values of the reflectivity r for the 3.8-,m case.
The harmonic ratio U2/U1 is seen to grow linearly for small
reflectivity.
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_ -20.0 -10.0 0.0 10.0 20.0

tU.q2 - time
Fig. 4. Temporal variation of grating fundamental for a
1.3 15-,um pulse in 30-amagat xenon. The solid curve is the
computed amplitude of the grating fundamental ul. The dotted
curve is the quasi-steady amplitude u 8 . Both curves are
normalized to the temporal peak of ulss.
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Fig. 5. Temporal variation of grating harmonic ratios for
3.8-/zm (upper pair of curves) and 1.315-,um (lower pair) pulses.
The solid curves are the amplitude ratios U2/Ul. The dotted
curves are the amplitude ratios 3/U2-
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Fig. 6. Computed values of the maximum ratio u2/ul versus
the reflectivity r for the 3.8-/um-wavelength pulse in 30 amagats
of xenon.

6. CONCLUSIONS

The method of multiple scales was employed to inves-
tigate nonlinear acoustic response during stimulated
Brillouin backscatter. The resonant problem led to a
system of equations for the incident and the scattered
fields with frequencies L and as and the grating at
its fundamental fl and its harmonics n. The nonres-
onant fields were also calculated in the first approxi-
mation, showing the presence of field components with
frequencies WL + nfl and cs - nfl for n = 1, 2 .... The
one-dimensional model provides only an averaged view of
the highly three-dimensional phenomena occurring dur-
ing an actual SBS backreflection and will significantly
underestimate the actual presence of grating harmonics.
In general our conclusion drawn from the numerical study
of the resonant problem is that the higher harmonics of
the grating fundamental are always present to some de-
gree but certainly more so at longer wavelengths. These
higher harmonics lead to self-distortion of the SBS grating
that can be significant in the infrared, where the phonon
lifetimes can exceed 100 ns. At this point the crests of
the material wave are capable of overtaking the troughs of
the wave before the disappearance of the phonon. Even

at a 30-ns phonon lifetime, the one-dimensional model
shows the presence of higher harmonics in the grating.
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