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Squeezed light from conventionally pumped lasers with nonuniform spatial structure
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Spatial variations of the laser mode and pumping rate are incorporated into the theory of convention-

ally pumped lasers that produce squeezed light. Both a quantum-mechanical theory and a heuristic sta-
tistical model are used. While variations in the laser mode are found to have a negligible effect on

squeezing, variations in the pumping rate are significant. The maximum attainable squeezing is always
reduced compared with the spatially uniform case. However, resonantly enhancing a low-power pump
in a Fabry-Perot cavity, rather than a ring cavity, may give better squeezing.

PACS number(s): 42.50.Dv, 42.55.—f

I. INTRODUCTION

The theory of amplitude-squeezed light generation by
conventionally pumped lasers is well studied [1—7]. A

simple criterion for laser squeezing is provided by an
heuristic statistical model of the transitions in the lasing
atoms: the pumping rate should approximately equal a
spontaneous decay rate [3—5]. This condition appears to
be achievable in practice [7].

In this paper the effect of nonuniform spatial structure
on the squeezing is analyzed. Previous work has assumed
that both the pumping rate and laser mode are constant
in space; however, real lasers will generally have both
transverse and longitudinal spatial structure. Since the
matching of the pumping rate to a decay rate is crucial
for squeezing, spatial variations in the pumping rate are
potentially important.

We first analyze the effects of spatial structure on a
three-level incoherently pumped laser. Both the linear-
ized P-function theory [8,9] and the statistical model are
used. The latter agrees well with the P-function theory,
but can only accommodate spatial variations in the
pumping rate. The statistical approach allows a relative-
ly simple analysis which we also apply to the four-level
coherently pumped laser.

Our conclusion is that spatial variations do not greatly
alter the squeezing from that predicted by spatially uni-
form models. Nevertheless, spatial variations in the
pumping rate may be important for the quantitative com-
parison of theory with experiment. A potentially useful
result concerns the best scheme for resonant enhance-
ment of an optical pump. At low pumping rates the spa-
tial oscillations of the intensity in a Fabry-Perot cavity
produce better squeezing than the longitudinally uniform
field of a ring cavity.

Section II describes how spatial variations can be in-
cluded in the quantum-mechanical P-function theory of a
three-level incoherently pumped laser. Section III intro-
duces the statistical model and adapts it to spatial varia-
tions in the pumping rate. In Sec. IV the preceding
theory is applied to specific examples of spatially varying
laser modes and pumping rates. The statistical method is
used to analyze the effect of spatial variations of the

pumping field on a four-level coherently pumped laser.
Section V summarizes our results.

II. QUANTUM-MECHANICAL
P-FUNCTION TREATMENT

In this section we extend the usual P-function theory to
include spatial variations of the laser mode and pumping
rate. To keep the emphasis on the effect of spatial varia-
tion the theory is kept as simple as possible while retain-
ing the laser squeezing.

The level scheme of our laser atoms is shown in Fig. 1.
Only the essential spontaneous decay is considered. The
atoms are incoherently pumped at the rate P and lasing
occurs between the upper two levels ~2) and ~3). The
spontaneous decay from the lower lasing level ~2) occurs
at the rate y.

The laser consists of N of these atoms, grouped into M
groups of N atoms so that spatial variations may be ana-
lyzed. Each group occupies a volume element of space
over which the laser field and pumping rate are assumed
to be constant. The master equation for the reduced den-
sity operator p for this system may be derived by stan-
dard system-reservoir techniques [10—12], and is given in
Ref. [2] for the case of no spatial variations. With spatial
variations it generalizes to [8,9].

a„—p= . [HJc p]+ ,'(L„„,+yL»)—p+tt(2&pal —a BpBt i%

—pd 8),
M
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A.+The J „are collective atomic operators for the jth group
of atoms

N.

J„,= g exp[+i'(rj ) ]cr„—,j

The era„—," are the raising and lowering operators be-
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tween levels ~n ) and ~m ) for the ith atom in the jth
group, and the g(r,") are the mode phase factors at the
position r, of the atom. ~ is the cavity amplitude decay
rate. HJc is the Jaynes-Cummings Hamiltonian for the
interaction between the atoms and the laser cavity mode,
which has boson annihilation and creation operators 8
and a,

P,'

N-

HJ(; itl y gj (a J$3j aJ$3j ) (3) FIG. 1. Schematic diagram of the three-level incoherently
pumped laser's level scheme.

g is the Jaynes-Cummings coupling strength for the jth
group of atoms given by

1/2
LC

g, = fu(r, , )/=go[u(r, )/,
2co

(4)

J23' J23'+g aJD +I 232

J23 J23'+g a J + I „„,'+ J +
2

J„=P,J„—g, (aJ,'„+a'J;„)+r„,
JD, =y Jz, +P,J„—2g, (aJ2+,, +a JQ3J )+r,

(5)

where co is the angular frequency of the laser transition,
yt its free-space spontaneous-emission rate, and u(r;J ) is
the normalized mode function for the laser mode. Partic-
ular mode functions are discussed in Sec. IV. In the limit
of large numbers of atoms N in each group a Fokker-
Planck equation for the positive-P quasiprobability distri-
bution function [12,13] can be derived. To this corre-
spond the stochastic differential equations [12,14]

M M
a= —tea+ g g, J~,, a = —1~a + g g,J~„,

j=l j=1

The stochastic differential Eqs. (5) are solved by assum-
ing small quantum-mechanical fluctuations about a stable
steady state. The steady state is found by putting the
derivatives on the left-hand side of Eqs. (5) equal to zero,
dropping the noise terms, and solving. Equations (5) may
then be linearized about the steady state. Since the phase
of the laser field may be chosen arbitrarily all steady-state
variables may be taken to be real. Solving the resulting
coupled nonlinear algebraic equations gives [N.B. In or-
der to maintain a manageable notation, from here on the
c-number variables denote the steady-state values, instead
of the stochastic variables of Eqs. (5).]

M 2

(2+y/P, )(g,a) +y /4

In general Eq. (7) must be solved numerically. However,
for the spatially uniform case M = I, it has the following
solution, valid provided it is positive:

2 P y g N
(g)2P+y 2g g 2

The steady-state solutions for the atomic variables are
given in terms of the field by

The c-number stochastic variables introduced here corre-
spond to the field mode and collective atomic operators
previously introduced. J1, J2, J3, and JD correspond
to the collective atomic populations in the jth atomic
group for levels

~
1 ), ~

2 ), and
~
3 ), respectively, while

JD =J3j J2j corresponds to the inversion on the lasingDg 3g

levels ~3) and ~2). P is the incoherent laser pumping
rate of the jth atomic group. The I are Gaussian white
noises with zero mean and whose nonzero correlations
are

(r», (t)r», (t')) =2g, a J...5(t —t'),
( I »+, (t)I »+, (t') ) =2g, aJ„,.5(t t'), —

(r„,(t)r„,(t') & =(P J, +yJ,) )5(t —t'),
(r„,(t)r, (t') &
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(1 D, (t)I D, (t')) = —2g, (aJ2+,, +a J,,, )5(t t') . —

The stochastic differential equations for the polarizations
J—

+,

2 and J» are ignored because they decouple from
Eqs. (5), which alone determine the properties of the field.

J2 —N 2+y/P 1+
4g 2a2

JD =N —(2+y/P, )Jz, JQ3' J2y
2gjcx

The stochastic differential Eqs. (5) are linearized by ex-
pressing the variables as the sum of their steady-state
values and small fluctuations, denoted by a prefixed 5,
and only retaining first-order terms in these small fluctua-
tions. Following Reid [15] we also transform to Fourier
space so that the equations become

M
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j=1
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The variables and noises are now functions of frequency
rather than time. The noise correlations ( I „(to)I s(co') )
are given by the right-hand sides of Eqs. (6) with 5(t t—')
replaced by 5(co+co'). The quantity Z is introduced as a
notational shorthand. Equations (10) are a system of
linear algebraic equations for the small fluctuations.
They can be simplified by introducing quantities corre-
sponding to the amplitude quadrature

X—~ +~ ~JX ~J23, +&J23

r, =r„,+r„j .

Equations (10) then become, after eliminating 5J, . and

6J2j,

M
0=( —~+iso)5X+ g g 5JX

j=1
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0=( —2P +ice)5J P—5J —Y+I

0=(P, —y+ico)5JD +(y 2P—)5J3 —2Y+I D

Y=g(J2—3 5X+a5JX, ) .

Solving these equations for 5X(co) we find

M
5X(~)= y g, (c,l „+c,r, +c,l, ),

j=1

where the coefticients c6, c7 and c8 are given by

(12)

(13)
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The amplitude-squeezing spectrum of the cavity field is
then

(5X(co)5X( —co) )

= g 2g, [ lcs l (2g, aJ23, +P,J»+ yJ» )

—2J23, [y Re(c,*c,)+g,a Re(c 6 c7 )

+g,alc7I']j

According to the input-output theory of Gardiner and
Collett [12,16] the squeezing spectrum of the field emitted
by the laser, assuming significant output coupling
through one mirror only, is

V(co)=1+21~(5X(co)5X(—co)) . (16)

The predictions of this formula are considered in Sec. IV.

III. STATISTICAL MODEL

Laser squeezing is a consequence of sub-Poissonian
population dynamics in the individual laser atoms [3—5].
In this section a heuristic statistical model of the pump-
ing process is extended to the case of spatially varying
pumping rates.

Since it is a Poissonian process the mean time for a
spontaneous emission from one atom in the lower lasing
level ~2) is t = 1/y, and the variance in the emission time
is b, t = t =(1/y) . However, we assume that the laser is
operating under conditions such that the populations in
the two lasing levels

~
3) and ~2) are approximately equal

(see Sec. IV B 1). Then electrons are only available to de-
cay out of the lower lasing level ~2) half the time. Conse-
quently, the mean time for decay out of this level is

This formula relates the photon statistics to the statistics
of the mean time for population transfer between the
laser levels. It is more useful to express the photon statis-
tics in terms of the variance of the time for an individual
transfer ht rather than in terms of the variance of the
mean time ht . Since there are a mean of n. transitions
per time period they are related by

ht
gt2 j

j n
(18}

The Fano factor is defined to be the ratio of the photon-
number variance to the mean. Using Eq. (18) in Eq. (17)

I

t =2 ly, and the variance is b, t = ( 2 ly ) [5,7]. In-
coherent pumping may be modeled as an inverse spon-
taneous decay [10], giving a pumping time mean and
variance of t =1/P/ and ht =(1/PJ ) . Since the spon-
taneous emission and pumping are statistically indepen-
dent processes the mean time for the combined processes
is t = 1/P +2/y, and the variance in the time is

ht, =(I/PJ ) +(2/y) .

These atomic time statistics determine the counting
statistics of the photons produced by the laser. Over a
period of time T the jth atomic group produces a mean
number of photons n, =N (T!t ). This relates the two
stochastic variables, n the number of photons produced
in a certain time period T, and t the mean time for popu-
lation to be transferred from the lower to the upper lasing
level in that time period. Since the fluctuations in the
mean quantities are small we can use the usual formula
relating the variance in a function of a stochastic variable
to the variance of the variable itself [17]

hn Atj
(17)
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we find the Fano factor for photons produced by the jth
atomic group in the time Tto be

hn AtJ J
—2

(19)

If T is much longer than the cavity decay time I/(2a),
this will be the Fano factor for the photons emitted from
the laser. For the three-level laser shown in Fig. 1 the
Fano factor is then

b, t,
' (1/P, . )'+ (2/y )'

i
ti2 (1/Pi+ 2/y )2

(20)

If there are many spatial groups the mean photon num-
ber produced in the time T is the sum of the means for
each of the groups

TN. —J—
tj.

(21)

Since each spatial group radiates independently of the
other the total variance in the photon number is the sum
of the individual variances

M

bn =

gran,

j=1

and the overall Fano factor is

(22)

hn hn J

nj.

nj
(23)

(24)

where we have noted that n=a and An is a zero-
frequency quantity, since T is required to be the longest
time scale in the problem.

This is the mean of the Fano factors for each spatial
group weighted by the proportion of photons produced
by that group. This simple formula depends only on the
atomic decay rate y and the pumping rate at each spatial
group P .

The Fano factor of this section and the amplitude-
squeezing spectral density of Sec. II are closely related.
They are approximately equal provided the quantum fiuc-
tuations in the field amplitude are small compared to the
steady-state field amplitude. This can be confirmed by
expressing the photon number variance in terms of the
Fourier-space field variables of Sec. II,

5n(co=0)'=b [[a+5a"(co=0)][a+5a(co=0)]]
=a (5X(co=0)5X(co=0))

f= = (5X(co=0)5X(co=0)),b, n (co = 0)
CX2

sinusoidal longitudinal variations. The former describes
cavity and fiber modes fairly well. The sinusoidal varia--
tion describes a pump resonantly enhanced in a Fabry-
Perot cavity. The figures have been chosen with parame-
ters appropriate for a single mode fiber laser, since we be-
lieve this type of laser to be a candidate for displaying
squeezing [7].

A. Mode functions

The mode functions occurring in the Jaynes-Cummings
coupling strength, Eq. (4), are normalized so that the in-
tegral of their modulus squared over all space is one. The
particular mode functions we consider in this paper are
given in Table I. The Gaussian transverse mode is ap-
propriate for either a cavity, or a fiber if truncated at the
core radius. The sinusoidal longitudinal mode describes a
Fabry-Perot cavity mode. %e assume pump depletion is
negligible.

The mode functions of Table I will also be used to de-
scribe the spatial variation of the pumping strength

P, =P, ~u(r, ) ~'L . (25)

Although it is not essential, we now assume that the
pumping is optical. The factor of L occurs because it is
intensity rather than energy density that is important for
pumping, so the normalization factor is the area V~/L
rather than the volume Vz. PI is the pumping rate in-
tegrated over the mode's cross-sectional area, and aver-
aged over a wavelength longitudinally, for longitudinally
varying modes. It is proportional to the total pumping
power and is hence the appropriate quantity to hold fixed
when comparing the laser's behavior for diQ'erent pump
modes. It is related to the total pumping power by

power

ACOp

Pz, (26)

where Ace is the energy of a pump photon and 0. is the
pump absorption cross section.

It is more convenient to calculate with the volume den-
sity of atoms p than with the number of atoms in a group
N . Hence the scaled Jaynes-Cummings coupling
strength go is useful,

go=go+0 . (27)

Name fu(r)[

TABLE I. Spatial mode functions considered in this paper.
The normalized mode function is ~u(r)~. V~ is the normaliza-
tion volume. The mode functions are zero outside a region of
length L, and for the nontransversely varying mode functions,
outside a cylinder of cross-sectional area A. r is the transverse
radial coordinate and z is the longitudinal coordinate.

IV. SPATIAL STRUCTURE

After introducing the spatial mode functions in Sec.
IV A we use the preceding theory to calcu1ate their e6'ect
on the laser squeezing in Sec. IV 8. The theory. is quite
general, but we consider only Gaussian transverse and

Uniform
Transverse Gaussian

Standing wave

Gaussian plus

Standing wave

1/Q V

exp[ (r/W)']/Q VA. —
cos(kz)/Q V~

eos(kz)exp[ (r/W)']/V V~—

AL
—,
' m. W'L

—'AL
—'mW L



46 SQUEEZED LIGHT FROM CONVENTIONALLY PUMPED LASERS. . . 2807

It is also convenient to calculate with scaled variables,
denoted by a tilde,

a =a/+p V~, J~. =J /N (28)

Since V~ is the laser medium volume these variables
refer to the field amplitude per root atoms, and to the po-
larization, and population per atom. They are advanta-
geous for numerical calculations because the scaled field
is independent of the normalization volume, as can be
seen by substituting go and a into the steady-state Eq. (7)
and making the dependence of the mode function on the
normalization volume explicit. If they are used in the
formulas of Sec. II, g occurs multiplied by either QNJ
or &p. In terms of the scaled go,

gj&p=go~u(r~ )~&p=go~u(rj)~,

g QN'=g, +pb, V'=go~u(r, )~+b, V',
(29)

where 6 V. is the medium volume occupied by the jth
atomic group.

B. The eÃect of spatial structure on squeezing

In this section we calculate the squeezing with nonuni-
form laser modes and pumping rates. The linearized P-
function method is suitable for both cases while the sta-
tistical model can only model a varying pumping rate.
The results show that the spatial structure of the laser
mode has a negligible effect on the squeezing, while under
certain conditions a spatially varying pump rate can
enhance the squeezing.

1. The laser mode

A nonuniform laser mode implies the local field and
the Jaynes-C™m~~gs coupling strength are nonuniform.
This will degrade the squeezing if the stimulated emission
rate for certain groups becomes comparable to the other
atomic rates. For then the laser transition will be slowed
and become an additional noise source [7]. Fortunately
such atoms will also contribute few laser photons. Since
the contribution of each atomic group to the squeezing is
in proportion to the number of photons it contributes, see
Eq. (23), their influence on the squeezing will be propor-
tionately small.

The combination of parameters that determines the
si nificance of spatial variations in the laser mode is
go/~. In the spatially uniform case this equals g N/v.
According to the expression for the spatially uniform
steady-state field, Eq. (8), if it is much larger than y/2
then the field is independent of g. The populations on the
lasing levels are then also approximately equal, as dis-
cussed in Sec. II. So if the inequality

go /K ))y /2 (30)

is satisfied we anticipate that spatial variations in g will
not affect the field strength much. We now choose some
typical parameters to see if this inequality is likely to be
satisfiable in practice. Using parameters typical of rare-
earth ions, yz =100 s ' and co=10' s ', in Eq. (4) gives

go 0.01 m s . An ionic density of p = 10 m gives

go = 10 s '. A cavity decay rate of ~= 10 s ' gives
go/a. =10' s '. So the inequality (30) is satisfied provid-
ed the atomic decay rate is much slower than this, which
is typically the case.

We have performed a numerical calculation which
verifies the preceding general considerations. %e used
the theory of Sec. II to compare the maximum squeezing
with a spatially uniform laser mode to that with a Gauss-
ian laser mode. The Gaussian waist was chosen to be half
the medium radius, 8'/R =0.5, so that at the medium's
edge r =R the mode function squared is a factor of e
less than at the center r =0. For the spatially uniform
case the maximum squeezing of V(co=0)=0.5 occurs for
the matched p™pingrate P =y /2. Numerical calcula-
tions show that with Gaussian structure the spectral vari-
ance remains below 0.55, V(co =0) ~ 0.55, provided
go/" 500y, which is consistent with the inequality (30).
The results of this section lead us to expect that the
atom-cavity coupling can be made sufficiently strong for
spatial variations in the laser mode to have a negligible
effect on squeezing.

2. The p™pingrate: three-level laser

In this section we compare the squeezing produced by
incoherently p™pedthree-level lasers with different spa-
tial variations in the pumping rate. The parameters of
our figures reQect those of fiber lasers. Both the uniform
and Gaussian distributions are truncated at the laser
medium radius R, which corresponds to the radius of the
fiber core. The Gaussian waist 8' is assumed to equal
this radius, 8'=R; see the inset to Fig. 2(a). We choose
the cross-sectional area of the uniform mode to be that of
the fiber core A =~R .

Since we are considering an incoherently pumped laser
it may appear inconsistent to use a sinusoidal longitudi-
nal mode associated with resonating the pump in a
Fabry-Perot cavity. However, the incoherently pumped
three-level laser is the limit of a coherently pumped four-
level laser with sufficiently rapid decay out of the upper
pump level. The combined coherently pumped transition
and spontaneous decay is then well approximated by a
single incoherently pumped transition.

Figures 2(a) and 2(b) are plots of the (almost) zero-
frequency squeezing spectral density calculated using Eq.
(16) of the linearized P-function theory. In the spatially
uniform case the best squeezing V =0.5 occurs when the
pumping rate is matched to the spontaneous emission
rate P =0.5y. An interesting feature of the figures is that
a spatially nonuniform pumping rate can increase the
squeezing for a fixed integrated pumping rate PI . How-
ever the maximum squeezing irrespective of p™prate is
not increased. Note that the dimensionless integrated
pumping rate parametrizing the figures, Pl /( y m.R ), is
normalized by the spontaneous emission rate y and by
the laser medium cross-sectional area ~R .

Enhanced squeezing is possible with nonuniform spa-
tial pumping because of the associated spread in rates
about the uniform pumping rate Pl/(mR ). For a small
but sufficiently large pumping rate there is some region of
matching. At low pumping rates matching occurs to-
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wards the mode peaks, while for high pumping rates it
occurs towards the troughs. The peak pumping rate with
Gaussian variation is twice that of the uniform case, and
sinusoidal longitudinal variation increases it by a further
factor of 2.

Low pumping rates are likely to be of most practical
interest; see Fig. 2(b). In this region transverse varia-
tions alone do not significantly increase the squeezing,
while the addition of sinusoidal longitudinal variation
does. For P=0. 1 the squeezing for the transversely and
longitudinally varying pump is V=0.67, while for a uni-
form pump V=0.72. Since the squeezing for the Gauss-
ian transverse variation alone is V=0.72, and for the

f=f f(r) pd r .
n

(3 I)

f(r) is the Fano factor at position r given by Eq. (20)
with P replaced by P(r). n(r)ln is the proportion of
photons contributed by the volume element d r at r. Ac-
cording to the statistical model, the mean number of pho-
tons produced by a single atom in time T is T/t, where t
was determined in the second paragraph of Sec. III. n is
the total cavity photon number, the integral of contribu-
tions over all volume elements

sinusoidal longitudinal variation alone (not shown in
figures) is V=0.66, the enhancement is a result of the
longitudinal pump rate variation.

Figure 2(c) shows the laser cavity mode photon number
as a function of pumping rate. The laser output power is
decreased by nonuniform spatial pumping. This is be-
cause the regions of higher pumping rate do not contrib-
ute proportionately more photons, due to laser satura-
tion. Hence the reduced light output from regions of low
pumping is not balanced by increases from regions of
high pumping.

The effect of nonuniform pumping rates may also be
calculated using the statistical model of sec. III. When
g0 is large enough for the model to be valid over most of
the mode its predictions are essentially the same as those
of the P-function theory. The advantage of the statistical
model is its simplicity.

In the limit of infinitely small volume elements the sum
in Eq. (23) for the overall Fano factor becomes an in-
tegral
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2~r dr

n= f n(r)pd r=pf —d r=pTf ~ d3rT 3 yP(r)
v r v 2P(r)+y

(32)

For a transverse Gaussian pump these integrals may be
evaluated exactly. Using cylindrical polar coordinates
and assuming the medium volume to be a cylinder of
length L and radius 8 we have

0.0 0.2 0.4 0.6 0.8 1.0

Pump rate P~/(~R~)
2P'+ y=

—,'pTV~y ln (33)

FIG. 2. Effect of spatially varying pump rates on the in-

coherently pumped three-level laser. The integrated pumping
rate is expressed as the dimensionless quantity P&/(ym. R'),
where PI is defined by Eq. (25). The dotted line is the spatially
uniform case, the dashed line the transverse Gaussian, and the
solid line the combined transverse Gaussian and longitudinal
standing wave. The Gaussian waist is equal to the radius of the
mode, 8'/R = 1. Other parameters are g /y = 1 and ~/y =0.01.
(a) Plot of laser output amplitude squeezing V(co=0.01m) as a
function of dimensionless pumping rate. Results obtained using
Eq. (16). Inset shows the Gaussian and uniform mode functions
considered. The vertical dashed line indicates the fiber core ra-
dius. (b) Zoom in on (a) for low pumpinp rates. Inset ic): Intra-
cavity laser photon number per atom, a, as a function of pump-
ing rate. Obtained using Eq. (7).

PI =P L /V

where P is the peak pumping rate. The remaining in-
tegral is, using Eq. (20) for the Fano factor,

I= f f(r)n(r)pd r
0

2+ 4pr2 —4(r/8')

P
( +2P~ —2(rlw'j

)

pr —2(r/W)

2pi —2(r/ W)

This evaluates to
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V. SUMMARY

We have included spatial structure in the calculation of
laser squeezing. Since the statistical model of Sec. III is
both simple and accurate a wide variety of lasers can be
easily and accurately modeled. This offers the hope of
obtaining excellent agreement between theory and experi-
ment.

The preceding analyses showed that the spatial struc-
ture of the laser mode can be ignored in practice. This is
because the coupling between the laser atoms and laser
mode can easily be made much stronger than the
minimum required for laser operation.

However, spatially nonuniform pumping can
significantly increase or decrease the squeezing compared
with the ideal spatially uniform case. The maximum
squeezing as a function of pumping rate is always de-
creased. But in practice it may be dificult to achieve the
high pumping rates corresponding to maximum squeez-
ing and so the behavior at low pumping rates is of partic-
ular interest.

We have presented graphical results appropriate for a

fiber laser. Specifically we have used a Gaussian trans-
verse profile which is truncated on the wings at a radius
equal to the Gaussian waist. At this point the pumping
rate is 1/e =0.14 of the peak rate at the center. At low
pumping rates nonuniform pumping only significantly
affects the squeezing when there is both transverse and
sinusoidal longitudinal variation. The squeezing is then
increased, for a fixed total pump power. This would
occur if the pump were optical and resonantly enhanced
in a Fabry-Perot cavity. Consequently, better squeezing
is obtained if the pump cavity is a Fabry-Perot cavity
rather than a ring cavity. This result is potentially useful
since the high pumping rates necessary for matching may
require resonant enhancement.

In summary we have found that spatial structure can
be accounted for and generally has a small impact on
laser squeezing.

ACKNOWLEDGMENTS

We acknowledge discussions with A. Stevenson. This
work is supported by the Australian Research Council.

[1]A. M. Khazanov, G. A. Koganov, and E. P. Gordov,
Phys. Rev. A 42, 3065 (1990).

[2] T. C. Ralph and C. M. Savage, Opt. Lett. 16, 1113 (1991).
[3] H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls,

Phys. Rev. A 44, 3361 (1991).
[4] H. Ritsch and P. Zoller, Phys. Rev. A 45, 1881 (1992).
[5] T. C. Ralph and C. M. Savage, Phys. Rev. A 44, 7809

(1991).
[6] D. L. Hart and T. A. B. Kennedy, Phys. Rev. A 44, 4572

(1991).
[7] T. C. Ralph and C. M. Savage, J. Opt. Soc. Am B (to be

published).

[8] Min Xiao, H. J. Kimble, and H. J. Carmichael, Phys. Rev.
A 35, 3832 (1987).

[9] D. M. Hope, D. E. McClelland, and C. M. Savage, Phys.
Rev. A 41, 5074 (1990).

[10]H. Haken, in Laser Theory, edited by S. Flugge, Encylo-
pedia of Physics Vol. XXX/2c (Springer-Verlag, Heidel-

berg, 1970).
[11]W. H. Louisell, Quantum Statistical Properties of Radia

tion (Wiley-Interscience New York, 1973).
[12] C. W. Gardiner, Quantum ltioise (Springer-Verlag, Berlin,

1991)~

[13]P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353
(1980).

[14] C. W. Gardiner, Handbook of Stochastic Methods

(Srpinger-Verlag, Berlin, 1985).
[15] M. D. Reid, Phys. Rev. A 37, 4792 (1988).
[16]C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761

(1985)~

[17]G. L. Squires, Practical Physics, 3rd ed. (Cambridge Uni-

versity Press, Cambridge, England, 1985).


