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Bistabilit3t in a four-level laser with a resonant pump mode
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We investigate an optically pumped four-level laser in which both the laser and the pump form reso-
nant cavity modes. We find that the system can exhibit absorptive bistability under conditions typical of
solid-state lasers. Under conditions of high pump-cavity finesse, a bistability exists between below-
threshold operation and maximum laser output.

PACS number(s): 42.65.Pc

I. INTRODUCTION

In recent years there has been much interest in the
behavior of lasers under conditions where the dynamics
of atomic levels other than the lasing levels need to be ex-
plicitly retained [1]. Interesting nonlinear behavior has
been predicted, in particular in class-3 lasers, e.g., solid-
state lasers. Given the rising importance of photonics in
communications and measurement such research has
technological as well as scientific significance.

Bistable output intensity has previously been predicted
and demonstrated in lasers containing intracavity satur-
able absorbers [2,3]. At certain pump powers, two stable
situations are possible: one in which the absorber atoms
are unsaturated and quench lasing action, the other in
which the absorber atoms are saturated and hence trans-
parent. It has also been shown theoretically that bistabil-
ity occurs in a three-level Raman laser when a resonant
pump mode is created [4]. In this paper we predict that
bistability can also occur in a four-level laser with homo-
geneously broadened pump and laser transitions typical
of solid-state lasers.

We examine an optically pumped four-level laser in
which both the pump and the laser form resonant cavity
modes. Under certain conditions the pump mode can ex-
hibit an absorptive bistability. This in turn results in bi-
stable laser output. The lower branch of the laser output
corresponds to the pump transition being unsaturated
and is similar to that expected from a weakly depleted
classical pump. The upper branch corresponds to satura-
tion of the pump transition, i.e., maximum laser output.
The width of the bistable region can be controlled by ad-
justing the finesse of the pump cavity and the energy level
decay rates of the active atoms. Under conditions of high
pump-cavity finesse the lower branch is below threshold
while the upper branch is at maximum output power.

In the second section of this paper we will set up the
model and derive the steady-state semiclassical results.
In the third section we will examine the behavior of the
laser threshold as a function of the pump-cavity decay
rate. In the fourth section the bistable region will be ex-
amined. Bistability curves for the laser and conditions
under which bistability appears will be presented. We

demonstrate the feasibility of observing bistability with
parameters typical of solid-state lasers.

II. THE LASER MODEL

Figure 1(a) is a schematic representation of a possible
experimental setup. The atomic level scheme of the ac-
tive atoms is depicted in Fig. 1(b). Our model consists of
N of these four-level atoms interacting with an optical
ring cavity mode via the resonant Jaynes-Cummings
Hamiltonian
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FIG. 1. (a) Schematic diagram of experimental realization of
a four-level laser with quantized pump mode. The pump cavity
is resonant with the pump transition of the atoms. The ratio of
pump out to pump in (P,„,/P;„)is determined by the reflectivity
of the pump input mirror and the absorption of the active medi-
um. (b) Energy level diagram for the lasing atoms.

1050-2947/94/49(6)/4979(6)/$06. 00 49 4979 1994 The American Physical Society



4980 T. C. RALPH

N

023 l kg 23 g (0 &23u 8&23 )
J(L= 1

N

~14='&g14 X (b o14u bcil4u)
@=1

where b and b are the pump mode annihilation and
creation operators. The pump mode is driven by a close-

(2)

where carets indicate operators, g,- is the dipole coupling
strength between the i ) to ~j) level transition of an
atom and the cavity, p labels the different atoms, & and

are the cavity mode annihilation and creation opera-
tors, and &,:„and &,+-„are the Hermitian conjugate
lowering and raising operators between levels ~i ) and

~j )
for the pth atom. The field phase factors have been ab-
sorbed into the definition of the atomic operators. In ad-
dition the atoms interact with a second optical cavity
"pump" mode via the resonant Jaynes-Cummings Hamil-
tonian

to-resonance field interacting with the cavity via the
Hamiltonian

Bc=ifi+2ab(Ee "b E—*e ' b) .

The photon Aux of the incident field is given by EE'.
The frequency of the incident field is co . The pump-
cavity damping rate due to the input-output mirror is
2mb. Following standard techniques [5,6] we couple the
atoms and cavity to reservoirs and derive a master equa-
tion for the reduced density operator p of the atoms and
cavity. Included in our laser model are atomic spontane-
ous emissions from level ~4 & to level

~
3 ), from level

~
3 )

to level ~2), from level ~2) to level 1), and from level
~4) to level

~
1 ), at rates y34 y23 y12 and y, 4, respective-

ly. y, is the rate of collisional or lattice induced phase
decay of the lasing coherence while y 2 is the rate of col-
lisional or lattice induced phase decay of the pump coher-
ence. The laser cavity damping rate is 2~, . The resulting
interaction-picture master equation is

a„
Bt iAP ~ [~23 P j+ ~ [~14 P j+ [ C P j+ ( Y14 14+ Y34 34+ Y12L12 y23 23)PiA t'ai

+ —,'(y, L3 2+y 2L4 1)P+~,(2opd it itP p—it d)+—xb(2bpb bbp —pb b),—

with g23 J23 il i2 p g14J14 (&g +1+~)p+ +2irbE

ij P g ( ~ij yP~iju ~ij p+ij yP P~iju~iju)
@=1

ijP g ( ~ijyP~iju ~iju~ijyP P~iju~iju)
p=l

N

—jP= + ~ u ~lu)~~~ u ~Ju

J,4 =g 14(J4 —J, )p —
—,'(y34+ y14+2yy2) J

J23 g23( J3 J2)+ (y23+ y12
+ 2yly) 2J3

+
J2 g23(J23+ +J23+)+ Y23J3 y12J2

+J3 g23( J23i2 +J23 + )+y34J4 y23J3

J4 g14(J14p +J14p) (y34+y14)J4

(&;u o,u)'p —p(it;u —o,u)') —. — where hco=co —co, is the detuning of the pump from the
cavity resonance (co, ) and

The interaction Hamiltonians are obtained using electric
dipole and rotating wave approximations. These are
good approximations at optical frequencies. The finesse
of the cavity is assumed to be suKciently high that one
may make the mean-field approximation. Other major
simplifying assumptions contained in these models of the
laser are (i) single-mode operation, (ii) plane-wave ap-
proximation, and (iii) constant number of atoms.

The semiclassical equations of motion for the operator
expectation values may be obtained directly from the
master equation by making the approximation of factor-
izing expectation values. This corresponds physically to
ignoring the quantum fluctuations in the field. We obtain
the following equations of motion (and their complex
conjugates):

'=&~'&, P'=&b'&,

=(», P=&b),
N

J,,+=&J,, )= g(e,+,„&, —
p=1

X

@=1
Ã

J,, =(Jj)=—g (+,,„&

are the expectation values of the corresponding opera-
tors. J, is the expectation value of the collective popula-
tion operator for the ith level. The tilde indicates the fol-
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lowing scaling with atomic number, N:

u=aN' P=f3N' J =J, N,

J, =JN, g=gN ' E=EN'

J4=

J2=

V 2»bEpP»bP
y34

V 2»bE„P »—bf3
y12

These equations may be solved in the steady state for the
amplitude squared, ~a~, which is approximately equal to
n =—number of laser photons per atom in the cavity
(N.B., from this point on we use a and P to represent the
steady-state values of the laser and pump mode ampli-
tudes).

The phase of a is undetermined, hence a can be chosen
to be real without lack of generality. The phase of P is
determined by the phase of the driving field, E. By
choosing the arbitrary phase of the driving field to be
such that

E=E„+i
2K&

(6)

4g14K& y12+ y 34

V2V12 y14+ y34

4g] +2»bE„y,2+y34

y2y12 V14+ y34

K&

g14

j
K&g14y1 g14 V 2K&E,+ P— =0,
g23y2 g14

(7)

with

y23 y12+ +y„,
y34 y 14y= + +y

The laser mode photon number is then either n =0 or

V'2»bE, r33]-
Kg y12

y34

y14+ y34 Kg

X 1—
y12

Y34 2 r23Y]

r]4+r34 2g23
(8)

The steady-state solutions for the populations and polar-
izations are given by

where E„is the real part of the driving field and P„is the
steady-state solution for the real part of the pump mode
amplitude, we ensure that the imaginary part of P is zero,
i.e., the physical solution(s) for P will be real (P„=P}.
This significantly simplifies the calculations. We em-
phasize that this choice of the driving field phase [Eq. (6)]
is not a special condition. In the absence of a reference
phase the absolute phase of the driving field has no physi-
cal significance, hence our solutions are quite general.

The pump mode amplitude is then given by the follow-
ing cubic equation:

J3 = (+2»bE„P »b—P »,—n ),
r23

a&
Bc( d=ao

~+ ~+
P P ~]4 If23 J2 J3 J4 ~33 ~]4 }

where a& is the right-hand side of the corresponding Eq.
(5) and we have used the subscript 0 to emphasize that
the steady-state values of the variables are substituted
into the matrix. A particular solution of Eq. (8) is stable
if the real parts of the eigenvalues of the drift matrix are
all positive.

III. THRESHOLD BEHAVIOR

When the pump-cavity decay rate is rapid the laser
behaves in the usual way. Equation (7) only ever has one
real solution and hence so does Eq. (8}. At low pump
powers Eq. (8) is negative and unstable, while the zero
solution is stable, i.e., the laser is below threshold. As the
pump power is increased Eq. (8) becomes positive and
stable, while the zero solution becomes unstable, i.e, the
laser is above threshold. The laser output then increases
linearly with pump power until the pump transition satu-
rates at high pump powers [see Fig. 2(a)].

If the lasing transition is strongly coupled to the laser
cavity (g 33 /r ]», » 1) then threshold will occur at
sufficiently low pump powers such that P«1. Hence
Eq. (7) can be simplified by dropping all but the linear
term in P. Using this approximation and the strong cou-
pling condition to substitute into Eq. (8) we obtain the
following threshold condition for the real part of the
driving field:

E2
rt

g14
V23V1y2K K& +

y2
-2 -2

4g 23g 14K&

(r].+r34}
y34

(10)

J1=1 J2 J3 J4

»b — +2»bE~
P

g14 g14

KgJ„= a.
g23

As Eq. (7) has in general three solutions so there are in
general four solutions for 8. In the following sections we
consider the behavior of the solutions as a function of the
pump-cavity decay rate (2»b } using linear stability
analysis to identify the stable solution(s). The stability
analysis is carried out in the standard way be examining
the eigenvalues of the linearized drift matrix defined by
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where we have also assumed that y23«y, 2. As the
pump-cavity decay rate is made slower the laser thresh-
old moves to lower incident powers. A minimum value
of

Y23Yixa (Yi4+'Y34)
rtmin

g23 734

is reached when
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where R is the intensity reflectivity of the input-output
mirror and c is the single-pass intensity-loss coefficient.
In the good-cavity limit (21rbL/c ((I, where L is the
cavity length and c is the speed of light) this expression is
approximately

~2
g14Kb-
r2

Decay rates slower than g,4/Yz lead to higher threshold
powers. This behavior can be understood in terms of the
absorption characteristics of the pump cavity. For an
on-resonance driving field the output pump power (P,„,)

can be related to the input pump power (P;„)by [7]

(c)0. 000002 QUt +b rab

P;„(vb+Y,b )
(13)

0.0000015
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where y, b is the rate at which photons are absorbed by
the active medium. From the semiclassical equations
[Eq. (5)] we get
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g14J14
(14)
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Y12) Hence Eqs. (13) and (14) give the extent to which the
pump mode is absorbed for particular parameters and
pump rate. In the limit of low pump powers the approxi-
mation used to obtain Eq. (10) can be used to simplify Eq.
(13). We obtain
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FIG. 2. Intracavity laser photons per atom (N ) versus driving
field photon flux per atom [(E/Y»)'], in units of Y», for a reso-
nant driving field (b ee=0). Only the stable solutions are shown.
In (a) we see normal laser behavior, ~& =150y» s '. In (b) we
see nonlinear behavior emerging; ~b =10y» s '. In (c) we see
bistable behavior; lc& =4y12 s . Finally in (d) we see bistability
between below threshold and maximum laser output; Kg=y»
s '. Other parameters in units of y» are g, 4

=g 23 3 X 10,
yl y2 —8 x 10, y3 =7.5 x 10 y 14=0 y23=0. 5 x 10, and
~, =45.

Equation (15) has a minimum of zero when Kb
—g,4/Y . 2

This represents complete absorption of the pump (the
pump is impedance matched to the cavity) and produces
the minimum threshold power. At both higher and lower
values of the pump-cavity decay rate absorption is incom-
plete at low pump powers.

IV. BISTABILITY

When ~b &g,4/y2 complete absorption of the pump
occurs at higher pump powers. If we set Eq. (13) to zero
(i.e., complete absorption of the pump) and use the
steady-state semiclassical equations to solve for E„weob-
tain
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The increased absorption at higher pump powers pro-
duces a nonlinear relationship between pump and output
power below saturation [see Fig. 2(b)]. As we continue to

I

reduce Kb, E,o reaches a maximum value then begins to
fall again.

When the pump decay rate has been made sufficiently
small Eq. (7), and hence Eq. (8), has three real solutions
for a range of pump powers. Linear stability analysis re-
veals that two of these solutions are stable, indicating bi-
stability [see Fig. 2(c)]. Using standard techniques for the
solution of cubic equations we find that Eq. (7) has three
real solutions for the following range of the real part of
the driving field (where the positive sign gives the upper
limit and the negative sign gives the lower limit):

-4 -4 -4 -2 -4 2 2 -2 -4 -2 -2 -4 22
g 23g14+20g 23g 14y2Kb Sg 23y2Kb 2g 23g,4y, K, —20g 23g,4y2y1K Kb+g 14y1K,E2

64+bg 23r2g 14
( + )V12 y34 y14

-2 -2 -2 -2 -2 3/2

+ g]4 g 23 Y]]~g (g23g]4 8g23r2&b g ]4 Y]]~g )

4 2 V 34 y12+
'bg23y~]4

( + )V12 V34 y14

(17)

The last line of Eq. (17) determines whether or not we are in the bistable regime. If the sum under the cubed square
root is negative then E„+will be complex indicating that Eq. (7) has only one solution and the system has no bistability
(note that the sum under the square root in the last line must always be positive otherwise lasing action cannot be ini-
tiated). Hence we have the following condition for bistability:

8y 2Kb + , (1.
g14 g23

(18)

Notice that unlike the three-level laser [4] bistability is not dependent on the ratio of longitudinal to transverse decay
rates. If the bistability condition [Eq. (18)] is strongly satisfied a binomial expansion can be used to simplify Eq. (17).
We obtain simpler expressions for E,+ and E„,namely,

-4 -4 -4 -2 -4 2 2 -2 -4 -2 -2 -4 22
2g23g 14+8g23g14y2Kb+ 16g23y2Kb 4g23g14y1K 8g23g14y2y1K Kb+2g y1KE2

+4 2 V34 y12
bg 231 2g ]4

V12 V34 y14
(19)
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1'

y 1Ka
Y12

g23

2
y12+y34

y 14+'V34

y 2Kb

~2

Notice that the expression for E, is the same as Eq.
(16), i.e., the lower limit of the upper branch of the bista-
bility is given by the condition for total absorption of the
pump mode. In the limit of Eq. (18) being very strongly
satisfied Eqs. (19) reduce to

g 14 Y]2(y34+ Y]4)

32+b y 2( y ]2 +r 34 )

to rise with decreasing Kb. Hence when Kb is sufficiently
small we encounter a situation in which the upper branch
extends below the threshold of the lower branch estab-
lishing a bistability between the upper branch and the
zero solution [see Fig. 2(d)]. Comparing E„asgiven by
Eq. (20) with the threshold condition [Eq. (10)] we obtain
the following condition for the bistability to extend below
threshold:

E„ r]2(r34+3 14)

2(r 12+r 34)

(20)
Y23Y lg ]4+ ( Y34+ Y]2)

2

Kb (
g 23 y 3122( Y34 +r 14 )

(21)

Notice that the lower limit of the bistable region is in-
dependent of the pump-cavity decay rate in this limit.
However threshold power for the lower branch continues

Observing bistable behavior experimentally will rely on
satisfying two requirements: (i) creating a sufficiently
high-finesse pump cavity such that Eq. (18) is satisfied
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-2
gi4 caIP
y~ 4

(22)

and (ii) being able to reach the pump powers required by
Eq. (17) to be within the bistable region. We now discuss
these requirements. The pump absorption cross section
(cr ) is related to our parameters via

require pump powers in the tens of mi11iwatts to reach
the bistable region. For such a laser bistability between
above- and below-threshold operation would occur when

~I, (20 MHz. The effect of the driving field being off res-
onance is to raise the pump power required to reach the
bistable region in accordance with

Similarly the stimulated emission cross section (a, ) is re-
lated by

-2
(23)

IEI'=~„'+ n .
2Kb

V. CONCLUSION

(24)

A reasonable value for these cross sections in solid-state
materials is oI=o- =5&10 m . Taking p=1)(10
m and ~, =200 MHz we find minimum threshold
po~er will be achieved for a pump cavity with ~b =2, 500
MHz and hence nonlinear behavior will emerge for
slower pump-cavity decays. Bistability will occur when

Kb 4 290 MHz. These cavity linewidths are easily at-
tained.

The powers required to reach the bistable region are
determined by the decay rates of the active atoms. In
many solid-state lasers these decay rates are millions per
second. From Eq. (18) we see that similarly high pump
rates and hence prohibitively high pump powers would
then be required to reach the bistable region. However
the decay rates of the active atoms can be affected by the
host materials, e.g., decay rates of hundreds per second
are common in fiuoride glasses [8]. In such a host, a laser
with a small cross-sectional area (e.g., a fiber laser) with a
pump mode on resonance with the driving field, would

In this paper we have investigated the properties of an
optically pumped four-level laser in which both the laser
and the pump from resonant cavity modes. We have
found that the absorption characteristics of the pump-
cavity —active-medium system leads to interesting non-
linear behavior. In particular, bistable behavior is pre-
dicted when the finesse of the pump cavity is suSciently
high. Under conditions of very high pump-cavity finesse
a bistability can exist between maximum laser output
power and below-threshold operation. We have shown
that for conditions typical of solid-state lasers bistability
will occur for pump-cavity linewidths less than about 300
MHz. The pump power required to reach the bistable re-
gion depends strongly on the atomic decay rates of the
active atoms.
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