
Rhetorical Style in Code 1

The 'FizzBuzz' Programming Test: A Case-Based Exploration of Rhetorical Style in Code

Kevin Brock
University of South Carolina

Rhetorical Style in Code 2

Abstract
While software developers have long discussed concerns of style in regards to writing

code, scholars of computation would benefit from a rhetorical approach to style, an approach that

links style to substance and sees style as situated and audience-specific. However, every code

text is informed by stylistic decisions that impact how the text is interpreted and understood. In

this essay, several stylistic variations of code written for the 'FizzBuzz' hiring test are examined

in order to demonstrate the significance of stylistic choice in code composition. The range of

approaches coders might take to communicate a preferred method of accomplishing a given task

in code indicates that rhetorical style performs an important role in how code is accessed and

comprehended by human and nonhuman audiences alike. Accordingly, software critics need to

attend more closely to the ways that coders employ style in order to induce particular types of

rhetorical action through their code texts and practices.

Rhetorical Style in Code 3

Introduction
For the last several decades, rhetoric has increasingly been understood to play a

significant role in communication occurring not just in discursive speech and writing acts but

across numerous modes of meaning-making, including image, color, gesture, spatial

arrangement, aurality, and procedure. For rhetoricians, recognizing that meaning is created and

communicated across these modes serves as a beginning point to understand how each of these

modes, and the media through which they are communicated, affords particular approaches to

constructing and representing persuasive arguments for various audiences. This question is

commonly understood to be one focused squarely on style.

 Rhetorical style is often described as an ornamentation or clarification of substantive

argument, those ideas initially developed through invention.[1. Aristotle, On Rhetoric: A Theory

of Civic Discourse, trans. George Kennedy (Oxford: Oxford UP, 1991), III.ii.1-3.] However,

style serves a greater purpose as the articulation and performance of the values underlying one's

argument. As Barry Brummett argues, 'Style is a complex system of actions, objects, and

behaviors that is used to form messages that announce who we are, who we want to be, and who

we want to be considered akin to.'[2. Barry Brummett, A Rhetoric of Style (Carbondale: Southern

Illinois UP, 2008), xi.] Similarly, Chris Holcomb and M. Jimmie Killingsworth argue that

stylistic variants result in messages that may appear similar but suggest distinct ways of

understanding a given argument and the world it constructs.[3. Chris Holcomb and M. Jimmie

Killingsworth, Performing Prose: The Study and Practice of Style in Composition (Carbondale:

Southern Illinois UP, 2010), 3-4.] Rhetoricians since antiquity have often suggested that among

style's greatest strengths relates to disguising one's stylistic decisions in order to pursue more

Rhetorical Style in Code 4

effectively one's goals: 'authors should compose without being noticed and should speak not

artificially but naturally [… Concealing stylistic decisions] is well done if one composes by

choosing words from ordinary language.'[4. Aristotle, On Rhetoric, III.ii.4.] While calling

attention to, or avoiding calling attention to, one's stylistic decisions can work in favor of some

ends compared to others, style does not have to promote an agonistic or deceptive relationship

between rhetor and audience. Style, described more inclusively, is how we attempt to construct

effectively the artistic presentation of an argument in order to achieve a particular end.

Style as a term used among computer programmers is conventionally either (1) addressed

as a set of universally applicable qualities (e.g., conciseness, readability/clarity, lack of

repetition) that may not necessarily reflect the interests or values of specific communities or (2)

ignored altogether as a relevant concept in discussions about 'best' or preferred programming

practices. This is not to suggest that style is omitted from decision-making about how to write

code—only that such decisions are not always made consciously or explicitly by developers

communicating with one another through code. Here is where a rhetorical approach to style is

useful: it provides a framework for understanding style as situated in particular communities,

wielded toward particular ends, and crafted for particular audiences.

In this essay, I explore how rhetorical style relates to software development in order to

demonstrate that writing code is a rhetorical practice of meaning-making and worthy of note as

such. Just as Matthew Fuller has argued that, '[b]ecause free and open source software opens up

the process of writing software in certain ways its [sic] also opens up the process of talking and

thinking about it,'[5. Matthew Fuller, 'Introduction, the Stuff of Software,' in Software Studies \ A

Lexicon, ed. Matthew Fuller (Cambridge, MA: MIT Press, 2008), 7.] so too should we

investigate how processes of writing software suggest certain ways of talking about and thinking

Rhetorical Style in Code 5

about communicating through those acts of writing software code. For software studies scholars,

attending to rhetoric's understanding of style is particularly significant because it helps us

understand how persuasive decisions have potentially major impacts on how algorithms are

imagined, programs are created, and social events are impacted through the use thereof.

As noted by rhetorician Kenneth Burke, '[w]herever there is persuasion, there is rhetoric.

And wherever there is “meaning,” there is “persuasion.”'[6. Kenneth Burke, A Rhetoric of

Motives (Berkeley: U of California Press, 1969), 172.] My own exploration of rhetorical

meaning will occur through the examination of how code developers write, and audiences make

use of and respond to, stylistic decisions relating to the construction of procedure, syntax, and

arrangement of ideas. As a relevant situation for identifying and illuminating style preferences as

they work toward certain rhetorical ends, I will analyze examples of code written to complete the

FizzBuzz test, a small-scale hiring test to examine programming applicants' basic knowledge

both of code languages and of procedural and iterative operations. Despite its small size (in most

iterations of texts written for the test), FizzBuzz serves as a relatively accessible synecdoche for

programming as an activity and code as a text; the approaches taken to solve the test—and the

myriad, often passionate discussions surrounding any individual solution to the test—can help us

see more clearly how code and rhetoric are more closely intertwined than may often be

recognized.

Style and Its Role in Rhetorical Activity
Among software developers, style is commonly understood as serving a seemingly

universal and instrumental end, often framed in ways that suggest particular ideologies of 'best'

or 'elegant' or 'acceptable' practice within an industrial frame. For example, Brian W. Kernighan

Rhetorical Style in Code 6

and P.J. Plauger generalize the shared values of human audiences of code when, in the preface to

the first edition of their Elements of Programming Style, they state, 'The principles of style,

however, are applicable in all languages, including assembly codes.' [sic][7. Brian W. Kernighan

and P.J. Plauger, The Elements of Programming Style, 2nd ed. (New York: McGraw-Hill, 1978),

xi.] The issue under debate is what 'style'—in this case, the implied 'good' style of readable code

—means to diverse bodies of programmers and programming communities whose preferences

for how code works, and how it reads to the community members making use of it (e.g., building

on existing code, rewriting existing code, or contributing new code). Kernighan and Rob Pike

begin moving toward a clarification of these nuances when they note,

[W]hy worry about style? Who cares what a program looks like if it works? [… W]ell-

written code is easier to read and to understand, almost surely has fewer errors, and is

likely to be smaller than code that has been carelessly tossed together and never polished.

[…] Sloppy code is bad code—not just awkward and hard to read, but often broken.[8.

Brian W. Kernighan and Rob Pike, The Practice of Programming (Reading, MA:

Addison-Wesley, 1999), 28.]

While still generalizing, Kernighan and Pike make several important observations. First, they

respond to questions about style—specifically, about distinctions often made between style and

logical ability (e.g., a difference between what a computation would do conceptually and how

that might be written as a procedure in code). Second, they acknowledge that many view

questions of style as unimportant or incidental. Third, they argue that such perspectives ignore

the impact that stylistic choices have on the mechanical as well as the readable quality of code—

one's inability or refusal to write in a way that makes sense to some anticipated human reader

may very likely also result in an inability to write in a way that a computer can interpret

Rhetorical Style in Code 7

successfully.

This integral role of style to anticipated action is crucial for rhetoricians, as style has

traditionally been understood as the filter or frame through which ideas are shaped for

presentation to an audience. In other words, if rhetorical invention is the what (the discovery and

development) of an argument, then, through this lens, style—in combination with delivery and

arrangement—would be considered how that argument is constructed to be presented most

successfully for the appropriate audience(s). Unfortunately, for many such a definition has long

constrained style as providing only ornament or decoration on a distinct argument, as though the

manner of presentation were subordinate to and separate from the content of that argument.

Unfortunately, this line of thinking is in line with trends to associate style with a general set of

prescriptions for practice, such as demonstrated by Kernighan and Plauger above.

However, a number of rhetorical scholars have begun attending to the complex and

nuanced contributions style provides to a given persuasive act, and it is this work that I will bring

to bear on questions of computer programming. Brummett, following Judith Butler and other

scholars of performativity, argues that style is instead a much more substantial component of an

argument: it is not decoration but the performances we engage in when we communicate,

reflecting the collection of social values that we anticipate sharing with our audience(s).[9.

Brummett, A Rhetoric of Style, 24-26.] Holcomb and Killingsworth propose that, while meaning

is often 'somehow independent of style [… a]ny change in the manner of expression will have

consequences for the meanings expressed.'[10. Holcomb and Killingsworth, Performing Prose,

2.] In other words, style cannot merely be ornament added onto an otherwise standalone

argument since the means of its performance are infused with, and impart to the audience,

significant meaning integral to the persuasive case being made, as similarly suggested by

Rhetorical Style in Code 8

Kernighan and Pike above.

Further, style offers perhaps the clearest lens through which to understand a particular

rhetor and his or her persuasive intent; style has been defined by Joseph A. DeVito as 'the

selection and arrangement of those linguistic features which are open to choice.'[11. Joseph A.

DeVito, 'Style and Stylistics: An Attempt at Definition,' Quarterly Journal of Speech 53.3

(1967): 249.] That is, style is the means through which a rhetor can determine how best to

approach his or her case, choosing from the options that have been discovered (i.e., 'invented') as

available for this rhetor, for this audience, and for this particular situation or event. The capacity

of stylistic decisions to influence the argument is thus potent rather than insignificant. Just as the

stylistic choices provided to a rhetor prove to be powerful means at his or her disposal, so too are

the choices provided to an audience in how the reception of a given argument will occur.

All interactions between rhetor and audience serve as what Lloyd Bitzer has called

'rhetorical situations' in which a rhetor responds to or, as others have argued since, creates a

particular exigence that requires responsive action in order to achieve some sort of situational

resolution.[12. Lloyd Bitzer, 'The Rhetorical Situation,' Philosophy & Rhetoric 1.1 (1968): 6.

Bitzer's approach—specifically, his claim that a rhetorical situation has an objective existence

before and outside of a rhetor's response to it—was challenged by Richard E. Vatz, who claims

that the rhetor creates a situation by interpreting and translating (for his or her audience) a select

combination of qualities determined to be appropriately relevant or worthy of response, while

more recently, Jenny Edbauer has reframed the rhetorical situation as an ecology of experiences.

For more, see Richard E. Vatz, 'The Myth of the Rhetorical Situation,' Philosophy & Rhetoric 6.3

(1973): 154-161; Jenny Edbauer, 'Unframing Models of Public Distribution: From Rhetorical

Situation to Rhetorical Ecologies,' Rhetoric Society Quarterly 35.4 (2005): 5-24.] Drawing on

Rhetorical Style in Code 9

the choices available in regards to a given rhetorical situation, a skilled rhetor offers multiple

avenues of engagement with an important message, and the way that an audience responds and

reacts to that message through particular types of engagement has a serious impact on the

audience's decision (conscious or not) to pursue the action that the rhetor seeks to effect.

However, not all persuasive efforts are so clear-cut; viewing code as a valid means of

persuasion requires recognizing that, to modify DeVito's definition above, style is not limited to

'linguistic features' but in fact extends across a wide variety of linguistic and non-linguistic

choices that have the potential to impact a particular argument in sometimes radically different

and distinct ways. As Joasia Krysa and Grzesiek Sedek have described it, 'Examining the source

code of a particular program reveals information about the software in much the same way as the

ingredients and set of instructions of a recipe reveals information about the dish to be prepared

[… B]oth programming and cooking can express intentionality and style.'[13. Joasia Krysa and

Grzesiek Sedek, 'Source Code,' in Software Studies \ A Lexicon, edited by Matthew Fuller

(Cambridge, MA: MIT Press, 2008), 236-237.] Critical engagements with code as meaningful,

rhetorical writing thus involves exploring how code suggests the intent of its developer(s) for

particular code functionality and structure as well as through any expressive engagements with

the interpreted or executed software it comprises.

Similarly, there has been extensive discussion for decades in regards to the rhetorical (or

instrumental) character of technical writing in many forms, and this debate roughly parallels

discussions in computer science over Donald Knuth's argument for 'literate programming,' an

approach to software development in which code would be written to be understandable enough

to a human audience so as not to require supporting documentation (e.g., comments).[14. Donald

E. Knuth, Literate Programming (Stanford, CA: Center for the Study of Language and

Rhetorical Style in Code 10

Information, 1992). Knuth's argument has been echoed in different language by other well-

known programmers, perhaps most notably by Yukihiro Matsumoto, 'Treating Code as an Essay,'

trans. Nevin Thompson, in Beautiful Code: Leading Programmers Explain How They Think,

edited by Andy Oram and Greg Wilson (Sebastopol, CA: O'Reilly), 477-481.] In other words,

code would be composed with a rhetorical awareness and anticipation of the human reader that

would encounter and work with the code in addition to the machine programs that would

compile, interpret, or execute it. Among rhetoricians, this conversation centered on the rhetorical

or instrumental nature of technical communication more broadly, with the majority of scholars

advocating a need to recognize the former even in communication that appears to provide

'merely' instrumental or functional aid to a reader.[15. This discussion arguably began with the

publication of Carolyn R. Miller's 'A Humanistic Rationale for Technical Writing,' College

English 40.6 (1979): 610-617. It was extended in a fascinating debate between Robert R.

Johnson and Patrick Moore, among others. See: Robert R. Johnson, 'Complicating Technology:

Interdisciplinary Method, the Burden of Comprehension, and the Ethical Space of the Technical

Communicator,' Technical Communication Quarterly 7.1 (1998): 75-98; Patrick Moore, 'Myths

About Instrumental Discourse: A Response to Robert R. Johnson,' Technical Communication

Quarterly 8.2 (1999): 210-223; Robert R. Johnson, 'Johnson Responds,' Technical

Communication Quarterly 8.2 (1999): 224-226.] As Carolyn R. Miller has argued in her initial

publication on this question, 'To write, to engage in any communication, is to participate in a

community; to write well is to understand the conditions of one's own participation—the

concepts, values, traditions, and style which permit identification with that community and

determine the success or failure of communication.'[16. Miller, 'Humanistic Rationale,' 617.] It is

with such a perspective that we can most effectively see how code—as a form of specialized

Rhetorical Style in Code 11

technical discourse—offers not only a functional account of computational activity but also a set

of human-oriented arguments for persuasive ends that vary by the situation, audience, and author.

Style Demonstrated in the 'FizzBuzz' Programming Test
To begin exploring some essential considerations of rhetorical style in code, I turn to the

'FizzBuzz' test, a specific code genre that emphasizes, among other communicative and problem-

solving perspectives, style as a central component of programming ability (alongside basic

functional code literacy). It exists in a peculiar rhetorical situation: the author of a FizzBuzz

document is generally an applicant for a software programming position, and the audience for

this document is conventionally limited to a small body of employees tasked with hiring for that

position. However, FizzBuzz is so widely used as a rudimentary level metric of employee

potential that it is well-known by most professional programmers and is commonly employed in

a secondary rhetorical situation as a thought experiment for stylistic practice; as I explore below,

conversations about FizzBuzz frequently trigger debates about how solutions to the test 'should'

be written. Not surprisingly, these debates ultimately focus on, although rarely mention

explicitly, the stylistic choices infused into individual attempts at writing effective FizzBuzz texts

for specific employer audiences and with particular goals in mind for what their FizzBuzz

compositions demonstrate.

While FizzBuzz is popular, it is hardly the only—or even the first—test used to determine

basic programming ability or preferences in coding style. Gayle Laakman McDowell has

authored books and columns on technical interviews as effectively objective demonstrations of

technical skill—an approach that roughly echoes the argument for 'instrumentality' in code texts

and development processes[17. Gayle Laakmann McDowell, Cracking the Coding Interview:

Rhetorical Style in Code 12

150 Programming Questions and Solutions (Palo Alto, CA: CareerCup, 2013). See also: Gayle

Laakmann McDowell, 'Why Female Programmers Should Love Technical Interviews,'

November 24, 2012, accessed August 31, 2015, http://women2.com/2012/11/24/why-female-

programmers-should-love-technical-interviews/], although some critics, like Heidy Khlaaf, have

noted that such a perspective obscures certain ways of knowing and doing relevant programming

activities.[18. Heidy Khlaaf, 'Cultural Ramifications of Technical Interviews,' Model View

Culture 23 (2015), accessed August 31, 2015, https://modelviewculture.com/pieces/cultural-

ramifications-of-technical-interviews] Similarly, scholars such as Wendy Hui Kyong Chun and

Alexander R. Galloway have each argued that code languages and software programming

activities in general possess and promote certain ideologies while simultaneously obscuring them

in a seemingly objective (and instrumental) frame.[19. See: Wendy Hui Kyong Chun,

Programmed Visions: Software and Memory (Cambridge, MA: MIT Press, 2011); Alexander R.

Galloway, 'Language Wants to be Overlooked: On Software and Ideology,' Journal of Visual

Culture 5 (2006): 315-331.] For interview- or test-related code—which is usually both relatively

compact in nature (as an extemporaneous exercise) and incredibly significant in how it 'speaks

for' the author, since the code serves as a potential gateway through which one is given access to,

or prevented access from, a given employment institution and the broad community of

professional programmers—these obscured ideologies, and the means by which they are

presented, interpreted, and otherwise framed go hand-in-hand with concerns of rhetorical style.

These concerns are often verbalized as questions of elegance, computational efficiency,

preference for (or against) idiomatic expressions, and so on[20. For a small selection of

discussions regarding individuals' preference for particular styles and paradigms of

programming, see: Kernighan and Pike, The Practice of Programming, 10-17; Kernighan and

Rhetorical Style in Code 13

Plauger, Elements of Programming Style, 1-7; Jon Bentley, 'The Most Beautiful Code I Never

Wrote,' in Beautiful Code: Leading Programmers Explain How They Think, edited by Andy

Oram and Greg Wilson (Sebastopol, CA: O'Reilly, 2007), 29-40; Matsumoto, 'Treating Code,'

478-479.]; in each case, the role of such concerns in the evaluation of code reveals important

information about the author of the code and the employer interpreting potential meaning in the

author's efforts.

The FizzBuzz test essentially asks job candidates for programming positions to code a

program (usually in a specific programming language) that will count from one to one hundred

and perform the following operations:

1. Print to the screen each number, unless...

2. If a number is a multiple of three, print 'Fizz' instead of the number.

3. If a number is a multiple of five, print 'Buzz' instead of the number.

4. If a number is a multiple of both three and five, i.e. a multiple of fifteen, print

'FizzBuzz' instead of the number.

The test is rarely employed to see how 'perfectly' a programmer might achieve this outcome,

since most languages afford multiple approaches to completing the test scenario in a way that

would satisfy both human and computer audiences. As Barry Brown explains code practices

more generally, 'Programming languages thus sit in an unusual and interesting place – designed

for human reading and use, but bound by what is computationally possible.'[21. Barry Brown,

''The Next Line': Understanding Programmers' Work,' TeamEthno-Online 2 (2006): 30, accessed

August 31, 2015, http://archive.cs.st-andrews.ac.uk/STSE-Handbook/Other/Team

%20Ethno/TeamEthno.html] That is, writing code is exercising tensions between human and

Rhetorical Style in Code 14

machine expectations of what that code is capable of doing. The goal of the test is to help the

employer learn about how that programmer approaches solving the FizzBuzz problem through

his or her employment of one or more programming languages—in other words, how that

applicant makes effective use of rhetorical style in his or her code.

In terms of basic code principles, there are several different ways that this problem can be

solved, with a common approach—conventionally described as 'elegant'—that makes use of a

loop, a task performing iteratively and recursively the same set of operations against each

member of a given sequence.[22. Wilfried Hou Je Bek, 'Loop,' in Software Studies \ A Lexicon,

edited by Matthew Fuller (Cambridge, MA: MIT Press, 2008), 181.] In the case of FizzBuzz, this

looped sequence consists of whole numbers from one to one hundred. Definitions of elegance are

plentiful among programmers. Jack Dongarra and Piotr Luszczek note that, '[A]t the software

level, there is a continuous tension between performance and portability on the one hand, and

understandability of the underlying code.'[23. Jack Dongarra and Piotr Luszczek, 'How Elegant

Code Evolves with Hardware: The Case of Gaussian Elimination,' in Beautiful Code: Leading

Programmers Explain How They Think, edited by Andy Oram and Greg Wilson (Sebastopol,

CA: O'Reilly, 2007), 229.] Adam Kolawa defines elegance as code that 'accurately and

efficiently perform[s] the task that it was designed to complete, it such a way that there are no

ambiguities as to how it will behave.'[24. Adam Kolawa, 'The Long-term Benefits of Beautiful

Design,' in Beautiful Code: Leading Programmers Explain How They Think, edited by Andy

Oram and Greg Wilson (Sebastopol, CA: O'Reilly, 2007), 253.] Yukihiro Matsumoto uses the

term beauty instead of elegance: 'Unreadable code will reduce most people's productivity

significantly. On the other hand, easily understandable code will increase it. And we see beauty

in such code.'[25. Matsumoto, 'Treating Code as an Essay,' 478.] In all of these cases, there is a

Rhetorical Style in Code 15

recognition that the program's style incorporates conciseness and clarity of purpose, although

how those qualities manifest in code are valued differently by these parties.

While many discourse communities prize 'elegance' in an amorphous sense, there is a

specific (similar, if not entirely identical) outcome to the looping procedure regardless of its

implementation in code. However, procedurally there exist distinctions—some trivial, some

significant—between different types of loops and how they execute the relevant computation.

Even if we focus on one specific loop, there remain stylistic approaches to executing that loop

and providing the anticipated outcome expression. Such a variety of possible approaches to

writing—albeit in other genres, if not in code—has long been known to rhetoricians: Erasmus'

sixteenth-century text on copia outlines exercises for improving one's stylistic abilities by

writing and rewriting the same text, with nearly two hundred examples, via different tropes and

strategies in response to various needs.[26. Desiderius Erasmus, Copia: Foundations of the

Abundant Style, trans. Betty I. Knott, in Collected Works of Erasmus: Literary and Educational

Writings, edited by Craig R. Thompson (Toronto: University of Toronto Press, 1978), 279-650.]

Recently, James J. Brown, Jr. has discussed the creation of copia-generating software as a

contemporary descendant of Erasmus' student,[27. James J. Brown, Jr., 'The Machine that

Therefore I Am,' Philosophy and Rhetoric 47.4 (2014): 494-514.] while Cristina Lopes has

explored copia for programming more directly by offering over thirty different approaches to

writing software that calculate term frequency in a given text.[28. Cristina Videira Lopes,

Exercises in Programming Style (Boca Raton, FL: Chapman and Hall/CRC Press, 2014).]

Differences in programmers' decision-making processes here highlights nothing so much

as the performative rhetorical style of the coder as well as of the discursive nature of the code

language chosen (that is, the stylistic preferences 'baked in' to the language by its authors). Laura

Rhetorical Style in Code 16

R. Micciche, addressing concerns of sentence-level grammar for more conventional forms of

writing, argues that '[w]ord choice and sentence structure are an expression of the way we attend

to the words of others, the way we position ourselves in relation to others […] How we put our

ideas into words and comprehensible forms is a dynamic process rather than one with clear

boundaries between what we say and how we say it.'[29. Laura R. Micciche, 'Making a Case for

Rhetorical Grammar,' College Composition and Communication 55.4 (2004): 719.] As

demonstrated below, we can easily replace 'word' and 'sentence' with 'operation' and 'logical

function' here to extend Micciche's insights beyond conventional writing to include

considerations of rhetorical style in code. Some FizzBuzz examples in PHP, Ruby, and Java help

make these considerations clear.

FizzBuzz in PHP

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<?php
for($i=1;$i<=100;$i++) {
 if (($i%3==0) || ($i%5==0)) {
 if ($i%3==0) {
 echo "Fizz";
 }
 if ($i%5==0) {
 echo "Buzz";
 }
 } else {
 echo $i;
 }
}
?>

<?php
for($i=1;$i<=100;$i++) {
 if ($i%15==0) {
 echo "FizzBuzz";
 } elseif ($i%3==0) {
 echo "Fizz";
 } elseif ($i%5==0) {
 echo "Buzz";
 } else {
 echo $i;
 }
}
?>

Table 1. Two example FizzBuzz loops in PHP[30. Code examples in Tables 1 and 2 composed by

the author.]

The differences between these displayed lines of code are relatively subtle, but they play a key

role in understanding how stylistic choices have a significant impact on computation. The left-

side function includes a hierarchical set of conditional statements. The outer if() statement

Rhetorical Style in Code 17

checks to see if $i is a multiple of either three or five; if so, it then checks to see which text

replacement condition applies (and both are potentially applicable), and if none is valid, it prints

the value of $i. In contrast, the right-side function sets up a single condition—$i as a multiple

of fifteen—and then provides a series of alternative and entirely exclusive conditions for when

that initial condition is not applicable. That is, unlike the code on the left side of Table 1, the

code on the table's right side will not evaluate the condition of $i as a multiple of 3 and $i as a

multiple of 5 in regards to the same iteration of $i.

Is either of these logically 'superior' or more 'elegant' than the other, and is this a

worthwhile question to consider here? Reaching such a consensus would likely be impossible,

and the criteria different individuals might use to make their case (e.g., the fewer number of lines

for the right-side code vs. the non-exclusivity of the conditions in the left-side code) suggest that

the 'best' approach should not be considered in terms of logical superiority but instead of what is

most persuasive for a particular audience or purpose. As Wilfried Hou Je Bek observes, 'If we

regard the loop as a species of tool for thinking about and dealing with problems of a certain

nature, the sheer light-footedness of looping allows you to run away with the problem with more

ease.'[31. Hou Je Bek, 'Loop,' 180.] The criterion of 'most persuasive,' with all its contingent

possibilities, is made possible only through and because of the particular needs of a given

discourse community whose members share similar perspectives on what code can and should

do to help one achieve a specific goal or solve a problem. However, what is most persuasive or

elegant, as with all other concerns related to rhetoric, is highly situated and rarely remains static

for long across multiple attempts (i.e., examples within a given genre) to achieve a particular

type of response.

Rhetorical Style in Code 18

FizzBuzz in Ruby

In comparison to the two example ways of constructing a FizzBuzz loop in PHP, the

distinction among potential loop styles is a bit clearer in Ruby, as demonstrated by the two

examples in Table 2:

1
2
3
4
5
6
7
8
9
10
11
12

for i in 1..100
 if i%3 == 0 then
 print "Fizz"
 end
 if i%5 == 0 then
 print "Buzz"
 end
 if i%3 != 0 && i%5 != 0 then
 print i
 end
end

100.times do |i|
 i = i+1
 if i%15 == 0 then
 print "FizzBuzz"
 elsif i%3 == 0 then
 print "Fizz"
 elsif i%5 == 0 then
 print "Buzz"
 else
 print i
 end
end

Table 2. Two example FizzBuzz loops in Ruby

In this Ruby example, the means by which an iterative loop is called (e.g., the for loop

vs. the times method) influences how the coder is constrained in dealing with it, and this

stylistic influence (of distinct type of loop) is markedly different from the style choices made in

Table 1 in relation to a single type of loop. The times method, which is called when initializing

an object belonging to the Integer class, begins at 0 and counts up to 99, meaning that addition

has to occur for each iteration of the loop via the line i = i+1; without that line to adjust for

the 'correct' number being computed in each iteration (i.e., from 1 to 100 rather than from 0 to

99), repetitive lines of code would be necessary for the function to be expressed correctly (i.e. if

(i+1)%3==0 then, etc.). The framing of conditional statements is otherwise interchangeable,

as with the PHP examples.

So why might this distinction matter? The construction of the loop, no matter the

approach employed, suggests a tremendous amount about the rhetorical aims of the author in his

Rhetorical Style in Code 19

or her efforts to solve the FizzBuzz problem and communicate that solution to the hiring body.

These aims are not limited to how the author views him- or herself as an individual programmer

working on a specific program but also about how that programmer sees his or her understanding

of the conventions of programming in a given discourse community (e.g., the hiring organization

or, beyond the scope of FizzBuzz, the active community of contributors to a particular software

project). In addition, these rhetorical aims relate to concerns about how the author understands

his or her relationship with a particular computer system (e.g., OS, programming language, IDE

or editing environment). For example, is it more important to plan for all contingencies in

parallel (as in the left-side Ruby example), for a single 'root' condition and all its possible

alternatives (the right-side PHP and Ruby examples), or for a hierarchical or prioritized approach

to dealing with data (the left-side PHP example)? The answer, of course, depends upon the

recognized needs and concerns of a given author, his or her human audience, and the anticipated

abilities of the nonhuman machine audience that will express that code. This is not to suggest

that all interpretations of a rhetorical situation are equally valid but rather to acknowledge that

contingency is an integral component of any communication, and code is not exceptional in this

regard.

FizzBuzz in Java Enterprise Edition

Perhaps the most clearly playful (and satirical) approach to FizzBuzz exists in the form of

code written for Java Enterprise Edition ('FizzBuzz Enterprise Edition'), which adheres to

stylistic conventions of large-scale Enterprise Edition interfaces and environments and which its

initial author, who uploaded the code to online repository GitHub under the account name

EnterpriseQualityCoding, describes as 'a no-nonsense implementation of FizzBuzz made by a

Rhetorical Style in Code 20

serious businessman for serious business purposes.'[32. EnterpriseQualityCoding, 'FizzBuzz

Enterprise Edition,' December 22, 2014, accessed August 31, 2015,

http://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition] The author further

situates the program and the purpose for its existence in its current form:

Enterprise software marks a special high-grade class of software that makes careful use

of relevant software architecture design principles to build particularly customizable and

extensible solutions to real problems. This project is an example of how the popular

FizzBuzz game might be built were it subject to the high quality standards of enterprise

software.[33. EnterpriseQualityCoding, 'FizzBuzz Enterprise Edition.']

Without explicitly identifying relevant decisions as relying on concerns of style, the author is

clearly aware of the role that stylistic preferences and constraints play in the construction of

Enterprise software at many large corporations (i.e., those companies most likely to develop such

software). Further, the author calls to attention how decisions that have nothing to do with the

computational logic of the language or its operation—decisions of style—have nonetheless

become paramount in regards to making a 'readable' program as Enterprise software is assumed

to be written and understood. It is telling that these decisions seem to work directly against the

goals of 'style' as described in shorthand by Kernighan and Plauger or by Kernighan and Pike;

the author of 'FizzBuzz Enterprise Edition' has an extensive familiarity with Enterprise programs,

and that familiarity results in an understanding of 'readability' that may seem absurd but is

perfectly understandable for the constellation of Enterprise developer communities and their

shared needs.

It is also noteworthy that this choice of adopting a particular style is not the same as

pursuing what has been called 'obfuscated progrraming,' an approach to software development

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/

Rhetorical Style in Code 21

wherein software is written in the most 'dense and indecipherable' ways one can compose a body

of code.[34. Nick Montfort, 'Obfuscated Code,' in Software Studies \ A Lexicon, ed. Matthew

Fuller (Cambridge, MA: MIT Press, 2008), 193.] Despite how the program has been written, the

author of 'FizzBuzz Enterprise Edition' is not intentionally making this program difficult for its

intended audience to encounter. Instead, the effort made to bring the program's style in line with

that of other conventional (or perhaps stereotypical) Enterprise software suggests that a more

'universal' understanding of elegance would—in this context—reflect a more obfuscatory effort.

The needs of its audience do not match the needs of the audiences for the PHP and Javascript

examples provided earlier, and the code reflects a recognition of this distinction.

Unfortunately, the code for this version of FizzBuzz is too long to include in its entirety

here; the following excerpts are intended to emphasize some of the stylistic choices the author

has made that would in a more general sense be considered 'poor' or 'wrong' or 'unreadable.'

1

2
3

4

5
6
7
8
9

10

11
12

package
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl;

import
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.interfaces.
parameters.FizzBuzzUpperLimitParameter;
import
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.parame
ters.DefaultFizzBuzzUpperLimitParameter;

public class Main {
 public static void main(String[] args) {
 final FizzBuzz myFizzBuzz = new FizzBuzz();
 final FizzBuzzUpperLimitParameter fizzBuzzUpperLimit = new
DefaultFizzBuzzUpperLimitParameter();

myFizzBuzz.fizzBuzz(fizzBuzzUpperLimit.ObtainUpperLimitValue());
 }
}

From 'FizzBuzz Enterprise Edition,' file:
src/main/java/com/seriouscompany/business/java/fizzbuzz/packagenamingpackage/impl/Main.java

3 import
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.interfaces.
factories.FizzBuzzSolutionStrategyFactory;

Rhetorical Style in Code 22

4

5

6
7
8
9

10

11
12

13
14
15

import
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.factor
ies.EnterpriseGradeFizzBuzzSolutionStrategyFactory;
import
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.interfaces.
strategies.FizzBuzzSolutionStrategy;

public class FizzBuzz {
 public void fizzBuzz(int nFizzBuzzUpperLimit) {
 final FizzBuzzSolutionStrategyFactory
mySolutionStrategyFactory =
 new
EnterpriseGradeFizzBuzzSolutionStrategyFactory();
 final FizzBuzzSolutionStrategy mySolutionStrategy =

mySolutionStrategyFactory.createFizzBuzzSolutionStrategy();
mySolutionStrategy.runSolution(nFizzBuzzUpperLimit);
 }
}

From 'FizzBuzz Enterprise Edition,' file:
src/main/java/com/seriouscompany/business/java/fizzbuzz/packagenamingpackage/impl/FizzBuzz.java

6
7
8

9

10
11

12
13
14
15
16
17

public class LoopCondition {
 public boolean evaluateLoop(int nCurrentNumber, int nTotalCount) {
 final ThreeWayIntegerComparisonResult comparisonResult =
ThreeWayIntegerComparator.Compare(nCurrentNumber, nTotalCount);
 if (comparisonResult ==
ThreeWayIntegerComparisonResult.FirstIsLessThanSecond) {
 return true;
 } else if (comparisonResult ==
ThreeWayIntegerComparisonResult.FirstEqualsSecond) {
 return true;
 } else {
 return false;
 }
 }
}

From 'FizzBuzz Enterprise Edition,' file:
src/main/java/com/seriouscompany/business/java/fizzbuzz/packagenamingpackage/impl/loop/LoopCondition.j
ava

Table 3. Excerpts from 'FizzBuzz Enterprise Edition'

These excerpts demonstrate what might be considered laughably bad programming

practice (and, in fact, it is almost certain the author intended precisely this response). For

example, compare the brief excerpts above from the complete FizzBuzz program written in

standard Java in Table 4 below. The programming styles appear, to some audiences, to be starkly,

obviously different from one another; the non-Enterprise version reflects stylistic preferences

Rhetorical Style in Code 23

similar to those found in the PHP and Javascript examples discussed earlier. However, this is not

to suggest that the Enterprise Java code has any inherently 'poor' or 'bad' style, or that its author

is unaware of the role that style has played in the construction of that program. In fact, the

GitHub repository where the code for 'FizzBuzz Enterprise Edition' is hosted currently has a

dozen open pull requests and ninety open issues for discussion, many centered on how the

program might be more accurately or faithfully revised to reflect conventions of Enterprise

programming.[35. For example, see: Leviter, 'Method Parameters Should Be Made Final,'

January 2, 2015, accessed August 31, 2015,

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/pull/172; romnempire,

'Made Tests Platform-Independent and Reduced Redundancy,' May 19, 2015, accessed August

31, 2015, https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/pull/209]

1

2

3

4

5
6

7

8

9
10
11
12
13

public class FizzBuzz { // Everything in
Java is a class

 public static void main(String[] args) { // Every program
must have main()

 for(int i = 1; i <= 100; i++) { // count from 1 to
100

 if (((i % 5) == 0) && ((i % 7) == 0)) // A multiple of
both?

 System.out.print("fizzbuzz");

 else if ((i % 5) == 0) System.out.print("fizz"); // else a multiple
of 5?

 else if ((i % 7) == 0) System.out.print("buzz"); // else a multiple
of 7?

 else System.out.print(i); // else just print
it

 System.out.print(" ");

 }

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/pull/172

Rhetorical Style in Code 24

 System.out.println();

 }

}

Example and comments written by David Flanagan [XXX -
http://examples.oreilly.com/jenut/FizzBuzz.java]

Table 4. FizzBuzz in Java

However, just as many individuals involved in these discussions seem to misunderstand

some of these conventions or the playful nature of the project altogether. What makes such

misunderstandings interesting is not the contributors' adherence to the premise of corporate

development as a natural preference for coding style. Rather, it is how the contributors'

arguments work to create a nuanced understanding of effective persuasion through attention to

reader constraints. For example, one closed issue thread deals with the following problem, posed

by a would-be contributor (who titled the issue 'Poor style in interface definition'): 'Interfaces and

their methods are public by default, so public interface A { public void B() } should be interface

A { void B() }.'[35. d53dave and Mikkeren, 'Poor Style in Interface Definition,' December 21,

2014, accessed August 31, 2015,

http://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/issues/167] Essentially,

the claim posits that the program's code should adhere to 'idiomatic' constructions of Java code,

which Kernighan and Pike justify by stating that 'Native speakers recognize [the idiomatic form]

without study and write it correctly without a moment's thought.'[36. Kernighan and Pike, 12.]

However, it is precisely this 'native speaker' bias toward the idiomatic form that leads one of the

project's administrators to reject the claim: 'Since our developers are from varying cultures and

have a variety of different setups, we cannot rely on defaults for any declarations. This is

specified in the company coding guidelines, but I am afraid these are confidential and as such, I

Rhetorical Style in Code 25

cannot share any more information.'[37. d53dave and Mikkeren, 'Poor Style in Interface

Definition.'] While the response comment ends with a nod to the humorous nature of the

program's existence, its author nonetheless is acutely aware of the potential issues with assuming

a particular stylistic convention that may be 'better' for some developers but which is unhelpful

for this particular anticipated reader community. Concerns of efficiency are diminished in

relation to concerns of readability and (presumably) further development and employment

among the various specific situations where a programmer may decide to make use of this

application and needs to grasp its context through the lens of Enterprise development more

broadly.

Arguments About FizzBuzz
While the existence of numerous approaches to composing a FizzBuzz program assists

such rhetorical considerations in indicating that there is no one universally perfect or optimal

means of solving problems in code more broadly (nor are definitions of 'perfect' shared

universally across different communities), there are nonetheless myriad discussions that

inevitably occur about these variations in code and which sorts of code compositions are 'better'

than others—sometimes defined generally or abstractly, while at other times defined with very

specific contextual variables about the parameters of superiority. Such discussions demonstrate

nothing so much as the significance of rhetorical style articulated in and through code as a way

to reflect specific preferences for and perspectives on models of computation and software

development.

It is necessary to note that, based on the number of discussions about the FizzBuzz test,

and passion or ferocity with which discussions about it occur, we cannot simply categorize the

Rhetorical Style in Code 26

test as merely a demonstration of some fundamental programming skill, whose output can be

interpreted as either entirely successful or not. While the test certainly incorporates such an

evaluation in its fold, this is not the extent of the test—it does not reflect a phatic expression of

computational communication but rather a significant and meaningful articulation of the logical

approach, idiomatic preferences, and other stylistic values performed by the author through the

written code text. Accordingly, discussions about FizzBuzz work implicitly (and, to a lesser and

less frequent extent, explicitly) to deliberate on the strengths or failures of particular styles in

code and the act of programming.

Jeff Atwood has suggested on his programming blog Coding Horror that the FizzBuzz

test is 'the simplest of programs' for professional programmers to compose, but he laments what

he perceives as the inability of most programmers to solve 'tiny problems' despite the relative

ease of the test.[38. Jeff Atwood, 'Why Can't Programmers.. Program?,' Coding Horror, February

26, 2007, accessed August 31, 2015, http://blog.codinghorror.com/why-cant-programmers-

program/] Atwood thus essentially positions himself against the development community's

diverse set of principles by which one might approach the FizzBuzz test or any other dilemma.

After all, 'tiny problems,' his post implies, require trivial solutions, and one's inability to use such

methods to complete the test indicate that he or she was not worthy of a programming career.[39.

Atwood, 'Why Can't Programmers.. Program?'] Atwood ultimately seems to follow Imran Ghory

in championing an instrumental view of code and of the FizzBuzz test as a phatic act of

communication; the solution to a simple problem requires little effort and a short amount of time

to achieve.[40. Imran Ghory, 'Using FizzBuzz to Find Developers who Grok Coding,' Imran on

Tech, January 24, 2007, accessed August 31, 2015, http://imranontech.com/2007/01/24/using-

fizzbuzz-to-find-developers-who-grok-coding/] However, Atwood hints at the potential impact of

Rhetorical Style in Code 27

stylistics on one's engagement and understanding of the test: '[t]he mechanical part of writing

and solving FizzBuzz is irrelevant.'[41. Jeff Atwood (codinghorror), February 2007, comment on

Jeff Atwood, 'Why Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

http://discourse.codinghorror.com/t/why-cant-programmers-program/612/14] If the test were

entirely instrumental, then such concerns would have to be relevant, since they would

presumably be at the center of the test's evaluative criteria. That they are not suggests that a

crucial rhetorical quality—which includes, but is not limited to, style—is at play in the

employment of, response to, and interpretation of the FizzBuzz test.

In over four hundred comments to Atwood's post (at the time of this publication, the

ability to comment on that thread has been disabled), and in nearly one hundred and fifty

comments to a follow-up post by Atwood written the next day,[42. Jeff Atwood, 'FizzBuzz: The

Programmer's Stairway to Heaven,' Coding Horror, February 27, 2007, accessed August 31,

2015, http://blog.codinghorror.com/fizzbuzz-the-programmers-stairway-to-heaven/] numerous

software developers demonstrate to one another the myriad ways one could successfully

approach the test. The amount of discussion generated suggests that the test, while conceptually

'simple,' offers nonetheless deep engagement with style, although no one has claimed that all

interpretations are desirable or even viable (for example, a number of commenters offered

'solutions' that left unaddressed the numbers to be printed that were not multiples of three or

five). Further, significant discussion centered on social and cultural concerns surrounding the

test: what sort of knowledge would be considered relevant expertise, what sort of voices could

comment critically with relative impunity (or with notable resistance from others), or even which

members of the community had the luxury of being reputable enough to avoid or ignore being

asked to perform this sort of test or exercise in an actual interview.

Rhetorical Style in Code 28

One commenter on Atwood's post, using the handle AndyToo, responds with a question

to Atwood's complaint: 'Does that mean that every one of those people who do program but don't

use (say) recursion is a bad programmer?'[43. AndyToo, February 2007, comment on Jeff

Atwood, 'Why Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

http://discourse.codinghorror.com/t/why-cant-programmers-program/612/4] In other words,

Atwood's critique was received by other developers as missing the point, i.e. the ways developers

make use of style, whether consciously or not, comprises a varied set of nuanced approaches

based on myriad contingent variables, just like those of any other rhetorical situation. Other

bloggers writing posts with similar concerns about FizzBuzz have had just as many impassioned

responses arguing from a variety of positions about code style (and the programming

competency performed by a FizzBuzz submission), although rarely if ever was the term

employed: Ghory's initial blog post garnered over nine hundred replies;[44. Ghory, 'Using

FizzBuzz.'] Reginald Braithwaite received a number of responses to his own post 'Don't

Overthink FizzBuzz';[45. Reginald Braithwaite, 'Don't Overthink FizzBuzz,' Raganwald, January

24, 2007, accessed August 31, 2015, http://weblog.raganwald.com/2007/01/dont-overthink-

fizzbuzz.html] Joe Devilla's more recent blog entry 'FizzBuzz Still Works' accumulated dozens

of response posts;[46. Joey Devilla, 'FizzBuzz Still Works,' Global Nerdy, November 15, 2012,

accessed August 31, 2015, http://www.globalnerdy.com/2012/11/15/fizzbuzz-still-works/] the

entry for 'Fizz Buzz Test' on the Cunningham & Cunningham wiki has been revised 574 times as

of August 2015.[47. 'Fizz Buzz Test,' Cunningham & Cunningham, December 23, 2014, accessed

August 31, 2015, http://c2.com/cgi/wiki?FizzBuzzTest]

User David_Cook shares a similar concern to AndyToo about Atwood's apparent

instrumental approach to writing code: 'Easy requirements are still often misunderstood […

Rhetorical Style in Code 29

w]hich is why being able to correctly code simple problems is a good test of your programming

(not just coding!) abilities.'[48. David_Cook, February 2010, comment on Jeff Atwood, 'Why

Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

http://discourse.codinghorror.com/t/why-cant-programmers-program/612/397] For this

respondent, the distinction between programming and coding is inherently one of effective

communication (i.e., audience-oriented persuasion). User anon84 asks explicitly about style

concerns, wondering about possible unstated parameters of the problem that might influence the

composition of an appropriate solution.[49. anon84, February 2007, comment on Jeff Atwood,

'Why Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

http://discourse.codinghorror.com/t/why-cant-programmers-program/612/59]

Related issues about stylistic decisions as indicators of personality and behavior (i.e., as a

performance of particular values) are raised by commenters like David_Cook, who claims in

another comment that, '[I]f I was hiring, I would check the “readability” and “understandability”

of the solution. Tricky and cute code that is unmodifiable and decipherable might work - but how

well will the developer work with others? And how likely is his/her code going to adapt to

continually changing requirements?'[50. David_Cook, February 2010, comment on Jeff Atwood,

'Why Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

http://discourse.codinghorror.com/t/fizzbuzz-solution-dumping-ground/1752/138] This comment

implies that one's coding style illuminates how well one understands code as a communicative

medium—how well it can be read by a human audience and how adaptable it is for a computer

interpreter. The notion of code's persuasive quality is supported by user LeeP, who argues, 'The

most powerful language I “code” in is English.'[51. LeeP, February 2010, comment on Jeff

Atwood, 'Why Can't Programmers.. Program?,' Coding Horror, accessed August 31, 2015,

Rhetorical Style in Code 30

http://discourse.codinghorror.com/t/why-cant-programmers-program/612/408] That

programmers see connections between different forms of communication rather than totalizing

distinctions is further evidence not just of code's rhetorical qualities but of programmers'

recognition of the available stylistic choices they make to persuade various audiences through

their code.

As long as coders have the ability to choose how to address a given problem or task, they

will engage in a stylistic performance reflecting their values and those they believe their

audience to possess. This engagement becomes especially significant if one codes in a

collaborative setting where it is highly likely other coders will access, build upon, or respond to

one's work. This set of considerations on the part of the coder-rhetor extends to the computer

system in addition to other people: the way a coder understands a code language to work will

influence and reflect that coder's actions in facilitating particular behavior and results within and

through the programs he or she creates. This is not to say that any of the individuals involved

will consciously recognize their employment of particular styles; however, the style(s) chosen

will impact how one's code is received by its various audiences.

Conclusions
While a machine interpreter cannot weigh the appropriateness of a given statement or

command, its developers influence and constrain ranges of action available to those who make

use of the machine and its languages to communicate with machine and human audiences.

Writing about the composition of effective code in JavaScript, Douglas Crockford notes,

'Programmers can debate endlessly on what constitutes good style. Most programmers are firmly

rooted in what they're used to [… and s]ome have had profitable careers with no sense of style at

Rhetorical Style in Code 31

all. […] It turns out that style matters in programming for the same reason that it matters in

writing. It makes for better reading.'[52. Douglas Crockford, Javascript: The Good Parts,

(Sebastopol, CA: O'Reilly Media, 2008), 95.] In other words, it is the potential for powerful

performance of meaning through style, in fluid and dynamic—rather than prescribed—ways that

makes clear the value of conscious rhetorical awareness in the composition, and study, of code.

This flexible rhetoricity of code—to simultaneously enable and restrict certain types of

activities—is the essence of its stylistic potential, such as how communities of developers debate

the merits of performing functions in specific ways so as to reflect paradigms not just of human

philosophy but of computational efficiency and elegance. For example, Lopes' demonstration of

style influencing computational activity through copia by exploring thirty-three different ways to

calculate term frequency illustrate, there are significant distinctions in coding approaches when

using (or avoiding) external libraries, writing long lines of code, using functional parameters, and

so on.[53. Lopes, Exercises, xi-xix.] If Brummett's definition of style—'a complex system of

actions, objects, and behaviors that is used to form messages that announce who we are, who we

want to be, and who we want to be considered akin to'[54. Brummett, A Rhetoric of Style, xi.]—

holds, then it is in these rhetorical qualities of code that we can see such values and behaviors

enacted across humans and computer systems alike. Further, style becomes understood as a

conscious set of decisions made by a rhetor (as well as an unconscious set of decisions that help

define us nonetheless) about how he or she wants to engage with a given audience through the

message he or she has created in code and in its resulting program expression(s).

Relatively compact, clearly situated code cases like iterations of FizzBuzz provide some

helpful glimpses into how code operates rhetorically at a basic level. These cases also

demonstrate how code is understood to be rhetorically significant by programmers and others

Rhetorical Style in Code 32

connected to the software development industry. Very little code can be reduced to the sort of

singular context in which FizzBuzz exists, but if even this 'trivial' program spurs such heated

debate and intense discussion about how to program correctly (or well), then more complex and

extensive programs are likely to be exponentially more significant in a rhetorical sense than

FizzBuzz. This is not to suggest FizzBuzz is ultimately unimportant but instead to suggest that

such rhetorical concerns exist in software code of numerous scales of functional or

computational importance.

For software studies, this is a significant opportunity for acknowledging, recognizing, and

understanding rhetoric as it occurs in, through, and around the development of any given

software program. Rhetorical style as demonstrated in code suggests a significance in even

seemingly trivial spaces, from logical ordering to syntax to indentation. For the FizzBuzz test,

we can witness the value in comprehending the sheer range of approaches a rhetor may engage in

through code so that he or she might impart meaning to his or her audience about the code's

purpose, functionality, and the relevant values of its author. As Mark Backman has noted, 'In the

curriculum of the schools rhetoric has been assigned a much reduced role when the motive has

been to establish discrete disciplines […] Conversely, rhetoric has organized the entire course of

study when the goal has been to bridge the gap between distinct subject matters.'[55. Mark

Backman, 'Introduction: Richard McKeon and the Renaissance of Rhetoric,' in Richard McKeon,

Rhetoric: Essays in Invention and Discovery, ed. Mark Backman (Woodbridge, CT: Ox Bow

Press, 1987), xix.] Rhetoric provides software critics a useful lens through which we can

recognize and make meaningful use of the varying successes and failures of attempted

communication across a variety of media. For software, these persuasive attempts occur as

computational processes, realized in the form of written code, to achieve some sort of action

Rhetorical Style in Code 33

among audiences. By connecting together the seemingly disparate components of these

communicative engagements with the computational logics they describe and argue for or

against, we can more clearly and fully explore just how software works, how its authors argue

for its working, and how we might experience it as a creative and deliberative set of texts and

efforts at effecting social action through procedure.

Rhetorical Style in Code 34

Bibliography
Aristotle. On Rhetoric: A Theory of Civic Discourse. Translated by George Kennedy. Oxford:

Oxford UP, 1991.

Arnold, Ken. 'Style is Substance.' In The Best Software Writing I, edited by Joel Spolsky, 1-6.

Berkeley, CA: Apress, 2005.

Atwood, Jeff. 'FizzBuzz: The Programmer's Stairway to Heaven,' Coding Horror. Accessed

August 31, 2015. http://blog.codinghorror.com/fizzbuzz-the-programmers-stairway-to-

heaven/.

Atwood, Jeff. 'Why Can't Programmers.. Program?' Coding Horror. Accessed August 31, 2015.

http://www.codinghorror.com/blog/2007/02/why-cant-programmers-program.html.

Backman, Mark. 'Introduction: Richard McKeon and the Renaissance of Rhetoric.' In Richard

McKeon, Rhetoric: Essays in Invention and Discovery, edited by Mark Backman, vii-

xxxii. Woodbridge, CT: Ox Bow Press, 1987.

Bentley, Jon. 'The Most Beautiful Code I Never Wrote.' In Beautiful Code: Leading

Programmers Explain How They Think, edited by Andy Oram and Greg Wilson, 29-40.

Sebastopol, CA: O'Reilly, 2007.

Bitzer, Lloyd. 'The Rhetorical Situation.' Philosophy & Rhetoric 1.1 (1968): 1-14.

Braithwaite, Reginald. 'Don't Overthink FizzBuzz.' Raganwald. Accessed August 31, 2015.

http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html.

Brown, Barry. ''The Next Line': Understanding Programmers' Work.' TeamEthno-Online 2

(2006): 25-33. Accessed August 31, 2015. http://archive.cs.st-andrews.ac.uk/STSE-

Handbook/Other/Team%20Ethno/TeamEthno.html.

http://archive.cs.st-andrews.ac.uk/STSE-Handbook/Other/Team%20Ethno/TeamEthno.html
http://archive.cs.st-andrews.ac.uk/STSE-Handbook/Other/Team%20Ethno/TeamEthno.html

Rhetorical Style in Code 35

Brown, James J., Jr. 'The Machine that Therefore I Am.' Philosophy and Rhetoric 47.4 (2014):

494-514.

Brummett, Barry. A Rhetoric of Style. Carbondale: Southern Illinois UP, 2008.

Burke, Kenneth. A Rhetoric of Motives. Berkeley: U of California Press, 1969.

Chun, Wendy Hui Kyong. Programmed Visions: Software and Memory. Cambridge, MA: MIT

Press, 2011.

Crockford, Douglas. JavaScript: The Good Parts. Sebastopol, CA: O'Reilly Media, 2008.

d53dave and Mikkeren. 'Poor Style in Interface Definition.' GitHub. Accessed August 31, 2015.

http://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/issues/167/.

Devilla, Joey. 'FizzBuzz Still Works.' Global Nerdy. Accessed August 31, 2015,

http://www.globalnerdy.com/2012/11/15/fizzbuzz-still-works/.

DeVito, Joseph A. 'Style and Stylistics: An Attempt at Definition.' Quarterly Journal of Speech

53.3 (1967): 248-255.

Dongarra, Jack and Piotr Luszczek. 'How Elegant Code Evolves with Hardware: The Case of

Gaussian Elimination.' In Beautiful Code: Leading Programmers Explain How They

Think, edited by Andy Oram and Greg Wilson, 229-252. Sebastopol, CA: O'Reilly, 2007.

Edbauer, Jenny. 'Unframing Models of Public Distribution: From Rhetorical Situation to

Rhetorical Ecologies.' Rhetoric Society Quarterly 35.4 (2005): 5-24.

EnterpriseQualityCoding. 'FizzBuzz Enterprise Edition.' GitHub. Accessed August 31, 2015.

http://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/.

Erasmus, Desiderius. Copia: Foundations of the Abundant Style. Trans. Betty I. Knott. In

Collected Works of Erasmus: Literary and Educational Writings, edited by Craig R.

Thompson, 279-650. Toronto: University of Toronto Press, 1978.

http://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/

Rhetorical Style in Code 36

'Fizz Buzz Test.' Cunningham & Cunningham. Accessed August 31, 2015.

http://c2.com/cgi/wiki?FizzBuzzTest.

Fuller, Matthew. 'Introduction, the Stuff of Software.' Software Studies \ A Lexicon, edited by

Matthew Fuller, 1-13. Cambridge, MA: MIT Press, 2008.

Galloway, Alexander R. 'Language Wants to be Overlooked: On Software and Ideology.' Journal

of Visual Culture 5 (2006): 315-331.

Ghory, Imran. 'Using FizzBuzz to Find Developers Who Grok Coding.' Imran on Tech. Accessed

August 31, 2015. http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-

who-grok-coding/.

Holcomb, Chris and M. Jamie Killingsworth. Performing Prose: The Study and Practice of Style

in Composition. Carbondale: Southern Illinois UP, 2010.

Hou Je Bek, Wilfried. 'Loop.' In Software Studies \ A Lexicon, edited by Matthew Fuller, 179-

183. Cambridge, MA: MIT Press, 2008.

Johnson, Robert R. 'Complicating Technology: Interdisciplinary Method, the Burden of

Comprehension, and the Ethical Space of the Technical Communicator.' Technical

Communication Quarterly 7.1 (1998): 75-98.

Johnson, Robert R. 'Johnson Responds.' Technical Communication Quarterly 8.2 (1999): 224-

226.

Kernighan, Brian W. and Rob Pike. The Practice of Programming. Reading, MA: Addison-

Wesley, 1999.

Kernighan, Brian W. and P.J. Plauger. The Elements of Programming Style. 2nd ed. New York:

McGraw-Hill, 1978.

Khlaaf, Heidy. 'Cultural Ramifications of Technical Interviews.' Model View Culture 23 (2015).

Rhetorical Style in Code 37

Accessed August 31, 2015. https://modelviewculture.com/pieces/cultural-ramifications-

of-technical-interviews/.

Knuth, Donald E. Literate Programming. Stanford, CA: Center for the Study of Language and

Information, 1992.

Kolawa, Adam. 'The Long-term Benefits of Beautiful Design.' In Beautiful Code: Leading

Programmers Explain How They Think, edited by Andy Oram and Greg Wilson, 253-266.

Sebastopol, CA: O'Reilly, 2007.

Krysa, Joasia and Grzesiek Sedek. 'Source Code.' In Software Studies \ A Lexicon, edited by

Matthew Fuller, 236-243. Cam 'bridge, MA: MIT Press, 2008.

Leviter. 'Method Parameters Should Be Made Final.' GitHub. Accessed August 31, 2015.

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/pull/172

Lopes, Cristina Videira. Exercises in Programming Style. Boca Raton, FL: Chapman and

Hall/CRC Press, 2014.

Matsumoto, Yukihiro. 'Treating Code as an Essay.' Trans. Nevin Thompson. In Beautiful Code:

Leading Programmers Explain How They Think, edited by Andy Oram and Greg Wilson,

477-481. Sebastopol, CA: O'Reilly, 2007.

McDowell, Gayle Laakmann. Cracking the Coding Interview: 150 Programming Questions and

Solutions. Palo Alto, CA: CareerCup, 2013.

Micciche, Laura R. 'Making a Case for Rhetorical Grammar.' College Composition and

Communication 55.4 (2004): 716-737.

Miller, Carolyn R. 'A Humanistic Rationale for Technical Writing.' College English 40.6 (1979):

610-617.

Rhetorical Style in Code 38

Montfort, Nick. 'Obfuscated Code.' In Software Studies \ A Lexicon, edited by Matthew Fuller,

193-199. Cambridge, MA: MIT Press, 2008.

Moore, Patrick. 'Myths About Instrumental Discourse: A Response to Robert R. Johnson.'

Technical Communication Quarterly 8.2 (1999): 210-223.

romnempire. 'Made Tests Platform-Independent and Reduced Redundancy.' GitHub. Accessed

August 31, 2015.

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition/pull/209

Vatz, Richard E. 'The Myth of the Rhetorical Situation.' Philosophy & Rhetoric 6.3 (1973): 154-

161.

	Abstract
	Introduction
	Style and Its Role in Rhetorical Activity
	Style Demonstrated in the 'FizzBuzz' Programming Test
	FizzBuzz in PHP
	FizzBuzz in Ruby
	FizzBuzz in Java Enterprise Edition

	Arguments About FizzBuzz
	Conclusions
	Bibliography

