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Résumé
Cette thèse traite de l’usage des Réseaux de Neurones pour modélisation de

données séquentielles. La façon dont l’information a été ordonnée et structurée est
cruciale pour la plupart des données. Les mots qui composent ce paragraphe en
constituent un exemple. D’autres données de ce type incluent les données audio,
visuelles et génomiques. La Prédiction Structurée est l’un des domaines traitant
de la modélisation de ces données. Nous allons aussi présenter la Modélisation
Générative, qui consiste à générer des points similaires aux données sur lesquelles
le modèle a été entrâıné.

Dans le chapitre 1, nous utiliserons des données clients afin d’expliquer les
concepts et les outils de l’Apprentissage Automatique, incluant les algorithmes
standards d’apprentissage ainsi que les choix de fonction de coût et de procédure
d’optimisation. Nous donnerons ensuite les composantes fondamentales d’un Ré-
seau de Neurones. Enfin, nous introduirons des concepts plus complexes tels que le
partage de paramètres, les Réseaux Convolutionnels et les Réseaux Récurrents. Le
reste du document, nous décrirons de plusieurs types de Réseaux de Neurones qui
seront à la fois utiles pour la prédiction et la génération et leur application à des
jeux de données audio, d’écriture manuelle et d’images

Le chapitre 2.2 présentera le Réseau Neuronal Récurrent Variationnel (VRNN
pour variational recurrent neural network). Le VRNN a été développé dans le but de
générer des échantillons semblables aux exemples de la base d’apprentissage. Nous
présenterons des modèles entrâınées de manière non-supervisée afin de générer du
texte manuscrites, des effets sonores et de la parole. Non seulement ces modèles
prouvent leur capacité à apprendre les caractéristiques de chaque type de données
mais établissent aussi un standard en terme de performance.

Dans le chapitre 3 sera présenté ReNet, un modèle récemment développé. ReNet
utilise les sorties structurées d’un Réseau Neuronal Récurrent pour classifier des
objets. Ce modèle atteint des performances compétitives sur plusieurs tâches de
reconnaissance d’images, tout en utilisant une architecture conçue dès le départ
pour de la Prédiction Structurée. Dans ce cas-ci, les résultats du modèle sont utilisés
simplement pour de la classification mais des travaux suivants (non-inclus ici) ont
utilisé ce modèle pour de la Prédiction Structurée.

Enfin, au Chapitre 4 nous présentons les résultats récents non-publiés en géné-
ration acoustique. Dans un premier temps, nous fournissons les concepts musicaux
et représentations numériques fondamentaux à la compréhension de notre approche
et introduisons ensuite une base de référence et de nouveaux résultats de recherche
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avec notre modèle, RNN-MADE. Ensuite, nous introduirons le concept de synthèse
vocale brute et discuterons de notre recherche en génération. Dans notre dernier
Chapitre, nous présenterons enfin un résumé des résultats et proposerons de nou-
velles pistes de recherche.

Mots clés : réseaux de neurones, apprentissage automatique, apprentissage de
représentations profondes, apprentissage supervisé, modèles génératifs, prédiction
structurée
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Summary
In this thesis we utilize neural networks to effectively model data with sequen-

tial structure. There are many forms of data for which both the order and the
structure of the information is ncredibly important. The words in this paragraph
are one example of this type of data. Other examples include audio, images, and
genomes. The work to effectively model this type of ordered data falls within the
field of structured prediction. We also present generative models, which attempt
to generate data that appears similar to the data which the model was trained on.

In Chapter 1, we provide an introduction to data and machine learning. First,
we motivate the need for machine learning by describing an expert system built
on a customer database. This leads to a discussion of common algorithms, losses,
and optimization choices in machine learning. We then progress to describe the
basic building blocks of neural networks. Finally, we add complexity to the mod-
els, discussing parameter sharing and convolutional and recurrent layers. In the
remainder of the document, we discuss several types of neural networks which find
common use in both prediction and generative modeling and present examples of
their use with audio, handwriting, and images datasets. In Chapter 2.2, we intro-
duce a variational recurrent neural network (VRNN). Our VRNN is developed with
to generate new sequential samples that resemble the dataset that is was trained
on. We present models that learned in an unsupervised manner how to generate
handwriting, sound effects, and human speech setting benchmarks in performance.

Chapter 3 shows a recently developed model called ReNet. In ReNet, inter-
mediate structured outputs from recurrent neural networks are used for object
classification. This model shows competitive performance on a number of image
recognition tasks, while using an architecture designed to handle structured pre-
diction. In this case, the final model output is only used for simple classification,
but follow-up work has expanded to full structured prediction.

Lastly, in Chapter 4 we present recent unpublished experiments in sequential
audio generation. First we provide background in musical concepts and digital
representation which are fundamental to understanding our approach and then
introduce a baseline and new research results using our model, RNN-MADE. Next
we introduce the concept of raw speech synthesis and discuss our investigation
into generation. In our final chapter, we present a brief summary of results and
postulate future research directions.

Keywords: neural networks, machine learning, deep learning, supervised learn-
ing, generative modeling, structured prediction
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1 Introduction

1.1 Overview

Machine learning is an important part of modern computer science, with appli-

cations across many industries including commerce, finance, logistics, agriculture,

and education. There are many detailed references for deeply understanding ma-

chine learning such as Bishop (2006), Hastie et al. (2001), Murphy (2012), and

Goodfellow et al. (2016). In this introductory chapter, we simply strive to give

an overview of the core concepts and terminology necessary for understanding the

basics of the later chapters. In this work we will cover some recent advances in the

subfields of machine learning known as structured prediction and generative mod-

eling. Structured prediction refers to using machine learning to predict structured

elements such as vectors or sets, rather than single values. Generative modeling

means that we desire to use our techniques to generate new outputs similar to the

inputs. The combination of structured prediction can be used to generate things

like audio, handwriting, images, and text. We approach these problems using deep

learning techniques with neural networks. Structured prediction and generative

modeling will be covered in more detail later, but first we will provide background

on machine learning in general. Machine learning can be partly defined by exploring

one of its component terms: learning.

What is learning?

One place to begin in our quest to understand learning is the dictionary defi-

nition. The Myriam-Webster dictionary defines learning as: the activity or process

of gaining knowledge or skill by studying, practicing, being taught, or experiencing

something (myr, 2016). The most important aspect of this definition is that study-

ing, teaching, practicing, or experiencing all involve taking these actions over some

information. For our purposes the information that we study is known as data. We

1



expect that the ability to make good decisions will improve with algorithmic study

(through a learning algorithm) of a particular type data. In machine learning we

attempt to make good decisions about data, by using learning algorithms to study

the data in question.

What is data?

Data is a catch-all term used to describe any kind of information about an

object, process, or concept. In the context of machine learning data is the de-

scription of what we want to learn about, for example: the purchase history of

a customer, the pixels of an image, the text of a sentence, some recordings from

election speeches, or any other domain-dependent information that could be useful

Shannon (1948). A typical way of representing data in machine learning is as a

collection of attributes, or features. These features describe some characteristics

of the thing being measured. Let’s envision a dataset from a department store

as an example. The store manager wishes to learn more about his customers by

investigating his historical records about their shopping habits. In the context of

machine learning, each customer is a sample and the customer’s shopping records

are known as features. Features may include details about the customer such as

the last item purchased, the total of their last bill, and the number of years they

have been a customer. In this simple set of data, we can represent each customer

with three numerical features: item id, prev bill, n years.

Table 1.1 – Example customer data

item id prev bill n years

Customer A 11764 1000.00 0.6
Customer B 9718 243.16 5.12
Customer C 42 156.19 3.3

Table 1.1 shows a common format for data in a dataset. In this representation,

the vertical dimension of the array is the sample axis, while the horizontal axis is

the feature axis. In general, the feature vectors for each sample can be stacked

to make a data matrix (often denoted simply as x), and later fed to any number

of learning algorithms. There are many other ways to represent data which can

2



capture additional structure in data such as images, text, graphs, audio, or video

that certain algorithms can use for better learning. Before discussing learning

algorithms in detail, we must first describe what we wish to learn in the first place:

decisions.

What are decisions?

In the preceding paragraphs, we introduced decisions as the basis which the act

of studying, teaching, practicing, or experiencing was meant to improve. However,

it is not necessary to have learning algorithms in order to make a decision. Let

us construct an example using the department store data which was introduced in

Table 1.1.

Table 1.2 – Extended customer data

item id prev bill n years good bad

Customer A 11764 1000.00 0.6 1
Customer B 9718 243.16 5.12 0
Customer C 42 156.19 3.3 ?

Suppose in addition to the information in Table 1.1, we were also given addi-

tional information about each customer, namely whether each customer was“good”

(0) or “bad” (1) for the business. We could add this information to the dataset,

resulting in a new table, Table 1.2.

Notice in particular that Customer C has unknown information in the“good bad”

column, but it is believable that we might want to predict or infer that attribute

for Customer C. One way to do this might be to find the employee who created the

“good bad” attributes for the other customers, and ask them to encode their logic

for making their decision on “good” or “bad” into a procedure, or function.

This function (shortened to f()) should take the data we have now (x) for

each customer, and try to output the value for “good bad” (sometimes called the

labels or targets typically denoted y), such that for existing customers with known

values for “good bad”, yc = f(xc) where c is shorthand to reference the features

(xc) and labels (yc) for each customer. For Customer C, we have no true value for

“good bad”, so we can only judge how well the function f() is working by seeing if it
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Figure 1.1 – Example decision process for deciding “good” or “bad” customers

is correct on Customers A and B. However if the function is working well, it is now

possible to predict the “good bad” attribute for Customer C or any other customer

with the same feature information. If customers are added to the dataset later,

and have all their features input this function could then predict the “good bad”

attribute and add it to the database. The logic for such a decision might be simple,

as in Figure 1.1.

Motivations for machine learning

The logic for predicting “good” or “bad” customers is an example of something

known as an expert system (Russel and Norvig, 2003). Variants of these expert

systems, using a number of different algorithms, have been employed to make

machine decisions since the dawn of computing. The solution shown in Figure 1.1

shows an algorithm called a decision tree with explicitly set rules. Decision trees

in particular show up in a variety of contexts, and those employing and coding

handcrafted decision trees are often unaware that they have already implemented

a direct precursor to machine learning by using machine decisions indirectly based

on data (after being filtered through the mind of one or many employees). The

details of decision trees will not be covered in detail here, but Hastie et al. (2001)
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is an excellent reference for this algorithm and various extensions.

The primary difference between this hypothetical system and a machine learning

approach would be having themachine learn the decision thresholds directly, rather

than requiring the programmer or another expert to specify the rule manually.

Many large codebases in open source and enterprise have files of “magic code”,

filled with complex if-else statements and unknown or undocumented constants for

making choices at each branch. These are real-world examples of “expert systems”,

and in many cases machine learning techniques can greatly improve performance.

Machine learning models can often discover new or unknown relationships in the

data which are not obvious to the human expert.

From a machine learning perspective, expert systems are not considered a learn-

ing system. The programmer(s) have input the entire logic explicitly into the deci-

sion process, and it is not clear how these rules were derived without explanations

and expertise. Indeed, it is believable that the rules that work for Customers A

and B might not work in every circumstance. More customer data and labels, more

features, or both may be necessary to make rules which are more general. As in-

formation for customers is gathered, the rules which exist may be worse than a

potential set of new rules, especially as more features and labels are obtained.

One way to continuously improve this system would be to dedicate one employee

fully to creating and testing new rules. As customers and features are added to

the data matrix, this employee could potentially write better rules. Eventually

the number of customers and features might overwhelm a single employee, and a

team would needed to do this job. Soon, a whole section of the company might

be entirely focused on writing new rules for this predictive system, an expensive

proposition (Brooks, 1995).

What if we could instead write higher level routines, so that the machine itself

could learn basic rules from data? This could scale to much larger problems,

without incurring a larger overhead beyond increased computer time. This is the

basic premise (and promise) of machine learning.
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1.2 Types of Learning

Using the descriptions from the previous section, we have loosely defined learn-

ing as the development of a function f() which takes in data, and outputs desired

information. This function must have some internal values which can be learned

or modified, typically called parameters and denoted by θ (theta). In the previ-

ous example, the parameters of θ would be the thresholds for each “if” statement,

but usually what parameters do is dependent on the algorithm contained inside

f(). This means the function f() is actually a function of both the inputs and the

learned parameters θ, so it can also be written fθ() or f(a, θ). Most machine learn-

ing references don’t directly denote θ and instead leave it as a known assumption.

There are also approaches which do not have parameters. Approaches without

parameters are called (non-parametric) functions. For the moment, we will limit

our discussion to parametric approaches. Machine learning attempts to solve many

tasks, but generally we can categorize learning into two broad types: supervised

learning and unsupervised learning.

Supervised learning is focused on learning a mapping between data and label.

The label can be a numeric value, as in our department store example. The data

can also be any number of human created or curated values such as pixels or

words. We continue the previous notation, and denote general supervised tasks as

attempting to learn yi = f(xi) for each sample i with “supervision” values in the

dataset. This function can then be used to label new data samples without a known

label. Supervised learning is also called predictive modeling in some references.

Unsupervised learning, in contrast to supervised learning, is explicitly focused

on learning more suitable features, sometimes called representations, without spe-

cific labels on the data. Unsupervised tasks often attempt to learn forms of com-

pression, such as x̂i = f(xi). Specifically x̂i is a reconstruction of xi after being

passed through an information bottleneck, so that the function must learn to com-

press information. This compression is important since the alternative is the trivial

solution of xi = xi, which should be avoided. Learning to reconstruct a part of

some data, given its surrounding information (sometimes called context) is another

way to learn good representations for many types of data. Unsupervised learning is

also called generative modeling in many settings, and specific approaches explicitly

attempt to learn generative distributions of the data. We will cover more on these
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approaches in later chapters.

Subgroups of Supervised and Unsupervised Learning

In addition to the broad categorizations of unsupervised and supervised learn-

ing, there are sub-groupings such as classification, regression, and density esti-

mation. Specifically, classification and regression are different types of supervised

learning, while the basic forms of density estimation are unsupervised tasks. Clas-

sification is used to denote tasks which involve categorizing data points into one of

K possible buckets, or classes. Regression, in the context of machine learning, is

a common task which is popular in the statistics literature. Regression algorithms

attempt to predict a real value for each input xi. Density estimation is a tech-

nique for fitting probability densities to data, to determine underlying structure.

Clustering algorithms are generally categorized as a subset of density estimation.

Bishop (2006) and Hastie et al. (2001) are both excellent references for listings of

different techniques in these groups and subgroups of machine learning.

In the example case from the previous section, we wanted a function to predict

the“good bad”attribute for each customer, which is one of two values in the set {0,
1}. Because this task requires learning a function to map the data x to a human

labeled attribute y, which is one of K possibilities (in this case K = 2), we broadly

file this task under the heading of supervised classification.

1.3 A Formal Definition of Learning

One common mathematical framework for machine learning is to define the

problem of discovering the optimal parameters (θ∗) as an optimization problem.

The fundamental problem then becomes minimizing risk, where risk is the inte-

gration of some loss function between the true values y and some function f(x, θ),

where the integration is with respect to the joint probability distribution of x and y.

This framework was defined in Vapnik (1991), and serves as clear reading material

covering much of the basis for machine learning as optimization.

R(θ) =

∫
L(y, f(x, θ))dp(x, y) (1.1)
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Noting that the joint probability p(x, y) can be rewritten using Bayes rule, we

see that p(x, y) = p(x|y)p(y) = p(y|x)p(x). This joint probability is unknown

for most problems of interest, since we usually do not know the underlying data

distributions p(x) or p(y). Our only available source of information is in the training

set, yet we must approximate this integral somehow. Replacing the problem of risk

minimization with empirical risk minimization, or minimizing the summed loss

over the training set (sometimes called the empirical data distribution), is our best

approximation to the integral in Equation 1.1.

ER(θ) =
1

l

l∑
i=1

L(yi, f(xi, θ)) (1.2)

Thus, the desired set of parameters θ∗ is the set of θ that minimize the empirical

risk ER(θ).

θ∗ = argminy

l∑
i=1

L(yi, f(xi, θ)) (1.3)

These general notions form much of the intuition behind machine learning as

optimization, and can be extended in interesting ways to improve results on struc-

tured problems (Bahdanau et al., 2015). It is important to note that the parameters

θ∗ which are optimal on one data subset may not generalize to new subsets. Indeed

much of the “art” in machine learning is understanding and minimizing differences

in performance between the set used for loss minimization (the so called train-

ing set) and the application domain. This can partially be done through careful

composition of losses, algorithms, regularization, and optimization techniques.

1.4 Losses

After discussing the empirical risk minimization framework, it is necessary to

define actual functions to use for L(y, f(x, y)). In many cases we use the function

f(x, y) to model conditional probability distributions pθ(y|x). This directly leads

to costs which have a probabilistic interpretation when taking the maximum like-

lihood estimator (MLE) over whatever output distribution is assumed for pθ(y|x)
(Goodfellow et al., 2016).
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In many common cases, the cost can be derived as the negative log-likelihood

between the data and the current model distribution. Negative log-likelihood is also

commonly known as cross-entropy, and the two terms are commonly interchanged

in machine learning literature. In the standard problem setting data doesn’t change

during learning, so reducing the cross-entropy amounts to improving the likelihood

of pθ(y|x) with respect to the data. This is also equivalent to minimization of the

Kullback-Liebler divergence (KLD) between the empirical data distribution and

the model distribution, as demonstrated in Nowak (2009). Thus optimizing cross-

entropy corresponds to reducing the gap between the empirical distribution and the

model. The θ∗ corresponding to the lowest cross-entropy is therefore a best estimate

for the parameters p∗θ(y|x), under the distribution assumptions of the cost. We will

re-derive several common costs using this general principle.

1.4.1 Relationship between KLD and MLE

Beginning with two distributions p(x) (the empirical distribution) and q(x) (the

model distribution), we first state the KLD (Nowak, 2009).

DKL(p(x)||q(x)) =
∫

p(x) log p(x)dx−
∫

p(x) log q(x)dx (1.4)

=

∫
p(x) log

p(x)

q(x)
dx (1.5)

= Ex∼p[log
p(x)

q(x)
] (1.6)

= Ex∼p[log p(x)− log q(x)] (1.7)

Next, we state the basics of maximum likelihood estimation for set of l data
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points.

θ∗ = argmax
θ

l∏
i=1

q(xi) (1.8)

= argmax
θ

l∑
i=1

log q(xi) (1.9)

= argmin
θ

1

l

l∑
i=1

− log q(xi) (1.10)

∼= argmin
θ

El→∞,x∼p[− log q(x)] (1.11)

The last approximate equality occurs due to the“law of large numbers”, as l goes

to ∞. Note that both the KLD and MLE have a term related to the expectation

of the negative log probability of the model distribution (q(x)). The KLD between

these two probability distributions is always positive, and only 0 if they exactly

match. Going back to the original formulation for DKL(p(x)||q(x)) we can also

reformulate the terms in another way.

DKL(p(x)||q(x)) =
∫

p(x) log p(x)dx−
∫

p(x) log q(x)dx (1.12)

= −H(p(x)) +XE(p(x), q(x)) (1.13)

= C +XE(p(x), q(x)) (1.14)

Here Equation 1.12 shows that the KLD is a combination of the negative entropy

(−H(p(x)) of the empirical data distribution, and the cross-entropyXE(p(x), q(x))

between the empirical data and our model distribution. Because we are optimizing

only q(x), we can effectively ignore the entropy term (later named C and combined

with other constant terms), as it will not change. This means minimizing the KLD

between p(x) and q(x) is equivalent to minimizing the cross-entropy between p(x)

and q(x). p(x) is never changing, so minimizing − log q(x) (also called the negative

log-likelihood) also minimizes cross-entropy.

In each case, some shorthand will be denoted for the last line of the loss so the

final formulation closer resembles the implementation in code. In the classification

case (cross-entropies) this involves yt the true labels, and yp the predicted labels.
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1.4.2 Bernoulli Cross-entropy

Bernoulli cross-entropy is named as such because the labels are assumed to be

from a Bernoulli distribution (Buja et al., 2005), which is often used in two-class

classification problems. The Bernoulli distribution represents a random variable

which has two possible values: k = {0, 1}, with occurrence probability pk and

1− pk, respectively.

p =

pk, if k = 1

1− pk, if k = 0
(1.15)

DKL(p(x)||q(x)) =
∫

p(x) log p(x)−
∫

p(x) log q(x) (1.16)

=
∑

p(x) log p(x)−
∑

p(x) log q(x) (1.17)

= C −
∑
c∈0,1

p(x) log q(x) (1.18)

= −
∑
c∈0,1

p(x) log q(x) + C (1.19)

∼= −
∑
c∈0,1

p(x) log q(x) (1.20)

∼= −p(x) log q(x)− (1− p(x)) log(1− q(x)) (1.21)

∼=
l∑

i=0

−yt[i] log yp(xi)− (1− yt[i]) log(1− yp(xi)) (1.22)

The integrals of the KLD become sums because of the discrete nature of the

distribution. The final derivation comes due to the definition of the Bernoulli

probability mass function (PMF) Equation 1.15. Minimizing the final loss term (C

can be ignored because it is constant with respect to q(x)) will match the model

predictions yp = f(x). The function f(x) is a floating point prediction between

0 and 1. This will, after optimizing parameters θ, attempt to match the labeled

dataset yt, which has values of either 0 or 1.
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1.4.3 Categorical Cross-entropy

The categorical (also known as multinoulli) distribution is a K class general-

ization of the two class Bernoulli (Hastie et al., 2001). Generally the prediction

is a vector of probabilities for each class, so the target yt is a class in the one-hot

representation as a vector of length K, k = {0 · · ·K}, where K is the number of

classes. For example (with 5 classes) 0 becomes [1, 0, 0, 0, 0], 1 becomes [0, 1, 0, 0, 0],

and so on. v[c] will generally refer to indexing into this vector v, assuming indices

start from 0. In this manner, we refer to pk as a set of K values which form a valid

discrete probability distribution, so pk[c] refers to the cth index into pk.

p =

pk[c], if c = k

0, if c ̸= k
(1.23)

DKL(p(x)||q(x)) =
∑

p(x) log p(x)−
∑

p(x) log q(x) (1.24)

= C −
∑

c∈0...K

p(x) log q(x) (1.25)

= −
∑

c∈0...K

p(x) log q(x) + C (1.26)

∼= −
∑

c∈0...K

p(x) log q(x) (1.27)

∼= −
∑

c∈0...K

p(x)[c] log q(x)[c] (1.28)

∼= −
l∑

i=0

∑
c∈0...K

yt[i][c] log yp(xi)[c] (1.29)

1.4.4 Gaussian Negative Log-Likelihood

Another approach is to make a Gaussian assumption, using the probability

distribution shown in Equation 1.30.

p =
1

(2πσ)
1
2

exp(−(x− µ)2

2σ2
) (1.30)

We track the parameters of p(x) as µ1 and σ1, and the parameters of q(x) as

µ2 and σ2 (Bayer, 2011).
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DKL(p(x)||q(x)) =
∫

p(x) log p(x)dx−
∫

p(x) log q(x)dx (1.31)

=

∫
p(x) log

p(x)

q(x)
dx (1.32)

=

∫
p(x) log

1

(2πσ2
1)

1
2
exp(− (x−µ1)2

2σ2
1

)

1

(2πσ2
2)

1
2
exp(− (x−µ2)2

2σ2
2

)
dx (1.33)

=

∫
p(x) log

1

(2πσ2
1)

1
2

exp(−(x− µ1)
2

2σ2
1

)dx (1.34)

−
∫

p(x) log
1

(2πσ2
2)

1
2

exp(−(x− µ2)
2

2σ2
2

)dx (1.35)

= −Hg(x)−
∫

p(x) log
1

(2πσ2
2)

1
2

exp(−(x− µ2)
2

2σ2
2

) (1.36)

= −Hg(x) +
1

2
log(2πσ2

2)−
∫

p(x) log exp(−(x− µ2)
2

2σ2
2

)dx

(1.37)

= −Hg(x) +
1

2
log(2πσ2

2) +

∫
p(x)

(x− µ2)
2

2σ2
2

dx (1.38)

= −Hg(x) +
1

2
log(2πσ2

2) +
1

2σ2
2

(

∫
p(x)x2dx−

∫
p(x)2xµ2dx

+

∫
p(x)µ2

2dx) (1.39)

= −Hg(x) +
1

2
log(2πσ2

2) +
1

2σ2
2

(E[x2]− 2E[x]µ2 + µ2
2) (1.40)

= −Hg(x) +
1

2
log(2πσ2

2) +
1

2σ2
2

(E[x]− µ2)
2 (1.41)

= −Hg(x) +
1

2
log(2π) +

1

2
log(σ2

2) +
1

2σ2
2

1

l

l∑
i=0

(xi − µ2)
2 (1.42)

= C + log(σ2) +
1

2σ2
2

1

l

l∑
i=0

(xi − µ2)
2 (1.43)

= log(σ2) +
1

2σ2
2

1

l

l∑
i=0

(xi − µ2)
2 (1.44)

=
l∑

i=0

log(σ2(xi)) +
1

2(σ2(xi))2
(xi − µ2(xi))

2 (1.45)
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Here we see that a model with Gaussian negative log-likelihood would need to

output two things, µ2(xi) and σ2(xi) (Nowak, 2009; Bishop, 2006). In practice

it is often necessary to restrict the minimum variance allowed. This is because

optimizing this cost can improve arbitrarily by shrinking σ2(xi) toward 0 if µ2(xi)

lies directly on the data point.

1.4.5 Mean Squared Error

Given the previous derivation, it is easy to see that if σ2 is assumed constant,

the final result is the well known equation for mean squared error where µ2(xi)

is the prediction of the model (Hastie et al., 2001). We typically set σ2 = 1 for

simplicity, but any constant value can be used and then factored out.

minDKL(p(x)||q(x)) = min
θ

1

l

l∑
i=0

(xi − µ2(xi))
2 (1.46)

1.5 A Basic Model

The method that we use to calculate the predictions f() (or q(x) in the previous

notation) is often called a model. One of the simplest models is the linear model

which is a simple linear transformation of the input (Strang, 2006). Defining the

number of features, m, in each sample, xi, with a total of n samples, results in x

(the dataset) having shape (n,m). Introducing parameters W , size (m, d) and b,

size (d), the model is as shown in Equation 1.47. The dimension d is the number of

outputs needed in the linear model and depends on the cost chosen to couple with

the model.

q(x) = xW + b (1.47)

In practice, the equation is often implemented as in Equation 1.47 but typically

written in formulae as Equation 1.48

q(x) = Wx+ b (1.48)

14



Using this simple model q(), our goal is to minimize a chosen loss with respect

to the parameters W and b. The formula q(x) = Wx+ b gives the predicted value

of the model. The theoretical properties of linear models are well explored (Hastie

et al., 2001), and form an entire field of study in machine learning, so we only

briefly introduce the basics of linear models here.

1.5.1 Gradient Based Optimization

Though some models can be minimized in closed form for certain losses including

Equation 1.48 as demonstrated in Hastie et al. (2001), this is not generally true. We

may wish to take another approach to optimization, in order to handle cases where

closed form solutions are not possible. Gradient based optimization methods are a

simple and effective way to optimize for loss, (Bottou, 1998). To gain understanding

of gradient based methods, we must first introduce the idea of convexity. Convexity

is a general name for functions which have only one place where the derivative is

0 ( also known as the critical point). Optimization for machine learning generally

operates on the assumption of minimization, although it is possible to convert

convex functions to concave ones with a simple sign change.

Imagine we wish to find the minimum of a function which follows the curve y =

x2 shown in Figure 1.2. If we continuously move down the“hill” (down the gradient

with respect to x, Figures 1.3) we will eventually reach the minimum of the function.

Choosing how far to move each time the gradient is calculated is a choice that

must be made. We generally call this step size, or learning rate in many gradient

based optimizers. The learning rate is the first of many possible hyperparameters,

which is a general terminology for settings that cannot be optimized, and must

be set beforehand by the algorithm designer or programmer. The choosing of

hyperparameters is absolutely critical to the performance of many models, and

comprises folk knowledge in different fields of machine learning.

If we instead start on the right as in Figure 1.4, the gradient points the oppo-

site direction, and we still move toward the global minimum. The theory behind

gradient based optimization for convex (and non-convex) models is a huge field of

study (Bottou, 1998), but here we present a simple example explaining the intu-

ition behind gradient based optimization. Additionally, it is easy to see that this

type of model can also work for non-convex functions, given the right settings of
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Figure 1.2 – Function y = x2

Figure 1.3 – Moving down the gradient to a minimum

the optimizer.

Figure 1.5 shows a non-convex problem, with a minima near x = −1. It easy

to see that with the right step size we would still be able to find the minimum

of the function, by stepping directly over the problem region. However, without

prior knowledge of where the problem region lies it would be quite difficult to

purposefully choose settings that avoid issues. Indeed, there are many different

techniques used when bridging the gap from convex linear models to non-convex

models such as neural networks (LeCun et al., 1998).

The general problem of avoiding local minima (or more likely, saddle points
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Figure 1.4 – Descending from the other side

Figure 1.5 – Descending non-convex function, by “skipping” the problem region

as in Choromanska et al. (2014) and Dauphin et al. (2014)) in optimization is a

problem of current interest as many models are not guaranteed to be convex with

respect to all parameters. It is also important to note that we generally optimize

L(y, f(x, θ)) with respect to parameters θ. The general intuition of gradient descent

as a movement along a surface can be quite useful (Goodfellow, 2015).

The process of proceeding from a starting point, or initialization, to some mini-

mum of a function by changing parameters θ, whether by gradient descent or some

other means, is broadly called learning. Optimization and learning are often used

interchangeably in existing literature as well as in this thesis, but there exist meth-

ods of learning which are not based on optimization explicitly (Mitchell, 1998).

Deriving the gradients of the cost with respect to the parameters θ in a linear

model (θ being the combined elements of W and b) is a straightforward applica-

tion of calculus and there are many resources for such derivations such as Bishop

(2006) and Hastie et al. (2001). Computational toolkits for gradient based machine

learning such as Bastien et al. (2012) and Abadi et al. (2015) often use methods

to automatically calculate the gradients of many common functions either symbol-

ically or numerically, and are a crucial piece of implementing more complex models

such as neural networks.
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An additional note is that optimization generally becomes more difficult as

the number of parameters grows, also known as the “curse of dimensionality” in

Bellman (1957). There exist models with thousands or millions of parameters and

optimizing such models can be quite difficult especially in non-convex settings.

Finding clever ways to reduce the number of necessary parameters for a model

can often greatly improve performance on a given task, and we will discuss some

techniques for parameter sharing in later sections.

1.5.2 Stochastic, Minibatch, and Batch Gradient Descent

In the framework of gradient based optimization, we have additional choices on

how to actually implement the optimization algorithm. Theoretical guarantees on

convergence speed in the case of convex functions (Bottou, 1998) often lean toward

taking a single example xi, calculating the gradient of the cost L(xi) with respect to

parameters θ, then performing an update θt = θt−1 − ηgradθ(L(xi)), with learning

rate η > 0 and previous parameter settings θt−1. This parameter update rule is

commonly known as stochastic gradient descent, or SGD (Bottou, 1998).

By calculating the average cost with respect to several samples (sometimes

called a minibatch), and then calculating the updates to θ, we can smooth out

issues related to badly modeling single samples, while the dataset as a whole is well

modeled. In the extreme case, we can calculate the loss over the entire dataset (so

called batch gradient descent), and then update parameters, θ.

In general the choice of which type of gradient descent (stochastic, minibatch,

or batch) to use is yet another hyperparameter. Many practitioners choose to use

minibatch gradient descent due to the ability to increase or decrease the number of

samples in the minibatch, allowing flexibility when modeling new datasets, while

also controlling practical issues such as memory usage and data access times. There

also exist more advanced gradient based optimizers and adaptations such as dis-

cussed in Kingma and Ba (2015), Dauphin et al. (2014), Sutskever et al. (2013),

Bengio et al. (2013), Zeiler (2012), Hinton (2012), and Duchi et al. (2011).

1.5.3 Regularization

In addition to a cost assumption, it is common to add constraints on the type

of solution desired, in the form of an additional regularizer, RG. In the framework
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of empirical risk minimization, this results in a modified formulation as seen in

Equation 1.49.

ER(θ) =
1

l

l∑
i=1

L(yi, f(xi, θ)) +RG(θ) (1.49)

The case of weight norm penalties is discussed in Vapnik (1991), and is a com-

mon addition to many models to reduce numerical issues and improve training sta-

bility. In the specific case of linear models the addition of weight norm constraints

results in the well known LASSO (L1), Ridge (L2), and ElasticNet estimators (L1

and L2) as demonstrated in Bishop (2006). The relative weighting between the loss,

L, and the regularizer, RG, is another important hyperparameter. It is typically

chosen by trial and error on a subset of the full dataset.

1.6 Basic Learning Algorithms

1.6.1 Linear Regression

Combining the linear model q(x) = Wx + b with the mean squared error loss

results in the following formulation, where yi is the paired y coordinate for the

sample xi.

L(x) =
1

l

l∑
i=0

(yi − q(xi))
2 (1.50)

L(x) =
1

l

l∑
i=0

(yi − (Wxi + b))2 (1.51)

1.6.2 Logistic Regression

Bernoulli cross-entropy with q(x) = Wx + b, is a potentially simple model

for classification, but there is one major problem. The default output of q(x) is

unbounded, but for the Bernoulli cross-entropy cost to work, the output of q(x)

must be bounded between 0 and 1. One way to bound the output is to introduce

a non-linear activation to squash the outputs into the correct range. The sigmoid
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Figure 1.6 – Sigmoid function sigm(x) = 1
1+exp−x

(also known as the logistic function), shown in Figure 1.6, is the ideal function to

enforce the bounds.

Denoting the sigmoid function as sigm(x), we modify the model q(x) = sigm(Wx+

b). Plugging into the Bernoulli cross-entropy, we see the classic formulation for lo-

gistic regression. Logistic regression is very closely related to the perceptron which

forms the foundations of modern neural networks (Rosenblatt, 1958).

L(x) =
1

l

l∑
i=0

yi log q(xi) (1.52)

L(x) =
1

l

l∑
i=0

yi log sigm(Wxi + b) (1.53)

1.6.3 Multinomial Logistic Regression

Using the familiar linear model q(x) = Wx+b with the categorical cross-entropy

loss has similar problems as two-class logistic regression. Once again, it is necessary

to bound the outputs between 0 and 1 in order for the loss function to work. In
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the multiclass case, the softmax activation function, denoted by s(x) and shown in

Equation 1.54, is the best choice (Bishop, 2006).

s(x) =
expxj∑k
i=0 exp

xk

for j = 0 · · · k (1.54)

We can define the full loss for multinomial logistic regression using the correct

class from the target data, c, combined with q(x) = s(Wx+ b).

L(x) =
1

l

l∑
i=0

yi[c] log q(xi)[c] (1.55)

L(x) =
1

l

l∑
i=0

yi[c] log s(Wxi + b)[c] (1.56)

1.7 Neural Networks

Next, we might consider ways to add more parameters to these kinds of models.

One way is to create more input features, m, so that the matrix W (shape (m, d))

becomes larger. Next, we might try having two matrices, W1 and W2, of size (m,

d1) and (d1, d), so that the model becomes q(x) = W2W1x+ b. Unfortunately this

cannot increase the number of parameters (sometimes called capacity), because

the composition of linear transforms can still be represented by a single transform

(Ogus, 2007). When holding the feature size constant with a required output size

dependent on the cost and targets, there seems to be no way to increase the number

of parameters.

Figure 1.7 – Graphs demonstrating nonlinear functions from left to right: Sigmoid ( 1
1+exp−x ),

tanh (1−exp−2x

1+exp−2x ), and rectified linear (0 if x < 0 else x)
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One way to prevent the linear transformations from combining is to introduce

a non-linearity, such as a sigmoid, hyperbolic tangent, or rectified linear functions.

Examples of each can be seen in Figure 1.7. The resulting model may look some-

thing like q(x) = W1sigm(W2x)+b, or for two functions f() and g(), q(x) = f(g(x)).

To calculate the gradients with respect to the parameters associated with f() and

g(), the standard chain rule of calculus can be used (Finney et al., 2003; Rumel-

hart et al., 1986). This stacking of multiple parameterized non-linear functions

(called layers) with a loss function forms a basic neural network sometimes called

a multilayer perceptron, or MLP is shown in Rumelhart et al. (1986). These linear

transforms with a non-linearity applied afterward are commonly called feedforward

layers. The loose assumption of feedforward layers in the MLP is roughly “every-

thing to everything”, or that the value at xi[n] depends on all xi[ ̸=n], meaning the

function captures f(xi[0]...xi[n]) for all feature indices n.

1.8 Networks Which Exploit Structure

The models we have talked about so far share parameters over dataset sam-

ples, roughly based on the assumption that dataset examples are drawn from some

underlying data distribution or have some common information which is shared

over examples. There are additional assumptions we can make about the struc-

ture of each example, which often allows for a further reduction in the number of

parameters. Parameter sharing is one of the most powerful tools in the arsenal

of practitioners, and finding new ways to share parameters on a dataset can often

result in much better solutions than previous attempts.

1.8.1 Convolutional Networks

The basic motivation for convolutional neural networks, first seen in Fukushima

(1980), centers around the concept of shared statistics. Namely, we believe that in

some types of data (such as images) there are statistics which are shared over the

data sample. This is commonly exploited in the form of cutting images into smaller

“patches”, then processing patches, rather than whole images Coates et al. (2012).

One common assumption is that images are made from a hierarchy of shape types,
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starting from edges and blobs which are then further combined into more compli-

cated shapes. If we wanted to craft an edge detector, it would be a bit strange to

choose a number of parameters that is the same size as the image. This is because

edge detection is fundamentally local. Rather we can use something much smaller

such as a 3 by 3 filter which is repeatedly dotted and shifted over the whole image

Sobel and Feldman (1968). This repeated “dot and shift” procedure is also known

as convolution, and is a common operation in image processing. Convolution with

handcrafted filters has formed the core of signal and image processing for many

years, but by using the right layers in a neural network, we can create learned

filters which start randomly and are trained by gradient descent. These filters can

be optimized toward a specific goal, combined with the right cost and task such

as image classification (Krizhevsky et al., 2012a), audio modeling (Dieleman and

Schrauwen, 2014), or text classification [cite convnet sentiment]. In addition we

can stack these layers on top of each other with the goal of learning a set of hi-

erarchical filters such that for images it first detects edges, then groups of edges,

and eventually detectors for complex objects Yosinski et al. (2015). A similar in-

tuition of first matching small features, then hierarchical groupings of features as

the network gets deeper, also holds for other types of inputs. The details of convo-

lutional networks can be found in many places such as Fukushima (1980), LeCun

et al. (1997), Krizhevsky et al. (2012a), Goodfellow et al. (2016), Sermanet et al.

(2014), Simonyan and Zisserman (2015), Szegedy et al. (2014). Sharing weights

over dimensions of data because of similar statistics provides an important way

to improve the performance of neural networks. We use this technique heavily in

modern research, and the papers included in Chapters 2.2 and 3 are no exception.

One key piece of convolutional networks is the assumption of independence. In a

given layer, each local filter application is assumed to be independent of the other

filter applications. As such the filters at each layer can be calculated in parallel,

allowing for efficient computation on modern computers and parallel processing

devices. We can roughly say that convolutional networks model the assumption

f(xi[j− k
2
]...xi[j+ k

2
]) where k is the convolutional filter size, and j is the current filter

position. Convolutional models capture the full relationship between all features

f(xi[0]...xi[n]) only after stacking many convolutional layers, effectively partitioning

the space over depth so that nearby interactions have highly similar paths through

the network while more distant features have more disjoint paths (Dinh, 2016). If
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the sample xi is multi-dimensional such as an image, the independence assump-

tion may also have multiple dimensions depending on the size of the filter in each

dimension. In the extreme case of filter size equal to sample size, a convolutional

layer is equivalent to a feedforward layer with the same nonlinearity.

1.8.2 Recurrent Neural Networks

Recurrent neural networks are another way of sharing parameters, as seen in

Jordan (1986) and Elman (1990). Unlike the previous example of convolutional neu-

ral networks, recurrent neural networks make no independence assumptions within

the same layer. Instead, it factorizes the joint model f(xi[0]...xi[n]) as a sequence of

conditional functions f(xi[0]), f(xi[1]|xi[0]), f(xi[2]|xi[1], xi[0]), f(xi[3]|xi[2], xi[1], xi[0])

... up to f(xi[n]|xi[n−1], ..., xi[0]). In standard training (combined with the cor-

rect cost) these conditional functions form probability distributions, so that we

effectively factorize the joint probability distribution p(xi[0]...xi[n]) as a product of

conditional distributions p(xi[0]) ∗ p(xi[1]|xi[0])...p(xi[n]|xi[n−1]...xi[0]) (Larochelle and

Murray, 2011a). The general idea of recurrent neural networks is that the out-

put for a specific position k can be thought of as a function of the current input

xi[k] and some previous information (often called the hidden state) hk−1 which

attempts to compress all previous history xi[0...k−1]. This results in a function

hk = f(r(xi[k]) + hk−1), with input feature model r() and hidden state h. By

starting this process recursively, and allowing the hidden state to be shared over

all steps k in 0...n, this results in the factorization described above. In addition,

the function f() and hidden state processing can have memory, error correction,

or a host of different useful computational blocks. Details for specific recurrent

neural networks will be found in subsequent chapters, but a general overview of

the concept and introductions to specific architectures can be found in Hochreiter

and Schmidhuber (1997), Cho et al. (2014), Goodfellow et al. (2016), Graves et al.

(2013a) Jozefowicz et al. (2015).
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1.9 Structured Prediction

If the chosen model (and associated cost) is more advanced, we may use it to

predict multiple things about a single sample. Some examples include classifying

each pixel in an image (such as road, car, tree) as in Eigen and Fergus (2015)

or notes in a piece of music as in Eck and Schmidhuber (2002) and Boulanger-

Lewandowski et al. (2012a). Standard prediction problems (such as classification)

can be thought of as learning a mapping function f(yi|xi), where xi is a feature

vector of some kind, and yi is a single target for that mapping. A simple problem

dealing with structured prediction might involve prediction of multiple targets for

each sample, f(yi[0]...yi[l]|xi). Many other problems have further knowledge which

can be mined or described about the relationship between targets. This allows var-

ious breakdowns of the cost function into related subproblems that may (or may

not) share parameters. These types of problems are common in natural language

processing and speech recognition. Much study in modern research is focused on

better ways of handling so called structured output tasks, and incorporating prior

knowledge in the output structure can provide massive improvements on a given

task. There are also ways to learn one to many mappings by outputting the param-

eters for mixture densities Bishop (1994), but we leave this for further exploration

in subsequent chapters. In the next chapter we discuss a method for structured

prediction of handwriting and audio sequences, called a variational recurrent neural

network, or VRNN.
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A Recurrent Latent
Variable Model For
Sequential Data
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tionnelle, Université de Montréal
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2.2 Abstract

In this paper, we explore the inclusion of latent random variables into the

hidden state of a recurrent neural network (RNN) by combining the elements of the

variational autoencoder. We argue that through the use of high-level latent random

variables, the variational RNN (VRNN) 1 can model the kind of variability observed

in highly structured sequential data such as natural speech. We empirically evaluate

the proposed model against other related sequential models on four speech datasets

and one handwriting dataset. Our results show the important roles that latent

random variables can play in the RNN dynamics.

2.3 Introduction

Learning generative models of sequences is a long-standing machine learning

challenge and historically the domain of dynamic Bayesian networks (DBNs) such

as hidden Markov models (HMMs) and Kalman filters. The dominance of DBN-

based approaches has been recently overturned by a resurgence of interest in recur-

rent neural network (RNN) based approaches. An RNN is a special type of neural

network that is able to handle both variable-length input and output. By training

1. Code is available at http://www.github.com/jych/nips2015_vrnn
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an RNN to predict the next output in a sequence, given all previous outputs, it

can be used to model joint probability distribution over sequences.

Both RNNs and DBNs consist of two parts: (1) a transition function that

determines the evolution of the internal hidden state, and (2) a mapping from the

state to the output. There are, however, a few important differences between RNNs

and DBNs.

DBNs have typically been limited either to relatively simple state transition

structures (e.g., linear models in the case of the Kalman filter) or to relatively

simple internal state structure (e.g., the HMM state space consists of a single set

of mutually exclusive states). RNNs, on the other hand, typically possess both

a richly distributed internal state representation and flexible non-linear transition

functions. These differences give RNNs extra expressive power in comparison to

DBNs. This expressive power and the ability to train via error backpropagation are

the key reasons why RNNs have gained popularity as generative models for highly

structured sequential data.

In this paper, we focus on another important difference between DBNs and

RNNs. While the hidden state in DBNs is expressed in terms of random variables,

the internal transition structure of the standard RNN is entirely deterministic.

The only source of randomness or variability in the RNN is found in the condi-

tional output probability model. We suggest that this can be an inappropriate

way to model the kind of variability observed in highly structured data, such as

natural speech, which is characterized by strong and complex dependencies among

the output variables at different timesteps. We argue, as have others (Boulanger-

Lewandowski et al., 2012b; Bayer and Osendorfer, 2014), that these complex de-

pendencies cannot be modelled efficiently by the output probability models used in

standard RNNs, which include either a simple unimodal distribution or a mixture

of unimodal distributions.

We propose the use of high-level latent random variables to model the variability

observed in the data. In the context of standard neural network models for non-

sequential data, the variational autoencoder (VAE) (Kingma and Welling, 2014;

Rezende et al., 2014) offers an interesting combination of highly flexible non-linear

mapping between the latent random state and the observed output and effective

approximate inference. In this paper, we propose to extend the VAE into a re-

current framework for modelling high-dimensional sequences. The VAE can model
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complex multimodal distributions, which will help when the underlying true data

distribution consists of multimodal conditional distributions. We call this model a

variational RNN (VRNN).

A natural question to ask is: how do we encode observed variability with latent

random variables? The answer to this question depends on the nature of the

data itself. In this work, we are mainly interested in highly structured data that

often arises in AI applications. By highly structured, we mean that the data is

characterized by two properties. Firstly, there is a relatively high signal-to-noise

ratio, meaning that the vast majority of the variability observed in the data is due

to the signal itself and cannot reasonably be considered as noise. Secondly, there

exists a complex relationship between the underlying factors of variation and the

observed data. For example, in speech, the vocal qualities of the speaker have a

strong but complicated influence on the audio waveform, affecting the waveform in

a consistent manner across frames.

With these considerations in mind, we suggest that our model variability should

induce temporal dependencies across timesteps. Thus, like DBN models such as

HMMs and Kalman filters, we model the dependencies between the latent random

variables across timesteps. While we are not the first to propose integrating random

variables into the RNN hidden state (Boulanger-Lewandowski et al., 2012c; Bayer

and Osendorfer, 2014; Fabius et al., 2014; Gregor et al., 2015), we believe we are

the first to integrate the dependencies between the latent random variables at

neighboring timesteps.

We evaluate the proposed VRNN model against other RNN-based models –

including a VRNN model without introducing temporal dependencies between

the latent random variables – on two challenging sequential data types: natural

speech and handwriting. We demonstrate that for the speech modelling tasks,

the VRNN-based models significantly outperform the RNN-based models and the

VRNN model that does not integrate temporal dependencies between latent ran-

dom variables.
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2.4 Background

2.4.1 Sequence modelling with Recurrent Neural Networks

An RNN can take as input a variable-length sequence x = (x1,x2, . . . ,xT ) by

recursively processing each symbol while maintaining its internal hidden state h.

At each timestep t, the RNN reads the symbol xt ∈ Rd and updates its hidden

state ht ∈ Rp by:

ht =fθ (xt,ht−1) , (2.1)

where f is a deterministic non-linear transition function, and θ is the parameter

set of f . The transition function f can be implemented with gated activation

functions such as long short-term memory (LSTM, Hochreiter and Schmidhuber,

1997) or gated recurrent unit (GRU, Cho et al., 2014). RNNs model sequences by

parameterizing a factorization of the joint sequence probability distribution as a

product of conditional probabilities such that:

p(x1,x2, . . . ,xT ) =
T∏
t=1

p(xt | x<t),

p(xt | x<t) = gτ (ht−1), (2.2)

where g is a function that maps the RNN hidden state ht−1 to a probability distri-

bution over possible outputs, and τ is the parameter set of g.

One of the main factors that determines the representational power of an RNN

is the output function g in Eq. (2.2). With a deterministic transition function

f , the choice of g effectively defines the family of joint probability distributions

p(x1, . . . ,xT ) that can be expressed by the RNN.

We can express the output function g in Eq. (2.2) as being composed of two

parts. The first part φτ is a function that returns the parameter set ϕt given the

hidden state ht−1, i.e., ϕt = φτ (ht−1), while the second part of g returns the density

of xt, i.e., pϕt(xt | x<t).

When modelling high-dimensional and real-valued sequences, a reasonable choice

of an observation model is a Gaussian mixture model (GMM) as used in (Graves

et al., 2013a). For GMM, φτ returns a set of mixture coefficients αt, means µ·,t
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and covariances Σ·,t of the corresponding mixture components. The probability of

xt under the mixture distribution is:

pαt,µ·,t,Σ·,t(xt | x<t) =
∑
j

αj,tN
(
xt;µj,t,Σj,t

)
.

With the notable exception of (Graves et al., 2013a), there has been little work

investigating the structured output density model for RNNs with real-valued se-

quences.

There is potentially a significant issue in the way the RNN models output

variability. Given a deterministic transition function, the only source of variability

is in the conditional output probability density. This can present problems when

modelling sequences that are at once highly variable and highly structured (i.e.,

with a high signal-to-noise ratio). To effectively model these types of sequences,

the RNN must be capable of mapping very small variations in xt (i.e., the only

source of randomness) to potentially very large variations in the hidden state ht.

Limiting the capacity of the network, as must be done to guard against overfitting,

will force a compromise between the generation of a clean signal and encoding

sufficient input variability to capture the high-level variability both within a single

observed sequence and across data examples.

The need for highly structured output functions in an RNN has been previously

noted. Boulanger-Lewandowski et al. (2012a) extensively tested NADE and RBM-

based output densities for modelling sequences of binary vector representations of

music. Bayer and Osendorfer (2014) introduced a sequence of independent latent

variables corresponding to the states of the RNN. Their model, called STORN, first

generates a sequence of samples z = (z1, . . . , zT ) from the sequence of independent

latent random variables. At each timestep, the transition function f from Eq. (2.1)

computes the next hidden state ht based on the previous state ht−1, the previ-

ous output xt−1 and the sampled latent random variables zt. They proposed to

train this model based on the VAE principle (see Sec. 2.4.2). Similarly, Pachitariu

and Sahani (2012) earlier proposed both a sequence of independent latent random

variables and a stochastic hidden state for the RNN.

These approaches are closely related to the approach proposed in this paper.

However, there is a major difference in how the prior distribution over the latent

random variable is modelled. Unlike the aforementioned approaches, our approach
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makes the prior distribution of the latent random variable at timestep t dependent

on all the preceding inputs via the RNN hidden state ht−1 (see Eq. (2.5)). The

introduction of temporal structure into the prior distribution is expected to im-

prove the representational power of the model, which we empirically observe in the

experiments (See Table 2.1). However, it is important to note that any approach

based on having stochastic latent state is orthogonal to having a structured output

function, and that these two can be used together to form a single model.

2.4.2 Variational Autoencoder

For non-sequential data, VAEs (Kingma and Welling, 2014; Rezende et al.,

2014) have recently been shown to be an effective modelling paradigm to recover

complex multimodal distributions over the data space. A VAE introduces a set

of latent random variables z, designed to capture the variations in the observed

variables x. As an example of a directed graphical model, the joint distribution is

defined as:

p(x, z) = p(x | z)p(z). (2.3)

The prior over the latent random variables, p(z), is generally chosen to be a simple

Gaussian distribution and the conditional p(x | z) is an arbitrary observation model

whose parameters are computed by a parametric function of z. Importantly, the

VAE typically parameterizes p(x | z) with a highly flexible function approximator

such as a neural network. While latent random variable models of the form given

in Eq. (2.3) are not uncommon, endowing the conditional p(x | z) as a potentially

highly non-linear mapping from z to x is a rather unique feature of the VAE.

However, introducing a highly non-linear mapping from z to x results in in-

tractable inference of the posterior p(z | x). Instead, the VAE uses a variational

approximation q(z | x) of the posterior that enables the use of the lower bound:

log p(x) ≥ −KL(q(z | x)∥p(z)) + Eq(z|x) [log p(x | z)] , (2.4)

where KL(Q∥P ) is Kullback-Leibler divergence between two distributions Q and

P .

In (Kingma and Welling, 2014), the approximate posterior q(z | x) is a Gaussian
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N (µ, diag(σ2)) whose mean µ and variance σ2 are the output of a highly non-linear

function of x, once again typically a neural network.

The generative model p(x | z) and inference model q(z | x) are then trained

jointly by maximizing the variational lower bound with respect to their parameters,

where the integral with respect to q(z | x) is approximated stochastically. The

gradient of this estimate can have a low variance estimate, by reparametrizing

z = µ+ σ ⊙ ϵ and rewriting:

Eq(z|x) [log p(x | z)] = Ep(ϵ) [log p(x | z = µ+ σ ⊙ ϵ)] ,

where ϵ is a vector of standard Gaussian variables. The inference model can then

be trained through standard backpropagation technique for stochastic gradient de-

scent.

2.5 Variational Recurrent Neural Network

In this section, we introduce a recurrent version of the VAE for the purpose of

modelling sequences. Drawing inspiration from simpler dynamic Bayesian networks

(DBNs) such as HMMs and Kalman filters, the proposed variational recurrent

neural network (VRNN) explicitly models the dependencies between latent random

variables across subsequent timesteps. However, unlike these simpler DBN models,

the VRNN retains the flexibility to model highly non-linear dynamics.

Generation The VRNN contains a VAE at every timestep. However, these VAEs

are conditioned on the state variable ht−1 of an RNN. This addition will help the

VAE to take into account the temporal structure of the sequential data. Unlike

a standard VAE, the prior on the latent random variable is no longer a standard

Gaussian distribution, but follows the distribution:

zt ∼ N (µ0,t, diag(σ
2
0,t)) , where [µ0,t,σ0,t] = φprior

τ (ht−1), (2.5)

where µ0,t and σ0,t denote the parameters of the conditional prior distribution.

Moreover, the generating distribution will not only be conditioned on zt but also
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on ht−1 such that:

xt | zt ∼ N (µx,t, diag(σ
2
x,t)) , where [µx,t,σx,t] = φdec

τ (φz
τ (zt),ht−1), (2.6)

where µx,t and σx,t denote the parameters of the generating distribution, φprior
τ and

φdec
τ can be any highly flexible function such as neural networks. φx

τ and φz
τ can

also be neural networks, which extract features from xt and zt, respectively. We

found that these feature extractors are crucial for learning complex sequences. The

RNN updates its hidden state using the recurrence equation:

ht =fθ (φ
x
τ (xt), φ

z
τ (zt),ht−1) , (2.7)

where f was originally the transition function from Eq. (2.1). From Eq. (2.7),

we find that ht is a function of x≤t and z≤t. Therefore, Eq. (2.5) and Eq. (2.6)

define the distributions p(zt | x<t, z<t) and p(xt | z≤t,x<t), respectively. The

parameterization of the generative model results in and – was motivated by – the

factorization:

p(x≤T , z≤T ) =
T∏
t=1

p(xt | z≤t,x<t)p(zt | x<t, z<t). (2.8)

Inference In a similar fashion, the approximate posterior will not only be a

function of xt but also of ht−1 following the equation:

zt | xt ∼ N (µz,t, diag(σ
2
z,t)) , where [µz,t,σz,t] = φenc

τ (φx
τ (xt),ht−1), (2.9)

similarly µz,t and σz,t denote the parameters of the approximate posterior. We note

that the encoding of the approximate posterior and the decoding for generation are

tied through the RNN hidden state ht−1. We also observe that this conditioning

on ht−1 results in the factorization:

q(z≤T | x≤T ) =
T∏
t=1

q(zt | x≤t, z<t). (2.10)
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(a) Prior (b) Generation (c)
Recurrence

(d) Inference (e) Overall

Figure 2.1 – Graphical illustrations of each operation of the VRNN: (a) computing the condi-
tional prior using Eq. (2.5); (b) generating function using Eq. (2.6); (c) updating the RNN hidden
state using Eq. (2.7); (d) inference of the approximate posterior using Eq. (2.9); (e) overall com-
putational paths of the VRNN.

Learning The objective function becomes a timestep-wise variational lower bound

using Eq. (2.8) and Eq. (2.10):

Eq(z≤T |x≤T )

[
T∑
t=1

(−KL(q(zt | x≤t, z<t)∥p(zt | x<t, z<t)) + log p(xt | z≤t,x<t))

]
.

(2.11)

As in the standard VAE, we learn the generative and inference models jointly by

maximizing the variational lower bound with respect to their parameters. The

schematic view of the VRNN is shown in Fig. 2.1, operations (a)–(d) correspond to

Eqs. (2.5)–(2.7), (2.9), respectively. The VRNN applies the operation (a) when

computing the conditional prior (see Eq. (2.5)). If the variant of the VRNN

(VRNN-I) does not apply the operation (a), then the prior becomes independent

across timesteps. STORN (Bayer and Osendorfer, 2014) can be considered as an

instance of the VRNN-I model family. In fact, STORN puts further restrictions

on the dependency structure of the approximate inference model. We include this

version of the model (VRNN-I) in our experimental evaluation in order to directly

study the impact of including the temporal dependency structure in the prior (i.e.,

conditional prior) over the latent random variables.
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2.6 Experiment Settings

We evaluate the proposed VRNN model on two tasks: (1) modelling natural

speech directly from the raw audio waveforms; (2) modelling handwriting genera-

tion.

Speech modelling We train the models to directly model raw audio signals, rep-

resented as a sequence of 200-dimensional frames. Each frame corresponds to the

real-valued amplitudes of 200 consecutive raw acoustic samples. Note that this is

unlike the conventional approach for modelling speech, often used in speech synthe-

sis where models are expressed over representations such as spectral features (see,

e.g., Tokuda et al., 2013; Bertrand et al., 2008; Lee et al., 2009).

We evaluate the models on the following four speech datasets:

1. Blizzard: This text-to-speech dataset made available by the Blizzard Chal-

lenge 2013 contains 300 hours of English, spoken by a single female speaker

(King and Karaiskos, 2013).

2. TIMIT: This widely used dataset for benchmarking speech recognition sys-

tems contains 6, 300 English sentences, read by 630 speakers.

3. Onomatopoeia 2: This is a set of 6, 738 non-linguistic human-made sounds

such as coughing, screaming, laughing and shouting, recorded from 51 voice

actors.

4. Accent: This dataset contains English paragraphs read by 2, 046 different

native and non-native English speakers (Weinberger, 2015).

For the Blizzard and Accent datasets, we process the data so that each sample

duration is 0.5s (the sampling frequency used is 16kHz). Except for the TIMIT

dataset, the rest of the datasets do not have predefined train/test splits. We shuffle

and divide the data into train/validation/test splits using a ratio of 0.9/0.05/0.05.

Handwriting generation We let each model learn a sequence of (x, y) coordi-

nates together with binary indicators of pen-up/pen-down, using the IAM-OnDB

dataset, which consists of 13, 040 handwritten lines written by 500 writers Liwicki

and Bunke (2005). We preprocess and split the dataset as done in (Graves et al.,

2013a).

2. This dataset has been provided by Ubisoft.
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Table 2.1 – Average log-likelihood on the test (or validation) set of each task.

Speech modelling Handwriting
Models Blizzard TIMIT Onomatopoeia Accent IAM-OnDB

RNN-Gauss 3539 -1900 -984 -1293 1016
RNN-GMM 7413 26643 18865 3453 1358

VRNN-I-Gauss ≥ 8933 ≥ 28340 ≥ 19053 ≥ 3843 ≥ 1332
≈ 9188 ≈ 29639 ≈ 19638 ≈ 4180 ≈ 1353

VRNN-Gauss ≥ 9223 ≥ 28805 ≥ 20721 ≥ 3952 ≥ 1337
≈ 9516 ≈ 30235 ≈ 21332 ≈ 4223 ≈ 1354

VRNN-GMM ≥ 9107 ≥ 28982 ≥ 20849 ≥ 4140 ≥ 1384
≈ 9392 ≈ 29604 ≈ 21219 ≈ 4319 ≈ 1384

Preprocessing and training The only preprocessing used in our experiments

is normalizing each sequence using the global mean and standard deviation com-

puted from the entire training set. We train each model with stochastic gradi-

ent descent on the negative log-likelihood using the Adam optimizer Kingma and

Welling (2015), with a learning rate of 0.001 for TIMIT and Accent and 0.0003

for the rest. We use a minibatch size of 128 for Blizzard and Accent and 64 for

the rest. The final model was chosen with early-stopping based on the validation

performance.

Models We compare the VRNN models with the standard RNN models using

two different output functions: a simple Gaussian distribution (Gauss) and a Gaus-

sian mixture model (GMM). For each dataset, we conduct an additional set of

experiments for a VRNN model without the conditional prior (VRNN-I).

We fix each model to have a single recurrent hidden layer with 2000 LSTM

units (in the case of Blizzard, 4000 and for IAM-OnDB, 1200). All of φτ shown in

Eqs. (2.5)–(2.7), (2.9) have four hidden layers using rectified linear units (Nair and

Hinton, 2010) (for IAM-OnDB, we use a single hidden layer). The standard RNN

models only have φx
τ and φdec

τ , while the VRNN models also have φz
τ , φ

enc
τ and

φprior
τ . For the standard RNN models, φx

τ is the feature extractor, and φdec
τ is the

generating function. For the RNN-GMM and VRNN models, we match the total

number of parameters of the deep neural networks (DNNs), φx,z,enc,dec,prior
τ , as close

to the RNN-Gauss model having 600 hidden units for every layer that belongs to

either φx
τ or φdec

τ (we consider 800 hidden units in the case of Blizzard). Note that
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we use 20 mixture components for models using a GMM as the output function.

For qualitative analysis of speech generation, we train larger models to generate

audio sequences. We stack three recurrent hidden layers, each layer contains 3000

LSTM units. Again for the RNN-GMM and VRNN models, we match the total

number of parameters of the DNNs to be equal to the RNN-Gauss model having

3200 hidden units for each layer that belongs to either φx
τ or φdec

τ .

2.7 Results and Analysis

We report the average log-likelihood of test examples assigned by each model

in Table 2.1. For RNN-Gauss and RNN-GMM, we report the exact log-likelihood,

while in the case of VRNNs, we report the variational lower bound (given with ≥
sign, see Eq. (2.4)) and approximated marginal log-likelihood (given with ≈ sign)

based on importance sampling using 40 samples as in (Rezende et al., 2014). In

general, higher numbers are better. Our results show that the VRNN models have

higher log-likelihood, which support our claim that latent random variables are

helpful when modelling complex sequences. The VRNN models perform well even

with a unimodal output function (VRNN-Gauss), which is not the case for the

standard RNN models.

Latent space analysis In Fig. 2.2, we show an analysis of the latent random

variables. We let a VRNN model read some unseen examples and observe the

transitions in the latent space. We compute δt =
∑

j(µ
j
z,t − µj

z,t−1)
2 at every

timestep and plot the results on the top row of Fig. 2.2. The middle row shows the

KL divergence computed between the approximate posterior and the conditional

prior. When there is a transition in the waveform, the KL divergence tends to grow

(white is high), and we can clearly observe a peak in δt that can affect the RNN

dynamics to change modality.

Speech generation We generate waveforms with 2.0s duration from the models

that were trained on Blizzard. From Fig. 2.3, we can clearly see that the waveforms

from the VRNN-Gauss are much less noisy and have less spurious peaks than those

from the RNN-GMM. We suggest that the large amount of noise apparent in the
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Figure 2.2 – The top row represents the difference δt between µz,t and µz,t−1. The middle row
shows the dominant KL divergence values in temporal order. The bottom row shows the input
waveforms.

waveforms from the RNN-GMM model is a consequence of the compromise these

models must make between representing a clean signal consistent with the training

data and encoding sufficient input variability to capture the variations across data

examples. The latent random variable models can avoid this compromise by adding

variability in the latent space, which can always be mapped to a point close to a

relatively clean sample.

Handwriting generation Visual inspection of the generated handwriting (as

shown in Fig. 2.4) from the trained models reveals that the VRNN model is able to

generate more diverse writing style while maintaining consistency within samples.

2.8 Conclusion

We propose a novel model that can address sequence modelling problems by

incorporating latent random variables into a recurrent neural network (RNN). Our

experiments focus on unconditional natural speech generation as well as handwrit-

ing generation. We show that the introduction of latent random variables can

provide significant improvements in modelling highly structured sequences such as

natural speech sequences. We empirically show that the inclusion of randomness

into high-level latent space can enable the VRNN to model natural speech sequences

with a simple Gaussian distribution as the output function. However, the standard

RNN model using the same output function fails to generate reasonable samples.

An RNN-based model using more powerful output function such as a GMM can
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(a) Ground Truth (b) RNN-GMM (c) VRNN-Gauss

Figure 2.3 – Examples from the training set and generated samples from RNN-GMM and
VRNN-Gauss. Top three rows show the global waveforms while the bottom three rows show
more zoomed-in waveforms. Samples from (b) RNN-GMM contain high-frequency noise, and
samples from (c) VRNN-Gauss have less noise. We exclude RNN-Gauss, because the samples are
almost close to pure noise.

generate much better samples, but they contain a large amount of high-frequency

noise compared to the samples generated by the VRNN-based models.

We also show the importance of temporal conditioning of the latent random

variables by reporting higher log-likelihood numbers on modelling natural speech

sequences. In handwriting generation, the VRNN model is able to model the di-

versity across examples while maintaining consistent writing style over the course

of generation.
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(a) Ground Truth (b) RNN-Gauss (c) RNN-GMM (d) VRNN-GMM

Figure 2.4 – Handwriting samples: (a) training examples and unconditionally generated hand-
writing from (b) RNN-Gauss, (c) RNN-GMM and (d) VRNN-GMM. The VRNN-GMM retains
the writing style from beginning to end while RNN-Gauss and RNN-GMM tend to change the
writing style during the generation process. This is possibly because the sequential latent random
variables can guide the model to generate each sample with a consistent writing style.
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3.2 Abstract

In this paper, we propose a deep neural network architecture for object recog-

nition based on recurrent neural networks. The proposed network, called ReNet,

replaces the ubiquitous convolution+pooling layer of the deep convolutional neural

network with four recurrent neural networks that sweep horizontally and vertically

in both directions across the image. We evaluate the proposed ReNet on three

widely-used benchmark datasets; MNIST, CIFAR-10 and SVHN. The result sug-

gests that ReNet is a viable alternative to the deep convolutional neural network,

and that further investigation is needed.
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3.3 Introduction

Convolutional neural networks (CNN, Fukushima, 1980; LeCun et al., 1989)

have become the method of choice for object recognition (see, e.g., Krizhevsky

et al., 2012a). They have proved to be successful at a variety of benchmark prob-

lems including, but not limited to, handwritten digit recognition (see, e.g., Ciresan

et al., 2012), natural image classification (see, e.g., Lin et al., 2014; Simonyan and

Zisserman, 2015; Szegedy et al., 2014), house number recognition (see, e.g., Good-

fellow et al., 2014), traffic sign recognition (see, e.g., Ciresan et al., 2012), as well

as for speech recognition (see, e.g., Abdel-Hamid et al., 2012; Sainath et al., 2013;

Tóth, 2014). Furthermore, image representations from CNNs trained to recognize

objects on a large set of more than one million images (Simonyan and Zisserman,

2015; Szegedy et al., 2014) have been found to be extremely helpful in performing

other computer vision tasks such as image caption generation (see, e.g., Vinyals

et al., 2014; Xu et al., 2015), video description generation (see, e.g., Yao et al.,

2015) and object localization/detection (see, e.g., Sermanet et al., 2014).

While the CNN has been especially successful in computer vision, recurrent neu-

ral networks (RNN) have become the method of choice for modeling sequential data,

such as text and sound. Natural language processing (NLP) applications include

language modeling (see, e.g., Mikolov, 2012), and machine translation (Sutskever

et al., 2014; Cho et al., 2014; Bahdanau et al., 2014). Other popular areas of ap-

plication include offline handwriting recognition/generation (Graves and Schmid-

huber, 2009; Graves et al., 2008; Graves, 2013) and speech recognition (Chorowski

et al., 2014; Graves and Jaitly, 2014). RNNs have also been used together with

CNNs in speech recognition (Sainath et al., 2015). The recent revival of RNNs has

largely been due to advances in learning algorithms (Pascanu et al., 2013; Martens

and Sutskever, 2011) and model architectures (Pascanu et al., 2014; Hochreiter and

Schmidhuber, 1997; Cho et al., 2014).

The architecture proposed here is related and inspired by this earlier work,

but our model relies on purely uni-dimensional RNNs coupled in a novel way,

rather than on a multi-dimensional RNN. The basic idea behind the proposed

ReNet architecture is to replace each convolutional layer (with convolution+pooling

making up a layer) in the CNN with four RNNs that sweep over lower-layer features

in different directions: (1) bottom to top, (2) top to bottom, (3) left to right and (4)
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right to left. The recurrent layer ensures that each feature activation in its output

is an activation at the specific location with respect to the whole image, in contrast

to the usual convolution+pooling layer which only has a local context window.

The lowest layer of the model sweeps over the input image, with subsequent layers

operating on extracted representations from the layer below, forming a hierarchical

representation of the input.

Graves and Schmidhuber (2009) have demonstrated an RNN-based object recog-

nition system for offline Arabic handwriting recognition. The main difference be-

tween ReNet and the model of Graves and Schmidhuber (2009) is that we use the

usual sequence RNN, instead of the multidimensional RNN. We make the latter

two parts of a single layer, usually (horizontal) RNNs or one (horizontal) bidirec-

tional RNN, work on the hidden states computed by the first two (vertical) RNNs,

or one (vertical) bidirectional RNN. This allows us to use a plain RNN, instead of

the more complex multidimensional RNN, while making each output activation of

the layer be computed with respect to the whole input image.

One important consequence of the proposed approach compared to the multidi-

mensional RNN is that the number of RNNs at each layer scales now linearly with

respect to the number of dimensions d of the input image (2d). A multidimensional

RNN, on the other hand, requires the exponential number of RNNs at each layer

(2d). Furthermore, the proposed variant is more easily parallelizable, as each RNN

is dependent only along a horizontal or vertical sequence of patches. This archi-

tectural distinction results in our model being much more amenable to distributed

computing than that of Graves and Schmidhuber (2009).

In this work, we test the proposed ReNet on several widely used object recogni-

tion benchmarks, namely MNIST (LeCun et al., 1999), CIFAR-10 (Krizhevsky and

Hinton, 2009) and SVHN (Netzer et al., 2011). Our experiments reveal that the

model performs comparably to convolutional neural networks on all these datasets,

suggesting the potential of RNNs as a competitive alternative to CNNs for image

related tasks.
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3.4 Model Description

Let us denote by X = {xi,j} the input image or the feature map from the

layer below, where X ∈ Rw×h×c with w, h and c the width, height and number

of channels, or the feature dimensionality, respectively. Given a receptive field

(or patch) size of wp × hp, we split the input image X into a set of I × J (non-

overlapping) patches P = {pi,j}, where I = w
wp
, J = h

hp
and pi,j ∈ Rwp×hp×c is the

(i, j)-th patch of the input image. The first index i is the horizontal index and the

other index j is the vertical index.

First, we sweep the image vertically with two RNNs, with one RNN working in

a bottom-up direction and the other working in a top-down direction. Each RNN

takes as an input one (flattened) patch at a time and updates its hidden state,

working along each column j of the split input image X.

vFi,j = fVFWD(z
F
i,j−1, pi,j), for j = 1, · · · , J (3.1)

vRi,j = fVREV(z
R
i,j+1, pi,j), for j = J, · · · , 1 (3.2)

Note that fVFWD and fVREV return the activation of the recurrent hidden

state, and may be implemented either as a simple tanh layer, as a gated recur-

rent layer (Cho et al., 2014) or as a long short-term memory layer (Hochreiter and

Schmidhuber, 1997).

After this vertical, bidirectional sweep, we concatenate the intermediate hidden

states vFi,j and vRi,j at each location (i, j) to get a composite feature map V =

{vi,j}j=1,...,J
i=1,...,I , where vi,j ∈ R2d and d is the number of recurrent units. Each vi,j is

now the activation of a feature detector at the location (i, j) with respect to all the

patches in the j-th column of the original input (pi,j for all i).

Next we sweep over the obtained feature map V horizontally with two RNNs

(fHFWD and fHREV). In a similar manner as the vertical sweep, these RNNs work

along each row of V resulting in the output feature map H = {hi,j}, where hi,j ∈
R2d. Now, each vector hi,j represents the features of the original image patch pi,j

in the context of the whole image.

Let us denote by ϕ the function from the input image map of X to the output

feature map H (see Fig. 3.1 for a graphical illustration.) Clearly, we can stack
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Figure 3.1 – A one-layer ReNet

multiple ϕ’s to make the proposed ReNet deeper and capture increasingly complex

features of the input image. After any number of recurrent layers are applied to

an input image, the activation at the last recurrent layer may be flattened and fed

into a differentiable classifier. In our experiments we used several fully-connected

layers followed by a softmax classifier (as shown in Fig. 3.2).

The deep ReNet is a smooth, continuous function, and the parameters (those

from the RNNs as well as from the fully-connected layers) can be estimated by the

stochastic gradient descent algorithm with the gradient computed by backpropa-

gation algorithm (see, e.g., Rumelhart et al., 1986) to maximize the log-likelihood.

3.5 Differences between LeNet and ReNet

There are many similarities and differences between the proposed ReNet and a

convolutional neural network. In this section we use LeNet to refer to the canonical

convolutional neural network as shown by LeCun et al. (1989). Here we highlight

a few key points of comparison between ReNet and LeNet.

At each layer, both networks apply the same set of filters to patches of the

input image or of the feature map from the layer below. ReNet, however, prop-
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agates information through lateral connections that span across the whole image,

while LeNet exploits local information only. The lateral connections should help

extract a more compact feature representation of the input image at each layer,

which can be accomplished by the lateral connections removing/resolving redun-

dant features at different locations of the image. This should allow ReNet resolve

small displacements of features across multiple consecutive patches.

LeNet max-pools the activations of each filter over a small region to achieve

local translation invariance. In contrast, the proposed ReNet does not use any

pooling due to the existence of learned lateral connections. The lateral connection

in ReNet can emulate the local competition among features induced by the max-

pooling in LeNet. This does not mean that it is not possible to use max-pooling

in ReNet. The use of max-pooling in the ReNet could be helpful in reducing the

dimensionality of the feature map, resulting in lower computational cost.

Max-pooling as used in LeNet may prove problematic when building a convo-

lutional autoencoder whose decoder is an inverse 1 of LeNet, as the max operator

is not invertible. The proposed ReNet is end-to-end smooth and differentiable,

making it more suited to be used as a decoder in the autoencoder or any of its

probabilistic variants (see, e.g., Kingma and Welling, 2014).

In some sense, each layer of the ReNet can be considered as a variant of a usual

convolution+pooling layer, where pooling is replaced with lateral connections, and

convolution is done without any overlap. Similarly, Springenberg et al. (2014)

recently proposed a variant of a usual LeNet which does not use any pooling. They

used convolution with a larger stride to compensate for the lack of dimensionality

reduction by pooling at each layer. However, this approach still differs from the

proposed ReNet in the sense that each feature activation at a layer is only with

respect to a subset of the input image rather than the whole input image.

The main disadvantage of ReNet is that it is not easily parallelizable, due to

the sequential nature of the recurrent neural network (RNN). LeNet, on the other

hand, is highly parallelizable due to the independence of computing activations at

each layer. The introduction of sequential, lateral connections, however, may result

in more efficient parametrization, requiring a smaller number of parameters with

overall fewer computations, although this needs to be further explored. We note

that this limitation on parallelization applies only to model parallelism, and any

1. All the forward arrows from the input to the output in the original LeNet are reversed.
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technique for data parallelism may be used for both the proposed ReNet and the

LeNet.

3.6 Experiments

3.6.1 Datasets

We evaluated the proposed ReNet on three widely-used benchmark datasets;

MNIST, CIFAR-10 and the Street View Housing Numbers (SVHN). In this section

we describe each dataset in detail.

MNIST The MNIST dataset (LeCun et al., 1999) consists of 70,000 handwritten

digits from 0 to 9, centered on a 28× 28 square canvas. Each pixel represents the

grayscale in the range of [0, 255]. 2 We split the dataset into 50,000 training samples,

10,000 validation samples and 10,000 test samples, following the standard split.

CIFAR-10 The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) is a curated

subset of the 80 million tiny images dataset, originally released by Torralba et al.

(2008). CIFAR-10 contains 60,000 images each of which belongs to one of ten cate-

gories; airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Each

image is 32 pixels wide and 32 pixels high with 3 color channels (red, green and

blue.) Following the standard procedure, we split the dataset into 40,000 training,

10,000 validation and 10,000 test samples. We applied zero-phase component anal-

ysis (ZCA) and normalized each pixel to have zero-mean and unit-variance across

the training samples, as suggested by Krizhevsky and Hinton (2009).

Street View House Numbers The Street View House Numbers (SVHN) dataset

(Netzer et al., 2011) consists of cropped images representing house numbers cap-

tured by Google StreetView vehicles as a part of the Google Maps mapping process.

These images consist of digits 0 through 9 with values in the range of [0, 255] in

each of 3 red-green-blue color channels. Each image is 32 pixels wide and 32 pix-

els high giving a sample dimensionality (32, 32, 3). The number of samples we

2. We scaled each pixel by dividing it with 255.
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Figure 3.2 – The ReNet network used for SVHN classification

used for training, valid, and test sets is 543,949, 60,439, and 26,032 respectively.

We normalized each pixel to have zero-mean and unit-variance across the training

samples.

Data Augmentation

It has been known that augmenting training data often leads to better gener-

alization (see, e.g., Krizhevsky et al., 2012a). We decided to employ two primary

data augmentations in the following experiments: flipping and shifting.

For flipping, we either flipped each sample horizontally with 25% chance, flipped

it vertically with 25% chance, or left it unchanged. This allows lets the model

observe“mirror images”of the original image during training. In the case of shifting,

we either shifted the image by 2 pixels to the left (25% chance), 2 pixels to the

right (25% chance) or left it as it was. After this first processing, we further either

shifted it by 2 pixels to the top (25% chance), 2 pixels to the bottom (25% chance)

or left it as it was. This two-step procedure makes the model more robust to slight

shifting of an object in the image. The shifting was done without padding the

borders of the image, preserving the original size but dropping the pixels which are

shifted out of the input while shifting in zeros.

The choice of whether to apply these augmentation procedures on each dataset

was chosen on a per-case basis in order to maximize validation performance.

3.6.2 Model Architectures

Gated Recurrent Units Gated recurrent units (GRU, Cho et al., 2014) and

long short-term memory units (LSTM, Hochreiter and Schmidhuber, 1997) have
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been successful in many applications using recurrent neural networks (see, e.g., Cho

et al., 2014; Sutskever et al., 2014; Xu et al., 2015). To show that the ReNet model

performs well independently of the specific implementation of the recurrent units,

we decided to use the GRU on MNIST and CIFAR-10, with LSTM units on SVHN.

The hidden state of the GRU at time t is computed by

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t,

where

h̃t = tanh (Wxt + U(rt ⊙ ht−1) + b)

and

[ut; rt] = σ (Wgxt + Ught−1 + bg) .

For more details on the LSTM unit, as well as for an in-depth comparison among

different recurrent units, we refer the reader to (Chung et al., 2015).

General Architecture The principal parameters that define the architecture

of the proposed ReNet are the number of ReNet layers (NRE), their corresponding

receptive field sizes (wp×hp) and feature dimensionality (dRE), the number of fully-

connected layers (NFC) and their corresponding numbers (dFC) and types (fFC) of

hidden units.

In this introductory work, we did not focus on extensive hyperparameter search

to find the optimal validation set performance. We chose instead to focus the

experiments on a small set of hyperparameters, with the only aim to show the

potential of the proposed model. Refer to Table 3.1 for a summary of the settings

that performed best on the validation set of the studied datasets and to Fig. 3.2

for a graphical illustration of the model we selected for SVHN.

3.6.3 Training

To train the networks we used a recently proposed adaptive learning rate al-

gorithm, called Adam (Kingma and Ba, 2014). In order to reduce overfitting we
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MNIST CIFAR-10 SVHN

NRE 2 3 3
wp × hp [2× 2]–[2× 2] [2× 2]–[2× 2]–[2× 2] [2× 2]–[2× 2]–[2× 2]
dRE 256–256 320–320–320 256–256–256
NFC 2 1 2
dFC 4096–4096 4096 4096–4096
fFC max(0, x) max(0, x) max(0, x)
Flipping no yes no
Shifting yes yes yes

Table 3.1 – Model architectures used in the experiments. Each row shows respectively the
number of ReNet layers, the size of the patches, the number of neurons of each ReNet layer,
the number of fully connected layers, the number of neurons of the fully connected layers, their
activation function and the data augmentation procedure employed.

applied dropout (Srivastava et al., 2014) after each layer, including both the pro-

posed ReNet layer (after the horizontal and vertical sweeps) and the fully-connected

layers. The input was also corrupted by masking out each variable with probability

0.2. Finally, each optimization run was early stopped based on validation error.

Note that unlike many previous works, we did not retrain the model (selected

based on the validation performance) using both the training and validation sam-

ples. This experiment design choice is consistent with our declared goal to show

a proof of concept rather than stressing absolute performance. There are many

potential areas of exploration for future work.

3.7 Results and Analysis

In Table 3.2, we present the results on three datasets, along with previously

reported results.

It is clear that the proposed ReNet performs comparably to deep convolutional

neural networks which are the de facto standard for object recognition. This sug-

gests that the proposed ReNet is a viable alternative to convolutional neural net-

works (CNN), even on tasks where CNNs have historically dominated. However, it

is important to notice that the proposed ReNet does not outperform state-of-the-

art convolutional neural networks on any of the three benchmark datasets, which
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Test Error Model
0.28% (Wan et al., 2013)⋆
0.31% (Graham, 2014b)⋆
0.35% (Ciresan et al., 2010)
0.39% (Mairal et al., 2014)⋆
0.39% (Lee et al., 2014)⋆
0.4% (Simard et al., 2003)⋆
0.44% (Graham, 2014a)⋆
0.45% (Goodfellow et al., 2013)⋆
0.45% ReNet
0.47% (Lin et al., 2014)⋆
0.52% (Azzopardi and Petkov, 2013)

(a) MNIST

Test Error Model
4.5% (Graham, 2014a)⋆
6.28% (Graham, 2014b)⋆
8.8% (Lin et al., 2014)⋆
9.35% (Goodfellow et al., 2013)⋆
9.39% (Springenberg and Riedmiller, 2013)⋆
9.5% (Snoek et al., 2012)⋆
11% (Krizhevsky et al., 2012a)⋆
11.10% (Wan et al., 2013)⋆
12.35% ReNet
15.13% (Zeiler and Fergus, 2013)⋆
15.6% (Hinton et al., 2012)⋆

(b) CIFAR-10

Test Error Model
1.92% (Lee et al., 2014)⋆
2.23% (Wan et al., 2013)⋆
2.35% (Lin et al., 2014)⋆
2.38% ReNet
2.47% (Goodfellow et al., 2013)⋆
2.8% (Zeiler and Fergus, 2013)⋆

(c) SVHN

Table 3.2 – Generalization errors obtained
by the proposed ReNet along with those re-
ported by previous works on each of the
three datasets. ⋆ denotes a convolutional
neural network. We only list the results re-
ported by a single model, i.e., no ensembling
of multiple models. In the case of SVHN, we
report results from models trained on the
Format 2 (cropped digit) dataset only.

calls for more research in the future.

3.8 Discussion

Choice of Recurrent Units Note that the proposed architecture is indepen-

dent of the chosen recurrent units. We observed in preliminary experiments that

gated recurrent units, either the GRU or the LSTM, outperform a usual sigmoidal

unit (affine transformation followed by an element-wise sigmoid function.) This

indirectly confirms that the model utilizes long-term dependencies across an input

image, and the gated recurrent units help capture these dependencies.

Analysis of the Trained ReNet In this paper, we evaluated the proposed

ReNet only quantitatively. However, the accuracies on the test sets do not reveal
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what kind of image structures the ReNet has captured in order to perform object

recognition. Due to the large differences between ReNet and LeNet discussed in

Sec. 3.5, we expect that the internal behavior of ReNet will differ from that of LeNet

significantly. Further investigation along the line of (Zeiler and Fergus, 2014) will

be needed, as well exploring ensembles which combine RNNs and CNNs for bagged

prediction.

Computationally Efficient Implementation As discussed in Sec. 3.5, the pro-

posed ReNet is less parallelizable due to the sequential nature of the recurrent neu-

ral network (RNN). Although this sequential nature cannot be addressed directly,

our construction of ReNet allows the forward and backward RNNs to be run in-

dependently from each other, which allows for parallel computation. Furthermore,

we can use many parallelization tricks widely used for training convolutional neural

networks such as parallelizing fully-connected layers (Krizhevsky, 2014), having

separate sets of kernels/features in different processors (Krizhevsky et al., 2012a)

and exploiting data parallelism.
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4 Experiments in Audio
Sequence Generation

4.1 Introduction

Recurrent neural networks have proven adept at modeling sequences of data, ex-

celling in sequential applications such as machine translation, chemical prediction,

and dialogue modeling. Given recent successes with this symbolic data, especially

in the text domain, it is natural to translate these techniques to similar fields. This

chapter documents our significant effort in audio sequence modeling. We experi-

ment both on symbolic representations such as computer music and on recorded

audio such as human speech. Sections of this work were performed in consulta-

tion with collaborators at MILA, IBM Research, and Google Brain though all of it

remains unpublished before this thesis.

4.2 Basic Musical Concepts

In this section we provide a light introduction to the concepts needed to under-

stand music as it relates to our modeling research. We attempt to avoid discussion

of minutiae unrelated to the task of understanding music using statical models. We

also avoid discussion of eastern music here, as many affectations and assumptions

made in music modeling are only appropriate for pieces in the western music tra-

dition. The application of many techniques in this thesis to eastern music should

be straightforward, but core assumptions (such as the 12 tone scale which will be

discussed below), may need to be reconsidered due to base differences in music

composition. For a more complete introduction to music theory, one should con-

sult Feynman Liang’s thesis (Liang, 2016). Computer music specifically has many

additional concepts related to the mechanics of actually producing musical sounds
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which depend on their representation, which is not discussed here. Within this

chapter, we refer to individual musical samples as scores, pieces, or examples.

4.2.1 Notes

Notes are the events used to make music. Combined with durations, these

specify the sequence of events that actually create a piece of music. Unlike “raw”

sounds, we simplify musical notes to symbolic representations which signify action

on an instrument such as pressing a key on a piano, hitting a drum, or strumming a

guitar. These actions may produce complex sounds in a recording, but in symbolic

representations they are a single, simple event. We also count not playing anything

(the rest) as another type of note.

In western music there is a common assumption that symbols represent one of

12 notes: C, C sharp (also called D flat), D, E flat (also called D sharp), E, F, F

sharp (also called G flat), G, A flat (also called G sharp), A, B flat (also called

A sharp), or B. Each “step” up this scale indicates a frequency multiplication of
12√
2. This means that taking 12 steps upward will result in arriving back at a note

with the same name, but with double the frequency. Steps downward indicate a

division by
12√
2, meaning 12 steps downward would arrive at a note of with the

same name, but with half the frequency. This system of exact relationships between

notes is known as “equal temperament”. Incidentally, equal temperament seems to

have been developed independently in the 1600s in both the East and the West by

Simon Stevin and Zho Zaiyu, respectively (Cho, Cho).

4.2.2 Octaves

As notes are repeated by halving or doubling frequency, it is convenient to

group the notes in between into so called octaves. Higher octaves represent higher

frequency sounds and lower octaves indicate lower frequency sounds. For example

A4 would indicate the note A, played in the 4th octave which matches to an ap-

proximate base frequency of 440 Hz. A3 would indicate the note A played in the

3rd octave, with a base frequency of 220 Hz. This cyclic relationship forms the

core of how notes interact with one another. The ways in which different sounds

clash or unite can often be related to their frequency content. Many instruments

and voices have an octave range in which they operate (such as A2-C4), which is
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further related to its common function within music. All of these subtleties, along

with the style when notes are played by different instruments (called timbre), are

taken into consideration by expert composers. Many of the intricacies of live per-

formance are lost when translating to symbolic notation, but one of the long term

goals of computer music research is to more faithfully understand the nuances of

human performance, and how it differs from the written page.

4.2.3 Instrumentation

The type of instrument used to play the notes on the page can have a massive

impact on how the music sounds. Each instrument has its own unique sound,

and many composers use instrumentation to create specific moods and feelings.

Accurately modeling the sound and response of an instrument using computers is

an open research problem, but is not discussed further here. In this work we rely

on existing synthesizers to turn symbolic notes into accurate acoustics.

4.2.4 Tempo and Duration

Tempo indicates how fast or slow a piece of music should be played, as an

integer number of beats per minute, or BPM. It is usually accompanied by a time

signature, a notation that indicates how long (measured in beats) each musician

should count before moving to the next short section of music, called a measure.

These two indicators also indirectly hint at style and flair for a given piece. There

are a number of common note durations, such as the sixteenth note, eighth note,

quarter note, half note, and whole note. These names indicate that there are

respectively 16, 8, 4, 2, or 1 note in a measure in 4
4
time. This implicitly gives

relative timing, which combined with the tempo BPM allows musicians to stay in

sync while playing different parts. Time signatures are given as fractions, where

the bottom value indicates the unit which represents one beat, and the top value

indicates the number of beats in a measure. Common tempos range from 100 to

140 BPM, and common time signatures include 4
4
, 3

4
, and 6

8
. In addition to these

“simple” durations, there are a host of accents which slightly lengthen or shorten

the expected duration of a note.
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4.2.5 Key

Analyzing the collection of pitches which make up a musical piece often reveals

additional structure based on the notes used during arrangement. A key is a set

of notes which commonly occur together in many different pieces of music. Sad

or dramatic music is often written using minor keys, and happy music often uses

major keys. Discussion of different types of note groups, or scales, and how they

are used to imply key is far beyond the scope of this thesis, but it is important to

understand that using subtle variations in notes can give vastly different feelings to

the music. Indeed, the style of many composers is centered around their preferences

for certain keys and scales. Coupled with different instrumentation, small changes

in key can make the same written piece unrecognizable to the listener. This an

extremely coarse view of key, but the note center and scale type (such as D minor

or E major) can give musicians a lot of information about the general feel and style

of a piece.

When attempting to generate music, one can reduce the variability of key

through pre-processing. This is often achieved by transposing or pitch center-

ing each piece to a common key of C (generally preserving major or minor flavor).

Musically this makes sense, as composers often change the key of a piece depending

on instrumentation or a singer’s natural range. In addition when synthesizing our

generated music, we generally fix the instrument used to play the piece, in order to

more clearly hear what modeling errors exist without covering them using varied

instruments. Despite this, key and which instruments play the notes are generally

the most recognizable aspects of a piece for the average music listener.

4.2.6 Polyphony

The concept of polyphony is of crucial importance to music modeling. Notably,

in a musical piece there are usually multiple instruments playing different parts

which interact with one another to form the overall musical score. This presents

a difficulty in modeling, as this is a structured prediction problem. We can avoid

the complexity of polyphony by picking only specific instruments with single note

sequences, or by choosing monophonic pieces, which were only written with one

note played at a time. Many instruments such as piano and guitar have the ability

to play multiple simultaneous notes in and of themselves, which means even con-
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centrating on individual instruments may not avoid the problem of modeling the

relationships between notes. Modeling of polyphonic music is a key research area,

but even monophonic modeling is far from solved.

4.2.7 Genre

All of the above musical features combine to form the style or genre of the

music. Genres such as classical, pop, country, rock, and jazz, are often used to

define what music listeners enjoy, but the boundaries between these classes of music

are nebulous at best. Music lovers argue constantly over details of genre and

how different music should be classified, but it is clear that different styles of

music have vastly different norms for different musical concepts. The landscape of

“genre classes” is constantly shifting and changing, and classifying any music into

a particular genre is largely a personal choice. In fact music composers often strive

to create new and interesting music which blends, melds, or twists common tropes

of a given genre in order to create new listening experiences. As such, this research

will largely avoid dealing with genre directly, although understanding genre and

how to adapt generated content or suggestions to user preferences will be crucial

to production, music modeling, and generation.

4.3 Musical Formats

4.3.1 Sheet Music

The gold standard for representing music in an interchangeable format is sheet

music, with the largest corpus of information available. The term “sheet music”

covers a huge swath of different styles of notation and writing that have changed

through the course of history. Unfortunately most algorithms need to convert the

sheet music meant for human musicians to read into a more computer friendly

format.

59



4.3.2 ABC Notation

ABC notation (Usergroup, Usergroup) (or ABC for short) is a text based rep-

resentation for music, which is highly variable and can capture many of the mu-

sical parts of a song. The format itself is almost directly human readable, and

shares many similarities with sheet music. Within the ABC standard there are

many different features, and different software may add or remove custom features

depending on implementation. Highlights of ABC include dedicated symbols for

repetition, common note movements, tempo, and ability to place metadata such as

piece name, lyrical content, and authorship. Being text based, it is also directly

amendable to typical text based approaches for neural networks and statistical

modeling.

4.3.3 MusicXML

MusicXML (Good, 2001) is a specification for music that uses the common XML

interchange format. This representation uses specific object types which represent

common music concepts such as tempos and notes. With MusicXML, it is possible

to encode and decode musical scores losslessly between different programs and

hardware. There are a number of packages which work with this format in the

Python programming language such as music21 (Cuthbert and Ariza, 2010).

4.3.4 Musical Instrument Digital Interface

Musical Instrument Digital Interface (MIDI) (Association, 2008) is a flexible,

open ended event sequence format that has been commonly used for musical equip-

ment, lights, and video since the early 1980s. The simplest modes of MIDI utilize

only an event channel, event class (generally pitch), and an associated duration

for the event class for music representation. There are also a wide variety of mod-

ifications to MIDI made by various hardware and software vendors for real-time

processing or more advanced messages. In general, MIDI is the default method for

sharing symbolic music with computers, though the other formats listed here are

also popular. The MIDI format seems deceptively simple, but has a wide array of

modifications, customizations, and improvements depending on which parser and

platform are used for processing the MIDI data. Given a robust MIDI encoding and
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decoding library (such as pretty midi (Raffel and Ellis, 2014) or music21 (Cuthbert

and Ariza, 2010), most musical tasks become straightforward.

4.3.5 Piano Roll

Piano roll is close to sheet music in many ways, but it is simplified through

quantization so that it is more useful for modelling. By representing individual

notes as repeated events based on the quantization granularity, music can be sim-

plified in memory for algorithmic processing. As an example, quantization at the

16th note boundary would mean 16th notes get one entry in an array, 8th notes

get two, quarter notes get four, and so on. This quantization removes the ability

to model very fine grained performance timing and also adds a layer of complexity

in deciding what quantization level is sufficient to represent a certain song, but the

tradeoff is added convenience when working in computer programs. This tradeoff

is more appealing by the ease in which piano roll can be converted to and from the

more representative MIDI. The simplicity of piano roll makes it the defacto choice

for many existing music models.

4.3.6 Custom

In addition to these common formats, there exist a huge number of custom

formats for music for both digital distribution and printed reference. These formats

vary based on instrument, intended usage, and user preference but generally these

formats also have tools to convert to and from a more generic representation such

as MIDI or MusicXML.

4.4 Music Generation

4.4.1 Prior Work

Scientists and musicians alike have long been interested in learning what makes

music sound appealing and how to generate it algorithmically. Cope (1991) utilized

expert systems and rule based composition to produce new works in the styles of
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several classical composers. His work made a huge impact on the field of compu-

tational creativity, and set a high water mark for subsequent approaches. Eck and

Schmidhuber (2002) used LSTM networks to learn accompaniment for blues music,

and was a direct precursor to many of the approaches and methods used in this

thesis. Boulanger-Lewandowski et al. (2012b) used the combination of an RNN

and a restricted Boltzmann machine (RBM) to model polyphonic music on several

datasets which have become standard benchmarks for many RNN approaches. In

Goel and Vohra (2014), Goel extends this work to LSTM networks and deep belief

networks (DBN) with improved qualitative and quantitative results. Sturm et al.

(2015) models monophonic ABC format music using LSTM language models, and

has even begun to perform these new pieces with live musicians. Liang (2016) uses

LSTM networks for both generation and harmonization as well as user studies with

a musical “Turing test”. Zimmerman (2016), Johnson (2015), and Walder (2016)

use a combination of musical preprocessing and RNNs to create compelling gen-

erative networks for polyphonic music. Colombo et al. (2016) uses a very similar

approach to the one taken here to predict monophonic melodies.

Hadjeres et al. (2016), Pachet et al. (2013), and Pachet et al. (2011) represent a

set of alternative approaches to music generation which are published primarily by

the Sony Computer Science Laboratory in Paris. Considering style, harmonization,

and other affectations as a constraint, they use techniques such as constraint pro-

gramming, Markov Chain Monte Carlo (MCMC), and belief propagation to sample

from these constrained models for generation and harmonization. Their results are

impressive, and have recently been used to create an album of “AI pop” including

songs such as “Daddy’s Car” and“Mr. Shadow”. In addition, these techniques have

also been used for lyrical style transfer in Barbieri et al. (2012).

4.4.2 Markov chains for ABC Notation

Given the success of recurrent neural networks for modeling sequences (Gers,

2001), language (Józefowicz et al., 2016) and ABC (Sturm et al., 2015) notation,

it is reasonable to wonder about other baselines for ABC tasks. The strength of

simple Markov models when compared to RNNs for other text (Brown et al., 1992;

Chelba et al., 2014) means that Markov chains for ABC notation should be an

excellent baseline by which to judge other generative models. In this section we
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provide details for generating music with markov chains using ABC notation.

p(x1...t) = p(xt|xt−1) ∗ p(xt−1|xt−2) · · · p(x1) (4.1)

Markov chains model the joint distribution of a sequence x1...t, given some con-

ditional independence assumptions, namely the probability of step t depends only

on step t − 1 through t − n, where n represents the order of the Markov chain.

As an example, an order 1 Markov chain would model the joint probability of a

sequence x1...t as in Equation 4.1.

This means that similar to RNNs and CNNs, Markov chains also attempt to

model the joint probability distribution of a sequence, but with strong assumptions

of conditional independence and relationships within the data. The baseline models

used in this thesis predict the next timestep by sampling from the probability

distribution defined by normalized counts.

In particular, the simplicity of learning from normalized counts means that

Markov chains train extremely quickly, as compared to more complicated models

which generally take much longer for equivalent dataset sizes. The downside is

that this model has a number of strong assumptions which may be violated by the

actual relationships in the data. In addition it is unclear how to extend this model

to the polyphonic case without heavy manipulation or preprocessing of the dataset.

One additional issue, common to Markov chain generation but also occurring

in RNN generation, is plagiarism (Papadopoulos et al., 2016). Specifically, we

consider a sequence generation plagiaristic if for some subsequence length l, the

generated sequence g1:l occurs in its entirety as a subsequence of the training set.

To counter this propensity for plagiarism, we can add a softmax function, allow-

ing for adjustment of the softmax temperature which will increase the likelihood

of moving to new areas of the probability space at the expense of possibly mak-

ing transitions which are relatively less likely under the non-temperature adjusted

model. One simple, though potentially slow, way to prevent plagiarism is to check

the generations against the training corpus using brute force search. There are also

more complex methods, such as Papadopoulos et al. (2016), which make guarantees

against plagiarism in generation.
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Figure 4.1 – Example song from Aird’s Airs in ABC format

Data

This model was trained on Aird’s Airs, a collection of adaptations by James

Aird, in turn compiled and digitized by Jack Campin (Sturm et al., 2015). This

dataset consists of 1200 tunes over a variety of subgenres including jigs, waltzes,

and marches. All songs are presented in ABC format to the Markov chain during

training.

Results

An example piece from the dataset in ABC format can be seen in Figure 4.1,

along with a sample generation in Figure 4.2. The generated ABC texts are syn-

thesized using the abc2midi tool. abc2midi is an extremely robust converter, and

automatically handles rejection of invalid files as well as correcting a number of

common exceptions. This process of automatically curating means that the result-

ing midi files (when output is possible) are remarkably musical. We find Markov

chains trained on ABC notation to be a strong baseline for monophonic music

generation.
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Figure 4.2 – Example Markov chain generation (temperature 1000, Markov order 6) in ABC
format

4.4.3 Density Estimation for Polyphonic Music using RNN-

MADE

Fundamentally, the problem of monophonic music prediction can be seen as

building a model of p(n1...nT ) =
∏T

t=1 p(nt|nr∀r/∈t), with note sequence n and

timestep t, where each nt in n refers to the pitch, and its duration. This prediction

may also include extra contextual information, such as chords or genre informa-

tion c, resulting in p(n1...nT ) =
∏T

t=1 p(nt|nr∀r/∈t, c). One further simplification is

to make the generative process directed, resulting in p(n1...nT ) =
∏T

t=1 p(nt|ni<t).

This formulation quite naturally fits with the probability factorization modeled by

RNNs.

Extending this concept to the polyphonic case, we wish to model a collection

of notes. For simplicity in description, we will assume there are always 4 notes per

timestep and adopt a subscript set l, d, u, h to indicate the relative position of the

note, from lowest pitch to highest pitch. With this notation in mind we now wish

to model the sequence shown in Equation 4.2.

Making a similar assumption as in the monophonic case, we apply an ordering

over notes, as well as a temporal ordering. This note ordering is arbitrary, but

allows us to construct a model which has directed connections over time and pitch.

For example, the ordering used in this work was lowest pitch to highest pitch, but

different tasks or data may indicate a preferred ordering, based on the relative

importance of each note within a timestep. The resulting model then becomes as
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Figure 4.3 – Model diagram for one step in RNN-MADE

shown in Equation 4.3. Because each note n is in fact a pitch and accompanying

duration, we assume that pitch and duration are independent at the current step,

but conditional on all pitches and durations beforehand in time and note order.

This can be seen in Figure 4.3.

p(nl1, nd1, nu1, nh1, nl2...nhT ) =
T∏
t=1

∏
q∈l,d,u,h

p(nqt|nwr∀w,r/∈q,r). (4.2)

p(nl1, nd1, nu1, nh1, nl2...nhT ) =
T∏
t=1

∏
q∈l,d,u,h

p(nqt|nm<q,i<t) (4.3)

We can also use additional methods to improve training speed. Similar to the
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use of teacher forcing to improve training stability of RNNs (Goodfellow et al.,

2016), we can use the groundtruth values for notes and durations in the previous

context window. In doing this, the vertical sequential dependency at each timestep

is broken and each step of the vertical can be computed in parallel. This can

be efficiently accomplished by careful masking of the target values, resulting in a

structured polyphonic model which takes nearly the same amount of computation

time as a monophonic model of the same length.

These simplifications combine to create a model which is straightforward to

train and generate from, similar to the approaches proposed by NADE (Larochelle

and Murray, 2011b), MADE (Germain et al., 2015), RNN-NADE (Boulanger-

Lewandowski et al., 2012b), MDRNN (Graves et al., 2008), ReNet (Visin et al.,

2015), pixelRNN (van den Oord et al., 2016), pixelCNN (van den Oord et al., 2016)

and many other models for structured prediction. In this spirit, we refer to this

model as RNN-MADE.

Data

The primary dataset used for this work is the Bach chorale corpus provided

as part of the music21 Python package (Cuthbert and Ariza, 2010). This corpus

consists of 426 compositions attributed to Johann Sebastian Bach, with typically

4 individual voices per piece. Removing a number of pieces with numbers of voices

other than 4, and a few edge cases during parsing, our dataset consists of a final

total of 357 pieces. Splitting this data into 90% training, 10% validation split for

the purposes of early stopping (Bengio, 2013), we are left with a training set of 321

pieces, and 36 held out for model validation.

Unlike the piano roll representation described previously, we choose to use a

composite event representation. The key benefit of this representation is that events

are chosen through a small number of decisions, which means it is equally easy to

choose a short duration event as a long one. Piano roll has the key downside that

generating an event N times longer than the quantization resolution requires N

consecutive predictions of the same note. For example, for a song quantized to

8th note resolution, predicting a quarter note (one of the most common notes in

classical music) would require 8 consecutive, identical predictions. This is a difficult

problem with sequential models, especially when sampling from distributions at

every timestep.
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Figure 4.4 – Piano roll plot, training data

Figure 4.5 – Piano roll plot, generated data
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An event based representation, by contrast, greatly reduces the sequence length

in time, minimizing excess computation, reducing gradient vanishing or exploding

problems with RNN based models, and avoiding decisions during times when the

only “action” is continuing what previously occurred. This may not be appropriate

for all problems, but for music this choice is natural and corresponds closely with

the sheet music and MIDI representations ubiquitous in these tasks. We refer to

this note and duration representation as “event sequence representation”.

For an example of the potential advantages of this representation, see Figure 4.4.

For example, the Piano roll notation of this data at 16th note quantization would

require 160 timesteps, while the equivalent event representation would only require

77. The advantage of event representation grows as the length of the sequences

increases, and most pieces are longer than the 10 measures plotted in Figure 4.4.

The differences between the two representations also grows more pronounced when

the average note duration is longer than two quantization steps. Figure 4.5, with its

rapidly shifting parts represents something of a worst case for the event sequence

representation and it still shows some advantage over piano roll. We will however

continue to use the equivalent piano roll (or score notation) for plotting, keeping

in mind the representation in memory is different than the plot itself. Colombo

et al. (2016), which was developed independently and in parallel with our work,

also describes a monophonic version of event representation.

Results

A modest, informal user study indicates that while this network appears to

capture local correlations and generates interesting musical snippets, the overall

pieces are clearly not comparable to the works of Bach. This is no surprise, as

directed generative models often struggle with modeling long-range correlations

without additional information or architecture modifications. Incorporating more

global context using multi-scale methods (Chung et al., 2016) should help with this

issue, but utilizing forward context while still having a valid generative model is

an area of open research.
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4.5 Audio Synthesis

We cover two broad approaches in this section for audio synthesis. One approach

is to learn or set a fixed set of basis functions, or atoms, and then use the same

techniques as discussed in the previous section for symbolic sequences. Another

approach is to use a recurrent neural network to parameterize a probability density

function such as in MDN of Bishop (1994) and VRNN which was first published in

Chung et al. (2015) and discussed in Chapter 2.2. Because this density is dynamic

over time, sampling from this dynamic density should allow us to generate new

audio, or analyze the likelihood of a sequence under our learned density model.

For our experiments, we focus primarily on speech modeling due to the ubiquity

of open data, and the existence of prior art to judge our own results. In general,

working closer to raw timeseries should allow for generalizable insights to many

timeseries problem. However, higher level representations, such as those presented

in Section 4.7.2, may provide computational advantages or a better representation

for learning.

4.6 Raw Audio Concepts

Taking a continuous signal, such as a sound wave traveling through a medium,

and recording it in a computer readable format is no easy feat. As seen in Figure 4.6,

signals have two primary components: time, and amplitude.

Fundamentally, the problem at hand is to record a signal that is continuous in

time and amplitude, and store an approximation which is discrete in both. The

mathematics and hardware behind this are beyond the scope of this thesis, but for

algorithmic processing we do care about the granularity of discretization in time,

called the sampling rate, and the discretization in amplitude, sometimes called

quantization or just amplitude.

For many audio experiments, a sampling rate of 16,000 samples per second (16

kilohertz, or 16 kHz) is sufficient. In some cases 8 kHz is even enough to test ideas,

and we further reduce complexity by representing amplitudes with 16 bits (65536

levels) or even 8 bits (256 levels). Both of these simplifications can help modeling,

at the expense of input and output quality. Coarse discretization in time and
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Figure 4.6 – Example waveform

amplitude can make the signal unrecognizable compared to the original, but finely

discretized signals will increase computation time and degrade model performance.

Additionally for many audio pipelines a detailed grasp of digital signal pro-

cessing (DSP) is required. The scope of DSP knowledge necessary to understand

modern audio processing is a field in itself, but motivated readers can refer to the

classic textbook by Smith (1997) for an introduction, or Oppenheim et al. (1999)

for a detailed description of many DSP techniques. The knowledge necessary for

understanding this text largely revolves around linear transforms and basis projec-

tion. More detailed discussion of this topic can be found in Ahmed and Rao (1975)

and Smith (2016).

4.7 Speech Synthesis

4.7.1 Prior Work

Since the very beginning of wireless communications, speech synthesis has played

an important role in applied research and development. Secure communications in

World War II using SIGSALY (Boone et al., 2000) proved that speech synthesis
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techniques could be combined with cryptography in order to securely and reliably

transmit information over the Atlantic Ocean. Given tools such as the vocoder,

engineers quickly began to use these techniques to compress speech, allowing more

users to share the same channels as worldwide communications took the world by

storm.

The advances necessary for better machine learning and generative modeling

are closely related to compression. Classic systems such as those introduced in

Hunt and Black (1996) for concatenative synthesis became ubiquitous in radio,

internet, and cellular communications. Improvements in speech synthesis such

as Agiomyrgiannakis (2015) have continued to improve voice quality for millions

of users around the globe. In stark contrast to image recognition (Krizhevsky

et al., 2012b), image generation (van den Oord et al., 2016), machine translation

(Bahdanau et al., 2014), and speech recognition (Dahl et al., 2010) (Graves et al.,

2013b) (Collobert et al., 2016), there has only very recently been major progress in

using modern neural network methods for speech synthesis. Promising work with

LSTMs by Zen et al. (2013) has incorporated RNNs in place of HMMs. A recent

breakthrough by van den Oord et al. (2016) has largely eliminated the need for

complex processing on the raw waveform data, though it still requires a standard

text front end in order to build the correct context features to condition the acoustic

generator. Generative approaches on raw waveforms have issues with deployment

in productions systems, due to the amount of sequential dependencies involved in

generated raw audio from a directed generative model. In general, speech synthesis

with neural networks has had significant advancement in recent months, and these

research directions have greatly influenced our future work.

4.7.2 Unconditional Concatentive Speech Synthesis

Given the historical preference for concatenative methods in speech synthesis,

it is straightforward to consider using an RNN to select indices into large vocab-

ulary of potential units. These units could be learned globally, selected based on

utterance level statistics, or even crafted per user. When formulated in this way,

the model itself becomes identical to an RNN language model such as presented in

Mikolov et al. (2011) and Józefowicz et al. (2016). When using an RNN, most of

the research effort manifests in finding the best units to feed into RNN model itself
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and handling the signal processing necessary for clean reconstruction.

Data

Atom discovery, or dictionary learning, is a well established field with a variety

of applicable algorithms for finding representative elements for representing a given

dataset. In this work we chose to use extremely basic techniques for atom discovery

such as K-means (Lloyd, 1982) and K-medians (Arora et al., 1998). The long-term

goal is to replace this ad-hoc atom discovery procedure with a pretrained neural

network, or a fully differentiable module learned as part of a larger end-to-end

neural synthesis system.

As described in Section 4.5, a huge number of potential transforms are available

from the signal processing literature. We tried the following representations in these

initial experiments:

— Raw waveform snippets

— Complex valued short time Fourier transform (STFT)

— Magnitude and phase converted STFT

— Nonstationary constant Q transform (NS-CQT)

— Magnitude only STFT (spectrogram) with phase recovery

— Discrete cosine transform (DCT) compressed magnitude STFT

— Haar wavelet filterbanks

— Linear predictive coefficients (LPC)

— Line spectral frequencies (LSF)

— Minumum harmonic sinusoids (cite)

— Vocoder representations from STRAIGHT and WORLD vocoders

— Discrete cosine transform (DCT) compressed versions of the above

— Discretized versions of the above

The trials above covered a subsection of common representations for speech

synthesis, though there are a still more to try. Overall the best representation in

these experiments with regards to audio quality after selection and synthesis seemed

to be linear predictive coefficients (LPC), though further investigation should be

done. Changes in the model may allow transforms which previously seemed insuf-

ficient, and combinations of feature representations are also quite common in the

concatenative synthesis literature. Indeed the model in van den Oord et al. (2016)

has excellent synthesis quality from raw data using a modified CNN architecture,
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and using parts of that model as a fixed feature representation may be useful for

building a concatenative system.

In our approach, atoms are found using the K-medians algorithm on the chosen

representation. Rather than detail the K-medians algorithm here, we encourage

motivated readers to see Arora et al. (1998) for details. The key point for using K-

medians over the more standard K-means, is that K-medians results in always using

true data when selecting the cluster center. This better aligns with handcrafted

approaches to concatenative synthesis, where subsets of a larger dataset are hand

chosen by engineers and put into a dictionary for use in the unit selection process.

The dataset used for these experiments, Sandsmark (2010), was a set of utter-

ances from a single speaker, saying one of seven possible words. The goal of this

initial experiment was to prove that it is possible to do concatenative synthesis with

RNNs, then scale up to larger datasets such as used in VRNN and even combine

with the VRNN model itself.

Results

To date we are unable to outperform the quality of VRNN using signal process-

ing based intermediate representations. Experimental results are seen in Figure 4.8

compared to the training data Figure 4.7. We see that our vocabulary selections are

too varied, and the resulting reconstruction processing cannot correct the bound-

ary effects. We still believe there exist good intermediate representations for use in

speech synthesis with neural networks, but as the recent results in van den Oord

et al. (2016) show, extreme data and compute time can allow raw waveform train-

ing and generation to excel on this task. The small size of our dataset seems to be

a limiting factor, and we plan to try large scale training in future work despite the

lack of small scale results.

4.8 Future Work

Symbolic modeling has a number of interesting research directions. Many pa-

pers, such as Papadopoulos et al. (2016), Pachet et al. (2013), and Pachet et al.

(2011) use techniques from constraint programming, Markov-chain Monte Carlo,
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Figure 4.7 – Spectrogram of example utterance from the training set

Figure 4.8 – Spectrogram of example unconditional generation
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and belief propagation to great effect for symbolic music synthesis under stylistic,

non-plagiaristic, and harmonic constraints. Incorporating portions of these ideas

into neural network based generation frameworks for symbolic sequences is a clear

future direction for our work on symbolic sequences. Beam search is a key compo-

nent, and generalizing sequence search during conditional decoding for polyphonic

sequences is another future research direction we wish to explore. Utilizing new di-

rections in neural machine translation such as wordpiece modeling (Wu et al., 2016)

would also allow our models to work at the level of phrases and motifs. Combining

the event sequence representation models with additional masking based on voice,

as seen in (Goodfellow et al., 2013), should further improve performance, general-

ize music with a variable number of voices, and is an immediate next step for this

work.

The first step for audio tasks is to add conditioning based on textual features,

in order to create a neural text-to-speech (TTS) system. In speech modeling, a

key feature of signal processing based vocoders is a multi-stage approach which

builds simple models of the base sound, then additional models of the error, or

residual, of the simple model Agiomyrgiannakis (2015). This also appears in the

residual stacks used by van den Oord et al. (2016), and a host of other models for

classification and generation (He et al., 2015). Building these iterative refinement

steps into generative models seems important for high quality results. Further

investigation of how, when, and why these explicit residual connections are needed

is an important future direction in neural network research. Accomplishing text-to-

speech synthesis directly from characters without complicated text preprocessing

frontends is another key step toward fully end-to-end TTS, and a logical next step

for our speech synthesis research.
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5 Conclusion

This thesis opens with a generic overview of machine learning and its rela-

tionship to more typical computer algorithm design. After introducing some core

concepts necessary for the later chapters, we give an overview of two recently pub-

lished papers which focus on structured prediction and generative modeling for

sequences and images. We also provide an overview of recent experiments in sym-

bolic music and speech generation, as well as a summary of recent work by other

researchers. Summarizing a few of the key points from this thesis:

— Learning from data can create powerful custom solutions for a variety of

problems in business, science, engineering, and art.

— Many common losses can be derived from simple distributional assumptions

and the Kullback-Liebler divergence.

— Neural networks are particularly flexible tools, and allow a number of dif-

ferent ways to encode prior knowledge in the structure of the network.

— Neural networks are powerful but quality of the input data, structure of the

preprocessing steps, and settings of training hyperparameters are all critical

to the final performance of a model.

— Generative modeling and structured prediction are related tasks, and share

many techniques. Advances in one domain are often easily applied to the

other, even across different types of data.

— Structured prediction and generative modeling often improve when domain

knowledge is added to the network structure using components such as con-

volutional and recurrent processing steps.

— Latent variables allow flexibility in interpretation as well as another potential

way to add prior knowledge or constraints into the model structure.

— Modeling joint distributions as a product of conditional distributions can

create a directed graphical model structure which is easy to sample from

and also efficient during training.

— The flexibility of neural networks allow us to apply different tools from the
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larger neural network toolkit on a wide variety of problems, but there are

important design choices related to the data, prior knowledge, and desired

outcomes which must be taken into consideration when designing new ar-

chitectures.

Generative modeling of real world data using neural networks is beginning to

show incredible results, and in the three months from the inception of this thesis

to completion a host of benchmarks have been overturned or made obsolete, and

tasks projected to be accomplished on multi-month and multi-year timelines have

been shown working on today’s hardware. These advances will enable a new wave

of creativity by hobbyists, artists, and scientists alike. We look forward to what

the next months and years bring.
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