
Université de Montréal

Overexpression ofNotchl Ectodomain in Macrophages IndHces

Vascular Defects and Promotes Tumor Progression

par

Xïujic Li

Programmes de biologie moléculaire
Faculté des études supérieures

Thèse présentée à la Faculté des études supérieures
En vue de l’obtention du grade de

Philosophi Doctor (Ph.D.)
en Biologie Moléculaire

Décembre, 2004

©, Xiujie Li, 2004

‘L



o
L) S(



Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fÏns non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, t does flot represent any loss of
content from the document.



Université de Montréal

G

Overexpression ofNotchl Ectodomain in Macrophages Induces
Vascular Defects and Promotes Tumor Progression

by

Xiujie Li

Programmes de biologie moléculaire
faculty of Medicine

A thesis submitted in conformity with the
Requirements for the degree of

Philosophi Doctor (Ph.D.)
in Molecular Biology

Décembre, 2004

©, Xiujie Li, 2004



Université de Montréal
Faculté des études supérieures

Cette thèse intitulée

Overexpression ofNotchl Ectodomain in Macrophages Induces

Vascutar Defects and Promotes Tumor Progression

présentée par

Xiujie Li

a été évalt;é(e) par un jury composé des personnes suivantes:

Dr. Jean-Philippe Gratton

président-rapporteur

Dr. Paul Jolicocur

difecteur de recherche

Ur. Richard Béliveau

membre du jury

Dr. Michelle P. Bendeck

examinateur externe

représentant du doyen de la FES

‘Il



Acknowledgments

First and foremost, I am greatly indebted to my supervisor, Dr Paul Jolicocur, for

having accepted me as an undergraduate and then as a graduate student in lis lab, for his

guidance, financial support, and lis invaluable advice throughout the years. His attitude

towards, and commitment to science in general are among the most dynamic and

stimulating of the scientific comrnunity in our field. His “high demand for accuracy”

enabled me to acquire tremendous knowledge and experience, that will have a positive

influence throughout my career, and for which I remain especially grateful.

I thank the Université de Montréal, which has welcomed me as an undergraduate

and then as a graduate student for the studies leading to my Ph.D. Particularly, I would like

to thank the “Directeur de Programme Biologie Moléculaire”-Dre. Trang Hoang, and lier

secretary, Mme Viviane Jodoin, for their help and encouragement during the times of

“passage direct”. I thank the Institut de recherches cliniques de Montréal for providing the

facilities and support during my studies. Also, I greatly appreciate my committee members,

Dr. Norman Marceaux and Dr. Jean-Philippe Gratton, for their wise advice, suggestions,

and comments.

Here, I would like to express a few words of appreciation to the following people

for their heÏp during my ordeal at the “502” and “50$” laboratory. They made my stay an

unforgettable experience: to Benoit and Ginette, for their continuous help as the universal

suppliers of raw materials and for their really efficient tecimical assistance; to the two

“Isabelle”, Jean-René, Paule, Yan, Viorica, Valérie, Elena, Lin, Karma, Patrick, Marie

Eve, Evelyne, Rita, and Femande, for their help with the perpetual supply of mice,

tecimical assistance, and materials; to Eziquiel, for lis knowledge that helped me to begin

understanding the applications of molecular biology; to Fatiha and Pascale, for their

ffiendship and moral support in tirnes of crises; to other members: Tom, Julio, Xiaoduan,

Marc, Johanne, Zeher, Dennis, Pavel, Moha, Dragan, Mathieu, Aime, Marie-Chantale, and

Soheila, for their companionship; especially to Patrick, who aiways made me laugh with

“cinq piastres”. I should flot forget François, with whom I spent the “difficult exam time”

during the first two years ofmy studies. My special thanks to Munir who arrived in the lab

at the end of my studies, for correcting my thesis (especiaÏÏy the introduction and

conclusion) with lis precious time.

iv



To my parents,

and Zhongwei

V



To Paul,

vi



Résumé

Le récepteur Notch est conservé dans un grand nombre d’organismes allant des

oursins jusqu’aux êtres humains. Il contient le domaine extracellulaire (N) qui renferme

principalement les répétitions de motifs de type EGF ainsi que le domaine intracellulaire

1C) Le signal de Notch est surtout amorcée par une interaction récepteur-ligand. Les

signaux transmis par le biais de Notch contrôlent le destin des cellules, allant de

l’hématopoïèse à l’angiogenèse, et ils conduisent au cancer et aux maladies vasculaires lors

de conditions pathologiques. L’angiogenèse est un des mécanismes rendant compte de la

formation de nouveaux vaisseaux sanguins. Elle est régulée de près par l’équilibre entre les

signaux pro- et anti-angiogéniques et reste latent à l’état adulte. Lorsque l’équilibre est

rompu, l’angiogenèse devient pathologique et soutient alors plusieurs maladies. Les

macrophages agissent en tant qu’importants stimuli dans le micro-environnement tissulaire

pour réguler l’angiogenèse car, après leur activation, ils peuvent sécréter un grand nombre

de facteurs pro- et anti-angiogéniques.

C’est en étudiant la leucémie des cellules T induite par rétrovirus, que l’équipe du

Dr Jolicoeur a découvert que Notchi était tronqué par insertion d’ADN viral, créant ainsi

une surexpression des domaines Nl et Niic Nous avons formulé l’hypothèse que Nl,

tout comme NIIC, était impliqué dans la formation des tumeurs. Par la suite, nous avons

généré des souris transgéniques (Tg) -CD4C/N1- exprimant NlF dans les cellules T et

dans les cellules de la lignée dendritique/macrophage (M0). Contre toute attente, ce fut une

maladie vasculaire qui s’est développée chez ces souris Tg, et non une leucémie T

cellulaire, On a d’abord observé la maladie vasculaire surtout dans les foies Tg. Suite à une

série d’expériences in vivo et in vitro, on a trouvé que la maladie est liée à une angiogenèse

aberrante. Nos résultats essentiels indiquent que la surexpression de Nl’ chez les
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macrophages induit des malformations vasculaires par le biais d’un mécanisme paracrine.

On a ensuite observé la maladie vasculaire dans les utérus des femelles Tg stériles ou

moins fertiles. Semblable au cas du foie, les cellules hématopoïétiques (macrophages)

jouent un rôle clé dans ce phénotype. Finalement, les souris Tg (CD4C/Nl) furent

mêlées à la progression, aux métastases et à l’angiogenèse des tumeurs, toutes détectées

avec des modèles de tumeurs différents.

En conclusion, la surexpression de Ni EC dans les macrophages induit des maladies

vasculaires dans le foie, l’infertilité chez la souris femelle, et encourage tant la croissance

des tumeurs que l’angiogenèse tumorale elle-même. Une étude plus poussée des molécules

présentes dans les macrophages ciblés par NI EC (requis pour l’angiogenèse et pour la

progression des tumeurs) pourrait nous éclairer sur les mécanismes des maladies

vasculaires et de la croissance tumorale chez l’être humain, soit somme toute, sur le

potentiel thérapeutique de l’anti-angiogenèse et de l’anti-cancer.

Mot-clés: CD4C/Nl, macrophage, vaisseaux, foie, femelle, et tumeur
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Summary

Notch receptor is conserved in many organisms, ranging from sea urchins to

humans. It contains the extracellular (NEC) domain—mainly including EGF-like repeats—

and the intraceliular (NIC) domain. The Notch signalling is predominantly initiated by a

receptor-ligand interaction. The signais transmitted through Notch control celi fate. ranging

from hernatopoiesis to angiogenesis, and lead to cancer and vascular diseases in

pathologicai conditions. Angiogenesis is one of the mechanisms that accounts for new

blood vessel formation. It is tightiy regulated by the balance of pro- and anti-angiogenic

signais and is quiescent during adulthood. When the balance is disrupted, angiogenesis

becomes pathologic and sustains many diseases. Macrophages act as important stimuli in

the tissue microenvironrnent to regulate angiogenesis, since activated macrophages can

secrete a large number of pro- and anti-angiogenic factors.

Whiie studying retrovirus-induced T-celi ieukemia, Dr. Jolicoeur’s team found that

Notchi was truncated by virai DNA insertion, thus generating overexpression ofNl’ and

Niic dornains. We hypothesized that as N1, was involved in tumor formation, so

we further gcnerated Tg mice (CD4C/N1) expressing N1 in T-ceiis and in ceils ofthe

macrophage (Mø)/dendritic lineage. Unexpectedly, vascular disease, flot T-cell ieukemia,

deveioped in these Tg animals. First, the vascular disease was predominately observed in

the Tg liver. By a series of in vivo and in vitro experiments, the disease was found to be

involved in an aberrant angiogenesis. Our resuits indicate that overexpression ofNl in

macrophages induces vascuiar malformations by a paracrine mechanism. Then, the

vascular disease was observed in the uterus of steriie or less fertile Tg femaies. Simiiar to

the liver, hematopoietic celis (macrophages) piay a key role in this phenotype. f inaiiy, the
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CD4C/N1’ Tg mice implicated in tumor progressiot;, metastasis, and angiogenesis

detected with distinct tumor models.

In conclusion, the overexpression of Nl’ in macrophages induces vascular liver

disease and female infertility, and promotes tumor growth and angiogenesis. Further study

of molecules in the macrophages targeted by NlE required for angiogenesis and tumor

progression may provide new insights into the mechanism of human vascular disease and

tumor growth, as weÏl as into the therapeutic potential ofanti-angiogenesis and anti-cancer.

Keywords: CD4C/Nl’ Tg mice, Nl, macrophages, vessel, liver, female, and

tumor
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Preface

The present thesis, consisting of six chapters, has as a theme: the overexpression of

Notchi ectodomain in macrophages induces vascular defects and promotes tumor

progression.

The first chapter is a generai introduction and literature review of ail the reievant

works of the research project. It is divided into eight parts. The Notch fundamentai role is

rnentioned in the first part. Then the function of Notch ectodomain foliows in the second

part, from which the rationaies of the research arise. The third and fourth parts describe the

physioiogicai and pathologicai role of Notch, centered on the hematopoietic development

and turnors and end with an ernerging roles ofNotch in vascular deveiopment and disease.

Knowiedge of vasculogenesis and angiogenesis is reviewed in the fifth section, in which

turnor angiogenesis is introduced. Since macrophages are targeted by our Tg NlF and

since our Tg mice deveioped vascuiar disease, it is reasonable to understand the

reiationship between macrophages and angiogenesis. The explanation is to be found in part

six. Why are the iiver and uterus the main organs affected by aberrant angiogenesis in our

Tg mice? The seventh and the eighth part wiii heip you to iearn more.

Chapter 2 exposes the rationale, hypothesis, objective, and an overview of the

project. Chapter 3-5 are the experimental resuits planned to be published in three papers.

Chapter 6 presents generai conclusions and perspectives. Each chapter has its own

reference list for reader’s convenience. The papers inciuded are the foiiowing:

1. Overexpression ofNotchl ectodomain in macrophages induces vascuiar malformations

in Tg mice.

Li, X., Caivo, E.L., Kay, D.G., Chrobak, P., Cool, M., Hanna, Z. and P. Jolicoeur.

2. Expression ofthe mouse Notchi extraceiiuiar domain in macrophages ieads to sterility

in femaie Tg mice

Li, X., Chrobak, P., and P. Jolicoeur.

3. Notchi ectodomain expressed in macrophages promotes tumor progression, metastasis,

and angiogenesis.

Li, X. and P. Jolicoeur.
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Chapter 1.

INTRODUCTION

Multiceilular organisms arise by a process of progressive change that we cali

development. The development of a multicellular organism begins with a single cell.

Sidney Brenner (quoted in Wilkins, 1993) has remarked that the animal development

proceeds in either of two ways. Most invertebrates are specified predominantiy by the

“European style” that is to say the developmentai fate of each ceil is determined by its

ancestoral lineage. Conversely, rnost vertebrates are specified predominantly by the

“American style” in which there is a great deal of mixing between celis, and ceil fate is

determined by its neighbors. Each celi starts off with similar potentiais and develops

according to the cell type it interacts with. This type of cell fate determination is called

conditional specification, because the fate of a ceil depends upon the condition of ceil-celi

interaction.

The role of ceil-ceil interactions in determining the ceil fate is to distinguish two

celi types with amplified signals from a celi population. The multiplicity of outcomes

arising from the repeated use of such pleiotropic signais depends on the context in which

the signals are received. These signals can be caused by sorne chance factors on the celi

membrane. Among these chance factors, the most prevalent ones are members of Notch

family (Artavanis-Tsakonas et ai., 1999; Mumm and Kopan, 2000). Signais transmitted

through Notch control cell fate in a wide array of developmental processes, ranging from

neurogenesis to oogenesis (Kimble and Simpson, 1997). Gain- or ioss-of-function ofNotch

gene typically results in an increased abundance of ceils adopting one fate at the expense

of an altemate fate. In specific contexts, Notch also influences apoptosis, cellular



proliferation, and the organization of tissue boundaries. activities that ftirther contribute to

its broad role in morphogenesis, as well as vasculogenesis and angiogenesis (Artavanis

Tsakonas et al.. 1999; Selkoe and Kopan, 2003; Iso et al., 2003). The ceil-ceil interaction

controlled by Notch does flot stop at birth and persists throughout adulthood.

1.1 Notch family and fundamental role

In 19l7, Thomas Hunt Morgan and colleagues described a strain of Drosophila

with notches, which are absent in the wild type but clearly visible at the border of their

wing blades (Morgan, 1917) (Fig. la). This curious trait was attrïbuted to a partial loss of

function (haploinsufficïency) of a genc, which was later named Notch gene. Notch gene,

which was first cloned from Drosopliila in the mid-1980s by the teams of Artavanis

Tasakonas (Wharton et al., 1985) and Young (Kidd et al., 1986), encodes a receptor with a

single transmembrane domain. Notch receptor gcnes are conserved in many organisms,

ranging from sea urchins to humans (Radtke and Raj, 2003).
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figure 1 I Notch receptor and Iigands. a J Wing blade ofa wild-tvpe Drosophila inetanogaster. and ofa mutant with a partial
loss of the 3lotd, gene. b Structure of Notch proteins ami their ligands. Drosophila lias une Noteh receptor (dNotch) ami
vertebrates hvp ft)ur (Notchl—4). ç I Dl Set are two transnwmhrar-pound ligands lbr Notch in Drosophila. The vertebrates
possess five Iigands, DLL-l. -3. -4. and JAGI, 2. Reproduced from: Radtke et al.. Nature Reviens cancer 3: 756, (2003)



1.1.1. Notch family and structure

Evolutionary divergence between invertebrates and vertebrates lias been

accornpanied by at least hvo round gene duplications: flues posses a single Notch gene,

worms two (glp-1 and lin-12), and mammals four (Notchi, 2, 3, and 4).

At the heart of Notch signaling is the Notch receptor. Although synthesized as a

single precursor protein, Notch is cleaved into two parts during its transport to the celi

surface and, as a consequence, exists as the heterodimeric receptor (Radtke and Raj, 2003)

(fig. lb). The extracellular domain includes many repeats of a protein module ressembling

epidermal growth factor (EGf)-like domain and three membrane-proximal Notch-specific

repeats (LNR) (Fleming, 1998). The EGF-like repeats mainly participate in ligand binding

on an adjacent cell, whereas the LNR prevent signaling in the absence of ligand (Rebay et

al., 1991). four functionally distinct, important regions have been identified within the

Notch intracellular domain. In N- to C-terminal order, they are the RAM domain and the

six ankyrin (also known as CDCÏO) repeats interacting with downstream effectors of

Notch pathway, a transcriptional activator domain (TAD), and the proline, glutamate,

serine, threonine-rich (PEST) sequence regulating the stability of proteins. Two nuclear

localization sequences (NLS) are present prior to, and following, the ankyrin repeats (fig.

lb) (Fortini et al., 1993; Struhi et al., 1993; Stifani et al., 1992; Lieber et al., 1993).

1.1.2. Core Notch signaling pathway

The core elements of the Notch signaÏing system include Notch receptors, DSL

ligands (Delta and Serrate in Drosophita and vertebrates, Lag-2 in C.eÏegans), CSL DNA

binding proteins (CBF1/RBPjk in vertebrates, suppressor of hairless [Su(H)] in

Drosophita, Lag-1 in c.elegans), and target genes, such as the HES and HERP families of
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basic helix-loophelix transcriptional factors (Selkoe and Kopan, 2003; Nakagawa et al.,

2000; Fischer et al., 2004) (Fig. 2).

1.1.2.1 Notch receptors and ligands

In Drosophila, a single Notch receptor has 36 EGF-like repeats and one LNR

repeat in the extracellular domain, as well as four distinct regions, RAM, CDC1O, TAD,

and PEST domain, in the intracellular part (Radtke and Raj, 2003). Mammals, such as

mice and humans, have four Notch receptors encoded by four different Notch genes:

Notchi, Notch2, Notch3, and Notch4 (Del Amo et al., 1993; Weinmaster et al., 1992;

Lardelli et al., 1994; Uyttendaele et al., 1996). Although the structures of the four Notch

receptors are overail very similar, they do show differences in the extracellular and the

intracellular parts. The Notchl and Notch2 receptors contain 36 EGF-like repeats in their

ectodomain, whereas Notch3 harbors 34 and Notch4 only 29. Additional differences are

found within the intracellular domain; specifically, Notchl contains a strong TAD, while

Notch2 contains a weak TAD, and no lAD is present in Notch3 and Notch4 (Radtke and

Raj, 2003) (Fig. lb).

Whule two Notch ligands, Delta (Dl) and Serrate (Ser), are present in Drosophita,

mammals possess five ligands named Delta-like-1, -3, and -4 (DLL1, 3, and 4)

(Bettenhausen et al., 1995; Dunwoodie et al., 1997; Shutter et al., 2000) and Jaggedi and
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Jagged2 (JAG1 and JAG2), which are Ser-like ligands (Lindsell et al., 1995; Shawber et

al., 1996). Each ligand is also a single transmembrane protein that contains EGF-like

repeats in the extracellular domain. Different from the Notch receptor, it contains a

conserved DSL (DeltaJSerate/Lag-2) domain that can bind to specific EGF-like repeats of

the Notch ectodomain on the adjacent cells (Radtke and Raj, 2003). The intracellular

domain of the Notch ligands is Iess known. The main structural differences between the

members of the ligand family are the number and spacing of the EGF-like repeats and the

presence of a cysteine-rich domain, which is located downstream of the EGF-like repeats

in Ser, JAG1, and JAG2 (fig. ic).

1.1.2.2. Initiation of Notch signaling

Notch signaling is initiated by a receptor-ligand interaction between two

neighbouring ceÏls, which leads to a couple of successive proteolytic cleavages at three

sites—Si, S2, and S3—that in tum liberate the cytoplasmic portion of Notch (N) from

the membrane (fig. 3) (Baron et al., 2002; Kopan, 2002; Selkoe and Kopan, 2003).

NEC

TACE
Kuzbanian

y-secretase
Nicastrin
presenilin

Nuc1cu

Figure 3. Diagram of the proteolytic cleavage of Iigand-induced Notch activation.
Reproduced from: Selkoe et al. Annu. Rev. Neumsci. 26, 565, (2003)

Si cleavage, in the extracellular domain of Notch, occurs constitutively in the

trans-Golgi network and is mediated by a furin-like convertase, followed by reassembly of

5



the fragments to form the heterodimeric Notch receptor at the ceil surface. This event bas

been most cÏosely characterized with respect to mammalian Notch, but there is evidence

that the fty Notch is similarly processed ($elkoe and Kopan, 2003). $2 cleavage, by a

disintegrinlmetalloprotease, occurs in response to ligand binding and releases the majority

of the extracellular domain. This cleavage is believed to be mediated by TACE (Henrique

et al., 1995) in vertebrates and might be mediated by a related (but distinct) protein

Kuzbanian in Drosophila (Pan and Rubin, 1997), although the precise role of the latter

protein is stiil controversial. $3 cleavage is caused by the resulting membrane-anchored

fragment referred to as Notch extracellular truncation and mediated by y-secretase. A

wealth of studies has demonstrated that both Presenilin and Nicastrin are involved in S3

cleavage (Kopan, 2002; Lai, 2002a). This cleavage finally releases N. The mechanism of

this particular cleavage is of considerable interest as it is a key event that regulates the

nuclear transiocation of NIC and its second life as a transcriptional co-activator. Within the

nucleus, the released NIC binds to the transcription factor CSL and finally activates targets

ofNotch signaling (Zhou et al., 2000a; Oswald et al., 2001; Fryer et al., 2002).

1.1.2.3. Ihe mechanism of Notch signaling

A well-established mechanism relies on a ligand-induced release of the NIC and the

interaction of this fragment with members of CSL family of transcription factors within the

nucleus (Lai, 2002b); however, there is increasing evidence that Notch can signal in C$L

independent modes (Martinez et al., 2002).

C$L-dependent Notch signaling: The resulting soluble NIC is translocated to the

nucleus where it binds to and activates transcription factors: the C$L. C$L proteins bind

specific DNA sequences to regulate gene expression. In mammals, HE$ (Hairy/Enhancer

of Split) and HERP (HE$-related genes with endothelial specificity) are the direct targets
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ofNotch/CSL-dependent signaling (Sasai et al., 1992; Bicknell and Harris, 2004; Iso et aL,

2001). The HES proteins inhibit activfty of other bHLH proteins, such as the Mash-] and

NeuroD (de la Pompa et al., 1997), thereby suppressing transcription of the lineage genes;

however, the interactions between Notch and CSL appear to be more complex and the

effects more diverse than originally described. In the absence of the Notch signal, CSL can

mediate a repression of gene transcription through the recruitment of the co-repressor

protein SMRT (Silencing Mediator of Retinoid and Thyroid hormone receptor). SKIP

(Ski-related Protein), and a HDAC (histone deacetylase) (Kao et al., 1998). The binding of

NIC displaces the SMRT co-repressor and its associated HDAC enzyme to relieve

transcriptional repression (Morel and Schweisguth, 2000; Tani et al., 2001). Furthermore,

the Notch ankyrin repeats and TAD-containing regions are involved in recruiting the

histone acetylase protein PCAF and GCN5, which may act catalytically to produce an open

chromatin conformation (Kurooka and Honjo, 2000). finally. the activator complex

recruits Mastermind (Mam), which contains a transcription activator domain (Wu et al.,

2000) (fig. 4). The two-state model CSL fiinction allows for variety in the requirements

for in vivo transcriptional activation of target genes. for example, while some genes

respond simply to NICdependent removal of the repressor function of CSL, other genes

require N’ to drive the CSL into an activator complex (Mord and Schweisguth, 2000;

Klein et al., 2000; Li and Baker, 2001).

7



CSL-independent Notch signaling: In Drosophita, the minute analysis ofNotch and

Su(H) mutant phenotypes has shown that the Notch phenotype is slightly stronger than that

of Su(H) mutant embryos. This suggests that the CSL-dependent signaling pathway does

flot mediate ail the functions of Notch (Rusconi and Corbin, 1999; Zecchini et al., 1999).

Further support has come from the analysis of a gain-of-function ofNotch alleles that alter

adult peripheral nervous system (PN$) development. In this mutant, represented by Ax59

AxM], and Mcd alleles, the sensory bristies do flot develop, thereby suggesting that sensory

organ precursors (SOPs) fail to differentiate. As a resuit, PNS development is not correctÏy

initiated. In addition, this phenotype cannot be rescued by removing the Su(H) function

(Brennan et al., 1999e; Ramain et aI., 2001). This, in turn, suggests that the increased

Notch signaling is occurring via a Su(H)-independent signaling pathway. lit vertebrates, it

is less clear whether Notch can signal independently of CSL. Unlike Drosoph lia, it is

currently impossible to compare the phenotypes of mice that completely lack the Notch

functions with mice lacking CBF1 functions since this requires a generation of mice that

lack ail four Notch genes. Nonetheless, several celi culture experiments, in particular on

the differentiation of the myogenic ceil une C2C12 into myotube (Nofziger et al., 1999;

Kuroda et al., 1999), have provided some evidence for CSL-independent signaling

(Martinez et al., 2002). Weinmaster and co-workers have dernonstrated that expressing

tntncated forms ofNtc, which cannot activate a CBF1-dependent prornoter, can prevent the

C2C12 differentiation even in the presence of a dominant, negative CSL protein (Nofziger

et ai., 1999), therefore suggesting a CSL-independent Notch activity. A second une of

evidence in support of a CSL-independent signai is that the co-cuiture of C2C12 celis

(expressing co-liner forms of Notch) with Jaggedl-expressing celis failed to activate a
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CBF 1 -dependent reporter gene but stili prevented their differentiation into myotubes (Bush

et al., 2001).

Some molecules are not integral components of the Notch pathway but modulate

Notch signal transduction (Egan et al., 1998). These regulators include Wingless, Deltex,

and Numb, acting as NotchlCSL-independent signaling.

Wingless is a member of the Wnt family of proteins that regulate rnany

developmental processes through the activation of the Frizzled class of ceil surface

receptors (Cadigan and Nusse, 1997). Wingless through Fizzled activates the f3-catenin-

dependent signaling via the activation of the cytoplasmic protein Dishevelled (Dsh).

Evidence ofthe genetic interactions between Wingless and Notch can be seen from the fact

that a repressive activity of Wingless can be regulated by Notch (Couso and Martinez,

1994; Rulifson and Blair, 1995; Lawrence et al., 2001), and the Notch activity can be

blocked by Dsh (Axelrod et al., 1996). These results provide a molecular mechanism for

the inhibitory cross-talk between two pathways. Wingless lias also been shown to inhibit

an early Su(H)-independent function of Notch in the selection of muscle founder-celI

clusters (Breiman et al., 1999a). Wnt acts to block Notch either directly through its

reported binding to NEC (describe later) or, more likely, indirectly by stimulating Dsh to

block GSK3 and!or to recruit Deltex/Notch interaction (Foltz et al., 2002; Wesley and

Saez, 2000) (Fig. 5).

The N-terminal region of Deltex mediates binding to the Notch ankyrin repeats

(Diederich et al., 1994). Based on its mutant phenotypes and its genetic interaction with

Notcli alleles (Xu and Artavanis-Tsakonas, 1990; Gorman and Girton, 1992), Deltex has

been identified as a positive regulator of the Notch pathway. Mutations of Drosophila

Deltex cause several adult phenotypes similar to Notcli loss-of-function, including wing
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notches and thickened veins (Xu and Artavanis-Isakonas, 1990; Gorman and Girton,

1992). As both N- and C-terminal regions of Deltex contain the domains related to

ubiquitination (Jackson et al., 2000), Deltex can also act as a repressor of Notch signaling

by mediating its degradation (Yun and Bevan, 2003). Other work in mammalian ccli

culture has suggested that mammalian Deltex may function on Notch through down

regulation of Ras and JNK-dependent signais (Ordentlich et al., 199$) (f ig. 5).

Numb is a phosphotyrosine-binding (PTB) domain protein that binds to two regions

of Notch: the RAM domain and the C-terminus via its PTB. Numb plays a role in the

process of asymmetric ce!! division. During neurogenesis in flics, mice, and in avian. the

asymmetric distribution of Numb ensures that only one daughter ccli inherits a Numb

protein that down-regulates the Notch activity via endocytic pathway, thus biasing the

Notch-mediated signaling (Lu et al., 199$; Spana and Doc, 1996; Wakamatsu et al., 1999.

Baron et al., 2002) (Fig. 5).

Wïngiess

Frizzed /
/ Notch

.

Numb . Endocytosis

Dish±elled
ù&tex

f3-catenin
Achaete-scute JNK signaling

Figure 5. RegiiJation ofNotch intracelinlar signaling

1.1.2.4. Termination of Notch signalïng pathway

After N1 acts in the nucleus of mitotic ceils, it must be removed, as the daugliters

will ofien again rely on Notch signaling to determine their fate (Kopan, 1999). It has been

recently demonstrated that the regulation of ubiquitin pathway performed by Sel-10

(Hubard t al., 1997), Noth-regulated 4nkyrjn-repeat protein (Nrarp) (Lamar et al.,
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2001), and Neutralized (Lieber et al., 1993) might play a role in the termination ofNotch

signaling (Baron et al., 2002), as does the E3 ubiquitin ligase Supressor ofDeltex [Su(Dx)1

(Comell et al., 1999).

Ubiquitination of proteins takes place via a multistep mechanism, with ubiquitin

first being covalently linked to an El enzyme before being passed to another covalently

linked intermediate, the E2 enzyme, and finally onto the target protein via an E3-ubiquitin

ligase-dependent step (Hershko and Ciechanover, 1998). The E3 proteins have been Ïinked

to Notch pathway regulation (Baron et al., 2002). The Notch receptor, therefore, is subject

to being regulated by ubiquitination at different levels in the signaling pathway.

Sel-10 was originally identified in C.elegans as a negative regulator of Notch

signaling and found to bind to the NIC (Hubbard et al., 1997). Recent reports demonstrate

that mammalian homologues of the Sel-10 protein can stimulate ubiquitination of NIC and

trigger its proteasome-dependent degradation (Gupta-Rossi et al., 2001; Oberg et al.,

2001). The association of mammalian Sel-10 with nuclear N is dependent on a

phosphorylation event and also requires the Notch PEST sequence (Rogers et al., 1986). In

Drosophila, whether Sel-10 is involved in a proteasome-dependent degradation is not yet

known (Schweisguth, 1999).

Nrarp is a small protein encoding two ankyrin repeats (Baron et al., 2002). Nrarp

binds to NTC only in presence of Su(H), thereby forming a temary complex. The expression

of Nrarp is itself dependent on Notch signaling, suggesting that Nrarp may work in a

feedback loop to limit the extent and duration of the Notch signaling. Although flot yet

directly implicated in ubiquitination, Nrarp stimulates degradation of the Xenopus NIC

(Lamar et al., 2001). So far, the degradation mechanism is not known.
r__
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Neutralized is iocaiized at the ce!! membrane and is thought to act upstream of the

release of N, because the expression of the latter rescues the Neutra!ized phenotype

(Lieber et al., 1993). In Drosophila, the Neutralized has been bioiogically shown to be a

ubiquitin !igase and to contain a recognizable Ring finger domain (Yeh et al., 2001).

Mutation of Neutralized resuits in a disruption of Notch signaling in a certain number of

tissues, including lateral inhibition during neurogenesis, but flot ail of the functions of

Notch (Lai and Rubin, 200 la; Lai and Rubin, 200 lb).

1.1.3. The fundamental role ofNotch signaling

1.1.3.1. Participation in ceil-fate decision

Notch pathway is already implicated in several processes of development in a

certain number of species. In Drosophila, the Notch protein is indispensable for the

determination of numerous types of ce!!s, for example, organogenesis, neurogenesis, and

myeogenesis, as well as the development of the wing and eye (Artavanis-Tsakonas et al.,

1999; Egan et al., 1998). In mammals, four homologuous proteins are expressed from

three-layer of embryos, namely endoderm, mesoderm, and ectoderm. They play a critical

role in the differentiation of numerous cell types, including neurogenic, haematopoietic,

and endothe!ia! ceils (ECs) (Morrison et al., 2000; Kumano et al., 2003; D’Amore and Ng,

2002; Lawson et al., 2002). The role of Notch pathway in the deveÏopment of mammats

has been proved in the mice deficient for Notchi, Notch2, and their ligands (Swiatek et al.,

1994; Conlon et al., 1995; Hrabe et al., 1997). Ail the mice have severe problems during

their development that cause embryonic and perinata! lethality. for example, in mice

lacking Notchi the homozygote embryos deveiop normally until the 9th embryonic day but

die before the 115th day. The histological analysis indicated that the majority of the dead
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ceils were particularly concentrated in the neuroepithelium of the central nervous system

(Swiatek et al., 1994). Consistent with these results, the RNA expression of Notchl was

detected in the pre-somite mesoderm at the 7th day of the embryonic development. At the

9th day, the major site of expression was neuroepithelium, as well as tissues of the neural

crest (De! Amo et al., 1992; Reaume et al., 1992). Notchi also plays a role in the

developmentaÏ pattem of chickens (Caprioli et al., 2002) and in the differentiation of the

oligodendrocytes of rats (Wang et al., 1 99$b). This indicates that the Notch signaling

pathway influences a diversity of tissues in various species.

Even though Notch and its ligands are ofien expressed in the same ce!!, the receptor

is critica!!y activated by the interaction with the !igand localized on the adjacent ce!!s. The

cel!s may be lied to by the homotypic interaction (equipoentential ceils) or by the

heterotypic interaction (non-equipotentia! celis) to process different ro!es.

Lateral inhibition between eguivalent ce!!s:

“Lateral inhibition” was first termed by V. B. Wigglesworth to describe a process

for the constant density ofbristles in the deve!oping insect (Wigg!esworth, 1940). From the

observation of the effective separation between the existing and newly formed bristles, he

postulated that an existing bristie inhibits surrounding ceils, such that a new bristle

forrning ceil could only arise outside the range ofits inhibitory influence.

The best characterized components of the inhibitory machinery are the members of

the Notch-Delta signa!ing pathway in the insect neurob!ast development. In 1990, Simpson

proposed a cell-contact-inhibition mode! for Notch-Delta-mediate !atera! inhibition,

according to which the epithelia! ceÏls are inhibited directly by the contacting neural celi

(Simpson, 1990). Genetic mosaics show that whereas Notch is needed in the ce!!s that are

to become neuroblasts, the Delta gene is needed in the adjacent celis that induce the
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epidermal phenotype. Later on, a similar model was proposed by Greenwald and Rubin

with Lin-12 in C.elegans (Greenwald and Rubin, 1992) in order to explain the spacing

pattems of neuroblasts in the proneural clusters of epidermai and fleurai predursors.

Jnitiaiiy, ail the cells have equai potentials and signaling; however, when, by chance, there

is an event causing one of the ceiis to produce more signals (say, Delta product), this

activates the receptors (Notch) on the adjacent cells and, consequentiy, reduces their

signaling level. Since the signaling leveis (Notch) on the adjacent ceiis are low, the

neighbors of those iow-signaling ceils wiil tend to be, themselves, high-level signalers

(Delta). In this way, a spacing of neuroblasts is produced. Inactivating Notch or Delta

causes a failure of iateral inhibition resulting in an excess of neural cells at the expense of

the epidermal tissues in both embryonic and adult nervous systems. This demonstrates that

Notch and Delta are required for the inhibition of the formation of extra neural precursors

from a proneurai equivalence group (Heitzier and Simpson, 1991; Parks and Muskavitch,

1993). Among other members of the Notch pathway, Su(H) and E(spi) behave,

respectively, as a transducer and downstream nuclear effector of the Notch-mediated

inhibition in genetic and biochemical experiments (Schweisguth and Posakony, 1994;

Deiidakis and Artavanis-Tsakonas, 1992).

Notch-mediated lateral signaling is not only restricted to neural tissues. It also

controls a number of other celi-fate decisions between equivalent ceiis in C.elegans

(Wiikinson et al., 1994). In mouse models, Notch is impiicated in a series ofprocesses of

lateral inhibition in the generation of somite precursors (Conlon et al., 1995),

hematopoietic ceils (Washbum et al., 1997), and others (Lewis, 1998).
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Determination of non-eguipotent ceils:

Notch signaling can also occur between two developrnentally-distinct cells referred

to as inductive ceil-fate decision (Artavanis-Tsakonas et al., 1995). In this case, Notch and

its ligands are expressed exclusively on two different ceil types. The celi expressing the

receptor, and therefore the recipient of the Notch signal, is induced to differentiate into a

particular celi lineage. for example, a bipotential mouse neural-crest stem ceil can be

induced by Notch to adopt a glial-celi fate, as opposed to a neural one by Notch ligands

expressed on neuroblasts (Morrison et al., 2000). Mouse thymic epithelial celis expressing

ligands for Notchi induce early lymphocyte precursors to adopt the T-cell fate as soon as

they enter the thymus, whereas in the absence ofNotchl signaling these precursors take on

the B-cell fate as the default pathway (Pear and Radtke, 2003).

1.1.3.2. Induction of terminal differentiation

Tnstead of influencing the choice between two possible ceil fates, Notch signaling

between developmentally-related celi types can induce or enhance a terminal

differentiation. In the aduit mouse-skin keratinocytes, where Dil is flot expressed, Jagged

mediated Notch signaling triggers a terminal-differentiation program by inducing early

differentiation markers and cell-cycle arrest (Rangarajan et al., 2001). In the human skin,

this program is initiated by DII (Loweil et al., 2000).

1.1.3.3. Maintenance of an undifferentiated state

In addition to participating in the binary ceil-fate decision and in the induction of

terminal-differentiation, Notch signaling also preserves some ceils, such as stem ceils, in

their native state. Notch signaling in the vertebrate nervous system is usually thought to

influence the balance between the progenitor celi pool and its progenitor-differentiating
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progeny (Lewis, 1996). Gain-of-function studies on chickens and frogs using a dominant

active NIC show that forced Notch signaling prevents progenitors from undergoing

neurogenesis, whereas blocking this pathway leads to excessive neurogenesis and

depletion ofthe progenitor pool (Chitnis et al., 1995; Henrique et al., 1997). $imilarly, the

exposure of hematopoietic stem ceils to JAG1 increases the proportion of stem celis, as

opposed to differentiating ceils; therefore, Notch signaling induces these celis to retain a

stem-ceil-like character (Vamum-Finney et al., 1998).

Taken together, the fundamental foie of Notch signaling is mainly to control the

celi-fate decision during development and, meanwhile, to take part in the differentiation

and the maintenance of stem celis (Fig. 6).

Notch signaling

ceil-fate decision Induction 0f Maintenance of
terminal differentiation an undifferentiated state

Lateral inhibition Determination
between equivalent celis of non-equipotent celis

f igure 6 The fundamental rote ofNotch signating.

1.2. Function ofNotch ectodomain

Since the Notch gene was first cloned (Wharton et al., 1985), one important goal

has been to understand the meaning of the repeated modular structure of the ectodomain.

Does each EGF-like module have a specific function? Do some modules act simply as a

spacer to correct the position of different binding sites? Jnterspecies sequence conservation

within EGF repeats 11—13, 23—27, and 3 1—34 of Drosophila Notch suggests that these

regions may form functionai subdivisions of the Notch extracellular domain (Wesley,

1999; Wesley and Saez, 2000). Genetic data from Drosophita further suggests that there is

a functional diversity within the Notch extracellular domain (Kelley et ai., 1987).

16



Mutations in different EGF-like repeats show selective effects in different tissues or have

positive or negative consequences on the Notch signaling pathway. For instance, a single

amino acid substitution in the EGF-like repeat 14 (the spiit allele) affects Notch activation

specifically in the eye and in the sensory bristie development, while Abuptex alleles of

Notch, clustered within the EGf-like repeats 24—29, produce dominant gain-of-function

phenotypes in the sensory bristle development and in the wing veins (Kelley et al., 1987;

de Celis and Garcia-Bellido, 1994). It is possible, therefore, that extracellular interactions

ofNotch may confer an additional level of regulation, perhaps in a tissue-specific manner.

From analysis of the extracellular interactions of Notch, a picture of the functional

specification ofthe regions within the extracellular domain begins to emerge.

1.2.1. Cross-talk with Notch tigands

The first region of the Notch extracellular domain to be defined as having a

fttnctionally distinct role was the binding site of Drosophila Notch for its two ligands:

Delta and Serrate. Using a co-culture of the Drosophila-S2 ceils (expressing ligand or

receptor) (Rebay et al., 1991), the EGF-like repeats 11 and 12 were both necessary and

sufficient for binding of Notch to both Delta and Serrate on adjacent ceils; this is called a

trans-interaction. Furthermore, through a point mutation within the EGF-like repeat 12 in

Drosophila, the importance of this region has been established in vivo due to an abolition

ofthe ligand-dependent Notch signal (de Celis et al., 1993).

Apart ftom the trans-interacting complex, other forms of interactions of Notch with

Delta and Serrate ligands may also regulate Notch activity. Cis-interaction between Notch

and its ligands within the same ceil has been identified (Fehon et al., 1990; Jacobsen et al.,

1998) but does not appear to activate the receptor in an autocrine manner. Instead, it has

been proposed that the cis-interaction mediates a dominant, negative activity of the ligand
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on the receptor by reducing the capability to receive a signal from the adjacent celis when

the ligand is in excess. Another level of ligand-receptor interaction may corne from the

proteolytic processing of the ligands. Proteolytically cleaved and secreted forms of ligand

have been identified, raising the question as to whether or not this might allow action of

the ligand at a distance from where it is expressed (Klueg et al., 199$; Qi et al., 1999).

1.2.2. Cross-talk with other factors

Scabrous

In Drosophita, Scabrous has been shown to bind to the Notch receptor through the

EGF-like repeats 19—26 (Poweli et al., 2001). It is a secreted fibrinogen-related protein

interacting with the Notch extracellular domain. Its mutation causes a tissue-specffic

phenotype in the eye and sensory bristles (Mlodzik et al., 1990). Overexpression of

Scabrous inhibits Notch signaling in the Drosophila eye and wing (Lee et al., 2000; Poweil

et al., 2001). On the other hand, the ectopic Scabrous expression blocked the ligand

dependent Notch activity but flot that of constitutively-active Notch intracellular domain.

This fact suggests that Scabrous acts at the level where the ligand binds to the receptor

(Lee et al., 2000). Intriguingly enough, in the S2-cell culture, $cabrous stabilizes Notch at

the ceil surface (Powell et al., 2001). How this might lead to a modulation of the Notch

activity remains unrevealed but tethering of Notch to the extracellular matrix (ECM) might

offer one possible mechanism for modulating its and/or other’s activity.

Wingless

Recent reports confirm the capability of Wingless to directly bind the Notch

extracellular domain. Wingless binds to two in vivo forms ofNotch, i.e., a full-length and a

N-terminal truncated forrn, through a site lying within EGf-like repeats 19—36 (Wesley,

1999). These data are consistent with a region of Drosophila Notch, which, when deleted,
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alters the observed phenotypic interactions resulting from co-expression of the Notch

extracellular domain and the Wingless (Brennan et al., 1999b). In ccli cultures, the

association of Wingless with Notch invoked a transcriptional response that differed from

that elicited by Delta (Wesley and Saez, 2000). While Delta-dependent signaling was

associated with the accumulation of soluble Notch intracellular domain, no such

accumulation followed an exposure to Wingless, implying a distinct signaling mechanism

(Wesley and Saez, 2000).

1.2.3. Regulation by some factors

Fringe

Fringe acts within the Golgi as an N-acetylglucosaminyltransferase and adds

GlcNac group O-linked fucose to specific EGF-like repeats in the Notch extracellular

domain (Bruckner et al., 2000; Moloney et al., 2000). Several conservcd O-linked fucose

sites close to EGF-like repeats 24—26 are critical for Serrate- but not for Delta-dependent

Notch signaling (Lawrence et al., 2000). This has been shown to play a kcy role in special

regulations of Notch signaling at the compartment boundaries during pattem formation.

Expression of fringe results in inhibition of Serrate-dependent Notch signaling but flot

Delta-dependent signaling (Fleming et al., 1997; Panin et al., 1997). The differential effect

of Fringe on Serrate and Delta may be due to differences in how the ligands interact with

the receptor in the productive signaling complex. When Fringe is expressed in the sarne

tissues as Serrate, Serrate will only signal to Notch in the ceils lying adjacent to the Fringe

expressing territory. This is a key step in setting up a spatially restricted zone of Notch

signaling at the compartment boundaries. It is interesting to note that the EGF-like repeats

24—26 also lie within a segment of the Notch extracellular domain where the Abruptex
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gain fttnction Drosophila Notch alleles are clustered (Kelley et al., 1987). The Abruptex

mutations are thought to make Notch resistant to the dominant, negative effects of cis

interacting ligands and also to confer resistance to the consequences of the Fringe activity

(de Celis and Bray, 2000).

O-fucosyltransferase-1

O-fucosyltransferase-1 (OFUT1 in Drosophila) is another protein that regulates

glycosylation of the Notch extracellular domain. The transfer of fucose to Notch by this

protein is necessary for the fringe to function (Shi and Stanley, 2003; Panin et aÏ., 2002).

Down-regulation of OFUI1 by RNA interference in soluble extracellular domain of

Notch-secreting ceils inhibits both Delta-Notch and Serrate-Notch binding, demonstrating

a requirernent for O-linked fucose for efficient binding ofNotch to its ligands. Conversely,

overexpression of OFUT1 in cultured cells increases Serrate-Notch binding but inhibits

Delta-Notch binding (Okajima et al., 2003), opposing the influence of Fringe on Notch

ligand binding. Mouse embryos lacking O-fucosyltransferase-1 die at midgestation with

severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. O

fucosyltransferase-1 is, therefore, an essential core member of Notch signalling pathways

in mammals (Shi and Stanley, 2003).

1.2.4. Participation in trans-endocytosis

Membrane receptors are passively recycled or actively eliminated by endocytosis

(Robinson, 1994). This process is very important to regulate the ceil signal transduction. A

Ïink between endocytosis and Notch signaling was proposed based on the phenotype of the

Drosophila shibire mutant (Seugnet et al., 1997). Using antibodies to the Notch extra- and

intra-cellular domains of Drosophita, it has been shown that these two domains can traffic
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independently in vivo. In the pupal eye, for example, the Notch extracellular domain

undergoes trans-endocytosis from the pigment ceil (where it is expressed) into the adjacent

Delta-bearing cone celis. Both the separation of NEC and N and the trans-endocytosis of

NEC into the cone celis were disrupted by a shibire temperature-sensitive mutation. It was

also observed that Delta and Notch become co-localized at the cone ceil-pigment celi

junction. Since shibire is required for Notch signaling, and since endocytosis-defective

mutations of Delta fail to signal, it was concluded that the trans-endocytosis mechanism

plays a part in the generation of the ligand-dependent cleavage site. This might result in a

conformational change (Parks et al., 2000). On the other hand, it lias been shown that the

halves of the furin-processed Notch receptors are held together non-covalently. The

possibility, therefore, arises that, in some circumstances, signaling could be activated by

the physical removal of the Notch extracellular domain without further extracellular

cleavage (Rand et al., 2000). The trans-endocytosis model of the Notch activation implies

that the generation of the Notch signal requires a membrane-tethered ligand and may

explain why soluble-secreted forms of Delta and Serrate act antagonistically on the Notch

activity (Qi et al., 1999; Hukriede et al., 1997).

1.2.5. Function of the extracellular domain of Notch ligands in the Notch

sïgnaling

While most research was focused on the constitutive intracellular domain ofNotch

signaling, a few groups were involved in the functional characterization of the extracellular

domain of the Notch ligands. Sun and Artavanis-Tsakonas first proved that secreted fomts

of Delta and Serrate act as antagonists of Notch signaling in DrosophiÏa (Sun and

Artavanis-Tsakonas, 1996; Sun and Artavanis-Tsakonas, 1997). They examined the

function of secreted forms of Delta and Serrate, named as D1S and SerS, by expressing
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them under different promoters in the Drosophita developing eye and wing. The phenotype

associated with the expression ofboth secreted forms mimics loss-of-function mutations in

the Notch pathway. Consistent with these resuits, Fleming’s group found that the soluble

form of Serrate, called BD°, acts as a general antagonist of Notch activation (Hukriede et

al., 1997); however, Artavanis-Tsakonas and workers showed that a soluble extracellular

fragment of Delta (Dl’) has an apparent agonistic function in the Notch signaling pathway

(Qi et al., 1999). D1S and Dl are stntcturally not identicai, which could explain their

opposing functions.

In Drosophila, both soluble ectodomains of Delta and Jagged are implicated in the

activation of Notch signaling. Since the extracellular fragments of Notch receptors and

Notch ligands are constituted of the same EGF-like repeat, it is reasonable to hypothesize

that the Notch soluble ectodomain may also play an important role in the Notch (or other)

signaling pathway.

1.2.6. Involvement of Notch ectodomain in the Notch signalling

In our iaboratory, Girard et al. (1995) showed that the Notchl extracellular domain

(N19 was highiy expressed in almost ail the Notchl-rearranged thymomas ofMMTV’/c

myc Tg mice infected by Mo-MuLV (Moloney Murine Leukemia Virus) (Girard et al.,

1996; Girard and Jolicoeur, 1998). Jnitially, they intended to identify some of the

collaborators of c-myc to induce thymomas in the MMTVD/cmyc Tg mice using provirus

insertional mutagenesis. They found that quite a high proportion (52%) of these tumors

contained Notchi mutations. furthermore, they revealed that the provims was mainly

inserted upstream of the exon coding for the transmembrane domain of Notchi. These

mutations lcd to a high expression of truncated Notchl intracellular domain (Ni) and
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fuii-length Notchi RNAs and proteins. Interestingiy enough, in aimost ail these Notchi

rearranged tumors, high ieveis ofNi couid be detected by Western biotting.

Later on, following Girard’s observations, Hoemann et al. found that two distinct

Notchi insertionai mutations were invoived in these thymomas (Hoemann et ai., 2000)

(fig. 7). The first type ofproviral insertion, named “type I,” is in genomic regions

Type Typej

I Nf

A
Notcl, I genonuc DATA

B
Notcl,1 cDNA

C L450e1b 8110kb

5kb 4kb
tm,watcdRNA.,

,
iHHHtUHiiHHHHHil’Ifl__.++—

figure 7. Two distinct insertional mutations ofNotchl as well as two tumor ccli unes with N1(EC) Mut.
Reproduced from: Hoemann CD et al. Mot Cet! Biot. 11, 3831, (2000)

coding for sequences between the 34thi EGF-iike repeat and the transmembrane domain

(Fig. 7A and 7B). The second kind of insertion, termed “type II,” is within an 800-

nucieotide span at the C-terminal region of Notchi. “Type I” insertion comprises the

majority of mutations. The extracellular fragment produced from this specific insertion was

calied Ni (EC)MLt (fig. 7A and 7B). It was demonstrated that the Notchi ectodomain could

also be generated by normal processing of wiid-type Notchi precursors and was named

Ni(EC)wt. in order to analyze the putative Ni(EC)Mt proteins, two tumor celi lines, L96

and L45 (fig. 7C), were selected, each harboring distinct type I insertions that produced

both intra- and extraceilular domains (as detected by Western biotting) (Girard et ai.,

1996). N1(EC) Mut in the L96 celi line contains 36 EGF-iike repeats and a LNR domain,

whereas L45 solely contains the 36 EGF-iike repeats. It was found that the soluble

extraceliuiar fragments of Notchi, Nl(EC)Mut, were different from the processed
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extracellular domain, N1(EC)t. While Nl(EC)t is located on the ccli surface and is

sensitive to trypsin, Nl(EC)Mut is secreted from the ccli surface but is resistant to trypsin.

As a consequence, Nl(EC)MI1t and N1(EC)\t are not only structurally, but also

functionally, different. Nl(EC)Mt resides in the secretory pathway and most probably

plays an important role in the turnor formation by interacting with Notch-Ïigand and/or

other signaling pathway.

Since the role of the Nl(EC)MLt in thymoma development has flot yet been

rigorously analyzed, we hypothesized that as Ni, may be invoived in tumor

formation. We therefore generated Tg mice expressing Ni in T ceiis and in ceils of the

macrophage/dendritic lineage using the regulatory sequences of the human CD4 gene

(CD4C/N1 EC) Unexpectedly, vascuiar disease, flot thymomas, deveioped at high

frequency in these Tg animais. The vascular malformations mainly arose in the liver but

aiso in other organs; for example, utents and spleen. In addition, a higher progression of

tumor was observed in the 1g mice treated with carcinogen (DEN) and injected turnor ceils

(C3L5). htensive studies with liver demonstrate that expression of NiF in macrophages

(Me) mediates the liver disease through a paracrine ioop. This will consist of a key body of

this thesis and will be described in detaii iater.

1.3. Physiological rote ofNotch signaling

As described before, the fundamental role of the Notch is in the ceil-fate decision.

Evidently, this function ofNotch varies from the hematopoietic to the vascular system.

1.3.1. Notch and hematopoietic devetopment

The best-known function of the Notch in a physiologicai situation is on T-ceJl

commitment from muitipotent progenitor celis; however, recent studies indicate that Notch
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also takes part in additional celi-fate decisions, such as the generation of embryonic

hematopoietic stem celis (HSC) and spienic marginal-zone-B celis (MZB) (Maillard et al.,

2003).

1.3.1.1. Notch and embryonïc hematopoietic stem ceils

Hematopoietic progenitor cells are derived from the extracmbryonic and the

intraembryonic regions during embryogenesis. The best characterized hematopoietic sites

are the yolk sac (YS), the embryo proper aorta-gonad-mesonephros (AGM), and the para

aortic splanchnopleura (P-Sp). The YS is the site for the primitive hematopoiesis, whereas

definitive hematopoiesis takes place in AGM and P-Sp.

Hirai et al. found that both primitive and definitive hemotopoiesis were impaired in

Notchi-deficient, but flot Notch2-deficient, mice (Kumano et al., 2003). AGM+Sp cultures

from the Notchi-deficient mice were unable to normally generate hematopoietic colonies,

and ceils isolated from the YS of these mice were unable to rescue conditioned newbom

recipients. Importantly, this hematopoietic defect is reproduced in presence of y—secretase

inhibitors, but only up to day E10.5 of embryogenesis. This suggests that the Notch

activity is not required once the initial HSC pool has been established (Maillard et al.,

2003). In summary, Notchi signaling plays a critical role in generating the earliest

hematopoietic cells.

A gain-of-function mutation of Notch can also promote aduit HSC seif-renewal in

both mice and humans (Karanu et al., 2000; $tier et al., 2002). Many of these effects are

replicated in HSCs from mice expressing HES-l transgene (Kunisato et al., 2003).

Probably, Notch pathway is involved in hematopoiesis in adults, partially via a HES-l

mediated activity; however, neither Notch- nor CSL-lmockout studies have shown a clear

role ofNotch in the adult HSC so far.
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1.3.1.2. Notch and T-cell commitment

HSCs give rise to common lymphoid progenitors (CLPs) mainly in the bone

marrow. The CLPs can specify various lineages, including T and B ceils, as well as other

ceils. The CLPs that migrate from bone marrow to thymus develop into T ceils, while B

ceil-differentiation takes place in bone marrow. The first step, however, is the commitment

ofCLPs to either ofthe two lineages.

T- versus B-cell development

In mice, Notch plays a critical role in the T- versus B-lineage specification. This

was confirmed by both gain- and loss-of-function Notch mutation in mice (Maillard et al.,

2003). Gain-of-function mutation leads to a thymic-independent development of the

immature T celÏs and to a loss of B ceils, while loss-of-function mutation resuits in

hypotrophied thymus lacking T ceils but abounding in B celis. Furthermore, the ftmction of

Notch in the T/B decision is Notchi specific and CLS dependent (Han et aï., 2002).

Consistent with these resuits, the constitutive expression of the Notch regulators, such as

Fringe (Koch et al., 2001), Deltex (Izon et al., 2002), and Nrarp (Yun and Bevan, 2003),

blocks Notch signaling and T-ecu development. Interestingly, data from Radtke’s group

indicated that some extrathymic niches also provide the proper signaling environment for

Notch-mediated T-cell commitment (Wiïson et al., 2000).

Notch ligands are important for the T versus B lineage specification. Both Jagged

and Delta-like family members are shown to be expressed in thymie epithelial cells,

thymocytes (felli et al., 1999; Anderson et al., 2001), and dendritic ceils. Also, the in vitro

and in vivo experiments showed that Du-1 and Du-4 expression in an appropriate stromal

environment may be sufficient to trigger and sustain the T-cell development (Jaleco et al.,

2001; Schmitt and Zuniga-Pflucker, 2002). Although Jaggedl is unable to do so in vitro in

26



at least one experimental system (Jaleco et al., 2001), in vivo experiments have indirectly

indicated that Jaggedi also takes a part in the T-cell commitment (Koch et al., 2001).

There are flot enough data available from individual knockouts of the Notch ligands to

confirm these resuits because some knockout mice (i.e., Jagged-1, Du-1, and Du-3) are

early lethal and Du-4 knockouts have flot yet been described.

c43 versus yô T-ceII development

Afier negotiating the T versus B lineage specification, pre-T ceils must negotiate a

second ceil-fate choice: in favor ofŒf3 or y T-cell decision. The role ofNotch in the c43/yE

commitment is controversial. Earlier resuits from Washbum’s study, using mixed bone

marrow chimeras reconstituted with Notchl+/+ and Notchl+/- marrow ceils, show that

Notchi could favor the a43 over the y T-celi commitment (Washbum et al., 1997);

however, recent resuits from Toribio’s group show that the overexpression of Nl in

human thymic progenitor celis leads to an increased ratio of y over Œf3 T celis in human

mouse fetal thymic organ cultures (Garcia-Peydro et al., 2003). Finally, using cre-lox

teclmology, conditional deletion of Notchl in thymocytes at the double negative stage

(DN3) of differentiation caused a severely impaired ccf3 T-cell differentiation, whereas the

y T-cell development remained normal (Wolfer et al., 2002). These resuits indicated that

the af3/yi3 T-cell commitment had been made before the DN3 (double negative stage 3),

and the Notchi gene was deleted afier this comniitment. The role of Notch ligand in the

c43/yE commitment was also observed in Jagged-2 knockout mice, with a reduced number

ofthymic yE T ceils but with a preserved c43 T-cell differentiation (Jiang et al., 199$).

CD4 versus CD8 T-cell development

Several groups have published results indicating a role of Notch in the CD8/CD4

T-cell decision but that role is still controversial (Singer, 2002). With the aid of gain-of
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function mutations, Rober et al. first reported that the Notchi activation increases the ratio

of CD$+ over CD4+ SP T ccli (Robey et al., 1996); however, the studies with conditional

Notchl knockout mice are difficuit to reconcile with a role of Notchi in augmenting the

ration of CD8/CD4 T celis (Wolfer et al., 2002). These resuits suggested that the gain-of

function findings are not physiological or that other members besides Notchl can influence

the CD4 versus CD8 lineage decision. Another possibility is that Notchl signaling is

critical to induce early progenitors to select T/B lineage cell-fate decision rather than to

skew the later development of T celis.

1.3.1.3. Notch and marginal B-cell development

Analyses of CLS and Notch2 conditional knockout mice show that Notch2 can act

in a nonredundant manner to specify the marginal zone (MZ) versus the follicular (FC) B

cell fate in the spleen (Saito et al., 2003; Tanigaki et al., 2002). These results were

supported in mice with a targeted inactivation of MINT, a newly described Notch inhibitor

(Kuroda et al., 2003).

1.3.2. Notch and vascular development

The first indication of Notch function in vascular development came from analysis

ofthe Notchl expression in the embryonic ECs (Dcl Amo et al., 1993). Soon aller, Notch4

was detected, particularly in developing vessels (Uyttendaele et al., 1996; Shirayoshi et al.,

1997). Moreover, the ligand Dll4 was recently found to be specific to ECs (Shutter et al.,

2000; Mailhos et al., 2001). Until now, ah the receptors and ligands have been expressed in

at least one vascular compartment, e.g., ECs of arteries, veins, and capillaries, and vascular

smooth-muscle celis or pericytes (Iso et al., 2003). The expression varies from several

species, including human, rat, mouse, chicken, and zebrafish (Shawber and Kitajewski,
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2004: Martinez et al., 2002). Except for Notch4 and D114 that are specific to ECs, the other

receptors and ligands are widely expressed in many different cells types and tissues.

Loss-of-function studies of Notch signaling in mice demonstrated that Notch

function is essential for remodeling of the vascular plexus during development. Mouse

embryos deficient in Jaggedi, Notchi, Notchl/Notch4, or the presenilins (PS) die between

days E9.5—10.5 and display severely disorganized vasculature (Krebs et al., 2000; Xue et

al., 1 999; HelTeman et al., 1 999). Although Notchi deficient mice also display similar

vascular defects, it is ofien less severe than those observed in the Notchl/Notch4 double

nuli mice (Krebs et al., 2000) (fig. 8. Compared B with C and D, as well as I with J).
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figure 8. Defects in vaseular remodeling in Notchl-/- and Notchl-/- Notch4-/- mutant embryos. (A-D) Delèctive
morphogenesis ofthe main trunk ofthe anterior cardinal vein (arrowhead) in Notchl-/- (B) and Notchl-/- Notch4-/- mutant
embryos (CD). (H-J) Histological sections ofPECAM-1-stained embryos at the level ofthe otic vesicle. In the N1+/- control
emhryo (H), both tise dorsal aortae (anowheads) and tise anterior cardinal veins (arrows) have open lumens and normal
morpholoy. In tise jVoiciil-/- Notch4-/- mutant emhryo (J). endothelial ceils have diftèrentiated but hoth the dorsal aortae and the I
anterior cardinal veins have ais ahnormal. coliapsed morphology. In the iess-severeiy aflècted Notchl-/- mutant emhryo (I). tise
anterior cardinal veins stili have an open lumen but the dorsal aortae are colIapsed.
Reproduced from: Krehs LT. et al. Genes Dey. II, 1343. (2000)

Thus, Notchi and Notch4 are ftinctionally redundant during the vascular development. In

addition, with gain-of-fttnction studies of Notch4, transgenic embryonic mice, in which

Notch4 is controlled via an endothelium specific promoter, show similar vascular defects

and die at E10.5 (Uvftendaete et aL, 2001). The same phenotype produced by both

decrased nd increased Notch indicates that appropriate levels of Notch signaling in ECs

are crticaÏ for embryonic vascular development.
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1.3.2.1. Arteriallvenous specification

Notch contributes to arterial/venous specification during the vessel development

(Shutter et al., 2000; Lawson et al., 2001; Lawson et al., 2002). For a long time, people

have considered the artery and vein as different functional vessels just because of the

mechanics of blood flow; however, the molecular rnechanisms goveming the

differentiation and the organization of the rudimentary vessels into arteries and veins are

now being uncovered (Wang et al., 1998a; Fuller et al., 2003).

Expression studies ofNotch in mammals provided a few hints ofa role for Notch in

the arterial/venous specification. Notch receptors and ligands are expressed throughout the

vasculature quite early in development; however, later on they seem to be restricted to the

arteries (Villa et al., 2001; Shawber and Kitajewski, 2004), though more extensive studies

showed that they are also expressed in venous vasculature (Iso et al., 2003). This can be

seen most clearly in the developing heart outflow and in the male gonads of the mouse.

From the developing E9.5 to E13.5 heart outflow tracts, one can find the dynamic

localization of Notch4. It is shifted from the anterior cardinal vein to the ECs of aorta

(Uyttendaele et al., 1996; Villa et al., 2001). At the embryonic day 11.5 ofthe male gonad,

Notchl, Notch4, and D1l4 are expressed in both the venous and the arterial ECs but, by the

next day, becoine restricted to the arterial vessel only (Brennan et al., 2002). The transitory

expression of these genes has suggested a role of Notch in the maintenance of the artenal

phenotype.

Studies in zebrafish showed that Notch signaling works in the arterial/venous

differentiation, since Notch inhibits the venous state (Lawson et al., 2002). Mutations in

Notch or in the Notch-target transcription-factor gridlock caused a disruption in the

assembly of the aorta. Meanwhile, a loss in the arterial celi marker ephrin-B2 and an
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increase in the venous marker EphB4 were observed (Lawson et al., 2001; Zhong et al.,

2001). Consistent with these resuits, the constitutive activation of Notch suppressed the

expression of the other venous marker, Jms-iike tyrosine kinase-4 (flt4) (Lawson et al.,

2001); therefore, Notch may promote the development of the artery and inhibit the

differentiation of the vein through a gridiock activation. Unfortunately, these resuits cannot

be reproduced in the mouse mode! with deficient hey2, a mammary comterpart of gridlock

(Donovan et ai., 2002; Gessler et al., 2002). The reason for this species difference is

currentiy unknown. It may be due to a functionai compensation with heyl, which is often

co-expressed with hey2 in the arterial ECs (Nakagawa et al., 2000). What seerns to be

consistent with this hypothesis is that mice lacking both heyl and hey2 dispiay a

constriction of the aortae, though no loss of the major arteries (Chien and Oison, 2002). In

cuitured human microvascular ECs, a high level of ephrin-B2 was stimulated by an active

form of Notch4 (Shawber et al., 2003). Hence, an action of Notch in the arteriaÏ/venous

specification is qtlite clear.

1.4. Pathological rote of Notch signating

The Notch activity is important flot oniy in a physiological situation but also in a

pathologicai condition. Mutations of Notch receptors and iigands in mammals iead to

abnormalities in many tissues, inciuding hematopoietic disease, solid tumor, neuroiogicai

disease, and vascular disease (Radtke and Raj, 2003; Gridley, 2003).

1.4.1. Notch and neoplasms

1.4.1.1. T-ceJI leukemias

The oncogenic role of Notch in a human T-iymphobiast leukaemia (T-ALL) was

first identified by Eiiisen and bis colleagues when they discovered the first human
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homologue of the Drosophila Notch gene in the T-cell leukemia witli a t(7;9)

chromosomal transiocation (Reynolds et aL, 1987; Ellisen et al., 1991). This gene was

named TAN-l for “translocation-associated Notch homologue” and subsequently became

the human Notchl. The t(7;9) transiocation resuits in a constitutively expressed truncated

form of Notch intracellular domain. It is proposed that the aberrant expression of Notchi

intrace!lular domain provokes T-ce!! neoplasm in humans (E!!isen et al., 1991). Studies

with mice showed that excessive Notch signaling during the T-cell development !eads to

T-ce!! neoplasia (Radtke et al., 1999; Pear et al., 1996). Other resuits from Jolicoeur’s and

Overbaugh’s groups demonstrated that T-ce!1 neoplasia can also be caused by DNA

provirus insertion within Notchi (Girard et al., 1996; Rohn et al., 1996). In addition, the

forced expression ofthe Notch ligand D114 also induces T-cell leukemia (Yan et al., 2001)

and induces a letha! T-celI lyrnphoproliferative disease (Dorsch et al., 2002). Notch

activity participates not on!y in the initiation of T-ALLs but also in their maintenance by

recruiting transcription co-activators, such as Masterrnind-like-1 (MAML1) (Weng et al.,

2003).

1.4.1.2. Epïthelial tumors

Before the oncogenic role of Notchi in human T-ALLs was revea!ed, Gallahan &

Callalian uncovered the tumorigenic role of Notch in the deve!opment of epithelial tumors

in mouse mode!s (Ga!!ahan and Callahan, 1987). They characterized a frequent insertion

site of the mouse mammary tumor virus (MMIV) in these mice and named this region of

integration int-3. Subsequently, Uyttendaele et al. identified it as the Notch4 locus

(Uyttendaele et al., 1996). Similar to the overexpression of N1 in human T-ALL

leukeamia, N4IC is overexpressed in mouse mammary tumors provoked by MMIV

insertion. Latcr on, the mammary adenocarcinorma phenotype discovered in N4/int-3
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transgenic mice further confirmed the oncogenic role of Notch4 in mice (Gallahan et al.,

1996; Jhappan et al., 1992). Interestingly, studies from Dr. Jolicoeur’s group showed that

the mouse Notchi locus is also a target of MMTV integration. This insertion resulted in

Ni IC that, in synergy with ERBB2, is thought to be responsible for the development of

mammary tumors in these mice (Dievart et al., 1999). Recent resuits show that Notchi was

also expressed in murine prostate epithelial ceils and increased in prostate cancer ceils,

suggesting that Notch signaling participates in prostatic development and in prostatic

tumorigenesis (Shou et al., 2001). Notch signaling pathway is also activated in some

human cancers, for example, breast cancer and colon adenocarcinoma (Weijzen et al.,

2002; Zagouras et al., 1995). The function of Notch in these diseases is supposed to

prevent neoplastic ceils from responding to differentiation cues in their immediate

environment.

1.4.1.3. Basal-celi carcinomas

Notch signaling in mouse and human skin induces skin differentiation via WAF1,

NF-kB, and AP-1 nuclear factors (Rangarajan et al., 2001; Nickoloff et al., 2002; Chu et

al., 2002). Mice with Notchi-deficient epithelia deveÏop spontaneous basal-celi

carcinoma-like tumors with down-regulation of WAFI, Shh, and Wnt (Nicolas et al.,

2003). Consistent with this resuit, a reduction of Notch signaling was observed and, as a

consequence, caused a down-regulation of Shh signaling in human basal-celi carcinomas.

This indicates that Notch signaling is involved in basal-celi carcinomas through Wnt and

Shh signaling (Thelu et al., 2002), where Notch acts as a tumor suppressor (Radtke and

Raj, 2003).
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1.4.1.4. Small-cell 11111g cancer

As acting on epithelial celi fate in the nervous system (de la Pompa et al., 1997),

Notch signaling also determines the epithelial ceil fate during mammalian lung

development (Borges et al., 1997; Ito et al., 2000). Notchl and HES1 are highly expressed

in airway epithelial ceils, whereas mammalian achaete-scute-homologue I (MASH1) is

restricted to clusters of pulrnonary neuro-endocrine celis. It seems that Notch is selectively

involved in epithelial celi fate rather than neuro-endocrine ceil fate. Interestingly enough, a

high-level expression of MASH1 proteins is a characteristic ofthe primary small-cell lung

cancer (Radtke and Raj, 2003). Furthermore, Niic and N2 induce a ceil-cycle arrest in

small-cell lung cancer cells and regulate MASH1 in a negative manner (Sriuranpong et al.,

2001; Sriuranpong et al., 2002). Hence, Notch signaling ptays a suggestive role in small

celi lung cancer.

1.4.1.5. Cervical cancer

Cervical cancer is caused in part by Human papilloma virus-16 (HPV16) infection.

With a complementary role of Notch, the HPV16 oncoproteins E6 and E7 can transform

cells (Dyson et al., 1989). In the early stages of cervical cancer, as a tumor suppressor, the

Notch activity is reduced, thereby increasing E6 and E7 activation and, conversely,

overexpression ofNotchl represses transcription ofE6 and E7 (Talora et al., 2002). But in

the later stage, the Notch activation can act in synergy with E6 and E7 towards a cellular

transfomiation (detected in both cultured ceils derived from cervical cancers and celis

within these tumors) (Weijzen et al., 2002; Zagouras et al., 1995; Daniel et al., 1997). This

suggests that Notch signaling participates in the cervical tumorigenesis as both an

oncogene and a tumor suppressor (Radtke and Raj, 2003).

34



1.4.2. Notch and inherited disease syndromes

The disruptions of Notch signaling pathway is also involved in human autosomal

diseases, for instance, spondylocostal dysostosis (SD). Vertebral segmentation defects

associated with rib anomalies are characteristics of SD. These patients exhibit short trunk

dwarfism due to multiple hemivertebrae accompanied by rib fusions and deletions. Both

autosomal-dominant and -recessive modes of inheritance have been reported (Mortier et

al., 1996). One forai of autosomal-recessive SD was mapped to chromosome 19q13, where

the D113 gene is located (Tumpenny et al., 1999). Positional cloning studies have

demonstrated that mutations, including protein truncations and missense mutations, in the

human D113 gene cause this forai of autosomal-recessive SD (Bulman et al., 2000).

Jnterestingly enough, this human phenotype has been reproduced and confirmed in D113-

deficient mice (Dunwoodie et al., 2002). These results suggest that a loss ofDll3 function

is related to the human SD. Mice homozygous for a nuil mutation of the Lffig gene exhibit

very similar phenotypes to those observed in the Dll3 mutant mice and in SD patients

(Zhang et ai., 2002b; Zhang and Gridley, 1998). This indicates that the D113 gene is not the

sole cause of SD syndromes and that Lffig (another Notch pathway component) is also a

candidate gene for autosomal-recessive SD.

Alagille syndrome tAGS) and cerebral autosomal-dominant arteropathy with

subcortical infracts and Ieukoencephalopathy (CADASIL) are other examples of human

autosomally inherited diseases that invoive Notch signaling (Gridley, 2003) (see below).

Both the diseases affect the vascular system and will be discussed next.

1.4.3. Notch and human vascular disease

Notch plays an important role in vessel development in animais. Its importance in

the vascular development is highlighted by the genetic defects that arise in humans with
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mutations in the Notch pathway, i.e., the AGS and the CADASIL (Bicknell and Harris,

2004; Iso et al., 2003; Shawber and Kitajewski, 2004).

1.4.3.1. AGS

Studies on AGS revealed the role of Notch signaling in organ-specific

angiogenesis. AGS is an autosomal dominant disorder characterized by developmental

abnormalities of the liver, heart, kidney, eye, skeleton, and, at lower penetrance, several

other organs (Krantz et al., 1997; Krantz, 2002; McElhinney et al., 2002; Eldadah et al.,

2001). This wide spectrum ofdefects correlates with the expression ofJAG1 in the embryo

(Loomes et al., 2002; Loomes et al., 1999; McCright et al., 2002). Genetic studies have

demonstrated mutations in the JAG1 gene in 70% of AGS patients and were identified as

critical causes for this disease (Li et al., 1997; Spinner et al., 2001). These mutations

include 72% premature termination condons, 15% spiicing mutations, and 13% missense

mutations. The missense mutations are clustered within the extracellular domain ofJAG1.

Three to seven percent of the AGS patients with deletions encompassing the entire JAG1

gene have phenotypes similar to those involving intragenic mutations (Spinner et al.,

2001). Hence, AGS resuits from JAG1 haploinsufficiency (Spinner et al., 2001; Krantz,

2002). AGS exhibits a variable expression, even within the family members carrying

identical JAG1 mutations, but high penetrance (Krantz et al., 1997; Krantz, 2002). One

notable feature exhibited by the patients is the vascular defects observed in liver, heart, and

kidney (Shawber and Kitajewski, 2004). The relationship between Notch signaling and

AGS has been further elucidated by the phenotypes of mouse AGS models (McCright et

al., 2001; McCright et al., 2002).

In order to establish a successful mouse AGS model, Gridley’s group generated

JAG1-deficient mice. Mice homozygous for the JAG1 show vascular defects in the embryo
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and in the yolk sac but die early in utero because of these defects. Mice heterozygous for

the JAG1 mutation exhibit eye defects but do flot exhibit some other phenotypes found in

humans, providing a disappointing model for this disease (Xue et ai., 1999). They also

generated mice homozygous for a hypomorphic Notch2 mutation-Notch2’ (McCright et

ai., 2001). Vascular defects in these mice were mainly observed in the kidney. JAG1 gene

was observed to be colocalized to Notch2 in the defective kidney of the Notch2defl

mutants. They further generated mice doubly heterozygous for the JAG1 nuil allele and a

Notch2 hypomorphic aliele (designated JÏN2+/-) (McCright et al., 2002). These mice

have, surprisingly, reproduced most of the clinically relevant phenotypes, including

vascuiar defects (hepatic, cardiac, and renai) observed in the AGS patients. Thus, the

Notch2 gene acts as a genetic modifier to interact with a JAG1 mutation so as to create a

more representative model for AGS.

Most AGS patients are diagnosed with liver disease because of a paucity of bile

ducts. A similar liver phenotype has been observed in JJN2+/- mice (McCright et al.,

2002). Bile ducts are usually accompanied by portal veins. During the liver development,

the hepatoblasts juxtapose to the portai vein and differentiate into epitheiiai ceils of the bile

ducts (Shiojiri et al., 2001). While JAG1 is expressed in the ECs and in the pericytes ofthe

portai vein, Notch2 is expressed in the neighboring epithelial ceiis that give rise to the bile

ducts (McCright et ai., 2002). Hence, the liver defects in the bile duct differentiation may

resuit from JAG1-Notch2 signaling between the portal-vein celis (ECs and pericytes) and

the bile-duct ceils (epithelial cells).

More than 90% of the individuals with JAG1 mutations exhibit cardiovascular

abnormaiities along with various defects, ranging from the pulmonary vale to the aortae

(McElhinney et al., 2002). These diverse defects correiate with the expression of Notch
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(Notchl,2,4) and its ligands (IAG1,2) in the developing murine heart. The co-expression

of JAG1 with Notch2 was found in the pulmonary artery, in the walls of the atria, and in

the ventricular myocardium (Loomes et al., 2002; Villa et al., 2001; Loomes et al., 1999).

While Notch2 expression is restricted to the ECs, JAG1 expression extends into the mural

cells. Consistent with this expression pattem, haif of NOtCh2’ homozygous die prior to

day E16.5 because of severe heart defects (McCright et al., 2001). Multiple heart-related

defects were displayed in J]N2+/- mice and in hey2-deficient mice (McCright et al., 2002;

Donovan et al., 2002; Gessler et al., 2002). Thus, the heart defects might arise from the

disruption ofJAG1-Notch2 signaling between mural and ECs.

Renal anomalies also occur in 23—74% of the AGS patients. This disease is welI

characterized in Notch2& and J]N2+/- mice (McCright et al., 2002; McCright et al.,

2001). About half of NOtCh2deH homozygous mice survive until birth, but some stiil die

perinatalÏy from defects in the renal glomerular development. Vascularization of the

glomeruli includes the migration of ECs into glomerular clefi, the formation of capillary

loops, and the formation of complex capillary tufis. In Notch2d homozygous, the defects

begin from the capillary loop stage (McCright et al., 2002). fi these mutant gÏomeruli,

specialized vascular smooth-muscle cells and mesangial ceils are entirely absent. In

J]N2+/- mice, a similar renal phenotype exists but seems less severe (McCright et al.,

2001). Jnterestingly, JAG1 is expressed in ECs and/or in mesangial cells while Notch2 is

in surrounding podocyte precursors (McCright et al., 2001). One can speculate that the

disruption of JAG1-Notch2 signaling among ECs, mesangial cells, and podocyte

precursors leads to a destabilization of the vascular bed of glomeruli.
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1.4.3.2. CADASIL

Insights into the role ofNotch in vascular homestasis can be drawn from the human

disease CADA$JL. CADASIL is an autosomal-dominant vascular disorder. Affected

patients exhibit migraine, dementia, and a variety of other symptoms. The

neuropathological symptoms arise secondary to a slow developing arteropathy. The histo

pathological characteristic for this disease is a degeneration of vascular smooth-muscle

celis, accompanied by a reduction of the vessel wall thickness and a loss of ECM

(Toumier-Lasserve et al., 1993; Chabriat et al., 1995; Ruchoux et al., 1995). In a majority

of patients, mutations in the Notch3 gene are identified as a cause of the syndrome

CADASIL (Joutel et al., 1996). Some 66% of these mutations occur in the extracellular

domain exon 3 and 4, which encode EGF-repeat 2 through 4 in their entirety. These

mutations in CADASIL patients lead to an odd number of cyteines in the affected EGF

repeat (Joutel et al., 1996). Using bioinformatic analysis, it was discovered that the Notch3

mutations are gain-of-function mutations in the CADASIL disease (Donahue and Kosik,

2004). The CADASIL phenotype correlates with the expression of Notch3 in arterial

vascular smooth-muscle cells. This expression has been identified in both humans and

rodents (Joutel et al., 2000; Prakash et al., 2002). Significantly, in the CADASIL patients,

the accumulation of the protein of Notch3 ectodomain was observed at the cytoplasmic

membrane of the vascular smooth-muscle cells. It suggests that these mutations impair the

clearance of the Notch3 ectodomain from the cdl surface (Joutel et aL, 2000). Also, there

is an abnormal deposition of particles in the ECM, referred to as granular osmophilic

materials (GOM) (Joutel et al., 2000). These results indicate that Notch3 functions to

maintain cell-cell interactions or communications between the vascular smooth-muscle

ceils and the ECs.
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A recent study by Ruchoux et al. has recreated the CADASIL vessel pathology in a

mouse model (Ruchoux et aI., 2003). In these transgenic mice, a human Notch3 cDNA

containing a common CADASIL mutation (Arg9Ocys) was expressed in the vascular

smooth-muscle celis. As a consequence, the vasculature of these mice exhibit classic

CADASIL arteriopathy, including an age-dependent accumulation of Notcli3 extracellular

domain and GOM deposits. It was found that the accumulation of Notch3 ectodomain and

the GOM deposit are caused by smooth-muscle ceil viability and adhesion (Ruchoux et al.,

1995). Consistent with a role of Notch3 in the cell survivat, in vitro experiments with

smooth-muscle ceils expressing either Notch3 or heyl show that Notch3 inhibits apoptosis

via an anti-Fas pathway (Wang et al., 2002; Wang et al., 2003). Ail together, Notch3

maintains the arterial vessel homeostasis by promoting the smooth-muscïe ccli survivai.

CADASIL syndromes provide the very first evidence that the ectodomain ofNotch

signaling is implicated in a human disease. Particularly, the mutations in the extraceilular

domain influence the vascular homeostasis through mediating the communication of

smooth-muscle celis to ECs.

1.5. Endothelial celis, vasculogenesis, and angiogenesis

More than 1012 ECs are lining inside the blood vesseis in humans, covering a vast

extension area of more than 1000 m2 (Jaffe, 1987). They form the endothelium, which is

considered a sparse organ system. Not only do they form the structural basis of biood

vessels, but they also exert a complex array of specialized functions, including

vasculogenesis and angiogenesis (Risau, 1995; Augustin et ai., 1994).
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1.5.1. Devetopmental and physiological conditions

1.5.1.1. Endothelial ceil development

Hematopoiesis in the mouse is initiated in the embryo approxirnately 12 hours after

the onset of gastrulation (Haar and Ackerman, 1971). During the process of gastrulation,

the embryonic epithelium invaginates through the primitive streak. Mesodermal ceils are

induced during this process, which then migrate widely throughout the extraembryonic

membranes (YS) and the embryo proper (P-Sp & AGM). In response to induction of the

mesodenn, progenitors of the biood ceils and the vascular ECs are the first differentiated

ccli types to form in the developing vertebrate embryo. Endotheliai progenitor ceils are

caiied angioblasts, which are defined as a celi type that lias the potential to differentiate

into an EC but has flot yet acquired ail the characteristic endothelial markers or fomied a

lumen (Risau, 1995). The first angioblasts emerge in the so-cailed biood islands in the Y$

as early as day 7.5 of gestation. These are ccli clusters whose internai members give nse to

blood cells, whereas the exterior ones flatten and develop into ECs. The formation ofblood

vesseis from these in situ differentiating ECs is called vasculogenesis, which forms the

embryonic primitive vascular network. The latter will mature through subsequent steps,

inciuding sprouting, pruning, and remodeling into smail and large vesseis, cailed

angiogenesis (Risau, 1997; Folkman and D’Amore, 1996). The angioblasts from AGM/P

Sp region (Choi, 1998; Garcia-Ponero et ai., 1995; de Brnijn et ai., 2000) form the first

main embryonic blood vesseis, aorta, and cardinal veins, which become connected to the

heart and the extraembryonic vessels (Risau, 1995). In addition, the angiobiasts aiso

differentiate from the fetal liver (Choi, 199$) and the mesodermal precursors within organ

rudiments oflung, pancreas, and spleen (Pardanaud et ai., 1989; Sariola et al., 1983).
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With a decade of studies, the molecular mechanisms that underlie the angioblast

differentiation are becoming more and more clear. While fibroblast growth factors (FGFs)

were the first purified proteins demonstrated to induce the mesoderm in animal pole

explants (Kimelman and Kirschner, 1987; Slack et al., 1987), the vascular endothelial

growth factor receptor-2 (VEGFR-2, also known as fetal liver kinase-1 [ftk-1] in the

mouse and kinase insert domain-containing receptor [KDR] in the hurnan) was the first

protein known to be expressed in a population of mesodermal ceils giving rise to

angioblasts. Later, during embryonic development, this molecule becomes restricted to EC,

consistent with the function of its ligand VEGF as a specific endothelial celi growth and

vascular permeability factor (Ferrara et al., 1992). Whule VEGFR-2 is expressed in the

rnesoderm ofthe 7-day mouse, VEGF is expressed in the endoderm ofthe 7.5-day mouse.

Because the endoderm is adjacent to the mesoderm, a paracrine relationship may exist.

VEGf secreted by endoderm may support the differentiation of VEGFR-2-expressing

mesodermal cells to angiblasts. Some reports show that hematopoietic ceils share some

identical markers, for example, CD34, SCL, CD31, Runx-1, and VEGFR-2, with

angioblasts. Hence, a bipotent population of cells called “hemangioblasts” may exist,

which are capable of differentiating into both blood cells and endothelium (Bloor et al.,

2002). The different markers expressed in embryonic angioblasts are maintained during

embryonic vasculogenesis and angiogenesis and down-regulated in adult vessels; however,

they can be reexpressed in pathological angiogenesis (Risau, 1997; Hanahan, 1989;

Pepper, 1997).

1.5.1.2. Heterogencity of endothellal cells

ECs present many common functional and morphological features, however,

quiescent and resting ECs in the aduit form a highly heterogeneous cell population that
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varies in different organs (Tumer et ai., 1987; Garlanda and Dejana, 1997). The sinusoidal

endotheliai celis of the liver (L$ECs) have a unique phenotype compared with both

macrovascular and microvascular ECs from other organs (Limmer and Knolie, 2001). The

LSECs express high levels of the molecules necessary for interaction with leukocytes.

They also constitutiveiy express ail co-stimulatory moiecules as well as MHC class I and II

moiecules necessary for the presentation of antigen to T celi, suggesting they are unique

cells where T-cell priming occurs outside lymphatic tissues (Limmer and Knolle, 2001).

Interestingly, they express a number of molecules that are typically found in celis of

myeloid origin, such as CD4 and CD lic. In addition, they express several pattems of

recognition receptors that enable them to act as scavenger cells (Knoile and Limmer,

2003).

Even in different vessel calibers within an organ, the ECs are different. The

structural heterogeneity of ECs is a perfect example of their optimized adaptation to

microenvironmental needs (Garlanda and Dejana, 1997; Augustin et al., 1994). A good

example is the liver, which contains different types of ECs: fenestrated and discontinuous

in the sinusoids, and continuous in the large vessels (McCuskey and Reilly, 1993). They

heterogeneousiy express surface antigens associated with different leukocytes (Nagura et

al., 1986). While the LSECs express weak PECAM-l (platelet/endothelial ceil adhesion

molecuie-l), the large vessel ECs express strong PECAM-l (Couvelard et al., 1996). The

sinusoidal ceils in the portai and the central part of the liver are also distinct. At the portai

part, the endotheliai celi fenestrae are larger but comprise less of the endothelial surface

area than they do in the pericentral lobule (McCuskey, R.S. 1988). They further show

heterogeneity with respect to the recognition of apoptotic ceiis (Dini and Caria, 1998).
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How do ECs take different pathways of differentiation? One of the determinants is

the local environment in which ECs differentiate, especially their interaction with

surrounding ceils. This interaction may occur through the release of soluble mediators,

cell-to-cell adhesion. and the synthesis and organization of matrix proteins on which the

endothelium adheres and grows (Garlanda and Dejana, 1997; Augustin et al., 1994). for

example, contact with parenchymal cells can control the EC phenotype. Hepatocytes have

been shown to be involved in determining the phenotype of LSECs (Modis and Martinez

Hernandez. 1991).

1.5.1.3. Blood vessel formation

The formation of new blood vessels is vital during embryogenesis. Two

mechanisms account for the formation of blood vessels: vasculogenesis and angiogenesis

(fig. 9). A description ofvasculogenic process was first provided as it occurs in frogs, fish.

and avians (Clark. 191$; Sabin, 1920; Stockard. 1915), and the concept of de novo blood

vessel formation was established at the same time (Sabin, 1920). Risau (198$) later used
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Figure 9. Two inechanisrns ofvessel formation: vasculogenesis and angiogenesis
Reproduced from: Carmeliet P. .Vat Med. 6.653. (2003)

the term vasculogenesis”’ to describe de novo blood vessel formation occurring in

embryoid bodies (Risau et al., 1988). Some essential steps involved in this process are: 1)

the birth of angioblasts; 2) angioblast aggregation (fig. 9a); 3) elongation of angioblasts

into cord-like structures; 4) the organization of isolated vascular segments into capillaiy

like nworks and concoq1itant with step fqur; ) endothelialjzation and lumenjzatiQn
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(Drake, 2003) (Fig. 9b). Recent studies have shown that circulating progenitor celis

(possibly angioblasts) (Rafli, 2000) from embiyo and aduit boue marrow also contribute to

vasculogenesis (Grant et al., 2002; Carmeliet. 2003). These resuits expanded the scope of

vasculogenesis occurrence beyond the embryonic stages of development to include

involvement of neovascular processes throughout the development as wcll as in the aduit

(Drake, 2003). Hence, two vasculogenic mechanisms can contribute to forming blood

vessels: in sut! vasculogenesis from mesoderm and vasculogenesis from circulating

mesodermal or progenitor cells.

Angiogenesis” describes the formation of new blood vessels from the existing

vasculature (Carmeliet, 2000; Bergers and Benjamin, 2003) (Fig. 9e). The classica]

angiogenesis process, sprouting angiogenesis, is characterized by at least three dynamic

steps: 1) a modulation of interactions between ECs with the ECM. which induces the

degradation of ECM (Fig. lOb); 2) an initial increase and subsequent decrease in the

migration of ECs, which allow the celis to transiocate toward the angiogenic stimulus and

to stop once they reach their destination (f ig. lOc); 3) an increase ofendothelial cdl
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Figtire 10. Dynamic steps 0f ncw blood vessel formation fsprouting angiogenesis). Quiescent vessel (n). ECM is degraded I
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Reproduced from: Bergers et al.. Nature Reviens Cancer 3.401. (2003)

15



proliferation, which provides new ceils for the growing and elongating vessel, and a

subsequent retum to the quiescent state once the vessel is forrned (Bergers and Benjamin,

2003) (Fig. lOd and 10e). During this time, the vessel wall becomes mature, as ECs

integrate tightly with supporting ceils (smooth-muscle celis and pericytes [SMCs/PCs])

and sunounding matrix (Fig. 9c and 9d). In contrast, vasculogenesis is initially free of

smooth-muscle celis, pericytes, and other associated ceils (Yancopoulos et al., 2000).

Further changes in size and mural structure ofvasculature lead to the formation ofarteries,

veins, and lymphatics, each with its own characteritics. The angiogenesis process is usualÏy

quiescent in the adult, occurring only during the female menstrual cycle, in wound healing,

and some pathological cases (described later) (Hanahan and Fo&man, 1996).

1.5.1.4. Molecular regulation ofvessel formation

The genetic and molecular mechanisms that control the development of the

vascular system are now beginning to be elucidated. Morphogenic programs that control

both the formation of vessels and the maintenance of established vessels are regulated by

environmental influences. They are importantly orchestrated by a balance of pro

angiogenic and anti-angiogenic factors (Jain, 2003). In the pro-angiogenic factors, besides

growth factors, molecules involved in matrix remodeling and ceil adhesion also participate

in these programs (Bazzoni et al., 1999).

Angiogenic factors

The FGF family

FGFs were previously thought to be important angiogenic factors but direct in vivo

evidence is still lacking. They have profound effects in various endothelial celi assays, but

they do not play a major role in the morphogenesis of the vascular system in contrast to

their crucial function in mesoderm induction. Capillary ECs in embryonic tissues and
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organs do flot express detectable levels of mRNA-encoding FGF-receptors (Wanaka et al.,

1991; Peters et al., 1992). ECs of larger vessels do express FGF-R and respond to FGF in

vivo (Peters et al., 1992; Lindner et al., 1990). This is probably important for regenerative

processes but flot for vasculogenesis and angiogenesis (Risau and Flamme, 1995). Hence.

fGfs were known to be non-specific factors since they could act on many other celi types

(Risau, 1997).

The VEGF family

Presently, only VEGF is specffic to the blood vessel formation (Ferrara, 1999;

Eriksson and Alitalo, 1999). There are five characterized VEGF relatives in mammals:

VEfG-A through VEGf-D, as well as Placenta growth factor (PIGF). The various

members of the VEGf family have overlapping abilities to interact with tbree receptor

kinases: VEGFR-1/Flt-1, VEFGR-2/flk-Ï, and VEGFR-3/Flt-4 (Eriksson and Alitalo.

1999;_Yancopoulos et al., 2000) (fig. lia). VEGF-A scems to have the ability to induce
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vascular endothelial ceil proliferation but initially was defined as vascular permeability

-factor (VPF) due to its ability to induce vascular 1ak (ferrara, 1999). Mice lackin VEGF
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B have smaller hearts, suggesting that it may play a role in coronary vascularization and

growth (Bellomo et al., 2000). Transgcnic overexpression of VEGf-C leads to lymphatic

hyperpiasia, supporting a role of VEGF-C in lymphatic development (Olofsson et al.,

1999). Little is known about the normal physiological role of VEGF-D (Eriksson and

Alitalo, 1999). P1Gf is the first relative ofVEGf (Carmeliet, 2000; Persico et al., 1999). It

has been suggested to be involved in aduit vascular remodeling observed with mice lacking

PIGF (Carmeliet, 2000; Carmeliet et al., 2001). VEGFR-2 and VEGF-A are absolutely

critical for the earliest stage of vasculogenesis. Mice lacking VEGF-A or VEGFR-2 are

embroid lethal since they failed to develop enough ECs and have very few large blood

vessels ($halaby et al., 1995; Carmeliet et al., 1996; ferrara et al., 1996); however, mice

lacking VEGFR-1 have an excess number of ECs and form disorganized vessels in the

embryos (fong et al., 1995). Mice generated with VEGFR-1 lacking tyrosine kinase

domain show normal vessel, suggesting that VEGFR- 1 acts as a decoy receptor (Hiratsuka

et al., 1998). Thus, VEGFR-2 is a major receptor to mediate VEGf-A effect on the vessel

formation, and VEGFR-1 acts as a negative regulator of VEGF signaling to ensure a

proper number of endothelial cell formations (Yancopoulos et al., 2000). VEGFR-3 seems

to play a crucial role in lymphatic vessel development, though it is also involved in the

blood vesse! development (Taipale et al., 1999).

Recent findings show that lack ofVEGf is not only involved in embryonic lethality

but also leads to early postnatal death due to vascular deficiencies (Miquerol et al., 2000;

Carmeliet et al., 1999). In aduit mice, VEGF inactivation is mucli less traumatic and,

seemingly, VEGf-deficient vessels continue to undergo remodeling (Ferrara et al., 1998;

Gerber et al., 1999). VEGF does flot seem to have a continuous maintenance function for

much of aduit vasculature; however, VEGf influences normal vascularization and
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angiogenesis response in adults when inappropriately overexpressed (Yancopoulos et al.,

2000).

Ihe Augiopoietin family

The angiopoietins (Angs) were discovered as the second group of factors specific

to vessels long after the observation ofVEGF famlly (Suri et al., 1996; Maisonpierre et al.,

1997; Valenzuela et al., 1999) (Fig. 11h). They seem to be some of VEGF’s most

important partners (Yancopoulos et al., 2000). The specificity of angiopoietins for vessels

resuits from the restricted distribution of their receptors, Tie-1 and Tie-2, to ECs. Both lie-

1 and lie-2 are receptor tyrosine kinases. Major attention is focused on lie-2, since four

ligands, Ang-1, Ang-2, Ang-3, and Mg-4, bind primarily to lie-2. Littie is known about

lie-1. Mg-1 and Mg-2 are the most important and studied ligands. While Tie-2 is

expressed on EC (except its expression on hematopoietic lineage), Ang- 1 and Mg-2 are

expressed by the supporting celis and ECs, respectively (Gale and Yancopoulos, 1999).

Compared to VEGF, the angiopoietin family plays a later role in vessel formation.

While mice lacking VEGF-A and VEGFR2 failed to form primitive vessels, embryos

lacking Mg-1 or lie-2 develop a rather normal primary vasculature (Suri et al., 1996; Sato

et al., 1995); however, remodeling and stabilization of this primitive vasculature in these

mice is severely perturbed, leading to embryo lethality (Folkman and D’Amore, 1996; Suri

et al., 1996). Ultrastructural examination indicates that ECs failed to interact and adhere

properly to underlying supporting ceils, which are the celis producing Mg-1 and act in a

paracrine fashion on ECs expressing lie-2. Hence, the angiopoietin family seems flot to

induce vascular formation but to influence integration of ECs and their supporting cells,

allowing them to receive other critical signais from their environment (Suri et al., 1996;

Yancopoulos et al., 2000). Notably, recent studies show that in mouse neonates lacking
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supporting celis, recombinant Ang-1 restored the deficiencies of the larger vessels, as well

as rescued edema and hemorrhage (Uemura et al., 2002). Ang-2 was discovered as the

antagonist of Tie-2 to destabilize quiescent vessels leading to the sprouting of new ones

(Maisonpierre et al., 1997). Transgenic overexpression of Ang-2 disrupts blood vessel

formation in the mouse embryo resembling those of Ang-1 and Tie-2 knockout mice,

indicating that Ang-2 acts as a lie-2 antagonist in vivo. In aduit mice and humans, whereas

Ang-1 is expressed widely in supporting cells of normal tissues, Ang-2 is expressed only at

endothelium ofvascular remodeling tissues, such as sprouting and regressing vessels in the

ovary (Maisonpierre et al., 1997; Goede et al., 199$) or in the tumors (Holash et al., 1999b;

Holash et al., 1999a; Zagzag et al., 1999). It was proposed that autocrine induction ofAng

2 in endothelium blocked the constitutive stabilizing influence of paracrine Ang-1,

allowing ECs to revert to a more plastic and destabilized state reminiscent of developing

vessels (Yancopoulos et al., 2000). The destabilizing role ofAng-2 is regulated by VEGf.

In the absence of VEGf, the destabilization is prone to regression. On the other hand, in

the presence of VEGF, the destabilized vessels become more sensitive to angiogenic

factors leading to new sprouting vessels; however, mice lacking Ang-2 failed to develop an

aortic wall, where Ang-2 is highly expressed in transgenic mice. Thus, Ang-2 flot only acts

as a blocker of Tie-2 but may also play an angiogenic role in vessel formation, at least in

some cases (Yancopoulos et al., 2000).

The ephrin famïly

Other factors specifically related to vessels are the Eph-ephrin family (Gale and

Yancopoulos, 1999; Yancopoulos et al., 2000) (Fig. 11e). Ephs are also receptor tyrosine

kinases, including at least 14 distinct members with eight ligands—ephrins. These

receptors and ligands have been described in both man and mouse (Flanagan and
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Vanderhaeghen, 1998). Both Eph receptors and ephrin ligands are rather unique among

RTK family. While the Eph receptors are closely related to cytoplasmic tyrosine kinases

within their kinase domain (Hanks and Quinn, 1991), the ephrin ligands must be

membrane-attached to activate their receptors (Gale and Yancopoulos, 1999; Davis et al.,

1994). This membrane attachment promotes ligand clustering, which is necessary to

activate their receptors on adjacent cells, whereas monorneric soluble ligands seern to act

as antagonist (Davis et al., 1994; Winslow et al., 1995). Ail of the known ephrins are

tethered naturally to the celis in which they are expressed. These iigands are divided into

two subgroups: the ephrin-A with tbree members (A1—A3) and ephrin-B with 5 members

(B1—B5). Ephrin-A and -B subgroups bind to the EphA (1—8) and EphB (1—6) receptors,

respectively (Gale and Yancopoulos, 1999).

Signaling through the Eph receptors can be a bidirectional event between directly

interacting cells (Holland et al., 1996; Bruckner et al., 1997). Initially, Eph-ephrin was

mainly found to play roles in the neural system to regulate cell mixing and establish

boundaries between distinct cellular compartrnents aiming to pattem brain and somites (Xu

et al., 1996; Durbin et al., 1998). It is now known that some Eph family members also play

roles in vascular development (Gale and Yancopoulos, 1999). In vitro findings show that

both ephrin-A1 and ephrin-B1 are differentially capable of inducing human umbiilcal ECs

(HUVEC5) and human renal microvascular ECs (HRMEC5) to fomi tubules (Daniel et al.,

1996). In vivo studies were performed by Wang et al. (Wang et al., 199$a) using ephrin-B2

knockout mice in which ephrin-B2 gene was replaced by lac-Z gene. Lac-Z expression

analysis revealed that ephrin-B2 specifically marked arterial ECs at the earliest stages of

vascular development and that Eph-B4 specifically and reciprocally marked only the

venous endothelium. This was the first time to propose that molecular differences are, in
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part, programmed genetically in arterial versus venous endothelium. Furthermore, they

found that EphB4-ephrin-32 not only simply sewed as vein-artery makers but also

systemically influenced remodeling ofvessels in multiple sites, for example, yolk sac, head

region, and heart trabeculation, dunng early embryo development (Wang et al., 1 998a).

Angiogenesis deficiencies in ephrin-B2 knockout mice were highly reminiscent of the

defects observed in the mice lacking Ang-1 or its receptor Tie-2 (Sato et al., 1995; Suri et

al., 1996). Adame et al. found other B-class Eph receptors, such as EphB2 and EphB3, to

be involved in major vessel formation, especially overlapping with EphB4 in venous

endothelium (Adams et al., 1999). Resuits ftom EphB4-deficient mice show that EphB4

may be a special case for ephrin-B2 (Gale and Yancopoulos, 1999).

Later studies by Yancopoulos et al. showed that ephrin-B2 continuously marks

arteries during later embryonic development, as well as in adults. The expression of

ephrin-B2 also extends to supporting celis, suggesting that ephrin-B2 may also regulate

formation of arterial muscular walls. In aduit setting of angiogenesis, a high reexpression

of ephrin-B2 was examined in the new vessels of tumor sites and reproductive organs,

indicating that ephrin-32 is also important for angiogenic settings (Yancopoulos et al.,

2000). Recent in vitro studies show that EphB4-ephrin-32 acts as a forward-reverse

signaling axis and as a versatile vascular cell-cell interaction and communication system

(fuller et al., 2003). These findings complete the in vivo phenotype in which vein-artery is

determined by EphB4-ephrin-B2, indicting the general role of the ephrin family in

boundary formation in both neural and vascular systems.

The Notch family

Notch is a new member that has appeared in the angiogenic factor’ s list recently

due to its emerging role in vessel formation (Gridley, 2001; Iso et al., 2003).
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hi vitro studies have provided a mainly negative role of Notch signaling in

angiogenesis (Iso et al., 2003). In bovine microendothelial ceils (BMEs) experimentally

exposed to fibrin, the Jagged-1 transcripts were upregulated. Interestingly, the addition of

an antisense oligonucleotide to Jagged-1 to these BMEs enhanced their invasion and tube

formation in the underlying gel during FGF-induced angiogenesis (Zimrin et al., 1996),

suggesting a negative role ofNotch signaling. An extracellular domain ofJaggedl (soluble

Jaggedi) secreted from NN 3T3 cells, which could act as a dominant, negative factor, was

also found to increase tube formation. These celis further formed tissue masses in nude

mice with prominent angiogenesis (Wong et al., 2000). More experiments demonstrated

that soluble Jagged-1 inhibited endogenous Jagged-1-mediated Notch signaling to induce

angiogenesis (Small et al., 2001). Recently, Leong et al. reported that an activated Notch-4

in human dermal microvascular ECs (HMEC-1) may inhibit angiogenesis, partly by

promoting 3 1 integrin-rnediated adhesion to underlying matrix (Leong et al., 2002). All

these resuits support the negative role of Notch signaling in angiogenesis; however, these

effects are highly controversial since several other experiments concluded with a positive

role ofNotch signaling in angiogenesis. Not only did soluble Jagged-1 proteins inhibit cell

migration and decrease celI-matrix adhesion (Lindner et al., 2001) but the expression of

Jagged-1 or activated Notch-4 in cultured brain ECs also induced microvessel-like

structures (Uyttendaele et al., 2000). Hence, one should be careful in interpreting sucli

data, because the function ofNotch signaling seems to depend on the cell context.

Jagged-1 and Notch-1/4 ernbryonic-deficient mice and Notch-4 transgenic mice

have already been mentioned earlier to demonstrate the essential role ofNotch signaling in

the vessel development. In all these mouse models, vasculogenic formation of the head,

yolk sac, and intersomitic vessels are unaffected. Initial establishment of the vascular
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network does appear to be significantïy comprised; however, there is a failure to reorganize

these rudimentary vessels into large vessels and branches, suggesting that these Notch

receptors and ligands are flot required for vasculogenesis but essential for angiogenesis. In

the mice lacking Notch-1 and Notch-1/Notch-4, a collapse or discontinuity of aortae and

anterior cardinal veins was observed (Krebs et al., 2000). In contrast, in the embryos that

expressed the activated Notch-4 specifically in ECs, a dilation of these vessels was

revealed and is associated with a failure of the recruitment of smooth-muscle cells to the

ECs to organize the vessel wall (Uyttendaele et al., 2001). This phenotype is very similar

to those observed in the Tie-2/Ang-1 Imockout mice and the Ang-2 transgenic mice (Suri

et al., 1996; Yancopoulos et al., 2000). One may speculate that Notch signaling can

determine endothelial-mural ceil interactions. The failure of the Notch mutant embryos to

remodel their vasculature may be due partïy to defects in the organization of the pericytes.

Consistent with this speculation, while Notch-3 and Jagged- 1 are expressed in SMCs,

Notch-1, Notch-4, and Jagged-2 are expressed in the ECs of E13.5 embryos (Uyttendaele

et al., 1996; Villa et al., 2001). Thus, Notch signaling may provide a signal for

mensenchymal-endothelial cell interactions in that it helps the stabilization of the newly

formed vessels.

As mentioned earlier, Notch signaling plays a role in arterial/venous specification

and maintenance of the arterial differentiation. In fact, the phenotype observed in the

Notch-1 or Notch-1/Notch-4 deficient mice closely resembles that in the ephrin-B2

knockout mice (Krebs et al., 2000; Wang et al., 1998a; Shawber and Kitajewski, 2004).

Using zebrafish genetics, ephrin-32 was proved to act as a downstream signaling ofNotch

(Lawson et al., 2002). In this study, sonic hedgehog (SHH) was required for the arterial

specification and the induction of VEGF-A that, in turn, induced the expression of Notch,
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suggesting that SHH and VEGF-A are upstream of Notch signaling. Interestingly. ectopic
expression of Notch rescued ephrin-B2 expression in the absence of VEGf-A, indicating
that ephrin-B2 is downstream ofNotch signaling (fig. 12). In mouse models. Notch also

\\

Fture 12. SttIifVEGFfNo(ch in (ht Artenal Vasculature.Renrnduced frnrn: DAmore PA N YS. CeII. 110: 2X9-92. ( 2002t

is capable of regulating ephrin-B2 release in cultures as VEGf-A does (David J. Anderson,

2004). In human ECs, both Notch-1 and D114 are induced by VEGF-A (Liu et al., 2003).

Hence. VEGf-Notch-ephrin-B2 cascade seems to exist in several species. These findings

place Notch squarely in the midst of other known angiogenic regulators.

Other factors involved in angiogenesis

PÏatelet-derived growth factor (PDGf) and its receptor-b (PDGfR-b) are expressed

by developing vSMCs/PCs and lack of its signaling leads, not onÏy to pericYte loss but also

to endothefial changes folfowed by capillary dilation (mycroaneurysm) and rupture

(Lindahi et al., 1997). The EC changes associated with mycroaneurvsm formation are

likely secondary to the pericyte loss. In the mice lacking PDGF-b and PDGFR-b,

vascufogenesis does not rely on the recruitment of vascular accessory ceils, but the

subsequent remodeling does depend on mesenchymaÏ-endotheiiai ccli interactions (Lindah]

et al.. 1997: Hellstrom et al., 1999). This phenotype is similar to that obscrved in the

Notcdefiçint mice (Krebs et al., 2000). It is, therefore, interesting to explore theo
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potential collaboration of Notch and PDGF signaling pathways in vascular smooth-muscle

cdl organization or stabilization.

TGF- 1 promotes vessel formation mainly by stimulating a generation of ECM and

inducing differentiation of mesenchymal ceils to pericytes. The TGf-f3 1 -ALK5 pathway

positively regulates vessel formation (Goumans et al., 2002).

Molecules involved in ECM remodeling and EC migration

While growth factors and their receptors play a key role in angiogenesis, ceil

matrix interaction also regulates angiogenesis (Bazzoni et al., 1999; Hood and Cheresh,

2002; Dejana, 2004; DeClerck et al., 2004). The specialized ECM exits as a thin layer

called basement membrane that provides supporting structure on which ECs grow. The

major macromolecular components ofmatrix are type IV collagen, laminin, heparin sulfate

proteoglycans, fibronectin, and entactin. They serve as a store of various growth factors

and proenzyiies influencing endothelial cell behavior, such as differentiation, proliferation,

and migration, and are involved in vessel development (Brooke et al., 2003; DeClerck et

al., 2004).

Dynamic remodeling of the ECM, including deposition, degradation, and re

deposition of new ECM components, implicates an important role during angiogenesis

(Egeblad and Werb, 2002). In vitro, both laminin and collagen are deposited during

endothelial tube formation (Madri, 2001). Consistent with these results, in vivo

experiments showed that fibronectin particularly regulates vascular formation, as antibody

inhibitors of fibronectin block angiogenesis (Kim et al., 2000). Local matrix degradation

by matrix metalloproteinases (MMPs) is required for invasion ofpre-existing vascular cells

through the basement membrane and surrounding stroma, followed by vascular cell

migration and proliferation. The proteolysis of collagen can influence EC tube formation
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because inhibition of MMPs biocks this process (Madri, 2001). In addition, cleavage of

coilagen and fibrin has also been implicated as an important step during the invasive stage

of angiogenesis (Seandel et al., 2001; Hiraoka et ai., 199$). MMPs can directly regulate

angiogenesis as MMP-2 was observed to be invoived in angiogenesis using in vitro CAM

(chicken chorioaiiantoic membrane) assay, and MMP-9 and MMP-14 nuli mice have

impaired angiogenesis during embryonic deveiopment (Vu et ai., 1998; Zhou et al.,

2000b). Furthermore, tissue inhibitors of MMPs (TIMP-1), which regulate the MMP

activity on the celi surface, inhibit angiogenesis in in vivo anti-tumor assay (Ikenaka et al.,

2003).

The proteolytic degradation of collagen may expose cryptic adhesive sites that are

crucial for EC migration and proliferation. Some cryptic sites (i.e., RGD) are recognized

by members of the integrin famiiy, which participates in EC migration by regulating

detachment/attachment to the ECM and maintaining communication between the EC and

its neighborhood. The integrin family consists of at ieast 25 distinct pairs combined by Œ

and chain (Hood and Cheresh, 2002). Not only do they mediate cellular adhesion to

ECM proteins in interceliular spaces and basement membrane, but they also transduce

intracellular signais that promote migration of ECs on the surrounding ECM (Apiin et al.,

1998; Schwartz and Shattil, 2000). 0f the wide spectrum of integrin subunit combinations,

studies in experimental angiogenesis models and in mutant mice indicate that several

integrins play key roies in regulating angiogenesis. In normal animais, neither Œv3 nor

a5J31 is expressed by quiescent endothelium but both are significantly upregulated in

response to angiogenic growth factors during angiogenesis (Brooks et ai., 1 994a; Kim et

al., 2000). Their expression is controlled by HoxD3 transcription factor that is expressed in

ECs to regulate the angiogenic switch (Boudreau N, 1997, Zhong J, 2003). Once Œv33 and
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a5 1 are expressed, angiogenesis depends on both integrins, as antagonists of each can

block angiogenesis in vivo (Brooks et al., 1994a; Kim et al., 2000). In mutant mice,

embryonic deletion of a531 induces defects in the organization of the emerging

vasculature (Goh et al., 1997) and defects in the vessel formation by ECs ex vivo (Francis

et al., 2002; Tavema and Hynes, 2001). Similar to a5f31, embryo lacking a41 Ieads to

placenta and cardiovascular malformations (Yang et al., 1995). Newboms lacking av die a

few hours afler birth with significant defects in brain development, including failure of

blood vessel formation (Bader et al., 199$). Some integrins are implicated in angiogenesis

by regulation of VEGF. While av5 promote VEGF-mediated angigenesis, antagonists of

a2f3 1 and al f31 suppress VEGF-mediated angigenesis to regulate blood vessel formation

(Friediander et al., 1995; Senger et al., 1997; Jin and Vamer, 2004).

Anti-angiogenïc factors

Compared to the pro-angiogenic factors, less information is available on the role of

angiogenesis inhibitors (either termed anti-angiogenic factors) in normal conditions.

Thrombospondin-1 (TSP-1) has significant anti-angiogenic effects on EC proliferation,

adhesion, and spreading (Iruela-Arispe et al., 1996). The potent anti-angiogenic agents

endostatin and angiostatin are able to induce the apoptosis of ECs and to inhibit EC

migration and proliferation (Shichiri and Hirata, 2001; Griscelli et al., 1998). Another

group of angiogenic inhibitors are TIMPs (Moses, 1997). They can block the role of

MMPs to prevent angiogenesis.

1.5.2. Pathologïcal conditions

Neovascularization may, however, also contribute to the pathogenesis of several

disorders, including non-neoplastic angiogenic dependent disease and neoplastic disease
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(Folkman, 1995). The point at which a “normal” process differs from “pathological”

angiogenesis is in the tightly regulated balance of pro- and anti-angiogenic signais

(Bergers and Benjamin, 2003) (Fig.13). When the balance is disnipted, angiogenesis

becomes pathologic and sustains the progression of many non-neoplastic and neoplastic

diseases (Foikman, 1995).

1.5.2.1. Angiogenesis in non-neoplastic disease

In 1995, Folkman termed “angiogenesis disease” as underlying conditions

dominated by the abnomial growth of microvessel-angiogenesis that is either excessive or

deficient and is usually caused by dysregulation of angiogenic factors (Folkman, 1995). In

some human diseases, such as retinal neovascularization, atherosclerotic plaques, and

ischemic heart or limb, the neovascular formations are triggered by hypoxia in the diseased

area accompanied by high levels ofVEGF (Senger et al., 1997; Aiello et al., 1994). In an

experimental model of rheumatoid arthritis, excessive production of angiogenic factors

from infiltration macrophages (M05), immune celis, or inflammatory celis may mediate the
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Figure 13. The angiogenic balance. Angiogenesis is orchestrated by a variety of pro-angiogenic- and anti-angiogenic factors —

only a few of which are Iisted above. Proangiogenic factors are mainly receptor tyrosine kinase Iigands, such as VEGFs, FGFs,
Angs, PDGF, and EGF, but can also be ofvery different origin, such as MMPs and uPAIuPAR (Vu et aI., 1998; Zhou et al.,
2000b; Pepper, 2001). The first described angiogenic inhibitor was TSP-1, which modulates endothelial-ceIl proliferation and
motility. Remarkably,there are many other inhibitory molecules, such as angiostatin, endostatin, and TIMPs (Ikenaka et al.,
2003). In general, the levels ofactivators and inhibitors dictate whether an endothelial celI will be in a quiescent or an angiogenic
state. It is believed that changes in the angiogenic balance mediate the angiogenic switch.
Reproduced from: Bergers et al., Mat Rev Cancer 6, 401, (2003)



ingrowth of a vascular pannus in a joint. TNP-470, one inhibitor of angiogenesis, has been

used for inhibiting vascular pannus in these animal models (Peacock et al., 1992). b other

human diseases, such as psoriasis and gastric ulcers, the defective microvessels are

associated with bfGF and TSP-1, respectively (Nickoloff et al., 1994; Esaki et al., 2002).

Recent findings reveal even more angiogenic factors related to neovascularization in

human diseases and animal models (Carmeliet, 2003; Sullivan and Bicknell, 2003).

1.5.2.2. Angiogenesis in neoplastic disease

Hemangioma

Some interesting human diseases are the vascular anomalies, which occur mainly in

the skin and sometimes in other organs. In 1982, Mulliken and Goïwacki classified

vascular anomalies into “hemangiomas” (ofien called “infantile orjuvenile hemangiomas”)

and “malformations” (sometimes called “carvernous hemangiomas”) (FoÏkman, 1995;

Vikkula et al., 199$; Mulliken and Glowacki, 1982). Hemangioma is restricted to a rapidly

growing vascular tumor in infancy, but regresses during adolescence and adulthood. For

clarity, hemangiomas are benign tumors that exhibit an early and rapid proliferation phase

during the first year of life, characterized by endothelial and pericytic hyperplasia, folÏowed

by a slow but steady involution phase that may last for years (Mulliken and Glowacki,

1982; Vikkula et al., 1998). Vascular malformations are lesions comprised of dysplastic

vessels lined by quiescent endothelium. These malformations are further classified into

venous malformation, capillary malformation, arteriovenous malformation, lymphatic

malformation, and a combined malformation. In contrast to infantile hemangiomas,

vascular malformations are usually obvious at birth but neyer regress and sometimes

further expend during adulthood (Vikkula et al., 199$). Later, in 1988, the term
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hemangioma was used to describe a variety of vascular tumors or lesions that consist of

ECs, pericytes, and as yet uncharacterized stromal ceils (Grant et al., 1988).

Hemangioma is represented as a relatively pure form of angiogenesis (Folkman,

1995). So far, some molecules are found to be involved in these diseases, though studies

on those are flot intensive enough.

Transgenic mice expressing Middle T oncogene developed vascular lesions, and

the mouse endothelioma ceils expressing this gene induced hemangiomas in various organs

and in a variety of species, such as mice, chicks, and others (Williams et al., 1989).

Activated mutant Fps/fes allele-expressing mice display widespread (lyrnphnodes, uterus,

and others) multi-foca! hemangiomas (Greer et al., 1994). In humans, the hemangioma

basic scheme of histopathological classification has been refined by immunohistochemical

characterization in each of the phases (Takahashi et al., 1994). During the proliferation

stage, VEGF and bFGF angiogenic factors are increased, indicating that the upregulation

of angiogenesis occurs. Collagen W is present at this stage, suggesting that the collagen

breakdown is necessary for the growing capillaries. E-selectin (adhesion molecule) and

MCP-l (monocyte chemoattactant protein) are upregulated, supporting the fact that the

adhesion of ECs and the recruitment of monocytes are important for the proliferation stage

(Vikkula et al., 1998; Takahashi et al., 1994). In contrast, during the involution stage,

TIMP-1 is increased, suggesting regression of the vessels (Takahashi et al., 1994). Recent

results showed that hemangiomas display high levels of immunostaining for GLUT-1

(glucose transporter-1) (North et al., 2000), a surface protein that is highly expressed in

embryonic and fetal ECs but is lost in most adult tissues, except the placenta and central

nervous system (Marchuk, 2001). The similarity in gene expression profile between

hemangiomal and embolic placental vesse! suggests the “placenta! origin” of hemangiomas
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and explains their exclusively perinatal or congenital occurrence. In addition, the strong

gender predilection of hemangioma toward female over male infants (3:1) suggests

hormonal effects in hemangiogenesis (Marchuk, 200f).

0f the five types ofvascular malformations, venous malformation (VM) is the most

common anomaly, accounting for up to 50% of patients (Vikkula et al., 1998). VM bas a

bluish-purple color, is oflen raised, and can be emptied by compression. VMs are most

oflen located in the skin and/or mucosal membranes, although visceral lesions may also

occur; for example, VM of salivary gland and hepatic cavemous hemangioma. In order to

know what VMs are and how they form, immunochemistry with E-slectin and Œ-actin was

performed to identify two major cellular components of the vessel wall: ECs and SMCs

(Vikkula et al., 1996; Kraling et al., 1996). This study revealed a deficient recruitment of

smooth-muscle cells to the vessel wall, but no EC proliferation defects. Random mapping

for two separate families with autosomal dominantly-inherited VMs located the defective

gene to chromosome 9. This gene was identified as mutant Tie-2 (Vikkula et al., 1996;

Boon et al., 1994), which is normally expressed in ECs and involved in angiogenesis (Suri

et al., 1996). More molecules, for example, PDGF-B and TGF-, may also be involved in

this disease, as both molecules were found important for $MC recruitment and

differentiation, respectively (Lindahl et al., 1997; Hirschi et al., 1998). In addition, ECM

produced by ECs and SMCs may also play a role in VMs. Little is known about the

molecular mechanisms of capillary malformation (Vikkula et al., 1998). TGF-b was found

to be involved in arteriovenous malformation since two separate genes, HHT1 and HHT2

(hereditary hemorrhagic telangiectasia 1 and 2), involved in this disease are TGF-b binding

proteins (McAllister et al., 1994; Vincent et al., 1995; Jolmson et al., 1996). There are few

molecular dues for human lymphatic malformations available, but LYVE-1 (lymphatic
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vascular endothelial receptor), VEGF-C, and Fit-3 have been identified specificalÏy for

lymphatic malformation in animal models (Yancopoulos et al., 2000; Jain, 2003). It is

possible that both may also be important for human lymphatic vessel malformation.

Most hemangiomas do not need treatment; however, approximately 10% of cases

cause serious tissue damage, interfere with vital organ functions, or become life

threatening (Folkman, 1995). Clinically, corticosteroid administration resuits in a dramatic

regression of hemangiomas, up to approximately 30% within a week. Interferon alpha-2a

has also been used to regress life-threatening tumors (Folkman, 1995).

Tumor angiogenesis

It is now well accepted that tumor growth and metastasis require vascularization to

provide both nourishment and a route for tumor celi extravasation. When tumors are less

than 1 mm2, and rarely larger than 2 to 3 mm2, they have their proper metabolic needs met

by diffusion. Most tumors in humans persist in situ for months or years without neo

vascularization but then become vascularized when a subgroup of celis in the tumor

“switches” to an angiogenic phenotype (Hanahan and Folkman, 1996; Bergers and

Benjamin, 2003). Tumor progression is comprised of a series of stages: hyperpiasia,

dysplasia, adenoma, and carcinoma. The angiogenic switch can occur at different stages

depending on the tumor type and the environment. The classical characteristics of tumor

angiogenesis have been demonstrated in various animal models. One typical example is the

K14-HPV16 mice, which express oncogenes E6 and E7, and develop squamous-cell

carcinomas of skin and cervix (Coussens et al., 1999; Bergers et al., 1998; Elson et al.,

2000a). In these mice, E6 and E7 alone are not sufficient to cause an “angiogenic switch,”

but further inactivation of p53 and RB is necessary to induce neovascularization, which

occurs in the early stage and is a prerequisite for tumor formation (Bergers and Benjamin,
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2003). The tumors finaiiy develop through distinct stages of hyperpiasia, angiogenic

dyspiasia, and, eventuaiiy, to highiy vascuiarized invasive tumors that are similar to many

human cancers. During tumor progression, tumor celis may, per se, overexpress some pro

angiogenic factors or reduce some anti-angiogenic factors, may mobilize some angiogenic

factors from ECM or may recruit M0s, producing their own angiogenic factors. Ail these

changes may disrupt the local equilibrium between pro- and anti-angiogenic factors (Fig.

13) to induce neovascularization (Bergers and Benjamin, 2003).

Some of the pro- and anti-angiogenic factors described eariier are involved in

tumor angiogenesis, the most important of those being VEGF. VEGf-A, VEGF-C, and

VEGF-D are ail produced by human tumors (Ferrara, 2002). PIGF also has a unique role in

cancer (Carmeliet et al., 2001). In several different tumor settings, angiopoietins are also

increased in collaboration with VEGF (Yancopoulos et al., 2000). Both soluble

extraceilular domain of Ephrin class A (EpbA2-Fc and EphA3-fe) and class B (ephrinB2

and EphB4) inhibit tumor growth and angiogenesis (Brantley et al., 2002; Martiny-Baron

et al., 2004). Very littie information is available on the role of Notch signaling in tumor

angiogenesis. In MMP-2-deficient mice, tumor angiogenesis and growth is reduced

compared to normal mice (Itoh et al., 1998). MMP-9 has aiso been found to be a part of

angiogenic switch in two typical transgenic models of tumor progression in skin and

pancreatic islets (Coussens et al., 2000; Bergers et al., 2000). This proteinase makes VEGF

avaiiable for interaction with its receptors so that the proteinase influences tumor

angiogenesis (Bergers et al., 2000). In mouse models, integrins play a diverse role in tumor

angiogenesis. Increased levels ofintegrins are observed to be associated with increased celi

invasion and metastasis (Felding-Habermann et ai., 2002; Ramos et al., 2002). Many

studies have shown that Œv133 and avÇ35 inhibitors block angiogenesis, tumor growth, and
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tumor metastasis by inducing apoptosis in proliferating ECs (Brooks et al., 1994b; Cheresh

and Stupack, 2002). These resuits are supported by the recent findings that loss of 133 or 135

does block angiogenesis induced by DeY-1 (Zhong et al., 2003), though one study showed

that loss of [33 or [35 promotes angiogenesis (Reynolds et aÏ., 2002). Some anti-angiogenic

factors are decreased in tumors while angiogenic factors are increased. Mice lacking TSP-1

develop larger and more vascularized breast tumors than the parental strain due to high

levels of MMP-9 production (Rodriguez-Manzaneque et al., 2001). In breast cancer

patients, overali vascular density correlates to poor cancer prognosis, and TSP-1

expression is inversely correlated with malignant progression of mammary and lung

carcinomas, as well as melanomas (Weidner, 1998; Zabrenetzky et al., 1994; Weinstat

Saslow et al., 1994).

Tumor vessels are architecturally often immature, exhibiting tortuosity, blind ends,

and increased permeability, resulting in spatial heterogeneity of blood supply both between

and within individual tumors because of angiogenic switch (Vaupel et al., 1989; Bergers

and Benjamin, 2003). Since the “angiogenic switch” is tightly related to tumor growth and

metastasis, treatment of tumor is no longer restricted to merely kili tumor cells. Anti

angiogenic therapies and normalization of tumor vessels are already underway in clinical

trial. TNP47O, DC1O1 (VEGF receptor inhibitor), SU5416 (VEGF receptor inhibitor) or

BB-94 (broadspectum MMP inhibitor) have been used to treat several tumors with either

more realistic animal models or clinical trials (Yoshida et al., 1998; Tong et aÏ., 2004;

Heymach et al., 2004; Wielockx et al., 2001). Cyclooxygenase (COX2) inhibitors, that are

anti-flammatory agents with anti-angiogenic activities that downregulate the expression of

FGF and VEGF factors, have been used to prevent several tumors (Gasparini et al., 2003).
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Evidences show that efficiency ftom two drugs is better than from one (Bergers and

Benjamin, 2003). Avestin.

1.6. Macrophages

Angiogenesis in either physiological or pathological conditions needs to induce the

formation of its own vasculature and this process is mainly controlled by released factors

from local ceils in the tissue microenvironrnent. Recent evidence suggests that M0s act as

important stimuli in the microenvironment to regulate angiogenesis in both normal and

diseased tissues since activated M0s can secrete a large number of pro- and anti-angiogenic

factors (Table 1) (Crowther et al., 2001; Sunderkotter et al., 1994; Bingle et al., 2002; Leek

and Harris, 2002).

Proangioaenic factors Anaiogenic inhibitors

VEGF/VP TGf-F3
PDGF TSP-l
bFGF IFNy
HGF/SF TIMPs
EGF PAl-l
IGF-t MECIF
TP(PD-ECGF) MD-ECI
TNF-u
Angiotropin
HAF
Substance P

IL-1F3
IL-4
IL-6
IL-8
PGE2
SPARC
MMPs
uPPJuPAR
Piasmin

Table 1. Macrophage-derived factors in angiogenesis. IGF-I, produced by activited macrophages, invoives in
inflammatoiy angiogenesis; PD-ECGF, involves in both wound and tumor angiogenesis; PGE and SPARC involves in
wound angiogenesis; MECIF inhibits thymidine incorporation in cultured HUEC in vitro; MDF-ECI, macrophage-derived
endothelial ccli inhibitor, secreted by adherent human macrophages.
Reproduced from: Sunderkofter et al., J.Leukoc.Biol. 55, 410, (1994)

1.6.1. Macrophage development

The term “macrophage” was invented by Metclrnikoff (Metclmikoff E 1893) to

describe large mononuclear phagocytic cells able to take up microorganisms. Later,
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mononuclear phagocytes were defined as a family including committed hematopoietic

precursors, their immediate progeny blood monocytes, and the celis in tissues derived

from transendothelial migration and maturation of monocytes to become professional

phagocytes-macrophages. Similar to ECs, M0s are also derived from mesenchymal

progenitors of the mesoderm (Lichanska and Hume, 2000; Herbomel et al., 1999). In

vertebrates, M0s are the only other mature hematopoietic celis (except erythroid image)

present in yoïk sac (Keller et al., 1999; Lichanska and Hume, 2000). The first M0s further

infiltrate into the fetal liver, and in combination with the microenvironment of the liver

initiate the establishment of definitive hematopoiesis. These M0s in the liver resemble the

M0s of the hematopoietic islands in the aduit bone marrow. With the onset of

hematopoiesis in the liver, the number of phagocytes continues to increase to a point where

they are one of the most abundant ceil types in the embryo, amounting to as much as 10%

to 15% of total celis in many organs (Lichanska and Hume, 2000). During these processes,

M0s quickly become mature “fetal macrophages” expressing the surface maker F4180, the

macrophage scavenger receptor (MSR) and lysozyme, and the macrophage-specific

transcription factor, P.U.1 (Morris et al., 1991). Herbomel et al. found that embryonic M0s

are endowed with a proliferation capacity through a rapid differentiation pathway, which

bypasses the monocytic series well-documented in the aduit hematopoietic organs

(Herbomel et al., 1999).

1.6.2. Heterogeneity of macrophages

In aduits, M0s are derived from the blood monocytes that originate from bone

marrow. These monocytes first enter tissues by adhering to the ECs via an interaction of

celi surface molecules, for example, lymphocyte function-associated molecule (LFA-1) on

monocytes and intercellular adhesion molecule 1 (ICAM-1) on ECs (Koshikawa et al.,
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2000). Adhered monocytes pass through the endothelium ofblood vessels into surrounding

tissues. Finally, they undergo differentiation into tissue M0s and remain there as resident

M0s (Auger, M. J., Roos, J. A. 1992). M0s in different tissues have distinct phenotypes

induced by tissue-specific factors. For example, Langerhans celis, dendritic celis, alveolar

M0s, peritoneal M0s, and Kupffer celis (KCs) are differently distributed in skin, lymph

nodes, lung, peritenium, and liver, respectively. The resident tissue M0s release distinct

tissue-specific combinations of 1 or more than 150 proteins in their secretory repertoire

(Auger, M. J., Roos, J. A. 1992, Nathan et al., 1980). Further specialization and activation

of M0s is prompted by local stimuli produced during pathological processes such as the

presence of cytokines, adhesion molecule binding, or interaction with foreignlinfectious

agents. Recently, Paulnock et al. have demonstrated differential gene expressions during

IFN-y-dependent and -independent activation of M0s, thereby indicating the potential for a

diversity of macrophage phenotypes (Paulnock et al., 2000). Even in the same organ, M0s

exist in a heterogeneous maimer. A rather good example is the liver, which possesses

resident macrophages, temied as KCs. The KCs can be subfractionated into classes of

different diameters, which show functional differences and different localization within the

liver lobule (Hardonk MJ, 1989). It tums out that more KCs are distributed in the portal

area than in the central part. Moreover, portai KCs are more active than those located in the

central zone.

1.6.3. Macrophage functions

M0s can perform a multitude of functions such as phagocytosis, endocytosis,

cytotoxicity, ceil-cell interactions, and angiogenesis (Adams, 1992, Nathan, 1987;

Crowther et al., 2001).
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1.6.3.1. Scavengers

The behavior of M0s acting as scavengers in many conditions is well documented

(Aderem and Underhill, 1999). Both embryonic and aduit M0s can phagocytize apoptotic

ceils and bacteria (Herbomel et al., 1999; Willett et al., 1999; Lichanska and Hume, 2000).

This phagocytosis function is accomplished by specific receptors. By far the biggest and

the most diverse group of these receptors are the scavenger receptors (Franc et al., 1999).

M0s are recruited to the sites of infection by either chemotactic molecules emanating from

bacteria, or by cytokines released by M0s without the help of lymphocytes (Willett et al.,

1999; Herbornel et al., 1999).

1.6.3.2. CeIl-ceil interactions

M0s are flot only scavengers, they also secrete an impressive array of growth

factors and cytokines in various situations, as well as various proteins capable of

remodeling the ECM (Auger, W.E. 1992). Hence, they might 5e involved in

organogenesis. Herbomel et al. found that, in the zebrafish yolksac, M0s in the circulation

valley interact closely with erythroblasts, sometimes seemingly almost engulfing them, but

then releasing them back into circulation (Herbomel et al., 1999). This intimate interaction

resembles the nursing role of mammalian M0s towards immature erythroid cells (Crocker,

P. R. and Milon, G 1992). Maybe this interaction between young M0s and pre

erythroblasts is important for the maturation of both celI types (Herbomel et al., 1999).

However, the molecules involved in this interaction are unclear. Another example is that

the KCs interact with the ECs in the liver, which will be discussed later.

o
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1.6.3.3. Angiogenesis

Among their functions, the role of Mgs in angiogenesis lias recently received much

more attention by researchers. They influence almost ail phases of angiogenesis,

particularly the inflammatory and the tumor angiogenesis (Sunderkotter et al., 1994,

Crowther et al., 2001). Some studies have also shown their angiogenic role in the

embryonic development (Herbomel et al., 1999, Kurz et al., 2004).

1.6.3.3.1. Activation of macrophages

M0s are set into different functional states by a process called activation

(Sunderkotter et al., 1994). Certain M0s can be either tumoricidal or bactericidal, but flot

both at the same time (Rutherford et al., 1993). The activation process is dependent on a

complex regulatory mechanism involving different stimuli. Unlike bacterial infection

where M0 activation proceeds through sequential steps, there are no clear activation

sequences of M0s in angiogenesis (Rutherford et al., 1993, Adams, D.O. 1992). However

some studies have confirmed that M0s need first to be activated in order to exert their

angiogenic activity (Steinman, 1988). It has been shown that the human and the murine

monocyte did not promote neovascularization unless having been treated with some

activators (Meyer et al., 1989; Koch et al., 1986). As described earlier, angiogenesis in

healthy organisms is under tight control and the vessels in adults are quite stable. On the

other hand, persistent neovascularization, is a characteristic feature of malignant tumors

and chronic disease, such as rheumatoid arthritis. Cells able to induce neovascularization

should be expected to remain inactive unless being activated. Many of the macrophage

derived angiogenic factors are indeed synthesized or released only by activated M0s

(Sunderkotter et al., 1994). M0s can be activated by many factors. LPS is a known

stimulus activating M0s but it is not a specffic signal (Polverini et al., 1977; Koch et al.,
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1986). The particular metabolic conditions, low-oxygen tensions (Knighton et ai., 1983) or

wound-like concentrations (Jensen et al., 1986) found in wounds couid be more specific

signais for M0s. M0s can also be activated by some activating cytokines, such as IFN-y,

GM-CSF, PAF, or MCP-1 (Adams, 1992). These cytokines are secreted by a number of

celis, including the activated ECs. Thus, an attractive model is that M0s are recruited and

activated by cytokines released from ECs to the required sites, where M0s secrete

angiogenic factors to feed back ECs.

1.6.3.3.2. The influence of macrophages on different phases of angiogenesis

The steps leading to the vessel formation have already been mentioned and M0s

can influence almost ail of these, from a basement membrane disruption to a direct role in

the EC migration and proliferation, as welI as an inhibitory role in ECs.

M0s are a critical source to secrete several degrading enzymes, particularly, uPA

and MMPs, yielding angiogenic fragments of ECM, and to liberate ECM-bound growth

factors (Klimetzek and Sorg, 1977; Nathan, 1987, Adams, 1992) (Table 1). These cause

changes in the molecuiar or mechanicai structure of the ECM (Sunderkotter et al., 1994).

While these enzymes are capable of degrading almost au components of the ECM, Mgs

themselves also synthesize tissue inhibitors of the metallo- and serine protease (Wohlwend

et al., 1987). The concomitant expression of proteases and its inhibitors may promote

simultaneously the outgrowth of new vessels and the protection of neovascuiarized tissues

from excessive proteolysis (Bacharach et al., 1992). Mgs also secrete cytokines that

influence the ECM (Table 1). Some of them play direct foie in the modulation of

angiogenesis. For example, TGF-F3 is one of the various cytokines derived from M0s

(Ignotz and Massague, 1986) that has been proved to influence ECM in vitro and in vivo

(Vogelmann et al., 2001), and neovascularization in vivo (Roberts et al., 1986). PDGF is
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another cytokine secreted by M0s (Nathan and Sporn, 1991), that is expressed in pericytes

and regulates ECs as well as vessels (Uutela et al., 2004; Nishishita and Lin, 2004).

Besides the influence of M0 on ECM, some factors produced by M0s can directly induce

the migration and the proliferation of ECs (Sunderkotter et al., 1994). In particular, two

factors, human angiogenic factor (HAF) and angiotropin (Sunderkotter et al., 1994; Leek

and Han-is, 2002), produced by M0s, appear to have predominant chemotactic effects.

Their migratory effects are sufficient for initial neovascularization since the migrating ECs

can form sprouts without proliferating (Sholley et al., 1984). In addition, many factors such

as VEGFs, bFGF, TGF-Œ, GM-CSF, IL-8, and others secreted by Mgs (Table 1), induce

mitosis in ECs (Sunderkotter et al., 1994). As already mentioned, VEGFs are the only

specific endothelial factors, that cntically stimulate the proliferation of ECs (Connolly et

al., 1989) and yet modulate vasculogenesis and angiogenesis (Yancopoulos et al., 2000).

These factors together with others secreted by M0s can also influence the serine and the

metalloproteinases production from ECs, by which they locally modulate the capillary

basement membrane (Flaumenhaft et al., 1992). Apart from producing angiogenic factors,

M0s also secrete angiogenic inhibitors that modulate the equilibrium of vessel formation

(Sunderkotter et aI., 1994; Crowther et al., 2001; Bingle et al., 2002; Leek and Harris,

2002) (Table 1). The inhibition of neovascularization is necessary to restrict the extent of

the new vascular network and to facilitate the differentiation of the capillary sprouts into

functionally mature capillaries. ISP-1 (Kang et al., 2001) and IFN-Œ, y (Robinson et al.,

1985; Zhang et al., 2002a) are important factors released by M0s to inhibit the migration or

the proliferation of ECs. M0s also produce some factors such as TGf-a and-3, IL-1, and

IL-6 that have been shown to exert complex actions on ECs (inhibitory and also

stimulatory effects) (Sunderkotter et al., 1994; Crowther et al., 2001). The contradictory
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actions of these cytokines on angiogenesis are usually due to different experimental

designs or to concentration-dependent effects.

1.6.3.3.3. Pathologically angiogenic activity of macrophages

The proangiogenic functions performed by M0s will be presented in three well

characterized and angiogenesis-dependent cases: healing wounds, malignant tumors, and

hemangiornas.

Although a large body of literature exists on the cellular events occurring in wound

healing, most data have been based on animal models or on cells from human wound fluids

rather than on the monitoring of the development of human wound tissue per se. From

these studies, wound healing has been described as a complex process invoïving three main

phases: inflammation, proliferation, and remodelling. M0s are implicated in each phase.

Already, by day 2 (inflammatory phase), they are the predominant leukocytes infiltrating

the wound space. Then, about day 7 (proliferation phase), working together with

neutrophuls, they remove debris and recruit ECs as well as other ceils that participate in the

synthesis of a new matrix and in the development of vessels. Finally, persisting in the

remodelling phase, they proteolytically modify the collagen matrix to improve the

mechanical strength and adhesion in order to keep neovessel regressive (Crowther et al.,

2001). M0s are also directly associated with wound angiogenesis. The injection ofthe Mgs

isolated from the wound fluid (called wound macrophages) into rat comeas triggers

neovessel formation (Thakral et al., 1979; Greenburg and Hunt, 1978; Polvenni et al.,

1977). Furthermore, some experiments indicate that only the wound-associated M0s, but

flot the unstimulated monocytes or M0s, are capable of inducing angiogenesis (Koch et al.,

1986). The corneal angiogenesis is accelerated only when one employs autologous wound

M0s (Clark et al., 1976). Similarly, adding M0s stemming from a 3-week-old wound to a
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rabbit-ear chamber-model of wounding produces a significant acceleration of angiogenesis

(Thakral et al., 1979). Therefore, these studies suggest that the activation of Mgs by

wound-specific microenvironmental factors, such as hypoxia and lactate, tums out to be

essential for their proangiogenic activity in such tissues (Elson et al., 2000b).

M0s are found in a large number of malignant human and murine tumors, where

they are often termed tumor-associated macrophages (TAMs). The TAMs are recruited

mainly from the circulating monocyte pool (Eccles and Alexander, 1974; Wood and

Gollahon, 1977) rather than being co-opted from the resident tissue M0s (Adams and

Harnilton, 1984). There exists a great heterogeneity in the number of M0s in individual

tumors of a given type, and they can amount to 80% of the total cdl mass of certain tumors

such as breast carcinomas (Lewis et al., 1995). TAMs are attracted into and/or immobilized

in avascular (Leek et al., 1996) and necrotic hypoxic (Leek et al., 1999) areas of

vascularized human tumors by the direct immobilizing effect of hypoxia on M0s and by

specific factors produced by hypoxic tumor ceils (O’Sullivan and Lewis, 1994), The TAMs

in such sites are directly stimulated by hypoxia to cooperate with turnor ceils so as to

promote revascularization (Lewis et al., 2000). Besides the direct effects, hypoxia and

other factors might also exert an indirect effect on the proangiogenic activity of TAMs. In

addition, the release of cytokines/factors from tumor cells might be modulated, and they in

tum recruit/stimulate the TAMs in diseased areas. Tumor cells are known to produce large

amounts of VEGFs and bFGFs (Leek et al., 2000; Stupack et al., 1999), which act as

potential chemoattractants for M0s. It seems also possible that the activation of TAMs

during the extravasation across the tumor endothelium right into the tumor (Takahashi et

al., 1997), andlor during the exposure to cytokines/signals within the tumor milieu itself,

might modulate the TAMs susceptibility to some factors. It was originally thought that the
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main function of the TAMs was to exert direct cytotoxic effects on tumor ceils, to

phagocytose apoptotic/necrotic celi debris, and to present tumor-associated antigens (when

present) to T celis. However, recent data lead one to believe that TAMs can also promote

tumor growth and metastasis, as well as tumor angiogenesis by accordingly regulating

angiogenic factors (Bingle et al., 2002; Leek and Harris, 2002). (Fig. 14.) Similar to the
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activated M0s described above, the TAMs are the important source of angiogenic factors

[such as VEGF (Leek et al., 2000), TNF-a (Pusztai et al., 1994), IL-8 (Fujimoto et al.,

2000), and bFGF (Stupack et al., 1999)] and proteases (such as MMPs and uPA). Recent

studies show that VEGFs secreted by M0s essentially supports tumor angiogenesis

(Barbera-Guillem et al., 2002). Indeed, as early as 1984, Polverini and Leibovich

(Polverini and Leibovich, 1984) showed that the TAMs isolated from rodent tumors are

capable of stimulating the proliferation of ECs in vitro and inducing comeal angiogenesis

in a rodent model. So far a direct correlation has been documented between the presence of

TAMs and vascularity in breast cancer specimens and mortality (Leek and Hams, 2002;

Bingle et al., 2002). This strongly indicates that the presence of TAMs facilitates the
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Figure 14. Macrophage production of anti- and pro-angiogenic factors: regutation by tumour specific signais.
Reproduced from: L. Bingle et al. J. Pathologv 196, 254, (2002)
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angiogenic process of tumors, thereby promoting metastasis. Recently interesting results

have announced that an anti-angiogenic agent (linomide), that selectively inhibited the M0

secretion of TNf-a, blocked stimulatory effects of TAMs on tumor angiogenesis of rat

prostate cancer without eliminating their anti-angiogenic effects. This provides a strong

evidence that the TAMs play a role in response of the prostate-cancer to anti-angiogenic

agents (Joseph and Isaacs, 199$).

The presence of M0s is also linked to the “proliferation hemangiomas” which

presents a powerful model to study in vivo angiogenesis (Atalay et al., 2003). The CC

chemokine MCP-1 is known to be responsible for recruiting the M0s to the sites of

infection or inflammation (Graves et al., 1989). As described earlier, MCP-1 is increased

in hemangiomas, which attracts M0s (Isik et al., 1996). In this way, MCP-1 could be

viewed as a major accessory factor facilitating angiogenesis. A direct role of MCP-1 in

angiogenesis has been evidently shown ($alcedo et al., 2000). MCP-1 induces the

chemotaxis of human ECs and the formation of blood vessels in vivo. The chemotactic

response was further inhibited by a monoclonal antibody to the MCP-1. Interestingly,

studies with berry powders, potentially suppressing VEGF expression and in vitro

angiogenesis, show that they significantly inhibit the inducible expression of MCP-1 in

ECs. It is noteworthy that endothelioma celis, pre-treated with berry powders, showed a

diminished ability to form hemangioma. A decreased infiltration of Mgs in the

hemangioma of the treated mice was remarkably observed by histological analysis

compared to controls (Atalay et al., 2003). These resuits provide the first evidence that the

M0 inhibition plays a role in the anti-angiogenic property ofberries in hemangioma.
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1.7. Liver and angiogenesis

The liver is the Ïargest gland in the body and it performs an astonishingly large

number of tasks that impact ah the body systems. While the hiver is the prominent site of

hematopoiesis during the cmbryological stage, it shares some fundamental roles during the

adult phase, mainly incitiding vascular functions. Present in several pathological situations,

angiogenesis occurs in the liver in different contexts such as hemangioma, carcinoma, and

chronic diseases.

1.7.1. Liver development and hematopoiesis

The study of embryological liver development which was initiated by von Baer

(1828,1833) has been the subject ofnumerous researches. The resuits obtained have served

as the basic concept for the “classic” of hepatic histogenesis. This concept can be briefly

summarized as fohlows. The hiver is formed from two distinct primordia, the hepatic

diverticuhum of endoderm origin and the vascular network of mesoderm origin. As shown

in figure 15, in mouse, at the embryonic day 8.5 to 9.0 (E8.5 to 9.0), the liver endodermal

epithelial celis receive stimuli from the mesodermal ceils that cause changes in the gene
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Figure 15. Liver sinusoidat development. Repwduced from: Zaret KS. Nature Reviews Geoeucs 3. 499. (2002)

expression nd the ceil djvisiotl ofendodermal cl1s. Newly speified hepatic ceils begin to

multiply as a thickenin of Ihe ventral eqdodçrmal epitheli4m. At the day F9.5, the
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hepatic ceils continue to multiply as a bud of celis that proliferate and migrate into the

surrounding septum transversum mesenchyme. At the same time, nascent and irregular

sinusoids are formed with mostly primitive vascular structures lined by ECs (marked by

PECAM-1). At this stage, hematopoietic ceils (marked by VEGfR2) could only be

occasionally observed to invade these sinusoids. At the day ElO, the hematopoietic ceils

could be clearly detected in the sinusoids. Finally, the hepatic ceils form a new domain of

condensed tissue mass that becomes vascularized (Zaret, 2002; Matsumoto et al., 2001).

While bone marrow remains the major site of hematopoiesis throughout the entire

aduit life, during the fetal phase, the liver is the prominent site of hematopoiesis shifted

from the YS and SP/AGM that function at pre-liver stages of hematopoiesis (Garcia

Porrero et al., 1995; Dzierzak et al., 1998). Up to 60% of the fetal liver mass consists of

blood ceils. The hematopoietic activity is determined by the number of islands and their

respective volumes. In humans, hematopoiesis attains its maximal activity toward the 6th to

7th month in the embryo and then regresses rapidly. The fetal liver at birth only contains a

few disseminated islands, which disappear with the passing first weeks. The question of

the origin of liver hematopoietic stem celis has stimulated much research. Jolly and

Saragea (1922) admit the possibility oftwo different stem ceil origins: either these ceils are

the descendants of celis having migrated from the yolk sac or they directly derive from the

sinus cells. The majority ofauthors (Bloom, 1939; Gilmour, 1941; Maximow, 1909,1924)

consider the mesenchymal ceils of the hepatic parenchyma as the hemocytoblast source.

During the prenatal period, a large number of metabolic enzymes are induced within the

hepatocytes as the hematopoietic celis migrate elsewhere and the liver prepares to control

the metabolite and serum protein levels in the blood, to store glycogen, and finally to

detoxify blood with thanks to its special structure.
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1.7.2 Liver structure

Understanding the function and the dysfunction of the liver. more than most other

organs, depends on understanding its structure. The liver lies in the abdominal cavitv. in

contact with the diaphragm. Its mass is divided into several lobes. the number and size of

which vary among species. The major aspects of the hepatic structure inciude: ) the

hepatic vascular system and 2) three dimensional arrangements of the liver ceils. 0f

course, the biliary tree is also important. but it wiil flot be considered here. The liver

receives approximateiy 30% of the resting cardiac output and is therefore a very

vascularized organ. Uniike in any other organ, blood enters the liver via two separate ways

(Fig. 16a). 0f great importance is the fact that a majority of the live?s biood supply is

venous blood! Roughly speaking, 75% of the biood entering the liver is venous blood

coming from the gastrointestinal tract via the portai vein. The remaining 25% of the blood

supply to the liver is arteriai bi ood from the systemic circulation via the hepalic artery. The

liver is covered with a connective tissue capsule that branches and extends throughout the

substance of the liver as septae. This connective tissue divides the parenchvma of the liver

into very smali units cailed lobules. The hepatic lobule is the structural unit ofthe liver. It
a
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consists of a roughly hexagonal arrangement of plates of hepatocytes radiating outwards

from a central vein at the geometrical center. At the vertices of each lobule are regularly

distributed portal triads, containing a bile duct and a terminal branch of the hepatic artery

and the portal vein (Fig. 16b).

After ramification, terminal branches of the hepatic portal vein and of the hepatic

artery empty together as they enter sinusoids, leading to a mixed arterial-venous blood

perfusion of the liver (McCuskey, R.S. 1988, Wisse et al., 1985; McCuskey and Reilly,

1993) (Fig. 16c). The sinusoids are distensible vascular channels lined with highly

fenestrated ECs as well as other cells (described later), and bounded circumferentially by

hepatocytes. As blood flows through the sinusoids, a considerable amount of plasma is

filtered into the space between the endothelium and hepatocytes (the “space of Disse”),

providing a major fraction of the body’s lymph. Finally, blood flows through the sinusoids

and empties into the central vein of each lobule that empties to the hepatic vein. The

sinusoids are the principle sites for transvascular exchange between blood and hepatocytes.

In a normal situation, around 10-15% ofthe total body’s blood volume resides in the liver,

with roughly 60% of that in the sinusoids. The structure of the sinusoids is by all means

unique. In all mammalian livers, it is composed of 4 different cells: ECs, KCs, fat-storing

cells (also termed Ito cells), and pit cells (Balabaud, C. 1988) (Wisse et al., 1996;

McCuskey and Reilly, 1993). They form a functional unit together with parenchymal cells.

ECs, fat-storing cells, and parenchymal cells are all sessile cells. In contrast, KCs and pit

cells seem to be mobile cells, that are likely recruited from extrahepatic sources (bone

marrow), and adhering to the endothelial lining. Each cdl type takes a distinct position in

the liver and has its own specific morphology and functions, and no transitional stages
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exist between the cells. Understanding the function ofthe liver sinusoidal celis and KCs is

critical for appreciating the liver gland as a whole.

1.7.3. Functions of liver sinusoidal lining ceils (LSECs and KCs)

The LSECs are the most critical cells for the liver sinusoidal lining. They form a

fenestrated lining containing open fenestrations of 0.17 im in diameter that occupy 6-8%

of the surface. No intact basal lamina is present under these cells. They filter the fluids

exchanged between the sinusoids and the space of Disse through fenestrae (Wisse et al.,

1996; Wisse et al., 1985). The LSECs are endowed with a high capacity to phagocytose

large particles up to 200 nm in diameter (Steffan et al., 1986). Receptor-mediated

endocytosis of the LSECs occurs with a very high efficiency. Some receptors such as

mannose and scavenger receptors enable the LSECs to clear rapidly specific substances

from blood (Wisse et al., 1996; Nedredal et al., 2003). They also influence the function of

Ito celis that contain vitamin A and synthesize and secrete ECMs. For instance, the

scavenger receptor of ECs takes up N-teminal propeptide of collagen I. This makes a

cooperation between Ito ceils producing ECM and ECs clearing ECM to balance the ECM

components in the liver. They can produce some factors, for example, PGE2, IL-6, and

fl’1F-y. They are the only cells sharing antigens with a peripheral blood M0 subset which

has been shown to be capable ofpresenting soluble antigens (Nagura et al., 1986). Recent

studies have found that LSECs act as presenting celis that present antigens to CD4+ andlor

CD8+ T cells and thereby contribute to the immune tolerance of the liver (Knolle and

Limmer, 2001; Limmer and Knolle, 2001; Knolle and Limmer, 2003). More interesting

data revealed that liver ECs can influence hepatic parenchymal cells so as to promote the

liver organogenesis (Matsumoto et al., 2001). Notably, LSECs are peculiar celis with
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important metabolic products, taking part in the local cytokine cross-talk with other cells.

However, factors able to influence KCs are still remained unclear.

KCs are the hepatic M0s that reside in the lumen of the hepatic sinusoid, first

identified in the liver by von Kupffer (Kupffer 1876, Carr, 1977). Experimental studies

have shown that they locate in the sinusoids by a couple of physical positions like floating

in the lumen of sinusoids, touching the pad andlor body of the LSECs (MacPhee et al.,

1995). They are in close physical contact with the sinusoidal ECs but their exact role

remains unclear. They mainly accumulate in periportal areas to phagocytose and eliminate

particulate antigens or pathogens entering the liver along with the portal-venous blood

(MacPhee et al., 1992; MacPhee et al., 1995; Knolle and Gerken, 2000). In physical

situation, KCs migrate along the liver sinusoids acting as a “street sweeper”, removing

material from the luminal surface of the sinusoids (MacPhee et al., 1992). The migrating

KCs are also a major cause of flow intermittence in the liver sinusoids to promote contact

between passaging leukocytes and the LSECs (MacPhee et al., 1995; Limmer and Knolle,

2001). So far, three important functions of KCs have been recognized: clearance of

endotoxins from the circulation, production and release of soluble mediators such as

cytokines, and presentation of antigens. KCs can be activated by some factors, specifically

by endotoxins (Wisse et al., 1996). As a resuit of their activation, KCs secrete important

molecules such as TNF-Œ, IL-6, IL-1, and IL-10 (Knolle et al., 1995; Wisse et al., 1996;

Knolle and Gerken, 2000). It has been well documented that these released factors mainly

become beneficial for the host defence to kiil tumor cells but also, on the contrary, can

cause damage of hepatocytes. The latter constitutes a crucial factor in liver transplantation.

The IL-10 released from KCs could suppress CD54 and CD1O6 on the LSECs to decrease

the leukocyte adhesion to the LSECs (Knolle and Gerken, 2000). It could also
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downregulate the IL-1 and IL-6 production by LSECs to further influence Ito ceils (Knolle

et aÏ., 1995). These resuits support a clear molecular interaction between the KCs and

LSECs in the sinusoids (Limmer and Knolle, 2001). Since the activated M0s mediate

angiogenesis, questions arise: whether and how the activated KCs influence the function of

their adhered LSECs? Do the activated KCs mediate the formation ofthe liver vessels?

1.7.4 Hepatic Angiogenesis

1.7.4.1. Hepatic hemangiomas

In humans, hepatic hemangioma is the most common benign neoplasm of the liver.

Its incidence is estimated to be approximately 20% in the general population (Semeika and

So&a, 1997). The lesions seem to be stable and to be fatal only in 2.5% of large

hemangiomas (Zaftani, 1989), most later than 50 years old. However, large hepatic

hemangiomas have a mortality rate of 30 to 50 percent (folkman, 1995).

Hepatic hemangiorna, also called cavernous hemangioma. belongs to “endothelial

tumors of the liver” that also include rare tumors such as infantile hepatic

hemangioendothelioma, angiosarcoma, and epithelial hemangioendothelioma (Hobbs,

1990). In general, cavemous hemangiomas are pathologically large, exhibiting well

defined areas of blood-filled spaces lined with a single layer of endothelium separated by

fibrous septa. Large hepatic hemangiomas can host hemorrhage, thrombus, calcification, or

fibrosis (Semelka and Sofica, 1997; Stringer, 2000). In fact, infantile hepatic

hernangioendotheliomas and cavemous hemangiomas are similar lesions but they occur in

different age group and have the different histology. As its name indicates, infantile

hepatic hemangioendothelioma occurs in infancy. It is highly vascular and is either solitary

or multicentric. The vascular lesions contain multiple arterio-venous fistulas. Patients with
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multicentric lesions present with hepatomegaly and a high-output congestive heart failure

(Hobbs, 1990; Bun-ows et al., 2001). As many as 87% of these patients may also have

cutaneous hemangiomas (Hobbs, 1990). Cavemous hemangioma occurs in aduits. Small

tumors may be observed with the same prevalence in males and females. By contrast, there

exists a general agreement that large hemangiomas are more oflen symptomatic in women

and might be enlarge during pregnancy (Zafrani, 1989; Pepper, 2001; Kaido and Imamura,

2003). Occasional reports of large hepatic hemangiomas in patients taking oral

contraceptives (OC) or oestrogens have been published (Zafrani, 1989). Hence, one lias

been led to suppose that aduit hepatic hemangiomas are perhaps secondary to an estrogen

effect. In addition, adult hemangiomas are associated with hepatic focal nodular

hyperpiasia of the liver which is one kind of hepatic tumor. Studies found that six out of 26

hepatic hemangioma patients (23%) were affected with the later benign hepatic tumors,

and these six patients were women who had previously used OC. These results suggest that

the Iink between hemangiomas and hepatic tumors is probably not fortuitous, and that OCs

might facilitate its clinical recognition by an effect on the growth of the two tumors

(Zafrani, 1989).

As far as mice are concemed, hemangiomas have been reported to develop

spontaneously, but less frequently in the liver than they do tumors in hepatocellular origin

(Booth and Sundberg, 1995). However, in some experimental studies of carcinogens

involving several different background mice, higli hepatic hemangiomas have been

observed (Bannasch, 1983; Sato et al., 1984). For example, BALB/c mice treated with 1,2-

Dimethylhydrazine dihydrochioride (DMH) produced 100% incidence of hepatic vascular

tumors (Sato et al., 1984). Moreover, some genes were recently identified to be involved in

liver vascular defects. von Hippel Lindau (VHL) is a tumor suppressor expressed in most
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tissues and cell types (Kessier et al., 1995; Richards et al., 1996). The conditional targeted

dismption of this gene in the liver ied to severe hepatic cavemous hemangiomas of the

liver (Haase et al., 2001). TSC2 is another tumor suppressor and its mutations in humans

cause tuberous scierosis (TSC), a disease characterized by the development ofhamartomas

in various organs. In the mouse mode! with TSC2 heterozygous mutation (TSC2+/-),

hepatic hemangiomas were developed in 80% of the TSC2+/- mice (Kobayashi et al.,

1999), suggesting that the TSC2 is involved in hepatic hamangiomas in the mouse.

1.7.4.2. ilepatocellular carcinoma

In human beings, hepatocellular carcinoma (HCC) is one of the most common

malignant tumor in the world, accounting for an estimated 1 million deaths annually. Over

80% of HCC cases worldwide is developed through liver cirrhosis. Major risk factors for

HCC include chronic infection with hepatitis B virus (HBV) and hepatitis C virus (HCV),

alcohol abuse, and a repeated exposure to aflatoxin Bi (Kim et al., 2002). For experimental

carcinogenesis studies, HCC can 5e induced by some carcinogens in animais (Bannasch,

1983; Hara et al., 2000). Sakamoto et al. divided the development stage of HCC into

ordinary adenomatous hyperplasia (OAH), atypicai adenomatous hyperplasia (AAH), and

well-differentiated HCC depending on the cellular morphology in nodule lesions

(Sakamoto et ai., 1991).

HCC is generally considered as a typical hypervascuiar tumor (Nakashima et al.,

1999; Yarnaguchi et al., 1998). With a chronic injury, portai fibroblasts and Ito ceils can be

transformed into proliferative, fibrogenic, and contractile myofibroblasts by the TGF-f31

and PDGF released from hepatocytes and KCs in injured livers. As a result, the stimuiated

fibroblasts and Ito ceils may produce growth factors, cytokines, and proteinases and finally

remodel ECMs (Friedman, 2000). This fundamental change in ECM compositions affects
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the functions of ail the liver cells such as hepatocytes, LSECs, KCs, and Ito ceils. The

abnormal functions of these celis miglit impair the normal liver’s blood-supply system

including a degeneration of the portal veins and also increasing artery-like vessels (Matsui

et al., 1991; Ueda et al., 1992; Chia et al., 1995). The impairment ofthe blood supply may

induce hypoxia (Yamaguchi et al., 199$). Hypoxia can also be induced by an increasing

tumor mass per se from OAH, AAH, and early HCC (Kim et al., 2002). Hence, local

hypoxia may be a major stimulus to eventually induce angiogenesis in cirrhotic livers.

There exist many reports of VEGF expression and hypervascularity that have been

detected in the whole progress of ail stages of HCC, although the expression level of

VEGF varies during the different stages of hepatocarcinogenesis (Kim et aI., 2002).

Besides VEGf, other factors such as TGF, PDGF, and IGF do play an important role in

this angiogenic progress. On the other hand, angiogenic inhibitor-human macrophage

metalloelastase (HME), which partakes in angiostatin generation, is now known to be

significantly associated with hypervascular tumors (Kaido and Imamura, 2003).

Angiogenesis in the HCC probably depends on the balance between HME and VEGf gene

expression.

1.7.4.3. Hepatic angiogenesis in liver regeneration and some chronic

liver diseases

Partial hepatectomy (PH) is currently being considered as an appropriate model to

investigate physiological liver angiogenesis (Michalopoulos and DeFrances, 1997; Wack

et al., 2001; Drixler et al., 2002). following the PH in rodents, the proliferation of

hepatocytes starts with a maximum activity in periportal areas (Gerlach et al., 1997) and

meanwhile the reconstruction of sinusoids by ECs begins from these areas (Taniguchi et

al., 2001). The expression of several proangiogenic growth-factors and oftheir receptors in
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ECs has been recently characterized (Ross et al., 2001). Most ofthem are expressed at very

Ïow level in the resting liver ECs but are significantÏy increased and are tyrosine

phosphorylated during the regeneration of the liver (Medina et al., 2004). In rat, the VEGF

family is upregulated in periportal hepatocytes shortly afier PH (Taniguchi et al., 2001).

furthermore, the role of VEGF during liver regeneration was found to be beyond of the

simple stimulation of EC ceil proliferation: VEGFR1 primes LSECs to produce a series of

factors that can protect parenchymal ceils from injury and initiate regeneration (LeCouter

et al., 2003). Both Ang-1 and Mg-2 are increased later than the VEGf up-regulation (Sato

et al., 2001). PDGF and its receptors are also activated during the liver regeneration and

this activation plays a potential role in the maturation of the newly formed sinusoids (Ross

et al., 2001). Both FGFR and HGF/c-met particularly affect the hepatocyte regeneration

rather than the microvascular remodeling (Hioki et al., 1996; Ross et al., 2001). In mouse,

some proangiogenic modifiers such as MMPs, TIMPs, and uPA are also required for the

EC migration and for the angiogenesis during the later stage of PH (Knittel et al., 2000;

Nomura et al., 2002). Hepatic angiogenesis occurs on the top of that in some liver chronic

diseases such as chronic inftammatory liver injuries, chronic viral hepatitis, cirrhosis,

autoimmune liver diseases, and finally alcoholic liver diseases (Medina et al., 2004).

1.8. Female reproductive system and angiogenesis

The female reproductive organs mainly consist of ovary, utems, and placenta.

These are some of the few aduit tissues that exhibit regular intervals of rapid growth.

These are also highly vascularized organs and are subjected to high rates of blood flow.

Certain phases of reproduction, such as the repair of menstruating uterus and the

development of placenta, depcnd on physiological angiogenesis. The dysfunction of

endogenous angiogenic stimulators and inhibitors may underlie several female
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reproductive disorders, such as protonged menstrual bleeding and infertility (Folkman,

1995). b leam more about the mechanisms on bleeding and infertility, understanding the

structure of uterus is necessary.

1.8.1 Structure and function of uterus

In ail mammals, the uterus develops as a specialization of the paramesonephric or

mifilerian ducts, which gives rise to two main parts: the corpus (two uterine homs in

mouse) and the cervix (Mossman HA, 1987). As the corpus is a pertinent site occurring

angiogenesis, it will be mainly described here. The mature uterine corpus wall comprises

two functional compartments, the endometrium and the myornetrium. The endometrium,

which consists of epithelial celis, is the inner layer mucosal lining of the uterus. An

important feature of the endometrium is the presence of tubular glands, which dip down

from the surface into the underlying lamina propria of the coimective tissue. It undergoes

important cyclic changes (proliferative and secretion phases) during the menstrual cycle in

response to ovarian estrogen and progesterone (Gray et al., 2001). The blood supply in the

endometrium is very important in regard to menstruation and pregnancy. The growth of the

endometrial vasculature begins during the proliferative phase and then continues

throughout the secretory phase of the menstrual cycle in preparation for the implantation.

Meanwhile, the endometrium becomes thick and finally sheds to form menstruation, if not

implanted (Torry and Rongish, 1992; Zygmunt et al., 2003). Cyclic formation of new

blood vessels in the functional endometrium occurs to compensate the lost vessels. This is

a monthly cycle in human. The myometrium is a very thick layer of variably oriented

smooth muscle cells and blood vessels. It is remarkable for its capacity to undergo a great

expansion in order to accommodate the growing fetus during pregnancy.
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1.8.2 Uterus angiogenesis

Since endometrium exhibits a rapid cyclical growth and shedding throughout the

reproductive life of the female, it provides a valuable model for the study of normal

physiological angiogenesis. Three different timing of angiogenesis have been deduced

during the menstrual cycle in humans (Torry and Rongish, 1992). The first, which

commences during menstruation, is the repair of the vascular bed. The second must occur

in concert with the rapid growth of the ECs during the proliferative phase of the cycle. The

third phase in which angiogenesis occurs is the arteriole growth during the secretory phase

(Rogers and Gargett, 1998). Angiogenesis also manifests itself at the time of embryo

implantation and in the placenta afler pregnancy. Now the key question is how

angiogenesis occurs in the endometrium?

1.8.2.1. Macrophages and uterus

It is interesting to know the relationship between M0s and endometrial

angiogenesis because M0s are abundant in the mesenchymal and connective tissue-stroma

of the cycling and pregnant uterus. The human endometrium contains a significant

proportion of leukocytes (8-35% of alT celis). T-cells and M0s are commonly present,

although B-cells are absent. Approximately 20% of these are M0s. The absolute numbers

and proportions vary during both the menstrual cycle and pregnancy. Throughout

pregnancy, the number of M0s increases up to 10-15% of the total cells. In contrast to

human, less T-cells exist in the rodent while M0s are the most common resident immune

ceils widely distributed in the uterus (Mackler et al., 2000). They may account for nearly

10-15% of cells in the virgin uterus and raise up to 22% of cells in the pregnant uterus

(Hunt et al., 1985). The increased number of uterine M0s during pregnancy is confirmed

by celI counting in the tissue sections. They are distributed throughout the pregnant
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endometrium, as well as in stroma and in connective tissues belonging to the myometrium

(Mackier et al., 2000; Hunt et al., 2000). In addition, they can traffic between endometrium

and myometrium, and these dynamically disseminated M0s contribute to the onset of labor

(Mackier et al., 2000). Recent studies show that the uterine M0s can be activated and

regulated by hormones. They display an enhanced ability to phagocytose, and to produce a

wide number of growth factors, and lastly to synthesize an impressive number of proteases

(Hunt et al., 2000). Since M0s are known sources ofa number ofpro-and anti-angiogenic

factors (Sunderkotter et al., 1994), they seem to play a role in controlling endometrial

angiogenesis even if detailed studies are stili scarce.

1.8.2.2. Factors involved in uterus angiogenesis

As the overali control of endometrial growth and regression is primarily regulated

by the circulating levels of estrogen and progestrogen, the role of these steroids in

endometrial angiogenesis is worthwhile to be examined. Some studies indicated that

estrogenlprogestrogen per se do not regulate the endometrial angiogenesis (Goodger and

Rogers, 1994) due to highly varying EC proliferation data throughout the cycle. These

resuits are supported by a failure in detection of the expression of estrogen and

progestrogen in endometriat ECs (Rogers and Gargett, 199$). However, these studies are

contradicted by the following results. Progestrogen is expressed in endometrial ECs from

the fiflh to ninth week of pregnancy in human (Wang et al., 1992). In mouse models,

progestrogen has been shown to directly affect sponge angiogenesis assay as weIl as

endometrial angiogenesis stimulated by an intrauterine levonorgestrel exposure (Hague et

al., 2002). In addition, estrogen can dependently induce erythropoietin production and is

further implicated in uterine angiogenesis (Yasuda et al., 199$).
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Like other tissues, VEGfs and bFGfs appear to be major angiogenic factors in the

female reproductive organs. During the menstrual cycle, VEGF and bfGf were shown to

be increased three-fold in the secretory phase and to rise toward menstruation as compared

with the proliferative phase. Both progesterone and estrogen have been shown to induce

VEGF expression in human uterine stromal cells (Zygmunt et al., 2003). In mouse models,

VEGf is secreted by uterine natural killer (NK) cells during the mouse pregnancy and may

play inducing roles in uterine neovascularization (Wang et al., 2000). fGf was shown to

be upregulated by progesterone and prolactin in rat endometrium (Zygmunt et al., 2003);

but unlike VEGF, the changes of FGF levels may not necessarily indicate changes in

angiogenesis. In other words, along with VEGF, fGf probably participates in maintaining

a balance that enables angiogenesis to occur when required (Rogers and Gargett, 1998).

It lias been sliown earlier that the angiopoietin family is involved in the remodelling

ofvessels (Suri et al., 1996). Supporting this, Ang-2 mRNA was detected in ovary, uterus,

and placenta. These tissues undergo constant vascular remodelling with periods of

angiogenesis and vascular regression occurring throughout the reproductive cycle

(Maisonpierre et al., 1997). It seems likely that Tie-1, 2 and Ang-1, 2 may play a major

role in regulating the growth and regression of endometrial vasculature (Sato et al., 1995;

Maisonpierre et al., 1997; Hanahan, 1997; Zygmunt et al., 2003)

Although very little information has been published to date on the role of

endometrial angiogenesis inhibitors, anti-angiogenic factors could play a role in this

process as they do in general angiogenesis. In the human endometrium, TSP-1 is elevated

in the secretory phase as compared to the proliferative phase. ki in vitro study, TSP-1 is

further upregulated by progestrogen (Rogers and Gargett, 1998; Zygmunt et al., 2003). In

addition, the endometrium is a ricli source of t-PA and u-PA as well as MMP and TIIvIP,
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particularly around the time of menstruation (Koh et al., 1992; Chu Py et al., 2002; Vincent

et al., 2002); thus providing these proteins ample opportunity for a role in the regulation of

endometrial angiogenesis.
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Chapter 2:

Rational, Hypothesis, Objectives, and Overview of the Research

Although many researchers have turned their attention to the study of the roles of

Notch signailing in cancer and vascular disease, due to its fundamental function in ceil fate

decision, rnost experiments are exhaustively focused on the activation of the Notch

intracellular domain; however, a few groups found that the soluble extraceliular domain of

Notch ligands is implicated in Notch signalling (Qi et al., 1999; Hukriede et al., 1997; Sun

and Artavanis-Tsakonas, 1997). Interestingly, while studying retrovirus-induced T-cell

leukemia, Dr Joiicoeur’s team found that Notchi was truncated by viral DNA insertion, thus

generating overexpression ofNl and Niic domains (Girard et al.. 1996; Hoemann et al.,

2000). We hypothesized that Nl, as Niic, was involved in tumor formation. This

hypothesis was recently supported by Aster’s group (Weng et ai., 2004).

The main objective of this work centers on the generation of Tg mice (CD4C/N19

expressing Nl in T-cells and in celis of the macrophage (Mo)/dendritic lineage. Most

importantly, we wanted to identify the function of Notch ectodomain in thymoma formation.

The resuits obtained from the Tg mice make up the body of this thesis. Unexpectedly,

vascular disease, but flot thymomas, developed at high frequency in these Tg animais.

In chapter 3, vascular disease was predominateiy observed in the Tg liver. The liver

vascular defects are induced at an eariy embryonic stage and progress after birth. The

phenotype was generated into normal mice afier transplantation of bone marrow (3M) or

fetal liver (fL) ceils from Tg mice and stili developed in RagF’ Tg mice. These confirrn

that the disease was induced by hematopoietic celis, particularly myeloid cells. Abnormal

vessels were of recipient origin [lacZ (white)] observed in the nude mice transplanted with

ROSA26 X CD4C/NI Tg fL cells, indicating a paracrine loop acting in this phenotype.
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Consistent with these findings, transplantation of 1g peritoneal M0s into normal recipient

mice also induced abnormal vessels. In vitro, a deficiency of network formation with Tg

LSECs was observed by angiogenesis assay. An interaction between LSECs and Mgs was

shown by co-culture and conditioned media assays. These resuits show that overexpression

of N1EC in myeloid celis induces vascular malformations. Searching for molecules possibly

involved in this disease by DNA microarray analysis will lead to the identification of

candidates.

In chapter 4, sterile or less fertile Tg females were observed. Histological analyses

confirmed that the aberrant vessels presented in the 1g uterus and that enhanced ceils with

the appearance of M0s were observed in the 1g uterus and placenta. The uterine vascular

defects were reproduced in normal females transplanted with 1g FL celis, suggesting that

hematopoietic cells induced the uterine vascular defects, which might further affect fertility.

Identification ofmolecules involved in this phenotype will be interesting.

hi chapter 5, these mice were observed to facilitate tumor progression and

angiogenesis. In the mice treated with DEN carcinogen, more malignant multi-organ tumors

are induced in the 1g mice compared to the nlg mice. Severe tumor metastases in 1g mice

were shown in the model of transplantation of C3L5 breast tumor cells. Faster primary

tumor growth in 1g mice was found in the model transplanted with B78 melanoma celis. In

addition, increased vessels and necroses were observed in tumors presented in 1g mice.

Hence, overexpression of N1EC in myeloid cells is associated with tumor progression and

angiogenesis. The role ofM0s in this progression will be further identified.

The ultimate outcome of these studies is to rationally identify the implications of

N1EC and macrophages in human diseases and their potential for anti-angiogenesis and anti

cancer.
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Abstract

Whiie studying retrovirus-induced T-cell leukernia, it was found that Notchi was

truncated by viral DNA insertion, thus generating overexpression of Notchi extraceliular

(NEC) and intracellular (N) domains. We hypothesized that Ni EC as N’ C was involved in

tumor fonriation and we further generated Tg mice expressing NEC in T celis and in celis ofthe

macrophage/dendritic lineage (CD4C/NiIx’). Unexpectedly, no thymomas deveioped in these

Tg animais, but vascular disease did at high frequency.

Vascular disease was predominately observed in liver and found to be involved in

an aberrant angiogenesis. The liver vascular defects are induced at an early embryonic stage

and progress afler birth. The phenotype was generated into normal mice after transplantation

of bone marrow (BM) or fetai liver (FL) cells from Tg mice and stili developed in RagF’ Tg

mice. These confirm that the disease was induced by hematopoietic ceils, particulariy rnyeloid

celis. Abnormai vessels were of recipient origin [lacZ (white)] observed in the nude mice

transplanted with ROSA26 X CD4C/Ni Tg FL ceils, indicating a paracrine ioop acting in

this phenotype. Consistent with these findings, transplantation of Tg peritoneal M0s into

normal recipient mice aiso induced abnormal vesseis. In vitro, a deficiency of tube formation

with Tg LSECs was observed by angiogenesis assay. An interaction between L$ECs and M0s

was shown by co-cuiture and conditioned media assays. These results show that

overexpression of Ni EC in myeloid ceiis induces vascular malformations. Searching for

moiecules possibly invoived in this disease by DNA microarray anaiysis ieads to the

identification of candidates.

These resulis show that overexpression of NlE in myeloid ceils induce severe

vascuiar malformations. This nove! pathway may be activated in some human vascu!ar

diseases.
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Introduction

The Notch gene encodes heterodimeric transmembrane (TM) receptor that contains

extracellular domain (EC) and intracellular domain tIC). The NEC lias mainly tandem

epidermal growth factor (EGF)-like repeats. Mammals have four Notch genes (Notch-l, -2,

3, and -4) and two farnilies of Notch ligands designated “Delta” and “Jagged”. Upon

binding of the Notch ligands to the the NtC domain enters the nucÏeus and activates

transcription (Artavanis-Tsakonas et al., 1999; Kopan, 2002). The Notch pathway plays a

role in ce!! fate decision and this signalling pathway is thought to be invo!ved in cancer

and vascular disease (Mi!ner and Bigas, 1999; Kumano et al., 2003; Gridley, 2001a;

Ellisen et al., 199 lb; Joutel and Toumier-Lasserve, 1998).

For a constitutive!y active NIC can operate as an oncoprotein (Ellisen et al., 1991a;

Dievart et al., 1999, Girard and Jolicoeur, 1998; Girard et al., 1996), most studies on Notch

activation has been focused on the NK. Littie attention lias been given to tlie N’, aithougli

it serves as an important component of the Notch receptor. The might also play a ro!e

in tumor formation since the EGF-like sequences in the N play a common role in

providing sites for protein-protein interactions (Kelley et al., 1987). The goal of this study

was to test this idea with Notchl’ 1EC) directly in a mouse model.

In Drosophita, the NEC contains 36 EGF-like repeats, but no two are identical. It

can be invo!ved in binding of ligands (de Celis et al., 1993; Rebay et al., 1991) and

modified by Fringe (Flerning et al., 1997), where the Abruptex-gain ftmction Drosophila

Notcli alleles are clustered (de Celis and Bray, 2000). Some regions of the N may also

talk to other signaling pathways such as Wnt and Shh, then influence the intercellu!ar

interaction (G!ise et al., 2002; Wesley, 1999; Lee et al., 2000; PoweYl et al., 2001). Studies

C involving in vivo expression of artificia!!y ectodomain of Notch Ïigands in Drosophila and
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other systems have demonstrated both agonistic and antagonistic activities (Qi et al., 1999;

Hukriede et al., 1997; Sun and Artavanis-Tsakonas, 1997; Sakamoto et al., 2002; Li et al.,

1998). In human, two vessel diseases, CADASIL (cerebral autosomal dominant

arteriopathy with subcortical infarcts and leukoencephalophathy) (Spinner, 2000; Joutel et

al., 2000) and AGS (Alagille Sdrome) (Loomes et al., 1999; Morrissette et al., 2001), are

caused by mutations in ectodomain of Notch3 and Jagl, respectively. Given the known

implications ofthe extracellular forms ofNotch ligands in experimental systems, as well as

information on human diseases involving ectodomain ofNotch signaling, a soluble Nl

likely to play a genetic role between celi-ceIl interaction via molecular cross-talks.

In mice, while studying retrovirus-induced T-cell leukemia, Jolicoeur and we

colleagues revealed the presence of provirus insertional Notchl mutations in a high

proportion (57%) (Girard et al., 1996; Girard and Jolicoeur, 1998). They later showed that

these mutations represent two distinct classes, type I and type II (Hoemann et al., 2000).

“Type I”, a majority of the integration, occurred in genomic regions coding for sequences

between the 34th EGF-like repeat and the TM domain. Every tumor bearing this insertion

(i.e. L45 tumor celi une) expressed an abundant Notchl ectodomain named as N1(EC)Mt

(Girard et al., 1996). While the N1(EC)’ proteins processed from wild type were shed, the

N1(EC)Mut proteins were secreted in the medium of expressing celis (Hoemann et al.,

2000). Thus, secreted N1(EC)Mtt and processed N1(EC)t proteins may differently interact

with ligands ofNotchl and other molecules and further affect their signaling. However, the

role ofthe N1(EC)Mt in thymomas has not yet to be rigorously analyzed.

We hypothesized that as NIC, was involved in tumor formation and we

further generated Tg mice expressing N1EC in T cells and in celis of the

macrophage/dendritic lineage (CD4C/N1). The design of Nl’ was inftuenced by the
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discovery of N1(EC)MLt in the thymomas (i.e. in L45 celi une). Unexpectedly, vascular

disease, but flot thymomas, developed at high ftequency in these 1g animais. The

experiments presented below demonstrated that the vascular defects mainly arise from

vessel disruptions of 1g liver and show that N1EC causes these defects via its expression in

macrophages (M), thus influencing the defective liver vessel formation through a

paracrine loop. Several in vitro experiments with isolated LSECs and peritoneal

macrophages confirmed this paracrine mechanism.

Our resuits on these N1EC 1g mice are in agreement with the genetic studies of

Notch families in angiogenesis during deveÏopment, and also provide a model of

haemangioma in aduïthood, suggesting a new molecular mechanism for the Notchi

pathway in hurnan vascular diseases.

o
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Resuits

Construction ofCD4C/N1 1g Mice

To generate the CD4C/Ni’ transgene, a truncated Ni cDNA deleted of its TM and

cytoplasmic region was ligated downstream of the CD4C reguiatory sequences (Fig. lA).

This cDNA bas the capacity to code for almost ail the Ni EC protein, including ail the 34

EGF-like repeats of NI, but flot for its lin-i motif. Three independent founder lines

(F60788, F60787, and F98513) were established and routinely examined for signs of

disease.

Expression ofthe transgene

Tg expression was first assessed by Northern blot analysis on different tissues

(Fig. lB). Three founder unes (F60788, F60787, and F98513) expressed the expected 4.4

kb NlEspecific 1g RNA at high levels in the thymus and at lower levels in the peripheral

lymphoid organs. Expression was very low but detectable in other organs, including in the

liver. The expression was also detected in the bone marrow (BM) and in the E14.5 fetus

liver by RT-PCR (Fig. IC). The expected —180 kD N1 protein assessed by Western blot

analysis (Fig. 1D), was readily detected in the total and sorted CD4CD8 thymocytes and

in peritoneal macrophages. It was also weakly expressed in the liver.

The cell-type specificity of the CD4C regulatory sequences has been extensively

documented to be faithftil for immature CD4CD8 and mature CD4 T-cells as well as for

celis of the myeloid lineage, including macrophage and dendritic (DC) ceils (Hanna et al.,

1994; Haima et al., 2001). In situ hybridization (ISH) with Tg-specific hCD4 exon 1 probe

confinTled expression in celis morphologically appearing as macrophages (Supplement 1).

In the liver, neither hepatocytes nor liver sinusoidal endothelial cells (LSEC) express the

C transgene at detectable levels by I$H. However, interstitial ceils with the mohological
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appearance of Kupffer or macrophages express the transgene (Fïg. lE). As expected, the

isolated Tg KCs express the CD4C/N1 but flot nlg KCs as detected by RT-PCR (Fig.

1F).

Therefore, these resuits confirrn that the CD4C promoter drives expression of Ni in

the expected ceils, i.e. CD4CD8 thymic T-celis, CD4 T-celis and in ceils ofthe myeloid

lineage (macrophages, Kupffer cells) in the CD4C/N1 Tg mice.

The CD4C/N1 Tg mice develop severe vascular abnormalities in the liver

Clinically, the CD4C/N1 Tg mice look healthy and did flot deveiop observable

phenotypes after up to 12 rnonths of observation, except for a lower body weight and

smaller size (Table 1) as compared to the non-Tg littermates and except that fertility was

decreased (F60788) or totalÏy impaired (F60787) in Tg females.

At autopsy, a macroscopic evaluation ofthe CD4C/N1’ Tg mice revealed an absence

of lymphoid organ lymphoproliferation, but reveaied a severe liver vascular defect in a

high percentage (>97%) of Tg animais (Table 1) from the three founders, easily observable

after perfusion with Microfil®. Huge meandered spider-iike vessels, crawling on the

surface and along the edge of liver and seerningiy wrapping the organ, were observed (Fig.

2A.b). Some livers are additionally combined with tumor-iike cavities (Fig. 2A.c and

2A.e). Paradoxically, the liver vasculature within parenchyma showed fewer and shorter

branches (Fig. 2B. k and 1). Vascular malformations were aiso observed in other organs

of Tg mice (brain, heart, spleen, kidney and lungs), but the iesions were much milder and

at iower incidence (10-12%) than in the iiver (Tabie 1). However, in mice ofone founder

une (F98513) in which the liver phenotype was most prevalent, vascular disease in the

lung occurred at high frequency and these wcre relativeiy severe. In addition, a significant

proportion ofTg mice had an enlarged gallbladder (8/20) and spienomegaiy (15/30).
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The liver vascutar defects related to aberrant angiogenesis with enhanced

permeability

The formation of vessels is a two-step process: vasculogenesis and angiogenesis

(Carmeliet, 2003). To understand at which step (vasculogenesis or angiogenesis) the N11

interfere with vessels of CD4C/N1 EC Tg mice, we conducted additional histological

experiments. These analyses revealed a variety of vascular malformations. first, the

general organization of the lobules appeared abnormal with reverse lobules (that is portal

vein in the center of the lobule while central vein in the perilobular area), perilobular

sinusoid capillarization and reduced sinusoids in zone 2 (fig. 3B). Occasionally, dïsrupted

arteries were also detected (Fig. 3B). Second, the large vessels were not confined within

the liver parenchyma, as in non-Tg mice, but rather grew out of the liver, spread along the

edges and surfaces ofthe liver and tend to wrap the whole organ (Fig. 3A, B). Third, these

large vessels develop some irregular branchings inward, re-growing into the liver

parenchyma from the extemal surface (Fig. 2B). Very often these sprouting irregular

branchings were clustered and dilated (Fig. 28). fourth, vascular smatl vessels-derived

from larger vessels inside the parenchyma also gave rise to aberrant and clustered

capillaries distributed heterogeneously (Fig. 3A and B). Fifth, vessels were very

heterogeneous in their size, some lumen being distended and forming hemangioma-like

cavernae (Fig. 3A). Sixth, foci of accumulation of mononuclear cells intermixed with

capillary beads and surrounded by morphologically normal appearing liver tissues could be

observed (Fig. lE and Fig. 3A-B).

Irnmunohistochemistry (IHC) perfonued with monoclonal antibody Platelet

Endothelial Cell Adhesion Molecules-1 (PECAM-1) confirmed the irregular and huge

vessels on the surface of the liver, as well as heterogeneous capillaries within the liver
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(Fig. 3C.1). 1HC using the monoclonal antibody for a-smooth muscle actin (Œ-$MA)

showed an enhanced level in 1g liver tissues (Fig. 3C.2), indicating that the liver might

contain higher numbers of SMCs or myoblasts. In addition, the disrupted SMCs were

found around the walI of the large vessels, as well as within thrombi (Fig. 3C.2). To

confirm the disruption of $MCs and to know whether ECM is also disrupted, Masson’s

trichrome staining was further performed. With this staining, enhanced positive reaction

was showed in Tg liver, indicating both disruption of SMAs and ECM (Fig. 3C.2).

Together, these resuits suggest that remodeling defects of angiogenesis are occurring

in the liver ofthe CD4C/N1 Tg mice.

Malformations of vessels ofien Iead to enhanced vascular permeabiÏity in a number of

different conditions (Dvorak et al., 1999). We assessed leakage of 1g liver vessels using

Evans blue (EB) (Thurston et al., 1999). Higher amount of EB was detected in Tg liver

than in nTg liver (Supplement 2A). In addition, higher EB fluorescence was observed

beneath ofECs ofvessel wall ofTg liver. This was absent in nTg liver (Supplement 2B).

More importantly, EM analysis showed that a single red celi is entering and passing the

feneastrate. No similar phenomenon was found in the nTg liver (Supplement 2E). These

data suggest enhanced permeability of liver vessels in 1g mice. Interestingly, high

fluorescence was also unexpectedly observed in some Ms labeled or not by latex beads,

that were located in sinusoids (Supp3ement 2C and 2D). Altogether, both leaky vessels

and activated macrophages may lead to the accumulation of EB in liver.

The ilver vascular defects in the CD4C/N1 1g mice are already apparent during

early organogenesis and stili develop during aduit liver regeneration.

To determine whether this liver phenotype was related to a developmental defect, we

examined these 1g mice at earlier points and during the embryonic life. We found that at
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E16.5, the liver structure remained relatively normal, but already dilated vessels and

intense small vessels extending toward the liver capsule could be observed in Tg mice but

not in nTg mice (Supptement 3A). At day 6 postnatal, the phenotype was more apparent

and the normal structure of the Tg liver was disrupted and large vessels and capillarized

vessels were apparent on the liver surface, but flot in nlg liver (Supplement 3B). During

adulthood (at day 60) the lobules of 1g liver became progressively more disrupted: huge

vessels and tumor-like cavities fihled with blood and thrombi were grossly visible on the

liver surface. No such abnormalities were ever found in the nTg livers (Fig. 2A, B and

3A). This defect becomes more severe with age. Taken together, these results indicate that

this liver vascular phenotype is induced early during embryonic life and progresses in

severity as the 1g mice age.

To detemiine whetlier the vascular defects of embryonic liver were a pre-requisite for

the development of the adult liver disease, we took advantage of the well characterized

ability of the liver to regenerate afier hepatectomy. Two-rnonth old young aduit 1g mice

were subjected to partial hepatectomy (Supplement 4A) and sacrificed 20 days afier this

procedure to assess the regenerated lobule. In each mouse assessed (n=5) the regenerated

lobule was found to be smaller than the non-1g one (n=z4) (Supplement 4B). In addition,

gross exammation after Microfil perfusion showed severe vascular defects in 1g

regenerated lobules (Supptement 4C). Ihese were more severe than those observed in the

other non-regenerated lobules of the same mouse. Virtually no normal capillaries were

reconstituted during regeneration in hepatectornized Tg liver (Supptement 4C. g and h).

Ihese 1g regenerated lobes indeed show aberrant vessels emerging at the surface of the

lobes, indistinguishable from the phenotype observed in older Tg mice. In contrast, in nlg

regenerated liver, normal appearing capillaries were seen (Supplement 4C. c and d).
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These resuits suggest that the vascular phenotype of CD4C/N1 EC Tg mice can be elicited

during neovascularization in aduit life. They also show that the vascular defects observed

impact on hepatocyte growth.

Bone-Marrow (BM)-derived hematopoietic ceils trigger the lîver vascular defects.

The CD4C regulatory elements used to express the N1EC cDNA has been found to be

quite faithful in allowing expression of various surrogate genes in selected populations of

lymphoid (CD4 CD8, CD4 CD8 T celis) and myeloid (macrophages and DCs) ceils

(Hanna et al., 1994; Hanna et al., 2001). Their BM progenitors can reconstitute these

populations when transfected into lethally-irradiated syngeneic host.

To determine whether hematopoietic ceils or ceils of other lineages were responsible

for inducing this severe liver vascular phenotype, lethally irradiated C3H mice were

transplanted with 3M cells-derived from CD4C/N1 EC Tg and nTg mice. Six months after

transplantation, these transplanted mice were sacrificed. As expected, the expression ofTg

Ni EC RNA was detected in the thus and lymph nodes of these Tg-bearing recipients by

Northern blot (Fig. 4A.a). In addition, Tg RNA expression was detected in the peritoneal

MC1s and the liver of these mice using RT-PCR (Fig. 4A.b). These expression data

confirmed that these mice were successfully transplanted. Jnterestingly, all recipient mice

reconstituted with Tg 3M ceils, but none of those reconstituted with non-Tg BM celis,

developed a liver vascular phenotype indistinguishable from that described in non

transplanted Tg mice (Fig. 4B and 4C).

These results indicate that BM-derived hematopoietic celis expressing N1EC are

responsible for inducing these severe liver vascular defects.
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The liver vascular defects stili develop in CD4C/N1 Tg mice bred on Ragl’

background

b determine whether lymphoid or myeloid celis expressing the Tg Nl protein were

responsible for inducing the liver vascular phenotype, the CD4C/N1 Tg mice were bred

Rag-1-deficient background. These Rag-F’ mice are defective at producing immature

± + + ÷CD4 CD8 thymocytes and mature T-cells (CD4 and CD$ ) and B-ceÏls (Mombaerts et

al., 1992). Initially, mice were typed between 30-40 days and Rag-F’ 1g mice were found

at a much lower ftequency (0/80) than expected (15%) from Mendelian segregation

suggesting early deaths. By tau typing earlier, it was indeed found that the Rag-F’ Tg

mice were bom at the expected Mendelian ratio, but approximately 99% (15/16) ofthese

mice died in the first 5.5 days after birth (fig. 5A). A moderately severe liver vascular

phenotype, indistinguishable from that described in older wild-type Tg mice, could be

observed in Rag-F’ Tg mice (Fig. 5B). SirniÏarly, Rag-1 Tg mice, which survived

normally, also developed a liver vascular phenotype (Data not shown). Therefore, the

liver vascular phenotype which was almost identical morphologically in Rag-1’ and Rag

1 1g mice is unlikely to explain the very different lifespan of these two groups of mice.

The cause of the early death of Rag-F’ is under investigation. These data strongly suggest

that Tg-expressing lymphoid celis (immature CD4CD8 and mature CD4 T-cells) were

dispensable for the development of the liver vascular defects. Thus, myeloid BM

transplantable celis expressing Ni EC are involved in the development of the liver vascular

disease.

A paracrine loop induces the liver vascular phenotype in CD4C/N1F Tg mice.

The 1g myeloid celis expressing N1EC could affect liver vascular celis flot expressing

the transgene and induce them in a paracrine way to show these vascular defects.
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Alternatively, 1g expressing celis could themselves differentiate into vascular ceils with

abnormal functions. b distinguish between these two pathways, three different

experiments were set up.

Since both LSECs and KCs are the liver lining celis and interact physically and

functionally together (MacPhee et al., 1992; MacPhee et al., 1995; Knolle and Gerken,

2000), it is interesting to lmow what are the physical relationship between the LSECs and

the KCs in our Tg mice. b investigate this possibility, electronic microscopy of liver was

performed. Clearly, KCs exist in the sinusoids via at least three different maimers: isolated

in the sinusoids without interacting with endothelial celis, Iying on the foot of the

endothelial ceils, and directly touching the body of the endothelial celi (Fig. 6A). While

one KC was easily seen in the nTg sinusoid, two or three KCs were oflen found in the Tg

sinusoid (Fig. 6A). These data demonstrate a physical interaction of the LSECs and the

KCs existing in both nlg and 1g liver sinusoids and more KCs in the Tg liver.

In order to know the vessel defects induced by endothelial celi per se or by transgen

expressing myeloid celi, secondly, chimeric mice were generated by frising (ROSA26 X

CD4C/Nl’) Fi Tg embryos with normal C3H embryos (Fig. 6B.1). ROSA26 is a good

model to monitor the origin of embryonic stem celis which are r-gal-positive (Zambrowicz

et al., 1997; Friedrich and Soriano, 1991). If Tg celis act through a paracrine pathway,

abnormal liver vessels would be expected to be derived from both Fi 1g and normal C3H

celis, that would be expressing the ROSA marker, J3-galactosidase. On the other hand, if

N1EC favors the abnormal differentiation ofprecursors into abnormal vessels, the abnormal

liver vessels would be expected to be derived only from the 1g parental ceils, that would

be flot expressing the ROSA rnarker. As expected, the liver vascular defects were

generated in the ROSA26 X CD4C/N1’ chimeras, which were large vessels observed on
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the surface of the liver (Fig. 6B.2). Importantly, the cytoplasm of the endothelial celis on

these defected vessels wcre blue as detected by 3-ga1actosidase staining and nucicar fast

red staining (Fig. 6B.2). These resuits indicted that these endothelial cells are derived from

normal C3H ceils. Thus, a paracrine loop probably induces the liver vascular defects.

b confirm the chimera resuits, finally, fetal liver celis derived from ROSA26 X

CD4C/N1 embryo were transplanted to nude mice (Fig. 6C.1). The nude mice were used

as hosts mainly to avoid rejection after injection. If Tg ceils act through a paracrine

pathway, vessels that are originated in the nude mice would be expected to be affected. In

this case, the affected vessels should be -ga1actosidase staining negative and not show

blue color. As expected, the vascular abnormalities were strikingly induced in the

recipients transplanting liver ceils derived of ROSA26 X CD4C/Nl’’ embryos, with large

vessels reveaÏed at the edge of the liver. More importantly, these vessels showed white

color that indicated an origin of the host. Meanwhile, they were accompanied by blue color

cdl populations supposed from the donors (Fig. 6C.2). With the liver section, all the

abnormal vessels from the mice assessed stained negative for p-gal activity, while other

infiltrating cells, presumably myeloid and lymphoid ceils, stained positive (Fig. 6C.3).

These resuits indicated that the defective vessels were derived from the recipient non-Tg

mice, thus strongly suggesting that the vascular disease is induced through a paracnne

loop.

Taken together, the defective vasculatures in the Tg liver were not caused by

endothelial cells per se, but induced by other transgene expressing cells.

Macrophages are sufficient for causing the liver vascular disease.

following the observation of a paracrine loop, we next search for the identity of the

BM-derived expressing cells causing the disease. We hypothesize that the 1g macrophages
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act as paracrine ceils in order to affect the endothelial celis and further to cause the

defective vessels: (1) The macrophages are expressing the CD4C/N transgene in the

liver and in other organs, as detected by in situ hybridization (Fig. lE and supplement 1).

(2) The Kupffer celis purified from the CD4C/N1’ Tg liver strongly expressed the

transgene as detected via RT-PCR (Fig. 1F). (3) Higher number of macrophages were

observed in the Tg than in the nTg liver, as detected by histologicat and

immunohistochemical analysis (Fig. 7A), as well as by electronic microscopy exarnination

(Fig. 6A). (4) The liver vascular phenotype stiil persisted in the Tg-bearing mice without

T-cells (Fig. 5B and 6C). (5) Macrophages play an important role in the regulation of

angiogenesis (Sunderkotter et al., 1994).

In order to confirm this hypothesis, we transplanted macrophages into normal C3H

mice. If macrophages act as paracrine ceils, the liver vascular phenotype should be

reproduced in the mice transplanted with Tg macrophages. Peritoneal macrophages were

isolated and then injected into the C3H mice through the tau veins. One to three months

after the transplantation, the mice were killed. As expected, the liver phenotype was

induced in the C3H mice transplanted with the Tg macrophages but not with the nTg cells

as detected by macroscopic analysis (Data not showu) and Microfil® (Fig. 7B). As seen in

the CD4C/N1’ Tg liver, big vessels were growing out from the liver and then lay on the

surface of and at the edge of the liver (Fig. 7B). These abnormalities of the vessels were

further confirmed by histological analysis (Fig. 7C).

Therefore, macrophages are sufficient for inducing the liver vascular phenotype in

normal C3H mice as found in the Tg mice though the phenotype is much less severe.

109



Enhanced KCs and decreased LSECs were observed in the 1g liver

With the aim of confirming the paracrine pathway reveaÏed in vivo, we planed to

purify the LSECs and KCs from the liver via MACS in order to perform some in vitro

experiments as described in the following. The livers were digested with the collagenase

IV and Dnase A. After centrifugation with matrizamide, larger numbers of no parenchymal

liver cells (NPLCs) were obtained from the Tg livers than from the nTg livers (Fig. sA).

Interestingly enough, through FACS analysis, a higher percentage (47.2%, n=3) of the Tg

Mac-1 positive ceils was displayed than for the nTg celis (32.2%, n=3). Conversely, a

lower percentage (49.7%) ofTg ICAM-1 positive celis showed up than for the nTg ICAM

1 ceils (71.1%) (Fig. 8B). Consistent with these resuits, more Mac-1 and less ICAM-1

labeling celis were obtained from the Tg NPLCs than from the nTg NPLCs through MACS

separation (Fig. $C), suggesting enhanced macrophages and decreased normal endotheliaf

celis in the Tg livers. These data confirm the in vivo resuits in which more macrophages

were observed by EM and less normal branches of the vessels were shown by Microfil® in

the Tg livers.

Dysfunctional tube formation wïth the 1g LSECs and enhanced adhesion of 1g

macrophages onto LSECs were observed by in vitro Assay.

A fundamental role of endothelial celis is to form vessels in vivo (Risau, 1995;

Folkman and DAmore, 1996). In order to investigate the functional difference between the

nlg and Tg LSECs in vitro, angiogenesis assay was performed with the purified LSECs

via MACS. It was observed that less alignments, branches, and tubes were formed by the

Tg LSECs on the angiogenesis assay kit at different time (from 1 to 9 hours afier the

culture) compared to the nTg ceils (Fig. 9A, B, and C). This feature of less-number signs

is not due to the lesser number of Tg ceils (fig. 9D). These results suggest that the Tg

110



LSECs are functionally different from the nTg LSECs in vitro, matching up the in vivo

vascular phenotype displayed in the Tg liver.

To confirm the paracrine loop, that is acted through the interaction between the

LSECs and KCs, co-culture assay with LSECs and peritoneal macrophages was conducted.

After four hours of co-culture, it was found that more clusters of Tg macrophages adhere

onto LSECs than those ofnlg macrophages (Fig. 1OA). Interestingly, the most number of

clusters was found in the group with Tg macrophages and Tg LSECs (Fig. 10). These

resuits suggest enhanced adhesion of Tg macrophages onto LSECs. Furthermore,

myeloperoxidase activity confirrned high adherence of Tg macrophage and the highest

activity detected in Tg macrophages co-cultured with Tg L$ECs (Fig. lOB). These resuits

match up the physical interaction between LSECs and KCs, observed in vivo, also imply a

more important molecular interaction between the activated Tg macrophages and LSECs.

Supernatants from the Tg macrophages inhibit the growth of the nTg LSECs.

b further elucidate the paracrine pathway observed in vivo, a conditional media assay

was performed with supernatants from the peritoneal macrophages derived from the nlg

and Tg mice. Surprisingly, whiïe the normal LSECs treated with a normal media and the

nTg macrophage supernatants were confluent afier 5 days culture (Fig. lia), those treated

with the Tg macrophage supematants exhibited a very sparse distribution (Fig. 11h). In

contrast to a figure of 1X106 LSECs treated with the nTg macrophage supematants, 5 x10

celi amounts appeared for the LSECs treated with the Tg macrophage supernatants (Fig.

lld). Therefore, the Tg macrophage supernatants inhibit the LSECs growth in vitro,

supporting the less tube formation with the 1g LSECs, and providing an evidence on a

paracrine loop acting on the defective vessels ofthe Tg mice.

111



Molecules possibly required for the vascular phenotype were detecteil in

macrophages and LSECs.

Some effectors of angiogenesis, such as VEGF, angiopoietin, and ephrin, have been

reported to induce somewhat similar aberrant vessel growth when overexpressed locally

(Yancopoulos et al., 2000; Eriksson and Alitalo, 1999), although neyer specifically in the

liver as observed in CD4C/N1 1g mice. We measured levels of some of these factors

(Supplement 6) in the peritoneal macrophages and LSECs by RT-PCR. Almost ail factors,

except for Ang-2 and bFGF, were detected in macrophages. Only Ang-1 was lightly

increased in the Tg macrophages comparing to the nlg ceils, no obvious difference for

other factors such as VEGf was detected between the nTg and 1g macrophages. So far, it

was found no detectable difference of Flk-1 in the purified LSECs between nTg and Tg

mice (Supplement 6). We also measured the levels of VEGF family, angiopoietin family,

as well as Eph B4 in liver sections by ISH. No obvious differences were observed by this

analysis, with each ofthese probes between Tg and non-Tg mice (Data flot shown).

Since N1EC protein lias been shown to be released from celis (Hoemann et al., 2000),

it could interact with extracellular molecuies such as its iigands, especially those already

known to be involved in vascular formation such as Delta4 and Jagl. We conducted RT

PCR to measure the levels of some Notch signai pathway (Supplement 6) in peritoneal

macrophages. No detectable Notchl intracellular domain was found in both nTg and Tg

macrophages, exciuding that Nl protein activates macrophages through Notchi receptor

(Supplement 6). D114 expression was shown to be indistinguishable between nTg and Tg

macrophages, suggesting tliat it is not invoived in the activation of Tg macrophages. No

D114 expression was detected in LSECs, supporting that LSECs are not arterial celis

(D (Supplement 6). So far, Jag family has not yet been successfully detected by RT-PCR. We
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also performed ISH on liver sections with probes derived from Delta4 and Jagi. Delta4

expression was flot detected in control non-Tg nor in 1g livers (Data flot shown). The

diseased Tg portai triads gave a seerningly stronger expression of Jagi than non-Tg mice.

(Data flot shown). Identification of other possible molecules invoiving angiogenesis is

ongoing with heip ofDNA microarray analysis.

Therefore, neither VEGF nor endogenous Notchi is activated in the 1g macrophages.

Other factors such as Jagi and MMPs rnight play a role, at least part, in this disease.

113



Discussion

CD4C/N1’ mice as an animal modet for Iïver vascutar patterning defects sïmilar to

human hemangiomas

We demonstrate here that, while thymomas were flot observed in the CD4C/N1

Tg mice, liver vascular patteming defects are highly (97%) present in these mice in

contrary to our expectation (Figure 2). The defective vascular pattems in the liver are

mainly classified into three classes (Table 2): (1) Huge meandered vessels on the surface/at

the edge of the liver. (2) Tumor-like cavities accompanying superficial vessels. (3)

Malformations of capillary with the normal appearance ofthe liver.

The liver vascular defects observed in the CD4C/Nl’ are similar to “liver

hemangiomas”, a rare manifestation of the hurnan disease, because (1) these defects

possess some pathological characteristics of general hemangioma: cavity-like lumen fihled

with thrombi and cavemous vessels formed by single layer of ECs (Semelka and Sofka,

1997; Burrows et al., 2001); (2) perilobular capilÏarized sinusoids shown in our Tg mice

are characteristics of liver haemangioma (Iqbal and Saleem, 1997); (3) the affected

CD4C/Nl’ Tg mice look healthy afier up to 12 months of observation, clinically

supporting haemangioma not influencing life-span so much (Iqbal and Saleern, 1997). In

fact, the vascular defects observed in CD4CfNl’ Tg mice are reminiscent of the typical

mouse liver haemangiomas observed in the mice with a germ-line Tsc2 mutation and the

mice with targeted inactivation of VHL (Kobayashi et al., 1999; Haase et al., 2001).

However, sorne differences between these liver vascular defects and typical hernangiornas

exist. (1) A focal tumor or multifocal tumors are frequently observed in a typical liver

haemangioma in either humans or mouse (Burrows et al., 2001; Greer et al., 1994; Haase

C et al., 2001). However, the defective vessels are homogenously spread to the entire liver of
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CD4C/N1 1g mice. (2) Whi!e a caveneous haernangioma is the most ftequently

occurring typical haemangioma (Iqbal and Saleem, 1997), supcrficial huge vessels are

predominantly displayed in the CD4C/N1’ Tg mice.

Thus, the liver vascular disease observed in the CD4C/N1 EC Tg mice is beyond of a

typical liver haemangiorna and disp!ays a complex model.

Angiogenesis process, but not vasculogenesis, is affected in the CD4C/ N1 Tg mice

As seen in other Notch-ligand deficient and transgenic mice (Krebs et al., 2000;

Xue et al., 1999), the vascutogenic formation ofthe liver vessels are also unaffected in the

CD4C/N1 Tg mice, but there is a failure to reorganize these vessels to normal branches

and capillaries. Hence, N1EC is flot required for vasculogenesis but essential for

angiogenesis. The classical mechanism of angiogenesis is sprouting (K!agsbnin and

D’Amore, 1991), meaning that a new branch is formed from an existing vesse! by

migration and proliferation of ECs and disruption of ECM. However, in addition to

sprouting, it is now increasingly recognized that other mechanisms exist for the creation of

new Nood vessels from the existing vasculature. Such processes is no-sprouting

angiogenesis inc!uding vessel elongation (Ausprunk et al., 1974) [termed pruning (Risau,

1997)] and intussusception (Burri and Tarek, 1990). Elongation means that vessel is

widening but not branching in growing tissues. Intussusception is defined that the lumen of

the vessel is divided into two intemally by a wall of endothelial celis. As widening and

elongating vesse!s are observed in 1g !iver, non-sprouting angiogenesis may be involved in

the CD4CINl 1g model. Matrix dismptions around vesse!s were detectable in the

CD4C/N1 EC 1g !iver, further confirming the aberrant angiogenesis. The proteases re!eased

via the activated macrophages may inappropriately degrade the ECM and cause too much

ECM deposition. This further influences the angiogenesis process. The defective
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endotheliaî ceils (defenestrated) may influence the cooperation between endothelial celis

and Ito ceils. They cannot clear the ECM produced by Ito ceils and resuit in perisinusoidal

fibrosis (Wisse et al., 1996; Saile et al., 2002). In addition, due to some signal disruption,

e.g. Ang-l, the smooth muscle cells or pericytes may flot be recruited correctly to the

endothelial ceils. Therefore, the matrix disruptions observed in the CD4C/ N1EC Tg liver

may be either a cause or a consequence ofdefective angiogenesis.

McIs, but flot T-cells, are key mediators to provoke a vascular disease in the liver

Even though both purified DP T-cells and peritoneal macrophages express the N1EC

transgene detected by RT-PCR or Western blotting, only the cells with morphological

appearance of macrophages express Ni EC detected via 15H. This indicates that the

expression ofthe transgene in the macrophages is stronger than that in the lymphocytes.

The outstanding role of Ms in the liver vascular phenotype bas been corroborated

by several experiments: (1) 3M and FL transplantation has reconstituted the liver vascular

disease. (2) This disease was also reproduced in CD4C/N1’ X Rag-F’ mice. (3)

Peritoneal macrophage transplants have yielded similar liver phenotype though much less

severely. Therefore, MDs are key mediators for the liver vascular disease observed in the

CD4C/N1 Tg mice. The following reasons may explain the importance of the

macrophages for the liver vascular disease. (1) Although Mts are not angiogenic per se,

they do have the potential to become active in response to some appropriate stimuli

(Sunderkotter et al., 1994). The NlE transgene may be a stimulator to activate the Tg

macrophages in the CD4CJNI EC mice. (2) The activated Ms secrete a myriad of factors

and are tightly involved in angiogenesis (Sunderkotter et al., 1994). (3) MIJs are residing

in ah tissues in greater numbers than other blood-borne celis. lmportantly, eighty percent
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of the body’s Ms is present in the liver (KnolÏe and Gerken, 2000), coinciding with the

worst disease affecting the liver of CD4C/N1 EC Tg mice.

Why does the phenotype mainly occur in the Jiver?

Endothelial celis are distributed in almost each organ of the body, but their

heterogeneity depends on the different microenvironrnents, allowing them to acquire the

organ-specific function, even within different regions of the same organ (Knolle and

Limmer, 2001; Gao and Williams, 2001). Consistent with this fact, the vascular defects are

observed in several organs of the CD4C/ Ni EC 1g mice, but the worst phenotype is being

in the liver. The potential differences might arise from the following reasons. First, the

liver is a capillary meshwork ofthe body (Risau, 1997). The specific endothelial ceils and

the KCs in the liver may discriminate the liver from the other organs. Coinciding with

these heterogeneities ofthe LESCs and the KCs in the liver (MacPhee et al., 1992; Knolle

and Gerken, 2000), heterogeneously defective capillarized sinusoids are observed in the

different zones of the lobule of the Tg liver. A physical interaction between LSECs and

KCs, previously shown by in vivo microscopy (MacPhee et aI., 1992; MacPhee et al.,

1995), is confirmed by our electron-microscopy exarninations. Since this interaction is

unique to the liver because of the liver-specific microenvironment (Limmer and Knolle,

2001), it may be further beyond a physical contact and cause molecular interactions letting

the liver vessels more subject to be affected than the others. In fact, sorne molecular

interactions between them have already occuned, for instance, IL-10 secreted by KCs can

act on the LSEC function (Knolle and Gerken, 2000). Since many molecules (such as TNF,

IL-1, and IL-6) secreted by the activated macrophages can participate to angiogenesis, the

activated Kupffer ceils may also release some factors so as to influence the function of the

Tg LSECs and further mediate the vessel formation of the 1g liver. Secondly, liver
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specific pro-angiogenic factors such as ANGPTL3 (Goumans et al., 2002) might take part

in the severely vascular defects of the liver. Finally, the Ito celis, considered as liver

specific pericytes, might contribute to liver-angiogenesis through additional mechanisms

different from those usually attributed to microcapillary pericytes (Medina et al., 2004).

Hence, albeit the expression ofthe N1EC in the liver seems weak, the liver-specific

endothelial celis together with Kupffer ceils, the unique interaction of LSECs and KCs, the

specific liver-proangiogenic factors, and finally the specific liver-pericytes ail in synergy

or not may be sufficient to make the worst vascular phenotype occur in the Tg liver.

The Notchi ectodomain is requfred for liver vascular patterning defects

The emerging role of the Notch receptors in the vessel development lias been well

documented during the past few years. As similar phenotypes were observed in both loss

and gain-of-function ofNotch (Krebs et al., 2000; Uyttendaele et al., 2001), the conclusion

was drawn that the appropriate levels and regulations of the Notch signaling are necessary

for the vascular development (Gridley, 2001). Almost all these experiments are focused on

the activation of Notch intracellular dornain. Up to now, there is only one mouse-model

exclusively concerning the function of the ectodomain of Notch pathway, that is to say

Notch3E transgenic mice, in which the vascular phenotype of the human CADASIL is

successfully regenerated (Ruchoux et al., 2003). To our knowledge, no other published

report demonstrates the role for the ectodomain of other Notch receptors (1, 2, and 4) in

vessel development and diseases. For the first time, our results show that the

overexpression of the Notchi ectodomain can be involved in hemangioma-like disease in

aduit mice. In fact, Notch-deficient mice (Swiatek et al., 1994; Krebs et al., 2000) were

generated by mutations sited within the EGF-like repeats, thereby indicating a role for the

extracellular domain of Notch in the vessel formation. More over, a couple of in vitro
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experiments showed that the soluble extracellular domain of JAGY is implicated in the

angiogenesis process (Small et al., 2001; Lindner et al., 2001). In addition, recent

experimental studies revealed that soluble fragments of the extracellular domain of some

factors such as VEGF, ephrin, and Ang-1 act as dominant negative factors in angiogenesis

assays (Kystone meeting-Angiogenesis, 2004). Therefore, as for other soluble factors,

N1EC is also required for the maintenance ofthe vasculature, even in aduits.

Although some studies indicate that VEGF is the upstream of Notch-intra signaling

pathway, no detectable changes of VEGF were found between the populations of non-Tg

and Tg macrophages. Contrary to the function of VEGF which increases the number of

vessels (Yancopoulos et al., 2000), the number of normal branches of the vessels in the

CD4C/NI’ 1g liver is decreased. That effect is further confinned by less tube formation

of 1g LSECs in in vitro angiogenesis assay. These outcomes suggest that VEGf may be

implicated in the function of Notch intracellular domain, but flot necessarily in the Notch

extracellular domain. On the other hand, huge vessels appear in the CD4C/N1 EC 1g liver.

This is reminiscent ofthe role ofAng-1 in increasing the size ofthe vessels. Interestingly

enough, elevated levels ofAng-1 were detected in Tg macrophages as compared to non-Tg

ones. It is hypothesized that the Nl expressed in the 1g macrophages enhances the levels

of Ang- 1, the latter may trans-function on the liver endothelial celis. The detailed

mechanism between them will prove to be interesting in the near future.

Following a failure to recruit smooth muscle celis to the vessels and superficial

vessels, NlE may consequently be related to the PDGF family.

The deduced mechanism involved in the liver vascular defects present in the

CD4C/N1 Tg mïce

In contrast to the Notch expression in the endothelial ceils in other mouse models
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(deficient or Tg mice with Notch receptors), the transgene N1EC is mainly expressed in

macrophages rather than in endotheliaÏ celis. Hence, the vascular disease caused by N1

does not seem to be induced by the endothelial ceils per se. We are presuming that a

paracrine pathway between LSECs and macrophages might play a key foie in this model.

This hypothesis is criticaliy proved by FLT conducted by the N1EC X ROSA as donors and

nude mice as hosts, as well as the peritoneal macrophage transplantation. These resuits

indicate that the interaction between LSECs and macrophages is crucial for inducing the

liver phenotype. 0f great importance, further in vitro experiments show that more clusters

of Tg macrophages adhere to Tg LESCs observed in co-cuiture assay. This tends to

indicate that besides a physical interaction, a molecular interaction may exist between two

types of celis, thougli the exact molecular mechanisms stili remain unclear. The inhibition

of the growth of LESCs treated with Tg macrophage supematants further confirms the

paracrine pathway even without a physical contact between the two groups ofcells. Thus, a

deduced mechanism is: The macrophages are originally activated by the NlE transgene.

The activated macrophages then release some factors, which interact with the liver

endothelial cells and then influence the latter’s function. At the end, the morphology ofthe

liver vessels is changed by the activated macrophages through a paracrine mechanism.

o
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Materials and Methods

Mice. The C3H/HcN and Ragl genc-deficient mice were obtained from Harlan and the

Jackson laboratory (Bar Harbor, Maine) respectively. The RagF’ mice were bred as

heterozygous for at least 6 generations on the C3H/HeN background. The ROSA26 mice

were kindly obtained from Dr. David Lolmes, formerly from our Institute.

Transgene construction and generation of CD4C/Nl 1g mice. A 4.42 kbp fragment

encoding the Notchl ectodomain (Ni) was generated by HindIIllStuI digestion of the

Notchi full-length cDNA and ligated through EcoRT to the 15 kbp CD4C regulatory

sequences. This CD4C promoter represents a chimera between the mouse CD4 enhancer

and the human CD4 promoter (Hanna et al., 1994). The resulting 20.3 kbp CD4C/N1

recombinant DNA was excised from the plasmid and microinjected into the pronucleus of

(C57BL/6 X C3H) F2 one-celi embryos. Tg founders were identified by tau DNA typing.

They were bred on the C3H/HeN background.

Generation of chimeric mice. Chimeric mice were generated by aggregating morulas

pairwise, as descnbed (Hogan et al., 1986). Embryos (2.5 days postcoitum, dpc) were

treated with an acidic Tyrode solution to remove the zona pellucida of precompacted (4-8

celis) embryos. Pairs of embryos (CD4C/Nl1 X CD1) and (ROSA26 X CDI) were

incubated to aggregate into blastocysts, which were then transferred into CD1

pseudopregnant female mice.

RNA purification and Northern blot analysis. RNA from different celis and tissues was

isolated using Trizol (GibcoBRL) and then 15-20 jig from each sample was

electrophoresed on formaldehyde agarose gels and processed for hybridization using a 32P-

labeled probe, essentially as described (Girard et al., 1996). Probes were the 1.9 kbp probe
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M corresponding to the BamHI-BamHI fragment of the fufl-length Notchi cDNA (Girard

et al., 1996).

RT-PCR analysis. Total RNA was extracted from tissues or ceils using Trizol (A2). RNA

(1 j.ig) was added to RT-PCR reactions containing the indicated primers at a concentration

of 0.6 j.iM, essentially as described (Girard et al., 1996). Primer sets for sense (S) and

antisense (AS) amplifications for the following genes were used:

Name of gene Primers
CD4C/N1 CCCCACTGGGCTCCTGGYGCAGC (S)

GTATGAAGACTCAAAGGGCAG (AS)
Mouse Notchi TGTGACAGCCAGTGCAACTC (S)

TGGCACTCTGGAAGCACTGC (AS)
Mouse Notch2 ACATCATCACAGACTTGGTC (S)

CATTAHGACAGCAGCTGCC (AS)
Mouse Notch3 ACACTGGGAGTTCTCTGT (S)

GTCTGCTGGCATGGGATA (AS)
Mouse Notch4 TGCCTGCACAATGGTACCTG (S)

TCTGGCHCAGTGCCTTAAG (AS)
Mouse DLL4 GCAACTGICCTTATGGCITYG (S)

GCAGGGATTAGGTTGTCCTTC (AS)
MM VEGF GAGCCTTGTTCAGAGCGGAG (S)

CAACGGTGACGATGATGGCA (AS)
MM Fit-1 CTGACCHCGCATACTGCTCA (S)

CTGTCCTCTCTGGGTCTTGG (AS)
MM Flk 1 GTCAGGAAACGCAAAGGCGG (S)

CTCCACCCAGCAGAAACCCT (AS)
MM Ang-i TCC’FITGCATTCTTCGCTGCC (S)

GGAAGAGAAATCCGGCTCCAC (AS)
MM Ang2 AGACAGCAGCACAAACTCGG (S)

GCTTGGACACCAGCACCTG (AS)
MM lie-2 CCTGCCAAAÀAGCCAGACAGC (S)

TTCACTCCACTCCCCCTGCG (AS)
MM ephrin 32 GGATGCATCATCYTCATCGTC (S)

GACGCTGTCTGCAGTCCTTAG (AS)
MM Eph 34 ACTCTGCTTTCGGTTCTGTGG

CACGGTGGTGAGTCCfGGA
Mouse bFGF ATGGCTGCCAGCGGCATCAC (S)

GAAGAAACAGTATGGCCTTCTG (AS)
Mouse HPRT GTTGGATACAGGCCAGACTTTGTTG (S)

GATTCAACTTGCGCTCATCTTAGGC (AS)
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Protein extraction and Western blot analysis. Protein extraction of cefis or tissues and

Western blot analysis with polyclonal antiNotch1ext1a2 (1781-B), antibodies against Nl

were performed as previously described (Hoernann et ai., 2000).

Microfil® perfusion. Microfil® (Flow Tech, Carver, MA, USA) is a two-component

silicon-rubber curing agent that is used for visualization of the vasculature of other sites in

the body, such as the kidney glomeruli (Norlen et al 1978). For postnatal and aduit mice,

Microfii® perfusion (0.5-2.5 mL) was performed (afier thorachotomy under Avertin

anaesthesia) via the apex of the lefi ventricie while the heart vas still beating, as described

previously (Coral-Vazquez et al., 1999) as weil as via the portai vein or the vena cava.

Microfll® perfusion (0.2 mL) of E 16.5 embryos was performed through the umbilical vein

under Avertin anaesthesia. Whole livers were fixed by immersion in 3.7% formaldehyde

buffer with PBS, then dehydrated with senal ethanol and cleared in methylsalicylate, as

described (Corai-Vazquez et ai., 1999).

Tissue sampling and microscopic analysîs. For routine histological analysis, mice were

kiiied by C02 inhaiation or under avertin anesthesia, and organs to be evaluated were

dissected and fixed by ovemight immersion in 3.7% formaldehyde buffered in PBS.

Organs to be assessed were embedded in parraffin, sectioned into 5 tm suces, and stained

with hematoxyiin and eosin or Masson’s trichome, as described previousiy (Hanna et ai.,

1998; Kay et ai., 2002). Siides were examined by at ieast two investigators bÏindly.

Electron microscopy. Mice were perfused with 2% glutaraldehyde in 0.1 M, pH 7.4,

cacodylate buffer (10 mm). The perfused livers were further fixed in cacodyiate buffer (2

h) and therein rinsed with 20% sucrose. The fixed tissue from different areas was cut into

1-mm blocks and subsequently performed series ofprocedures as described (Breiner et al.,

2001).
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Assessment of Transgene expression by lit situ Hybridization (ISH). ISH xvas

performed on paraformaldehyde perfusion fixed, paraffin-embedded tissues using a hCD4-

exon-1-specific 35S-UTP-iabeled antisense probes or control sense RNA probes, as

previousiy described (Hanna et ai., 1998a; Hanna et ai., 1998b). Tissues from non-Tg

control animais hybridized with antisense probes, as well as Tg animal tissues hybridized

with sense probes were used as controïs.

Immunohistochemistry (IIIC). liC was can-ied out on freshiy frozen 10 tm liver

sections. Sections were prepared from liver tissues removed immediately after sacrificing

mice. The liver, eut transversely, was embedded in OCT (Miles Chemicals) and immersed

into isopentane pre-chiiied in liquid nitrogen to the freezing point (viscous liquid). The

anti-PECAM-1 (PharMingen clone: 13.3E), the anti-SMA (Sigma clone: 1A4), and the

anti-Mac-1 (Cederiane) antibodies were used. IHC with anti-SMA was done on both

frozen and formaldehyde perfttsed 5 im sections. Incubations with prirnary antisera were

kept 2 hours at room temperature with 1:10 anti-PECAM-1, 1:200 anti-SMA, and 1:200

anti-Mac-1. Following the incubation with the appropriate secondary antibodies

conjugated to HRP, the immunoreaction was detected using DAB as a chromogen. Tissues

were counterstained with hematoxylin.

f3-galactosidase staining. for liver fragments, the liver tissue was perfused with 4%

paraformaidehyde for 5 min. The samples were then washed in PBS containing washing

buffer solution (2 mM MgC12, 5mM EDTA, 0.01% sodium deoxycholate and 0.02% NP

40) and stained in fresh X-gal solution at 37 °C ovemight as described (Lyden et al., 2001).

The X-gal stained liver fragments were directly examined under inverted light microscope.

The livers were then embedded in paraffin, sectioned and counter-stained with nuclear fast

red to visualize LacZ-negative tissues. For liver sections, the perfused livers were frozen in
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OCT and sections (5 jim) eut. Washing and staining were then performed on a siide as

described previously (Lyden et al., 2001).

Evans blue. Evans blue (20 jiL/10 g) was injected via the tau vein ofthe mice before 1 to

2 hours killing mice. Protocol to assess the amount of EB was kindly provided by Dr. Jean

Philippe Gratton (RCM, Canada). Briefly, perfused livers were drying and extracted by

formamide. The EB amount in the formamide was measured at 610 nm. The final E3

amount per mg of the dry liver was calculated. To observe the EB fluorescence, the mice

were perfused with 4% formaldehyde afier the EB injection. The liver and spleen were

excised and ftozen in OCT. The EB Rohdamon fluorescence was finally observed using 10

nm sections by a fluorescent (Zeiss) microscope.

Capture of latex beads. Latex beads (Sigma, L-4530) were injected into mice (2-to 4-

month-old) via the tau vein (8.7 X 10/200 pi PBS per mouse) one or two hours before

killing the mice. Mice were perfused with 4% paraformadehyde under Avertin

anaesthesia. The livers were excised and frozen in OCT and liver sections (10 nm)

prepared. The latex bead fluorescence (FITC) was obsewed under a fluorescent (Zeiss)

microscope.

FJow cytometry. Single-ceil suspensions of thymus, spleen, and liver (NPLCs) were

prepared from Tg and non-Tg age-matched littermates. The antibodies used in this study

were CD8, CD4, Mac-1 [as previously described (Simard et al., 2002)], and a fITC

coupled anti-mouse ICAM monoclonal antibody (Pharmingen Canada). The experimental

procedure was performed as previously described (Simard et al., 2002).

Partial hepatectomy. Partial hepatectomy was achieved under Avertin anaesthesia as

Q described (Wuestefeld et al., 2003; Borowiak et al., 2004). Since Tg mice easily died (3/5)

when both their median and left lobes were removed, only the median lobe was removed
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for both non-1g and 1g mice, to favor survival. Three weeks after surgery, mice were

sacrificed and analyzed.

Bone Marrow transplantation (BMT): After sacrificing the mice (5 nlg and 1g

CD4C/N1 mice per group,10 to 15-week-old.), the bones ofthe mouse (femur and tibia)

were removed and cleaned in RPMI 1640 + penicillin!Streptomycin + L glutamine (bone

marrow media) under sterile conditions. The bone marrow was got out by flushing with a

26 G needle full of bone marrow media. Single cdl suspension was made using a 26 G

needle. Ceil suspension was filtered through a Nytex mesh (BSH Thompson, Montreal).

After one wash, celis were counted (RBC celi lysis was performed in the counting aliquot).

Cells were then resuspended in HBSS solution supplemented with 2% FBS at a

concentration of 20 X 106 ceils per mL and finally injected to hosts, C3H mice.

Fetal ilver (FL) celis transplantation (FLT): Donors-fetal livers from 14.5-day-old

embryos (E 14.5) (CD4CiN1 X C3H) were harvested. Single celi suspension was made in

HBSS supplemented with 10% FBS, under sterile conditions, with a syringe plunger. Celi

suspension was filtered through a Nytex mesh (BSH Thompson, Montreal). The remaining

fetal tissue was typed for 1g expression by PCR. When typing was known, cells coming

from 1g and nlg CD4C/N11 embryos were pooled, respectively. Aller one wash, celis

were counted (RBC celi lysis was performed in the counting aliquot). CeÏIs were then

resuspended in HBSS solution supplernented with 2% fBS at a concentration of 20 X 106

celis per mL. Hosts-C3H mice or CD1 nude mice (8 to 12 weeks old) were lethally

irradiated (950 Rad for C3H mice and 400 Rad for nude mice) using Mark I-68A1

Irradiator (Cs-137, J.L. Shepherds & Associates). Hosts were injected, via the tau vein,

with 4 to 15 X 106 fetal liver celis (nlg and 1g, respectively) in 0.2 mL ofHBSS solution
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supplemented with 2% FBS 4-6 hours after irradiation. Mice were analyzed after 2-6

months.

Purification of peritoneal macrophages. Peritoneal macrophages were collected from 8-

week old mice without any stimulation. The resident ceils in the abdominal cavity were

collected with 15 mL of RPMI medium containing 10% fetal bovine serum (F351), 13-

mercaptoethanol, and PIS. After centrifugation (14 000 rpm) for 5 min at 4 °C, the

supernatants were discarded and the residual pellet was washed twice with medium. The

pelÏet was then suspended in a culture medium. for the co-culture assay, the celis were

cultured in 10 IT1L of medium as described above. Twelve hours later, the ceils were first

washed with warm (37 °C) culture medium and PBS. Then the adherent celis were

harvested with a ceIl scraper (Coming Incorporated, Corning, NY, USA) in ice-cold PBS.

The purity of macrophages (>95%) was confirmed by FACS analysis with anti-Mac-1

staining.

Macrophage transplantation. Peritoneal macrophages (3 X 106) purified from male mice

were intravenously injected into fernale mice by the tau vein in 200 iL of PBS. One month

later, the recipient mice were processed for Microfil® perfusion and histology, in order to

observe the liver phenotype.

Isolation of non-parenchymal liver ceils (NPLC5). Single ccli suspensions were

prepared from livers of two or three 10-12-week-old mice according to a published

protocol (Do et al., 1999) with minor modifications. Briefty, the livers were cut with sterile

scissors and then homogenized using plunger of syringe (5 mL). Each liver slurry was

digested with 0.02% (w/v) collagenase and 0.002% (w/v) DNase in 10 mL of serum-free

RPMI 1640 medium, pH 7.4, at 37 oc for 20-45 min with occasional shaking (once per

five mi. The resulting ccli suspension, diiuted in 40 mL of serurn-free RPMI, was
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centrifuged 3 min at 300 rpm, 4 °C. The celis from each liver were resuspended in 2.5 mL

of ice-cold senim-free RPMI 1640 and gently mixed with 3.5 mL of ice-cold 30% (w/v)

metrizamide (Sigma). The celis were then centrifuged at 2500 rpm for 20 min. The

interface celis containing LSECs and Kupffer ceils were harvested and centrifuged at 1500

rpm for 10 min to pellet the ceils. These celis were furthcr processed for FACS analysis

and MACS purification.

Purification of liver sinusoid endothelial celis (LSEC) with MACS. LSECs and Kupffer

celis were isolated by anti-CD1 lb-conjugated and by biotinylated ICAM-1/streptavitin-

conjugated magnetic bead celis sorting, respectively, according to a published protocol (Do

et al., 1999). Approximately 106 LSECs were obtained from two livers. Their purity

(80%) was confirmed by take up ofDil-Ac-LDL (Molecular probe).

LESCs culture. Freshly isolated LSECs were plated onto 0.1% (w/v) gelatin-coated 48-

well NUNC plates with medium containing DMEM/F12 (Invitrogen), 15% FBSI, and 100

ig/mL ECGS (Sigma). Ten hours later, non-adherent ceils were washed off and fresh

medium was added. Cells grew to confluence in 5 days and were ready for angiogenesis

assay, conditioned medium assay, and co-culture assay.

Conditioned medium assay. For conditioned medium assay, peritoneal macrophages were

cultured in 2 mL ofMFl2 medium containing 15% FBSI at 37 °C in 5% C02. Two hours

later, the medium was gently changed. Seventy-two hours later, cell-free supematants

were harvested and frozen at —20 °C until LSECs were ready. The monolayers of LSECs

were treated with supematants of macrophages and 3 days later, the LSEC were observed

under the microscope and counted.

Co-culture assay. Isolated LSECs were seeded at a density of 1 X i0 per well in a 96-

Ç, well plate in Mf 12 medium containing 15% FBSI. Once the LSECs have formed
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monolayers, the peritoneal macrophages were isolated and cultured in MF12 medium

containing 15% FBSI. Twelve hours later, the macrophages were incubated for 3 hours at

37 oc with latex beads (Sigma, 4 X 1 06/mL), then washed and incubated with LESC. The

clusters of macrophages were scored after 4 to 72 h of coculture. Then, an assay for

myeloperoxidase was performed (Yasuda et al., 2000).

Angiogenesis assay. When LSECs were confluent, the ECMatrixTM gel (ECM625,

Chemicon International, Inc. Temecula, CA) was prepared according to the supplier’s

instructions. Briefly, 100 tL of 1OX Diluent Buffer was mixed with 900 iL of

ECMatrixTM solution on ice. Then, 50 pL of the solution was transferred to each well of

pre-cooled 96-well tissue culture plates and incubated at 37 °C for at least 1 hour in order

to allow the matrix solution to solidify. The LSECs were harvested and suspended in the

DMEM/F12 medium containing 15% FBSI and 100 tg/mL ECGS. About 104 ceils were

seeded per well onto the surface of the ECMTM and incubated at 37 °C. Cellular network

structures were recorded between 2 and 12 hours under an inverted light microscope

(20X).

135



Figure Iegends

Figure 1. Structure of the CD4C/N1 and its expression in the Tg mice

lA. Diagram of the structure of the transgene. Black bar, the CD4C regulatory

sequences; strippled bar, the N1EC cDNA containing 36-EGF-like repeats; black bar, the

polyadenylation sequences from simian virus 40 (SV4O). A stop codon was inserted after

the 36 EGF-like repeats at the amino acid residue 4420, thus deleting the whole C-terminal

half of the protein. C: Cia, E: EcoRT, N: NotI. B. Northern blot analysis of RNA from

Tg mice. RNA (10 jig) was extracted from different tissues and hybridized with 32 P-labled

probe M, specific to the Notchl EGF-like repeats. The filters were then washed and

rehybndized with the 18$ ribosomal-specific probe; T: Thymus; L: liver; LN, lymph node;

K: kidney. Negative controls (-): HC1 1 ceils, lane 8 or nTg thymus, lanes 16, 17. Positive

controls (+): HC1 1 celis transfected with Nl (lane 7) or Tg thymus, lanes 15, 18. C. RT

PCR analysis of RNA from Tg BM and FL. Exogenous N1EC was detected by the two

primers, which were designed from the exon 1 of hCD4 and the EGF-like repeats of Notch

ectodornain, respectiveiy. 3M: bone marrow; FL: fetal liver; KCs: Kupffer celis. Negative

(-) controi: nTg lymplmodes; positive (+) control: Tg lymphnodes. D. Western blot of

NlE proteins. Total protein extracts (100 tg) from whole thymus or liver, sorted

CD4CD$ thymocytes and from isolated pentoneal macrophages of the Tg and non-Tg

littermates were evaluated with rabbit polyclonal antibody specific to Nl’. The

iTiembrane was then stripped and reached with anti-actin antibodies. Negative (-) and

positive (+) controis are respectiveÏy HC1Ï and NI-expressing HC11 ceils. E. In situ

hybridization. The liver sections were probed with sense and antisense probe for the

exoni of the hCD4 genes. The clustered ceils around the disrupted vessels in the Tg mice

were probed with the antisense probe (e, g, j, andj), but flot with the sense probe (d and h).
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No expression was detected in the nTg mice with either the sense or the antisense probes (a

and b). Expression in KC-like celis was particularly detected (g, j, and j). Dark field:

a,b,d,e,h, and i. Bright field: c,f,g, and j. a-f: 20X; g:5X. h,i, and j: 40X. IF. RT-PCR

anatysis of RNA from 1g KCs: KCs were purified from the liver and fttrther detected the

expression ofTg Nl by RT-PCR as performed in C.

Figure 2. Liver vascular patterning defects phenotype

lA. Macroscopic analysis of control non-Tg ta and d) and 1g (b, c, and e) liver (2-4

months). The Tg livers were either smaller or bigger than the non-Tg ones and had

irregular shapes. After perfusion with Microfil®, huge and spider-like white vessels were

observed at their surface (b). Multiple, dark red tumor-like structures with convex surface

were present on the liver surface (c and e). Cross-sections demonstrated that the tumor-like

structures are cavities fihled with the blood liquids (g), flot secn in nlg liver (f). a,d,f: the

nlg mice and their livers, b,c,e,g: the Tg mice and their livers, a and b: the mice perfused

with Microfil®; d,e,f,g: the mice perfused with 3.7% formaldehyde. c: fresh Tg mouse

liver before perfusion with 3.7% formaldehyde. f and g: The cross-sections of the livers

from the mice (d and e). B. Microfil® analysis. Vascular morphology was examined in

each lobe of livers in both the nTg and the Tg mice and similar resuits were obtained with

each lobe. Resuits from left lobe are shown here (a,c,e,g,j, and 1). Note the extensive

vascular branching and the hornogeneous capillary in non-Tg mice (a-d). In Tg mice,

fewer, shorter, and straighter branches were observed (e and f). Quantitation of branching

(o). In addition, various remodeling defects of the vasculature were observed in the Tg

livers (g-l). Large vessels are growing ectopically out of the liver (arrow) and regrow into

the liver parenchyma with clustered and dilated capillaries, which are sprouting from the

main branch (h,i, and k). In the parenchyma, fewer large vessels were observed, but
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sometimes numerous clustered hemangioma-capillaries are abnormally branching from the

main branches (1,m, and n). a,c,e,g,j,l: O.5X1.O; b,d,f,h,k,m: O.5X5; j and n: O.5X10.

Figure 3. Liver and vessel remodeling in CD4/N1’ 1g mice

lA. llistology. li-i contrast to the homogeneous distribution of the vessels of non-1g livers

(a and e), Tg livers show heterogeneously huge vessels and capillaries on the liver surface

and within the liver (b and d) and huge cavernous vessels (hemangiornas) (d, asterisk) with

irregular shape and filled thrombi within their lumen (d, arrow), that have destroyed

normal hepatic structure. a and b: The livers were perfused with Microfil®. C and d: The

livers were perfused with 4% formaldehyde. 1 .25X. B. Cliaracterization of vessels in

CD4C/N1 Tg mice. Liver sections, for electronic microscopy, were processed with

hematoxyline & eosine staining. The nTg and Tg livers are shown (a-d and a’-d’). The

liver of non-Tg mice (a,b) shows homogenous and regular lobules, where the central vein

(CV) is located in the center surrounded by portai vein (PV) and biliary duct (BD). In

contrast, the Tg liver shows heterogenous and irregular lobules (a’b’). Reverse lobules in

which PV, PA, and BD are located in its center instead of CV (b’). Normally intercalating

(d-Si) and paralleied (c-S2) sinusoids are cleariy distributed in the non-Tg lobule Zone “1”

and Zone “2”, respectiveiy (b’). However, in the Tg lobules (b’), sinusoids in the Zone “1”

become dilated and capillarized (d’-Si) and fihied with blood ceils (angiectasis). The

parallele sinusoids have disappeared in some regions of the Zone “2”, where more than 5

hepatocytes are clamped together without sinusoids (c’-S2). PA: portal artery; PV: portai

vein; CV: centrai vein; S: sinusoids; BD: bile duct (dark arrow); Green anow: large vessels

on the surface of the Ïiver. a, a’: 2.5X; b, b’: 1OX; c, c’, d, d’: 40X. IC. Immunochemistry.

1. P-ECAM-1. In nlg liver, the vessels were homogeneousiy stained with P-ECAM-1,

especially the large vessels (Cia), but heterogeneously distributed vessels were observed
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in the Tg liver, particularly with capillarized vessels (Clb,c). Large vessels on the liver

surface were also stained (Cld). No staining was detected with the 21 Ab (Clc’,d’). Cl

a,b:1X5; c,c’,d,d’: 1x10. 2. a-SMA immunohitochemistry and Masson’s trïchrome

staining. Few or no celis around vessel were stained brown with a-SMA in the nTg liver

(C2a). Note that the stained celis, supposed to be smooth muscle ceils, were

heterogeneousÏy distributed around the vessels of the 1g liver (C2b-d). Accumulated ceils

around disrupted vessels were stained in blue color (supposed to be extracellular matrix)

with Masson’s trichrom staining in the Tg liver (C20, but not in the nTg liver (e). (g,h) HE

staining. C2-a,e: 5X; b,f: 2.5X; c,d,g,h: 1OX.

Figure 4. Bonne Marrow Transplants (BMT) yielded the liver vascular defects

The 10 tol4-month-old C3H mice were transplanted with BM celis and were analyzed

after 4-month transplantation. lA. RNA expression of the NlF in the C3H hosts

transplanted with the BM celis from the 1g mice: The 1g expression in the thymus and

in the LNs was detected by Northem blotting (a) and the expression in the peritoneal

macrophages and in the liver was detected by RT-PCR (b). 1 $S rRNA and HPRT serve as

control for Northern blot and RT-PCR, respectively. (+): positive control, Tg LNs; (-):

negative control, nTg LNs; a: 1.3.5-Thymus; 2.4.6-lymph-nodes. b: 1.3-Tg BM ceils to

C3H mice; 2.4-nTg 3M celis to C3H mice. B. Tlie Iïver phenotype reconstituted by

BMT: All mice transplanted with the nTg BM (a) or Tg 3M (b) ceils were perfused with

Microfil®. Higher magnification of the Tg liver (c) aims at showing defective vessels and

cavities on the surface of the liver. IC. Liver vascular anormalies observed by

Microfit®: The livers perfused with Microfil® from the “figure B” were observed with

microscopy. Huge vessels were apparent on the surface ofthe liver from mice reconstituted

with 1g 3M celis (d and e, arrow). A large cavity (d, asterisk) and a cluster of capillaries
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hemangioma vessels (d, circle) were also observed. No such lesions develop in the liver of

mice transplanted with non-Tg BM celis (a and c). a,b: O.5X1.6; c,d,e: O.5X10.

Figure 5. Reproduced liver phenotype in CD4C/N1F X Rag’ mice

lA. Mice survival was monitored at three time points: P3.5-4.5, P5.5-6.5, and aduits.

Few Rag ‘ mice expressing Nl survived afler day p5.5 stage compared to Rag +1- mice

expressing B. Genotyping and the liver vascular phenotype: 1. Genotyping.

CD4+CD$+ double positive thymocytes were detected by FACS analysis, in both the

postnatal and the aduit Rag mice, which was> 93%. This population was absent in the

Rag’ mice (N1 + and N1 -). 2. The liver vascular phenotype. The nTg liver (a and b)

and Tg (c and d) liver with or without lymphocytes were compared. At the P3.5, inegular

capillaries (arrow-head), large vessel (arrow), and cavities (stars) were displayed in the Tg

Rag mice (d,i,j,h, andj’), similar to the phenotype observed in the Tg Rag +1- mice (c and

g). These phenotype were flot seen in the nTg mice (a,e b, and f). 1n Tg Rag ‘ aduits, huge

vessel along the edge of the liver with irregular capillaries sprouting from them were

observed (d). These phenotypes are similar to those shown in the Tg Rag liver (c). p3.5:

a-d,i,j: 3.2X0.5; e-h,j’: 1OXO.5 in bright field. Aduit: a-d O.5X4.O in dark field.

Figure 6. A paracrine pathway induces the liver vascular phenotype

lA. A physical interaction between KCs and LSECs was observed in the sinusoids of

both the nTg and Tg liver. KCs can stay in sinusoid as floating in the sinusoid (b),

touching the pad of the endothelial celi (a and d), and interacting with the body of the

endothelial ceil (c). In the Tg liver, two KCs are ofien present in the sinusoid (d) compared

with the one KC in the nTg sinusoid (a and c). B. Chimeras. The ES cells at the day E2.5

were harvested from ROSA26 X CD1 and CD4C/Nl’ X CD1 mice. They were fused

together and 24 hours later implanted in to pseu-pregnant CD1 mice (1). X-gal staining
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was perforrned on the livers from chirneras (2). In the 1g chimera, large vessel located on

the surface of the liver is stained in blue color (b) showing ROSA-origin. No such vessel

was observed in the nTg liver (a). C. FLT. Fetus liver ceils (at day E14.5 to 15.5) from

CD4C/Nl X ROSA26 mice were transplanted into nude mice (1). Two months later, mice

were killed. The transgene was detected by RT-PCR. (2). The liver vascular phenotype was

only reproduced in the Tg expressing mice. A piece of liver with X-gal staining (3)

demonstrated white large vessels on the surface of the liver (arrowhead), accompanied by

blue color mass of ceils (b, arrow). No such large vessels were found in the liver from the

mice transplanted with the nTg celis (a). In the liver section, abnormaÏ vessels (arrow) and

increased numbers ofhernatopoietic ceils, inciuding macrophages (asterisk), were observed

in the liver from the mice transplanted with the Tg celis (d), but not in mice receiving non-

1g celis (c). The abnormai vessels in U stained negative (white), but were surrounded by

blue hematopoietic ceils. Mouse 1: transplanted with nlg celis and mouse 2 and 3 with Tg

celis. a and b: 5 X; c and U: 20 X

Figure 7. Macrophages are sufficient to induce the liver vascular phenotype

I A. Infiltration of macrophages around abnormal 1g vessels. Frozen liver sections were

used for liC using the monoclonal Ah for Mac-1. The non-1g (a) and Tg (b and c) livers

were compared. Note that, in contrast to the weak staining detected in the non-1g liver

section (a), a strong staining was observed in the Tg liver (b). Higher magnification

showed large stained ceils (c). a and b: 1OX; c: 100X. B. Macrophage transplantation.

Peritoneal macrophages (3 X 106) from Tg and non-1g mice were transplanted by

intravenous inoculation into normal mice (8 to 1 0-week-old) and recipient animais were

killed 1 month later and perfused with Microfil® (a-c, and a’-c’). Note the homogeneous

vasculature ofthe liver from a mouse transplanted with the non-1g macrophages (a, b, and

141



c), and the abnormal vesseis observed in the liver of a mouse transplanted with Tg

macrophages (a’, b’, and c’). Large vessels are growing out of the liver and lying on its

surface (b’ anow) and walking along the edge of the liver (c’ arrow-head). a and a’:

0.5X0.8; b, b’, c, and c’ 0.5X5.0. (d and e). Histological analysis performed on the

Microfil®-perfused livers showed superficially ciustered large vessels in the liver from a

mouse transplanted with Tg macrophages (e), but not in the liver from a mouse

transplanted with non-Tg celis (d). 5X.

Figure 8. Profile of liver lining ceils in the CD4C/N1 1g mice

Ail the liver ceils used in our experiments were purified from livers of 10 to 14-week-old

mice. To get non paranchymal liver ceils (NPLCs), a digested liver (Collagenase W and

DNase I) was centrifuged in metrizamide gradient. lA. Different number of the NPLCs was

obtained from nTg and Tg liver. B. NPLCs-FACS. FACS analysis performed with

ICAM-1 FITC and mac-1 PE (identify the LSECs and the KCs respectively) show

different ccli percentage between nTg and Tg NPLCs. C. LSECs and KCs were purified

from NPLCs by MACS separation. Different ceil-number was obtained from nTg and Tg

NPLCs (2-3 pooled livers) (a and b). The LSECs were confirmed by “uptake” of Dil-Ac

LDL (Data flot shown) showing 80% purity and confluent cultures fomied monolayer

cell-sheet with the typicai spindie shaped ceils (c). The KCs were confirmed by Giemsa

Granules staining, showing 90% purity (d).

Figure 9. Functional abnormalities of the Tg LSECs in the network formation

Purified LSECS were cultured at 37 °C and then used for the angiogenesis assay. A.

network formation was detected by Angiogenesis assay kit. Closing networks were

formed by nTg LSECs (a). Few or no networks were formed by Tg ceiis (b). B. Distinct

sigus of network formation were evaluated in both nlg and 1g LSECs. Alignment:
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two distinct celis align together ta); Branch: more than two ceils were coimected together

to form branch (b); network: alignments and branches progressed to form networks (c).

Lower amounts of each sign were observed in Tg group than in nlg one (B). IC. Less

signs were demonstrated in Tg LSECs than in nlg LSECs at different time. The signs

of tube formation were flot recorded afler 9 hours culture, because endothelial celis were

going to die on the kit afier 8 hours, consisting with the kit instructions. D. Quantification

of ceils: Afier counted on the signs, celis in the kit were harvested and quantified by

micro-BCA. O.55X2.5.

Figure 10. Enhanced adhesion of CD4C/N1 1g macrophages in vitro.

lA. Increased colony formation of 1g macrophages in vitro. Peritoneal macrophages

from Tg or non-Tg mice were co-cultured with Tg and non-Tg LSECs, labeled with latex

beads and Dil-Ac-LDL, respectively. The number of clusters formed by macrophages

clumped onto the LSECs was different between nTg and Tg macrophages beginning at 3-4

hours after the co-culture (a-d). Each clusters formed by Tg macrophages (b and d) had a

more compacted shape than nlg macrophages (a and c). More clusters were observed on

1g LSECs (c and d) than on nTg LSECS (a and b). 5X. B. Quantification. IC.

Myeloperoxidase activity: Macrophage adherence was confirmed by this assay.

Figure 11. Supernatants of the 1g macrophages inhibit the growth of nlg LSECs

Purified LSECs were incubated with conditioned medium from nTg and 1g peritoneal

macrophages in 4$-well plates. After 6 days incubation, celi density was observed (a-c,

20X) and the number of cells was counted (d).
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Figure L
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Figure 3.
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Figure 6.

A: Physical Interaction of Kupffer celis and LSECs observed in the sinusoids ofCD4C/Nl(EC) Tg mice by EM
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Figure 9.

A. Network formation by LSECs on the angiogenesis kit
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Supplement legends

Figure 1. RNA expression of the hCD4 detected by in sitit hybridization

Ail the sections, including LNs (A), thymus (B), and intestine (C), were probed with sense

and antisense probe for the exoni of the hCD4 genes. The expression of hCD4 was aiways

observed in the Tg mice with the antisense probe (Ae, Af Be, and Ce), but not with the

sense probe (Ab; Bb; and Cb). No expression was detected in the nTg mice with either the

sense or the antisense probes (Aa, Ad, Ba, Bd, Ca, and Cd). Large celis with the

morphological appearance of macrophages were apparentty probed (Ag, Ai, AI, Bg, and

Cg), Dark field: A: a,b,d,e,g; B: a,b,d,e; C: a,b,d,e,g. Bright field: A: c,f,h; B: c,f,g; C: c,f;

A: a-f: 5X; g and h: 20X, i: 40X. B and C (a-f): 20X, g: 100X.

Figure 2. Permeability of the Tg lïver vessels

One or two hours after injected E3 via tau vein, the mice (4 to 6-rnonth-old) were kiiied.

The nTg and Tg iivers were compared.
. A. Amount of the Evans Bine (EB). Perftised

livers were drying and extracted by fomiamide. The amount of the EB extracted from the

Tg group is statisticaliy higher than that from the nTg group (a, P<O.05). The arnount of

EB in the spleen was rneasured as control (b). B. Permeability of vessei: Perfused liver

was sectioned and extravazation was observed by fluorescent microscopy. The leaked EB

was observed under the flat endothelial ccli of the vessei in the Tg liver ta’ and b’, star

signs) but not in the nTg liver (a and b). a,a’: O.55X10; b,b’: O.55X100. IC. Capture of

the EB by liver macrophages: Macrophages monitored by latex beads (green) show red

fluorescence in both the nTg (a-b) and Tg livers (a’-b’). O.55XiOO.ID. Capture of the EB

by monocytes in the sinusoids of the Tg liver: Paired sections were prepared for

fluorescence microscopy (a-c) and HE staining (d and e). In the section of the Tg liver,
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celis in the sinusoids gave strong fluorescence (b and c). These celis look like monocytes

according to HE staining (e). a-c: 20 X; d and e: 10 X.IE. EM: Floating red ceils were

normally observed within the sinusoids of the nTg liver ta). But in the Tg sinusoids, the

red celi entered the fenestrate (b arrowhead) as well as the parenchyrnal tissues (c alTow)

beyond vessels.

Figure 3. The liver defects appeared du ring organogenesis.

Both embryonic (A, E16.5) and postnatal stage (B, P6) were examined. Livers were

perfused with Microfil® (a,b and a’, b’ in Ai and Bi) and used for HE staining (c,e and

c’,e’ in Al and Bi), and liC with P-ECAM-i (a,b and a’, b’, e in A2 and B2).

Hornogenous vessels were observed in the nTg livers (a’-d’ in AI, Bi, and A2 B2,

arrowhead), but heterogeneous in the Tg liver (a’-c’ in Ai and Bi, arrow). In addition,

clustered vessels (A2 and B2: b’, red arrowhead), dilated channel (Bld’, green arrowhead),

and dilated capillaries (B2b’, red arrowheads) were in the Tg liver. Tissties stained with

only 2 Ab serve as control (c in A2 and B2). Al and Bi: a, a’: 0.5X3.2; b, b’: 0.5XiO; c,

c’: i.25xi.6; e, e’: 40X1 .6. A2 and B2: a, a’, c: 5 X; b, b’: 20 X.

Figure 4. Persisted vessel disease after partial hepatectomy in aduit mice

lA. Diagrammatic representation of the partial hepatectomy (PH): Quarter lobes were

ligated during PH as the cross-signs shown in the figure. B. Macroscopic analysis: Non

hepatcctornized livers (a and e) and hepatectomized livers (b and d) from the CD4CIN1Ec

Tg mice (c and d) and their nTg (a and b) littermates were compared, after perfusion with

Microfil®. In non-Tg mice, note that lobe generating after PH (b), relative to the non

hepatectomized liver (a). Such hypertrophy is not observed in Tg mice (d, black

arrowhead) IC. Microscopic analysis: The vascular rnorphology of both non-
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hepatectomized (a and b) and the hepatectornized (c and d) livers of the nTg mice is

hornogeneous. Abnonnal vessels are present in prcsent in both non-hepatectornized (e and

f arrowhead) and hepatectomized Tg livers (g and h, arrowhead). a,e,c,g: 1 X; b,d,f,g: 5 X.

figure 5. Morphological difference between the nlg LSCEs and Tg LSCEs

MorphoÏogy of the LSECs was first detected by Giernsa-Granules staining (a-b).

Endothelial ceil-feature was determined by the “uptake” of Dil-Ac-LDL (c). This

morphology was further confirmed by the fluorescence observation of the LSECs purified

from CD4C/N1 X 1-sign Tg mice (d and e). 20X. When LSECs were harvested from

dishes, a different tirne for detachrnent between the nTg and the Tg cells was observed (f).

figure 6. Possible molecules required for the vascular disease

cDNA from macrophages and LSECs were performed RT-PCR and nTg and Tg celis were

cornpared. Macrophage cDNA was diluted in 1:10 and 1:100. Series of prirners (Sorne

tyrosine kinase and Notch pathway) were detected in macrophages. flk-1 and Dfl4 were

detected in LSECs.
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Abstract

Angiogenesis is usually quiescent in the aduit. One exception, however, is the

angiogenesis that occurs during endometrial growth, and in the placenta after pregnancy.

The dysfunction of angiogenesis in the uterus may underlie several female reproductive

disorders, such as infertility. In our previous resuits, we demonstrated that macrophages

are reprogrammed by Nl Tg and induce liver vascular disease in the Tg mice

(CD4C/N1 EC) Here, we characterized another phenotype: female sterility. Two founder

unes have been analyzed. Ail femaies of the higher expressor line and 50% of the lower

expressor une were sterile. Tg expression was detected in both uterus and ovaries by

Northern and Western analysis. The uteri of Tg mice were smailer and exhibited thinning

of both myometrium and endometrium as compared to nTg littennate controls.

Jnterestingly, defective vessels were displayed in Tg uteri, especially on the surface, as

seen in the Tg livers. Developmental studies demonstrated that while no or few embryos

were observed in Tg mice at E6.5, 9.5, and 16.5 stage, many defective vessels were found

in each layer of uterus. In addition, hemorrhage was identified in endometrium of

exciusiveiy pregnant Tg mice. Moreover, macrophage-like ceils were increased in Tg

cyciing and pregnant uteri, as weii as placentas. Finaily, the uterine vascular defects were

reproduced in nTg recipients which had been transplanted with Tg fetal liver celis. So far,

enhanced Notch4 was detected in the Tg-uteri compared to nTg ones. The resuits suggest

that female infertiiity is directly caused by uterine vascular defects consequent to Nl’ Tg

expression in hematopoietic ceils and possibiy macrophages. Further experimentation

shouid be done to elucidate the moiecular aiterations required for defective uterine vesseis

and reprogrammed macrophages.
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Introduction

Two mechanisms account for the formation of blood vessels: vasculogenesis and

angiogenesis. “Vasculogenesis” is mainly involved in the de novo development of blood

vessel and has recently been shown to contribute to adult vessel formation (Risau et al.,

198$; Grant et al., 2002). “Angiogenesis” describes the formation of new blood vessels

from existing vasculature, which occurs during later development of the organization, as

well as sporadically throughout adult life (Carmeliet, 2000). Angiogenesis is usually

quiescent in the adult. Notable exceptions, however, are the angiogenesis that occurs

during the growth of endometrium, and in the placenta after pregnancy (Torry and

Rongish, 1992); Indeed, the terni angiogenesis was first used to describe vessel growth in

the placenta (Folkman and Klagsbrun, 1987). The dysfunction of angiogenesis in the

uterus may underlie several female reproductive disorders, such as infertility (Folkman,

1995).

Many factors have been shown to be capable of promoting or inhibiting uterus

angiogenesis in vivo and in vitro. Steroids (estrogen and progesterone) are flot only

expressed in the endometrial endothelial cells of the pregnant uterus in human (Wang et

al., 1992), but have also been proven to affect uterine angiogenesis in animal models

(Hague et al., 2002; Yasuda et al., 199$). Both FGf and VEGF are upregulated in

endometrium by steroids (Zygmunt et al., 2003). VEGF can be secreted by uterine NK

cells during the mouse pregnancy and may participate in uterine neovascularization in

mouse models (Wang et al., 2000). Ang-2 mRNA was detected in the endothelia of ovary,

uterus, and placenta (Maisonpierre et al., 1997; Goede et al., 1998). It seems likely that

Tie-1, 2 and Ang-1, 2 may play a major role in regulating the growth and regression of

endometrial vasculature (Sato et al., 1995; Maisonpierre et al., 1997; Hanahan, 1997). In
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the human endometrium, TSP-1 is elevated in the secretory phase as compared to the

proliferative phase. In in vitro study, TSP-1 is upregulated by progesterone (Rogers and

Gargett, 1998).

Macrophages are abundant in the uterus and placenta (Hunt and Pollard, 1992;

Hunt et al., 2000). They are the most common resident immune celis in the uterus of the

rodents (Mackier et al., 2000; Hunt et al., 2000). They may account for nearly 10-15% of

ceils in the cycling uterus and increase to 22% of ceils in the pregnant utems (Hunt et al.,

1985). They are distributed throughout the pregnant endometrium, as well as in stromal

and connective tissues belonging to the myometrium (Mackier et aI., 2000; Hunt et al.,

2000). They can traffic between endometrium and myometrium (Mackier et al., 2000).

Recent studies show that the utenne macrophages can be activated and regulated by

hormones. Activated macrophages display an enhanced ability to phagocytose, produce a

wide number of growth factors, and to synthesize an impressive number of proteases

currently known to affect angiogenesis (Hunt et al., 2000; Sunderkotter et al., 1994).

Hence, they seem to play a role in controlling utems angiogenesis, even if detailed studies

are stiil scarce.

Previous resuits have demonstrated that macrophages are reprogrammed by N1EC

Tg and induce liver vascular disease in the Tg mice. These data were used to characterize

another phenotype, namely female sterility. This phenotype may be related to utenne

vascular defects that can be induced by hematopoietic ceils (probably macrophages), as

demonstrated through fetal liver transplantation. A paracrine mechanism, similar to that

which was discovered in the liver phenotype, might be involved in the female sterility

phenotype.
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Resuits

CD4C/Nl female Tg mice show sterility

In the characterized CD4C/N11 Tg mice as described in the previous paper (Xiujie

et al.), it was found that no or few live offsprings were bom from breedings with Tg

females, in contrast to seven to nine viaMe offspring from breedings with Tg males (Fïg.

lb). Two-month old females were then spontaneously selected from two founder unes

(60787 and 60788) to breed with C3H males. In founder line 60787, where the liver

vascular disease is severe, no pups was bom from 100% Tg mice (5/5), in contrast to an

average number of eight babies from C3H mice (4/4). In another founder une, 60788,

where the liver vascular disease is less severe, approximately 50% of females were unable

to produce babies, while those that could had smaller littler size (on average, four babies

from Tg females compared to eight babies from control mice) (Fig. lc). These resuits

suggest that Tg females cannot conceive, or alternatively, that embryos die during

gestation.

To determine whether and when the embryos died, we observed embryos at

different stages of development (Fig. 2). As opposed to the eight or nine embryos obtained

from C3H females (Fig. 2. A, G, and I), no embryos are observed from Tg females in the

line established from founder 60787 (Fig. 2. B, H, and J) at E9.5 (one day afier placenta

formation) or at E16.5 stages, but cavities (Fig. 2. B and J) are obseiwed with dead

embryonic ceils (Fig. 2. D and F), suggesting a natural abortion. Even at E6.5 (one day

afier implantation), no normal ernbryonic masses are seen in Tg-uterus (Fig. 2L). The

pregnant Tg uteri are highly vascularized and soft, indicating that response of uterus to

hormones might be normal. With another founder une 60788, a few embryos are observed

but less than those from normal C3H fernales (data flot shown). Northem blot (Xiujie et

172



al.) and Western blot show that the N1 transgene is strongly expressed in non-pregnant

Tg-uteri and weakly in Tg-ovaries, but flot in nTg-tissues (Fig. la). These resuits suggest

that the Tg may affect reproductive organ function, thereby leading to defective

implantation an&or placenta formation, rather than by having an effect on the embryo per

se.

Uterine vascular defects in Tg mice

To investigate reproductive organ defects in Tg mice, gross and histological

analyses were performed. First we examined non-pregnant mice. Ovaries were

indistinguishable between nTg and 1g mice through macroscopic examinations (Fig. 3A),

and by histological analysis with HE staining, aIl stages of follicles could be observed in

1g ovaries, a similarity to nlg ovaries (Fig. 3B. a and b). Tg-utems, however, was thuimer

than that from nTg littermate, especially in the fact that large superficial vessels were

visible in the 1g- but flot in the nlg-uterns, as seen under macroscopic examination (Fig

3A). HE staining further confiniied the large, superficial vessels in Tg-uteri. Also, thinner

endometrium and myometriurn are observed in Tg-uteri as compared to nlg-uteri (Fig 3B.

c-1). Next, pregnant mice were examined. Many large vessels were observed within

myometrium surrounding the cavities containing the dead embryonic celis (Fig. 2C and

D), and hemorrhages were clearly found in the endometrium (just beneath epithelial celis)

(Fig. 2E). Most likely, the vascular defects tead to a disrnption of 1g uterine structure and

further influence embryo implantation as well as placenta formation.

Increased macrophage-like celis in Tg uteri

b elucidate which cells induce the uterus defects, the following experiments were

conducted. With HE staining, increased cells with appearance of macrophages were

observed in Tg cycling uteri, as cornpared to nlg-uteri (Fig. 4). These increased celis are
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distributed within different layers of uterus; around the defective vessels of connective

tissues (between meso- and myometria), as well as among the glands within endometrium

(Fig. 4A-E and G-K). Sometimes, clustered inflammatory celis were observed in

endometrium but flot seen in non-1g uteri (data not shown). In pregnant mice, cÏustered

macrophage-like celis were often observed in Tg uteri, as opposed to their homogeneous

distribution in non-Tg uteri (data flot shown). In addition, preliminary resuit showed

enhanced and accumulated macrophage-like celis in 1g placenta compared to non-Tg

placenta (Fig. 4. F, L, and M). Previous resuits have shown that the peritoneal

macrophages expressed 1g as detected by RT-PCR and Western blot (Xiujie et al.).

Since reprogramrned macrophages induce liver vascular defects via a paracrine Ïoop

(Xiujie et al.), it was supposed that the same mechanism rnight be involved in the uterus

vascular defects.

Hematopoietic celis (macrophages?) play a key rote in the uterus vascular defects

b prove the above hypothesis, fetal liver transplantation was first perfonned. The

N1 1g was successfully detected in macrophages, pLNs, and uteri from mice

transplanted with Tg-cells but not with nlg-cells (Fig. 5A). Surprisingly, not only uterus

vascular defects were reproduced in the Tg-expressing mice, but also hemangiomas were

observed, as seen in the liver (Fig. 5B and 5C). Histologicat analysis showed defective

vasculature under the surface of the utems, as weIl as within the myometrium of Tg

bearing mice, especially growing out of utems to fom hemangiomas (some of them

accompanied by endometrium) (Fig. 6B and 6F). Tnterestingly, clustered hematopoietic

ceils, probably macrophages, were observed around the defective utems vessels (Fig. 6H).

Moreover, the thinner and vascularized uteri were reproduced in the nude mice

transplanted with the 1g fetal liver celis (data not shown).
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Increased Notch4 expression in the diseased uteri of 1g mice

To identify molecules required for the uterus defects, RT-PCR was performed in

order to test some candidate genes that are expressed in endothelial celis within uterine

tissues. It was found that Notch 4 was remarkably increased in the Tg-uterus compared to

the nlg-uterus (fig. 7), supporting the vascular defect theory. Other factors are currently

being identified, and detailed mechanisms will be characterized later.
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Discussion

Notch has been appeared in the angiogenic factor’s list recently due to its emerging

role in vessel formation (Iso et al., 2003). For instance, both Notchl!4 ernbryonic deficient

mice and Notch4 transgenic mice have demonstrated the essential role of Notch signaling

in vessel development (Krebs et al., 2000; Uyttendaele et al., 2001). Most studies,

however, are focused on the activation of the Notch intracellular domain. Subsequently,

no reports mention the role ofNotch ectodomain in the aduit uterine vascular development.

In the present study, it was first found that the CD4/N1’ 1g females display

sterility or low fertility. Then it was obseiwed that these sterile mice show thin uteri

accornpanied by uterus defected vessels. An increased number ofmacrophage-like celis are

detected in the 1g cycling uterus and placenta. Jmportantly, the uterine vascular defects are

reproduced by the transplantation of Tg-FL ceils. Similar to the liver vascular phenotype,

hematopoietic cells (probably macrophages) might play a key role in the uterine vascular

defects.

Since the uterus and its contents demand an increased supply of blood dunng

pregnancy, angiogenesis plays a key role in the pregnancy-associated changes in the

reproductive tract. Uterus’ vasculature undergoes three main adaptation changes during

pregnancy: vasodilation; increased permeability; and growth of new vessels (Reynolds et

al., 1992; lorry and Rongish, 1992). These changes interfere with all vessels of each layer

(endo-, myo-, and mesornetrium) of uterus (Zygmunt et al., 2003). The neovascularization

takes place very early in pregnancy and is initiated in extraembryonic areas. It has been

shown that there is a close relationship between the state of neovascularization and

embryonic development. The normal chronic villous vascularization is essential for the

successful development of pregnancy (te Velde et al., 1997). Either poor or increased
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vascularization can lead to early pregnancy Iosses (Vuorela et al., 2000; Qiao et al., 1997;

Vailhe et al., 1999). In the Tg mice, with the exception of disordered vessels observed in

cycling uteri via macro- and microscopic analyses, hemorrhage was clearly detected in the

pregnant Tg-uteri. Also Nothc4, specifically expressed in the endothelial celis, was

enhanced in the Tg uteri cornpared to nTg uteri (Reynolds et al., 1927; Krebs et al., 2000).

These data indicate that these defective vessels may abnorrnally progress during pregnancy

and are abnonrially initiated in the extraembryonic areas of the Tg mice. This will further

cause impaired implantation, trophoblast invasion, and placenta formation, and finally lead

to abortion.

Studies have shown that leukocytes have major pregnancy-associated functions

including facilitation of implantation, invasion of trophoblast, development of placenta,

and, especially, modulation of matemal vasculature (Hunt et al., 2000). The role of uNK

(uterine NK) celis has been well docurncnted, probably because they are the most abundant

celis in the human uterus. Although macrophages have drawn less attention in

experimental studies, they are the most numerous leukocytes in the uterus of the rodents

(Mackler et al., 2000; Hunt et al., 2000). An in vitro experiment has shown that human

macrophages within female reproductive tract can produce the hCG-induced angiogenic

factor VEGF. Also, VEGF expression has been described in fetal macrophages within

villous stroma (Zygmunt et al., 2003). This indicates a potential angiogenic role for

macrophages in the uterus. Previous results demonstrated that reprogrammed 1g-

macrophages inhibit the growth of liver sinusoidal endothelial cells, as detected by in vitro

co-culture assays (Xiujie et al.). It was presumed that increased Tg macrophages might

influence the neovascularization not only in the cycling utems, but especially in
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implantation, trophoblast invasion, and placentation during early pregnancy. These will

finally be enough to cause disorders ofpregnancy.

In summary, N1EC expressed in macrophages not only induces vascular defects in

liver but also does so in other organs, particularly the uterus. The uterine vascular defects,

as well as reprogrammed macrophages might effect implantation, placenta formation, and

fetus formation, leading to female sterility or low fertility (Fig. S). The exact molecular

mechanism remains unclear. Future works will identify molecules altered in Tg

macrophages, as well as the relationship between macrophages and the endothelial ceils of

uterus.
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Methods and Materials

CD4C/N1 Transgene construction and generation of CD4C/N1 Tg mice

As described in the previous paper (Xiujie et ai).

Infertility testing

First, eight 1O-week-old CD4C/N1’ Tg female and male mice were bred with 16

age-matched C3H maies and females (respectively) over a 4-month time period to evaluate

infertility. The number of iive offspring was compared between the two groups. Then,

developmentai studies were performed. Embryonic day 6.5, 9.5, and 16.5 (E6.5, E9.5, and

E16.5) embryos were isolated and counted from the pregnant nTg and Tg females crossed

with C3H mice. The pregrant uteri with embryo were examined by histologicai analysis.

Protein Extraction and Western Blot Analysis

Protein extraction was accomplished by iysing uteri and ovaries, as performed in

the previous paper (Xiujie et al.)

Tissue Sampling and Microscopic Ana]ysis

For routine histoiogical analysis, mice were kiiied by C02 inhalation or under

avertin anesthesia, and organs to be evaluated were dissected and fixed by ovemight

imniersion in 3.7% formaidehyde buffered in PBS. Organs to be assessed were embedded

in parraffin, sectioned into 5 tm suces, and stained with hernatoxyiin and eosin, as

described previously (Hanna, 199$). Siides were finaliy chosen randomly. Tissues were

examined by at least two investigators.

Mïcrofil® perfusion:

Microfil is a two-component silicon-rubber curing agent that has been used

extensively for visualization of the vasculature of other sites in the body, such as the rate

kidney glomeruii. For postnatal and aduit, Microfil® (Fiow Tech, Carver, MA, USA)
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perfusion (0.5-2.5 mL) was performed (afier thorachotomy under Avertin anaesthesia) via

the apex of the left ventricle while the heart stili beating, as described previously under

Avertin anaesthesia. Whole uteri and livers were fixed by immersion in 3.7%

formaldehyde buffer with PBS, then dehydrated with serial ethanol and cleared in

methylsalicylate, as described in (Coral-Vazquez et al., 1999).

Fetal liver (FL) celi transplantation

Donors (embryos at day E15.5 from CD4C/N1’ Tg mice) were genotyped by fast

PCR of DNA isolated from a couple of organs (spleen, kidney, and gut). Normal C3H

mice were lethally irradiated (900 rads). Approximately 4-15 X 106 FL celis were injected

into the tail veins of the irradiated mice. Mice were analyzed aller 2-6 month

transplantation

RT-PCR

Total RNA was extracted from liver and peritoneal macrophages using Trizol

Reagent (Invitrogen). The cDNA was synthesized from lug total RNA by the previous

protocol (Xiujie et al.). Primer sets for the following genes were used: CD4C/Nl’: sense

CCCCACTGGGCTCCTGGTTGCAGC and antisense GTATGAAGACTCAAAGGGCA

G. Notch4: Sense TGCCTGCACAATGGTACCTG and antisense TCTGGCTTCAGTG

CCTTAAG.
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Figure legends

Figure 1. Expression ofNl mRNA and protein in Tg reproductive tracts and an

infertility phenotype in Tg females

AI Total protein extracts (100 ug) from whole uteri and ovaries of Tg and nTg

littermates were separated by SDS-PAGE and analyzed by Western blotting with a

polyclonal antibody specific for Nl {362}. BI Offsprings obtained by intercrossing Tg

males or females with C3H mice. CI Percentage of sterile females in different founder

unes.

Figure 2. Developmental studies on the une established from founder 60787

Macropscopy (G, H, and L) and histological analysis with HE staining (A-f, G, and

H) were performed on the pregnant uteri at different developmental stages, E16.5, 9.5, and

6.5. Normal C3H and Tg females were compared. In contrast to normal embryos observed

in normal C3H uteri (A, G and I), cavities (B, C and I, black arrow) containing dead

embryonic cells (D and F) were detected in Tg pregnant uteri at both E16.5 (A) and E9.5

(f) stages. Note that the large vessels in meso-, myo-, and endometrium (C and D) as well

as hemorrhage in the endometrium (E, arrow) of Tg pregnant uterus. Higher

magnifications for B are shown in C (5 X), D (20X), and E-F (40X). Tg uterus was smaller

than the control at E6.5 (L). Embryo masses were indicated (white arrow).

Figure 3. Macro- and micro-scopie analysis ofTg reproductive organs

AI External appearance ofreproductive tract. Note that 1g utems is thinner and has

more superficial vessels (b, white arrow) than its littermate. BI Microscopic analysis (HE

staning). Note more vessels (d, black arrow) as well as thiimer endometrium (f astericks)

and myometrium (f, arrowhead) in the 1g utems compared with nlg littermate (c and e).
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Figure 4. Increased macrophages observed in Tg uteri.

H & E stained sections of uterus and placenta from nTg and 1g mice. Note that

more macrophages are distributed in 1g utems (G-M) compared to non-Tg one (A-F).

Uteri are grouped in A-E and G-K and placentas are grouped in F, L, and M. B, C a, H,

and I: showing macrophages around vessels located within myometrium. D, E, J, and K:

showing macrophages among glands located within endometrium. Macrophages are ceils

with morphology indicated by arrows. A.G: 5X; B, D, H, J, F, L, and M: 40X; C, E, I, and

K: 100X.

Figure 5. Tg expression and vascular phenotype are reproduced in the uterus ofthe

mice transplanted with Tg FL ceils

Four months afler transplantation with FL celis, the recipients were observed. AI Tg

N1EC expression was detected in utents, LNs, and peritoneal macrophages by RT-PCR. BI

Macroscopic phenotype. Coincident with the hemangiomas (filled with Microfil® products)

observed in the Tg —> C3H chimeric liver (green arrows), some tumors observed in the Tg

—* C3H chimeric uterus (blue arrows, especially, on the surface of the uterus). C Microfil

perfusion shows clear vascular tumors on the surface of 1g — C3H chimeric uterus (b and

d) but flot in nTg —> C3H chimeras (a and d).

Figure 6. Histological analysis of uterus from FL chimeras

Same organs as seen in Figure 5. were subsequently performed H & E staining. Big

vessels (red asterisk) perfttsed with Microfil® are shown in endometrium (B) and

myometrium (F) of Tg —> C3H uterus but flot in nlg — C3H utems (A and E). Note that

these vessels grow out from the utems and form the tumor on the uterine surface (D, black

arrow) and that the big vessels are usually accompanied by hematopoietic cells (H, blue

arrow).

185



Figure 7. Notch4 is ïncreased in the Tg uteri

Uterine cDNA and its dilutions (1:10 and 1:100) were performed RT-PCR. Notch4

was detected and nTg and 1g uteri were compared.

Figure 8. Postulated mechanism leading female fertility.

Macrophages activated by Nl Tg induce uterine vascular defects. Both activated

Macrophages and defective vessels couÏd impair implantation, placentation, and fetus

formation, leading to infertility.
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Abstract

Previous resuits have dernonstrated that severe vascular patterning defects were

discovered in the CD4C/N1’ lg mice. Ihis is particularly true in the liver, in which

macrophages targeted by NIEC 1g play a key role. Since turnors are angiogenesis

dependent and take advantage ofpre-existing vasculature, we hypothesized that tumor may

grow better in these mice. We first chose diethyïnitrosamine (DEN) as a known effective

carcinogen to induce tumours. High incidence (100%) of liver tumours was found in the

DEN-treated mice. An enhanced percentage of liver carcinomas, accompanied by

increased vasculature, was observed in Tg mice (66.7%), as compared to non-Tg mice

(26.7%). Lung metastases ofhepatic origin were only apparent in 1g mice. In addition, 1g

mice exhibit a high percentage of lung carcinomas (50%) and kidney turnors (42.9%).

Subsequently, we established other distinct models to evaluate the turnor growth and

angiogenesis. Isolated hepatocyte tumors induced by DEN were first injected into the

mice, resulting severe metastases (i.e. chest cavity) observed in the Tg mice. We then used

another model: subcutaneous transplantation with C3L5 breast tumor ceils. Metastases to

heart (3/5), kidney (2/4), and pLN (1/4) were only observed in the Tg mice, and both

higher number and larger size of lung tumors were displayed in the Tg mice. Finally, B7$

melanoma celis were subcutaneously injected into the nude mice transplanted with fetal

liver (FL) cetis. Faster primary tumor growth in Tg-bearing mice was found compared to

that in nTg-bearing ones. In both C3L5 and 1178 models, a high degree ofvascularization

and necrosis were observed in the primary tumors of 1g mice. Hence, Nl expressed in

the macrophages is associated with tumor growth, metastasis. and angiogenesis.

Macrophages might play a critical role in these processes, providing good targets for

antiangiogenesis and anticancer in the future.
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Introduction

It bas been known for a long time that solid tumors do flot grow in isolation. They

instead need a proper microenvironment in order to perform a multistage progressive

process. The growth of tumors can flot only be directly facilitated by genetic changes

(Fidier and Radinsky, 1990) but aiso be indirectly faciiitated by tumor angiogenesis

(Folkman, 1971; Tang and Conti, 2004). The progression of primary tumors, as well as

metastatic tumors, may be reguiated by a combination of autocrine and paracrine signais

from tumor celis and stromal ceils (Nicolson, 1993; Lin et al., 2002; De Wever and

Mareci, 2003).

Molecules such as CSF-1 produced by turnor celis can autonomousiy reguiate

tumorigenity and tumor invasiveness (Sapi et al., 1996; Sapi et al., 199$; Filderman et al.,

1992). They can also stimulate the proliferation of endothelial celis and the recruitment of

macrophages into the tumor-site, which can affect tumor growth by paracrine regulation

(Nicolson, 1993; Lin et al., 2002). For tumor metastasis, at eariy stages, turnor ceils shouid

be more dependent on the growth’s response to their new secondary microenvironment

(Nicolson, 1993). Enhanced adhesion of metastatic ceils to the endotheiial celis of the

organ’s microvascutature is important for colonization of tumor celis in the secondary site.

Increased responsiveness of cancer ceils to paracrine growth factors (i.e.EGF) and

inhibitors (i.e.TGF-31), differently expresscd at distinct organ-sites, can cause an organ

specificity of the metastatic colonization. At the later stages of progression, where a

widespread dissemination of cancer occurs, the autocrine mechanisms wiil dominate the

growth ofmetastatic ceils (Nicolson, 1993).

Our previous resuits show that severe vascular patterning defects were occuered in

the CD4C/N1’ C3H Tg mice, particularly in the liver (Xiujie et ai). Since tumors are
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angiogenesis-dependent and take advantage of pre-existing vasculature (Verheul et al.,

2004; Tang and Conti, 2004), we hypothesized that tumors may grow better in these mice.

The C3H mouse has been used in the National Toxicology Program (NTP) and

National Cancer Institute (NCI) carcinogenesis studies since 1971. Moreover, the liver of

this mouse is a sensitive model for evaluating positive tumor responses to the carcinogens

(Reynolds et al., 1987). One carcinogen which is effective in liver tumor induction is

diethylnitrosarnine (DEN), an activator of Ras mutations in the mice (Reynolds et al.,

1987; Klaunig et al., 1987; Frey et al., 2000). Other experimental tumor models are

approached by transplantations of tumor cells such as C3L5, a highly metastatic celi line

that was clonally derived from a spontaneous mammary tumor of C3H mouse (Lala and

Orucevic, 1998). A weakly metastatic ccli une known as B78, was cloned from a

melanoma of C57 mouse (La Porta and Comolli, 1997). Both tumor celis have been used

to evaluate the tumor progression, metastasis, and angiogenesis (Lala and Orucevic, 199$;

Jadeski and Lala, 1999; Switaj et al., 2004)

In the present study, we have assessed the CD4C/N1 Tg mice in tumor

progression, metastasis, and angiogenesis. In order to achieve this, we devised distinct

mouse models based on CD4C/N1’ Tg-bearing mice: hepatocarcinomas induced by DEN;

metastasis caused by a transplantation of C3L5 tumor cells; and tumor growth and

angiogenesis induced by B78 melanoma cells.
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Resuits

Whule CD4C/Nl’ Tg mice show severe liver vascular defects, obvious

hepatocarcinomas were induced in the mice treated with DEN

Previous resuits have demonstrated that while a thymoma phenotype was expected

to be induced, liver vascular pattering defects were unexpectedly discovered in

CD4C!Nl’ Tg mice: parenchymal tumors are quite rare in these mice (Xiujie et al.). In

order to bring to light a possible association between N1EC, or defective vessels, and

hepatocyte tumors, an administration of DEN was performed in these mice (Fig. 1. and

Table 1). As expected, with a DEN treatment, obvious liver parenchymal turnors were

successfully induced in both nTg and 1g groups. Following a gross analysis (Fig. 2),

turnors in male nTg livers can be clearly identified as white nodules of various sizes.

Turnor nodules, however, are not easy to identify in Tg livers. Many flat nodules are fused

together with big vessels and display a green-red or a blue-red color. The whole liver itself

is affected with a decaying appearance (Fig. 2). In females, a higher number and larger

size of liver tumors were obtained in Tg mice as compared to non-Tg littermates. They are

frequently observed at the edge ofthe liver, accompanied by the defective vessels (Fig. 2).

Since tumor growth will increase the weight of the tissue, we weighed the whole

body, as well as the liver alone, and subsequently calculated their ratio. There is no

significant difference between nTg and Tg for all signs (Table 2 and Fig. 3A). However,

the ratio in the male group treated with DEN is higher than in the female group treated

with DEN (Fig. 3Ac). Although the statistic is flot significant, it is consistent with a higher

number of liver tumors observed in males as described below.
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fliglier number of large liver tumors were developed in Tg mice

With a careful gross examination, almost 100% of mice in non-Tg and 1g (males

and females) were found to have developed hepatoceÏÏuÏar tumors (Table 3A and fig.

3B). Although there is no significant statistical difference, more tumors were observed in

males than in females (Fig. 3Ca), a reflection of the resuits obtained by other teams (De

Maria et al., 2002; Bugni et al., 2001). Hence, the following resuits comparing the tumors

between nTg and Tg will be separated into distinct gender groups. Since the size of a

tumor is related to its malignancy, and since carcinoma is usually larger than 5rnm in

diameter, the size of the liver tumors in our experiments was measured and defined as

either “srnall” (< 5mrn in diameter) or “large” (> 5 mm in diarneter). In both male and

female groups, a higher number of large tumors in Tg mice was found than in non-Tg ones

(this difference is significant in female group), though no difference appeared in small

turnors (Fig. 2C. b and a). Interestingly, large tumors were preferentially present in males

than in fernales (Table 2. and Fig. 2Cc), which is consistent with the higher numbers in

males overali.

CD4CIN1 Tg mice developed more hepatocellular carcinomas with cnhanced

vessels and a higher rate of pulmonary metastases than non-Tg ones, especiatly in

males

In order to assess grades of the liver lesions, a histological analysis was carefully

performed with HE staining sections. For both male and female groups of non-Tg ;nice,

the tumor nodules were easily discriminated from compressed adjacent normal

parenchyrnal hepatocytes (Fig. 4. A-E), although it was not possible to distinguish nodules

with a clear dernarcation in Tg mice (Fig. 4. B-F). However, more carcinornas (85.7% and

40%) developed in Tg groups compared to nTg mice (50% and 0%) (Table 3 and Fig. 41).
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These malignant ceils are polymorphous with big nuclei, and forrn distinct glandular

patterns (Fig. 4. D and H). They are often found around the huge defective vessels (Fig. 4.

B and F), and are ftequently swimming within vascular channels (Fig. 4. D and H).

Necrosis, an important sign ofangiogenesis (Leek et al., 1999), was found in Tg mice (4/7

and 1/5) but flot in non-Tg mice. Interestingly, in Tg males, a high rate of pulmonary

metastases (57.1%) were observed (Fig. 4B.i), as compared to none detected in other mice.

Tg mice developed progressive liver tumors and promoted lung metastasis, especially in

males, suggesting that N1EC Tg expressed in macrophages is associated with development

and metastasis of the liver tumors initiated by DEN.

CD4C/N1 Tg mice developed more highly-progressed tumors of pulmonary origin

than nTg mice

To investigate metastasis from the liver, other organs were examined. We found

that lung was the second organ bearing some tumors. Higher incidence, higher number,

and large size of lung tumors were observed in Tg mice as compared to nTg mice (Table 3

and Fig. SA). A significant difference was particularly found in the femate group.

To identify the origin of these lung tumors, histological analyses were performed.

Surprisingly, almost ail tumors dissected from gross analysis samples were critically

formed by lung-derived cells, and, with the exception oftwo cases, they were accompanied

by some hepatocytes in Tg males (Fig. 53. h and i). Contrary to the lack of carcinoma

found in non-Tg mice, Tg mice from both male and female groups have displayed a high

number of carcinomas (42.9% and 60%, respectively) (Fig 5B. a-g and Table 3).

Additionally, the tumors were larger in males than in females (Fig. 5B. a-b and e-f; Fig. 3.

A-C and D-E). These results indicate that DEN can also induce lung tumors (Shukla and

Taneja, 2002; Kim et al., 1997). The important observation in this case, is that the Tg mice
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are more inclined to develop DEN-induced lung tumors than the nlg mice. Hence, the

CD4C/N1 Tg mice, especially males, display accelerated development of lung tumors as

well as liver tumors.

CD4C/N1 Tg mice developed kidney tumors, particularly in males

While many demarcated tumors were easily found in the livers and in lungs

(especially in Tg males), kidneys with tumor-like masses were additionally revealed by

gross examination. These diseased kidneys were particularly identified in 1g males,

compared with almost no disease recorded in the other mice (Table 3. and Fig. 6A). The

gross characters of these kidneys include a big size, an inegular shape, a rough surface,

and a solid tissue.

To further confirm the features of these tumors, histological analysis was

performed with the kidney HE staining sections. Very strikingly, a high incidence of

glomerular tumors (42.9%) and tubular epithelial carcinornas (57.1%) was revealed in 1g

males treated with DEN (Table 3. and Fig. 6B. b, c. and g). In contrast, no tumor was

histologically observed in non-1g mice; only two out of four non-1g males were proven to

sustain as hyperpiasia (Fig. 6B. a-g). Despite the fact that no similar disease was detected

in females. one 1g mouse showed tubular epithelial hyperpiasia (Fig. 6B. d and e). Ihese

resuits indicate that CD4C/N1’ 1g mice promote the development of renal tumors

induced by DEN (Ansar et al., 1999).

In surnmary, multiple-organ tumors (liver, lung, and kidney) and lung metastases

were induced in the 1g mice, indicating a role of either 1g Ni (or celis expressing 1g) or

defective vessels caused by 1g in tumor formation and metastases.
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Severe metastases were observed in Tg mice transplanted with hepatocyte tumor ceils

and C3L5 tumor ccli une

b fttrther figure out the involvernent of CD4C/N1’ in tumor metastasis in Tg

mice, hepatocarcinoma ceils isolated from liver tumor induced by DEN were first

transplanted into the liver of non-Tg and 1g mice via intra-hepatic injections. Most Tg

mice, but flot nTg mice, died during the injection (Table 4). One month afier the

transplantation, liver-localized tumors were detected in nTg livers, but flot in the 1g ones.

However, severe metastases were observed in the Tg mice in contrast to mild ones found

in the nTg mice (Table 5 and Fig. 7). Solely intestinal metastases were noted in the nTg

mice, whereas in Tg mice, larger intestinal tumors, as well as additional metastatic tumors

were identified: thymus, chest cavity, and pancreas (Table 5 and Fig. 7). This outcome

hints that CD4C/Nl’ Tg mice are associated with tumor metastasis.

Subsequently, another model of tumor metastasis was designed using C3L5, a ceil

une with a propensity for pulmonary implantation (Lala and Orucevic, 1998). These ceils

were subcutaneously transplanted into both CD4CINl’ nbg and Tg mice. Four weeks

affer the transplantation, the mice were observed. Contrary to expectations, prelirninary

results showed that the primary tumors in the Tg mice were not larger, but rather smaller

than those in the nTg mice (Fig. 8A and 8B). However, as expected, the tumors in the Tg

mice were more highly-vascularized and hemoiThagic than those in the nTg mice (Fig.

8B). In addition, more necroses were found in the Tg primary tumors than in nTg mice

(Fig. $C). These facts suggest that the CD4C/Nl’ 1g mice are relevant to tumor

angiogenes is.

Interestingly, severe metastases were detected in Tg mice compared to nTg mice.

With gross examination, large tumors (> 5mm) were clearly spotted in the Tg heart, but flot
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in the nTg heart (Fig 9A. a-b and Table 6). Moreover, a larger size and higher number of

tumors was obsei-ved in the 1g lung than in the nTg lung (Fig. 9A. c-d and Table 6). With

histological analyses, the tumors observed in heart and lung were confirmed to be

metastatic tumors (Fig. 9B). Malignant tumor celis are observed to be invading the

myocardium and endocardium of the Tg heart but flot the nTg heart (Fig. 9B. a and b).

While metastatic celis are forming small tumors with well-differentiated pseudoglandular

architectures in the nTg lung, turnors in the Tg lung increased in number and exhibited an

enlarged size with poorly-differentiated pseudoglandular architectures (Fig. 9B. e and d).

Tnterestingly, intra-glomerular metastatic tumors were found in the Tg mice, not in nlg

mice (Fig. 93. e and 1). In addition, metastatic ceils were also seen in the peripheral

lymph-node of Tg mice but not in nTg mice (Fig. 9B. g and h). These data confirm that

the CD4C/Nl’ Tg mice are associated with tumor metastasis.

Primary tumor growth in the Tg-bearing nude mice is both faster and displays a

higher degree ofvalcularization

To further confirm that CD4C!Nl Tg mice facilitate in tumor angiogenesis,

another tumor growth model was established using B78, a weakly metastatic celi une (La

Porta and Cornolli, 1997). The celis were subcutaneously injected into the nude mice,

which had been transplanted with nTg or 1g fL ceils one month earlier. Tumors in the 1g-

bearing mice grew faster than those in the nTg-bearing mice and the large size of tumors

could be clearly identified by macroscopic examination (Fig. 10. A and B).

Neovascularized and hemorrhagic histology was once again observed in the tumors from

Tg-bearing mice (Fig. 10. B and C). To distinguish the features oftumor vessels between

nTg- and Tg-bearing mice, Microfil® perfusion was performed. 0f note is the fact that Tg

tumors are aiways difficuit to perfuse, and it was necessary to administer even more
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Microfil® products (because of aberrant angiogenesis or hemorrhage?). Afierwards, more

tortuous and blind-end vessels were observed microscopically in the tumors coming from

the Tg-bearing mice, as cornpared to those from nTg-bearing mice (Fig. lOB). Histological

exarnination reveals that more necroses are present in the tumors from the Tg-brearing

mice than those from nlg bearing-mice (Fig. bD). These resuits, in tum. suggest that

CD4C/N1’ Tg mice are involved in tumor growth and tumor angiogenesis.
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Discussion

Previous resuits showed that Ni EC induces multi-organ vascular defects in Tg mice,

especially in the liver, in which macrophages targeted by N1EC 1g play a key role (Xiujie

et ai). Here, we demonstrated that the CD4C/Nl’ 1g mice promote multi-organ

carcinogenesis including the liver, lung. and kidney when initiated with DEN. We have

also demonstrated that the Tg mice are associated with tumor metastases, as detected in

multiple organs in the models transplanted with hepatocarcinoma and C3L5 tumor celis.

Moreover, we observed that the Tg is involved in tumor growth with the model of 378

melanorna transplantation. Finally, our data indicated that the CD4C/NI’ Tg mice are

associated with tumor angiogenesis: enhanced angiogenesis was observed in

hepatocarcinomas induced by DEN and in primary tumors injected by C3L5 and 378

turnor celis in Tg mice.

The tumor must have a vascular supply in order to maintain its respiratory and

nutritional requirements (Folkman, 1990), indicating that angiogenesis can be treated as a

paracrine factor for tumor progression. Enhanced vascularization was observed in 1g-

bearing tumors with the primary features of more malignancy in DEN treatment and faster

growth in 378 tumor ceil transplantation. These resuits suggest that the involvement of

NlEC in angiogenesis is required for the tumor progression. Some tumor development also

takes advantage of pre-existing vasculature (Verheul et al., 2004). In the model treated

with DEN, liver malignant ceils in Tg mice are often adjacent to large, defective vessels.

Malignant tumors are also observed in other 1g organs (lung and kidney) where defective

vessels already existed before the DEN treatment (Xiujie et al.). These resuits suggest that

the pre-existing defective vessels might promote with the carcinoma progression by

providing more DEN carcinogen to epithelial ceils via their permeability (Xiujie et al.). On
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the other hand, activated signais expresscd in endotheiial ceils of the pre-existing defected

vessels might accelerate maiignancy of the epithelial ceils. These malignant ceils in turn

stirnulate new aberrant angiogenesis by positive feedback regulation.

The newly formed vessels are easily penetrated by metastatic tumor ceils, which

thereby enter the systemic circulation (Weidner et ai., 1991), indicating that angiogenesis

can be of a paracrine nature with regards to tumor metastasis. This might partiaily explain

the phenomenon observed in the model transplanted with C3L5 tumor ceils. A higli degree

of neovascuiarization is observed in the primary tumors of the Tg mice. However, in

contrast to B7$ tumor celis, severe metastases to other organs, but not fast tumor growth,

are particuiariy identifled in the 1g mice. This suggests that the role of these new vessels

rnight favor metastasis of primary tumor cells to other organs, rather than growing in the

injection site. Pre-existing vasculatures might be also advantageous to tumor metastases.

Consistent with other reports (Jadeski and Lala, 1999; Lala and Orucevic, 199$), lung

metastases are observed in both nlg and 1g mice. However, more severe metastases were

found in Tg lungs compared to nlg mice. Aiso, large metastases to normally rare targets,

such as heart and glorneruli, are discovered in the Tg mice. Probabiy, the pre-existing

defective endothelial cells in the Tg mice provide positive paracrine signais for recruiting

tumor ceiis to colonize in the second organs, resuiting in muiti-organ metastases. Simiiariy,

metastatic hepatocytes to the lung, as observed in DEN-treated Tg mice, might aiso be

reiated to the newly fonned and pre-existing defective vesseis.

Another required factor for paracrine reguiation of tumor progression and

metastasis miglit be the presence of macrophages. It has been estabiished that the majority

of malignant soiid tumors contain numerous leukocytes, of which, macrophages make up

the major components (Bingie et al., 2002; Elgert et ai., 199$). These macrophages are
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referred to as tumor-associated macrophages (TAMs), which correlate with prognosis of

many human cancers (Bingle et al., 2002). Decreased progression and metastases ofbreast

cancers were observed in the GSF-F’ mice without macrophages, proving that the latter

play a role in tumor progression, metastasis, and angiogenesis (Lin et al., 2002; Lin and

Pollard, 2004). TAMs can be first recruited to tumor sites by a range of factors from

neoplastic tumor celis, including MCP-1, CSF, and VEGf (Ohno et al., 2003). They then

produce cytokines or growth factors such as PDGF, TGf, and VEGF that can directly be

involved in tumor progression by paracrine fashion (Leek and Harris, 2002; Sunderkotter

et al., 1994). As described in the previous paper, macrophages are reprogrammed by Nl’

1g and exert an angiogenic role through a paracrine loop. Probably, this mechanism also

functions in the turnor progression and metastasis. Ihe reprogrammed Tg macrophages

could be first recruited by the primary tumors (induced by DEN carcinogen as well as by

C3L5 and 378 turnor ceils). They then abnormally cluster in the tumors where they can

stirnulate turnor celi mitogenesis and angiogenesis. In this way, the tumor can either grow

fast in the prirnary site (372 melanorna) or easiÏy metastasize from the primary site (C3L5

breast turnor). Tumor ceils might also be easily colonized in the secondary organs, causing

multi-organ metastases due to the reprogramrned macrophages. Hence, the next interesting

experiment will be to characterize a role of macrophages in progressed tumors (DEN and

B78) as well as in metastatic tumors (C3L5).

It is notable that the most highly necrotic breast tumors are also the most highly

angiogenic (Leek et aI., 1999). In our models, a high degree of necrosis was observed,

accompanied by a hypervascularization in the primary tumors (C3L5 and B78) ofthe Tg

bearing mice (Table 7). They were also observed in the hepatocarcinomas of the Tg mice

induced by DEN, who had the most severe carcinomas and aberrant angiogenesis. These
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data suggest that those tumors with the highest levels of necrosis are the most angiogenic

0 and rnight posscss the highest focal macrophages.

Among those tumors induced by DEN, severe tumors are found in males, while a

significantly higher number of large tumors was identified in Tg females. This implies that

tumors in the male group may have developed too late in both nTg and 1g groups to be

compared together. In the metastatic tumors induced by C3L5, repeated experiments with

more animais are currently proceeding in order to get ideal statistics.

In conclusion, CD4C/N1 Tg mice are associated with tumor growth, progression,

metastasis, and with angiogenesis by some paracrine mechanisms (defective ECs and

reprograrnmed macrophages). The exact molecular mechanisms stili remain unknown.

Further work should be done to identify key molecules required for these paracrine loops,

which may facilitate anti-tumor treatments in the future.

/
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Methods and materials

C Animais

CD4C/Nl’ Tg mice were generated as previously described (Xiujie et al.). Two

groups of CD4C/Nl EC transgene littermate mice (nTg and Tg) of both sexes were prepared

for the experiments of carcinogen-induced tumor (Table 1.). Genotyping was conducted

immediately afier DEN injection.

Treatment of animais

On day 14 afier birth, a total ofthirty mice received a single peritoneal injection of

DEN (Sigma; l4ug/g body weight), diluted with phosphate buffered saline (P35) (Hara et

al., 2000). DEN-treated CD4C/Nl’ nlg and 1g mice were weighed and sacrificed

between 52 to 54-week-old (Fig. 1). Major organs, including liver, lung, kidney, prostate,

and others were examined for macroscopically visible tumors and the livers were weighed.

Then whole mice, including organs, were perftised and fixed with 4% paraformaldehyde.

The number of turnors in the liver and in the lung was counted. The size of the tumors in

the liver was measured and recorder in two catalogues: <5 mm in diameter and> 5 mm in

diameter.

Tumor ccli une and media

C3L5 is a highly metastatic celi une derived by five cycles of repeated in vivo

setections for spontaneous lung metastases, following a subcutaneous transplantation of C3

celis into the C3H/Hej mice (Jadeski and Lala, 1999). The C3L5 cells used in the present

study were kindly provided by Dr. Peeyush Lala (Ontario, CANADA) and cuitured

according to the provided protocol. Briefly, C3L5 celis were grown from frozen stock and

maintained in RPMI 1640 medium (GIBCO. Cat. 31800-089) supplemented with 10%

fBSI and 1% penicillin-streptomycin in a humidified incubator, 5% C02. On the other

1 —
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hand, B78, a weakly metastatic celi une, is derived from a C57BLI6J murine melanoma

(La Porta and Comolli, 1997). B78 melanoma ceils were maintained in DME medium

(GIBCO. Cat. 12100-061) supplemented with 10% FCSI in a humidified incubator, 5%

C02.

Tumorigenicity Assay

Hepatocarcinomas (induced by DEN) were isolated from the liver and were

subcutaneously injected into each side ofthe back of4-month-old CD1 nude mice. lumors

were harvested when they reached a size of 1.5-2.0 cm in diameter. Then the tumor ceils

from the nude mice were syngenic into C3H mice for two cycles. These celis were finally

transplanted into CD4C/N1 1g mice. Briefly, the fresh ceils were meshed until reaching

alrnost single-ceil suspensions. These suspensions were intra-hepatically injected into the

liver (quarter and lateral lobes) of CD4C/Nl nTg and Tg mice (four-month-old and six

mice per group). One month later, the mice were killed and their organs were

macroscopically and microscopically examined.

b induce metastases, groups ofmice (n=4) were received s.c. injections of 2X106

C3L5 breast cancer celis. Ail mice were sacrificed at 4 weeks afier injection. Metastatic

tumors were removed to perform HE staining. To induce skin tumors, iX 106 B7$

melanomas were intradermally injected into the nude mice (n=4 per group) transplanted

with fL cells, as described below. Skin tumor surface area was measured once per 2 or 3

days until 4 weeks after the tumor ceIl transplantation. Then the nude mice were sacrificed.

Skin tumors were removed and divided into half; therefore paraffin and frozen sections

were both obtained from the same sample. Then the sections were performed HE and IHC.
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FL cells transplantation (FLT)

For fLT, donors (CD4C/N 1’) were genotyped by fast PCR of liver and other

organs. Recipients (nude mice) were Ïethally irradiated (400 rads). Approximately, 4 X 106

FL ceils were injected into the tau veins of the irradiated mice. For tumor assay, 8 weeks

afier fLT. the nude mice were examined via a tumorigenicity assay, as described above.

Histological examination

The fixed organs as described above were embedded in paraffin for routine

processing and examination ofHE staining sections as previously described (Xiujie et al.).
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Figure Iegends

Figure 1. Experimental design of DEN treatment.

..1- DEN (14ig/g body weight Lp.) S; Sacrifice.

Figure 2. Macrographs of liver tumors of mice treated with DEN.

Gross liver tumors shown in whole nTg (A and D) and 1g mice (B, C, and E) are

compared in different male (A-C) and female (D-E) groups. In males, in contrast to nTg

liver, exhibit clear tumor nodules (pink arrow) which vary from small (B) to big (A), the

appearance of the whole liver looks decaying and tumor nodules are not easy to identify

(C). In fernales, when cornpared to nlg liver, harbour no or few small tumors (D),

however, clear turnor nodules situated at the edge of the liver (black and white arrow) are

visible in 1g mice (E). Big-edged vessel is indicated (arrowhead).

Figure 3. Liver and body weight as well as incidence and number of liver tumors.

AI Liver weight, body weight, and the ratio of liver/body weight were compared betwecn

nTg and 1g mice. BI Incidence of liver tumors in nlg and 1g mice (male and female

group). CI Number of liver turnors classified into two groups “small” (<5 mm in diameter)

and “large” (> 5 mm in diameter) were compared in nlg and 1g mice induced with DEN.

Figure 4. Histological analysis of hepatocyte tumors of mice induced with DEN

Liver sections including tumors from mice treated with DEN were stained with H & E

staining. Comparison of the border between tumor and adjacent tissue, vessel, and

malignancy ofhepatocytes from nlg (A, C, E, and G) and 1g mice (B, D, f, and H). Note

that, in nTg livers, tumors (Tu) are well demarcated (A and E, green anowhead), but no

visible remnant of adenoma (Tu) is subsisted in the 1g livers (B and F). Note also big

superficial vessels surrounding malignant ceils (B and F: blue arrow) and vascular

chaimels among the malignant hepatocytes (D and H: blue arrows indicate ECs and black
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arrow indicate red ceils) in Tg livers, compared to the vessels in nTg livers (A, C and E,

G). Note that hepatocytes with big nucleus like eyes (D) have formed isolated glands in 1g

mice (D and H), indicating more malignancy (C and G). Percentage of cÏassified tumors

and necrosis is distinctly shown in nTg and Tg mice (I). Tu: turnor, Li: liver.

Figure 5. Incidence, numbers, and histological analyses of lung tumors of mice

treated with DEN

AI Comparison of the incidence (a), number (b), and size (c) of lung tumors between nTg

and Tg mice. BI Comparison of lung tumors between nTg (a,c, and e) and 1g (b,d, and f)

from male and female groups via histological analyses with HE staining. Note that tumors

are larger in 1g lungs (b and f) than those in nTg mice (a and e). Also, note the mixed

differentiated carcinomas in 1g lung-well differentiated carcinoma with glandular (d, green

arrow) and poorly differentiated carcinoma (b, black arrow), compared to the uniform

adenornas in nTg lung (c and g). Hepatic metastatic cells are shown in 1g lung (i), flot in

nTg one (c). Classification of distinct grade of lung tumors between nlg and Tg mice is

shown (g).

Figure 6. Incidence and histological analysis of kidney tumors of mice induced with

DEN.

AI A high incidence of tumors manifested itself in 1g kidneys, compared to nlg mice. BI

Comparison of kidney turnors between nlg and 1g mice via histological analysis with HE

staining. Note the tubular epithelial tumors (b and f) and the glomerular tumors (c and g)

present in male Tg kidneys but neither in male nlg mice nor in any females (a,fand g).
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Figure 7. Tumor formation in CD4C/Nl Tg mice by transpianting

hepatocarcinomas induced by DEN

Tissues flxed with formaldehyde were sectioned and stained with H & E staining. AI Liver

localized tumor observed in the nTg mice (n5, a and c) but flot in Tg ones (n=6, b and d).

BI Severe metastases of hepatocarciniomas were shown in Tg thymus, intestine, chest

cavity, and pancreas compared to only intestine metastasis in nTg mice.

Figure 8. Prïmary tumor growth observed in CD4C/N1 Tg mice transplanted with

C3L5 breast tumor ceils.

AI Measurernent of primary turnor growth. BI Comparison of primary tumors in nTg (a,

n=3) and Tg (b, n5) mice by macroscopic examination. Note smailer size of tumor,

however, more peripherial neovessels (arrow) and hotspots (asterisk) in Tg mouse (b)

compared to nTg mouse (a). CI Necroses are shown in Tg tumor (b) than in nTg tumor ta)

by HE stain (1.25X). N: necrosis.

Figure 9. Metastatic tumors observed in CD4C/N1 Tg mice transplanted with C3L5

breast tumor ceils.

AI Comparison of macroscopic tumors in heart and lung in nlg (n=3) and Tg mice (n=5).

Heart and lung tumors are indicated in (b. blue anow) and (e and d. green arrow). BI

Comparison of metastatic tumors with histological analyses via H & E staining in heart (a

and b), lung (e and d), kidney (e and f), and pLN (g and h) in nTg and Tg mice. Ail are

shown in 20X. except for kidney in 40X.

Figure 10. Faster primary tumor growth observed in Tg-bearing nude mice

transplanted with B78 melanoma ceils.

AI Tumors surface of nTg-(n=4) and Tg-(n=4) bearing mice are dynamically measured

during 3-28 days affer tumor transplantation. BI Note that larger, hemorrhagic (blue
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arrow), and necrosis (red arrow) are displayed in Tg-bearing mice, but not in nTg-bearing

ones. C More neovascularization is shown in Tg-bearing mice than in nTg-bearing mice.

D Vessel morphology is detected by Microfil® perfusion in nTg- (a and c) and Tg-bearing

mice (b and d). Note that more tortuous and blind-end vessels in the Tg-bearing mice (b

and d) cornpared to nTg-bearing ones (a and e). HE staining shows more necroses in Tg

bearing tumor (f) compared to nTg-bearing tumor (e).
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Figure 7.
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Figure 8.

A. Rate of tumor growth
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Table 3: Summary for liver, lung, ami kidney tumors

Summary of tumors in liver, lung, and kidney

A. Liver

Group Gross Histology

f-) adenoma carcinoma nacrosis metastasis

I Il—III

male nTg + DEN 4/4 (100%) 0/4 (0%) 1/4 (25%) 1/4 (25%) 2/4 (50%) 0/4 (0%) 0/4 (0%)

Tg + DEN 7/7 (100%) 0/7 (0%) 0/7 (0%) 1/7 (14.3%) 6/7 (85.7%) 4/7 (57.1%) 4/7 (57.1%)

female nTg + DEN 5/5 (100%) 1/5 (20%) 1/5 (20%) 3/5 (60%) 0/5 (0%) 0/5 (0%) 0/5 (0%)

1g ÷ DEN 5/5 (100%) 0/5 (0%) 1/5 (20%) 2/5 (40%) 2/5 (40%) 0/5 (0%) 0/5 (0%)

B._Lung

Group Gross Histology

(-) dyspiasia adenoma carcinoma metastasis

male nTg + DEN 3/4 (75%) 0/4 (0%) 1/4 (25%) 3/4 (75%) 0/4 (0%) 0/4 (0%)

1g + DEN 6/7 (85.7%) 0/7(0%) 3/7 (42.9%) 1/7 (14.3%) 3/7 (42.9%) 4/7 (57.1%)

female nlg + DEN 1/5 (20%) 4/5 (80%) 1/5 (20%) 0/5 (0%) 0/5 (0%) 0/5 (0%)

1g + DEN 4/5 (80%) 0/5 (0%) 1/5 (20%) 1/5 (20%) 3/5 (60%) 0/5 (0%)

C. Kidney

Group Gross Histology

f-) tubular glomurula

dyspiasia adenoma carcinoma N Y

male nTg + DEN 1/4 (25%) 2/4 (50%) 2/4 (50%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%)

Tg + DEN 6/7 (85.7%) 0/7 (0%) 1/7 (14.3%) 2/7 (28.6%) 4/7 (57.1%) 3/7 (42.9%) 3/7 (42.9%)

female nTg + DEN 0/5 (0%) 5/5 (100%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%)

1g ÷ DEN 2/5 (40%) 4/5 (80%) 1/5 (20%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%)
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Table 4. General information on transplantation of hepatocacinoma

nTg Tg

Injected mice 5 6

Survival mice 5 2

Mice with tumor formation 2(F&M) 1(M)

Micewith metastasis 1(M) 1(M)

(remark: 4 Tg mice dieU soon after injection but flot nTg mice)
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Table 5. Tumors observed in the different organs of mice transplanted with hepatocarcinoma

nTg Tg

liver Y(2/6) N

thymus N Y

chest cavity N Y (two tumors, 5mm & 8mm in diameter)

lung N N

pancreas N Y

intestine Y (one tumor, 2mm) Y (two tumors, 5mm)

other organs N N
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Chapter 6: Conclusions and Perspectives

5.1. Involvement of Notchi ectodomain expression driven by CD4C promoter in

vascular defects of CD4C/N1 Tg mice

for a long time, researchers have tumed their attention to the study of the roles of

Notch signaling in development and cancer due to its fundamental function in ccli fate

decision (Artavanis-Tsakonas et al., 1999; Mimer and Bigas, 1999; Radtke and Raj, 2003).

Now, more and more studies show that Notch signaling is also required for the vascular

developrnent and for human vascular diseases (i.e. Algille syndrome and cerebal

autosomal-dominant arteriopathy with subcortical infracts and leukoencephalopathy)

(Suliivan and Bicknell, 2003; Gridley. 2001; Iso et al., 2003; Gridley, 2003). Appropriate

expression and function of Notch is necessary for the vascular development (Gridley,

2001), as similar phenotypes were observed in both loss- and gain-of-function of Notch

(Krebs et al., 2000; Uyttendaele et al., 2001). However, almost ail these experiments are

focused on the activation of the Notch intracellular domain except one mouse model of

Notch3F destined to mimic human CADASIL (Ruchoux et al., 2003). for the first time,

our resuits directly show that the overexpression of tbe Notchi ectodomain resuit in

hemangioma-like diseases in aduits regulated by a paracrine loop (see chapter 2). In our Tg

mice, the transgene consist of 1-36 EGf like-repeats ofthe extracellular domain ofNotchl

and lack LNR, TM, and intracellular domains. The aim of this design was to imitate the

“type II mutation” of Notchi discovered in the thymomas (i.e. L45 tumor celi line) from

the mice infected by Mo-MuLVs (Girard et al., 1996; Hoemann et al., 2000). This

fragment bas been sbown to be secreted from the cells (Hoemann et aL, 2000). The

transgene expression is under the control of CD4C promoter, which consist of mouse CD4
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enhancer, human CD4 promoter, and hurnan CD4 Exoni. This promoter drives gene

expression in CD4+ T-cells, macrophages, and dendritic celis (Hairna et al., 1994; Hama

et al., 2001), therefore, CD4C/N1’ Tg mice were expected to produce thymoma. Contrary

to our initial expectation, these mice develop a vascular disease regulated mainly by

macrophages, thereby opening a new window for understanding the function of Notchl

ectodomain. In fact, Notchi, 4-deficient mice showing a disruption of vascular

development (see below) were generated by mutations situated within the EGF-like

repeats, thereby also hinting at a function of the extracellular domain of Notchi, 4.

Although we did not succeed to induce thymomas in this model, the role of Ni in the

tumor formation cannot be underestimated. This is strongly supported by the activated

mutations in Notchi ectodomain found in the human T-ALL latently (Weng et al., 2004).

Alternative models to study the role ofNl in tumor formations will be needed.

5.2. A remolding of liver vasculatures ïs induced and transformed into tumor vessels

As shown in chapter 2, the vasculatures in the Tg livers are aberrantly remolded

compared to nTg Hvers. Three apparent and distinct vesse! anomalies could be observed:

large meandered ectopic vessels growing at the surface or at the edge of the liver; large

vascular cavities and impaired vascular branching within the liver parenchyma. These

anomalies are different from those observed in Notchi, 4-deficient (NF’N4’) mice (Table

1.), though both phenotypes involve vascular defects caused by abnormal cornpartments of

Notchi. The most severe phenotype of Nï’N4’ occurs before E9.5, while that of N1EC

appears during adulthood aithough the vascular defects are induced during embryonic

stage (Ei6.5). There are severe vascular defects found in the yolk sac and placenta ofNF’

N4 mice, but not that severe in Ni Tg mice since ail the babies from CD4C/Nl’ father

were born normally; however, severe uterus vascular defects were observed in Niix Tg
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mice (Chapter 4). The vascular defects mainly affect the anterior ofthe embryo ofNlN4

0
, whiic they pailicularly present in the liver of CD4C1EC 1g aduit mice. In Nl’4’

mice, original large vesseÏs (aortea and anterior cardinal veins) were shown defects with

coÏlapsed morphology, while in our 1g mice, normal branches within the liver are

decreased but enlarged vessels are increased with superficial grow-favorite. Probabiy the

endothelial ceils select alternative ceil fate between intra- and superficial-vessels as well as

smaii and big vessels due to an imbalance of impulsive and repuisive signais as they do for

artery-vein fate decision (Fuller et al., 2003). This hypothesis needs to be further

investigated.

_____________________________

N14N44 Nl

Embryo arrest yes (E9.5) no

Timepointappearing E9.5, severe E165, mild

the vascular phenotype

Timepoint obtained the most
severe vascular phenotype Embryo (< E9.5) adulthood

Defective organsltissues anterior of the embryo liver

yolk sac others organs

placenta uterus

Type of defective vessels large vessels (dorsal aortea, large vessels (superficial veins)

anterior cartinal veins) sinusoids

Features of defective vessels malformation of large vessels: malformation of large vessels:

disorganized superficial

collapsed morphology enlarged size, tortuous, dilation
decreased intrahepatic branches
cavities, cavenous heamangiomas

______________________________ ______________________________________

sinusoidal capillarization

Table 1. Comparison of the phenotype (vascular defects) of Notchl,4 deficient mice and CD4C!N1 Tg mice

No tumor vessels were demonstrated in NF’N4 mice, but heamangioma and sinusoidal

capillarization, that hint activated endothelial ceils, were observed in our Tg mice.

Especiaiiy, some characteristics of turnor vessel were displayed in our Tg mice, which are

tortuous, clustered, dilated, blind-end, and permeable vessels, as well as decreased intra
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hepatic and increased superficial-hepatic vessels (Bergers and Benjamin, 2003; Torry and

Rongish, 1992; Holash et al., 1999; Larcher et al., 1998; Thurston et al., 1999). The

differences of vascular defects between two kinds of mice may be explained by several

aspects: (1) The targets ofthe N1N4’ mice are endothelia! celis whule the targeted celis

of Nl’ are macrophages; (2) The Notch ectodomains are directly mutated in EGf-like

repeats and they are stiil anchored to the expressing celis in the Nï’N4 mice; however,

the Nl is a soluble molecule EGF-like repeats in the CD4C/Nl Tg mice. Hence, N1EC

may talk more molecules in macrophages and/or in endothelial ceils compared to the EGF

like repeats in NF’N4’ mice; (3) The Notch signaling is directly disrupted in the NF’N4’

mice, while the Nl does flot interfere in Notchi intracellular domain (Isabelle et ai,

subrnitted) but provokes other molecular pathway beyond Notch signaling and makes

macrophages release altered factors (see bellow). Therefore, the role ofNl in our mode!

is more complex than that of mutated EGf-like repeats in the NF’N4’ mice. The N1EC

expressed in macrophages is not only involved in vessel development but also in

transformation oftumor vessel.

Our mouse model of CD4C/N1’ is not only suitable for the genetic studies of

Notch functions in angiogenesis during development of animal models, but it also provides

a vascular defect-model like hemangioma in human adulthood.

5.3. Macrophages, but not T-cells, are reprogrammed by Nl to induce a severe liver

vascular disease.

Although both CD4+ T-cells and macrophages (peritoneal macrophages and KCs)

express Nl as detected by RT-PCR or Western blotting, only die ceils with

morphological appearance of macrophages were detected in Tg liver by ISH. This suggests

that the Tg expression in the macrophages may be stronger than that in the thymocytes.
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Ibis could explain the absence of expected thymoma. Ihe Tg liver phenotype is consistent

with the celi distribution. Macrophages ai-e residing in ail tissues in greater number than

other blood-born ceils. Eighty percent of the body’s macrophages are present in the liver

(Knolle and Gerken, 2000). In our model, clustered macrophages are ofien detected in the

Tg liver but flot in the nTg liver. Increased numbers of KCs were also detected by FACS

analysis of isolated NPLCs. These resuits hint at an involvement of macrophages in

vascular diseases. Macrophages have the potential to be reprogrammed and secrete a

myriad of angiogenic factors in response to some appropriate stimuli t$underkotter et al.,

1994). The Nl’’ transgene may provide one such stimulus. In addition to the secretion of

the angiogenic factors, Moldovan and his colleagues recently show that in a mouse model

with targeted expression of MCP-1 in the rnyocardium, macrophages implicate in the

drilling of tunnels in ischemic myocardium, hinted transdifferentiation of macrophages

into endothelial ceils tMoldovan, 2000). This transdifferential mechanism was excluded in

CD4C/N1 1g mice by fetal liver transplantation helped with ROSA marker. Except for

roles of macrophages, per se, interactions between macrophages and endothelial celis are

also key events in the pathogenesis of vascular disease. These interactions can be mediated

by several types of receptor-ligand cross-talk, including integrin-mediated binding and

CD4O with its ligands (Lessner, 2004). In our model, not only a strong physical interaction

between Tg macrophages and L$ECs was observed by EM and co-culture assay, but also

their molecular interaction was proved by the transplantation of macrophages into C3H

and co-culture assay in vitro. The exact nature of the interacting molecules remains to be

determined.

The possible raisons why the vascular phenotype predominantly occurs in the liver

may include among others: the higher numbers of macrophages residing in the liver (80%
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of body’s macrophages), a suitable hematopoietic and blood system, and the unique

interaction between LSECs and KCs in the liver (see chapter 2).

5.4. Tg macrophages induce the liver vascular defects through a paracrine loop

It is clear that the Tg macrophages express the Nl 1g and are reprogrammed by

its expression. Hence, the vascular disease caused by N1EC does not seem to be mediated

by endothelial ceils per se. Also, it is flot caused by transition macrophages to endothelial

cells. This conclusion strongly stems from chimeras and the FLI using the Nl’ X ROSA

as donors and nude mice as hosts. In this experiment, white colored (host-origin) defective

vessels were accompanied by blue color (donor-origin) hematopoietic celis (probably

macrophages). Such a combination indicates that a paracrine mechanism (influence of

hematopoietic celis on LSEC5) is crucial for inducing the liver vascular patteming defects.

The transplantation of macrophages into C3H mice also gives rise to the same phenotype,

thereby confirming the paracrine mechanism provoked by the Tg macrophages.

Furthermore, this paracrine loop is corroborated by two in vitro experiments: a co-culture

assay showing more clusters of 1g macrophages adhered onto LSECs, and a conditional

media assay demonstrating the inhibition of L$ECs treated with Tg macrophage culture

supernatants. Ihe speculated factors released from macrophages might be growth factors

such as TNf, chernokines such as MCP-l, and adhesion molecules such as coagulators.

5.5. Mechanisms on the vascular defects observed in the Iiver-N1’ activated

macrophages via an autocrine loop beyond Notch intracellular domain

Since N1 is a soluble molecule, it might be either an angonist or antagonist for

Notchi signaling as the ectodomain of Notch ligands did (Sun and Artavanis-Isakonas,

1996; Sun and Artavanis-Tsakonas, 1997; Qi et al., 1999) (it was our initial hypothesis).
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However, the preliminary resuits showed that endogene Notchi in macrophages was

indistinguishable between nTg and Tg. In order to know whether exogeneous Notchi

intraceflular domain 1IC) is influenced by NlE or flot, transgenic mice CD4C/N1

were bred with CD4C/NÏlc Tg mice. The CD4C/Nltc Tg mice were recently established in

our laboratory and give rise to thymoma (Isabelle et ai, submitted). Neither NÏF nor N1

was influenced by the other in these double Tg mice. Hence we conclude that N1’ is

neither angonist nor antagonist for NiIC and it may involve vascular disease by another

pathway.

The interaction between receptor (EGF motifs) and ligand (D$L domain) of

neighboring ceils is a major event in the initiation of Notch signaling. Whule mucli

attention bas bcen concentrated at the activation of the Notch expressing ceils induced by

this interaction, few studies were done on the Notch ligand expressing ceils. It is possible

that the Nl’ directly talks to Notchi ligands on endothelial ceils and make the endothelial

celis change (Fig. lA). However, this possibility was flot proved by our preliminary in

vitro resuits, in which anti-Nl could not block increased colonies formed with Tg

macrophages onto LSECs, as well as inhibition of the growth of LSECs treated by 1g

macrophage media. To completely exciude this possibility, further experiments should be

doue. On the other hand, another scenario (Fig. lB) is more attractive compare to Figure

A. Macrophages are targeted by Nl 1g which ftirther promotes vascular disease,

probably, through activation of macrophages. The EGF-like repeats contained in the Nl’

1g may bind to the DSL domain of classic Notch ligands such as Jagi, that lias been

involved in vessel formation and AGS hurnan disease (Xue et al., 1999; Spinner et al.,

2001). They may also interact with novel ligands such as F3/contactin and CNN3/Nov
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(Hu et al., 2003; Sakamoto et al., 2002), that have been recently found to involve in ccli

adhesion (Revest et al., 1999; Perbal et al., 1999) and angiogenesis (Christian et ai., 2003;

Lin et ai.. 2003). In addition, they may interact with other signais such as Shh to perform

angiogenic activity (D’Amore and Ng, 2002; Lawson et aI., 2002). Ihrough the autocrine

interaction of N1 1g and Notch iigands, as well as other signais (Shh) expressed in

macrophages, the macrophages might be activated (also called reprogrammed). Some

transcription factors beyond Notch pathway might be altered. Subsequentiy, targeted genes

of these transcription factors would be produced from macrophages. Ihese genes may be

involved in vessel formation varied from growth factors such as PDGF, chemokines sucli

as MCP-l, adhesion molecules such as cadherin, and enzymes such as MMPs. Ail these

molecules may, in turn. influence endothelial ceils, finally leading to vesse! defects by a

paracrine fashion (Fig. 18). Specuiated factors wiil be confirmed by microarray analysis

for peritoncai macrophages. By the same mariner, the activated macrophages can affect

other organs such as uterus and promote tumor progression (sec later).
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5.6. Uterus vascular defects observed in sterile CD4CJN1 Tg females or less fertile

are induced by hematopoietic cells (macrophages?)

Besides the liver, that predominantly exhibits the vascular defects as, other organs

also show vascular defects in 1g mice, particularly, uterus. Ihe defective 1g uteri show a

thinner uterine body and superficial vessels compared to nTg ones. Ihe reason why the

vascular defects also occur in the uterus may be that uterus is one of the few aduit tissues

exhibiting regular intervals of rapid growth and physiological angiogenesis (Folkman,

1995). Interestingly, these mice are sterile or of low fertility as examined in two founder

unes (60787 and 6078$) and confirmed by developmental studies at E6.5, E9.5, and E 16.5

stages. Many defective vessels are observed in different layers (endometrium,

myometrium, and mesornetrium) of the Tg-pregnant uteri accompanied by hemohuage in

endometrium of the Tg-pregnant uteri but flot in non-1g-pregnant ones. Therefore, the

sterile phenotype might be caused by the vascular defects since angiogenesis plays a key

role in the pregnancy-associated changes in the reproductive tract. The dysfunction of

endogenous angiogenic stimulators and inhibitors underlie several female reproductive

disorders, such as infertility (Folkman, 1995).

Sirnilar to the liver vascular phenotype, increased macrophages are found in the

cycling 1g uteri compared to the nlg ones. These ceils are distributed in each layer of

uterus and located around defective vessels and among the glands. Iheir numbers are also

increased and they appear clustered in the Tg pregnant uteri and 1g placenta. This uterus

phenotype is reproduced, and even enhanced, by the transplantation of 1g FL ceils but not

by nlg ones, suggesting that hematopoietic cells play a key role in the uterus defects.

Macrophages are the most frequent leukocytes in the uterus of the rodents (Hunt and

Pollard, 1992) where they can produce angiogenic factors such as VEGf. It is possible that
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macrophages induce this phenotype through a paracrine loop that remains to be

determined.

5.7. Involvement of Nl expressed in the macrophages in the tumor progression and

metastases

Although no thymomas were detected in the CD4C/N1 EC 1g mice, we obtained

hemangiomas, particularly in the liver (chapter 2) and also in the uterus of mice

transplanted with Tg-FL celis (chapter 4). Ihese resuits flot only reveal some functions of

N1EC expressed in the macrophages on vascular formation but also hint to its role in the

formation of vascular turnor. With the aid of distinct mouse models, we have been able to

further elucidate its function on the parenchymal tumor progression (chapter 3). In the

mice treated with DEN carcinogen, more malignant multi-organ tumors are induced in the

1g mice compared to the nTg mice. Lung metastases originating from the liver are only

detected in the 1g mice. The increased metastases are also supported by the transplantation

of hepatocarcinomas (induced by DEN) into CD4C/N1 1g mice, which develop multi

organ metastases. The best evidence of increased metastases in the 1g mice is obtained

with subcutaneous transplantation of C3L5 breast tumor ceils (a highly metastatic celi une)

into the CD4C/N11 Tg mice. In that experiment, severe metastases occur in several

organs of the Tg mice, in contrast to only one organ in the nTg mice. Interestingly, we

have obtained a rare heart metastasis. Glomerular metastasis is also revealed in Tg kidney

as an intraglornerular metastasis originated from liver, shown in Figure 2. This is utterly

amazing, because kidney is a very rare organ accepting a metastasis due to the presence of

inhibitors secreted by the kidney. For example, one of tumor inhibitors, 1GF-l, can be

secreted from certain organs, especially, from kidney to fail to metastasis to kidney

(Nicolson and Dulski, 1986; Nicolson. 1987; lucker et aI., 1984). lhese broad metastases.

246



including heart and kidney, suggest that some factors from the Tg mice might be involved

in these processes (described later).
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figure 2. Intra-glomerular metastasis ofC3L5 breast tumor ceils (A) similar to
intraglomerular metastatic foci from liver (B) shown by John Curtis Seely (1999)

5.8. Involvement of Nl 1g expressed in macrophages in tumor angiogenesis and

growth

In the model of hepatocarcinomas induced by DEN, increased vascularization and

necroses are observed in the Tg livers. High vascularization, haemorrhage, and necrosis

also appear in the primary tumors of Tg-bearing mice as compared to those of nlg-bearing

mice transpÏanted subcutaneously with C3L5 breast tumors and B7$ melanomas. Necrosis

is the visible consequence of tumor ischemia and the most necrotic breast tumors are also

the most angiogenic (Leek et al., 1999). Hence, we may conclude that Nl’ expressed in

the macrophages is associated with tumor angiogenesis. In addition, in the tumor mode!

with the transplantation of 378 melanomas, a faster tumor growth is observed in the nude

mice transplanted with 1g fetal liver ceils, therefore suggesting involvement of Nl in

tumor growth.
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5.9. Factors might be related to the tumor progression ami metastasis in the 4CINl

C Tg

The tumor celis must have a blood supply in order to maintain their respiratory and

nutritional requirements. They release factors that stimulate nearby endotheliai celis, to

forrn new vessels and secrete molecules that will allow tumoral celis to grow and/or to

metastaze (Folkman, 1995). Hence, the vascular nutrition rnight act as another paracrine

effects in the tumor progression. The defective vessels including pre-existing vasculatures

and newly formed vessels present in the CD4C/N1’ Tg mice might also behave as

paracrine enhancers to accelerate the tumor ccli progression and metastasis. Probably, the

hepatic tumor progression induced by DEN, the fast tumor growth of the primary B7$

tumors, the severe metastases from the transplantation of C3L5 breast tumors might ail be

related, at ieast partially, to the defective vessels. for example, increased permeability of

Tg vessels would result in leakage of plasma proteins that lead to extravascular fibrin

clotting. The fibrin ciotting will help stimulate the new ingrowth of blood vessels and

macrophages, preparing for tumor metastasis (Wang, 2005). Certainiy, this hypothesis

should be confirmed in the future.

The growth aiid progression of primary as weil as metastatic tumors are regulated

flot oniy by autocrine signais from tumor ceils per se, but also by paracrine signais from

stromal ceils (Nicolson, 1993; De Wever and Mareel, 2003; Marchetti et al., 2003; Lin et

al., 2002).

Macrophages are one of the first hematopoietic ceils to arrive at the sites of

inflammation and act as signaling centers to recruit other stromal ceils (Lingen, 2001).

They are the major components of majority of malignant solid tumors, termed as tumor

associated macrophages (TAMs), and exert paracrine effects (Bingie et al., 2002; Elgert et
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ai., 1998). The TAMs are first recruited to the tumor sites by factors released from tumor

ceils and subsequently exert their pro-tumor activities mainly through two ways:

angiogenesis and neopiastic celi mitogenesis (Leek and Harris, 2002). In many solid tumor

types, the abundance of TAM correlates with tumor progression, metastasis, and poor

prognosis (Lin and Pollard, 2004; Nishihira et al., 2003; Knowles et al., 2004). As

described in chapter 2, macrophages are reprogramrned by Nl’ in our Tg mice and

influence LSECs so as to cause defective vessels in the liver. Probably, these

reprograrnmed macrophages also exert their angiogenic task in tumor growth and

metastasis as well as other organs. They are recruited into the primary tumors induced by

DEN carcinogens as well as C3L5 and B78 tumor ceils. Macrophages abnormally cluster

or form hotspot in the tumors and subsequently produce a range of signais. These signais

from TAMs stimulate neoplastic ceil mitogenesis and aberrant angiogenesis, making

tumors either progress/grow faster (as seen in DEN and 37$ models) or allow them to

metastasize easily (as seen in C3L5 model) from their primary site. Due to the same

reasons, tumor celis might also easily reside in a second organ and form multi-organ

metastases as seen in the model of transplantation with C3L5 breast tumors. In addition,

TAMs can secrete proteases such as plasmin (regulated by u- and t-PA) and MMPs which

degrade ECMs sunounding the tumor, enabling the tumor celis to break ftee from the

turnor mass and invade iocally, or enter the systemic circulation to form distant metastases

(Figure 3).
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Figure 3. Macrophages and tumor progression and metastasis

5.10. Role of macrophages in anti-angiogenesis and anti-mitogenesis

Except for tumor ceils themselves, the tumor microenvironments (blood vessels,

inflammatory celis including macrophages, and connective tissues) also play very

important roles during tumor pregression (Bisse!! et aÏ, 2005). High permeability of tumor

vessels resuits in extravascular coagulation, helping tumor growth and metastasis. It made

Dvorak think: “tumors: wounds that do flot heal” (Dvorak, 1986). Furthermore,

macrophages are intrieately involved in tumor progression as they are in wound healing.

This has inspired researchers to think of tumor as “the wound that will neyer heal”.

However, since macrophages could be used as targets for anti-angiogenic and anticancer

therapy, one could hope that tumors will heal. There are few studies to achieve this goal.

They main!y involve suppression of the involvement of TAMs and use of genes delivered

by macrophage vehicles. A significant decreased number and secreting function of TAMs

were found in the rats treated with linomide (a quinoline-3-carboxamide) (Vukanovic and

Isaacs, 1995), an inhibitor for tumor growth of the prostatic cancer via an anti-angiogenic

response (Vukanovic et al., 1993). Macrophages transduced with a gene encoding the pro

drug activating enzyme cytochrom P450 256 (under the transcriptional control of a trimer

of an HRE), resu!ted in a decreased viable tumor ceils in vitro (Griffiths et al., 2000).

Kupffpr cçljs present ir the liver can alp be fnactivated ii vivo and in vitro by n



adenoviral gene transfer (Wheeler et al., 2001). The discovery of a paracrine loop through

which the reprograrnmcd macrophages function in our Tg mice further aftests the

importance of macrophages as being gene delivery vehicles. It opens up the possibility that

defective vesseis and tumor progression couid both be rnodified by biocking the N1

pathway involved in the macrophage-mediated angiogenesis and tumor mitogenesis. 0f

course. such a study wili be more complex in an in vivo environrnent and hard to achieve

with a high efficiency, macrophage-specific transfection technique.

In summary, for the first time, we discover the functions of the Notchi ectodomain

in the liver vascular defects, female infertility, and tumor progression and angiogenesis.

However, the Nl does not work alone. It needs a special environment-macrophage! Ail

three diseases are associated with the macrophages reprogrammed by Nl. These

macrophages subsequentiy participate in angiogenesis and mitogenesis roies via paracrine

mechanisms. Therefore, both Nl and macrophages wouid be hoped as targets for anti

angiogenesis and anti-cancer!

In the future, we will attempt to accompiish some experiments to deepen the

projects: (1) For the vascular disease observed in the liver, the first important hypothesis is

that some transcription factors beyond Notch signaiing might be activated in the Tg

macrophages, and their targeted genes invoived in angiogenesis wouid be aitered. To reach

this hypothesis, DNA microarray analysis with peritoneal macrophages wiii be performed

and confirrned by real time PCR analysis. Then an exact moiecular pathway for the

activation—for exampie, the ceiiuiar compartment of N1 in macrophages and the

reiationship of N1 with its ligands (Jagi), as weli as with supposed activated

transcription factors on the rnacrophages—will be identified through in vitro experiments

with peritoneal macrophages (i.e., Confocal anaiysis, immunofluorescence, western and
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immunoprecipitation). The second hypothesis is that interactions between macrophages

and endothelial celis are mediated by some receptor-ligands cross-taik. Co-culture assay

with KCs and LSECs using immunofluorescence to identify this molecular cross-talk is

interesting. Then, blockage of related molecules (RNAi or knockout mice) will give us a

clear answer. To further exciude that the soluble NlE gives rise to the vascular defects via

direct interaction with LSECs, RT-PCR analysis of Notch ligands on the LSECs will be

performed first. (2) for the vascular disease observed in the females, it is hypothesized that

the macrophages induce the vascular defects in the uteri by a paracrine loop as they do in

the liver. The incrcased macrophages in the uterus and placenta will be confirmed with

specific markers (Mac-1). Then molecules screened by microarray analysis from peritoneal

macrophages will be detected in uterus and placenta with the hope of altered expression of

these molecules in Tg mice compared to nTg mice. f inally, the vascular phenotype of the

uterus might 5e inhibited by blocking these molecules (RNAi or knockout mice). The

vascular development of the maternai side of the placenta in the Tg females wili be

analyzed using HE staining and immunohistochemistry (PECAM-1 and/or vWF). (3) for

tumor progression, we will take advantage ofthe C3L5 model, in which the C3L5 ccli une

is easy to manipulate and a severe metastasis is clear to find in the Tg mice. A high number

ofmice (15 mice per group) will be used to get an ideai statistic analysis. We hypothesize

that macrophages accelerate the progression of the metastasis. To test this hypothesis,

CD4C/N11 Tg mice will be crossed with C$f-F’ mice in which macrophages are absent

and then C3L5 tumor injection will be performed in CD4C/N1’ X CSf-1 mice.

Transplantation of chimeric celis (nlg or Tg macrophages with C3L5 tumor celis) into

C3H mice is another good experiment to prove the roie of macrophages in the turnor

metastasis. In order to know molecules expressed in macrophages involved in the tumor
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progression, the candidates screened in peritoneal macrophages by DNA microarray will

be tested in the C3L5 tumor model. The tumor progression may be blocked by inhibition

(RNAi or Knockout) of increased factors expressed in the macrophages. Besides Tg

macrophages, we also hypothesis that the defective vessels may accelerate the tumor

progression. This is difficuit to do because we cannot completely block the defective

vessels. But one way can be tried, and that is to block the leakage of the vessels in the

C3L5 turnor model. Decreased metastasis would be resulted from blocking leakage of

vessels since ingrowth of fibrin and influx of macrophages into tissues is diminished.
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