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RÉSUMÉ

Les facteurs de transcription de la famille 12F jouent un rôle important dans la prolifération,

l’apoptosc et la différentiation cellulaire. Il a été démontré que l’activité de ces facteurs de

transcription peut être affectée par plusieurs virus. Ils provoquent entre autre la dérégulation du

cycle cellulaire. Par conséquent, il n’est pas étonnant que les virus affectent l’expression et

l’activité de 12f dans les cellules infectées. Le VHH-6 (Virus Humain d’Herpès -6) est un

microbe pathogène humain onmiprésent. Il est un de ces virus qui est connu pour ses propriétés à

moduler négativement la progression du cycle cellulaire. Cependant, rien n’est connu au sujet des

effets du VHH-6 sur l’expression et les activités fonctionnelles de 12F dans les cellules humaines.

Dans le présent projet, nous avons étudié ce problème. À cette fin, nous avons infecté une lignée

cellulaire de cellules T de leucémie humaine (HSB-2) in vitro avec le VHH-6 (GS strain). HSB-2

est la seule lignée dc cellules T humaines qui est infecté effectivement par ce virus. En employant

les techniques «EÏectorinobiÏity Shifi Assay» (EMSA) et «Western Blots», nous avons comparé les

expressions et les liaisons de E2f avec l’ADN entre les cellules HSB-2 infectées et mock

infectées avec le virus. Les analyses «Western blots» ont montré plusieurs changements

qualitatifs et quantitatifs de l’expression de ces facteurs dans les fractions cytoplasmiques et

nucléaires des cellules infectées. La plupart de ces changements dans les expressions étaient du à

la phosphorylation différentielle des facteurs. Nous avons fait EMSA en utilisant les extraits

nucléaires et des oligonucléotides à double brin contenant les séquences consensus de E2F. Dans

ces analyses, les protéines des cellules mock-infectées ont donné au moins 3 bandes distinctes

dans le gel shift, tandis qu’on a observé deux bandes avec les cellules infectées par le virus. Dans

l’EMSA, avec les extraits des cellules infectées, la bande à faible mobilité n’a pas été détectée.

L’E2F-oligonucléotide complexe était plus fort dans EMSA avec les cellules infectées qu’avec les

cellules mock-infectées. Le « supershift assay» montre que les anticorps contre les facteurs

E2F1-6, DPi et DP2 retardent la migration des complexes préparés à partir des cellules mock

infectées. Dans les cellules infectées ce «supershift» n’a pas été observé avec les anticorps

contre les facteurs E2F2, E2f5, E2F6 et DP-l, alors qu’il est réduit avec les anticorps contre les

E2F-i, E2F-3 et 12F-4. Nos résultats montrent également que dans les cellules mock-infectées

seuls les anticorps contre les protéines p107 et p110 supershift le complexe et non pas le anticorps

contre les pRB. Par contre, dans les cellules infectées par le VHH-6 aucun supershift n’était

observé avec ces anticorps. Nous concluons par conséquent: Le Vil-6 réduit ou inhibe les

interactions des membres d’E2F avec leurs séquences d’ADN spécifique dans les cellules

humaines infectées. Les effets viraux sur 112F peuvent être importants pour la réplication virale.

Mots Clés : cycle cellulaire, DP-1, DP-2, E2F, facteur de transcription, HHV-6.
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SUMMARY

The E2F family of transcription factors plays an important role in celi proliferation, apoptosis and

differentiation. The viruses use host cell’s transcriptional and fransiational machinery for their

own replication and survival. They deregulate ceil cycle by inducing proliferation, quiescence or

celi cycle arrest. Therefore, it is flot surprising that viruses affect E2F expression and activity in

the infected celis. Human Herpes Virus (1111V-6) is a ubiquitously occurring human pathogen. It

is one of the viruses, which are known to negatively modulate celi cycle progression in human

ceils. However, nothing is known about the effects of 1111V-6 infection on the expression and

functional activities of E2F in human ceils. We addressed this issue in this study. For this

purpose, we infected a human T celi leukemia ceil une HSB-2 in vitro with the GS isolate of

HHV-6. It is noteworthy that HSB-2 is the only human T celi une that can be productively

infected with the GS isolate of the virus. By using Western blots and electromobility shift assays

(EMSA), we compared the expression and DNA-binding activities of the E2F farnily members

between the virns-infected and mock-infected HSB-2 cells. The Western blots showed several

qualitative and quantitative changes in the expression of these factors in the cytoplasmic and

nuclear fractions of the infected ceils as compared to the mock-infected ones. Interestingly, most

of these changes in the expression pattem were due to differential phosphorylation of the factors,

since the treatment of the ceil extracts with phosphatase resulted in similar hands between the

infected and mock-infected ceils. We performed EMSA using nuclear extracts of the ceils and

double-stranded oligonucleotides containing consensus E2F-specific sequences. hi these assays,

the mock-infected celis showed at least three distinct gel shift hands, whereas two hands were

observed with the virus-infected ceils. In the EMSA with the infected ccli exfracts, the low

mobility hand was not present. The oligonucleotide-protein complexes were more prominent in

EMSA with the infected ceils than with the mock-infected cells. The supershift assays showed

that antibodies specific for E2F 1-6, DP-1 and DP-2 caused supershifts for the mock-infected

celis. The supershifts were, however, flot seen for anti-E2F-2, -E2F-5, -E2F-6 and -DP-1

antibodies for the virus-infected cells. Furthermore the supershift by E2F-1, 12F-3 and E2F-4 and

DP-2 antibodies were reduced for the infected ceils as compared to the rnock-infected ones. The

p107- and p130-, but not the pRB-specific antibodies, supershifted complexes in the mock

infected but flot in the vims-infected eils. We conciude that: HHV-6 reduces or abrogates the

interactions of E2F members with their cognate DNA sequences in the infected human cells. The

viral effects on the E2F may be important for viral replication.

Key Words: Ccli cycle, DP-1, DP-2, E2F, 1111V-6, Transcription factor.
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CHAPTER I

INTRODUCTION AND REVIEW 0F LITERATURE

The present study was conducted to investigate the effects of the Human Herpes

Virus-6 (HHV-6) infection on the expression and functionai activity of E2F factors in

human T celis. Therefore, the pertinent literature on the E2F factors and the virus is

reviewed below:

1. THE HERPES VIRUSES

The name herpes is derived from the Greek word “herpin” meaning to crawl, to climb

or to slip. The herpes viruses have been given this name because they crawl to latent

and chronic infections. As of today, more that one hundred herpes viruses have been

isolated. They are widely distributed in nature (Abiashi et ai, 1991). The history ofthe

discovery of the herpes viruses goes back to the end of the Second World War when

the first herpes virus, Varicella Zoster Virus (VZV), was described and found to be

the causative agent of chicken pox or shingles. At present it is also called HHV-3. The

most recently discovered herpes virus is the Kaposi’s sarcoma herpes virus (KSHV)

or HHV-8 discovered in 1994 (Chang et ai, 1994). On the basis of physiology and

morphology, the herpes viruses have been grouped in a single family named

Herpesviridae (reviewed by Roizmann et ai, 1992). They are ail doubie-stranded DNA

vinises with relatively iarge and complex genomes. They replicate in the cell’s

nucleus in a wide range of vertebrate hosts, including humans, horses, caille, mice,

pigs, chickens, turties, iizards, fish, and even in some invertebrates, such as oystcrs.

The viruses tend to have a restricted host range; oniy a fcw infect more than one

species. At least one distinct herpes virus lias been isolated from most of the animal

species. Some species may be infected with many herpes viruses. for example,
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eight distinct herpes viruses have been isolated from humans (Table 1). The main

characteristics of the viruses in this family are: the development of latency in the

infected ceils, destruction of the infected ceils upon viral replication (lytic cycle), and

the replication of DNA and the assembly of the capsids in the nuclei of the infected

ceils. In the latent state, the viral genome becomes a closed circular molecule and only

a few viral genes are expressed. The herpes virus genomes encode a variety of

enzymes implicatcd in nucleic acid metabolisrn, DNA synthesis and protein

translation. Based upon the arrangement of the terminal repeat sequences of >100 bp

within their genomes, the herpes viruses have been classified into six (A-F) groups as

shown in Table 2. Human herpes virus infections are endemic and sexual contact is a

significant method of transmission for herpes simplex virus 1 and 2 (HSV-1, HSV-2),

human cytomegalovirus (HHV-5) and likely for KSHV. HHV-6, however, is flot

spread by sexual contact (see below).

1.1 WRION STRUCTURE

A typical herpes virus is composed of four structural elements as shown in Figure 1.

They include:

• Core. The core consists of a single linear molecule of double sfranded (ds)

DNA in the form ofa toms.

• Capsid. Surrounding the core is an icosahedral capsid with a 100 nm diameter

constmcted of 162 capsomeres.

• Tegument. Between the capsid and envelope, there is an amorphous,

sometimes asymmetrical, feature namcd the tegument. It consists of viral

enzymes, some of which are needed to modulate the cell’s biochemical

3



Table 1. Human Herpes viruses and the associated diseases

Common name Scïentific name ‘ Dïseases

Herpes simplex virus 1 Human herpes virus 1 Facial, labial and ocular
(HSV-1) (HHV-1) lesions or “cold sores”

Herpes simplex virus 2 Human herpes virus 2 Genital lesions
(HSV-2) (HHV-2)

Varicella-zoster virus Human herpes virus 3 Chickenpox and shingles
(VZV) (HHV-3)

Epstein-Ban virus Human herpes virus 4 Glandular fever or infectious
(EBV) (HHV-4) mononucleosis,

Hurnan cancers, e.g.,
Burkitt’s lymphoma, gastric
cancer, undifferentiated NPC,
Hodgkin’s disease.

Human cytomegalovirus Human herpes virus 5 Infectious mononucleosis
(HCMV) (HHV-5)

(no common names) Human herpes virus 6 Mild early childhood roseola
(HHV-6) infantum, MS, CFS, several

lymplioproliferative
disorders.

(no common names) Human herpes virus 7 Rroseola infantum, pityriasis
(HHV-7) rosea, “Socks and gloves

syndrome”.

Kaposi’s sarcoma herpes virus Human herpes virus 8 Karposis sarcoma,
(HHV-8) Castleman’s multicentric

disease.

CSf, Cerebrospinal fluid; MS, Multiple scierosis; NPC, Nasopharyngeal carcinoma

4



Table 2: Classification of Herpes vïruses in different groups

Group Virus Sub Characteristics

family

A f3 A large sequence from one terminus is directly

(X repeated in the other terminus

B Sainuriine herpes virus 2 y The terminal sequence is directly repeated

Bovine herpes virus 5 numerous times at both termini

C Epstein-Barr virus y The number of direct terminal repeats is

Pongine herpes virus 1 y smaller, there may 5e other unrelated sequences

greater than 100 bp that are directly repeated

D Varicella-zoster virus One terminus sequences are repeated in an

Saimiriine herpes virus 1 inverted orientation intemally

Ovine herpes virus I

E Herpes simplex virus I o. The sequences from both termini are repeated in an

Herpes simplex virus 2 inverted orientation and juxtaposed intemally,

Cytomegalovirus f3 dividing the genomes into two componets

Bovine herpes virus 2

F Tupaia herpes virus - The sequences at the two termini are flot

identical and are flot repeated directly

The classification is based upon the arrangement ofrepeat sequences within the

genomes ofthe viruses.
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Figure 1. Schematic representation of Human Herpes virus-6
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processes and viral repiication. Others are important to counter host celis

immediate responses.

Envelope. The envelope is the outermost layer of the virion. It is derived from

the patches of the altered cellular membranes of the infccted celi into which

almost a dozen unique viral glycoproteins have been inserted. The viral

glycoproteins appear as short spikes embedded in the lipid bilayer of the

envelope in electron micrographs. There may be more than 1000 copies of

each glycoprotein on a single virion.

1.2 GENOME CHARACTERISTICS:

Herpes virus genomes range from 120 to 230 kbp in length with 31 to 75 % G+C

content and contain 70 to 120 genes. Because replication takes place inside the

nucleus, herpes viruses can use both the host’s transcription machinery and DNA

repair enzymes to support a large genome with a compiex anay ofgenes. Herpes virus

genes, like the genes oftheir eukaryotic hosts, arc flot ananged in operons and in most

cases have individual promoters. However, unlike eukaryotic genes, only a few herpes

virus genes are spliced. The genes are characterized as either essential or non-essential

for growth in ccli culture. Essential genes regulate transcription and are needed for

virus assembly. Non-essential or dispensable genes, for the most part, function to

manipulate the cellular environment for virus production, to defend the virus from the

host immune system and to promote celI-to-celI spread. The large number of

dispensable genes is in reality required for a productive in vivo infection. Although

the classification of Hcrpesviridae is based on the differences between the genomic

sequences and viral proteins, they ail share the same genomic organization. A typical

herpes viral genome consists of a unique long region (UL) and a unique short region

(US) connected by inverted repeats (IR) as shown in Figure 2. However, HHV-6 and
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HHV-7 have only a UL flanked on the right and on the left by direct repeats, which

are called DRR and DRL, respectively (Roizman and Pellete, 2001).

1.3 HERPESVIRIDAE SURFAMILIES

As mentioned earlier, eight distinct herpes viruses have been isolated from humans.

Based upon their tissue tropism and pathology, they are classified into following three

subfamilies:

1.3.1 Mphaherpesvirinae. Members of this subfamily have a short

reproductive cycle (—1 $ hr.) with efficient host ccli destruction and a variable

host range. They tend to become latent in sensory neurons. The subfarnily

includes HSV-1, -2 and VZV.

1.3.2 Betaherpesvirinae. Members are lymphotropic. They have a long

reproductive cycle, and a restricted host range. The infected ceils become

enlarged (cytomegalo). Hurnan Betaherpesvirinae include HCMV, HHV-6,

and 7.

1.3.3 Gammaherpesvirinae. These herpes viruses are also lymphotropic;

however, they are specific for either T or B-lymphocytes. They rarely infect a

species other than human beings. Members of the subfamily isolated from

humans are EBV and KSHV.

2. HUMAN HERPES VIRUS-6

Human herpes virus 6 (HHV-6) was discovered for the first time in 1986 from

six patients suffering from lymphoproliferative disorders, two of whom were

HIV-seropositive. The virus was initially named as human B-lymphotropic

virus (HBLV) as it was isolated from peripheral blood mononuclear celis of

patients with B- cdl lymphoproliferative disorders (Salahuddin et aI, 1986). It

$



Figure 2. Genomic organization of Herpes viruses

Class (Vimses) Sequence arrangement

AandB DR DR

(HHV-6, 7) UL

I-1

(EBV) TR U2 1R2 U3 1R3 U4 DR U5 TR

D UL
DUS

(VZV) IR IR

E TRI UL IRL IRS U TRS

CMVI I I

(THV)

DR: Direct repeat; IR: Inverted repeat; U[: Long unique region; Us: Short unique
region; TR: Terminal repeat; IRS: Short inverted repeat; IRL; Long inverted repeat;
TRL: Long terminal repeat.
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was classifled as the sixth member of the herpes virus family and was placed in the

gammaherpesvirinae subfamily in common with EBV. After it was realized that

HHV-6 preferentially infected T lymphocytes rather than B-lymphocytes, it was

reclassified in the betaherpesvirinae subfamily alongwith HCMV. The virus closely

resembles HHV-7 and both cause roseola in chiidren, therefore, both were classified

in a new genus called Roseola. Some important biological and pathological features of

HHV-6 are sumrnarized in Table 3 and 4.

2.1 HHV-6 VARIANTS:

The first isolate of HHV-6 was terrned as GS or AJ. It was isolated from patients from

Gambia (Lopez et al., 198$). Several other viral isolates have been obtained from

patients from different geographical regions of the world. They include Ul 102 (from

Uganda), Z29 (from Zambia), and HST (from Japan) (reviewed by Krueger and

Ablashi, 2003). Based upon their reactivity with anti-HHV-6 monoclonal antibodies,

RFLP, and in vitro tissue tropism, these isolates have been classified into two variant

groups: A and B (Ablashi et al; 1993). The group A variants are represented by GS

and U 1102, and B variants by Z29 and HST. The A variants replicate in HSB-2 and J

JHAN celis and the B variants in MOLT-3 and MT-4. Both variants grow efficiently

in vitro in IL-2 activated cord blood T ceils.

2.2 MOLECULAR BIOLOGY:

Complete genome sequences ofboth A (U1102) and B (Z29, HST) variants ofHHV-6

have been determined (Isegawa et al., 1999; Dominguez et al., 1999). The A and B
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Table 3. Important features of Human herpes virus-6

Variable Description

t Receptor CD46 is an essential component of the receptor for

Variants HHV-6 A and HHV-6 B variants differ in their in vitro celi

ftopism, reactivity with monoclonal antibodies, and restriction

fragment length polymorphisms. The two groups exhibit r9l2%

overal! divergence at the nucleotide level.

Tropism HHV-6 is T lympliotropic. 11HV-6 infects a broad range ofhost

celis in vitro including primaty T celis, monocytes, natural killer

ceils, dendritic ceils, astrocytes, and various ce!! !ines of T, B,

megakaryocytic, g!ial, and epithelia! origins.

Genome size 1111V-6 genome is double-stranded DNA, of’l6O,OOO bp in

length. It lias a centra! unique region of —‘144,000 bp, flanked on

each end by direct-repeat elements of variable length (-‘13,000 bp).

Herpesviridae Subfamily: Betaheipesvirinae (along with Cytomegalovirus and

fami!y HHV-7); genus: RoseoÏovirus (with HHV-7)

[ Replication In peripheral blood mononuc!ear ceils, viral replication is slow and

lytic; syncytia are induced.

Transmission The virus is believed to be transmitted via oral secretions from

aduits to infants. In utero transmission has also been suggested.
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Table 4: The pathogenesis and epidemiology of Human herpes virus-6

Paediatric infection Infects most chiidren at 6—24 months of age
(somewhat earlier than HHV-7).

Primary infection HHV-6B infection usually manifests as a febrile
(infants and chiidren under three years of age) illness, with or without a rash; presentation with

a rash is usualiy diagnosed as roseola (exanthem
subitum).
HHV-6A can also cause roseola.

Oropharyngeal persistence DNA can be found in salivary glands and in
saliva of a high proportion of aduits.

Neurological involvement Primary HHV-6B infection in infants is
(chiidren and aduits) associated with seizures, particuiariy in the 12—

1 5-month age range, and with some cases of
encephalitis.
In adults, HHV-6 DNA has been detected in
biopsy samples from some cases of focal
encephalitis, and viral antigens have been
detected in active CNS lesions from persons
with multiple scierosis.

Infection in immunocompromised aduits HHV-6A and HHV-6B can be pathogenic; the
viruses can cause pneumonitis, bone marrow
suppression and encephalitis.

Role in AIDS Its role is uncertain, both in aduits and in
chiidren
In vitro, HHV-6 can induce CD4 expression on
some CD4 ceils; it can also up-reguiate HIV-l
gene expression.

Other diseases HHV-6 has been proposed to play a role in
CFIDS, but evidence for this is presently
equivocal.

Prevalence Over 90% of ail aduits are infected with both
HHV-6 and HHV-7.

Reactivation (Chiidren) Children who have previousiy been infected
with HHV-6 can experience reactivation of
HHV-6 in conjunction with primary HHV-7
infection; HHV-7 can also reactivate FLHV-6 in
vitro.

AIDS Acquired immunodeficiency syndrome; CFIDS t Chronic fatigue
immunodeficiency syndrome; CNS t Centrai nervous system; HHV: Human herpes
virus; HIV t Human Immunodeficiency virus.
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variants are 88% identical at the nucleotide level. Their genomes are about 160-162

kb long. Each gcnome comprises a central unique (U) region of 143-144 kb length

flanked by an 8-9 kb region of direct repeats (DR) on either end. The U region

contains a hundred or more open reading frames (ORFs). The terminal and junctional

regions of the DR contain human telomerase—like sequences of unknown function.

The central region of the genome contains seven blocks of genes that are conserved in

ail herpes viruses, and a group ofgenes (U2-U19) to the lefi ofthe seven-block region

found only in the beta herpes viruses (Figure 2). The genome also contains genes that

are only found in HHV-6 and 7. They are located to the left and right of the core

genes. HHV-6A (Ui 102 strain) lias 110 ORFs whereas HHV-6B (Z29 and HST

strains) contains 119 ORFs. Nine of the B variant (Z29) genes do flot have their

counterparts in the A variant (Ui 102) genome and the vice versa is also true. The JE

genes occur in two blocks, TE-A (U86-89) and lE-B (U16-19). Their spiicing pattem

and temporal regulation may differ in two variant groups. The gene product of U$9,

lEi, ofHHV-63 is phosphorylated on ser/thr residues, is surnoyiated and localizes to

nucieus along with promyelocytic leukernia (PML) proteins (Gravel et al., 2002). The

equivalent protein in HHV-6A is 62% identicai to it at amino acid level. Some

U16/17.franscripts may appear late and act as late genes. U16 activates the LTR of

HIV-i (Flebbe-Rehwaldt et al., 2000; Lusso et aI., 1989). The genes invoived in DNA

replication (E genes) include U27, U41, U43/73/77 (reviewed by Clark, 2000). U94 is

one of the only two HHV-6 genes that are not found in HHV-7. It is an lE gene,

which encodes a homologue of the human AAV-2 rep gene. It plays a role in DNA

replication and gene regulation.

13



It inhibits viral replication and is aiso expressed during latency (Thompson et ai,

1994). It bas been reported to inhibit HW-1 LTR and H-ras-mediated celi

transformation (Aroujo et al., 1997; Rotola et al., 1998).

0f the late genes, U39 and U48 encode surface glycoproteins gB and gH,

respectiveiy. The HHV-6 gB has 39% sequence homoiogy at amino acid level with

HCMV gB, causing immunological cross reactivity between the two viruses. It plays

a roie in viral attachment and penetration and is conserved in ail herpes viruses. In

HHV-6A, gB is translated as a precursor molecule which is cleaved to give rise to

functional sub units of 64 kd and 58 kD whereas HHV-6B gB forms about 102, 59

and 50 kD proteins (Takeda et ai, 1996).

The product of the gene U82, gL, complexes with gH, and plays a role in its transport

and processing. The gH-gL compiex is invoived in the infection and fusion process

(Mukai et ai, 1997). U72 encodes gM and U100 encodes gp82-100 complex due to

differentiai spiicing. U100 of the two HHV-6 variants have oniy 72% sequence

identity, suggesting variant specific roles in infection. gB, gH and gp$2-105 contain

epitopes for virus neutralization. Ui 1 encodes a phosphoantigen p100, which is the

major structural antigen of HHV-6. There is only 80.1% amino acid sequence

homology between p100 of A and B variants. The U53 encodes a viral protease,

which is auto-cieaved at two sites and is necessary for virai assembiy and maturation.

A protein kinase encoded by U69 imparts sensitivity to gancyciovir (Ansari et al.,

1999 ; reviewed by Clark, 2000.).

Like other herpes viruses, HHV-6 has usurped several host genes, e.g., U83 encodes a

chemokine and two genes, U12 and U51, encode chemokine receptors. The DR7 gene

encodes a protein, which binds and inactivates p53, transactivates HIV LTR and

fransforms eukaryotic ceils (Kashanchi et ai, 1997; reviewed in Dockreli, 2003). It is
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noteworthy that several of the HHV-6A ORFs arc translated into proteins, which are

shorter than their HHV-63 counterparts.

The Roseolavirus-specific genes include U20-24, U24A, U26, and U$5 and U100.

HHV-6A and HHV-6B variants have 94% amino acid identity in the seven-region

conserved b!ock. They differ in the DR and a 24 kb segment to the right of U85

(except U94, which differs only by 2.4%). Because of the diffcrences in the genes

between HHV-6A and HHV-6B, there are biological differences between the variants

(Krueger and Ablashi, 2003).

2.3 1111V-6 BEHAVIOR AND MORPHOLOGY:

HHV-6 virions are 160—200 nm in diameter. Each consists of a central core

containing a linear double-sfranded DNA, a capsid, and a tegument, which is

surrounded by a membrane structure. The capsids are icosahedral and consist of

approximately 162 capsomeres. Its tegument is amorphous and the core has smooth

appearance. When HSB-2 (A human T ce!! leukemia ccli une; sec chaptcr III) ceils

are infected in vitro by HHV-6 (strain A), the virus binds to 50% of the ceils within

15 minutes and to 100% within 30 minutes. The virus binds to coated pits of the ccli

membrane and is interna!ized by endocytosis within 6 hours (Tonisi et al., 1999;

rcviewcd in Kruegcr and Ab!ashi, 2003). The viral DNA replication is initiated as

early as 12 hours post infection. Newly formed uncoated nucleocapsids arc visible in

ce!! nuclei by day 3. The virus enve!ops in the nucicus, de-cnve!ops in thc cytosol and

re-envelops in the Golgi complex. By day 6 and later, enveloped viruses can be seen

in the endoplasmic reticu!um. It takes 6 to 10 days for the virus to appear in increasing

amounts in the culture medium. It is notcworthy that despite a high degree of

infection, it is extremely difficuit to obtain cell-free high-titered viral stocks. This

suggests that most of the newly formed virions may be non-infectious. HHV-6-
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infected HSB-2 ceils undergo apoptosis, which progrcssively increases from 5% on

day 1 to 30% on day 6 post-infection (reviewed in Krueger and Abiashi, 2003).

The HHV-6A and HHV-63 variants infect and repiicate mainly in CD4+ human T

ceils obtained from peripheral or cord blood, and in tissue culture-adapted unes, e. g.,

HSB-2 (Human T ccli leukemia ccli une), MOLT-3 (Human T ceil leukemia ccli

une), SupT-1 (Human Iymphoma T celi) and J JHAN (Human T ccii une) (CiarkDa,

2000). HHV-6 infects and persists in human monocytes/macrophages in a latent state.

The virus may also infect B ceils, neural celis, and human fibrobiasts; however the

viral replication is very poor in these celis. Typicai cytopathic effects include the

appearance of 2-5 times enlarged muitinucieated, giant celis, which are refractile and

balioon-shaped (Taniguchi et al., 2000). The infected celis tend to aggregate in small

to-medium clusters. The virus has also been reported to induce apoptosis in uninfected

bystander T lymphocytes as weli as in naturai killer celis (Clark, 2000).

2.4 HHV-6 REPLICATION

2.4.1 Attacliment and Entry:

How HI-IV-6 attaches to host ceils and what is the mode of attachment are stiil not

very clear. It is thought that, simiiar to HSV-1 gB, the HHV-6 gB binds to haparan

suiphate proteogiycans (HSPG) on the ccii surface before attaching to the virai

receptor, CD46. However, it is noteworthy that heparin, which inhibits interaction

between HSPG and the HSV gB protein and consequently inhibits infection of the

human ceiis by HSV-1, has no effect on HHV-6 infection (Pellet and Dominurez,

2001; Santoro et al., 1999). Aithough CD46 has been identified as a receptor for

HHV-6, its expression alone is flot sufficient for viral fusion and infection, suggesting

that the virus requires other coreceptor (s) for infection. The chemokine receptors

CXCR4 and CCR5 (which act as essential co-receptors for T-tropic and
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monocytotropic HIV- 1 strains, respectively) were also studied and were found non

essential for HI-W-6 infection (Yasukawa et al., 1999; reviewed in Dockrell, 2003).

Furthermore, it was found that although HHV-6 preferentially infects CD4+T ceils,

CD4 does flot serve as a viral receptor. The penetration of HHV-6 in the infected ceils

is rnediated by endocytosis and is pH sensitive. It can be inhibited by a monoclonal

antibody to the viral glycoprotein complex gplOO (Cirone et al., 1992; foa-Tomasi et

al., 1991).

2.4.2 Transcription:

HHV-6 genes belong to either latent or lytic category. The latent genes are expressed

in the latent phase of the infection and usually comprise a very restricted set of genes.

The lytic genes are expressed during a productive viral infection. Depending upon

their temporal sequence of expression, they are classified into immediate early (lE),

early (E) or late (L) genes (reviewed in Clark, 2000). The 1F genes are transcribed

first to encode proteins needed for regulation of gene expression. lE genes are

synthesized within minutes to hours post-infection and do flot require de novo protein

synthesis. Only virion-associated proteins may be sufficient for their expression. The

E genes encode proteins for DNA replication and the L genes encode structural

proteins necded for viral assembly. The transcription of E genes requires JE gene

activity and transcription of L genes is dependent on viral DNA replication or the

expression of E genes. U83 and U89/90 encode IF (A Iocus) genes in HHV-6 (Rapp

et al, 2000, French et aI, 1999). U16 through U19 have been designated as lE (B

locus) genes. U42 encodes a homolog of the HSV JE gene alpha27 and homolog of

HCMV U69. However, it is not transcribed in the absence of de novo protein

synthesis.
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Some HHV-6 transcripts are spliced several times. Most important of them are IF

locus and U100. The use of some spiice sites is kineticaily regulated whereas others

may use non-canonical donor and acceptor sequences. In HHV-6 the DNA

polymerase promoter has no TATA box and solely depends on the presence of a

palindromic ATF/CREB transcription factor-binding site in the virus infected ceils

(Agulnick et ai, 1994).

2.4.3 Genome Replication:

HHV-6 genes for lytic phase viral replication include DNA polymerase, DNA binding

protein (DBP), the DNA polymerase processivity factor, a helicase/primase complex

and origin binding protein (OBP) (Agulnick et al., 1993; reviewed in Pellet and

Dominurez, 2001). HHV-6 lias onLyt region similar to other herpes viruses. The

origin is located in the region between 5’end ofU4l and 3’end ofU42. U41 encodes

thc major DNA binding protein. There is a region in the centre of the oriLyt that

contains two sites, OBP-1 and OBP-2, separated by an AT rich region. The OBP

binds to these sites. The protein is encoded by U73. It was shown in transient

replication assays that both OBP- 1 and OBP-2 are required for efficient plasmid DNA

replication (Dewhurst et ai, 1993; Dewhurst et ai, 1994; reviewed in Pellet and

Dominurez, 2001).

2.4.4 Genome Packaging:

Circularized viral genomes, which are present in about 5% of the virai ncleocapsids,

provide templates for roliing circle replication. The replication of virai DNA by

rolling circie rnechanism resuits in the production of long concatemers of nascent

DNA (Martin et al., 1991). The juxtaposition of DRR and DRL in a concatemer

provides complete cleavage and packaging signal. This resuits in the packaging of a

viral DNA unit into a single nucleocapsid.



2.4.5 Viral Assembly and Release:

In HHV-6, nucleocapsids are formed in the nucleus of the infected celi. Then, there is

a successive enveiopment, de-envelopment and re-envelopment when nascent virion

moves from one celi compartment to other (Figure 3). Afier 3 days of infection we

can see the nascent capsids containing DNA in celi nuclei (Black et ai, 1997). They

are enveioped as they pass through the inner nuclear membrane. The enveioped

capsids iose their envelopes in the cytopiasrn. At this stage abundant nonenveioped

and tegumented nucieocapsids can be seen in the cytoplasm (Torrisi et ai, 1999). In

some cases naked capsids may acquire tegument in the cytopiasrn. The virai

giycoproteins gB, gH-gL and gp82-gp 105 are concenfrate in the annulate lamelia. The

nucleocapsids acquire envelopes from the giycoprotein-studded aimuiate membranes.

(Cardinaii et al., 1998; Torrisi et ai., 1999). The annulate lamellae are cytoplasmic

structures re!ated to endopiasmic reticuium and are the sites for enveiopment and

glycoprotein maturation. HHV-6—infected celis do flot express viral glycoproteins on

their plasma (and nuclear) membranes. Therefore, virai capsids do flot envelope at the

plasma membranes. The mature virions pass through the Golgi complex and are

released by exocytosis or celi lysis, and flot by budding from the ce!! membrane.

2.5 Fate of the HHV-6-Infected Host Cells:

The infection causes several deieterious effects on the host celis. It shuts off DNA

synthesis, marginates chromatin and stimuiates synthesis of macromo!ecuies in the

infected ceils. The celis enlarge and can be recognized by the physica! characteristics

like ballooning, refractility and the presence of muitinucleated and giant ce!!s. The

vims-infected celis are anested in the G2/M phase of the ceil cycle (De Boue et al.,

2004). The infected celis die by necrosis. The virus induces apoptosis in uninfected

bystander ceils. However, in primary NK and T celis, the infection may cause



apoptosis. The infection inhibits proliferative responses of human peripheral blood

mononuclear celis (PBMC) to antigens and mitogens. It inhibits IL-2 but enhances

IFN-7 production from activated T ceils (f lamand et ai, 1995). The infection induces

the expression of CD4 on CD4-negative celis, e.g., NK celis and CD8+ T ceils. This

makes these celis susceptible to HW infection (Lusso et ai., 1991). The infection also

down regulates expression ofCD3 and CXCR-4 molecules on T ceils (Secchiero et ai,

1997; Secchiero et ai, 1998; Yasukawa et ai, 1999) but enhances expression of many

T celi adhesion molecules, e.g., HLA-DR, CD49d, CD44, CD11a and CD2. The

infection suppresses formation of erythroid and granulocyte-macrophage colonies by

interacting with CD34 positive progenitor celis (Isomura et al., 2003; Carrigon and

Knox, 1995).

2.6 BIOLOGICAL PROPERTIES 0F HHV-6:

2.6.1 CelI Tropism:

HHV-6 has the abiiity to infect a variety of ceils and celi unes but it is predominantly

regarded as a T-celI tropic virus. The virus infects and replicates prefcrentiaily in

activated CD4+ T ceils. However, it can aiso infect CD8 T lymphocytes, yE TCR+ T

lymphocytes, dendritic celis, natural killer (NK) celis and monocytes ofthe peripherai

biood. This virus can also infect established celi unes of the megakaryocytic,

gliobiastomai, neurai, epithelial and fibrobiastic origin but replication is poor (Clark,

2000; Asada et al., 1999; Luppi et al., 1999). In vivo, the virus lias a wider tropism;

HHV-6 genomes or antigens can 5e detected in lymph nodes, PBMC, tubular

epithelial ceils, endothelial celis and histiocytes in kidney, salivary glands and CNS.

Chimps and certain species of monkeys can be infected with HHV-6, which causes

rashes in them (Dockrell, 2003).
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Figure 3. The reptication cycle of HHV-6

Cellular
receptor

A singte viral particle is shown here initiating the infection process. However, it is

more likely that severai viral particles are involved in this process. The process

includes following steps: Attachrnent of the virus and its entry into the ccli by

endocytosis (1); de-envelopment ofthe virus particle (2); transport ofthe capsid to the

nucleus (3); transcription of immediate early (lE), early (E) and late (L) genes

fotlowed by DNA repiication (4); packaging of viral DNA into icosahederai capsid

(5); envelopment of capsid and egress to cytosol (6); packaging and tegusome

formation (7); de-enveiopment ofthe virus to form capsid (8); transport ofthe virus

particie into the cytoplasm (9); acquisition of tegusome (10); re-envelopment and

acquisition of membrane glycoproteins while passing through ER (11); transport and

glycosylation through Golgi compiex (12); egress oCthe virus from the infected ccli

(13).The endosomal membrane is shown in red. ER, Endoplasmic reticulum.
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2.6.2 Immune Response:

During a primary infection in chuidren, HHV-6-specific antibodies appear in serum in

3-7 days post-infection (pi). IgM tifre is high in the second week and can remain

detectable for 2 months pi. IgG antibodies peak by two weeks. The infected persons

remain seropositive for their entire lives (Dockrell et al., 1999). The infected host

elicits both humoral and cellular immunity against the virus. Antiviral neutralizing

antibodies recognize both linear and conformational epitopes in gB, gH and gp82-105.

Ceil mediated immunity against HHV-6 is considered an important element in the

virus control by the host. Analysis of IFN-y production by T-lymphocyte clones in

response to f3-herpes viruses confirms that reacting clones respond to HHV-6

antigens. Individuals having defects in NK ceIl function are susceptible to repeated

herpes virus infections. HHV-6 infection of human PBMC induces IL-15 production,

which activates NK cclls and enhances NK activity of the PBMC (Flamand et ai.,

1996). Other virus-induced cytokines include IL-1$, IL-13, TNF- but flot IL-6.

HHV-6 suppresses mitogen-induced proliferation of human T celis and inhibits IL-2

secretion from them. It stimulates IFN-y production from CD4 T lymphocytes

(Gosselin et ai, 1999).

HHV-6 infection causes CD4+ T ceii depletion. Both HHV-6 variants induce

apoptosis in the CD4+ T-ceii unes in vitro. As mentioned earlier, apoptosis in these

ceils is not because of viral replication as most of the apoptotic celis are uninfected

celis. However, the induction of apoptosis in CD4+ cord blood lymphocytes is caused

directly by the infected celis (Ichimi et ai., 1999). HHV-6A can also deplete CD4 T-

lymphocyte by inducing CD46 mediated celi fusion (Mon et al., 2002). The viral

receptor CD46 is down-regulated in HHV-6 infected celis. Since CD46 acts as a

compiement regulatory protein, its down-regulation in the infected ceils resuits in
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complement activation. Moreover HHV-6 decreases production of reactive oxygen in

monocytes (Burd and Carrigan, 1993; reviewed in Dockrell, 2003).

2.6.3 Clinical Pathology:

Primary infections in chiidren usually cause roseola infantum, which is characterized

by high fever and the deveiopment of a skin rash upon defervescence (Yamanishi et

ai., 1988; and reviewed by Abdel-Haq and Asmar, 2004). It is noteworthy that HHV-7

also causes roseola in chiidren. According to Hall et al. (1994), HHV-6 was the cause

of febrile illness in 21% of the 6-12 month old chiidren, who visited emergency units.

The infection is usually seif-limiting. However, complications, e.g., febrile seizures,

encephalitis, etc may also occur. The infection in aduits may cause undifferentiated

febrile illness or infectious mononucleosis-like disease. The infection usually

becomes latent and the infected persons usually become life-long virus carriers.

Primary infections differ from reactivated ones in dlinical symptoms. HHV-6 B

variants are ofien associated with roseola; however, A variants are a common cause of

infections in chuidren in Zambia. Moreover the symptoms caused by type HHV-6A

may vary than those ofHHV-6B. A variety ofclinical complications and diseases are

associated with HHV-6 infection (sec Table 4).

2.7 HHV-6 IN THE IMMUNO COMPROMISED HOST:

2.7.1 111V-1 Infection:

HHV-6 is considered a co-factor in the development of AIDS in HIV-1 infected

individuals. The HHV-6 U3 protein trans-activates the HIV-1 LTR in vitro (Mon et

ai, 1998). It belongs to the HCMV US22 proteins and is expressed in the cytop]asm

and endoplasmic reticulum of HHV-6-infected ceils at one-day pi. HHV-6 infections

are frequently activated in. AIDS patients. Specific symptoms of the reactivation may

include pneumonitis and encephalitis. The infection contributes to the development of
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immunosuppression by infecting and depleting CD4+ T celis. In this regard, HHV-6A

but flot B variants induce fusion of infected CD4+ T celis with uninfected ceils via

interaction between CD46 and gpB-H. As mentioned earlier, HHV-6 can also increase

host ceils’ susceptibility to HIV-1 infection by inducing and up-regulating CD4

expression on them (Dockrcll et ai, 2003). The HHV-6 trans-activates HIV-1 LTR by

its several gene products, e.g., U16/17 and U3 (Fiebbe-Rehwaidt, 2000). It aiso

upregulates IL-1f3 and TNF-Œ and other cytokines, that increase HIV-1 replication

(Dockrel et al., 2003).

In the tissues coinfected with HHV-Ï and HHV-6, HIV-1 proviral DNA ievels are

higher (Emery et al., 1999). In chiidren with vertically acquired HIV-1 infection, the

primary HHV-6 infection has been associated with more rapid progression of the

disease (Caserta et al., 2001). HIV-1 causes suppression of CCR5-tropic (M-tropic)

virus by up-regulating RANTES, which is known to inhibit infection by CCR5-tropic

viruses and enhance replication of CXCR4-fropic (T-tropic) virus (Griveri et al.,

2001). Therefore, HHV-6 co-infection promotes evolution of HW-1 virus towards

more pathogenic T-tropic syncytium-inducing viruses. HHV-6 reactivation lias also

been implicated in the neuropathogenesis ofAIDS in chuidren.

It has been shown by using the immunomicroarray chip assay that HHV-6 modulates

the inflammatory response to HIV infection. Both A and B variants of HHV-6 induce

a type-1 response in the host T ceils (Mayne et ai., 2001). As a resuit ofthis infection,

IL-12, IL-15, IL-113, TNF-a and several members of the TNF-Œ receptor family are

activated. The infection also up-regulates the transcription of the IL-8 gene and

adhesion molecule in Jiver celi unes (reviewed in Ciark, 2000).

2.7.2 Chrouic Fatigue Syudrome:
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Chronic fatigue syndrome (CFS) is characterized by generalized fatigue accompanied

by fevers, sore throat, myalgia, lymphadenopathy, sleeplessness, depression and

neurocognitive difficulties. Patients suffer from a number of immunologie

abnormalities including immunosuppression. It bas been observed that there is

reactivation of HHV-6 viruses in the individuals having CfS. Thus, HHV-6

reactivation may be involved in the pathogenesis of this syndrome (reviewed in

Abdel-Haq and Asmar, 2004).

2.7.3 Bone Marrow Transplantation:

The incidence of HHV-6 infection after bone marrow transplantation varies from 28-

75% depending upon the diagnostic method. The majority of the HHV-6 infections

post-transplantation are due to reactivation of HHV-63 and the peak incidence of the

infection is 2-4 weeks post transplantation (Dockrell and Paya, 2001). There is fever

and rash associated HHV-6 viremia after transplantation. Bone marrow suppression,

pneumonitis, encephalitis and grafi versus host disease have been seen in some

individuals. The virus infects stem celis and exerts suppressive effects on engrafiment

of these celis in transplant recipients. The reactivations may also increase

pathogenicity of an existing viral infection or autoimmune condition without

becoming a pathogen itself The use of OKT3 and anti-thymosine globulin in the

transplantees to prevent grafi rejection is related to the reactivation (reviewed in

Caserta et al., 2001). HHV-6 reactivation may also lead to HCMV and EBV

reactivations.

2.7.4 Solld Organ Transplantation:

Up to 66% of renal transplant patients have reactivation of HHV-6 infection. As

mentioned above in the case of bone manow transplantees, the reactivation occurs

most commonly following treatment with OKT3 or antithymocyte globulin and may
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be related to a significant degree of immunosuppression associated with these two

products. HHV-6 reactivation lias also been described in liver transplant patients

(Harma et al., 2003). Co-infections with HCV and HHV-6 may lead to enlianced

fibrosis in liver.

2.8 HHV-6 AND 111E CNS

2.8.1 1111V-6 and Encephalitïs:

HHV-6 lias been implicated as a cause of enceplialitis in transplantation recipients

(Singli et al., 2000). Its reactivation may cause meningitis and encephalitis in the

immunocompetent individuais and the clinical outcomes in these HHV-6 associated

encephalitis range from complete recovery to moderate impairment and death

(Caserta et aI, 2001). Clinical features of encepliaiitis inciude headache, confusion,

seizures, abnormal movernents and disturbance in higher mental function. Both HHV

6 variants can be detected in the specimens and HHV-6 DNA can be detected in the

CSF. The presence of HHV-6 DNA in CSf conelates with the presence of central

newous system symptoms.

2.8.2 Effect of HHV-6 Infection on CNS White Mafter:

HHV-6 lias a potential role in tlie demyelination of white matter of CNS. Multiple

sclerosis (MS) is the most common demyeiinating disease of the human CNS. It lias

been strongly associated witli HHV-6 infection. Tlie viral antigens can be detected in

the nuclci of oligodendrocytes from MS patients but flot from control subjects.

Increased levels of anti-HHV-6 IgM and soluble CD46 in MS patients have been

detected. However, some workers were unable to support a role of this virus witli MS

(Luppi et al., 1994; reviewed by Clark, 2000). The virus may also play a role in

progressive multifocal leukoenceplialopathy, which is a demyelinating disease of the

CNS in individuals with impaired cellular immunity and is caused by JC virus.
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2.9 FEBRILE SEIZURES:

HHV-6 infection causes febrile seizures in infants and young chiidren having more

pronounced effect on chiidren of 12-15 months of age. Affected chiidren may have

convulsions and other febrile diseases. Among the chiidren whose first febnle

seizures were caused by HHV-6, the incidence of recunent febrile seizures was

significant. Frequency of severe forms of convulsions and postictal paralysis is

significantly higher among children with primary HHV-6 infection (Jee et al., 1998;

reviewed by Abdel Haq and Asmar, 2004).

2.10 HHV-6 AND CARDIOVASCULAR SYSTEM:

HHV-6 infection has been detected in the endothelium of aorta, umbilical vein and

capillaries ofthe bone manow (Takatsuka et ai., 2003). Thc infection is aiso related to

thrombic microangiopathy (Toyabe et aI., 2002). Several reports have also associated

primary HHV-6 infection with idiopathic thrombocytopenic purpura (Hashimoto et

al., 2002; reviewed in Koichi Yamanishi, 2001).

2.11.1111V-6 AND OTHER VIRUS INFECTION

HHV-6 can activate other viral infections, for instance those induced by EBV, HCV,

measles, papillomavinis and parvovirus and may contribute to the pathologic effects

of these viruses. Dual active infections frequently appear especially with other herpes

viruses.

2.12. EPIDEMIOLOGY

HHV-6 is ubiquitous in human populations and up to 90% of the aduit population is

seropositive ail over the world (reviewed by Krueger and Ablashi, 2003). It usually

infects children in the later half of the flrst year of age, peaking at 3-9 months (Clark,

2000; Campadelii-Fiume et ai, 1999). Matemal antibodies decline by the age of 6

months and infants become increasingly susceptible to HHV-6 infection at this age. In
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Europe and the USA, the HHV-6 seroprevalence is 72-95% both in aduits and

children. In Africa, Asia and Latin America, the seroprevalence is 60-95%. Majority

of the clinical infections in immunocompetent host are due to HHV-6B variants. The

infections with A variants are frequently present in patients with immunosuppression

and neurological manifestations (Hall et al., 199$). Infections usually occur via

contaminated oral secretions (Krueger and Ablashi, 2003; Clark, 2000). In the

salivary gland tissue, the more frequent strain is 6B. These variants are also more

frequently found in the peripheral blood mononuclear celis. Co-infections with both A

and B variants were detected in 22-34% oflung specimens (Clark, 2000; Cone et al.,

1996).

2.13 ANTWIRAL TREATMENT

Many compounds effective against HHV-6 have been reported to date but no

controlled clinical studies are available (reviewed by Clark, 2000). Gancyclovir and

acyclovir have shown some inhibitory activity on HHV-6 viral infections.

Gancyclovir blocks HHV-6 infection in bone marrow transplant patients with HHV-6

encephalitis. Valacyclovir is used for prophylaxis against HHV-6 reactivation.

Foscamet and phosphonoacetic acid inhibit viral DNA polymerase. They have no

effect on latent infections. Type 1 1EN has also been shown to reduce disease activity

in patients with multiple sclerosis (Hong et aI, 2002).

3. E2F TRANSCRIPTION FACTORS

E2F factors comprise a family of related transcription factors that play a key role in

the regulation of cdl cycle progression in many different species including mammals,

flues, nematodes, amphibians and plants. The first E2F was originally identified as a

factor with transcriptional activity that binds to the sequence ‘TTTCGCGC’ in the
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E2 promoter of the adenovirus (Kovesdi et ai, 1986). Hence the terrn E2F was coined;

‘E2’ cornes from the E2 promoter and ‘F’ stands for factor. Later on, simiiar

sequences, which are invoived in the reguiation of gene expression, were identified in

the promoters of several celluiar genes, e.g., dihydrofolate reductase (DHFR), c-myc

and cyclin E, (Biake et ai, 1989). Most of these sequences are in the reguiatory

regions of the genes that moduiate growth, ccli cycle progression and DNA synthesis,

e.g., cyciin-dependent kinases (CDK), cyclins, proiiferating ccii nuclear antigen

(PCNA), DNA polyrnerase, etc. The activity of E2F transcription factors is under the

control of pRB, and cyclins-CDKs as shown in Figure 4. The proiiferative E2Fs

(E2F-1, E2F-2 and E2F-3) are aiso regulated by acetyiation.

E2Fs aiso regulate their own activity positively due to the presence of the E2F

cognate sites in the E2F gene promoters. Recent studies have revealed that E2Fs

target various gene functions not only during the GuS transition and DNA replication

but also during mitosis and DNA damage and repair checkpoints (Ren et ai, 2002;

reviewed in Cam and Dyniacht, 2003).

3.1 The E2F Family:
E2F famiiy is made up of DNA binding heterodimeric proteins containing one

E2F subunit and one DP subunit. E2Fs bind DNA as dimers (Huber et ai, 1993).

They may form homodimers among themseives or heterodimers with DP

subunits. The homodimers of E2F eau bind to their cognate DNA sequence but

this binding is very weak as compared with the E2F/DP heterodimers.

3.2 STRUCTURE 0F E2F AND 1W PROTEINS:

The structure of a typicai E2F family member is shown in Figure 5. It contains

distinct domains for binding to DNA, cyclin A, and “pocket” proteins (sec
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section 3.2.5), a transactivating domain, a dimerization domain as well as an

evolutionarily conserved region called “marked box.” The individuai family

members may vary from the typical structure and may lack one or more of

these domains. The E2F members range from 345 to 904 amino acids in length.

Ail the family members have a DNA binding domain (comprising a basic helix

loop-helix region), a dimerization domain and a “marked box” except the

recentiy discovered E2F-7, which is the biggest member of this family and lias

a very unusuai structure (see Figure 7)he members except E2f-6 and E2F-7,

there is a C-terminal transactivation domain. E2F-1-3 also have an N-terminal

cyclin- A binding domain. The E2f partners, DP-1 and DP-2, have weak

homology with E2F in the DNA binding and dimerization domains. Ah E2F

members can heterodimerize either witli DP-1 or DP-2 allowing, at Jeast 14

possible DNA-binding complexes. The functional domains of the E2f family

members are detalled below.

3.2.1 DNA Binding Domain:

E2F beiongs to the basic hehix-loop-helix (bHLH)-containing family ofproteins.

The bHLH region of the protein is necessary for DNA binding, and lias a

different structure than that of rnany other bHLH proteins, e.g., Myc/Max.

Because of the structural differences, E2F members bind to a specific DNA

sequence TTTCGCGC, which is different from the DNA sequences of other

bHLH proteins. Tlie DNA binding domains of ail the E2f famiiy members are

iocated close to the N termini and are 70% identical. The DNA binding domains

ofDPl and DP2 are also at the N terminus and are 90% identical to each other.
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Figure 4. f2f and ceil cycle progression
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But the E2f and DP DNA binding domains are only about 40% identical

(Saiansky et ai, 1996).

3.2.2 Dimerization Domain:

E2f binds DNA as a heterodimer with DP proteins. Both E2F and DP have

homodimerization and heterodimerization domains. In E2F-1, the

homodimerization domain spans 150-191 arnino acids and heterodimerization

domain spans amino acids 188-241. As stated eariier, the heterodimers of E2F

and DP arc more active than their homodimeric forms in DNA binding and

transactivating functions. They aiso exhibit increased affinity for “pocket”

proteins. DP proteins themseives cannot bind to the “pocket” proteins. Due to

their ability to increase the binding of E2F to the “pocket” proteins, DP might

function to repress E2F- 1 transactivation functions at certain times in ccli cycle

progression. The leucin—zipper region in E2F, which is adjacent to the DNA

binding domain, is responsibie for heterodimerization. The region of DP

proteins required for heterodimerization is also adjacent to their DNA binding

domains (Figure 5 and Figure 6).

3.2.3 Marked Box:

Ail E2F family members except E2F-7 have an evolutionariiy conserved region

adjacent to the dimerization domain called as “marked box”. This region has

been found in insects, Caenorhabditis elegans, yeasts and vertebrates. It is

thought to have a role in dimerization and DNA bending. The heterodimer

partners ofE2f, protein DP-1 and DP-2 do not have this box

3.2.4 Transactivation Domain:

E2f family members other than E2F-6 and E2f-7 have C-terminal highiy
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Figure 5. The structure of a prototypic E2F family member
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conserved transactivation domain, deletion of which abolishes the

transcriptional activity of these proteins. The transactivation domain comprises

the “pocket” protein binding domain as well as the elements upstream of and

downstream ofit (Figures 6 and 7).

3.2.5 The “Pocket” Proteïn Binding Domain:

E2f/DP heterodimers are stabiy bound to one of the members of “pocket”

proteins, which include pRB, p107 and pl3O. They vary in their preferences for

binding to different “pocket” proteins. E2F-1, E2f-2 and E2F-3 bind

exclusively with pRB; E2F-4 binds with high affinity to p107 and p130 but also

associates with pRB, whereas E2F-5 associates oniy with pi3O (Figure 6). The

“pocket” protein-binding domain is a highly conserved domain at the C-

terminus of E2F, and is sandwiched between two segments of the

transactivation domain. Both 112f-6 and E2F-7 lack this domain and hence, they

cannot bind “pocket” proteins (Dyson et ai, 1998).

3.2.6 CycLin Binding Domain:

As the name implies, this domain binds cyclin A. E2F-i -3 each have a domain

near the N-terminus close to the DNA binding domain that binds to cyclin A.

Cyclin AJCDK2 compiex binds E2F and phosphoryiates DP-1 at the end of S

phase. The phosphorylation of DP-1 iowers the DNA binding activity of the

E2f/DP heterodimer and therefore reduces activation of E2F responsive genes

(Krek et ai, 1995; Xu et al., 1994). The cyciin A binding motif is conserved in

E2F-1, E2F-2 and E2F-3 (Figures 7 and 8). A canonical nuclear localization

signal (NLS) lies within the cyciin A binding domain ofproliferative E2Fs.

34



Figure 6. A schematic comparison of the structures of different E2F family
members and their interaction with different pocket proteins
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It may be noted that E2F-l. E2f-2 and E2F-3 interact only with pRE whereas E2F-5
may interact with either p107 or p130. 12f-4 may interact with ail members ofthe
farnily. E2F-6 bas no pocket protein-binding dornain. DP-1 and DP-2 have close
structural homology with their 12F partners.
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3.3 111E E2F FAMILY MEMBERS:

There are seven known E2F and two DP members in the E2F famiiy (Figures 7, 8 and

9). Individual family members are described below.

3.3.1 E2F-1

This is the founding member of the family and was first to be identified and

characterized. Its gene is composed of seven exons and spans 1 1kb. The

position of E2F gene is 20q1 1.2. Like other members of E2F family it has N

tenriinai DNA binding domain and a C-terminal acidic transactivation domain

(Neuman et ai, 1996). It is a criticai determinant of the GuS phase transition

during the mammalian ceii cycle. It activates the transcription of a group of

genes that encode proteins necessary for DNA replication. The accumulation of

Gi cyclins is reguiated by E2f 1 (Ohtani et ai, 1995). E2F-i can induce

apoptosis by a variety of mechanisms, which may or may not 5e p53-dependent

(see below in the apoptosis section for details). It is this apoptosis-inducing

ability of E2F-1 that qualifies it as a tumor suppressor moiecule. This is

supported by the phenotype of the E2f- 1 KO mice, which suffer ftom many

ftimors (La Thangue, 2003).

The repression of E2F activity is important in the differentiation of many ceil

types including neufrophils, keratinocytes and adipocytes. There is evidence that

E2F-l can also play a direct role in the regulation of eariy adipocyte

differentiation (fajas et ai, 2002). It is noteworthy that the master regulator of

adipogenesis, peroxiosomc proliferator-activator receptor (PPAR-y), is an E2f

target gene.

3.3.2 E2F-2
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The cDNA of E2F-2 was cloned using a probe containing the DNA binding

domain of E2F- 1. This cDNA has 46% amino acid sequence similarity to E2f- 1

and bas DNA and retinobiastoma (Rb) recognition sites (Ivey-Hoyle et ai,

1993). The gene map iocus is lp36. 12f-2, along with E2f-1 and E2F-3,

beiongs to a subclass of E2F factors thought to act as transcriptionai activators

important for progression through the GuS transition. However, uniike E2f-1,

12f-2 is a weak inducer of apoptosis. The E2E-2 KO mice suffer from many

immunological defects but not from tumors (reviewed in Stevens and La

Tbangue, 2003). The transcription factor MYC induces transcription of the E2F-

2. However, thc MYC induccd S phase and apoptosis require distinct E2f

activities. MYC induced S phase was impaired in the absence of E2F-2 but flot

E2F-1. In contrast, the ability of MYC to induce apoptosis was markedly

reduced in ceNs deieted for 12F-1 but not for 12f-2 (Leone et ai, 2001).

3.3.3 E2F-3

Screcning a NALM-6 celi cDNA library with an E2F-i probe identified this

member of E2F farniiy that has both DNA and retinoblastoma protein

recognition sites (Lees et ai, 1993). The gene map iocus for 12f-3 is 6p22.3.

There are two variants in E2f-3: E2F-3A and E2f-3B. E2f-3B is expressed via

an alternative translation start site and lacks 101 N-terminal amino acids relative

to the full-length protein, inciuding a rnodcrately conserved sequence present

oniy in the growth promoting 12F famiiy members (12F-u, -2, and -3). In

contrast to E2F-3A, which is expressed only at the GuS boundary, 12f-33 is

expressed throughout the ccli cycle, with peak ieveis in GO when it is associated

with pRB (He et ai., 2000). 12f-3 is essential for embryonic viability. The E2F-

3-I- mutants die prematurely with congestive heart failure. This kind of defect
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was not seen in E2f-1 or E2F-2 nuli mice (He at al., 2000). Lizhao et ai. (2001)

by using a floxed E2F-3 ailele demonstrated that the floxed E2F-3 ailele did flot

have any adverse effect on the development of animais but the Cre mediated

ablation of E2F-3 from MEFs showed reduced rate of proliferation (Lizhao et

ai. 2001).

Like E2F-2, E2f-3 has no tumor suppressor activity. Both alone as weii as in

combination with loss ofE2F-1, E2f-3 mutants do not show an increase in the

incidence of tumor formation (Cloud et al, 2002).

3.3.4 E2F-4

Ginsberg and coilegues identified E2F-4 in 1994 (Ginsberg et al., 1994). Its

cDNA encodes a 2.2 kb RNA and has a protein of 41 i-416 amino acids. The

locus of the E2F-4 gene is 1 9q22. 1. E2F-4 is expressed in almost ail tissues and

this expression is constitutive. It forms heterodimer with DP-i. Unlike other

members of the E2F famiiy, E2F-4 interacts with p107 in vivo and this

interaction diminishes E2f-4’s transactivating capacity. This interaction also

diminishes E2F4’s transforming activity (Ginsberg et ai, i994). The ability of

Myc to induce S phase was impaired in the absence of either E2F2 or E2F3 but

not of E2F-1 or E2F-4. Both E2f-4 and E2f-5 are invoived in MYC repression

in ceils. These factors pre-exist in ceils as a complex containing SMAD3, E2F-

4, E2f-5, DP-1, and the co repressor p107 in the cytoplasm. In response to

TGF-f3, which activates SMAD3, this compiex moves into the nucleus and

associates with SMAD4, recognizing a composite SMAD-E2F site on MYC

gene promoter (Chen et ai, 2002).

In the mouse model, loss of E2f-4 has no detectable effects on either ccii cycle

arrest or progression. However, E2F-4 is essential for normai deveiopment
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(Humbert et ai, 2000). The simultaneous inactivation of E2f-4 and E2f-5 in

mice resuits in neonatal Iethality, suggesting that E2F-4 and E2F-5 perform

overlapping functions during development. E2F-4 and E2F-5 are dispensable for

ceil cycle progression but are necessary for pocket protein mediated Gi arrest of

cycling celis (Gaubatz et ai, 2000).

3.3.5 E2F-5

E2F-5 was cloned from a human fibrobiast using pi3O as bait (Sardet et ai,

1995). Like E2F-4, E2F-5 also does not bind to pRB. E2f-5 gene encodes a 345

amino acid protein that is 69% identical to E2F-4. It binds to p130 and p107

pocket proteins. The gene locus for E2F-5 is 8q2i.13. As mentioned in the

above section, it forms a complex with SMAD3, along with p107 and other E2F

members in the cytoplasm. TGF-3 causes them to move to the nucleus, where

theyjoin SMAD4 and represses MYC expression.

3.3.6 E2F-6

Trimarchi’s group identified E2f-6 in 1998 (Trimarchi et ai, 1998). E2F-6 is

expressed as two mRNAs species, 2.5 and 3.5 kb, in humans. The moiecular

weight of E2f-6 protein is 35 kDa. The DNA binding and dimerization domains

of E2F-6 are highly related to those of other E2F family members but it iacks

franscriptional activation and pocket protein binding domains. It also iacks the

cyciin A binding domain. E2f-6 can dimerize with DP 1 or DP2, and bind to

DNA as a heterodimer in a sequence specific manner. E2F-6 is unable to

activate transcription and does flot interact with “pocket” proteins; rather it acts

to repress the transcription of E2F responsive genes by countering the activity of

other E2F complexes.
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12F-6 causes gene siiencing in a manner that is not dependent on the

retinoblastoma family of “pocket” proteins. E2F-6 is found in multimcric

protein complexes that contain MGA and MAX, and thereby the complexes can

bind not only to the 12F binding site but aiso to MYC and $V40 T protein

binding sites. This complex aiso contains chromatin modifiers such as histone

methyltransferases, which modify lysine-9 of histone H-3 and creates a binding

site of high affinity for heterochromatin repressor proteins, e.g., HP1-’y and

polycomb group proteins (PcG). The E2F-6 compiex occupies target promoters

in GO celis rather than in Gl ceils. The chromatin modifiers contribute to

siiencing of E2F and MYC- responsive genes in quiescent ceils (Ogawa et ai,

2002). 12F-6 nuil mice display homeotic transformations of the axial skcleton

(Storre et ai, 2002). Overexpressed E2F-6 can inhibit entry into S phase ofceiis

that are stirnulated to exit GO phase (Gaubatz et ai, 1998) and can also delay the

exit from S phase (Cartwright et ai, 1998). E2F-6 also regulates genes that are

involved in the pathogenesis of neopiasia. In some cases it can repress target

prornoters in a manner that does not require histone H3 methylation at lysine 9

(Oberly et ai, 2003).

3.3.7 E2F-7

This is the recently identified member of the E2F family (de Bruin et al., 2003).

This newiy discovered E2F is structurafly and functionally different from other

famiiy members. The most important feature of E2F7 is that it contains two

DNA binding domains and iacks the heterodimerization domain. This suggests

that it binds to the E2F consensus DNA sequence independently of DP proteins.

In other features it resembles E2F-6, e.g., it lacks the C-terminal domains

necessary for fransactivation and binding to the retinoblastoma family proteins.
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Therefore, E2F7 is unable to activate E2F responsive genes; Instead E2F-7

blocks the endogenous E2F-dependent transcriptional activity and the

fransactivating activity of an overexpressed E2f-l. The mechanism of its

transcriptional repression is not clear, but might invoive competition between

E2F7 and other E2Fs for the same DNA target sites. E2F-7 may function as a

tumor suppressor gene as its overexpression slows dowri ceilular growth and

mutation in this gene might cause cancer formation (de Bruin et ai, 2003 and Di

Stefano et ai, 2003). The presence of two DNA binding domains enabies it to

bind cognate DNA sequences independently of heterodimerization with DP

proteins (Logan et ai, 2004).

3.3.8 DP-1

DP-1 is one of the heterodimerization partuers of E2Fs (Figure 6). The cDNA

for the DP-1 transcription factor (TFDP-l) was cioned by Girling et al., (1993).

The gene map locus is 13q34. The mature protein has 4i0 amino acids. The

antibodies against DPi supershift a majority of the protein species that bind to

the E2F site, suggesting that most of the ceilular E2F complexes contain DPi.

As mentioned above, DP-l is a component of the iarge repression complex for

MYC (Chen et ai, 2002). This complex contains, in the nucleus, SMAD3, E2F4,

E2F5, DPi, piO7 and $MAD4 (Leone et ai, 2001).

3.3.9 DP-2

Transcription factor DP-2, another E2F dimerization partner, vas cioned from a

human kidney cDNA library (Zhang and Chellappan, 1995). Its gene TFDP-2

encodes a 386 amino acid protein that is 68% identicai to TFDP-1. The gene

map iocus for DP-2 is 3q23. Antibodies specific for DP2 supershift the
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remainder of the E2F activity that is flot reactive with the DPi antibody

suggesting that DP-i and DP-2 may be the only DP proteins that heterodimerize

with E2F (reviewed in Slansky and famham, 1996).

3.4 CLASSIFICATION 0F THE E2F FAMILY:

The E2f family comprises of seven members in mammals. On the basis oftheir

structural organizations and functions, they have been placed in three different groups

(f igure 6).

1. GROUP I: Group I consists of E2f- 1, E2F-2 and E2F-3 members. They have

a domain N-terminal to the DNA binding domain that binds to cyclin A (Black

et al., 1999). They have a transactivation and a “pocket” protein-binding

domain at the C-terminus. The latter domain is responsible for binding to the

retinoblastoma family of tumor suppressors proteins. The Group I E2Fs are

required for celi cycle progression at the GuS checkpoint.

2. GROUP II: It comprises E2f-4 and E2f-5. They do flot have the cyclin A

binding domain but contain transactivation and pocket protein-binding

domains on the C-terminus. E2f-4 and E2F-5 are expressed at steady state

levels during celi cycle and their biological activities are dependent on

relocalization in different cellular compartments during the ceil cycle. Unlike

the group I E2F, these E2f are poor transcriptional activators. They can’t

induce quiescent celis to enter the celi cycle. The members of this group are

important for the repression of E2F responsive genes by binding pocket

proteins (pRB, p107 and p130) and to recruit histone deacetylases to the

promoters ofE2f responsive genes (Brehm and Kouzarides, 1999). E2f-4 and

E2F-5 have nuclear export signaIs within their DNA-binding domains. They

could, however, be imported to ceil nuclei by association with DP-2.
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3. GROUP III: E2F-6 is the main member of this subclass. It has

heterodimerization and DNA binding domains, which are homologous with

other E2f member domains. The N-terminal domain of E2F-6 bears no

homology to those of other E2F family members. It also lacks the

transcriptionai activation and pocket protein binding sequences. Therefore it

causes gene silencing in a manner independent of the retinoblastoma protein

family members. Recently Ogawa et al., (2002) described the molecular

mechanism of E2F-6 functioning in gene siiencing in GO celis. They found

that E2F-6 exists as a component of a multimeric protein complex with MGA

and Max. This complex can bind E2f as well as Myc binding sites (Ogawa et

ai., 2002).

The newly discovered member of the E2f famiiy, E2f-7 may also be placed in

this group on the basis of structural and functional homologies. It Jacks the

sequcnces necessary for dimerization, transactivation and “pocket” protein

binding. Instead it has two DNA binding domains (f igure 7), which bind to

the E2f consensus sites. It occupies these sites and acts as a transcriptional

repressor and, therefore, inhibits cellular proliferation (De Bruin et ai., 2003).

Last month whiie I was doing the final corrections in my thesis, one more

member of this family E2F-8, was discovered (Maiti et ai, 2005). It posseses

two distinct DNA binding dornains. These domains have no homology to any

DNA binding domain present in the E2F family members. The gene for E2f-8

is located on chromosome 7 and shares many characteristic with E2f-7 gene

conceming homodimerization and E2f dependent gene repression activities.

3.5 REGULATION 0F E2F
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The functional activities of E2F are regulated by “pocket” proteins and cyclin A as

these proteins can bind to their specific sites present in these factors. Another level of

regulation of E2f is imposed by their acetylation.

3.5.1 The “Pocket” Protein-Mediated Regulation of E2F:

The farnily of pocket proteins comprises pRB, p107 and p130. The best-known

mcmber ofthis family is pRB, the protein product of the human retinoblastoma tumor

susceptibility gene (reviewed in Dyson, 1998). This tumor suppressor gene is absent

or mutated in one third of human tumors. It was originally identified as a tumor

suppressor gene which, when mutated, causes retinoblastoma (a malignant tumor of

the retina). The three members of the pRB family differ in their ability to interact with

different E2f members. Whereas pRB can interact with E2F-1, E2F-2, E2F-3 and

E2F-4, p107 and p130 can interact only with E2F-4 and E2F-5. The basis for this

specificity is unclear. Their differential binding specificities for E2f are likely to be

important with regard to the biology of these proteins. They ail bind E2F through a

sequence of amino acid called “pocket”, which is comprised of non-contiguous

regions near their C- terminus. This “pocket” region can be differentiated into two

components: the larger component in pRB (aa 3 95-876) and the smaller component

(aa 3 79-792). The larger component is important for interaction with E2f, whereas

the smaller one binds to the peptide LXCXE. This peptide motif is present in viral

oncoproteins, histone deacetylases, and cyclin Dl, and provides the molecular basis

for their interaction with the “pocket” proteins. The expression pattem of the various

pocket proteins is different in the different phases of the ccli cycle, p130 is highly

expressed in quiescent and differentiated ceils. Its level drops rapidly when cells enter

the ccli cycle. In contrast, plO7 levels are very low in terminally differentiated ceils

and its levels arise when quiescent ceils are stimulated to proliferate. The levels of
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Figure 7. A schematic depiction of the E2F-7 structure

\ I 12 j COQ!!

Note the presence oftwo DNA-binding domains (DBD1 and 2). NH2 and COOH
represent N and C termini ofthe protein, respectively.
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pRB are moderate in most celi types and are present in both quiescent and

cycling celis. As the expression of “pocket” proteins fluctuates during the

different phases of the ccli cycle, the levels of various E2f family members also

fluctuate. The levels of E2f- 1, E2F-2 and E2F-3 increase during G 1 to S

progression. These proteins arc strong activators of transcription and when

overexprcssed, are capable of driving celis into S phase. In contrast, E2f-4 and

E2F-5 are weak transcriptional activators. E2f-4 and E2f-5 are the major forms

of E2F found in quiescent celis, whcrc E2f mcdiated gene expression is

repressed. In sumrnary, p107 and p130 interact with E2Fs that are primarily

considered to be co repressors, whereas pRB regulates E2Fs that are sfrong

activators.

Thc “pocket” protcins are phosphorylated by cdk. This phosphorylation is the

moïccular event associated with the progression of the ccli cycle through thc

“restriction point” in Gl. Beyond this point, cclls becomc commiftcd to entcring

in S phase event if they are deprived of growth factors. In GO and early Gi

phases, the pRB is hypophosphrylatcd and this form activeiy binds and

inactivates E2f family members. When bound with pRB, the transactivation

domain of the E2f is conceaied within the “pocket” of the pRB proteins, as a

resuit E2F is unabic to activate transcription. In mid to late Gi phase, the cyciin

D-cdk4/6 and cyclin E-cdk2 phosphorylate pRB proteins. Because of this

phosphorylation, the conformation of pRB changes in such a way that it is no

longer able to hold E2f. The rcleased E2F accumulate and activate transcription

from the E2F responsive genes. Thus, the phosphorylation of pRB regulates

E2F-dependent genc transcription during ccli cycle progression (revicwed in

Dyson, 1998).
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There are at least two different mechanisms of transcriptional repression by pRB. In

the first place it can bind with E2F and suppress its ability to transcribe responsive

genes. Secondly the repressor complex of pRB and E2F that is formed at gene

promoters actively blocks the transcription by recmiting histone deacetylases

(HDAC), the histone methyl transerases, e.g., SUV39H1, and other chromatin

remodeling enzymes. The HDAC deacetylates histone octamers, which facilitate

nucleosomes condensation into chromatin. This inhibits gene expression by blocking

the access of transcription factors to the promoter. Moreover as the acetylation of E2f

increases the binding of the E2F/DP complex to DNA (see below), the recruitment of

HDAC to F2f via pRB may deacetylate and inhibit E2F’s binding to DNA.

3.5.2 Cyclin A-Mediated Regulation ofE2F: The cyclin A activity is very critical in

SIG2 phase to reduce the activity of E2F responsive genes. At the end of S phase, the

cyclinAJCDK2 complex phosphoiylates DP- 1. This phosphorylation reduces the

binding of the heterodimer to specific DNA sequences. Consequently, the E2F

responsive gene transcription is reduced. Moreover cyclinAlcdc2 complex

hyperphosphorylates DP-l in G2 phase causing the disruption of E2F/DP complex

and sequestration ofE2f by pRB in G2/M (Krek et al., 1994).

3.5.3 Acetylation-Mediated Regulation of 12f:

Several workers have demonsfrated that E2f-1-3 are acetylated by p300/CBP and

associated histone acetyl transferases (HATs) at three conserved lysine residues

located at the N-termini oftheir DNA-binding domains (Martinez-Balbas et al., 2000;

Marzio et al., 2000). The acetylation increases the DNA binding ability of the E2f. It,

however, can be reversed by HDACs.

3.6 E2F AND APOPTOSIS:
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E2F is flot only involved in celi growth and the celi cycle modulation but it also

plays a prominent role in apoptosis. Results from a variety of experiments

suggest that E2F can induce apoptosis in various ceil types in p53 dependent

and p53 independent manners. The overexpression of E2F-l in transgenic

megakaryocytes causes increased apoptosis (Guy et ai, 96). furthermore, E2f-1

knockout mice show reduced apoptosis and emergence of various tumors (Black

et ai, 1999). 0f ail the E2Fs, E2F-Ï is the most potent inducer of apoptosis.

However, ectopic expression of E2F-2, E2f-3 and to some extent E2F-4 couid

also induce apoptosis in different ceil unes (Ginsberg, 2002).

The ectopic expression of E2F-l induces p53 via transactivation of p19ARF

(ARF; Sherr, 1998), which in tum interacts with MDM2, the negative reguiator

of p53. Ibis stabilizes and activates p53. There is an additional p53-dcpendent

pathway of E2f-1- induced apoptosis, which is independent of ARF. Ibis

pathway involves p73, a homoiog of p53. E2F-1 activates franscription of p73

that leads to activation of p53 responsive genes and, therefore, p53-dependent

apoptosis. Not surprisingly, the disruption of p73 functions by gene targeting or

by dominant negative mutants prevents E2F-1 induced apoptosis (Irwin et ai,

2000). E2F- 1 directiy activates the expression of the apoptosis-activating factor

1 (Apaf-1), which combines with cytochrome e and activates procaspase 9,

causing apoptosis via downstream effector caspases (Invin et ai., 2000;

Fumkawa et al., 2002). Augmented E2F activity also causes the release of

cytochrome c from mitochondria to the cytopiasm that seems to be p53

dependent (Hickman et al., 2002). DNA microarray studies have revealed that

augmented ectopic expression ofE2F-1 upregulates the proapoptotic members
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of the Bd-2 family including Bad, Bik and Bid (Ma et aI., 2002). E2F-1 also

disrupts activation of NF-KB, which is a well characterized transcription factor

that regulates celi survivai by activating various anti apoptotic genes.

3.7 12F AND DNA DAMAGE:

Recent studies have shown the invoivement of the E2F, particularly E2f- 1, in

DNA damage checkpoints (Cam and Dyniacht, 2003). Ionization radiation up

regulates the expression of E2F-1 and induces S phase and celi death. DNA

damage causes the induction of E2f, which are then phosphorylated by

ATM/ATR. The ATMIATR are two related protein kinases, which are recruited

and activated in response to DNA damage resulting from genotoxic insuits.

They coordinate the DNA damage response by phosphorylating several proteins

involved in DNA repair, ceil cycle anest and apoptosis. The ATM/ATR

mediated phosphorylation stabilizes E2F-Ï (Lin et al 2001). E2F-1 is needed for

DNA damage-induced apoptosis and the DNA damage responses make use of

signais from the pRB/E2F celi cycle pathway (reviewed in Stevens and La

Thangue, 2003). In response to DNA damage, checkpoint kinase 2 (Chk2) aiso

regulates E2f- 1 activity by phosphorylating E2f- 1, which stabilizes the factor,

increases its transcriptional activity and localizes it in discrete nuciear

structures. Somc studies have shown that dominant negative Chk2 mutants

block induction of E2F-1, suggesting an important role of E2F-l in checkpoint

control and explain why E2f-i acts as a tumor suppressor protein. In another

study, it was shown that E2F- 1, E2f-2 and E2F-3 could cooperate and interact

with p53 to promote its apoptotic function but cyclin A prevents E2F-1 from

interacting with p53 to induce apoptosis. It is noteworthy that in response to

DNA damage cyciin A level decreases and the E2f-1-p53 interaction increases
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in ceils. Under these conditions, E2f-1 may promote p53-mediated apoptotic

functions. Thus, E2F may play a novel role in the event of DNA damage (Hsieh

et al 2002).

3.8 E2F AND TUMORIGENESIS

Several recent studies have shown that an overexpression of E2fs flot only

forces the celi out of the quiescence but also may cause its transformation (Cam

and Dynlacht, 2003). The tumor-causing activities ofE2F are restrained by their

interaction with pRB. E2F-1-3 can transform ceils into tumors in the absence of

pRB or in the presence of mutated pRB. On the other hand, E2F-1-/- mice

devclop a broad spectrum of tumors, suggesting a dual role of E2f-1 as an

oncogenc as well as a tumor suppressor gene (Zhu et al 2001). It is flot yet

known what role, if any, the repressor E2fs (E2F-4 and E2F-5) play in celi

transformation and tumorigenesis.

3.9 E2F AN]) WRUSES

Several viruses, particularly DNA viruses, affect E2f activity dircctly or

indirectly. These viruses use the host cell’s transcriptional and transiational

machinery for their own replication and survival. The viruses deregulate ceil

cycle by inducing proliferation, quiescence or ceil cycle arrest and viral latency.

They also have the ability to transform and immortalize ceils by overriding

certain checkpoints, which monitor ccli division and DNA damage. The viruses

frequently target pRB and p53, and inactivate or degrade them. They may also

stimulate cyclin D and increase cdk activity. A few viruses that are known to

affect the E2f pathway in the infected host cells are mentioned below:
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3.9.1 Human Papillomavirus (HPV):

Human papillomavirus (HPV) is the major cause for warts and are believed to

contribute to the development of many cancers mainly cervical cancer. Human

papillomavirus E7 protein share a short amino acid sequence that constitutes a

domain required for the transforming activity of this protein. These sequences

are also required to bind to the retinoblastoma gene product (pRB) (Chellappan

et al., 1992). HPV protein E7 binds strongIy with Rb, releasing permanently

E2F transcription factor and causing the ccli to be tumorous (figure 8).

3.9.2 Adenoviruses:

The adenovirus FiA gene product bas similar amino acid sequence as of E7 of

HPV that binds to the pRB protein. E1A dissociates the E2f-pRB complex

releasing active E2f permanently for the celi cycle so that the viral replication

can proceed efficiently and in the time course in which a lytic infection does flot

occur, oncogenic process may initiate (Chellappan et al., 1992).

3.9.3 Simian Virus 40 (SV4O):

Large T antigen of SV40 binds pRB and prevents its interaction with E2F,

which become dissociated from pRB and are free to transcribc genes necessary

for the continuation of ccli cycle (figure 8). In this way, the antigen overrides

the pRB regulatcd ecU cycle checkpoints. SV4O small T antigen acts upsfream

of pRB and promotes ccli cycle progression. It activates cyclin Dl expression,

which in tum increases the activity of cdk4 and cdk6, phosphorylation of pRB,

and causes release of E2F from pRB. The SV4O large T antigen lias also an

indirect effect on E2F regulation. It dismpts p53 DNA complex. By targeting
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p53, this viral protein inhibits p53-mediated transcription of p21, which is an

upstream negative regulator of cdks (reviewed in Ludlow and Skuse, 1995).

3.9.4 Epstein Barr Virus (EBV)

EBV is a causative agent for many lymphoproliferative diseases in humans and

in vitro induces immortalization ofhuman B celi and transforms primary

celis into anchorage-independent growth. Its major oncoprotein, latent

membrane protein -1 (LMP-1), blocks the E2f-4 and E2F-5 functions by

exporting them to the cytopiasm (Ohtani et al., 2003). Since E2F-4 and E2f-5

are downstream mediators for a p16 TNK-mediated ceil cycle arrest, LMP- I

plays an important role in ccli proliferation and tumor formation by blocking

the functions of these transcription factors. It also downregulates the

expression of the tumor suppressor gene p16 INK (Ohtani et al., 2003). Two

immediate early proteins of EBV, BZLFI and BRLf 1, act as viral

transactivators, which mediate switch from latent to lytic viral infection. Both

these proteins have been found to enhance the expression of E2f- 1, suggesting

their requirement for EBV lytic replication (Swenson et al., 1999; Mauser et

al., 2002).

3.9.5 Human Immunodeficiency Virus type 1 (111V-1):

E2F-l represses transcription of the HIV-l long terminal repeat (LTR) and

diminishes the extent of the Tat-induced activation of the viral promoter (Kundu

et al., 1997). HIV-i Tat plays a pivotai role in the regulation of viral repiication

and transcription. It also regulates the expression of many cellular genes. Tat

modulates many ceilular processes invoived in proliferation,
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Figure 8. Activation of E2F by different viral proteins
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The viral proteins shown here sequester pRB farnily members and prevent
inactivation ofE2F in G2/M phase.
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apoptosis and differentiation, and therefore may act as a co-factor in AIDS

reiated tumors. E2f-4 is known to act as a Tat-binding protein. The Tat-E2F-4

complexes bind E2F cis regions more strongly than E2F-4 alone and increase

E2F-dependant activation ofHIV-l LTR and other promoters, e.g., of cyciin A

gene. This suggests that Tat acts as an adapter protein, which recruits E2f-4

and other celiular factors to reguiatory regions of various ceilular genes to

modulate their biological activities (Ambrosino et al., 2002).

3.9.6 Herpes Simplex Virus J (HSV-1):

HSV-l induces intraceliular redistribution and modification of E2f4 and

increases E2F-pRB interaction by modifying pRB (Olgiate et aI, 1999). As a

resuit of HSV-1 infection, ail E2f members are post-translationally modified

and franslocated to nucleus. The binding ability of these proteins to their

cognate DNA sites is also decreased in HSV-infected celis (Advani et ai,

2000).

3.9.7 Hepatitis C Virus:

Hepatitis C virus (HCV) has been reported to cause hepatocellular carcinoma,

liver cirrhosis and acute and chronic hepatitis. In a recent study it was found

that HCV causes a significant reduction in E2F mediated transcription in a

murine normal liver (CL2) ceil une (Ohkawa et ai, 2004).

3.9.8 Human Herpes Virus-6 (1111V-6):

HHV-6 is known to deregulate ceil cycle progression in human ceils. This

suggests that the virus may have the potential to modulate the expression and

functionai activities of the E2f. However, our literature search on PubMed

could not reveai any study on this subject.
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CUAPTER II

Objectives

This researcli project was focused on the effect of HHV-6 infection on E2f/DP

transcription factors. These transcription factors play key roles in celi cycle

progression, synthesis of nucleotides, DNA replication and apoptosis. Moreover, their

deregulation has been implicated in tumorigenesis. A variety of viruses have been

reported to modulate these factors by binding pRB, the negative regulator of E2F, and

activate E2F responsive genes. HI-1V-6 (Human herpesvirus-6) is a T-cell tropic virus

and is thc etiologic agent of roseola. It establishes Iatency in the host, and can infect a

variety of celis including T ceils, 3 celis and macrophages. HHV-6 infection induces

profound changes in the infected ceils. It inhibits proliferation of mitogen activated T

ceils and induces ceil cycle arrest in G2 phase of the infected cells. It is noteworthy

that E2F are inactivated in this phase of the ceil cycle. This virus, therefore, may

potentially deregulate E2f expression and activity in the infected ceils. Since to the

best of our knowledge no study has addrcssed this issue, the present study was

designed with the hypothesis that HHV-6 infection induces changes in the expression

and functional activity of E2f/DP transcription factors. The objectives were to

examine the effects of HHV-6 infection on the expression and the functional activities

ofthe E2F factors in human ceils.
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CHAPTER III

Materials and Methods

3.1 Cdils:

The human T celi leukemia celi une (HSB-2) was used in this study. To date, this is

the only known ccli une, which can be efflciently infected in vitro by Human Herpes

virus-6 A variants. It was initially obtained from American Type Culture Collection

(ATCC, Bethesda, MD). It was maintained in RPMI 1640 (Gibco BRL, Burlington,

Ontario, Canada) supplemented with 10% fetal bovine serum (FBS; Gibco BRL),

2.5mM L-glutarnine, 10U/ml penicillin (Nova Phamia, Toronto, Canada), 100d/ml

gentamicin (Schering, Monfreal, Canada), and 2gJml fungizone (Squibb, Montreal,

Canada). They were incubated at 37°C in a humidified incubator and buffered with

5% C02. The ceils were spiit 1:3 every 3-4 days.

3.2 Virus Preparation:

GS strain (a prototype isolate) of human herpes virus-6 (HHV-6) was used in this

study. The virus was prepared as described with some modifications(Flamand et at,

1995). In brief, aliquots of 5 million ceils were each infected with 5 ml of the virus

preparation having a titre of 5 x i05 tissue culture infectious doses TCID5O/ml. The

TCJD5O represents viral titre in 50% tissue culture infectious doses and was

determined as described (flamand et al., 1995). The celis were incubated at 37°C for

1.5 hours with frequent gentle shaking, washed with sterile PBS and then resuspended

in 10 ml of the culture medium with 5% F35. The infected cells were incubated at

37°C in a humidified incubator buffered with 5% C02 until the ceils started showing

cytopathic effects (large balloon-shaped ceils). At this point, the cultures were

harvested for the virus. The ceils were cenfrifiiged at l000xg for 10 minutes at 4°C
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and the supernatants were collected and pooled. The ceil pellets were suspended cadi

in imi culture medium, pooled together and subjected to 3 cycles of fteeze and thaw

on dry ice. The celi lysate was centrifuged again at l000xg and added to previous

supernatant. The supernatant was passed through 0.454u filter. The virus titre of the

supematant was measured in TCID5O as described above, aliquoted and stored at —

20° C. This sewed as a viral stock. Simiiarly obtained supernatant from growing

uninfected HSB-2 ceils was used as mock virus.

3.3 CelI Infection:

Five million cells were pelleted and resuspended in 5 mi of the viral preparation (at

0.5 multipiicity of infection; moi), incubated at 37°C for one hour with intermittent

shaking, washed and resuspended in the culture medium containing 5% FIlS. The

infected cells were incubated at 37°C in an incubator having 85% relative humidity

and 5% C02 atmosphere. The infected cells usually showed typical cytopathic effects

ofthe infection on day 9 -11 post-infection (pi). At this time point, usually 90% ofthe

celis were infected with HHV-6 as determined by indirect immunofluorescence assay

with a virus-specific monoclonal antibody (mAb) 2D6 (Pfeiffer et ai, 1995). The

infection was also verified by Western blots using the vims-specific monoclonal

antibody (data flot shown).

3.4 Nuclear and Cytoplasmic Protein Fractionation:

In order to analyse the expression and DNA-binding activity of E2F factors in the

nuclear and cytoplasmic compartments, the extraction of proteins from these two

compartments was perforrned by the method as described (Advani et aI, 2000).

Briefly, the virus infected and mock-infected cells were counted and 5 million cells
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were hawested by pelleting at 500xg for 10 minutes at 4°C. The celis were washed

with chillcd, sterile phosphate buffer saline (PBS) and again pelleted by centrifugation

for 10 minutes at 4°C. The pellet was resuspended gently by pipetting up and down 10

times in 3 packed ceil volumes (PCV) of hypotonic lysis buffer containing 1 OmM

HEPES (pH 7.5), 3mM MgC12, lrnM EDTA, lOmM KCÏ, 0.05% NP-40, lOmM Naf,

lOmM 3-glycerophosphate, lmM dithiothreitol (DTT), 0.OlmM sodium

orthovanadate, 0.5mM phenylmethylsulfonyl fluoride and was kept on ice for haif an

hour. The partially lysed ceils were centrifuged at 500xg for 5 min at 4°C. The

supematant, which contained the cytoplasmic fraction of proteins, was transferred to

another chilled eppendorf tube. The pellet, containing uuclei, was washcd gently in

the hypotonic lysis buffer and pelleted again as mentioned above. The nuclei were

lysed by resuspending the pellet in a high sali buffer containing 5OmM HEPES (pH

7.9), 250mM KCI, 0.1% NP4O, 0.1 mM EDTA, lOmM Naf, lOmM 3-

glycerophosphate, lmM DIT, 0.lmM sodium orthovanadate, 0.5mM

phenylmethylsulfonyl fluoride, 5% glycerol at 4°C for 30 min. The nuclear lysate

was centrifuged at 18000x g for 10 minutes at 4°C.

Fractionation of the cytoplasmic and nuclear extracts of the mock-infected ceils was

performed in the same way as for the virus infected ones. Protein concentrations of

the fractions werc determined by using a commercial protein detection kits (BCA

protein assay kit; Pierce, Rockford, IL) and werc equalized between mock and HHV-6

infected ceils. Both the cytoplasmic and nuclear extracts were stored at —84°C until

used for analysis.

3.5 Preparatîou of E2F Specific Oligonucleotide Probes
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The DNA-binding activity of the E2f factors was determined by using a 32P-labelled

double-stranded (ds) 27 base pair oligonucleotide probe in gel-shift and supershifi

assays. The probe contained the canonical E2F-binding sequence motif and was

purchased from a commercial source included in the Gelshifi Celi Cycle Regulator

Kit (Active Motif Carlsbad, CA; Cat no. 37331). The sequence of wild type E2f

consensus element is 5’ - G G T T TG T G T T T A G G C G C G A A A A C T G A

A- 3’. The boldfaced nucleotides in the sequcnce represent the E2F binding motif. A

mutant ds oligonucleotide was also included in the kit and was used as a control for

the binding specificity of the E2F factors with the wild type oligonucleotide probe in

gel shift assays. The mutant oligonucleotide has the same sequence as the wild type

one except that two key bases in the E2F binding site are mutated in it. Its sequence is

5’-GGTTTGTGTTTAGGTACGAAAACTGAA-3’.Thetwo

boldfaced nucleotides in the sequence represent mutated ones with respect to the wild

type oligonucleotide. E2F do not bind the mutant oligonucleotide probe.

The wild type oligonucleotide probe was end labelled with 32P as follows: 50 ng of

the unlabeled probe, 2 il of lOx kinase buffer, 40 iCi of [y-32P] ATP [(specific

activity 10 mCi/ml) Amersham Biosciences, Piscataway, NJ] and 1 OU of T4

polynucleotide kinase (MBI Fermentas Inc., Ontario, Canada; Cat # EKOO31) were

mjxed in the final volume of 20jil with deionised water. The mixture was incubated

for 30 minutes in the water bath at 3 7°C. At the end of the reaction, 5 pi of a solution

containing I % (w/v) SDS and 1 OOMm EDTA was added to stop the kinase reaction.

Labelled oligonucleotide probe was separated from free [y-32P] ATP by column

chromatography using Sephadex G-25 spin columns (Microspin G-25; Amersham

Biosciences, Piscataway, NJ Cat. # 27-5325-O 1) and stored at -20° C.
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3.6 E2F Gel Mobïlity Assays and Supershïft Assays

To find out the effect of HHV-6 infection on the binding efficiency of E2F with its

cognate DNA sequence, elecfromobility shift assay (EMSA) was performed. For this

purpose, a commercially available kit was used (Gel Shifi Celi Cycle Regulator kit;

Active Motif, Carlsbad, CA, Cat. # 37331). The assay was performed according to

manufacturers’ instructions, for each assay, 10 ig of the protein, ing of 32P-labelled

E2F-specific probe were mixed with the reaction mixture in 25 j.d final volume. The

reaction mixture contained sheared salmon sperm DNA to reduce non-specific

binding of proteins to the probe. The specificity of the E2F binding to the probe was

verified by competition with Ï00-fold molar excess of unlabeled E2f-specific

oligonucleotide. The binding reactions were carried out for 30 minutes at room

temperature. Afier the incubation, the entire content of each reaction tube was loaded

directïy onto a 5% non-denaturing polyacrylamide gel. The gel was prepared by

mixing 6.7 ml 30% polyacrylamide (29 gram polyacrylamide and 1 gram bis

acrylamide in 100 ml of H20), 29.0 ml water, 4 ml 1 Ox Tris, Borate, EDTA buffer

(TBE), 280 j.il of 10% (w/v) ammonium persulfate solution and 40 j.il TEMED in 40

ml gel. In order to equilibrate the gel, it was mn empty (without samples) for one hour

in pre cooled lx TBE buffer. After loading the samples (the reaction mixtures), the

gel was subjected to electrophoresis in lx TBE buffer at 100 V. The gel migration

was monitored by the migration of the loading buffer into a separate well. When the

dye ofthe loading buffer reached within the bottom third ofthe gel (in about an hour),

the electrophoresis was stopped. The gel was dried on 3 mm Whatman paper (VWR

Scientific Products, West Chester, PA) and exposed to Kodak Biomax film at —20°C

until desired signal intensity was achieved (l-3 days).
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In order to identify the individual transcription factor bound to oligonucleotide probe,

gel supershifi assays were performed. For this purpose, the factor-specific or confrol

antibodies (1.0 g) were added to the reaction mixture approximately 20 minutes prior

to the addition of the 32P labelled E2F-specific oligonucleotide probe as described

(Hilton et ai, 1995). Then the probe was added and the reaction mixture was incubated

for an additional 30 minutes at room temperature and loaded onto the gel as described

above.

3.7 Western Blots:

The expression of different E2F and their partner DP proteins in the HHV-6 infected

and mock-infected ceils were compared in the whole celi lysates as well as in nuclear

and cytoplasmic fractions, by Western blots as described {Xu, Ahmad, et al. 2000 556

/id}). Briefly, whole ceil lysates, nuclear and cytoplasmic fractions (20-25 /Lg) were

mixed with SDS gel loading buffer containing 1 OOmM Tris—Ci (pH 6.2), 4%(w/v)

SDS, 0.2%(w/v) bromophenol blue, 20%(w/v) giycerol and 200mM DIT, boiled for

10 minutes and loaded on 12% SDS-PAGE in mini PROTEAN-Il polyacrylamide gel

electrophoresis apparatus (Bio-Rad Laboratories, Hercules, CA; Cat # 165-2957). Ihe

resolved proteins were transferred onto polyvinylidene difluoride membrane

(Immobilon; Millipore Corp., Nepean, Ontario, Canada; cat # IPVH 00010) using a

semi-dry transfer system (Transblot; Bio-Rad Laboratories, Hercules, CA). Equal

loading of proteins in different ianes of the gel was visualiy examined on membrane

blots by Ponceau S (Sigma Aldrich, Milwaukee, WI; cat # 141194) staining as

described (Bannur et al, 1999). After removing the stain with distilled water, the

unbound sites on the membrane were blocked by one hour incubation at room

temperature in PBS (pH 7.3) containing 5% non-fat milk and 0.005% Tween 20
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(called blocking buffer). Thereafier, the blots were incubated with protein-specific

primary antibodies. The bands were revealed with aikaline phosphatase (AP)

conjugated secondary antibodies and chromogenic subsfrates BCIP and NBT (both

from Promega, San Luis Obispo, CA) as described (Xu et al., 2000). In some cases,

protein bands were revealed on blots by enhanced chemiluminiscence by using a

commercial kit (Vectastain, ABC-AMP, Vector Laboratories, Burlingame, CA; cat #

AK-660 I).

In order to detennine which hands on the SDS-PAGE were phosphorylated, the

nuclear extracts from the infected and mock-infected celis were treated with caif

intestinal alkaline phosphatase (ClAP). For this purpose, 25ug of the extracts were

incubated with 5 U of the phosphatase in the dephosphorylation buffer containing

lOmM Tris-Cl, lmM ZnCI2 and lmM MgC12 at 35°C for 30 minutes. The treated and

untreated exfracts were then loaded on SDS-PAGE as described above.

In order to compare the amounts of proteins loaded into different wells of the gel, the

membranes werc stripped off the hands by incubating them in a buffer containing 0.2

M Glycine-HCI (pH 2.5) , 0.05% Tween-20 and 100 mM 2-Mercaptoethanol at 65°C

for an hour. The membranes were later developed for f3 -actin using a specific mAb

(Sigma) and AP-conjugated secondary antibodies as described above.

3.8 Antibodies and Reagents

Aikaline phosphate (AP)-conjugated anti-rabbit IgG (Fc) xvas from Pierce (Pierce,

Rockford, IL; Cat. # 31235). Antibodies for pRB (cat # SC 50X), p130 (cat # SC

317X), p107 (cat # SC 318X), p300 (cat # SC 584), HDACY (cat # SC 7872), E2F-l

(cat # SC 193), E2f-2 (cat # SC 632), E2F-3 (cat # SC 878), E2F-4 (cat # SC 860),
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E2F-5 (cat # SC 999), E2F-6 (cat # SC 8175), DP-1 (cat # SC 610) and DP-2 (cat #

SC 829) were ail purchased from Santa Cruz (San Jose, CA).
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CHAPTER IV

Resuits

4.1 HHV-6 INDUCED CUANGES IN THE EXPRESSION 0F E2F
TRANSCRIPTION FACTORS

In order to study the expression of various E2F factors, we performed Western

Nots on nuclear and cytoplasmic extracts of HHV-6 and rnock infected HSB-2

cells using factor-specific antibodies as described in the Materials & Methods.

Below, are the results obtained for each of the factors.

4.1.1 E2F-1:
Despite more loading of proteins for mock-infectcd lanes (as judged by the

intensity of actin bands), the E2F 1 is expressed relatively more in the nuclear

fraction of the infected cells as compared to the mock-infected ones, especially

for slowly migrating forms ofthe factor (Figure 9). 0f note is the presence ofa

relativey higher molecular weight E2F-l species (near 105 kDa) in the

cytoplasm of the mock-infected celis. This hand is replaced by novel hand

near the75 kfla mark in the cytoplasm of the infected ceils.

4.1.2 E2F-2:
The expression of the most prominent hand of E2F-2 is clearly decreased in

the cytoplasm of the infected celis. Its comparable hand runs as a doublet in

the nucleus of the mock-infected ceils. In the infected ceils, this doublet mns

as a single hand representing its upper isoform (figure 10). furthermore, note

the presence of 3 bands in the nuclear fractions of the infected celis as

compared to 5 hands in the same fraction of the mock-infected ceils.

4.1.3 E2F-3:
In the cytoplasm ofinfected celis the overail expression ofE2F-3 is decreased.

The virus infected ceils showed three major hands in the cytoplasm as

compared to four hands in the mock-infected ceils. The slow-migrating hand
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seems to have disappeared from the infected celis’ cytoplasm. The E2F-3

present in the nucleus migrated as a doublet in the rnock-infected celis, but

only the upper of the doublet was present in the nuclear fraction of the infected

ceils (Figure 11).

4.1.4 E2F-4:

It appears that the overail expression of this factor is increased in the infected

celi extracts. Prominent qualitative changes were seen in the expression of

E2F-4 in the cytoplasm between the infected and mock-infected ceils. The

HHV-6 infected cells expressed six bands in their cytoplasmic fraction,

whereas only five bands were present in the same fraction of the mock

infected cells. Two novel bands of E2F-4 migrating close to 50 kDa were

exclusively found in the cytoplasm of the infected celis. Overali the E2F-4

expression was increased in the cytoplasmic fraction in the virus-infected

cells. 0f note is the presence ofa band near 75 kDa in the cytoplasmic fraction

of the mock-infected ceils. The equivalent band in the cytoplasmic fraction of

the infected cells rnigrated more slowly. Significant qualitative changes were

also observed in the expression of this factor in the nuclear fractions between

the infected and mock-infected ceils (Figure 12). It is noteworthy that the two

novel bands detected in the cytoplasmic fractions of the virus-infected ceils are

also present in the nuclear fractions ofthe infected celis.

4.1.5 E2F-5:
E2F-5 expression remains unchanged in both cytoplasmic and nuclear

compartments ofthe mock and HHV-6 infected celis (Figure 13).

4.1.6 E2F-6:
The expression of E2F-6 is increased in both fractions of the infected celis.

There appears a relatively higher molecular weight species of this factor in the
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nucleus of infected ceil (See lane 5, Figure 14). Three bands of the factor are

relativety more abundant in the cytoplasm of the HHV-6 infected celis as

compared to the mock-infected celis (Figure 14).

4.1.7 DP-1:
Four bands were observed on Western blots for this protein in the cytoplasmic

extracts of the mock-infected celis, whereas only three bands were observed in

the cytoplasmic extracts ofthe virus-infected ceits.

A band migrating near the 25 kDa mark in the cytoplasmic fraction of the

mock-infected cells disappeared in the infected celis. Notably, the most

prominent band was increased in intensity in the cytoplasm of the infected

infected celis. No significant changes were observed in the nuclear fractions

between infected and mock-infected cetls except for the appearance of a novel

slow migrating band (near the 75 kDa mark) in the infected celis (Figure 15).

4.1.8 DP-2:

The expression of this E2F partner, particularly of its major band running

close to the 50 kDa mark, was signiflcantly decreased in the nuclear fractions

in the virus-infected cells as compared to the mock-infected ones.

Furthermore, a prominent dublet band running near the 50 kDa mark in the

cytoplasmic fraction of the mock-infected celis was seen as a single band in

the virus-infected celis. The single band represented lower partner of the

doublet of the mock-infected ceils (Figure 16). The overall expression,

however, was remained the same in the infected and rnock-infected celis

(figure 16).

4.2. EFFECT 0F ALKALINE PHOSPHATASE ON THE EXPRESSION

PATTERNS 0F E2F ON WESTERN BLOTS
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Figure 9. The expression of E2F-1 in the nuclear and cytoplasmic fractions of
IIHV-6-infected and mock-infected ceils.
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Twenty ig of proteins from each of the nuclear and cytoplasmic extracts of the virus
infected and mock-infccted ceils were mn on 10% ofSDS-PAGE. After blotting onto
the PVD membrane, the blots were developed using E2F-1 specific antibodies and
AP-conjugated anti rabbit antibodies. Afier stripping, the membranes wcre developed
for 13-actin. The E2F1-specific bands and molecular weight markers are indicated by
arrows. Due to incomplete stripping some previous bands reappeared on the blot afier
staining for fl-actin.
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Figure 10. E2F-2 immunoblot of cytoplasmic and nuclear fractions of
mock and 1111V-6 infected HSB-2 celis
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Proteins from the nuclear and cytoplasmic extracts (25 tg) of the virus-infected and
mock-infected celis were run on 10% of SDS-PAGE. After blotting onto the PVD
membrane, they were developed using E2F-2 specific antibodies and AP-conjugated
secondary rabbit antibodies. After stripping, the membrane was developed for 3-actin
for loading control. The the hands of interest and molecular weight markers are
indicated by arrows. Some of the previous bands can be seen on the membrane
developed for f3-actin due to incomplete stripping.
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Figure 11. The expression of E2F-3 in the nuclear and cytoplasmic fractions of
HHV-6-infected and mock-infected celis
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Nuclear and cytoplasmic extracts (20 rg cadi) of the vims-infected and mock
infected celis were run on 10% of SDS-PAGE. The proteins wcre then transferred
onto the PVD membrane and developed using E2F-3 specific antibodies and AP
conjugated secondary rabbit antibodies. Afier, the membrane was stripped and
developed for f3-actin. The rno1ecuar weight markers and the bands of interests are
indicated by anows. Some of the previous bands can be seen alongwith the 3-actin
due to incomplete stripping of the membrane.
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Figure 12. E2F-4 immunoblot of cytoplasmic and nuclear fractions of
mock and HHV-6 infected IISB-2 celis
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Twenty five ig of proteins from the virus-infected and mock-infected celis were mn
on 10% of SDS-PAGE. The proteins from the gel were transferred onto the PVD
membrane and were developed using factor specific antibodies and AP-conjugated
secondary antibodies. Afier, the membrane was stripped and developed for f3-actin.
The anows indicate the E2F-4-specific and 3-actin hands.
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Figure 13. E2F-5 expression in cytoplasmic and nuclear fractions of
mock and 1111V-6 infected HSB-2 celis
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For each extract eighteen ig ofproteins ofthe virus-infected and mock-infected celis
were run on lO% SDS-PAGE. Afier, they were bloted onto thc PVD membrane, and
developed by using factor specific antibodies. then, the membrane was stripped and
developed for fl-actin as loading control. The arrows indicate the bands of interests
and molecular weight markers. Above the 3-actin hand some of the hands from the
previous development can be seen due to incomplete stripping.
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Figure 14. E2F-6 immunoblot of cytoplasmic and nuclear fractions of
mock and 1111V-6 infected HSB-2 celis
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Twenty tig of proteins from each of the fractions from virus-infected and mock
infected ceils were mn on 1O% of SDS-PAGE. Afier blotting onto the PVD
membrane, the blots were developed using E2F-6 specific antibodies and AP
conjugated secondary antibodies. Then the membrane was stripped and developed for
3-actin as loading control. The hands of interests and molecular weight markers are
indicated by arrows. Some of the previous hands are visible alongwith f3-actin hands
as the stripping of ail the hands from the previous development was flot possible.
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Figure 15. The expression ofDP-1 in the nuclear and cytoplasmic
fractions of HHV-6-infected and mock-infected celis
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The extracts (25 g each) from the virus-infected and mock-infected celis were run on
10% of $DS-PAGE. After bloffing onto the PVD membrane, the blots were developed
for DP-1 using specific polyclonal antibodies. Afler stripping, the membranes were
developed for fl-actin. The DP-1 specific bands and molecular weight markers are
indicated by arrows.
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Figure 16. DP-2 immunoblot of cytoplasmic and nuclear fractions of
Mock- and HIIV-6-infected HSB-2 ceils
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Eighteen ,iig proteins from each of the nuclei and cytoplasm of the virus-infected and
mock-infected celis were nm on 10% ofSDS-PAGE. After they were blotted onto the
PVD membrane and developed using DP-2 specific polyclonal antibodies and AP
conjugated secondary antibodies. Afier stripping, the membranes were developed for
3-actin. The DP-2-specific bands and molecular weight markers are indicated by
arrows.
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As mentioned in the INTRODUCTION section, the E2f transcription factors

are mainly regulated by phosphorylation. Therefore, in order to find out the

phosphorylated status of these factors, we treated nuclear extracts from the

infected and mock infected celis with CaIf Intestinal Aikaline phosphatase and

determined the expression pattem of these factors on Western blots as

described in Materials and Methods. The multiple hands observed on the

Western blots in the case of non treated extracts for E2F-1, E2f-4 and DP-l

werc reduced to one or more hands migrating near the 50 kDa mark afier the

phosphatase treatment (sce figures 17, 19 and 20). However in the case of

E2f2, the only faint hands were seen close to the 50 kDa mark. Most of the

bands were reduced to one or two prorninent hands seen below the 35 kDa

mark (see figure 18). These results suggest that most of the hands seen in the

nuclear extracts of both virus and mock infected celis may be due to

differential phosphorylation.

4.3 EFFECT 0F THE VIRUS INFECTION ON TUE DNA BINDING
ACTIVITIES 0F E2F:

In order to determine the effects of HHV6 infection on the DNA hinding

activities of the E2F and their partner proteins, we performed gel shifi assays

using double stranded oligonucleotides containing 12F binding consensus

sequence as described in Materials & Methods. The nuclear extracts of mock

infected celis showed at least three distinct gel shift hands. In the infected ccii

nuclear extracts, the low mobility hand was flot present. Moreover binding to

the labellcd oligonucleotide was highly increased in the infected cells as

reflected by a higher density of the bound complexes (figure 21). The binding

activity is specific as it is being competed by non-labelled wild type
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Figure 17. The effect of phosphatase treatment on the expression pattern of
E2f1 in the HHV-6-infected and mock-infected ceils
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Twenty five g proteins from the nuclear fraction of the celis were treated with caW
intestinal aikaline phosphatase, and run on 10% SDS-PAGE. Afier transfer of the
proteins onto the PVD membrane, the blots were developed for E2F- 1. The + and —

above each lane indicates treatment with the phosphatase or not respectively. The
arrows on the right show molecular weight.
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Figure. 1$ The effect of phosphatase treatment on the expression paftern of

E2F-2 in the HHV-6-infected and mock-infected ceils
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Nuclear proteins (25ig each) from the virus-infected and mock-infected ceils were
freated with caif intestinal aikaline phosphatase, and mn on 10% SDS-PAGE. After
fransfer of the proteins onto the membrane, the blots were developed with antibodies
against E2F-2. The + and — above each lane indicates treatment with the phosphatase
or flot respectively. The arrows on the right show molecular weight.
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Figure 19. The effect of phosphatase treatment on the expression pattern of

E2f-4 in the HHV-6-iufected and mock-infected celis
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Equal amounts of nuclear proteins (25 pg) ftom each of the virus-infected and mock
infected celis were fteated with caif intestinal aikaline phosphatase, and run on 10%
SDS-PAGE. After transfer of the proteins onto the PVD membrane, thc blots were
developed for E2F-4. The + and — above each lane indicates freatment with the
phosphatase or not respectively. The arrows on the right show molecular weight.
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Figure 20. The effect of phosphatase treatment on the expression pattern of

DP-1 in the HHV-6-infected and mock-infected cetts
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Twenty five ug nuclear proteins ceils were treated with caif intestinal alkaline
phosphatase, and run on 10% SDS-PAGE. The proteins were transferred to membrane
and were developed for DP-1. The + and — above each lane indicates treatment with
the phosphatase or flot respectively. The anows on the right show molecular weight.
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Figure 21. Electrophoretic mobïlity shift assay for the nuclear extracts of
HHV-6- and mock-infected HSB-2 celis
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The nuclear extracts from the HHV-6- and mock-infected cells(1O g each) were
incubated with the 32P end-labelled ds oligonucleotide containing E2F-specific
consensus sequences and run on 5% non-denaturing acrylamide gel. The gels were
auto-radiographed using Kodak Biomax film. The arrows indicate the DNA-protein
complexes. Wt, Wild type; Mut, Mutant; Nuc Ext, Nuclear extract.
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otigonucleotide but flot by non-!abetled mutant oligonucleotide (Figure 21).

The cytoplasmic fractions also showed the same banding pattern but lesser

intensity as compared to the nuclear fractions (data flot shown). Furthermore, a

fast migrating complex appears in the infected ce!! extracts on longer

exposure. This comp!ex is not present in the mock-infected ce!!s (Figure 22-

23).

4.4 IDENTIFICATION 0F TUE E2F MEMBERS BOUND TO THE
COGNATE DNA SEQUENCES:

b find out which E2F factors or their interacting proteins are present in the

gel shifi comp!exes in the infected and mock-infected celts, we performed

supershift assays using antibodies specific for these proteins as described in

the Materia!s & Methods. The antibodies specific for E2F 1-6, DP-1 and DP-2

supershifted the !ow migrating complex in the mock-infected cc!!s (Figures 22

and 23). These supershifis were not seen with antibodies for E2F-2, E2F-5,

E2F-6 and DP-1 for the HHV-6-infected ceils. Furtherrnore, the supershifs by

E2F-1, E2F-3 and E2F-4-specific antibodies are reduced in the infected ce!!s.

The E2F-5-specific antibodies supershifi a re!atively fecb!e band in the mock

infected ceils. This supershified band almost disappears in the infected cet!s.

The E2F-6-specific antibodies supershift a rclative!y stronger complex, which

is cornpletely vanished in the infected ce!! nuc!ear extracts. The sanie pattern

is seen for DP-1-specific antibodies in the infected celi nuclear extracts. For

DP-2-spccific antibodies, no change is seen in the bindïng pattern between

mock- and HHV-6 infected ceHs.
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Figure 22. E2F DNA Electrophoretic Mobility Super Shift assay for the
nuclear extract of mock infected and 1111V-6 infected HSB-2
celis using antibodies against E2F-1,-2,-3 and —4
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The nuclear extracts from the HHV-6 and mock-infected celis were incubated with
the 32P end-labelled ds oligonucleotide containing E2f-specific consensus sequences
and antibodies against E2f-l, E2F-2, E2F-3 and E2F-4 and run on 5% non-denaturing
acrylamide gel. The gels were dried and auto-radiographed using Kodak Biomax film.
The anows indicate the DNA-protein and E2f antibody complexes. Asteriks (*) to the
lefi ofthe hands indicate the supershifted ones.
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Figure 23. E2F DNA Electrophoretic mobility super shift assay for the
nuclear extract of mock infected and 1111V-6 infected HSB-2
celis using antibodies agaÏnst E2F-5,-6,DP-1 and DP-2

The nuclear exfracts from the virus and mock-infected ceils were reacted with the 32P
labelled ds oligonucleotide containing E2F-specific consensus sequences and
antibodies against E2F-5, E2F-6, DP-1 and DP-2 and mn on 5% non-denaturing
acrylamide gel. The gels were dried and auto-radiographed. The arrows indicate the
DNA-protein and antibody complexes. Super shifted bands has been shown by
asteriks (*) on thc left of the hand.
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Figure 24. E2F DNA Electrophoretic mobility super shift assay for the
nuclear extract of mock infected and 1111V-6 infected HSB-2
ceils using antïbody against pRB
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The extracts from the were incubated with the 32P end-labelled ds oligonucleotide
containing E2F-specific consensus sequences and antibody against pRB run on 5%
non-denaturing acrylamide gel. The gels were auto-radiographed using Kodak
Biomax film. The anows indicate the DNA-protein and antibody complexes. Rabbit
IgG (Rab IgG) and E2f-3 are used as negative and positive controls respectively.
Asteriks (*) on the left of the hands show the supershifis.
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figure 25. 12f DNA Electrophoretic mobïlity super shift assay for the
nuclear extract of mock ïnfected and HHV-6 ïnfected IISB-2
ceils using antibody against p107
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The extracts from the nucleus of virus and mock-infected celis were made to react
with the 32P end-labelled ds oligonucleotide containing E2f-specific consensus
sequences and antibody against p107. It was run on 5% non-denaturing acrylamide
gel. The gels were dried and auto-radiographed. The anows indicate the DNA-protein
and antibody complexes. Rabbit IgG (Rab IgG) and E2f-3 are used as negative and
positive controls respectively. Super shifted complex has been shown by asteriks (*)
on the lefi of the band.
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Figure 26. E2F DNA Electrophoretic mobilïty super shift assay for the
nuclear extract of mock infected and HHV-6 infected USB-2
cetis using antibody against p130

Mock and HHV-6 infected ceils’ nuclear extracts were incubated with the 32P end
labelled oligonucleotide containing E2f-specific consensus sequences and antibody
against p130, mn on 5% non-denaturing acrylamide gel. The gels were dried and
auto-radiographed using Kodak film. The arrows indicate the DNA-protein and
antibody complexes. Rabbit IgG (Rab IgG) and E2F-3 werc used as negative and
positive controls respectively. Asteriks (*) on left side of each band show the super
shified one.
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figure 27. E2F DNA Electrophoretic mobility super shift assay for the
nuclear extract of mock infected and 1111V-6 infected HSB-2
ceils using antibody against IIDAC1
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The extracts from the HHV-6 and mock-infected celis were reacted with the 32P end
labelled oligonucleotide containing E2f-specific consensus sequences and antibody
against HDAC1 run on 5% non-denaturing acrylamide gel. The gels were dried and
auto-radiographed. The anows indicate the DNA-protein and antibody complexes.
Rabbit IgG (Rab IgG) and E2F-3 are used as negative and positive controls
respectively. Asteriks (*) on the lefi of each band show the super shifted complex.
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Figure 28. E2F DNA Electroplioretic mobility super shift assay for the
nuclear extract of mock infected and 1111V-6 infected HSB-2
ceils using antibody against P300

The nuclear exfracts from the celis were incubated with the 32P labelled ds
oligonucleotide containing E2F-specific consensus sequences and antibody against
p300 and run on 5% non-denaturing acrylamide gel. The gels were dried and auto
radiographed. The arrows indicate the DNA-protein and antibody complexes. Rabbit
IgG (Rab IgG) and E2F-3 are used as negative and positive controls respectively.
Super shift has been shown by the asteriks (*) on the lefi of the hands.
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The antibodies specific to p107 and p130, but flot to pRB, supershified the

oligonucleotide-bound slow migrating complexes in the mock-infected ceils.

Interestingly, the complexes were completely supershifted with anti-p130 and

p107 antibodies. This supershift is not seen in infected celis (figures 24, 25

and 26). It is noteworthy that, antibodies against p300 and histone deacetylase

(HDAC-Ï) did flot react with the complexes from both the infected and mock

infected cells (Figures 27 and 28).

We also performed gel shifi and supershift assays for the cytoplasmic fractions

of mock- and HHV-6 infected celis. The results were almost similar to those

obtained with the nuclear extracts (data are flot shown).
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CHAPTER V

Discussion and Conclusions

Discussion:

The E2F comprises a family of transcription factors that functions as heterodimers

with DP-l or DP-2. Their role in the progression of ccli cycle and DNA replication

bas been well charactcrized. They also play a role in the differentiation, growth and

apoptosis of ceils (reviewed in Stevens and La Thangue, 2003; reviewcd in Ginsberg,

2002). As stated above, these factors have been divided into three functional groups.

The members of a group perforrn distinct as weil as overlapping functions. Because of

their importance in ccii cycle progression and DNA synthesis, it is not surprising that

viruses have evoived strategies to utilize E2F for manipulating cdl cycle progression

in the virus-infected ceils and to use them for their own replication. E2F are

functionally regulated iargely by their interaction with pRB. Three families of DNA

viruses, papillomaviruses, adenoviruses and papovaviruses exploit these interactions.

They target pRB, disrupt pRB-E2F interactions and activate E2F. The adenovirus

E la, the papiilomavirus E7 and the simian virus-40 T antigen have been demonsfrated

to bind pRB (Decaprio et al, 198$; Dyson et ai, 1989; Whyte et ai, 1988). The virus

activated E2F factors play an important role in the ccli transforrning functions of these

virai antigens.

In the case of Herpesviruses, the farnily to which HHV-6 belongs, several viruses

have been known to induce changes in the expression and functional activifies of E2f

factors. For exampie, LMP-l, the major oncoprotein ofthe Epstein-Barr virus inhibits

pi6 111K mediated ccli cycle arrest by downreguiating the expression of E2f-4 and
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E2F-5. LMP-1 plays an important role in ccli proliferation and tumor formation by

blocking the functions of these transcription factors (Ohtani et al., 2003).

Another membcr of this family, the human cytomegalovirus (HCMV), encodes a

viral kinase (lE 72) that phosphorylates F2F1-3, p130 and p107 (Pajovic et al 1997).

This increases the DNA binding ability of the E2F and decreases association of E2f-4

with p107 and p130. $imilarly, E2F-1, E2F-4 and E2F-5 are post-translationaly

modified and show a reduction in their DNA binding activities in the HSV-1 infected

ceils (Advani et ai, 2000; Olgiate et ai, 1999; Hitton et aI, 1995). The overail aim of

the viruses is to modify the internai microenvironment oftlie infected celis in order to

favor viral replication.

HHV-6 is a member ofthe Herpesvirus family. It infects mainly CD4+ human T ceils.

The virus induces profound changes in the infected cells: it causes accumulation of

the infected celis in G2/M phase, induces apoptosis, inhibits proiiferation of mitogen

activated T celis and stimulates host ccli macromolecule synthesis (De Boue et al.,

2004; Ichimi et al., 1999). Since E2F are known to play a role in ail these cellular

processes, it is quite conceivable that HHV-6 infection may cause changes in the

expression and functional activities of these transcription factors. The present study,

therefore, was undertaken to address these issues.

In order to investigate changes in the expression ofvarious E2F factors, we performed

Western blots using specific antibodies on ceil lysates from mock- and HHV-6

infected celis. Since thcse factors may be iocalized in the nuclear and/or cytopiasmic

compartments of the ccli, we isolated nuc]ear and cytoplasmic fractions and

determined the expression of the factors in these fractions separately. Our resuits

show that HHV-6 infection induces significant quantitative as weii as qualitative

changes in the expression of these factors in the infected cells. We observed that:
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The expression of E2f-1, which is involved in the ceit proliferation as well as

apoptosis, was slightly increased in both compartments in the infected celis. 0f note

was the disappearance of a slow migrating band (near 105 kDa mark) in the

cytoplasm ofthe infected ceils (f igure 9). This was replaced by a novel band of about

75 kDa in the cytoplasrn in these celis. We speculate that these two hands may

represent differentially phosphrylated forms of E2F-1. No other changes were

observed in the expression of E2f-1 in the nuclear fractions between infected and

mock-infected celis. The DNA binding activity of this factor was decreased in the

nuclear extracts of the infected ceils (also sec below). The changes observed in the

expression of E2F-1 in the nuctear and cytoplasmic fractions of the infected celis

cannot explain reduced activity ofthis fctor in gel shift assays. Clearly further studies

are needcd to learn why the DNA binding activity ofE2F-1 is reduced in the nuclear

extracts ofthe infected celis.

We observed qualitative changes in the expression ofE2F-2 in the nuclear fractions of

the virus-infected cells (3 bands) as cornpared to the mock-infected cells (5 bands). It

appears that posttranslational modifications of the factor are responsible for the

changes observed on the Western blots. It may be noted that phosphatase treatment of

the nuclear fractions eliminatcd most ofthese bands on Western blots suggesting that

differential phosphorylation of this factor in the nuclear extracts of the infected and

mock-infcted celis are the major post-translational modification responsible for the

qualitative changes observed on the Western blots here. Interestingly, anti-E2F-2

antibodies supershified DNA-protcin complexes in the supershift assays when nuclear

extracts from the rnock-infected cetts were used but flot when the extracts from the

HFW-6-infected ceils were used. These data suggest that within the nuclei of the

infected ceils E2F-2 are unable to bind their cognate DNA sequences. It is likety that
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sequences. It is likely that these factors are modified in the infected ceils in such a

way that they are unable to bind their cognate DNA sequences. Altcmatively, they

may be competed out by other family members, which may bind these DNA

sequences more efficiently. However, given the fact the supershifts with the

antibodies for other E2F family members are weaker in the infected ceil nuclear

extracts then for similar extracts from the mock-infected celis, the latter possibility is

very unlikely.

The changes observed in the expression of E2F-3 in the nuclear fractions of the

infected and mock-infected celis were minimal and mainly of the quantitative nature.

Interestingly, this factor bund to the DNA-protein complexes both in the infected and

mock-infected ceils in the gel shift assays, albeit less so in the case of the virus

infected cells, as the E2f-3-speciflc antibodies-mediated supershift was less

prominent in the nuclear exfracts ofthe infected ceils as compare to the mock-infected

celi extracts (Figure il).

It is noteworthy that E2F are frequently modified post-translationally by

phosphorylation. Furthermore E2F-l, -2 and -3, but flot other members of the family,

are also modified by acetylation at lysine residues (Martinez-Balbas, 2000). Clearly,

furthcr studies are needed to determine whether these E2Fs are acetylated in the virus

infected celis. Collectively, our DNA binding tests using gel shifi and supershift

assays indicate that E2F- 1, -2 and -3 bind cognate DNA sequences very efficiently in

mock-infectcd ceils but not in the case of HHV-6-infected cells. These data also

suggest that E2F l-3 are modified in the nuclei of the infected ceils in a way that they

either do flot bind or bind less efficiently with their cognate DNA sequences. How the

virus achieves this, in addition to the differential phosphorylation of these factors, is

flot known.
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We observed very interestïng changes in the E2F-4 in the virus-infected celis as

compared to the mock-infected ones. The overal! expression of the factor seemed to

be increased in the infected ceils. The rnost interesting change was the appearance of

two novel bands in the cytoplasmic as well as in the nuclear fractions of the virus

infected ceils. Upon treatment of the nuclear fractions from the virus-infected celis

with ClAP, ail the differentially migrating bands were reduced to a prominent hand

near 50 kDa. The nuclear fraction of the mock-infected ceNs led to several diffuse

hands around the 50 kDa mark. These data suggest that the two novel bands present in

the nuclear and cytoplasmic fractions of the virus-infected ceils resulted from the

differential phosphorylation of E2F-4.

E2F-4, uniike E2f 1-3, prevents ceil proliferation and the transcription of E2f-

responsive S-phase genes by recruiting p130 and p107 and hence hïstone deacetylases

to the E2F binding sites into the ceil nuclei. However our gel shift assays show that

this factor is contained in the E2F-oligonucleotide complexes in the mock and virus

infected celis. Interestingiy, anti-E2F-4 antibodies supershift relativeiy smaller

amounts of the compiex in the infected celi nuclear extracts as compared to these

extracts from the mock-infected ceils. Therefore, it is unlikely that HHV-6 uses this

factor to counter the activities ofother members ofthe famiiy. Further work is needed

to understand the real significance of the HHV-6-induced post-translational changes

in E2F-4.

We did not note any significant change in the expression of E2f-5 between mock

infected and virus-infected ceils both in the nuctear as well as in the cytoplasmic

fractions of the celis. Despite this anti-E2f-5 antibodies could not supershift protein

olignucleotide complexes in the nuclear extracts of the virus-infected celis. These

antibodies did supershift these complexes in the nuclear extracts ofthe mock-infected
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ceils. It is possible the subtle changes induced in this factor in the virus infected cells

cannot be detected by Western blots.

The overali expression of the anti-proliferative E2F-6 was increased in both

cytoplasmic and nuclear fractions ofthe virus-infected ceils as compared to the mock

infected ones. We observed a novel slow migrating band (above the 50 kDa mark; sec

figure 14) in the nuclei ofthe infected cells. As describcd above for E2F-5, anti-E2F-

6 antibodies could not supershifi any DNA-protein complex in the nuclear cxtracts of

the virus-infected celis. Therefore, the significance of HHV-6-induced changes in this

factor is flot yet known.

0f the E2F partners, thc expression pattern ofDP-1 showed some changes both in the

nuclear and cytoplasmic fractions bctween HHV-6-infected and rnock-infected ceils:

the disappearance of a fast migrating band (near the 25 kDa mark) in the cytoplasmic

fraction ofthe virus-infected cetis that was present in the the mock-infected ceÏls, the

appearance of a novel slow migrating band (near thc 75 kDa mark) I the nuclear

fraction ofthe infected cetts. However, the latter band is rather faint. Interesingly, the

CIA? treatmcnt of the nuclear fractions from the infected and mock-infected cclls

reduced most ofthe bands to a major band close to the 50 kDa mark (Figures 17-20).

This suggests that the bands of D?-! observed on the Western blots are mainly due to

differential phosphorylation events. Interestingty, anti-D?-! antibodies were able to

supcrshifi protein-DNA complexes in gel shift assays from nuclear extracts of the

mock-infectcd ceils but flot from the virus-infected cetls. It may bc interesting to

compare the ability of DP-1 from the infected and mock-infectcd cells to

heterodimerize with E2F members.

We observcd some changes in the expression of DP-2 bctween the virus-infected and

mock-infected cclls (Figure 16). The major band running close to the 50 kDa mark

99



was signïficantly reduced in the nuclear fractions of the virus-infected celis. The

factor-specific antibodies were able to supershift DNA-protein complexes from the

nuclear fractions of both the virus-infected and mock-infected celis. The supershifted

complexes wcre, however, less prominent, which could be due to reduced expression

ofthis factor in the nuclei ofthe infected celis.

The DP proteins, like their E2F partners, are phosphorylated by the cyclinA/CDK1

complex at the end of S phase (Krek et al., 1994). The overexpression of

phosphorylated DP partners may induce celi cycle arrest in the G2/M phase. The

accumulation of a hyperphosphorylated DP-1 (near the 75 kDa mark) in the nuclear

fractions of the virus-infected cells is in accord with the observations that HHV-6

induces ceIl cycle arrest in the G2/M phase in the infected celis (De Bolle et al.,

2004). Consistent with these observations, we did flot observe any supershift with

anti-DP-1 antibodies in the virus-infected ceils. However, further studies are needed

to confirm this conclusion.

We observed significant changes in the results of the gel shift assays with nuclear

extracts between mock-infected and virus-infected cetis. Firstty, three DNA-protein

complexes were observed for the mock-infected celis as compared to the two for the

virus-infected ceils: the slow migrating comptex being absent from the gel-shift

assays for the virus-infected celis. Upon prolonged exposure, a fast migrating

complex appeared only in the infected cdl assays (Figures 22-23). This comptex did

flot supershift with any of the antibodies used. The exact identity of the complex

remains unknown.

While supershifis were observed with specific antibodies for alt E2F members and

their partners in the nuclear extracts from the mock-infected cells, no supershifts were

observed with antibodies specific for E2F-2, E2F-5, E2f-6, and DP- 1. These results
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suggest that these factors may be prevented from their inclusion into E2F-

oligonucleotide complexes in the virus-infected celis. Aitemately, they may have

become inaccessible to these antibodies in these celis. It is noteworthy that ail these

factors, except E2F-5, did show some qualitative changes in their expression pafterns

on Western blots between mock-infected and virus-infected celis. There is no direct

evidence to suggest that the changes observed in the expression of these factors on the

Western blots may have been responsible for the lack oftheir supershifts with specific

antibodies. It is surprising why E2F-5 was excluded from these complexes in the

virns-infected celis despite showing similar expression pallem in the infected and

mock-infected cells. On thc other hand very significant changes were observed in the

expression of E2f-4 in the virus-infected ceils, i.e., two nove! hands both in the

cytoplasmic and nuclear fractions of these celis that were absent in the Western blots

with the mock-infected celis (f igure 12). However, despite these changes, E2f-4 were

present in the oligonucleotide-protein complexes both in the virus-infected and mock

infected ceils, as the supershifts were observed with E2F-4-specific antibodies EMSA.

However the supershifts were not as prominent for the virns-infected celis as in the

case of the mock-infected celis. Tt is also noteworthy that the supershifted complexes

were also relatively less in abundance with anti-E2F- 1, E2F-3, and DP-2 in the case of

the virns-infected ceils. This suggests that the infection tends to decrease E2f-

oligonucleotide complex formation.

With regard to the pocket proteins, which bind to and negatively regulate the

transcriptional activities of E2f factors, supershifis were observed with anti-p 130 and

anti-p 107 antibodies in mock-infected celis. No supershifts were observed with anti

pRB. This suggests that in asynchoronously growing HSB-2 ceils, E2F activities are

mainly regulated by p107 and p130 and flot by pRB. This is consistent with the
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reported mutation ofpRB in these ceils (Furukawa et at, 1991). Thus, we confirm that

pRB is incapable of interacting with E2f in these celis. Interestingly, we observcd that

anti-p 107 and anti-p 130 antibodies did flot supershift E2f-oligonucleotide complexes

in the virus-infected ceils. These results suggest that HHV-6 infection inhibits

interaction of E2f with these pocket proteins. Altemately, it may be possible that the

infection inhibits expression of these pocket proteins in the infected cells. Further

studies are required to address this issue. The significance ofthese resuits in the virus

replication is not clear.

Histone acetylation and deacetylation arc catalyzed by histone acetyltransferases

(HAT) and histone deacetylases (HDAC), respectively. HDAC convert the -amino

group of lysines into neutral -acetamido group causing changes in chromatin

structure that favor gene transcription. Since E2F may regulate transcription by

recruiting histone deacetylaes (HDAC) or via histone acetylases (p300) to the E2F

binding sites within promoter regions of the E2F-responsive genes. We performed

supershift assays using antibodies specific for a histone deacetylase (HDAC-1) and an

acetylase p300. These antibodies did not supcrshift any E2F-oligonucleotide

complexes in mock infected as well as in the virus-infected celis, suggesting that these

proteins may not be involved in the regulation of E2F franscriptional activities in

HSB-2 celis, whether they are infected with HHV-6 or flot.

Moreover there may the possibility of the involvement of E2f s in the regulation and

expression of HHV-6 genes that lias to be investigated in detail. This project in future

can be extended to see the functional consequences of HHV-6 infection for E2F

responsive cellular genes. Furthermore, one could identify viral encoded proteins in

the induction pathway and study whether CDKs/cyclins activities are modulated or

not as a result ofHHV-6 infection.
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Conclusions:

The infection wïth HHV-6 induces significant quantitative and qualitative changes in

E2f transcription factors in HSB-2 ce!! line. These changes can be observed on the

Western blots perforned with cytoplasmic and nuc!ear fractions of celi lysates. Most

of the changes observed were due to differential phosphorylation of the factors, since

a prior treatment of the !ysates with a phosphatase eliminated most of the

differentia!!y migrating bands on Western b!ots. The infection also modifies formation

of protein complexes with E2F-specific ds DNA oligonucleotides: two complexes

were observed with nc!ear extracts from the virus-infected ceils as compared to three

in the case of mock-infected celis. Furthermore, upon prolonged exposure of the

films, a fast migrating complex was observed in the gel shifi assays with nttc!ear

extracts from the virus-infected ceils. Prior incubation of the ceil extracts with

antibodies to a!! members ofthe E2F fami!y supershifted the complexes in the case of

mock-infected celis suggesting the presence of these factors in these complexes. No

supershifts were observed with antibodies for E2F-2, E2f-5, E2F-6, and DP-1 in the

celi extracts from the virus-infected cells. Furthermore the supershifis observed with

anti-E2f-l, E2F-3, E2f-4, and DP-2 antibodies in the case of these cells wcre

re!atively less intense as compared to those seen with these antibodies in the case of

mock-infected ceils. We conclude from these data that HHV-6 somehow

downregulates and/or abrogates DNA binding activities of the E2F members. The

inactivation of the E2F members in HHV-6-infected ceils may be important for viral

replication. Moreover our results show that p130 and p107 are active!y recruited into

DNA-protein complexes in gel shift assays performed using nuclear extracts from the

mock-infected ceils, since anti-p130, and anti-p107 caused visible supershifis in the

EMSA. These antibodies, however, were not able to cause any supershifis in the
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EM$A when nuclear extracts from the virus-infected celis were used. We conclude

from these resuits that HHV-6 infection also inhibits E2F interactions with these

pocket proteins.

The virus-induced changes in the functional activities of the E2F members may be

important for efficient viral replication in the infected ceils.
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