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Sommaire

La scoliose est une déformation tridimensionnelle de la colonne vertébrale qui

engendre des déformations du torse. Le risque d’un cancer associé à la méthode

de diagnostique actuelle, les rayons X, appelle aux changements dans ce domai;e.

Ceci est particulièrement important considérant le grand nombre de ca.s chez les

adolescents. L’ordinateur a pris un rôle de plus en plus important dans le domaine

médical, au point (l’avoir été utilisé pour presque toutes les différentes parties du

corps humain.

Plusieurs techniques de déformation spatiale ont été développées: les déformations

sans contraintes (free-for’rn) et leurs multiples extensions, les modèles de lissage

par splines, la technique “space deformation”, etc. Elles offrent à l’usager un

contrôle sur la déformation par divers moyens: points marqueurs, treillis de

contrôle et mampulations directes.

Dans ce projet, pour résoudre le problème de visualisation et de simulation

de la scoliose, une méthode de déformation spatiale, les plaques minces (thin

plate sptine modets) a été employée. Pour la prédiction de la scoliose, nous tra

vaillons à la fois sur un ensemble d’indexes de R’, utilisé pour l’interpolation

et l’approximation spatiale, et un ensemble d’indexes de l’intervalle [0,1] pour

l’interpolation et l’extrapolation dans le temps. Nous testons et validons nos

modèles avec des données de vrais patients. Les résultats des tests sur les données

réelles que nous avons obtenus sont raisonnables, en se basant sur le niveau de

précision des données disponibles: les résllltats de déformation externe sont plutôt

bons, tant dis que les résultats de déformation interne montrent quelques erreurs.

Des travaux ultérieurs pourraient se concentrer sur ces deux points, augmenter

iv



SOMMAIRE y

la précision des données réelles et prendre en compte pius d’information interne

physique.

Une contribution particulière de ce projet est que nous montrons le lieu entre

les plaques minces sur un ensemble d’indexes de l’intervalle [0,1] et un ensemble

d’indexes de R’. Il s’agit de deux modèles differents de spiines, mais après tout

le travail mathématique (permutation et comparaison), nous pouvons voir qu’ils

partagent vraiment quelque chose en commun, ce qui est très utile.

Mots clefs:

simulation médical, visualisation, modèls de plaques minces, modélisation d’objets

déformarbles, scoliose.



Abstract

Scoliosis is a common 3D spinal deformity that leads to aesthetic deformity of

the torso. The cancer risk associated with the current diagnosis method, X-rays,

motivates modifications of this method. This is especially important because of

the high occurrence of scoliosis among teenagers. The computer lias begun to

ta.ke more and more important roles in the medical field; it has been used to

study almost every part of the human body.

Many spatial deformation techniques have been developed: Free-form deforma

tion and its several extensions, smoothing spiine models, space deformations,etc.

They offer the user control over deformation hy different means: marker points,

control lattices and even direct manipulations.

This project approached the problem of visualization and prediction of scoliosis

with a method of spatial deformation, specifically, thin-plate spiine models. For

the prediction of scoliosis, we work on both the R” index set, which we use for

spatial interpolation and approximation, and the time index set, which we use for

time-interpolation and time-extrapolation. We test and validate our models with

real patient data. The real testing resuits we got are reasonable, based on the

accuracy level of the available data: the external deformation resuits are pretty

good, whule the internai deformation resuits show some errors. Later work could

extend from these two points, increase the accuracy of the reaÏ data and take more

internai physical information into account.

A special contribution of this project is: we show the link between the thin

plate spiine modeis based on [0,1] index set and R” index set. These are two

different spline models, but after some mathematical work (permutation and com

vi



ABSTRACT vii

parison), we cari see that they really share something in common, which is quite

useful.

Keywords:

medical simulation, visualization, thin-plate spiine models, modeling ofdeformable

objects, scoliosis.
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Chapter 1

Introduction

1.1 Background

Medicine is an extremely challengmg fieid of research, which lias been more

than any other disciplille of fundamental importance in human existence. The

variety and inherent complexity of unsolved problems, along with the obvious

intrinsic interest of irnproved human health, have made it a major driving force for

many natural and engineering sciences. Therefore, the medical field has become

one of the most important application areas with an enduring supply of exciting

researcli challenges for computer scientists. Computers have been used to study

almost every part of the human body: the head, face, spine, wrist, hand, knee,

foot, even some internai soft tissue organs.

1.1.1 Scoliosis

Amongst ail of these research topics, study of the spine has become more and

more attractive because of the illtrinsic complexity and invisibility of the spine

(see fig.1.1). There are four main kinds of disorders coilcerning the spine [3]:

Ï. Scoliosis

Scoliosis is a 3D abllormality of the trunk in which the spine loses its normal

left-right symmetry and instead develops a laterai curvature associated with

1
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Figure 1.1: Human spine illustration lateral view and posterior view [10]

rotation and deformity of the vertebrae, rih cage and torso. It is a condi

tion involving lateral curve or angular derivation of one or more vertebral

segments, often with twisting of the spinal column.

2. Lordosis

An exaggeration of the posterior concavity of the spine, characteristic of the

lumbar region. It is also called “sway back”, indicating extreme anterior

curvature of the lnmbar spine.

3. Kyphosis

An exaggeration of the posterior convexity of the thoracic vertebral colnmn

(humphack). It may be due to the absence of a vertebral body, malforma

tion by incomplete segmentation of vertebral bodies, absence of a corner or

flattening by compression.

4. Osteoporosis

A disease of the bone due to deficiency of bony matrix.

Amongst all these, scoliosis. especially idiopathic scoliosis, is quite important

due to its frequency arnong children and teenagers, and it therefore interests many
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computer researcliers’.

Figure 1.2: A typical scoliotic skeleton figure [2].

1.1.2 Motivations

The original motivation of our project is partially based on the limitations (the

side effects described below) of current methods in the diagnosis of scoliosis, and

also because of its frequency.

First, the current method of diagnosis of scoliosis is a traditional and stiil

reasonable way X-rays. But many medical researchers have warned that re

peated exposure to X-ray radiation may lead to an increased risk of breast, bone

and thyroid cancer. This risk is more important to chuidren, among whom scolio

sis has a higher frequency of occurrence. Also, radiography provides only a planar

projection: for a three-dimensional deformation like scoliosis, a two-dimensional

image can provide only limited information. There lias been some work done in

this fleld, the 3D reconstruction from the 2D radiography (see [1]).

Second, the current method of evaluation of scoliosis uses the Cobb angle (sec

Fig 1.3) from posterior-anterior or anterior-posterior radiography. To use the

Cohb angle method, one must first clecide which vertebrae are the end-vertebrae

of the curve. These end-vertebrae are the vertebrae at the upper and lower limits

of the curve which tilt most severelv toward the concavitv of the curve. Once

‘The adjective “idiopathic” means only that the cause is unknown.
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these vertebrae have been selected, one theii draws a Hue along the upper end

plate of the upper body and along the lower end-plate of the lower body [11]. But

as already mentioned, most scoliosis appears as a distortioll of the spine, arid the

Cobb angle camiot express such three-dimensional information involving rotation

of the vertebra. Also. the Cobb angle depends on the (horizontal) view direction

of the doctor, which makes the Cobb angle very proue to error: spiries with the

same Cobh angle may vary a lot in the real figure. This shows the limitation of

this evaluation method.

The computer has already been used for the 3D reconstructioll from the 2D

radiography. Here we want to focus on silnulatillg the illternal chailges based ou

the given external data, trying to reduce the use of X-ras. This is what we cali

non-invasive visualizatioll. diagilosis anci prediction by computer. It would not

only help the doctor to grasp the ongoing progress of the patients disease, but

also it could help the patient to fully understalld lis or her condition.

figure 1.3: Cobb angle (a) Cobb angle based on radiography; (b) Cobb angle

calculatiori [11].
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1.2 Available deformation techniques

1.2.1 Spatial deformation

Free-form and smoothing methods

• Free Form Deformation(FFD) and its extensions

Free-Form Deformation as a technique for deforming solid geometric models

in a free-form manner was first brought out by T. W. Sederberg and S. R.

Parry in 1986 [20]. From that day on this method has attracted considerable

interest. The method uses a control lattice, which will be described below.

Because of its many advantages FFD has become a standard technique,

known as “virtual clay scuipting” suggesting that target solids or surfaces

can be shaped with flexibilitv akin to clay in a sculptor’s hands.

Recently, the method of FfD has been more wiclely used and developed.

Several versions and extensions of the simple FFD have appeared: Ex

tended free-forrn deformation (EFFD) [9] and Ratioiial free-form deforma

tion (RFFD) [1312. But the key point that interests us here is the most basic

property of the FFD: it gives a way of deforming space. Just based on this,

we chose FFD as our first rnethod to try. Because of its flexibility to simu

late any form of deformation, we collsidered this technique for simulation of

the different kinds of deformation of the human torso in the circumstances

of idiopathic scoliosis.

• Smoothing Spiine Models

Smoothing spiines provide a general rnethod of prediction that permits a

compromise between srnoothness of the predictor, and accuracy of the in

terpolation of given data. The thin-plate spline is a conventional tool for

surface interpolation over scattered data. It involves an elegant algebraic ex

pression for the dependence of the physical bending energy of a thin metal

plate under point constraints [5]. This is the second method we tried after

2A11 these methods will be discussed later in Chapter 2.
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abandoning the FFD model.

Deformation by direct manipulation

Direct-manipulation deformation is another group of deformation techniques. It

realizes the control over the deformation by directly manipulating the object with

out any intermediate control-lattice. Examples are the space-deformation model

defiued by Borrel and Bechrnann [7] and direct free-form deformation (DFfD)

[12].

1.2.2 Physics-based deformation

In 1975, Versprille proposed the Non-Uniform Rational B-Splines (NURBS) [16].

NURBS quickly gained popularity because of their power to represent free-form

shapes as well as common analytic shapes, alld they were soon incorporated into

several commercial modeling systems [21]. However, the drawback of NURBS

also showeci up: the user is faced with the tedium of indirect shape manipulation

through a bewildering variety of geometric parameters; shape design to required

specifications by manual adjustment of available geometric degrees of freedom is

often elusive and typical design requirements may be stated in both quantitative

and qualitative terms [21, 17, 18, 17].

Then an extension of NURBS was introduced: Dynamic NonUlliform Rational

B-spline (D-NURBS). They extend the basic NURB$ to the physics-based mod

els that incorporate mass distributions, internal-deformation energies, and other

physical quantities. In this way, the behavior of the deformable model is governed

by physical laws, and this on top of the standard geometric foundation makes the

whole method more convenient for use.

1.3 Outline of the thesis

In this thesis we have given:
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1. a theoretical study of certain methods that might be used for visualization

and simulation in the context of scoliosis.

2. a preliminary implementation with a user interface.

3. a generalization of Rohr’s anisotropic error measures that seems appropriate

in the case of scoliosis (affine-affine matchillg).

New (although not necessarilv profound) mathematical resuits appearing in this

thesis will be indicated within relevant sections, in a footnote.

The rest of the thesis is organized as follows: in Chapter 2, we will discuss

the spatial cleformation models, especially focusing on the Free-form deformation,

which is our first test model, and its extensions. vVe vi1l describe some of our

preliminary test resuits of the FFD there. Chapter 3 is the theoretical discussion

of the Smoothing spiine mode!, which is our second mode!. In Chapter 4, we xviii

give a s!ight genera!ization of the models we tried, i.e., the mode!s for simulation

of deformation. We xvi!! ta!k about the interface of our preliminary software in

Chapter 5. Ail the experimental resuits xvi!! corne in Chapter 6, together with the

analysis of the resu!ts. ‘Ne will give our conclusions in Chapter 7.



Chapter 2

Spatial deformation

Spatial deformation is a transformation technique for 3D geometric data [4]. It

has a number of useful traits, such as continuity guarantees (ensuring that the

corrected portion of the model is stiil “smoothly” reated to the uncorrected area),

anci local/global control over the transformation, allowing for the preservation of

fine detail in the areas being corrected [15]. It is a cleformation technique inde

pendent of the underlying object representation. Here we separate the techniques

into two groups: deformation using free-form a.lld srnoothing rnethods, which vi11

be cliscussed in Section 2.1; and deformation realized by directly manipulating the

object, which will show up in Section 2.2 [4].

2.1 Thin-plate spiine model

Thin-plate spiine (TPS) model is one of the deformation models that uses marker

points to control the deformation [19]. Each time the user change the positions of

the marker points, the deformation model changes the coefficient vectors, which

defines the final deformation figure. We will discuss this model in detail in Chap

ter 3. Kriging is another method, which also realizes spatial deformation [22]. It

is cluite closely related to TPS [23].

8
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2.2 Free-form deformation arid its extensions

2.2.1 Theoretical foundation

Free-Form Deformation (FFD) belongs to the group of deformation models requir

ing a deformation tool, such as a lattice. A lattice is represented hy a trivariate

volume regularly subdivided and deflned by a three-dimensional array of control

points [201. The object that has to be deformed is embedded inside the lattice. To

deform an object the user deforms the lattice by moving its control points. Any

point lying inside the lattice is deformed according to the lattice deformation. In

particular, the deformation of an object inside the lattice follows the dispiace

ment of the lattice control points [20]. This is the unique aspect of FFD: instead

of deforming the ohject directly, the object is embeclded in a space that is then

deforrned and the deformation is realized in an indirect way. A good physical

analogy for FFD is to consider a parallelepiped of clear, flexible plastic in which

is embedded an object, or several objects, which we wish to deform [20]. The oh

ject is imagined to also he flexible, so that it deforms along with the plastic that

surrounds it [6]. Mathematically, the FFD is defined in terms of a tensor-product

trivariate Bernstein polynomial. We begin [20] by imposing a local coordinate

system on a parallelepiped region; tÏien, any point X that has (s, t, u) coordinates

in this system is transformed as:

X=Xo+sS+tT+uU. (2.1)

The (s, t, u) coordinates of X cari then be found using linear algebra. For any

point interior to the parallelepiped, we have O < s < 1, 0 < t < 1, 0 < u < 1 ancl

a vector solution is

(TxU).(X_Xo)(UxS).(X_Xo) (SxT).(X—X0)
(TxU).S ‘ — (UxS).T (SxT)•U

(2.2)

Next we impose a grid of control points P-k on the parallelepiped. These form

1 + 1 planes in the S direction, ru + 1 planes in the T direction, and n + 1 planes

in the U direction. These control points lie on a lattice, and their locations are
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defined by

Pk X0 + + + U, (2.3)
t m n

vherei0,...,l,j0 ,m,andk0,...,n.

The deformation is specified by moving the Pk from their original latticial

positions. The deformed position Xffd of an arbitrary point X is found by first

computing its (s, t, n) coordinates from equation (2.2), and then evaluating the

vector

Xffd
(t ) ( )tii [ ( ) (1- t)t [ ( n ) t_ fl)fl-kVkP]

(2.4)

where Xffd is a vector containing the Cartesiau coordinates of the deformed point,

and where Pk is a vector containing the Cartesian coordinates of the control

points [20].

2.2.2 FFD in our application

With the FfD method1, provided two groups of control points which form the

two control lattices (one original and one deforrned) and the poillt-based original

figure, we can get the final deformed figure.

In our application we need one extra step to get the deforrned control

lattice, given the two groups of marker points (one original and one deformed) on

the object. What we want to achieve is to choose the deformed control lattice so

as to deforrn the whole space containing all the original marker points to either

interpolate or approxirnate ail the deformed marker points. So the whole process

of this method is:

1. Get the deformed control lattice:

Collstruct the original control lattice for the whole object, and get the co

ordinates of ail the original control points which are just the vertices of the

original control lattice. Match the trallsforrned coordinates of the original

‘The approach described here, for controlling the FFD, is new. It was, however, unsuccessful,

for tue reasons given at the end of the subsection.
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marker points and that of the deforrned marker points to get the coordinates

of the deformed control points, which form the deforrned control lattice, as2:

T’1’11W19... T’VM
* W21I1722...1142A1

9t.f Sq tq Uq).]3xM = [...Pr ...J3T .5)

I17jr 1T’V12. T”7NA1 N x M

where

= ( ) (1_s)’s [ ( ) (1- t)mJti [ ( ) (1_

r= 1,...,N= (i+i)(m+i)(n+i), andq= 1,...,M; Misthenumberof

control points. Here the original marker points act as the weight coefficient

for the deformed control points by forming the weight inatrix. The unknowns

in (2.5) are the control point P of the deformed lattice.

2. Get the final deformed figure:

Use the deformed control points to calculate the deformed coordinates of ail

the points on the ob.ject using equation (2.4).

Advantages of FFD

The advantages of FFD as a method of space deformation are quite obvious. first,

FFD is a representation-independent deformation technique. It can be applied not

only to aiiy solid-modeling system, such as Constructive Solid Geometry (CSG)

or Boundary Representation (B-rep), but also surfaces or polygonal data [20].

Second, the deformation cari be formulated in terms of any polynomial hasis,

such as tensor-product B-splines or non-tensor-product Bernstein polynomials,

which means the deformation can be applied either globally or locally, based on

need. Each time we can choose the best and most convenient way to express the

deformation. Third, the deformation method works by space deformation. This

is the most important point in our application. hecause our purpose is to choose

the deformed control lattice so as to deform the une (corresponding to the spine

2T1js is in effect the inverse of the standard FFD.
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in the application) in the middle according to the degree of deformation of ail the

points on the cylinder (corresponding to the torso in the rea.1 application). This

can keep the whole deformation space continuous such that both parts can have

consistent deformations.

Disadvantages of FFD

The disadvantage of the FfD method itself is that it is difficuit to control [81. It is a

global deformation rnethod in that it takes a space and bends it. According to [25],

it works well in simple cases, but fails when complex, subtie, local deformations

are required over a surface. Plus, this method requires editing a lattice to match a

specific object and cleforming it to produce the desired ohject deformation. This

process may prove difficult, particularly when the object’s shape does not fali into

a simple combination of predefined types of lattices, and when the deformation

is so complex that the correspondence between the lattice deformation and the

object deformation is not straightforward [6].

The disadvantages of FFD in our applicatirn are quite crucial and finally led

us to abandon this method. First, as part of our application actually we need the

inverse of the standard FFD; this requires ca.lculation of the inverse of a. matrix,

or at lea.st the LU decomposition. In the either case, we have to worry about

matrix singularity, especially in our application: sometimes it is quite possible

that more than two original marker points lie on a une. The second disadvalltage

is related to the number M of control points, which may cause (2.5) to be over- or

under-determined. Also, for the methocl of FFD. the more control points we have,

the hetter deformation we can get, but there is a practical constraint concerning

the number of marker points (both the original ancl the deformed ones). The

Iimited number of rnarker points led to part of the final deformation being out of

control (in regions where there are no control points)3. The very poor resuits of

our preliminary experiments with this method led us to change our research to

other methods of deformation. We give a brief description of these experiments

3This vill be discussed later in Section 2.1.3.
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iII the next subsection.

2.2.3 Preliminary experimental resuits usirrg FFD

We hegin with the local coordillate system (s, t, n) on a parallelepiped region

definied by Xo, S, T and U [20, p. 153]. There are N (1 + l)(m + 1)(n + 1)

control points Pijk defining the original control lattice grid as equation (2.3).

Here we take I = ru n = 1 so that in total there are 2 . 2 2 = 8 control points.

Within this parallelepiped region, an open cylinder is defined, in terms of the

(s, t, n) coordinates (see Fig. 2.1). In the sirnplest case, this might of course just

Figure 2.1: Preliminarv test model for FFD model a blue open cylinder, which

represents the deformation target (original cylinder), ernbedded inside a cube.

which is the original control attice: white points represent the deforrned control

points; green points represent the original marker points; red points represent

the deformed marker points; gray cylinder (not shown here) will represent the

deformed cylinder; the turquoise une is the original spine and the yellow une

represents the defornieci Spine.
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be the ordillary Cartesian system:

X0 [0,0,o],S [1,o,o],T [0,1,o],U [0,0,1].

We would then like to filld new values of Pijk for ail the points on the cylinder

which will cause given rnarker poillts on the (original) open cylinder to be trans

formed into given (observed) values in (s. t, ‘u)-space R3. In our experiments, we

chose the number of rnarker points M = $ to simplify the calculation, since if the

number of marker poillts M is smaller thail the number of control points N, the

solution may lot be unique. When M is greater than N, the solutiol may not

exist at ail, and the Least Square technique lleeds to be applied.

Here are sorne of our preiirninary test resuits:

1. Test case 1: Here we choose the number of marker points III = 8, move

two of the control points outward (see Fig.2.2 (a), showing the two white

control points on the right side) to get some intuitive idea of how the method

works. As we eau see just from the figures, the deformation works quite in

the wav expected: one side of the lower part of the cvlinder moves out, and

the internai vertical une switches to the side of the cylinder, which extends

out a littie bit: the rest of the cylinder remains almost unchanged.

(a) (b)

figure 2.2: FFD test case 1 move two control points outward, (a) is the side

view; and (b) is the topview.
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2. Test case 2: This is our secolld test with this model. We use the same number

of marker points, but move four of the eight control points, two outward and

two inward (see Fig. 2.3). The deformatirnl resiit is pretty good. In the

direction where the control points move, the object is deformed, see fig. 2.3

(b); the whole cylinder is sheared according to the upper two outward-moved

coiltrol points and the lower two inward-moved coiltrol points. And, in the

direction where there S 110 change in the positions of the control points, the

cylinder remains unchanged: sec Fig. 2.3 (a).

3. Problem with the FFD model. During the time we did the preliminary test

for the FFD model. we met very serions problems. which lcd us abandon

this method finallv. Ilamel. there appear large distortiolls in the deforrned

figure (sec Fig. 2.4).

2.2.4 Extended versions of FFD model

In spite of the disadvantages of the ffD model as we mentioned in the previous

section, this method is still quite powerful. AuJ several extended versions of the

Figure 2.3: FFD test case 2 move four control points (two outward and two

illward), (a) is the view from the unchanged side; and (b) is the view from the

changed side. Here. the bine cvlincler is the original cylinder and the pink one

represents the deforrned one.
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basic FFD model have appeared:

1. Extended free-form deformation (EffD)

Extended free-form deformation; this [9] works 011 the same mathematical

foundations but increases the power of the modeling system by using any

shape of initial lattices or combining them [4].

2. Rational free-form deformation (RFFD)

Rational free-form deformation [13] is another extension of fFD. It allows

incorporation of weights defined at each control point of the parallelepiped

lattice. However, when the weights at each control point are unity, the

deformations are equivalent to the FFD. To control the deformation, the user

either moves the lattice control points or modifies their associated weights.

The coordinates 0f a point are cornputed in the lattice parameter space

before editing the lattice control points [4].

3. Direct free-form deformation (DFFD)

Direct free-form deformation [12] is sÏightly different from the other two ex

tensions. Part of this method belongs to the category of direct-manipulation

deformation, but since it is also an extension of ffD, we list it here. DFfD

also consist.s in embedding the object that lias to be deformed inside a trivari

figure 2.4: Problem with the fFD model: there appear large distortions in the

deformed figure.
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ate lattice defined by an array of control points. The object deformation

follows the lattice deformation but the dispiacements of the lattice control

points are computed from actions such as: “move this point of the object to

there” [4].

In summary, free-form deformation, extended free-form deformation, and rational

free-form deformation techniques rely on the same mathematical formulation. The

deformed area a.s well as the shape of the deformation inside the deforrned area

depend on the polynomials. The deformed area is either the whole lattice or a

part of it. To localize a deformation, the original lattice should either include a

limiteci part of the object or its subdivision in chunks to be modified [4].

2.3 Direct-manipulation deformation

Direct manipulation deformation is the other group of deformation techniques.

Two models belong to this group: space deformation, which will be described

here, and direct free-form deformation. which vie have discussed in the previous

section together with other extended versions of free-form deformation [4].

Introduced in 1991, the space deformation mode! defined of Borrel and Becli

manu [7] provides direct manipulation of the object. Intermediate tools, such as

lattices, are no longer required. The deformation of the object is simply specified

by the dispiacement of arhitrary selected points called coristraints. The size and

the boundary of a hounding box centered around each constraint point allows

control of the extent of the deformation. Depending on this extent, the whole

object can be included (global deformation) or only a limited area around the

constraint point (local deformation). A large range of deformation shapes such a.s

arbitrarily shaped bumps can be designed using this technique [4].



Chapter 3

$moothing Spiine Models

Spiine models can involve functions based on different index sets T. Here mainly

two cases interest us: T — [0, 1] and T = Ré’.

In many practical applications, using only rigid transformations is obviously

far from satisfactory, and the lack of accuracy of the resuit may cause the whole

method to be useless. This makes elastic transformations, which allow for local

adaptation and which are constrained to some kind of continuity or smoothness,

quite attractive. Thin-Plate Spiine (TP$) is one of the methods currently being

used and studied widely.

One of the goals of this thesis is to show how to adapt the TPS methods

presented in the literature to our particular problem, since the link is not always

obvious. This will sometimes involve generalization (for example, increasing the

dimension from 2 to d, d> 2), and sometimes specialization (for example, assum

ing that data observations are always paired, or, in general, “grouped d-wise”).

We will also sometimes make changes to arbitrary factors (for example, multiply

ing a matrix by a factor, when this change can be compensated by an arbitrary

weighting factor elsewhere in the formulation). The purpose of doing this is to

arrive at a similar notation for several different methods (originally presented in

the literature using different formulations and notations), so that their similarities

and differences can be observed.

18
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3.1 Note on terminology

Based on the fact that certain technical terms may appear in different situations

with different meanings, in this first section we make a note on terminoiogy which

will help clarify the discussion in later sections.

3.1.1 Interpolation and time-interpolation

A continuous function y y() can be used to represent the n + 1 data values by

passing through ail the n+1 points Yj, i 0,. . . , n. Then one can find the value of

y at any other value of x. This is interpolation, as opposed to approximation. In

our expla.nation later on, the same terrn “interpolation” has a different meaning

(interpolation as opposed to extrapolation). To differentiate these concepts, we

use “time-interpolation” for the second oiie.

3.1.2 Recapitulation

• Time-interpolation and time-extrapolation

Tirne-interpolation and time-extrapolation are two terms we used for the

[0,11 index model. Tirne-interpolation refers to an estimation of a value

within (viewed in the [0,1] time domain) two known values in a sequence of

values. This is opposed to time-extrapolation, which is an estimation of a

value based on extending a known sequence of values or facts beyond the

range in [0,1] that is certaiiily known; this is often called “prediction”.

• Interpolation and approximation

Interpolation and approximation are terms used for both the [0,1] index

model’ and the Rd model. They are just standard terms: interpolation rep

resents the case where the continuous function passes through all the given

points, and approximation represents the case where a smoothing parameter

‘Interpolation and approximation can be used in our application to do time-interpolation or

time-extrapolation of the torso and spine, given marker points data, over a single time interval.
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is introduced into the function, so that the cont.inuous function just approx

imates the given set of data. The level of approximation depends on the

value we choose for the smoothirig parameter. In the approximation ca.se,

the form of the function usually is more smooth.

3.2 The case T — [O, Ï]

3.2.1 Mathematical outiine

The bivariate Thin-plate spiine model based on the [0,1] index set is described as

[14, 24]:

yk=fk(tk)+ek,kl,2;z=l,...nk, (3.1)

where the th response of the kt’t variable yj is generated hy the kt1 function fk

evaluated at the design point tkj plus a random error ki• Here it is assumed that

ki ‘N(O, u) for fixed k — 1, 2 ancl Corr(ci, e2)
—

p if Yii and Y2j are a pair and

zero otherwise; also the domain of both functions is [0, 1] and fk E T12, where

W2 = {f: J. f’ ahsolutely continuous, f’(J11(t))2dt <oo}

This method can be quite easily extended to multi-response data: just let k =

1, 2, , U, where U is the dimension. In our case2, the data corresponds to the

coordinates of points in space, so ungrouped data (“unpaired data” in the bivariate

case) is not relevant. Therefore, here we assume the variable U (dimension) has

the value 3, and that the number of observations rik and the trade-off pararneter

‘k (see below) for the three groups are the same for each k = 1, 2, 3. Therefore we

may then use n instead of k and À instead of Àk. Plus, we sometimes use x, y, z to

represent the three components of each observation, which may be more intuitive

for understanding of our particular application. Denote tk (tkl, ..., tkfl)T, fk =

(f ( \ (# T
— t — t T e — (eT eT cTTiJkk1), Jkkn)) , Yk — kYkl, «, Ykn) , — 6k1, «, kn) , —

1L ,‘2 ‘‘3 J

and (y )T where the superscript T refers to transpose. We will take

2The development in this section, showing how [21] can be adapted to our problem, is new,

including the derivation of (3.6), (3.7) and (3.10), and the treatrnent of the case = 0.



CHAPTER 3. SMOOTHING SPLINE J\ÏODELS 21

the inverse of the co-variance matrix W—’ to be the direct sum of three matrices

of the form

). (3.2)

This matrix cari be obtained from the matrix W-’ in [241 by assuming that the

correlation p = O, that the matrix there is multiplied by the factor 8 o1u2, and

that the dimension has been raised from 2 to 3. The multiplicative factor cari be

compensated by a change in the arbitrary constant À discussed below. In general

it may be useful to permit non-zero off-diagonal elements, and different values for

the aj in each of the three blocks. In this case the nine values corresponding to

the jh row and the j’ column of each of the three blocks should form a 3 x 3

covariance matrix (see Section 3.3.2).

The function fk cari be estimated by solving the following penalizeci weighted

least-squares problem:

ri ri ri
min {(y-f)TW(y-f)+À J (f’(t))2dt+À J (f’(t))2dt+À] (f’(t))2dt}, (3.3)

fi,f2,f,E’i2 o . o o

where the first term is the weighted least-squares and the remaining terms are

penalties for the roughness of the funct.ions. The parameters À control tlie trade

off between goodness-of-flt and the srnoothness of the estimates and are referred

to as smoothing parameters [24]. Now the solution giving the prediction function

is [23]
in n

fk(t) dk(t) + ciR’ (t, tk), k = 1, 2,3; (3.4)

it can be expressed in vector form as [ x(t), y(t), z(t)

Cxl,Cyl,Czl
[, (t),. , . (t)] : + [ R’ (t, t1),... , R’ (t, ta)] : , (3.5)

dxrn, dym, c,

in which

(t) = t’/(v — 1)!,v = 1,..

defines the m-dimensional space of polynomials of degree m — 1 or less, spanned

bvq, ,ç5,and
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R’(s, t) k2(s)k2(t) — k4(s — t)

where k,,,(.) = B(.)/t’!, and B is the v’th Bernoulli polynomial: B2(x) = —

x + , B4(x) = x4 — 2x3 + x2 — . The vectors

-i J ,-i ,i ,-i T
[L

— kx1, , ‘xm, y1, , ‘-‘ym, z1, Uzrn)

_tC — , Cy1, , Cyrj, C)

which are chosen to minimize (3.3) when

f=Sc+Td.

are stated in [24] to 5e the solutions3 to

f TTWT TTWS f d
— f TTWy

3 6$WT sws + s ) c) — swy
where Tk = = 1,2,3; in our special case Tk is independent of k.

Since for us the data represents the components of a position on the torso or spine,

at a specific time, we have t1 t2 = t3j, (data paired, or “grouped 3-wise”) and

we just use t for ail three. Here,

ç1(t1)ç59(t1) ... m(ti)

i(t2)ç2(t2) ... çb(t2)

51(t) ç9(t) ... çbm(tn)

çi(ti)ç9(ti) ... ç5rn(ti)

ç51(t2) q2(t2) ... ç(t2)

ç5rn(tn)

ç51(t2)ç52(t2) ... Çrn(t)

Çm(tn)

Also, S = diag($k) where 5k = R’(tkj, tk)l3l, k = 1,2,3, and, similarly, $k is
independent of k. Using the same simplification for tki,

R’(t1,ty)R’(t1,t2)...R’(ty,t)
R1(t2,ti)R’(t2,t2) . R’(t,t,) o
R’(t,t1)R’(t,2) ...R’(t,t)

R’(ty,t1)R’(t1,t2)...R1(ti,t,)

o R’(t2,t1)R’(t2,t2) ..

R’(t1,t1)R’(t1,t2)

o o R’(t2, t’) R’(t2,t2) . . R’(t2, t)

R’(t,t,) R’(t,, t2) •.. R’(t,t)

and c and ci are chosen to minimize (3.3) when

3To avoid a conflict in notation in the later comparison between different methods, we changed

the notations here, writing S instead of .
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fzSc+Td.

Here f is (3n x 1), S is (3n X 3n), e is (3n x 1), T is (3n x 3m), and d is (3m x 1).

Then, the objective function iii (3.3) can be written

[y — (Se + Td)]TW[y
— (Se + Td)] + cTÀSc. (3.7)

Expanding this, dropping the term yTWy (which does not depend on e or cl),

and dividing by 2 gives:

_yTwsc — YTWTd + cT.\Sc + cTSWTd + dTTTWTd + cTSWSc.

Differentiating with respect to e and setting the derivative to zero gives:

—SWy + [$1175 + ,\5]c + $WTd = O,

auJ differentiating with respect to U and setting the clerivative to zero gives

_TTWy + TTW$c + TTWTU O.

These equations are exactly those of (3.6).

It is also stated in [24] that a solution to

Ç (S+M17’)c+Td=y
38TTc=O (.)

provides a solution to (3.6). To see this, multiply the first equation of (3.8) on

the left by 8W, to obtain the second equation of (3.6). Now, multiplying the

same eqilation on the left by TTW, we obtain

TTWTU + (TTWS + ÀTT)c T’Wy

which, given the second equation of (3.8), yields the first equation of (3.6).

To calculate the coefficients e and U, we use the following transformations:

= S,’\O

= Àc.

1Equation (3.7) is simplified relative to equation (6) of [24], since )
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If ,\ = 0, then, revising the derivation following (3.7), (3.8) will be replaced by

the single equatioll Sc + Tri y, which guarantees (3.6). These equations are

apparently inconsistent for n> 2.

If ), 0, then equations (3.8) cari be expressed iII matrix-vector form as:

Xi

d,1

t S1/\ O O W’ O O \ c\ T1 o o d1 yi

O 82/)i O + O W,’ O ) cÀ + O T O
O O S/) O O WZ’ J z) O O T3

dym
dz1 Z1

d7 z —

T
T1 O O c\

O T. O c,À = 0. (3.9)
O O T c.\

Here ail the ITT_l I’V’. W’ are n x n matrices. Let

Tk (Qk1Qk2)( )k = 1,2,3

be the QR decomposition of Tk, a.nd let

Qi = d’iag(Qii,Q21)

= d’ag(Qi2, Q22)

R diag(R1, R2)

B=+I4’.

The solution finally is [241

c = Q2(QBQ2)’QÇy,

Rd = Q(y—B). (3.10)

3.2.2 Permuting variables for later comparison

As illustrated in the previous section ah the matrices for the functions in the case

of [0,1] index are ordered based on components, which means they are formed

with the order of x, y and z coordinates in our special case. In this section we

will show how these matrices can be permuted to another form which is baseci
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on each single point. Our main purpose for doing this is for the later comparison

of the model using [0,1] index and the model using Rd (sec Section 3.4). Ail the

components in the equations

f (S+W’)c+Tdy
311TTcO L

can 5e permuted to give:

1(t1)00 tli2(ti)00 m(ti)00
0,(t,)0 0ç9(t,)0 0m(ti)0
00qi(t,) 002(t,) 00m(ti)

ç1(t)00 q52(t)00 ç5m(tn)00
o , (ta) O O ç5,(t) O ... O m(tn) O
00q,(t) 0Oq52(t) O0rn(tn)

R’ (t,, t,) 00 R’ (t,, t,) 00 R’ (t,, t11) 00
OR’(t,,t,)O OR’(t,,t,)O OR’(t,,t)O
00 R’ (t,, t,) 00 R’ (t,, t2) 00 R’ (t,, t)

R’(t,t,) 00 R’(t,t,) 00 R’(t,1,t) 00
OR’(t,t,)O 0R’(t,t1)O .. . OR’(t,t)0
00 R’ (ta, t,) 00 R’ (ta, t9) 00 R’ (ta, t)

dxi C

dyi Cyi
Yi
Y2

c= ,y:

dxm
cl cyn
dzm

Later on we will use this permuted version for the comparison between the [0,1]

index model and the Rd index model.

3.2.3 Time-interpolation

Time-interpolation is our first application of the Thin-plate spiine model on [0,1]

index. Our goal is to get some idea of what is going on in between two given

states. This is especially useful in our real application scoliosis. Given the two

different states of the patient body, this model can help both the doctor and the

patient know how the disease changes.
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With the functirni5

m n

fk(t) d(t) + cR’(t, tk), k 1,2,3,

each time we input tlie time index list and the coordinates list of one body point

(a point in R3) at ail the time points to calculate the coefficient arravs c and d

of this body point. Then by changing the value of t we can get its coordinate at

any corresponding in-between tirne.

There is more than one choice for the time index list [t1, t2,.• , tj. First, siilce

in the time-interpolation situation, only the start and the final state are invoived

in the model, we coud use these two groups tStart and tend, plus the data at the

closest ti;ne point, as constraints for the calculation of the deformation6. This

method, appropriate in a test situation, lias the advantage that we stiil have some

given data at hand with which we can do some comparison. But its shortcorning

is that only using three tirne points as constraints may actually reduce the overall

accuracy of the whole method (if there are more available). Because less available

data involved mea.lls less information coullted. and sorne state that lias a big

influence in the interpolation problem may be ignored. Another approach is to use

ail the available data to do the time-interpolation, that is, ail the [t1, t2, . . . , t]

time points participate in the calculation of time-interpolation. So no matter

which state is appoillted as the start state and which is the final state, each time

the aigorithm uses exactiy the sarne group of data as constraints. This method

is what we wouid use when working with the reai patient case. But, stili for

test purposes, we ignore one group of avaiiabie data to test the accuracy of our

rnethod.

Concerning the I’V’ matrix which contains the variance parameter u, in our

application, we arbitrarily set ail the values of to be 1, and for the smoothing

parameter ..\ which appears as part of the J474 matrix, we change it as necessary.

5For our application, ail the data are grouped: the tirne index lists are the same for ail three

componentS.

6The inequality n > m is one of the conditions for the model; since m = 2, the smallest value

for n is 3.
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As we discussed before in Section 3.2.1, in the case of [0,1] index Thin-plate spline

model, interpolation, in which À 0, is impossible when in = 2.

Later in Chapter 6, we xviii show experimental resuits for this model, inciuding

both the preliminary and reai-data test cases.

3.2.4 Time-extrapolation

Time-extrapolation is another application for which we tested the Tiiin-plate

spiine model on the [0.11 index set. By definition in the previous section on

terminology, extrapolation is just to get something based on what we have, at

some future point in time. And this is what attracts us most: prediction. The

main idea under this model is to obtain, from certain groups of data, some trend

information which helps us to know what xviii happen next (prediction). Applying

this to our scoliosis application, the use would be quite interesting: we rnight help

the doctor to do some prediction of the form of the spine at some later time point.

This time-extrapolation model is not much different from the time-interpolation

model since they share the same [0,1] index model. We have the time index list

and coordinates list as input, and get the coefficient vectors c and d. Then each

time we only need to input a value of t which represents the time point at which

we want get the extrapolated figure. The only difference here is that under the

time-extrapolation model, this input t is greater than 1. For testing purposes,

there are two options available for the specification of the time index list. Que is

simply using the original value of t xvhich is great than 1 as input, and get the

coordinates of the point at the extrapolated state. The other one is to compress

ail the values down within the [0,1] interval:

tj0 Z — 0,

where, tjnew is the “compressed” value of t for extrapolation, tjotd is the original

value of t for the current model7, and ti tpo1d is the value of t that is greater

7Since for this method, extrapolation will use ah the available data, therefore, the time index

Hst is fixed for each test case.
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than 1, which represents the target tirne point. This is the method we used.

Sirnilar to the time-interpolation model, there are also two ways available to get

the extrapolated resuit, either based on ail the given data or only the last three

data points. We chose the former one for reasons similar to those given above the

time-interpolation model.

Later, in Chapter 6, we will show the experirnental resuits of this model in

cluding both the preliminary and real-data test cases.

3.3 Thecasel=Rd

Our original motivation for the use of the Thin-plate spline model based on the

Rd index vas to do some prediction of the internai spine information, given some

marker points around the external patient body and the full point-bv-point orig

inal patient body. But the real application is much more cornplicated tha.n the

simple simulated test model, and there are serious problems with the real data8.

We have, however, got sorne conditional good results.

3.3.1 Mathematical outiine

Interpolation

Thin-plate spline model for interpolation can be stated as a mllltivariate interpo

lation problem [19]: given a number9 N of corresponding marker points p and

q, i = Ï, .. .N in two images of dimension cl, find a continuous transformation

u : R’ R’ within a suitahie Hilbert space H of admissible functions, which

1) minimizes a given fiinctional J : H —+ R and 2) fulfihis the interpolation

conditions

q u(p),i = 1,...,N, (3.12)

8We will discuss the problems with the real test data later on, in Chapter 6.
9To avoid a conffict with the notation n we used for the [0,1] index model, which represents

the number of marker points, here we tise N for the number of inarker points.
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whule minimizing the functional which represents the bending energy of a thin

plate separately for each component k, k 1, ..., d

J(u) =J(nk). (3.13)

Here, the single functional is

= i+.=m
iL.ad! Ldtax..a

(3.14)

The solution of minimizing the functional can be written as [19]

u(x) a(x) +wU(x,p), (3.15)

and this is tire function used for prediction. It cari also be expressed in vector

forrn as

[ux,ny,uzl = E &(x),» .j(x) ] +[ U(x,pi),... ,U(x,pN)

0Afr, UfJy apj Wj%, WNz

(3.16)

The set of functions 4’, span the space 11m1 (Rd) of ail the polnornials on R’ up

to order ‘m — 1, which is the nullspace of the functional in (3.14) [19] with values:

1(x) = 1, (x) x, 3(x) = y and 4(x) z in the case m = 2. The dimension

of the space is M = and M must be not greater than N. This is because

later on, to get the solution to the prediction function, we need to have the QR

decomposition of the P matrix which is of dimension N x M, so a larger value of

M does not work here. The basis functions U(x,p) depend on (1) the dimension

of the domain, (2) the order in of the derivatives in the functionals, and (3) the

Hilbert space H of admissible functions [19, 21]. It cari be expressed as follows

[19]:

— f m,’Jx — p2m_dtflIX
— p, 2m — cl even positive integer

Uiz,I)j — 2m—d . 3.17
Om,dX — , otherwise.

Tire constants a = (ai, ..., aj,j)T and w = (‘wy, ..., wN)T corresponding tire specific

colurnn in (3.16) satisfy the following system of linear equations:
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Kw+Pa = y

pT
= (3.18)

in which
U(p11p1) U(p1,p9) U(p,p)

(‘2’1) t1(P2,P2) U(p2,pT)

U(pN,pi) U(pN,p2) U(pN,pN)

and
&(p1) Ç2(Pi) ÇM(Pi)

]J= &(P2) 2(P2) çb1i(p2)

bl(pN) 2(PN) M(PN)

Now equation (3.18) can be transforrned into matrix form as:

-[‘iN qixgiyqi

‘21’22’-2N
><

W2cW2yW2z
+

21P22P2M
>< 2x2q2z = qixq2yq2z

AN1AN2 1NJ’ï WNxWNyiVN: PN1Pjv PNJ1I aAiaMaM qNxqNyqNz

T
WJiW1yWlz

Pii W2xW9yW2z
= o. (3.19)

PNlPj’’2 “PNAI WN1WNyWNz

Let

P=(Qi:Q2)( )
be the QR decomposition of P. The solution finally is [231

w = Q2(QKQ2)’Qv.

Ra Qf(v — Kw). (3.20)

Approximation

When we want to ta.ke into account landmark loca.lization errors, we just extend

the basic interpolation approach hy weakening the interpolation condition. This

can be achieved by introducing a quadratic approximation term in the functional
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(3.13) as [19, 23]:

1 q -u(p)
+ ÀJ(u). (3.21)

The first term of the functional in (3.21), which is called the data term, measures

the sum of the quadratic Euclidean distances between the deformed marker points

p and the given marker points q. Each distance is weighted by the variances

u? representing landmark localization errors. The second term in (3.21) measures

the smoothlless of the resuitillg transformation. The minimizatioll of the func

tional yields a transformation u which (1) approximates the distance between the

marker point set and (2) is sufficiently smooth. The relative weight between the

approximation behavior and the srnoothness of the transformation is determined

by the regularization parameter ,\ > O. If \ is small, we obtain a solution with

good adaptation to the local structure of the deformations and if ,\ is large, we

obtain a very smooth transformation with littie adaption to the cleformations.

There are two limiting cases: for — O we obtain the original i;terpolating Thin

plate spiine transformation, and for \ — 30 we have a global polynomial of order

up to ‘rn — 1, which has no bending energy at ail [19].

The computationai scheme to compute the coefficients of the transformation

u is:

(K+NW’)w+Pa = u

PTw 0 (3.22)

where
O”

I4’
. I . (3.23)

So now if we use K to represent K + iVV’, then we get

U(p1,p2) U(pl,pN)
U(p9,p1) ... U(p2.p1)

U(pN,pl) U(pN,p2)
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We get:

K11A12 1N wwYwZ P11P12 qixqiyqi:

• ‘( +
P21P22 • Ppj

x
a91a99a2- = q2xq2yq2:

AN1KN2 KNN WNxWNyWN PNYPN2 • aMa1IaM qNxqNyqNz

T

P21P22••
0. (3.24)

PN1PN2 WNxWNyWNz

Let

P(Q1 :Q2)( )
5e the QR decomposition of P. The solution finally is [23]

w Q2(QKQ2)’Qv,

Ra = Q(v - kw). (3.25)

3.3.2 Anisotropic marker points

The approximation scherne descrihed in the previous section uses scalar weights

to represent marker point loca.lization errors [19]. This, however, implies isotropic

localization errors and is only a coarse error characterization. Generally, the errors

are different in different directions and thus are anisotropic. A further extension

of the approach is ohtained by replacing the scalar weights u with matrices

representing anisotropic marker point Iocalization errors [19]. Now the functional

is:

Jo) = 1
— u(q) )T1( — u(q)) + ÀJ(u). (3.26)

But the computational scheme to compute the coefficients of the transformation

u is the same as before:

(K+N1\W’)w+Pa = u

PTw = 0; (3.27)
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the only change here is concerning the W’ matrix which becomes:

‘‘= I .. I. (3.28)

N)

Note’° that the Zj represent the localization errors of two corresponding marker

points. A typical Z1 in (3.26) will be a 3 x 3 symmetric, positive-definite matrix

with real eigenvalues and This corresponds to using a norm that

has a unit sphere in the shape of an ellipsoid. The principal axes of this ellipsoid

are n’ n2 and n3, the eigenvectors of ‘. The half-length of the ellipsoid in the

direction n is u, j = 1,2,3.

A large value of u means that the error in this direction is unimportant. $o

if it is only the error in the direction w that is important, we would choose a

pancake-shaped ellipsoid with w as the normal to the surface of the pancake.

$imilarly, if it is the error in the directions u and w that are important, we would

choose a long thin ellipsoid with major axis equal to u x w.

The matrix Z’ lias an orthonormal basis of eigenvectors &, n2 and n3.

O0

= [n’ n2 n3]. O O . [n’ n2n3 ÏT

OO

where n 1, j = 1,2,3.

Since after introdllction of the matrix j, the value of errors on each direction

changed according to different values in the matrix, we must make a minor

modification on the overall data structure. That is, the dimension of w is dN x 1,

cz is UM x 1, and q is dN x 1. Now the modified version is:

qiz

[g]. : :

WNx aMs Nx

WNy qNy

WNz aMz Nz

‘°The details on ellipsoidal norms given here are new.



CHAPTER 3. SMOOTHING SPLINE MODELS 34

and
w’x

‘w’2

w1z
[p]T

=0, (3.29)

WNx

WN2

WNZ

where k = (K + NÀW’), i.e,

N.\E1, N)I9 NÀZI3 1(12 0 0 ‘fiN O O
NÀ1 N,\Z9 NM3 O K12 O O K, O
]V)E’ AT) NM3 O O K12 O O KYN

K21 O O NÀ1 N?2 N?3 K2N O O
O K21 O N1 N,\Z9 NÀ3 O KSAr O

K O O 1(2 NZ1 N)9 N,\Y3 O O K2N

KN1 O O KN2 O O N,\ NÀZ NÀ
O K O O K O NÀZ N,\EC N,\
O O K O O KN2 N2 N,\ZÇ NÀ

and

11 (Pi) O O ç52(p1) O O ,5ii(î) O O
O i(p1) O O ç52(p1) O ... O ii(i) O
o o q,(p1) O O 5(p1) O O &ii(Pi)

1(P2) O O 12(p9) O O q5,,j(p9) O O
O ç5,(p9) O O çb2(p2) O O k’’(p) O
o o i(P2) O O ç(p2) O tIJ(P2)

(pfl) O O ç52(p) O O j,i(p) O O
O i(p) O O 2(p) O ... O çji(p) O
O O q,(p) O O (p) O O f/iAi(p)

Here, the are the components of j, 1 <in, n < 3. Let

P=(Q, :Q2)( )
be the QR decomposition of P. The solution finally is [191

w = Q2(QkQ2)’Qv,

Ra = Q(v — kw). (3.30)

In the implementation, it was stiil possible for us to keep the same data struc

turc for this anisotropic marker points case and this will be a memory-saving
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technique. We cari store the error direction information in an independent matrix

called LW’
Z,, Z12 Z,3

= Z2, 22 Z23
Z3, Z32 Z33

then what we ueed to do is some more additious based ou what we get for the

two previous models (interpolation and approximation) as:

Zanisotropic = (Z,, x x + Z,2 X + Z,3 x z) + ‘otd;

Yanisotropic = (Z21 x x + Z22 x y + Z23 x z) + yotd;

zanisotropic (Z3, x x + Z32 x y + Z33 X z) + z0tu.

where X01d, Yotd and z0td represent the coordinates before change, that is used

for both the interpolation and approximation case, and 1anjsotropjc, Yanisotropic and

zanisotropic represent the transformed anisotropic values of the coordinates.

3.4 Comparison between [0,1] index model and

R’ index model

Que of the goals of this thesis was to show the link between the Thin-plate spline

models based on [0,1] index and R’ index”. Even though they are two completely

different spline models, after the permutation of variables donc in Section 3.2.2

and the mathematical development in Section 3.2 and 3.3, we can sec that they

really share something in common, which is quite useful in our application.

3.4.1 Similarities

Both the [0,1] index model and the R’ model can act as prediction functions. The

objective function of the [0,1] index model cari be written as

n d 1

- f(t))TZ’(y - f(t)) + À f (f’(t))2dt, (3.31)
i=1 k=1 O

‘1$howing the similarity between the two models is new.
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where

y — f(t) = [Yii — f1(t), Y2i — f2(t), 3j — f3(t)]T

Then the spiine model based on [0,1] index model may now be easily compared

with the R° model which is, for k 1, ..., d

Uk(X) = + wkU(x,p), (3.32)

by minimizing the functional

— u(pj))T(qj
— li(pj)) + . i(’U), (3.33)

where

d ni! f 8it 2jm(i)
= L X

jRd aXr...aXd

Comparing (3.31) alld (3.33), the methods have very similar structure.

It is easy to verify that, after permutation of variables, the (nd x nid) matrix

T for the [0,1] index model has exactly the same form as each (n x ni) matrix Tk,

with each element (t) replaced by ,(t)
. I(dxd), where I is the identity matrix.

$imilarly, the (nd x nd) matrix $ has exactly the same form as each (n x n)

matrix $k, with each element R’(t,t) replaced by R’(t,t) Analogous

statements apply to the matrices involved in the equations to be solved the R”

model [19], and they may be solved using the QR approach.

3.4.2 Differences

Since the [0,1] index model and the Rd index model are two different models, some

differences are obvions: for example, the different definition of the coefficient vec

tors for (3.31) and (3.33). But here, what interests 115 most is the relation between

different body points in the model. For the [0,1] index model, the deformation

of each point is only related to its own position at different time points: there

is no interactive relation between points. For the R’ index model, the deforma

tion is defined by the relation between body points and the marker points. The

deformed position of a certain body point is decided by the positions of ah the
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marker points and the weighting factor of the distance of this body point from ail

the marker points. This expla.ins why the coefficient vector generaiization test (in

Section 6.3) can work with the Rd index model, while for the [0,1] index model,

it does not.



Chapter 4

Models for simulation of

deformation

In the previous chapters. we discussed three clifferent models for deformation;

now, based on these models, we extend a littie to a rnoclel called “Affine-affine

matching”, which xviii be describeci in Section 4.1. Then, in Section 4.2, we xviii

give sorne general discussion concerning ail the prediction models’. The method of

affine-affine matching was not, however, implemented in our prototype interface.

4.1 Affine-affine matching

In Chapter 3, we discussed the Thin-plate models based on both the [0,1] index and

the Rci index, to do time-interpolation or time-extrapolation, and deformation,

respectively. But in both of the two cases, we are xvorking with individuai 3-

dimensional points, which is quite lirnited in the sense of deformation: we do not

inciude, for example, anv information about the plane in xvhich the deformed point

should be. Plus, consider the size of the difference between a given point y- on the

boundary surface and its predicted values f(t) (Section 3.2, [0,1] index), or the

size of the difference between the desired position q of a point on the boundary

surface and the transformed position u(p) of the initial position p (Section 3.3,

‘The material in this chapter is new.

3$
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Rd index). In both cases, we may wish to relax the requirement that closeness

be measured using the ordinary Euclidean metric. For example, we may want

a one-dimensional set (pa.rt of a une in R3) mi the object surface to be close to

another given olle-dimensional set, or, a two-dimensional set (part of a plane in

R3) on the object surface to be close to another given two-dimensional set.

We describe the matching doue by the use of criteria which we will refer to as

“affine-affine matching”. An m-dimensional affile set in R3 is specified by choosing

m + 1 affinely independent points in R3. It is the cases rn = 0, 1 and 2 that are of

primary interest: point-point matching (m = 0), une-une matching (ni = 1), and

plane-plane matching (ni = 2). For example, three affinely independent points

X1, X2 and x3 e R3 define a (locally) planar section of the object surface; then,

the middle point x0 01x1 + 02x2 + 03x3, (0 + 02 + 03 1,0 < 0, 02, 03) is to

be compared with another point Yo on a surface having specified outer normal

n. Suppose that error in the direction n is much more significant than errors in

the other two orthogonal directions. In this case, we may use a metric that lias

a pancake-shaped ellipsoidal unit sphere with its flat side orthogona.l to n, and

compare the three points x1, x2 and X3 with three suitably chosen points in the

plane nT(y
—

y0) O (see Fig. 4.1).

(x2 — x1) x (x3 — x1)

X31’

X1

.
X2

n

Figure 4.1: Plane-plane matching
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This idea is quite similar (a slight generalization) to the idea of the anisotropic

error measurement of the Thin-plate spiine based on R’ model introduced by [19]

and discussed above in Section 3.3.2. Specification of the error unit sphere is

technically straightforward. A typical ‘ will be a 3 x 3 symmetric, positive

definite matrix with real the eigenvalues 4-2, and
-,-. This corresponds

to using a norm that has a unit sphere in the shape of an ellipsoid. The principal

axes of this ellipsoid are n’, n2 and n3, eigenvectors of Z’. The half-length

of the ellipsoid in the direction n3 is uj, j = 1, 2, 3. Thus, for the fiat ellipsoid

described above, we choose n’ equal to the given n and complete the orthonormal

basis with two vectors in the plane nT(y
— Yo) = 0; then, u1 is chosen to be small

relative to g2 and u3. The matrix is obtained as

[n’n2n3] . O O . [nmn2n3]T

00

where H n 1, j 1,2,3.

Similarly, in the case of une-hue matching (in = 1), if errors in the directions

y and w are important, where y I w, but errors along the hue defined by u x w

are not, then we choose u, w and u x w as eigenvectors, with the eigenvalues

correspondillg to u x w chosen to be large relative to the other two.

This “affine-affine matching” model could be quite useful in practice. By

defining the three error directions, it well defines the shape of the deformation,

while keeping the overall figure of the object unchanged. This would be especially

helpful in our special medical application, because we model our deformation

based on the pictures we took for the patient, but the postures of the patient may

bring errors inside the deformation, especiahly on the plane of the skin, which

corresponds to skin slippage. By defining the special direction for the error, we

can reduce this kind of error as much as we cari.

4.2 Other prediction models

1. Prediction on time index set



CHAPTER 4. MODELS FOR SIMULATION 0F DEFORMATION 41

The prediction model based on time index set [0,1] was discussed in Section

3.2. There are two different kinds of prediction in time: time-interpolation

has the time point inside the time interval; time-extrapolation is the time

point outside of the time intervai. This model gives either an interpolation

or an approximation resuit, depending on whether it tries to match the exact

values at a certain time point. But in the case of Rd values, the model cari

oniy give us approximate values, as we discussed in Section 3.2: the case

when the smoothing parameter À = O does not work under this situation.

And the resuit of the how good the approximation is stili depends on the

value of À.

With both time-interpolation and time-extrapolation, we may trace ail the

progress of the deformation, given the status of the object at (at least) three

time points, and the time index list.

2. Prediction on Rd index set

Prediction based on Rd index set was our original motivation for this project.

We want to get some prediction tool for onr medical application prediction

of the deformation due to scoliosis. The theoretical illustration part of this

model xvas given in Section 3.3. It can have two different forms: interpolation

and approximation. The choice largely depends on our needs, whether we

want ollr deformed figure to exactly fit ail the given deformed marker points,

or whether we want it just to approximate those given marker points, while

keeping a relatively smoother shape.

3. Combination of the two models

As we mentioned, the more related information involved, the better the

deformation resuit will be. So here is another deformation model, a combi

nation of the two previous models. Since with the prediction on time index

set we cari get some future figure of the model, and with the prediction on

Rd index set, we can get the internai figure froin the externai ones, then

what we can do is (sec Fig. 4.2): first, get the external data of the object at

a future time point t11 using [0,1] index model (the flrst row in Fig. 4.2);
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choose the external marker points in the usual way; third, based on these

generated external marker points, we can get the internai figure with the

Rd index model (the second row in fig. 4.2, represented by the full arrows).

$o with the combination of the two models, we can get the full figure (both

internal and the external) of the object at any time point (the two models

inside the ellipse in Fig. 4.2).

The most attractive feature of this is concerning our scoliosis application:

since in our special application, external data is relatively ea.sy to get (5e-

cause there is no harmful effect on the patient), so we cari get a list of the

external data vith quite short time intervals (just to have as many data as

possible); then we cari work out ail the internal data with these external

data with the prediction model on R’ index set. Nowr we have a list of the

full figure of the patient, anci we can use our prediction model on time index

set to get the full figure at any future time point.



CHAPTER 4. MODELS FOR SIMULATION 0F DEFORMATION 43

I
figure 4.2: Illustration of the combination of the two models; the first row rep

resents the external patient trunk, and the second row represents the internai

patient spines. Models linked with the open arrows cari be realized by the [0,1]

index model (either by time-interpolation or time-extrapolation), and those linked

with full arrows are realized by the Rd index model (either by interpolation or

approximation). The two modeis inside the ellipse are the predicted resuits by the

models. Other combinations of methods are possible if partial data (e.g. internai

X-ray data at infrequent time points) is availabie.

EXTERNAL TIENT TRUNK

INTERNAL PATIENT SPINE

PREDICTION

RIrÀLIZEI) 1W 771E 10,1/ INDEX IU)DLI

RlrIL1ZEl) BY 171E R’IIMDI)EL



Chapter 5

System interface

Part of the purp ose of the project is to obtain a software implementation of spiine

interpolation and extrapolation model on [0, 1] index [24] as well as the Thin-plate

spiine prediction model on R’ index [19]. The latter method could be enhanced

by a marker-point-specification method which we eau “affine-affine” matching’.

The goal of the software is to see whether the above two methods can be used

to provide a convenient visualization tool in the context of deformation due to

idiopathic scoliosis. The same methods couid theoreticaiiy be used for predictio’n

of internai deformation, given data on external deformation, but so far we are

stili constrained by the problem of inaccurate data. We have, however, obtained

some conditional good initial resuits, which vi1l be presented in Chapter 6. In

this chapter we describe the system interface.

5.1 The data

We have three test cases namely: Test case A, B, and C, corresponding to the

three patients available. Each Test case comprises n Internai/External models

(“JE models”), where “Internai” refers to the spine and rib-cage and “External”

‘These implementations were done from scratch, but they are not new in the sense that

previous implementations exist [19, 24]. Affine-affine matching is a slight (but useful) general

ization of the anisotropic error criteria of [19]. As already mentioned, this idea vas not actually

implemented.

44
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refers to the external trunk. The n models represent views of the same patient at

different time points t, i = 1,. . . , n. Each such model is made up ofapproximately

14,000 data points in R3 including both the internai and externai data. Each

patient has n + 1 independent files with ail the availabie data.

For the Rd index model, besides the coordinates of ail the internal and external

points, there is aiso other information:

d the dimension of the object; for the scoliosis case, cl = 3, but our modei wiii

also work for the case of a 2D plane, for which cl = 2;

m the order of largest derivative in the Rd case; we tried both the case of m = 2

as in [19] and the case of n-i 3;

N the number of externai marker points;

totatpoints the total number of external and internal points of the current modei.

For the [0,1] index model, each patient has only one file: it contains the coor

dinates of all the points, inciuding both the external and the internai, at ail time

points. To be more consistent with our application in scoliosis, we ordered the

time-point data based on time. For exampie, for the first test case, patient2ll695Z,

the order of data inside the flue is: Nov98, May99, Nov99 and MayOO.

5.2 The operations

Depending on the modei, the main operations can be separated as:

For the [0,1] index model:

1. Time-interpoÏation

This operation corresponds to the time-interpolation ofthe [0,1] index model

described in Section 3.2. Given a iist of time points within the intervai [0,1],

and the coordinates of ail the points in R3 of each modei at every time point,

we can get the full point-by-point interpolation over the intervai [0,1]. The

input value of t is the target time point, which can be specified easiiy by the

user.
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2. Time-extrapotation

This operation is quite similar to the operation in item 1, since they share

the same [0,1] index model. But here the difference is that instead of input

of a value of t between O and 1, we need a t bigger than 1 to represent the

time point for which we want to predict.

For R’ index model:

1. Atignment

The alignment2 mentioned here is ollly a simple method. It is a prerequisite

operation for the deformation operation (item 2). It permits the user to

apply a rigid motion (rotatioll pius translation) to any one of the n JE

models, viewed on top of one of the other models in a two-color overlay, and

transformed in the same coordinate system.

2. Deforrnation

This is the core operation of the Thin-plate spline model based on the R°

index. Given two groups of marker points and a complete figure in terms

of coordinates of points, it permits us to get the deformed figure. To make

sure the final result is comparable with the giveil data, we require item 1 to

be its prerequisite operation.

5.3 The interface

The form of the interface is shown in Fig. 5.1.

There are three willdows, each with associated buttons and/or sliders: TopLeft

(Fig 5.2(a)), TopRight (fig 5.2(5)), and Bottom (Fig 5.3).

1. TopLeft acts as a illitialization window. It sets the initial figure for the

deformation, which will be displayed in the TopRight window, and it permits

2The general problem of calibration in this context is likely to be very difficuit: the patient

may have grown, gained weight, and/or suffered further scoliotic deformation; marker points

may have been placed at slightly clifferent positions, cameras may have changed or moved, and

50 on. These problems are beyond the scope of this thesis.
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Figure 5.1: Interface which contains 3 sub-windows, each with associated buttons

and/or siiders.
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specification ofthe patientlD that will be the target of the time-interpolation

and time-extrapolation. The last will be displayed in the Bottom window.

It lias 2 buttons as follows:

Open Display of a file of form idtimepoint.dat in the TopLeft window, by

means of a pop-up menu giving access to such files;

Save Save the data displayed in the TopLeft window after modification.

2. TopRight is the window for the display of the deformatioll. It has the same

basic buttons as the TopLeft window, plus the fiinctional buttons:

Overtay Overlay tlie figure in the TopLeft to the TopRight window;

Atignment Transform the overlayed figure into the same coordinate system

as the final figure which is opened in this window;

Deform Deform the registered figure in the willdow.

3. Bottom is the window for time-interpolation and time-extrapolation. It lias

a slider across the bottom to permit display of interpolated values. It also

has the buttons:

Time-interpotation Get the interpolation resuit for the patient that lias

been chosen in the TopLeft window: the default value of t is set to be

0.5;

Time-extrapotation Get the extrapolation result for the patient that has

been chosen in the TopRight window: the defallit value of t is set to be

1.3.

The follr operations described above are available with this interface, in the fol

lowing way:

1. Registration is implemented by the Atignment button in the TopRight win

dow. first the user may open a file, ilsing Open, to define the initial figure

and display it in the TopLeft window. When the user opens a different

file in the TopRight window, lie may also use the Overtay buttoil in the
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TopRight window to automatically load the figure from the TopLeft into the

TopRight window. Thus, two different figures xviii be shown in the same

window (TopRight) in different colors. By clicking the Atignment button,

the two figures in the TopRight xviii be automatically aligned.

2. Deformation is implemented by the Deform button in the TopRight window.

Once the user has chosen the original marker points, the deformed marker

points, and the start figure that lie wants to deform, then clicking the button

Deforrn wiil cause the Thin-plate spiine model based on Rd index model to

be invoked, and the deformed figure xviii show up the TopRight window.

At this time, if the user does not click Time-interpotate then the Bottom

window remains black.

3. Time-interpotation is donc by the Time-interpotate button in the Bottom

window. Before clicking this button, the user must choose an initial figure,

which is shown in the TopLeft window, and a target figure, whicli is shoxvn

in the TopRight windoxv. Then, once the Time-interpotate button is clicked,

the user can viexv the time-interpoiated figures by means of the slider at

the bottom of the Bottorn xvindow. (Once the initial figure is chosen by the

user, au the information concerning this particuiar interpoiated case is fixed

inciuding the patientlD, the number of time points, etc..)

4. Time-extrapotation is impiemented by the Time-extrapotate button in the

Bottorn window. This is quite similar to Tim e-interpolation. The difference

here is that this time, the user needs to seiect oniy one state of the patient

as the end state (corresponds to the time point t) of a iist of states, based

on which the time-extrapolation wiii work.
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(a) (b)

figure 5.2: Interface— (a) is the TopLeft willdow which contaills the Open alld

Save buttons, alld (b) is the TopRight window which contains Open, Overtay,

Atignment, Defo’rm and Save buttons.

figure 5.3: Interface the Bottorn window which contains Tirne-Interpotation,

Time-Extrapotation buttons, and a siider.



Chapter 6

Experimerital Resuits

In this chapter we will show the experirnental resuits we got with the models

described in previous chapters. The experimental resuits consist of two parts.

The first one is a preliminary test, namely, the resuit we got with some simple

simulated test cases for our rnodels. We have two main purposes for this: to

test how well the model works in an ideal situation and to obtain a reference

for comparison with the quality of resuits for the real data. The second part

involves the real data. The real data cornes from Ste-Justine Hospital. The

chapter is organized as follows: we will devote one special section (Section 6.1) to

a description of the data-related topics. Then we will give the resuits for the [0,1]

index model in Section 6.2 and those for the Rd index model in Section 6.3.

6.1 Test case analysis

6.1.1 Preliminary test case

For the prelirninary test cases, usually we choose simple models simulating our

real-data cases.

For the [0,1] index rnodel, we chose four co-centric cylinders with radius 1, 2,

3 and 4 respectively to simulate the change iII the figure of hurnan body as time

passes (see Fig. 6.1).

We choose a certain value of t which is between O and 1 to sirnulate the time
51
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Figure 6.1: Preliminary test model for [0,1] index model four co-centric cylin

ders representing the four models at different time points with radius 1, 2, 3 and

4 respectively; (a) is the topview and (b) is the sideview.

interpolation case, and a t which is greater than 1 to simulate time-extrapoiation.

The advantage of this simulated test model is that we can easily figure out where

a certain time-interpoiated or time-extrapolated cylinder layer should be by com

paring the values with ail the given time points.

for the R’ model (c/ 3), we use a cylinder to simulate the human trunk, and

one internai vertical line which is iocated quite close to the side of the cylinder

to simulate the internai spine (see fig. 6.2). Since the ultimate goal of the Rd

ta) (b) (c)

Figure 6.2: Test model for the 3-dimensional object with in 2 (where m was

defined on p. 29) N 12 for Rd index model; (a) is the straight sideview, (b) is

the topview and (c) is the sideview at a slight angle.

model is to get the internai spine deformation information provided the external
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body deformation, we cari deforrn a certain part of the cylinder as scoliosis does

and sec what will happen with the vertical internai une which is supposed to be

the spine.

6.1.2 Real-data test case

In contrast to the preliminary test case, which we defined by ourselves, we do not

have so many choices in the case of the reai data, since ail the data cornes frorn

Ste-Justine Hospitai, Montreal. Later we wiil list ail the contraintes and probiems

of these real data.

1. Information contained in the test data

Totally we got 48 test cases (the number of patients) and several groups

of data at different time points for each patient. Fortunateiy we got very

detailed medical information concerning the physical condition of each pa

tient, specified by 126 parameters. This helped us in the selection of test

cases. The parameters include patient height, growth velocity, ever braced

or not, primary curve type, Cobb angle for major curve, etc... Arnong ail

these pararneters, 15 of them are quite related to our project including the

coordinates of ail the points that forrn the patient trunk.

2. Criteria for test-case selection

Not ail the 48 test cases are suitable for our application. After consultation

with Dr. Hubert Labeile who is an expert in this field, we got sorne criteria

for our test-case selections:

ta) mcobbttl — Cobb angle for major curve in T/TL zone [3] from clinical

chart (degrees, + to right).

Its absolute value should 5e greater or equal to 40, and the change in

values between different time points should be greater than 10. This is

to make sure that the change in form of the patient figure is big enough

for our model to simulate.
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(b) mcobbt — Cobb angle for major curve in L zone [3] from clinical chart

(degrees, + to right).

Its absolute value should 5e greater or equal to 40, and the change in

values between different time points should be greater than 10. This is

to make sure that the change in form of the patient figure is big enough

for our model to simulate.

(c) mc’urvetype — Primary curve type, 1-8 (LuT, RuT, LT, RT, LTL, RTL,

LL, RL) [3], 0 if N/A, from chart.

Here the types of interest to us are either RT or RTL;

(d) mctincobb
— Cobb angle of primary curve, from chart (degrees, + to

right).

Its absolute Cobb angle should be greater or equal to 40, and the change

in values between different time points should 5e greater than 10. This

is to make sure that the change in form of the patient figure is big

enough for our model to simulate.

(e) t — Time points available.

Both for the [0,1] index model alld the Rd index model, we hope to have

as many time points as possible, especially for the [0,1] index model.

$ince the number of time poillts n must 5e greater than the index in of

the highest derivative, for the possible test case, we must have at least

3 times points available, because we stiil want to have one in-between

for comparison purposes.

Based on all these conditions, we finally got 3 test cases from ail the 48

which have the same type of scoliosis, and a simiiar degree of change in the

figure. These offer us the opportunity to do the test of “coefficient vector

generalization” of or model’. For the first test case, we got data for 4 time

points, but only 3 for the other 2 test cases. The information is listed in the

following tables:

‘This will be discussed later in Section 6.3.2.
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Table 6.1: Physical information available fbr each patient
PatientlD S Surgery mcobbttl mcobbl mctrvetype inc1incoi3b]

ti t2 t3 t4 tl t2 t3 t4 tl t2 t3 t4 J
patient 1 F 16 F 43 56 56 62 -34 -34 -38 -45 4 43 56 56 62
patient2 F 13.5 F 38 44 47 — 38 44 47 — 4 38 44 47 —

patient3 F 13.0 F 32 40 48 -26 0 0 4 32 40 48 —

Table 6.2: Modeling information available for each patient
PatientlD NumberOPoints NumberOfContours NumberOfPoints

ti t2 t3 t4 ti t2 t3 t4 /Contour
patientl 14040 12600 13680 14040 39 35 38 39 360
patient2 14400 14400 14760 40 40 41 — 360
patient3 14040 14400 14040 39 40 39 360

Here, F for the Surgery means tili the time the scans were taken, the patient

did not undergo any surgery; and the Points represellt points in R3.

3. Testing data treatment

(a) Problems with the test case

As we can see from the tables above, there are several problems con

cerning the test cases. The first a.nd quite obvious one is that the

number of points in R3 that form the same patient at different time

points is not the same, which means that there are sorne points that do

not have their corresponding points available at some other time point.

This may cause the method to fail. Second, since the data are produced

at different time points, it is impossible for the patient to keep exactly

the same posture as the previous time and the camera to be exactly in

the same place with the same orientation. So this means it is unlikeiy

that we will have the same coordinate system for the same patient at

different time points. Third, as we mentioned at the very beginning, we

got our external patient trunk data and the internal spine and rib-cage

information separately from Ste-Justine Hospital. Thus, we have the

problem of the alignment of the external arid internal data, i.e, bringing

ail the data into the same coordinate system. fourth, for the R’ model,

we need to have certain number of marker points around the patient’s
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body, which is part of the external model for both the sta.rt figure and

the final deformed figure. The probiems concerning the marker points

are two: finding the correspondence marker points of the original figure

and the final figure and the number of marker points. In the original

data from Calgary, we have a list of marker points, but their number

is far from enough. As we vill discuss in later sections, the number of

marker points is quite important for the final resuit of the model: the

more and the better distributed the marker points, the better the final

resuit.

(b) Cleaning process

The cleaning process is the process that we implemented to solve our

first two problems described above.

For the external data, the process contains two steps: first, by doing a

rigid transformation, we brought the central contours of ail the models

at different time points for the same patient to the same place. To do

this, we used ouï t time point as reference, transforming ail the later

models into its coordinate system. Then, the second step vas to cut off

several contours of certain models to make ail the models have exactly

the same number of points (actually, because the numbers of points of

each contour is the same, we just need to ensure that ail the models

have the same number of contours around the patient trunk).

For the internai data, since the data around the rib cage are not sorted,

it is impossible to process it based on the contour parameter which does

not exist, so, what we could do was to cut the points from both sides

of the rib cage.

(c) Internai and externai data registration

This process is for the third probiem described above. For the internai

and external data registration problem, it is a littie bit complicated. We

wrote a small program to do the internai and external data registration

process. Here the main idea was to use the positions of certain marker
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points as reference, transforming the external to the same coordinate

system as the internai one. For the Rd model, this process is not reaily

necessary, because for the R” model, ail the points (both the internai

and the external) share the same coefficient vectors a and w. Instead

of doing the registration, we stiil can get the coefficiellt matrices based

on the external marker points, and appiy them to the internai data.

The disadvantage of doing this is that when we do the display, the

internai and external are not in the same system which is inconvenient

for viewing. But meanwhiie, we increase the accuracy of the data we

get, since we do not need to do any kind of transformation calculation

on the coordinates of the points.

(d) Marker-point generation

To solve the fourth problem, we wrote another smaii program to gen

erate marker points at certain intervais around the patient trunk. This

heips us soive the probiem of the lack of marker points. But the probiem

of iack of the exact corresponding relationship between marker points

remains, even though we tried to une ll the two models as much as

we couid before we generated the marker points.

6.2 The case T = [0, 1]

6.2.1 Preliminary experimental resuits

Now we are going to present the preliminary experimental resuits for the Thin

plate spiine modeis based on the [0,1] index. This inciudes both the time-interpolation

and time-extrapolation model resilits. Here we used four co-centric cyiinders with

radius 1, 2, 3 and 4 respectively as models for different time points (this test case

is illustrated with no deformation in fig. 6.1).
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Test resuits

The resuits for the Thin-plate spiine model on [0,1] index are quite satisfying both

for the time-interpolation and the time-extrapolation (see Fig. 6.3, 6.4, 6.5 and

the related discussion on validation).

Validation

1. Resuit

for the validation of ouï [0,1] index model, what we did with the preiiminary

test case was this: we ignore the given data at a certain time point tj between

t0 and t which will be the interpolated time point, use our model to get that

data, and compare with the available data which has been ignored. For the

time-extrapolation test, we ignore the data at the last tirne point, and try

to extrapolate from ail the other given data. The parameters we use for the

validation are: totaïdistance is the sum of the errors (the error is the distance

between two corresponding points), totaïpoints is the total number of points

including both the external and the internai data and averagedistance RMS

is the average error (see Fig. 6.6 for time-interpolation and fig. 6.7 for

Figure 6.3: Preiiminary test resuits for [0,1] index model Time-interpoiation,

four co-centric cylinders representing the given data, with a turquoise one repre

senting the interpolated modei at t 0.5 and ) 1; (a) is the topview and (b) is

the sideview.
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(a) (b)

figure 6.4: Preliminary test resuits for [0,1] index model Time-interpolation,

four co-centric cylinders representing the given data, with a turquoise one repre

senting the interpolated model at t = 0.2 and ) = Ï; (a) is the topview and (b) is

the sideview.

(a) (b)

Figure 6.5: Prelirninary test resuits for [0,1] index model Time-extrapolation,

four co-centric cvlinders representing the given data, with a turqioise one repre

senting the extrapolated model at t = 1.3 aid ,\ 1; (a) is the topview and (b)

is the sideview.
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time-extrapolation). We define

RMS ii V(Xjcat
— .)2 + (y,

— Yjgiven)2 + (Zicat — Zjgjy)2

here, N is the total number 0f poillts, (Xjcal zj1) represents the coordi

nates of the calculated resuit (either time-interpolated or time-extrapolated)

poiiit and Yige z9) represerits the giveri coordillates of the point

(either time-interpolated or time-extrapolated respectively), with the units

are cm.

2. Allalysis

Time-illterpolatiorl: RMS 0.107 at t = 0.35; at this moment, the radius of

the time-interpolated cyliilder is 2, and the outermost cylinder has a radius

of 4; compared with these, the average distance (RMS) between the two

corresponding points. which is 0.107, is acceptable.

lime-extrapolation: RMS = 0.830 at t = 1.3; at this moment, the radius

of the time-extrapolated cyliilder is 4. Even though compared with the

interpolation case, this resuit is worse, the overali result is stiil reasollable.

Figure 6.6: Validation of the time-interpolation result of the preliminary test

case for [0,1] index model, t 0.35. Analysis result: totatdistance 17.047,

totalpoints = 160, aueragedistanceRMS = 0.107.
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Figure 6.7: Validation of the tirne-extrapolation resuit of the preliminary test

case for [0,1] index model, t = 1.35. Analysis resuit: totaldistance = 132.280,

totalpoints = 160, aeeragedistanceRMS = 0.830.

6.2.2 Real-data test

In this subsection we wilI present the real-data test resuits for the Thin-plate spiine

model based on the [0,1] index including both the time-interpolation and time

extrapolation models2. In ail tests described in this subsection, the smoothing

parameter À is equal to 1.

1. Test case A: patient J

This patient is a 16 year olci girl (year 2000), 160.2cm in height and 54.7kg

in weight. Also, she has been identified as a scohotic patient and has used a

brace before ail the scans were taken. We have four groups of data available

for her. Based on the time intervals, the time index hst of this test case is

[0, 0.35, 0.71, 1]. Ah of her available data is displayed in Fig. 6.8.

We tried 3 different tests with our first real test case. The first two are

concerning time-interpolation, one at t = 0.35 (see Fig. 6.9) and one at t =

0.5 (see Fig. 6.10). Test lis just for validation purposes because we already

have the data available at t = 0.35; we want to know how well our model can

work out on the real data. As we can see from the analysis: RMSexternat S

0.175 based on tue minimum distance around the patient trunk at t = 0.35

2J this section, when we discuss the real test data, we use the term Test case A, Test

case W and Test case to represent the 3 patients. and use Test 1 or Test 2 etc.. to

represent the different tests we did for each patient.
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(c) (d)

Figure 6.8: Available data for Test case A — patient 1, (a) is the figure at the first

time poi;t which is Nov 1998, (5) is the figure at the second tiine point which is

Mav 1999, (c) is the figure at tue third time point which is Nov 1999, and (d) is

the figure at the fourth time point which is May 2000.

ta) (b)
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of rninDistanceexternat 2.051, so the external time-interpolation resuit is

quite good; while for the internai data: RMSjnternat is 0.585 based on the

minimum radius size of the vertebra rninDstanceinternat = 0.143, the error

is big.

Test 2 was just to get some sense of time-interpolation (see Fig. 6.10). Test

3 is concerning the time-extrapolation at t = 1.3. Test case A is the one and

only one available for the time-extrapolation test, because as we mentioned

before, we need at least three time points for either time-interpolation or

the time-extrapolation. We did the same validation for extrapolation on the

real test cases as for the preiiminary test cases: we ignore the group data at

the last time point, get the data with our model, and then compare the two.

The resuit is shown in Fig. 6.11; similar to the time-interpolation resuit,

the externai time-extrapolation is quite good: we have RM$extgrnai = 0.283,

based on the minimum distance around the patient trunk at t = 0.35 —

minDistanceexternaj 2.263. But the internai time-extrapoiated resuit iS

quite bad, we got RMSjnternat 1.229 based on the minimum radius size of

the vertebra minDistanceinternai 0.131.

(a) (b)

Figure 6.9: Time-interpoiation resuit 1 for Test case A for [0,1] index model at

t = 0.35 which is exactly the second scan; ta) is the figure of the external body,

(b) is the figure of the internai rib cage. Analysis resuit: RMSexternat = 0.175,

RMSinternat = 0.585, minDistanceexternat = 2.051, rninDistanceinternai = 0.143.
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ta) (b)

Figure 6.11: Time-extrapolation resut for Test case A for [0,1] index mode! at

t 1.3 which is exactly the fourth scan, (a) is the figure of the external body,

(b) is the figure of the internai rib cage. Analysis resuit: RMSexternat = 0.283,

RMSinternat = 1.229, rninDistanceexternai 2.263, minDistanceinternai 0.131.

Figure 6.10: lime-interpolation resuit 2 for Test case A for [0,1] illdex model at

t = 0.5 which meails 2.5 mollths after the secolld scan (aroulld mid Aug 1999);

(a) is the figure of the external body, (b) is the figure of the illterllal rib cage.
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2. Test case B: patient 2

This patient is a 13 vear old girl (year 2000), 160cm in height and 37.4kg in

weight. She lias been identified as a scoliotic patient and ha.s used a brace

hefore ail the scans were taken. We have three groups of data availa.ble.

Based on the time intervals. the time index list of this test case is [0, 0.35, 1].

Ail of her available data is displayed in Fig. 6.12:

(a) (b) (e)

Figure 6.12: Available data for Test case B patient 2, ta) is the figure at the

first time point, which is Nov 1998, (b) is the figure at the second time point,

which is May 1999, and (e) is the figure at the third tirne point, which is May

2000.

For Test case B, we did two tests; the first was for time-interpolation at

t 0.35 with the validation results (sec Fig. 6.13). The RMSexternaj of

the time-interpolation test is 0.085, based on the minimum distance around

the body cf 1.444 this is a very good time-interpolation. Stiil, the internai

resuit is not good: RMSjntrnai 0.616 a.nd 7ninDistancejnternai = 0.138.

Test 3 is for the time-extrapolation at t = 1.3 (sec fig. 6.14).

3. Test case C: patient 3

This patient is a 13 year old girl (vear 2000), 149cm in height and 49.8kg

in weight. She lias been identifiecl as a scoliotic patient and lias used brace

before ail the scans were taken. We have three groups of data available.

Based on the time intervals, the time index list of this test case is [0, 0.35, 1].



CHAPTER 6. EXPERIMENTAL RESULTS 66

Figure 6.13: Interpolatioll resuit for Test case B for [0,1] index model at t = 0.35

which is exact the second scan, ta) is the figure of the external body, (b)

is the figure of the internai rib cage . Anal sis resuit: R]iSextErflai 0.085,

RMS,1 0.646. minDistanceexjernai 1.111, rninDistanceinternai = 0.13$.

ta) (h)

Figure 6.14: Extrapolation resuit for Test case B for [0,1] index model at t = 1.3,

(a) is the figllre of the external body, (b) is the figure of the internai rib cage.
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Ail of lier available data displayed in Fig. 6.15:

(a) (b) (c)

Figure 6.15: Available data for Test case C patient 3; (a) is the figure at the

first time point, which is May 1999, (b) is tlie figure at the second time point,

which is Nov 1999, alld (e) is the figure at the third time point, which is May

2000.

For Test case C. we did the same thing as for Test case B: the first test is

for the tirne-interpolation at t 0.35 with the validation resuits (see Fig.

6.16). The RIiSexternat of the time-interpolation test is 0.300, based on

the minimum distance around the body minDistanceexternai 1.321. The

RMSinternat 0.770 and the minDistanceinternai = 0.127. The other test is

for the time-extrapolation at t = 1.3 (see fig. 6.17).
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Figure 6.16: Time-interpolation resuit for Test case C for [0,1] index model at

t = 0.35 which is exactly the second scan; ta) is the figure of the external body,

(b) is the figure of the internai rib cage. Analysis resuit: RMSexternaj 0.300,

RM$internat = 0.770, rninDistanceexternai 1.321, minDistanceinternai = 0.127.

ta) (b)

Figure 6.17: Time-extrapolation resuit for Test case C for [0,1] index model at

t 1.3; ta) is the figure of the externai body, (b) is the figure of the internai rib

cage.
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6.2.3 Possible applications for the [0,1] index model

from ail the tests we have doue with our data, the following applications of this

model seem reasonable:

For time-interpolation, what the model can provide us is: given two groups of

data specifying the start and the final status (either direction), then we can get

any in-between status. This can help us to trace the process of the deformation

between two time points. For example, in the medical application, it can help the

doctor to better see how the internai spine changes as time passes, and meanwhile,

this helps reduce the number of X-rays, since we can prolong the time interval

between two scans, and use this model for the in-between information.

For extrapolation, what the model can provide us is: given a list of data at

several time points (at least 2), we can predict the figure at a certain time point

after that. 0f course, the doser the time point to those available ones, the better

the resuit will be. This application is quite interesting: it can help us to predict

what will happen after a certain time period. This is especially useful in the

medical context, since it may help the doctor to choose the most appropriate

treatment for the patient.

6.3 ThecaseT=Rd

6.3.1 Preliminary experimental results

In this section we will present the preliminary experimental resuits of the Thin

plate spiine model that has been implemented for both the ca.ses of interpolation

and approximation. We tried the model with both two-dimensional and three

dimensional objects. For the case of 2D, we use a 14 x 14 plane as the target (see

Fig. 6.1$), and a cylinder of radius 2 with a vertical hue inside for the 3D case

(see Fig. 6.19). Our goal here was to obtain some intuitive understanding of the

behavior of the method.
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figure 6.18: Prelimillary 2D test case for Rd index model 2D plane, N = 12

marker points with white dots representing the original marker points, and green

dots representing the deformed ones.

Figure 6.19: Preliminary 3D test case for Rd index mode! 3D cy!inder, N

12 marker points with white representing the original marker points, and green

representing the deformed ones.
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• Two—dfmensiorral Test (d = 2)

When in = 2 (where in was defined on p. 29) (M = 3), X = 0, a small num

ber of marker-points (N = 5) permits the interpolation of marker points to

work well, but the overail deformation behaves badly: the small quantity

of marker points makes some part of the deformation ont of control, which

leads to unexpected changes in the final figure. But when we test with the

data similar to [19] with N = 12, the whole image looks almost the same as

shown in [19, P. 528]. Introducing values of X which are not equal to

(we used the values 0.001, 0.01 and 0.1) changes the overail method from

interpolation to approximation. Besides getting the same visual results as

in t19] (see Fig. 6.20), we also found out that the larger the value of X the

smoother the lines appear. In particular we tried with X 1 which accord

ing to [19] is a quite large value auJ the grid contains almost straight unes

only. A value of X equal to 500, which causes the w vector to have only zero

values, leads to almost no visible change in the figure, but the quality of

the approximation of marker points decreases slightly (see Fig. 6.20 (f)). In

summary, our implementation appears to reproduce the results given in [191.

When in = 3 (M 6), X = 0, we used the same group of data as for

in = 2, only changing the value of in (see fig. 6.21). The case in = 3 is

not discussed in [19], so we cannot compare results. The interpolation of

marker points presents no problem, but concerning the overail figure, the

deformation causes very bad distortion. Introducing non-zero valiles of X

again makes the overall deformation look more reasonable. $till, when we

increase the value of X from 1 to some large value like 500, the image shows

no obvions change, but this large X makes the smoothing part weigh more

and more, auJ finally the w vector contains zeroes only. As in the case

in = 2, when we increase the nllmber of marker points, the deformation

works better in ail cases. The more uniform the distribution of the marker

points, the smoother is the overali deformation. The method with in = 3
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Figure 6.20: Test resuits for the 2-climensional case with m2 for Rd illdex mode,

ci 2. Two different rnarker point sets (original and deforrned) represented by

green dots and white dots respectively. (a) original 2D plane; (b) interpolation

À = 0; (c) approximation À = 0.01; (cl) approximation À = 0.1; (e) approximation

À 1; (f) approximation À 500.



CHAPTER 6. EXPERIMENTAL RESULTS 73

seems to be more sensitive in this respect than the method with in = 2.

• Three-dimensional Test (cl = 3)

The case in = 2 (M = 4), À = 0, with 12 marker points (see Fig. 6.2) is

the prototype for the test model. Both the interpolation and the overali

deformation work pretty well. The only shortcoming is that the deformed

cylinder is not smooth enough (see Fig. 6.22 for interpolation). When we

increase the value of À, the method changes from interpolation to approx

imation. This is quite visible in the resuits (see Fig. 6.23 — 6.25 ). As for

the overall deformation, the resuit is not so good because the smoothing

factor has made the figure (the external cylinder which corresponds to the

patient body in our application) include only straight unes. This is true in

particular when the value of À becomes quite large, e.g. 100 (sec Fig. 6.25),

in which case the w array has zeroes everywhere.

When in = 3 (M = 10), the minimum number of marker points is N = 10.

We started our test with 11 marker points. When À = 0, the interpolation

of the marker points is quite good, while the overall deformation, on the

contrary, for some cases, shows very large distortions. The spine which is

located inside the cylinder now appears outside of the original cylinder (sec

fig. 6.26). While for some examples, the deformation is quite acceptable,

the badly deformed part comes from the very small number of marker points.

After testing with several groups of data, we found that the quality of the

deformation is largely decided by the location of the marker points. A

well-located set of marker points can maintain a very nice deformation,

although the n’umber of marker points is also very important. We even

tried a test case of 54 marker points distributed around the whole cylinder

(sec Fig. 6.27). But meanwhile we also found another solution for this

problem (uncontrolled deformation) put some marker points, at least one,

inside the cylinder. $uch marker points can help to realize the constraint

on the final transformation; this is especially useful for 115 concerning the
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figure 6.21: Test resuits for the 2-dimensional case with m=3 for Rd index model,

cl 2. Two different marker point sets (original and deformed) represented by

green dots and white dots respectively. (a) original 2D plane; (b) interpolation

0; (c) approximation 0.01; (d) approximation \ = 0.1; (e) approximation

1; (f) approximation ,\ = 500.
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(a) (b) (c)

Figure 6.22: Test resuit for the 3-dimeilsional object with ru = 2, N = 12 and

À = O interpolatioll for Rd index model.

(a) (b) (c)

figure 6.23: Test case for the 3-dimensional object with ru 2, N 12 aid

À 0.01 approximation for Rd index model.

figure 6.24: Test case for the 3-dimeilsional object with ru = 2, N = 12 and

À = 0.1 approximatioll for Rd index model.
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Figure 6.25: Test case for the 3-dimensional object with rn = 2, N 12 and

À = 100 approximation for Rd index model, a deformed cylinder, iu which the

smoothing parameter makes the external cylinder almost straight.

deformation of the spine inside the cylinder. But this solution is ofteu not

reasouable in practice, for example, in our application, it is impossible for us

to put a marker point inside the patieut’s body (but see the remark on trend

data, below). Finally, wheu we change the value of À, the whole resuit goes

from interpolation to approximation, similar to the case of 2D (see Fig. 6.27

(b) aud (c)).

In summary, the method of TPS works quite well iu both cases of d = 2 and

cl = 3 when ra = 2 for both interpolation and approximation. But the number

of marker points and their locations matters a lot. Usually the more the number

of marker points the better the final result, and the better the distribution of the

marker points the better the final result. But we have to point out that when

Figure 6.26: Test case for the 3-dimensioual object with ra = 3, N 11 aud

À O interpolation for Rd index model, deformation shows large distortions.
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more than two marker points lie in one une the whole method will crash. for the

cases when m = 3, the validation of the TPS is largely based on the location and

the number of the marker points. for ni 3, the deformed figure looks better

than in the case when ‘in = 2, in the sense that it is more smooth, because of the

second derivatives in the objective functions.

There appear to be two ways to obtain a well-behaved overail transformation.

The first is to distribute the marker equally points throughout the space of interest.

We did the test with 108 marker points uniformly distributed around the cylinder,

and the deformation behaves very well; even in the case of 54 marker points on

haif of the cylinder only, we still get quite reasonable results. All of this showed

that it is quite possible to obtain a good deformation when m 3. The second

soliltion (in the context of human trunk) is to have marker points located in the

interior of the trunk (in practice, a possible way is to get this interior information

from the X-rays). for purposes of developing a method to predict the spinal

deformation from external data, it appears that we should well-locate the marker

points, and distribilte them uniformly over the patient’s back. We should also try

to obtain some data related to the interior of the trunk, perhaps obtained from

the trend data or time-series data of the spine. finally, we should also make the

number of marker points as large as practically possible.

figure 6.27: Test case for the 3-dimensional object with ‘in = 3, N = 54 for R’ in

dex model, (a) is the interpolation result in which À = 0, (b) is the approximation

result with À = 1 and (c) is approximation with À = 10.
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6.3.2 Real-data test

In this subsection we will present the real-dat.a test resuits of the ihin-plate spiine

model hased on the Rd index including both the interpolation and approximation

models together with the validations for the interpolation test. In this subsection,

in cadi resut display, there are two images: the orange one represents tic initial

figure and the yellow one represents the deformed resuit. These two images shouid

be the same. or as close as possible.

1. Test case A: patient 1

For Test case A, we tried 3 different tests. The first one (Test 1) is inter

polation with 40 rnarker points around tic trunk. We get the RMScxtrnat

0.247 based on the minimum distance around the body minDistanceexteTflat

2.041; and for tic internai spine interpolation resuit: RMSjnterat = 0.695

with minDistanceinternai 0.143 (see fig. 6.28). Again the external inter

polation resuit is pretty good, while the internai one is bad.

figure 6.28: Interpolation test 1 for Test case A for Rd index model from Nov98

to May99, with the orange one representing the given final figure, and the vellow

image the figure as deformed by the model, 40 marker points, À = 0; (a) is tie

figure of the external hody, (b) is tic figure of the internal rib cage. Analysis

resuit: RMSexternai 0.247, RidiSinternat 0.695, minDistanceaxternai 2.041,

minDistanceinternai 0.143.

Another test (Test 2) involved increasing the number of marker points
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around the body to 76 marker points. Here as we expected, the error for both

the internai and external interpolation decreases: RMSexternat = 0.180 based

011 the minimum distance around the body ininDistanceexternat = 2.262;

and for the internai spine interpolation resuit: RM$jnternat = 0.495 with

minDistanceinternat 0.131 (see Fig. 6.29).

Figure 6.29: Interpolation test 2 for Test case A for Rd index model from Nov99 to

IVIayOO, 76 marker points, ta) is the figure of the external body, (b) is the figure of

the internai rib cage. Analysis resuit: RMSexternat 0.180, RM$internat = 0.495,

minDistanceexternat 2.263, ininDistanceinternai = 0.131.

The third test we did involved approximation, with exactly the same group

of test data, only changing the vaine of À from O to 0.1 (see Fig. 6.30).

2. Test case B: patient 2

For Test case B, we worked with 40 marker points on ail the groups of data,

and the performance of the model is relatively stable. Fig. 6.31 is the test re

suit of our first test for interpolation case. Here, RMSexternat = 0.329 based

on rninDistanceexternai = 1.361, a quite good resuit. And RMSinternal =

0.656 based rninDistanceinternai = 0.131.

For the rest of the interpolation test cases, we will not show ail the figures

here, but only the validation results.
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Figure 6.30: Approximation test for Test case A for Rd index model from Nov9$

to May99, 40 marker points, .À 0.1, (a) is the figure of the external body, (b) is

the figure of the internai rib cage.

Figure 6.31: Interpolation test for Test case B for Rd index model from Nov98

to MayOO, 40 marker points, ) = 0, ta) is the figure of the external body, (b)

is the figure of the internai rib cage. Analysis resut: RMSexternai 0.329,

RMSinternat = 0.656, minDistanceexternai 1.361, minDistanceinternai 0.131.
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Table 6.3: Test resuits of Test case B

Parameter May99May00 MayO0-Nov98

ExternalRIVI$ 0.282144 0.193.83
InterllalRMS 0.646784 0.704741

ExternalMinDistance 1.361056 1.24849
InternalMinDistance 0.130843 0.152557

Similarly, the last test we tried

0.1 (see Fig. 6.32).

with this test case was approximation, with

Figure 6.32: Approximation test for Test case B for Rd index model from Nov98

to MayOO, 40 marker points, À 0.1, (a) is the figure of the external body, (b) is

the figure of the internai rib cage.

(a) (b)
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3. Test case C: patient 3

For Test case C, we worked with 40 marker points on ail the groups of

data. fig. 6.33 is the test resuit of our first test for the interpolation

case. Here, RMSexternat is 0.270 based on the minimum distance around

the body rninDistanceexternat 1.263. And RMSinternat = 0.779 based on

minDistanceinternai = 0.127.

(a) (b)

Figure 6.33: Interpolation test for Test case C for Rd index model from May99

to MayOO, 40 marker points, \ = 0; (a) is the figure of the external body, (b)

is the figure of the internai rib cage. Analysis resuit: RMSexternai = 0.270,

RM$internai 0.779, rninDistanceexternai 1.263, rainDistarice internai 0.127.

Finally, the iast test we tried with this test case was approximation, with

= 0.1 (see Fig. 6.34).
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figure 6.34: Approximation test for Test case C for R’ index model from May99

to IVIayOO, 40 marker points, ) = 0.1; ta) is the figure of the external body, (b) is

the figure of the internai rib cage.

4. Test case D: “Special coefficient vector generalization” test

A special test we did for the Thin-plate spline mode! on was a “coefficient

vector generalization” test. In contrast to the [0,1] model, in the R’ mode!,

ail the space points in one mode! share the same two coefficient vectors a and

w. This fact interests us a lot, since ail three test cases are of the same type

of scoliosis and similar degree of change in figure (see Table 6.1), and there

shouid be some similarities amongst these vectors. And if we extend this

idea further, there may be some possibility of characterizing the coefficient

vectors for each kind of deformation.

Based on this motivation, what we tried was to app!y the coefficient vectors

a and w of Test case A (patientl from Nov98 to May99) to the latter two test

cases (Test case 3 and C). The resuits for Test case B patient2 are not bad,

especialiy for the internai resuit (see fig. 6.35 and 6.36). Here RIV[$externaj

0.619 and RMSinternat = 0.489, based on minDistanceexternai 1.361,

rninDistancejnternai = 0.131 respectively for Test 1. And RMSexternai =

0.640 and RMSjnernai = 0.477, based on minDistanceexternai = 1.361,

‘minDistanceinternai = 0.131 respective!y.

Another special test we did for this case was to use the same coefficient vec
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figure 6.35: Test 1 with Test case B for Rd illdex model patiellt 2 from Nov98

to MayOO, 40 marker points with the coefficient matrices of Test case A (patientl

from Nov98 to IVIay99); (a) is the figure of the exterilal body, (b) is the figure of

the internai rib cage. Analysis resuit: RMSexternai 0.619, RIV[Sinternat = 0.489,

minDistanceexternaj = 1.361, minDistanceinternat = 0.131.

(a) (b)

figure 6.36: Test 2 with Test case B for Rd index model patient 2 from May99

to MayOO, 40 marker points with the coefficient matrices of Test case A (patientl

from Nov98 to May99); (a) is the figure of the externai body, (b) is the figure of

the internai rib cage. Analysis resuit: RMSexternat 0.640, RMSinternat 0.477,

minDistanceaxternai 1.361, rninDistanceinternaI 0.131.

(a) (b)
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tors as the previous tests, which are those of patient 1 from Nov98 to MayOO,

for the case of patient2 from MayOO to Nov98. Since the two deformations

are in the opposite time direction, we expected the RIVI$ to have a quite big

value, and this vas confirmed: we got RMSexternat 0.725 based on 1.736,

and RMSinternat 0.482 based on 0.131 (see fig. 6.37).

:

ta)

figure 6.37: Test 3 with Test case B for R’ index model— patient 2 from May99

to MayOO, 40 marker points with the coefficient matrices of patientl from Nov98

to May99, (a) is the figure of the externai body, (b) is the figure of the in

ternai rib cage. Analysis result: RMSexternat 0.725, RMSinternai = 0.482,

rninDistanceexternai 1.361, 7ninDistanceinternai 0.131.

Similar test results (using the coefficient vectors of Test case A) with Test

Case C patient 3 are not that promising for the case of interpolation. The

value of RMS is quite big, RMSexternat 0.649, RMSinternat 0.719 based

on rninDistanceexternai 0.126 and minDistanceinternai = 0.127 respec

tively (sec fig. 6.38). for the approximation case, however, when À = 0.1,

the result is much better, R]’V[Sexternaj 0.270, RlYlSiniernat 0.779 based

on minDistanceaxternai = 1.263 and

mznDstanceinternaI 0.127 respectively (sec Fig.6.39).

Generally speaking, the Thin-piate spiine model on Rd works quite well, especially

for the simple deformation case. for the “coefficient vector generalization” case,
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(a) (b)

Figure 6.38: Test 1 with Test case C for Rd index model patient 3 from

May99 to MayOO, 40 marker points with the coefficient matrices of patienti from

Nov98 to May99; (a) is the figure of the externai body, (b) is the figure of the

internai rib cage. Analysis resuit: RIY[Sexternat 0.649, RMSinternat 0.719,

minDistanceexternat — 1.262, rninDistanceinternai = 0.127.

(a) (b)

figure 6.39: Test 2 with Test case C for Rd index model patient 3 from May99

to MayOO, 40 marker points with the coefficient matrices of patientl from Nov98

to May99, both are in the case of approximation at \ = 0.1; (a) is the figure

of the externai body, (b) is the figure of the internai rib cage. Anaiysis re

suit: RMSexternat 0.270, RMSinternat = 0.779, minDistanceexternai = 1.262,

rninDistanceinternai 0.127.



CHAPTER 6. EXPERIMENTAL RESULTS $7

our tests indicate that the situation is at least promising, since Test case A and

Test case B have quite similar forms.

6.3.3 Possible applications for the R° index model

There are two main possible applications for our R” index model.

The first one, which was our original motivation, is to avoid X-rays as much

as possible. By applying the R’ model, what we can have is with two groups of

marker points and one group of complete figure points containing one of the two

groups of marker points, we can predict the other group of complete figure points.

In this way, we might predict the form of the internai rib cage from the external

figure. Again, in our medical application, the external figure is much easier to get

than the internal, and this can largely reduce the number of X-rays that need to

be taken. But the data accuracy problem may 5e a limitation here.

The second application is classification of different kinds of deformations by

means of the coefficient vectors. This may help a lot with medical research, and

it also reduces the number of X-rays that the patient needs to take.
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Conclusions

This research was devoted to scoliosis predictions, includillg those based on the

external data to get the internai spine information, and those based on a series

of data at different time points to get information at a future point. The main

collciusiolls from this work can be summarized as follows.

Scoliosis, with its high occurrence among teenagers, has become one of those

subjects that interest medical researchers a iot. The iimits of current diagnosis

methods induce us to find some predictioll models, in order to avoid potentially

harmful X-rays. Based on ah the information avaiiable for the patient, we pro

posed two different modeis: Thin-plate spiine based on R° index modei and based

on [0,1] index modei.

For the R’ index model, the main working process can be summarized in

Fig. 7.1: given two groups of marker pomts and a complete poillt-based figure, we

can hope to get the deformed figure inciuding both the internai spine and external

trllnk.

for the [0,1] index model, the main working process can be summarized in

Fig. 7.2: giveil a hist of time points and the compiete point-based figure, we cari

get the figure at any in-between time point (corresponds to time-interpoiation),

and iater-on time points (corresponds to time-extrapoiation).

The vaiidation we did with our experiments, which was illustrated in Chapter

6, shows that for the Rd model: when cl = 2, the method works very well; when

8$
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TmN-PLAIE SPLINE MODEL ON RAd MODEL
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Figure 7J: Illustration of the working process of Thin-plate spiine model on

index set.
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Figure 7.2: Illustration of the working process of Thiil-plate spiine model on [0,1]

index set.



CHAPTER Z. CONCLUSIONS 90

d = 3, for the preÏiminary models, the resuit is stili quite good; but for the real

test data, the deformation resuits for the externai trunk is pretty good, while that

for the internai spine is not that good. But if we look at the figure, w’e can see

part of the RMS cornes from the position of the deforrned model, whiie the shapes

of the figure are quite close actllally. And for the f0,1] index model, the ideai

preliminary test gave us a very good result. But for the real test case, similar

resuits to those of the R’ model show up again: the externai time-interpoiated

and time-extrapolated are both quite good, but the internai resuit shows large

errors. for the time-extrapolation test, since we oniy have one real test case, Test

case A, the resuit is not that convincing. Part of these large errors corne from the

problems intrinsic to the real test data, as we described in early Chapter 6. $ince

we are constrained by the inaccuracy of the data, the final results are rea.sonable.

We used the programming language C++ and OpenGL to implement the

models. And for part of the mathernatical caiculation, we used Matrix Template

Library (MTL).

The modeis described here could be quite useful in medical applications. They

can reduce the frequency of the X-ray taken for the patient, it can help the doctor

to trace the in-between deformation between any two states, plus, it also provides

the function to do prediction at a future time point.

The probiems of data accuracy must be resolved, however, and future work

could focus on this problem. For example, as we described in Chapter 3, the

“Affine-affine matching” model, and in Chapter 4, the combination of the two

models, are promising ideas to explore. Ail of these could increase the accuracy of

the results; also, we cari work on the real data, and improve increase its quality.

The less good deformation resuits of the internai rib-cage may be due to the

absence of rnarkers, but also because the deformation of the boue structure is not

the same as that of the soft tissues of the trunk. Then a possible solution could

be to characterize both types of deformation.
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