
-] A2’I
ç/?t, __,

Université de Montréal

ARM Processor Modeling
at a Cycle Accurate Level in SystemC

Par:
Hongmei Sun

Départrnent d’informatique et de recherche opérationnelle
faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de

Maître ès Sciences (M. Sc.)
en informatique

Avril, 2003

©Hongrnei Sun, 2003

A

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:
ARM Processor Modeling

at a Cycle Accurate Level in SystemC

Présenté Par:
Hongmei Sun

A été évalué par un jury composé des personnes suivantes:

Jean Pierre David
Président-rapporteur

lMostaphaAbou1hamid
Directeur de recherche

François-R Boyer
CôZffiiêcfir

-

Marc Feeley
Membre du jury

Mémoire accepté

Résumé

La technologie de SimulationlMachine virtuelle est aujourd’hui une partie intégrale de

beaucoup de systèmes de calcul. Un simulateur de matériel est un logiciel qui émule les

dispositifs câblés spécifiques permettant l’exécution du logiciel qui est écrit et compilé

pour ces dispositifs sur les systèmes alternatifs. L’ARM est un microprocesseur RISC

16/32-bit embarqué. Il possède un mécanisme de décalage intégré. L’adressage auto-

indexé, les instructions load/store multiple et presque toutes les exécutions d’instructions

conditionnels permettent au processeur ARM de réaliser un bon équilibre de haute

performance, prix et faible consommation électrique, sur une aire de silicium réduite.

L’ARM est largement répandu dans les communications portables, les ordinateurs de

poche, le multimédia, produits de consommation numérique et solutions embarquées. Il

n’existe pas un simulateur de micro-architecture ARM à source ouvert dans le domaine

publique.

Dans ce mémoire, nous explorons différents types de stratégies de simulation (simulation

au niveau architecture, exécution directe, recompilation dynamique, code chaîné,

simulation d’ensemble d’instructions) et de leurs applications. Nous étudions également le

comportement du pipeline du processeur ARM et combinons le comportement du

pipeline du ARM [25][26] et celui du DLX [24] pour obtenir une description originale

d’exécution de micro-architecture de ARM. En conclusion, nous construisons un

simulateur cycle précis du processeur ARM (ARM-Simulator), qui simule la micro-

architecture du processeur qui inclut un pipeline 5-stage, chemin d’expédition, la logique

de couplage, etc. Ce simulateur est mis en application avec SystemC et des concepts de

génie logiciel. Ainsi il est modulaire, facile à étendre, et intégré avec d’autres modules.

C’est maintenant un projet autonome de logiciel, après encapsulation appropriée, il peut

être un composant à brancher à un système d’application, pour simuler et évaluer la

performance.

Le simulateur “modèle de noyau ARM” est validé par un simulateur de jeu d’instructions

(ISS) ARM. Nous comparons les résultats du modèle de noyau ARM avec ceux de 115$

11

ARIVI pour nous assurer que le comportement du simulateur ARM est correct. Le code

objet de l’ARM est généré par le compilateur croisé ARM-ELF-GCC. Celui-ci compile

le code source C en code objet ARM sous le système d’exploitation Linux. Nous

entreprenons également des expériences pour l’évaluation des performances.

Mots-clés: Simulation, Simulateur, Langues de simulation, Stratégies de simulation,

Simulateur d’ensemble d’instruction, Microprocesseur RISC, Pipeline, Expédition,

Couplage, Compilation croisée

111

Abstract

SimulationlVirtual machine teclmology is an integral part of many computing systems

today. A hardware simulator is a piece of software that emuÏates specific hardware

devices enabling execution of software that is written and compiled for those devices on

altemate systems. ARM is a 1 6132-bit embedded RISC microprocessor. It has a built-in

shifi mechanism. Auto-indexed addressing, loadlstore multiple instructions and almost ail

instructions conditional execution allow the ARIvI processor to achieve a good balance of

high performance, low cost, power efficient and low silicon area. ARM is widely used in

portable communications, hand-held computing, multi-media, digital consumer and

embedded solutions. There doesn’t exist an open source ARM micro-architecture

simulator in public domain.

In this thesis, we explore different kinds of simulation strategies (Architecture level

simulation, Direct Execution, Dynamic Recompilation, Threaded code, Instruction Set

Simulation) and their applications. We also study ARIvI processor pipeline behavior,

combine ARM pipeline behavior [25][26] and DLX pipeline [24] to obtain an original

description of ARM micro-architecture implementation. Finally, construct a cycle

accurate ARM processor simulator (ARM-Simulator), which simulates the micro-

architecture of the processor that includes 5-stage pipeline, forwarding path, interlock

logic, etc. This simulator is implemented with SystemC and software engineering

concepts. So it is modular, easy to extend, and integrated with other modules. It is now a

standalone software project, after appropriate encapsulating, it can be a component to

plug into an application system, simulate and evaluate performance.

The simulator (ARM core model) is validated by an ARM Instruction Set Simulator (ISS).

We compare the resuit from the ARM core model and the result from the ARM ISS, to

know if the behavior of the ARM program is correct. The ARIVI object code is generated

by ARM-ELF-GCC cross compiler. It compiles the C source code to ARM object code

on the Linux operating system. We also conduct experiments for evaluating performance.

iv

Keywords: Simulation, Simulator, Simulation Languages, Simulation Strategies,

Instruction Set Simulator, RISC Microprocessor, Pipeline, Forwarding, Interlock, Cross

Compile

V

Table of Contents

Résumé j

&bstract iii

1’able of Zontents y

List of]‘ables vii

List of Figures viii

cronyIns x

T”lotations xii

Acknowledgement xiii

Zhapter 1 Introduction 1

Chapter 2 Background $

2.1 Overview of Simulation Strategies 8

2.2 Existing work for ARM processor simulator 9

Chapter 3 ARM Processor Core 12

3.1 ARM Processor Architecture introduction 12

3.2 Processor Modes, Registers and PSRs (Program Status Register) 13

3.3 ARIVI instructions 18

3.4 Addressing Modes 21

3.5 Organization ofthe 5-stage ARM Pipeline 29

Chapter 4 Implementation of the ARM core model 33

4.1 Ail the Instructions operation in different stage (except IF) 33

4.2 Forwarding 41

4.3 lnteriock [24][25] 47

4.4 Branch instructions [25][26] 47

4.5 Some special instructions’ implementation 49

4.5.1 Load Multiple Registers (LDM) 49

4.5.2 Store Multiple Registers (STM) 51

vi

4.5.3 Swap awordlbyte (SWP, SWPB) .52

4.5.4 Multiply instructions (MUL, MLA, UMULL, SMULL) 54

4.5.5 Long multiply and accumulate instructions (UMLAL, SMLAL) 55

4.6 Current and Saved Program Status Register (CPSR, SPSR) 57

4.7 Discussion on generalization 60

Chapter 5 ‘Sïalidation of the niodel 62

5.1 Methodology of Validation 62

5.1.1 The ARM core mode! 62

5.1.2 Validate the ARIvI core mode! with an ISS (Instruction Set Simulator) 64

5.2Experiments 67

5.3 Summary ofthis validation 6$

Zhapter 6 Performance Evaluation 70

Chapter 7 Conclusion 73

keferences 75

Appendix A: Instructions implemented in this model 79

Appendix B: ARM implementation mode!, source code description $1

Appendix C: How to use the mode! 83

vii

List of Tables

Table 2-l: Compare the existing ARIVI simulators and the ARIVI Core Model 11

Table 3-l: Processor mode description 14

Table 3-2: Registers [26] 16

Table 3-3: Condition code encoding [261 21

Table 3-4: Addressing mode 22

Table 3-5: Shift types 23

Table 3-6: Comparison ofARM architectureal pipeline depth 30

Table 4-1: Ail the instructions operation in different stage 34

Table 4-2: Work of every stage 38

Table 4-3: Destination register of corresponding pipeline register temporary data ALUOutput, D,

LMD (for the source instruction of the forwarding) 43

Table 4-4: Source register of pipeline register temporary data A, Bb, C (for the destination

instruction of the forwarding) 44

Table 4-5: Forwarding paths 44

Table 5-1: Programs for basic test 67

Table 5-2: Programs for combination test 68

Table 6-l: Performance evaluation ofthe ARM core model 71

viii

List of Figures

Figure 3.1: ARIvI instruction set summary [26] 19

figure 3.2: Multiplies and extra loadJstore instructions [26] 20

figure 3.3: Miscellaneous [26] 20

Figure 3.4: Addressing mode 1 data processing instruction binary encoding [26] 23

figure 3.5: LSL operation 24

figure 3.6: LSR operation 24

Figure 3.7: ASR operation 24

Figure 3.8: ROR operation 24

figure 3.9: ROX operation 24

Figure 3.10: Addressing mode 2 Single word and unsigned byte transfer instruction binary

encoding [26] 25

Figure 3.11: Addressing mode 3 Half-word and signed byte transfer instruction binary

encoding [26] 26

Figure 3.12: Addressing mode 4 Multiple register transfer instruction binary encoding [26] 28

Figure 3.13: Addressing mode 5 Coprocessor data transfer instruction binary encoding [26] ... 29

Figure 3.14: ARM 5-stage pipeline organization [25] 32

Figure 4.1: Forwarding paths 41

Figure 4.2: Instruction sequence for forwarding process 42

Figure 4.3: RAW hazard between two adjacent instructions 47

Figure 4.4: Insert a nop to avoid RAW hazard 47

Figure 4.5: Branch instruction operation 4$

Figure 4.6: LDM instruction operation 49

figure 4.7: STM instruction operation 51

Figure 4.8: SWP instruction operation 53

Figure 4.9: Multiply-1 instruction operation 54

Figure 4.10: Multiply-2 instruction operation 55

Figure 4.11: PSRs (progam status register) operation 57

Figure 5.1: The ARM core model 63

ix

Figure 5.2: Validate the ARM core model.64

figure 5.3: A program executed on the ARM core model (without library) 65

figure 5.4: A program executed on ISS (with libranes) 65

figure 5.5: AN ARM assembly program after cross compile (fibonacci) 66

X

Acronyms

AHB Advanced High performance Bus

ALU Arithmetic and Logic Unit

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ARM Acom Risc Machine

ASB Advanced System Bus

ASR Arithmetic Shift Right

CPI Clock cycles Per Instruction

DSP Data Signal Processing

EDA Electronic Design Automation

EXE EXEcution

FIQ Fast Interrupt reQuest

HDL Hardware Description Language

ID Instruction Decode

W Instruction Fetch

RQ Interrupt ReQuest

15DB Integrated Services Digital Broadcasting

ISS Instruction Set Simulator

LR Link Register

LSL Logical Shifi Lefi

LSR Logical Shifi Right

MEM MEMory access

OS Operating System

OSCI Open SystemC Initiative

PC Program Counter

PSR Program Status Register

RISC Reduced Instruction Set Computer

ROR Rotate Right

ROX Rotate Right with eXtend

RTL Register Transfer Level

SoC System on Chip

SP Stack Pointer

StepNP System level Telecom Experimental Platform for Network Processing

VCD Value Change Dump

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

WIF Waveform Intermediate format

WB Write Back

xi

xii

Notations

0x123 hex 123

]Rm..n sub range from ‘m bit’ to ‘n bit’ ofIR

logical shifi left

R[m] ‘bit m’ ofIR

mem[addr] content of memory in address ‘addr’

Regs[m] content ofregister Rm

mu! multiplier in figure 3.14

mux multiplexer in figure 3.14

% system prompt

O aspace

bold & underlined command line

botd & itatic highlights important notes, introduces special terminology

xiii

Acknowledgement

Ibis work has been a challenging experience for me. I leamed many existing

tecimologies. I received a lot of support and help from the professors and colleagues in

our department.

I would like to thank Professor Fi Mostapha Aboulhamid, my director, and Professor

françois-R Boyer, rny co-director, for their continued guidance, encouragement,

enthusiasm, and support are greatly appreciated. Also great thanks to the colleagues for

their encouragement and help.

Chapter J Introduction

Chapter 1 Introduction

Role of simulation in the design flow

Simulation / Virtuat machine technology [1] is an integral part of many computing

systems today. Java, SirnOS [2][3] and VMware [for rnnning a complete OS as an

application on another operating system], Connectix Virtual PC/Game station and

Microsoft’s .NET are different examples of such systems. This technology is incredibly

useful as a secure means for execution of untrusted software in a sandbox environment,

and an ideal platform for code-development for new hardware devices.

A hardware simulator is a piece of software that emulates specific hardware devices,

enabling execution of software that is written and compiled for those devices on alternate

systems. The machines that are simulated will be referred to as target machines, and the

system on which the simulator is actually rnnning is referred to as the host machine [4J.

Simulation at vanous levels of abstraction has played a key role in the design of

computer systems. There are numerous compelling reasons for implementing simulators,

most of them obvious. Design teams need simulators throughout ah phases of the design

cycle.

1. Jnitially, during high-level design, simulation is used to narrow the design space

and establish credible and feasible alternatives that are likely to meet competitive

performance objectives.

2. Later, during microarchitectural definition, a simulator helps guide engineering

trade-offs by enabling quantitative comparison ofvarious alternatives.

3. During design implementation, simulators are employed for testing, functional

validation, and late-cycle design trade-offs.

4. Finally, simulators provide a useful reference for performance validation once

real hardware becomes available.

Outside of the industrial design cycle, simulators are also heavily used in the computer

architecture acadernic research cornmunity.

1

2

Some benefits ofusing simulators are:

1. Simulators are flexible and thus new features or components can easily be added.

It is possible to model features, including those that might flot be possible to do on

the hardware.

2. It allows stress testing ofprograms like operating systems by simulating complex

interrupt and exception conditions.

3. Since simulators are built in software, they are more deterministic. The

deterministic behavior of simulators makes programs execution reproducible, and

thus helps in locating problems.

Primary applications of simulators consist of computer architecture studies and

performance tuning of compiled software, and the compilation process itself. Various

types of simulators exist, each addressing different aspects like dock cycle rate, modeling

the microprocessor chip logic, modeling the program execution environment, etc.

StepNP (System-level Telecom Experimental Platfonn for Network Processing) is a

modeling platform for multiprocessor and network processors, under development. The

platform will help in performance evaluation, design exploration by changing

architecture parameters such as interconnects, pipeline characteristics, instruction sets

and memory schemes. The platform should be flexible and modular to allow a ‘plug,

simulate and evaluate’ approach. This allows plugging different kinds of processors and

interconnections to evaluate and create a new system. Core models include ARIVI

processor [26] and DLX processor [24]. Jnterconnects models include the AMBA bus [2$]

and different interconriect topologies such as chordal rings [5], crossbars, rings etc. The

ARM core model implemented in this work was originally a component in this platform.

Now it is a standalone project.

ARIVI is the industry’s leading provider of 16/32-bit embedded RISC microprocessor

solutions. ARIVI’s microprocessor cores are high-performance, low-cost, power efficient.

They are rapidly becoming the volume RISC standard in such markets as portable

3

communications, hand-heÏd computing, multimedia digital consumer and ernbedded

solutions.

Simulation languages

Simulation allows faster development of design and cheaper and easier debugging during

the design stage. Hardware description languages provide support for the simulation of

concurrent processes and offer constructs to describe inter-process signal transfer. Iwo

hardware simulation languages have become standard design entry tools for simulation

and synthesis-Verilog [34] and VHDL [33]. While the results are very accurate the speed

of simulation is very slow since they are more suitable for RT (Register Transfer) level

design than for higher levels of abstraction. More powerful than these simulation

languages are SystemC [35] and Superlog [32]. SystemC was launched by Synopsys and

CoWare, it is backed by some 30 electronic design automation (EDA) vendors, which

formed the Open SystemC Initiative (OSCI). This independent standards organization

promotes SystemC as a coinmon digital ftamework that will streamiine product

development for EDA synthesis tools. Superlog is another language for system-level

design, developed by CoWare and based on Verilog and C. In this work, we implement

an ARM processor simulator using SystemC to obtain an open source core of ARIVI

which is cycle accurate and demonstrate the design flow of SystemC on a real example

including validation.

SystemC [27] is a C++ class library and a methodology that we can use to effectively

create a model of sofiware algorithms, hardware architecture, and interfaces of SoC

(System On a Chip) and system-level designs. We can use SystemC and standard C++

development tools to create a system-level model, quickly simulate to validate and

optimize the design, explore various algorithms, and provide the hardware and software

development team with an executable specification of the system. SystemC supports

hardware-software co-design and the description of the architecture of complex systems

consisting of both hardware and software components. It supports the description of

hardware, software, and interfaces in a C++ environment. The following features of

SystemC allow it to be used as a co-design language:

4

1. Modules: SystemC has a notion of a container class caiied a module. This is a

hierarchical entity that can have other modules or processes contained in it.

2. Processes: Processes are used to describe functionality. Processes are contained

inside modules. SystemC provides tbree different process abstractions (method

process, thread process, clocked thread process) to be used by hardware and

software designers.

3. Ports: Modules have ports through which they connect to other modules. SystemC

supports single-direction and bi-directional ports.

4. Signais: SystemC supports resoived and unresolved signais. Resolved signals (a

bus) can have more than one driver whiie unresolved signais can have only one

driver.

5. Rich set of port and signal types: To support modeling at different leveis of

abstraction, from the functional to the RTL, SystemC supports a rich set of port

and signal types. This is different than languages like Verilog that only support

bits and bit-vectors as port and signal types.

6. Rich set of data types: SystemC has a rich set of data types to support multiple

design domains and abstraction levels. The fixed precision data types aiiow for

fast simulation, the arbitrary precision types can be used for computations with

large numbers, and the fixed-point data types can be used for DSP applications.

SystemC supports both two-valued and four-valued data types. There are no size

limitations for arbitrary precision SystemC types.

7. Clocks: SystemC lias the notion of docks (as special signals). Ciocks are the

timekeepers of the system during simulation. Multiple docks, with arbitrary phase

relationship, are supported.

8. Cycle-based simulation: SystemC includes a cycle-based simulation kemel that

aiiows high-speed simulation.

9. Multiple abstraction levels: SystemC supports untimed models at different levels

of abstraction, ranging from high-level functional models to detailed dock cycle

5

accurate RTL models. It supports iterative refinement of high level models into

lower levels of abstraction.

10. Communication protocols: SystemC provides multi-level communication

semantics that enable us to describe SoC and system 110 protocols with different

levels for abstraction.

11. Debugging support: SystemC classes have run-time error checking that can be

tumed on with a compilation flag.

12. Waveform tracing: SystemC supports tracing of waveforms in VCD, WIF, and

ISDB formats.

Using the $ystemC approach, the designer does flot have to be an expert in multiple

languages. SystemC allows modeling from the system level to RTL. The SystemC

approach provides higher productivity because the designer can model at a higher level.

Writing at a higher level can result in smaller code, which is easier to write and simulates

faster than traditional modeling environments. Testbenches can be reused from the

system level model to the RTL model saving conversion time. Using the same testbench

also gives the designer a higher confidence that the system level and the RTL model

implement the same functionality.

The objective ofthis research is to:

• Explore different kinds of processor simulator and their applications.

• Study ARM processor pipeline behavior, combine ARM pipeline behavior

[25][26] and DLX pipeline [24] to obtain an original description of ARM micro

architecture implementation.

• Construct a cycle accurate ARM processor simulator with 5-stage pipeline (ARM

Simulator). Which simulate the micro-architecture of the processor that includes

5-stage pipeline, forwarding path, interlock logic etc. Afier encapsulating, it will

be a component of StepNP modeling platform, can be plugged, simulated and

evaluated in different applications. The ARM core model is irnplemented by using

6

SystemC and software engineering concepts. So it is modular, easy to extend, and

integrated with other modules.

• Validate the ARM core model using an ISS of ARIVI processor at instruction

level. Because the ISS and the ARM core mode! do flot have the same precision,

so we validate it at instruction level to ensure the behavior of ARM program is

correct.

• Evaluate the performance ofthe cycle accurate ARM processor simulator.

This thesis is divided into seven chapters. Its content is organized as follows:

Chapter 2 provides background know!edge. At first, it gives an overview of simulation

techniques, latter, it introduces the existing work for ARM processor simulator.

Chapter 3 introduces the ARIVI processor, ARM architecture, ARM instructions sets,

addressing mode of different instructions and 5-stage pipeline organization.

Chapter 4 presents the implementation of the ARM core model. It introduces how to

implement the 5-stage pipeline, the work of every pipeline stage for every instruction.

Then, it explains the execution of forwarding, interlock and branch instructions. It also

describes the execution of some special instructions. The details of this description can be

considered as original since they are not described in the specification of the ARM. At

last, it discusses the generalization ofthe model.

Chapter 5 describes the methodology for validating the model. The ARIVI core mode! is

validated by an TSS (Instruction Set Simulator). Arm-e!f-gcc is the cross compiler that

generates the arm object code. Then the object code is run on the ARM core model and

ISS. By comparing the resuits from different model to know if the ARM core model is

valid. Since ISS and the ARM core model (cycle accurate levels) do not have the same

precision, so this validation is only from the instruction level. We also use some special

7

examples to validate the architecture of the processor core, includig functiona! units,

forwarding path, inter!ock logic etc. Then it gives sorne experiments for validating it.

Chapter 6 introduces the ARM core model performance metrics. We do some

experiments, compare the execution time of ISS and the ARM core model for the same

workload, count the number of cycles and instructions so as to compare the compiled

code quality from different compilers, calculate the CPI to evaluate the performance of an

application system.

Chapter 7 concludes with the features of the mode! and the contributions of this thesis

and then discusses future work.

Chapter 2 Backgrouncl

Cliapter 2 Background

This section gives an overview of simulation strategies and existing work for the ARIvI

processor simulator.

2.1 Overview of Simulation Strategies

The best simulation method depends on the application of the simulation resuits. This

section outiines several simulation strategies and their applications.

Architectural tevet Simulation [6117118]:

Logic designers build Architectural simulators to express and test new designs. These

allow emulation of the different parts of a processor, using either the simple core, or the

core and the data caches and other components. These are generally flot intended for

executing target system binaries on aiternate piatforms, but rather to allow research into

the modification ofthe internai data-paths ofthe processor.

Direct Executioit [1]:

Target machine binaries can be executed natively on the simulator host processor by

encasing the program in an environment that makes it execute as though it were on the

simulated system. This technique requires that either the host system has the same

instruction set as the target, or that the program be recompiled for the host architecture.

Instructions that cannot execute directly on the host are replaced with procedure calls to

simulator code. This method is also known as Dynamic Recompilation [Dynarecs].

Native execution of the recompiled code leads to a much faster execution of the

simulated software, but they have lengthy context switching, i.e. when the host processor

has to switch to target processor. This may slow down the simulation.

Threaded Code [9][1O]:

This is a simulation technique where each op-code in the target machine instruction set is

mapped to the address of some (lower level) code in the sirnulator system, to perform the

8

9

appropriate operation. This can be implemented efficiently in machine code on most

processors by simply performing an indirect jump to the address, which is the next

instruction. This method does not suffer from lengthy context switching.

htstruction set sim utators [4]:

Instruction set simulator [ISS] executes target machine programs by simulating the

effects of each instruction on a target machine, one instruction at a time. The Instruction

sets simulators are attractive for their flexibility: they can, in principle, model any

computer, gather any statistics, and run any program that the target architecture would

mn. They easily serve as backend systems for traditional debuggers as well as

architecture design tools such as cache simulators. A lot of temporal debuggers have

recently started using ISS. An ISS can dispatch instructions by fetching from a simulated

memory, isolating the operation code fields, and also branching, based on the values of

these fields. Once dispatched, reading and manipulation of variables that represent the

target system’s state are used to simulate the instmction’s semantics. They are flot cycle

accurate since they do not take into account the iteming of an instruction pipelining.

2.2 Existing work for ARM processor simulator

There has been a lot ofresearch on software simulation ofthe ARM processor. These can

be categorized according to the level of simulation, whether at the architectural level or

the instruction set, or the techniques used, e.g. dynamic recompilation of parts of the

simulated software to natively mn on the guest system.

Dynarecs [ARMphetamine]

ARMphetamine [1] and tARMac [11] are based on the direct compilation technique.

They are fast and accurate ARIVI emulators. ARM code program segments are translated

into native code as they are being emulated. A fetch-decode-execute emulator starts

executing the ARM code, and when a specific block of the ARM code has been executed

more times than a preset threshold, a translation routine is employed. This generates

covers for each source instruction, i.e. chunks of native code that have the same

semantics as the translated instructions. These covers are then executed every time the

10

translated biock of code needs to be run. The development platform for ARMphetamine

and tARMac is linux/x86. They are open source, but flot cycle accurate, so can’t be used

for performance evaluation.

Architecture tevet [$WARMJ[61

SWARM was designed as an ARM module to plug into the SimOS system developed at

Stanford University. SimOS allows emulation of various parts of an ARM processor,

using either the simple core, or the core and the caches. SWARM was intended flot for

running ARM binaries on an alternate piatform, but rather to allow research into the

modification of the internai data-paths of the ARM processor. It implements a smali

amount of internai co-processors at a basic level, and provides support for the full

register/cache/external memory hierarchy. It does not take into account the micro-

architecture of ARM processor core and the pipelining execution of an instruction.

Instruction Levet [SimARMJ[12J[13]

SimARM [12] is an instruction set simulator (ISS) that interprets ARM programs at the

instruction level obviating the need for ARIvI hardware. ISSs are simpler to implement,

but they are slower than simulators based on dynarecs due to the fact that ail instructions

are strictly interpreted.

ARMulator [13] is another ISS with a slight variation: it ensures identical cycle-count for

instructions. This means that instructions take the same number of simulator’s cycles to

execute as if run on real ARIvI hardware. This is important for precise simulation since

some compilers can optimize code that takes advantage of the cycle-counts of specific

instructions. But it is flot open source to the public, can’t be integrated into SystemC.

In this work, we implement the ARM Core Mode!, a cycle-accurate micro-architecture

simulator. It simulates ARM instruction sets, and also simulates 5-stage pipeline

(including hazard detecting, forwarding path, interlock logic and automatic no-op insert).

It can act as an ISS to execute ARM program by simulating the behavior of the program.

It is a modular design, so it can be integrated in SysternC, as a component can be plugged

into an application system. It can also evaluate system performance by counting the

11

number of cycles for executing a program; it can also compare the quality of code

compiled by different compilers. It also takes into account ail the pipeline effects such as

hazard detecting, data forwarding, interlock, automatic no-op inserting etc. Table 2.1

compares the existing ARM simulators and the ARM Core Mode! (implemented in this

work)

Open source

Simulation level
or technique

Cycle-accurate

Performance

Thumb support

Library support

Table 2-1: Compare the exïsting ARM simulators and the ARM Core Model

ARM Core ARMsim simARM ARMulator SWARM ARMphetamine

Model

Yes No No No Yes Yes

Cycle-accurate ISS ISS ISS Architecture Architecture!

micro- dynamic

architecture compile

Yes No No Yes No No

Low Medium Medium Medium Low High

No No No Yes No No

No No No Yes Not all No

Chapter 3 ARM Processor Core

Cliapter 3 ARI’Vl Processor Core

This section introduces the architecture of ARM processor, its processor modes, registers

group, instruction encoding and addressing mode for different instruction, and then

describes the 5-stage ARIVI pipeline organization [31][25][26].

3.1 AR?s’l Processor Architecture introduction

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical

RISC architecture features:

1. A large uniform register file.

2. Load-store architecture, data-processing operations only operate on registers

contents, flot directly on memory contents.

3. Simple addressing modes, with ail loadlstore addresses being determined from

register contents and instruction fields oniy.

4. Uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture has following characteristics:

1. The ARM is a 32-bit machine with a register-to-register, three-operand instruction

set. Ail operands are 32 bits wide.

2. Control over both the Arithmetic Logic Unit (ALU) and shifler in every data

processing instruction to maximize the use of an ALU and a shifler.

3. Auto-increment and auto-decrement addressing modes to optimize program loops.

4. Load and Store Multiple instructions to maximize data throughput.

5. Conditional execution of all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARIVI processors to achieve a

good balance of high performance, low code size, low power consumption and low

silicon area.

12

13

3.2 Processor Modes, Registers and PSRs (Program Status Register)

ARIvI processor has seven processor modes (User mode, fIQ mode, IRQ mode,

$upervisor mode, Abort mode, Undefined mode, System mode). Every processor mode

has different banked general register group. Also there is a CPSR (Current Program

Status Register) and a SPSR (Saved Program Status Register) except system mode and

user mode (there is no SPSR for system mode and user mode).

Processor modes:

ARM supports five types of exceptions, and a priviieged processing mode for each type.

The five types of exceptions are:

1. Fast interrupt

2. Normal interrupt

3. Memory aborts, which can be used to impiement memory protection or virtuai

memory

4. Attempted execution of an undefined instruction

5. Software interrupt (SWI) instructions which can be used to make a caTi to an

operating system.

When an exception occurs, some of the standard registers are replaced with registers

specific to the exception mode. Ail exception modes have replacement banked registers

for Ri 3 and Ri 4. The fast interrupt mode has more registers for fast interrupt processing.

When an exception handier is entered, Ri4 holds the retum address for exception

processing. This is used to retum afier the exception is processed and to address the

instruction that caused the exception.

Register Ri3 is banked across exception modes to provide each exception handier with a

private stack pointer. The fast interrupt mode aiso banks registers R$ to R12 SO that

interrupt processing can begin without the need to save or restore these registers.

14

There is a sixth privileged processing mode, System mode, which uses the User mode

registers. This is used to nin tasks that require priviieged access to memory andlor

coprocessors, without limitations on which exceptions can occur during task.

Ail the processor modes are described in Table 3.1

Table 3-1: Processor mode description

Name Processor mode Description
User usr ‘Tormal program execution mode

FIQ fiq Supports a high-speed data transfer or channel
wocess

IRQ irq Jsed for general-purpose interrupt handiing

Supervisor svc \. protected mode for the operating system

Abort abt Implements virtual memory andlor memory
)rotection

Undefined und Supports software emulation of hardware
coprocessors

System sys uns privileged operating system tasks

Registers:

The ARM has 15 user-accessible general-purpose registers called RO to R14 and a

current program status register (CPSR) and a program counter R15.

The ARM processor has a total of 37 registers:

• 31 general-purpose registers, including a program counter.

• 6 status registers.

These registers are 32 bits wide. Registers are arranged in partially overlapping banks,

with a different register bank for each processor mode. At any time, 15 general-purpose

registers (RO-R14), one or two status registers and the program counter are visible.

15

The general-purpose registers RO-R15 can be split into three groups. These groups differ

in the way they are banked and in their special-purpose uses:

• The unbanked registers RO-R7

• The banked registers R8-R14

• R15 is the PC (Program Counter)

Banked register means physical address of the register depends on processor mode.

Unbanked register means physical address of the register doesn’t depend on processor

mode.

Tite unbaitked registers RO-R 7:

Each ofthem refers to thesame 32-bit physical register in ail processor modes. They are

completely general-purpose registers, with no special uses implied by the architecture,

and can be used wherever an instruction allows a general-purpose register to be specified.

The banked registers R8-R14:

The physical register referred to by each of them depends on the current processor mode.

Where a particular physical register is intended, without depending on the current

processor mode, a more specific name is used. Almost ail instructions allow the banked

registers to be used wherever a general-purpose register is allowed.

R15 is tue PC (Program Counter):

When an instruction reads Ri 5, the value read is the address of the instruction plus $

bytes. Ail the registers are described in Table 3.2.

PSRs (Program Status Registers):

The current program status register (CPSR) is accessible in ail processor modes. It

contains condition code flags, interrupt disable bits, the current processor mode, and

other status and control information. Each exception mode aiso has a saved program

status register (SPSR) that is used to preserve the value of the CPSR when the associated

16

exception occurs. User mode and System mode do flot have an SPSR, because they are

not exception modes.

Table 3-2: Registers [261

IVIo des

Rl4svc Rl4abt R14 tRi3 irq !.i,. RItiq
PU PC

3PSR SRmbt SPSRwid SP_frq.45 SPSR_fii

Program Status Registers

3! 30 29 28 27 26

DNM(RAZ)

$

I f T M4 M3 M2 MI M

The condition codeflags in PSR:

The N, Z, C, V (Negative, Zero, Carry and overflow) bits are coÏlectively known as the

condition code flags. The condition code flags in the CPSR can be tested by rnost

instructions to determine whether the instrtiction is to be executed.

The condition code flags are usually modified by:

• Execution ofa comparison instrtlction (CMN, CMP, TEQ, TST).

• Execution of some other arithrnetic, logical or move instruction, where the

destination register of the instruction is flot RI 5. Most of these instructions have

both a flag-preserving and a flag-setting variant, with the latter being selected by

— .“.,, .-. “..,“‘-.,

Exception mok
User System [uIwrisot Abort Undelined Interrup(Fast Intern
RU RU RU RU RU RU RU
RI RI RI RI RI RI RI
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R] R7 R7 R] R? R7 R7
R8 R$ R8 Rb Rh R8 .8fi4
R9 R9 R9 R9 R9 R9 fi

RIO RIO RIO RIO RIO RIO
RI I R.II RI I RI I RI I RIl
RI2 RI2 R12 RI2 R12 RI2 i”fi
R 13 R13 13svc R13alt j RI3Zirg4

R!4 R14

__________ ___________

PC PC PC PC PC
CPSR CPSR C’PSR CPSR CPSR CPSR CPSR

17

adding an S qualifier to the instruction mnemonic. Some of these instructions only

have a flag-preserving version.

N: is set to bit 31 ofthe resuit ofthe instruction.

Z: is set to 1 if the resuit of the instruction is O.

C: is set in one of four ways:

• For an addition, including the comparison instruction CMN (CoMpare Negative),

C is set to 1 if the addition produced a carry (that is, an unsigned overflow), and

to O otherwise.

• For a subtraction, C is set to O if the subtraction produced a borrow (that is , an

unsigned underflow), and to 1 otherwise.

• For non-additionlsubtractions that incorporate a shift operation, C is set to the Ïast

bit shified out ofthe register by the shifier.

• For other non-additionlsubtractions, C is left unchanged.

V: is set in one oftwo ways:

• For an addition or subtraction, V is set to I if signed overflow occurred.

• for non-additionlsubtraction, V is normally lefi unchanged.

The condition flags can be modified in these additional ways:

• Execution of an MSR (Move to PSR from general-purpose Register) instruction,

as part ofits function ofwriting a new value to the CPSR or SPSR.

• Execution of MRC (Move to ARM Register from Coprocessor) instructions with

destination register R15. The purpose of such instructions is to transfer

coprocessor-generated condition code flag values to the ARM processor.

• Execution of some variants of the LDM instruction. These variants copy the

SPSR to the CPSR, and their main intended use is for retuming from exceptions.

• Execution of flag-setting variants of arithmetic and logical instructions whose

destination register is R15. These also copy the SPSR to the CPSR, and are

mainly intended for retuming from exceptions.

The controtflags in PSR are:

• I: Disables 1RQ interrupts when it is set.

• f: Disables fIQ interrupts when it is set.

• T: O (ARM execution), 1 (Thumb execution)

• Mode bits: M4...M0: Processor Mode. 0x10 (User), 0x11 (fIQ), 0x12 (IRQ),

0x13 (Supervisor), 0x17 (Abort), Oxlb (Undefined), Oxlf(System).

Other bits in the Program Status Registers are reserved for future expansion.

The format of PSR is described in table 3.2.

3.3 ARM instructions

ARIVI instructions are 32 bit fixed-length RISC instruction set. figure 3.1 shows the

ARM architecture version 5 instruction set encoding.

figure 3.2 shows multiplies and extra ioadlstore instructions

figure 3.3 shows miscellaneous instructions

Almost ail instructions can be conditionally executed; which means that they only have

their normal effect on the programmer’ s model state, memory and coprocessors if the N,

Z, C and V flags in the CPSR satisfy a condition specified in the instruction. If the flags

do flot satisfy this condition, the instruction acts as a NOP. Table 3.3 shows the condition

code encoding.

Appendix A shows ail the instructions impiemented in this model.

19

31302928272625 24 23 22 21 201912171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Data processing immediate
shift

Miscellancous instructions:
See figure 3-3

Data processing register shift

Miscellaneous instructions:
See figure 3-3

Multiplies, extra loadlstores:
Sce figure 3-2

Data processing llnmedate

Undefmed instruction

Move immediate to status
register

LoaWstore immediate offset

Loadlstore register offset

Undefined instruction

Undefined instruction

Loadlstore multiple

Undeflned instructions

Branch and branch with link

Branch and branch wiffi Iink
And change to thumb

Coprocessor Ioad!store and
double Register transfers

Coprocessor data processing

Coprocessor register transfers

Software interrupt

Undefmed instruction

cond 000 opcode S Rit Rd Shifi amount shifi Rm

cond 000 lOxx O xxxxxxxxxxxxxxx O xxxx

cond 000 opcode S Ru Rd Rs O shift 1 Rrn

cond 000 lOxx O xxxxxxxxxxxx O xx 1 xxxx

cond 000 xxxxxxxxxxxxxxxxx 1 xx 1 xxxx

cond 001 opcode S Rn Rd rotate immediate

cond 001 10 x 00 xxxxxxxxxxxxxxxxxxxx

cond 001 10 R 10 rnask SBO rotate inunediate

cond 010 P U B W L Rn Rd immediate

cond 011 P U B W L] Rn Rd Shifi amount shifi O Rrn

cond 011 xxxxxxxxxxxxxxxxxxxx 1 mx

1 111 0 xxxxxxxxxxxxxxxxxxxxxxxxxxx

cond 100 P U S W L Rn Register list

1111 100 xxxxxxxxxxxxxxxxxxxxxxxxx

cond 101 L 24-bit offset

1111 101 H 24-bit offset

cond 110 P U N W L Ru CRd cp-nurn 8-bit offset

cond 1110 opcodel CRn CRd cp-num opcod2 O CRin

cond 1110 opcodel L CRu CRd cp-num opcod2 1 CRin

cond 1111 swinumber

1111 1111 mooooœocxoocx

Figure 3.1: ARM instruction set summary [26j

20

Multiply (accumulate)

_______ ___________ ________ ________ ___________

Multiply (accumulate) long

Swap/swap byte

Loadlstore halfword
Register offset

Loadlstore halfword
Immediate offset

Loadlstore two words
register offset

Load signed halfwordlbytc
Register offset

Loadlstore two words
immediate offset

Load signed halfwordlbyte
Immediate offset

Figure 3.2: Multiplies and extra loadlstore instructions [26]

Move status register to register

Move register to status register

Brmchlexchange instruction set

Count leading zeros

Branch and Iinklexchange

Enhanced DSP addlsubtracts

Software breakpoint

Enhanced DSP multiplies

3130292827262524 23 22 21 20191817161514131211 109 8 76 5 43210

cond 0000 00 A S Rd Rn Rs 1001 Rm

cond 0000 1 U A S RdHi RdLo Rs 1001 Rm

cond 0001 0 B 00 Rn RU SBZ 1001 Rm

cond 000 P U O W L Rn RU SBZ 1011 Rm

cond 000 P U T W L Rn RU HiOffset 1011 LoOffset

cond 000 P U O W O Rn RU SBZ i i S 1 Rm

cond 000 P U O W 1 Rn RU SBZ 1 1 H 1 Rm

cond 000 P U 1 w o Rn RU HiOffset 1 1 5 1 LoOffset

conU 000 P U 1 W 1 Rn RU HiOffset 1 1 H 1 LoOffset

31302928272625242322 21 20 19 18 17 16 15 1413 12 111098 7 6 5 4 3 2 1 0

conU 00010 R O O SBO RU SBZ 0000 SBZ

conU 00010 R 1 0 mask SBO SBZ 0000 Rm

conU 00010 01 0 SBO SBO SBO 0001 Rm

conU 00010 11 0 SBO RU SBO 0001 Rm

cond 00010 01 0 SBO SBO SBO 0011 Rm

cond 00010 op O Rn RU SBZ 0101 Rm

cond 00010 01 0 immed 0111 immed

cond 00010 op O RU Rn Rs lyxO Rm

Figure 3.3: Miscellaneous [261

21

Table 3-3: Condition code encoding 1261

Opcode Mnemonic Meaning Condition flag state

1R3128 extension

0000 EQ Equal Z set

0001 NE Not equal Z clear

0010 CS/HS Carry Set/unsigned C set

Higher or Same

0011 CC/LO Carry Clear/unsigned C clear

LOwer

0100 MI Mlnus/negative N set

0101 PL PLus/positive or zero N clear

oiio vs Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 ES Unsigned lower or C clear or Z set

same

1010 GE Signed Greater than or (NV)

Equal

1011 LT SignedLessThan (N !V)

1100 GT Signed Greater Than Z0 or N!V

1101 LE Signed Less than or Z1 or N!V

Equal

1110 AL ALways

(unconditional)

1111 N’! Dependson

architecture version

3.4 Addressing Modes

ARIVI Instructions have 5 kinds of addressing modes. Different addressing mode is used

in different instructions. Table 3.4 shows the addressing modes and their usage.

22

Table 3-4: Addressing mode

ddressing mode Jsage

ddressing Mode 1)ata-processing operands

ddressing Mode 2 Load and Store Word or Unsigned Byte

ddressing Mode 3 vliscellaneous Loads and Stores

ddressing Mode 4 Load and Store Multiple

ddressing Mode 5 Load and Store Coprocessor

The following is more detailed description:

Addressing Mode 1 (figure 3.4):

Addressing Mode 1 is used in Data-Processing instructions to generate the second

operand (Shifier Operand). Shifier-Operand could be:

Tmmediate: shifter_operand=8-bit immediate Rotate_Right (#rot * 2)

if #rot=O then shifter_carry_out=C_flag

else shifler_carry_out=shifier_operand[3 1]

(it is also the last bit shifted out of the value by the shifier, see figure 3.8)

Register: if .4=0, then shifter_operand=Rm

shifler_carry_out=C_flag

Scaled Register: Rm is shifted by the amount ofRs or #shift.

The shifi type (table 3.5) can be: LSL (00), LSR (01), ASR (10), ROR (11), ROX (11)

(R11.7=0).

23

Table 3-5: Shift types

Shift)escription

SL (figure 3.5) Logical Shift Left

$R (figure 3.6) Logical Shift Right

SR (figure 3.7) \rithmetic Shift Right

ROR (figure 3.8) Otate Right

ROX (figure 3.9) Otate right with eXtend

31 282726 25 24 21 20 19 16 15 12 11 0

cond 00 # opcode S Rn Rd operand2 I

destination register

first operand register

set condition codes

anthmetic/logic functic

V 11 87

- #rot

immediate alignment
I

8-bit immediate

11 76543 0

sh 0Rmshift

immediate shifi length
I

I shifi type
second operand register

11 87 54 3 0

Rs

O sh 1 Rm

register shift length

Figure 3.4: Addressing mode 1 data processing instruction binary encoding j26J

n

+0

V

24

LSL:

LSR:

j Ii

ASR:

31 30

ROR:

Shifter-Cariy-Out=Rm[2 *rot... 1]

Figure 3.8: ROR operation

f 1.
shifler-carry-out

Figure 3.5: LSL operation O

3130 1 0

Figure 3.6: LSR operafion

31 30 I O

Figure 3.7: ASR operation

n

H
ROX:

ni n
il . 10

Shifter-Carry-OutRm[0J

Figure 3.9: ROX operation

25

Addressing Mode 2 (figure 3.10):

immediate shifi length
shifi type

second operand register

source/destination register
base register

loadJstore

* write-back(auto-index)

* unsigned byte/word

* up/down

* pre-/post-index

Figure 3.10: Addressing mode 2 Single word and unsigned byte transfer instruction binary
encoding [26J

It is used in LoadlStore WordfUnsigned Byte instructions addressing.

The instructions are: LDR, LDRB, LDRBT, LDRT, STR, STRE, STRBT, STRT.

P and W combination decides the index mode:

P=0: post-index

W=0: post index

W=1: LDRT, only post index

P=1: pre-index and register offset

W=0: register offset

31 28272625 24 23 22 21 20 19 16 15 12 11 0

cond 01 J PJJj LW L Rn Rd Offset

y 11

11

yO

12-bit immediate

7654 3 O

W=1: pre-index

26

Offset could be:

• Immediate offset: offset=12-bit immediate

• Register offset: R11 .4=0 then offset=Rm

• Scaled register offset: Rm is shifted by the amount of#shift.

U is used to indicate Rn Plus (U=1) or Minus (U=0) the offset.

B is used to indicate Unsigned Byte (B=1) or Word (B=0).

L is Load (L=1) or Store (L=0) operation.

Addressing mode 3 (figure 3.11):

1615 12 11 $ 7 6 5 4 3 0

Rd offsetH 1 S H 1 offsetL

source/destination register
base register

load/store

write-back(auto-index)

up/down

pre/post-index

3 0
11 $ y
imlTl74 imm3

11 $
3O

oooo [Rm

offset register

Figure 3.11: Addressing mode 3 Half-word and signed byte transfer instruction binary encoding 1261

It is used in loadlstore half word, signed haif word signed byte and double word

instructions. The instructions are: LDRH, STRH, LDRSH, LDRSB, LDRD, STRD.

31 2$ 27 2524 23 22 21 20 19

cond 000

P and W combination is similar with addressing mode 2.

27

U: Indicates whether the offset is added (U=1) to the base or subtracted (U=O) from the

base.

L: Indicates Load (L=l) or Store (LrO) instruction.

S: It distinguishes Signed (5=1) or Unsigned (5=0) half-word access.

H: Indicates Haif-word (H=1) or Byte (H=0) access.

Offset could be:

• Tmmediate offset: offset=(offsetH «4) or offsetL

• Register offset: offset=Rm

Addressing mode 4 (figure 3.12):

It is used in loadlstore multiple instructions.

Load Multiple instructions load a subset (possibly ail) of the general-purpose registers

from memory. Store Multiple instructions store a subset (possibly ail) of the general

purpose registers to memory.

Load and Store Multiple addressing modes produce a sequential range of addresses. The

lowest-numbered register is stored at the lowest memory address and the highest

numbered register at the highest memory address.

The general instruction syntax is:

LDMISTM {<cond>} <addressing_mode> <Rn>, <registers>

addressing mode is one ofthe following 4 addressing modes:

• TA: P=0 U=1, Start address=Rn, Endaddress=Rn+4*N4

• lB: P=1 U=1, Start_address=Rn+4, End_address=Rn+4*N

• DA: P=0 U=0, Start address=Rn4*N+4, Endaddress=Rn

• DB: P=1 U=0, Start address=Rn4*N, Endaddress=Rn-4

N: is the number of set bits in register list.

28

P: O (include Rn)

1 (exciude Rn)

Rn: when W=1, change the base register Rn

U=1: Rn is set to Rn+4*N

U=0: Rn is set to Rn4*N

L: Indicates Load (L=1) or Store (Lz=0) operate.

S: For LDMs that load the PC, the S bit indicates that the CPSR is ioaded from the SPSR.

For LDMs that do flot load the PC and ail STMs, the S bit indicates that when the

processor is a privileged mode, the User mode banked registers are transferred instead of

the registers of the current mode.

31 2827 25 24 23 22 21 20 19 16 15 0

cond 100 PIUJ SjWJj. Rn register list

base register
loadlstore

write-back(auto-index)

restore PSR and force user bit

up/down

pre/post-index

Figure 3.12: Addressing mode 4 Multiple register transfer instruction binary encoding 1261

Addressing modeS (figure 3.13):

It is used in loadlstore coprocessor instructions. LDC and SIC.

The combination of P and W is similar with addressing mode 2.

U and L have the same meaning with addressing mode 2.

N: is coprocessor-dependent. Its recommended use is to distinguish between different

sized values to be transferred.

29

31 2827 2524 23 22 21 20 19 16 15 12 11 8 7 0

cond 1100 PIUINIWILIRn CRd CPn $-bitoffset I

source/destination register

base register

loa&store

write-back(auto-index)

data size(coprocessor dependant)

up/down

pre/post-index

Figure 3.13: Addressing mode 5 Coprocessor data transfer instruction binary encoding 1261

3.5 Organization of the 5-stage ARM Pipeline

ARM architecture describes the processor’s instruction set and its interfaces with its

closest memory resources. It includes version 3, version 4, version 5 and the latest

architecture version 6. ARM micro-architecture is the implementation of its architecture.

Table 3-6 compares ARM architectural pipeline depth, it starts with ARM7 with three

stages, ARM9 and StrongARivl with five stages, and XScale with seven stages, ends with

ARM11, which now has an eight-stage pipeline. In this work, we construct an ARM

micro-architecture simulator of StrongARM with 5 pipeline stages, which implements

ARIvI instruction set version 5. The ARIVI processors that use a 5-stage pipeline and

separate instruction and data memory are organized as figure 3. 14.

The 5 pipeline stages:

Iitstrttction Fetch: The instruction is fetched from memory and placed in the instruction

pipeline.

Instruction Decode: The instruction is decoded and register operands read from the

register file. There are three read ports in the register file. Ah the data processing

instructions with register shift, short multiply instructions and long multiply instructions

30

without accumulation instructions have 3 source register operands, there are also other

instructions that need 1 or 2 source register operands, so most ARM instructions can read

ail the source operands in one cycle. Except SMLAL and UMLAL, they need 4 register

operands. Adding a 4th port would be bigger for saving only one cycle rarely, so these 2

instructions need 2 cycles in this stage.

Execute: An operand is shifled and the ALU resuit generated. If the instruction is a load

or store the memory address is computed in the ALU. If the instruction is LDM or STM

and is the first cycle of LDM or STM executed in this stage, the start address and end

address of the memory block is computed in the ALU, and address incremented in the

following cycles.

Bufftr/data: Data memory is accessed if required; otherwise the ALU result is simply

buffered for one dock cycle to allow the same pipeline ftow for ail instructions.

Table 3-6: Comparison of ARM architectureal pipeline depth

Pipeline Stages Micro-architecture

1 2 3 4 5 6 7 W— Clock (MHz)

Fetch Decode Execute (ARJvI7)

150

Fetch Decode ALU Cache WB (strongARM)

233

Fetch Issue Decode Execute Memory WB (ARM1O)

266-325

Fetchi fetch2 Decode Shifier Execute Exceptn WB (XScale)

733

planned 1000

fetchi fetch2 Decode Issue Shifier ALU SAT WB (ARM1 1)

350-500

estimate> 1000

31

Write-back: The resuits generated by the instruction are written back to the register file,

including any data loaded from memory. For those load instructions and LDM

instructions that have auto-index addressing need to change the base register Rn, also

write back in this stage, so there are two write ports in the register file.

32

pc+4

B,BL
mov PC
subs pc

ldr PC

D stage

1D_EXE

EXE stage

EXE_MEM

MEM stage

MEM_WB

next
PC

W stage

ID

W stage

Figure 3.14: ARiM 5stage pipeline organization 1251

Chapter 4 hnpÏenîentation ojthe ARIvf core modeÏ

Chapter 4 Implementation of the AR1VI core mode!

This chapter presents the way we implement the regular pipeline, advanced properties

(data forwarding, interlock), branch, CPSR, SPSR and some special instructions.

4.1 Ail the Instructions operation in different stage (except IF)

Signal description:

Since the pipeline structure is flot described in the specification manual we are strongiy

following the notation and methodoiogy described by Hennessy Patterson [24].

Pipeline Registers (showed in figure 3.14): The pipeline registers are labeled with the

names of the stages they connect. For example, JFID is the pipeline register between 1F

and D stage, the same as D_EXE, EXE_MEM and MEM_WB. The pipeline registers

carry both data and control from one pipeline stage to the next. They hold values

temporariiy between dock cycles. Any value needed on a later pipeline stage must be

placed in such a register and copied from one pipeline register to the next, until it is no

longer needed. We note the name of the temporary value ‘pipeline register name’ +‘‘ +

‘temporary name’. For example IR in IF_ID is IF_ID_IR. Ail these temporary values are

transferred as signal in paraliel between pipeline stages, the calculation inside a stage is

sequential. These temporary values in different pipeline registers are:

IFD: R (instruction)

DEXE: R

TYPE (type of instruction showed in figure 3.1, 3.2, 3.3)

OPERATE (showed in instruction column of instruction in table 4.1)

CP$R (current program status)

SPSR (saved program status)

A (RnIMUL_Rn) (iilustrated in figure 3.14)

Bb (RmIUMLALRdHi/$MLALRdHi)

C (Rs/Rd of store instnicitons/UMLALRdLo/SMLALRdLo)

IMM (Irnm 1 2/Irnrn2O/1mm24)

33

34

EXE_MEM: R

TYPE

OPERATE

CPSR

SPSR

ALUOutput (output of data processing instructions /UMLAL_RdHi /SMLALL_RdHi

/address of loadlstore)

C (Rd of store instrucitons/Rm of SWP and SWPB)

D (changed base register value)

StartAddress (for LDM and STM)

EndAddress (for LDM and STM)

Change_Base (indicate if the base register is to be changed)

MEMWB:

TYPE

OPERATE

CPSR

ALUOutput

LMD (data read from memory)

D

Change_Base

Table 4.1 shows ail the instructions operation in different stage (except 1F).

Table 4.2 summanzes the work of eveiy stage.

Table 4-1: All the instructions operation in different stage

nstmction type Instruction ID EXE MEM WB

)ata processing -Rn LUOutputE-A func LUOutput(-ALUOutput d

immediate shift 3bE-Rm operand2 (except cmn, cmp, LUOutput

tst, teq), operand2 is showed

in figure 3.4 addressing

rode 1

35

nstmction type nstruction ID EXE v1EM WB

)ata processing ‘E—Rn

egister shift Bb(-Rm

C-Rs

)ata processing \E-Rn

immediate

vliscellaneous VIRS * \LUOutputE-PSR LUOutputE- ALUOutput

instructions 1 LUOutput

,ISR 3bE-Rm SRE-Bb
* *

‘Iove immediate vISR * SRE-operand2 (operand2 * *

o status register is showed in figure 3.4

addressing mode 1)

Vliscellaneous X 3b<-Rm 3ranch to Bb, change CPSR * *

instructions2

LZ bE-Rm \LUOutput(- number of ‘O’ LUOutputE- ALUOutput Rd

)its before the first ‘1’ in Bb LUOutput

3LX2 b(-Rm LUOutput(-PC+4, branch ... LRE

o Bb, change CPSR LUOutput

3KPT
* LUOutputE-PC+4, write ... LR4

SPSR, CPSR change mode, .LUOutput

I bit, T bit (showed in table

3.2), and branch

4u1tip1ies extra vIUL 3bE-Rm C-Rs LUOutputÉBb*C ... vRJL_Rd

Ioad store vlore detailed in 4.5.4 LUOutput

VILA \E-MULRn \LUOutput(A+Bb*C ... vIUL_Rd

3bE-Rm C-Rs vlore detailed in 4.5.4 \LUOutput

]MULL 3bE-Rm C-Rs LUOutputE(Bb*C)6332 \LUOutput- ALUOutput dHiE

)((Bb*C)310)E-D LUOutput

RdLoE-D

vlore detailed in 4.5.4

SMULL 3b(-Rm C-Rs \LUOutput((Bb*C)6332 ... dHi

)E(Bb*C)310 LUOutput

dLo&D

Vlore detailed in 4.5.4

JMLAL 3b-Rm(1))6C(2)+[Bb(1)*C(1)]30 ... dHi

C-Rs(1) LUOutput

3b-RdHi(2) LUOutput&Bb(2)+[Bb(1) dLo(-D

CRdLo(2) *C(1)] + carry for

calculating D

More detailed in 4.5.5

36

nstruction type nstruction ID EXE vIEM WB

SMLAL Bb-Rm(1) D-C(2)+[Bb(1)*C(1)J310 ... RdHi

C-Rs(1) LUOutput

BbE-RdHi(2) LUOutputE-Bb(2)+{Bb(1) dLoE-D

C-RdLo(2) *C(1)] + carry for

calculating D

Vlore detailed in 4.5.5

SWP &E-Rn LUOutputE-A CE-Bb LMD-mem[ALUOutput] dE- LMD

3bf-Rm Vlore detailed in 4.5.3 nem[ALUOutput]E-C

SWPB •.. ... LMD(-mem{AlUOutput]70 dE- LMD

iiem[ALUOutput] -Rm7•0

DRH(R) ±Rn LUOutputE-offset LMD E-mem[ALUOutput] 15.0 tdE-LMD

bE-Rm (showed in figure 3.11 DE-D .nE-D

Lddressing mode 3),

)-changed base

DRH(I) E-Rn dE-LMD

nE-D

STRH(R) E-Rn ... nem[ALUOutputj E-C15 O

bE-Rm DE-C)E-D

CE-Rd

STRH(I) E-Rn CE-Rd nE-D

DE-C

WRSB(R) E-Rn ... LML*mem[ALUOutputj7o dE-LMD

3bE-Rm signed extend; DE-D nE-D

CDRSH(R) E-Rn ... LMD-mem[ALUOutputJ15o dE-LMD

3bE-Rm signed extend; DE-D nE—D

DRSB(I) E-Rn ... LMD(-mem[ALUOutputj7o dE-LMD

signed extend; DE-D

DRSH(I) E-Rn ... LMD&mem[ALUOutput]iso UE-LMD

signed extend; DE-D

oad store LDR(I) E-Rn LUOutput(-offset LMD-mem[ALUOutput] d-LMD

immediate offset showed in figure 3.10)E-D .irE-D

addressing mode 2),

)E-changed base

STR(I) E-Rn CE-Rd ... nem[ALUOutput](-C; DE-D RnE-D

Cf-C

Load store registe LDR(R) -Rn ... LMD-mem[ALUOutput]; RdLMD

)ffset 3bE-Rm)E-D

STR(R) E-Rn ... nem[ALUOutput](-C; DE-D RnE-D

BbE-Rm Cf-C

CE-Rd

37

nstruction type Instruction ID EXE MEM WB

oad store ZDM \±Rn Calaulate Startaddress LMD(-mem[Startaddress]; iELMD

nultiple end_address (showed in)E-D nD

figure 3.12 addressing mode

[) D-changed base

vlore detailed in 4.5.1

STM nem[Start addressj E-Ri

DE-D

More detailed in 4.5.2

3ranch and 3 * 3ranch to PC+(Imm«2) * *

)ranch with link Imm is the lower 24 bits

3L * LUOutputE-PC+4 branch \LUOutputE- ALUOutput LRE

o PC+(Imm«2), Imm is LUOutput

the same as B instruction

3ranch and 3LX1 * t\LUOutput(-PC+4 change ... LRE

,ranch with link f bit of CPSR (showed in \LUûutput

md change to able 3.2), branch to

humb >C+(Imm«2)+(H«1),

Imm is the same as B

instruction, H is bit 24 ofiR

oprocessor load DC 10 10 [0 10

tore and double

egister transfers

STC 10 10 10 [0

Doprocessor data CDP 10 10 10 10

rocessing

Doprocessor vICR 10 10 10 10

egister transfers

vIRC 10 10 no 10

Software intemipt SWI LUOutputE—PC+4 save LUOutput(—ALUOutput LRE

SPSR change CPSR Ibit \iUOutput

f_bit processor mode

(showed in table 3.2),

)ranch

Notes:

• *: Nothing to do in that stage.

• ...: It does the same work with last instruction operation.

• (1): is the first cycle.

• (2): is the second cycle.

3

• mem[addr]: is memory data in address ‘addr’

Table 4-2: Work of every stage

Stage Any instruction
Arithmetic_instruction j_Loadlstore instruction Branch_instruction

1F IfEXEchangePC then PC-EXENPC;

Else if MEM_changePC then PC —MEM NPC (hranch related signal showed in figure 4.5);

Else PCE-PCO (PCO is used only in 1F stage to identify the address ofnext instruction);

IF ID IR -rnem[PC];
PCO E-PC+4;
Reg[15] (-PC+8;

ID ID EXE IR E-If ID IR;
IDEXETYPEE- decode type of instruction (table 3.1 3.2 3.3);
IDFXEOPERATE- decode operate of instruction (table 3.4 instruction narne);

ID_EXE_PC E-Regs[15];

ID_EXE_A(-Regs[Rnj;

If (instruction is UMLAL or SMLAL) and (is 2’ cycle ofrnultiply) then ID_E)Œ_Bb-Regs[RdHiJ
Else IQEXE_Bb E-Regs[Rm];

If (instruction is UMLAL or SMLAL) and (is 2 cycle of multiply) then ID_E)(E&E-Regs[RdLoJ
Else if instruction is store then ID_E)Œ_&E-Regs[Rd]
Else IDEXEC-Regs[Rs];

If instruction is B, BL, BLX, SWI then ID EXE Irnrn-IMM24 (Iower 24 bits ofIR);
Else if instruction is BKPT then ID EXE IrnrnE-1MM20 (lower 20 bits of IR);
Else ID EXE ImrnE-IMM 12 (lower 12 bits of IR).

Stage Arithrnetic instruction Loadistore instruction Branch instruction
EXE EXE MEM 1RE-ID EXE 1R; EXE MEM iRE-ID EXE TR; EXE MEM iRE-ID EXE 1R;

EXE MEM TYPE- EXE MEM TYPE- EXEMEMTYPEE
1DEXETYPE; 1DEXETYPE; ID EXE TYPE,
EXEMEMOPERATEE- EXEMEMOPERATRE- EXEMEMOPERATE-
IDE)ŒOPERATE; IDEXEOPERATE; IDEXEOPERATE;

If destination register is PC E)Œ_MEM_ALUOutput(- EXE_NPCf
(Rd’15) then address(A,Bb,C,Irnrn) (showed in IDE)ŒPC+Irnrn;

EXE_NPC-A func figure 3.10, 3.11 addressing mode
operand2(Bb,CJrnm) 2,3); EXE_changePC E- 1;
(showed in figure 3.4
addressing mode I); If change base register Rn then If instruction is BL, BLX.
EXE_changePC E- 1; E)Œ_MEM_DE-changedbase; SWI, BKPT then

EXEMEMALUOutputE
Else If instruction is store PC-4;

j

MEMWBIRE
EXEMEMIR;
MEMWB TYPE-
E)ŒMEMTYPE;
MEMWBOPERATE<
EXEMEMOPERATE;

MEMWBALUOutput&
EXEMEMALUOutput;

MEMWBIR- EXEMEMIR;
MEMWBTYPE (-
EXE MEM TYPE;
MEMWBOPERATEE
E)ŒMEMOPERATE;

If (instruction is Ioad) and destination
register is PC (Rd15) then

MEMNPC-
rnern[E)ŒMEMALUOutputJ;

Else if instruction is load then
MEMWBLMD E’
mem[E)ŒMEMALUOutputJ;

Efse if instruction is LDM then
MEM_WBLMD(
rnern[EXEMEMStartAddress]
MEMWBStartAddress
EXEMEMStartAddress+4;

Else if instruction is store then
mem[EXEMEMALUOutputf=
E)ŒMEMC;

Else if instruction is STM then
mem [EXEMEMStartAddressJ=
EXEMEMC; StartAddress
EXEMEMStartAddress±4;
MEMWBEndAddress
EXEMEMEndAddress;

MEMWBD- E)ŒMEMD;
MEM_WB_ChangeBase
EXEMEMChangeBase (notify if
tEe base register is to be changed);

1f instruction is BL, BLX,
SWI, BKPT then

MEMWBALUOutput
EXEMEMALUOutput;

Stage Any instruction
Arithmeflc instruction LoadJstore instruction Branch instruction

EXE_MEMALUOuptutE- E)ŒMEMC(- IQEXE_C;
A func
operand2(Bb,Cjmm); If instruction is LDM STM then

E)ŒMEMStaAddress
Startaddress;
EXEMEMEndAddress
Endaddress (showed in figure
3.12) addressing mode 4);

MEM

WB Regs[RdJE- If instruction is LDM then If instruction is BL, BLX,
MEM WB ALUOutput; Regs[Ri]E- MEMWBLMD; SWI, 3KPT then

40

Stage Any instruction
Arithmeflc instruction Load!store instruction Branch instruction

Regs[LR]E
If instruction is long rnultiply Else Regs[Rd]E- MEMWBLMD; MEMWBALUOutput.

Regs[RdHiJ -
MEMWBALUOutput; If changebase
Regs[RdLo] - Regs[Rnl - MEMWB_D.
MEMWBD;

Else if instruction is multiply
then

Regs[RdMUL] E
MEMWBALUOutput.

In short, more human readable form, each stage is doing the following:

IF stage:

• Instruction fetch.

• Write PC+4 to PCO for next instruction address.

• Modify PC to PC+8, in order to be compatible with 3 stages pipeline.

• Pass along values needed in the next stage.

ID stage:

• Decode ïnstruction to know its type and operate.

• Read PC for branch instruction to calculate the new address.

• Read registers (3 register read ports).

• Extend sign ofimmediate (lower 24 bits or 20 bits or 12 bits ofthe instruction).

• Pass along values needed in the next stage.

E)OE stage:

• Perform an ALU operation for data processing instructions. If the destination

register is PC, sïgnal a branch.

• Calculate address for load/store instructions.

• Calculate the start address and end address of memory block for LDM1STM.

• Calculate the new instruction address for branch instructions.

• Pass along values needed in the next stage.

MEM stage:

41

• for load instruction, read memory data, if the destination register is PC, signal a

branch. For store instruction, write data to memory.

• For LDM/STM instruction, modify next access memory address besides memory

access.

• Change base register Rn if needed.

• Pass along values needed in the next stage.

WB stage:

• Wnte destination register for data processing instructions, load instructions.

• Write link register LR for branch and link instructions.

• Write base register Rn for load and store instructions if needed.

4.2 forwarding

forwarding [241[25/: There is a data dependency from instruction A to instruction B

when a resuit from A is needed for the execution of B. Forwarding paths allow resuits to

be passed between stages as soon as they are available, and the 5-stage ARM pipeline

requires each of the three source operands (A, Bb, C) to be forwarded from any

intermediate resuit registers (ALUOutput, D, LMD). Figure 4.1 shows the forwarding

path (also illustrated in figure 3.14 forwarding path). Figure 4.2 shows the instruction

sequence for forwarding process

I

Figure 4.1: Forwarding paths

42

Figure 4.2: Instruction sequence for forwarding process

Expianation ofthe forwarding path (Figure 4.1, Figure 4.2 and Figure 3.14):

Path 1: From the end ofMEM stage (MEM_WB) to the end of D stage

Data in MEM is (MEM_WBJ ALUOuptut, D, LMD (path 1 data to be forwarded)

(MEM_WBJ ALUOutput:

• The output of arithmetic instructions, MRS, CLZ, MRC

• Ihe output ofmultiply instructions (MUt, MLA)

• The higher 32 bits of long multipiy output (UMULL, UMLAL, SMULL,

SMLAL)

(MEMWBJ D:

• The iower 32 bits of long muitipiy output (UMULL, UMLAL, SMULL,

SMLAL)

• The value of base register afler changing (ioad, store, LDM, SIM, LDC,

SIC)

(MEMWBJ LMD: ail kinds ofioad instructions’ Load Memory Data

Data in ID is A, Bb, C (path 1 data that forward to)

• A: RnJMULRn

• Bb: RmJUMLALRdHi/SMLALRdHi

• C: Rs/Rd/UMLALRdLo/SMLALRdLo

Path 2: From the end of MEM stage (MEM_WB) to the start of EXE stage (DEXE)

43

Data in MEM is ALUOutput, D, LMD (path 2 data to be forwarded)

Data in EXE is A, 3h, C (path 2 data that forward to)

Path 3: from the end of EXE stage (EXE_MEM) to the start of EXE stage (D_EXE)

Data in the end of EXE is ALUOutput, D (path 3 data to be forwarded)

Data in the start ofEXE is A, Bb, C (path 3 data that forward to)

Path 4: From the end ofMEM stage (MEM WB) to the start ofMEM stage (EXE_MEM)

Data in the end ofMEM is LMD (load, SWP,SWPB and LDM) (to be forwarded)

Data in the start of MEM is C (for store instructions and SWP,SWPB,STM)

(forward to)

Table 4.3, 4.4, 4.5 shows the forwarding operation.

Table 4-3: Destination register of corresponding pipeline register temporary data

ALUOutput, D, LMD (for the source instruction of the forwarding).

Pipeline register Stage Destination register of the instruction

temporaiy data

ALUOutput EXE and MEM Rd: for anthmetic instructions;

MUL_Rd: for short multiply instructions;

MULL_RdHi: for long multiply instructions

D EXE and MEM RdLo: for long multiply instructions;

Rn: for loadlstore instructions that change the

base register;

LMD MEM Rd: for load and swp instructions;

Ri: for LDM instructions;

44

Table 4-4: Source register of pipeline register temporary data A, Bb, C (for the destination

instruction of the forwarding).

Pipeline Stage Source register Source register of the instruction

register identifier

temporary data

A D and EXE A_source_D Rn: for arithmetic, swp, loadlstore

instructions;

MUL_Rn: for short multiply instructions;

Bb D and EXE B_source_ID Rm: for arithmetic, loadlstore

instructions;

RdHi: for long multiply accumulate

instructions

C D and EXE C_source_ID Rs: for anthmetic multiply instructions;

Rd: for store instructions;

Ri: for STM instructions;

RdLo: for long multiply accumulate

instructions;

MEM C_source_MEM Rm: for swp instructions;

Rd: for store instructions;

Ri: for STM instructions;

Table 4-5: Forwarding paths

No. forwarding Source Source msfruction Destination Destination Compare condition
path pipeline operation pipeline instruction

(source (destination operation
instruction) instruction)

1 MEM/WB Arithmetic; IF/ID Arithmetic; swp; Destination register of
multiply; long loadlstore; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A source ID)

2 1 MEM/WB Long multiply; IF/ID Arithmetic; swp; The same as above
loadlstore and loadlstore;
change base; (D) multiply;

45

No. Fonvarding Source Source instruction Destination Destination Compare condition
path pipeline operation pipeline instruction

(source (destination operation
instruction) instruction)

3 1 MEMJWB Swp; loadlstore; IF/ID Arithmetic; swp; The same as above
LDMs; (LMD) loadlstore;

multiply;
4 1 MEM!WB Arithmetic; IF/ID Arithmetic; Destination register of

multiply; long loadlstore; long source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B source ID)

5 1 MEM/WB Long multiply; IF/D Arithmetic; The same as above
loadlstore and loadlstore; long
change base; (D) multiply

accumulate;
6 1 MEM/WB Swp; load/store; IF/ID Anthmetic; The same as above

LDMs; (LMD) loadlstore; long
multiply
accumulate;

7 1 MEMJWB Arithmetic; IF/ID Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction = source
(ALUOutput) register in destination

pipeline instruction
(C source ID)

8 1 MEMJWB Long multiply; If/ID Arithmetic; The same as above
loadlstore and multiply; store;
change base; (D) STMs

9 1 MEMIWB Swp; loadlstore; IF/ID Arithmetic; The same as above
LDMs; (LMD) multiply; store;

STMs
10 2 MEM/WB Arithmetic; ID/EXE Arithmetic; swp; Destination register of

multiply; long loadlstore; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A source ID)

11 2 MEMIWB Long multiply; ID/EXE Arithmetic; swp; The same as above
loadlstore and loadlstore;
change base; (D) multiply;

12 2 MEMJWB Swp; loadlstore; ID/EXE Arithmetic; swp; The same as above
LDMs; (LMD) loa&store;

multiply;
13 2 MEMJWB Arithmetic; ID/EXE Arithmetic; Destination register of

multiply; long load/store; long source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B_source ID)

14 2 MEM/WB Long multiply; ID/EXE Arithmetic; The same as above
load/store and loadJstore; long
change base; (D) multiply

accumulate;

46

No. Forwarding Source Source instruction Destination Destination Compare condition
path pipeline operation pipeline instruction

(source (destination operation
instruction) instruction)

15 2 MEMIWB Swp; loadlstore; ID/EXE Arithmetic; The same as above
LDMs; (LMD) loadlstore; long

multiply
accumulate;

16 2 MEM/WB Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction = source
(ALUOutput) register in destination

pipeline instruction
(C sourcelD)

17 2 MEM/WB Long multiply; ID/EXE Arithmetic; The same as above
loadlstore and multiply; store;
change base; (D) STMs

18 2 MEMIWB Swp; loadlstore; ID/EXE Arithmetic; The same as above
LDMs; (LMD) multiply; store;

STMs
19 3 EXE/MEM Arithmetic; ID/EXE Arithmetic; swp; Destination register of

multiply; long loadlstore; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A source ID)

20 3 EXEIMEM Long multiply; ID/EXE Arithmetic; swp; The same as above
loadlstore and loadJstore;
change base; (D) multiply;

21 3 EXE/MEM Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long loadJstore; long source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B source ID)

22 3 EXE/MEM Long multiply; ID/EXE Arithmetic; The same as above
loadlstore and loadlstore; long
change base; (D) multiply

accumulate;

23 3 EXE/MEM Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction source
(ALUOutput) register in destination

pipeline instruction
(C source ID)

47

No. forwarding Source Source instruction Destination Destination Compare condition
path pipeline operation pipeline instruction

(source (destination operation
instruction) instruction)

24 3 EXE/MEM Long multiply; ID/EXE Arithmetic; The same as above
load/store and multiply; store;
change base; (D) STMs

25 4 MEM/WB Swp; loadlstore; EXE/MEM Swp; store; Destination register of
LDMs; (LMD) STMs source pipeline

instruction = source
register in destination
pipeline instruction
(C source MEM)

4.3 Interlock t241 1251

If the instruction 1 is load, SWP, SWPB or the last execution of LDM, and its output is

the input of instruction2 (except C of store or $1M instruction, and 3h of SWP or SWPB

instruction), there is also a RAW hazard between the 2 instructions (Figure 4.3) afier

forwarding, so it is necessary to stail the pipeline until the hazard is cleared. (figure 4.4)

Instruction 1 IF ID EXE WB

Instruction2 1F D ÊXE MEM WB -

Instruction3 W D EXE MEM WB

Instruction4 W ID EXE MEM WB

Figure 4.3: RAW hazard between two adjacent instructions

Instruction 1 W ID EXE MEM WB

Instruction2 W D stail 1EXE MEM WB

Instruction3 W stali D EXE MEM WB

Instruction4 stali W ID EXE MEM WB

Figure 4.4: Insert a nop to avoid RAW hazard

4,4 Brandi instructions 12511261

Instructions that change PC are:

EXE stage:

4$

• Arithmetic instructions (except TST,TEQ,CMN,CMP) and destination register

(Rd) is PC (Rd=15).

• BX, BLX2, BKPT, B, BL, MRC (destination register is PC, Rd=15), SWI

MEM stage:

• LDR, LDRT (and destination register is PC, Rd=15), LDM last execution

(R15 o=0x8000)

The processing of branch instructions is illustrated in figure 4.5. When a branch

instruction is encountered in EXE stage, it gives a signal EXE_changePC to IF and ID

stage to cancel the instructions in those stages, also gives the new PC value EXE_NPC to

W stage so it can fetch a new instruction in EXE_NPC address in the new cycle. The

same as MEM stage, it cancels W, ID, EXE stage instructions by signal MEM_changePC

and gives the new instruction address by MEM_NPC.

WB

Notes:

1. There is no delay slot.

2. For the instructions that change PC in EXE stage, it should cancel the instruction

in ID. EXE and give new PC in W at next cycle.

3. For the instructions that change PC in MEM stage, it should cancel the

instruction in TU, EXE (before execution), MEM and give new PC in W at next cycle.

MEM-NPC

Figure 4.5: Brandi instruction operation

49

4.5 Some special instructions’ implementation

Special instructions include load and store multiple, swap the content of register and

memory and ail multiplications (LDM, STM, SWP, SWPB, MUL, MLA, UMULL,

SMULL, UMLAL, SMLAL).

4.5.1 Load Muttivte Registers (LDM)

EXE-LDMLOCK

MEM WB

Figure 4.6: LDM instruction operation

Figure 4.6 illustrates the processing of instruction LDM [25][26]. When a LDM

instruction is in EXE stage, it gives a signal EXE_LDMLOCK to IF and D stages and

lock the two stages, continue the iast 3 stages EXE, MEM and WB until the last

execution ofLDM, it changes the value of EXE_LDMLOCK to unlock W and D stages.

General format:

LDM {<cond>} <addressing_mode> <Rn>, <registers>

The registers’ subset can’t be empty, otherwise it is an invalid instruction.

There are 3 special forms ofLDM.

LDM1, this form of the LDM instruction is useful for block loads, stack operations and

procedure exit sequences. It loads a non-empty subset, or possibiy ail, of the general

purpose registers from sequential memory locations. The general-purpose registers

loaded can include the PC. If they go, the word loaded for the PC is treated as an address

and a branch occurs to that address but do flot change the CPSR.

LDM2, it loads user mode registers when the processor is in privileged mode, the

instruction loads a non-empty subset of the user mode general-purpose registers from

sequential memory locations (PC can’t be loaded).

50

LDM3, this form is useful for returning from an exception. It loads a subset of the

general-purpose registers and the PC ftom sequential memory locations. Also, the $PSR

ofthe current mode is copied to the CPSR.

LDM loads multiple register value from memory. It takes 1 cycle per memory access, 50

the number of cycles it needs should be the number ofregisters. Rn is the base register, it

can be modified according to the addressing-mode, registers are indicated in least

significant 16 bits of the instruction, every bit j is ‘l’ means the corresponding register Ri

needs load data from memory. The sequence of loading data is from lower register

number to higher register number.

General work: LDM instruction locks the W, ID stage and continues EXE, MEM, WB

stage.

Execution: LDM first execution should calculate the start address and end address of

memory to be accessed, at the same time, change base register value according to the

instruction format in EXE stage. Access memory in MEM stage, write register and

change base register in WB stage. The following execution of LDM only change memory

address in EXE, access memory in MEM, wnte register in WB.

Forwarding: for the first execution of LDM, the first loaded register value and base

register value can be forwarded if necessary. for the later executions of LDM, only the

loaded register value can be forwarded.

Signal: EXE_LDMLOCK is used to indicate if a LDM instruction is being executed. It is

initialized to 0, when LDM instruction is encountered, it is set to 1, until the last

execution (last register to be loaded), set it to 0.

Instruction select: When EXE_LDMLOCK is 1, the instruction executed in EXE stage

next cycle will be the instruction from MEM stage, and clear 1 bit (the least significant ‘1’

51

bit). When EXE_LDMLOCK is 1, IF and D stage will be locked, keep the instruction in

that stage. When EXE_LDMLOCK is O, W and D stage continue to execute.

4.5.2 Store Multiple Registers (STM)

ID-STMLOCK

W D EXE MEM WB

Figure 4.7: STM instruction operation

figure 4.7 illustrates the processing of SIM [25][26] instruction. When a STM

instruction is in D stage, it gives a signal D_STMLOCK to W stage and lock it,

continue the last 4 stages D, EXE, MEM and WB until the last execution of STM, it

changes the value ofD_STMLOCK to unlock W stage.

General format:

STM {<cond>} <addressing_mode> <Rn>, <registers>

The registers subset can’t be empty, otherwise it is an invalid instruction.

There are 2 special forms of STM.

STM1, this form ofthe STM instruction stores a non-empty subset ofthe general-purpose

registers to sequential memory locations.

STM2, this form of STM stores a subset of the user mode general-purpose registers to

sequential memory locations when the processor is in privileged mode.

STM stores multiple register value to memory. It takes 1 cycle per memory access, so the

number of cycles it needs should be the number of registers. Rn is the base register, it can

be modified according to the addressing-rnode, registers are indicated in least significant

16 bits of the instruction, every bit j is ‘1’ means the corresponding register Ri value

52

needs to be stored in memory. The sequence of storing data is from lower register number

to higher register number.

General work: SIM instruction lock the W stage and continue D, EXE, MEM, WB stage.

Execution: $1M first execution should read register value to be stored and base register

value in D, calculate the start address and end address of memory to be accessed, at

same time, change base register value according to the instruction format in EXE stage,

Access memory in MEM stage, write base register in WB stage. The following execution

of STM read register value to be stored in D stage, change memory address in EXE

stage, access memory in MEM stage, nothing to do in WB stage.

Forwarding: Only the first execution of $1M, base register value (D) can be forwarded if

necessary.

Signal: D_$TMLOCK value can be:

-1: Initial value

3: First execution and need lock

2: First execution and no need lock

1: Not first execution and need lock

O: Not first execution and no need lock

Instruction select: When D_SIMLOCK is 1 or 3, the instruction executed in D next

cycle will be the same instruction, and clear 1 bit (the least significant ‘1’ bit). When

DSTMLOCK is 1 or 3, W stage will be locked, keep the instruction in that stage. When

D_$TMLOCK is 0, 2 or -1, W stage continues to execute (unlock W).

4.5.3 Swap a word7byte (SWP, SWPB)

Figure 4.8 illustrates the processing of SWP, SWPB [25][26] instruction. When a SWP

instruction is in MEM stage, it gives a signal MEM_SWPLOCK to 1F, ID and EXE

53

stages and lock the three stages, continue the last 2 stages MEM for 1 cycle, then it

changes the value of MEM $WPLOCK to unlock 1F, D and EXE stages.

MEM-$WPLOCK

General format:

SWP(B) {<cond>} <Rd>, <Rm>, [<Rn>]

WB

It loads a memory [Rnj data to register Rd and store another register Rm’s content to

memory [Rnj atomically, so it needs 2 cycles for memory access.

General work: SWP instruction locks the IF, D, EXE stage for 1 cycle and continue

MEM, WB stage.

Execution: SWP first execution should read memory in MEM stage, write register in WB

stage. The following execution of SWP, SWPB should wnte register to memory in MEM

stage, nothing to do in WB stage.

Forwarding: For the first execution, data loaded from memory (for Rd) can be forwarded

if necessary.

Signal: MEM_SWPLOCK is initialized to O. When SWP or SWPB instruction is

encountered, it is set to 1, after 1 cycle it is set to O.

Instruction select: When MEM_SWPLOCK is 1, the instruction executed in MEM stage

will be the same instruction. When MEM SWPLOCK is 1, IF, ID and EXE stage will be

Figure 4.8: SWP instruction operatïon

54

locked, keep the instruction in that stage. When MEM_SWPLOCK is O, 1F, ID and EXE

stage continue to execute.

4.5.4 Miitttoty instructions (MUL, MLA, UMULL, $MULL)

Figure 4.9 illustrates the processing of these instructions. When a multiplication

instruction (MUL, MLA, UMULL, SMULL) is in EXE stage, it gives a signal

EXEMULLOCK to IF and ID stages and lock the two stages, continue the last 3 stages

EXE, MEM and WB until the last cycle of the multiply instruction, it changes the value

ofEXE_MULLOCK to unlock IF and D stages.

EXE-MULLOCK

D EXE MEM WB

Figure 4.9: Multiply-1 instruction operation

Instructions are:

MUL: multiply instruction

MLA: accumulated multiply instruction

UMULL: unsigned long multiply instruction

SMULL: signed long multiply instruction

All multiply instructions was integrated in the integer unit, they take much more cycles in

EXE stage, the number of cycles that the instruction needs depend on the source operands.

The greater operand needs more cycles. The calculation method can also be changed

according to the real hardware.

General work: The multiply instructions lock the W, D, multiple cycles and continue

EXE, MEM, WB stage.

55

Execution: Until the last cycle, EXE output its resuit to MEM, and then WB to write back

the register.

Signal: EXE_MULLOCK is initialized to 0. When MUL, MLA, UMULL or SMULL

instruction is encountered, it is set to the number of cycles that the multiply needs, then it

is decreased by 1 every cycle, until 0, it unlocks W and D.

Instruction select: When EXE MULLOCK is flot 0, the instruction executed in EXE

stage will be the same instruction. When EXE_MULLOCK is flot 0, W and D will be

locked, keep the instruction in that stage. When EXE_MULLOCK is 0, IF and D stage

continue to execute (unlock W and D).

4.5.5 Long inutttpty and accumutate instructions (UMLAL, SMLA

Figure 4.10 illustrates the processing of UMLAL and SMLAL [25][26J instructions.

When a UMLAL or SMLAL instruction is in D stage, it gives a signal D_LMULLOCK

to W stage and lock the stage 1F, so it can read the source registers in 2 cycles (it needs 2

cycle to read the 4 source registers for UMLAL or SMLAL), if the multiply instruction

needs only 1 cycle to execute in EXE stage, it unlock the IF stage, otherwise it lock IF

and D stages until the last cycle.

EXE-LMULLOCK

EXE MEM WB

Figure 4.10: MuItipIy-2 instruction operation

Instructions are: UMLAL and SMLAL.

UMLAL: unsigned accumulated long multiply

SMLAL: signed accurnulated long multiply.

ID-LMULLOCK

w

General format:

56

UMLAL(SMLAL){<cond>}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

RdLo RdLo+[Rm*Rs]3io

RdHi RdHi+[Rm*Rs]63,.32 + carry from calculating RdLo

S indicates that if the instruction changes the CPSR.

The number of cycles in EXE they need is the same as other multiply instructions. Both

of the instructions need four source register operands, but this kind of ARM micro-

structure has only 3 register read ports. It needs 2 cycles to read the source operand in ID

stage.

It needs 2 signal D_LMULLOCK and EXE_LMULLOCK to implement the instructions.

DLMULLOCK is used to lock IF when UMLAL or SMLAL is encountered.

EXELMULLOCK is used to indicate the number of cycles it needs in EXE, and to

release D_LMULLOCK 1 cycle before it finish in EXE stage, so that the pipeline can

continue (2 instructions in 1F and ID).

General work: The multiply instructions lock the W, ID, multiple cycles and continue

EXE, MEM, WB stage.

Execution: Until the last cycle, EXE output its resuit to MEM, and then WB to write back

the register.

Signal: D_LMULLOCK and EXE_LMULLOCK are initialized to O. When UMLAL or

SMLAL instruction is encountered in D, D_LMULLOCK is set to 2, D read 2 register

operands Rm and Rs, and lock the W stage. Then set to 1 or O according the number of

cycles it needs in EXE. If it needs more cycles in EXE, it is set to 1 to lock W, at the

same time, ID keeps the other 2 operands RdHi and RdLo. 1 cycle before finishing

execution in EXE it is set to O, and unlock the W stage so that the pipeline can continue.

57

Instruction select: When ID LMULLOCK is flot O, the instruction executed in ID will be

the same instruction, IF will be locked, keep the instruction in that stage. When

DLMULLOCK is O, IF continue to execute. When EXE_LMULLOCK is flot O, the

instruction executed in EXE will be the same instruction.

4.6 Current and Saved Program Status Register (CPSR, SPSR)

PSR[6]

Figure 4.11 illustrates the processing of CPSR and SPSR {25][26]: ID stage read CPSR

and SPSR, they are together with this instruction. In EXE stage, the instruction can read

or write CPSR and SPSR. If CPSR changes in EXE stage, we need to modify the CPSR

for following instructions, so when instruction arrives to EXE stage, it read the newest

CPSR. MEM stage can modify CPSR. WB stage needs CPSR for writing back the

appropriate register.

CP$R:

The stages that need CPSR are:

• ID stage (for read register in different processor mode).

• EXE stage (for conditioned execution instructions, MRS, BKPT, SWI).

• WB stage (for write register in different processor mode).

Figure 4.11: PSRs (progam status register) operation

The stages that modify CPSR are:

58

• EXE stage

• MEM stage

In EXE stage,

• The arithmatic instructions, when bit 20 of Ris 1, it changes N,Z,C,V in CPSR,

when destination register is PC (Rd=1 5), CPSRSPSR.

• MSR instruction changes CPSR or SPSR with register operand or immediate

operand.

• BX, BLX2 modify T flag.

• BKPT changes processor mode to abort mode, and set SPSR_abt=CPSR.

• BLX1 sets T flag to 1.

• MRC changes N Z C V when destination register is PC (Rd=15).

• SWI changes processor mode to supervisor mode, and set SPSR_svc=CPSR.

In MEM stage,

• LDR and LDRT, when destination register is PC (Rd=15), it changes T flag.

• LDM1, when Rbit 15 is ‘1’, it changes T flag.

• LDM3, it sets CPSR with SPSR of corresponding processor mode.

SPSR:

The stages read SPSR are:

• EXE stage

• MEM stage

In EXE stage,

• The arithmatic instructions, when destination register is PC (Rd=15),

CPSR=SPSR.

• MRS, when the PSR is SP$R, Rd<--SPSR.

In MEM stage,

59

• LDM3, it sets the CPSR with corresponding SPSR.

The stage writes PR is EXE.

Instructions wnte SPSR are:

• MSR, when the PSR is SPSR, it writes the SPSR with register operand or

immediate operand.

• BKPT, it writes SPSR_abt with CPSR.

• SWI, it writes SPSR_svc with CPSR.

MSR changes processor mode in EXE stage, so it is necessary to forward MSR execution

to D stage, at the same time, for MSR with register operand, B operand needs to be

forwarded to D stage.

Implementation:

• forwarding: Source register operands need to be read in D stage, it needs to

know the processor mode. Only MSR instruction can change processor mode and

do flot resuit in branch operation, 50 it is necessary to forward MSR execution to

D stage, at the same time, for MSR instruction with register operand Bb, Bb also

needs to be forwarded to D stage.

• For reading CPSRISP$R, read it in D stage, the instruction in D stage needs

processor mode in CPSR to read register file. In EXE stage, read CPSR/SPSR

again, since some instructions in EXE stage may change condition code of

CPSRISPSR and do flot change processor mode. Transfer the newest CPSR!SPSR

to MEM stage and WB stage.

• For writing SPSR, in EXE sage, BKPT and SWI resuit in branch operation, this

must cancel the instructions in IF stage and ID stage. Or in D stage, MSR

instruction can modify the SPSR, SO there are no multiple copies.

• For writing CPSR, in MEM stage, LDR and LDM must resuit in branch operation,

this will cancel the instructions in IF stage, D stage and EXE stage. In EXE stage

instructions that change CPSR are BX, BLX2, BKPT, BLX1, MRC, SWI, these

60

instructions also result in branch operation, it wiIl cancel the instructions in If

stage and ID stage. In D stage, only MSR instruction can change CPSR, 50 there

are no multiple copies.

4.7 Discussion on generalization

This section discusses the generalizaiton of the ARM core model from the following

aspects:

• It is compatible with 3-stage and 5-stage pipeline architecture.

• It can be extended to support Thumb instruction set.

• It is easy to add some new instructions.

• For those processors that change the number of pipeline stages, it is difficult to

implement with a little change in this processor model.

• By encapsulating the ARM core model, separating its interface and implement, it

can be a component to plug into a system and communicate with other

components.

The ARM core model is based on a general ARM 5-stage pipeline micro-architecture

with forwarding paths, automatic nop inserting when interlocking. It is compatible with

the 3-stage pipeline micro processor core, it also supports 5-stage pipeline processor core

architecture without automatic nop inserting.

The AR’I core model supports 32-bits ARM instruction sets. It can be generalized to

support thumb instruction sets (16-bits).

• The thumb instruction set is a re-encoded subset of the ARTvI instruction set.

Thumb is designed to increase the performance ofARM implementations that use

a 16-bit or narrower mernory data bus and to allow better code density than ARIVI.

Every thumb instruction is encoded in 16 bits.

• Thumb does not alter the underlying programer’ s model of the ARM architecture.

All thumb data-processing instructions operate on full 32-bit values, and full 32-

bit addresses are produced by both data-access instructions and instruction

fetches.

61

• When the processor is executing thumb instructions, registers RO-R7 are

available. Some instructions can access PC (Program Counter), LR (Link

Register), SP (Stack Pointer). Further instructions allow limited access to R8-R15.

• Thumb does flot provide direct access to the CPSR or any SPSR.

Afier adding a module for decoding Thumb instructions and access limit, the ARIvI core

model can be generalized to support Thumb instruction sets.

for supporting new ARIVI instructions, we only need to modify ID (instruction decode)

module and EXE (execution) module without changing the other parts (forwarding,

interlock, W, MEM, WB), the whole pipeline can work well. For those processor core

that change the pipeline stages (more than 5 stages), we have to adjust work of every

stage, forwarding path, interlock condition, etc. So it is difficult to support them with

little change to the ARM core model.

The ARM core model is now a stand alone software project. We can encapsulate it to be

a component to plug into a system and communicate with others by separating its

interface (input/output request) and implementation with little source code modification.

Chapter 5 Valiclcttion ofthe inoclel

Chapter 5 Validation of the mode!

In order to test the validity of the ARM core mode!, some experiments were carried out

on this model. And a!so they were mn on another ARM Instruction Set Simu!ator, and

then compare the resuits from the two models, to ensure if the ARM core model is valid.

5.1 Methodology of Validation

This section introduces the ARM core model, Instruction Set Simulator and methodoiogy

of validation.

5.1.1 TIte ARM core modet

The ARM core model is a cycle accurate micro-architecture simulator. It simu!ates the 5-

stage pipeline, IF (Instruction Fetch), ID (Instruction Decode), EXE (Execution), MEM

(Memory access), WB (Write back), separate instruction cache and data cache (flot the

comp!ete memory hierarchy subsystem), registers, forwarding path, interlock logic,

hazard detect. In EXE stage, there are ALU, shifier, multiplier, auto-indexed addressing,

etc. showed in figure 3-14.

The ARM core model is a sirnulator of the 32-bit ARM RISC processor. It simu!ates the

entire instruction set except for those requiring use of the coprocessor unit. The

coprocessor is not a functionai unit standard across ail ARM processors. Coprocessor

instructions vary widely from system to system depending on the actual coprocessor

module available on the chip. It was flot possible to corne up with a comrnon subset of

operations that al! coprocessors would support.

The ARM core mode! executes one instruction at a time and updates the processor state

accordingly. figure 5.1 i!lustrates the processor of the ARM as simu!ated by the ARM

core mode!.

1. The input program is ARM object code. It can be obtained by one of the

following modes:

62

63

• ARM object code.

• ARM assembler to assemble the ARM assembly program.

• ARIVI GCC cross compiler to compile C source file to ARM object code.

ARM core

Input program w

Instruction
memory

cross-compiler

ID Registers

.asm .bin EXE

assembler

.bin
MEM

Data
memory

WB

Figure 5.1: The AIIM core model

2. The object code was stored in the instruction cache. The ARM core model does

flot simulate the ARIvI processor in the 16-bit THUMB mode [25][26]. This lias

the effect that all instructions are stored at word-aligned addresses, and ail

instructions fetch operation as 32-bit data transfers.

3. Data was stored in data cache in the littie-endian representation. ARIVI supports

data transfer in three different sizes: byte, halfword, and word between the

registers and memory. The ARIVI core model implements the transfer of memory

data ofali the sizes.

64

4. The program behavior must be repeating for testing purposes. Being completely

software-simulated, ARM core model guarantees that the outcome of program

behavior is deterministic. The ARM core model simulates program execution by

iterating through a cycle of instruction fetching, decoding, execution, memory

access and write-back.

5.1.2 Vatidate tue ARM core mode! with an ISS (Instruction Set Simtttator)

An ISS is used to validate the ARM Core Model. The ARM core mode! and ISS do flot

have the same precision. The ARIvI core model is a cycle accurate simulator that

simulates the micro-architecture with 5 pipeline stages. ARM ISS executes ARM

programs by simulating the effects of each instruction on a target machine. It interprets

ARM programs at the instruction level. So we use an ARM ISS to validate the ARM core

mode! at the instruction leve!. The validation methodology is show in figure 5.2:

.bin

1. The C source program (example code in figure 5.4) is cross compiled by:

% arm-e1f-cc O —static O source.c O —o O obifiiel (The objfilel can be mn on

theARMISS)

2. Modify the C source program to rernove ‘main’ and ‘printf (example code in

figure 5.3). Cross compile it by:

outputl

output2

Figure 5.2: Validate the ARM core model

65

% arm-elf-gcc G —static G —nostartfiles G —nostdlib G source.c G —o G objfile2

The ARM binary code extracted from objfile2 can be executed on the ARIVI core

mode!. The start file is operating system dependent, we don’t have an operating

system in the ARM core model. The ARM core model does flot support start file and

library, 80 we use the two options: nostartfiles and nostdlib.

3. Run the object code on the appropriate model, and compare the outputs from the

two models.

for example the code oftest_nolib_fib:

Int fib(int j);
Extern “C” int start()
{

mt a=15;
retum fib(a);

}
int fib(int j)
{
if((i1)II(i2)) retum 1;
else retum fib(i-2)+fib(i-l);

}

Figure 5.3: A program executed on the ARM core model (without library)

#include <stdio.h>
#include <stdlib.h>
int fib(int j);
void mainO
{

int a15;
intb;
b=fib(a);
printf(”%d”,b);

}
int fib(int j)
{
if((i”1)U(i2)) retum 1;
else retum fib(i-2)+fib(i-1);

}

Figure 5.4: A program executed on ISS (with libraries)

66

nohbfibl: file format e1f32-iittlearm

Disassembiy of section .text:

00008000 <start>:
8000: elaOeOOd mov r12, sp
8004: e92dd$00 stmdb sp!, {rll,r12,lr,pc}
$008: e24cb004 sub r11,r12,#4 ;0x4
800e: e24dd004 sub sp, sp, #4 ; 0x4
8010: e3aO300f mov r3, #15 ; Oxf
8014: e50b3010 str r3,[rll,-#16]
8018: e5lbOOlO idr rO, [ru, -#16]
801e: eb000005 bi 803$ <fib Fi>
8020: elaO3000 mov r3,rO
$024: ela00003 mov rO,r3
802$: ea00000l b $034<start+0x34>
802e: ea000000 b 8034 <start+0x34>
8030: eaffffff b 8034<start+0x34>
8034: e9lba800 ldmdb ru, {rll,sp,pe}

00008038 <fib_fi>:
$038: elaOcOOd mov r12, sp
803e: e92dd810 stmdb sp!, {r4,rll,r12,lr,pc}
$040: e24cb004 sub rll,r12,#4 ;0x4
8044: e24dd004 sub sp, sp, #4 ; 0x4
8048: e50b0014 str rO,[rll,-#20]
804e: e51b3014 ldr r3, [ru, -#20]
$050: e3530001 emp r3,#l ;Oxl
8054: 0a000003 beq 806$ <fib_Fi+0x30>
8058: e51b3014 ldr r3,[rll,-#20]
805e: e3530002 cmp r3,#2 ;0x2
$060: Oa000000 beq 806$ <fib_Fi+0x30>
8064: ea000002 b $074 <fibFï+Ox3e>
8068: e3a0000l mov rO,#1 ;Oxl
806e: ea00000f b $ObO <fibFi+0x7$>
$070: ea00000e b 80a$ <fibFi+0x70>
$074: e51b2014 ldr r2,[rll,-#20j
8078: e2423002 sub r3,r2,#2 ;0x2
807e: ela00003 mov rO,r3
$080: ebffffee bi 8038 <fibFi>
8084: elaO4000 mov r4,rO
08: e51b2014 idr r2,[rll,-#20]
808e: e2423001 sub r3,r2,#1 ;OxI
$090: ela00003 mov rO,r3
$094: ebffffe7 bi $038 <fibFi>

Figure 5.5: AN ARM assemb]y program after cross compile (Fibonacci)

67

5.2 Experiments

hi order to validate the ARM core model, we do some experiments. They can be

classified into two groups:

• Basic test

• Combination test

Basic test is to test some special instructions’ execution, interlock, forwarding, program

status register (PSR) related operations. It includes the following programs in table 5.1.

Table 5-1: Programs for basic test

Program name Usage

test_LDM test load multiple register (LDM) instruction

test_$1M test store multiple register ($TM) instruction

test_SWP test SWP instruction: to swap memory and register content

test_MUL test short multiply instruction

test_UMULL test long multiply instruction

test_UMLAL test long multiply and accumulate instruction

test_MSR test move general purpose register to program status register

(MSR)instruction

test_LDRLOCK test interlock between load register instruction and other instructions

test_LDMLOCK test interlock between load multiple register (LDM) instruction and

other instructions

test_FORWARD test pipeline forwarding operation

These test programs were directly on the ARM core model. They were written in ARM

object code. It is not necessary to compare the two results from the two models. By

analyzing the resuits, to know if the ARIvI core mode! is correct in these operations.

Jmp!icit!y test different function unit inside the ARIVI core. For example shift operation,

ALU, auto-indexed addressing etc.

Combination test is to test different instructions combination. It includes the following

programs in table 5.2:

68

TabLe 5-2: Programs for combination test

Program name Description

Test sort It is to sort elements in increased order, it is used to test

different instruction combination and branch. It was written in

ARM object code

Test fibonaccil Calculate the first ten fibonacci numbers. There is no function

cail. It is used to test different instruction combination. It was

wriften in ARM object code

Test_nolib Calculate the sum of an array. It was written in C

Test_nolib_fib Calculate the first ten fibonacci numbers. There is recursively

function cali. it is used to test stack processing when function

cali and retum. It was written in C

for the first 2 programs written in ARM object code, can be directly run on the ARM

core mode!. Then ana!yze the resuits to know if it is correct.

For the last 2 programs wntten in C, they should be cross compiled to ARM object code

with and without !ibrary support by using arm-elf-gcc, then mn on ARM ISS and the

ARM core mode!, by comparing the two resu!ts form the two model, to ensure the

validity ofthe ARM core model being validated.

5.3 Summary of this validation

from basic test, the fol!owing conclusions can be made:

• The functional units of this ARM core model work correctly corresponding to

these basic test cases. The functional units are ALU, shifier, multiplier, auto

indexed addressing unit, conditional execution etc.

• CPSR and SPSR operate correctly on the basic test cases.

• The forwarding paths are correct corresponding to the basic test cases. The paths

described in 4.2.

69

• The interlock logic is valid corresponding to these basic test cases. The logic is

data-hazard between register load instructions and other instructions. A flop was

inserted automatically.

From combination test, the ARM core mode! seems to be valid. It can mn the programs

output from arm-e!f-gcc cross compiler giving the same resuits on the test cases as an

ARM ISS.

Chapter 6 Peiformance Evaluation

Chapter 6 Performance Evaluation

The best simulation method depends on the application of the simulation results.

Architecture level simulator is used to research the interna! data-paths ofthe processor, is

not intended for executing target system binaries on an altemate platform. Direct

execution and threaded code simulation technique makes the simulation faster. It is used

in increasing simulation speed. Instruction Set Simulator is used to mn system binaries

program that executed on the target architecture, and gather some statistics information,

test concepts and processor design tradeoffs. Flexibility is important and speed is flot of

primary importance.

Cycle accurate processor simulators that simulate the micro-architecture of processors are

essential and commonly used for research and design of processors. The ARM core

mode! is a cycle accurate micro-architecture simulator, it simulates the implementation of

the 5-stages ARM pipeline, on each cycle, the pipeline mode! is advanced (subject to

stalis and interlocks), and at any given point, several instructions may be in various stages

ofexecution. The simulator can be used to:

1. Run target system binaries code, simulate the overall behavior of execution of

programs that are intended for execution on an ARM system.

2. Evaluate the performance oftarget processor by counting the number of cycles of

specific instructions.

3. Gather some statistics information.

4. Compare the quality of compiled code as produced by different compilers.

For evaluating the performance of the simulator, the most important quality metric is its

execution time of a workload [14][15]. The execution time [24] is especially relevant for

the development of high performance systems, where being able to perform simulation in

real time is desired. However, the execution time varies greatly depending on the

application and what features are enabled. The slowdown [17] is presented as the ratio of

time to complete the workload execution on the simulator to the execution time on the

target architecture.

70

71

By counting the number of cycles of specific instructions, the simulator can be used to

evaluate the performance of ARM processor and compare the compiled code’s quality

generated by different compilers. Table 6-l shows the execution time of I$S and the

ARM core mode! for different workload and other quantity metrics.

Table 6-l: Performance evaluation of the AR1’I core model

C Program Simulator Execution Number of Number CPI

time (s) instructions of cycles

Fibonacci ISS 0.50 1

(15) ARMcoremodel 6.058 30631 46626 1.52

Summary ISS 0.394

ARMcoremodel 13.072 14373 18478 1.29

Array ISS 0.275

ARM core model 0.031 297 370 1.25

Test2 ISS 0.066

ARMcoremodel 0.029 75 117 1.56

Test3 I$S 0.095

ARMcoremodel 0.039 103 135 1.31

Test4 ISS It doesn’t work, maybe there is a bug in the ISS

ARMcoremodel 0.093 423 537 1.27

TestS ISS 61.89

ARMcoremodel 190.818 1,083,377 1,418,899 1.31

‘fibonacci’ is recursive function cal! to ca!culate the numbers, a!so used to test function

cal!, stack use. ‘$ummary’ is to accumulate the number iteratively. ‘Array’ is a!so used to

test memory access operations. They a!! work correctly on the ARM Core Mode! and the

Is s.

‘Test2’ to ‘Test5’ are downloaded from [36]. They are used in EQNTOTT benchmark.

EQNTOTT benchmark is a compute-intensive program that spends the majority of

execution time in the function cmpptQ. The function cmpptQ has a loop that compares

72

two strings of short integers. This function is similar to stmcmpO, except it compares

short integers instead of characters. Some compilers use EQNTOTT-specific

optimizations to achieve the best possible run-time performance, but sometimes the

compilers generate incorrect object code for those similar to EQNTOTT. ‘Test2’ to

‘Test5’ are used to test compilers’ output for those are only slightly different from

EQNTOTT. ‘Test2’, ‘Test3’ and ‘Test5’ are run correctly, ‘Test4’ is mn correctly on the

ARM core model, it doesn’t wok on ISS, maybe there is a bug in the ISS.

‘Fibonacci’, ‘Summary’ and ‘Test5’ are long programs, the execution time on ISS is

much shorter than on the ARM core model for the same workload, because TSS is only

for mn ARM object code, ARIvI core mode! flot only run object code but also collect

some information. The others are relative small programs, their execution time on ISS is

a little longer than on ARM core mode!, this is because ISS also simulates virtual

memory, system boot etc., for these programs, the ARM core model is more efficient

than ISS.

CPI (Clock cycles Per Instruction) of the ARIvI core model, it can be used to evaluation

the performance of an application when the ARIvI core model is plugged. The number of

cycles and the number of instructions can be used to evaluate the compiled code’s

quality.

Other quality metrics include extensibility [16], we can hook up to co-design systems,

extema! bus models, memory hierarchies or coprocessor models without access to

sources; interoperability [16], which lias to do with its capability to integrate with other

tool, such as debugger hardware simulator, etc. the debugger can obtain a snapshot of all

the instructions in the pipeline and which instruction in each stage (e.g., fetch, decode,

execute, memory cycle, or register wmite-back); traceability [16], which has to do with

how flexible the simulator can collect useful statistics, such as instruction profiling;

retargetability [16], which lias to do with how easy the tool can be extended to handle

new host platforms.

Chapter 7 Conclusion

Chapter 7 Conclusion

ARM is a 32-bit machine with a register-to-register, three-operand instructions, control

over both the Arithrnetic Logic Unit and shifier in every data processing instruction, auto

increment and auto-decrement addressing modes, load and store multiple instructions,

conditional execution of ail instructions, it also bas seven processor modes, every

processor mode has its CPSR and SPSR except system mode and user mode (they do not

have SPSR), so it can support multiple level interrupt.

The ARM core model is a cycle-accurate micro-architecture simulator of ARM processor

that lias 5-stage pipeline with forwarding path, hazard detect and interlock. Since the

pipeline structure and its advanced properties are flot described in the specification

manual, so we combine the description in ARM specification manual [25]{26] and

methodology described in “Computer Architecture-A Quantitative Approach” [241 in this

work. The main contributions ofthis work are:

• Provide a description of ARM pipeline implementation, this description can be

considered as original.

• Present an open source of ARM cycle accurate micro-architecture simulator in

SystemC, which doesn’t exist in the public domain.

The ARM core model was validated by using an ARM ISS (Instruction Set Simulator) at

instruction level (the ARM core mode! and ISS do not have the same precision). We also

present the metric for performance eva!uation. The simulator is a!so compatible with 3-

stage pipeline simulator. The programs have the same resu!t running on this mode! as

running on other ARM simulator (3-stage pipeline). Its main uses are:

• Simulate the overall behavior of execution of programs that are intended for

execution on an ARM system.

• Compare the quality of compiled code as produced by different compilers and/or

compiler options.

73

74

• Evaluate the performance of an application by counting the number of cycles,

calculating the CPI (Cycles Per hstruction).

Despite our effort to make the ARM core model a robust system, there are stili areas for

improvement. Some areas for future work are considered below:

• The ARM core model is now a standalone software project. We can encapsulate

the ARM core model according to Object-Oriented methodology, separate the

interface and implementation, so it can be a component to plug into a system and

communication with other modules.

• Extend and integrate with other modules. for example memory hierarchy without

having to rewrite major parts of the system, this can then be used to monitor

memory access pattems in test programs such as temporal and spatial locality,

size ofmemory requirement, etc.

• Plug into a system without changing the other modules in the system, only change

the composition ofthe hardware system.

• Incorporate more precise dock cycles-per-instruction (CPI) for each class of

instruction; possibly include some mechanism for adjusting the CPI for

instructions that cause a cache miss.

• Extend to support SWI instruction and thumb instruction set.

• Implement 2 ARM processors integrated using AMBA bus with the different

integration methodology described in [22].

• Extend to support hardware interrupts.

References

References

[1] “The Design of ARMphetamine 2, “ Julian Brown, University of Bristol.

http ://www.cs.bris.ac.uk[’-brown’docs/armphetarnine2-design.htrnl

[2] R. Cmelik, D. Keppel, “Shade: A Fast Instruction Set Simulator for Execution

Profihing, “ Froceedings of Froceedings of the 1994 ACMSIGMETRJCS Conference on

Measurement and Modeling of Computer Systems, pp. 12$-137, May 1994.

[3] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod, “Using

the SimOS Machine Simulator to Study Complex Computer Systems, “ ACM

Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, pp. 7$-103, January

1997.

[4] “ARMSim: An Instruction-Set Simulator for the ARM processor, “ Alpa Shah

Columbia University. http ://www.cs.columbi a.eduksedwards/classes/200 1 /w4995 -

02/reports/alpa.pdf

[5] p. G. Paulin, F. Karim, P. Bromley, “Network Processors: A Perspective on Market

Requirements, Processor Architectures and Embedded S/W Tools, “Froc. of the Design

Automation and Test in Europe, pp. 420-427, November 2000.

[6] “SWARTvI 0.44 Documentation” Michael Dales, Department of Computing Science,

University of Glasgow,Scotland. http :!/www.dcs. la.ac.ukkni ichael/phd/bi n/swarni

0.44.pdf

[7] R. C. Bedichek, “Some efficient architecture simulation techniques,” In USENIX

Association, editor, Froceedings ofthe Winter 1990 USENIX Cotference, January 22-26,

1990, Washington, DC, USA, pp. 53-64, Berkeley, CA, USA, USENTX. January 1990.

75

76

(8] P. Magnusson and B. Wemer, uEfficient memory simulation in SimICS, In

Froceedings ofthe 28th Annual Simulation Symposium, 1995.

[9] lames R. “Beil Threaded code,” CACM, 16(6), June 1973.

[10] Bedicheck, R., “Talisman: Fast and accurate multicomputer simulation, “ In

Proceedings of the AM SIGMETRJC’S Coîference on Measurement and Modeling of

Computer Systems, pp. 14-24, May 1995.

[11] Dynamic compiler http ://www.dcs.warwick.ac.ukkcsuix/proj ecU

[12] SimARM; Green Huis Software Inc. http://www.ghs.com!

[13] The ARMulator; Document number: ARM DAI 0032; Issued 1999.

http://www.arm.com/

[14] Emmett Witchel, Mendel Rosenblum, “Embra: Fast and flexible Machine

Simulation, “Proceedings of the ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, Philadelphia, pp. 68-79, 1996.

[15] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, “Precise and Accurate

Processor Simulation,” In Proceedings ofthe Fflh Workshop on C’oinputer Architecture

Evaluation Using Commercial Workloads, pp. 13-22, february 2002.

[16] J. Zhu and D.D. Gajski, “A retargetable, ultra-fast instruction set simulator, “In

Proceedings of Design, Automation and Test in Europe Conference, pp. 9-12, March

1999.

77

[17] A. D. Pimentel and L O. Hertzberger, An Architecture Workbench for

Multicomputers,”in Froc. of the 1 lth International Farallel Frocessing Symposium, pp.

94-99, Geneva, Switzerland, IEEE Computer Society Press, April 1997.

[18] System on Chip design and reuse: http://www.us.dcsign-rcuse.corn

[19] D. Flynn, “AMBA: Enabling Reusable On-Chip Designs, “IEEE Micro, Vol. 17, No.

4, pp. 20-27, July/Aug 1997.

[20] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient Exploration of the SoC

Communication Architecture Design Space, “in Froc. Int. Cotf Computer-Aided Design,

pp. 424-430, November 2000.

[21] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A. Sangiovanni

Vincentelli, “Addressing the System-on-a-Chip Interconnect Woes Through

Communication-Based Design, “Design Automation Cotference, DAC ‘01, pp. 667-672,

June 2001.

[22] Robert L. Veal, Levon Petrosian, Dr. Neal S. Stollon, “Multi-core SoC Platform

Integration using AMBA, “ Froceedings of DesignCon2002 System-on-Chz and IF

Design Conference, January 2002.

[23] Andrew Burdass et al,”Embedded Test and Debug of Full Custom and Synthesisable

Microprocessor Cores, “In Proceedings IEEE European Test Workshop (ETW), pp. 17-

22, Cascais, Portugal, May 2000.

[24] John Hennessy and David Patterson. “Computer Architecture A Quantitative

Approach, “2nd ed., Morgan Kaufhian, 1996.

[25] Steve furber. “ARM System-on-Chip Architecture, “ 2nd edition, Addison-wesley,

1999.

7$

[26] David Seal. “ARM Architecture Reference Manual, “ 2nd edition. Addison-wesley,

2000.

[27J “SystemC User’s Guide, “ version 2.0, Synopsys, Inc., CoWare, Inc., Frontier

Design, Inc. http://www.ece.crnu.eduf-cce767/cad tools/systernc-2 .0.1 /UserGuidc20.pdf

[28] AIVIBA specification (Rev 2.0) ARM NI 001 lA. http://www

rnicro.deis. unibo . it/—rnagagni!arnba99.pdf

[29] MIPS simulation tools http://www.mips.com/devTools/cata1og_200i/SimToo1s.htin1

[30] Embedded system: www.ernbedded.com

[31] ARM company: www.ann.com

[32] Superlog language: www. superlo.org

[33] Accellera organization: www.accellera.org

[34] Verilog Resources: www.verilog.com

[35] SystemC Community: www.systernc.org

[36] EQNTOTT benchmarks: www.nullstone.com/egntott/egntott.htm

Appendix A. Instructions implemented in this inodel

Appendix A: Instructions ïmp!emented in thïs mode!

Instructions implemented in thïs model

type of instruction Instruction

ND: logical AND.

EOR: logical Exclusive OR.

SUB: Subtract.

.$B: Reverse Subtract.

DD: Add.

DC: Add with Carry.

SBC: Subtract with Carry.

SC: Reverse Subtract with Carry.

Data processing EST: Test.

TEQ: Test Equal.

CMP: Compare.

MN: Compare Negative.

DRR: logical OR.

‘IOV: Move.

IC: Bit Clear.

vWN: Move Negative.

viultiply vIUL: Multiply.

1LA: Multiply Accumulate.

JMULL: Unsigned Long Multiply.

UMLAL: Unsigned Long Multiply Accumulate.

SMULL: Signed Long Multiply.

$MLAL: Signed Long Multiply Accumulate.

2LZ CLZ: Returns the number of binary zero bits before the first binary

one bit in a register value

PSR SPSR Access vIR$: move PSR to general-purpose register.

MSR: move general-purpose register to PSR

79

$0

rype of instruction Instruction

D/ST LDR: Load Register.

LDRB: Load Register Byte.

LDRBT: Load Register Byte with Translation.

LDRH: Load Register Half-word.

LDRSB: Load Regïster Signed Byte.

LDRSH: Load Register Signed Half-word.

LDRT: Load Register with Translation.

STR: Store Register.

STRE: Store Register Byte.

STRBT: Store Register Byte with Translation.

STRH: Store Register Half-word.

STRT: Store Register with Translation.

DM(3): Load Multiple Registers. There are 3 kinds of format.

STM(2): Store Multiple Registers. There are 2 kinds of format.

SWP: Swap a word.

SWPB: Swap a Byte.

ixeception generate SWI: Software Jnterrupt.

3KPT: Breakpoint.

:oprocessor CDP: Coprocessor Data Processing.

STC: Store Coprocessor.

LDC: Load Coprocessor.

vICR: Move to Coprocessor from ARM Register.

VIRC: Move to ARM Register from coprocessor.

3ranch 3: Branch.

3L: Brandi and Link.

3LX(2): Branch and Link with exchange to Thumb instruction sets or

ARIVI instruction sets.

3X: Branch with an optional switch to Thumb execution.

Appendix B: ARM implementation ,nodeÏ, sotnce code description

Appendix B: ARM implementation model, source code

description

1. ARM implementation model

If_1D IDEXE EXE_MEM MEMWB

JE IR jjj IR,type,operate EXE IR,type,operate MEM IR,type,operate WB

A,Bb,C CPSR,SPSR CPSR
—e —e

CPSR,SPSR C
—

ALUOutp t,D
ALUO ttpu ,D LMD

__-IzI

EEL

__ ___ ___

- Ï
-_ -dll<

MEM_NPC

I I’

2. The source file description

• W.h 1F module interface declaration

• W.cpp IF module definition including open file and read ARIvI

binary code

• D.h D module interface declaration

• ID.cpp ID module definition including interlock operation

• EXE.h EXE module interface declaration

81

82

• EXE.cpp EXE module definition inciuding calculate the resuit of

arithmetic instructions and the address of loadlstore instructions

• MEM.h MEM module interface declaration

• MEM.cpp MEM module definition including memory access

• WB.h WB module interface declaration

• WB.cpp W3 module definition including register wnte back

• main.cpp testbench including instantiate 5 stages, dock signal, open

a file for writing trace signais, and then start simulation, write trace signais

to the trace file for analyze

• forwardingO.cpp extem fimctions of forwarding operation related

• arminst.h constant and macro definition

3. Make file: makefile.linux is used in linux operating system (run: make —f

makefiie.linux) to generate the executable file (run.x).

4. Test case

• Basic test: include files showed in table 5-1

• Combination test: include files showed in table 5-2 and table 6-l

Appendix C: How to use the modet

Appendîx C: llow to use the model

1. Generate the ARM binary code

• Get object file by running:

% arm-elf-gcc G —static G —nostartfiles G —nostdlib G source.c G —o G

objfite

• Get disassemble code and binary code by running:

% arm-elf-obidump G —d G obifile

• Extract binary code by ninning:

% arm-elf-objdump G —d G objfile j sed G s/.*\:\(IG1#\).*A1/t G >

armbinaryfile

2. Add two instructions at the beginning ofthe file ‘armbinaryfile’ Oxe3aOecOl (mov

ir, 0x100) and Ox3aOdcOl (mov sp, 0x100), to initiate LR (Link Register) and SP

(Stack Point) to 0x100 or other appropnate value (LR is used to terminate the

simulation when finishing the program simulate, so it must be initialized to an

area with consecutive 6 ‘00000000’ instructions. $P must be initialized to an

empty area for stack operation).

3. Initiate RAM by storing enough data in the file named ‘ram’, if the ARM program

needs to initiate some data in RAIVI, the data must be in the appropriate position

(at the end ofARM program).

4. Run the simulator by typing: ./run.x G armbinarylïle G tracelule

It will simulate the ARM processor by running the ARM program in

armbinaryfile and wnte the trace signal into the tracefile.

83

