V?/nir/f 503(/'3

Université de Montréal

ARM Processor Modeling
at a Cycle Accurate Level in SystemC

Par:
Hongmei Sun

Départment d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures
en vue de 1’obtention du grade de
Maitre es Sciences (M. Sc.)
en informatique

%

Grade conféré

a comptor du ’Oc
-y
[y

2003 MAL g1 ©

Avril, 2003

©Hongmei Sun, 2003

/L)
@ Ay
[Site ac WS

Université f'"'l

de Montréal

Direction des bibliothéques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement & des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans |'autorisation de 'auteur.

Afin de se conformer a la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’'s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:

ARM Processor Modeling
at a Cycle Accurate Level in SystemC

Présenté Par:
Hongmei Sun

A été évalué par un jury composé des personnes suivantes :

Jean Pierre David

Directeur de recherche

Francois-R Boyer

Membre du jury

Mémoire accepté

Reésumé

La technologie de Simulation/Machine virtuelle est aujourd’hui une partie intégrale de
beaucoup de systémes de calcul. Un simulateur de matériel est un logiciel qui émule les
dispositifs cablés spécifiques permettant l'exécution du logiciel qui est écrit et compilé
pour ces dispositifs sur les systémes alternatifs. L'ARM est un microprocesseur RISC
16/32-bit embarqué. Il posséde un mécanisme de décalage intégré. L'adressage auto-
indexé, les instructions load/store multiple et presque toutes les exécutions d'instructions
conditionnels permettent au processeur ARM de réaliser un bon équilibre de haute
performance, prix et faible consommation électrique, sur une aire de silicium réduite.
L'ARM est largement répandu dans les communications portables, les ordinateurs de
poche, le multimédia, produits de consommation numérique et solutions embarquées. Il
n'existe pas un simulateur de micro-architecture ARM a source ouvert dans le domaine

publique.

Dans ce mémoire, nous explorons différents types de stratégies de simulation (simulation
au niveau architecture, exécution directe, recompilation dynamique, code chainé,
simulation d'ensemble d'instructions) et de leurs applications. Nous étudions également le
comportement du pipeline du processeur ARM et combinons le comportement du
pipeline du ARM [25][26] et celui du DLX [24] pour obtenir une description originale
d'exécution de micro-architecture de ARM. En conclusion, nous construisons un
simulateur cycle précis du processeur ARM (ARM-Simulator), qui simule la micro-
architecture du processeur qui inclut un pipeline 5-stage, chemin d’expédition, la logique
de couplage, etc. Ce simulateur est mis en application avec SystemC et des concepts de
génie logiciel. Ainsi il est modulaire, facile a étendre, et intégré avec d'autres modules.
C'est maintenant un projet autonome de logiciel, apreés encapsulation appropriée, il peut
étre un composant a brancher a un systéeme d'application, pour simuler et évaluer la

performance.

Le simulateur "modéle de noyau ARM" est validé par un simulateur de jeu d'instructions

(ISS) ARM. Nous comparons les résultats du modéle de noyau ARM avec ceux de I'[SS

1

ARM pour nous assurer que le comportement du simulateur ARM est correct. Le code
objet de 'ARM est généré par le compilateur crois€ ARM-ELF-GCC. Celui-ci compile
le code source C en code objet ARM sous le systeme d'exploitation Linux. Nous

entreprenons également des expériences pour 1'évaluation des performances.

Mots-clés: Simulation, Simulateur, Langues de simulation, Stratégies de simulation,

Simulateur d'ensemble d'instruction, Microprocesseur RISC, Pipeline, Expédition,

Couplage, Compilation croisée

111

Abstract

Simulation/Virtual machine technology is an integral part of many computing systems
today. A hardware simulator is a piece of software that emulates specific hardware
devices enabling execution of software that is written and compiled for those devices on
alternate systems. ARM is a 16/32-bit embedded RISC microprocessor. It has a built-in
shift mechanism. Auto-indexed addressing, load/store multiple instructions and almost all
instructions conditional execution allow the ARM processor to achieve a good balance of
high performance, low cost, power efficient and low silicon area. ARM is widely used in
portable communications, hand-held computing, multi-media, digital consumer and
embedded solutions. There doesn’t exist an open source ARM micro-architecture

simulator in public domain.

In this thesis, we explore different kinds of simulation strategies (Architecture level
simulation, Direct Execution, Dynamic Recompilation, Threaded code, Instruction Set
Simulation) and their applications. We also study ARM processor pipeline behavior,
combine ARM pipeline behavior [25][26] and DLX pipeline [24] to obtain an original
description of ARM micro-architecture implementation. Finally, construct a cycle
accurate ARM processor simulator (ARM-Simulator), which simulates the micro-
architecture of the processor that includes 5-stage pipeline, forwarding path, interlock
logic, etc. This simulator is implemented with SystemC and sofiware engineering
concepts. So it is modular, easy to extend, and integrated with other modules. It is now a
standalone software project, after appropriate encapsulating, it can be a component to

plug into an application system, simulate and evaluate performance.

The simulator (ARM core model) is validated by an ARM Instruction Set Simulator (ISS).
We compare the result from the ARM core model and the result from the ARM ISS, to
know if the behavior of the ARM program is correct. The ARM object code is generated
by ARM-ELF-GCC cross compiler. It compiles the C source code to ARM object code

on the Linux operating system. We also conduct experiments for evaluating performance.

v

Keywords: Simulation, Simulator, Simulation Languages, Simulation Strategies,
Instruction Set Simulator, RISC Microprocessor, Pipeline, Forwarding, Interlock, Cross

Compile

Table of Contents
RESUME cuueecinnericanesinresssnessssasasessansessensssnsssssnssssnssssssssssssssasssass - vl
Abstract cessssesassnessssasssnssnaes . iii
Table of Contents.............ccccuu.... crensesane eV
List of Tables.............. vii
List of Figures cesesencsans . viii
Acronyms......... cessssesssenastesssnennstssessssssssasesssssstasesssssstesesssssssssssssssssssssssssssssss veeeeX
Notations xii
Acknowledgement xiii
Chapter 1 Introduction 1
Chapter 2 Background... 8
2.1 Overview of Simulation Strategiesccceevevereerererreererrererreereereeenreseereeseeeseseeenns 8
2.2 Existing work for ARM processor SIMulator............coeceeverveneereeneereesenscesenseseencrnenes 9
Chapter 3 ARM Processor Core 12
3.1 ARM Processor Architecture introductioncccceveeveeeeecennenceecicnneneenenecneenes 12
3.2 Processor Modes, Registers and PSRs (Program Status Register) 13
3.3 ARM IDSITUCHIONS. ...c.ceutiuirnireeencencereeere ettt ncsses et sacesesseebsssassesesasesessessosens 18
3.4 Addressing MOAEScocveeuiieieeeeireieeereerceece e e sereeesenesaessse e s e e sssesaesbesaesseeas 21
3.5 Organization of the 5-stage ARM Pipeline..........ccceeeuerererirrnenceneeesieneecerieeene 29
Chapter 4 Implementation of the ARM core model 33
4.1 All the Instructions operation in different stage (except IF)......c.ccoceevvieciriiernenne. 33
4.2 FOTWAIQING.......ccueotiieieiieiieieiristeseesesesseereesseseessessessasstessessassaessassessesssansessessessens 41
4.3 INtErlOCK [24][25] e ueiiieitirtieiere ettt et sr e st e b st e sbe s s bt e na e e nean 47
4.4 Branch instructions [25][26]ccccoeeieciieieeieceeceeie ettt 47
4.5 Some special instructions’ implementationccceceervveeereeerenneeseereeseeseeennes 49
4.5.1 Load Multiple Registers (LDM)ccccerienieniernienienienieeeeeseese e sreeenens 49
4.5.2 Store Multiple Registers (STM)........coovveeeeieiieeeeteeeeeeeeee e 51

4.5.3 Swap a word/byte (SWP, SWPB).....ccceeeiirieerrreeeeeerere e
4.5.4 Multiply instructions (MUL, MLA, UMULL, SMULL)........cccceeuruen.
4.5.5 Long multiply and accumulate instructions (UMLAL, SMLAL)
4.6 Current and Saved Program Status Register (CPSR, SPSR).........c.ccccueunenee.

4.7 Discussion on generalizationccceceeeeeeereeieesteseeeeiseseeseeseessesseseesassseseens

Chapter 5 Validation of the model

5.1 Methodology of Validation...........ccccceeueeceeierceecieeeeeecreceeceeeeeereecre e eanens
5.1.1 The ARM core MOdelc.covvevereririeieienieneeieeeereseeeeesresee e eeseennns
5.1.2 Validate the ARM core model with an ISS (Instruction Set Simulator)

5.2 Experiments

..

5.3 Summary of this Validation...........ccceceecereiereercieccieceeeeeee et eee e ereesnees

Chapter 6 Performance Evaluation

......

......

......

Chapter 7 Conclusion

References

Appendix A: Instructions implemented in this model
Appendix B: ARM implementation model, source code description

Appendix C: How to use the model

vi

52
54

57
60

62
62
62
64
67
68

70
73
75
79
81
83

vii

List of Tables

Table 2-1: Compare the existing ARM simulators and the ARM Core Model.......................... 11
Table 3-1: Processor mode deSCrIPLIONcccvvveeeerereerereeernrreeernrersenreresarreseseresaseesesseesenensess 14
Table 3-2: REGISLETS [26]...ccccueeriieieiiieiieeeireereneesareeseeeeesseeesesseesessassesressssseassssesssesasessessen 16
Table 3-3: Condition code encoding [26]........ccccueeereiirrreiereiireeereerreeeeeeieeeeesesreeeeesenenesesossens 21
Table 3-4: AdAressing MOMeE.......ccueeruieieiiiiiiieiitteeeserrrereeerreeeeseseereresesssrenesesseesssesssasessonnes 22
Table 3-5: SHIft fYPES...cccuiiiriiiiiiiririerrtirrte ettt e s e srre e csssteeessee s seesssseneseneesssssesonesenen 23
Table 3-6: Comparison of ARM architectureal pipeline depth..........ccceeeeiiieereeceieenirieceeeeeenees 30
Table 4-1: All the instructions operation in different stage........cceeeeeeererevieeenercneerecrreereecenens 34
Table 4-2: WOrk Of €VETY StAZE.cecciuieieeiieeieeiieececrieee e e cceeeeseesteesesesseasesessesasesssneesanannns 38

Table 4-3: Destination register of corresponding pipeline register temporary data ALUOutput, D,
LMD (for the source instruction of the forwarding)..........ceeeecveeeveercicerecieeecereerereeeseenens 43

Table 4-4: Source register of pipeline register temporary data A, Bb, C (for the destination

instruction of the forwarding).c.ccceveveiieiiiiiieiriire et 44
Table 4-5: FOrwarding paths..........ceecccieiieciieeecieeeeccceeeseceiree s e e ete e e s e nseesssssaeeesesnnasesanes 44
Table 5-1: Programs fOr DasicC teSt.........ueeeeiiereeeiirerieeiieeeeeseree e e eerteeeseesreeeeeeeennneeessnnneeenanee 67
Table 5-2: Programs for COmMbINation teSt..........ccecveerreecerreeieriveeeessiieeeressseeesseseeeesensneeesses 68

Table 6-1: Performance evaluation of the ARM core MOdEL.......cceerrieirirrriuierieeresieeseesesseeeenns 71

viii

List of Figures

Figure 3.1: ARM instruction set Summary [26]cccceeereeciirrieeeiiieeeeecreseeeerereeseesnsneeesnns 19
Figure 3.2: Multiplies and extra load/store instructions [26]........ccccevvueeeerereeveveercneerenneernsaneens 20
Figure 3.3: MiSCellaneous [26]ccccueeerieeeeiuieeeieeeitieeeerieeesreeeesreeeesseeeeseesssesssssessesssesansnes 20
Figure 3.4: Addressing mode 1 data processing instruction binary encoding [26]ccc...... 23
Figure 3.5: LSL OPEIationcccouveeiriurierreriiieeineiieeresneeeesecerenessesenneasssessnnsesssssseesessonnnesessns 24
Figure 3.6: LSR OPETAtiONccccccuiieeeecrieeieiieeeceieeeeeeretreeceesseeeeeesssseresesssssnsessnssseaesensssssassan 24
Figure 3.7: ASR OPEIAtiON....cccicccueeieereieririeieeeeetteseessreeeeeeeaseasesesssasssasassseesesssneesssssssnseeesans 24
Figure 3.8: ROR OPEIAtIONeuureereeeieririrneeeeeriiesisresrereseeeesesssessssssesseesesssssassssnsnsseseesssessnnes 24
Figure 3.9: ROX OPETAtiON ...ccccccuviiieiiuieeeeeiireeeecieereecsreeseseseeasesessssassassssssesssssnnesssssasnesesasns 24

Figure 3.10: Addressing mode 2 Single word and unsigned byte transfer instruction binary
ENCOAING [26] ...eeerieiieereiitieectte ettt ete e rtrte e s e s e s e s e s sna e e s s asaeesessaeasesesnnaeansannn 25

Figure 3.11: Addressing mode 3 Half-word and signed byte transfer instruction binary
ENCOMING [26] ...ueeneieririieiiecterercterereterte e e se e s eesae e se s e e e e e ssessessaessesnesssesnsesnsannes 26

Figure 3.12: Addressing mode 4 Multiple register transfer instruction binary encoding [26] 28
Figure 3.13: Addressing mode 5 Coprocessor data transfer instruction binary encoding [26] ... 29

Figure 3.14: ARM 5-stage pipeline organization [25].......ccceeeviririiieniiieiienennenneeereeeeennee 32
Figure 4.1: Forwarding paths...........ccccoiiieiiciiiiccieeeceteeeecccreee s s cteee s e ae e e e s e ees s ennnee s 41
Figure 4.2: Instruction sequence for forwarding ProCess........ccecevereverereesirererersrrerseesereesereenens 42
Figure 4.3: RAW hazard between two adjacent inStructions..........cceeeeeeeeeercrieeeeirnneceeniessnnenes 47
Figure 4.4: Insert a nop to avoid RAW hazardeeeeimriiiiiiiercenieeeeene e sceceneeerceeeeee e 47
Figure 4.5: Branch instruction OPEration.........cocueecveeeieeeriecseeeserssneseseesssessnsossssesssesaseesaseesne 48
Figure 4.6: LDM InStruction OPETAtIONceeecveeeeiveeeeiieeeesseeeeeseesesesssrnsesssseerersnesessasesassasens 49
Figure 4.7: STM InStruction OPEratiON........cccceuveerersrreeeseeisreeeeraessneeessssssneesssasseeessesenseessessanas 51
Figure 4.8: SWP instruction OPEIation.........ccceetieieerieeiieinieeeeeteeeeereerneeeeeeeeseeesenamameaneeennenes 53
Figure 4.9: Multiply-1 inStruction OPErationcccceeeeeeciiieeeeieccereeesereeeeessisreessesssseesssennns 54
Figure 4.10: Multiply-2 inStruction OPerationcccecccvuvirreeeeeeereseienerreeeeessesesssssnsnneenseeses 55
Figure 4.11: PSRs (progam status register) Operationcc.eeeeeeureeeeseneeeeerssvnecessesaseeessensanne 57

Figure 5.1: The ARM COTE MOGELceeeiriiieiriiiiiiieiiieeeceiireee e et e e s eereeeeeserree e s senreaessenanes 63

1X

Figure 5.2: Validate the ARM core modelcoeeeeiriiiriiciiiiieeeieeeenirce e ennese e 64
Figure 5.3: A program executed on the ARM core model (without library).........cceceveevevvveneeene 65
Figure 5.4: A program executed on ISS (with IIBraries).......ccoceeeeeveeeeeeeneeeererrinneeesceesseeseannn. 65

Figure 5.5: AN ARM assembly program after cross compile (Fibonacci)cccccuveeeeeeeunnecnnn. 66

Acronyms

AHB Advanced High performance Bus
ALU Arithmetic and Logic Unit
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus

ARM Acorn Risc Machine

ASB Advanced System Bus

ASR Arithmetic Shift Right

CPI Clock cycles Per Instruction

DSP Data Signal Processing

EDA Electronic Design Automation
EXE EXEcution

FIQ Fast Interrupt reQuest

HDL Hardware Description Language
ID Instruction Decode

IF Instruction Fetch

IRQ Interrupt ReQuest

ISDB Integrated Services Digital Broadcasting
ISS Instruction Set Simulator

LR Link Register

LSL Logical Shift Left

LSR Logical Shift Right

MEM MEMory access

oS Operating System

OSCI Open SystemC Initiative

PC Program Counter

PSR Program Status Register

RISC Reduced Instruction Set Computer
ROR Rotate Right

ROX Rotate Right with eXtend

RTL Register Transfer Level

SoC System on Chip

SP Stack Pointer

StepNP System level Telecom Experimental Platform for Network Processing
VCD Value Change Dump

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

WIF Waveform Intermediate Format

WB Write Back

Xil

Notations

0x123 hex 123

IRin sub range from ‘m bit’ to ‘n bit’ of IR
<< logical shift left

IR[m] ‘bit m’ of IR

mem[addr] content of memory in address ‘addr’

Regs[m] content of register Rm

mul multiplier in figure 3.14
mux multiplexer in figure 3.14
% system prompt

0 a space

bold & underlined command line

bold & italic highlights important notes, introduces special terminology

Acknowledgement

This work has been a challenging experience for me. I learned many existing
technologies. I received a lot of support and help from the professors and colleagues in

our department.

I would like to thank Professor El Mostapha Aboulhamid, my director, and Professor
Frangois-R Boyer, my co-director, for their continued guidance, encouragement,
enthusiasm, and support are greatly appreciated. Also great thanks to the colleagues for

their encouragement and help.

Chapter 1 Introduction

Chapter 1 Introduction

Role of simulation in the design flow

Simulation / Virtual machine technology [1] is an integral part of many computing
systems today. Java, SimOS [2][3] and VMware [for running a complete OS as an
application on another operating system], Connectix Virtual PC/Game station and
Microsoft’s .NET are different examples of such systems. This technology is incredibly
useful as a secure means for execution of untrusted software in a sandbox environment,

and an ideal platform for code-development for new hardware devices.

A hardware simulator is a piece of software that emulates specific hardware devices,
enabling execution of software that is written and compiled for those devices on alternate
systems. The machines that are simulated will be referred to as target machines, and the

system on which the simulator is actually running is referred to as the host machine [4].

Simulation at various levels of abstraction has played a key role in the design of
computer systems. There are numerous compelling reasons for implementing simulators,
most of them obvious. Design teams need simulators throughout all phases of the design
cycle.

1. Initially, during high-level design, simulation is used to narrow the design space
and establish credible and feasible alternatives that are likely to meet competitive
performance objectives.

2. Later, during microarchitectural definition, a simulator helps guide engineering
trade-offs by enabling quantitative comparison of various alternatives.

3. During design implementation, simulators are employed for testing, functional
validation, and late-cycle design trade-offs.

4. Finally, simulators provide a useful reference for performance validation once

real hardware becomes available.

Outside of the industrial design cycle, simulators are also heavily used in the computer

architecture academic research community.

Some benefits of using simulators are:

1. Simulators are flexible and thus new features or components can easily be added.
It is possible to model features, including those that might not be possible to do on
the hardware.

2. It allows stress testing of programs like operating systems by simulating complex
interrupt and exception conditions.

3. Since simulators are built in software, they are more deterministic. The
deterministic behavior of simulators makes programs execution reproducible, and

thus helps in locating problems.

Primary applications of simulators consist of computer architecture studies and
performance tuning of compiled software, and the compilation process itself. Various
types of simulators exist, each addressing different aspects like clock cycle rate, modeling

the microprocessor chip logic, modeling the program execution environment, etc.

StepNP (System-level Telecom Experimental Platform for Network Processing) is a
modeling platform for multiprocessor and network processors, under development. The
platform will help in performance evaluation, design exploration by changing
architecture parameters such as interconnects, pipeline characteristics, instruction sets
and memory schemes. The platform should be flexible and modular to allow a ‘plug,
simulate and evaluate’ approach. This allows plugging different kinds of processors and
interconnections to evaluate and create a new system. Core models include ARM
processor [26] and DLX processor [24]. Interconnects models include the AMBA bus [28]
and different interconnect topologies such as chordal rings [5], crossbars, rings etc. The
ARM core model implemented in this work was originally a component in this platform.

Now it is a standalone project.

ARM is the industry's leading provider of 16/32-bit embedded RISC microprocessor
solutions. ARM's microprocessor cores are high-performance, low-cost, power efficient.

They are rapidly becoming the volume RISC standard in such markets as portable

communications, hand-held computing, multimedia digital consumer and embedded

solutions.

Simulation languages

Simulation allows faster development of design and cheaper and easier debugging during
the design stage. Hardware description languages provide support for the simulation of
concurrent processes and offer constructs to describe inter-process signal transfer. Two
hardware simulation languages have become standard design entry tools for simulation
and synthesis-Verilog [34] and VHDL [33]. While the resuits are very accurate the speed
of simulation is very slow since they are more suitable for RT (Register Transfer) level
design than for higher levels of abstraction. More powerful than these simulation
languages are SystemC [35] and Superlog [32]. SystemC was launched by Synopsys and
CoWare, it is backed by some 30 electronic design automation (EDA) vendors, which
formed the Open SystemC Initiative (OSCI). This independent standards organization
promotes SystemC as a common digital framework that will streamline product
development for EDA synthesis tools. Superlog is another language for system-level
design, developed by CoWare and based on Verilog and C. In this work, we implement
an ARM processor simulator using SystemC to obtain an open source core of ARM
which is cycle accurate and demonstrate the design flow of SystemC on a real example

including validation.

SystemC [27] is a C++ class library and a methodology that we can use to effectively
create a model of software algorithms, hardware architecture, and interfaces of SoC
(System On a Chip) and system-level designs. We can use SystemC and standard C++
development tools to create a system-level model, quickly simulate to validate and
optimize the design, explore various algorithms, and provide the hardware and software
development team with an executable specification of the system. SystemC supports
hardware-software co-design and the description of the architecture of complex systems
consisting of both hardware and software components. It supports the description of
hardware, software, and interfaces in a C++ environment. The following features of

SystemC allow it to be used as a co-design language:

. Modules: SystemC has a notion of a container class called a module. This is a
hierarchical entity that can have other modules or processes contained in it.

. Processes: Processes are used to describe functionality. Processes are contained
inside modules. SystemC provides three different process abstractions (method
process, thread process, clocked thread process) to be used by hardware and
software designers.

. Ports: Modules have ports through which they connect to other modules. SystemC
supports single-direction and bi-directional ports.

. Signals: SystemC supports resolved and unresolved signals. Resolved signals (a
bus) can have more than one driver while unresolved signals can have only one
driver.

. Rich set of port and signal types: To support modeling at different levels of
abstraction, from the functional to the RTL, SystemC supports a rich set of port
and signal types. This is different than languages like Verilog that only support
bits and bit-vectors as port and signal types.

. Rich set of data types: SystemC has a rich set of data types to support multiple
design domains and abstraction levels. The fixed precision data types allow for
fast simulation, the arbitrary precision types can be used for computations with
large numbers, and the fixed-point data types can be used for DSP applications.
SystemC supports both two-valued and four-valued data types. There are no size

limitations for arbitrary precision SystemC types.

. Clocks: SystemC has the notion of clocks (as special signals). Clocks are the
timekeepers of the system during simulation. Multiple clocks, with arbitrary phase

relationship, are supported.

. Cycle-based simulation: SystemC includes a cycle-based simulation kernel that
allows high-speed simulation.
. Multiple abstraction levels: SystemC supports untimed models at different levels

of abstraction, ranging from high-level functional models to detailed clock cycle

accurate RTL models. It supports iterative refinement of high level models into
lower levels of abstraction.

10. Communication protocols: SystemC provides multi-level communication
semantics that enable us to describe SoC and system I/O protocols with different
levels for abstraction.

11. Debugging support: SystemC classes have run-time error checking that can be
turned on with a compilation flag.

12. Waveform tracing: SystemC supports tracing of waveforms in VCD, WIF, and
ISDB formats.

Using the SystemC approach, the designer does not have to be an expert in multiple
languages. SystemC allows modeling from the system level to RTL. The SystemC
approach provides higher productivity because the designer can model at a higher level.
Writing at a higher level can result in smaller code, which is easier to write and simulates
faster than traditional modeling environments. Testbenches can be reused from the
system level model to the RTL model saving conversion time. Using the same testbench
also gives the designer a higher confidence that the system level and the RTL model

implement the same functionality.

The objective of this research is to:
e Explore different kinds of processor simulator and their applications.

e Study ARM processor pipeline behavior, combine ARM pipeline behavior
[25][26] and DLX pipeline [24] to obtain an original description of ARM micro-

architecture implementation.

e Construct a cycle accurate ARM processor simulator with 5-stage pipeline (ARM-
Simulator). Which simulate the micro-architecture of the processor that includes
5-stage pipeline, forwarding path, interlock logic etc. After encapsulating, it will
be a component of StepNP modeling platform, can be plugged, simulated and

evaluated in different applications. The ARM core model is implemented by using

SystemC and software engineering concepts. So it is modular, easy to extend, and

integrated with other modules.

e Validate the ARM core model using an ISS of ARM processor at instruction
level. Because the ISS and the ARM core model do not have the same precision,
so we validate it at instruction level to ensure the behavior of ARM program is

correct.

e Evaluate the performance of the cycle accurate ARM processor simulator.

This thesis is divided into seven chapters. Its content is organized as follows:

Chapter 2 provides background knowledge. At first, it gives an overview of simulation

techniques, latter, it introduces the existing work for ARM processor simulator.

Chapter 3 introduces the ARM processor, ARM architecture, ARM instructions sets,

addressing mode of different instructions and 5-stage pipeline organization.

Chapter 4 presents the implementation of the ARM core model. It introduces how to
implement the 5-stage pipeline, the work of every pipeline stage for every instruction.
Then, it explains the execution of forwarding, interlock and branch instructions. It also
describes the execution of some special instructions. The details of this description can be
considered as original since they are not described in the specification of the ARM. At

last, it discusses the generalization of the model.

Chapter 5 describes the methodology for validating the model. The ARM core model is
validated by an ISS (Instruction Set Simulator). Arm-elf-gcc is the cross compiler that
generates the arm object code. Then the object code is run on the ARM core model and
ISS. By comparing the results from different model to know if the ARM core model is
valid. Since ISS and the ARM core model (cycle accurate levels) do not have the same

precision, so this validation is only from the instruction level. We also use some special

examples to validate the architecture of the processor core, includig functional units,

forwarding path, interlock logic etc. Then it gives some experiments for validating it.

Chapter 6 introduces the ARM core model performance metrics. We do some
experiments, compare the execution time of ISS and the ARM core model for the same
workload, count the number of cycles and instructions so as to compare the compiled

code quality from different compilers, calculate the CPI to evaluate the performance of an

application system.

Chapter 7 concludes with the features of the model and the contributions of this thesis

and then discusses future work.

Chapter 2 Background

Chapter 2 Background

This section gives an overview of simulation strategies and existing work for the ARM

processor simulator.

2.1 Overview of Simulation Strategies

The best simulation method depends on the application of the simulation results. This

section outlines several simulation strategies and their applications.

Architectural level Simulation [6][7][8]:

Logic designers build Architectural simulators to express and test new designs. These
allow emulation of the different parts of a processor, using either the simple core, or the
core and the data caches and other components. These are generally not intended for
executing target system binaries on alternate platforms, but rather to allow research into

the modification of the internal data-paths of the processor.

Direct Execution [1]:

Target machine binaries can be executed natively on the simulator host processor by
encasing the program in an environment that makes it execute as though it were on the
simulated system. This technique requires that either the host system has the same
instruction set as the target, or that the program be recompiled for the host architecture.
Instructions that cannot execute directly on the host are replaced with procedure calls to
simulator code. This method is also known as Dynamic Recompilation [Dynarecs].
Native execution of the recompiled code leads to a much faster execution of the
simulated software, but they have lengthy context switching, i.e. when the host processor

has to switch to target processor. This may slow down the simulation.

Threaded Code [9][10]:
This is a simulation technique where each op-code in the target machine instruction set is

mapped to the address of some (lower level) code in the simulator system, to perform the

appropriate operation. This can be implemented efficiently in machine code on most
processors by simply performing an indirect jump to the address, which is the next

instruction. This method does not suffer from lengthy context switching.

Instruction set simulators [4]:

Instruction set simulator [ISS] executes target machine programs by simulating the
effects of each instruction on a target machine, one instruction at a time. The Instruction
sets simulators are attractive for their flexibility: they can, in principle, model any
computer, gather any statistics, and run any program that the target architecture would
run. They easily serve as backend systems for traditional debuggers as well as
architecture design tools such as cache simulators. A lot of temporal debuggers have
recently started using ISS. An ISS can dispatch instructions by fetching from a simulated
memory, isolating the operation code fields, and also branching, based on the values of
these fields. Once dispatched, reading and manipulation of variables that represent the
target system’s state are used to simulate the instruction’s semantics. They are not cycle-

accurate since they do not take into account the iteming of an instruction pipelining.

2.2 Existing work for ARM processor simulator

There has been a lot of research on software simulation of the ARM processor. These can
be categorized according to the level of simulation, whether at the architectural level or
the instruction set, or the techniques used, e.g. dynamic recompilation of parts of the

simulated software to natively run on the guest system.

Dynarecs [ARMphetamine]

ARMphetamine [1] and tARMac [11] are based on the direct compilation technique.
They are fast and accurate ARM emulators. ARM code program segments are translated
into native code as they are being emulated. A fetch-decode-execute emulator starts
executing the ARM code, and when a specific block of the ARM code has been executed
more times than a preset threshold, a translation routine is employed. This generates
covers for each source instruction, i.e. chunks of native code that have the same

semantics as the translated instructions. These covers are then executed every time the

10

translated block of code needs to be run. The development platform for ARMphetamine
and tARMac is linux/x86. They are open source, but not cycle accurate, so can’t be used

for performance evaluation.

Architecture level [SWARM][6]

SWARM was designed as an ARM module to plug into the SimOS system developed at
Stanford University. SimOS allows emulation of various parts of an ARM processor,
using either the simple core, or the core and the caches. SWARM was intended not for
running ARM binaries on an alternate platform, but rather to allow research into the
modification of the internal data-paths of the ARM processor. It implements a small
amount of internal co-processors at a basic level, and provides support for the full
register/cache/external memory hierarchy. It does not take into account the micro-

architecture of ARM processor core and the pipelining execution of an instruction.

Instruction Level [SimARM][12][13]

SimARM [12] is an instruction set simulator (ISS) that interprets ARM programs at the
instruction level obviating the need for ARM hardware. ISSs are simpler to implement,
but they are slower than simulators based on dynarecs due to the fact that all instructions
are strictly interpreted.

ARMulator [13] is another ISS with a slight variation: it ensures identical cycle-count for
instructions. This means that instructions take the same number of simulator's cycles to
execute as if run on real ARM hardware. This is important for precise simulation since
some compilers can optimize code that takes advantage of the cycle-counts of specific

instructions. But it is not open source to the public, can’t be integrated into SystemC.

In this work, we implement the ARM Core Model, a cycle-accurate micro-architecture
simulator. It simulates ARM instruction sets, and also simulates S-stage pipeline
(including hazard detecting, forwarding path, interlock logic and automatic no-op insert).
It can act as an ISS to execute ARM program by simulating the behavior of the program.
It is a modular design, so it can be integrated in SystemC, as a component can be plugged

into an application system. It can also evaluate system performance by counting the

11

number of cycles for executing a program; it can also compare the quality of code

compiled by different compilers. It also takes into account all the pipeline effects such as

hazard detecting, data forwarding, interlock, automatic no-op inserting etc. Table 2.1

compares the existing ARM simulators and the ARM Core Model (implemented in this

work)

Open source

Simulation level
or technique
Cycle-accurate
Performance
Thumb support
Library support

Table 2-1: Compare the existing ARM simulators and the ARM Core Model

ARM Core ARMsim | simARM | ARMulator | SWARM | ARMphetamine
Model
Yes No No No Yes Yes
Cycle-accurate ISS ISS ISS Architecture | Architecture/
micro- dynamic
architecture compile
Yes No No Yes No No
Low Medium Medium Medium Low High
No No No Yes No No
No No No Yes Not all No

Chapter 3 ARM Processor Core

Chapter 3 ARM Processor Core

This section introduces the architecture of ARM processor, its processor modes, registers

group, instruction encoding and addressing mode for different instruction, and then

describes the 5-stage ARM pipeline organization [31][25][26].

3.1 ARM Processor Architecture introduction

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical
RISC architecture features:

1.
2.

A large uniform register file.

Load-store architecture, data-processing operations only operate on registers
contents, not directly on memory contents.

Simple addressing modes, with all load/store addresses being determined from
register contents and instruction fields only.

Uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture has following characteristics:

1.

The ARM is a 32-bit machine with a register-to-register, three-operand instruction
set. All operands are 32 bits wide.
Control over both the Arithmetic Logic Unit (ALU) and shifter in every data-

processing instruction to maximize the use of an ALU and a shifter.

3. Auto-increment and auto-decrement addressing modes to optimize program loops.

Load and Store Multiple instructions to maximize data throughput.

5. Conditional execution of all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARM processors to achieve a

good balance of high performance, low code size, low power consumption and low

silicon area.

12

13

3.2 Processor Modes, Registers and PSRs (Program Status Register)

ARM processor has seven processor modes (User mode, FIQ mode, IRQ mode,
Supervisor mode, Abort mode, Undefined mode, System mode). Every processor mode
has different banked general register group. Also there is a CPSR (Current Program
Status Register) and a SPSR (Saved Program Status Register) except system mode and

user mode (there is no SPSR for system mode and user mode).

Processor modes:
ARM supports five types of exceptions, and a privileged processing mode for each type.
The five types of exceptions are:

1. Fast interrupt

2. Normal interrupt

3. Memory aborts, which can be used to implement memory protection or virtual

memory
4. Attempted execution of an undefined instruction
5. Software interrupt (SWI) instructions which can be used to make a call to an

operating system.

When an exception occurs, some of the standard registers are replaced with registers
specific to the exception mode. All exception modes have replacement banked registers

for R13 and R14. The fast interrupt mode has more registers for fast interrupt processing.

When an exception handler is entered, R14 holds the return address for exception
processing. This is used to return after the exception is processed and to address the

instruction that caused the exception.

Register R13 is banked across exception modes to provide each exception handler with a
private stack pointer. The fast interrupt mode also banks registers R8 to R12 so that

interrupt processing can begin without the need to save or restore these registers.

14

There is a sixth privileged processing mode, System mode, which uses the User mode
registers. This is used to run tasks that require privileged access to memory and/or

coprocessors, without limitations on which exceptions can occur during task.

All the processor modes are described in Table 3.1

Table 3-1: Processor mode description

Name Processor mode Description
User usr Normal program execution mode
FIQ fiq Supports a high-speed data transfer or channel
process
IRQ irq Used for general-purpose interrupt handling
Supervisor sve A protected mode for the operating system
Abort abt [Implements virtual memory and/or memory
protection
Undefined und Supports software emulation of hardware
coprocessors
System Sys Runs privileged operating system tasks
Registers:

The ARM has 15 user-accessible general-purpose registers called RO to R14 and a
current program status register (CPSR) and a program counter R15.

The ARM processor has a total of 37 registers:

e 31 general-purpose registers, including a program counter.

e (status registers.

These registers are 32 bits wide. Registers are arranged in partially overlapping banks,
with a different register bank for each processor mode. At any time, 15 general-purpose

registers (R0-R14), one or two status registers and the program counter are visible.

15

The general-purpose registers RO-R15 can be split into three groups. These groups differ
in the way they are banked and in their special-purpose uses:

e The unbanked registers RO-R7

e The banked registers R8-R14

e R15 is the PC (Program Counter)
Banked register means physical address of the register depends on processor mode.

Unbanked register means physical address of the register doesn’t depend on processor

mode.

The unbanked registers RO-R7:
Each of them refers to the-same 32-bit physical register in all processor modes. They are
completely general-purpose registers, with no special uses implied by the architecture,

and can be used wherever an instruction allows a general-purpose register to be specified.

The banked registers R8-R14:

The physical register referred to by each of them depends on the current processor mode.
Where a particular physical register is intended, without depending on the current
processor mode, a more specific name is used. Almost all instructions allow the banked

registers to be used wherever a general-purpose register is allowed.

R15 is the PC (Program Counter):
When an instruction reads R15, the value read is the address of the instruction plus 8

bytes. All the registers are described in Table 3.2.

PSRs (Program Status Registers):

The current program status register (CPSR) is accessible in all processor modes. It
contains condition code flags, interrupt disable bits, the current processor mode, and
other status and control information. Each exception mode also has a saved program

status register (SPSR) that is used to preserve the value of the CPSR when the associated

16

exception occurs. User mode and System mode do not have an SPSR, because they are

not exception modes.

Table 3-2: Registers [26]

Modes

— P,
Privileged modes P
Exce ption mode
User System lﬁpe rvisor Abort Undefined Interrupt Fast In tern?pt
RU KU RO KO KU KU rU
RI RI RI RI RI RI RI
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS R3
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
RS RS RS RS R RS R8_fid
R9 R9 R9 R9 R9 R9 R9_fig
R10 R10 R10 R10 R10 RI0 RIQ fid
R11 R11 R11 R11 R11 R1 RI1_fid
RI2 RI2 R12 RI2 R12 R12 RI2”fid
R13 R13 E_l:_i_évc Ri3alt R13 umd RI3 irg 98 R13fly
R14 R14 14svc Rl4abt Ri4und RI3im '\ RI4 fid
PC PC pPC PC PC PC PC
CPSR CPSR CPSR CPSR CPSR CPSR CPSR
BPSR svc SPSR abt | SPSRimmd SPSR g1l SPSR Mg
Program Status Registers
31 30 29 28 27 26 8 7 6 5 4 3 2 1
N[Z] CT V] Q DNM(RAZ) I F[T | Ma[M3] MZ Mi

The condition code flags in PSR:

The N, Z, C, V (Negative, Zero, Carry and overflow) bits are collectively known as the

condition code flags. The condition code flags in the CPSR can be tested by most

instructions to determine whether the instruction is to be executed.

The condition code flags are usually modified by:

* Execution of a comparison instruction (CMN, CMP, TEQ, TST).

* Execution of some other arithmetic, logical or move instruction, where the

destination register of the instruction is not R15. Most of these instructions have

both a flag-preserving and a flag-setting variant, with the latter being selected by

17

adding an S qualifier to the instruction mnemonic. Some of these instructions only

have a flag-preserving version.

N: is set to bit 31 of the result of the instruction.

Z: is set to 1 if the result of the instruction is 0.

C: is set in one of four ways:

For an addition, including the comparison instruction CMN (CoMpare Negative),
C is set to 1 if the addition produced a carry (that is, an unsigned overflow), and
to 0 otherwise.

For a subtraction, C is set to 0 if the subtraction produced a borrow (that is , an
unsigned underflow), and to 1 otherwise.

For non-addition/subtractions that incorporate a shift operation, C is set to the last
bit shifted out of the register by the shifter.

For other non-addition/subtractions, C is left unchanged.

V: is set in one of two ways:

For an addition or subtraction, V is set to 1 if signed overflow occurred.

For non-addition/subtraction, V is normally left unchanged.

The condition flags can be modified in these additional ways:

Execution of an MSR (Move to PSR from general-purpose Register) instruction,
as part of its function of writing a new value to the CPSR or SPSR.

Execution of MRC (Move to ARM Register from Coprocessor) instructions with
destination register R15. The purpose of such instructions is to transfer
coprocessor-generated condition code flag values to the ARM processor.
Execution of some variants of the LDM instruction. These variants copy the
SPSR to the CPSR, and their main intended use is for returning from exceptions.
Execution of flag-setting variants of arithmetic and logical instructions whose
destination register is R15. These also copy the SPSR to the CPSR, and are

mainly intended for returning from exceptions.

18

The control flags in PSR are:
e I: Disables IRQ interrupts when it is set.
e F: Disables FIQ interrupts when it is set.
e T:0(ARM execution), 1 (Thumb execution)
e Mode bits: M4...MO: Processor Mode. 0x10 (User), 0x11 (FIQ), 0x12 (IRQ),
0x13 (Supervisor), 0x17 (Abort), 0x1b (Undefined), 0x1f (System).

Other bits in the Program Status Registers are reserved for future expansion.
The format of PSR is described in table 3.2.

3.3 ARM instructions

ARM instructions are 32 bit fixed-length RISC instruction set. Figure 3.1 shows the
ARM architecture version 5 instruction set encoding.
Figure 3.2 shows multiplies and extra load/store instructions

Figure 3.3 shows miscellaneous instructions

Almost all instructions can be conditionally executed; which means that they only have
their normal effect on the programmer’s model state, memory and coprocessors if the N,
Z, C and V flags in the CPSR satisfy a condition specified in the instruction. If the flags
do not satisfy this condition, the instruction acts as a NOP. Table 3.3 shows the condition

code encoding.

Appendix A shows all the instructions implemented in this model.

19

31302928272625 24 23 22 21 201918171615141312 1110 98 7 6 5 4 3210
Data processing immcdi:\ité cond | 000 opcode S Rn Rd | Shift amount | shift [0 | Rm
S|
Miscellaneous instructions: | cond | 000 10xx 0 XXXXXXXXXXXKXKX 0] xmxx
See figure 3-3
Data processing register shit | cond | 000 opcode S Rn Rd Rs O(shift|1] Rm
Miscellaneous instructions: |60 471000 10xx 0 XXXXXXXXXXXX 0 xx | 1] xxxx
See figure 3-3
Multiplies, extra load/stores: | cond | 000 XHOOKXXXXXXXKKXXK T xx |1 xxxx
See figure 3-2
Data processing immediate | cond | 001 opcode S Rn Rd rotate immediate
Undefined instruction | cond | 001 10 (x| 00 PO00.0.0.0/0:09.0.9:0.09.9.0.0.9.0.1
Move immediate t‘r’:‘gt].astt‘: cond | 001 10 |[R| 10 mask | SBO | rotate immediate
Load/store immediate offset | cond | 010 [P [U|[B|[W[L| Rn Rd immediate
Load/store register offset | cond | 011 |{P|U|B|W|L Rn Rd Shift amount | shift | 0 [Rm
Undefined instruction | cond | 011 KKK XXXXXXXXXKXXXX 1| xxxx
Undefined instruction | 1111 | O D O.0.070.0.0/0.0.0.0.0.:6/6.0.0/4.0.0.6/0.0.0.6.9.0.9.9
Load/store multiple | cond | 100 [P [U|S | W|L Rn Register list
Undefined instructions | 1111 | 100 XXX XXX KXKKXKKKKKX
Branch and branch withlink | cond | 101 | L 24-bit offset
Branch and branch with link :
And change to thumb 1111 | 101 |[H 24-bit offset
Coprocessor load/storeand "cong 1170 [P [U[N|W|L]| Ra CRd | cp-num 8-bit offset
double Register transfgrs
Coprocessor data processing | cond 1110 opcodel CRn CRd | cp-num | opcod2 | 0 | CRm
Coprocessor register transfers | cond 1110 opcodel | L | CRn CRd | cp-num | opcod2 | 1| CRm
Software interrupt | cond 1111 swi number
Undefined instruction 7777 1111 XXXXXXXXXXXKXXXKXXXKKXXKXK

Figure 3.1: ARM instruction set summary [26]

20

3130292827262524 23 22 21 201918171615141312111098 7 6 5 4 3 2 1 0
cond 0000 00 AlS Rd Rn Rs 1001 Rm
Multiply (accumulate)
Mul[lp]y (accumulate)]ong cond 0000 1 UlA|S RdHi RdLo Rs 1001 Rm
Swap/swap byte | cond 0001 0B |00 Rn Rd SBZ 1001 Rm
Load/store halfword - [“o0nq 17000 [P (U0 [W[L| Rn Rd SBZ 1011 Rm
Register offset
Load/store halfword "cond [000 [P U1 [W|L] Rn Rd | HiOffset 1011 LoOffset
Immediate offset
Load/store twowords [cond | 000 [P |U |0 [W|O Rn Rd SBZ 1{1]S Rm
register offset
Load signed halfword/byte [cond [000 [P [U[O0 [W[1 | Rn Rd SBZ |[1|1|H Rm
Register offset
Load/store two words [cond | 000 |P (U |1 | WIO Rn Rd HiOffset |1 |1 | S LoOffset
immediate offset
Load signed halfword/byte | cond | 000 |P|U |1 | W] 1 Rn Rd |{HiOffset| 1|1 | H LoOffset
Immediate offset
Figure 3.2: Multiplies and extra load/store instructions [26]
31302928272625242322 21 20 1918171615141312111098 76 54 3 2 10
Move status register to register | cond 00010 {R|O0 |0 | SBO Rd SBZ | 0000 SBZ
Move register to status register | cond 00010 {R |1 [0 | mask SBO | SBZ | 0000 Rm
Branch/exchange instruction set cond 00010 01 0 SBO SBO SBO | 0001 Rm
Count leading zeros cond 00010 11 0 SBO Rd SBO | 0001 Rm
Branch and link/exchange cond 00010 01 0 SBO SBO SBO | 0011 Rm
Enhanced DSP add/subtracts | €ond 00010 op |0 Rn Rd SBZ | 0101 Rm
Software breakpoint cond 00010 01 0 immed 0111 | immed
Enhanced DSP multiplies cond 00010 op |0 Rd Rn Rs lyx0 Rm

Figure 3.3: Miscellaneous [26]

Table 3-3: Condition code encoding [26]

21

Opcode Mnemonic Meaning Condition flag state
IR31.28 extension
0000 EQ Equal Z set
0001 NE Not equal Z clear
0010 CS/HS Carry Set/unsigned C set
Higher or Same
0011 CC/LO Carry Clear/unsigned C clear
LOwer
0100 MI MInus/negative N set
0101 PL PLus/positive or zero N clear
0110 VS Overflow V set
0111 vC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or C clear or Z set
same
1010 GE Signed Greater than or (N=V)
Equal
1011 LT Signed Less Than N!=V)
1100 GT Signed Greater Than Z=0 or N!=V
1101 LE Signed Less than or Z=1 or NI=V
Equal
1110 AL AL ways
(unconditional)
1111 NV Depends on
architecture version
3.4 Addressing Modes

ARM Instructions have 5 kinds of addressing modes. Different addressing mode is used

in different instructions. Table 3.4 shows the addressing modes and their usage.

22

Table 3-4: Addressing mode

Addressing mode Usage
Addressing Mode 1 Data-processing operands
Addressing Mode 2 L.oad and Store Word or Unsigned Byte
Addressing Mode 3 iscellaneous Loads and Stores
[Addressing Mode 4 Load and Store Multiple

ddressing Mode 5 Load and Store Coprocessor

The following is more detailed description:

Addressing Mode 1 (figure 3.4):
Addressing Mode 1 is used in Data-Processing instructions to generate the second
operand (Shifter Operand). Shifter-Operand could be:
Immediate: shifter_operand=8-bit immediate Rotate Right (#rot * 2)
if #rot==0 then shifter carry out=C flag
else shifter_carry_out=shifter_operand[31]
(it 1s also the last bit shifted out of the value by the shifter, see figure 3.8)

Register: if IR;;_4=0, then shifter operand=Rm

shifter carry out=C flag

Scaled Register: Rm is shifted by the amount of Rs or #shift.

The shift type (table 3.5) can be: LSL (00), LSR (01), ASR (10), ROR (11), ROX (11)
(IRy1.7=0).

Table 3-5: Shift types

Shift Description
ILSL (figure 3.5) Logical Shift Left
ILSR (figure 3.6) Logical Shift Right
ASR (figure 3.7) Arithmetic Shift Right
ROR (figure 3.8) ROtate Right
ROX (figure 3.9) ROtate right with eXtend
31 282726 25 24 21 20 19 16 15 12 11 0
[cond |00 |#]opcode |S|Rn | Rd | operand2 |
: !
i . i
' destination register !
E first operand register !
E set condition codes i
| [}
i arithmetic/logic functiosn
i !
v 1 87 Yo
——————————————————————————————)} #rot 8-bit immediate
[}
E immediate alignment —
i 11 765 43 0
N o #shift [sh [0[Rm
i
v immediate shift length —
[0} shift type

second operand register

11 874654 3 0
........................... .} Rs 0[sh|1|Rm
register shift length S—

Figure 3.4: Addressing mode 1 data processing instruction binary encoding {26]

24

LSL:
31 30...... 1 0
<+ <
Figure 3.5: LSL operation 0
LSR:
3130...... 1 0
l——> >
Figure 3.6: LSR operation
ASR:
31 30....... 10
—
—p
Figure 3.7: ASR operation
ROR:
31 30 1 0

-

Shifter-Carry-Out=Rm[2*rot-1]
Figure 3.8: ROR operation

-

shifter-carry-out

10

C_Flag <

Shifter-Carry-Out=Rm[0]
Figure 3.9: ROX operation

Addressing Mode 2 (figure 3.10):

31 28272625 24 23 22 21 20 19 16 15 12

11

(=]

25

[cond [o1]#]P]U[B|[W|L|] Rn | Rd

| Offset

=

vVvyyVvyVvyy

immediate shift length

source/destination register
base register

load/store
write-back(auto-index)
unsigned byte/word
up/down

pre-/post-index

11

<_.._-____--___--____--__..-___..

12-bit immediate

11 7654 3

0

#shift sh |0

Rm

shift type

second operand register

Figure 3.10: Addressing mode 2 Single word and unsigned byte transfer instruction binary

encoding [26]

It is used in Load/Store Word/Unsigned Byte instructions addressing.
The instructions are: LDR, LDRB, LDRBT, LDRT, STR, STRB, STRBT, STRT.

P and W combination decides the index mode:
P=0: post-index

W=0: post index

W=1: LDRT, only post index
P=1: pre-index and register offset

W=0: register offset

W=1: pre-index

Offset could be:
o Immediate offset: offset=12-bit immediate

e Register offset: IR;; 4=0 then offset=Rm
e Scaled register offset: Rm is shifted by the amount of #shift.

U is used to indicate Rn Plus (U=1) or Minus (U=0) the offset.
B is used to indicate Unsigned Byte (B=1) or Word (B=0).
L is Load (L=1) or Store (L=0) operation.

Addressing mode 3 (figure 3.11):

31

28 27 2524 23 22 21 20 19

16 15

12

11

8 7 6

5

4

26

cond

000

P

c

w

L

Rn

Rd

offsetH

1

S

H

1

up/down

11 8
immy 4

11 8
0000

load/store

pre/post-index

offset register

l——— source/destination register

base register

write-back(auto-index)

Figure 3.11: Addressing mode 3 Half-word and signed byte transfer instruction binary encoding [26]

It is used in load/store half word, signed half word signed byte and double word
instructions. The instructions are: LDRH, STRH, LDRSH, LDRSB, LDRD, STRD.

P and W combination is similar with addressing mode 2.

27

U: Indicates whether the offset is added (U=1) to the base or subtracted (U=0) from the

base.

L: Indicates Load (L=1) or Store (L=0) instruction.

S: It distinguishes Signed (S=1) or Unsigned (S=0) half-word access.
H: Indicates Half-word (H=1) or Byte (H=0) access.

Offset could be:
e Immediate offset: offset=(offsetH << 4) or offsetL
e Register offset: offset=Rm

Addressing mode 4 (figure 3.12):

It is used in load/store multiple instructions.

Load Multiple instructions load a subset (possibly all) of the general-purpose registers
from memory. Store Multiple instructions store a subset (possibly all) of the general

purpose registers to memory.

Load and Store Multiple addressing modes produce a sequential range of addresses. The
lowest-numbered register is stored at the lowest memory address and the highest-

numbered register at the highest memory address.

The general instruction syntax is:

LDM|STM {<cond>}<addressing mode> <Rn>, <registers>

addressing_mode is one of the following 4 addressing modes:
e [A: P=0 U=l, Start_address=Rn, End_address=Rn+4*N-4
e IB: P=1U=l, Start address=Rn+4, End address=Rn+4*N
e DA: P=0 U=0, Start_address=Rn-4*N+4, End_address=Rn
e DB: P=1 U=0, Start address=Rn-4*N, End address=Rn-4

N: is the number of set bits in register list.

28

P: 0 (include Rn)
1 (exclude Rn)
Rn: when W=1, change the base register Rn

U=1: Rn is set to Rn+4*N

U=0: Rn is set to Rn-4*N
L: Indicates Load (L=1) or Store (L=0) operate.
S: For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR.
For LDMs that do not load the PC and all STMs, the S bit indicates that when the
processor is a privileged mode, the User mode banked registers are transferred instead of

the registers of the current mode.

31 2827 2524 23 22 21 2019 16 15 0
lcond [100 {P|U[S|W|L|[Rn | register list

base register
load/store

write-back(auto-index)

restore PSR and force user bit

up/down

pre/post-index

Figure 3.12: Addressing mode 4 Multiple register transfer instruction binary encoding [26}]

Addressing mode 5 (figure 3.13):

It is used in load/store coprocessor instructions. LDC and STC.

The combination of P and W is similar with addressing mode 2.
U and L have the same meaning with addressing mode 2.
N: is coprocessor-dependent. Its recommended use is to distinguish between different-

sized values to be transferred.

29

31 2827 2524 23 22 21 20 19 16 15 12 11 8 7 0
[cond [100 [P|U|[N|W/|L|Rn [CRA [CPn | 8-bitoffset |

L

source/destination register

base register

load/store

write-back(auto-index)

data size(coprocessor dependant)

up/down

pre/post-index

Figure 3.13: Addressing mode 5 Coprocessor data transfer instruction binary encoding [26]

3.5 Organization of the 5-stage ARM Pipeline

ARM architecture describes the processor’s instruction set and its interfaces with its
closest memory resources. It includes version 3, version 4, version 5 and the latest
architecture version 6. ARM micro-architecture is the implementation of its architecture.
Table 3-6 compares ARM architectural pipeline depth, it starts with ARM7 with three
stages, ARM9 and StrongARM with five stages, and XScale with seven stages, ends with
ARM11, which now has an eight-stage pipeline. In this work, we construct an ARM
micro-architecture simulator of StrongARM with 5 pipeline stages, which implements
ARM instruction set version 5. The ARM processors that use a 5-stage pipeline and

separate instruction and data memory are organized as figure 3. 14.

The 5 pipeline stages:
Instruction Fetch: The instruction is fetched from memory and placed in the instruction

pipeline.

Instruction Decode: The instruction is decoded and register operands read from the
register file. There are three read ports in the register file. All the data processing

instructions with register shift, short multiply instructions and long multiply instructions

30

without accumulation instructions have 3 source register operands, there are also other
instructions that need 1 or 2 source register operands, so most ARM instructions can read
all the source operands in one cycle. Except SMLAL and UMLAL, they need 4 register
operands. Adding a 4t port would be bigger for saving only one cycle rarely, so these 2

instructions need 2 cycles in this stage.

Execute: An operand is shifted and the ALU result generated. If the instruction is a load
or store the memory address is computed in the ALU. If the instruction is LDM or STM
and is the first cycle of LDM or STM executed in this stage, the start address and end
address of the memory block is computed in the ALU, and address incremented in the

following cycles.

Buffer/data: Data memory is accessed if required; otherwise the ALU result is simply

buffered for one clock cycle to allow the same pipeline flow for all instructions.

Table 3-6: Comparison of ARM architectureal pipeline depth

Pipeline Stages Micro-architecture

1 2 3 4 5 6 7 18 | Clock (MHz)

Fetch | Decode | Execute (ARM7)
150

Fetch | Decode | ALU | Cache |WB (strongARM)
' 233

Feich | Issuc | Decode | Excoute | Memory | WB (ARM10)
' 266-325

Fetchl [Fetch2 | Decode | Shifter | Execute | Exceptn [[WB (XScale)
733
planned 1000

Fetchl | Fetch? | Decode | Issue | Shifter | ALU | SAT | WB | (ARM11)
350-500
estimate>1000

31

Write-back: The results generated by the instruction are written back to the register file,
including any data loaded from memory. For those load instructions and LDM
instructions that have auto-index addressing need to change the base register Rn, also

write back in this stage, so there are two write ports in the register file.

next
pc

pct+4

B,BL
mov pc
subs pc

1dr pc

32

Y
¥ I-cache IF stage
W
IF ID
+8 #
Pe I decode
R15 ID stage
Register read
=== D S f===---i__--—- ID_EXE
Bb C MM i
ldm/ D g €-----=----1 L 1
stm 1
< i
e |
+4 post-index shift !
E EXE stage
pre-index v y Operand2 ' i
\/ Forwarding E
MUx ALU paths E
[}
D i
i EXE_MEM
Start Address ALUOutput | PP
/ Byte repl. / E
v i MEM stage
> D-cache E
load/store !
address + i
/ Rot/sgn ex / i
LMD :
i MEM_WB
ALUOutputD | [TTTmTTmommomoes »
_________________________________ .’1
v v i
Register write WB stage

Figure 3.14: ARM 5-stage pipeline organization [25]

Chapter 4 Implementation of the ARM core model

Chapter 4 Implementation of the ARM core model

This chapter presents the way we implement the regular pipeline, advanced properties

(data forwarding, interlock), branch, CPSR, SPSR and some special instructions.

4.1 All the Instructions operation in different stage (except IF)

Signal description:
Since the pipeline structure is not described in the specification manual we are strongly
following the notation and methodology described by Hennessy Patterson [24].
Pipeline Registers (showed in figure 3.14): The pipeline registers are labeled with the
names of the stages they connect. For example, IF_ID is the pipeline register between IF
and ID stage, the same as ID_EXE, EXE MEM and MEM_WRB. The pipeline registers
carry both data and control from one pipeline stage to the next. They hold values
temporarily between clock cycles. Any value needed on a later pipeline stage must be
placed in such a register and copied from one pipeline register to the next, until it is no
longer needed. We note the name of the temporary value ‘pipeline register name’ +°_° +
‘temporary name’. For example IR in IF_ID is IF_ID IR. All these temporary values are
transferred as signal in parallel between pipeline stages, the calculation inside a stage is
sequential. These temporary values in different pipeline registers are:
IF ID: IR (instruction)
ID_EXE: IR

TYPE (type of instruction showed in figure 3.1, 3.2, 3.3)

OPERATE (showed in instruction column of instruction in table 4.1)

CPSR (current program status)

SPSR (saved program status)

A (Ro/MUL_Rn) (illustrated in figure 3.14)

Bb (Rm/UMLAL RdHi/SMLAL RdHi)

C (Rs/Rd of store instrucitons/UMLAL_RdLo/SMLAL RdLo)
IMM (Imm12/Imm?20/Imm24)

33

EXE MEM: IR

TYPE
OPERATE
CPSR
SPSR

34

ALUOutput (output of data processing instructions /UMLAL RdHi /SMLALL_RdHi
/address of load/store)

MEM_WB:

C (Rd of store instrucitons/Rm of SWP and SWPB)

D (changed base register value)

Start_Address (for LDM and STM)

End_Address (for LDM and STM)

Change Base (indicate if the base register is to be changed)
IR

TYPE

OPERATE

CPSR

ALUOutput

LMD (data read from memory)
D

Change Base

Table 4.1 shows all the instructions operation in different stage (except IF).

Table 4.2 summarizes the work of every stage.

Table 4-1: All the instructions operation in different stage

tst, teq), operand2 is showed
in figure 3.4 addressing

mode 1

Instruction type [Instruction [ID EXE MEM 'WB
Data processing A< Rn ALUOutput€<-A func ALUOutput<& ALUOutput Rd<
immediate shift Bb<-Rm operand2 (except cmn, cmp, ALUOutput

35

[nstruction type [Instruction [[D EXE MEM 'WB
Data processing A< Rn
register shift Bb<-Rm
CE&Rs
Data processing A< Rn
immediate
Miscellaneous [MRS * ALUOutput€&PSR ALUOQutputé ALUOutput [Rd¢
instructions1 ALUOutput
MSR Bb<Rm PSR < Bb * *
Move immediate [MSR * PSR €operand2 (operand2 [* *
to status register is showed in figure 3.4
ﬁd&essing mode 1)
Miscellaneous [BX Bb<-Rm Branch to Bb, change CPSR [* *
instructions2
CLZ Bb<Rm ALUOutput€é number of ‘0’|JALUOutputé& ALUOutput [Rd€
bits before the first ‘1’ in Bb IALUOutput
BLX2 Bb<Rm ALUOutput&PC+4, branch |... LR<
to Bb, change CPSR ALUOutput
BKPT * ALUOutput€&PC+4, write LR&
SPSR, CPSR change mode, ALUOutput
I bit, T bit (showed in table
3.2), and branch
Multiplies extra [MUL Bb<Rm C<Rs[ALUOutput€&-Bb*C , Rd¢
[load store More detailed in 4.5.4 IXIIEZ‘Output
MLA A€MUL Rn |[ALUOutputéA+Bb*C IMUL Rd€
Bb<Rm C<Rs[More detailed in 4.5.4 ALUOutput
UMULL Bb<Rm C&Rs[ALUOutputé-(Bb*C)s; 3, |ALUOutputé& ALUOutput [RdHi€
D < (Bb*C);,.0 D<D ALUOutput
RALo<D
More detailed in 4.5.4
SMULL Bb<Rm C<Rs|ALUOutput &(Bb*C)g; .3, RdHi ¢
D <(Bb*C)s1.0 ALUOutput
RALo€<D
More detailed in 4.5.4
UMLAL Bb<Rm(1) D € C(2)+[Bb(1)*C(1)131.0 RAHi ¢
CERs(1) AL UOutput
Bb<-RdHi(2) |ALUOutput<&Bb(2)+[Bb(1) RALo €D
C&RdALo(2) [*C(1)]e3.32 + carry for
calculating D
More detailed in 4.5.5

36

Instruction type |[nstruction [ID EXE MEM WB
SMLAL [Bb&Rm(l) [D€C(2)+[Bb(1)*C(1)]s1.0 RdHi¢
C&Rs(1) ALUOutput
Bb<RdHi(2) |ALUOutput&Bb(2)+[Bb(1) RdLo<D
C&RdLo(2) [*C(1)]es.32 + carry for
calculating D
More detailed in 4.5.5
SWP A<Rn ALUOutput&-A C€EBb LMD € mem[{ALUOutput] Rd<& LMD
Bb<-Rm More detailed in 4.5.3 mem[ALUOutput]€C
SWPB LMD ¢ mem[ALUQutput]; o [Rd€¢ LMD
mem[ALUOQutput] €Rmy; o
LDRH(R) |A€Rn IALUOutput <-offset LMD €mem[ALUOutput];s.o [RA€LMD
Bb<-Rm (showed in figure 3.11 DD Rn<D
ddressing mode 3),
D <changed base
LDRH(I) |A€¢Rn Rd¢LMD
Rn<D
STRH(R) |A<Rn mem[ALUOutput] €C,s_o Rné&D
Bb<Rm C&C D <D
CERd
STRH(I) |A¢RnC€Rd |.. RnéD
cC&C
LDRSB(R) |A€Rn LMD € mem[{ALUOutput]; ; [Rd<LMD
Bb<Rm igned extend; D&D Rn€&D
LDRSH(R) |A€Rn LMD €mem[ALUOutput];s o [RA€LMD
Bb<-Rm signed extend; D&D Rn<-D
LDRSB(I) |A€Rn LMD € mem[ALUOutput]; ; [Rd<LMD
igned extend; D€D Rn€-D
LDRSH(I) |A€Rn LMD €< mem[ALUOutput];s.o [Rd¢LMD
signed extend; D€D Rn<D
Load store LDR(I) A< Rn ALUOutput €offset LMD € mem[ALUOutput] Rd<-LMD
immediate offset (showed in figure 3.10 D<D Rn<D
#addressing mode 2),
D ¢-changed base
STR(I) A¢RnC&Rd |... mem[ALUOutput]€-C; DD [RnéD
C&C
I.oad store registefLDR(R) A< Rn LMD €mem[ALUOQutput]; [Rd€LMD
offset Bb<Rm D <D Rn<-D
STR(R) |A€Rn mem[ALUOutput] €C; DD [RnéD
Bb<€-Rm C&C
C&Rd

37

Instruction type [Instruction [ID EXE MEM 'WB
Load store LDM A< Rn Calaulate Start_address LMD € mem[Start address]; [Ri<LMD
multiple end_address (showed in D<D Rn<D
figure 3.12 addressing mode
4) D €¢changed base
More detailed in 4.5.1
STM mem[Start_address] €Ri Rn<&D
D <D
ore detailed in 4.5.2
Branch and B * Branch to PCH{Imm<<2) [* *
branch with link Imm is the lower 24 bits
' BL * ALUOutput&PC+4 branch |ALUOutputé& ALUOutput [LR€
to PC+(Imm<<2), Imm is ALUOutput
the same as B instruction
Branch and BLX1 * ALUOutput€&-PC+4 change|... LR¢
branch with link T bit of CPSR (showed in ALUOutput
rand change to table 3.2), branch to
thumb PC+(Imm<<2)+(H<<1),
Imm is the same as B
instruction, H is bit 24 of IR
Coprocessor load [LDC no no no no
istore and double
register transfers
STC no no no no
Coprocessor data [CDP no no no no
processing
Coprocessor MCR no no no no
register transfers
RC Mo mo no no
Software interrupt |SWI IALUOutput&PC+4 save |ALUOutput$&ALUOutput LR &
SPSR change CPSR I_bit IALUOQutput
T bit processor mode
(showed in table 3.2),
branch
Notes:
e *: Nothing to do in that stage.
e ...: It does the same work with last instruction operation.

(1): is the first cycle.
(2): is the second cycle.

38

e mem|[addr]: is memory data in address ‘addr’

Table 4-2: Work of every stage

Stage Any instruction
Arithmetic instruction | Load/store instruction | Branch instruction
IF If EXE_changePC then PC&EXE NPC;
Else if MEM_changePC then PC$-MEM_NPC (branch related signal showed in figure 4.5);
Else PC€PCO (PCO is used only in IF stage to identify the address of next instruction);
IF_ID_IR ¢ mem[PC];
PCO<PCH4,
Reg[15]€PC+8;
ID |ID EXE IR€IF ID IR;
ID_EXE_TYPE< decode type of instruction (table 3.1 3.2 3.3);
ID_EXE_OPERATE< decode operate of instruction (table 3.4 instruction name);
ID_EXE PC<Regs[15];
ID EXE A<Regs[Rn];
If (instruction is UMLAL or SMLAL) and (is 2™ cycle of multiply) then ID_EXE Bb<€Regs[RdHi]
Else ID_EXE Bb<€Regs[Rm];
If (instruction is UMLAL or SMLAL) and (is 2™ cycle of multiply) then ID_EXE_C€-Regs[RdLo]
Else if instruction is store then ID_EXE_C€Regs[Rd]
Else ID_EXE C<Regs|[Rs]);
If instruction is B, BL, BLX, SWI then ID_EXE_Imm<IMM24 (lower 24 bits of IR);
Else if instruction is BKPT then ID_EXE_Imm €-IMM20 (lower 20 bits of IR);
Else ID_EXE Imm<IMMI12 (lower 12 bits of IR).
Stage | Arithmetic instruction Load/store instruction Branch instruction
EXE | EXE_MEM_IR<ID_EXE IR; | EXE MEM IR€ID EXE IR; EXE_MEM IR€ID EXE IR;
EXE_MEM TYPE& EXE_MEM TYPE& EXE_MEM TYPE&
ID_EXE TYPE; ID_EXE TYPE; ID_EXE TYPE;
EXE_MEM_OPERATE& EXE MEM_OPERATE& EXE_MEM _OPERATE¢
ID_EXE OPERATE; ID_EXE_OPERATE; ID_EXE OPERATE;
If destination register is PC EXE_MEM_ALUOutput< EXE NPC<&
(Rd=15) then address(A,Bb,C,Imm) (showed in ID_EXE PC+Imm;
EXE NPC<A func figure 3.10, 3.11 addressing mode
operand2(Bb,C Imm) 2,3); EXE changePC<-1;
(showed in figure 3.4
addressing mode 1); If change base register Rn then If instruction is BL, BLX,
EXE changePC<-1, EXE_MEM D<-changedbase; SWI, BKPT then
EXE MEM_ALUOutput€
Else If instruction is store PC-4;

39

Stage

Any instruction

Arithmetic instruction

Load/store instruction

Branch instruction

EXE_MEM_ALUOuptut&
A finc
operand2(Bb,C,Imm);

EXE_MEM_C€ ID_EXE G,

If instruction is LDM STM then
EXE MEM_Start Address¢
Start_address;

EXE MEM_End_Address€
End_address (showed in figure
3.12) addressing mode 4);

MEM

MEM_WB_IR€
EXE_MEM IR;

MEM _WB_TYPE&
EXE_MEM_TYPE;
MEM_WB_OPERATE¢
EXE_MEM_OPERATE;

MEM_WB_ALUOutput€<
EXE_MEM_ALUOutput;

MEM_WB_IR€ EXE_MEM_IR;
MEM_WB_TYPE&
EXE_MEM_TYPE;
MEM_WB_OPERATE¢
EXE_MEM_OPERATE;

If (instruction is load) and destination
register is PC (Rd=15) then

MEM NPC¢

mem[EXE MEM_ALUOutput];

Else if instruction is load then
MEM_WB LMD¢«
mem[EXE MEM_ALUOutput];

Else if instruction is LDM then
MEM_WB_LMD&
mem[EXE MEM_Start Address]
MEM_WB_Start Address€
EXE MEM_Start Address+4;

Else if instruction is store then
mem[EXE_MEM_ALUOQutput]=
EXE_MEM C,;

Else if instruction is STM then
mem[EXE_MEM_Start_Address]=
EXE_MEM_C; Start_Address¢
EXE_MEM_Start Address+4;
MEM_WB_End_Address¢
EXE_MEM_End_Address;

MEM_WB_D<¢ EXE_MEM _D;
MEM_WB_ChangeBase €
EXE_MEM_ChangeBase (notify if
the base register is to be changed);

If instruction is BL, BLX,

SWI, BKPT then
MEM_WB_ALUOutputé
EXE_MEM_ALUOutput;

Regs[Rd] <
MEM WB_ ALUOutput;

If instruction is LDM then
Regs[Ri]¢< MEM WB LMD,;

If instruction is BL, BLX,
SWI, BKPT then

40

Stage

Any instruction

Arithmetic instruction

Load/store instruction

Branch instruction

If instruction is long multiply
Regs[RdHi] &
MEM WB_ ALUOutput;
Regs[RdLo] <
MEM _WB D;

Else if instruction is multiply
then
Regs[Rd MUL]J<
MEM_WB_ALUOutput.

Else Regs[Rd] €< MEM WB LMD;

If changebase
Regs[Rn]¢- MEM WB D.

Regs[LR] <
MEM WB ALUOutput.

In short, more human readable form, each stage is doing the following;

IF stage:
¢ Instruction fetch.

e Write PC+4 to PCO for next instruction address.

* Modify PC to PC+8, in order to be compatible with 3 stages pipeline.

* Pass along values needed in the next stage.

ID stage:

* Decode instruction to know its type and operate.

e Read PC for branch instruction to calculate the new address.

* Read registers (3 register read ports).

 Extend sign of immediate (lower 24 bits or 20 bits or 12 bits of the instruction).

» Pass along values needed in the next stage.

EXE stage:

e Perform an ALU operation for data processing instructions. If the destination

register is PC, signal a branch.

e (Calculate address for load/store instructions.

¢ Calculate the start address and end address of memory block for LDM/STM.

e Calculate the new instruction address for branch instructions.

® Pass along values needed in the next stage.

MEM stage:

41

e For load instruction, read memory data, if the destination register is PC, signal a
branch. For store instruction, write data to memory.

e For LDM/STM instruction, modify next access memory address besides memory

access.
¢ Change base register Rn if needed.

e Pass along values needed in the next stage.

WB stage:
e Write destination register for data processing instructions, load instructions.
e Write link register LR for branch and link instructions.

e Write base register Rn for load and store instructions if needed.

4.2 Forwarding

Forwarding [24][25]: There is a data dependency from instruction A to instruction B

when a result from A is needed for the execution of B. Forwarding paths allow results to
be passed between stages as soon as they are available, and the 5-stage ARM pipeline
requires each of the three source operands (A, Bb, C) to be forwarded from any
intermediate result registers (ALUOutput, D, LMD). Figure 4.1 shows the forwarding
path (also illustrated in figure 3.14 Forwarding path). Figure 4.2 shows the instruction

sequence for forwarding process

IF ——> ID ————~ EXE [——F> MEM ———> WB

1

Figure 4.1: Forwarding paths

42

IF D EXE |MEM |WB |
IF D EXE MEI\/{ WB
IF ID EXE\ MEM\ WB
IF D EXE \MEM | WB
N, | N
IF D ‘TEXE WMEM | WB

Figure 4.2: Instruction sequence for forwarding process

Explanation of the forwarding path (Figure 4.1, Figure 4.2 and Figure 3.14):

Path 1: From the end of MEM stage (MEM_WB) to the end of ID stage
Data in MEM is (MEM_WB) ALUOuptut, D, LMD (path 1 data to be forwarded)
(MEM_WB_) ALUOutput:
o The output of arithmetic instructions, MRS, CLZ, MRC
e The output of multiply instructions (MUL, MLA)

e The higher 32 bits of long multiply output (UMULL, UMLAL, SMULL,
SMLAL)
(MEM_WB) D:
e The lower 32 bits of long multiply output (UMULL, UMLAL, SMULL,
SMLAL)
e The value of base register after changing (load, store, LDM, STM, LDC,
STC)

(MEM_WB) LMD: all kinds of load instructions’ Load Memory Data
Data in ID is A, Bb, C (path 1 data that forward to)

e A:Rn/MUL _Rn
e Bb: Rm/UMLAL RdHi/SMLAL_RdHi
e C:Rs/RA&/UMLAL RdLo/SMLAL RdLo

Path 2: From the end of MEM stage (MEM_WB) to the start of EXE stage (ID_EXE)

43

Data in MEM is ALUOutput, D, LMD (path 2 data to be forwarded)
Data in EXE is A, Bb, C (path 2 data that forward to)

Path 3: From the end of EXE stage (EXE_MEM) to the start of EXE stage (ID_EXE)
Data in the end of EXE is ALUOutput, D (path 3 data to be forwarded)
Data in the start of EXE is A, Bb, C (path 3 data that forward to)

Path 4: From the end of MEM stage (MEM_WB) to the start of MEM stage (EXE_MEM)
Data in the end of MEM is LMD (load, SWP,SWPB and LDM) (to be forwarded)
Data in the start of MEM is C (for store instructions and SWP,SWPB,STM)
(forward to)

Table 4.3, 4.4, 4.5 shows the forwarding operation.

Table 4-3: Destination register of corresponding pipeline register temporary data

ALUOutput, D, LMD (for the source instruction of the forwarding).

Pipeline register Stage Destination register of the instruction
temporary data
ALUOutput EXE and MEM Rd: for arithmetic instructions;

MUL_Rd: for short multiply instructions;
MULL_RdHi: for long multiply instructions

D EXE and MEM RdLo: for long multiply instructions;
Rn: for load/store instructions that change the

base register;

LMD MEM Rd: for load and swp instructions;
Ri: for LDM instructions;

44

Table 4-4: Source register of pipeline register temporary data A, Bb, C (for the destination

instruction of the forwarding).

Pipeline Stage Source register | Source register of the instruction

register identifier

temporary data

A ID and EXE | A_source ID Rn: for arithmetic, swp, load/store
instructions;
MUL_Rn: for short multiply instructions;

Bb ID and EXE | B_source_ID Rm: for arithmetic, load/store
instructions;
RdHi: for long multiply accumulate
instructions

C ID and EXE | C_source_ID Rs: for arithmetic multiply instructions;
Rd: for store instructions;
Ri: for STM instructions;
RdLo: for long multiply accumulate
instructions;

MEM C_source MEM | Rm: for swp instructions;
Rd: for store instructions;
Ri: for STM instructions;
Table 4-5: Forwarding paths
No. | Forwarding Source Source instruction | Destination | Destination Compare condition
path pipeline operation pipeline instruction
(source (destination | operation
instruction) instruction)

1 MEM/WB | Arithmetic; IF/ID Arithmetic; swp; | Destination register of
multiply; long load/store; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A source ID)

2 MEM/WB | Long multiply; IF/1ID Arithmetic; swp; | The same as above
load/store and load/store;
change base; (D) multiply;

45

No. | Forwarding Source Source instruction | Destination | Destination Compare condition
path pipeline operation pipeline instruction
(source (destination | operation
instruction) instruction)

3 1 MEM/WB Swp; load/store; IF/ID Arithmetic; swp; | The same as above
LDMs; (LMD) load/store;

multiply;

4 1 MEM/WB | Arithmetic; IF/ID Arithmetic; Destination register of
multiply; long load/store; long source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B source ID)

5 1 MEM/WB | Long multiply; IF/ID Arithmetic; The same as above
load/store and load/store; long
change base; (D) multiply

accumulate;

6 1 MEM/WB Swp; load/store; IF/ID Arithmetic; The same as above
LDMs; (LMD) load/store; long

multiply
accumulate;

7 1 MEM/WB | Arithmetic; IF/ID Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction = source
(ALUOutput) register in destination

pipeline instruction
(C source_ID)

8 1 MEM/WB | Long multiply; IF/ID Arithmetic; The same as above
load/store and multiply; store;
change base; (D) STMs

9 1 MEM/WB | Swp; load/store; IF/ID Arithmetic; The same as above
LDMs; (LMD) multiply; store;

STMs

10 2 MEM/WB Arithmetic; ID/EXE Arithmetic; swp; | Destination register of
multiply; long load/store; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A source ID)

11 2 MEM/WB | Long multiply; ID/EXE Arithmetic; swp; | The same as above
load/store and load/store;
change base; (D) multiply;

12 2 MEM/WB Swp; load/store; ID/EXE Arithmetic; swp; | The same as above
LDMs; (LMD) load/store;

multiply;

13 |2 MEM/WB | Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long load/store; long source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B source ID)

14 |2 MEM/WB | Long multiply; ID/EXE Arithmetic; The same as above
load/store and load/store; long
change base; (D) multiply

accumulate;

46

No. | Forwarding Source Source instruction | Destination | Destination Compare condition
path pipeline operation pipeline instruction
(source (destination | operation
instruction) instruction)

15 2 MEM/WB | Swp; load/store; ID/EXE Arnthmetic; The same as above
LDMs; (LMD) load/store; long

multiply
accumulate;

16 2 MEM/WB | Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction = source
(ALUOutput) register in destination

pipeline instruction
(C source ID)

17 {2 MEM/WB | Long multiply; ID/EXE Arithmetic; The same as above
load/store and multiply; store;
change base; (D) STMs

18 2 MEM/WB Swp; load/store; ID/EXE Arithmetic; The same as above
LDMs; (LMD) multiply; store;

STMs

19 3 EXE/MEM | Arithmetic; ID/EXE Arithmetic; swp; | Destination register of
multiply; long load/store; source pipeline
multiply; multiply; instruction = source
(ALUOutput) register in destination

pipeline instruction
(A_source_ID)

20 (3 EXE/MEM | Long multiply; ID/EXE Arithmetic; swp; | The same as above
load/store and load/store;
change base; (D) multiply;

21 3 EXE/MEM | Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long load/store; long | source pipeline
multiply; multiply instruction = source
(ALUOutput) accumulate; register in destination

pipeline instruction
(B_source_ID)

22 |3 EXE/MEM | Long multiply; ID/EXE Arithmetic; The same as above
load/store and load/store; long
change base; (D) multiply

accumulate;

23 3 EXE/MEM | Arithmetic; ID/EXE Arithmetic; Destination register of
multiply; long multiply; store; source pipeline
multiply; STMs instruction = source
(ALUOutput) register in destination

pipeline instruction
(C_source_ID)

47

No. | Forwarding Source Source instruction | Destination | Destination Compare condition
path pipeline operation pipeline instruction
(source (destination | operation
instruction) instruction)
24 |3 EXE/MEM | Long multiply; ID/EXE Arithmetic; The same as above
load/store and multiply; store;
change base; (D) STMs
25 | 4 MEM/WB | Swp; load/store; EXE/MEM | Swp; store; Destination register o
LDMs; (LMD) STMs source pipeline
instruction = source
register in destination
pipeline instruction
(C_source MEM)
4.3 Interlock [24][25]

If the instruction] is load, SWP, SWPB or the last execution of LDM, and its output is
the input of instruction2 (except C of store or STM instruction, and Bb of SWP or SWPB
instruction), there is also a RAW hazard between the 2 instructions (Figure 4.3) after

forwarding, so it is necessary to stall the pipeline until the hazard is cleared. (Figure 4.4)

Instructionl | IF ID EXE MEM WB

Instruction2 IF ID 4EXE MEM | WB

Instruction3 IF D EXE MEM | WB

Instruction4 IF D EXE MEM | WB
Figure 4.3: RAW hazard between two adjacent instructions

Instructionl | IF ID |EXE MEMSLWB

Instruction2 'IF D stal |EXE | MEM | WB -

Instruction3 I sal |ID |EXE |MEM (WB | |

Instruction4 | ‘stall |IF |ID | EXE |MEM | WB

Figure 4.4: Insert a nop to avoid RAW hazard

4.4 Branch instructions [25][26]
Instructions that change PC are:

EXE stage:

48

e Arithmetic instructions (except TST,TEQ,CMN,CMP) and destination register
(Rd) is PC (Rd=15).
e BX, BLX2, BKPT, B, BL, MRC (destination register is PC, Rd=15), SWI
MEM stage:
e LDR, LDRT (and destination register is PC, Rd=15), LDM last execution
(IR;5.0=0x8000)
The processing of branch instructions is illustrated in figure 4.5. When a branch
instruction is encountered in EXE stage, it gives a signal EXE_changePC to IF and ID
stage to cancel the instructions in those stages, also gives the new PC value EXE_NPC to
IF stage so it can fetch a new instruction in EXE_NPC address in the new cycle. The
same as MEM stage, it cancels IF, ID, EXE stage instructions by signal MEM_ changePC
and gives the new instruction address by MEM_NPC.

MEM-NPC
l MEM-changePC T
IF D EXE MEM WB
T T EXE-changePC i
EXE-NPC

Figure 4.5: Branch instruction operation

Notes:

1. There is no delay slot.

2. For the instructions that change PC in EXE stage, it should cancel the instruction
in ID, EXE and give new PC in IF at next cycle.

3. For the instructions that change PC in MEM stage, it should cancel the
instruction in ID, EXE (before execution), MEM and give new PC in IF at next cycle.

49

4.5 Some special instructions’ implementation

Special instructions include load and store multiple, swap the content of register and
memory and all multiplications (LDM, STM, SWP, SWPB, MUL, MLA, UMULL,
SMULL, UMLAL, SMLAL).

4.5.1 Load Multiple Registers (LDM)

EXE-LDMLOCK
IF ID EXE MEM WB

Figure 4.6: LDM instruction operation

Figure 4.6 illustrates the processing of instruction LDM [25][26]. When a LDM
instruction is in EXE stage, it gives a signal EXE LDMLOCK to IF and ID stages and
lock the two stages, continue the last 3 stages EXE, MEM and WB until the last
execution of LDM, it changes the value of EXE LDMLOCK to unlock IF and ID stages.

General format:

LDM {<cond>} <addressing_mode> <Rn>, <registers>
The registers’ subset can’t be empty, otherwise it is an invalid instruction.
There are 3 special forms of LDM.
LDM]1, this form of the LDM instruction is useful for block loads, stack operations and
procedure exit sequences. It loads a non-empty subset, or possibly all, of the general-
purpose registers from sequential memory locations. The general-purpose registers
loaded can include the PC. If they go, the word loaded for the PC is treated as an address
and a branch occurs to that address but do not change the CPSR.

LDM?2, it loads user mode registers when the processor is in privileged mode, the
instruction loads a non-empty subset of the user mode general-purpose registers from

sequential memory locations (PC can't be loaded).

50

LDM3, this form is useful for returning from an exception. It loads a subset of the
general-purpose registers and the PC from sequential memory locations. Also, the SPSR

of the current mode is copied to the CPSR.

LDM loads multiple register value from memory. It takes 1 cycle per memory access, so
the number of cycles it needs should be the number of registers. Rn is the base register, it
can be modified according to the addressing-mode, registers are indicated in least
significant 16 bits of the instruction, every bitiis 'l' means the corresponding register Ri
needs load data from memory. The sequence of loading data is from lower register

number to higher register number.

General work: LDM instruction locks the IF, ID stage and continues EXE, MEM, WB

stage.

Execution: LDM first execution should calculate the start address and end address of
memory to be accessed, at the same time, change base register value according to the
instruction format in EXE stage. Access memory in MEM stage, write register and
change base register in WB stage. The following execution of LDM only change memory

address in EXE, access memory in MEM, write register in WB.

Forwarding: For the first execution of LDM, the first loaded register value and base
register value can be forwarded if necessary. For the later executions of LDM, only the

loaded register value can be forwarded.

Signal: EXE LDMLOCK is used to indicate if a LDM instruction is being executed. It is
initialized to 0, when LDM instruction is encountered, it is set to 1, until the last

execution (last register to be loaded), set it to 0.

Instruction select: When EXE_LDMLOCK is 1, the instruction executed in EXE stage
next cycle will be the instruction from MEM stage, and clear 1 bit (the least significant '1'

51

bit). When EXE LDMLOCK is 1, IF and ID stage will be locked, keep the instruction in
that stage. When EXE LDMLOCK is 0, IF and ID stage continue to execute.

4.5.2 Store Multiple Registers (STM)

ID-STMLOCK

; .

IF ID EXE MEM WB

Figure 4.7: STM instruction operation

Figure 4.7 illustrates the processing of STM [25][26] instruction. When a STM
instruction is in ID stage, it gives a signal ID STMLOCK to IF stage and lock it,
continue the last 4 stages ID, EXE, MEM and WB until the last execution of STM, it
changes the value of ID_STMLOCK to unlock IF stage.
General format:

STM {<cond>} <addressing mode> <Rn>, <registers>

The registers subset can’t be empty, otherwise it is an invalid instruction.

There are 2 special forms of STM.
STM1, this form of the STM instruction stores a non-empty subset of the general-purpose

registers to sequential memory locations.

STM2, this form of STM stores a subset of the user mode general-purpose registers to

sequential memory locations when the processor is in privileged mode.

STM stores multiple register value to memory. It takes 1 cycle per memory access, so the
number of cycles it needs should be the number of registers. Rn is the base register, it can
be modified according to the addressing-mode, registers are indicated in least significant

16 bits of the instruction, every bit i is 'l' means the corresponding register Ri value

52

needs to be stored in memory. The sequence of storing data is from lower register number

to higher register number.

General work: STM instruction lock the IF stage and continue ID, EXE, MEM, WB stage.

Execution: STM first execution should read register value to be stored and base register
value in ID, calculate the start address and end address of memory to be accessed, at
same time, change base register value according to the instruction format in EXE stage,
Access memory in MEM stage, write base register in WB stage. The following execution
of STM read register value to be stored in ID stage, change memory address in EXE

stage, access memory in MEM stage, nothing to do in WB stage.

Forwarding: Only the first execution of STM, base register value (D) can be forwarded if

necessary.

Signal: ID_STMLOCK value can be:
-1: Initial value
3: First execution and need lock
2: First execution and no need lock
1: Not first execution and need lock

0: Not first execution and no need lock

Instruction select: When ID_STMLOCK is 1 or 3, the instruction executed in ID next
cycle will be the same instruction, and clear 1 bit (the least significant 'l' bit). When
ID_STMLOCK is 1 or 3, IF stage will be locked, keep the instruction in that stage. When
ID_ STMLOCK is 0, 2 or -1, IF stage continues to execute (unlock IF).

4.5.3 Swap a word/byte (SWP, SWPB)
Figure 4.8 illustrates the processing of SWP, SWPB [25][26] instruction. When a SWP
instruction is in MEM stage, it gives a signal MEM_SWPLOCK to IF, ID and EXE

53

stages and lock the three stages, continue the last 2 stages MEM for 1 cycle, then it
changes the value of MEM_SWPLOCK to unlock IF, ID and EXE stages.

MEM-SWPLOCK

.o I !

IF D EXE MEM WB

Figure 4.8: SWP instruction operation

General format:

SWP(B){<cond>} <Rd>, <Rm>, [<Rn>]

It loads a memory [Rn] data to register Rd and store another register Rm’s content to

memory [Rn] atomically, so it needs 2 cycles for memory access.

General work: SWP instruction locks the IF, ID, EXE stage for 1 cycle and continue
MEM, WB stage.

Execution: SWP first execution should read memory in MEM stage, write register in WB
stage. The following execution of SWP, SWPB should write register to memory in MEM
stage, nothing to do in WB stage.

Forwarding: For the first execution, data loaded from memory (for Rd) can be forwarded

if necessary.

Signal: MEM_SWPLOCK is initialized to 0. When SWP or SWPB instruction is

encountered, it is set to 1, after 1 cycle it is set to 0.

Instruction select: When MEM_SWPLOCK is 1, the instruction executed in MEM stage
will be the same instruction. When MEM SWPLOCK is 1, IF, ID and EXE stage will be

54

locked, keep the instruction in that stage. When MEM_SWPLOCK is 0, IF, ID and EXE

stage continue to execute.

4.5.4 Multiply instructions (MUL, MLA, UMULL, SMULL)

Figure 4.9 illustrates the processing of these instructions. When a multiplication
instruction (MUL, MLA, UMULL, SMULL) is in EXE stage, it gives a signal
EXE MULLOCK to IF and ID stages and lock the two stages, continue the last 3 stages
EXE, MEM and WB until the last cycle of the multiply instruction, it changes the value
of EXE_ MULLOCK to unlock IF and ID stages.

EXE-MULLOCK
IF ID EXE MEM WB

Figure 4.9: Multiply-1 instruction operation

Instructions are:
MUL: multiply instruction
MLA: accumulated multiply instruction
UMULL: unsigned long multiply instruction
SMULL.: signed long multiply instruction

All multiply instructions was integrated in the integer unit, they take much more cycles in
EXE stage, the number of cycles that the instruction needs depend on the source operands.
The greater operand needs more cycles. The calculation method can also be changed

according to the real hardware.

General work: The multiply instructions lock the IF, ID, multiple cycles and continue
EXE, MEM, WB stage.

55

Execution: Until the last cycle, EXE output its result to MEM, and then WB to write back

the register.

Signal: EXE MULLOCK is initialized to 0. When MUL, MLA, UMULL or SMULL
instruction is encountered, it is set to the number of cycles that the multiply needs, then it

is decreased by 1 every cycle, until 0, it unlocks IF and ID.

Instruction select: When EXE_MULLOCK is not 0, the instruction executed in EXE
stage will be the same instruction. When EXE MULLOCK is not 0, IF and ID will be
locked, keep the instruction in that stage. When EXE MULLOCK is 0, IF and ID stage

continue to execute (unlock IF and ID).

4.5.5 Long multiply and accumulate instructions (UMLAL, SMLAL)

Figure 4.10 illustrates the processing of UMLAL and SMLAL [25][26] instructions.
When a UMLAL or SMLAL instruction is in ID stage, it gives a signal ID_LMULLOCK
to IF stage and lock the stage IF, so it can read the source registers in 2 cycles (it needs 2
cycle to read the 4 source registers for UMLAL or SMLAL), if the multiply instruction
needs only 1 cycle to execute in EXE stage, it unlock the IF stage, otherwise it lock IF

and ID stages until the last cycle.

ID-LMULLOCK EXE-LMULLOCK

v I v v

IF EXE MEM WB

Figure 4.10: Multiply-2 instruction operation

Instructions are: UMLAL and SMLAL.
UMLAL: unsigned accumulated long multiply
SMLAL.: signed accumulated long multiply.

General format:

56

UMLAL(SMLAL){<cond>} {S} <RdLo>, <RdHi>, <Rm>, <Rs>

RdLo é‘RdLO-l—[RIn*RS]g]“o
RdHi €<RdHi+[Rm*Rs]s3_3; + carry from calculating RdLo
S indicates that if the instruction changes the CPSR.

The number of cycles in EXE they need is the same as other multiply instructions. Both
of the instructions need four source register operands, but this kind of ARM micro-
structure has only 3 register read ports. It needs 2 cycles to read the source operand in ID

stage.

It needs 2 signal ID_LMULLOCK and EXE_LMULLOCK to implement the instructions.
ID LMULLOCK is used to lock IF when UMLAL or SMLAL is encountered.
EXE LMULLOCK is used to indicate the number of cycles it needs in EXE, and to
release ID LMULLOCK 1 cycle before it finish in EXE stage, so that the pipeline can

continue (2 instructions in IF and ID).

General work: The multiply instructions lock the IF, ID, multiple cycles and continue
EXE, MEM, WB stage.

Execution: Until the last cycle, EXE output its result to MEM, and then WB to write back

the register.

Signal: ID LMULLOCK and EXE LMULLOCK are initialized to 0. When UMLAL or
SMLAL instruction is encountered in ID, ID_ LMULLOCK is set to 2, ID read 2 register
operands Rm and Rs, and lock the IF stage. Then set to 1 or 0 according the number of
cycles it needs in EXE. If it needs more cycles in EXE, it is set to 1 to lock IF, at the
same time, ID keeps the other 2 operands RdHi and RdLo. 1 cycle before finishing

execution in EXE it is set to 0, and unlock the IF stage so that the pipeline can continue.

57

Instruction select: When ID_LMULLOCK is not 0, the instruction executed in ID will be
the same instruction, IF will be locked, keep the instruction in that stage. When
ID LMULLOCK is 0, IF continue to execute. When EXE LMULLOCK is not 0, the

instruction executed in EXE will be the same instruction.

4.6 Current and Saved Program Status Register (CPSR, SPSR)

PSR[6]

CPSR CPSR CPSR

SPSR SPSR

D o pxp PSR vpm (CPSR I wp

SPSR SPSR
ot P 0

Figure 4.11: PSRs (progam status register) operation

Figure 4.11 illustrates the processing of CPSR and SPSR [25][26]: ID stage read CPSR
and SPSR, they are together with this instruction. In EXE stage, the instruction can read
or write CPSR and SPSR. If CPSR changes in EXE stage, we need to modify the CPSR
for following instructions, so when instruction arrives to EXE stage, it read the newest
CPSR. MEM stage can modify CPSR. WB stage needs CPSR for writing back the

appropriate register.

CPSR:
The stages that need CPSR are:

e ID stage (for read register in different processor mode).
e EXE stage (for conditioned execution instructions, MRS, BKPT, SWI).

o WB stage (for write register in different processor mode).

The stages that modify CPSR are:

58

e EXE stage
o MEM stage
In EXE stage,

e The arithmatic instructions, when bit 20 of IR is 1, it changes N,Z,C,V in CPSR,
when destination register is PC (Rd=15), CPSR=SPSR.
e MSR instruction changes CPSR or SPSR with register operand or immediate

operand.
e BX, BLX2 modify T flag.
e BKPT changes processor mode to abort mode, and set SPSR_abt=CPSR.
e BLXl1setsT flagto 1.
e MRC changes N Z C V when destination register is PC (Rd=15).

e SWI changes processor mode to supervisor mode, and set SPSR_svc=CPSR.

In MEM stage,
¢ LDR and LDRT, when destination register is PC (Rd=15), it changes T flag.
e LDMI, when IR bit 15 is ', it changes T flag.
e LDM3, it sets CPSR with SPSR of corresponding processor mode.

SPSR:

The stages read SPSR are:
e EXE stage
e MEM stage

In EXE stage,

e The arithmatic instructions, when destination register is PC (Rd=15),
CPSR=SPSR.
e MRS, when the PSR is SPSR, Rd<--SPSR.

In MEM stage,

59

LDM3, it sets the CPSR with corresponding SPSR.

The stage writes SPSR is EXE.

Instructions write SPSR are:

MSR, when the PSR is SPSR, it writes the SPSR with register operand or

immediate operand.
BKPT, it writes SPSR_abt with CPSR.
SWI, it writes SPSR_svc with CPSR.

MSR changes processor mode in EXE stage, so it is necessary to forward MSR execution

to ID stage, at the same time, for MSR with register operand, B operand needs to be

forwarded to ID stage.

Implementation:

Forwarding: Source register operands need to be read in ID stage, it needs to
know the processor mode. Only MSR instruction can change processor mode and
do not result in branch operation, so it is necessary to forward MSR execution to
ID stage, at the same time, for MSR instruction with register operand Bb, Bb also
needs to be forwarded to ID stage.

For reading CPSR/SPSR, read it in ID stage, the instruction in ID stage needs
processor mode in CPSR to read register file. In EXE stage, read CPSR/SPSR
again, since some instructions in EXE stage may change condition code of
CPSR/SPSR and do not change processor mode. Transfer the newest CPSR/SPSR
to MEM stage and WB stage.

For writing SPSR, in EXE sage, BKPT and SWI result in branch operation, this
must cancel the instructions in IF stage and ID stage. Or in ID stage, MSR
instruction can modify the SPSR, so there are no multiple copies.

For writing CPSR, in MEM stage, LDR and LDM must result in branch operation,
this will cancel the instructions in IF stage, ID stage and EXE stage. In EXE stage
instructions that change CPSR are BX, BLX2, BKPT, BLX1, MRC, SWI, these

60

instructions also result in branch operation, it will cancel the instructions in IF
stage and ID stage. In ID stage, only MSR instruction can change CPSR, so there

are no multiple copies.

4.7 Discussion on generalization

This section discusses the generalizaiton of the ARM core model from the following

aspects:

It is compatible with 3-stage and 5-stage pipeline architecture.

It can be extended to support Thumb instruction set.

It is easy to add some new instructions.

For those processors that change the number of pipeline stages, it is difficult to
implement with a little change in this processor model.

By encapsulating the ARM core model, separating its interface and implement, it

can be a component to plug into a system and communicate with other

components.

The ARM core model is based on a general ARM 5-stage pipeline micro-architecture

with forwarding paths, automatic nop inserting when interlocking. It is compatible with

the 3-stage pipeline micro processor core, it also supports 5-stage pipeline processor core

architecture without automatic nop inserting.

The ARM core model supports 32-bits ARM instruction sets. It can be generalized to

support thumb instruction sets (16-bits).

The thumb instruction set is a re-encoded subset of the ARM instruction set.
Thumb is designed to increase the performance of ARM implementations that use
a 16-bit or narrower memory data bus and to allow better code density than ARM.
Every thumb instruction is encoded in 16 bits.

Thumb does not alter the underlying programer’s model of the ARM architecture.
All thumb data-processing instructions operate on full 32-bit values, and full 32-
bit addresses are produced by both data-access instructions and instruction

fetches.

61

e When the processor is executing thumb instructions, registers R0O-R7 are
available. Some instructions can access PC (Program Counter), LR (Link
Register), SP (Stack Pointer). Further instructions allow limited access to R8-R15.

e Thumb does not provide direct access to the CPSR or any SPSR.

After adding a module for decoding Thumb instructions and access limit, the ARM core

model can be generalized to support Thumb instruction sets.

For supporting new ARM instructions, we only need to modify ID (instruction decode)
module and EXE (execution) module without changing the other parts (forwarding,
interlock, IF, MEM, WB), the whole pipeline can work well. For those processor core
that change the pipeline stages (more than 5 stages), we have to adjust work of every
stage, forwarding path, interlock condition, etc. So it is difficult to support them with

little change to the ARM core model.

The ARM core model is now a stand alone software project. We can encapsulate it to be
a component to plug into a system and communicate with others by separating its

interface (input/output request) and implementation with little source code modification.

Chapter 5 Validation of the model

Chapter 5 Validation of the model

In order to test the validity of the ARM core model, some experiments were carried out
on this model. And also they were run on another ARM Instruction Set Simulator, and

then compare the results from the two models, to ensure if the ARM core model is valid.

5.1 Methodology of Validation

This section introduces the ARM core model, Instruction Set Simulator and methodology

of validation.

5.1.1 The ARM core model

The ARM core model is a cycle accurate micro-architecture simulator. It simulates the 5-
stage pipeline, IF (Instruction Fetch), ID (Instruction Decode), EXE (Execution), MEM
(Memory access), WB (Write back), separate instruction cache and data cache (not the
complete memory hierarchy subsystem), registers, forwarding path, interlock logic,
hazard detect. In EXE stage, there are ALU, shifter, multiplier, auto-indexed addressing,
etc. showed in figure 3-14.

The ARM core model is a simulator of the 32-bit ARM RISC processor. It simulates the
entire instruction set except for those requiring use of the coprocessor unit. The
coprocessor is not a functional unit standard across all ARM processors. Coprocessor
instructions vary widely from system to system depending on the actual coprocessor
module available on the chip. It was not possible to come up with a common subset of

operations that all coprocessors would support.

The ARM core model executes one instruction at a time and updates the processor state
accordingly. Figure 5.1 illustrates the processor of the ARM as simulated by the ARM

core model.

1. The input program is ARM object code. It can be obtained by one of the

following modes:

62

e ARM object code.
e ARM assembler to assemble the ARM assembly program.

e ARM GCC cross compiler to compile C source file to ARM object code.

63

ARM core
Input program IF Instruction
memory
.c 1
cross-compiler I
ID Registers
.asm bl .bin EXE
assembler X >
.bin
> MEM Data
memory
WB

Figure 5.1: The ARM core model

2. The object code was stored in the instruction cache. The ARM core model does

not simulate the ARM processor in the 16-bit THUMB mode [25][26]. This has

the effect that all instructions are stored at word-aligned addresses, and all

instructions fetch operation as 32-bit data transfers.

3. Data was stored in data cache in the little-endian representation. ARM supports

data transfer in three different sizes: byte, halfword, and word between the

registers and memory. The ARM core model implements the transfer of memory

data of all the sizes.

64

4. The program behavior must be repeating for testing purposes. Being completely
software-simulated, ARM core model guarantees that the outcome of program
behavior is deterministic. The ARM core model simulates program execution by
iterating through a cycle of instruction fetching, decoding, execution, memory

access and write-back.

5.1.2 Validate the ARM core model with an ISS (Instruction Set Simulator)

An ISS is used to validate the ARM Core Model. The ARM core model and ISS do not
have the same precision. The ARM core model is a cycle accurate simulator that
simulates the micro-architecture with 5 pipeline stages. ARM ISS executes ARM
programs by simulating the effects of each instruction on a target machine. It interprets
ARM programs at the instruction level. So we use an ARM ISS to validate the ARM core

model at the instruction level. The validation methodology is show in figure 5.2:

outputl

> ARM core

——»1 compare

.bin

ARM ISS

output2

Figure 5.2: Validate the ARM core model

1. The C source program (example code in figure 5.4) is cross compiled by:

% arm-elf-gcc O —static O source.c ¢ —o 0 obijfilel (The objfilel can be run on

the ARM ISS)

2. Modify the C source program to remove ‘main’ and ‘printf’ (example code in

figure 5.3). Cross compile it by:

65

% arm-elf-gce O —static ¢ —nostartfiles ¢ —nostdlib 0 source.c ¢ —o 0 objfile2

The ARM binary code extracted from objfile2 can be executed on the ARM core
model. The start file is operating system dependent, we don’t have an operating
system in the ARM core model. The ARM core model does not support start file and
library, so we use the two options: nostartfiles and nostdlib.

3. Run the object code on the appropriate model, and compare the outputs from the

two models.

For example the code of test_nolib_fib:

Int fib(int 1);
Extern “C” int _start()
{

int a=15;

return fib(a);

}
int fib(int 1)

if (((==1)||(i==2)) return 1;
else return fib(i-2)+fib(i-1);
}

Figure 5.3: A program executed on the ARM core model (without library)

#include <stdio.h>
#include <stdlib.h>
int fib(int 1);
void main()
{
int a=15;
int b;
b=fib(a);
printf(“%d”,b);
}
int fib(int 1)
{
if ((i==1)||(i==2)) return 1;
else return fib(i-2)+fib(i-1);
}

Figure 5.4: A program executed on ISS (with libraries)

nolib_fibl:

Disassembly of section .text:

00008000 <_start>:
8000: ela0c00d
8004: €92dd800
8008: €24cb004
800c: e24dd004
8010: e3a0300f
8014: e50b3010
8018: e51b0010
801c: eb000005
8020: €1a03000
8024: €1a00003
8028: €a000001
802¢: ea000000
8030: eaffffff b
8034: €91ba800

00008038 <fib__Fi>:
8038: e1a0c00d
803c: €92dd810
8040: e24cb004
8044: e24dd004
8048: e50b0014
804c: e51b3014
8050: 3530001
8054: 0a000003
8058: e51b3014
805¢: e3530002
8060: 0a000000
8064: €a000002
8068: €3a00001
806¢c: €a00000f
8070: ea00000c
8074: e51b2014
8078: €2423002
807c: €1a00003
8080: ebffffec
8084: €1a04000
8088: e51b2014
808c: €2423001
8090: €1a00003
8094: ebffffe7

mov
stmdb
sub
sub
mov
str

Idr

bl
mov
mov
b

b

file format elf32-littlearm

rl2, sp

sp!, {r11,r12, Ir, pc}

ril, r12,#4 ; Ox4
sp, sp, #4 ; 0x4
r3, #15 ; Oxf

r3, [r11, #16]

r0, [r11, #16]

8038 <fib__Fi>

r3, r0

10, 13

8034 <_start+0x34>

8034 <_start+0x34>

8034 < start+0x34>
ldmdb rll, {rll, sp, pc}

mov
stmdb
sub
sub
str
1dr
cmp
beq
1dr
cmp
beq

mov

1dr
sub
mov
bl
mov
1dr
sub
mov

bl

rl2, sp

sp!, {rd, r11,r12, Ir, pc}
rll, r12,#4 ; 0x4
sp, sp, #4 ; O0x4
0, [r11, #20]

r3, [rl1, #20]

r3, #1 ; 0x1

8068 <fib__Fi+0x30>
r3, [r11, #20]

3, #2 ;0x2

8068 <fib__Fi+0x30>
8074 <fib__ Fi+0x3c>
10, #1 ; Ox1

80b0 <fib__ Fi+0x78>
80a8 <fib__ F1+0x70>
r2, [r11, #20]
13,12, #2

10, r3

8038 <fib__ Fi>
4, 10

r2, [r11, #20]
r3, r2, #1

10, r3

8038 <fib__ Fi>

; 0x2

; 0x1

Figure 5.5: AN ARM assembly program after cross compile (Fibonacci)

66

67

5.2 Experiments
In order to validate the ARM core model, we do some experiments. They can be
classified into two groups:
e Basic test
e Combination test
Basic test is to test some special instructions’ execution, interlock, forwarding, program

status register (PSR) related operations. It includes the following programs in table 5.1.

Table 5-1: Programs for basic test

Program name Usage

test LDM test load multiple register (LDM) instruction

test STM test store multiple register (STM) instruction

test SWP test SWP instruction: to swap memory and register content

test MUL test short multiply instruction

test UMULL test long multiply instruction

test UMLAL test long multiply and accumulate instruction

test. MSR test move general purpose register to program status register
(MSR)instruction

test. LDRLOCK test interlock between load register instruction and other instructions

test LDMLOCK test interlock between load multiple register (LDM) instruction and
other instructions

test FORWARD test pipeline forwarding operation

These test programs were directly on the ARM core model. They were written in ARM
object code. It is not necessary to compare the two results from the two models. By
analyzing the results, to know if the ARM core model is correct in these operations.
Implicitly test different function unit inside the ARM core. For example shift operation,
ALU, auto-indexed addressing etc.

Combination test is to test different instructions combination. It includes the following

programs in table 5.2:

68

Table 5-2: Programs for combination test

Program name Description

Test_sort It is to sort elements in increased order, it is used to test
different instruction combination and branch. It was written in

ARM object code

Test_fibonaccil Calculate the first ten fibonacci numbers. There is no function

call. It is used to test different instruction combination. It was

written in ARM object code
Test_nolib Calculate the sum of an array. It was written in C
Test_nolib_fib Calculate the first ten fibonacci numbers. There is recursively

function call. it is used to test stack processing when function

call and return. It was written in C

For the first 2 programs written in ARM object code, can be directly run on the ARM

core model. Then analyze the results to know if it is correct.

For the last 2 programs written in C, they should be cross compiled to ARM object code
with and without library support by using arm-elf-gcc, then run on ARM ISS and the
ARM core model, by comparing the two results form the two model, to ensure the

validity of the ARM core model being validated.

5.3 Summary of this validation
From basic test, the following conclusions can be made:

e The functional units of this ARM core model work correctly corresponding to
these basic test cases. The functional units are ALU, shifter, multiplier, auto-
indexed addressing unit, conditional execution etc.

e CPSR and SPSR operate correctly on the basic test cases.

e The forwarding paths are correct corresponding to the basic test cases. The paths

described in 4.2.

69

e The interlock logic is valid corresponding to these basic test cases. The logic is
data-hazard between register load instructions and other instructions. A nop was
inserted automatically.

From combination test, the ARM core model seems to be valid. It can run the programs

output from arm-elf-gcc cross compiler giving the same results on the test cases as an
ARM ISS.

Chapter 6 Performance Evaluation
Chapter 6 Performance Evaluation

The best simulation method depends on the application of the simulation results.
Architecture level simulator is used to research the internal data-paths of the processor, is
not intended for executing target system binaries on an alternate platform. Direct
execution and threaded code simulation technique makes the simulation faster. It is used
in increasing simulation speed. Instruction Set Simulator is used to run system binaries
program that executed on the target architecture, and gather some statistics information,
test concepts and processor design tradeoffs. Flexibility is important and speed is not of

primary importance.

Cycle accurate processor simulators that simulate the micro-architecture of processors are
essential and commonly used for research and design of processors. The ARM core
model is a cycle accurate micro-architecture simulator, it simulates the implementation of
the S5-stages ARM pipeline, on each cycle, the pipeline model is advanced (subject to
stalls and interlocks), and at any given point, several instructions may be in various stages

of execution. The simulator can be used to:

1. Run target system binaries code, simulate the overall behavior of execution of
programs that are intended for execution on an ARM system.

2. Evaluate the performance of target processor by counting the number of cycles of
specific instructions.

3. Gather some statistics information.

4. Compare the quality of compiled code as produced by different compilers.

For evaluating the performance of the simulator, the most important quality metric is its
execution time of a workload [14][15]. The execution time [24] is especially relevant for
the development of high performance systems, where being able to perform simulation in
real time is desired. However, the execution time varies greatly depending on the
application and what features are enabled. The slowdown [17] is presented as the ratio of
time to complete the workload execution on the simulator to the execution time on the

target architecture.

70

71

By counting the number of cycles of specific instructions, the simulator can be used to
evaluate the performance of ARM processor and compare the compiled code’s quality
generated by different compilers. Table 6-1 shows the execution time of ISS and the

ARM core model for different workload and other quantity metrics.

Table 6-1: Performance evaluation of the ARM core model

C Program Simulator Execution | Number of | Number CPI
time (s) instructions | of cycles

Fibonacci ISS 0.501
(15) ARM core model | 6.058 30631 46626 1.52
Summary ISS 0.394

ARM core model | 13.072 14373 18478 1.29
Array ISS 0.275

ARM core model | 0.031 297 370 1.25
Test2 ISS 0.066

ARM core model | 0.029 75 117 1.56
Test3 ISS 0.095

ARM core model | 0.039 103 135 1.31
Test4 ISS It doesn’t work, maybe there is a bug in the ISS

ARM core model | 0.093 423 537 1.27
TestS ISS 61.89

ARM core model | 190.818 1,083,377 | 1,418,899 | 1.31

‘Fibonacci’ is recursive function call to calculate the numbers, also used to test function
call, stack use. ‘Summary’ is to accumulate the number iteratively. ‘Array’ is also used to
test memory access operations. They all work correctly on the ARM Core Model and the
ISS.

‘Test2’ to ‘Test5” are downloaded from [36]. They are used in EQNTOTT benchmark.
EQNTOTT benchmark is a compute-intensive program that spends the majority of

execution time in the function cmppt(). The function cmppt() has a loop that compares

72

two strings of short integers. This function is similar to stncmp(), except it compares
short integers instead of characters. Some compilers use EQNTOTT-specific
optimizations to achieve the best possible run-time performance, but sometimes the
compilers generate incorrect object code for those similar to EQNTOTT. ‘Test2’ to
“Test5” are used to test compilers’ output for those are only slightly different from
EQNTOTT. ‘Test2’, ‘Test3” and ‘Test5’ are run correctly, ‘Test4’ is run correctly on the
ARM core model, it doesn’t wok on ISS, maybe there is a bug in the ISS.

‘Fibonacci’, ‘Summary’ and ‘Test5’ are long programs, the execution time on ISS is
much shorter than on the ARM core model for the same workload, because ISS is only
for run ARM object code, ARM core model not only run object code but also collect
some information. The others are relative small programs, their execution time on ISS is
a little longer than on ARM core model, this is because ISS also simulates virtual
memory, system boot etc., for these programs, the ARM core model is more efficient
than ISS.

CPI (Clock cycles Per Instruction) of the ARM core model, it can be used to evaluation
the performance of an application when the ARM core model is plugged. The number of
cycles and the number of instructions can be used to evaluate the compiled code’s

quality.

Other quality metrics include extensibility [16], we can hook up to co-design systems,
external bus models, memory hierarchies or coprocessor models without access to
sources; interoperability [16], which has to do with its capability to integrate with other
tool, such as debugger hardware simulator, etc. the debugger can obtain a snapshot of all
the instructions in the pipeline and which instruction in each stage (e.g., fetch, decode,
execute, memory cycle, or register write-back); traceability [16], which has to do with
how flexible the simulator can collect useful statistics, such as instruction profiling;
retargetability [16], which has to do with how easy the tool can be extended to handle

new host platforms.

Chapter 7 Conclusion

Chapter 7 Conclusion

ARM is a 32-bit machine with a register-to-register, three-operand instructions, control
over both the Arithmetic Logic Unit and shifter in every data processing instruction, auto-
increment and auto-decrement addressing modes, load and store multiple instructions,
conditional execution of all instructions, it also has seven processor modes, every
processor mode has its CPSR and SPSR except system mode and user mode (they do not

have SPSR), so it can support multiple level interrupt.

The ARM core model is a cycle-accurate micro-architecture simulator of ARM processor
that has 5-stage pipeline with forwarding path, hazard detect and interlock. Since the
pipeline structure and its advanced properties are not described in the specification
manual, so we combine the description in ARM specification manual [25][26] and
methodology described in “Computer Architecture-A Quantitative Approach” [24] in this
work. The main contributions of this work are:

e Provide a description of ARM pipeline implementation, this description can be

considered as original.
e Present an open source of ARM cycle accurate micro-architecture simulator in

SystemC, which doesn’t exist in the public domain.

The ARM core model was validated by using an ARM ISS (Instruction Set Simulator) at
instruction level (the ARM core model and ISS do not have the same precision). We also
present the metric for performance evaluation. The simulator is also compatible with 3-
stage pipeline simulator. The programs have the same result running on this model as
running on other ARM simulator (3-stage pipeline). Its main uses are:

e Simulate the overall behavior of execution of programs that are intended for

execution on an ARM system.
e Compare the quality of compiled code as produced by different compilers and/or

compiler options.

73

74

Evaluate the performance of an application by counting the number of cycles,

calculating the CPI (Cycles Per Instruction).

Despite our effort to make the ARM core model a robust system, there are still areas for

improvement. Some areas for future work are considered below:

The ARM core model is now a standalone software project. We can encapsulate
the ARM core model according to Object-Oriented methodology, separate the
interface and implementation, so it can be a component to plug into a system and
communication with other modules.

Extend and integrate with other modules. For example memory hierarchy without
having to rewrite major parts of the system, this can then be used to monitor
memory access patterns in test programs such as temporal and spatial locality,
size of memory requirement, etc.

Plug into a system without changing the other modules in the system, only change
the composition of the hardware system.

Incorporate more precise clock cycles-per-instruction (CPI) for each class of
instruction; possibly include some mechanism for adjusting the CPI for
instructions that cause a cache miss.

Extend to support SWI instruction and thumb instruction set.

Implement 2 ARM processors integrated using AMBA bus with the different
integration methodology described in [22].

Extend to support hardware interrupts.

References

References

[1] "The Design of ARMphetamine 2, " Julian Brown, University of Bristol.

http://www.cs.bris.ac.uk/~brown/docs/armphetamine2-design.htmi

[2] R. Cmelik, D. Keppel, "Shade: A Fast Instruction Set Simulator for Execution
Profiling, " Proceedings of Proceedings of the 1994 ACMSIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 128-137, May 1994.

[3] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod, "Using
the SimOS Machine Simulator to Study Complex Computer Systems, " ACM
Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, pp. 78-103, January
1997.

[4] "ARMSim: An Instruction-Set Simulator for the ARM processor, " Alpa Shah
Columbia University. http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-
02/reports/alpa.pdf

[5] P. G. Paulin, F. Karim, P. Bromley, "Network Processors: A Perspective on Market
Requirements, Processor Architectures and Embedded S/W Tools, " Proc. of the Design
Automation and Test in Europe, pp. 420-427, November 2000.

[6] "SWARM 0.44 Documentation”" Michael Dales, Department of Computing Science,

University of Glasgow,Scotland. http://www.dcs.gla.ac.uk/~michael/phd/bin/swarm-

0.44.pdf
[7] R. C. Bedichek, "Some efficient architecture simulation techniques,” In USENIX

Association, editor, Proceedings of the Winter 1990 USENIX Conference, January 22-26,
1990, Washington, DC, USA, pp. 53-64, Berkeley, CA, USA, USENIX. January 1990.

75

76

[8] P. Magnusson and B. Werner, "Efficient memory simulation in SimICS, " In
Proceedings of the 28th Annual Simulation Symposium, 1995.

[9] James R. "Bell Threaded code, " CACM, 16(6), June 1973.
[10] Bedicheck, R., "Talisman: Fast and accurate multicomputer simulation, " In
Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pp. 14-24, May 1995.

[11] Dynamic compiler http://www.dcs.warwick.ac.uk/~csuix/project/

[12] SimARM; Green Hills Software Inc. http://www.ghs.com/

[13] The ARMulator; Document number: ARM DAI 0032; Issued 1999.

http://www.arm.com/

[14] Emmett Witchel, Mendel Rosenblum, "Embra: Fast and Flexible Machine
Simulation, " Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Philadelphia, pp. 68-79, 1996.

[15] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, "Precise and Accurate
Processor Simulation, " In Proceedings of the Fifth Workshop on Computer Architecture
Evaluation Using Commercial Workloads, pp. 13-22, February 2002.

[16] J. Zhu and D.D. Gajski, "A retargetable, ultra-fast instruction set simulator, " In

Proceedings of Design, Automation and Test in Europe Conference, pp. 9-12, March
1999.

77

[17] A. D. Pimentel and L. O. Hertzberger, "An Architecture Workbench for
Multicomputers," in Proc. of the 11th International Parallel Processing Symposium, pp.

94-99, Geneva, Switzerland, [IEEE Computer Society Press, April 1997.

[18] System on Chip design and reuse: http://www.us.design-reuse.com

[19] D. Flynn, "AMBA: Enabling Reusable On-Chip Designs, " IEEE Micro, Vol. 17, No.
4, pp. 20-27, July/Aug 1997.

[20] K. Lahiri, A. Raghunathan, and S. Dey, "Efficient Exploration of the SoC
Communication Architecture Design Space, " in Proc. Int. Conf. Computer-Aided Design,
pp- 424-430, November 2000.

[21] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A. Sangiovanni-
Vincentelli, "Addressing the System-on-a-Chip Interconnect Woes Through
Communication-Based Design, " Design Automation Conference, DAC '01, pp. 667-672,
June 2001.

[22] Robert L. Veal, Levon Petrosian, Dr. Neal S. Stollon, "Multi-core SoC Platform
Integration using AMBA, " Proceedings of DesignCon2002 System-on-Chip and IP
Design Conference, January 2002.

[23] Andrew Burdass et al,"Embedded Test and Debug of Full Custom and Synthesisable
Microprocessor Cores, " In Proceedings IEEE European Test Workshop (ETW), pp. 17-
22, Cascais, Portugal, May 2000.

[24] John Hennessy and David Patterson. "Computer Architecture A Quantitative
Approach, " 2nd ed., Morgan Kaufman, 1996.

[25] Steve furber. "ARM System-on-Chip Architecture, " 2nd edition, Addison-wesley,
1999.

78

[26] David Seal. "ARM Architecture Reference Manual, " 2nd edition. Addison-wesley,
2000.

[27] "SystemC User’s Guide, " version 2.0, Synopsys, Inc., CoWare, Inc., Frontier
Design, Inc. http://www.ece.cmu.edu/~ece767/cad_tools/systemc-2.0.1/UserGuide20.pdf

[28) AMBA specification (Rev 2.0) ARM IHI 0011A. http:/www-

micro.deis.unibo.it/~magagni/amba99.pdf

[29] MIPS simulation tools http://www.mips.com/devTools/catalog_2001/SimTools.html

[30] Embedded system: www.embedded.com

{31] ARM company: www.arm.com

[32] Superlog language: www.superlog.org

[33] Accellera organization: www.accellera.org

[34] Verilog Resources: www.verilog.com

[35] SystemC Community: www.systemc.org

[36] EQNTOTT benchmarks: www.nullstone.com/eqntott/eqntott.htm

Appendix A: Instructions implemented in this model

Appendix A: Instructions implemented in this model

Instructions implemented in this model

Type of instruction

Instruction

[Data processing

AND: logical AND.

[EOR: logical Exclusive OR.
SUB: Subtract.

RSB: Reverse Subtract.
ADD: Add.

IADC: Add with Carry.
SBC: Subtract with Carry.
[RSC: Reverse Subtract with Carry.
[TST: Test.

TEQ: Test Equal.

CMP: Compare.

CMN: Compare Negative.
ORR: logical OR.

MOV: Move.

BIC: Bit Clear.

JMVN: Move Negative.

[Multiply

MUL: Multiply.

LA: Multiply Accumulate.

[UMULL: Unsigned Long Multiply.

bMLM: Unsigned Long Multiply Accumulate.
SMULL: Signed Long Multiply.

SMLAL: Signed Long Multiply Accumulate.

CLZ

CLZ: Returns the number of binary zero bits before the first binary

one bit in a register value

CPSR SPSR Access

[MRS: move PSR to general-purpose register.
IMSR: move general-purpose register to PSR

79

80

Type of instruction

Instruction

LD/ST

LDR: Load Register.

LDRB: Load Register Byte.

LDRBT: Load Register Byte with Translation.

LDRH: Load Register Half-word.

LDRSB: Load Register Signed Byte.

LDRSH: Load Register Signed Half-word.

[LDRT: Load Register with Translation.

STR: Store Register.

STRB: Store Register Byte.

STRBT: Store Register Byte with Translation.

STRH: Store Register Half-word.

STRT: Store Register with Translation.

FLDM(S): Load Multiple Registers. There are 3 kinds of format.
STM(2): Store Multiple Registers. There are 2 kinds of format.
SWP: Swap a word.

SWPB: Swap a Byte.

FExeception generate

SWI: Software Interrupt.
JBKPT: Breakpoint.

ICDP: Coprocessor Data Processing.

Coprocessor
STC: Store Coprocessor.
LDC: Load Coprocessor.
IMCR: Move to Coprocessor from ARM Register.
C: Move to ARM Register from coprocessor.
Branch B: Branch.

BL: Branch and Link.
BLX(2): Branch and Link with exchange to Thumb instruction sets or
IARM instruction sets.

IBX: Branch with an optional switch to Thumb execution.

Appendix B: ARM implementation model, source code description

Appendix B: ARM implementation model, source code

description

1. ARM implementation model

IF ID ID_ EXE EXE MEM MEM_WB
IF IR ID | IRtypeoperate | EXE IR,type,operate | MEM IR,type,operate | WB
i —————» e
——P> A,Bb,C CPSR,SPSR CPSR
—» > >
CPSR,SPSR C
> >
ALUOutppt,D
—> ALUOntpu,D LMD
P g
—»

EXE NPC
clk
MEM_NPC
Regs [«
<_.
PSRs <
2. The source file description
e IFh IF module interface declaration
e IF.cpp IF module definition including open file and read ARM
binary code

e IDh ID module interface declaration
e ID.cpp ID module definition including interlock operation
e EXE.h EXE module interface declaration

81

32

EXE.cpp EXE module definition including calculate the result of
arithmetic instructions and the address of load/store instructions

MEM.h MEM module interface declaration

MEM.cpp MEM module definition including memory access

WB.h WB module interface declaration
WB.cpp WB module definition including register write back
main.cpp testbench including instantiate 5 stages, clock signal, open

a file for writing trace signals, and then start simulation, write trace signals
to the trace file for analyze
forwarding0.cpp extern functions of forwarding operation related

arm_inst.h constant and macro definition

3. Make file: makefile.linux is used in linux operating system (run: make —f

makefile.linux) to generate the executable file (run.x).

4. Test case

Basic test: include files showed in table 5-1

Combination test: include files showed in table 5-2 and table 6-1

Appendix C: How to use the model

Appendix C: How to use the model

1. Generate the ARM binary code
e Get object file by running:

% arm-elf-gcc O —static 0 —nostartfiles ¢ —nostdlib ¢ source.c 0 —0 ¢

obifile

e Get disassemble code and binary code by running:

% arm-elf-objdump ¢ —d 0 obijfile

e Extract binary code by running:

% arm-elf-objdump ¢ —d 0 objfile | sed ¢ "s/.*\:\(J*O]#\).*A1/" O >

armbinaryfile
2. Add two instructions at the beginning of the file ‘armbinaryfile’ Oxe3a0ec01 (mov

Ir, 0x100) and 0x3a0dc01 (mov sp, 0x100), to initiate LR (Link Register) and SP
(Stack Point) to 0x100 or other appropriate value (LR is used to terminate the
simulation when finishing the program simulate, so it must be initialized to an
area with consecutive 6 ‘00000000’ instructions. SP must be initialized to an
empty area for stack operation).

3. Initiate RAM by storing enough data in the file named ‘ram’, if the ARM program
needs to initiate some data in RAM, the data must be in the appropriate position

(at the end of ARM program).

4. Run the simulator by typing: ./run.x ¢ armbinaryfile ¢ tracefile

It will simulate the ARM processor by running the ARM program in

armbinaryfile and write the trace signal into the tracefile.

83

