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Résumé 
 À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les 

éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a 

également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux 

neurones à être intégrés dans le système nerveux adulte.  Une de ses citations reconnues : “Dans 

les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien 

ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). 

D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. 

Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette 

découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 

30 ans pour que le concept de neurogenèse adulte soit largement accepté.  Cette découverte, en 

plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques 

potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes 

résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules 

latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de 

neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à 

l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt 

définie comme un environnement en quiescence.  

 

 Une des principales questions qui a été soulevée suite à ces découvertes est : comment 

peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans 

l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, 

l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été 

démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la 

récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des 

études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal 

central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, 

oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, 

les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement 
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donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle 

fonction post-lésion démontre que la plasticité est encore possible dans un environnement en 

quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans 

la moelle épinière.  

 

 Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques 

du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de 

données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de 

maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à 

l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous 

avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des 

CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle 

épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus 

d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches 

transcriptomiques afin d’ouvrir de nouvelles perspectives.   

 

 Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires 

à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons 

tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la 

neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis 

que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet 

de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un 

labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante 

d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont 

démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées 

aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens 

souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires 

dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des 

souris sociales (dans l’environnement complexe).  
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 Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les 

propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une 

analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un 

régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous 

avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la 

prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle 

épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés 

de cellules souches sur les cellules épendymaires provenant de la moelle épinière.  

 

 

Mots-clés : Cellules souches neurales, neurogenèse adulte, hippocampe, moelle épinière, 

environnement enrichi, exercice, comportement, neuroinflammation, transforming growth 

factor-β1, cellules initiatrices de neurosphères. 
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Abstract 

At the end of the 19th century, Dr. Ramón y Cajal, a scientific pioneer, discovered that 

the nervous system was composed of individual cellular elements, later called neurons. He also 

noticed the complexity of this system and mentioned the impossibility of new neurons to be 

integrated into the adult nervous system. One of his famous quotes: “In adult centers the nerve 

paths are something fixed, ended, immutable. Everything may die, nothing may be regenerated” 

is representative of the prevalent dogma at the time (Ramón y Cajal 1928). Key studies 

conducted in the 1960-1970s suggested a different point of view. It was demonstrated that new 

neurons could be born during adulthood, but this discovery created an omnipresent skepticism 

in the scientific community. It took 30 years for the concept of adult neurogenesis to become 

widely accepted. This discovery, along with more advanced techniques, opened doors to 

potential therapeutic avenues for neurodegenerative diseases. Adult neural stem cells (NSCs) 

reside mainly in two niches in the brain: the subventricular zone of the lateral ventricles and the 

dentate gyrus of the hippocampus. Under normal conditions, neurogenesis level is relatively 

high in the SVZ whereas some steps are rate-limiting in the hippocampus. In contrast, the spinal 

cord is rather defined as a quiescent environment.  

 

One of the main questions that arose from these discoveries is: how do you activate adult 

NSCs in order to increase neurogenesis levels? In the hippocampus, environmental enrichment 

(including cognitive stimulation, exercise and social interactions) has been shown to promote 

hippocampal neurogenesis. The plasticity potential of this region is important as it could play a 

crucial role in rescuing learning and memory deficits. In the spinal cord, studies conducted in 

vitro demonstrated that ependymal cells found around the central canal have self-renewal and 

multipotency capacities (neurons, astrocytes, oligodendrocytes). Interestingly, it turns out that 

in vivo, following a spinal cord lesion, ependymal cells become activated, can self-replicate, but 

can only give rise to glia cell fate (astrocytes and oligodendrocytes). This new post-injury 

function shows that plasticity can still occur in a quiescent environment and could be exploited 

to develop endogenous spinal cord repair strategies. 
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As mentioned above, NSCs play important roles in normal brain function and neural 

repair following injury. However, little information is known about how a quiescent NSC 

becomes activated in order to perform these functions. The general objective of this project was 

to investigate the mechanisms underlying activation of neural stem cells in the adult central 

nervous system. My specific aims were to address this question using adult mice in two 

complementary models:  1) activation of hippocampal NSCs by environmental enrichment, and 

2) activation of spinal cord NSCs by injury-induced neuroinflammation. Moreover, 3) to gain 

new insights into the molecular mechanisms of these models, we will perform transcriptomics 

studies to open new lines of investigation.  

 

The first project is expected to provide us with new insights into the basic cellular and 

molecular mechanisms through which environmental enrichment modulates adult brain 

plasticity. We first evaluated the contribution of individual environmental enrichment 

components to hippocampal neurogenesis (Chapter II). Voluntary exercise promotes 

neurogenesis, whereas a social context increases neuronal activation. We then determined the 

effect of these components on behavioural performances and transcriptome using an eight-arm 

radial maze to assess spatial memory, novel object recognition, and RNA-Seq, respectively 

(Chapter III). Runners show stronger spatial short-term memory recall, whereas mice exposed 

to social interactions had a better cognitive flexibility to abandon old memory. Surprisingly, 

RNA-Seq analysis indicated clear differences in the expression of modified transcripts between 

low runners and high runners, as well as for social interacting mice (within the complex 

environment).  

 

The second project consists of discovering how ependymal cells acquire NSC properties 

in vitro or multipotentiality following lesions in vivo. A RNA-Seq analysis revealed that the 

transforming growth factor-β1 (TGF-β1) acts as an upstream regulator of significant changes 

following spinal cord injury (Chapter IV). We therefore confirmed the presence of this cytokine 

after lesion and investigated its role on proliferation, differentiation, and survival of 

neurosphere-initiating cells from the spinal cord. Our results suggest that TGF-β1 regulates the 

acquisition and expression of stem cell properties of spinal cord-derived ependymal cells.  
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Keywords: Neural stem cells, adult neurogenesis, hippocampus, spinal cord, environmental 

enrichment, exercise, behaviour, neuroinflammation, transforming growth factor-β1, 

neurosphere-initiating cells.  
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I.1. General overview of nervous system development 

The central nervous system (CNS) is composed of the brain and the spinal cord. 

Understanding how these structures developed is important in order to study their similarities 

and differences in how they regulate stem cells. The goal of this section is to briefly introduce 

a few concepts such as the role of embryonic cells forming the CNS, the stem cells and their 

importance in potential regeneration. 

I.1.1. Common origin of the brain and spinal cord 

Mammalian development starts from a fertilized egg, known as a zygote. This zygote 

goes through multiple cleavages: a 16-cell morula stage, a 32-cell stage, and a 64-cell blastocyst 

stage, composed of two clear layers (Gilbert 2006). The first layer of the blastocyst consists of 

external cells named the trophoblast that will form the embryonic portion of the placenta. The 

second layer is made of cells found within the trophoblast and is defined as the inner cell mass 

(ICM). The ICM is known to be pluripotent because it can create the entire embryo and related 

structures, except the trophoblast (Gage 2000; Gilbert 2006). The ICM gives rise to the 

hypoblast and the epiblast. These two tissues eventually develop into three well-defined layers: 

the endoderm, mesoderm and ectoderm in a well-defined structure called a gastrula following 

gastrulation (Gilbert 2006). 

 

During later embryonic development, the ectoderm differentiates in three components: 

the epidermis, neural crest, and neural tube (Gilbert 2006). The neural tube will be described in 

greater detail as it forms the brain and spinal cord, the two regions of interest in this dissertation. 

Approximately 50% of the ectoderm is predetermined to become neural ectoderm, or the neural 

plate (Gilbert 2006). The remaining cells are thought to become the epidermis of the skin, 

mainly due to bone morphogenetic protein (BMP) signalling (Kandel et al. 2000). The neural 

plate will become the neural tube by a two-step process known as neurulation. Primary 

neurulation consists mainly of proliferating cells that form neural folds and invagination to 

create the neural groove (Gilbert 2006). Eventually, the folds will fuse to form the anterior 
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portion of the neural tube. Secondary neurulation is the creation of the posterior portion of the 

neural tube by merging mesenchyme cells, which are multipotent stromal cells (Gilbert 2006). 

 

I.1.2. Regional specification of the neural tube 

The anterior portion of the neural tube starts differentiating before the secondary 

neurulation finishes to form five main regions of the brain (Gilbert 2006; Kandel et al. 2000) 

(Fig.I.1). Three primary brain vesicles are created: the prosencephalon (forebrain (1)), 

mesencephalon (midbrain (2)), and rhomencephalon (hindbrain (3)). The prosencephalon is 

subdivided into the telencephalon ((1a) transforming into the cerebral hemispheres, including 

the olfactory bulb and hippocampal regions) and the diencephalon ((1b) transforming into the 

optic vesicles, thalamic, and hypothalamic regions). The mesencephalon will become the 

cerebral aqueduct, which contains the cerebrospinal fluid (CSF). Finally, the rhomencephalon 

subdivides into the metencephalon ((3a) transforming into the cerebellum and pons) and the 

myelencephalon ((3b) transforming into the medulla). It is from this caudal region of the neural 

tube, corresponding to the sixth major region of the CNS, which forms the spinal cord (Gilbert 

2006; Kandel et al. 2000).  
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Figure I.1. Early human brain development  

During development, the neural tube first divides into three primary vesicles (1. Prosencephalon 

(Forebrain), 2. Mesencephalon (Midbrain), and 3. Rhombencephalon (Hindbrain), then into five 

secondary vesicles (1a. Telencephalon, 1b. Diencephalon, 3a. Metencephalon, 3b. 

Myelencephalon, and 2. Mesencephalon stays the same). Each region has their adult derivative 

with specific functions. (Inspired from (Gilbert 2006), Fig. 12.9, and created by C-A. Grégoire) 

 

A pattern is also established by a posterior-anterior gradient of retinoid acid that leads to 

the expression of Hox genes in the posterior region. These genes are responsible for the 

formation of the hindbrain and spinal cord (Gilbert 2006; Kempermann 2011). Other gradients 

are also present in the brain during development, including Pax6 (higher anterior pole 

concentrations) and Emx2 (higher posterior pole concentrations). These opposing gradients are 

important for positional identity (Bishop et al. 2002; Kempermann 2011). 

 

I.1.3. Embryonic neural stem cells 

The brain and spinal cord develop from differentiation of the neural tube. This process 

starts by the presence of embryonic neural stem cells (eNSCs) in the blastocyst.   

 

I.1.3.1. Definition of neural stem cell 

The eNSCs, present in the ICM have the capacity to differentiate into any types of 

tissues, including CNS tissue. They are therefore defined as pluripotent (Kempermann 2011). 

This pluripotency comes from the expression of several genes such as Oct4, Nanog, and sox2. 

The eNSCs located in the germinal neuroepithelium first become neuroepithelial precursor cells, 

then radial glia or neural stem cells (NSCs).  NSCs can self-renew and divide asymmetrically 

to give rise to an intermediate progeny that can generate any tissue of the CNS (Gage 2000; 

Kempermann 2011). 
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I.1.3.2. Cell expansion 

Cell expansion involves many cell divisions and thickening of the neural tube (Gilbert 

2006; Kempermann 2011; Kriegstein and Alvarez-Buylla 2009). Nuclei of neuroepithelial cells 

are found at different heights in the lumen of the neural tube during development.  During the S 

phase of the cell cycle, the nuclei move from the apical surface towards the pial surface of the 

neural tube, but return to the apical surface to perform mitosis. This phenomenon is called 

interkinetic nuclear migration. Neuroepithelial cells are first dividing symmetrically. Then, once 

the epithelium has thickened, neuroepithelial cells will elongate to become radial glial cells 

(RGCs, Fig. I.2). At this moment, RGCs start expressing astrocytic markers such as the 

glutamate transporter (GLAST), brain lipid-binding protein, Tenascin C, and in some species, 

glial fibrillary acidic protein (GFAP). RGCs divide asymmetrically to give rise to other RGCs 

or intermediate progenitor cells (IPCs). IPCs will then divide symmetrically to form identical 

daughter cells (Gilbert 2006; Kempermann 2011; Kriegstein and Alvarez-Buylla 2009).  

 

I.1.3.3. Neurogenesis  

Once cells are ready to form neurons, cell-division plane changes and one of the two 

daughter cells will detach, migrate, and differentiate (Gilbert 2006). IPCs migrate from the 

subventricular zone (SVZ) to the ventricular zone, a region next to the germinal 

neuroepithelium. There, they will form a second layer called the mantle or intermediate zone. 

In this layer, they differentiate into neurons and glia. This region is defined as the gray matter 

since it is where cell bodies reside. The neurons project axons away from the ventricular zone 

to create the marginal zone.  This zone contains few cells but has many myelinated axons and 

therefore comprises the white matter (Gilbert 2006). Cajal-Retzius cells secreting reelin, a stop-

and-go signal for migration, are found in this zone (Feng et al. 2007; Sanes et al. 2012). These 

three main regions: ventricular, intermediate, and marginal, are well retained in the spinal cord, 

whereas they are reorganized in the cerebral cortex. A new layer, called the neocortex, is formed 

at the outer side of the brain located between the marginal and intermediate zones. This cortical 

plate will eventually form the six layers of the cerebral cortex following an inside-out pattern. 
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Migrating neurons (i.e., neuroblasts) will use a radial glia cell process as a scaffold to migrate 

up the layers of cells (Gilbert 2006) (Fig. I.2).  

 

I.1.3.4. Gliogenesis 

At the end of cortical development, RGCs are no longer needed for scaffolding 

migration. Therefore, they detach from the ventricle, lose their radial process, and adapt an 

astrocytic morphology (Kriegstein and Alvarez-Buylla 2009). These astrocytes will keep their 

regenerative capacities in specific regions of the brain (Fig. I.2). For a long time, scientists 

believed regeneration was impossible in the adult brain. However, some of the adult mammalian 

brain and spinal cord cells maintain regenerative, stem cell properties (see section below).  

 

Figure I.2. Evolution of neuroepithelial cells  

During development, neuroepithelial cells divide symmetrically and will elongate to become 

radial glia cells. The cells then behave as scaffolders for migrating neurons reaching the 
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neocortex, and divide asymmetrically. In adults, a rare population of primitive neural stem cells 

(GFAP- and leukemia inhibitor factor (LIF) responsive) give rise to GFAP+ neural stem cells. 

GFAP+ neural stem cells self-renew and give rise to neural progenitors that will mature into 

neuroblasts.  (SVZ: Subventricular zone. Inspired from (Alvarez-Buylla et al. 2001) and 

(Sachewsky et al. 2014), and created by C-A. Grégoire and Loïc Cochard) 
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I.2. Adult neural stem cells  

Adult NSCs are multipotent cells able to self-renew in the nervous system (Gage 2000). 

They are also referred to as primary progenitor cells or precursors.  In specific regions of the 

brain, they are able to divide asymmetrically to give rise to three different types of cells in the 

following order: neurons (the functional component of the nervous system), astrocytes and 

oligodendrocytes (known as glia cells) (Kriegstein and Alvarez-Buylla 2009). In vitro, this 

multipotency is maintained in spinal cord-derived cultures (Weiss et al. 1996), but is lost in vivo 

as only glia-restricted progeny are produced (Horner et al. 2000; Martens et al. 2002). The 

regions of the hippocampus and spinal cord will be discussed in greater detail but first, we will 

review the origin and microenvironment of NSCs located within the hippocampus and spinal 

cord.  

 

I.2.1. Origin of adult NSCs 

Recent studies have investigated the origin of the adult NSCs present in the SVZ, dentate 

gyrus (DG), and spinal cord (Fuentealba et al. 2015; Li et al. 2013; Yu et al. 2013). One study 

used in utero delivery of retroviruses and bromodeoxyuridine (BrdU, a thymidine analogue that 

incorporates into DNA during DNA synthesis) to show that the majority of pre-B1 cells present 

in the SVZ were produced by embryonic progenitors dividing between E13.5 and E15.5 

(Fuentealba et al. 2015). A lineage-tracing method with a barcoded retroviral library was used 

to determine the clonal relationships among cells. This experiment showed that there is a link 

between progenitors producing olfactory bulb (OB) interneurons after birth and those producing 

other neurons in the forebrain. However, this relationship eventually disappears in mid-fetal 

development, suggesting a lineage divergence (Fuentealba et al. 2015). The adult NSCs of the 

DG were demonstrated to originate from the ventral hippocampus (HPP) (Li et al. 2013). This 

region is known to be a source of sonic hedgehog (SHH), which is important for the maintenance 

of the adult NSC population. A continuous stream consisting of Gli1-responsive cells (SHH 

effector) was observed from the ventricular zone of the ventral HPP to the ventral granular cell 

layer (GCL) of the DG. They concluded, using several genetic approaches, that embryonic 

NSCs from the ventral HPP contributed to create the postnatal subgranular zone (SGZ) 
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throughout the longitudinal axis of the HPP (Li et al. 2013). Another study, demonstrated the 

necessity of SHH for postnatal ependymal zone (EZ) cell formation (Yu et al. 2013). During 

late development, it was shown that adult ependymal cells, found around the central canal, are 

derived from two distinct progenitor domains: p2 and pMN from the ventral ventricular zone. 

They also observed a severe disruption in the formation of the EZ when embryonic SHH 

signaling was absent (Yu et al. 2013). 

 

I.2.2. Adult neural stem cell niche 

The NSC niche is a microenvironment composed of multiple cell types (such as 

astrocytes and ependymal cells), secreted molecules, extracellular matrix, and blood vessels 

(endothelial cells). The NSCs are therefore exposed to a variety of signals and cell-cell 

interactions (Riquelme et al. 2008). In adults, only specific regions maintain the capacity to 

produce new neurons, hence suggesting that adult NSC niches are environments supporting self-

renewal and multipotency through signaling. However, the right balance between proliferation 

and differentiation signals is a priority to avoid tumor development or exhaustion of the NSC 

pool. Moreover, vasculature is an important factor as angiogenesis may have an impact on 

neurogenesis via hormones and cytokines (Riquelme et al. 2008).  For example, vascular 

endothelial growth factor (VEGF) is responsible for angiogenesis and has been shown to 

influence neurogenesis, especially stimulating progenitor’s proliferation (Jin et al. 2002). 

Furthermore, transplantation experiments showed the importance of external cues present in the 

microenvironment on stem cell fate. The spinal cord is defined as a non-neurogenic region, but 

fibroblast growth factor-2 (FGF-2)-responsive adult spinal cord-derived cells differentiated into 

neurons when transplanted and integrated into the GCL of the DG (Shihabuddin et al. 2000). 

Another experiment isolated neuronal precursors (predisposed to become interneurons) from 

the SVZ via magnetic activated cell sorting and transplanted them into the striatum (Seidenfaden 

et al. 2006). However, once implanted into the SVZ niche, these cells underwent glial 

differentiation. This example, once again, demonstrates the importance of the niche. 
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I.2.3. Brain 

Adult neurogenesis is the postnatal formation by precursor cells of mature neurons 

(Kempermann et al. 2004; Ming and Song 2005). It was believed for a long time that 

neurogenesis in mammals was a development-restricted phenomenon. However, in the 

mammalian brain, adult neurogenesis occurs in a few areas including two main regions: the SVZ 

of the lateral ventricles and the DG of the HPP (Ihrie and Alvarez-Buylla 2011; Kempermann 

et al. 1998; Ming and Song 2005). Research conducted in 1965 shed light on the existence of 

postnatal neurogenesis, specifically in the DG of the HPP.  Altman and Das first injected 

thymidine-H3 in rats to label cell nuclei where DNA was synthesized in order to identify 

proliferating cells (Altman and Das 1965).  In this study, they demonstrated that the number of 

cells undergoing proliferation decreases with age (up to 8 month-old), while the number of 

differentiated cells (corresponding to granule cells) increases (Altman and Das 1965). In 1977, 

newly formed neurons were also labeled with thymidine-H3 and analyzed by electron 

microscopy, following a 30-day chase period in both the rodent DG and OB (Kaplan and Hinds 

1977). This research showed the survival capacity of these newly-born neurons. Moreover, 

important research conducted in songbirds gave additional validity to the concept of adult 

neurogenesis in other vertebrates (Alvarez-Buylla and Kirn 1997; Alvarez-Buylla et al. 1988; 

Goldman and Nottebohm 1983). Unfortunately, widespread skepticism about adult 

neurogenesis delayed more scientific inquiries into its existence. Nonetheless, additional studies 

in most vertebrates and mammals confirmed the presence of stem cells in the SVZ and DG in 

vivo, and led to their isolation (in rodents) in vitro (Gage 2000; Lindsey and Tropepe 2006; 

Palmer et al. 1997; Reynolds and Weiss 1992). Finally, experiments using post-mortem brains 

from patients who received intravenous injections of BrdU showed that adult neurogenesis also 

occurs in the adult human brain (Curtis et al. 2007; Eriksson et al. 1998). Recent studies used 

stable 14C present in genomic DNA and compared it to 14C in the atmosphere (from nuclear 

bomb tests during the Cold War) to determine cell population date of birth (Ernst and Frisen 

2015; Spalding et al. 2005). Using this method, they noticed that the age of human OB neurons 

was almost the same as the tested individuals, suggesting low turnover levels below 1% in this 

region. However, the role of OB between rodents and humans may differ (more details in section 

I.3.1.2) (Bergmann et al. 2012). Nonetheless, this technique allowed the discovery that 
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hippocampal neurogenesis occurs throughout life in humans at a rate similar to middle-aged 

mice (Spalding et al. 2013). These discoveries increased interest in adult neural stem cells as 

they could be perceived as potential therapeutic tools for neurodegenerative diseases and 

injuries. 

 

I.2.4. Subventricular zone of the lateral ventricles 

The SVZ, the main neurogenic niche, is comprised of several cell types. Ependymal 

cells, known as type E cells, are present along the lateral ventricle (next to the SVZ) forming a 

pinwheel (Mirzadeh et al. 2008). E cells are responsible for the production and circulation of a 

small amount of cerebrospinal fluid (Abrous et al. 2005; Doetsch et al. 1999a; Mirzadeh et al. 

2008). Slowly dividing (quiescent) astrocytes, defined as type B1 cells, are present at the center 

of the ependymal pinwheels. B cells extend a basal process to the blood vessels and an apical 

cilium towards the cerebrospinal fluid (Kriegstein and Alvarez-Buylla 2009; Mirzadeh et al. 

2008) (Fig. I.3). The B1 cells can be subdivided into activated and quiescent NSCs (Codega et 

al. 2014; Lim and Alvarez-Buylla 2016). Codega and colleagues isolated quiescent 

(GFAP+/CD133+) and activated (GFAP+/CD133+/EGFR+/Nestin+) NSC populations. After 

in vivo transplantation, both cells were neurogenic but behaved with different kinetics (quiescent 

NSCs (qNSCs) showing delayed kinetics). qNSCs rarely gave rise to neurospheres, in contrast 

to activated NSCs (aNSCs) that were enriched in colony-forming cells. Importantly, qNSCs 

could become activated in cultures with expression of Nestin and EGFR, suggesting that qNSCs 

and aNSCs can intervert between both states (Codega et al. 2014). Regeneration experiments 

conducted by Doetsch and colleagues in CD1 mice helped to first identify the NSCs in the SVZ 

niche. Cytosine-β-D-arabinofuranoside (Ara-C) was infused into the lateral ventricle via an 

osmotic pump for six days to eliminate dividing cells. At the end of the infusion, they observed 

the disappearance of all transit-amplifying cells (C cells) and proliferating neuroblasts (A cells, 

Fig. I.3), which are clustered migrating cells that go through the rostral migratory stream (RMS) 

to reach the OB and mature into interneurons. Only B cells and ependymal cells remained, 

suggesting they are potential NSCs (Doetsch et al. 1999b). This group further showed that only 

the astrocytes were labeled with a proliferating marker after Ara-C treatment, suggesting these 

cells, and not ependymal cells, repopulate the SVZ niche. After 36 hours of Ara-C treatment 
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cessation, C cells reappeared. Four days after cessation, A cells were also observed. 

Additionally, retrovirus and in vitro cultures experiments both confirmed that A and C cells 

were derived from B cells, and not from ependymal cells (Doetsch et al. 1999a).  From these 

findings, B ependymal cells were defined as NSCs in the SVZ.  Recently, Sachewsky and 

colleagues showed the existence of a rare population, called adult primitive NSCs (Sachewsky 

et al. 2014). These primitive cells are activated by the leukemia inhibitor factor (LIF) and 

demonstrated stem cell properties as they express octomer-binding transcription factor 4 (Oct4) 

and integrate into the ICM of blastocysts. In presence of LIF, these cells generated self-renewing 

and multipotent neurosphere colonies that gave rise to GFAP+ NSCs in vitro. Moreover, 

following in vivo depletion of GFAP+ NSCs, Oct4+ NSCs were able to repopulate the SVZ, 

suggesting that primitive NSCs are found upstream of GFAP+ NSCs (Fig. I.2) (Reeve et al. 

2016; Sachewsky et al. 2014). 

 

 
 

Figure I.3. Subventricular zone neurogenesis lineage  

This figure represents the subventricular zone niche comprised of the ependymal and 

subependymal zones. Ependymal cells contact the cerebrospinal fluid while they line the 

ventricle. Activated B cells (radial glia-like cells), are in contact with blood vessels and divide 

asymmetrically to self-renew and give rise to C cells (transit-amplifying cells). C cells divide 

quickly, mature into neuroblasts, and migrate through the rostral migratory stream to the 



 

 

13 

olfactory bulbs. (CSF: Cerebrospinal fluid, EZ: ependymal zone, SEZ: Subependymal zone, 

SVZ: Subventricular zone. Inspired by (Bond et al. 2015), Created by C-A. Grégoire and Loïc 

Cochard). 

 

I.2.5. Subgranular zone of the dentate gyrus 

Adult neurogenesis also occurs in the SGZ of the DG, located in the HPP (Gage 2000). 

The DG is comprised of three layers: the molecular layer, the GCL, and the polymorphic cell 

also known as the hilus (Fig. I.4) (Anderson et al. 2007). In this niche, the cell lineage starts 

with slowly-dividing radial-glia like cells (RGL), known as type 1, whose endfeet touch the 

vasculature. These cells express GFAP, Nestin, and Sox2, a SRY transcription factor. They 

extend their radial process through the GCL to reach the molecular layer (Bonaguidi et al. 2012; 

Kempermann et al. 2015b; Seri et al. 2004). RGLs divide slowly in an asymmetric manner to 

produce intermediate progenitor cells (type 2a and 2b, or D cells). A proportion of these 

progenitors correspond to the Sox2+/Ki67+ proliferating cell population lacking radial 

processes, described as non-radial precursors (Suh et al. 2007). Most of these progenitors also 

express Tbr2 (a transcription factor) and are committed to a neuronal fate (Hodge et al. 2008). 

These progenitors divide quickly to give rise to neuroblasts (type 3), and express markers such 

as doublecortin (DCX, a microtubule-associated protein), and NeuroD (a basic helix-loop-helix 

transcription factor). Immature neurons will then become post-mitotic, mature into 

glutamatergic granule cells, and functionally integrate the circuitry (Bonaguidi et al. 2012; 

Kriegstein and Alvarez-Buylla 2009; van Praag et al. 2002) (Fig. I.4). These newly-born 

neurons form functional synapses with CA3 pyramidal cells at two weeks, which stabilize at 

four weeks (Gu et al. 2012). Only a small portion of these neurons become integrated as the 

majority of adult generated neurons die within the first four days after birth (Sierra et al. 2010). 

In order to identify the NSCs of the DG, Seri and colleagues used thymidine-H3 and GFAP 

labeling to look at the ultrastructure of proliferating cells (Seri et al. 2001). GFAP+ cells, 

described as B cells (or type 1 cells) in the SVZ, have an astrocytic morphology in contrast to 

GFAP-negative cells (rapidly dividing progenitors, SVZ D cells or type 2 cells) (Seri et al. 

2001). Similarly to the Doetsch experiments (Doetsch et al. 1999a; Doetsch et al. 1999b), Seri 

and colleagues infused Ara-C and gave procarbazol (anti-mitotic drug) in drinking water for 
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seven days to eliminate proliferating cells. Two days following treatment, 91% of the cells left 

in the SGZ were type B cells. On day four, progenitor cells reappeared, and their numbers 

reached control levels by day 15 following treatment. They also introduced an avian leucosis 

virus including an alkaline phosphatase (AP) gene to label proliferating infecting cells and track 

their progeny. The maturation of GFAP+/AP+ SGZ astrocytes was studied. It was confirmed 

that these astrocytes behaved like NSCs and gave rise to neurons (Seri et al. 2001). For 

simplicity, the term RGL will be used throughout the dissertation to describe neural precursors 

behaving like stem cells in the DG.  

 

 
Figure I.4. Hippocampal neurogenesis lineage  

The dentate gyrus niche is comprised of several layers: the molecular layer, the granular cell 

layer, the subgranular zone and the hilus. Hippocampal neurogenesis starts in the subgranular 

zone where quiescent precursors become activated and divide asymmetrically to give rise to 

another precursor and quickly dividing progenitors. These progenitors will then migrate a short 

distance to reach the granular cell layer and mature into neuroblasts. Neuroblasts will become 

post-mitotic and integrate the circuitry by receiving entorhinal cortex inputs in the molecular 

layer and projecting their axons towards the CA3 region of the hippocampus. (GCL: Granular 

cell layer, ML: Molecular layer, SGZ: Subgranular zone. Created by C-A. Grégoire and Laura 

Hamilton.). 
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Recently, different DG neurogenic lineage models were introduced to the field and 

caused controversy (Bond et al. 2015) (Fig. I.5). The first model is called the “disposable stem 

cell” model (Encinas et al. 2011). Quiescence is known to be one way to conserve the stem cell 

pool and limit their replication to avoid mutations in several tissues (Li and Clevers 2010).  

However, in this model, activated NSCs are believed to leave the stem cell pool, convert to the 

astrocytic fate, and not return to their quiescent state. This correlates with the observations made 

in aged mice where NSCs are lost and neurogenesis diminishes (Encinas et al. 2011). Encinas 

and colleagues confirmed progenitors were coming from RGLs following asymmetric division 

using a transgenic mouse model. They then used a BrdU paradigm in Nestin-CFPnuc reporter 

mice, which allowed them to label proliferating cells shortly after the pulse period, and long-

retaining cells (RGLs) after a chase period. For a period of seven days, BrdU+ RGL numbers 

stayed constant, but dropped to zero after 10-15 days. In parallel, the number of BrdU+ 

astrocytes climbed and reached the initial number of RGLs by day 10, suggesting that these 

astrocytes could emerge from the activated RGLs. Moreover, they observed that activated RGLs 

were going through three rounds of division before exiting the cell cycle and becoming 

astrocytes (Encinas et al. 2011). Most tools, including the transgenic mice used in the previous 

study, label cell populations (Dhaliwal and Lagace 2011). However, an in vivo clonal analysis 

approach allowed tracing of individual nestin+GFAP+ RGL precursors (Bonaguidi et al. 2011). 

The inducible, sparse-labeling (low concentration of tamoxifen) model nestin-CreERT2; Z/EG 

(lacZ and GFP) was used to understand RGLs’ behaviour. The vast majority of RGLs are 

quiescent, but once they become activated they go through three modes of division: 1) 

symmetrical (shown for the first time) to expand the RGL pool (to a lower extent), 2) 

asymmetrical to give rise to a progenitor cell that will become a neuron and maintain the RGL 

pool, and 3) asymmetrical to give rise to an astroglia and maintain the RGL pool. After division, 

the activated RGL returns to quiescence. Bonaguidi and colleagues confirmed their clonal 

analysis results with the mosaic-analysis with double markers reporter that allows to label 

daughter cells and their progeny (Bonaguidi et al. 2011). Another model suggested RGL 

heterogeneity (DeCarolis et al. 2013). DeCarolis and colleagues used two inducible transgenic 

mouse lines to demonstrate the validity of this model: Nestin-CreERT2/R26R:YFP and 

GLAST::CreERT2/R26R:YFP. Currently, there is no unique markers for hippocampal RGLs, 

therefore they used Nestin (labels both RGLs and progenitors) and GLAST (labels both 
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astrocytes and RGLs). A week following Ara-C treatment, an increase in dividing GLAST-

YFP+ cells, but not Nestin-YFP+ cells was observed.  This suggests that GLAST-YFP+ cells 

contribute to the recovery of the RGL population. Consistent with this finding, following a 14-

day exercise paradigm, only GLAST-YFP+ cells increased in numbers, even if proliferation was 

amplified in both lines (DeCarolis et al. 2013). 

 

 
Figure I.5. Neural stem cell behaviour  

Neural stem cells may have different behaviour based on different models. One model suggests 

that activated radial-glia like cells divide symmetrically. Another model suggests asymmetric 

division of activated radial-glia like cells that give rise to another radial-glia like cell and a 

progenitor that will differentiate into different cell types such as astrocytes, neurons and 

oligodendrocytes. Lastly, another model suggests a disposable model where a quiescent radial-

glia like cell will leave the stem cell pool and convert into an astrocyte. (RGL: Radial-glia like 

cells. Inspired by (Bond et al. 2015). Created by C-A. Grégoire and Loïc Cochard). 
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I.2.6. Hypothalamus 

 Another brain region that gained popularity over the last decade as a potential neurogenic 

niche is the hypothalamus (Goodman and Hajihosseini 2015). The hypothalamus plays an 

important role in the secretion of essential hormones implicated in temperature regulation, food 

intake, sex drive, and sleep-wake cycle besides other physiologic functions (Kandel et al. 2000). 

The main focus of research on the hypothalamus has been on energy balance with several 

articles published on this topic. Two major neurons are found in the arcuate nucleus (adjacent 

to the third ventricle): neuropeptide Y (NPY) and pro-opiomelanocortin-expressing neurons, 

known as orexigenic and anorexigenic, respectively (Kokoeva et al. 2005; Pierce and Xu 2010). 

In 2004, progenitor cells from the hypothalamus were first isolated in cultures (Markakis et al. 

2004). Then, central infusion of the ciliary neurotrophic factor into the lateral ventricle mouse 

brains, known to reduce body weight, induced proliferation of newborn BrdU+ cells. 42 days 

following infusion, 43% of the proliferating cells expressed neuronal markers (Kokoeva et al. 

2005). Another study was conducted to confirm these previous results (Kokoeva et al. 2007). 

Three days following infusion, half of the BrdU+ cells also expressed Ki67, and infusion 

directly in the third ventricle led to increased proliferation throughout the hypothalamic 

parenchyma, but none around the lateral ventricle (Kokoeva et al. 2007). Moreover, a study shed 

light on the possibility that inhibition of de novo proliferation could lead to less food intake, 

therefore suggesting a link between hypothalamic new cell proliferation and energy balance 

(Pierce and Xu 2010).  

 

In the past few years, researchers have been investigating the role of hypothalamic 

tanycytes that showed stem cell-like properties (Chaker et al. 2016; Goodman and Hajihosseini 

2015; Lee et al. 2012; Robins et al. 2013). Four subtypes of tanycytes exist: α1, α2, both found 

dorsally, β1, and β2, found ventrically (Rodriguez et al. 2005). In 2012, β2-tanycytes were first 

identified as the neurogenic radial glia-like nonciliated ependymal cells in postnatal and pre-

adult mice (Lee et al. 2012). Li and colleagues demonstrated that cells from adult hypothalami 

could give rise to self-renewing and multipotent neurospheres in vitro.  Moreover, in vivo, they 

showed that the majority of sox2+ adult stem cells were present in the mediobasal region of the 

hypothalamus, and not in the lateral third-ventricle wall where tanycytes are found (Li et al. 
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2012). It was later specified, using a lineage-tracing approach in adult GLAST::CreERT2 mice,  

that α-tanycytes are the self-renewing and multipotent cells (astrocytes and neurons) in vivo, 

and give rise to neurospheres in vitro (Robins et al. 2013). Recently, Chaker and colleagues 

demonstrated for the first time that hypothalamic neurogenesis persists through aging (Chaker 

et al. 2016). 

 

I.2.7. Spinal cord 

In the spinal cord, ciliated cells involved in the propulsion of the cerebrospinal fluid, 

known as ependymal cells, seem to maintain a regenerative capacity. Located around the central 

canal of the rodent spinal cord, ependymal cells behave like stem cells as they demonstrate self-

renewal and multipotency capacities in vitro (Johansson et al. 1999; Martens et al. 2002; Meletis 

et al. 2008; Weiss et al. 1996) (Fig. I.6).  However, in vivo, BrdU-retaining ependymal cells 

show a glial-restricted differentiation into astrocytes and oligodendrocytes (Horner et al. 2000), 

hence lacking neurogenic capacity (Martens et al. 2002). In the field, this discrepancy between 

the in vitro and in vivo data contributes to define ependymal cells simply by their name instead 

of referring to them as stem cells. In the naive spinal cord, proliferating ependymal cell number 

is very limited and shows a dorso-ventral gradient with greater density at the dorsal part of the 

central canal. Proliferating cells are often found in doublets and associated with blood vessels. 

Vimentin+ ependymal cells might also express Nestin+ or GFAP+ processes elongating dorsally 

in the grey matter (Hamilton et al. 2009). In this niche, ependymal cells are mostly quiescent 

under normal conditions and divide symmetrically, suggesting a maintenance proliferation 

mechanism for this precise pool of ciliated cells (Barnabe-Heider et al. 2010; Hamilton et al. 

2009; Meletis et al. 2008) (Fig. I.6). In the adult human spinal cord, the presence of NSC-like 

cells has been demonstrated for the first time in 2008 (Dromard et al. 2008), and their self-

renewing capacity in an adherent monolayer culture was further shown in a more recent article 

(Mothe et al. 2011). The human spinal cord-derived neurospheres showed NSC and proliferation 

marker expression (Sox2, Nestin, and Ki67). They have the capacity to differentiate into 

astrocytes and neurons, but have limited self-renewal capacity. The ependymal layer 

organization in the human spinal cord is different than the one found in rodents. In humans, the 

central canal is often occluded and the ependymal layer is disorganized, frequently showing 
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rosettes or microcanals. The human central canal is surrounded by a hypocellular region 

containing high levels of GFAP+ and Nestin+ cells localized in the ventral part of the central 

canal. As in rodents, the human ependymal layer maintains immature features during adulthood. 

For instance, it expresses Nestin and Sox2, and proliferates at a low rate under naive conditions 

(Hugnot and Franzen 2011). In summary, the existence of self-replicating ependymal cells has 

been demonstrated in the adult human spinal cord, suggesting potential to develop endogenous 

spinal cord repair strategies that could target these cells (Dromard et al. 2008; Mothe et al. 2011).  

 

 

 
 

Figure I.6. Central canal ependymal cell behaviour under normal conditions 

Under normal conditions, ependymal cells surrounding the central canal of the spinal cord will 

slowly self-renew as this niche is mostly quiescent in vivo giving rise to other ependymal cells. 

In contrast, in vitro, neurospheres can be grown from dissociated spinal cord-derived cells and 

these cells have multipotent capacities leading to neuron, astrocyte and oligodendrocyte 

differentiation (Created by C-A. Grégoire, Loïc Cochard, and Brianna Goldenstein). 

 

I.2.8. Regenerative capacities throughout evolution 

Throughout evolution, regenerative abilities have varied among species (Bonfanti and 

Peretto 2011; Ferreira et al. 2012). The distinction between regeneration and repair is important, 
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as repair is imperfect regeneration because it does not normally restore both the structure and 

function (Bonfanti 2011). Invertebrates conserve their ability to regenerate whole body parts, 

and vertebrates, such as fish, amphibians, and reptiles, maintain indeterminate growth 

throughout their lives (Lee-Liu et al. 2013; Tanaka and Ferretti 2009). In these species, 

embryonic radial glia cells are still present, and maintain the capacity of producing neurons and 

glial cells throughout adulthood. Moreover, in newts, proliferation and neurogenic regions (or 

hot spots) are not necessarily the ones demonstrating regenerative capacities. In response to 

injury, a de novo generation occurs by the reactivation of quiescent ependymoglial GFAP+ cells 

that will re-establish zones of regenerative proliferation and neurogenesis (Kirkham et al. 2014). 

In urodele amphibians, these ependymoglial cells transiently lose their GFAP expression and 

start expressing NSC markers such as Nestin. Then, they participate in the repair of the 

neuroepithelial tube to eventually rebuild the spinal cord (Walder et al. 2003). Newts and 

salamanders can regenerate their limbs throughout life, whereas frogs and toads can do so only 

during development (Bonfanti 2011). More recently, a group suggested that Sox2+ neural 

precursor cells in Xenopus tadpoles are involved in the regeneration process (Gaete et al. 2012). 

They observed a significant increase in Sox2 labeling four days after amputation of the tail, and 

20% to 60% of them were proliferating (BrdU+). An increase in Sox2 mRNA levels was also 

observed as soon as one day following injury when compared to uncut tail controls. Moreover, 

they used a Sox2 dominant negative construct, mediating its translocation to the nucleus, and 

only 46% of tadpoles maintained their tail regeneration capacities (Gaete et al. 2012). These 

results show the importance of NSCs in the regenerative process. However, in mammals, these 

radial glial cells only exist during embryonic development and transform into astrocytes in the 

adult nervous system (Voigt 1989). Thus, mammals lose the ability to regenerate injured tissue. 

In adult birds, these radial cells are still present but restricted to the walls of the lateral ventricle 

(Alvarez-Buylla et al. 1990). In the SVZ of the lateral ventricles, NSCs are activated following 

stroke, and produce new cells that respond to the injury, eventually forming a glial scar 

(Gregoire et al. 2015; Zhang et al. 2008). A similar process is observed in the spinal cord 

following lesion, where ependymal cells produce astrocytes implicated in glial scar formation 

(Barnabe-Heider et al. 2010; Gregoire et al. 2015). One theory is that regenerative capacities 

over evolution would be negatively correlated with the development of the immune system as 

it gets more specialized, leading to a loss in regeneration (Bonfanti 2011).  



 

21 

 

I.3. Functional significance of adult NSCs 

Adult neurogenesis is an interesting field due to therapeutic avenues that can emerge 

from understanding its functional importance. The physical location of NSCs can also determine 

their functions. The NSCs located in the SVZ and the DG will be discussed in further detail in 

this section. 

 

I.3.1. Subventricular zone of the lateral ventricle and olfactory bulb 

I.3.1.1. SVZ/OB functions 

In the rodent brain, the OB plays an important role in olfaction as this sense is well 

developed to survive in their natural habitat (Lazarini and Lledo 2011). The SVZ of the lateral 

ventricle is the starting location of neurogenesis. The final location is achieved once neuroblasts 

migrate along the RMS to the OB and mature into either of two local interneuron types 

(periglomerular or granule cells). Only half of newly-born neurons will successfully integrate 

the OB circuitry. The OB acts as a relay station that processes and refines sensory inputs 

triggered by environmental cues. The information is then transmitted to the primary and 

accessory olfactory cortex via mitral and tufted principal neurons (Kempermann 2011; Lazarini 

and Lledo 2011; Sakamoto et al. 2014).  

 

The functional significance in olfaction remains elusive even though several 

neurogenesis ablation studies demonstrated the importance of newly-born neurons in the 

maintenance of OB circuitry, olfactory memory formation, and odorant discrimination (Breton-

Provencher et al. 2009; Moreno et al. 2009; Valley et al. 2009). Other functions are linked to 

the SVZ germinal niche. In vivo, Menn and colleagues showed that B cells are able to 

differentiate into migrating non-myelinating and myelinating oligodendrocytes through Olig2+ 

type C progenitors (Menn et al. 2006). Under normal conditions, the oligodendrocyte/neuron 

ratio is low, but following a demyelinating lesion in the corpus callosum, the number of 

oligodendrocytes increased by fourfold. This result suggests that B cells have the capacity to 
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participate in myelin repair (Menn et al. 2006). Another function is the capacity of SVZ 

astrocytes to repair the ependyma during aging in the SVZ (Luo et al. 2008). In elderly mice (22 

to 24 month-old), a loss of ependymal cells in the ependyma is observed. BrdU+/GFAP+ cells 

with processes contacting the ventricle were found to integrate into the ependyma barrier. No 

BrdU+/S100β+ ependymal cells were found up to three weeks after the BrdU pulse period, 

suggesting an absence of proliferation.  However, this population expanded up to 22% after 13 

weeks. The authors suggested a conversion from SVZ astrocytes to ependymal-like cells as the 

BrdU+/GFAP+ cells started expressing S100β and cellular adherens. Over time, these cells 

adopted ependymal cell characteristics (losing GFAP expression). Nevertheless, their functional 

integration has yet to be shown (Luo et al. 2008). In an ischemic model, SVZ-generated 

astrocytes were found to be the ones to migrate to the injured cortex, and not the cortical 

astrocytes (Benner et al. 2013). This was discovered by assessing the level of thrombosponding 

4 (a notch modulator) found in higher quantity in SVZ astrocytes (Benner et al. 2013). Faiz and 

colleagues further determined the origin of the cortical astrocytes found at the lesion site after 

stroke (Faiz et al. 2015). They confirmed that GFAP+ NSCs were the cells migrating to the 

injured cortex using several genetic tools, including a GFAP-TK mouse model and the more 

traditional Ara-C treatment. Finally, two months following injury, these astrocytes became 

reactive and contributed to the astroglial scar formation (Faiz et al. 2015).  

 

I.3.1.2. Significance in human SVZ/OB  

Human OB neurogenesis differs from rodents as it is almost inexistent (Bergmann et al. 

2012).  The human brain structure is more developed and shows smaller, differently organized 

OBs than rodents OBs. The existence of a human RMS similar to the one found in rodents is 

still unclear.  Curtis and colleagues attempted to characterized the human ventriculo-olfactory 

neurogenic system, thought to include the SVZ, RMS, olfactory tract, and the OB (Curtis et al. 

2007). They revealed PSA-NCAM+ neuroblasts through a small RMS that takes a caudal path 

before reaching the olfactory tract (Curtis et al. 2007). Another study detected a little neuronal 

turnover (less than 1%) using 14C in the human OB, suggesting that the function of OB in 

humans is not as primordial as in rodents (Bergmann et al. 2012). Some may argue that during 
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evolution, the need for OB neurogenesis decreased, and therefore low turnover is observed in 

humans. However, Ernst and colleagues decided to investigate one step further to better 

understand this low OB neurogenesis turnover. They hypothesized that in the human brain, 

neuroblasts would migrate elsewhere besides the OB. They found that PSA-NCAM and DCX+ 

neuroblasts were also present in the adjacent striatum. They determined that the 14C 

concentration in the subjects’ striata corresponded to the atmosphere concentration after their 

birth, suggesting a cell turnover of approximately 2.7% per year. It was confirmed that striatal 

interneurons were continuously generated (Ernst et al. 2014). These results suggest the 

possibility that human SVZ-derived neurons exert a functional role that is different from other 

mammals. Their migration and differentiation in the striatum may suggest roles in cognition and 

motor coordination, but this theory remains to be proven (Ernst and Frisen 2015; Kandel et al. 

2000).  

 

I.3.2. Dentate gyrus of the hippocampus 

I.3.2.1. Hippocampus anatomy 

The HPP consists of one main unidirectional tri-synaptic circuit (Anderson et al. 2007; 

Lucassen et al. 2013). The HPP received its name from its sea horse shape, and includes three 

subdivisions: cornu ammonis (CA) 1, CA2, and CA3. The origin of the CA comes from 

Ammon’s horn, the mythological Egyptian god, represented by a ram. The hippocampal 

formation consists of the DG, HPP, subiculum, presubiculum, parasubiculum, and entorhinal 

cortex. The entorhinal cortex is the first section of the circuit where the projections reach the 

DG through the unidirectional perforant path. In the DG, granule cells send their axons (called 

mossy fibers) to the CA3 field where they connect with pyramidal cells. These pyramidal cells 

provide the main input to the CA1 region, called the Schaffer collateral axons. The CA1 will 

project to both the subiculum and entorhinal cortex. The subiculum also projects axons to the 

presubiculum, parasubiculum, and entorhinal cortex, therefore closing the hippocampal 

formation loop (Anderson et al. 2007) (Fig. I.7).   
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Figure I.7. Hippocampal formation circuitry  

The hippocampal formation is comprised of the entorhinal cortex from which axons of the 

perforant pathway are projecting towards the dentate gyrus. The granule neurons of the dentate 

gyrus receive inputs from the entorhinal cortex and are sending ouputs to the CA3 region via 

their mossy fibers. Pyramidal neurons from the CA3 region projects axons, called the Schaffer 

collaterals, to the CA1. The CA1 neurons project to both the subiculum and entorhinal cortex to 

complete the loop. (EC: Entorhinal cortex, CA: Cornu ammonis. Inspired from (Lucassen et al. 

2013); Created by C-A. Grégoire). 

 

I.3.2.2. Functions of the hippocampus 

The ventral and dorsal sections of the HPP exert different functional roles (Bannerman 

et al. 2003; Frankland et al. 1998; Kheirbek et al. 2013). The role of the HPP, part of the limbic 

system, seems to be based on the longitudinal axis. Some studies showed that the dorsal section 

of the HPP is implicated in learning and memory whereas the ventral section would have a role 

linked to anxiety (Bannerman et al. 2003; Frankland et al. 1998; Kheirbek et al. 2013). On one 

hand, the ventral HPP, involved in mood disorders, sends projections to regions implicated in 
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autonomic, neuroendocrine, and motivational responses to emotionally charged stimuli. These 

regions include the medial prefrontal cortex, amygdala, shell of nucleus accumbens, 

hypothalamus, bed nucleus of the stria terminalis, and medial entorhinal cortex (Fig.I.8). On the 

other hand, the dorsal HPP, associated with learning and memory, sends outputs to associational 

cortical regions such as the retrosplenial area (anterior cingulate cortex), ventral tegmental area 

(via the septum), lateral entorhinal cortex, and ventral HPP (Kheirbek et al. 2013; Sahay and 

Hen 2007; Tannenholz et al. 2014) (Fig.I.8). Moreover, the DG is exposed to several 

neurotransmitters such as acetylcholine (septum), dopamine (ventral tegmental area), GABA 

(septum), glutamate (entorhinal cortex), norepinephrine (locus coeruleus), and serotonin 

(median raphe nucleus) that influence HPP functions (Leranth and Hajszan 2007; Zhao et al. 

2008).  A pioneer study was conducted on H.M. patient by William Scoville and Brenda Milner 

(Scoville and Milner 1957). In 1953, H.M was an epileptic patient who went under surgery for 

a radical bilateral temporal-lobe resection. After surgery, his seizures were reduced but, 

unfortunately, he developed memory deficits  (Scoville and Milner 1957). H.M died in 2008 

and high-resolution in situ and ex vivo MRI allowed to determine what parts disappeared. 

Augustinack and colleagues (2014) noted that “substantial portions of the medial temporopolar, 

piriform, entorhinal, perirhinal, and parahippocampal cortices, as well as the subiculum, 

presubiculum, parasubiculum, amygdala, hippocampal fields CA1, CA2, CA3, and CA4 (in the 

hippocampal head and body), and DG (posterior head and body)” were removed (p.1281) 

(Augustinack et al. 2014). He experienced retrograde (before the operation), and anterograde 

amnesia, but his semantic memory was intact, showing the importance of the HPP in memory 

(episodic) for the first time (Anderson et al. 2007; Augustinack et al. 2014; Scoville and Milner 

1957). 
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Figure I.8. Dorsoventral axis projections of the hippocampus 

The hippocampus includes both a ventral and a dorsal region. Neurons from these regions 

project their axons to different areas of the brain. These outputs influence the functions of the 

ventral vs. dorsal hippocampal regions. The ventral hippocampus is associated with areas 

involved in autonomic and motivational responses function, whereas the dorsal hippocampus is 

linked to associational cortical regions. (BNST: Bed nucleus of the stria terminalis, mPFC: 

medial prefrontal cortex, nACC: nucleus accumbens, RSP: retrosplenial area, VTA: ventral 

tegmental area. Inspired by (Tannenholz et al. 2014); Created by C-A. Grégoire). 

 

I.3.2.3. Hippocampal neurogenesis and memory 

Studies, using a variety of techniques, showed that hippocampal neurogenesis improves 

learning and memory (Deng et al. 2009; Gu et al. 2012; Kheirbek et al. 2013; Snyder et al. 2005; 

Vukovic et al. 2013). A study conducted in birds was the first to suggest a link between neuronal 

replacement and new spatial memories (Barnea and Nottebohm 1994).  Adult canaries have 

higher neurogenesis levels during March and October, correlating with the observation of 

additional new song syllables during these months (Alvarez-Buylla and Kirn 1997; Barnea and 

Nottebohm 1994; Barnea and Pravosudov 2011; Kirn et al. 1994). To study the function of 

hippocampal neurogenesis, several studies used non-cell specific ablation approaches (Deng et 

al. 2009; Snyder et al. 2005). A widespread ablation technique is brain irradiation (Monje et al. 

2002). Snyder and colleagues detected that newly-born neurons, between four and 28 days old, 

are necessary for long-term spatial memory (Snyder et al. 2005). Retention tests were performed 
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one, two, and four weeks post-irradiation. Irradiated rats had a worse performance than control 

littermates when they were tested two or four weeks following the training period in the Morris 

water maze (MWM) (Morris et al. 1982). In contrast, rats that were irradiated only 4 days before 

training, instead of a month, did not show any long-term memory deficits (Snyder et al. 2005). 

Deng and colleagues further demonstrated that immature neurons are necessary for long-term 

spatial memory using an inducible Nestin-TK transgenic mouse line (Deng et al. 2009). This 

model showed a 50% reduction in BrdU+ cell number after a two-week ganciclovir antiviral 

treatment. They tested Nestin-TK mice one week after treatment in a MWM and performed 

probe trials one to three weeks later to assess long-term memory. No short-term memory deficits 

were observed, but mice demonstrated a poor performance when their long-term memory was 

assessed when compared to wild-type mice. These rodents had newly-born neurons aged from 

one to three weeks and two to four weeks during training, and three to five weeks at the end of 

the long-term memory test. Thus, these experiments assessed the role of immature neurons in 

both short- and long-term memory. Interestingly, when mice with more mature cells were tested 

(three to nine weeks following the end of the ganciclovir treatment), no memory deficits were 

observed (Deng et al. 2009). Vukovic and colleagues showed that DCX+ cells are required to 

learn a novel task, but not to remember the learned task (Vukovic et al. 2013). A novel knock-

in mouse model, DCXDTR, expressing the diphtheria toxin under the DCX promoter to 

specifically ablate immature DCX+ neurons was developed. The active place avoidance task 

(hippocampus-dependent learning task with a constant rotating platform) was performed and 

DCXDTR mice entered the shock zone more frequently than wild-type counterparts, suggesting 

learning deficits for this task. Learning deficits could be reversed by the replenishment of 

immature neurons upon withdrawal of the toxin treatment. Absence of behavioural recall 

deficits was also observed when DCXDTR mice were first exposed to the active place avoidance 

task without the toxic treatment and then put back into this familiar spatial task after treatment 

(Vukovic et al. 2013).  

 

Optogenetics studies, using a cell specific approach, confirmed a role of dorsal 

hippocampal neurogenesis in learning and memory (Gu et al. 2012; Kheirbek et al. 2013). 

Optogenetics involves modifying neurons in such a way that they can express light-sensitive ion 
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channels. The neurons can therefore be silenced (yellow light-activated chloride pump 

halorhodopsin) or activated (cation channel channelrhodopsin 2 activated by blue light) by light 

exposure in a specific time manner. Gu and colleagues study, using optogenetics, confirmed 

results from (Deng et al. 2009) by showing that four-week-old neurons are required for memory 

retrieval (Gu et al. 2012). In an elegant study, Kheirbek and colleagues demonstrated a role of 

dorsal granule neuron activity in contextual learning, but not in the retrieval of memories from 

a learned task (Kheirbek et al. 2013). They excluded the role of ventral granule cells in these 

functions. Furthermore, mice were tested following optogenetic silencing of the dorsal DG for 

active place avoidance (which uses electric shock to induce avoidance behaviour) and found no 

difference. However, after switching the shock zone to the opposite side to create conflicting 

memories, mice showed deficits. Activation of the dorsal granule cells also led to an increase in 

exploration time in novel environments during the open-field test and elevated plus maze 

mediated through intact dopaminergic function (Kheirbek et al. 2013).  

 

I.3.2.4. Hippocampal neurogenesis, mood and psychiatric disorders 

Hippocampal neurogenesis mediates the behavioural effects of antidepressant effects 

and is implicated in anxious behaviour (Eisch and Petrik 2012; Kheirbek et al. 2013; Santarelli 

et al. 2003). The ventral HPP has been shown to be implicated in mood disorders such as 

depression and anxiety. Gould and colleagues discovered that corticosteroids inhibit cell 

division (Gould et al. 1992). They performed an adrenalectomy in rats, which blocks the body 

response to stress, and increased cell division. Moreover, this inhibition was reversed by 

corticosterone replacement (Gould et al. 1992). Results like these garnered interest in the effect 

of stress on neurogenesis since patients suffering from depression show increased 

corticosteroids level. One early hypothesis by Jacobs and colleagues linked depression and 

hippocampal neurogenesis (Jacobs et al. 2000). Other studies followed discussing how adult 

neurogenesis can be implicated in the antidepressant’s mode of action (Eisch and Petrik 2012). 

In rats,  chronic antidepressant treatment led to an increase in BrdU+ cells relative to their 

control littermates, 75% of which expressed neuronal markers (Malberg et al. 2000).  Then, Hen 

and colleagues showed that hippocampal neurogenesis is required for the behavioural effects of 
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antidepressant effects (Santarelli et al. 2003). They performed focal irradiation on mice, 

eliminating approximately 85% of BrdU+ cells to investigate the role of newly-born neurons in 

antidepressant treatment. This reduction in newly-born BrdU+ neurons was maintained up to 

eight weeks after irradiation in the DG, whereas no effect was detected in the SVZ. The novelty-

suppressed feeding test was used to measure rodent aversion to eating in novel environments. 

Irradiated and sham mice were treated with fluoxetine, a serotonin-selective reuptake inhibitor 

antidepressant. A reduction in latency to eat was detected in the sham animals but not in the 

irradiated mice. Another behavioural test, the chronic unpredictable stress paradigm (measured 

by impaired grooming) was also conducted with similar results. Fluoxetine treatment improved 

sham mice coat conditions, whereas irradiate mice coats remained unchanged. These results 

suggest hippocampal neurogenesis as one of the mechanisms in mediating the antidepressant 

effects (Sahay and Hen 2007; Santarelli et al. 2003). Finally, ventral hippocampal neurogenesis 

is required for anxiety-like behaviour (Kheirbek et al. 2013). Mice in which ventral granule cells 

were inhibited by optogenetics spent more time in the open arms in the elevated-plus maze, 

suggested less anxiety (Kheirbek et al. 2013).  

 

I.3.2.5. Significance in human hippocampus 

Hippocampal neurogenesis occurs in both adult rodent and human brains (Eriksson et al. 

1998; Ernst and Frisen 2015; Kempermann et al. 2015a; Spalding et al. 2013). The presence of 

neurogenesis was first shown in humans in 1998 (Eriksson et al. 1998). Since then, more 

sophisticated studies came out studying human neurogenesis. In adult rats, it was suggested that 

9,000 new cells are generated per day in the DG, corresponding to 6% of granule cells each 

month (Cameron and McKay 2001). In the adult human hippocampus however, Spalding and 

colleagues demonstrated with 14C that neuronal turnover occurs at a rate of 1.75% per year, 

corresponding to approximately 700 newly-born neurons per day per hippocampus (Spalding et 

al. 2013). This turnover rate is not significantly different from the previously mentioned striatal 

interneuron turnover rate (Ernst et al. 2014). A study showed that CA3/DG are activated during 

a pattern separation task, whereas CA1 and other MTL regions would be activated during pattern 

completion tasks (Bakker et al. 2008). High-resolution functional magnetic resonance imaging 



 

 

30 

was used to measure brain activity (blood flow) in the medial temporal lobe (MTL). Here, a task 

was created where subjects were presented with different pictures of either a new, repetitive, or 

different version of an object. The patients had to mention if it corresponded to an indoor or 

outdoor object to assess their pattern separation or completion indirectly (Bakker et al. 2008). 

With regard to mood disorders and neurogenesis in humans, older studies using MRIs showed 

that patients with major depressive episodes demonstrated hippocampal atrophy (Sheline et al. 

1996). A more recent study conducted on post-mortem brain tissues from patients treated for 

major depressive disorder showed that antidepressants increase progenitor proliferation in the 

DG (Boldrini et al. 2009). Patient DGs showed that antidepressant (sertraline and nortriptyline) 

treatment led to a three-fold increase in Ki67+ positive cells in comparison to non-treated 

patients. In addition, an increase was also observed in Nestin+ precursor cells. These results also 

coincide with other rodent studies (Boldrini et al. 2009).  

 

I.3.2.6. Neurogenesis and information encoding 

 Balance between glutamatergic granule cells and hilar mossy cells excitation, and 

GABAergic basket cells and somatostatin (SST)-expressing interneurons inhibition, is essential 

to maintain a healthy DG environment (Bannai et al. 2015). Neurons were shown to contribute 

in two different ways to the hippocampal function: 1) direct information processing via CA3 

neurons, and 2) by modulating the local circuitry (Christian et al. 2014) (Fig. I.9). This 

environment and circuitry where DG adult neurogenesis occurs contributes to the different brain 

functions mentioned below.  
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Figure I.9. Circuitry properties of newborn neurons 

Newly-born neurons affect the hippocampal circuitry in different ways. First, it sends direct 

information via the CA3. Second, it modulates local circuitry by activating interneurons that can 

either activate glutamatergic hilar mossy cells that will then activate inhibitory interneurons. 

These GABAergic interneurons can inhibit mature granule cells or immature neurons. These 

modifications can have an impact on other brain region circuitries. (CA: Cornu Ammonis, SST: 

Somatostatin-expressing interneurons. Inspired by (Christian et al. 2014); Created by C-A. 

Grégoire). 
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I.3.2.6.1. Pattern separation 

The role of DG in spatial pattern separation, defined as the encoding of “small or weak 

changes derived from increasingly similar or interfering inputs” (Clelland et al. 2009) to create 

discrete, non-overlapping representations has been studied for several decades (Treves and Rolls 

1992) (Fig.I.10). There are five to ten times more neurons in the DG than in the entorhinal 

cortex from where it receives its inputs (Johnston et al. 2016). It suggests that the discrimination 

would be facilitated due to the larger space on which information is projected (Deng et al. 2010). 

The presence of  a greater number of neurons allows less neurons to be used to represent the 

same information, therefore leading to a sparse signal in contrast to an interference signal 

(Aimone et al. 2014). Moreover, as shown in Fig. I.9, granule cell neurons are receiving 

feedback inhibition from local interneurons creating a low activity level from the neurons 

contributing to sparse coding (Aimone et al. 2014; Deng et al. 2010). Pattern separation is also 

evident in the OB (Sahay et al. 2011b). It was demonstrated that olfactory deprivation could 

impair pattern separation involved in odor acuity (Wilson and Sullivan 1995). However, this 

section will focus on the DG. 

 

 

 

 

 

 

 

 

 

Figure I.10. Pattern separation in the dentate gyrus 

In presence of neurogenesis, memories can be different (right), because similar inputs will lead 

to different representation. However, in absence of neurogenesis, similar images will be 

perceived as the same (left). (Inspired by (Aimone et al. 2014). Created by C-A. Grégoire).  
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The concept of determining how old inhibited DG neurons and more excitable newly-

born neurons contribute to pattern separation has gained interest in the past few years (Aimone 

2016; Johnston et al. 2016; McAvoy et al. 2015; Sahay et al. 2011a). Clelland and colleagues 

showed that hippocampal neurogenesis is required to discriminate between arms in close spatial 

proximity (Clelland et al. 2009). They irradiated at low-dose the hippocampus of adult mice and 

tested them two months later in a delayed nonmatching to place (DNMP) radial arm maze 

(RAM). This task is particularly challenging as it ensures the use of spatial cues. Correct arms 

(choice arms with the food pellet reward) were separated by two, three, or four arms from the 

sample arm (unrewarded). Pattern separation was analyzed based on how well the mice could 

differentiate between two arms that were close together (two-arm difference) versus those that 

had a larger distance between them (four-arm difference). Irradiated mice showed impaired 

behaviour in trials where arms were closer together when compared to sham mice, but no 

difference was observed for larger separation (Clelland et al. 2009). This paradigm was used in 

other studies to assess pattern separation (Zhang et al. 2014)(Grégoire et al. Unpublished). 

These results concur with another study showing that NMDA receptors in the DG are mediating 

pattern separation (McHugh et al. 2007). They genetically deleted an essential NMDA subunit, 

the NR1. These transgenic mice underwent contextual fear conditioning and showed 

impairments in the ability to discriminate between two similar contexts (McHugh et al. 2007). 

A gain-of-function study using iBaxNes transgenic mice (where the pro-apoptotic gene Bax is 

deleted) demonstrated that hippocampal neurogenesis is not only necessary (required), as shown 

by Clelland and colleagues, but also sufficient to improve pattern separation (Sahay et al. 

2011a). In this model of increased neurogenesis, transgenic mice could differentiate between 

two similar contexts better than controls during a contextual fear-discrimination learning task 

(Sahay et al. 2011a). Another study used running to increase DG neurogenesis and study the 

effect on pattern separation capacities using a touch-screen system (Creer et al. 2010). Both 

adult (3 months) and very aged mice (22 months) were exposed to stimuli with either small or 

big separations between them. However, only adult running mice showed a positive correlation 

between task performance and neurogenesis. Adult mice who ran were able to discriminate 

between close-proximity stimuli compared to controls, whereas no difference with controls was 

observed for more separated stimuli. In contrast, aged runners showed no effect on neurogenesis 

or improved task performance (Creer et al. 2010). Another study suggested that distinct DG cell 
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population are activated during learning and during retrieval of similar memories when tested 

in contextual fear conditioning (Deng et al. 2013). However, a recent study using GFAP-TK 

mice suggested that adult hippocampal neurogenesis is implicated in the separation of 

competing memories rather than to the discrimination of similar stimuli (Swan et al. 2014). 

Swan and colleagues used a touch-screen discrimination learning approach similar to (Clelland 

et al. 2009) and first showed that deficits were only present four to ten weeks after ablation of 

proliferating cells (delayed testing), not when tested immediately after ablation. Moreover, both 

control and transgenic mice could discriminate between small and large separations prior to the 

first reversal. However, mice with ablated neurogenesis showed deficits after correct and 

incorrect positions were reversed (Swan et al. 2014). 

 

Another study specified that newly-born neurons are necessary for context 

discrimination, whereas old granule cells are implicated in rapid pattern completion-mediatd 

recall (Nakashiba et al. 2012). This research allowed to specify which DG cells contribute to the 

improved pattern separation. It could be either the granule cells generated during development 

(~95%) or other post-development neurons (~5%). To investigate this question, Nakashiba and 

colleagues used a transgenic model where old granule cell survival is inhibited by the tetanus 

toxin. These mice showed enhanced discrimination of similar contexts in the contextual fear 

discrimination test. However, when they irradiated these transgenic mice to target newly-born 

and proliferating neurons, they showed deficits. These results suggest that the newly-born and 

proliferating neurons are necessary for context discrimination. However, another feature of the 

hippocampus is pattern completion, defined as the ability to reactivate full representations of 

memories using partial information. Nakashiba and colleagues showed that old granule cells 

were implicated in rapid pattern completion-mediated recall, as the tetanus toxin transgenic mice 

displayed deficits in a contextual fear conditioning test and MWM with only partial cues 

available (Nakashiba et al. 2012).  

I.3.2.6.2. Memory resolution 

Some argues that while pattern separation is not unique to the DG, control of memory 

resolution is. Memory resolution is defined by Aimone and colleagues (Aimone et al. 2011) as 
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the “extent of information encoded by the DG, and thus the downstream hippocampal regions, 

during memory formation”(p.591) (Aimone et al. 2011). Mature, highly selective (tightly tuned) 

neurons provide better resolution than immature neurons following exposure to similar stimuli 

providing a sparse representation of cortical inputs. Mature neurons are sufficient to encode 

familiar features. However, immature neurons are less selective (broad tuning) and perform 

higher resolution encoding as their increased excitability leads to association within memories 

defined as a densely sampled representation of inputs. Therefore, immature neurons would have 

the capacity to represent any input (Aimone et al. 2011; Aimone et al. 2014; Aimone et al. 2009) 

(Fig. 11). Recently, it was suggested that adult-born DG cells would play a role in balancing 

between resolution and robustness (Johnston et al. 2016). On one hand, sparsity increases the 

number of no overlapping representations, therefore improving resolution. On the other hand, 

you have memory robustness that is obtained by avoiding memory interference, such as 

forgetting (described below) (Johnston et al. 2016). 
 

 

Figure I.11. Memory resolution    

In high-resolution memory, more details of the event are remembered, whereas in low-

resolution, less details (features) are. Mature and young neurons encode different types of 

information (past vs. novel events). In presence of neurogenesis, more features are remembered 

due to combined memories.  (Inspired by (Aimone et al. 2014). Created by C-A. Grégoire). 
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I.3.2.6.3. Memory forgetting 

 How does the brain balance between incorporating new information and ensuring that 

this encoding process does not degrade pre-existing information? Newly-born neurons compete 

with mature neurons for inputs and outputs, but the memory-forgetting process is thought to 

refine DG axons (Yasuda et al. 2011). Forgetting can either be the loss of learned information, 

the inability to retrieve learned information, or a deterioration between the memories retrieved 

and acquired. One computational study suggested that high levels of neurogenesis can constitute 

a mechanism of interference with the retrieval of old memories described as forgetting (Weisz 

and Argibay 2012). Based on this theory, another study raised the hypothesis that forgetting 

should happen more frequently during infancy since hippocampal neurogenesis levels are high 

(Akers et al. 2014). Akers and colleagues first compared P17 (infants) to P60 (adults) mice and 

observed an age-dependent decrease in GFP+ DG granule cells four weeks following injection 

of a retrovirus. Using contextual fear conditioning, they discovered that one to 28 days following 

training, adult mice froze when exposed to the environment, whereas infant mice demonstrated 

high freezing behaviour only one day post-training, suggesting forgetting. They used several 

methods such as running and pro-neurogenic drugs (to increase neurogenesis), and forgetting 

was still observed in these mice. In contrast, when neurogenesis was decreased by treating TK 

mice with ganciclovir, these transgenic mice showed stronger freezing behaviour than their 

wild-type littermates. Further, they confirmed their results in infant guinea pigs and degu with 

reduced postnatal hippocampal neurogenesis, and no deficits were detected. Finally, they treated 

infant degu to similarly increase neurogenesis and it induced forgetting. These results 

demonstrate a link between neurogenesis levels and forgetting behaviour (Akers et al. 2014). A 

follow-up study suggested that forgetting caused by increased hippocampal neurogenesis 

minimizes proactive interference (Epp et al. 2016). Proactive interference is defined as the 

ability of neurogenesis to weaken existing memories and facilitating the encoding of new 

conflicting information in the same behavioural task. Epp and colleagues trained mice on the 

MWM, exposed them to either a sedentary or running environment for 28 days, and test them. 

Consistent with previous results, post-training running induced forgetting. However, when the 

platform was shifted to the opposite quadrant, runners performed better than sedentary mice, 
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suggesting weakening of old memories to better encode new information. Similar results were 

observed in a hippocampus-dependent odour-context paired associates task. The same paradigm 

was repeated in a new cohort of Nestin-TK- and Nestin-TK+ mice (sedentary or running). 

However, vanganciclovir was added during the month delay to ablate dividing cells, hence 

limiting neurogenesis levels. They could assess if other running-induced physiological changes 

play a role in the observed behavioural changes.  This approach prevented forgetting and 

facilitated reversal learning, suggesting that neurogenesis is necessary to mediate these effects 

on memory. They finally conducted the odour task again, but this time the new paired associates 

were either in conflict or not with the original associates (one month post-training). Running-

induced increases in hippocampal neurogenesis facilitated the acquisition of new memories only 

for highly conflicting odours (Epp et al. 2016). 
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I.4. Activation of adult neural stem cells by physiological events 

Physiological events can be used to activate NSCs in different regions of the CNS. On 

one hand, a physiological stimulation, such as EE, is useful to better understand how NSCs 

improve cognitive function in a healthy brain. On the other hand, a pathological stimulation, 

such as spinal cord injury (SCI), can help us to better understand how NSCs modulate their 

activity to promote repair of the CNS after a lesion. The necessary background to better 

understand the rationale behind using these two complementary types of stimulation will be 

described in this section.  

 

I.4.1. Hippocampal NSCs stimulated by environmental enrichment 

I.4.1.1. Environmental enrichment  

The importance of our surrounding environment has been studied for over 60 years 

(Hebb 1947). Experimenters used visual deprivation in kittens or exposure to enriched housing 

conditions to understand how this environment affects the anatomy, chemistry, and functional 

properties of the brain (Hubel and Wiesel 1970; Rosenzweig et al. 1962; Wiesel and Hubel 

1965). Early studies showed that rodents exposed to EE, consisting of large cages, social 

enrichment, and diverse multisensory stimulation, displayed increased brain sizes, altered 

neurotransmitter levels and behavioral changes (Bennett et al. 1969; La Torre 1968; Manosevitz 

and Joel 1973; Rosenzweig et al. 1962) (Fig. I.12).  
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Figure I.12. Environmental enrichment 

In an enriched environment, mice are exposed to a variety of stimuli, including rotating tunnels, 

social interactions, running discs, and locked discs. (Modified from (Gregoire et al. 2014). 

Created by C-A. Grégoire). 

 

Adult neural stem cells continue to produce new neurons within the DG of the HPP, 

where these neurons are implicated in the processes of learning and memory (Deng et al. 2009; 

Kitamura et al. 2009; Leuner et al. 2006). Remarkably, this process of adult neurogenesis is 

highly stimulated by EE (e.g., providing rodents access to a voluntary running wheel) (van Praag 

et al. 1999b). Moreover, a recent study has shown that physical exercise increases the 

hippocampus volume and improves spatial memory in humans (Erickson et al. 2011). Early 

studies demonstrated that EE and exercise affected different stages of neurogenesis (Kronenberg 

et al. 2003; Olson et al. 2006). EE increases neurogenesis and survival (Kempermann et al. 

1997b), while running has an effect on cell proliferation (Bednarczyk et al. 2009; van Praag et 

al. 1999b). It was also suggested that the combination of EE and exercise in a sequential manner 

could lead to additive effects on neurogenesis (Fabel et al. 2009). As most EE studies were 

conducted in C57BL/6 mice, we demonstrated in our laboratory that voluntary running also 
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increase hippocampal neurogenesis in the outbred CD1 mouse strain (Bednarczyk et al. 2009). 

Our group also performed a control experiment comparing neurogenesis levels in C57BL/6 and 

CD1 mice under normal and exercise conditions. It showed that the exercise-induced increases 

in neurogenesis were similar between both strains. However, CD1 mice showed a 47% lower 

baseline neurogenesis level, making the running-induced increases detectable with only four 

mice per group (Gregoire et al. 2014). This data is consistent with a study conducted in 12 mouse 

strains that showed that C57BL/6 mice were the least responsive to exercise (Clark et al. 2011b). 

Moreover, the presence of a locked wheel could be considered cognitive stimulation and should 

be used as a control, as it was suggested that the hippocampal neurogenic pathway could be 

activated by both exercise- dependent and independent processes (Bednarczyk et al. 2011). 

There is currently a tendency to exclude detailed information on EE components in publications, 

taking for granted that standards are well established in the field (Fabel et al. 2009; Garthe et al. 

2016). Unfortunately, no standardization exists, and EE variables are not well isolated in each 

experimental condition. Some studies included running in their EE paradigm or include social 

interactions in their exercise paradigm that could bias results. The relative contribution of 

individual EE variables to hippocampal neurogenesis remains a longstanding and poorly 

understood issue. Additional information on the following EE components will be provided 

below: 1) moderate versus intense physical activity, 2) social interaction, 3) isolation, 4) stress, 

5) environmental complexity, and 6) neuronal activation.  

 

I.4.1.2. Physical activity 

Van Praag and colleagues were the first ones who started dissecting out EE components, 

demonstrating that voluntary running is sufficient to increase hippocampal neurogenesis (van 

Praag et al. 1999b). It was later suggested by other studies that physical activity was the 

neurogenic component within an enriched environment (Kobilo et al. 2011; Mustroph et al. 

2012a). Unfortunately, some issues arose from these studies. For example, even though social 

housing is considered a more natural environment for rodents, having multiple mice in a running 

environment leads to difficulties to accurately assess the running distances for each animal. 

Moreover, only a few studies used a locked disc as the control environment to correctly 

distinguish between the effects of running itself and those of a novel object.  
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I.4.1.3. Social context 

Group housing is known as a beneficial and common component of EE (Lieberwirth and 

Wang 2012; Welch et al. 1974). In contrast, social isolation is thought to have a negative impact 

on brain function (Cacioppo et al. 2011). It was demonstrated in rats that social isolation could 

prevent exercise-induced proliferation and neurogenesis (Leasure and Decker 2009; Stranahan 

et al. 2006). However, Kannangara and colleagues demonstrated that voluntary exercise was 

neurogenic for both isolated and socially-housed mice (Kannangara et al. 2009). After exposing 

mice to one or three months of social isolation, another study observed a decrease in the DCX+ 

neuroblast population but saw a constant two-fold increase in their EYFP+ RGLs cell numbers 

when compared to their socially-housed controls (Dranovsky et al. 2011). It is worth mentioning 

that differences may be observed between studies conducted in rats or mice, as mice are known 

to prefer socially housed environments. Interestingly, a social environment can also buffer 

stress-induced inhibition of neurogenesis (Stranahan et al. 2006). 

 

I.4.1.4. Stress 

Stress can be detrimental or beneficial depending on what type of stressor you are 

exposed to: uncontrollable or predictable, respectively (de Quervain et al. 2000; Fitzsimons et 

al. 2016; Gould et al. 1997; Stranahan et al. 2006; Wosiski-Kuhn and Stranahan 2012). The 

stress response can be divided in two phases: 1) a rapid activation of the autonomic nervous 

system, releasing epinephrine and norepinephrine, and 2) a delayed response mediated by the 

activation of the hypothalamic-pituitary-adrenal axis resulting in the release of adrenal-derived 

corticosterone in rodents (Fitzsimons et al. 2016). Corticosterone can cross the blood brain 

barrier and activate glucocorticoid and mineralocorticoid receptors found within the 

hippocampus (Trivino-Paredes et al. 2016; Van Eekelen et al. 1988). Uncontrollable stressors, 

such as psychosocial and physical stressors, can increase neuronal vulnerability to 

neurodegenerative conditions (Fitzsimons et al. 2016; Gould et al. 1997; Wosiski-Kuhn and 

Stranahan 2012). It is well established that stress negatively affects DG neurogenesis in 

mammals and impairs retrieval of long-term memory in humans (de Quervain et al. 2000; Gould 

et al. 1997). Moreover, stress-associated corticosterone can suppress running-induced 
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neurogenesis after a short 12-day paradigm (Stranahan et al. 2006). However, predictable 

chronic mild stress, such as exercise, can be neuroprotective (Wosiski-Kuhn and Stranahan 

2012). Exercise increases both corticosterone and neurogenesis levels, but it may be a 

concentration-dependent effect as long-term mild exercise and not intense exercise would 

increase neurogenesis (Inoue et al. 2015; Soya et al. 2007). 

 

I.4.1.5. Environmental complexity 

Components of a complex environment are not well defined. Environmental complexity 

has shown beneficial effects on neural parameters such as depression, and learning and memory 

functions (Pang and Hannan 2013; van Praag et al. 2000). Some studies suggested that a 

complex environment has stage-specific effects that differ from running (Bednarczyk et al. 

2011; Fabel et al. 2009; Kannangara et al. 2009; Kronenberg et al. 2003; Olson et al. 2006), 

while other studies showed that it does not modulate neurogenesis to the same extent as running 

does (Kobilo et al. 2011; Mustroph et al. 2012a; van Praag et al. 2014; van Praag et al. 1999b). 

This discrepancy exists because the complex environment has not been well isolated as a EE 

variable. On one hand, the beneficial effects previously observed could be due to variables such 

as physical activity or social housing that were included in the complex environment. On the 

other hand, lack of effects could be caused by an increased basal neurogenesis in presence of 

components such as inanimate objects, enriched diets or behavioural testing.  

 

I.4.1.6. Hippocampal neurogenesis lineage and markers 

To study the effect of EE components on hippocampal neurogenesis, antigen-based 

identification methods are used to detect changes between experimental conditions. All stages 

of hippocampal neurogenesis can be identified by specific immunohistochemistry markers 

(Kempermann 2011; Kempermann et al. 2015b) (Fig. I.13). Quiescent and activated RGLs 

share an astrocytic morphology, therefore the marker for the calcium-binding protein β, S100β, 

expressed by mature astrocytes, is used to make the distinction (DeCarolis et al. 2013). Due to 

the glial nature of RGLs, astrocytic markers such as GFAP and GLAST are not sufficient on 

their own to identify RGLs (DeCarolis et al. 2013; Seri et al. 2004). Most studies combine 
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astrocytic markers with precursor markers such as Nestin, an intermediate filament marker, 

(Lagace et al. 2007) or Sox2, a member of the SRY-related HMG box family, to allow a more 

specific RGL identification (Bonaguidi et al. 2011; Kempermann 2011). Intermediate 

precursors can be identified using Tbr2, a T-domain transcription factor (Hodge et al. 2008). 

Late precursors and immature neurons (neuroblasts) can be labeled by markers for DCX, a 

microtubule-associated protein (Dhaliwal et al. 2015; Kim et al. 2009), and NeuroD, a basic 

helix loop helix transcription factor (Seki 2002). Mitotic cells mentioned previously can be 

labeled as proliferative by the cell cycle-associated protein, Ki67 (Scholzen and Gerdes 2000), 

and post-mitotic immature neurons can be identified by Calretinin, a calcium-binding protein 

(Brandt et al. 2003).  

 

The final stage of neurogenesis is post-mitotic neurons, which can be identified using 

NeuN, a widely used neuronal marker (Kempermann 2011). Unfortunately, this marker is not 

specific to newly-born neurons, therefore it is often colabeled with BrdU (Kempermann 2011; 

Kuhn et al. 1996). Researchers are using systemic injections of BrdU that allows the 

identification of cells that underwent division at time of injection. It is then followed by a chase 

period long enough to assure that cells had time to differentiate and mature into a neuron. As 

neurons are post-mitotic, it suggests that BrdU-positive cells were dividing at time of injection. 

However, there are some pitfalls to this BrdU approach, the main argument being that it would 

pick up cell death or DNA repair (Taupin 2007). This was contradicted by studies suggesting 

that it occurs in extreme models of pathology (Cooper-Kuhn and Kuhn 2002; Kuan et al. 2004). 

Once newly-born neurons have been identified, the next question is: are they functionally 

responsive? This can be addressed using markers of immediate early genes (IEG), such as c-fos 

(Kempermann 2011; Sagar et al. 1988). The induction of IEG is rapid and transient upon cell 

stimulation, and known to encode transcription factors that will modify other genes expression, 

defined as target genes, which will, in turn, modify the cell phenotype (Herrera and Robertson 

1996). Transcriptional activation of C-fos occurs minutes following stimulation and its mRNA 

accumulation reaching a peak 30-40 minutes later (Harris 1998).  One of the early studies 

described c-fos as a neuronal activation marker following electrical stimulation of the 

motor/sensory cortex (Sagar et al. 1988). In fact, C-fos expression can be induced by several 
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types of stimuli such as brain injury, stroke, and epileptic seizures (Herrera and Robertson 

1996). Exposure to voluntary running (Rhodes et al. 2003), to an enriched environment (Tashiro 

et al. 2007), and to a learning task such as the MWM (Jessberger and Kempermann 2003) were 

also positively associated to IEG expression in the DG (Clark et al. 2012). 

 

 

Figure I.13. Hippocampal neurogenesis lineage and markers 

Each stage of hippocampal neurogenesis can be identified by specific immunohistochemistry 

markers. S100β is specific to mature astrocytes, whereas GLAST and GFAP also label quiescent 

and activated Type-1 cells (RGLs). Colabeling with Nestin or Sox2 allows a more specific 

identification of RGLs. Tbr2 labels intermediate precursors. Ki67-positive cells correspond to 

mitotic cells. DCX and NeuroD label immature neurons, whereas Calretinin identifies post-

mitotic immature neurons. Prox1 labels a wide range of cells from intermediate precursors to 

mature neurons, whereas BrdU/NeuN-positive cells correspond to newly-born neurons that can 

be activated if positively labeled with c-fos (Modified from (Fitzsimons et al. 2016)). 
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I.4.2. Spinal cord ependymal cells (NSCs) stimulated by spinal cord injury 

I.4.2.1. Impact of SCI on ependymal cells 

SCI inevitably affects the central canal niche due to the small diameter of the spinal cord. 

Following SCI, ependymal cell proliferative capacity increases by four to five-fold when 

compared to their control littermates. These newly proliferating cells are mostly found around 

the central canal and at the site of injury (Barnabe-Heider et al. 2010; Johansson et al. 1999). 

However, this proliferating response is unique to SCI, as our group did not previously detect a 

similar reaction in demyelinating animal models (Lacroix et al. 2014). Although a proportion of 

the quiescent population found in the spinal cord becomes activated, limited multipotency 

(absence of neurogenesis) is now observed in vivo in the injury model (Horky et al. 2006). Fate-

mapping experiments demonstrated that two weeks following SCI, dividing FoxJ1+ ependymal 

cells mainly give rise to sox9+ astrocytes located at the core of the glial scar. At four months 

post-injury, these cells also differentiate, but to a lesser extent, into oligodendrocytes in the 

surrounding uninjured white matter (Barnabe-Heider et al. 2010) (Fig. I.14 and Fig. 3 of the 
appendix).  

 

 
Figure I.14. Central canal ependymal cell behaviour under injury conditions 
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Under injury conditions, ependymal cells show a different behaviour in vivo. These cells still 

show self-renewal capacities, but also a glia-restricted multipotency. In vitro, cell behaviour 

remains the same as under normal conditions with self-renewal and multipotency characteristics 

(Created by C-A. Grégoire, Loïc Cochard, and Brianna Goldenstein). 

 

I.4.2.2. SCI-induced changes in the spinal cord niche 

  The injury triggers acute (minutes) and chronic (years) events that could potentially 

change the spinal cord microenvironment and affect ependymal cells (Fig. 3 of appendix). First, 

at the site of lesion, damage to the blood-spinal cord barrier occurs within 5 minutes (Bartanusz 

et al. 2011). This immediate event leads to several other important ones: cell death of neural 

cells due to oxygen and glucose deprivation (Jullienne and Badaut 2013), axon degeneration 

and demyelination, and astrogliosis (Rolls et al. 2009; Silver and Miller 2004). These acute 

events lead to chronic events such as apoptotic death, evident by a 50% drop in the number of 

astrocytes and oligodendrocytes after 24 hours (Grossman et al. 2001). This cell death triggers 

the release of myelin debris containing axonal growth-inhibiting molecules (Bartsch et al. 1995; 

Bregman et al. 1995; Cafferty et al. 2010). Other key events include cyst formation (rats only), 

formation of a glial scar, and chronic inflammation (Jones et al. 2005; Rolls et al. 2009; Silver 

and Miller 2004). For additional details on the topic, please refer to our published review found 

in the appendix (Gregoire et al. 2015). 

 

I.4.2.3. Potential role of inflammation in ependymal cell (NSC) activation 

 Following SCI, immune cells are activated and release cytokines, leading to a complex 

immune reaction that may affect ependymal cells (Pineau and Lacroix 2007). Microglia, 

resident phagocytes, react rapidly after injury (as part of the innate immunity system) and 

change from their resting branch-stellate state to their round phagocytic shape (Jones et al. 

2005). Microglia also act as antigen presenting cells (APC) implicated in the adaptive immune 

response (Abbas and Lichtman 2006; Covacu and Brundin 2015). Naïve T-cells are activated 

when exposed to their specific antigen on an APC and their differentiation in T-helper cells (Th1 

and Th17 in autoimmune responses, and Th2 in allergic responses) depends on the APC-
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released cytokines. T-helper cells will then expand and activate B-cells and cytotoxic T-cells 

(Abbas and Lichtman 2006; Covacu and Brundin 2015). Other phagocytic cells, such as 

circulating neutrophils and macrophages, are also activated after injury and invade the lesion 

site (Abbas and Lichtman 2006; Popovich et al. 1997). Inflammatory cell response is complex 

as it can be polarized in different ways, secreting different molecules that can lead to either 

beneficial or detrimental effects (David and Kroner 2011). Microglia can undergo two forms of 

polarized activation: 1) M1 activation (classic) characterized by the release of pro-inflammatory 

factors such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-6, and 2) M2 

activation (alternative) characterized by anti-inflammatory cytokines release such as IL-4, IL-

10 and transforming growth factor-β1 (TGF-β1) (Belarbi and Rosi 2013; Donnelly and 

Popovich 2008; Jones et al. 2005; Tyor et al. 2002).  

 

There is currently a lack of studies addressing the effect of these released molecules on 

ependymal cell behaviour specifically (Gregoire et al. 2015). However, these cytokines have 

been extensively studied in the brain (Covacu and Brundin 2015; Ekdahl et al. 2009). Pro-

inflammatory cytokines, as expected, negatively affect hippocampal neurogenesis (Gemma et 

al. 2007; Iosif et al. 2006; Monje et al. 2003; Vallieres et al. 2002). Vallières and colleagues 

demonstrated that hippocampal neurogenesis was significantly reduced in transgenic mice that 

chronically expressed IL-6 in astroglia (Vallieres et al. 2002). Another study showed that 

reduced hippocampal neurogenesis caused by a lipopolysaccharide (LPS) treatment could be 

restored in vitro following treatment with an anti-inflammatory drug, indomethacin, confirming 

the detrimental role of neuroinflammation on neurogenesis (Monje et al. 2003).  Other in vivo 

studies showed that IL-1β and TNF-α inhibit neurogenesis and/or progenitor proliferation, 

respectively (Gemma et al. 2007; Iosif et al. 2006). One of the anti-inflammatory cytokines, 

TGF-β1, has been shown to have pleiotropic effects on cell proliferation, migration, 

differentiation, and immunological responses (Kleiter et al. 2007; McCartney-Francis and Wahl 

1994; Taylor 2009).  The Aigner laboratory demonstrated that TGF-β1 acts as a negative 

regulator of progenitor cell proliferation and as a promoter of stem cell quiescence and neuronal 

survival, confirming its pleiotropic role (Kandasamy et al. 2014; Wachs et al. 2006). They first 

showed in cultures that TGF-β1 inhibits proliferation of NSC and progenitor cells, shown by a 

decrease in sphere size and reduced BrdU incorporation. Moreover, TGF-β1 induced a shift of 
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cells found in the G2-M, and S phases of the cell cycle to the G0-1 quiescent phase. They then 

infused TGF-β1 into the lateral ventricle for seven days and observed decreases in numbers of 

proliferating cells and DCX+ cells in both the SVZ and DG. This effect was maintained for a 

period of at least four weeks, but differentiation was not affected (Wachs et al. 2006). In a 

follow-up study, they focused on TGF-β1 signaling (receptors and Smad2) (Kandasamy et al. 

2014). They showed that pSmad2 is expressed only in quiescent and post-mitotic neurons. 

Furthermore, an increase in the number of newly-born neurons was detected despite an original 

reduction in cell proliferation using a transgenic model expressing TGF-β1 under the 

doxycycline-controlled Ca-Calmodulin kinase promoter. (Kandasamy et al. 2014). These results 

have to be interpreted with care as the spinal cord is a very different niche (non-neurogenic) and 

these factors could induce contrasting effects (Covacu and Brundin 2015; Horky et al. 2006).  

 

I.4.3. Mediators of NSC activation 

In the hippocampus, several mediators of NSC activation have been identified, whereas 

in the spinal cord, the complexity of the immune reaction following SCI makes the isolation of 

factors more difficult.  Unraveling the mechanisms implicated in NSC activation is important 

as it can contribute to improve cognitive function in a healthy brain and promote repair after a 

lesion in both an active neurogenic niche and a quiescent niche, respectively. This section is an 

overview of key studied mediators and is not intended to be an exhaustive review of the literature 

on this topic. 

 

Factors, such as growth factors and morphogens, were identified on a candidate-based 

approach as key mediators of hippocampal NSC activation using EE (Cao et al. 2004; Choe et 

al. 2016; Fabel et al. 2003; Fuentealba et al. 2012; Mu et al. 2010; Rossi et al. 2006; Suh et al. 

2009). Following exercise, many growth factors are increased such as FGF-2, insulin-like 

growth factor-1 (IGF1), and VEGF and these were shown to stimulate neurogenesis in absence 

of exercise (Aberg et al. 2000; Fabel et al. 2003; Jin et al. 2002; Wagner et al. 1999). It was 

shown that VEGF is necessary for running-induced neurogenesis by acting directly on neural 

progenitors, but not for basal neurogenesis (Fabel et al. 2003). Similarly, Cao and colleagues 
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screened for several growth factors by quantitative real-time RT-PCR after rats were either 

exposed to four weeks of EE (including a running wheel) or MWM training and showed that 

VEGF was the only one to mediate both the environmental induction of neurogenesis and 

improved cognition in rats (Cao et al. 2004). Moreover, the brain-derived neurotrophic factor 

(BDNF) was also shown to be required for the neurogenesis increase following EE using a 

BDNF-/- transgenic mouse (Rossi et al. 2006). However, this EE including a running component 

and it was later confirmed that BDNF is increased by exercise, but not by EE (Kobilo et al. 

2011). Noggin, which antagonizes BMP signaling, was shown to increase the number of 

proliferating GFAP+ putative stem cells in vivo (Bonaguidi et al. 2008). A follow-up study 

further demonstrated that BMP signaling mediates the exercise effect on hippocampal 

neurogenesis and hippocampus-dependent learning and memory (Choe et al. 2016; Gobeske et 

al. 2009). Gobeske and colleagues exposed C57Bl/6 mice to running discs for different durations 

(ranging from 0 to 14 days), and observed decreased BMP4 and increased noggin mRNA and 

protein levels. These effects were followed by improvements in cell proliferation (including 

GFAP+ and Sox2+ cells) Y-maze performance. Moreover, when BMP signaling was decreased 

in vivo by noggin intraventricular infusion, mice showed similar cellular and cognitive gains to 

running mice (Gobeske et al. 2009). A recent study also confirmed that inhibited BMP signaling 

by noggin leads to neural progenitor activation and maturation (Bond et al. 2014). 

 

Under normal conditions, factors, such as neurotransmitters, were also identified as key 

mediators of hippocampal NSC activation (Choe et al. 2016; Song et al. 2016; Song et al. 2013; 

Song et al. 2012). The major inhibitory neurotransmitter in mature neurons, γ-aminobutyric acid 

(GABA), can be excitatory in NSCs and immature neurons (Ben-Ari 2002; Ge et al. 2006). In 

NSCs, the Na+-K+-2Cl- co-transporter (NKCC1) is highly expressed at early stages and is 

responsible for the higher intracellular [Cl-]i concentration. The Cl- channels open upon GABA 

binding and Cl- flows out the cell leading to depolarization. In mature neurons, the K+-Cl- co-

transporter (KCC2) now predominates, creating a reduction in [Cl-]i and leading to an influx of 

Cl- upon GABA binding which hyperpolarizes the cell (Ben-Ari 2002; Ge et al. 2006). Song 

and colleagues discovered that parvalbumin (PV)+ interneurons could dictate the RGL choice 

between quiescence and activation (Song et al. 2012). Nestin+ RGLs responded tonically to 



 

 

50 

GABA via the γ2-containing GABAAR when treated with diazepam (specifically enhances this 

receptor response to GABA). Following diazepam treatment, a 45% decrease in proliferating 

RGLs was observed when compared to controls and an inhibition of symmetrical self-renewal, 

suggesting a quiescent fate choice. This effect could be blocked after a conditional deletion of 

this receptor. Using an optogenetic approach in PV-Cre mice (using a double-floxed adeno-

associated virus to express different optogenetic channels), they demonstrated that adult RGLs 

respond to PV+ interneurons-released GABA, and that the activation of these interneurons led 

to a 53% decrease in RGL activation (Song et al. 2012). A follow-up study further showed that 

PV+ interneurons could also promote the survival of proliferating neuronal progenitors (Song 

et al. 2013).  

 

SCI is known to activate endogenous ependymal cells, but studies looking specifically 

at mediators of this activation are almost inexistent (Barnabe-Heider et al. 2010; Lacroix et al. 

2014). One group showed that activated spinal cord-derived neural precursor cells following 

injury had significantly reduced Connexin50 expression, a gap junction protein, compared to 

cells from uninjured tissue (Rodriguez-Jimenez et al. 2015). Moreover, over-expression of 

Connexin50 in differentiation conditions led to an astrocytic fate differentiation.  

 

In global events, such as EE and SCI, changes in the environment are complex. Although 

some studies used a candidate-based approach to try to identify key mediators of NSC 

activation, it would be surprising that one factor would be responsible for all the observed effects 

in these situations. Fortunately, recent technological approaches, such as next generation 

sequencing, allow us to screen for unknown candidates (see section below). 
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I.5. Next generation sequencing 

Next generation sequencing is an unbiased approach that can be used to detect 

transcriptome changes within a niche or a specific cell population between experimental 

conditions (Ozsolak and Milos 2011). Pioneer studies on DNA sequencing were conducted by 

Fredrick Sanger in the 1970s (Sanger et al. 1977). This discovery was followed by hybridization-

based microarray technologies that were established at the end of the 20th century (Pinkel et al. 

1998). However, this method is based on probes, hence limited to what is already known, and it 

does not have optimal resolution of the output (Wang et al. 2009; Wilhelm and Landry 2009). 

Recently, it is the next generation sequencing technologies that has revolutionized the molecular 

biology field, such as the RNA-Seq. Both microarrays and RNA-Seq look at transcriptomics, 

consisting in all the transcripts present in a cell and their respective quantities (Wang et al. 2009). 

As a hypothesis-free approach, RNA-Seq has some advantages. It is not limited to an existing 

genomic sequence and it can detect 30-bp short reads that give useful information, such as fusion 

transcripts, splice variants, and mutations (Ozsolak and Milos 2011; Wang et al. 2009). The 

main steps to create a RNA-Seq library are to 1) purify RNA (make sure to enrich for mRNA 

as rRNA is not informative), 2) fragment RNA, 3) prime for the reverse transcription reaction 

with the use of either random primers or oligo dT primers to create double-stranded cDNA for 

sequencing. 4) Then, you perform end repair, add A overhangs, and add sequence adapters to 

sequence your cDNAs (may use clonal amplification). Once your library is obtained, you can 

map it to the reference genome assembly (Ozsolak and Milos 2011; Wang et al. 2009). This 

method was used in chapters three and four of this dissertation to gain insights into the cellular 

and molecular changes behind NSC activation.   
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I.6. Rationale for studies 

The importance of hippocampal neurogenesis in learning and memory processes and the 

potential therapeutic avenues of ependymal cells in the central canal of the spinal cord is of great 

interest. It shows that NSCs could play important roles in normal brain function and neural 

repair following injury. However, little information is known about how a quiescent neural stem 

cell becomes activated in order to perform these functions. The general objective of this 

dissertation was to investigate the mechanisms underlying activation of neural stem cells in the 

adult central nervous system. My specific aims were to address this question using adult mice 

in two complementary models:  1) activation of hippocampal NSCs by environmental 

enrichment (EE), and 2) activation of spinal cord NSCs by injury-induced neuroinflammation. 

Moreover, 3) to gain new insights into the molecular mechanisms of these models, we will 

perform transcriptomics studies to open new lines of investigation. This section summarizes the 

hypotheses, rationales, and specific objectives of each study to help transition to and better 

understand the results section. 

 

I.6.1. Components of environmental enrichment (study 1) 

Thoroughly understanding the impact of individual EE variables on hippocampal 

neurogenesis is crucial, as EE can improve some cognitive functions at the expense of others 

(Woollett and Maguire 2011), and can have unexpected effects under pathological conditions 

(Komitova et al. 2005; Risedal et al. 2002). My hypothesis is that physical activity and complex 

environment act differently on hippocampal neurogenesis.  

 

Although some studies have concluded that physical activity is the main pro-neurogenic 

component of EE (Kobilo et al. 2011; Mustroph et al. 2012a), the challenges involved in 

experimentally separating EE variables has resulted in considerable disagreement concerning 

their relative influences (Bednarczyk et al. 2011; Fabel et al. 2009; Kannangara et al. 2009; 

Kronenberg et al. 2003; Mustroph et al. 2012b). As a result, the specific contribution of EE 

variables to hippocampal neurogenesis is still not well understood.  
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To address this hypothesis, our specific objectives were to: 1) establish a new EE 

paradigm that allows the stepwise addition/subtraction of individual EE variables, within the 

CD1 mouse model, and 2) to measure c-fos levels (a marker of neuronal activity), circulating 

corticosterone levels (a marker of stress levels), and the impact of each EE variable on each 

stage of adult neurogenesis.  

 

I.6.2. Exercise and social context – Learning and memory (study 2) 

From our first article (Gregoire et al. 2014), we demonstrated that exercise was 

responsible for increased neurogenesis, and we suggested that social interaction within a 

complex environment led to elevated c-fos expression (neuronal activation). Our hypothesis is 

that considering their different effects observed in the first manuscript, exercise and social 

context exposure will lead to different behavioural and transcription responses.  

 

The factors mediating the hippocampal neurogenesis increase, neuronal activation and 

cognitive improvements following exposure to individual EE components remain unclear. 

Based on the findings of the previous study, mice were exposed to an eight-week paradigm 

including a four-week exposure to either a locked disc (control environment), running disc 

(continuously), or social environment followed by four weeks of behavioural testing while 

maintaining the enriched environments in home cages.  

 

To address this hypothesis, our objectives were to: 1) evaluate the performance of CD1 

mice on the 8-arm radial maze and novel object recognition test, 2) confirm the presence of 

hippocampal neurogenesis at the end of a longer paradigm, and 3) perform a RNA-Seq to 

understand the cellular and molecular changes occurring in the DG from mice exposed to either 

a locked disc, running disc, or a complex environment (including social interactions).  
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I.6.3. Impact of TGF-β1 on ependymal cells (NSCs) (study 3) 

For this last project, we collaborated with Dr. Steve Lacroix’s laboratory to isolate 

ependymal cells from FoxJ1-eGFP mice using fluorescence-activated cell sorting following 

sham treatment or SCI. An RNA-Seq of these purified cells before and after injury was 

performed to obtain the transcriptome of activated ependymal cells. One of the main factors 

found from this analysis was TGF-β1. Our hypothesis is that chronically released TGF-β1 is 

the inflammatory cytokine involved in the transition from a quiescent to an activated state of the 

ependymal cells.  

 

TGF-β1 is another secreted factor following injury that plays a central role in wound 

healing in many tissues. TGF-β1 has been shown to have a pleiotropic role in cell growth, 

differentiation, organ development, migration, pro-inflammatory and anti-inflammatory 

processes, and wound repair (Kleiter et al. 2007; McCartney-Francis and Wahl 1994; Taylor 

2009). Following SCI, TGF-β1 is highly expressed by inflammatory cells, with levels peaking 

at 48 hours post-SCI and maintaining for several days (Buss et al. 2008; McTigue et al. 2000). 

Previous studies have shown that this cytokine plays opposing roles after SCI, as TGF-β1-

treated animals showed a 50% reduction in lesion volume by 48 hours post-SCI (Tyor et al. 

2002), while TGF-β1-blocking antibodies inhibit glial scar formation and improve locomotor 

activity (Kohta et al. 2009). Therefore, TGF-β1 represents an excellent candidate for a potential 

role in the activation of ependymal cells following a lesion.  

 

To address this hypothesis, our specific objectives are to: 1) confirm the presence of 

TGF-β1 mRNA around the central canal after SCI, 2) infuse TGF-β1 in vivo for six days to 

detect the effect on proliferation and cell fate and to put into culture the spinal cord to analyze 

the impact on neurosphere growth, 3) analyze proliferation, survival, and differentiation in high-

density stem/progenitor cell cultures, 4) study the indirect effects of TGF-β1 using conditioned 

medium in cultures, and 5) block TGF-β1 signaling to analyze its endogenous effect, its effect 
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on neurosphere growth at different time points (acting on recruitment or expansion of 

neurosphere-initiating cells), and its effects in vivo. 
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Chapter II. Untangling the influences of voluntary running, 

environmental complexity, social housing and stress on adult 

hippocampal neurogenesis 
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II.1. Article context  

Although some studies have concluded that physical activity is the main pro-neurogenic 

component of EE (Kobilo et al. 2011; Mustroph et al. 2012a), the challenging difficulties involved 

in experimentally separating EE variables has resulted in considerable disagreement concerning 

their relative influences (Bednarczyk et al. 2011; Fabel et al. 2009; Kannangara et al. 2009; 

Kronenberg et al. 2003; Mustroph et al. 2012b). The specific contribution of EE variables to 

hippocampal neurogenesis is still not well understood. We, therefore, established a novel paradigm 

that allows us to clearly discriminate between the impact of specific components of EE. 

II.2. Authors’ contributions 

In this article, I designed, performed, and analyzed most of the experiments with the helpful 

advices of my research director, Dr. Karl Fernandes. David Bonenfant, a summer intern, helped 

me, under my supervision, with the experiments conducted for Figures II.5-6. Adalie Le Nguyen, 

another summer intern, also helped me setting up the paradigm described in Figure II.1 as well as 

for immunofluorescence of Figure II.2, under my supervision. Finally, our laboratory technician, 

Anne Aumont, helped with the intermittent EE paradigm described in Figure II.1 as well as the 

paradigms for Figure II.5-6. The manuscript was written by myself in collaboration with Dr. Karl 

Fernandes. 
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II.3. Abstract 

Environmental enrichment (EE) exerts powerful effects on brain physiology, and is 

widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, 

incorporating elements of physical exercise, environmental complexity, social interactions and 

stress, however the specific contributions of these variables have not been separable using 

conventional housing paradigms. Here, we evaluated the impacts of these individual variables on 

adult hippocampal neurogenesis by using a novel “Alternating EE” paradigm. For 4 weeks, adult 

male CD1 mice were alternated daily between two enriched environments; by comparing groups that 

differed in one of their two environments, the individual and combinatorial effects of EE variables 

could be resolved. The Alternating EE paradigm revealed that (1) voluntary running for 3 days/week 

was sufficient to increase both mitotic and post-mitotic stages of hippocampal neurogenesis, 

confirming the central importance of exercise; (2) a complex environment (comprised of both 

social interactions and rotated inanimate objects) had no effect on neurogenesis itself, but 

enhanced depolarization-induced c-Fos expression (attributable to social interactions) and buffered 

stress-induced plasma corticosterone levels (attributable to inanimate objects); and (3) neither 

social isolation, group housing, nor chronically increased levels of plasma corticosterone had a 

prolonged impact on neurogenesis. Mouse strain, handling and type of running apparatus were tested 

and excluded as potential confounding factors. These findings provide valuable insights into the 

relative effects of key EE variables on adult neurogenesis, and this "Alternating EE" paradigm 

represents a useful tool for exploring the contributions of individual EE variables to mechanisms of 

neural plasticity. 

 
  



 

 

60 

II.4. Introduction 

It has been known for over half a century that the surrounding environment affects the 

anatomy, chemistry, and functional properties of the brain (Hebb 1947; Hubel and Wiesel 1970; 

Rosenzweig et al. 1962; Wiesel and Hubel 1965). Early studies showed that rodents exposed to 

environmental enrichment (EE), consisting of large cages, social enrichment and diverse 

multisensory stimulation, displayed increased brain sizes, altered neurotransmitter levels and 

behavioral changes (Bennett et al. 1969; La Torre 1968; Manosevitz and Joel 1973; Rosenzweig et 

al. 1962). Likewise, in humans, life experiences such as spatial memory training (Proulx et al. 2014; 

Schwabe and Wolf 2012; Woollett and Maguire 2011), cardiovascular exercise (Aberg et al. 2009; 

Herting and Nagel 2012; Woollett and Maguire 2011), sensory deprivation (Proulx et al. 2014), and 

stress (de Quervain et al. 2000; Schwabe and Wolf 2012) can affect learning and memory. 

The profound effect of environmental parameters on brain function has led to the widespread 

use of EE paradigms as tools for both research and rehabilitation. However, our basic understanding 

of this phenomenon remains remarkably nebulous. Diverse EE paradigms are now used, with little 

understanding of how differences in individual EE variables (such as physical exercise, cognitive 

stimulation, stress, and social interactions) might impact on specific downstream biological 

mechanisms, such as changes in neurotrophic factor synthesis (Ickes et al. 2000), dendritic growth 

(Fiala et al. 1978; Leggio et al. 2005; Volkmar and Greenough 1972), synaptic plasticity (Liu et al. 

2012), electrophysiological properties (Green and Greenough 1986) and adult neurogenesis 

(Kempermann et al. 1997b). 

 

The hippocampal dentate gyrus (DG) is a rare niche where neurogenesis is preserved 

throughout life (Eriksson et al. 1998; Kempermann et al. 1998; Ming and Song 2005; Spalding et 

al. 2013). DG neurogenesis is a multi-step process in which radial glia-like precursors generate 

proliferating progenitors and neuroblasts that mature into DG granule neurons implicated in 

learning, memory and mood regulation (Deng et al. 2009; Kempermann 2002; Kitamura et al. 2009; 

Saxe et al. 2006; Snyder et al. 2005). It is now well established that EE modulates adult hippocampal 

neurogenesis (Kempermann 2002; Kempermann et al. 1997b). Recent studies have identified 

physical activity as an important proneurogenic stimulus within EE (Kobilo et al. 2011; Mustroph et 

al. 2012a).  However, previously used housing paradigms could not unambiguously separate the 

effects of running from other EE variables, such as environmental complexity, social context and 
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stress, which are also reported to influence neurogenesis (Bednarczyk et al. 2011; Fabel et al. 

2009; Kannangara et al. 2009; Kronenberg et al. 2003; Leasure and Decker 2009). Clearly 

defining the relative and/or combinatorial effects of such variables is essential for the rational 

design of EE paradigms, as EE can improve some cognitive functions at the expense of others 

(Woollett and Maguire 2011), and can have unexpected consequences under pathological conditions 

(Komitova et al. 2005; Risedal et al. 2002).  

Here, we developed a novel “Alternating EE” paradigm to experimentally isolate EE 

variables and to gain insights into their specific contributions to adult hippocampal neurogenesis. 
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II.5. Materials and methods 

A total of 129 two-month-old male CD1 mice (Charles River, Senneville, QC, Canada) and 

eight 2-month-old male C57BL/6 mice (Charles River, Senneville, QC, Canada) were used in these 

studies. All experiments were conducted in accordance with the guidelines of the Canadian 

Council of Animal Care and were approved by the Animal Care committee of the Université de 

Montréal. 

 

II.5.1. Housing conditions and Experimental groups: Alternating EE paradigm 

All animals were provided with food and water ad libitum, and all environments contained 

nesting material and a basic litter (PRO-CHIP 8-16, PWI brand). Four types of housing 

environments were used in the Alternating EE paradigm, as shown in Fig. I I . 1B and detailed 

here: 

Empty environment: Animals were housed in empty 24.0 cm x 44.0 cm x 20.0 cm rat cages. 

Mice were housed either individually or in groups of 3, depending on whether they were in the 

Impoverished or Social housing experimental groups (below). 

Locked disc environment: Animals were housed in 24.0 cm x 44.0 cm x 20.0 cm rat cages 

containing a locked or unlocked running disc (Red mouse igloo, K3327, and amber fast- trac 

running disc, 7.5 cm in diameter, K3250, Bio-Serv, Frenchtown, NJ, USA). Running cages were 

outfitted with odometers (Sigma BC509) to measure the running distance. Mice were housed 

individually. 

Running disc environment: Identical to the Locked disc environment except that the running 

disc was unlocked to permit voluntary running. 

Complex environment: Animals were housed in 24.0 cm x 44.0 cm x 20.0 cm rat cages that 

contained an igloo, locked running disc and colored tunnels for hamsters (Habitrail, 8 inches green 

trail, yellow curve, blue U-turn, transparent tee and blue elbow). Tunnels were re-oriented and their 

conformations re-arranged at each cage alternation (4 times/week). Mice were housed in groups of 

3. This Complex environment thus provides social interactions, inanimate objects, and frequent 

conformational novelty. 
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Experimental groups used in the Alternating EE paradigm: The Alternating EE paradigm was 

repeated using two separate cohorts of mice (n=36-42/cohort) in order to obtain sufficient tissues 

for analysis of all markers. One cohort received two intraperitoneal injections of 5-bromo-2-

deoxyuridine (BrdU, Sigma-Aldrich, Oakville, ON, Canada, 100mg/kg) at 9am and 4pm on the 

first experimental day to assess cell survival. Mice were randomized and separated into one of 

7 different groups. Each group alternated between 2 housing conditions, 6 times per week for 4 

weeks, as shown in Fig. 1A-D and described here: 1) Maximal enrichment (“MAX”, n=6) mice 

were alternated between the Running disc and the Complex environments, 2) Intermittent Running 

(“I-RUN”, n=6) mice were alternated between the Running disc and the Locked disc environments, 

3) Intermittent Complex Environment (“I-CPX”, n=6) mice were alternated between the Locked 

disc and the Complex environments, 4) Minimal enrichment (“MIN”, n=6) mice were alternated 

between identical Locked disc environments, 5) Impoverished (“IMP”, n=6) mice were alternated 

between identical Empty environments and were housed individually, 6) Continuous Running (“C-

RUN”, n=6) mice were alternated between  identical  Running  disc  environments,  7)  Social  

housing  ("SOC",  n=6)  mice  were alternated between identical Empty environments and were 

housed in groups of 3. Mice used for analysis of c-fos immediate early gene expression remained 

within their enriched environments until time of anesthetic overdose. 

 

II.5.2. Housing conditions: Strain comparison, Handling effect, and Wheel versus Disc paradigms 

All animals were provided with food and water ad libitum, and all environments contained nesting 

material and a basic litter (PRO-CHIP 8-16, PWI brand). 

Strain Comparison: 2-month-old adult male C57BL/6 mice (n=8) and 2-month-old adult male CD1 

mice (n=8) were individually housed in 24.0 cm x 44.0 cm x 20.0 cm rat cages. Mice were exposed 

to either Empty (n=4/strain) or Running disc environments (n=4/strain) for 4 weeks. 

Handling Effect: 2-month-old adult male CD1 mice (n=12) were individually housed in 24.0 cm x 

44.0 cm x 20.0 cm rat cages. Mice were separated into No Handling and Handling groups 

(n=6/group). The No Handling group was exposed to the Empty environment for the entire 

period and was only handled only twice (cage changing), while the Handling group was treated as 

for the Intermittent EE paradigm, i.e., holding the mouse by the tail and transferring it to another 
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cage 6 days a week for a total of 24 times during the 4-week experimental period. 

 

Wheel vs. Disc: 2-month-old adult male CD1 mice (n=25) were randomized and separated into 

one of the five environments (n=5/group): 1) Empty, 2) Locked wheel, 3) Locked disc 4) Running 

wheel and 5) Running disc. Mice were individually housed in either 17.0 cm x 28.0 cm x 12.5 cm 

mouse cages (Empty), 12.7 cm x 20.3 cm x 35.6 cm cages (Locked and running wheel, 22.9 cm 

diameter wheel) or 24.0 cm x 44.0 cm x 20.0 cm rat cages (Locked and running disc). 

 

II.5.3. Tissue Preparation 

Mice received a lethal dose of chloral hydrate (7%), followed by a dose of Xylazine 

(0.1%) and were then perfused trans-cardially with 30 mL of 1X phosphate-buffered saline 

(PBS, pH 7.4) (PBS 10X, Wisent, 311-012-CL), followed by 40 mL of 4% formaldehyde 

fixative solution (freshly hydrolyzed from 4% paraformaldehyde, pH 7.4, Fisher, T353-500). The 

brains were removed and post-fixed in 4% formaldehyde overnight and then kept in PBS at 4C 

until sectioning. The entire brain of each animal was cut into 40µm coronal sections using a 

vibrating microtome (Leica VT1000S, Leica Microsystems, Richmond Hill, ON, Canada), and the 

tissue sections were stored at -20ºC in an antifreeze solution (glycerol:ethylene glycol:PBS 1X, 

3:3:4). 

 

II.5.4. Immunohistochemistry 

Primary antibodies used in this study were mouse anti-human Ki67 (1:200, BD 

Biosciences, Mississauga, ON, Canada, 556003), goat anti-rabbit NeuroD (1:500, Santa Cruz 

Biotechnology, Santa Cruz, CA, SC-1084), goat anti-human Doublecortin (DCX; 1:500, Santa 

Cruz Biotechnology, SC-8066), rabbit anti-human Calretinin (1:2500, Swant, Bellinzona, 

Switzerland, CR7699/3H), rabbit anti-human c-fos (1:5000 for fluorescence, 1:20000 for DAB, 

Calbiochem, San Diego, CA, PC38), mouse anti-cow S100β (1:1000, Sigma-Aldrich, Oakville, 

ON, Canada, S2532), rat anti-BrdU (1:800, AbD Serotec, Oxford, UK, MCA2060) and mouse 

anti-mouse Neuronal nuclei (1:100, NeuN, Milllipore, Temecula, CA, MAB377). 

For Calretinin and c-fos immunohistochemistry and BrdU/NeuN/c-fos triple 
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immunofluorescence, the labeling procedure was performed as previously described (Bednarczyk 

et al., 2011). For Ki67 and NeuroD immunohistochemistry, the protocol was modified to include an 

antigen retrieval step. Free-floating 40-µm sections were washed in PBS, mounted onto glass slides, 

post-fixed with 4% formaldehyde solution for 10 minutes, washed with PBS, and then incubated 

for 40 minutes in a Citrate-EDTA (10mM Citric Acid, 2mM EDTA, 0.05% Tween 20, pH 6.2) 

antigen retrieval solution. They were then blocked for 2 hours in 4% bovine serum albumin 

(BSA)/0.1% Triton-X/PBS (for Ki67) or 10% normal donkey serum (NDS)/0.1% Triton-X/PBS 

(for NeuroD). Sections were incubated overnight at room temperature in primary antibodies 

diluted in either 2% BSA or 5% NDS in PBS. 

 

II.5.5. Corticosterone assay 

Blood samples were collected from the anaesthetized animals, prior to cardiac perfusion, 

using a 23-gauge needle inserted into the posterior vena cava. Interval between anaethesia 

injection and blood collection was approximately 5 minutes. Blood samples were transferred to a 

microtainer containing K2EDTA (BD Biosciences, Mississauga, ON, 365974), inverted 20 times, 

and the plasma extracted after centrifuging at 1000g for 15 minutes at 4°C. Samples were stored at 

-80ºC. Plasma was diluted 1:200 and plasma corticosterone concentrations were assayed in 

duplicate using an enzyme-linked immunoassay kit, according to the manufacturer instructions 

(Cayman Chemical, Ann Arbor, MI; #500655). 

 

II.5.6. Cell quantifications 

For the Alternating EE paradigm, the number of SGZ/GZ cells positive for Ki67, NeuroD, 

Calretinin, and BrdU was quantified on every 6th section between Bregma -1.06mm and -2.98mm 

of the hippocampus (8 sections total/marker/animal). The raw cell counts were corrected for 

oversampling due to split cells by multiplying by (1 - object diameter/section thickness), where 

the object diameter refers to the average diameter of the marker in question. Mean object diameters 

were determining by measuring the diameter of 100 positive cells for each marker (NIH ImageJ, 

64-bit Java software for Mac), and yielded correction factors of 0.77 (Ki67, NeuroD), 0.75 

(Calretinin) and 0.79 (BrdU, c-fos). The corresponding SGZ/GZ reference volumes of the sections 
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were determined using the Cavalieri principle (grid size of 10 microns, 20x objective) in 

StereoInvestigator (MBF Bioscience, VT). The mean cell density was then obtained by dividing 

the corrected total number of marker-positive cells on the sampled sections by the sum of the 

section SGZ/GZ reference volumes. Results are expressed as density of marker-positive cells 

per mm3 of SGZ/GZ. Cell counts were performed manually by a blinded observer using a 40X 

objective, and slide codes were only broken after all quantifications had been completed for any 

given marker. 

 

For the control experiments (Strain comparison, Handling, Wheel vs. Disc), raw cell 

counts were corrected for oversampling as above and then multiplied by 6 to obtain an estimate of 

the total number of marker-positive cells between the Bregma coordinates. 

 

Triple immunofluorescence stainings for BrdU/NeuN/c-fos and for BrdU/S100beta/DCX 

were performed to determine i) the proportion of c-fos-positive cells that co-express the mature 

neuronal marker NeuN, and ii) the proportions of BrdU-positive cells that co-express NeuN, 

DCX or S100β. To do so, each c-fos or BrdU-positive cell in a complete 1-in-6 series of 

sections was brought into focus in turn using a 40x objective (400x total magnification) and 

scored for absence or presence of coexpression of the co-labels. In the case of BrdU/NeuN/c-fos 

staining, the NeuN antibody penetration through the tissue was observed to be incomplete; to 

avoid obtaining false NeuN-negative cells, NeuN double-labelling analyses were therefore restricted 

to the z-levels of NeuN antibody penetration. 

 

II.5.7. Statistical analyses 

Statistical analyses were performed using SAS 9.3 statistical analysis software (SAS 

Institute). All experimental groups were first analysed together by One-way ANOVA. Rejection of 

the null hypothesis was followed by the application of specific contrasts (linear combination 

of the means) that tested 7 pre-defined hypotheses summarized in Fig. 1D. Only these 7 

specific comparisons between experimental groups were made, in order to restrict statistical 
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analyses to groups that differ in only one experimental variable. Significance level was set at p=0.05. 
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II.6. Results 

II.6.1. Design of the Alternating EE paradigm 

To effectively isolate the effects of running, environmental complexity,  social interactions 

and stress, we devised an "Alternating EE" paradigm that would: 1) allow for the stepwise 

addition/subtraction of EE variables between conditions of maximal and minimal enrichment, 2) 

preserve as much uniformity as possible across groups, enabling statistical comparisons to be 

focused on groups for which only a single independent variable had been altered, and 3) in the 

case of running environments, permit individualized measurement of running distances. The 

Alternating EE paradigm is based on intermittent exposures to EE (Fig. II.1A). Over a 4-week 

period, adult male mice were alternated daily between two types of basic environments (6 times 

per week); by comparing experimental groups in which only one of the two environments differed, 

individual EE variables could be effectively isolated. 

 

Four basic environment types were used to construct the Alternating EE experimental 

groups (detailed in the Methods and shown in Fig. II.1B): an Empty environment that was devoid 

of all objects (1 mouse or 3 mice per cage); a Locked disc environment containing a non- 

functional running disc apparatus (1 mouse per cage); a Running disc environment providing 

voluntary access to a functional running disc (1 mouse per cage); and a Complex environment that 

consisted of inanimate objects (a locked disc and colored tunnels), social enrichment (3 mice per 

cage), and conformational novelty (change of object organization). 

 

Four Alternating EE experimental groups (Fig. II.1C) were used to test for primary 

influences of the Running disc and the Complex environments. The Maximal Enrichment ("MAX") 

group was sequentially exposed to both the Running disc and the Complex environments. The 

Intermittent Running ("I-RUN") and Intermittent Complex ("I-CPX") groups alternated between a 

Locked disc environment and either a Running disc or Complex environment, respectively. A 

Minimal Enrichment ("MIN") group served as the baseline control group and alternated between 

identical Locked disc environments. This approach allows statistical comparisons to be focused 

on groups that spend about half their time in identical environments, and enabled us to test for 

individual and combinatorial effects of the running and complex environment variables. Besides 

these four main Alternating EE groups, three additional groups were also used (Fig. II.1C): an 
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Impoverished ("IMP") group that alternated between Empty environments and was individually 

housed (allowing assessment of the effect of the Locked disc by comparison to the MIN group), 

a Continuous Running ("C-RUN") group that alternated between Running disc environments 

(allowing assessment of differences between 3 and 7 days of running by comparison to the I-

RUN group), and a Social Housing ("SOC") group that alternated between Empty environments 

but that was housed 3 mice/cage (allowing assessment of differences between individual and 

social housing by comparison to the IMP group). A summary of the 7 pre-determined groupwise 

comparisons and hypotheses is presented in Fig. II.1D. 

 

Several additional features of the experimental design should be noted. First, we used a 4- 

week experimental paradigm in order to focus on the effects of longer term EE, as previous 

studies have shown transient effects of some forms of EE on certain aspects of neurogenesis 

(Kronenberg et al. 2006; Stranahan et al. 2006). Second, animals were individually housed during 

their exposure to running discs, ensuring that running data could be collected for each animal. 

Lastly, we used outbred CD1 mice rather than the more commonly used C57BL/6 strain, in order to 

ensure that weaker neurogenic effects of EE are not masked by the high baseline neurogenesis 

reported in C57BL/6 mice (Clark et al. 2011b).  Indeed, in  our  own  control experiments, we found 

that male CD1 mice exhibited a 47% lower baseline proliferation rate compared to age-matched 

C57BL/6 mice  (C57BL/6: 2672 ± 166.9 vs. CD1: 1427 ± 129.2 Ki67+ cells/DG), permitting a 

running-induced increase to be detectable with as little as 4 mice/group in CD1 but not C57BL/6 

mice (C57BL/6 RUN: 2696 ± 281.8 vs. CD1 RUN: 2639 ± 240.2 Ki67+ cells/DG) (not shown). 

 

II.6.2. Running, but not the Complex environment, stimulates hippocampal neurogenesis 

We began by examining whether the Alternating EE groups exhibit differences in key 

parameters of adult neurogenesis (proliferation, neuroblast, immature neuron, and survival). 

Immunohistochemistry was  performed  for  Ki67+    proliferating  cells  (Fig.  I I . 2A),  NeuroD+ 

neuroblasts (Fig. II.2B), Calretinin+ maturing post-mitotic neurons (Brandt et al. 2003; Todkar et 

al. 2012) (Fig.II.2C), and BrdU+ surviving cells (Fig.II.2D). Since one-way ANOVA showed 

differences for all four markers, statistical contrasts were applied to test our 7 pre-determined 

hypotheses. As shown in Fig.II.2A-D, running had a significant effect on all four neurogenic 
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markers compared to the locked disc (I-RUN vs. MIN groups). Conversely, the Complex 

environment had no significant effect compared to the locked disc (I-CPX vs. MIN). While 

running increased the density of NeuroD+ and BrdU+ cells when combined with a complex 

environment (MAX vs. I-CPX), complex environment failed to potentiate the effects of Running at 

any stage of neurogenesis (MAX vs. I-RUN). Since the locked disc itself did not have an 

elevated baseline neurogenesis (MIN vs. IMP), it is not responsible for masking possible neurogenic 

effects of the Complex environment. Besides running, the only variable impacting neurogenesis 

was social housing: socially housed mice in the impoverished environment exhibited a small but 

significant increase in NeuroD+ neuroblasts compared to individually housed impoverished mice 

(IMP vs. SOC). Co-labelling of the surviving BrdU+ cells showed that there was no primary 

effect of running or the complex environment on the proportions of BrdU+ cells that had acquired 

phenotypes of NeuN+ mature neurons, DCX+ neuroblasts or S100β+ astrocytes. I-RUN mice 

had a small but significant increase in NeuN-labelled BrdU+ cells compared to C-RUN mice. 

 

Interestingly, Ki67, NeuroD, Calretinin and BrdU+ cells were all increased to a similar 

extent in mice that ran 3d/week versus 7d/week (I-RUN vs C-RUN groups). In fact, comparison of 

the three groups containing running mice (MAX, I-RUN and C-RUN groups) showed that despite 

the fact that C-RUN mice ran 2-3x greater total distances on average (MAX=130.5 ±16.92 km; 

I-RUN=153.8 ± 15.09 km; C-RUN=329.5 ± 27.26 km), they did not achieve higher levels of any 

neurogenic marker than intermittently running I-RUN or MAX mice (Fig. II.2A-D). 

 

These results demonstrate that intermittent exposure to running discs for 4 weeks 

significantly increases the proliferative, neuroblast, post-mitotic and cell survival stages of DG 

neurogenesis, while comparable exposure to a complex environment comprised of inanimate 

objects, social interactions and conformational novelty has no effects on these stages of 

neurogenesis. 

 

 

II.6.3. The Complex environment, but not running, increases depolarization-associated c-fos 

expression 
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To determine whether the Alternating EE groups exhibited differences in the pattern of DG 

activation, we analyzed the numbers of dentate granule cells expressing the depolarization- induced 

immediate early gene, c-fos (Fig. II.3). Since dentate granule neurons are generated in an outside-

in layering pattern during development, with older DG neurons being found in the outer granule 

cell layer and more recently born neurons in the inner region (Mathews et al. 2010), we quantified 

inner and outer c-fos-expressing DG neurons separately (Fig. II .3A). In contrast to its lack of 

effects on neurogenesis, the complex environment significantly increased the density of c-fos-

expressing cells in both the inner and outer GCL compared to the locked disc (I-CPX vs. 

MIN)(Fig.II.3B,C). Conversely, running did not alter c-fos expression in the outer GCL and 

reduced its expression in the inner GCL (I-RUN vs. MIN) (Fig. II.3B,C). Running did not modify 

the ability of the complex environment to increase c-fos expression (MAX vs. I-CPX), while the 

complex environment increased c-fos expression in intermittently running mice (MAX vs. I- 

RUN). Mice running for 3 or 7 days per week exhibited low levels of c-fos expression (I-RUN vs. 

C-RUN), with C-RUN mice tending towards lower levels (p=0.0967 in outer GCL, p=0.1044 in 

inner GCL). The locked disc had no difference in c-fos compared to isolated impoverished mice 

(MIN vs. IMP). Interestingly, social housing tended to increase c-fos expression compared to 

isolated mice (IMP vs. SOC) (p=0.0548 in outer GCL, p=0.0754 in inner GCL), suggesting that 

the social interaction component of a complex environment is responsible for its stimulation of c-fos 

expression. 

 

Since the dorsal and ventral DG play roles in distinct hippocampal-dependent functions 

(Kheirbek et al. 2013; Snyder et al. 2009), we also separated the c-fos quantifications according 
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to rostral (dorsal) and caudal (ventral) sections and found that the effects of the Complex 

environment on c-fos expression were not regionally specific: c-fos-expressing cells were 

distributed across both rostral and caudal dentate gyrus, and the Complex environment stimulated 

c-fos expression to a similar extent in both regions (Fig. II.3D). 

 

These results indicate that the complex environment increases depolarization-associated 

c-fos expression in the DG, likely mediated by the social interaction component, while running 

decreases basal c-fos expression. 

 

II.6.4. The Complex environment reduces plasma corticosterone 

Stress has been shown to negatively regulate hippocampal neurogenesis (Mitra  e t  a l .  

2006;  Schoenfeld and Gould 2012) ,  but paradoxically, increased levels of circulating 

stress hormones have also been positively associated with EE-induced neurogenesis (Stranahan 

et al. 2006; Wosiski-Kuhn and Stranahan 2012). In order to test whether chronic changes 

in stress- induced hormones are observed and potentially involved in the persistent effects of the 

Running disc and/or the lack of effects of Complex environment on adult neurogenesis, we 

assessed blood plasma levels of the stress-induced hormone, corticosterone, at the end of the 4-

week Alternating EE paradigm (Fig. II.4). 

 

Compared to the locked disc environment, plasma corticosterone concentrations were 

diminished by the complex environment (I-CPX vs. MIN) and unchanged by the running 

environment (I-RUN vs. MIN). There was no difference in corticosterone concentrations in mice 

running for 3 or 7 days per week (I-RUN vs. C-RUN). The suppressive effect of the complex 

environment still occurred when used in alternation with running (MAX vs. I-RUN), while 

running did not alter the effect of the complex environment (MAX vs. I-CPX). Corticosterone 

levels were not affected by the presence of the locked disc (MIN vs. IMP) or by individual vs. 

social housing of mice in the impoverished environment (IMP vs. SOC). 
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These data yield several informative observations. First, since groups exposed to the 

complex environment (I-CE and MAX) have low plasma corticosterone, their lack of neurogenic 

effects cannot be attributed to elevated stress. Second, since running groups with both high 

corticosterone (I-RUN and C-RUN) and low corticosterone (MAX) displayed comparable 

running-induced increases in neurogenesis (Fig. II.2), chronically increased corticosterone is 

neither required for nor adversely affects running-induced neurogenesis. Third, since two of the 

elements in the complex environment (social interactions and the locked disc) had no effect on 

corticosterone levels by themselves, it is likely that the regularly rotated tunnels are essential for 

the corticosterone suppression observed. 

 

II.6.5. Absence of neurogenic effects of the Complex environment is not due to daily handling or 

type of running apparatus 

Our preceding data using the Alternating EE paradigm indicated that the Complex 

environment enhances DG neuronal activity but does not enhance adult neurogenesis. We next 

sought to eliminate the possibility that neurogenic effects of the Complex environment might be 

masked by intrinsic features of our Alternating EE paradigm: specifically, by an increased basal 

level of neurogenesis due to i) the daily handling of mice associated with alternation between 

environments or ii) the use of horizontal running discs versus vertical running wheels. 

 

To evaluate whether four weeks of daily handling was capable of altering the basal levels 

of hippocampal neurogenesis (Fig. II.5), we repeated the handling that was executed between 

two Empty cages (i.e., IMP group) during the main experimental paradigm and compared the 

results with a group of mice that was maintained for 4 weeks without any daily handling (Fig. 
II.5A). The Handling group was handled 6 times per week while the No Handling group was 

only manipulated only once every 2 weeks (cage changing). Quantification of 

immunohistochemical results showed no changes in the estimated numbers of Ki67+  cells (Fig. 
II.5B), Calretinin+  cells (Fig. II.5C), and c-fos+ cells (Fig. II.5D,E). These data indicate that 

the absence of effects of the Complex environment on neurogenesis is not due to a handling-

induced increase in basal neurogenesis. 
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Since several types of running equipment are used in the EE paradigms in the literature, we 

also tested the possibility that the horizontal running discs and igloos used in the present study 

might serve as greater baseline enrichment than commonly used vertical running wheels (Clark 

et al. 2011b; Fabel and Kempermann 2008; Kronenberg et al. 2006; van Praag et al. 1999b). We 

therefore compared neurogenesis in mice following 4 weeks of exposure to an Empty cage, to 

Locked or Running wheels, or to the Locked or Running discs used throughout this study 

(Fig. II.6A). Interestingly, mice running on discs ran 84 % more than mice on running wheels 

(Running disc: 13.80 km/day, Running wheel: 7.49 km/day; p<0.0001, Fig. II.6B). 

Immunohistochemical analysis and quantification revealed that mice exposed to Locked wheels 

and Locked discs had equal estimated numbers of Ki67+ cells (Fig. II.6C), NeuroD+ cells (Fig. 
II.6D), and Calretinin+ cells (Fig. II.6E), and no difference compared to the control mice, 

confirming that the locked running apparatus did not have any persistent effects on neurogenesis. 

Mice housed with Running wheels or Running discs likewise achieved equal levels of running-

induced Ki67 cells, NeuroD+ cells and Calretinin+ cells (Fig. II.6C-E), despite their significantly 

greater running distances on discs than on wheels. 

 

These findings reveal that the absence of neurogenic effects of the Complex environment 

in the Alternating EE paradigm is not due to masking by an elevated basal rate of neurogenesis 

caused by the mouse handling or the type of running apparatus 
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II.7. Discussion 

EE has gained widespread use as a means for enhancing brain function, both as an 

experimental tool and for rehabilitative therapy. However, a lack of understanding of this 

important phenomenon has led to the use of widely varying EE paradigms, with little 

comprehension of the potential consequences. It has therefore become imperative to better define 

the contributions of individual EE variables to specific underlying neural mechanisms (Pang and 

Hannan 2013), including adult neurogenesis. Here, we developed a novel "Alternating EE" 

paradigm that facilitates experimental isolation of key EE variables, and we used this paradigm 

to assess the impact of voluntary exercise, environmental complexity, stress and social 

interactions on hippocampal neurogenesis (summarized in Figure II.7). 

 

II.7.1. Running 

It is well established that exposure to an enriched environment containing a running 

wheel enhances adult hippocampal neurogenesis (Kobilo et al. 2011; Mustroph et al. 2012a; van 

Praag et al. 1999b). The picture that has emerged from such studies is that running itself is likely 

to be the prime positive regulator of neurogenesis within such an environment (Kobilo et al. 

2011; Mustroph et al. 2012a). Unfortunately, direct comparison of data across previously 

published studies is hampered by differences among uncontrolled variables in the diverse EE 

paradigms that have been used. For instance: group housing is often considered a more 

naturalized environment, but it introduces significant social variables and prevents acquisition of 

individualized running data; few previous studies have used a locked running apparatus to 

control for its running-independent influences; and conclusions regarding the effects on adult 

neurogenesis have often been based on only a single stage analysis of the neurogenic pathway 

(typically BrdU-NeuN to label the total number of newly generated neurons). 

Our data confirm and extend upon previous conclusions concerning the role of running. 

As expected, findings obtained using our Alternating EE paradigm are consistent with recent 

studies showing that running is indeed the principle neurogenic stimulus within an enriched 

environment (Kobilo et al. 2011; Mustroph et al. 2012a). We were able to rule out any 



 

 

76 

significant environmental complexity component of the running apparatus, as we controlled for 

the presence of the running disc itself. Our data revealed that the neurogenic effects of a 4-week 

running paradigm were not improved by a Complex environment, were not dependent on social 

context, and were not affected by stress-associated corticosterone levels (discussed individually 

below). Moreover, we were able to show that continuous voluntary running (7d/week) did not 

elicit greater increases in neurogenesis than intermittent running (3d/week), and mice exposed to 

running discs did not have greater neurogenesis than those exposed to running wheels (despite 

the fact that discs yielded about 80% greater running distances); these data suggest a running- 

induced plateau in neurogenesis. Interestingly, at the end of our 4 week paradigm, the neurogenic 

effects of running on CD1 mice remained significant at all 4 stages of the neurogenic process 

(proliferation, neuroblasts, immature post-mitotic neurons, and cell survival); this contrasts 

previous findings using group-housed C57BL/6 mice, which exhibited a proliferative peak after 

3-10 days that returned to baseline after 32 days (Kronenberg et al. 2006). 

 

Our results also showed that, despite significantly increasing expression of all markers of 

neurogenesis, 4 weeks of running unexpectedly decreased the total number of DG cells 

expressing c-fos (a surrogate marker of neuronal depolarization). Since 90-94% of c-fos- 

expressing cells were NeuN-negative, we speculate that this reduction in depolarized neurons 

may be a by-product of the increased proliferation by transit-amplifying progenitors and 

neuroblasts, temporarily delaying the production of mature neurons. Consistent with this 

scenario, recent studies have shown that running increases immediate-early gene expression at 

longer 5-7 week timepoints (Clark et al. 2009; Clark et al. 2011b). 

 

II.7.2. Environmental complexity 

Environmental complexity has been shown to positively affect a variety of neural parameters, 

including electrophysiological characteristics, depression, and learning and memory functions 

(Pang and Hannan 2013; van Praag et al. 2000).  However, mixed conclusions have been reached 

regarding whether a complex environment acts on adult neurogenesis, with some studies 

suggesting that it may have stage-specific effects on adult neurogenesis that are dissociable from 
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the effects of exercise (Bednarczyk et al. 2011; Fabel et al. 2009; Kannangara et al. 2009; 

Kempermann et al. 2010; Kronenberg et al. 2003; Olson et al. 2006) and other studies 

indicating that it does not appreciably modulate neurogenesis in comparison to running (Kobilo 

et al. 2011; Mustroph et al. 2012a). These conflicting views have likely arisen because 

environmental complexity has generally not been well isolated as a variable. Previous 

experimental designs could not exclude the possibility that observed effects of a complex 

environment were actually due to EE variables such as physical activity and social 

housing/isolation, or conversely, that a lack of observed effects was because basal neurogenesis 

levels had been raised by factors such as inanimate cage constituents, enriched feeding 

paradigms, handling or behavioral testing 

 

The Complex environment used in the present study was multi-factorial in nature, 

consisting of social housing (3 mice per cage), tunnels whose orientations were rotated 4 times 

per week, and a locked running apparatus (igloo and running disc). Thus, this environment 

possesses inanimate objects, social enrichment and conformational novelty. However, to our 

surprise, exposure to this environment did not affect any of the 4 stages of the neurogenic 

pathway examined. When combined with intermittent exposure to a running disc, it also did not 

potentiate running-induced neurogenesis. Importantly, control experiments allowed us to exclude 

a variety of factors that could possibly have masked the effects of the complex environment: by 

using CD1 mice that have low baseline neurogenesis, by testing for any effects of the locked disc 

environment itself, and by assessing possible neurogenic influences of daily handling or the use 

of vertical running wheels vs. horizontal running discs. 

 

While the Complex environment did not alter any parameters of neurogenesis that we 

tested, it increased depolarization-associated c-fos expression within the GCL by 2-3 fold. The 

upregulation of c-fos expression was detectable in both the inner and outer portions of the 

granule cell layer (generated during adulthood and early postnatally, respectively) and occurred 

to a similar extent in both the rostral (dorsal) and caudal (ventral) hippocampus. Interestingly, 

90-94% of c-fos+ cells within the GCL were immature (NeuN negative) in all experimental 

groups, and this proportion remained the same in the Complex environment, indicating that while 
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the Complex environment activates greater total numbers of cells, it does not have a preferential 

effect on immature versus mature neurons. 

 

We conclude from these data that environmental complexity as it is typically used in 

rodent models is not a significant or persistent regulator of hippocampal neurogenesis, and that 

its previously reported effects on neural function may involve improved electrophysiological 

incorporation of newly generated neurons rather than increases in neuronal production. Because 

the Complex environment used here was multi-factorial, consisting of inanimate objects, social 

interactions and conformational novelty, further experiments will be required to identify the 

specific sub-component responsible for stimulating c-fos expression. A possible caveat to these 

conclusions is that despite being multi-factorial, the Complex environment might still be 

considered a mild or restricted form of cognitive stimulation. For example, previous work has 

indicated that learning-associated stimuli can enhance hippocampal neurogenesis via increased 

cell survival (Gould and Tanapat 1999; Leuner et al. 2004). In future experiments using this 

Alternating EE paradigm, it will be of interest to determine whether more focused or intensive 

types of cognitive stimulation can affect neurogenesis (i.e., maze training, controlled 

appropriately for exercise levels). 

 

II.7.3. Stress 

Stress is generally associated with strong negative effects on neural functions, including 

learning and memory (de Quervain et al. 2000; Roozendaal et al. 2006; Schwabe and Wolf 2012). 

Activation of the hypothalamic-pituitary-adrenal (HPA) axis represents one of the key 

mechanisms underlying stress-associated effects, triggering release of adrenal-derived 

corticosterone into the circulation, from where it can enter the brain and activate the high levels 

of glucocorticoid and mineralocorticoid receptors found within the hippocampus (Van Eekelen et 

al. 1988). Adult neurogenesis is among the hippocampal parameters regulated by stress-induced 

corticosterone. Considerable data support a negative correlation between corticosterone levels 

and dentate gyrus proliferation and neurogenesis (Ambrogini et al. 2002; Cameron and McKay 

1999; Gould et al. 1992), and stress-associated corticosterone can suppress running-induced 

neurogenesis in the short term (Stranahan et al. 2006). However, the relationship between stress 
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and adult neurogenesis is complex, as running is itself often considered a type of mild stressor, 

and has been associated with HPA activation and corticosterone release (Schoenfeld and Gould 

2012; Stranahan et al. 2006). Furthermore, adult neurogenesis may play a feedback role in 

regulating stress responses, as hippocampal neurogenesis has been implicated in the mood- 

stabilizing effects of antidepressant treatments (Eisch and Petrik 2012) and inhibition of 

neurogenesis alters the responses to stress (Lagace et al. 2010; Schloesser et al. 2009; Snyder et 

al. 2011). 

 

Plasma corticosterone levels were significantly altered across our experimental groups, 

and the only EE variable that correlated with increased corticosterone was social isolation. 

Remarkably, neurogenesis markers (proliferation, neuroblast, immature neurons, survival) were 

comparably increased in all three running groups (I-RUN, C-RUN, MAX), despite the fact that 

the socially isolated I-RUN and C-RUN groups exhibited chronic 300% higher plasma 

corticosterone levels than the MAX group; thus, while an increase in corticosterone can negate 

running-induced neurogenesis in the short-term (Stranahan et al. 2006), it does not appear to 

have any significant long-term neurogenic impact. Exposure to an intermittent complex 

environment, either alone (I-CE) or in combination with intermittent running (MAX), was 

sufficient to maintain low baseline plasma corticosterone, demonstrating that the lack of 

neurogenic effects of CE observed in our study cannot be explained by high stress levels. While 

these observations may not apply to all types of stressors, the maintenance of high neurogenesis 

in the presence of chronically increased plasma corticosterone indicates that corticosterone-based 

mechanisms are unlikely to mediate long-term stressor effects on hippocampal neurogenesis. 

 

II.7.4. Social context 

Group housing has long been used as a key component of EE (Kobilo et al. 2011; La 

Torre 1968) and contributes to adaptive behavioral and anatomical changes in both the 

developing and adult brain (Lieberwirth and Wang 2012; Welch et al. 1974). Conversely, social 

isolation has a significant negative impact on brain development and function (Cacioppo et al. 

2011). In terms of hippocampal neurogenesis, many aspects of social context have been shown to 
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affect neurogenesis, including social isolation (Leasure and Decker 2009; Stranahan et al. 2006), 

psychosocial stress (Czeh et al. 2001; Czeh et al. 2007; Czeh et al. 2002; Gould et al. 

1997; Gould et al. 1998; Mitra et al. 2006; Simon et al. 2005; Thomas et al. 2006; Van 

Bokhoven et al. 2011), dominance hierarchy (Kozorovitskiy and Gould 2004), social instability 

(McCormick et al. 2012), reproductive behavior (Leuner et al. 2010b) and parenthood (Glasper 

et al. 2012; Leuner et al. 2010a; Leuner et al. 2007; Mak and Weiss 2010). Of particular 

relevance here, previous work has shown that a social environment is capable of buffering stress- 

induced inhibition of neurogenesis, and at least in the short term, can be essential for allowing a 

running-induced up-regulation of adult neurogenesis (Stranahan et al. 2006). 

 

The data obtained in the present study indicates that social context does not have a long- term 

influence on running-induced neurogenesis. After 4 weeks, I-RUN and C-RUN mice displayed 

robust running-induced increases in neurogenesis, despite being socially isolated. Intermittent 

exposure to a complex environment that included social housing (i.e., the MAX group) 

completely prevented the corticosterone increases in the isolated running groups, supporting the 

idea that social housing can act to buffer the effects of stress. In spite of this, groups with 

intermittent social housing (i.e., I-CE and MAX) did not exhibit increases in either basal (I-CE) 

or running-induced (MAX) neurogenesis. Thus, the negative neurogenic impact of social 

isolation is likely to only exert a temporary inhibitory influence on running-induced 

neurogenesis (Stranahan et al. 2006). 

 

II.7.5. A novel Alternating EE paradigm for isolating individual EE variables 

Few studies have attempted to dissect the impact of multiple EE variables within the 

same set of experiments. This is likely owing to the technical challenge associated with 

effectively isolating each variable, because “single” variables are typically multifactorial (a 

running wheel can serve as a source of both environmental complexity and physical activity, for 

example). We described here the development of a novel Alternating EE paradigm that enabled 

us to obtain a clearer idea of how each EE component impacts neurogenesis. 

 

A major strength of this paradigm is its alternating nature. Mice are exposed to each 
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environment for a pre-determined period of time (in the present case, alternating each day 

between one of two environments); consequently, statistical comparisons are made between 

groups that have been exposed to identical conditions for about 50% of their time. This approach 

also allowed the use of a 2-way analysis of variance (Running disc versus Complex 

environments), decreasing the required animal use per group and allowing assessment of possible 

interaction effects between the two primary variables. The intermittency of the approach also 

allows the possibility of a graded (intermittent vs. continuous) exposure to individual EE 

variables. 

 

A range of additional technical considerations was also incorporated into the experimental 

design. While C57BL/6 mice have been the strain of choice in most mouse studies, a recent strain 

comparison revealed that C57BL/6 mice have the highest baseline neurogenesis level of 12 

inbred strains examined, and thus exhibit the smallest EE-induced increase in adult neurogenesis 

(Clark et al. 2011b). To ensure that high baseline neurogenesis does not mask more subtle 

neurogenic effects of EE variables, we used male CD1 mice, a commonly used outbred mouse 

strain that we found exhibits low baseline neurogenesis and significant running- induced increases 

that are detectable even with low numbers of mice per group. Animals were individually housed 

during their exposure to running discs, ensuring that running data could be collected for each 

animal. The use of a locked disc group allowed controlling for the environmental complexity 

component of the running disc. Calretinin, a late marker that is expressed transiently in 

postmitotic, newly generated DG neurons (Brandt et al. 2003; Todkar et al. 2012), as well as a 

more traditional BrdU-incorporation strategy, were used as independent measures of the total 

number of surviving newly born neurons. Finally, our control experiments revealed that inherent 

aspects of this Alternating EE paradigm, such as daily handling of the mice or the use of 

horizontal running discs versus vertical running wheels, had no detectable effects on the 

measured outcomes. 

 

II.8. Summary 

The present study investigated the contributions of individual EE variables to adult 

hippocampal neurogenesis. A novel Alternating EE paradigm was developed that enabled us to 
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effectively isolate single EE variables, that yielded highly consistent data, and whose design 

allows for wide flexibility in experimental parameters. Our data confirm and extend the 

understanding of the central role of voluntary running in the pro-neurogenic effects of EE. In 

contrast to some previous reports, we found that environmental complexity did not directly 

regulate or  enhance  running-induced  neurogenesis;  however,  it  did  produce  a  significant 

stimulation of c-fos expression in both mature neurons and newly-generated cells of the GCL, 

suggesting that it acts by enhancing the activity or integration of newly generated neurons into 

hippocampal circuitry. Social context and chronically elevated circulating stress hormones (EE 

variables that can have significant effects on overall brain function) did not have long-term 

effects on basal or running-induced neurogenesis. The Alternating EE paradigm represents a 

useful experimental system for optimizing EE-based therapies in contexts such as developmental 

disorders, depression, aging, neurodegenerative diseases and rehabilitation following CNS 

lesions. 
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II.9. Figures and figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.1. The Alternating EE paradigm  

Timeline of the Alternating EE paradigm. Each experimental group was alternated between two 

types of housing environments 6 times/week for a period of 4 weeks. Each mouse received two 
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injections of BrdU on the first day of the paradigm (A). Basic environments used in the 

Alternating EE paradigm: Empty (devoid of all items, in which mice are either isolated or 

socially housed in groups of 3), Locked disc (containing a running disc that has been locked 

to prevent running exercise), Running disc (containing a normal running disc), and Complex 

(a Locked disc cage to which multi-colored tunnels have been added (rotated 4 times/week) 

and 3 mice are socially housed) (see Methods for additional details) (B). Alternating EE 

experimental groups: Each experimental group was built using 2 of the basic environments in B. 

Mice in each group alternated daily between these two basic environments for the entire 4 week 

period (C).  Statistical contrasts: For each parameter measured in this study, a difference detected 

by one- way ANOVA was followed by the testing of 7 specific and pre-determined hypotheses. 

Each of these 7 statistical contrasts is made between two experimental groups that differ in only 

one EE variable. No statistical analyses were made between groups in which more than one 

variable differed (D).  
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Figure II.2. Effects of Alternating EE on the main stages of dentate gyrus neurogenesis  

Quantification of the density of Ki67+ proliferating cells (A), NeuroD+ neuroblasts (B), 

Calretinin+ immature post-mitotic neurons (C), and BrdU+ surviving cells (D). At the right of 

each panel is a sample cresyl-violet counterstaining (A-C) or NeuN-labeling (D) (upper left 
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image), and representative non-counterstained sections from MIN (upper right), I-RUN (lower 

left) and I-CPX (lower right) experimental groups. Note that a main significant effect of the 

Running disc environment (I-RUN) was detected for all four neurogenesis markers, while the 

Complex environment (I-CPX) did not have a main effect on any marker and did not potentiate 

the effects of running. See Results for further details. Scale bar = 50 µm. DG=Dentate Gyri. 
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Figure II.3. Effects of Alternating EE on depolarization-associated c-fos expression  

Low magnification image of c-fos immunohistochemistry on a coronal section of the 

hippocampus. Dotted line in the enlarged box illustrates how the granule cell layer (GCL) was 

divided into outer GCL and inner GCL for quantification purposes (A). Quantifications of c-fos 

expression in the Inner GCL (B) and Outer GCL (C). A main effect of the Complex environment 

(I-CPX) was detectable in both the Inner GCL and Outer GCL, while the Running disc 
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environment (I-RUN) had no significant effect. Socially-housed mice in empty cages (SOC) also 

exhibited increased c-fos expression compared to isolated mice (IMP) (B-C). See Results for 

further details.  Rostral-caudal distribution of c-fos-expressing cells in the DG. The rostral and 

caudal tissue sections correspond to the dorsal and ventral hippocampus regions, respectively 

(D-E) Note that the pattern of c-fos expression across groups is virtually identical in both the 

rostral and caudal DG. 

Scale bars: 250 µm (A) and 10 µm (B). DG = Dentate Gyri. GCL = Granule Cell Layer. 
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Figure II.4. Plasma corticosterone concentrations are reduced in the Complex environment  

Plasma corticosterone concentration was measured by ELISA. Note that corticosterone levels are 

high in all experimental groups except those that include the Complex environment (I-CPX, MAX) 

See Results for further details. 
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Figure II.5. Daily handling does not affect basal neurogenesis in the Alternating EE paradigm  

Timeline of the Handling Effect experiment (A). Mice were either housed as for the IMP group of 

the Intermittent EE paradigm (i.e., Empty environment with daily handling) or in an Empty 

housing condition without daily handling for 4 weeks. Quantifications of the number of Ki67+ 

proliferating cells (B), Calretinin+ maturing post- mitotic neurons (C), Inner GCL c-fos+ cells (D) 
or outer GCL c-fos+ cells (E). No significant effects of daily handling on these markers were 

detected (t-tests). See Results for statistical details. DG = Dentate Gyri. 
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Figure II.6. Comparison of the effects of running wheels and running discs on adult neurogenesis  

The Wheel versus Disc experiment. Mice were maintained for 4 weeks in one of five housing 

conditions: Control, Locked running wheel, Running wheel, Locked running disc, and Running 

disc (A). Comparison of average daily running distances on Running Wheels and Running Discs 

(B). Note that average running distances were about 80% higher on Discs than on Wheels. 
Quantifications of the numbers of Ki67+ proliferating cells (C), NeuroD+ neuroblasts (D) and 
Calretinin+ maturing post-mitotic neurons (E). In all cases, there was no significant difference 

between the Control, Locked wheel and Locked disc groups, or between the Running wheel and 

Running disc groups (t-tests). See Results for statistical details. DG = Dentate Gyri. 
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Figure II.7. Summary of long-term effects of individual EE variables on hippocampal 

neurogenesis, c-fos expression and corticosterone levels  

Table summarizing relative changes to DG neurogenesis, depolarization-associated c-fos 

expression within the granule cell layer, and plasma corticosterone levels in the 4-week 

Alternating EE paradigm (A). The EE variables examined in the present study included running, 

environmental complexity, social context (isolation and social enrichment) and stress-
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associated plasma corticosterone. Voluntary running strongly increased all stages of 

neurogenesis compared to exposure to a locked  disc.  Continuous  voluntary  running  did  not  

have  a  greater  neurogenic  effect  than intermittent running. Environmental complexity 
(involving a combination of inanimate objects, social interactions and conformational novelty) 

did not affect basal or running-induced neurogenesis, but enhanced depolarization-associated 

c-fos expression within the granule cell layer (likely due to Social interactions) and decreased 

plasma corticosterone concentrations (likely due to physical Complexity associated with tunnels 

and toys). Chronic differences in the levels of stress-associated corticosterone had no 

detectable positive or negative effects on running-induced neurogenesis and was not responsible 

for preventing effects of environmental complexity on neurogenesis. The baseline environment, 

a Locked disc, had no detectable impact on any stage of neurogenesis, neuronal activation or 

corticosterone levels when compared to a completely impoverished environment. Thus, the 

Alternating EE paradigms enables dissociation of the impacts of distinct elements of environmental 

enrichment (B).  
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Chapter III. Behavioural studies and transcriptomics following 

exposure to running and social interactions 
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III.1. Chapter context 

The factors mediating the hippocampal neurogenesis increase, neuronal activation and 

cognitive improvements following exposure to individual EE components remain unclear. Based 

on previous findings, we exposed mice to a locked disc environment, a social environment, and to 

continuous exercise. Behavioural studies and a transcriptomics analysis were done to detect major 

changes following exposure to either a complex environment or exercise.  

 

III.2. Author’s contributions 

In this study, I designed, performed, and analyzed most of the experiments with the helpful 

advices of my research director, Dr. Karl Fernandes. Dr. Stephanie Tobin, a post-doctoral fellow 

from Dr. Stephanie Fulton’s laboratory, helped to design, perform, and analyze the behavioural 

experiments from Figure III.1. Dr. Brianna Goldenstein, a former post-doctoral fellow from our 

laboratory, helped with the immunohistochemistry and NOR experiments from Figures III.1-2. 

Andréanne Leclerc, a summer intern, helped with the paradigm set-up as well as for CPP and RAM 

experiments under my supervision for Figures III.1. Dr. Stephanie Fulton provided the equipment 

to perform the behavioural studies, and helped to analyze experiments from Figures III.1. Patrick 

Gendron, a biostatistician from the IRIC genomics platform, performed the main analyses of 

bioinformatics from Figure III.4. The manuscript was written by myself in collaboration with Dr. 

Karl Fernandes. 
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III.3. Introduction 

The hippocampus is a component of the brain's limbic system that has been implicated in 

higher cognitive processes such as learning and memory, spatial navigation, and emotional 

regulation (Bannerman et al. 2003; Frankland et al. 1998; Kheirbek et al. 2013). Its cellular 

organization includes a prominent tri-synaptic circuit that spans across its two main sub-structures, 

the DG and Ammon's horn (CA), with the neocortex serving as the principal source of inputs and 

outputs (Anderson et al. 2007). The precise mechanisms by which the hippocampal tri-synaptic 

circuit mediates higher cognitive processes remains incompletely understood, but it is likely that 

the DG plays a particularly prominent role in hippocampal-dependent functions (Arruda-Carvalho 

et al. 2011; Kheirbek et al. 2013; Vukovic et al. 2013). Anatomically, synapses between axons of 

entorhinal cortex neurons and DG granule cells are the first synapses of the tri-synaptic circuit and 

represent the gateway to hippocampal function (Anderson et al. 2007). By virtue of its dense 

granule cell layer, which vastly outnumbers inputs from the cortex, the DG performs a pattern 

separation function that enables closely related inputs to be encoded distinctly within the CA3 

layer (Aimone et al. 2014; Deng et al. 2010). The DG is also the sole region of the hippocampus 

in which NSCs remain active throughout life (Bond et al. 2015; Gage 2000; Kriegstein and 

Alvarez-Buylla 2009). NSCs continuously produce new, highly plastic granule neurons through 

the process of adult neurogenesis; ablation of these newly generated granule cells in rodents 

compromises normal learning and memory as well as regulation of stress and emotion (Aimone 

2016; Kheirbek et al. 2013). 

 

 Many brain functions, including hippocampus-mediated processes, are enhanced by EE 

(Bennett et al. 1969; Hebb 1947; Kempermann et al. 1997b; La Torre 1968; Rosenzweig et al. 

1962). EE typically involves exposure to multisensory stimuli such as spatial complexity, social 

enrichment, and physical activity (Nithianantharajah and Hannan 2006). Complex cellular and 

molecular changes are triggered by an enriched environment, including growth factor synthesis, 

dendrite growth, synaptic plasticity, and increased neurogenesis, and these are thought to underlie 

EE-induced improvements in brain function. We recently devised an "Alternating EE" paradigm, 

which enabled us to demonstrate that individual components of EE can have distinct and separable 

effects on the DG: notably, while physical activity mediated EE-induced increases in neurogenesis, 

a socially enriched complex environment (comprised of inanimate objects and social interactions) 
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decreased circulating levels of the stress hormone corticosterone and increased expression of the 

depolarization-associated immediate-early gene c-fos (Gregoire et al. 2014).  

 

 Here, we build on this previous work, investigating the cellular and molecular mechanisms 

potentially mediating the distinct consequences of individual EE components on the DG. Previous 

studies on the mediators of EE effects have primarily been candidate-based, and have shown the 

involvement of specific molecules, such as BDNF, FGF2, IGF1, and VEGF, in the running-

induced neurogenesis process (Aberg et al. 2000; Fabel et al. 2003; Jin et al. 2002; Rossi et al. 

2006; Wagner et al. 1999). To investigate this question in a more unbiased manner, we used an 

RNA sequencing (RNA-Seq) transcriptomic strategy to study genome-wide EE-induced genetic 

changes, focusing specifically on the DG. Our data provide a first description and comparison of 

the overall cellular processes and genetic pathways activated within the DG by physical activity 

and a socially enriched complex environment. 
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III.4. Materials and methods 

III.4.1. Mice 

Experiments were conducted in accordance with the guidelines of the Canadian Council of 

Animal Care and were approved by the institutional animal care committee of the University of 

Montreal and the CRCHUM. Experiments were performed using three-month-old male CD1 mice 

from Charles River Laboratories (St-Constant, QC, Canada). Mice were housed in a reversed 12-

hour light/dark cycle (lights on at 22:00h and off at 10:00h). The animals had free access to food 

and water, unless specified otherwise.  

 

III.4.2. Housing conditions and Experimental groups 

The experimental paradigm was repeated using two separate cohorts of mice (n=18, then 

n=27 per cohort) in order to obtain enough animals per group for behavioural tests. Mice were 

randomized and separated into one of the three different groups. All environments contained 

nesting material and basic litter (Beta chip, Nepco).  

 

Locked disc environment (n=15). Animals were housed in 39.3cm x 28.5cm x 19.4cm rat cages 

containing a locked running disc (Red mouse igloo, K3327, and amber fastrac running disc, 7.5cm 

in diameter, K3250, Bio-Serv, Frenchtown, NJ, USA). Mice were housed individually. 

 

Social environment (n=15). Animals were housed in 39.3cm x 28.5cm x 19.4cm rat cages 

containing a locked running disc and mice were socially-housed in groups of three. 

 

Running disc environment (n=14). Identical to the locked disc environment except with a free-

moving running disc was to permit voluntary running. Running cages were outfitted with 

odometers (Sigma BC509) to measure the running distance. One mouse died due to excessive 

running during the paradigm. Mice were housed individually.  

 

III.4.3. Tissue fixation and processing 

Mice received a lethal dose of ketamine (Bimeda-MTC), xylazine (Bayer Healthcare), and 
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acepromazine (Boehringer Ingelheim Canada Ltd) and perfused transcardially with phosphate-

buffered saline (PBS), followed by 4% formaldehyde (pH 7.4), freshly prepared from 

paraformaldehyde (Fisher). Brains were removed and post-fixed in 4% formaldehyde overnight. 

Brains were sectioned coronally (40μm) using a vibrating microtome (Leica VT1000S, Leica 

Microsystems, Richmond Hill, ON, Canada) and sections were stored at -20°C in an antifreeze 

solution (glycerol:ethylene glycol:PBS 1X, 3:3:4) until further use.  

 

III.4.4. Immunohistochemistry  

Immunohistochemical procedures were performed as detailed previously (Gregoire et al. 

2014). Mouse anti-human Ki67 was used at 1:200 (BD Biosciences), and goat anti-rabbit NeuroD 

at 1:500 (Santa Cruz Biotechnology). Microscopy was performed using a motorized Olympus 

IX81 microscope (40X objective). All quantifications were performed on coded slides by a blinded 

experimenter.  

 

III.4.5. Cell quantifications 

As described previously (Gregoire et al. 2014), the number of subgranular zone 

(SGZ)/granular zone (GZ) cells positive for Ki67 and NeuroD was quantified on every 6th section 

between Bregma -1.06mm and -2.98mm of the hippocampus (8 sections total/marker/animal). The 

raw cell counts were corrected for oversampling due to split cells by multiplying by (1 - object 

height/section height), where the object height refers to the average diameter of the marker in 

question. To calculate the mean density of marker-positive cells, the corresponding SGZ/GZ 

reference volumes of the sections were determined using the Cavalieri principle (grid size of 10 

microns, 20x objective) in StereoInvestigator (MBF Bioscience, VT); mean cell density was then 

obtained by dividing the corrected total number of marker-positive cells on the sampled sections 

by the sum of the section SGZ/GZ reference volumes. Results are expressed as mean number of 

marker-positive cells per mm3 of SGZ/GZ. Cell counts were performed manually by a blinded 

observer using a 40X objective, and slide codes were only broken after all quantifications were 

completed for any given marker. 

 



 

 

101 

III.4.6. Conditioned place preference  

During the conditioned place preference (CPP) paradigm, mice were food restricted two 

hours before testing (8:00h) and the discs removed. Food and discs were returned following 

testing. CPP was conducted in Med Associates chambers consisting of three compartments: a 

center compartment (11.7 cm) with a neutral gray finish and a smooth PVC floor; and two choice 

compartments (17.4 cm each). One black compartment with a stainless steel grid rod floor, the 

other a white compartment with a stainless steel mesh floor. Thus, each chamber contains a distinct 

set of spatial and tactile cues. These cues were paired in either the presence or absence of sugar 

pellets (20mg, BioServ) and place preference were assessed following multiple conditioning 

sessions.  On the first day, mice were confined to one of the two chambers for 20 minutes, followed 

by another 20 minutes in the opposite chamber. The following day, a pre-conditioning session of 

20 minutes was conducted, where a single mouse was placed in the center chamber and allowed 

to explore freely. Time spent in each chamber was recorded and used to assess any initial chamber 

preferences. On days 3 to 12 of behavioural testing, each animal was given two daily 20-minute 

conditioning sessions during which they were confined to one of the two choice compartments. 

About half of the animals were confined in one of the two choice compartments with access to 20 

sugar pellets, for the other animals, they were confined in the other choice compartment which 

was paired with the absence of sugar pellets. On day 13, a post-conditioning test was conducted, 

where each mouse was placed in the center chamber of the CPP apparatus and allowed to explore 

the center and choice compartments. Time spent in each compartment was calculated for the 

conditioned place preference score.  

 

III.4.7. Delayed non-matching to place radial arm maze  

 Mice received a small amount of palatable food (sugar pellets, BioServ) in their home cages 

several days before training and testing to familiarize the reward. Mice were also food restricted 

two hours before testing (8:00h) and discs were removed. Food and discs were given back 

following testing. The radial arm maze (RAM) from Med Associates consisted of eight (37 cm 

long) equidistantly spaced arms radiating from a small octagonal platform. The delayed non-

matching to place (DNMP) test is designed to assess the ability of a mouse to discriminate the 

sample arm (familiar-first sugar bated arm) from the new arm (opposite arm baited on choice test) 



 

 

102 

on a choice test (Clelland et al. 2009). For training and testing, animals were only able to access 

the center and one or two radial arms. For training, mice were given two pre-exposures to the 

RAM. The first pre-exposure consisted of an exposure of five minutes to the RAM with a few 

sugar pellets spread randomly throughout the maze. This promotes exploration, which helps with 

training and reduces the potential for anxiety associated with the maze. The next day, during the 

second pre-exposure to the RAM, sugar pellets were added only at the end of the arms to encourage 

head entries. The mice were taken out of the RAM when one of the three possibilities was fulfilled: 

1) the mouse’s head entered all eight arms in less than five minutes, 2) the mouse’s head entered 

in six out of eight arms in five to ten minutes, or 3) 10 minutes passed without six out of eight head 

entries. During the 10-day testing period, each mouse received two trials per day (one low-arm 

and one high-arm separation trial) of pseudo-randomly presented combinations of the start, 

sample, and correct arms. A trial consisted of a sample phase (pellet in the sample arm), where all 

arms are blocked except for the start arm and the sample arm. This was followed by a one-minute 

delay (time necessary to clean the maze) and a choice phase where arms in the start and sample 

(unrewarded) locations and a new arm (rewarded with a sugar pellet) were open (Fig. 2A). The 

distance between arms was varied during testing as this technique targets hippocampal 

neurogenesis and ablation of neurogenesis (Clelland et al. 2009). Spatial cues were present on the 

four walls surrounding the RAM for orientation during the testing phase. Errors were defined as 

entries into the sample or unrewarded arms, but mice were allowed to self-correct.  

 

III.4.8. Novel object recognition 

Novel object recognition (NOR) test capitalizes on an animal’s innate preference for 

novelty and assesses object recognition (Antunes and Biala 2012; Hammond et al. 2004; Reger et 

al. 2009). The delayed version of NOR (more than 10 minutes after familiarization) is known to 

be hippocampus-dependent (Cohen and Stackman 2015). NOR was conducted in a 46cm by 46 

cm by 52cm grey opaque box (i.e., arena). Mouse behaviour was recorded with a video camera 

above the arena. This camera was interfaced with a video tracking system (EthoVision XT8, 

Noldus). The habituation phase was conducted first, where each mouse was placed in the test box 

(without objects) for 10 minutes.  This gave the mouse time to explore the arena and preventing 

anxiety during testing. The next day, a baseline was determined as mice were given a five-minute 
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exposure to test for pre-existing quadrant preferences. Following this exposure, a familiarization 

phase was conducted, where mice were exposed to the arena in the presence of two identical 

objects. Each mouse was given five minutes to explore these objects. Short-term memory was 

assessed one hour later by placing the mouse back in the arena with one familiar and one new 

object. Finally, long-term memory was assessed 24 hours later when the mouse was placed in the 

arena with the previous “novel object” as the familiar object, and a second novel object (Fig. 3A). 

Objects consisted of candle holders (either red or silver) and hydrogen peroxide bottles. These 

objects were chosen for their similarities in size (approximately 15 cm high by 6 cm wide), weight 

(mouse is unable to knock it over – no risk for injury) and brightness yet variability in tactile 

surface. The location of the objects was kept constant between trials and mice. All objects were 

exchanged with replicas in subsequent trials. Mice began trials at the center of the arena with their 

backs facing the objects. Exploration time was defined as time spent with the head oriented towards 

and within 2 cm of the object. After each session, the arena and objects were cleaned thoroughly 

with 70% ethanol to mask odor cues.  

 

III.4.9. RNA-Seq  

 Isolated mRNA from dentate gyri of mice exposed to either a locked disc, complex 

environment (locked disc, social interactions, and rotating toys) or exercise environment for a 

period of four weeks was used for the RNA-Seq.  The exercise group was subdivided into low and 

high runners for a total of five groups. Sequenced mRNA fragments were trimmed for adapter 

sequences and then mapped to the reference mouse genome assembly version mm10 using Tophat 

(version 2.0.10) (Trapnell et al. 2009).  Gene expressions were then estimated by using the HTSeq 

tool to compute read counts on RefSeq genes (Anders et al. 2015).  For exploratory purposes, 

DESeq2 was used to normalize read counts, extract regularized log values and compute log fold 

changes (Love et al. 2014).  Differentially expressed genes that are up or downregulated by a factor 

0.3 or more (in log2, thus a fold change of 1.23 or more) were used to investigate enriched 

pathways and functions through the use of QIAGEN's Ingenuity Pathway Analysis (IPA®, 

QIAGEN Redwood City, www.qiagen.com/ingenuity). All samples were normalized at once, 

which allows us to produce comparisons between samples in the form of Principal Component 

Analysis (PCA) and hierarchical clustering. Genes were sorted according to their absolute fold 
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change, only genes with a log fold change >= 0.3 or <= -0.3 were analyzed further. The program 

Venny2.1 generated the list of genes specific to each group when compared with one another, and 

BioVenn generated the Venn diagrams. EnrichR was used to investigate signaling pathways, 

biological processes, cellular components, and molecular functions that were modulated.  

 

III.4.10. Statistical analyses 

 For immunohistochemistry experiments, all experimental groups were analysed by One-

way ANOVA and a multiple comparison test that compares the mean of each column (Social and 

running conditions) with the mean of a control column (Locked disc condition). For behavioural 

studies, the effect of the groups and trials were investigated by Two-way ANOVA and Tukey’s 

multiple comparisons test. For the preference ratio for the NOR task, a one sample t-test was 

performed to detect performance above chance, set at 0.5. For all the experiments, significance 

level was set at α=0.05. Error bars represent standard error of the mean. 
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III.5. Results 

III.5.1. Running mice and socially-enriched mice show learning and memory differences 

We previously showed that running and socially-enriched complex environments have 

separable effects on the DG (Gregoire et al. 2014). Individually housed adult mice given access to 

a voluntary running wheel for 4 weeks (RUN) showed increased proliferation and neurogenesis, 

while group-housed mice (3/cage) exposed to tunnels that were rotated daily for the same period 

(socially enriched complex environment, CE) showed increased numbers of DG neurons 

expressing c-fos, a depolarization-induced immediate-early gene commonly used as a surrogate 

for neuronal activity. The effect of the CE on c-fos was likely attributable to the social enrichment 

component rather than the tunnels, as it also occurred in mice that had been exposed only to social 

enrichment (SOC). We therefore tested the hypothesis that RUN and SOC groups would have 

detectable differences in hippocampus-mediated behaviours. Mice were housed for 8 weeks in 

RUN, SOC, or locked disc (LD) conditions. After 4 weeks, they were sequentially tested in 

conditioned place preference (CPP), 8-arm radial maze (RAM), and novel object recognition 

(NOR) paradigms. RAM and NOR results are presented here, while CPP data are not reported due 

to experimental complications (Fig. III.1A). Notably, LD, SOC and RUN mice exhibited identical 

open-field locomotor activity, indicating that the distinct housing paradigms did not cause 

differences in baseline locomotion that might affect performance in these behavioural tests (Fig. 
III.1B). 

 

RAM is an incentive-driven test of spatial learning and memory. Mice were exposed to 2 

testing periods daily for 10 days (see Methods), using the 4-arm and 2-arm variations described by 

Clelland and colleagues (Clelland et al. 2009). Each testing period consisted of a sample phase 

(i.e., placed in the start arm with access to only one additional arm, which was baited) followed 

one minute later by a choice, or testing, phase (i.e., placed in the same start arm, but now with a 

choice between the previously baited arm and a new baited choice arm) (Fig. III.1C). "Success" 

in RAM is measured as greater Arm Accuracy (i.e., more time in the newly baited choice arm) 

and/or fewer Errors (i.e., fewer entries into the previously baited arm), and is indicative of better 

overall cognitive flexibility. On the first trial day following 41 days of EE, the SOC group showed 

strong trends to superior Arm Accuracy in the 2-arm paradigm (p=0.0922) compared to the LD 



 

 

106 

group, with no difference in Errors (Fig. III.1D-E). In contrast, although the RUN group showed 

a trend to increased Arm Accuracy in the 4-arm paraedigm (p=0.3515), they committed more 

Errors, reaching statistical significance in the 4-arm paradigm (p=0.0256) and in the 2-arm 

paradigm (day 6, p=0.0403). By the 10th trial, all groups showed similar Arm Accuracy and Errors 

(Fig. III.1D-E). These results suggest that the SOC group has greater overall cognitive flexibility 

(i.e., ability to abandon a previous association and establish a new one) while the RUN group has 

stronger recall/permanence of spatial memories. Furthermore, although a loss of neurogenesis led 

to a decrease in baseline spatial memory in this test (Clelland et al. 2009), we found that increased 

neurogenesis induced by running did not  enhance the baseline spatial memory. 

 

NOR is an incentive-independent test of object memory retention that capitalizes on an 

innate preference for novelty. Mice are initially exposed to two identical objects to assess any 

quadrant preferences. An hour later, short-term memory is analyzed as one familiar object is traded 

for a novel object and object preference is recorded. One day later, the previous novel object is 

used as a familiar object and a new novel object is introduced to assess long-term memory (Fig. 
III.1F). The LD control group showed a strong tendency for the novel object in the 1h paradigm 

(LD: p=0.0506) and no novel object preference in the 24h paradigm (LD: p=0.9528), indicating 

short-term but not long-term object memory in this test. Likewise, SOC mice exhibited object 

memory retention in the short-term (SOC: p=0.0125) but not long-term (SOC: p=0.2665) 

paradigms. The RUN group, in contrast, did not exhibit novel object preference in the short-term 

paradigm (p=0.7442), possibly indicative of the known rewarding effects of running, but showed 

a strong tendency for novel object preference in the long-term paradigm (p=0.0770) (Fig. III.1G) 

(Greenwood et al. 2011).  

 

Post-behavioural testing assessment of neurogenesis demonstrated that the RUN but not 

SOC group showed increased numbers of neuroblasts after 8 weeks of EE, as reported previously 

after 4 weeks (Fig. III.2A)(Gregoire et al. 2014). NeuroD+ neuroblasts were unchanged between 

LD and SOC groups (p=0.9633) and remained significantly increased in the RUN group versus 

LD (p=0.0117). Ki67+ proliferating cells were not statistically different between LD 

(3116.0±431.3 cells), SOC (3003.0±364.5 cells), or RUN (3576.0±227.7 cells) groups, consistent 
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with previous work showing a time-dependent decay of running-induced proliferation during 

chronic running (Fig. III.2B)(Kronenberg et al. 2006). 

 

Together, these data show that mice exposed to RUN and SOC environments exhibit 

detectable differences in hippocampus-regulated cognitive functions, with RUN mice displaying 

changes consistent with greater spatial and object memory and SOC mice displaying an overall 

improved cognitive flexibility. 

 

III.5.2. Design of the transcriptomics paradigm  

To test the hypothesis that the RUN and SOC groups have different genetic effect on the 

dentate gyrus (DG) niche, we performed a RNA-Seq analysis. CD1 mice were exposed to three 

different environments for four weeks (Fig. III.3A). The EE consisted in locked disc, running disc, 

and complex environment where mice were socially-housed, consistent with the behavioural group 

used previously (Fig. III.3B). At the end of the paradigm, the running group was divided in two 

sub-groups: low runners and high runners to investigate further the effect of exercise in a distance-

dependent manner. Low runners ran in average 10.65±0.39 km in contrast to 17.00±0.45 km for 

high runners (Fig. III.3C). Mice were sacrificed and their dentate gyri microdissected to isolate 

RNA from the dissociated tissue and sent for sequencing (Fig. III.3D).  

 

III.5.3. Validation of RNA-Seq results 

 The principal component analysis is a multivariate method that emphasizes variation from 

a data set and and it revealed significant group-wise differences in gene expression were indeed 

detectable (Fig. III.4A). The cluster dendrogram, a hierarchical gene clustering, is used to show 

similarities (fusion) and differences (split) between gene sets.  LD baseline group was more similar 

to the CE group than to the running groups. Surprisingly, the Low Runners clustered as a distinct 

population from the Exercise and High Runners populations (Fig.III.4B). The heatmap showing 

log2 (FPKM) values transformed in Z-score of significantly different expressed genes 

demonstrates that each environment led to specific changes for each group (Fig. III.4C). The top 

25 up-regulated and top 25 down-regulated genes are shown for each condition in Tables III.1-8. 

For the dissertation, the overall observations will be summarized and we explored bio-
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informatically three main observations: differences between Low and High Runners, changes in 

CE, and changes unique to runners and CE, respectively.  

 

III.5.4. Low and high runners have distinct genetic changes 

 To study the molecular changes following exposure to running, a Venn diagram was 

created with genes showing a log2 fold change of  ˃0.3 or ˂-0.3 (Hulsen et al. 2008). This analysis 

showed that combining high and low runners’ genes included most of the merged Exercise group 

genes (shown as the purple circle in Fig. III.5A). 41 and 262 genes were unique to the High and 

Low Runners, respectively, and they had 53 genes in common (Fig. III.5A). The large amount of 

genes specific to Low Runners is consistent with the cluster dendrogram result where it described 

this group as different as High Runners and Exercise. Given the substantial differences between 

Low and High Runners, we continued our analyses with these separate groups rather than with the 

Merged exercise group. We pursued our analyses with both Low and High Runners. An overview 

of the signaling pathways in which the modified genes are implicated shows differences between 

running groups and their combination. Notably, Low Runners were enriched in Calcium regulation 

(Fig. III.5B) whereas High Runners were enriched in serine/threonine mitogen-activated protein 

kinase (MAPK) signalling (Fig. III.5C), indicating that there are significant differences in 

intracellular signalling between Low and High runners (Fig. III.5D). 

 

 To gain deeper insights into the similarities and differences between Low and High runners, 

we used Enrichr to analyze these data sets with GO Biological Process (Fig. III.6), GO Cellular 

Component (Fig. III.7), and GO Molecular Function (Fig. III.8). Transcriptomic changes within 

the Low Runners revealed particular enrichments for synaptic transmission and regulation of 

neuron projection development Biological Processes (Fig. III.6A), which were associated with 

the synaptic and post-synaptic membrane Cellular Components (Fig. III.7A), and transmembrane 

transporter activity Molecular Functions (Fig. III.8A). In contrast, High Runners showed 

particular enrichments for organismal response to stress and behavioral defense response 

Biological Processes (Fig. III.6B), which were associated with receptor, ion channel, and 

transporter complex Cellular Components (Fig. III.7B), and transmembrane transporter activity 

and ion channel activity Molecular Functions (Fig. III.8B). Common changes occurring in both 
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Low and High Runners included glutamate receptor signaling pathway, but most interestingly 

neurogenesis Biological Processes (Fig. III.6C), which were associated with sarcoplasmic 

reticulum and kinesin complex Cellular Components (Fig. III.7C), and insulin-like growth factor 

binding and ionotropic glutamate receptor activity Molecular Functions (Fig. III.8C). These 

results suggest that synaptic transmission changes occur in Low Runners, while more varied 

changes are observed in High Runners. The fact that neurogenesis was found in the common 

pathways helps to validate our approach.   

 

 We then took a closer look to the transcriptomic changes that are unique to each running 

condition. Changes unique to High Runners included the MAPK signaling pathway (Fig. III.9A), 

enrichments in regulation of heart rate by cardiac conduction and behavioural defense and fear 

responses Biological Processes (Fig. III.9B), which were associated with lysosomal lumen and 

receptor complex Cellular Components (Fig. III.9C), and misfolded protein binding Molecular 

Function (Fig. III.9D). In contrast, changes unique to Low Runners included the calcium 

regulation (Fig. III.10A), enrichments in synaptic transmission Biological Process (Fig. III.10B), 

which were associated with synaptic and post-synaptic membrane Cellular Components (Fig.III. 
10C), and transporter and microtubule Molecular Functions (Fig. III.10D). This more specific 

approach allowed to better define changes in cardiovascular functions for High Runners, whereas 

Low Runners showed consisted changes in calcium regulation and synaptic transmission.  

  

 These results suggest that Low and High Runners have distinct molecular changes and that 

Low Runners show the greatest difference from the LD, which will be explored in the future.  

 

III.5.5. Genetic changes induced by the complex environment 

 To gain insights into the genetic changes induced by the exposure to a CE, the same 

analyses as before were performed. Transcriptomic changes within the CE group revealed 

serotonin receptor 2 and ELK-SRF/GATA4 signaling and inflammatory response pathways (Fig. 
III.11A). Moreover, enrichments in protein heterotrimerization and extracellular matrix 

organization Biological Processes (Fig. III.11B), were associated with collagen trimer and 

endoplasmic reticulum lumen Cellular Components (Fig. III.11C), and growth factor Molecular 
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Function (Fig. III.11D). These results suggest an influence of the CE in changes linked to 

serotonin transporters, which were shown to be found at the endoplasmic reticulum (Anderluh et 

al. 2014). 

 

III.5.6. Running and CE induce distinct genetic changes in the dentate gyrus niche 

The next logical step was to compare transcriptomic changes between running (Low and 

High runners combined) and the CE groups (including socially-housed mice). Another Venn 

diagram was created to determine both unique and common genes. Low Runners showed the 

highest number of genes specific to this condition with 340 genes, in contrast to 53 for High 

Runners. These results suggest that a certain level of exercise might be sufficient to modify the 

transcription and lead important changes (Fig.III.12). The CE condition showed a limited amount 

of specific genes with 31, suggesting that only a small difference between the LD and CE exists 

in terms of transcriptome changes, consistent with the cluster dendrogram (Fig. III.12).  As done 

previously, we used Enrichr to analyze the similarities and differences between running and CE 

groups. Transcriptomic changes within the runners revealed particular enrichments in calcium 

regulation signaling pathways (Fig. III.13A). Synaptic transmission Biological Process (Fig. 
III.13B) was associated with synaptic and post-synaptic membrane Cellular Components (Fig. 
III.13C) and transmembrane transporter activity Molecular Function (Fig. III.13D). In contrast, 

changes specific to CE included serotonin receptor 2 signaling pathways once again (Fig. III.14A). 

Negative regulation of fibroblast growth factor receptor (FGF) signaling pathways Biological 

Processes (Fig. III.14B) were associated with extracellular matrix Cellular Components (Fig.III. 
14C), and hormone and growth factor binding Molecular Functions (Fig. III.14D). Interestingly, 

BDNF came up in the running groups, which is not surprising as it is a well-known growth factor 

that is implicated in the exercise-induced changes (Choi et al. 2009). In contrast, the serotonin and 

FGF signaling pathways were modulated in the DG niche following CE exposure. 

 

These results suggest that running and CE induce distinct molecular changes.  
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III.6. Discussion 

EE has beneficial effects on neurogenesis, learning, and memory. Typical EE 

paradigms include several components such as physical exercise, environmental complexity, 

social interactions, and stress. Following investigation on the specific individual contribution 

of each EE variable in our previous study (Gregoire et al. 2014), we investigated further the 

behavioral outcome of exposure to a running and socially-housed environments during RAM 

and NOR tasks. Additionally, RNA-Seq was conducted to better understand the underlying 

mechanisms of changes (transcriptomics) orchestrated by these enriched environments on the 

DG niche. Our behavioral studies showed that running CD1 mice had stronger short-term 

recall, whereas socially-housed mice had enhanced cognitive flexibility on the RAM task. 

Mice showed no difference in locomotor activity between groups that could explain 

behavioural changes. Socially-housed mice performed better on the not reward-driven NOR 

short-term object recognition memory test, while runners showed an improvement for the 

long-term memory task. RNA-Seq analysis revealed that the distance ran influences 

transcriptomics and these changes differ from the one induced following CE exposure. These 

findings provide valuable insights in the importance of each component of the EE and reveal 

potential targets to promote beneficial cognitive activity.  

 

In this study, we provided novel findings from the RAM task as Clelland and 

colleagues assessed the importance of hippocampal neurogenesis in the capacity to 

discriminate between closer arms, but did not look into the effect of enriched environment on 

task performance (Clelland et al. 2009). Runners showed improved short-term recall of the 

sample phase. These results suggest that the RUN group mice remember the previously-baited 

arm location, but learned again the new location as shown by the decreasing number of errors 

(learning curve) through time. Other studies have been conducted in the RAM, however, the 

paradigms differ and were performed with rats. Anderson and colleagues demonstrated that 

exercise improves RAM spatial learning in rats (Anderson et al. 2000). Another study 

suggested that exposure to both physical activity and cognitive stimulation (Hebb-Williams 

maze) led to an improved behavioral performance on the RAM  baited configuration (Langdon 

and Corbett 2012). Socially-housed mice showed better cognitive flexibility. Some studies 
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have looked at the effect of isolation on learning and memory, but only a few looked at social 

interactions using the RAM (Silva et al. 2011).These results confirm our hypothesis that 

runners differ in their behavioral outcome from socially-housed mice.  

 

The NOR paradigm was designed to assess both short-term and long-term object 

recognition memory. In the EE field, this test is not as common as reward-driven tasks, such 

as the MWM. However, we chose this test as it involves the mouse innate preference for 

novelty rather than reinforcement with a reward. Moreover, it was shown that NOR is 

hippocampus-dependent for a delayed  NOR paradigm, defined as more than 15 minutes, 

which corresponds to both our memory paradigms (Hammond et al. 2004). In this study, we 

showed that socially-housed animals and runners performed better during the short-term and 

long-term task, respectively. These results were also consistent with our hypothesis for 

different behavioral outcome between these two enriched groups.  

 

The most interesting results reside in our RNA-Seq transcriptomics findings. This 

method generated a lot of data, but for this dissertation, I limited myself to the three main 

following observations based on bioinformatics: 1) Difference between Low and High 

Runners, 2) Changes induced by CE, and 3) Changes unique to Runners (including Low and 

High Runners) and to CE. Unique molecular changes were observed for each enriched 

condition. Interestingly, Low and High runners were more different than we could have 

thought. The Low Runners showed enrichments in calcium-mediated synaptic processes. 

Many studies demonstrated the beneficial effects of exercise on cognitive functions such as 

long-term potentiation, the strengthening of synapses (Kramer et al. 1999; van Praag et al. 

1999a). A proteomic analysis conducted in rats revealed that following voluntary running 

(with a resistance), 90% of the proteins were associated with energy metabolism and synaptic 

plasticity (Ding et al. 2006). This result is consistent with our observations, but this study did 

not take into consideration different level of running. In contrast, High Runners showed 

enrichments in serine/threonine MAPK-mediated processes. It was demonstrated that p38 

MAPK activates PGC-1α, a transcriptional coactivator that induces mitochondrial biogenesis 

in skeletal muscles, that is increased following endurance exercise in human muscles (Little et 
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al. 2010). It would be interesting to investigate specific targets of this kinase in more detail to 

understand if it plays a role in the activation of NSCs. Lastly, CE induced changes in the 

extracellular matrix (ECM). It is well established that early embryonic NSCs first respond to 

FGF2, and then late embryonic and adult NSCs are responsive to both FGF2 and epidermal 

growth factor (EGF) (Reynolds and Weiss 1992). The EGF effect can be inhibited by BMP4. 

However, BMP4 can, in turn, be inhibited by Noggin, suggesting that different signals are 

present within the niche to balance between restriction and amplification (Lillien and Raphael 

2000; Lim et al. 2000). A study showed that ECM molecules, such as tenascin C, can also 

control cell behavior such differentiation through growth factors (Garcion et al. 2004).  

 

These experiments were conducted in the outbred CD1 mouse strain, whereas most EE 

studies use the inbred C57Bl/6 mice (Clark et al. 2011b). A concern might be that their genetic 

constitution is not stable. However, CD1 mice were chosen to maximize interanimal variation 

and hence the significance of any potential findings. The DG of eight mice were pooled in 

each condition to account for that variation in samples for RNA-Seq. Moreover, complete 

inbreeding can be considered as an unusual genetic state (Svenson et al. 2012). In regards to 

neurogenesis, a study showed that CD1 mice have the highest survival rate of newly-born 

neurons (Kempermann et al. 1997a). We have also shown that male CD1 mice exhibited a 

significant lower baseline proliferation rate compared to C57Bl/6 mice, permitting a running-

induced increase to be detectable (Gregoire et al. 2014). Therefore, in order to be consistent 

with our previous studies, we decided to pursue these experiments in CD1 mice (Bednarczyk 

et al. 2009; Bednarczyk et al. 2011; Gregoire et al. 2014). 

 

Overall, these results confirmed that runners and socially-housed have different 

behavioral outcomes and the underlying molecular changes are unique to each condition. 

Moreover, within the exercise group, Low and High runners showed specific modifications 

implying that different mechanisms are underlying changes present at various levels of 

exercise.    
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III.7. Future directions 

 The next logical experiment is to perform qPCR in order to validate transcriptome 

sequencing results (RNA-Seq). The targeted genes will be chosen based on the findings from the 

Wikipathways and GO analyses (Biological Process, Cellular Component, and Molecular 

Function) from EnrichR. The program Panther will also be useful to determine the genes that are 

included in the different classes of processes or pathways. Then, in order to define the importance 

of the targeted genes and proteins in adult neurogenesis, we will perform tissue culture using 

transfections by shRNA or dominant-negative plasmid to study loss-of-function and 

overexpression plasmids to study gain-of-function and assess for proliferation, differentiation, and 

survival in vitro. Then, we would study the importance of these genes / pathways in vivo by 

performing electroporation, a technique that has been developed in the laboratory with the help of 

our collaborator Dr. Fanie Barnabé-Heider (Barnabe-Heider et al. 2008). 
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III.8. Figures and legends 
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Figure III.1. Behavioural tests 

 Experimental paradigm for behavioural testing. Mice were exposed to enriched environments for 

a period of four weeks, followed by exposure to four behavioural tasks over a period of another 

four weeks: conditioned place preference (CPP) test, eight-arm radial maze (RAM), open-field 

(OF), and novel object recognition (NOR). The enriched environments were maintained as home 

cages throughout behavioural testing (A). Basic environments used in this paradigm: Locked disc 

(containing a running disc that has been locked to prevent running exercise), Social (a Locked disc 

cage where 3 mice are socially housed), and Running disc (containing a normal running disc) (A). 

The open field task was performed to measure the total distance travelled and assess the baseline 

locomotor activity (B). The RAM trial paradigm consisted of two phases: a sample phase with one 

baited arm followed by a choice arm where mice had the choice between the previously baited arm 

and the new baited arm (C). The two-arm separation task was performed by all three groups: 

locked disc (LD), socially-housed (SOC), and runners (RUN). Arm accuracy (time spent in correct 

arm), and errors defined as entries into the previously baited arm (D). Similarly, the four-arm 

separation task was also performed and both arm accuracy and errors were analyzed (E). The NOR 

paradigm consisted of three phases: familiarization (similar objects) followed an hour later by a 

task assessing short-term object recognition memory (similar and novel objects), then one day later 

mice were tested on their long-term memory (old novel and novel objects) (F). Preference ratio 

where chance was set at 0.5 (G). 
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Figure III.2. Proliferating cells and neuroblasts numbers after eight weeks 

Quantification of NeuroD+ neuroblasts (A) and Ki67+ proliferating cells (B) exposure to an eight-

week paradigm.  
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Figure III.3. RNA-Seq experimental design 

Experimental paradigm of four-weeks (A) when mice were exposed to three different 

environments: Locked disc (individually-housed), Running disc (individually-housed), and 

Complex (socially-housed) (B). The runners were subdivided into two groups of low and high 

runners based on their average distance ran in km (C). Mice were sacrificed at the end of the 

paradigm, their dentate gyri were microdissected and the tissue was dissociated to extract RNA 

and submitted for sequencing at the IRIC genomics platform (RNA-Seq) (D).  
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Figure III.4. RNA-Seq overview 

Principal component analysis, showing 5 distinct gene populations (A). Cluster dendrogram, 

showing that the locked disc is similar to CE and that Low Runners are distinct from other exercise 

groups (B). Heatmap showing log2 (FPKM) values transformed in Z-score of significantly 

different expressed genes (C).  
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Table III.1. Top 25 of up-regulated genes in Low Runners 

 

 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 424 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 108 up-regulated 

genes, the table shows the top 25 genes. 
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Table III.2. Top 25 of down-regulated genes in Low Runners 
 

 
 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 424 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 316 down-regulated 

genes, the table shows the top 25 genes. 
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Table III.3. Top 25 of up-regulated genes in Exercise 
 

 
 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 178 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 49 up-regulated 

genes, the table shows the top 25 genes. 
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Table III.4. Top 25 of down-regulated genes in Exercise  
 

 
 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 178 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 129 down-regulated 

genes, the table shows the top 25 genes. 
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Table III.5. Top 25 of up-regulated genes in High Runners 
 

 
 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 112 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 48 up-regulated 

genes, the table shows the top 25 genes. 
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Table III.6. Top 25 of down-regulated genes in High Runners 
 

 
 

Using a threshold of -0.3 ˃  log2 fold ˃  0.3, we identified 112 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 64 down-regulated 

genes, the table shows the top 25 genes. 
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Table III.7. Top 25 of up-regulated genes in Complex Environment 
 

 
 

Using a threshold of -0.3 ˃ log2 fold ˃ 0.3, we identified 81 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 45 up-regulated 

genes, the table shows the top 25 genes. 
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Table III.8. Top 25 of down-regulated genes in Complex Environment 
 

 
 

Using a threshold of -0.3 ˃ log2 fold ˃ 0.3, we identified 81 genes that were significantly changes 

in the Low Runners when compared to the Locked Disc condition. Within the 36 down-regulated 

genes, the table shows the top 25 genes. 
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Figure III.5. Signaling pathways of Low and High runners 

Venn diagram (BioVenn) showing the Low and High Runners as two distinct sets of genes when 

compared to the merged exercise group (purple) (A). Wikipathways (Enrichr) for the full list of 

significant genes for Low Runners (B), High Runners (C), and Low and High runners combined 

(D). 
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Figure III.6. Biological Processes of Low and High Runners 

The total list of significant genes for Low Runners (A), High Runners (B), and their combination 

(C) was analyzed through GO Biological Process (Enrichr).  
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Figure III.7. Cellular Components for Low and High Runners 

The total list of significant genes for Low Runners (A), High Runners (B), and their combination 

(C) was analyzed through GO Cellular Component (Enrichr).  
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Figure III.8. Molecular Functions for Low and High Runners 

The total list of significant genes for Low Runners (A), High Runners (B), and their combination 

(C) was analyzed through GO Molecular Function (Enrichr).  
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Figure III.9. Enrichr analysis for genes unique to High Runners 

Genes unique to High Runners (see Venn diagram Fig. 7) were analyzed for signalling pathways 

(A), Biological Processes (B), Cellular Components (C), and Molecular Functions (D) using 

Enrichr.  
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Figure III.10. Enrichr analysis for genes unique to Low Runners 

Genes unique to Low Runners (see Venn diagram Fig. 7) were analyzed for signalling pathways 

(A), Biological Processes (B), Cellular Components (C), and Molecular Functions (D) using 

Enrichr.  
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Figure III.11. Genes modified in CE 

Genes significantly changed in the DG niche after CE exposure were analyzed for signalling 

pathways (A), Biological Processes (B), Cellular Components (C), and Molecular Functions (D) 

using Enrichr.  
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Figure III.12. Modified genes comparison between Low and High Runners and CE 

Venn diagram (BioVenn) showing significant modified genes that are unique to Runners (Low 

and High runners combined (438 genes), and CE (36 genes).  
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Figure III.13. Enrichr analysis for genes unique to runners 

Genes unique to runners (Unique to Low and High Runners and combined, see Venn diagram Fig. 

7) were analyzed for signalling pathways (A), Biological Processes (B), Cellular Components (C), 

and Molecular Functions (D) using Enrichr.  
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Figure III.14. Enrichr analysis for genes unique to CE 

Genes unique to CE (see Venn diagram Fig. 7) were analyzed for signalling pathways (A), 

Biological Processes (B), Cellular Components (C), and Molecular Functions (D) using Enrichr.  
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Chapter IV. Impact of transforming growth factor-β1 on ependymal 

cells 
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IV.1. Chapter context 

For this last project, we collaborated with Dr. Steve Lacroix’s laboratory to isolate 

ependymal cells from FoxJ1-eGFP mice using fluorescence-activated cell sorting following Sham 

treatment or SCI. A RNA-Seq of these purified cells before and after injury was performed to 

obtain the transcriptome of activated ependymal cells. One of the main players that came out of 

this analysis was TGF-β1. We, therefore, investigated the effects of this cytokine on the ependymal 

cell population. 

 

IV.2. Author’s contributions 

In this study, I designed and performed most of the experiments with the helpful advices 

of my research director, Dr. Karl Fernandes. Dr. Louis-Charles Levros, a post-doctoral fellow 

helped me design and analyze experiments from Figures IV.5C-G and IV.7, as well as perform the 

self-renewal experiment and took pictures of neurospheres for me to measure from Figure IV.8. 

Dr. Brianna Goldenstein, a former post-doctoral fellow, performed the in vivo surgeries to install 

osmotic pumps from Figure IV.4B-C, and took pictures of neurospheres for me to measure from 

Figures IV.5 and IV.7 (data not shown). Sandra Joppé, a Ph.D student,  performed flow cytometry 

analyses on samples prepared by myself from Figure IV.9E-I. Anne Aumont, our laboratory 

technician, performed some culture experiments from Figure IV.5A-B and IV.6. Nadia Fortin, an 

animal health technician from Dr. Steve Lacroix’s laboratory, a collaborator in Quebec City, 

performed the spinal cord injury from Figure IV.1B and IV.3. Jorge Barreto, a Ph. D student in 

Dr. Steve Lacroix’s laboratory, isolated ependymal cells by fluorescence-activated cell sorting 

(FACS) and performed RNA isolation from purified cells from Figure IV.1B. Dr. Steve Lacroix 

also provided the in situ hybridization pictures from Figure IV.3. Patrick Gendron, a biostatistician 

from the IRIC genomics platform, performed the RNA-Seq alignments and basic bio-informatics 

from Figure IV.1C-D, and guided me in performing the deeper bio-informatics analyses from 

Figures IV.1E, IV.2, and Tables IV.1-4. Alexandre Vaugeois, a former M.Sc student in the 

laboratory, designed and performed the preliminary data for IL-6, IL-1β, and TNF-α from Figure 

IV.11. The manuscript was written by myself in collaboration with Dr. Karl Fernandes. 
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IV.3. Introduction 

 

The EZ of the adult spinal cord is a unique niche of latent neural stem cell activity. The EZ 

niche is comprised of ciliated ependymal cells that line the central canal, and a mixture of adjacent 

sub-ependymal astrocytes, post-mitotic neurons, and oligodendrocyte lineage cells (Hamilton et 

al. 2009; Meletis et al. 2008). Unlike other central nervous system niches, the EZ niche does not 

normally display NSC activity. However, when the adult spinal cord is dissociated and cultured, a 

subpopulation of EZ cells gives rise to epidermal growth factor/fibroblast growth factor-2 

(EGF/FGF2)-dependent neurosphere colonies that contain self-renewing, tripotential NSCs 

(Martens et al. 2002; Weiss et al. 1996). Transgenic fate-mapping studies have traced the origin of 

these NSCs to the FoxJ1-expressing ependymal cell population (and not to Connexin+ astrocytes 

or Olig2+ oligodendrocyte precursors) (Barnabe-Heider et al. 2010; Meletis et al. 2008). 

Interestingly, ependymal cells in vivo divide infrequently and are normally unipotential, 

undergoing symmetrical divisions that result in new ependymal cells (Alfaro-Cervello et al. 2012; 

Barnabe-Heider et al. 2010; Hamilton et al. 2009). However, in response to SCI, ependymal cells 

undergo dramatic changes in their cellular properties that include increased proliferation, 

migration of ependymal progeny out of the EZ and into areas of degeneration, and multi-lineage 

glial differentiation into astrocytes and oligodendrocytes (Barnabe-Heider et al. 2010; Johansson 

et al. 1999). Understanding how ependymal cells are recruited into a proliferative and 

multipotential NSC state may help to develop endogenous spinal cord repair strategies since 

neurosphere-initiating cells (NICs) are also present in the human spinal cord (Dromard et al. 2008; 

Mothe et al. 2011).  

     

Following SCI, central canal ependymal cell proliferation is increased at long distances 

from the site of injury, is maintained for several weeks, and is associated with significantly 

enhanced formation of ependymal cell-derived tripotential neurospheres (Barnabe-Heider et al. 

2010; Lacroix et al. 2014). These ependymal cell reactions are context-specific, as they occur 

following traumatic lesions but not in autoimmune- or chemical-mediated models of 

demyelination (Lacroix et al. 2014). Little is known about the nature of the culture- or injury-

induced signals mediating initial acquisition of NSC characteristics, proliferative expansion, or 

glial differentiation by quiescent ependymal cells (reviewed in (Gregoire et al. 2015)). In this 
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regard, TGF-β1 is a prominently expressed injury-induced factor that plays a central role in wound 

healing across many tissues. TGF-β1 has a role in cell growth, differentiation, organ development, 

migration, pro-inflammatory and anti-inflammatory processes, and wound repair (Kleiter et al. 

2007; McCartney-Francis and Wahl 1994; Taylor 2009). Following SCI, it is highly expressed by 

inflammatory cells, with levels that peak at 48 hours post-SCI and that are maintained for several 

days (Buss et al. 2008; McTigue et al. 2000). Previous studies have shown that this cytokine plays 

important and multi-faceted roles after SCI, as TGF-β1-treated animals showed a lesion volume 

reduced by 50% 48 hours post-SCI (Tyor et al. 2002), while TGF-β1-blocking antibodies inhibit 

glial scar formation and improve locomotor activity (Kohta et al. 2009). Here, we asked whether 

TGF-β1 affects the recruitment, expansion, and differentiation of spinal cord-derived NSCs. 

 

IV.4. Materials and methods 

 

IV.4.1. Mice 

Experiments were conducted in accordance with the guidelines of the Canadian Council of 

Animal Care and were approved by the institutional animal care committee of the University of 

Montreal and the CRCHUM. Experiments were performed using two- to three-month-old male 

C57BL/6 mice from Charles River Laboratories (St-Constant, QC, Canada) and four-month-old 

female B6;C3-Tg (FOXJ1-EGFP)85Leo/J mice (The Jackson Laboratory). The animals had free 

access to food and water.  

 

IV.4.2. Spinal cord injury 

     C57BL/6 adult mice were anesthetized with isoflurane and underwent a laminectomy at 

vertebral level T9-10, which corresponds to spinal segment T10-11. Briefly, the vertebral column 

was stabilized and a contusion of 50 kdyn was performed using the Infinite Horizon SCI device 

(Precision Systems & Instrumentation). For the sham-operated mice (laminectomy), the exposed 

spinal cord was left untouched. Overlying muscular layers were then sutured and cutaneous layers 

stapled. Post-operatively, animals received manual bladder evacuation twice daily to prevent 
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urinary tract infections. Mice were killed by transcardiac perfusion at seven (Figure 1) or four days 

post-surgery (Figure 2). 

 

IV.4.3. Tissue fixation and processing 

Mice received a lethal dose of ketamine (Bimeda-MTC), xylazine (Bayer Healthcare), and 

acepromazine (Boehringer Ingelheim Canada Ltd). Tissues were prepared by perfusing 

transcardially with phosphate-buffered saline (PBS) containing heparin at 40mg/mL (Fisher), 

followed by 4% formaldehyde, pH 7.4, freshly prepared from paraformaldehyde (Fisher). Spinal 

cords were removed and post-fixed in 4% formaldehyde overnight. The spinal cord of each animal 

was cut into 40 μm coronal sections using a vibrating microtome (Leica VT1000S) and the sections 

were stored at -20°C in an antifreeze solution (glycerol:ethylene glycol:PBS, 3:3:4) until use. 

 

IV.4.4. Intracerebroventricular (ICV) osmotic pumps 

For ICV infusions, mice were locally injected with bupivacaine (Hospira) and operated 

under isoflurane anesthesia (Baxter). Cannulae attached to seven day Alzet osmotic pumps (0.5 

μl/h infusion rate, model 1007D; Durect), were stereotaxically implanted at 0.1mm anteroposterior 

and 0.9mm lateral to Bregma according to manufacturer`s instructions. TGF-β1 was diluted in a 

vehicle solution (PBS) and infused at 400ng/day. A pilot study was performed previously and 

showed that ICV infusion of EGF increased proliferation of spinal cord ependymal cells, 

confirming that ICV delivery of growth factors reaches the central canal (data not shown). Animals 

were sacrificed after five days.  

 

IV.4.5. Culture experiments 

Preparation and treatment with TGF-β1 

TGF-β1 (10ug, cell signalling) was reconstituted in 20mM citrate buffer pH 3.0 and used 

for subsequent working dilutions. The citrate buffer was used as the Vehicle in all culture 

experiments.  

 

 



 

 

144 

Alk5 inhibitor treatment 

    In experiments where TGF-β1 signaling needed to be blocked, a type 1 receptor kinase Alk5 

inhibitor II, 2-(3-(6-methylpyridin-2-yl)-1H-pyrazol-4-yl)-1,5-naphthyridine, was diluted in 

dimethyl sulfoxide (DMSO) (Sigma) to reach a final concentration of 5µM (Enzo life sciences). 

 

Neurosphere assays 

Neurospheres were generated according to a procedure modified from Weiss and 

colleagues, 1996 (Weiss et al. 1996). Two- to three-month-old male C57BL/6 mice were 

euthanized by isoflurane followed by decapitation. Spinal cords were rapidly extracted by placing 

a needle and 10mL syringe filled with sterile HBSS into the severed spinal column at the lumbar 

level, and applying hydraulic pressure until the cord emerged at the cervical level. The isolated 

cord was placed in ice-cold HBSS (Wisent), cut to a 20mm length, minced with a scalpel, and both 

enzymatically and mechanically dissociated into single cells using Papain (Worthington), and 

rapid pipetting. The dissociated cells were diluted to 30 mL in DMEM/F-12 (3:1; both from Life 

technologies) supplemented with 2% B27 (Life technologies), 1μg/mL fungizone (Life 

technologies), 1% penicillin and streptomycin (Wisent), 20 ng/mL EGF (Feldan), 25 ng/mL FGF2 

(Feldan) and seeded in 75cm2 flasks for 13-14 days to generate primary neurospheres. Primary 

neurospheres were mechanically dissociated and re-seeded at 1.5cells/μL in 48-well plates for 

nine-to-ten days (in the same media as above) to generate secondary neurospheres. Tertiary 

neurospheres, were generated by a similar procedure as previously described. The cultures were 

re-fed with growth factors and B27 every three-to-four days. Neurosphere numbers were 

quantified by plating cells in 48-well plates at a clonal density (1.5 cells/μL) (12 wells/treatment/n, 

but 48 wells/n for the osmotic pump experiment, Fig.1). Neurosphere sizes were quantified by 

measuring the diameter of at least 100 neurospheres per condition using ImageJ software (version 

1.47v, NIH, USA), and the data expressed using frequency histograms (GraphPad Prism, Version 

5.02, GraphPad Software, Inc). For experiments assessing neural differentiation, neurospheres 

were mechanically dissociated and plated at a density of 25,000 cells/cm2 in a basal differentiation 

medium (i.e., neurosphere growth medium in which EGF and FGF2 were replaced with 2% Fetal 

Bovine Serum (Wisent) supplemented with either Vehicle or 10ng/ml of TGF-β1).  
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TUNEL and proliferation assay 

The TUNEL and proliferation assay was performed as described previously (Hamilton et 

al. 2015; Joppé et al. 2015), in medium supplemented with Vehicle or 10ng/mL TGF-

β1.  Quantification of Ki67-TUNEL double-labeling was performed by counting the number of 

Hoechst-positive nuclei also double-labelled with either Ki67 or TUNEL from 200X pictures (9 

fields of view by condition). 

 

Carboxyfluorescein Diacetate, Succinimidyl Ester (CFSE) cell division assay 

    The CFSE cell division assay was performed as described previously (Hamilton et al. 2015; 

Joppé et al. 2015), except that the proliferation medium was supplemented with either Vehicle or 

TGF-β1 at 10ng/mL.  

 

Propidium Iodide (PI) cell cycle assay 

Dissociated neurosphere cells were plated at 25,000 cells/cm2 in medium containing the 

indicated treatments. Cells were harvested by trypsinization after 24h of treatment, rinsed and 

frozen in 70% ethanol in PBS until analysis. Before flow cytometry analysis, samples were treated 

with 0.5 mg/mL of DNAse-free RNAse (Sigma) (30 min at room temperature) and incubated with 

50 mg/mL of PI (Sigma). The cells were then harvested, washed, and run through an LSRII 

cytometer (BD Biosciences). Data was analyzed using FlowJo v7.6.5 (Tree Star).  

 

Self-renewal assay 

    Dissociated primary neurospheres were grown into secondary neurospheres in the presence of 

Vehicle (Citrate 20mM pH 3.0) or 10 ng/mL TGF-β1 for nine days (as above) (n=4 experiments). 

60 secondary neurospheres were chosen from each condition using a micropipette and inverted 

microscope (40X total magnification), transferred to a 1.5 mL tube, and mechanically dissociated 

using a p200 pipette set to 100µL for five min in 250µL of proliferating medium. The cell density 

was determined by using a hemocytometer, and the cells were re-plated at 1.5 cells/μL in 

proliferation medium (as above). Tertiary neurospheres were counted and measured after nine 

days, allowing quantification and retrospective calculation of the mean number of neurosphere-

initiating cells that were present per secondary neurosphere. 
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IV.4.6. In situ hybridization 

Animals were perfused with ice-cold saline followed by 4% PFA, pH 9.5, in Borax buffer. 

Spinal cords were removed, post-fixed for 2 days in 4% PFA and subsequently transferred in a 

solution of 4% PFA with 10% sucrose for 24 h. Spinal cords were divided into three 4 mm-

segments corresponding to the thoracic and lumbar spine, sliced into 30-µm-thick coronal sections, 

and collected directly onto Surgipath X-tra® microslides (Leica Biosystems). All sections were 

pre-hybridized, hybridized and post-hybridized as before (Vallieres et al. 2006). The antisense 

riboprobe was transcribed in vitro from a linearized cDNA coding for mouse TGF-β1 with T3 

RNA polymerase in the presence of [S35]-UTP (Perkin Elmer). For the latter cDNA, a 1173-bp 

sequence corresponding to nucleotides 315-1487 from GenBank: BC013738 was amplified using 

the following primers: TGF-β1 (forward, 5'- catgccgccctcggggctgcggctac -3'; reverse, 5'- 
tcagctgcacttgcaggagcgcac -3'). The sequence chosen for riboprobe synthesis was selected to match 

only the intended gene, as verified by BLAST analysis in Genbank. All ISH images were acquired 

at 20X magnification using the Bioquant Nova Prime software on video images of tissue sections 

transmitted by a high-resolution Retiga QICAM fast color 1394 camera (1392 x 1040 pixels; 

QImaging) installed on a Nikon (Tokyo, Japan) Eclipse 80i microscope. All files were exported as 

TIFF. 

 

IV.4.7. Immunohistochemistry  

Immunohistochemical procedures were performed as detailed previously (Gregoire et al. 

2014). Mouse anti-human Ki67 was used at 1:200 (BD Biosciences), rabbit anti-glial fibrillary 

acidic protein at 1:2000 (Dako), and chicken anti-GFP at 1:2000 (Aves Labs). Microscopy was 

performed using a motorized Olympus IX81 microscope (Fig.2, 40X objective) or with a Quorum 

Technologies spinning disk confocal microscope with a CSU10B (Yokogawa) spinning head 

mounted on an Olympus BX61W1 fluorescence microscope and connected to a Hamamatsu 

ORCA-ER camera (Fig.1, 60X objective). All quantifications were performed on coded slides by 

a blinded experimenter.  
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IV.4.8. Western blotting 

Western blotting was performed as previously described (Hamilton et al. 2010). The 

following antibodies were used: mouse anti-Class III β-tubulin (1:1000, Covance), mouse anti-

beta actin (1:20,000, Abcam), mouse anti-CNPase (1:250, Millipore), rabbit anti-glial fibrillary 

acidic protein (1:1000, Dako), rabbit anti-Olig-2 (1:1000, Millipore), and mouse anti-human 

PCNA (1:500, BD Biosciences). HRP-conjugated secondary antibodies were used at the following 

dilutions: anti-mouse IgG (1:5000, Bio-Rad) or anti-rabbit IgG (1:5000, Millipore). Secondary 

antibodies were detected using Clarity (Bio-Rad) and ChemiDoc (Bio-Rad). Quantitative 

densitometry of bands was performed using Image Lab version 4.1 (Bio-Rad).   

 

IV.4.9. RNA-Seq  

 Female B6;C3-Tg (FOXJ1-EGFP)85Leo/J mice (The Jackson Laboratory) (8 mice per 

group x 2 groups (Sham, SCI)) were contused with the Infinite Horizon impactor (50 kdyn) at T9-

T10. Three days after SCI, mice were killed and 8mm of their spinal cord extracted. Then, tissue 

is mechanically and enzymatically dissociated and cells enriched by continuous percoll gradient. 

Ependymal GFP+ cells were isolated using a cell sorter and markers such as CD24+, CD133+, 

FoxJ1 (eGFP)+, and CD45-. RNA was isolated from purified cells and sequenced mRNA 

fragments were trimmed for adapter sequences and then mapped to the reference mouse genome 

assembly version mm10 using Tophat (version 2.0.10) (Trapnell et al. 2009).  Gene expressions 

were then estimated by using the HTSeq tool to compute read counts on RefSeq genes (Anders et 

al. 2015).  For exploratory purposes, DESeq2 was used to normalize read counts, extract 

regularized log values and compute log fold changes (Love et al. 2014).  Differentially expressed 

genes that are up or downregulated by a factor 0.3 or more (in log2, thus a fold change of 1.23 or 

more) were used to investigate enriched pathways and functions through the use of QIAGEN's 

Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). All 

samples were normalized at once, which allows us to produce comparisons between samples in 

the form of Principal Component Analysis (PCA) and hierarchical clustering. Genes were sorted 

according to their absolute fold change, only genes with a log fold change ≥ 1 or ≤ -1 were analyzed 

further. Further biostatistical analyses were performed by EnrichR.  
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IV.4.10. Statistical Analyses 

All statistical analyses were performed using GraphPad Prism, Version 6.01 (GraphPad 

Software, Inc). Statistical analysis used two-tailed unpaired Student’s t-test, One-way ANOVA 

with Dunnett’s multiple comparison test, or one sample t-test as indicated in figure legends. Error 

bars represent mean ± standard error of the mean. The significance level was set at p ≤ 0.05. 
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IV.5. Results 

 

IV.5.1. RNA-Seq transcriptomic profiling of ependymal cells following SCI 

SCI induces the proliferation, migration and multi-lineage differentiation of ependymal 

cells (Barnabe-Heider et al. 2010; Gregoire et al. 2015) (Fig. IV.1A). To attempt to gain insights 

into the genetic program associated with this injury-induced acquisition of NSC properties, we 

used an RNA-Seq-based strategy to perform a transcriptomic analysis of the reactive ependymal 

cells (Fig. IV.1B). Laminectomy at the vertebral level T9-10 was performed on FoxJ1-eGFP sham 

mice (n=8) and the vertebral column stabilized to perform a contusion of 50 kdyn on FoxJ1-eGFP 

SCI mice (n=8). Three days following SCI, mice were sacrificed and 8mm of the spinal cord was 

extracted. Tissue was dissociated and GFP+CD24+CD133+CD45- ependymal cells were isolated 

by FACS. RNA was then isolated from the purified cells and sequenced by RNA-Seq. Using a 

threshold of  -1 >  log2 fold  > 1 and p(adj) < 0.05, we identified 1,241 SCI-induced significantly 

changed genes, including 824 up-regulated and 417 down-regulated (Fig. IV.1C). Hierarchical 

clustering and heatmap analysis in log readcount values (IRIC genomics platform) showed 

consistent clustering of the control groups and SCI groups (Fig. IV.1D). Using WikiPathways 

(EnrichR), the principal biological pathway identified by the differentially expressed genes was 

Spinal Cord Injury (Fig. IV.1E). The top 25 up-regulated and top 25 down-regulated genes are 

shown in Tables IV.1 and IV.2 respectively. Notably within the list of up-regulated genes the 

glial fibrillary acidic protein (gfap) came up, known to be expressed by astrocytes (Frisen et al. 

1995).  This result shows that cells are rapidly directed towards the astrocytic fate after injury. The 

gene thrombospondin 2 (Thbs2), which is astrocyte-derived, is also up-regulated and is known to 

be implicated in functional recovery after stroke and is involved in repair of the blood-brain barrier 

(Liauw et al. 2008; Tian et al. 2011).  Moreover, a closely related family member of Thbs2 (Thbs4) 

has recently been implicated as a regulator of Notch signalling, and in directing forebrain stem 

cells to an astrocytic fate following stroke (Benner et al. 2013). 
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IV.5.2. Bio-informatics analyses of injured ependymal cells 

     To study the global patterns of effects of SCI on ependymal cell gene expression, we 

submitted the differentially expressed genes to GO enrichment analysis (EnrichR) for Biological 

Processes, Cellular Components, and Molecular Functions. The main Biological Processes (Fig. 
IV.2A) identified involved the extracellular matrix (GO:0030198, 0043062) and cell movement 

and migration (GO:0051272, 0030335, 2000147). The principal Cellular Components (Fig. 
IV.2B) where the differentially expressed genes are active are related to cell-substrate interactions 

(GO: 0030055, 0005924) and cellular junctions (GO:0070161, 0005912). The main Molecular 

Functions (Fig. IV.2C) of the differentially expressed genes are in binding to the extracellular 

matrix (GO: 0050840), to cells (GO: 0050839), or to cytokines (GO: 0019955). Thus, these 

patterns of gene expression are consistent with the observed SCI-induced migratory behaviour of 

ependymal-derived cells, and reveal a strong interaction with surrounding extracellular 

components during this process (Gregoire et al. 2015).  

     

IV.5.3. Identification of TGF-β as a potential upstream regulator of ependymal responses to SCI 

     To gain insight into SCI-induced factors that may be responsible for the observed 

transcriptomic changes, we used Ingenuity Pathway Analysis to perform an Upstream Regulator 

Analysis of the differentially expressed genes. The 5 top predicted upstream regulators were 

lipopolysaccharide (p=3.24E-35), TGF-β1 (p=8.60E-35), TNF (p=3.03E-29), IFNg (p=9.64E-29), 

and tretinoin (6.03E-25). Tables IV.3 and IV.4 list the top predicted 10 growth factors and top 10 

cytokines.  

 

     We focused on TGF-β1 as it was the most predicted endogenous protein. In situ 

hybridization of the spinal cord at 4 days post-SCI confirmed a strong up-regulation of TGF-β1 in 

the region surrounding the central canal (Fig. IV.3A-D), consistent with its potential role as an 

endogenous regulator of ependymal cell injury responses. 

 

IV.5.4. Exogenous TGF-β1 infusion reduces NIC numbers but increases ependymal proliferation 

within the intact spinal cord 
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     Previous lineage-tracing studies have determined that spinal cord neurospheres derive from 

a sub-population of FoxJ1-expressing ependymal cells (Meletis et al. 2008), that the number of 

ependymal-derived neurosphere-initiating cells (NICs) is increased upon SCI (Barnabe-Heider et 

al. 2010), and that ependymal-derived proliferating progenitors subsequently exhibit multi-lineage 

glial differentiation (primarily astrocytes). We defined the conversion of an ependymal cell to a 

NIC as NIC recruitment and the ability to create neurospheres as NIC expansion and progenitor 

proliferation (Fig. IV.4A). We next asked what the impact of elevated levels of TGF-β1 might be 

on the number of ependymal-derived NICs.  

 

To assess the impact of increased TGF-β1 on NIC numbers, osmotic pumps containing 

either Vehicle or TGF-β1 were implanted into the lateral ventricles of adult mice, and after five 

days of infusions, the spinal cords were dissociated and processed for clonal neurosphere assays 

using EGF/FGF2 (Fig. IV.4B). The mean number of neurospheres grown from the thoracic spinal 

cord decreased by 75%, from 17.19±4.02 neurospheres/mm of spinal cord in Vehicle-infused mice 

to 4.37±0.42 neurospheres/mm in TGF-β1-infused mice (Fig. IV.4C). There was no significant 

difference in neurosphere size between groups (data not shown), indicating that an increase in 

TGF-β1 within the intact spinal cord results in a reduction in the number of NICs.  

 

To assess whether the TGF-β1-induced reduction in NICs correlates with altered numbers 

of proliferating ependymal-derived progenitors, Vehicle or TGF-β1-containing pumps were 

implanted (as above) into the lateral ventricles of adult FoxJ1-EGFP mice, which express GFP in 

ependymal cells (Fig. IV.4D), and the animals sacrificed after five days for immunohistochemical 

analysis of the thoracic spinal cord. TGF-β1 administration resulted in a pronounced increase in 

the number of Ki67+ proliferating cells within the EZ (defined by FoxJ1-GFP expression, Fig. 
IV.4E) and the immediately adjacent subependymal zone (SEZ) compared to Vehicle (Fig. 
IV.4F). Mean number of Ki67++ cells increased 2.8-fold in the EZ (from 1.29±0.25 to 3.60±0.81 

cells per section, p=0.0258) and 23.2-fold in the SEZ (from 0.05±0.05 to 1.16±0.15 cells per 

section, p=0.0004) (Fig. IV.4F). Plotting the data as frequency histograms demonstrated a marked 

TGF-β1-induced shift to higher numbers of Ki67++ cells (Fig. IV.4G). Specifically, while 40.0% 

of sections in Vehicle-infused mice were devoid of Ki67++ cells (similar to previous results in 

naive mice (Hamilton et al. 2009), all sections from TGF-β1-treated mice contained Ki67+ cells 
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(Fig. IV.4G). Moreover, the frequency of sections containing three or more Ki67++ cells increased 

from 17.5% of sections in Vehicle-infused mice to 66.7% in TGF-β1-infused mice). The largest 

proportional increase in Ki67+ cells in the EZ occurred at the dorsal pole of the central canal (Fig. 
IV.4H).  

 

     Together, these data unexpectedly reveal opposing effects of TGF-β1 on in vivo numbers 

of NICs and proliferating ependymal-derived progenitors.  

 

IV.5.5. NIC expansion: TGF-β1 treatment in vitro suppresses growth factor-mediated formation 

of primary neurospheres 

     We next used in vitro assays to investigate the TGF-β1-mediated suppression of NICs. To 

determine whether TGF-β1 influences the ability of NICs to expand in number in response to 

mitogens, dissociated spinal cord cells were grown in the presence of EGF+FGF2 to generate 

neurospheres, in media supplemented with either Vehicle or TGF-β1 (Fig. IV.5A). 30 ng/mL TGF-

β1 abolished the formation of EGF/FGF2-dependent primary neurospheres from the dissociated 

spinal cord (Fig. IV.5B). We further reduced TGF-β1 concentration to 5 ng/mL and still observed 

identical effects. Since neurospheres consist of approximately 5% NICs and 95% NIC-derived 

progenitors, the observed elimination of neurosphere formation could be attributable to either 1) a 

decreased ability of NICs to initiate neurosphere formation or 2) a decreased ability of NIC-derived 

progenitors to expand neurosphere size. To differentiate between these possibilities, we performed 

delayed treatments with TGF-β1 or an inhibitor of the TGF-β1 receptor one kinase, Alk5. The 

addition of the Alk5 inhibitor to dissociated spinal cord cells did not by itself increase EGF/FGF2-

mediated neurosphere formation, indicating that baseline NIC recruitment is not constitutively 

inhibited by TGF-β1 endogenously produced within primary cultures (Fig. IV.5C). While TGF-

β1 treatment at day zero of cultures eliminated primary neurosphere formation (Fig. IV.5B), 

treatment beginning on day three and seven had partial and no effects respectively (Fig. IV.5D, 
E). Similarly, when TGF-β1 was added at day zero of cultures, the addition of the Alk5 inhibitor 

at day three but not day seven was able to rescue partially neurosphere formation (Fig. IV.5F, G).  
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These data show that TGF-β1 suppresses primary neurosphere formation by acting at the 

initial stages of neurosphere formation, and support the notion that TGF-β1 blocks EGF/FGF2-

mediated expansion of NICs.  

 

IV.5.6. TGF-β1 acts directly on neural precursors and promotes reversible quiescence of NICs 

The TGF-β1-induced suppression of NICs following ICV infusion in vivo or during 

primary neurosphere formation in vitro could either result from a direct effect of TGF-β1 on 

ependymal cells themselves, or indirect effects via other cell types in vivo and within primary 

cultures. We therefore passaged twice primary neurospheres grown under standard conditions to 

generate purified cultures of tertiary neurospheres. Passaging of floating neurosphere cultures 

results in the elimination of differentiated (adherent) cells such as neurons, astrocytes and 

oligodendrocytes that are present within the primary cultures. We then asked whether the growth 

inhibitory effect was still present after TGF-β1 treatment on these purified cultures (Fig. IV.6A). 

Tertiary neurosphere formation was decreased by about 50% from established secondary 

neurosphere cultures with a 30ng/mL treatment (Fig. IV.6B).  Given the low cell density in these 

clonal neurosphere assays, we further reduced TGF-β1 concentration to 5 ng/mL and observed 

identical effects (Fig. IV.6B). Furthermore, tertiary neurospheres grown in the presence of TGF-

β1 showed a shift towards smaller neurosphere sizes (Fig. IV.6C). 

 

Interestingly, TGF-β1-induced inhibition of neurosphere formation was substantially more 

pronounced when using primary dissociated spinal cord cells than from purified secondary 

neurosphere cultures. To test the possibility that a portion of TGF-β1 effects in primary cultures 

might still be mediated indirectly via other cell types, conditioned medium (CM) was collected 

and filtered from dissociated spinal cord cells treated with Vehicle or TGF-β1 and added in 

increasing concentrations during growth of secondary neurospheres (Fig. IV.7A-C). Regardless 

of whether grown in 25%, 50%, or 100% CM, CM from TGF-β1-treated primary cells still reduced 

secondary neurosphere formation by only 50-60%, arguing against the presence of indirect 

mediators of TGF-β1's effects in primary cultures. Consistent with this, when secondary 

neurospheres were grown in the presence of CM from TGF-β1-treated primary cells, the inhibitory 

effect of the CM was completely blocked by the addition of the inhibitor of the TGF-β1 receptor 
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one kinase, Alk5 (Fig. IV.7D, E). These results show that the entire growth-inhibitory effect of 

primary culture CM is attributable to residual TGF-β1.  

 

Lastly, to gain insight into whether TGF-β1 treatment leads to a loss of NICs (i.e., via 

terminal differentiation or death) or to NIC quiescence (i.e., a reversible inhibition of proliferation), 

we performed a self-renewal assay. Primary neurospheres were grown in medium supplemented 

with Vehicle or TGF-β1, and the resulting secondary neurospheres were then dissociated and 

tested for their ability to grow into tertiary neurospheres under standard conditions (see 

Methods).  This revealed that neurospheres grown in TGF-β1-supplemented medium, although 

smaller, contained an identical frequency of NICs (5.72% Vehicle, 5.31-5.86% TGF-β1). This 

result suggests that TGF-β1’s inhibitory effect on neurosphere formation is not due to NIC loss, 

and can rather be attributed primarily to a direct effect on NIC quiescence (Fig. IV.8 A-C). 

 

IV.5.7. Downstream effects: TGF-β promotes proliferation and astrocytic differentiation of NIC-

derived progenitors 

To study the impact of TGF-β1 on NIC-derived progenitors, we assessed TGF-β1-induced 

changes in proliferation, survival, and differentiation in high-density adherent cultures of spinal 

cord-derived neurosphere cells. Progenitor-enriched adherent cultures were established by first 

using EGF/FGF2 to grow clonally-derived neurospheres from the dissociated spinal cord, 

passaging these neurospheres to purify and expand their number, and then plating cells dissociated 

from secondary neurospheres (approximately 95% progenitors) at high-density for 

immunohistochemical, flow cytometry, and Western blotting experiments.  

 

High-density adherent stem/progenitor cell cultures were plated in EGF/FGF2-containing 

medium supplemented with either Vehicle or TGF-β1, and then analyzed by immunostaining or 

flow cytometry (Fig. IV.9A). Immunofluorescence labeling at three days in vitro (DIV) revealed 

that TGF-β1 stimulated a 56% increase in Ki67+ proliferating cells (p=0.0110) and a 45% decrease 

in TUNEL+ apoptotic cells (p=0.0938, not significant) (Fig. IV.9B-D). To confirm that the 

significant increase in Ki67 immunoreactivity corresponded to an increase in cell proliferation we 

used a CFSE label retention assay. CFSE is a fluorescent dye that is passively incorporated into 
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cells and then serially diluted from their cytoplasm during each subsequent cell division. Flow 

cytometry analysis confirmed that when stem/progenitor cells were pre-labelled with CFSE, TGF-

β1 caused a significant decrease in CFSE retention by three DIV (Fig. IV.9E, F), indicative of a 

proliferation-induced dilution of fluorescence. Cell cycle analysis by PI flow cytometry further 

showed that TGF-β1 treatment was associated with a small but significant increase (2.47%, 

p=0.0326) in the proportion of cells in G2-M phase (Fig. IV.9G-I). These data show that TGF-β1 

promotes proliferation and survival in spinal cord stem/progenitor cell bulk cultures. 

 

We also induced differentiation of high-density adherent stem/progenitor cell cultures by 

plating them in the absence of EGF/FGF2, to assess the effect of Vehicle versus TGF-β1 on the 

pattern of neural differentiation. Western blotting (Fig. IV.9J-K) and immunofluorescence 

labelling (Fig. IV.9L, M) at three DIV both showed a strong and selective TGF-β1-induced 

stimulation of the astrocyte marker GFAP. No significant changes in neuronal (βIII-tubulin) or 

oligodendrocyte lineage (Olig2, CNP) cells was detected, and TGF-β1 was not sufficient to 

maintain proliferation (Proliferating Cell Nuclear Antigen, PCNA) in the absence of EGF/FGF2. 

 

These data reveal that TGF-β1 promotes cell proliferation in high-density spinal cord 

stem/progenitor cell cultures, and favours their subsequent differentiation to the astrocytic lineage. 

 

IV.6. Discussion 

TGF-β1 is a major injury-induced cytokine that is prominently involved in many facets of 

wound-healing across diverse tissues, including the injured spinal cord. In this study, we begin by 

asking a fundamental question concerning the biology of ependymal cells: how do they acquire 

stem cell properties (proliferative ability and multipotency) following SCI? To answer this 

question, we designed a strategy to isolate reactive ependymal cells and study their genome-wide 

transcriptomic changes in an unbiased manner. Biological replicates were prepared and each 

replicate represented a pool of eight mice, which provided a strong reproducibility between N (Fig. 

1D). The RNA-Seq approach provided a wealth of data that was studied in greater detail to gain 

insights into the molecular programs involved in the acquisition of stem cell properties by these 

latent precursors. The bio-informatics analysis allowed us to identify TGF-β1 as a predicted 
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upstream regulator of reactive ependymal cell behaviour. Therefore, we then investigated its 

potential impact on the properties of adult spinal cord stem/progenitor cells. Our data support four 

main conclusions (summarized in Fig. IV.10). First, raising TGF-β1 levels increases proliferation 

of ependymal cells surrounding the spinal cord central canal in vivo and of spinal cord-derived 

stem/progenitors cells in vitro, favouring their astrocytic differentiation. Second, raising TGF-β1 

levels decreases the ability of spinal cord-derived NICs to generate neurosphere colonies in 

response to EGF/FGF2. Third, the initial recruitment step of NICs from primary spinal cord cells 

is even more sensitive to TGF-β1’s inhibitory effects than the subsequent in vitro expansion of 

these NICs. Thus, TGF-β1 has pleiotropic effects on the neural precursor lineage, suppressing 

expansion of upstream NICs while promoting proliferation of downstream progenitors and their 

differentiation into astrocytes. Given the strong upregulation of TGF-β1 following SCI, these data 

raise the possibility that TGF-β1 is a key mediator of the previously observed injury-induced 

proliferation and astrogenesis of adult spinal cord ependymal cells (Barnabe-Heider et al. 2010; 

Meletis et al. 2008). Interestingly, it might be possible that the implication of TGF-β1 in scar 

formation is partly mediated by the effect of this cytokine on astrocytic differentiation of 

ependymal cells (Kohta et al. 2009).  

 

 A limited number of studies have examined the effects of TGF-β1 on neural precursors of 

the brain, with both similarities and differences. At the level of NICs, Wachs and colleagues 

reported that TGF-β1 decreased neurosphere formation from the adult rat forebrain, suggesting a 

similar effect on the NICs of the brain and spinal cord (Wachs et al. 2006). However, our data 

showed that TGF-β1 increases proliferation in cultures of spinal cord-derived stem/progenitors in 

vitro (also reported by (Park et al. 2008) and in the spinal cord ependymal cell niche in vivo. This 

contrasts findings by Wachs and colleagues, who found that TGF-β1 both suppressed proliferation 

in cultures derived from the adult rat forebrain and inhibited proliferation in both the forebrain and 

hippocampal niches. Moreover, while our in vitro results showed that TGF-β1 strongly promotes 

an astrocytic fate, others found it had no effect on forebrain neural precursor differentiation (Wachs 

et al. 2006), and promoted survival of hippocampal neurons (Kandasamy et al. 2014). Such 

differences might be attributable to the apparent distinct cellular identity of the NICs in the brain 

(astrocytes) versus spinal cord (ependymal cells).  
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The relationships between NICs, endogenous NSCs, and endogenous proliferating cells 

remain only partially defined. NICs in the forebrain likely correspond to activated NSCs (Doetsch 

et al. 2002; Mich et al. 2014), and since these NSCs continuously give rise to highly proliferative 

progenitors within the forebrain niche, a coordinated TGF-β1-induced reduction in NICs and levels 

of proliferation in the forebrain niche is not surprising. In contrast, there is no evidence for 

endogenous NSC activity within the intact spinal cord, and the lineage relationship between spinal 

cord NICs and proliferating cells in the spinal cord EZ niche has yet to be established (Fig.10). 

One possibility is that NICs are the direct source of proliferating ependymal cells. In that case, 

TGF-β1 could reduce NICs through multiple mechanisms. For example, TGF-β1-induced 

proliferation of ependymal cells may result in depletion of the upstream NICs, or TGF-β1 may 

directly drive quiescence or terminal differentiation of NICs while simultaneously promoting 

ependymal cell proliferation (similar to bone morphogenetic protein in the forebrain (Joppé et al. 

2015). Alternatively, NICs could represent a cellular reserve that is either more distantly related 

to the proliferating ependymal cells or a distinct lineage within the FoxJ1 population, in which 

case NICs and proliferating ependymal cells may be independently regulated. In this regard, since 

spinal cord ependymal cells are neither neurogenic nor multipotential under baseline conditions, a 

deeper understanding of the molecular mechanisms underlying the emergence of NICs from the 

FoxJ1 population is of considerable interest for spinal cord repair applications. 

 

 In the context of CNS injury, TGF-β1 is thought to be a significant promoter of the 

astrogliosis that ultimately results in glial scar formation (Rabchevsky et al. 1998), as TGF-β1 

blocking antibodies impair glial scar formation (Kohta et al. 2009). Interestingly, it might be 

possible that this process is partly mediated by the effect of this cytokine on astrocytic 

differentiation. SCI-induced astrogliosis involves activation of pre-existing astrocytes, but recent 

work shows a significant contribution of spinal cord ependymal cells in this response, which 

undergo substantial proliferation and differentiation into astrocytes that integrate into the lesion 

site (Barnabe-Heider et al. 2010; Gregoire et al. 2015). Thus, the observed TGF-β1-induced 

proliferation and astrocytic differentiation of spinal cord-derived neural precursors suggests a role 

for TGF-β1 in the in vivo responses of ependymal cells to SCI. Moreover, our data suggests that 

modulating TGF-β1 signaling following SCI may impact the injury responses of ependymal cells 

and their progeny. 
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IV.7. Future directions 

In this study, the main missing experiment is to address whether blocking TGF-β1 in vivo 

following injury leads to similar consequences on proliferation and astrocytic differentiation than 

our experiments conducted under normal conditions or in vitro. To accurately address this 

question, with the help of our collaborators (Dr. Steve Lacroix’s laboratory, Quebec City), we will 

cross a FoxJ1-CreERT2 mouse with a TGF-β1-floxed mouse to obtain an inducible transgenic 

mouse model in which TGF-β1 can specifically be deleted in ependymal cells following 

recombination. We will first determine the ependymal cell proliferation and differentiation 

baseline in non-recombined mice that underwent SCI to know how it compares to our TGF-β1 

infusions. Then, we will expose our recombined mice to injury, and observe whether TGF-β1 

activity is necessary for the ependymal response to injury. We could also put into culture the 

injured spinal cords and observe the effect on neurosphere initiation once TGF-β1 activity is 

blocked.  

 

Another interesting aspect is to determine the role played by other predicted upstream 

regulators. In Table 4, TNF-α, IL-6, and IL-1β were identified within the top ten of upstream 

regulators within the cytokine category. It was shown in the literature that these three cytokines 

are secreted shortly after SCI (Donnelly and Popovich 2008). IL-1β is the first one expressed after 

5 minutes, then TNF-α appears 15 minutes post-SCI, and finally IL-6 is secreted between 3 hours 

and 4 days following injury (Pineau and Lacroix 2007).  

 

We began testing the impact of these three factors on neurosphere formation, and found 

additive effects on suppressing neurosphere growth, suggesting that they are indeed likely to be 

endogenous regulators of ependymal cell behaviour as well. Dissociated spinal cord cells were 

grown in presence of EGF and FGF2 to generate neurospheres in media supplemented with the 

IL-6, IL-1β, and TNF-α added individually, in duo or in trio (Fig. IV.11A). We discovered that 

cells treated in presence of IL-6 showed a trend towards less primary neurospheres, but we the 

number of animals should be increased for this effect to become significant (Fig. IV.11B). This 

result suggests an effect on the NSCs. Moreover, primary neurospheres grown in the presence of 
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IL-6, TNF-α, of all duos and of the trio showed a shift towards smaller neurosphere sizes, 

suggesting an effect on the progenitors (Fig. IV.11C). This preliminary data demonstrates that the 

effect of these cytokines on purified cultures (secondary neurospheres), for example, should be 

investigated further. 
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IV.8. Figures and legends 

 

Figure IV.1. RNA-Seq analysis 

Representative image of the major ependymal cell behaviour after SCI, including activation of 

quiescent ependymal cells, proliferative expansion, migration, and differentiation (A). Schematic 
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illustration of the steps leading to the isolation of ependymal NSCs from the injured or sham-

operated spinal cord of FoxJ1-eGFP mice to perform RNA-Seq (see methods) (B). Volcano plot 

identifying changes in genes. A threshold of -1 >  log2 fold  > 1 and p(adj) < 0.05 was used to 

determine the most significant changes (C). Heatmap with the log read count values, showing that 

genes in sham and SCI samples are distinct (D). Main signaling pathways generated by 

WikiPathways (EnrichR) for the most significant changes after SCI. The brighter the colour, the 

more significant that term is (E).  
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Table IV.1. Top 25 of up-regulated genes 

Using a threshold of  -1 >  log2 fold  > 1 and p(adj) < 0.05, we identified 1,241 SCI-induced and 

significantly changed genes. Within the 824 up-regulated genes, the table shows the top 25 genes, 

including gfap and thrombospondin2 that are implicated in astrocytic fate. including 824 up-

regulated and 417 down-regulated.  
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Table IV.2. Top 25 down-regulated genes 

 

Using a threshold of  -1 >  log2 fold  > 1 and p(adj) < 0.05, we identified 1,241 SCI-induced and 

significantly changed genes. Within the 417 up-regulated genes, the table shows the top 25 genes. 
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Figure IV.2. GO enrichment analysis 

Differentially expressed genes were submitted to a GO enrichment analysis using EnrichR to look 

at the main biological processes (A), molecular functions (B), and cellular components (C) that 

were affected. 
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Table IV.3. Top 10 upstream regulators (growth factors) 
 

 

Ingenuity Pathway Analysis was used to perform an Upstream Regulator Analysis of the 

differentially expressed genes. This table shows the top 10 of upstream regulators that are found 

within the growth factor category.  

 
Table IV.4. Top 10 upstream regulators (cytokines) 
 

 

Ingenuity Pathway Analysis was used to perform an Upstream Regulator Analysis of the 

differentially expressed genes. This table shows the top 10 of upstream regulators that are found 

within the cytokine category.  
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Figure IV.3. Spinal cord contusion in adult mice induces strong expression of TGF-β1 mRNA 

Dark-field photomicrographs showing TGF-β1 mRNA expression surrounding the spinal cord 

central canal of a sham-operated (laminectomy) mouse (A-B) and SCI mouse (~0.5 mm caudal to 

the lesion epicenter, (C-D) at four days post-surgery. Bright-field photomicrographs showing the 

location of cells expressing TGF-β1 mRNA with regard to the ependymal layer of the central canal, 

identifiable by the thionin counterstaining. Scale bar = 50µm.    
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Figure IV.4. NIC recruitment and proliferation 

Ependymal cells are recruited to become neurosphere-initiating cells (NICs). NICs will then 

expand along with progenitor proliferation to give rise to primary neurospheres and then secondary 

neurospheres (A). Experimental paradigm for growth of primary neurospheres from spinal cords 

of Vehicle or TGF-β1-infused mice (B). Quantification of average primary neurosphere number 

per mm of spinal cord. Unpaired t-test, *=p≤0.05 (C). Experimental paradigm for 
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immunohistochemical analyses (D). Image of the central canal in FoxJ1-EGFP mice following 

Ki67 immunostaining, showing definition of EZ and SEZ used in the present study (E). 

Quantification of Ki67+ cells in the EZ and SEZ following Vehicle or TGF-β1 infusion. Unpaired 

t-test, *=p≤0.05, ***=p≤0.001 (F). Frequency histogram of the mean number of Ki67+ cells per 

section (G). Dorso-ventral distribution of Ki67+ cells within the EZ and SEZ (H). (#) = absolute 

number of Ki67+ cells / section.  
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Figure IV.5. Effect of TGF-β1 on NIC expansion  

Experimental treatment paradigm for assessing NIC expansion (A), and average number of 

primary spheres obtained per mm of dissociated spinal cord when cells are treatment with Vehicle 

or TGF-β1 (B). One way-ANOVA, Dunnett’s multiple comparison tes. The Alk5 inhibitor does 

not increase numbers of primary neurospheres that can be grown from the dissociated spinal cord 

(C). Experimental paradigm for testing the effect of delaying TGF-β1 treatment until day three or 
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seven of primary neurosphere formation (D) Quantification of primary neurosphere numbers (E). 

Effect of delayed Alk5 inhibitor treatment on primary neurosphere formation. Experimental 

paradigm for blocking TGF-β1-induced signaling with the Alk5 inhibitor beginning at day three 

or seven (F). Quantification of primary neurosphere numbers (G). Unpaired t-test, *= p≤0.05, **= 

p≤0.01. 

  



 

 

171 

 

 

Figure IV.6. Effect of TGF-β1 on purified cultures 

Experimental treatment paradigm for assessing in vitro expansion of spinal cord-derived NICs (A). 

Average number (B) and size distribution (C) of tertiary neurospheres generated from dissociated 

secondary neurospheres when grown in proliferation medium supplemented with Vehicle versus 

TGF-β1. One sample t-test (D), **= p≤0.01. 
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Figure IV.7. Neurosphere growth inhibition is TGF-β1-specific, not due to indirect effects 

Experimental paradigm for obtaining conditioned-medium (CM) from dissociated spinal cords 

grown under neurosphere-forming conditions for three days in the presence of Vehicle or TGF-β1 

(A). Effect of increasing concentrations of CM on growth of secondary neurospheres. 

Experimental paradigm (B) and quantification of the effects of 25%, 50% and 100% CM on 

numbers of secondary neurospheres (C). Effect of blocking TGF-β1 signaling during CM-induced 

neurosphere growth inhibition. Experimental paradigm (D) and quantification of average number 

of secondary neurospheres grown in the presence of 100% Vehicle CM or 100% TGF-β1 (30 

ng/mL) CM (E). 

  



 

 

173 

 
 

Figure IV.8. Self-renewal assay 

Self-renewal assay. Experimental paradigm for retrospectively assessing number of NICs per 

secondary neurosphere (A). Counts of total number of cells per secondary neurosphere when 

grown in the presence of Vehicle versus TGF-β1 (B) and the percentage of secondary neurosphere 

cells that subsequently give rise to tertiary neurospheres when grown under normal proliferation 

conditions (C). One way-ANOVA, Dunnett’s multiple comparison test.  
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Figure IV.9. TGF-β1 promotes proliferation and astrocytic differentiation in vitro 
Experimental paradigm of tests performed on dissociated secondary sphere cells (A). Individual 

representative images of Hoechst, Ki67, and TUNEL staining as well as the merge image. Arrow shows a 
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Ki67+ cell and the arrowhead shows a TUNEL+ cell (B), and quantification of the proportion of cells that 

are Ki67+ (C) or TUNEL+ (D). Unpaired t-test, *= p≤0.05. Curves (E) and mean fluoresence (F) for the 

CFSE cell division assay (See methods for details). Note the TGF-β1-induced decrease in fluorescence, 

indicative of increased proliferation. A differentiation (diff) condition was added as a negative control. 

Propidium iodide cell cycle analysis following treatment with Vehicle (G) or TGF-β1 (H), showing a small 

but significant increase in cells within the G2-M phase (quantified in I). One way-ANOVA, Dunnett’s 

multiple comparison test (CFSE), and unpaired t-test (PI), *= p≤0.05, **= p≤0.01. Differentiation 

experiments. Western blots (J) and densitometric quantifications (K) following three days of Vehicle or 

TGF-β1 treatment. Immunocytochemistry for GFAP in Vehicle-treated (L) or TGF-β1-treated (M) cultures 

(400x magnification). Scale bar = 25µm. Unpaired t-test, *= p≤0.05. 
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Figure IV.10. Summary 

TGF-β1 infusion in vivo inhibits NIC recruitment (1) and stimulates proliferation of ependymal 
cells (2). TGF-β1 treatment in vitro suppresses initial NIC recruitment (3) and inhibits subsequent 
NIC expansion (4), while simultaneously increasing proliferation of a subpopulation of progenitors 
(5) and astrocytic differentiation (6). The relationship between the NIC and proliferative 
ependymal cells in vivo is not established. 
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Figure IV.11. Preliminary data for IL-6, IL-1β1, and TNF-α 

Experimental treatment paradigm for assessing NIC recruitment (A), and average number of 

primary spheres obtained per mm of dissociated spinal cord when cells are treated with individual, 

duo, or trio of cytokines (B), and average size (C) (One way-ANOVA, Dunnett’s multiple 

comparison test. 
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Chapter V. Discussion 
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V.1. Discussion 

The aim of this thesis work was to investigate the mechanisms underlying activation of 

neural stem cells in the adult central nervous system. My specific aims were to address this 

question using adult mice in two complementary models:  1) activation of hippocampal NSCs by 

environmental enrichment (chapters II and III), and 2) activation of spinal cord NSCs by injury-

induced neuroinflammation (chapter IV). Moreover, 3) to gain new insights into the molecular 

mechanisms of these models, we performed transcriptomics studies to open new lines of 

investigation (chapters III and IV). This dissertation work was comprised of three studies and the 

related findings are discussed below.  

 

V.1.1. Activation of hippocampal NSCs by environmental enrichment 

The first model of NSC activation used in this dissertation is a physiological stimulation, 

known as EE, that can be useful to better understand how NSCs improve cognitive function in the 

brain. In my first study, we investigated the effect of individual components of EE on hippocampal 

neurogenesis at the cellular level (chapter II). This study allowed us to identify the key components 

of EE that are implicated in the activation of hippocampal NSCs. Then, in my second study, we 

confirmed that these key EE variables showed differences in cognitive function by doing 

behavioural tests and pursued with an unbiased RNA-Seq approach to unravel new cellular and 

molecular processes that could be implicated in the observed changes (chapter III).  

 

V.1.1.1. Impact of individual components of EE 

In my first study (chapter II), the main challenge was to develop a paradigm that allowed 

efficient separation of individual components found within an enriched environment. We came up 

with an “Alternating EE” paradigm allowing the stepwise addition or subtraction of EE variables. 

The outbred CD1 strain was chosen over the most commonly used inbred C57BL/6 mouse strain 

based on the results of one of our control experiments and on the literature (Clark et al. 2011b). A 

lower baseline proliferation was observed in CD1 mice when compared to C57BL/6, and a 

running-induced increase detectable with only four animals and we decided to pursue the study 
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with this mouse strain. However, this choice has its downsides mainly because a minority of EE 

studies are conducted in outbred strains, hence making it harder to compare results. Furthermore, 

the genetic background itself was shown to have an influence on hippocampal neurogenesis 

(Kempermann and Gage 2002; Kempermann et al. 1997a). However, the priority was to have a 

valid mouse model in which we could observe the effect of EE and finally our results were 

consistent with our previous studies (Bednarczyk et al. 2009; Bednarczyk et al. 2011). 

 

We first asked whether these different environments had any impact on the main stages of 

neurogenesis (proliferation, neuroblasts, immature neurons, and survival) after a period of four 

weeks. We did not detect any significant difference between our impoverished and locked disc 

conditions, which contradicts previous findings from our laboratory. Bednarczyk and colleagues 

demonstrated that mice exposed to a locked disc environment showed an increase in proliferation 

similar to runners. Other stages were modulated as their control environment (impoverished), 

suggesting running independent and running dependent stages (Bednarczyk et al. 2011). The same 

mouse strain was used and we controlled for the difference between running discs and wheels as 

well as daily handling. The use of an antigen-retrieval to reveal Ki67+ proliferating cells for the 

current study might be responsible for this difference even though this change applies to all the 

groups and should be uniform. As expected, runners showed increased levels of all four stages 

when compared to animals within the locked disc group, regardless of the three-day or seven-day 

condition. In contrast, the complex environment (CE) had no significant effect. Interestingly, when 

running was added to the CE, the amount of neuroblasts and newly-born cells increased. However, 

the opposite did not lead to the potentiation of the effects. These results suggest that running is the 

main neurogenic component of EE, and not CE. There was also no sign of additive effect as 

suggested in the literature (Fabel et al. 2009). However, Fabel and colleagues exposed their mice 

to consecutive periods of EE, such as ten days of running followed by 35 days of EE, which differs 

considerably from our paradigm. Moreover, no details were provided in regards to the EE 

components. One possible caveat to this study is that our type of enrichment could be considered 

a mild form of cognitive stimulation, therefore explaining the lack of neurogenic effect from the 

CE group. Mice could have been exposed to learning-associated stimuli to increase cell survival, 

for example (Leuner et al. 2004).  
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We next asked whether the pattern of DG activation using a depolarization-induced 

immediate early gene, c-fos, exhibited differences among groups. We suggested that the social 

component within CE was positively modulates c-fos expression. The addition of a toys only group 

could have improved this study and allowed us to accurately say that social interactions are 

responsible for the increased neuronal activation observed in the CE group, unless the toys group 

would have shown similar results. Surprisingly, exercise decreased c-fos levels, which contradicts 

other studies (Clark et al. 2012; Clark et al. 2011a; Clark et al. 2009). Rhodes group observed 

increases in immediate early gene expression in paradigms ranging between five to seven weeks 

of running, which suggests that our four-week paradigm might have been too short too see this 

effect. We investigated a step further to see if stress could be involved in the running neurogenic 

effect or lack of effect from CE. All groups including a CE component showed low plasma 

corticosterone levels, suggesting that high stress is not responsible for the lack of neurogenic 

effect. Moreover, two of the CE components tested (locked disc and social interactions) did not 

show a reduced corticosterone expression, suggesting that the rotated tunnels could be mediating 

this effect. As mentioned previously, the presence of a toys only group would have been beneficial 

to confirm this hypothesis.  

 

Together this work confirmed that 1) running is the neurogenic component of EE, 

regardless of the frequency (three or seven days a week), 2) showed that social interactions within 

the CE increase neuronal activation and that 3) social isolation, group housing, nor increased levels 

of plasma corticosterone had an impact on neurogenesis. Moreover, it allowed us to identify the 

running and social interactions as key EE components for further investigation.  

 

V.1.1.2. Behavioural impact of exercise and social interactions 

In my second study, the goal was to first investigate the functional outcome following 

exposure to the previously identified key components of EE, exercise and social interactions. Then 

use an unbiased method such as RNA-Seq to assess if these components have distinct cellular and 

molecular processes mediating their distinct consequences on the DG.  We first established three 
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behavioural tests that would assess learning and memory: CPP (contextual learning and memory), 

RAM (spatial learning and memory), and NOR (object recognition memory), and the open-field 

that assesses locomotor activity. CPP and RAM were incentive-driven while NOR was driven by 

the mouse innate novelty preference. Unfortunately, technical difficulties during CPP led to 

inconclusive results that were excluded from the study, but mice were still exposed to this 

environment and can be considered as another type of enrichment. In fact, this current paradigm 

differs from the (Gregoire et al. 2014) paradigm in two aspects: 1) the length of the study (eight 

weeks versus four weeks) and 2) the addition of behavioural testing that could be considered as a 

learning-associated stimulus (cognitive stimulation). This type of stimulus was shown to increase 

cell survival (Leuner et al. 2004). A control experiment demonstrated that after eight weeks, 

neuroblast numbers were still increased by voluntary running and socially-housed mice were not 

different from locked disc controls, consistent with the four-week paradigm data (Gregoire et al. 

2014). In addition, it would be interesting to test for the expression of immediate early genes, such 

as c-fos, zif268, or arc to see if we would detect an increase consistent with other studies (Clark et 

al. 2011a; Clark et al. 2009). 

 

Behavioral studies confirmed our hypothesis that exposure to exercise and social 

interactions leads to different behavioral outcomes. First, we confirmed that changes between 

groups would not be due to differences in baseline locomotor activity as all groups showed similar 

travelled distances in the open-field. In the RAM, runners demonstrated a stronger short-term 

recall (more entries in the previously baited arm), whereas socially-housed mice had better 

cognitive flexibility (better arm accuracy). In the NOR test, a mouse normal behaviour consists in 

exploring more the novel object as it remembers the familiar object. Both the locked disc controls 

and socially-housed mice showed short-term object recognition memory. In contrast, runners had 

a preference ratio equal to chance after an hour, but showed a strong tendency for long-term 

memory object recognition memory. It would be interesting to test additional animals to see if can 

reach significant results. From several experiments conducted in the laboratory, we noticed that 

the CD1 outbred strain shows a lot of variability, and therefore more animals are needed in order 

to show conclusive effects.  
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The socially-enriched complex environment and exercise groups affected differently the 

cellular and genetic processes. Our previous published results on complex environment suggested 

the social interactions component was mediating the neuronal activation increase (Gregoire et al. 

2014). However, this previous study did not assess the impact of the rotating tunnels on their own 

to clearly confirm this interpretation. Ideally, we would have performed this RNA-Seq with the 

social interactions only group. Our bioinformatics analysis revealed interesting data: 1) CE and 

running stimulate distinct genetic changes in the DG, and 2) running intensity differentially 

impacts DG gene expression. A more in-depth bioinformatics analysis will be needed to select 

genes of interest and verify their implication in NSC activation or neuronal function.  

 

Together, this work demonstrated that key components of EE, exercise and social 

interactions, are responsible for changes not only at the cellular level, but also at the behavioral 

and genetic levels. The transcriptomics analysis will allow us to identify new targets that could be 

implicated in the mechanism underlying NSC activation or neuronal activation.  

 

V.1.2. Activation of spinal cord NSCs by injury-induced neuroinflammation 

The second approach to activate NSCs in this thesis is a pathological stimulation known as 

spinal cord injury (SCI). This stimulation can help us better understand how NSCs modulate their 

activity to promote repair of the CNS after a lesion. The neuroinflammation reaction after injury 

has been extensively studied as well as the spinal cord ependymal cell proliferation, but not the 

link between both events (Barnabe-Heider et al. 2010; Donnelly and Popovich 2008; Meletis et al. 

2008; Popovich et al. 1997). We therefore decided to start by performing a RNA-Seq on a specific 

cell population (ependymal cells) following injury to target molecular changes that could be 

implicated in the activation of ependymal cells following SCI as little information is known in the 

literature.  

 

 

 



 

 

184 

V.1.2.1. TGF-β1 impact on ependymal cells 

The goal of this study (Chapter IV) was to first identify a potential upstream regulator of 

the transcriptome modifications detected following ependymal cells activation by SCI. Second, to 

understand at what stage it is acting upon: activation of quiescent ependymal cells, proliferative 

expansion, migration or differentiation. Ependymal cells from FoxJ1-eGFP mouse spinal cords 

(sham or injured) were isolated through FACS and then RNA was isolated and prepared for RNA-

Seq. A bioinformatics analysis of upstream regulators suggested that TGF-β1 could play an 

important role in the ependymal cell activation, and we thus confirmed the presence of TGF-β1 

mRNA around the central canal of the spinal cord after SCI. TGF-β1 treatment decreased in vivo 

numbers of NICs, but increased proliferating ependymal-derived progenitors. We next confirmed 

that TGF-β1 suppresses completely in vitro growth factor-mediated formation of primary spheres. 

This was tested via the use of a TGF-β1 receptor 1 kinase inhibitor, Alk 5, on primary neurospheres 

from dissociated spinal cord cells at different time points after treating cells with Vehicle or TGF-

β1. The experiment showed a partial rescue when Alk5 was added on day three and no rescue 

when added on day seven (decreasing effect through time), suggesting that TGF-β1 acts on early 

stages of neurosphere formation. A 50% decrease in purified tertiary neurosphere formation was 

also observed suggesting an effect on neural precursors. To determine if this effect was direct or 

indirect, conditioned medium from non-purified primary cultures was added to dissociated primary 

sphere cells. Results showed that the growth-inhibitory effect was attributable to residual TGF-β1 

as the effect disappeared when cells were treated with Alk5. TGF-β1 also had downstream effects 

on progenitors as it increased their proliferation and promoted their astrocytic fate.  

 

The main remaining question concerns the ependymal cell behaviour following injury 

when TGF-β1 is specifically blocked in these cells in vivo in order to confirm our model. 

Moreover, TGF-β1 is not the only upstream regulator of interest that showed up in our ingenuity 

pathway analysis. Furthermore, the link between NIC and proliferating cell is still unknown. Our 

work shows that TGF-β1 acts upon NIC at an early stage of neurosphere formation, but we do not 

know if proliferating ependymal cells after injury are the NIC or if NIC are the ones proliferating 

or if they may be two distinct ependymal cell population. Neuroinflammation following SCI is a 

very complex reaction and molecules that are secreted could have synergic, additive or inhibitory 
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effects on one another and studying the different factors within this reaction is crucial to fully 

understand what is happening. For example, IL-6, IL-1β, and TNF-α are within the first cytokines 

to be secreted following SCI and they were part of the top 10 of upstream regulators in the 

cytokines category (Donnelly and Popovich 2008). We started investigating the impact of these 

cytokines on ependymal cells and preliminary data suggested that they should be investigated 

further as they show a decrease in neurosphere growth formation.  

 

Together, these results show three main conclusions: 1) the initial recruitment step of NICs 

from primary cultures is more sensitive to TGF-β1 than subsequent expansion of NICs (primary 

versus tertiary neurospheres). 2) Raising TGF-β1 levels decreases the ability of spinal-cord derived 

NICs to generate neurosphere colonies in response to EGF/FGF2. Finally, raising TGF-β1 levels 

increases proliferation and favours astrocytic differentiation of downstream progenitors.  

 

V.1.3. Insights from both models 

The DG, a neurogenic niche, responds differently from the central canal, a quiescent niche, 

following a stimulus. This is why we chose to stimulate these niches using two different methods: 

physiological (EE) and pathological (SCI). Although the two complementary models of NSC 

activation differ considerably, it could be possible to translate the notions learned from one model 

to the other.  

 

Under normal conditions, hippocampal neurogenesis occurs in the brain and was shown to 

be increased by different types of EE (Kempermann et al. 1997b; van Praag et al. 1999b). Exercise 

was identified as the pro-neurogenic EE component (Gregoire et al. 2014). It is well established 

that exercise increases systemic growth factors such as FGF2, IGF1, VEGF, and BDNF (Aberg et 

al. 2000; Fabel et al. 2003; Jin et al. 2002; Rossi et al. 2006; Wagner et al. 1999). In our RNA-Seq, 

we unravelled novel potential targets that may be mediating the hippocampal neurogenesis 

increase observed following exercise. There are possibilities that systemic factors might also affect 

the spinal cord. A study showed that seven days of exercise was sufficient to increase the number 

of oligodendrocyte precursor NG2+ cells, while 14 days led to significant increases in Nestin+ 
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neural precursor cells, GFAP+ astrocytes and BIII-tubulin+ neurons in the intact spinal cord 

(Krityakiarana et al. 2010). Moreover, Villeda and colleagues demonstrated using parabiosis 

experiments that the systemic milieu could induce or block age-related impairments in both 

hippocampal neurogenesis and cognitive function (Villeda et al. 2011; Villeda et al. 2014). These 

results show the importance of systemic changes that could influence both quiescent and 

neurogenic niches.  

 

Neuroinflammation is a process that does not only occur in the spinal cord following SCI, 

but also after traumatic brain injury (Chiu et al. 2016). It is possible that some insights gained from 

our RNA-Seq could be applied to the brain. However, in contrast to the RNA-Seq performed in 

the DG, this one was performed on ependymal cells found in the central canal specifically. This 

may limit the transferable findings. Moreover, several studies showed that the inflammatory 

response is greater in the spinal cord than in the brain, which could mean different individual and 

synergic effects (Batchelor et al. 2008; Schnell et al. 1999). 
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V.2. Perspectives 

The main findings of this dissertation lead to other questions that remain unanswered to 

better understand what are the key mechanisms underlying the activation of NSCs in the CNS. 

This section will look into the mouse model, follow-up experiments as well as other avenues that 

could be worth exploring based on these new findings.  

 

V.2.1. Mouse model – possibilities and limitations 

The mouse model was chosen for this thesis work mainly because it allows the study of 

NSCs in both brain and spinal cord using invasive methods that would go against human ethical 

principles. It was demonstrated recently that hippocampal neurogenesis occurs in both rodents and 

humans, further confirming the validity of this model (Ernst and Frisen 2015; Spalding et al. 2013). 

Similarly, the presence of NICs was shown in the human spinal cord (Dromard et al. 2008; Mothe 

et al. 2011). The mouse offers a vast variety of possibilities such as transgenic models, in vivo 

experiments including electroporation and osmotic pumps, and in vitro cultures (Barnabe-Heider 

et al. 2008; Dhaliwal and Lagace 2011; Martens et al. 2002; Weiss et al. 1996). The ability to cut 

brain and spinal cord sections to perform immunohistochemistry or the use of microdissections of 

specific regions to perform RNA-Seq or proteomics is of great importance to discover new cellular 

and molecular mechanisms that could have applications in humans.  

 

Unfortunately, each model has its limitations. First, in our case, most transgenic mouse 

lines have a C57BL/6 background and this could cause complications for any future investigations 

(refer to section V.1.1.1.). Second, and most importantly, most drugs tested in rodents fail to work 

in humans, a concept called attrition (Garner 2014; Mak et al. 2014). A recent review on the topic 

goes against the prevalent idea that animals are too different from humans to predict human 

outcomes by suggesting that we should rather advocate a fundamental shift (Garner 2014). A shift 

to human-based biomarker and personalized medicine is observed and less interest is directed 

towards animal-based genomic and phenotyping because the value of animal research is recently 

put into question. One example to demonstrate this argument is the concern about how a MWM 

can model the human subtle changes in cognition, while in humans there is an entire 
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neuropsychology discipline that studies it. Garner suggests that researchers should eliminate false 

positive in animal models by 1) using the same clinical parameters in animals than in humans 

(avoid the -like word), 2) having a strong specific null hypothesis (one test per hypothesis to avoid 

multiplicity), 3) modeling the development of disease itself in a wild-type population (not the 

veracity of a tool, such as a scalpel or knock-out approaches), and 4) using false positives as 

validation controls (Garner 2014). Interestingly, Garner states that “a good model will be one 

where genetics confers risk, not certainty, and the modulators of that risk can be studied” (Garner 

2014). These are important points to keep in mind for any future experiments discussed below.  

 

V.2.2. Follow-up experiments 

V.2.2.1. EE project 

In the EE project, the RNA-Seq experiment opened multiple avenues of research as 

different cellular and molecular changes were identified for each condition. Low Runners showed 

changes in multi-system synaptic changes, extracellular matrix and growth factor and calcium 

signalling. In contrast, High Runners exhibited changes associated with stress responses and 

negative regulation of synaptic activity. The key difference between both running intensities is the 

regulation of synaptic activity. How are Low and High Runners DG niche differently regulated? 

To address this question, we would first confirm the RNA-Seq data by assessing the expression of 

specific changes by immunohistochemistry such as SST and NPY (interneuron markers) in Low 

Runners and prostanglandin-endoperoxide synthase 2 (also known as COX-2) in High Runners. 

The DG receives several synaptic inputs: dopaminergic (ventral tegmental area), cholinergic 

(septum), glutamatergic (entorhinal cortex), and gabaergic (local interneurons) (Kempermann et 

al. 2015a). All of which were shown to be significantly modulated in Low Runners, and probably 

inhibited in High Runners. It would be interesting to discover exactly what inputs are inhibited in 

High Runners by either inhibiting/activating the specific neurons using optogenetics approaches 

which would be more specific than lesions or other inhibition techniques that were used in the past 

(Ho et al. 2009; Park and Enikolopov 2010; Song et al. 2012). Moreover, these loss and gain-of-

function experiments could be helpful to determine the exact differences in the niche regulation of 

each synaptic input in Low and High Runners. As we can identify specific genes that were 



 

 

189 

modulated in these processes (from the RNA-Seq), we could pinpoint genes responsible for the 

observed changes in the DG niche (neurogenesis and functional outcome).  

 

The complex environment condition, in contrast, primarily affected the extracellular 

matrix. We would first confirm these changes by evaluating the expression of thrombospondin 1 

by immunohistochemistry. Then, we could investigate further the role of extracellular matrix genes 

in neuronal activation. As it is only a small percentage of newly-born cells that are activated, it 

would be advantageous for us to use another method than immediate-early gene labeling, such as 

electrophysiology (hippocampal slice cultures) to confirm their activation in a specific model (loss 

or gain-of-function).  

 

 In these experiments, transgenic mouse models are needed but they take time to create. 

Unfortunately, the use of hippocampal neurosphere cultures is not reliable in our hands 

(preliminary data based on a modified (Babu et al. 2007) protocol), and cannot be used to perform 

transfections or simple drug testing (inhibitors and/or activators). However, other experiments 

could be conducted such as in vivo electroporation of cell-specific plasmids, which would be a 

faster method than generating new transgenic mouse lines (Barnabe-Heider et al. 2008). We could 

therefore knockout or overexpress genes of interest (to be determined by more in-depth 

bioinformatics analyses). For each gene, we would first confirm their presence in humans, if it is 

not already known, using either post-mortem tissues, blood or CSF samples before investigating 

further. In all cases, the functional outcome of these models would be assessed by 

electrophysiology and behavioural tests.  

 

V.2.2.2. Spinal cord project 

Understanding NSC activation within the spinal cord can have important beneficial 

consequences as we know that the spinal cord is mostly quiescent under normal conditions. NSCs 

have the potential to play an important role in neuronal repair after SCI. Similar to the context of 

neurodegenerative diseases, once the cells are activated it is important to make sure they 

differentiate into the right cell type and survive in the injured environment. The importance of 
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unraveling what mediates the acquisition of stem cell properties by ependymal cells after injury 

remains crucial. However, the complexity of the neuroinflammatory response following injury 

makes it harder to select one of the significantly modulated genes as our target. This is why our 

approach has been to look at upstream regulators of these modified downstream genes as it is more 

likely that multiple changes are responsible in the ependymal cell behaviour changes. The next 

step was to look at the regulators that were secreted first following the microglia activation. We 

first selected TGF-β1, then the next step will be to study IL-6, IL-1β, and TNF-α, which are all 

secreted within minutes after injury (Bastien and Lacroix 2014) and found within our top 10 

upstream regulators. As these factors are secreted around the same time, it is worth asking if they 

affect ependymal cell activation (behaviour) in a synergic manner. Hence, we would test their 

individual, duo, and trio effect on proliferation, differentiation, survival by using spinal cord-

derived cultures as we did for TGF-β1. As TGF-β1 blocked NIC recruitment, it would be 

interesting to see if these other cytokines have a different effect by promoting the recruitment of 

ependymal cells. It will also be important to determine their in vivo effect by either blocking their 

secretion, their receptors or using a Cre-Lox approach after spinal cord injury. It is important to 

keep in mind the importance of what these activated ependymal cells are becoming, each cytokine 

could influence a different cell fate that could, in turn, influence glial scar formation (Gregoire et 

al. 2015).  

 

V.2.3. Other avenues 

This section covers different avenues that could be covered in the long-term and may not 

be direct follow-ups of the current projects.  

 

V.2.3.1. Reward system 

Could intense running negatively influence neurogenesis and cognitive function due to 

mesolimbic system dysregulation? Exercise was demonstrated to be rewarding, but the impact of 

different running intensities on the mesolimbic circuitry (reward pathway that connects the ventral 

tegmental area to the nucleus accumbens) remains unclear (Greenwood et al. 2011). It was 

previously shown that dysregulation of the dopamine system can lead to compulsive behaviour 
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such as excessive running  (Mathes et al. 2010). Could excessive running lead to dopaminergic 

dysregulation as well? Inoue and colleagues recently showed that intense running activity in rats 

leads to higher stress levels, whereas mild exercise increases neurogenesis (Inoue et al. 2015). 

Moreover, heavy physical workload leads to cognitive function impairments in humans (Mekari 

et al. 2015). However, we showed that mice that ran either ran three or seven days a week reached 

the same levels of neurogenesis (Gregoire et al. 2014). This was also demonstrated in mice that 

ran 80% more, in average, on a running disc than their counterparts with access to a running wheel.  

Moreover, we did not detect any difference in corticosterone levels (Gregoire et al. 2014). This 

discrepancy could be due to the use of rats versus mice and treadmill versus voluntary running. 

However, we did observe important differences between Low and High Runners in our RNA-Seq 

that suggested that synaptic activity could negatively regulated in High Runners. Interestingly, in 

our RNA-Seq, enkaphilin, an endogenous ligand for opioid receptors expressed in the mesolimbic 

system, was only expressed in high runners (Garzon and Pickel 2002). It would be interesting to 

investigate further this question to discover if what is called the runner’s high can lead to 

detrimental effects on cognitive function.  

 

V.2.3.2. Exercise pill 

 To fully understand the mechanisms underlying the activation of NSCs in the DG niche, it 

implicates to carefully screen our transcriptomics results to test different possibilities and look at 

the functional relevance of each potential target. A current infatuation is to develop exercise pills 

to counter sedentary lifestyles and inactivity from people with disabilities or chronic diseases. 

Understanding how (the mechanism) exercise increases neurogenesis and improves learning and 

memory could complement the knowledge about the known molecular pathways in whole organ 

systems that are activated following exercise (Li and Laher 2015). For example, an exercise pill, 

called compound B6, was developed using the knowledge that PGC-1α is induced by exercise in 

the muscles (refer to discussion chapter III) to look at its downstream effect. However, there is still 

a lot of controversy around exercise pills as most studies are conducted in mice and the relevance 

in humans remains to be shown (Li and Laher 2015). On the other hand, exercise and cognitive 

stimulation can also be used as non pharmaceutical approaches in aged patients to prevent 

cognitive decline if we understand better their mechanism of action (Bherer 2015). 
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V.2.3.3. Proliferating ependymal cells versus NIC 

 Another avenue of research could be to investigate further the link between the proliferating 

ependymal cells and NIC that is currently unknown (Gregoire et al. 2015). Ependymal cells around 

the central canal proliferate more following injury (Barnabe-Heider et al. 2010). However, it is not 

clear if it is the proliferating population that acquires NSC properties to become NICs or if they 

are two distinct populations. A better understanding of the homogenous or heterogeneous 

ependymal cell population could help targeting a more specific population and learn more from its 

characteristics (and potential) for therapeutic purposes.  

  



 

 

193 

V.3. Conclusions 

In summary, these studies allowed us to gain some insights into potential cellular and 

genetic processes that mediate NSC activation following two different types of stimulation: 

physiological (EE) and pathological (neuroinflammation). My thesis work demonstrated distinct 

cellular and molecular changes within the DG niche following exposure to different running 

intensities and social interactions that could lead to improved cognitive function. Moreover, TGF-

β1 was identified as an important player in the acquisition of stem cell properties by spinal cord 

ependymal cells and other potential targets were identified.  
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Endogenous Neural Stem Cell Responses
to Stroke and Spinal Cord Injury

Catherine-Alexandra Gr�egoire,1,2,3 Brianna L. Goldenstein,1,2,4 Elisa M. Floriddia,5

Fanie Barnab�e-Heider,5 and Karl J. L. Fernandes1,2,4

Stroke and spinal cord injury (SCI) are among the most frequent causes of central nervous system (CNS) dysfunction, affecting
millions of people worldwide each year. The personal and financial costs for affected individuals, their families, and the
broader communities are enormous. Although the mammalian CNS exhibits little spontaneous regeneration and self-repair,
recent discoveries have revealed that subpopulations of glial cells in the adult forebrain subventricular zone and the spinal
cord ependymal zone possess neural stem cell properties. These endogenous neural stem cells react to stroke and SCI by
contributing a significant number of new neural cells to formation of the glial scar. These findings have raised hopes that new
therapeutic strategies can be designed based on appropriate modulation of endogenous neural stem cell responses to CNS
injury. Here, we review the responses of forebrain and spinal cord neural stem cells to stroke and SCI, the role of these
responses in restricting injury-induced tissue loss, and the possibility of directing these responses to promote anatomical and
functional repair of the CNS.
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Introduction

Spinal cord injury (SCI) and stroke are debilitating, costly,

and common pathological conditions affecting the central

nervous system (CNS). Stroke affects 15 million people

worldwide annually (World Health Organization, 2002); of

these, 5 million will die and another 5 million will be perma-

nently disabled. SCI, whose principal causes are motor

vehicles accidents, falls, violence, sports, and work-related

injuries, is a problem that is particularly frequent in devel-

oped countries. In Western Europe, the incidence of SCI is

between 280 and 316 new cases per million people each year

(Lee et al., 2014), while in the United States of America,

approximately 273,000 people (about 80% of which are

male) live with a SCI (The National Spinal Cord Injury Sta-

tistical Center, 2013). SCI typically occurs during the most

active years in people’s lives, and results in impairment of

locomotor and sexual functions, neuropathic pain, spasticity,

and incontinence (Westgren and Levi, 1998). Financial costs

are likewise staggering: in 2013, the average costs within the

first year of injury ranged from $340,000 to over $1 million

per patient, depending on age and anatomical level of the

injury (The National Spinal Cord Injury Statistical Center,

2013).

The relatively recent discovery of primitive neural pre-

cursors, i.e., neural stem cells (NSCs), within the adult CNS

has raised hopes for improving the limited recovery that

occurs following stroke and SCI. In this article, we review

key advances made in uncovering the responses of endoge-

nous neural stem cells to CNS injury, their role in the tissue

repair process, and the potential for recruiting these cells to

regenerate injured brain and spinal cord tissue.

Distinct Responses of Vertebrate Neural
Stem Cells to CNS Injury

The regenerative ability of the CNS following lesions differs

markedly across the vertebrate subphylum, providing
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fascinating insights into potential mechanisms of CNS regen-

eration (Bonfanti and Peretto, 2011; Ferreira et al., 2012).

Regenerating Vertebrates
In the three oldest vertebrate classes (fish, amphibians, and

reptiles), many species exhibit continuous cellular production

and growth throughout their lives (“indeterminate growth”;

Diaz Quiroz and Echeverri, 2013; Lee-Liu et al., 2013;

Tanaka and Ferretti, 2009). In such continuously growing

species, embryonic NSCs (now recognized to be the embry-

onic radial glial cells) maintain a high basal activity even after

maturity is reached, adding new neurons and glial cells con-

tinuously during adulthood. It is perhaps not surprising,

then, that such species are capable of impressive feats of adult

CNS regeneration. Notably, however, the oldest vertebrate

classes also consist of species (such as the zebrafish, Danio

rerio) that eventually achieve a mature size, but that neverthe-

less retain the capacity for scarless CNS regeneration. More-

over, even within regenerating species, hotspots of

endogenous proliferation and neurogenesis do not necessarily

correlate with regions of enhanced regenerative potential;

rather, tissue injury seems to allow the reactivation of quies-

cent “ependymoglial” cells that subsequently re-establish zones

of regenerative proliferation and neurogenesis (Kirkham et al.,

2014). In urodele amphibians, for instance, the ependymo-

glial cells lining the spinal cord central canal maintain proc-

esses that contact the pial membrane, similar to radial glial

cells. After spinal cord injury, these ependymoglial cells transi-

ently lose their glial fibrillary protein (GFAP) expression,

express NSC markers such as Nestin, and participate in the

repair of the neuroepithelial tube that will eventually rebuild

the spinal cord (Walder et al., 2003).

Transplantation and genetic studies reveal a central role

for NSCs during spinal regeneration. Transplantation studies

using green fluorescent protein-expressing transgenic axolotl

have shown that, following tail amputation, clonally derived

spinal cord neurospheres can regenerate both the spinal cord

and its associated peripheral ganglia (McHedlishvili et al.,

2012). Studies in Xenopus tadpoles (Gaete et al., 2012), adult

zebrafish (Goldshmit et al., 2012), and axolotl (Fei et al.,

2014) have also provided genetic evidence of the role of neu-

ral precursors in spinal regeneration. Gaete and colleagues

observed a significant increase in Sox21 cells (undifferentiated

neural precursors) 4 days after amputation of tadpole tails,

where 20–60% of these cells also incorporated 5-bromo-2-

deoxyuridine (BrdU, a synthetic nucleotide that is incorpo-

rated into dividing cells). Importantly, a dominant negative

construct that inhibits Sox2 translocation to the nucleus pre-

vented about half of the tadpoles from regenerating their tails

(Gaete et al., 2012). Similarly, a clustered regularly inter-

spaced short palindromic repeats (CRISPR)-mediated knock-

out of Sox2 in axolotl prevented NSC proliferation and

regeneration of the amputated spinal cord, while regeneration

of surrounding mesodermal tissues was unaffected (Fei et al.,

2014). Fibroblast growth factor (FGF) is a known mitogenic

factor for NSCs and plays an important role in coordinating

spinal repair in adult zebrafish, as inhibition of FGF signaling

prevents formation of a glial bridge between proximal and

distal stumps of the transected spinal cord (Goldshmit et al.,

2012). Collectively, these studies reveal that NSCs in regener-

ating fish, amphibians, and reptiles are either maintained

postdevelopment and/or rapidly reactivated from more quies-

cent cellular phenotypes, and these NSCs are capable of driv-

ing the anatomical and functional regeneration of the spinal

cord.

Mammals
Mammals (as well as birds) exhibit determinate growth: fol-

lowing embryogenesis, they begin undergoing a generalized

decline in tissue growth and stem cell activity that continues

into adulthood and old age. Mammals are capable of at least

partial CNS regeneration when injury occurs during develop-

mental periods, but exhibit regenerative failure following

adult CNS lesions. However, remarkable studies conducted

over the past 20 years have established that adult mammals

(including humans) do retain discrete and regionally distinct

populations of cells with NSC potential (Bonfanti and Per-

etto, 2011). During the early 1990s, Weiss and colleagues

reported the isolation of NSCs from the adult rodent CNS

(Reynolds and Weiss, 1992). These cells were isolated and

expanded in vitro as free-floating, clonally derived colonies

termed neurospheres, and revealed that a small subpopulation

of cells intrinsic to the adult mammalian CNS display the

cardinal stem cell characteristics of extensive self-renewal and

multipotency (Reynolds and Weiss, 1992). Specifically, undif-

ferentiated neurospheres can be serially passaged over many

generations, with single cells retaining the ability to spontane-

ously differentiate into neurons and glial cells upon mitogen

withdrawal. Subsequent studies went on to demonstrate that

neurospheres could be grown from periventricular areas along

the entire rostrocaudal extent of the rodent neuraxis (Weiss

et al., 1996).

Unexpectedly, the neurosphere-initiating cells from the

brain and spinal cord have been found to correspond to dif-

ferent types of glial cells. Neurospheres in the forebrain origi-

nate from GFAP-expressing astrocytes (Doetsch et al., 1999).

These astrocytes are developmentally derived from radial glia

and have retracted their pial processes, persisting as subepen-

dymal astrocytes within the subventricular zone (SVZ; Krieg-

stein and Alvarez-Buylla, 2009; Voigt, 1989). In vivo, SVZ

astrocytes are neurogenic, continually generating neuroblasts

that, in most adult mammals, migrate long-distances before
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differentiating into fully functional interneurons within the

olfactory bulbs (Gheusi et al., 2013). They also produce glial

cells, including oligodendrocytes that integrate into the adja-

cent white matter tracts (Gonzalez-Perez et al., 2009; Menn

et al., 2006; but see Ortega et al., 2013) and ependymal cells

that incorporate into the ventricular walls (Luo et al., 2008).

In the spinal cord, neurospheres grow solely from the

central canal area and originate from FoxJ1-expressing epen-

dymal cells (Barnab�e-Heider et al., 2010; Martens et al.,

2002; Meletis et al., 2008; Sabelstr€om et al., 2013b). Unlike

SVZ astrocytes, central canal ependymal cells are non-

neurogenic in vivo, exhibiting a low level of constitutive pro-

liferation that serves to maintain the ependymal cell popula-

tion (Barnab�e-Heider et al., 2010; Hamilton et al., 2009;

Horky et al., 2006). Surprisingly, despite the distinct pheno-

type and endogenous behavior of SVZ astrocytes and spinal

cord ependymal cells, these two glial cell types can both give

rise to clonally derived neurospheres that are capable of self-

renewing and of multipotency (ability to generate neurons,

astrocytes, and oligodendrocytes in vitro). This suggests that

different pools of glial cells are capable of expressing NSC

properties under the appropriate conditions (Fig. 1).

The anatomy of the SVZ and central canal in humans

differs somewhat from those of rodents. In the rodent SVZ,

astrocytic stem cells are integrated in ependymal pinwheels

within the lateral ventricle walls (Mirzadeh et al., 2008),

while in humans, the ependymal layer is separated from a

dense subependymal astrocytic “ribbon” by an acellular gap

(Barbaro et al., 2004; Qui~nones-Hinojosa et al., 2006). In

the spinal cord, the human central canal is often occluded

and the ependymal layer disorganized, frequently showing

rosettes or microcanals (Hugnot and Franzen, 2011). Despite

these anatomical variations, it remains highly relevant to

study neural stem cell responses in rodent models, as multi-

potent neurospheres can also be expanded from the human

brain (Barbaro et al., 2004) and spinal cord (Dromard et al.,

2008; Mothe et al., 2011).

Responses of SVZ Neural Stem Cells to Brain
Ischemia

Occluded arteries in the brain (stroke) or heart (heart attack)

cause focal or global ischemia of the brain, respectively. Ische-

mia results in rapid and irreversible necrotic death of neural

cells at the core of the deprived area and, in the case of focal

ischemia, a surrounding penumbra where homeostasis may be

partially restored. Over the past 15 years, there has been con-

siderable interest in the possibility of stimulating endogenous

SVZ neural stem cells to repair the irreversible cell loss caused

by ischemic brain insults.

Experimental Models of Ischemic Brain Injury
The brain’s large size compared with the spinal cord means

that ischemic insults are often distant from the SVZ niche.

Consequently, the cellular events following stroke are some-

what more variable than those occurring after SCI. Many dif-

ferent types of stroke models have been used to mimic

ischemic insults in the brain, and four of these models are

commonly used for investigating NSC responses. Middle

FIGURE 1: Comparison of the in vitro and in vivo multipotency of SVZ astrocytes and central canal ependymal cells. Neural stem cells in the adult
forebrain are GFAP 1 SVZ astrocytes. Under normal baseline conditions, SVZ astrocytes give rise to olfactory bulb neurons, white matter oligo-
dendrocytes, SVZ astrocytes, and SVZ ependymal cells (black arrow, baseline). However, after injury such as stroke (red arrow), they produce
neuroblasts and astrocytes that migrate toward the site of tissue damage (see also Fig. 2). In the spinal cord, FoxJ11 ependymal cells that line
the central canal have latent neural stem cell potential. Under normal baseline conditions, central canal ependymal cells undergo symmetric self-
renewing divisions that maintain the ependymal cell population (black arrow, baseline). Following SCI (red arrow), ependymal cells expand their
pool and exhibit multipotency, producing new ependymal cells as well as astrocytes and oligodendrocytes that are found at the lesion site (see
also Fig. 3). Interestingly, despite these differences in their in vivo phenotype, baseline activity, and injury-induced responses, both SVZ astro-
cytes and central canal ependymal cells can be cultured as multipotent and self-renewing neurospheres. These neurospheres differentiate into
neurons, astrocytes, and oligodendrocytes in vitro. SVZ: subventricular zone; NSC: neural stem cell; GFAP: glial fibrillary acidic protein; SCI: spinal
cord injury; CC: central canal.
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cerebral artery occlusion (MCAO; Longa et al., 1989) causes

a striatal infarct that can extend to the cortex if occlusion

time is long enough and most closely resembles human

stroke. Common carotid artery occlusion (CCAO; Tone

et al., 1987), also known as transient global ischemia,

deprives the entire brain of its blood flow and is surgically

simpler but a less accurate method for reproducing human

stroke. Devascularization by pial vessel disruption (PVD;

Sofroniew et al., 1983) causes local cortical ischemic damage

but can be used to target specific motor or sensory areas and

is an excellent model for testing functional recovery. Photo-

thrombosis (Wester et al., 1995), like PVD, causes only focal

cortical damage but uses an argon-ion laser and a photosensi-

tive dye that enable highly accurate stroke placement without

the need for a craniotomy.

Neural Stem Cell Responses to Stroke
Injuries to the CNS, including both stroke and SCI, result in

the formation of a glial scar. The glial scar seals the lesion site

during the weeks following injury and thereby limits

FIGURE 2: SVZ neural stem cell responses to stroke. The responses of SVZ neural stem cells to ischemic stroke injury in the brain (repre-
sented by the red lesion area) can be separated into three distinct phases: (1) SVZ niche activation (neural stem cells produce new cells
to attend to the injury), (2) migration and differentiation (new cells travel to and develop into lineage-specific cell types), and (3) integra-
tion (new cells incorporate anatomically into the lesion site tissue). Post-MCAO, increases in proliferation markers (shown in gray) appear
in the SVZ at 4, 7, and 14 days (PHH3) and peak at Day 14 for the G2/M cell cycle regulator, cdc2. Migrating neural cells (PSA-NCAM,
shown in orange) from the SVZ expressing neuronal lineage markers (shown in red) for neuroblasts (DCX) appear as early as 3 days after
stroke, with peak expression at 14–18 days post-MCAO. Neuroblasts differentiate into mature neurons (NeuN) around Day 14 post-
MCAO. Whether or not SVZ-derived neurons integrate functionally at the injury site remains unclear (question mark). Astrocyte lineage
markers (shown in purple) appear in SVZ neural stem cells inherently (GFAP) and in newly born SVZ astrocytes (Thbs4) as early as 3 days
post-MCAO. Both markers are continually expressed as newborn astrocytes migrate and differentiate into mature astrocytes. Once arriv-
ing at the ischemic lesion site, SVZ-derived astrocytes integrate into the developing glial scar. It has not been established whether SVZ-
derived astrocytes differentially contribute to the scar boundary and core, as described for ependymal-derived astrocytes following SCI.
Publication information, stroke model, and species used are highlighted below each phase of the SVZ neural stem cell response to
stroke (note that most publications are informative to multiple phases of neural stem cell responses, but are cited only once). CCAO:
common carotid artery occlusion; MCAO: middle cerebral artery occlusion; PVD: pial vessel disruption; PT: photothrombosis; PHH3:
phosphohistone H3; cdc2: cell division cycle protein-2, also known as cyclin-dependent kinase-1; DCX: doublecortin; PSA-NCAM:
polysialylated-neural cell adhesion molecule; NeuN: neuronal nuclei; GFAP: glial fibrillary acidic protein; Thbs4: thrombospondin-4. SVZ:
subventricular zone; d: day.
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expansion of cytotoxic cells and molecules into the surround-

ing CNS tissue. We discuss scar formation in greater detail in

Responses of central canal ependymal cells to SCI section,

since the scar-forming process has been most studied in the

context of SCI; however, it should be noted that similar

events occur at brain sites of ischemic injury. In the following

sections, we focus on the responses of SVZ neural stem cells

to stroke. We have subdivided these NSC responses into three

phases: (1) activation of the SVZ niche, (2) migration and

differentiation, and (3) integration. While the mechanisms of

FIGURE 3: Overview of SCI-induced changes within the microenvironment of central canal ependymal cells. SCI triggers complex cascades of
global, cellular, and molecular events. The effects of these events on the responses of endogenous spinal cord stem cells remain largely
unknown. (Top) A simplified overview and timeline of some of these major changes (see text for details). (Bottom) The three main types of
proliferating neural cells at baseline [oligodendrocyte progenitor cells (OPCs), astrocytes, and ependymal cells] all increase their proliferation
following SCI. OPC numbers gradually recover, and partially regenerate the depleted oligodendrocyte population. Astrocytes proliferate,
become reactive, and contribute heavily to formation of the glial scar. Neurosphere-initiating stem cell activity resides within ependymal cells,
90% of whom become activated to proliferate within a few days after SCI. Only ependymal cells show multi-lineage differentiation, giving
rise to astrocytes (~90%) and oligodendrocytes (~4%) at the site of injury. Ependymal-derived astrocytes and reactive astrocytes are found in
roughly equal numbers within the glial scar at 4 months post-SCI, but preferentially localize to the lesion core and boundary, respectively.
Type-A pericytes also contribute prominently to the glial scar; these represent only a tenth of the astrocyte population in the uninjured spinal
cord, but have increased up to 25-fold by 9 days postinjury. Ependymal cell responses can be divided into three stages: (1) proliferative
expansion, (2) migration, and (3) differentiation. The environmental factors responsible for directing these responses remain poorly defined,
but likely include molecules secreted by microglia and peripherally derived immune cells, reactive astrocytes, OPCs, and scar-associated cells
such as pericytes (dotted arrows) (see text for details). SCI: spinal cord injury; BSCB: brain–spinal cord barrier; ECM: extracellular matrix.
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migration and differentiation are distinct, these processes are

typically studied in parallel and are therefore categorized

together (see Fig. 2). Phases 1 and 2 have been the most

investigated, while elucidation of Phase 3 is still in its infancy.

We focus specifically on the SVZ niche; although stroke-

induced neurogenesis and gliogenesis also occur in the brain’s

second main neurogenic niche, the hippocampal dentate

gyrus, there is little evidence that these new cells can contrib-

ute to other brain areas (Kernie and Parent, 2010).

Activation of the SVZ niche. Studies of proliferative

responses to stroke have been ongoing and progressive in their

methods since the late 90s. There is now a significant body of

work demonstrating that ischemia increases SVZ proliferation,

and early studies used BrdU to track these proliferative changes.

Following MCAO, increases in BrdU1 cells within the SVZ are

detected after 2 h (Zhang et al., 2001), peak at 7–14 days (Li

et al., 2002; Zhang et al., 2001, 2004b), and return to control

levels by 28 days (Zhang et al., 2001). Such increases are further

supported by increases in cdc21 cells (a G2-M cell cycle

marker) at 14 days after stroke (Parent et al., 2002) and increases

in phosphorylated histone H3 marker (PHH3) at 4, 7, and 14

days postischemia (Zhang et al., 2004b). Increases in prolifera-

tion levels are also observed in the SVZ following CCAO in rats

(Jin et al., 2001) and primates (Tonchev et al., 2005).

Stroke-induced increases in SVZ proliferation are likely

to involve activation at the neural stem cell level of the neuro-

genic lineage. Zhang et al. (2014) analyzed the pinwheel archi-

tecture of the SVZ niche and found that the number of

pinwheel-associated SVZ neural stem cells (positive for

g-tubulin and GFAP) was significantly increased 25 days after

MCAO in mice. It has also been recently reported that MCAO

stimulates proliferation of GFAP1/Nestin1/Sox21 neural

stem cells in ventricular zones caudal to the lateral ventricles,

including the third and fourth ventricles (Lin et al., 2014).

Intriguingly, this correlated with particularly permeable blood–

brain barriers at these sites. These studies highlight that neural

stem cell activity in the SVZ is sensitive to diffusible

proliferation-inducing factors released upon brain ischemia.

Interestingly, besides GFAP 1 SVZ astrocytes, SVZ

ependymal cells represent an additional, but temporary, neu-

rogenic reservoir after stroke. SVZ ependymal cells normally

do not proliferate, but transiently increase their proliferation

following ischemia (Zhang et al., 2007b). These reactive SVZ

ependymal cells temporarily regain neurogenic competence to

produce new neurons following stroke (Carl�en et al., 2009);

importantly, however, they lack the self-renewal capacity of

SVZ astrocytes and are rapidly depleted.

Migration and Differentiation. An important difference

between the spinal cord and brain is that the SVZ is a

highly neurogenic stem cell niche. Initial studies of migra-

tion and differentiation of SVZ-derived cells following

MCAO in rats used double-labeling, typically combining

BrdU with markers of migrating neuroblasts, like

polysialylated-neural cell adhesion molecule (PSA-NCAM)

or doublecortin (DCX). These first studies found exciting

evidence that chains of migrating neuroblasts were rerouted

from the SVZ or rostral migratory stream into the ischemic

zone (Arvidsson et al., 2002; Jin et al., 2003; Parent et al.,

2002; Zhang et al., 2001, 2004a). However, while sugges-

tive, BrdU-based methods could not definitively establish

whether BrdU1 cells originated from local cortical tissue or

the SVZ (Magnusson et al., 2014).

This obstacle was first overcome by Yamashita et al.

(2006), who used an adenovirus-based approach to show that

SVZ astrocytes contribute DCX1 neuroblasts to the ischemic

striatum following MCAO. Similarly, Kolb et al. (2007) used

a combination of BrdU and intracerebroventricular injection

of retrovirus to prelabel SVZ-born cells, and found that SVZ-

derived cells were present in the cortex following PVD.

Remarkably, these authors treated rats with epidermal growth

factor (EGF, promoting proliferation and differentiation), and

erythropoietin (EPO, promoting neurogenesis), and found

complete regeneration of the ischemia-induced cortical cavity.

The tissue-plug in the cavity contained BrdU1 cells co-

labeled with NeuN (neurons) and GFAP (astrocytes). Further-

more, removal of the regenerated tissue in EGF- and EPO-

treated poststroke animals resulted in the loss of previously

observed motor improvements.

Recently, Benner et al. (2013) used a transgenic

approach where SVZ-derived cells were specifically tracked in

a photothrombosis model of cortical ischemia. Interestingly,

these authors found extensive production and migration of

SVZ-derived astrocytes that homed to the ischemic cortex.

Unexpectedly, SVZ-derived astrocytes expressed much higher

levels of Thrombospondin-4, which binds Notch1, than sur-

rounding cortical astrocytes. When Notch signaling was

blocked in the SVZ, there was a shift from astrocyte to neu-

roblast generation, leading to defective glial scar formation

and enhanced microvascular hemorrhaging. This is the first

evidence directly demonstrating a role for brain NSCs in glial

scar formation (Benner et al., 2013). Thus, while considerable

emphasis has been placed on the potential of SVZ neural

stem cells for neuronal replacement, it is important to note

that they have an important endogenous role in producing

protective scar-contributing astrocytes.

Integration. The least investigated phase of newly generated

SVZ-derived cells following brain ischemia is functional inte-

gration. Chains of neuroblasts migrating to the ischemic stria-

tum or cortex (Arvidsson et al., 2002; Li et al., 2010; Parent
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et al., 2002; Zhang et al., 2004a, 2007a), together with

observations of presynaptic vesicles and synapses between

SVZ-derived neuroblasts and neighboring cells (Yamashita

et al., 2006), have fuelled hopes that regeneration of lost neu-

rons is possible. Moreover, loss of motor improvements fol-

lowing removal of newly generated cells from a cortical stroke

cavity suggest that SVZ-derived cells participate in functional

improvements (Kolb et al., 2007). But how is such functional

recovery actually mediated? Considering the protective role of

NSC-derived astrocytes in scar formation in both the brain

(Benner et al., 2013) (above), and the spinal cord (Barnab�e-

Heider et al., 2010; Sabelstr€om et al., 2013a; Responses of

central canal ependymal cells to SCI section), it will be essen-

tial to clearly establish whether SVZ-derived neurons can

truly integrate into neuronal circuitry to yield functional

improvements in behavioral parameters following brain ische-

mia. Mechanistically, a question to address is whether neuro-

blasts originally destined for the olfactory bulb are capable of

being respecified to generate new target-appropriate neural

phenotypes. Moreover, since ischemic brain insults typically

occur at older ages, the endogenous neural stem cell response

is likely less robust than observed in the young adult animal

models that are typically used. The answers to these questions

will impact therapeutic possibilities of harnessing SVZ neural

stem cells in the context of stroke (Fig. 2).

Responses of Central Canal Ependymal
Cells to SCI

Experimental Models of SCI
The small diameter of the spinal cord (<15 mm at the cervi-

cal enlargement in humans) means that spinal cord injuries

inevitably perturb the central canal niche of ependymal cells.

The majority of SCI cases in humans are caused by vertebral

dislocation that compresses the spinal cord. A variety of

experimental approaches have been used to model human

SCI, and these have individual advantages and disadvantages.

Most of these models were developed in rats but have been

modified to apply to mice as well. The majority of injuries

are performed at the thoracic level, but more recently, cervical

injuries have also been tested. SCI models include contusion,

compression, distraction, dislocation, and transection. The

reproducibility of these methods varies considerably. The gold

standard is the contusion model, including model spinal cord

injury system (MSCIS) and Infinite Horizon, which generate

highly reproducible transient and acute injuries and best

mimics the most common spinal cord traumas of humans.

The compression model consists of a prolonged spinal cord

compression performed with clips and forceps, and also shows

consistency. On the contrary, distraction (stretches the cord),

dislocation (replicates human vertebral displacement), and

transection (complete or partial cuts of the spinal cord) mod-

els yield more variable results (Cheriyan et al., 2014). Nota-

bly, while contusion and compression models result in

reproducible damage to the central canal NSC niche, partial

transaction models can leave the central canal intact, a differ-

ence that is likely to impact on the observed responses of

ependymal cells to SCI. Based on the vast amounts of infor-

mation gained from the analysis of these models, in the fol-

lowing sections, we summarize what we have learned about

central canal ependymal cell responses in the injured spinal

cord.

Ependymal Cell Proliferation and Multipotency
Following SCI
Moderate and severe injuries to the CNS initiate a number of

broad pathophysiological processes that take place over the

acute (minutes) to chronic (years) time-periods. At the site of

injury, there is immediate damage to the blood–spinal cord

barrier, extensive necrotic cell death, axon degeneration and

demyelination, and initiation of an immune response. These

acute events trigger widespread chronic events including

inflammation, apoptotic death, secondary demyelination, cyst

formation (in rat but not mice), and, eventually, the forma-

tion of a prominent and permanent glial scar (Rolls et al.,

2009a; Silver and Miller, 2004; Fig. 3). What is the impact

of such dramatic cellular and biochemical changes in cell pro-

liferation and neural stem cell activity in the spinal cord?

In the noninjured spinal cord, oligodendrocyte progeni-

tors (NG21/olig21), astrocytes (GFAP1/Cx301/Sox91),

and ependymal cells (FoxJ11) constitute the 3 main types of

dividing cells, accounting for approximately 80%, <5%, and

<5% of proliferating cells, respectively (Barnab�e-Heider

et al., 2010; Horner et al., 2000; Meletis et al., 2008). Of

these, lineage tracing experiments have shown that it is solely

the ependymal cell population that is capable of generating

neurospheres in vitro, and this hallmark of NSC potential

remains restricted to the ependymal population following SCI

(Barnab�e-Heider et al., 2010). Ependymal cells are defined as

ciliated cells that propel cerebrospinal fluid and are classified

according to their morphology (cuboidal, tanycytic, or radial;

Bruni, 1987; Meletis et al., 2008; Sabelstr€om et al., 2013a).

A subpopulation of tanycytic ependymal cells express the neu-

ral precursor marker Nestin and extend long processes from

the dorsal and ventral poles of the central canal (Hamilton

et al., 2009). The functional differences between these differ-

ent ependymal subpopulations with respect to neural stem

cell potential are still largely unknown. Importantly under

physiological conditions, ependymal cells do not show multi-

potency in vivo. Rather, their proliferation is limited, occurs

in doublets associated with blood vessels, and is restricted to

the generation of new ependymal cells (Barnab�e-Heider et al.,

2010; Hamilton et al., 2009).
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SCI triggers significant changes in the proliferative

properties and multipotency of ependymal cells. Ependymal

cell proliferation increases in a wide range of SCI models,

including contusions, compressions, and partial sections that

leave the central canal intact (Johansson et al., 1999; Lacroix

et al., 2014; Meletis et al., 2008; Mothe and Tator, 2005).

This is observed similarly in mice and rats, suggesting it is a

fundamentally conserved response to injury (Lytle and Wra-

thall, 2007). Ependymal proliferation following SCI results in

significant expansion of the NSC population, as neurosphere

formation is increased and accelerated after partial section of

the spinal cord (Barnab�e-Heider et al., 2010). Contusion

injuries modeling that of humans reveal a prolonged, long-

distance ependymal proliferative response, with increased pro-

liferation still observed at the cervical level several weeks after

low thoracic SCI (Lacroix et al., 2014). Notably, recent

lineage-tracing studies have examined the fate of prelabeled

oligodendrocyte progenitors, astrocytes, and ependymal cells

and revealed that, at the population level, ependymal cells are

the sole population to show multipotency following SCI

(Barnab�e-Heider et al., 2010; Meletis et al., 2008): FoxJ11

ependymal cells gave rise both to astrocytes localized at the

core of the glial scar and oligodendrocytes in the surrounding

spared white matter. It remains to be formally shown whether

ependymal-derived astrocytes and oligodendrocytes have the

same clonal origin or originate from discrete subpopulations

of ependymal cells. Ependymal-derived astrocytes associated

with the glial scar are the most abundant cell type generated

by the ependymal cell population (Barnab�e-Heider et al.,

2010), and this is considered in further detail below.

Ependymal and Astrocytic Cell Contribution
to the Glial Scar
The glial scar is a prominent and permanent feature of the

lesioned mammalian spinal cord, and is most closely associ-

ated with reactive astrogliosis. Following SCI, astrocytes pro-

liferate and are recruited to the lesion site, reaching maximal

proliferation within 3–7 days and plateauing in number

between 2 and 4 weeks after SCI (Norton et al., 1992; Popo-

vich et al., 1997; Sroga et al., 2003; White et al., 2010).

These reactive astrocytes express high levels of the intermedi-

ate filament proteins GFAP and vimentin, and extend proc-

esses that interweave to create a barrier completely

surrounding the lesion site (Fris�en et al., 1995a; Rowland

et al., 2008). Initially regarded as an obstacle to regeneration

of severed CNS axons, the potent growth-inhibitory role of

the glial scar was elegantly illustrated in experiments by

Davies and colleagues, who showed that transplanted adult

sensory neurons were capable of robustly extending axons

within degenerating white matter tracts, but underwent

abrupt growth arrest when they arrived in the vicinity of the

glial scar (Davies et al., 1997, 1999). Similarly, mice lacking

the intermediate filaments GFAP and vimentin have less reac-

tive astrocytes, and exhibit increased axonal sprouting and

growth following SCI (Menet et al., 2003). However, it is

now recognized that the glial scar also plays an important

beneficial role in containing the secondary damage caused by

prolonged lesion site inflammation (Faulkner et al., 2004;

Okada et al., 2006). For instance, Faulkner et al. (2004)

measured deficits in locomotor recovery when they ablated

95% of proliferating astrocytes with a conditional GFAP-

Thymidine kinase transgenic mouse model (where dividing

astrocytes are killed with the antiviral agent ganciclovir). At

the cellular level, ablation of reactive astrocytes was associated

with defective repair of the blood-brain barrier, increase in

lesion site CD451 inflammatory cells, increased loss of local

neurons, and increased demyelination (Faulkner et al., 2004).

Thus, therapeutic strategies involving the glial scar should be

aimed at specifically promoting its beneficial aspects while

diminishing its negative consequences.

Recent fate-mapping studies have defined the individual

contributions of various cell types to the glial scar following

SCI, including ependymal cells (Barnab�e-Heider et al., 2010).

Interestingly, the progeny of prelabeled oligodendrocyte pro-

genitors, astrocytes, and ependymal cells were found to

occupy complementary domains following SCI. Oligodendro-

cyte progenitors produced oligodendrocyte lineage cells that

were scattered around the lesion. Astrocytes generated prog-

eny that were concentrated at the borders of the glial scar.

However, ependymal cells generated large numbers of astro-

cytes that were localized at the core of the glial scar and a

small proportion of oligodendrocytes in the surrounding

spared white matter (Barnab�e-Heider et al., 2010). Impres-

sively, it was estimated that approximately half of scar-

associated astrocytes were ependymal-derived (Barnab�e-Heider

et al., 2010). Importantly, ependymal-derived astrocytes

migrated within the core of the scar and produced laminin, a

substrate favorable for axonal regrowth (Barnab�e-Heider

et al., 2010; Fris�en et al., 1995b; Meletis et al., 2008). This

contrasts the reactive GFAP1 astrocytes derived from pre-

existing astrocytes, which are mostly localized around the

perimeter of the lesion site and associated with growth inhibi-

tory proteins such as chondroitin sulfate proteoglycans

(CSPGs; Silver and Miller, 2004). The distinct characteristics

of scar astrocytes that are derived from reactive astrocytes ver-

sus ependymal cells suggest that they correspond to growth-

inhibitory and growth-promoting astrocyte subtypes, respec-

tively. However, this possibility remains to be demonstrated.

Sabelstr€om and colleagues recently used a FoxJ1-rasless

mouse model to block the generation of ependymal cell-

derived progeny and found major defects in scar formation.

14 weeks post-SCI, 79% of the animals did not form
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compact scar tissue, and showed deeper and enlarged lesions

in contrast to control (Sabelstr€om et al., 2013b). This corre-

lated with the 2-week post-SCI observation of approximately

50% increased neuronal cell loss, and an increase in caspase-

31 cells when compared with control littermates. Interest-

ingly, even though these animals showed a lack of proper glial

scar formation, fewer inflammatory cells were observed. This

suggests that the astrocytes derived from ependymal cells are

not involved in secondary damage restriction. Furthermore,

this study suggested that these ependymal cell-derived astro-

cytes represent a source of neurotrophic factors, such as ciliary

neurotrophic factor (CNTF), hepatocyte growth factor

(HGF), and insulin-like growth factor (IGF) 1 as these were

downregulated in the FoxJ1-rasless mice (Sabelstr€om et al.,

2013b). Overall, these data reveal that ependymal cells are a

key contributor to the protective properties of the glial scar.

Additional resident and infiltrating cell types also con-

tribute to formation of the glial scar, including pericytes,

microglia, and blood-derived neutrophils, macrophages, and

lymphocytes (Barnab�e-Heider et al., 2010; Grossman et al.,

2001; Lytle and Wrathall, 2007; Meletis et al., 2008; Popo-

vich et al., 1997; Sroga et al., 2003; Zai and Wrathall, 2005;

for review, see Cregg et al., 2014). Each cell type responds at

a different time-point postinjury, and influences the behavior

of other cell types within the developing scar. For example,

eliminating Ras-mediated proliferation in a subpopulation of

pericytes using a glutamate-aspartate transporter (GLAST)-

driven Cre recombination approach resulted in improper seal-

ing of the lesion in 33% of the tested animals (G€oritz et al.,

2011). Thus, understanding the complex cellular interactions

between scar-forming cells is an important step toward

rational and targeted modulation of scar formation.

Potential Regulators of Ependymal Cell Responses
to SCI
The molecular mechanisms regulating the proliferation,

migration and differentiation of ependymal cells following

SCI remain largely unknown. Activating ependymal cell pro-

liferation requires more than nonspecific tissue degeneration,

as proliferation increases have been documented in models of

traumatic SCI and amyotrophic lateral sclerosis (ALS;

Barnab�e-Heider et al., 2010; Chi et al., 2006; Meletis et al.,

2008) but not in chemically or autoimmune-mediated models

of multiple sclerosis-associated demyelination (Lacroix et al.,

2014). However, environmental influences within the injured

spinal cord are clearly a dominant factor: ependymal cells

show no neuronal differentiation in vivo and relatively little

oligodendrocyte differentiation following SCI, yet ependymal-

derived neurospheres spontaneously produce these cell types

in vitro. In the following section, we discuss some of the mas-

sive pathophysiological changes occurring within the immedi-

ate microenvironment of ependymal cells that may play

significant roles in determining their properties and behavior

after SCI.

Immediate Events. SCI rapidly sets into motion dramatic

changes to the cellular and molecular microenvironment of

the spinal cord. The blood-spinal cord barrier is normally

composed of endothelial cells linked with tight junctions,

pericytes, and astrocyte feet processes (Bartanusz et al., 2011;

Preston et al., 2001). Disruption and enhanced permeability

of this barrier occurs within 5 min after injury (Bartanusz

et al., 2011), with several important consequences. First, there

is a rapid onset of cell death, as neural cells die within a few

minutes of oxygen and glucose deprivation (Jullienne and

Badaut, 2013). Necrosis is detectable within the first 2 h fol-

lowing SCI (Eftekharpour et al., 2008; Rowland et al., 2008).

By 24-h postcontusion in rats, astrocyte and oligodendrocyte

populations are reduced by half in the spared white matter

surrounding the lesion site, and there is a growing length of

spinal cord devoid of ventral motor neurons (Grossman et al.,

2001). Second, death of neurons and oligodendrocytes trig-

gers the release of myelin debris rich in axonal growth-

inhibiting molecules such as Nogo, myelin-associated glyco-

protein, oligodendrocyte-myelin glycoprotein, semaphorins,

and others (Bartsch et al., 1995; Bregman et al., 1995; Caff-

erty et al., 2010; Chen et al., 2000; Ji et al., 2008; Kottis

et al., 2002; Lee et al., 2010; McKerracher et al., 1994; Savio

and Schwab, 1990). Little is known concerning the influence

of such molecules on neural precursor cells. Third, pericytes

are liberated from the damaged blood vessels. Pericytes are

recruited to the lesion site where they release fibronectin, col-

lagen I, collagen III, and activate inflammatory cells (i.e., T-

cells; G€oritz et al., 2011; Sroga et al., 2003), and they play a

key role in the formation of the glial scar (G€oritz et al.,

2011).

Reactive Astrogliosis. Astrogliosis, which begins minutes

following injury, has a variety of important consequences

beyond simple formation of the glial scar-associated physical

barrier. Indeed, reactive astrocytes also scavenge debris, neuro-

toxic molecules (glutamate) and ions (potassium), produce

trophic factors [brain-derived neurotrophic factor (BDNF),

neurotrophin-3 [NT-3], IGF, glial cell line-derived neurotro-

phic factor, nerve growth factor, basic FGF], enhance revascu-

larization, repair the blood-brain barrier, reduce edema, and

limit the spread of inflammatory cells (Faulkner et al., 2004;

Hamby and Sofroniew, 2010; Okada et al., 2006; Rolls et al.,

2009b). Reactive astrocytes also secrete bone morphogenetic

proteins (BMPs) that promote astrocytic differentiation

(Wang et al., 2011). In addition, reactive astrocytes actively

produce a large variety of molecules, such as CSPGs, tenascin,

and collagen, which create a biochemical milieu surrounding
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the scar that induces neurite retraction and growth cone col-

lapse (Ferreira et al., 2012; Liu et al., 2014; Rolls et al.,

2009; Silver and Miller, 2004). CSPGs (neurocan, brevican,

and versican) are secreted 24 h following SCI and are

expressed for several weeks (Davies et al., 1999). The impact

of astrocyte-derived molecules on the recruitment and activa-

tion of ependymal cells remains unknown.

Oligodendrocyte Progenitors. Oligodendrocyte progenitors

(OPCs) represent the major population of proliferating cells

in the noninjured spinal cord (Barnab�e-Heider et al., 2010;

Horner et al., 2000), and following SCI, these cells are likely

to be in close proximity to proliferating, migrating, and dif-

ferentiating ependymal cells. Recent studies using platelet-

derived growth factor receptor alpha (PDGFRa)-driven

reporter lines have revealed that OPCs undergo substantial

proliferation surrounding spinal cord lesion sites, continuing

to generate myelinating oligodendrocytes for several months

following spinal cord contusions in rats (Hesp et al., 2015).

Indeed, spared rubrospinal and corticospinal axons have been

shown to be extensively remyelinated in the chronically

injured rat spinal cord (Powers et al., 2012), and NG21

OPCs (pre-existing or newly generated) are the source of this

remyelination (Powers et al., 2013). How OPC proliferation

and differentiation into remyelinating oligodendrocytes affects

the fate of ependymal-derived progeny has yet to be

investigated.

Inflammation. The inflammatory microenvironment is

likely to be a significant determinant of ependymal cell fate,

as pro- and anti-inflammatory cytokines exhibit opposing

effects on neural precursors (Kokaia et al., 2012). Chronic

inflammation at the lesion site is responsible for the majority

of the secondary damage occurring after injury (Jones et al.,

2005). SCI activates immune cells and triggers the release of

complex patterns of pro- and anti-inflammatory cytokine

(Pineau and Lacroix, 2007). Initial proinflammatory signals

are released from resident neural cells and are subsequently

sustained by immune cells. Microglia, resident phagocytes,

are highly responsive to tissue perturbations, and react imme-

diately upon injury. Microglial activation is associated with

morphological changes (from branch-stellate to round shape)

and an altered panel of cytokine expression (Jones et al.,

2005). Circulating neutrophils and monocyte-derived macro-

phages are also rapidly activated and invade the spinal cord

parenchyma at the lesion site, contributing to the later

recruitment of lymphocytes (Popovich et al., 1997; Zhang

and Gensel, 2014). While the neutrophil response normalizes

by 2 weeks following injury in rats, macrophages and lym-

phocytes remain present at the lesion for months (Pr€uss et al.,

2011). Similar to astrocytes, the role of resident microglia

and blood-derived macrophages is highly complex and

presents beneficial (protects and activates oligodendrocyte pre-

cursor cell proliferation) and detrimental (causes cytotoxicity

and demyelination) effects on recovery from SCI (David and

Kroner, 2011). Proinflammatory cytokines, such as interleu-

kin (IL) 1b, IL-6, and tumor necrosis factor-a (TNFa), are

released early postinjury by microglia and macrophages. These

factors mediate secondary tissue damage, modulate axonal

remyelination, stimulate astrogliosis, and induce expression of

adhesion molecules and the production of chemotactic fac-

tors, such as IL-8, monocyte chemotactic protein (MCP)-1,

and macrophage inhibitory protein (MIP)-1a (Bareyre and

Schwab, 2003; Jones et al., 2005). Selective depletion of

monocyte-derived macrophages improves recovery of func-

tion, preserves myelination, and stimulates sprouting and

regeneration of axons following SCI (Jones et al., 2005;

Popovich et al., 1999). In contrast, microglia/macrophages

also produce neuroprotective molecules, such as transforming

growth factor (TGF)-b, and NT-3. BDNF and NT-3 pro-

mote neuronal survival, and together with TGF-b, inhibit

further microglia activation, which includes proinflammatory

cytokine and reactive oxygen intermediate production (Jones

et al., 2005). The dual role of the microglial/macrophage

population can be explained by the presence of at least two

subpopulations, M1 and M2, showing neurotoxic and prore-

generative properties, respectively (Kigerl et al., 2009). Shift-

ing the polarization of these cells to the M2 phenotype is an

active area of investigation (David and Kroner, 2011). It is

unknown whether modulating the levels of inflammation-

associated cells or their secreted factors can enhance the

responses of endogenous neural stem cells to CNS injury.

Therapeutic Perspectives

Stimulation of endogenous neural stem cells is a logical

approach for attempting to replace neuronal and glial cells

lost after stroke and SCI. However, as discussed in the pre-

ceding sections, therapeutic strategies aimed at achieving this

goal are faced with overcoming the extensive cellular and

molecular changes within the neural stem cell microenviron-

ment. These include cell death, inflammation, reactive

changes in diverse cell populations, and alterations in the

molecular composition of the extracellular milieu. Neverthe-

less, recent studies suggest that the behavior of endogenous

NSCs during pathological conditions can indeed be modu-

lated to promote functional recovery after CNS injury

(Erlandsson et al., 2011; Kolb et al., 2007). For example,

using immune-deficient NOD/SCID mice or treatment with

Cyclosporine A in a PVD model, Erlandsson and colleagues

found that suppressing the immune response: (1) enhanced

migration of SVZ-derived cells to the ischemic injury site, (2)

shifted cellular differentiation to a gliogenic profile, and (3)

stimulated motor improvement.
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Several therapeutically relevant strategic goals can be

identified. First, modulating astrocytic contribution to the

glial scar. As discussed earlier, neural stem cell-derived astro-

cytes play a protective role following stroke and SCI (Benner

et al., 2013; Sabelstr€om et al., 2013b). Moreover, it appears

that the astrocyte population contains both growth-promoting

and growth-inhibiting subtypes (Bayraktar et al., 2014;

Davies et al., 1997, 1999; Fitch and Silver, 2008). Thus, it is

relevant to test whether enhancing the production of neural

stem cell-derived astrocytes can further reduce secondary

damage and/or create a more growth-promoting environment

at the injury site.

Second, enhancing oligodendrocyte differentiation. Unre-

paired zones of demyelination are a significant feature following

SCI, and lineage-tracing studies showed that oligodendrocytes

represented approximately 3% of the progeny of reactive epen-

dymal cell (Barnab�e-Heider et al., 2010). This low percentage is

likely due to the high expression of astrocyte-promoting factors

such as IL-6-related cytokines and BMPs in the injured spinal

cord. Supporting the rationale for stimulating oligodendrocyte

fate of spinal cord neural stem cells, neurogenin-2 overexpressing

neurospheres showed greater oligodendrocyte differentiation,

enhanced myelination and resulted in beneficial changes in

motor and sensory function when transplanted into the injured

spinal cord (Hofstetter et al., 2005).

Third, enhancing neuronal differentiation. Neuronal

loss at the site of injury is a major reason for functional defi-

cits following stroke in particular. Stimulating neurogenesis

and integration of new neurons could promote recovery either

by directly replacing the lost neurons, or by providing a neu-

ronal substrate for electrical signals to bridge or circumvent

the lesion area. As discussed earlier, there is little information

on whether SVZ-derived neurons functionally integrate fol-

lowing stroke, and neurogenesis has yet to be documented in

the injured adult spinal cord.

Fourth, activating NSCs that are unresponsive in other

diseases. Uncovering the mechanisms triggering NSC prolifer-

ation, migration, and differentiation following SCI and stroke

may enable us to recruit NSCs in other conditions. For exam-

ple, myelin repair is a key objective in multiple sclerosis, but

neither chemically mediated focal demyelination nor

autoimmune-mediated multifocal demyelination is sufficient

to activate the proliferation of central canal ependymal cells

(Lacroix et al., 2014).

While great strides have been taken over the past 15–20

years, many key challenges remain to be overcome before

endogenous neural stem cells can be used for therapeutic bene-

fit in stroke and SCI. In particular, it will be important to

understand the complex influences of the glial scar on recruit-

ment, migration, differentiation, and integration of NSC-

derived progeny. Interestingly, recent discoveries suggest that

NSCs can also be induced and/or recruited to sites of CNS

injury from regions other than the traditionally defined stem

cell niches. For example, astrocytes in non-neurogenic regions

(i.e., the cortex and striatum) can acquire neurosphere-forming

ability and can generate neurons in response to tissue pathology

or to modulation of key signaling pathways (Buffo et al., 2008;

Sirko et al., 2013). Similarly, fate-mapping recently revealed

that striatal astrocytes undergo an in vivo neurogenic response

to MCAO, which can be recreated in the absence of stroke by

blocking Notch signaling (Magnusson et al., 2014). Such dis-

coveries offer hope that endogenous sources of neural regenera-

tive capacity are waiting to be harnessed.
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