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Abstract  
 An interesting feature of Bcl-xL protein is the presence of an unstructured loop 

domain between its α1 and α2 helices, a domain not essential for its anti-apoptotic 

function and absent in CED-9, ortholog protein in Caenorhabditis elegans. Within this 

domain, Bcl-xL undergoes dynamic phosphorylation and dephosphorylation at Ser49 and 

Ser62 during G2 and mitosis in human cancer cells. When these residues are mutated and 

proteins expressed in cancer cells, cells harbor mitotic defects, including chromosome 

mis-attachment, lagging, bridging and mis-segregation, events associated with 

chromosome instability and aneuploidy. To further analyze the effects of Bcl-xL Ser49 

and Ser62 in normal cells, the present studies were performed in normal human diploid 

cells, and in vivo in Caenorhabditis elegans.  

 First, we studied normal human diploid BJ foreskin fibroblast cells expressing Bcl-

xL(wild type), (S49A), (S49D), (S62A), (S62D) and the dual (S49/62A) and (S49/62D) 

mutants. Cells expressing S49 and/or S62 phosphorylation mutants showed reduced 

kinetics of cell population doubling. These effects on cell population doubling kinetics 

correlated with early outbreak of senescence with no impact on the cell death rate. 

Senescent cells displayed typical senescence-associated phenotypes including high-level 

of senescence-associated β-galactosidase activity, interleukin-6 secretion, tumor 

suppressor p53 and cyclin-dependent kinase inhibitor p21Waf1/Cip1 activation as well as 

γH2A.X-associated nuclear chromatin foci. Fluorescence in situ hybridization analysis 

and Giemsa-banded karyotypes revealed that the expression of Bcl-xL phosphorylation 

mutants in normal diploid BJ cells provoked chromosome instability and aneuploidy. 

These findings suggest that dynamic Bcl-xL Ser49 and Ser62 phosphorylation/ 

dephosphorylation cycles are important in the maintenance of chromosome integrity 

during mitosis in normal cells.  

 Second, we undertook experiments in Caenorhabditis elegans to understand the 

importance of Bcl-xL Ser49 and Ser62 in vivo. Transgenic worms carrying single-site 

S49A, S62A, S49D, S62D and dual-site S49/62A mutants were generated and their 

effects were analyzed in germlines of young adult worms. Worms expressing Bcl-xL 

variants showed decreased egg-laying and hatching, variations in the length of their 

mitotic regions and transition zones, chromosomal abnormalities at their diplotene stages, 
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and increased germline apoptosis. Some of these transgenic strains, particularly the Ser to 

Ala variants, also showed slight modulations of lifespan compared to their controls. The 

in vivo observations confirmed the importance of Ser49 and Ser62 within the loop 

domain of Bcl-xL in maintaining chromosome stability.  

 These studies could impact future strategies aiming to develop and identify 

compounds that could target not only the anti-apoptotic domain of Bcl-xL protein, but 

also its mitotic domain for cancer therapy.  

 

 

Key Words: Bcl-xL, mitosis, chromosome instability, aneuploidy, senescence, apoptosis. 
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Résumé  

 Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en 

boucle non-structurée entre les hélices α1 and α2 de la protéine.  Ce domaine protéique 

n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine 

orthologue chez Caenorhabditis elegans. A l'intérieur de ce domaine, Bcl-xL subit une 

phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase 

G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines 

exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts 

mitotiques liés à l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et 

Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules 

diploïdes humaines normales, et in vivo chez Caenorhabditis elegans. 

 Dans une première étude, nous avons utilisé la lignée cellulaire de cellules 

fibroblastiques diploïdes humaines normales BJ, exprimant Bcl-xL (type sauvage), 

(S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les 

cellules exprimant les mutants de phosphorylation ont montré des cinétiques de 

doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement 

de la population cellulaire corrèle avec l'apparition de la sénescence cellulaire, sans 

impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes 

typiques de sénescence associés notamment à haut niveau de l'activité β-galactosidase 

associée à la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de 

p21WAF1/ Cip1, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la 

formation de foyers de chromatine nucléaire associés à γH2A.X. Les analyses de 

fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé 

que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité 

chromosomique et l'aneuploïdie. Ces résultats suggèrent que les cycles de 

phosphorylation et  déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont 

importants dans le maintien de l'intégrité des chromosomes lors de la mitose dans les 

cellules normales. 

 Dans une deuxième étude, nous avons entrepris des expériences chez Caenorhabditis 

elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les 

vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et 
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S49/62A) ont été générés et leurs effets ont été analysés sur les cellules germinales des 

jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution 

de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques 

et des zones de transition, des anomalies chromosomiques à leur stade de diplotène, et 

une augmentation de l'apoptose des cellules germinales. Certaines de ces souches 

transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de 

durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé 

l'importance de Ser49 et Ser62 à l'intérieur du domaine à boucle de Bcl-xL pour le 

maintien de la stabilité chromosomique. 

 Ces études auront une incidence sur les futures stratégies visant à développer et à 

identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique 

de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer. 

 

 

 

Mots clé: Bcl-xL, mitose, instabilité chromosomique,  aneuploïdie, sénescence, apoptose 
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1. Introduction  
  

1.1  Cell cycle, senescence and cell death : A brief overview  
 The term cell cycle refers to the orderly biological process where one cell will 

generate 2 daughter cells through the duplication of their genetic material and cell 

division. In eukaryotes the cell cycle is divided into specific phases, gap phase 0 (G0), 

gap phase 1 (G1), DNA synthesis phase (S), gap phase 2 (G2), and mitosis (M)1-4.  To 

ensure that the cells pass accurate copies of their genomes on to the next generation, 

evolution has overlaid the core cell cycle machinery with a series of surveillance 

pathways termed cell cycle checkpoints5,6,7. DNA damage including single nucleotide 

damage, base pair mismatch, DNA single-strand breaks (SSB) and double-strand breaks 

(DSB), chromosome misattachment and missegregation during mitosis represent global 

and serious threats to genomic and chromosome stability which will rapidly induce 

complex pleiotropic cell responses paired to cell cycle checkpoints and repair 

mechanisms1,8-10. The overall function of these checkpoints in response to damaged or 

abnormally structured DNA is to slow down and halt cell cycle progression, thereby 

allowing time for appropriate repair mechanisms to correct the genetic lesions and/or 

structural aberrations before they are passed on to the next generation of daughter cells. 

At their most proximal signaling elements, these complex machineries contain, sensor 

proteins or protein complexes that scan chromatin for partially replicated DNA, DNA 

errors, DNA strand breaks, or chromosome misattachment and missegregation, and 

translate these derived stimuli into biochemical signals that will modulate the functions of 

specific target proteins11. These mechanisms first promote cell cycle arrest, DNA repair 

and proper chromosome alignment and segregation, but can also promote irreversible 

cellular senescence or cell death12. The repair mechanisms correct minor irregularities 

during a temporary cell cycle halt, whereas more deleterious defects are believed to result 

in the induction of cellular senescence or cell death. Defects in those signalling cascades 

and/or repair mechanisms combined with errors initiating cellular senescence or cell 

death could yield to mutations and/or aneuploidy leading to genomic and/or chromosome 

instability	13,14.  
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 Cells can enter into an irreversible cell cycle arrest termed cellular senescence. The 

process of cellular senescence was first described more than 50 years ago by Hayflick 

and Moorehead as an irreversible cell cycle arrest of human fibroblasts that lost their 

proliferative capacity5,15,16. It was later found that telomeres, necessary for chromosome 

integrity and proper cell division, were gradually depleted to a threshold level within 40–

45 generations, which triggered the induction of senescence. This threshold was termed 

as the Hayflick limit17. This natural process was named replicative senescence (RS), 

which differs from premature senescence (PS), an accelerated mechanism that occurs in 

response to extrinsic or intrinsic stress stimuli. These include DNA damage, disrupted 

chromatin organization, increased oncogenic signalling, increased replicative stress, 

treatment with chemotherapeutic drugs or irradiation18 and oxidative stress19,20. Cellular 

senescence is a safeguard limiting the proliferative competence of cells in living 

organisms and can act as a potent tumor suppressor mechanism for normal cells 21. 

 Cell death is often associated with apoptosis22, a morphologically distinct form of 

physiological and programmed cell death, explicitly described through many years of 

research22,23. An understanding of apoptosis in mammalian cells was first achieved by 

research in the nematode Caenorhabditis elegans (C. elegans)24. Apoptosis has since 

been widely accepted as the primary mode of programmed cell death (PCD), which 

genetically eliminates predetermined cells from an organism during development. The 

process is also active in adult organisms as a homeostatic mechanism to maintain cell 

populations in tissues. Apoptosis also occurs as a defense mechanism such as in immune 

reactions or when cells are damaged in association with diseases, noxious agents or 

deregulation of cellular processes25. Programmed necrosis or necroptosis and, in some 

contexts, autophagy are often considered as two others forms of PCD, easily 

distinguished by their morphological differences26.  Apoptosis, or type I PCD, described 

by Kerr et al.22 is characterized by cell shrinkage, nuclear disassembly associated with 

chromatin condensation and fragmentation, dynamic membrane blebbing and loss of 

adhesion to neighbors or to extracellular matrix. Biochemical changes include 

chromosomal DNA cleavage into internucleosomal fragments, phosphatidylserine 

externalization and a number of intracellular substrate cleavages by specific 

proteolysis27,28. Autophagy, or type II PCD, is a catabolic process beginning with 
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formation of autophagosomes, which plays a crucial pro-survival role in cell homeostasis. 

It is required during periods of starvation or stress due to growth factor deprivation but in 

some contexts also leads to a form of cell death29, 30-33. Type III PCD termed programmed 

necrosis or necroptosis, involves cell swelling, organelle dysfunction and cell lysis34-36.  

Thus, PCD may play an important role during preservation of tissue homoeostasis and 

elimination of damaged cells; this has profound effects on malignant tissues37.  

 The intimate link between the cell cycle, cellular senescence and cell death with 

diseases including cancer initiation and development and tumor responses to cancer 

treatment is getting clearer as research progresses, but it is very far from being 

completely understood38-42.  A schematic view of these concepts is shown in Figure 1.  

 

 

 
 

Figure 1: Schematic view of cellular response and fate after DNA damage (adapted 
from Wang et al., 2011 43).  
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 The first sections of the Introduction (1.2 to 1.6) focus on mechanisms in mammalian 

cells, whereas the last section (1.7) is devoted to C. elegans, the second model used for 

these studies.  

 

1.2     Bcl-2 family of proteins  

 BCL2 was the first anti-death gene discovered in mammals44, a milestone with far 

reaching implications for tumor biology. BCL2 was discovered because of its 

involvement in t(14;18) chromosomal translocations observed in non-Hodgkin’s 

lymphomas44,45. Multiple members of Bcl-2 family of apoptosis regulating proteins have 

been identified since, including mammalian anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-

1, Bcl-xES, Bcl-B, Bcl-w, Bfl-1/A1, Boo/Diva), structurally similar pro-apoptotic 

proteins (Bax, Bak, Bok/Mtd, Bcl-xS, Bcl-rambo, Bcl-gL) and several structurally 

diverse pro-apoptotic interacting proteins that operate as upstream agonists or 

antagonists, called the BH3-only proteins (Bad, Bik, Bid, Bim, Noxa, Puma, Hrk, Bnip1 -

3, Bmf, Mcl-1s, Bcl-gS, Spike)46. Proteins of the Bcl-2 family play central roles in cell 

death regulation and are capable of regulating diverse cell death mechanisms that 

encompass apoptosis, necrosis and autophagy47,48, and thus are found undoubtedly altered 

in many cancers and leukemia49-52.  Apart from their well-studied roles in controlling 

apoptosis, members of the Bcl-2 family of proteins also interface with the cell cycle53-69, 

DNA repair pathways70-73 and membrane remodelling mechanisms74,75, pathways which 

are well separated from their roles in apoptosis53-55,75-77. 

 

1.2.1    Structure of anti-apoptotic Bcl-xL protein  

 The pro-survival family of Bcl-2 proteins has been divided into two sub-classes based 

on the presence of one or more of Bcl-2 homology (BH) regions (Fig. 2). Four of these 

regions (BH1-4) of sequence homology have been identified, and each Bcl-2 family 

members contains at least one of them78,79. Several members of the pro-survival subclass, 

such as Bcl-2, Bcl-xL, Bbl.-w, and the CED-9 protein from C. elegans, possess all four 

BH regions. Others, such as Mcl-1, the BHRF1 protein from Epstein–Barr virus, and 

KSHV- Bcl-2 from Kaposi sarcoma virus, only possess strong sequence homology in the 

BH1, BH2, and BH3 regions. 
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  The first published structure of a Bcl-2 family member was that of human Bcl-xL 

determined by X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy. It showed that the overall structure of Bcl-xL consists of nine α–helices 

connected by loops of varying lengths. Bcl-xL adopts a globular structure; it consists of 

two central, primarily hydrophobic α-helices (α5 and α6), which are surrounded by 

amphipathic helices: α3 and α4 and by α1, α2 and α7. A 60-residue loop connecting 

helices α1 and α2 are flexible and non-essential for anti-apoptotic activity80. The 

signature “NWGR” sequence directly precedes α5. In Bcl-xL, this region appears to play 

both an important structural and functional role. Structurally, the tryptophan residue 

makes extensive hydrophobic contacts with residues in α7 and α8. The arginine residue 

also plays a key functional role in the binding of Bcl-xL to pro-apoptotic proteins and 

peptides such as Bax and Bak. The Bcl-2 family of proteins share homology domains 

BH1 and BH2 and mutations in these regions in either Bcl-2 or Bcl-xL abrogates the anti-

apoptotic activity and block the heterodimerization with other members of the Bcl-2 

family (e.g., Bax and Bak) that promote apoptosis81,82,83. BH1, BH2 and BH3 are in close 

proximity and form an elongated hydrophobic cleft in Bcl-xL, the site for interaction with 

death-promoting BH3-only proteins. The BH3 region is involved in activity of the death 

promoting proteins84-86. The BH3 amphipathic helix of BH3‐only proteins binds the 

hydrophobic groove of pro‐survival proteins predominantly by the insertion of four 

hydrophobic residues (h1–h4) along one face into hydrophobic pockets in the groove, and 

by the formation of a salt bridge between a conserved BH3 Asp residue and a conserved 

Arg residue in the BH1 domain of the pro‐survival proteins87-89.  Structural studies have 

shown that the BH3 binding groove of the pro-survival Bcl-2 family members has 

considerable plasticity90,91, which probably contributes to their ability to associate with 

multiple distinct BH3 domains. Besides the BH regions, many of the Bcl-2 family 

members possess a carboxy-terminal hydrophobic domain, which is predicted to be 

responsible for membrane localization92,93.  
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Figure 2: Comparison of domain structures of Bcl-2 family members. All Bcl-2 
family of proteins contains at least one of the Bcl-2 homology (BH) domains; BH1, BH2, 
BH3 and BH4. They also possesses a Transmembrane (TM) domain. The BH3 only 
proteins contain only one, BH3 domain for their pro-apoptotic functions. (diagram 
adapted from Peter E. Czabotar et. al 201479).  
 

 

The sequence homology between Bcl-xL and other Bcl-2 members suggests similar 

structural folds. The arrangement of α-helices in Bcl-xL is reminiscent of the membrane 

translocation domain of bacterial toxins, in particular diphtheria toxin and the colicins94.  

 

1.2.2 Structure and importance of the loop domain of Bcl-xL  
 An interesting feature of the Bcl-xL protein is the presence of a long loop between α1 

and α295 (Fig. 3). This loop is largely unstructured as evidenced by the lack of electron 

density for residues 28-80 and the lack of medium and long range nuclear Overhauser 

effects (NOEs) for these residues78. In addition, this region has highly variable amino acid 

sequence among Bcl-2 family members.  This loop domain has been shown to be the site 

of some post-translational modifications affecting the activity of both Bcl-xL and Bcl-296. 

For example, interleukin-3 (Il-3) or erythropoietin treatment of NSF/N1.H7 cells induced 

the phosphorylation of Ser70, resulting in the inactivation of Bcl-297. Mutant proteins 

with Ser to Ala mutation80 or deletion of the loop domain together98 was able to inhibit 

PCD better than the wild type protein. In contrast, proteolytic cleavage of the Bcl-2 loop 

at Asp34 by caspase-3 converts it from an anti-apoptotic to a pro-apoptotic protein99,100.  
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Figure 3:  Bcl-xL structure.  A) Bcl-xL contains BH1, BH2, BH3 and BH4 domains, a 
COOH-terminus hydrophobic transmembrane domain (TM) and an unstructured loop 
domain (LOOP), between BH4 and BH3.  The amino acid sequence of the flexible loop 
domain is indicated. A region of the loop domain previously identified as important for 
Bcl-xL cell cycle functions is highlighted in the boxed region53. Amino acids that have 
been mutated (Thr/Ala, Ser/Ala) and studied in a series of functional assays are 
highlighted in red101-103 (adapted from Wang et al 201143).   B) Visualization of the 3D 
structure of Bcl-xL, with the annotated α-helices, BH domains, S49 and S62 (modified 
from the National Center of Biotechnology Information (NCBI)/ cn3D Web site.) 
 

 

 However, compared to the full-length protein, Bcl-xL loop deletion mutants tend to 

display a similar ability to inhibit apoptosis and do not show significant alterations in 

their ability to bind pro-apoptotic proteins53,95,98. There is growing evidence indicating that 

Ser62 of Bcl-xL is highly phosphorylated in cells exposed to microtubule inhibitors, and 

a few protein kinases have been proposed to phosphorylate Bcl-xL(Ser62) in microtubule 

inhibitor-exposed cells104-109.	 Previous work in our laboratory has revealed that two serine 

residues within the unstructured loop domain of Bcl-xL, Ser49 and Ser62, undergo 
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dynamic phosphorylation/dephosphorylation events during cell cycle progression101-103. 

The function of the unstructured loop domain within Bcl-xL remains elusive, and is the 

subject of this work.  

 

1.2.3 Bcl-2 family proteins interface with cell cycle 

 Numerous studies have revealed links between some Bcl-2-like family members, cell 

cycle progression and cell cycle checkpoint regulation. First, Bcl-2 has been shown to 

slow entry from the quiescent G0 into the G1 phase of the cell cycle in multiple cell 

lineages from transgenic mice. In contrast, Bcl2-/- knockout cells enter S-phase more 

quickly108,110. More recently, phosphorylated forms of Bcl-2 also have been found to co-

localize in nuclear structures and on mitotic chromosomes, revealing the importance of 

phosphorylation events for Bcl-2 protein localization during cell cycle progression111. 

Mcl-1, another Bcl-2 homologue known to function as an anti-apoptotic protein112, 

inhibits cell cycle progression through the S phase of the cell cycle. The cell cycle 

regulatory function of Mcl-1 is partially mediated through its interaction with 

proliferating cell nuclear antigen, a cell cycle regulator that is crucial in DNA 

replication53,113. Others have reported that a proteolytic fragment of Mcl-1 regulates cell 

proliferation via its interaction with cyclin-dependent kinase 1 (Cdk1/Cdc20)114 and that 

Mcl-1 is essential in Atr-mediated Chk1 phosphorylation106.  Others have discerned the 

involvement of Bid, a BH3-only protein with pro-apoptotic activity, at the intra-S phase 

checkpoint under replicative stress and in response to DNA-damaging agents. This 

function of Bid is mediated through its phosphorylation at Ser78 and Ser61/64 by the 

DNA-damage signaling kinase Atm 115,116.  

 Previous studies from our laboratory reported that Bcl-xL, an anti-apoptotic Bcl-2 

family member, not only counteracts BH3-only protein-mediated cell death signals after 

DNA-damaging treatment, it also stabilizes the G2 cell cycle checkpoint and favours the 

establishment of premature senescence in surviving cells after DNA topoisomerase I 

(camptothecin) and II (VP16) inhibitor exposition53.  Bcl-xL co-localizes with Cdk1/Cdc2 

in nucleolar structures and binds to Cdk1/Cdc2 during the G2 checkpoint, whereas its 

overexpression stabilizes G2 arrest and premature senescence in surviving cells after 

DNA damage. Interestingly, Bcl-xL potently inhibits Cdk1/Cdc2 kinase activities in 
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vitro. In in vitro kinase assays using recombinant Bcl-xL protein, this effect was reversed 

by the addition of a synthetic peptide corresponding to the 41st to 60th amino acids, a 

region rich in Ser- and Thr- putative phosphorylation residues within the flexible loop 

domain of Bcl-xL. Furthermore, a deletion mutant of this region (Bcl-xLΔP3) did not 

alter the anti-apoptotic function of Bcl-xL, but impeded its effect on Cdk1/Cdc2 activities 

and on the G2 checkpoint after DNA damage53. Bcl-xL is phosphorylated on Ser62 at the 

loop domain during normal cell cycle progression and DNA-damage induced G2 arrest 

by Plk1 and Mapk9/Jnk2102. Phosphorylated Bcl-xL(Ser62) accumulates in nucleolar 

structures including nucleoli and Cajal bodies during the stabilization of DNA damage-

induced G2 arrest and co-localizes with Cdk1/Cdc2 avoiding unwanted mitosis during 

DNA damage102.   

 During mitosis, Bcl-xL(Ser62) is strongly phosphorylated by Plk1 and 

Mapk14/Sapkp38α at prometaphase, metaphase and the anaphase boundary, while it is 

dephosphorylated at telophase and cytokinesis103. Phospho-Bcl-xL (Ser62) localizes in 

centrosomes with γ-tubulin, and in the mitotic cytosol with some spindle-assembly 

checkpoint (SAC) signaling components, including Plk1, BubR1 and Mad2. In taxol- and 

nocodazole-exposed cells, phospho-Bcl-xL(S62) also binds to Cdc20- Mad2- BubR1- 

and Bub3-bound complexes, while the phosphorylation mutant Bcl-xL(S62A) does not103 

(Fig. 4). 

		 In parallel, Bcl-xL undergoes cell cycle-dependent phosphorylation on Ser49, which 

accumulates in centrosomes during the G2 cell cycle checkpoint, particularly during 

DNA damage-induced G2 arrest 101.  Bcl-xL(Ser49) is rapidly dephosphorylated at early 

mitotic phases (prometaphase, metaphase, anaphase) and is rephosphorylated during 

telophase/cytokinesis by Plk3. Phospho-Bcl-xL(S49) is found in association with 

microtubule-associated dynein motor proteins and at the mid-zone body during 

telophase/cytokinesis101 (Fig. 4). 

 In tumor cells, expression of the phosphorylation mutants Bcl-xL(S62A), Bcl-

xL(S49A) or dual Bcl-xL(S49/62A) has no effect on apoptosis, but leads to an increased 

number of cells harbouring mitotic defects103. These defects include multipolar spindles, 

chromosome lagging and bridging, and cells with micro-, bi- or multi-nucleated cells, and 
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Figure 4:  Schematic representation of Bcl-xL phosphorylation during the 
progression of mitosis. Question marks (?) indicate that the exact mechanisms are still 
unknown (modified from Wang et al 2014103).   
 
cells that fail to resolve and complete mitosis103. Together, these observations indicated 
that during mitosis, Bcl-xL(S49) and (S62) phosphorylation/dephosphorylation dynamics 
impact on chromosome stability, mitosis resolution and cytokinesis completion, at least 
in tumour cells101-103.   
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1.3  The cell cycle : regulation at interphase 

1.3.1 Cyclin-dependent kinases and cyclin-dependent kinase inhibitors 

 Proper progression through the cell cycle is monitored by checkpoints that sense 

possible defects during DNA synthesis and chromosome segregation.  During interphase, 

activation of these checkpoints induces cell cycle arrest, which is controlled by interplay 

modulation of cyclin dependent kinases (Cdks) and their associated cyclins.  Cell cycle 

arrest at these checkpoints allows the cell to repair defects, thus preventing transmission 

of damage to the daughter cells117. Cdks are the catalytic subunits of a family of 

mammalian heterodimeric serine/threonine kinases, best characterized in the control of 

cell cycle progression. Cdks were first implicated in cell cycle control based on 

pioneering work in yeast, in which Cdc genes were identified including Cdc8 in the 

budding yeast S. cerevisiae and Cdc2 in the fission yeast S. pombe, and were found to 

promote transitions between different cell cycle phases through its interactions with 

various regulatory cyclin subunits118-121. Cyclins are synthesized and destroyed at specific 

times during the cell cycle, regulating kinase activity of Cdks in a timely manner. Soon, 

homologs of CDC2 were identified in human cells 122 by their ability to complement yeast 

mutants123. Subsequently, CDK2 was discovered because of its ability to complement 

Cdc8 S. cerevisiae mutants124-127. Currently more than 20 members of the Cdk family each 

characterized by a conserved catalytic core made of an ATP binding pocket, a PSTAIRE-

like cyclin binding domain and an activating T-loop motif. Cyclins belong to a 

remarkably diverse group of proteins classified solely on the existence of a cyclin box 

that mediates binding to Cdk128.  Cdk activities are restrained by another class of proteins, 

the cyclin-dependent kinase inhibitors (Cki). Cki are subdivided into two families based 

on their structure and Cdk specificity. Ink4 proteins, including Ink4A, Ink4B, Ink4C and 

Ink4D129; primarily target Cdk4 and Cdk6. The Cip/Kip family composed of p21, p27 and 

p57129 are more promiscuous and broadly interfere with the activities of cyclin D, E, A 

and B dependent kinase complexes130. Cki have been shown to block the proliferation of 

adult stem cells in multiple tissue types. Loss of Cki may expand the stem cell 

population, possibly contributing to the development of specific tumours.  
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1.3.2 G1-S phase transition 

After cytokinesis is completed, the newly generated cells can either continue cell division 

or stop proliferating. If cells are deprived of growth factors prior to the G1 checkpoint, 

they exit into a state of quiescence known as G0. Those cells that continue proliferating 

advance to the G1 phase of the new cycle (Fig. 5).  According to the classical model for 

the mammalian cell cycle, specific Cdk-cyclin complexes are responsible for driving the 

various events known to take place during interphase in a sequential and orderly fashion. 

Progression through G1 is mainly regulated by Cdk4, Cdk6 and Cdk2 and their 

regulatory cyclins130,131. At the beginning of G1, the mitogenic signaling induces synthesis 

of the D-type cyclins (D1, D2 and D3) and possibly the proper folding and transport of 

Cdk4 and/or Cdk6 to the nucleus and the activation of the latter. These Cdk-cyclin 

complexes phosphorylate members of the retinoblastoma (Rb) protein family; pRb, p107 

(RbL1) and p130 (RbL2) at their unique phoshorylation sites. The retinoblastoma protein 

(pRb) and the pRb-related p107 and p130 comprise the 'pocket protein' family of cell 

cycle regulators. These proteins are best known for their roles in restraining the G1-S 

transition through the regulation of E2f-responsive genes. pRb and the p107/p130 pair are 

required for the repression of distinct sets of genes, potentially due to their selective 

interactions with E2fs that are engaged at specific promoter elements132. Inactivation of 

pocket proteins allow for the expression of the E-type cyclins (E1 and E2) which bind 

and activate Cdk2133,134. Cyclin E- cdk2 complexes further phosphorylate these pocket 

proteins, leading to their complete inactivation134,135.  Another kinase, Cdk3 might also 

participate in inactivation of pRb.  

 Cyclin E-Cdk2 activity is thought to be essential for initiating DNA replication by 

facilitating loading of the Mcm chromosome maintenance proteins onto origins of 

replication. Once cells enter S-phase, cyclin E-cdk2 complexes need to be silenced to 

avoid the re-replication of DNA136. Rapid degradation of cyclin E is carried about by Scf-

Fbxw7 ubiquitin ligase followed by its subsequent cleavage by the proteasome. In 

addition, cyclin E-cdk2 phosphorylates its own inhibitor p27 , thereby facilitating the 

degradation of this inhibitor by the proteasome136. Inactivation of pRb also activates 

transcription of A-type and B-type cyclins. Cyclin A-cdk2 is required for proper 

completion and exit from S phase. S phase proteins also include upstream regulators of 
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cyclin A (pRb), transcription factors (E2f1, B-Myb), protein involved in DNA replication 

(Cdc6, Hssb, Mcm4), DNA repair (Brca1, Ku70), histone deposition and nucleosome 

assembly (Hira)137, ubiquitin mediated proteolysis (hHR6A and Cdc20) and cell cycle 

checkpoints (p53, p21Cip1, Mdm2)130. 

 
Figure 5: Eukaryotic cell cycle phases with respective cyclin-Cdk complexes and 
inhibitors. The Cdk-cyclin complexes regulate the cell cycle in terms of its entry from 
one phase to another apart from the checkpoint proteins. Cyclin D-Cdk4/6 complex 
stimulates the initiation of G1 phase and the start of the cell cycle. Increasing levels of 
cyclin E-Cdk2 triggers the onset of S phase towards the end of G1 phase. Then, Cyclin 
A- Cdk2 regulates the completion of S phase and entry into G2, where cyclin B-Cdk1 is 
involved. The level of cyclin B increases initially and decreases at the end of M phase, 
followed by a decrease in Cdk1. (Diagram modified from Moghadam et al., 2011138) 
 

 

1.3.3  G2-M phase transition  

 At the end of the G2 phase, B-type cyclins associate with Cdk1(cdc2), the master 

regulatory kinase that controls the entry into mitosis. Cdk1 is only active at the G2/M 

border and becomes inactive as cells enter the anaphase stage of mitosis139,140. During G2, 

mammalian cyclin B1/Cdk1 complexes are held in an inactive state by phosphorylation 

of Cdk1 at two negative regulatory sites; Thr14 and Thr15, catalyzed by Myt1 and Wee1 
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kinases respectively, when it is bound to cyclin B1141-146. Cdc25 phosphatases 

dephosphorylate these sites for the activation of Cdk1. Mammalian cells have three 

Cdc25 phosphatases, Cdc25A, B and C, which appear to have some level of specificity 

for different cyclin/Cdk complexes along the cell cycle. Studies indicate that Cdc25A 

regulates G1/S and G2/M transitions, whereas Cdc25B and Cdc5C are involved in intra-S 

and G2/M regulation140,147-153. Entry into mitosis absolutely requires progressive 

accumulation of active cyclin B1/Cdk1(cdc2) complexes in the nucleus. Cyclin 

B1/Cdk1(cdc2) kinase activity is therefore highly organized to coordinate and trigger 

different mitotic events. The initial activation of cyclin B1/Cdk1(cdc2) complexes occurs 

about 20 to 25 minutes before nucleolar disassembly and nuclear breakdown154,155.  After 

these events, cyclin B1/Cdk1(cdc2) rapidly reaches its maximum activity to promote 

mitosis.  

 

1.4  The cell cycle : mitosis regulation 

 Mitosis can be divided into five distinct phases: prophase, prometaphase, metaphase, 

anaphase and telophase (Fig. 6). During prophase, chromosomes condense into highly 

compacted rigid bodies for physical segregation of sister chromatids into the daughter 

cells156. Centrosomes increase the assembly rate of dynamic microtubules and move apart 

to form a bipolar spindle. During prometaphase chromosomes successively attach to the 

mitotic spindle microtubules via their kinetochores, multi protein structures that assemble 

on centromeric chromatin157. Chromosomes align at the metaphase plate along the spindle 

equator with sister chromatids, the two identical copies of a chromosome, facing opposite 

poles158. Once all sister kinetochores are attached to microtubules originating from 

opposite spindle poles, mitotic exit initiates by cleavage of the cohesion rings that hold 

sister chromatids together159. In anaphase sister chromatids are then segregated towards 

opposite spindle poles.  
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Figure 6: Progression through mitosis. Mitosis proper in general involves four major 
stages- Prophase, metaphase, anaphase and telophase. The stages are shown by schematic 
of the mitotic spindle and chromosomes. Sister chromatids, the two identical copies of a 
chromosome, are separated at the end of the mitosis into two equal daughter cells. 
(diagram inspired from Cheeseman and Desai, 2008157) 
 

 

 In telophase, many mitotic changes revert back to the interphase state; chromosomes 

decondense and the nuclear envelope reassembles around two individual nuclei. Finally, 

cytokinesis physically splits the cytoplasm to form the two new daughter cells. To ensure 

smooth progression of the cell cycle, cell cycle checkpoints constantly monitor the 

molecular mechanistics of cell division. 

 Monitoring the order and fidelity of chromosome alignment and segregation through 

mitosis and meiosis is largely achieved by the actions of two checkpoints during mitosis: 

the spindle assembly checkpoint (SAC) and the mitosis exit network (MEN).  The SAC 

functions in metaphase to prevent premature separation of sister chromatids at anaphase 
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160-162. The MEN acts at the end of telophase and control cytokinesis and cell division 

itself 163. Accurate chromosome segregation is essential for genome inheritance and 

cellular fitness. Lethality or aneuploidy results when chromosomes fail to segregate 

during mitosis. Aneuploidy leads to aberrant gene dosage and exposes detrimental 

recessive mutations, potentially causing birth defects and promoting cancer cell 

proliferation164,165. Accurate segregation is achieved by linking sister chromatids after 

replication, which is mediated by spindle microtubules that attach to chromosomes at the 

kinetochores. 

 

1.4.1 Chromosome - microtubule attachment  

1.4.1.1 The kinetochores 

 The kinetochore is a hierarchical protein assembly composed of nearly 100 proteins 

that links centromeric DNA to spindle microtubules and thereby couples forces generated 

by microtubule dynamics to power chromosome movement. Core components of the 

kinetochore is established by the constitutive centromere associated network (CCAN)166 

and the Knl1-Mis12-Ncd80 (KMN) protein complex167, which bind centromeric DNA 

and microtubules, respectively. These networks are conserved across eukaryotes, with 

additional contributions from species-specific auxiliary DNA and microtubule binding 

proteins. Regulatory proteins at the kinetochore safeguard against erroneous segregation 

and thereby increase the fidelity of mitosis in two ways. First, attachments on bi-oriented 

kinetochore pairs are selectively stabilized, whereas erroneous attachments are 

destabilized and eliminated.  This allows for another opportunity for bi-orientation. 

Second, unattached kinetochores are the primary signal to activate the SAC. The 

competing need for speed and fidelity in chromosome segregation are integrated mainly 

at the kinetochore. The KMN network is an essential and conserved complex of proteins 

that constitutes the core microtubule binding activity at the kinetochore and is a platform 

for SAC signaling. In addition to mediating chromosome spindle attachment, the 

kinetochore also plays an essential role in relaying microtubule binding status to the SAC 

to delay exit from metaphase and chromosome segregation.  
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1.4.1.2 The KMN network  

 The kinetochore localized KMN network is composed of Knl1 (Kinetochore null 

protein 1), four subunits of Mis12 (Mis-segregation 12) and four subunits of Ndc80/Hec1 

(Nuclear division cycle 80) (Fig. 7). The Ndc80 complex is a heterotetramer comprising 

Ndc80/Hec1, nuclear filamentous 2 (Nuf2), spindle pole component 24 (Spc24) and 

Spc25.  The site where kinetochores are assembled is determined by the presence of a 

modified histone H3 or Cenp-A in humans, within nucleosomes at the periphery of each 

sister centromere. The KMN network associates with kinetochores in prophase and 

disappears from kinetochores in telophase168. Heterodimers of Spc24-Spc25 and 

Ndc80/Hec1-Nuf2 interact via coiled coil domains and assemble into a coiled like 

structure with distinct functional domains at each end169-172.  The globular domains of the 

Ndc80/Hec1-Nuf2 heterodimer fold into a calponin homology domain, which mediates 

microtubule binding167,173,174. The Spc24-Spc25 heterodimer globular domains are 

essential for kinetochore targeting of the Ndc80/Hec1 complex, as they directly bind to 

the Mis12 complex175 and CCAN components176. To couple chromosome movement to 

microtubule dynamics,  an electrostatic interaction between the basic amino terminal tail 

of the Ndc80/Hec1 protein and the acidic E-hook of tubulin confers affinity172,173,177.  The 

complex then binds to microtubules by recognizing both α-tubulin and β-tubulin at the 

inter- and intra-tubulin interfaces177. The Ndc80/Hec1 complex binds to the microtubule 

every 4 nm space, acting as a sensor allowing it to detach near depolymerizing 

microtubule ends.  

 Knl1 has a microtubule binding activity, which enhances the binding of the KMN 

network with microtubules in vitro167.  The Mis12 complex function as an inter-complex 

scaffold that links the KMN network to the centromeric DNA via direct association with 

the CCAN protein CenpC178,179. The Mis12 complex also bridges Knl1 and Ndc80 

complex at the kinetochores175.  

 A number of other proteins within and at the periphery of the kinetochore outer 

domain depend on the presence of members of the KMN network for their kinetochore 

localization. These include MT-associated proteins in the proximity of kinetochore MT 

plus ends and members of the SAC160,180. Current understanding of how KMN networks 

promote kinetochore function is limited and requires further work.   
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Figure 7:  Organization of the KMN network.  The KMN network consists of KNL1, 
NDC80 and MSL12. The four subunits of the MSL12 complex bridges KNL1 and the 
NDC80 complex to the constitutive centromere associated network (CCAN) and 
centromeric DNA. (diagram inspired from Emily A. Foley 2013181) 
   

1.4.2  Activation of the spindle assemble checkpoint  

 In 1991, two independent screens identified various genes, mutation of which 

bypassed the ability of wild type S. cerevisiae cells to arrest in mitosis in the presence of 

spindle poisons182,183. The genes which are conserved across eukaryotes, include the 

human Ser/Thr kinases multipolar spindle protein 1 (Mps1) and budding uninhibited by 

benomyl 1 (Bub1), as well as the non-kinase components including mitotic arrest 

deficient 1 (Mad1), Mad2, Bub3 and the likely pseudo-kinase Bub1 related (BubR1)182-184.  

These genes are collectively involved in a pathway that is active in prometaphase and 

which prevents the premature separation of sister chromatids185,186. This pathway 

constitutes the spindle assembly checkpoint (SAC). These proteins delay the activation of 

Cdc20, a cofactor of the E3 ubiquitin ligase known as anaphase promoting 

complex/cyclosome (APC/C)187,188. The APC/C is a master regulator of anaphase entry189. 

A mitotic checkpoint complex (MCC) that contains three SAC proteins, Mad2, 

BubR1/Mad3 and Bub3, as well as Cdc20 acts as a SAC effector. The MCC binds the 
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APC/C and seems to render it unable to exercise its ubiquitin-ligase activity on securin 

and cyclin B190-196.  Besides MCC, other core SAC components include Mad1, Bub1, 

Mps1 and Aurora-B.  These proteins are required to amplify the SAC signal and the rate 

of MCC formation197.  The SAC inhibits the APC/C functions by inactivation of Cdc20 

through the MCC complex198.  

 The key step in MCC formation is conformational activation of Mad2 from the free 

‘open’ form (O-Mad2) to the Cdc20-bound ‘closed’ form (C-Mad2)198,199. This 

conversion is a catalytic process, occurring through the association of soluble O-Mad2 

with kinetochore bound C-Mad2. Mad1 is the receptor for C-Mad2 at the kinetochore, 

distinct from Cdc20-bound C-Mad2, which facilitates Mad2 conformational conversion. 

The kinetochore at this point promotes Mad2 conversion through hierarchical recruitment 

of SAC proteins. This cascade seems to consist of kinases Aurora-B and Mps1 at top, 

followed by recruitment of the Bub1-Bub3 complex, then by the recruitment of BubR1-

Bub3, and finally by recruitment of a heterotetramer composed of Mad1 and Mad2200-204.   

 

1.4.2.1 Bub-related protein kinetochore recruitment 

 Recently it has been established that core kinetochore protein Knl1 recruits Bub1, 

BubR1 and Bub3205-208, although complex recruitment isn’t clearly understood. Bub1,  a 

protein kinase, and BubR1, a pseudokinase in vertebrates, contain catalytic domains that 

are universally required for the checkpoint and are important for kinetochore bi-

orientation209,210. Bub1 and BubR1 bind to Bub3 through a Bub3-binding domain also 

known as GLEBS domain. Bub1 interacts via its TPR motif with the KI motif on Knl1 of 

the kinetochore204,205. Mps1 kinase activity stimulates Bub1 localization and checkpoint 

activation and Mps1 mediated phosphorylation of Thr residues on the MELT-like motifs 

of Knl1, which is required for Bub1 kinetochore localization206-208. Crystallography and 

biochemical studies have shown that Bub3 binding to Knl1 is the key step in localizing 

Bub1-Bub3 to kinetochores211.  In contrast, BubR1 localization depends on Bub1 but not 

through Bub3-KNL1 binding. It is suggested that Bub1 directly recruits BubR1 through 

dimerization212-214.  
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1.4.2.2 Mad1 and Mad2 kinetochore localization 

 Although Bub1-Bub3 localization is required for the checkpoint, its localization does 

not always correlate with checkpoint activation. For instance, some Bub1 is retained on 

early anaphase kinetochores203,215,216 and Bub1 but not Mad1 is present on kinetochores 

bound to the sides of microtubules, which do not signal the checkpoint217. Bub1 is a key 

component in localizing Mad1 to the kinetochore via its RLK motif218.  Another Mad1 

co-receptor Rod-Zwilch-Zw10 (RZZ) is thought to play role in Mad1 localization219. 

 Knl1 and its constituent binding partner Zwint are required to localize RZZ220,221 and 

RZZ localization may be regulated through Aurora-B dependent phosphorylation of 

Zwint222. RZZ is required for stable Mad1 localization in human cells. The kinetochore 

dynamics of Mad1 consists of two roughly equal sized pools: a more stably bound pool 

and a mobile, high turn-over pool223. Mad2 when bound to Mad1 adopts the C-Mad2  

conformation and doesn’t seem to dissociate from Mad1 during checkpoint activation. 

 Mad1-C-Mad2 accounts for the more stable kinetochore pool of Mad2.  C-Mad2 

bound to Mad1 is the kinetochore receptor for O-Mad2224-226. Therefore, the mobile and 

immobile fractions of kinetochore Mad2 consist, respectively, of rapidly cycling C- and 

O-Mad2 and the Mad1-Mad2 receptor.  

 

1.4.2.3 The Mad2 template model 

 How kinetochores promote MCC formation is not entirely clear. Fluorescence 

recovery after photobleaching (FRAP) experiments revealed that some of the checkpoint 

proteins are stably bound to unattached kinetochores (Bub1, Mad1 and a pool of Mad2), 

whereas other checkpoint components turnover more rapidly (BubR1, Mps1, Bub3, a 

pool of Mad2 and Cdc20) supporting the idea that unattached kinetochores catalyze the 

formation of a diffusible checkpoint inhibitor201,223. The existence of C-Mad2 and O-

Mad2 lead to the Mad2 template model227 (Fig. 8). The fundamental principle is that O-

Mad2 can dimerize with C-Mad2, which induces a conformational change from O-Mad2 

to C-Mad2, thereby binding to Cdc20. Unattached kinetochores stably bind a tetrameric 

Mad1:C-Mad2 complex226,228 and thus, unattached kinetochores can serve as template for 

continuous conversion of cytosolic O-Mad2 molecules. This model explains how a single 

unattached kinetochore can generate an efficient checkpoint response. However, it also 
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predicts that the checkpoint signal spreads in the cytoplasm: C-Mad2:Cdc20 could then 

serve as template and hence uncouple checkpoint signaling from unattached 

kinetochores. Amplification of C-Mad2 away from kinetochores might be prevented by 

several mechanisms. First recruitment of O-Mad2 to Mad1:C-Mad2 depends on Mps1 

activity229, a process that might be restricted to the kinetochore environment. Second, in 

the cytosol the dimerization interface of C-Mad2 is blocked when bound to p13/comet,   a 

protein with structural similarity to Mad2230. Third, to form functional inhibitory MCC, 

C-Mad2:Cdc20 forms a complex with the Bub3:BubR1 where binding to Mad3 has been 

shown to block the dimerization interface of Mad2231.  

 

 

 
 
Figure 8: Mad2-template model of MCC production at unattached kinetochores. In 
the cytoplasm C-Mad2 forms a tetrameric complex with Mad1, but dimerization with O-
Mad2 is blocked by p31/comet . Upon Mps1 phosphorylation Mad1:C-Mad2 binds to 
unattached kinetochores. This releases p31/comet, and together with Mps1 activity allows 
cytosolic O-Mad2 to dimerize with C-Mad2. This initiates a conformational change and 
enables the formation of C-Mad2:Cdc20, which subsequently assembles with the 
Bub3:BubR1 complex to form the MCC (diagram inspired from Lara-Gonzales et al., 
2012232). 
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1.4.2.4 Phosphorylation control  

In order to prevent chromosome missegregation, the SAC delays anaphase until all 

kinetochores are correctly attached to the mitotic spindle160. Phosphoregulation plays a 

part in this checkpoint, with contributions from the Mps1 kinase, which is required for 

the recruitment of essentially all other SAC components to the kinetochore. 

Phosphorylation of Knl1 by Mps1 creates a docking site for the SAC kinase Bub1 and its 

binding partner Bub3206,207. Kinetochore-localized Bub1 is necessary and sufficient for 

recruiting the SAC proteins Bub3 and BubR1/Mad3.  Much like Bub1, Zwint1 (ZW10 

interacting protein 1) which associates with both Knl1 and RZZ complex, localizes Mad1 

to the kinetochore. Mps1 kinase also localizes RZZ complexes to the kinetochore.  

 At the start of mitosis, all chromosomes lack spindle attachments. Initial interactions 

between chromosomes and spindle microtubules occur predominantly along the 

microtubule (MT) lattice, rather than at the MT plus ends233, later replaced by stable end-

on attachments, which depends on the KMN network. Error-free chromosome 

segregation requires that MT binding be dynamic such that erroneous attachment can be 

eliminated while proper attachments on bi-oriented chromosomes persist through 

anaphase. These two competing needs are balanced through reversible phosphorylation 

events at the kinetochore, with essential contributions from Aurora-B kinase and 

phosphatase PP2A containing a B56 regulatory subunit (B56-PP2A). Aurora-B targets 

centromeric DNA and has a conserved role in destabilizing and eliminating erroneous 

kinetochore-MT attachments234,235.  

 A large body of work suggests that phosphorylation of Aurora-B substrates at the 

kinetochore reduces MT-binding affinity236. Current models suggest that differential 

levels of phosphorylation of Aurora-B substrates arise because Aurora-B is located closer 

to kinetochore substrates on erroneously attached kinetochores, where tension is low, 

compared with bi-oriented kinetochores, where tension is high and the distance between 

the kinetochore and centromere is increased237.  

 A model was suggested to describe how stable kinetochore-MT interactions are 

formed during prometaphase181 (Fig. 9). The model suggests that at unattached 

kinetochores, Aurora-B is close to its outer kinetochore substrates (e.g., KMN network) 

and phosphorylation is maximal238. During prometaphase, many kinetochores begin 
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establishing lateral interactions along MT walls, which do not require the KMN 

network233,239.  Crucially, these later interactions produce tension, which increase the 

distance between centromeric Aurora-B and the KMN network, decreasing the 

phosphorylation of KMN network proteins in comparison to unattached kinetochores. 

   

 
Figure 9: Speculative model of the regulation of kinetochore–MT binding through 
outer kinetochore phospho-regulation by Aurora-B and B56-PP2A. On unattached 
kinetochores lacking tension, centromeric Aurora-B kinase is in close proximity to its 
outer kinetochore substrate allowing for high levels of phosphorylation, despite the 
presence of B56-PP2A phosphatase, also at the kinetochore (1). During prometaphase, 
lateral interactions produce intermediate tension, which results in both inter- and intra-
kinetochore stretching. This increases the distance between Aurora-B and its outer 
kinetochore substrates, while B56-PP2A localization relative to the outer kinetochore is 
unchanged (2). The net result is a decrease in substrate phosphorylation and stabilization 
of initial microtubule tip interactions (3). At metaphase, full MT occupancy results in the 
loss of B56-PP2A from the kinetochore, and limited access of Aurora-B to its substrates 
on stretched centromeres allows for stable attachments (4) (diagram inspired from Foley 
and Kapoor 2013181)  
 
 
     Finally, as MT occupancy increases, inter- and intra-kinetochore tension is established 

and the accessibility of Aurora-B kinase to the kinetochore is reduced, and B56-PP2A is 

removed from kinetochore240. These two events ensure phosphorylation remains low on 

bi-oriented kinetochore pairs. The regulation of kinetochore-MT attachments also 

depends on Plk1241.  Recruitment of B56-PP2A to the kinetochore depends on Plk1- 
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mediated phosphorylation of BubR1. B56-PP2A in turn, regulates the phosphorylation of 

BubR1 and Plk1 kinetochore targeting242. Such inter- dependencies of kinase and 

phosphatase recruitment, combined with MT attachment-sensitive targeting, allow for 

feedback mechanisms capable of rapidly responding to MT binding. 

 

1.4.2.5 Cdc20 under control  
 
 During prometaphase, Cdc20 concentrates at the kinetochores243,244 (Fig. 10). 

Kinetochores provide the catalytic platform to accelerate the production of the MCC. The 

SAC targets Cdc20, the co-factor of APC/C. Specifically, the SAC negatively regulates 

the ability of Cdc20 to activate the APC/C mediated polyubiquitylation of two key 

substrates, cyclin B and securin, thereby preventing their destruction by the 26S 

proteasome245,246. Securin is a stoichiometric inhibitor of a protease known as separase. 

Separase is required to cleave the cohesion complex that holds the sister chromatids 

together and cohesion cleavage is required to execute anaphase189. The proteolysis of 

cyclin B inactivates the master mitotic kinase Cdk1, which promotes exit from mitosis. 

By keeping Cdc20 in check, the SAC prevents this chain of events, prolonging 

prometaphase until all chromosomes have become bi-oriented between separated spindle 

poles on the metaphase plate. Chromosome bi-orientation finally extinguishes the 

checkpoint, relieving the mitotic arrest and allowing anaphase to proceed.  

 

1.4.3 Silencing of the spindle assemble checkpoint  

Once the spindle assembly checkpoint is cleared, inhibition of the APC/C needs to be 

released to promote anaphase entry and chromosome segregation. This requires halting 

MCC production as well as disassembly of existing MCCs. 

 

1.4.3.1 Correct kinetochore-microtubule attachment stops mitotic checkpoint 

complex production 

 Production of new MCC ceases when kinetochores stably attach to spindle MTs180. 

Upon MT attachment checkpoint components diminish, such as Bub1, BubR1 and Mps1, 

or nearly disappear, such as Mad1 and Mad2201,215,247,248. Removal of checkpoint 

components may be accomplished by several mechanisms.  
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Figure 10: The spindle assembly checkpoint delays mitotic progression. Mitotic entry 
is driven by Cdk1-cyclin B phosphorylation. In the beginning of mitosis securin (SEC) 
binds to the protease separase, thereby preventing cleavage of the cohesin rings (yellow 
dots) that hold the sister chromatids together. Unattached kinetochores (red ovals) 
catalyze MCC production, which inhibits activity of APC/C-Cdc20. The SAC is only 
satisfied when all kinetochores are attached (green ovals), and MCC production stops. 
APC/C-Cdc20 can then polyubiquitylate (UbUbUb) cyclin B and securin, which targets 
them for degradation by the 26S proteasome. Degradation of securin frees separase to 
cleave cohesin, which enables chromosome segregation. Degradation of cyclin B 
inactivates CDK1-cyclin B, which induces cytokinesis and further drives mitotic exit 
(diagram modified from Musacchio and Salmon, 2007160). 
 

The depletion of the Mad1:C-Mad2 complex from kinetochores is important for spindle 

assembly checkpoint silencing. This is mainly achieved by dynein-mediated “stripping” 
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of Mad1 and Mad2 along kinetochore fibres towards the poles249. Mad1 and Mad2 have 

actually been visualized to move along kinetochore fibres, but other checkpoint proteins 

such as BubR1 and Mps1, may also be reduced in this way250.  

      However, this might not be the only mechanism by which checkpoint proteins are 

removed from kinetochores, as fungi and higher plants do not have kinetochore dynein 

and in human cells dynein-independent pathways also exist251. While Mad1 and Mad2 are 

removed from kinetochores already upon MT attachment, other checkpoint components, 

such as Mps1, BubR1 and Bub1, require correct bi-orientation for an efficient 

depletion201,252.  Upon bi-orientation outer kinetochore components are removed from 

centromeric Aurora-B and subsequent localization and phosphatase activity of PP1 might 

not only stabilize MT attachments, but may also contribute to checkpoint silencing253. 

 According to the role of Aurora-B in establishing and maintaining spindle checkpoint 

signalling, removal of Aurora-B-mediated phosphorylation might initiate spindle 

checkpoint silencing at kinetochores254. In addition, MT binding could directly compete 

with checkpoint protein binding sites at kinetochores or induce structural changes within 

the kinetochore that abolish spindle assembly checkpoint signalling180.  The MCC exists 

either in a free form or bound to the APC/C. Disassembly of free MCC can be mediated 

by p31/comet, which is structurally similar to Mad2 and binds the dimerization interface 

of C-Mad2255. Binding to p31/comet could disrupt BubR1 interactions with C-

Mad2:Cdc20256. Alternatively, p31/comet could extract Mad2 from the MCC and leave 

Bub3:BubR1:Cdc20 in complex thereby providing a rationale how Mad2 can be a sub-

stoichiometric component of the MCC257,258. When the MCC is bound to the APC/C it is 

always disassembled. This depends on ubiquitylation and possibly proteolysis of 

Cdc20259-261. At the same time, continuous re-synthesis of Cdc20 sustains nearly steady-

state levels in mitotically arrested cells257. Ubiquitylation of Cdc20 within the MCC 

requires the recently identified APC/C subunit APC15, which is not required for 

ubiquitylation of canonical APC/C substrates262,263.  

 The continuous turnover of MCCs may explain why even in the presence of a fully 

active checkpoint, APC/C inhibition is never complete. Cyclin B is slowly but 

continuously degraded and eventually cells may prematurely exit mitosis despite the 

presence of an active checkpoint, a phenomenon termed “mitotic slippage”264. This has 
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been proposed as one possibility of how cancer cells escape chemotherapeutics that target 

the mitotic spindle265. 

 

1.4.3.2 Inactivation of spindle assembly checkpoint re-engagement 
 During prometaphase, error correction and the SAC are constantly engaged to ensure 

that all chromosomes become correctly attached to the mitotic spindle. During metaphase 

the checkpoint is satisfied, but acute addition of spindle poisons re-engages the 

checkpoint, demonstrated by a halt of Cyclin B1 degradation266. Presumably, cohesin 

cleavage results in a drop of tension on sister kinetochores, which re-engages Aurora-B-

mediated error correction and spindle assembly checkpoint signalling267. However, when 

cohesin is cleaved to initiate anaphase kinetochores remain attached and the spindle 

checkpoint is not re-engaged (Fig. 11), suggesting that mechanisms exist that prevent 

untimely checkpoint re-engagement at anaphase onset268,269. This is essential as splitting 

of sister chromatids during anaphase is irreversible and thereafter the spindle checkpoint 

must not be re-activated to allow unidirectional exit from mitosis. 

	

 
 

Figure 11: Error correction and the spindle assembly checkpoint at different stages 
during mitosis. In Prometaphase unattached kinetochores are not under tension and 
Aurora-B (red ellipse) can phosphorylate substrates on the outer kinetochore. Error 
correction and the spindle checkpoint are on. In metaphase sister kinetochores are 
attached as well as under tension. Thus, outer-kinetochore components are removed from 
the zone of Aurora-B phosphorylation. Error correction and the spindle checkpoint are 
satisfied. In anaphase cleavage of cohesin presumably relieves kinetochore tension, but 
error correction and the spindle checkpoint are not re-engaged (diagram modified from 
Musacchio, 2010268). 
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 Studies in budding yeast suggested that APC/C-mediated proteolysis of essential 

checkpoint components like Mps1 may irreversibly inactivate the checkpoint during 

anaphase270. However, Mps1 levels decrease only gradually during late anaphase271 which 

is inconsistent with the expected inactivation prior to cohesin cleavage271. Some have 

proposed that Mps1 levels only decrease gradually during late anaphase, which is 

inconsistent with the expected inactivation prior to cohesion cleavage270. Some posit that 

re-localization of Aurora-B to the spindle mid-zone at anaphase onset prevents ultimately 

reengagement of the checkpoint following cohesion cleavage269,271. Artificially retaining 

Aurora-B at anaphase kinetochores induced re-accumulation of the checkpoint proteins 

Mps1, Bub1 and BubR1. However, Aurora-B retention at anaphase kinetochores did not 

destabilize kinetochore-MT attachments, localize Mad1 and Mad2 to kinetochores, or 

inhibit APC/C269. This suggests that additional mechanisms may contribute to irreversibly 

abrogating SAC in anaphase. Cdk1(cdc2) activity has been suggested to be a pre-

requisite for SAC signalling as well as several checkpoint components (Cdk1(cdc2) 

substrates, whose phosphorylation has been proposed to be required for checkpoint 

function)272,273. Cdk1(cdc2) inactivation by APC/C-mediated degradation of cyclin B1 at 

the metaphase-to-anaphase transition makes Cdk1(cdc2)  a prime candidate to globally 

inactivate SAC signalling.  

 

1.4.4 Mitotic exit and cytokinesis  
 Cytokinesis is the final stage of the cell cycle in which a single cell is physically 

separated into individual daughter cells. In eukaryotes, this process leads to the division 

and partitioning of chromatin, organelles and cytoplasmic components as well as the 

construction of new membrane between the daughter cells. The process begins during 

chromosome segregation, when the ingressing cleavage furrow begins to partition the 

cytoplasm between the nascent daughter cells. The process is not completed until much 

later, however, when the final cytoplasmic bridge connecting the two daughter cells is 

severed274.  

 Cytokinesis is a highly ordered process, requiring an intricate interplay between 

cytoskeletal, chromosomal, and cell cycle regulatory pathways. Classical manipulation 

experiments have shown that the mitotic spindle dictates the position of the cleavage 
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furrow275. However, it’s a not pre-requisite process as MTs themselves play an essential 

role in initiating cleavage276,277. First, equatorial astral MTs are stabilized at the equatorial 

cortical region and deliver stimulatory signals for the formation and contraction of the 

cleavage furrow276. The polar astral MTs may help position the cleavage furrow by 

inhibiting cortical contractility, perhaps by spatially biasing the pattern of myosin 

recruitment278-282. Finally, central spindle MTs sends positive signals that become 

specially important during the later steps of cytokinesis.  

 

1.4.4.1 RhoGTPase and Myosin II 
 Localized activation of the small GTPase RhoA at the site of the future furrow is a 

central event to cytokinesis. RhoA is essential for furrow formation in animal cells and 

activated RhoA localizes to a specific zone within the furrow283-287. A narrow zone of 

activation is established by tethering RhoA activators to the central spindle, delivering a 

strong yet spatially restricted signal for cytokinesis initiation. An essential activator of 

RhoA is the guanine nucleotide exchange factor Ect2, which localizes in late anaphase to 

the central spindle and associates with the centralspindlin complex, composed of the 

kinesin protein Mklp1 and the GTPase activating protein (GAP) MgcRacGAP284,288-290.  

 The tethering of MgcRacGAP and Ect2 to the central spindle is not essential for 

RhoA activation, but is important for efficient furrowing by restricting the zone of RhoA 

to a narrow zone at the equator of the cell. Other regulators of the Rho GEF family such 

as GEF-H1291 and MyoGEF292 may regulate Rho activity during cytokinesis. Additional 

proteins such as armadillo protein p0071 and Rho effector mDia1, may sustain RhoA 

activation in a positive feedback loop293,294.  Activated RhoA leads to recruitment and 

activation of effector proteins that organize the furrow and stimulate ingression. RhoA 

stimulates actin polymerization through activation of formins and stimulates myosin 

activity by activating kinases such as Rho kinase (Rock) and citron kinase. Scaffolding 

proteins such as anillin and septins also play roles in organizing the cleavage furrow and 

promoting cytokinesis274. Myosin II is the principle motor protein required for 

cytokinesis. It is recruited to the cleavage furrow during the early stages of cytokinesis in 

a RhoA-dependent fashion. At anaphase, inactivation of Cdk1, controlled by the 
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degradation of mitotic cyclins by the APC/C is important for myosin II activation and 

phosphorylation during cytokinesis295,296.  

 The central spindle midzone plays an important role in keeping separated 

chromosomes apart prior to cytokinesis completion, because when MTs are 

depolymerized in late anaphase, the nuclei collapse back together297. As cytokinesis 

progresses, the constricting furrow compacts the midzone MT array. The furrow 

ingresses until a cytoplasmic bridge is formed that is 1–1.5 microns in diameter. Several 

kinesin-like motor proteins and chromosomal passenger proteins move along the midzone 

spindle towards the plus ends and accumulate in the overlapping region, forming a phase-

dense structure referred to as the Flemming body, stembody, telophase disc, or 

midbody298. Prc1 is a MT bundling protein that is critical for midzone formation in 

mammalian cells299. Prc1 accumulates on the central spindle in anaphase and suppression 

of Prc1 expression causes failure of MT interdigitation. Prc1 is targeted to the midzone 

by the kinesin protein Kif4, which transports Prc1 to the ends of the MT. Prc1 in turn 

recruits the centralspindlin complex, and additional mitotic kinesins including Cenp-E, 

Mcak and Kif14300. It also serves as a docking site for Plk1 in the central spindle301. Plk1 

is an essential positive regulator of cytokinesis. Plk1 activity is required for recruitment 

of itself and Ect2 to the central spindle and its inhibition abolishes the RhoA GTPase 

localization to the equatorial cortex, suppressing cleavage furrow formation302-304. Plk1 

activity may be required for later steps in cytokinesis as well, as Plk1 is targeted to the 

central spindle by the motor protein Mklp2, and phosphorylation of Mklp2 by Plk1 is 

required for cytokinesis305. Proteomic screens have shown that the Rho kinase Rock binds 

to the polo box domain of Plk1306.  

 

1.4.4.2 Chromosome passenger complex 
 Another important complex during cytokinesis is the chromosome passenger complex 

(CPC), which consists of the proteins Aurora-B, IncepP, survivin and borealin. This 

complex plays an important role throughout mitosis, and has been implicated in the 

regulation of cytokinesis. At the metaphase-anaphase transition, the CPC relocalizes from 

centrosomes to the spindle midzone and equatorial cortex and ultimately concentrates 

near the midbody, adjacent to centriolin ring307-310.  Aurora-B activity is required for 



	 31	

proper localization of Mklp1. Another substrate of Aurora-B is MgcRacGAP, whose 

phosphorylation appears important to completion of cytokinesis311,312. Phosphorylation of 

MgcRacGAP has been proposed to stimulate its activity as a GAP for RhoA313, 

terminating RhoA activity later during cytokinesis311. Other important substrates of 

Aurora-B include vimentin, an abundant intermediate filament protein. Intermediate 

filaments must be disassembled during mitosis to allow cell division, and mitotic 

phosphorylation is important for filament dissociation314,315. Aurora-B may also promote 

cytokinesis by inhibiting Mlc phosphatase316. Aurora-B also phosphorylates CenpA, 

which appears to play an important role in cytokinesis317.  

 

1.4.4.3 Membrane trafficking and remodelling during cytokinesis  

 Membrane trafficking plays a critical role in the process of cytokinesis. Three 

pathways, which involve membrane trafficking, have been implicated in the process of 

cytokinesis. First, the secretory pathway, including Golgi-derived components, may 

contribute new membranes and proteins to the ingressing furrow. The role of Golgi-

derived vesicles in cytokinesis completion emerged from studies of the protein centrolin, 

which may help the recruitment of secretory vesicles to the site of abscission at the 

midbody318. Centrolin localizes to a ring like structure within the midbody that also 

contains gamma globulin, GAP-CenpA, and the centralspindlin complex317. Second, the 

endocytic pathway and endosome recycling may remodel membranes in the cleavage 

furrow and also contribute vesicles that may participate in the final steps of cytokinesis. 

Endocytosis within the furrow may be important for remodeling the plasma membrane 

during ingression. In addition, endocytosis from other regions of the cell for example, 

endocytic vesicles internalized from polar regions are also shown to be trafficked to the 

midbody during the later stages of cytokinesis319. Small GTPases that regulate membrane 

trafficking have been directly implicated in cytokinesis completion. Arf GTPases initiate 

the budding of coated carrier vesicles by recruiting coat protein complexes onto donor 

membranes. RabGTPases on the other hand regulate the targeting and docking/fusion of 

vesicles with acceptor membranes320. RabGTPase localizes to recycling endosomes (RE) 

and is required for proper RE organization and the recycling of vesicles to the plasma 

membrane321,322. Both GTPases interact with a common set of effector proteins that assist 
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in delivery of endosomal vesicles to the cleavage furrow, termed Fip3 (Arfophilin-1) and 

Fip4 (Arfophilin-2)319,321. Dynamin is a GTPase responsible for clathrin-mediated 

endocytosis in the eukaryotic cell323-325. Dynamin was first identified to be the mammalian 

homolog of the Shibire protein in Drosophila326. The dynamin superfamily is composed 

of conventional dynamin and dynamin related protein (DRPs), and is conserved 

throughout eukaryotes. Dynamin interacts directly with two scaffolding proteins 

Intersectin-I and Tuba that have been proposed to link dynamin with the actin 

cytoskeleton327,328. Recently it was shown that Bcl-xL regulates vesicle endocytosis in 

hippocampal neurons. Bcl-xL interacts in a complex with clathrin and Drp-1 to alter the 

kinetics of vesicle pool recovery. Bcl-xL and Drp-1 acts downstream of calcium 

influx/calmodulin75. Perhaps a similar mechanism might exist during cytokinesis for 

membrane vesicle trafficking.  

 Finally, recent evidence suggests that components of the endosomal sorting complex 

required for transport machinery (ESCRT), best characterized for its role in multi-

vesicular body formation, are normally involved in late endosome to lysosome trafficking 

but have also been implicated in abscission during cytokinesis. These proteins are 

important for membrane invagination. Chmp3, a subunit of the ESCRT-III complex 

localizes to the midbody and deletion of an auto-inhibitory domain in Chmp3 can inhibit 

cytokinesis. ESCRT-1 complex subunit tumor susceptibility gene 101 (Tsg-101) and 

Alix, an ESCRT associated protein, may interact with actin and MTs329,330, establishing a 

link between the ESCRT machinery and cytoskeletal components present at the midbody.  

 Cytokinesis failure can arise through defects in any of the stages of cytokinesis, or as 

a consequence of inactivation or hyperactivation of any number of different components. 

Cytokinesis failure leads to both centrosome amplification and production of tetraploid 

cells, which may set the stage for the development of either tumor cells or let the cells 

enter into cellular senescence or apoptosis.  

 

1.5  Cellular senescence 

 First described in normal human fibroblasts15 as the finite proliferative capacity of 

normal  cells in culture, cellular senescence is a part of various physiological and 

pathological processes. Various morphological and biochemical changes differentiate 
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senescent cells from normal cells. A decade of research has shown that senescence has 

both beneficial and detrimental roles. It has been shown that cellular senescence 

contributes to ageing, and senescence-associated phenotypes can contribute to tumor 

progression and normal tissue repair331. In general, transient induction of senescence 

followed by tissue remodelling is beneficial, because it contributes to the elimination of 

damaged cells. In contrast, persistent senescence or the inability to eliminate senescent 

cells could be detrimental. Conceptually similar to apoptosis for eliminating unwanted 

cells, senescence is relevant in cancer and ageing332. It’s a crucial barrier against cancer 

progression. Senescence can be induced by multiple stimuli. These can include telomeric 

uncapping resulting from repeated cell division, oxidative stress, severe or irreparable 

DNA damage and chromatin disruption and expression of oncogenes associated with 

replicative stress333. 

 

1.5.1 Replicative senescence 

 First, it was found that finite proliferation of culture cells is due in part to telomere 

erosion, the gradual loss of DNA at telomere of chromosomes during each S-phase of the 

cell cycle. This is termed as replicative senescence334. The loss of telomeres is sensed by 

cells as DNA damage and therefore triggers a DNA damage response (DDR), which is 

similar to that produced by external DNA double-strand break damaging agents, such as 

ionizing radiation and some chemotherapeutic drugs. These stimuli are signalled through 

various pathways, many of which could activate p53. The exact threshold of telomere 

length or the number of dysfunctional telomeres within a cell that triggers senescence is 

still unclear335. The main mediators of the DDR are the DNA damage sensing upstream 

kinases Atm and Atr, the signal transduction downstream kinases Chk1 and Chk2, and 

effector proteins such as p53 and Cdc25. In senescent cells, persistent DDR is visualized 

by telomere dysfunction-induced foci (TIF) or DNA segments with chromatin alterations 

reinforcing senescence (DNA-SCAR)331,336. One of the activated proteins that mediate a 

cell cycle arrest downstream of p53 is the Cdk inhibitor p21, which could be upregulated 

in replicative senescence337,338.   However the activation of p53 and p21 in senescent cells 

is only transient, and protein levels of p53 and p21 can decrease after the establishment of 

sustained proliferation arrest. 
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 Replicative senescence is also linked to the CDKN2A locus (also known as INK4A 

and ARF), which encodes two crucial tumour suppressors, p16 and Arf. P16 is an 

inhibitor of Cdk4/6 and Arf regulates p53 stability through inactivation of Mdm2339,340. 

P16 often becomes constitutively upregulated suggesting that p16 may be responsible for 

maintenance of proliferation arrest in senescent cells338,341. Both p21 and p16 upregulation 

results into inhibition of pRb protein phosphorylation, which controls the S phase entry 
130.   

1.5.2 Premature senescence 

 Non-telomeric DNA damage (genomic and replicative stress) also generates 

persistent DDR signalling associated to outbreak of senescence.  This is often termed as 

premature senescence. Premature senescence (PS) is an accelerated mechanism that 

occurs in response to extrinsic or intrinsic stress stimuli. These stimuli include DNA 

damage, disrupted chromatin organization, increased oncogenic signalling, increased 

replicative stress, treatment with DNA damaging drugs or irradiation18 and oxidative 

stress19,20.  

Oncogene- induced senescence (OIS) was originally observed when an oncogenic 

form of Ras was expressed in human fibroblasts with accumulation of p53 and 

p16/Ink4a342. Also, loss of tumor suppressors PTEN and NF1 can trigger PS. OIS 

generally is seen in vivo and associated with derepression of CDKN2A locus339. OIS may 

also induce a robust DDR owing to the DNA damage that is caused by aberrant DNA 

replication and reactive oxygen species (ROS)343-345.  

 In normal unstressed cells, p53 is maintained at low levels by continuous 

ubiquitylation by E3 ligases such as Mdm2, Cop1, and Pirh2 that promote p53 

degradation by the 26S proteasome pathway346. In response to genotoxic stress, p53 is 

rapidly stabilized via the inhibition of its interaction with Mdm2. Subsequently, p53 

activity can be supported by post-translational modifications mediated by several protein 

kinases and acetylases347,348.   

The tumor suppressor PML (promyelocytic leukaemia) is involved in the 

pathogenesis of acute promyelocytic leukaemia and is found to regulate the p53 response 

to oncogenic signals349. PML regulates p53 activity by physically associating with 

CBP/p300, acetyltransferase that modifies p53 at K382 and thus activates p53. Ras 
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regulates PML expression and induces re-localization of p53 and CBP acetyltransferase 

within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP 

complex that induces senescence349.  

Plaminogen activator inhibitor-1 (PAI-1) is also a critical downstream target of p53 in 

senescence. p53 upregulates PAI-1, leading to the down-regulation of PI(3)K/PKB 

signaling and nuclear exclusion of cyclin D1. Significantly high level of cyclin D1 is 

observed in senescent human BJ fibroblasts. Interestingly, simultaneous knockdown of 

PAI-1 and p21 results in a more efficient bypass of senescence arrest than knockdown of 

p53 itself thus making them both relevant downstream targets of p53 in the induction of 

senescence in human fibroblasts350.   

 

1.5.3 Senescence-associated phenotypes and markers  
 Under the microscope, most senescent cells acquire characteristic morphological 

changes. They become flat, increase their volume and display a vacoule-rich cytoplasm. 

The nucleus-to-cytoplasm ratio and mitochondrial mass increases. Currently there are 

many commonly used biomarkers for the detection of senescence both in vitro and in 

vivo. Nevertheless, use of a single senescence marker is not always specific and can vary 

depending on the cell type and senescence trigger. For this reason, most investigators 

used multiple markers when tested for senescence.  

 

1.5.3.1 Senescence-associated Beta galactosidase activity  

 The increase of lysosomal biogenesis is characteristic of senescent cells leading to 

higher activity levels of the lysosomal enzyme β-galactosidase (SA-β-Gal). Cytochemical 

detection of SA-β-Gal at pH 6.0 allows for detection of senescent cells351. This marker is 

expressed during senescence, but not pre-senescence. SA-β-Gal is believed to be absent 

in quiescent fibroblasts and terminally differentiated keratinocytes, although this has been 

challenged recently. This marker also provides in-situ evidence that senescent cells may 

exist and accumulate with age in vivo.  

 

 
 



	 36	

1.5.3.2 Senescence-associated secretory phenotype 

 Senescent cells implement a complex pro-inflammatory response termed as 

senescence-associated secretory phenotype (SASP)352,353. SASP reflects a non-cell 

autonomous functionality of senescent cells and underpins their in vivo role in the pathos-

physiology of ageing and age related disorders. This phenotype is also termed as 

senescence messaging secretome354. SASP involves both autocrine and paracrine 

signalling, pro-tumorigenic and tumor suppressive effects and pro- and anti-inflammatory 

signalling355.  Senescence-associated changes in gene expression are mostly conserved 

within individual cell types. SASP factors can be globally divided into soluble signalling 

factors (interleukins, chemokines and growth factors), secreted proteases, and secreted 

insoluble extracellular matrix (ECM) components353.  

 Senescent cells secrete interleukins, inflammatory cytokines and growth factors that 

can affect surrounding cells.  Interleukin-6 (Il-6), a pro-inflammatory cytokine, is one of 

the most prominent cytokines of the SASP. During DNA damage and oncogenic stress, 

Il-6 has been shown to be associated with senescence in mouse and human fibroblasts 

and epithelial cells among others356. Persistent DNA damage signalling directly controls 

the secretion of Il-6, independent of the p53 pathway357. Surface receptors such as Il-6R 

(gp80) and gp130 signalling complex can interact directly with Il-6 secreted from 

neighbouring senescent cells.  Il-1 (both Il-1α and Il-1β) are overexpressed and secreted 

by senescent endothelial cells, fibroblasts and chemotherapy-induced senescent epithelial 

cells358,359. These cytokines may act via their respective receptors, primarily to trigger 

nuclear factor kappa B (NF-κβ)360. Most senescent cells also express and secrete Il-8 

(Cxcl-8) along with Groα and Groβ (Cxcl-1 and Cxcl-2). Ccl family members that are 

generally upregulated in senescent cells include Mcp-2, Mcp-4 and Mcp-1 (Ccl-8, -13 

and -2); Hcc-4 (Ccl-16); eotaxin (Ccl-26); and macrophage inflammatory protein (Mip)-

3α and -1α (Ccl-20, -3)361.  

 The insulin-like growth factor (Igf)/Igf receptor network may also contribute to the 

effect senescent cells exert on their microenvironment. Senescent endothelial, epithelial, 

and fibroblast cells express high levels of almost all the Igf-binding proteins (IgfBPs), 

including IgfBP-2, -3, -4, -5 and -6 and their regulators, IgfBP-rP1 and –rP2353,362-364. 
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Inflammatory cytokines such as the colony-stimulating factors Csf, Gm-Csf and G-Csf, 

are secreted at high levels by senescent fibroblasts353.  

 An intracellular Il-1α/ miR-146a/b / Il-6 / C/Ebp-β loop as well as related p38/NK-κβ 

and mTor-mediated pathways appear to contribute to the changes in gene expression that 

result in the SASP365,366 (Fig. 12). The composition of the SASP may vary as time 

progresses and might partly depend on the mechanism through which senescence is 

induced. Little is known about the contribution of non-protein factors such as nucleotides, 

bradykines, prostenoids and ceramides on the SASP.  

       The SASP is primarily a DDR357. It can alter its microenvironment (Fig. 12), attract 

immune cells, and, ironically, support malignant phenotypes in nearby cells. There are 

diverse downstream effects of the SASP that are dependent on the context and cell 

stimulation.  These effects can include paracrine stimulation such as pro-tumorigenesis 

and modulation of micro-environment and autocrine stimulation such as senescence 

reinforcement367. It has been shown that secreted proteins from senescent human 

fibroblasts promote proliferation and malignant transformation of pre-malignant 

epithelial cells368. These paracrine effects include promotion of epithelial-mesenchyme 

transition and invasion, tumor vascularization and abnormal tissue morphology, which 

are mediated by the pro-inflammatory cytokines Il-6 and Il-8, Vegf, and the 

metalloprotease Mmp-3353,356,361. 

        Il-6 and Il-8 reinforce senescence rather than spreading senescent phenotypes to the 

healthy neighbouring cells.  Recent studies show Il-1β can induce senescence in normal 

cells, as a paracrine SASP369. Pro-Il-1β needs to be cleaved and modified by 

inflammasome activated caspase-1 and therefore the inflammasome is involved in local 

progression of not only inflammation but also senescence in the tissue microenvironment. 

This was also observed in murine HSC senescence370. 

         Paracrine effects of senescence also can provoke anti-tumor immunity. In a Ha-

Raps driven mouse liver cancer model, the reactivation of p53 during senescence results 

in the raps-driven tumor regression. The SASP triggers the infiltration by NK cells and 

other innate effector cells to eliminate tumor cells371. In non-malignant cells, including  
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Figure 12:  Pathways inducing senescence. Various inducers can act alone or in 
combination to push cells into senescence through pathways involving p16/Ink4a-Rb, 
p53-p21, and likely other pathways. p19/Arf inhibits p53 via Mdm2. Triggers activate 
downstream pathways in terms of gene expression and chromatin remodelling 
(heterochromatin formation) that underlies senescence-associated growth arrest, the 
SASP.  
 
infiltrating immune cells, surrounding early neoplastic lesions exhibit focal p16 

activation. Multiple factors secreted by senescent cells mediate paracrine senescence. 
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Most Tgf-β-dependent genes were shown to be upregulated during paracrine senescence. 

Tgf-β1 and other ligands of the Tgf-β and BMP branches, including Bmp6, Bmp2, 

inhibin-A and Gdf15 were shown to be upregulated during senescence. BMP-like ligands 

and Tgf-β-like ligands signal through the Smad family members, and indeed 

phosphorylation of Smad2/3 and Smad1/5 is upregulated in cells undergoing paracrine 

senescence. Many components of SASP execute paracrine senescence, of which Il-1α is 

identified as one of the most robust inducers of multiple SASP components. Cells 

expressing inhibin-A or Tgf-β induced some SASP components such as Il-8 or Ccl2, but 

they do not mimic the SASP. Inhibiting Tgf-β R1 do not affect the secretome induced by 

Il-1α. Il-1 has a more prominent role than Tgf-β signaling in controlling the SASP. Il-1 

signaling has been shown to be associated with both paracrine senescence and OIS in 

culture and in vivo. Secretion of mature forms of Il-1α and Il-1β suggests the activation 

of inflammasome. Paracrine senescence arrest depends on the activation of p16, p21 and 

p53, the same genetic network as in OIS. Inhibition of Vegf-R2/Flt3, Tgf-β R1 and Ccr2 

receptors inhibits paracrine senescence in a dose-dependent manner372. 

       A localized time-limited SASP may be important in resolving tissue damage, at least 

in younger individuals, in cases such as antagonistic pleiotropy373-375. In addition to 

secreting soluble signalling cytokines and growth factors, senescent cells also secrete 

proteases such as matrix metalloproteases (MMPs). SASP MMPs limit fibrosis following 

liver injury or during skin wound healing. Il-6 and Il-8 reinforce the senescence growth 

arrest, at least in some senescent cells which is beneficial against cancer356. In contrast, 

these cytokines can also cause epithelial to mesenchymal transitions, which promote 

cancer376.    

 Human and mouse fibroblasts undergoing replicative or stress-induced senescence 

secrete stromelysin-1 and -2 (Mmp-3 and Mmp-10, respectively) and collagenase-1 

(Mmp-1)377. Mmp-1 and Mmp-3 produced by senescent cells can also regulate the 

activity of the soluble factors present in the SASP378.  

 

1.5.3.3 Senescence-associated heterochromatin foci  

 Senescence is accompanied by extensive changes in the chromatin structure and 

organization. Many senescent cells accumulate specific domains of heterochromatin as a 
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result of modification of transcriptionally silent heterochromatin foci mediated by lysine 

9-trimethylated histone-3 (H3K9-me3)379. These chromatin foci are called the 

senescence-associated heterochromatin foci (SAHF).  Their presumed function is the 

repression of genes that promote proliferation, contributing to growth arrest associated 

with cellular senescence. Primary human fibroblasts undergoing OIS or replicative 

senescence are known to form SAHF, which can be visualized as compacted foci of DNA 

enriched with H3K9-me3. The SAHF are formed by nuclease-resistant compaction of 

chromatin where each focus represents the condensed chromatin of one chromosome380. 

While cellular senescence also occurs in premalignant human lesions, it is unclear how 

conserved SAHF formation is among various cell types, under diverse stresses, and in 

vivo. Unlike the widely present DDR marker γ-H2A.X, SAHF are cell type restricted 

under genotoxic-induced and replicative senescence381.  A number of additional proteins 

are known to contribute to formation and/or maintenance of the SAHF, including histone 

chaperons Hira and Asf1382, heterchromatin protein 1 (Hp1)379 and high-mobility group A 

(HmgA) proteins383, histone variant macroH2A384, and pRb379. The p16/Ink4a-pRb 

pathway appears to be required for SAHF formation379.  

 

1.5.3.4 γ-H2AX as a marker of DNA damage foci 

 After an episode of DNA damage, histone H2As present in the chromatin at the DNA 

break site are rapidly phosphorylated. The phosphorylated derivative γ-H2A.X forms a 

focus at the damage site. This focal point increases after formation, and remains present 

until the break or damage is repaired385. In DDR implicated senescence, a number of foci 

have been demonstrated in culture and ageing in mice336,386. Telomere shortening can 

cause telomere uncapping and activates p53 in a variety of human and mouse cell 

types387,388. Since the signalling pathway activated by DNA damage has to be maintained 

to keep cells in a senescent state, cellular senescence can be regarded as a permanently 

maintained DNA damage response state. Therefore, γ-H2A.X foci can be a marker for 

replicative and premature senescence. Uncapped telomeres are also associated with DNA 

damage factors such as 53BP1, Mre11 and phosphorylated forms of Rad51, and Atm at 

the foci389.  
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1.5.3.5 p16/ Ink4-pRB and p53-p21/Cip pathways 

 Two major pathways, p16/Ink4a-pRb and p53-p21/Cip are mainly associated for the 

execution of the proliferative arrest that characterises senescence in human cells355. These 

powerful tumor suppressor pathways are highly mutated in many tumors. In response to 

DDR, p53 levels rises within cell. Enhanced expression of p16, Arf and p53 are seen in 

murine tissues undergoing OIS and in pre-malignant neoplastic lesions390-392. One of the 

activated proteins that mediate the cell cycle arrest downstream of p53 is the Cdk 

inhibitor p21, which is upregulated in replicative senescence337,338. However, the 

activation of p53 and p21 in senescent cells is often transient, and protein levels of p53 

and p21 will decrease over time after the establishment of senescence. These proteins are 

frequently monitored by immunofluorescence and protein blotting in senescent cells .  

 

1.6 Aneuploidy 

 Aneuploidy refers to the state in which the number of chromosomes in a cell is not an 

exact multiple of the haploid set. Chromosomal instability (CIN) defines a condition in 

which cells are unable to accurately segregate whole chromosomes (whole-CIN [W-

CIN]) or are prone to structural chromosome rearrangements (structural-CIN [S-CIN]) 

including translocations, deletions, and duplications of large parts of chromosomes393.  In 

the early 1900s, Theodor Boveri hypothesized that aneuploidy was a causal feature of 

human cancers.  Most forms of genomic instability (GIN) are driven by DNA damage, 

which can result in genetic or epigenetic mutations after erroneous DNA repair or 

replication. A wide range of technical approaches are available to study aneuploidy. The 

gold standard for cytogenetic analysis is the study of metaphase chromosomes, in 

particular spectral karyotypic (SKY), the most sophisticated molecular cytogenetic 

application. These techniques are restricted to the analysis of mitotically active cell 

populations. Flourescent in-situ hybridization (FISH), with both chromosome painting 

probes and locus specific subcentromeric enumerization probes, is also used for the 

analysis of aneuploidy. In contrast to SKY this method is applicable to interphase cells. 

Using interphase FISH methods it is possible to detect chromosomal aneuploidy, which 

has been linked to tumorigenesis and has detrimental effects on cell and organism 

physiology161. Aneuploidy has been also associated with aging and cellular senescence394. 
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Chromosomal aneuploidy can be regarded as an indicator of genomic instability and may 

be one of the hallmarks of cancer and aging (Fig. 13).  

 

 

 
Figure 13: Genomic and chromosome instability. Schematic pathways showing link 
between genotoxic stress, genomic instability, chromosome instability and cancer.  
 

  

 The mechanisms leading to aneuploidic cells are commonly described as functional 

defects of MT-kinetochore attachment, SAC, cytokinesis or DDR. However, 

chromosomal aneuploidy has now been detected even in fully differentiated tissues that 

lost their ability to self-renew through mitotic regeneration, such as the brain. This 

suggests that aneuploidy could be a widespread phenomenon occurring at different ages 

and perhaps through different mechanisms395.   
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1.6.1 Failure of spindle assembly checkpoint and aneuploidy 
 One of the mechanisms leading to aneuploidy involves abnormalities in the mitotic 

checkpoints396, the major cell cycle control machineries that ensure high fidelity of 

chromosome segregation. The SAC is responsible for the delay of anaphase until all 

chromosomes are properly oriented on the MT spindle and the checkpoint is released 

when all chromosomes are correctly attached to the kinetochore. Any perturbation of the 

checkpoint leads to initiation of anaphase before the spindle has established proper 

orientation and proper attachment to its chromosomes (Fig. 14). This can result in 

chromosome mis-segregation and consequently aneuploidy395.  Accuracy of chromosome 

segregation is greatly affected when BubR1, a SAC component, drops below a certain 

level. Mice with constitutively low BubR1 level develop progressive aneuploidy along 

with variety of progeroid features, including short lifespan, cachectic dwarfism and 

impaired wound healing. Graded reduction of BubR1 expression in mouse embryonic 

fibroblasts causes increased aneuploidy and senescence394.  In mice it has been shown that 

BubR1 variations can have a dual effect. It induces p16/Ink4a as an effector of cellular 

proliferation arrest and senescence, and p19/Arf as a suppressor, which acts to suppress 

cellular senescence and aging397.  Bidirectional deviation of BubR1 results in divergent 

effects on aneuploidy, with BubR1 overexpression providing protection against 

aneuploidy and BubR1 insufficiency perturbing accurate chromosome segregation394,398. 

Yeasts lacking core SAC components grow normally under unperturbed conditions yet 

display increased rates of chromosome mis-segregation and are unable to grow in the 

presence of spindle poisons, such as nocodazole399-401. In contrast, murine models lacking 

core SAC components (Bub3, Mad1, Mad2 or BubR1), display very early embryonic 

lethality401-404.  However, mouse embryonic fibroblasts (MEF) heterozygous for Mad2, 

Bub3, and BubR1 displayed haploinsufficiency, resulting in higher levels of mitotic 

abnormalities394,405. Conditional knockout for Bub1 demonstrated that premature 

centromeric separation is a consequence of mitotic checkpoint weakening. Meanwhile, 

complete ablation of Bub1 kinase activity unveiled how Bub1-mediated histone H2A 

phosphorylation promotes Aurora-B inner centromeric localization. Whereas, Bub1 

overexpression uncovered that Bub1 carefully controls that level of Aurora-B activity to 
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prevent chromosome mis-segregation and aneuploidy393. In MEFs, Bub1 mutation causes 

high rates of chromosome mis-segregation and aneuploidy, accompanied by growth 

defects and premature senescence406.   

      P31/comet protein acts as a silencer of SAC via its communication with the Mad2 

complex. Overexpression of p31/comet can lead a cell towards cellular senescence. 

P31/comet was initially discovered as a Mad2-interacting protein407. P31/comet 

counteracts Mad2 function and is required for silencing the SAC. Studies have shown 

that p31/comet-mediated senescence is closely associated with p53 and p21 

accumulation407 but does not cause any changes in p16 expression. Depletion of p21 

completely blocked p31/comet-induced senescence, revealed by dramatic reversion in the 

percentage of SA-β-gal-positive cells. Evidently, induction of p21 is a critical step in 

p31/comet -mediated senescence. p31/comet-induced senescence is also accompanied by 

mitotic catastrophe with massive nuclear and chromosomal abnormality407. 

       The mitotic checkpoint proteins Bub3 and Rae1 along with other mitotic checkpoint 

proteins bind to kinetochores that lack attachment or tension and generate a ‘stop 

anaphase’ signal that diffuses into the cytosol408.  Bub3 has substantial sequence 

similarity with the mRNA export factor protein Rae1409.  Mice with homozygous null for 

Bub3 or Rae1 die during embryogenesis, whereas mice with Bub3-/+ or Rae1-/+ show 

similar mitotic defects, including spindle assembly checkpoint impairment and 

chromosome missegregation. Both Bub3 and Rae1 interacts with Bub1. It is suggested 

that Bub3-Bub1 and Rae1-Bub1 complexes might fulfill redundant functions at 

unattached kinetochores403.  This indicates that Rae1 cooperates with Bub3 and that the 

combination of the 2 mitotic checkpoint activities is critical for the prevention of 

chromosomal mis-segregation. Haplo-insufficient Rae1/Bub3 mice are viable but show 

greater rates of premature sister chromatid separation and chromosome missegregation, 

aneuploidy than single haplo-insufficient cells403 and reduced life-span410. Bub3-/+/Rae1-/+ 

mice do not increase the rate of cell death but showed early onset of cellular senescence, 

indicated by increased expression of p53, p21, p16 and p19410. 
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Figure 14: Aneuploidy due to SAC failure during mitosis.  Normally a 4N cell in G2 
enters mitosis, aligns its chromosomes in the metaphase plate and equally distributes the 
DNA over two nuclei (karyokinesis) and subsequently two daughter cells (cytokinesis). 
During SAC failure due to mutation in SAC regulatory genes, chromosomes mis-
segregate leading to aneuploidy. When cytokinesis fails, the DNA is divided into two 
nuclei that remain within one cell	(diagram modified from Ricke et al., 2008393). 
 

 

When mutated, Mad2, a major component of SAC, causes aneuploidy in human tumor 

cells. Haplo-insufficient Mad2 cells showed genomic instability and aneuploidy with 

typical features of cellular senescence, including increased SA β-galactosidase expression 

and upregulation of p53, p21 and p14 proteins. Partial depletion of Mad2 weakened the 

SAC causing premature chromatid separation, and induced aneuploidy411. Moreover, it 

was shown that Mad2 overexpression is associated with aneuploidy induced by 

inactivation of pRb and p53 tumor suppressors in tumor cells412. In partially Mad2-
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depleted IMR90 cells, p14Arf caused an initial G1/S arrest and mediated increase in p53 

protein level by targeting Mdm2. Mad2 depletion is sensed as a stress signal in normal 

cells, that triggers the p53-p21 pathway that arrest cells in G1/S boundary and 

subsequently a pathway controlled by p14Arf is activated that drives premature cellular 

senescence acting as a barrier to the proliferation of cells with unbalanced karyotypes411.  

Hypomorphic expression of Espl (gene that encodes separase) in a p53-/- null 

background mouse model display significantly higher levels of GIN and aneuploidy than 

normal cells413. Optimum levels of separase acts as a tumor suppressor in the absence of 

p53, but the loss of separase and p53 effectively synergize to cause lymphoma and 

leukemia formation413. In vivo studies in the mouse mammary epithelium have shown that 

over expression of separase results in the development of gross aneuploidy414,415.  

 Finally, overexpression of UbcH10, the E2 ubiquitin enzyme that works in tandem 

with APC/C during metaphase-to-anaphase transition, leads to precocious securin and 

cyclin B degradation, and provokes supernumerary centrioles, chromosome laggings and 

aneuploidy416.  

 

1.6.2 Failure of cytokinesis and aneuploidy 
 Cytokinesis is the final step in cell division.  It is a highly ordered process, requiring 

an intricate interplay between cytoskeletal, chromosomal, and cell cycle regulatory 

pathways. Cytokinesis failure leads to both centrosome amplification and tetraploid cells, 

which may set the stage for the development of tumor cells. In animal cells, RhoA is the 

central player in cytokinesis, regulating the assembly of actin filaments in the cortex 

during cytokinesis and proper constriction of contractile furrows. Cells depleted of RhoA 

by RNAi or cells injected with a Clostridial enzyme, C3 transferase, show no cortical 

contractility or furrow formation417,418.  These cells do not undergo anaphase spindle 

elongation, perhaps because reorganization of the actin cytoskeleton is impaired.  

Furthermore, in cells that fails to undergo cytokinesis, astral MTs fail to contact the 

equatorial cortex, suggesting that the delivery of RhoA activators to the cortex is 

impaired419. Apart from RhoA, inhibition of regulators of cytokinesis such as MlckII420 

and Rock421 also leads to cytokinesis failure. Plk1 is overexpressed in a broad range of 

human tumors. Overexpression of Plk1 in HeLa cells leads to an increase of cells with 
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large, often fragmented nuclei or multiple nuclei422 as well as centrosome amplification423, 

suggesting Plk1 overexpression has an effect on chromosome segregation and cytokinesis 

completion. Inhibition of Aurora-B during later stages of mitosis inhibits phosphorylation 

of Mklp1 which perturbs cytokinesis424.  

 

1.6.3 DNA damage, aneuploidy and senescence 

 The purpose of the later phases of mitosis occurring after APC/C activation is to 

distribute sister chromatids to the daughter cells correctly, so that single nuclei with 

identical genetic information are formed in each daughter cell. Failure of this process is 

evident when segregating chromosomes lag at the anaphase spindle midzone. Such 

lagging chromosomes eventually cause aneuploidy. Furthermore, even if lagging 

chromosomes are eventually separated correctly, they can form a micronucleus apart 

from the main nucleus425. When cells encounter insults during the G1, S or G2 phase of 

the cell cycle, the canonical DDR pathway delays cell cycle progression, which are 

known as DNA damage G1/S , intra-S and G2/M checkpoints. In consequence of DNA 

damage on the lagging chromosomes, Atm and Chk2 become activated in the following 

G1 phase, resulting in p53-dependent cell cycle arrest426, which can either activate the cell 

death machinery or cause cellular senescence. Although cell fate regulation by p53 is 

coming to light, the mechanism of onset of cellular senescence due to aneuploidy still 

requires further research. Once cells are committed to entering mitosis, they do not 

activate a full DDR pathway upon DNA damage427. The point of the commitment has 

been proposed to be in late prophase, since irradiation-induced DNA damage in early 

prophase but not late prophase causes a reversion of cell cycle to interphase428,429. Beyond 

this point, irradiation of prometaphase and metaphase cells still generates γ–H2A.X foci 

on condensed chromosomes. However, downstream accumulation of DDR regulators, 

Rnf8, Rnf168, Brca1 and 53Bp1 are attenuated430,431. It has been described that prolonged 

arrest in prometaphase causes accumulation of γ–H2A.X during and after the arrest432, 

which is accompanied by the activation of Atm433. Recent findings have demonstrated 

that lagging chromosomes induced by the Mps1 inhibitor Mps1-IN-1 cause de novo DNA 

damage foci formation after the onset of anaphase426. In the absence of p53, these cells 

keep dividing and exhibit not only an abnormal number of whole chromosomes, but also 
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chromosome translocation, one of the structural chromosomal aberrations associated with 

tumorigenesis, underscoring the significance of DNA damage-induced cell cycle arrest 

after the generation of lagging chromosomes. Usually this results in the formation of a 

single tetraploid nucleus, or multiple nuclei and micronuclei carrying a 4N genomic 

content in the following G1 phase leading to aneuploidy. These cells then enter either the 

apoptotic pathway or cellular senescence.  

 Aneuploidy induces complex cellular responses impacting cell fate. Compelling 

evidence from cultured cells suggests that aneuploidization is associated with 

engagement of certain cellular stress pathways, including those responding to genotoxic, 

proteotoxic, metabolic, or proliferative stress.  

 

1.7  The C. elegans experimental model 
 Roughly five decades ago, Sydney Brenner famously proposed C. elegans as an 

outstanding experimental system, because of its small size, rapid life-cycle, transparency, 

and well-annotated genome. C. elegans is a tiny, free-living soil nematode found 

worldwide which survives by feeding on microbes, primarily bacteria. It has a rapid life-

cycle and exists as a self-fertilizing hermaphrodite, although males arise at a lower 

frequency  (< 0.2%). Self-fertilizing hermaphrodites provide several advantages for 

genetic analysis such as the ability to maintain stocks from a single animal, easy 

production of isogenic mutants and finally simple Mendelian genetics of segregation. 

They are easy to maintain in the laboratory, and are normally grown on agar plates 

containing a lawn of Escherichia coli (OP50) bacterium. Due to their small size, they can 

be grown in small petri dishes. Without food, the development of young larval stage 

animals is arrested, although they can survive for at least one month.  

 

1.7.1 The anatomy and development of C. elegans 

 An anatomical description of the whole animal has been completed at an electron 

microscopy level as well as its complete invariant cell lineage434-436.  The adult body plan 

is rather simple with 1000 somatic cells. Like all nematodes, the C. elegans body is made 

up to two concentric tubes separated by a fluid filled space, the pseudocoelom (Fig.14). 

The animal’s shape is maintained by internal hydrostatic fluid. The outer tube is covered 
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by the collagenous extracellular cuticle, which is secreted by the hypodermis. The body 

musculature is arranged in four longitudinal strips that are attached to the cuticle through 

a thin layer of hypodermis. The inner tube is composed of the muscular pharynx with its 

nearly autonomous nervous system and the intestine. The bi-lobed pharynx pumps food 

into the intestine, grinding it as it passes through the second bulb. The intestinal cells 

surround a central lumen, which connects to the anus near the tail. The excretory cell 

with excretory canals runs the length of the body connected to the excretory pore on the 

ventral side of the head. The total digestion time is 330-350 minutes at 220C. 

 
Figure 15:  Anatomy of C. elegans adult hermaphrodite (diagram adapted from 
Wikipedia.com). 
 

 

 Embryogenesis in C. elegans starts with zygote proliferation and continues until the 

embryo has reached 558 cells. The hermaphrodite reproductive system consists of 

functionally independent anterior and posterior arms (Fig. 16). Each arm contains an 

ovary that is distal to the vulva, a more proximal oviduct, and a spermatheca connected to 

a common uterus centered around the vulva. The adult uterus contains fertilized eggs and 

embryos in the early stages of development. Vulval contractions, mediated by the 

hermaphrodite-specific neuron, are required for egg laying. The germ nuclei are mitotic 

near the distal end. As the mitotic germ cells progress in the gonad, they enter meiosis. 
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Meiotic cells in progressively later stages of spermatogenesis are distributed along the 

gonad to the spermatheca, in which spermatids are stored.  

 

 

 
Figure 16: Anatomy of the germ line in adult hermaphrodite and male. The 
hermaphrodite contains two bilaterally symmetric, U-shaped gonad arms that are 
connected to a central uterus through spermatheca. The germline within the distal gonad 
arms (ovaries) is syncytial with germline nuclei surrounding a central cytoplasmic core.  
The male gonad is a single organ extending anteriorly from its distal tip, then posteriorly 
to connect via the vas deferens to the cloaca near the anus. (diagram inspired from Altun, 
Z. F. and Hall, D. H. 2005. Handbook of C. elegans Anatomy, In WormAtlas at 
(http://www.wormatlas.org/ver1/handbook/contents.htm). 
 
 
 
 The germ line is a specialized cell lineage that gives rise to eggs and sperm. 

Following the formation of zygote (P0) (also considered the first germline blastomere), a 

series of asymmetric cell divisions results in the production of the primordial P4 cell. 

Germ cells are exclusively derived from the P4 cell. The cell enters the interior of the 

embryo during gastrulation and divides symmetrically to form the two germ-line 

precursor cells, Z2 and Z3436,437. The daughter cells Z2 and Z3 can all be referred to as 

primordial germ cells (PGCs). At hatching, the gonad is comprised of four Z1, Z2, Z3 

and Z4. Z1 and Z4 divide in the middle of the L1 larval stage. By the end of the L2 stage, 

the hermaphrodite somatic gonad consists of 12 Z1/Z4 descendants, but the germ line has 

proliferated to about 30 cells438. In the L3 stage, proximal germ cells enter meiotic 
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prophase. Several important reproductive structures made of 140 cells are generated from 

the L3 and L4 stage. An approximately four-fold amplification in total gem cell numbers 

occurs during the L4 and young adult stages. All somatic structures of the mature adult 

gonad are derived from Z1 and Z4, which includes the distal tip cell (DTC), sheath cells 

and spermathecae in the hermaphrodite. In adults, germ cell proliferation continues in the 

distal mitotic zone and later enters the meiotic pathway. In C. elegans, the DTC acts as a 

niche that maintains germ line proliferation438. The germ-line nuclei exist as a continuous 

syncytium but are referred as germ cells.  

 The gonadal sheath cells appear to play important roles for the structure, integrity, 

and reproductive functions of the gonad439,440. There are ten thin sheath cells, subdivided 

into five pairs (1-5) with each pair having a distinct position along the proximal-distal 

axis of each gonad arm. These elongated myoepithelial cells lay between germ cells and 

the gonadal basal lamina441. Pair 1 has cellular structures some of which are pressed into 

the gonad such that the cytoplasm is concentrated into a series of wedges that insert 

between the germ cells. Pair 2 ensheathes the loop region of the gonadal arm.  

 The spermatheca is a flexible accordion-like structure connected to the gonad arm 

distally and to the uterus proximally. It expands when needed to accommodate oocytes. 

The walls of the spermatheca are highly involuted, enabling expansion and providing an 

adherent surface for the spermatozoa awaiting an ovulated oocyte.  

 The uterus connects to the spermathecae and the vulva, functioning as a holding area 

for developing embryos prior to their expulsion through the vulva, a specialization of the 

external epidermis442.  

 

1.7.2 Germ cell specification 

 In C. elegans, the germline separates from the soma during the first four embryonic 

cleavages436 (Fig. 17). Differences exist in the transcriptional activity of somatic versus 

germline blastomeres in early embroys443,444. pie-1 is a maternal-effect gene that prevents 

mRNA transcription in early germ cells. pie-1 is required for germ line generation and for 

proper specification of blastomere identity. PIE-1 prevents SKN-1, another maternal 

factor, from functioning in P2 by generally preventing mRNA transcription in the germ 

lineage445. PIE-1 disappears from the germ lineage shortly after the division of P4 into Z2 
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and Z3. After PIE-1 disappears, the germ line pattern of expression is established by the 

MES group (MES-2, MES-3, MES-4 and MES-6) of polycomb proteins446. They are 

needed for the normal proliferation and viability of the germ line447. MES-2 and MES-6 

appear to constitute the polycomb group in C. elegans. The MES proteins are enriched in, 

but not restricted to, the germ line. By the time of hatching, first-stage larvae contain 

detectable MES protein only in the two primordial germ cells, Z2 and Z3. It is suggested 

that MES proteins serve a general role in modulating chromatin structure and repressing 

gene expression from autosomal sites as well as sites on the X-chromosome448.  

       During early embryonic divisions, germ line-specific ribonucleoprotein granules (P-

granules) are asymmetrically partitioned into germ line blastomeres449-451. P-granules 

contain a heterogenous mix of RNAs and proteins. PIE-1 proteins are found to associate 

with P-granules452 but it is not clear whether PIE-1 must be associated with P-granules to 

control blastomere identity. Two related CCCH-type zinc finger proteins, POS-1 and 

MEX-1, are also required for specification of germline blastomeres and are components 

of P granules453,454. P granules remain associated with the nuclear envelope throughout 

germ line proliferation, and detach only during the maturation of male and female 

gametes. Some P granule components have been placed into a P granule assembly 

pathway: DEPS-1→GLH-1→PGL-1→IFE-1. Analysis of deps-1, glh-1, pgl-1, and ife-1 

mutants has revealed the germ line regulatory processes that those P granule components 

participate in regulating. deps-1, glh-1, and pgl-1 mutants have underproliferated germ 

lines, and the majority of mutants fail to make oocytes and sperm at restrictive 

temperatures455. Further research is required to establish the significance of P-granules. 

Another gene, patched-1 (ptc-1), which is a member of multiclass membrane protein, was 

shown to be required for cytokinesis in the germ line syncytium but is not essential for 

zygotic development456. 
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Figure 17: Germ line specification during the embryogeneis in C. elegans. 
At the beginning, the blastomeres, P0, P1, P2 and P3 in C. elegans embryos undergoes 
unequal divisions to generate somatic blastomeres, AB, EMS, C and D and the primordial 
germ cell P4. Z2 and Z3 are generated equally from P4 at 100 cell stage. The P-granules are 
well partitioned in the blastomeres at even 4-cell stage.  PIE-1 resides in the germline 
cytoplasm and nucleus. The MES proteins and MEP-1 reside in the nuclei. Germline 
blastomeres also contains class II maternal mRNAs but are degraded in the somatic 
blastomeres and replaced by the newly transcribed mRNAs. (diagram modified from 
wormbook.org).  
 
   

 The germ line stem cells (GSC) are maintained by their proximity to the DTC. The 

DTC forms a niche, which is central to stem cell regulation in C. elegans. The DTC is 

born in the invariant cell lineage of the somatic gonad437 and its fate is controlled through 

the Wnt/β-catenin asymmetric pathway457,458. In daughter cells destined to become the 

DTC, the WNT/β-CATENIN asymmetric pathway activates transcription of ceh-22, 

which encodes the single C. elegans NKX2.5 homeodomain transcription factor459. The 

CEH-22/Nkx2.5 homeodomain transcription factor is a key regulator of DTC 

specification.  
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1.7.3 Germ line proliferation and maintenance 

 The GSCs are responsible for the proliferation and maintenance of the germ line. The 

niche for GSC consists of a single mesenchymal cell, the DTC. Each hermaphrodite has 

two DTCs, one located at the distal end of each gonadal arm. The large cell body of the 

DTC encapsulates the tip of the gonad, and an elaborate network of DTC processes 

extends along the gonad proximally, ending at the boundary of early meiotic entry. The 

DTC is responsible for maintaining GSCs throughout the life of the animal. Ablation of 

the DTC at any stage of development causes all GSCs to enter the meiotic cell cycle and 

differentiate438. The DTC niche is maintained through GLP-1/Notch signaling (Fig.17). 

 The canonical Notch signalling pathway employs a DSL transmembrane ligand 

(LAG-2), a transmembrane Notch receptor LIN-12 and GLP-1, and a pathway-specific 

transcription factor complex to activate transcription460. The DTC expresses DSL ligands  

(LAG-2 and APX-1) and GSCs express the Notch receptor GLP-1461-463. GLP-1/Notch 

receptors works with a CSL DNA-binding protein, LAG-1, and a transcriptional co-

activator, LAG-3/SEL-8, to activate transcription464,465.    

 

 
Figure 18:  DTC niche maintains GSCs through Notch signalling.   The DSL ligand 
of DTC, LAG-2 activates the GLP-1 receptor generating NCID which then enters the 
nucleus to form a ternary complex with the LAG-1 and transcriptional co-activator LAG-
3. LAG-1 is a CSL DNA binding protein.  
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 The LAG-2 ligand from the DTC niche activates GLP-1 receptor through its 

proteolytic cleavage, which generates the Notch intracellular domain (NICD). The NICD 

enters the nucleus to form a ternary complex with LAG-1, a CSL DNA-binding protein, 

and LAG-3/SEL-8, a transcriptional co-activator	466. 

  

      Removal of the GLP-1/Notch receptor mimics DTC ablation; all GSCs enter meiotic 

cell cycle and differentiate467. Conversely, for GLP-1 gain-of-function mutants, where the 

GLP-1 receptor signals independently of the ligand, meiotic entry doesn’t occur and the 

germ line becomes tumorous and filled with mitotic cells468. Thus GLP-1 signaling is 

required continuously for GSC maintenance throughout post-embryonic development.   

 Downstream of GLP-1 signaling there exists an intrinsically acting regulator of 

GSCs, FBF (sequence specific RNA binding proteins). FBF-1 and FBF-2 belong to the 

Puf protein family and are collectively called FBF 469. Removal of either FBF-1 or FBF-2 

has little effect on the GSCs but removal of both causes a complete failure of adult GSCs 

maintenance. 

 

1.7.4 Regulation of mitotic and meiotic progression in the germ line 

 The adult germ line possesses a mitotic region at its proximal end near the DTC and a 

transition zone more distally. Mitotic germ cells serve as stem cells that can self-renew 

and differentiate into gametes. In young adults, the mitotic region is composed of about 

225-250 germ cells. FBF1 and FBF2 are required for continued mitotic division in late 

larval and adult animals and the maintenance of GSCs470. FBF targets gld-1 and gld-3 

mRNAs, both of which promote commitment to meiosis471. FBF also targets itself in 

order to maintain relatively low FBF levels in the wild type germ line. FBF-1 and FBF-2 

have distinct effects on the size of the mitotic region. Germ lines lacking fbf-1 activity 

have smaller mitotic regions with around 200 cells, whereas fbf-2 mutants have larger 

mitotic regions with ~400 cells.  

 Three GLD proteins (germ line differentiation) GLD-1, GLD-2, GLD-3 and NOS-3 

(nanos-3) promote entry into the meiotic cell cycle472. They are all RNA regulators that 

control germ line development (Fig. 19). GLD-1, a member of the STAR/KH family of 

RND binding proteins, likely represses glp-1 translation, which encodes glp-1/Notch 
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receptor473. NOS-3, a member of Nanos family of zinc finger protein was shown to 

activate GLD-1, in turn balancing the activity of glp-1 through GLD-1474. GLD-2 and 

GLD-3 function together to promote entry into meiosis475. GLD-2 is the catalytic subunit 

of cytoplasmic poly-(A)-polymerase. GLD-2 promotes general mRNA-polyadenylation 

in germ cells. Large amount of GLD-1 and FBF-1 mRNAs are putatively stabilized by 

GLD-2476. GLD-3 promotes GLD-2 PAP (GLD-2 poly (A)-polymerase) activity. Genetic 

anaylsis suggests that GLD-3 may act as a negative feedback system for FBF activity475.   

 

 
Figure 19: Interplay between FBF1/2 and GLD-1 determines the fate of germ line 
cells. (diagram inspired from Kuersten and Goodwin, 2003477) 
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 The glp-1/Notch was shown to be controlled by different regulators. Five ego genes 

(ego-1, ego-2, ego-3, ego-4 and ego-5) and epn-1 were shown to act as enhancers of glp-

1478. Whereas, six sog genes (sog-1, sog-2, sog-3, sog-4 and sog-5) acts as suppressors of 

glp-1479.  

 

1.7.5 Physiological germ line apoptosis in C. elegans 
 The C. elegans adult hermaphrodite generates 1090 somatic cells during 

development, of which 131 cells undergo PCD436,480.  113 cells die during embryogenesis 

between 250-450 minutes after fertilization436. A second wave of PCD occurs in the L2 

stage, following the divisions of several neuroblasts, and marks the end of PCD in the 

soma. Ectodermal cells, comprised mainly of neurons and neuron-associated cells and 

hypodermal cells, make up the bulk of dying cells. A small number of mesodermal cells, 

such as muscle cells and pharyngeal gland cells also die during PCD. PCD is 

characterized by an early nuclear chromatin condensation and reduction in cell volume. 

The dying cells are quickly engulfed and degraded by neighboring cells, and their corpses  

remain visible for only a few minutes. The process of engulfment can begin even before a 

cell that will die has been completely separated from its sister by cell division. As 

engulfment proceeds, the dying cells splits into membrane bound fragments, and the 

nuclear membrane degenerates. The last recognizable features of the dead cell are whorls 

of membrane contained in vacuoles within the engulfing cell481. In contrast, PCD 

continues in the adult hermaphrodite germ line482. Physiological germ cell apoptosis 

occurs in the region where the developing oocytes enlarge, suggesting that apoptotic 

germ cell nuclei serve as ‘nurse cells’. The doomed nuclei become rapidly cellularized, 

and are subsequently engulfed to provide most of their surrounding cytoplasm to the 

central gonad rachis482.  

 

1.7.6  DNA damage and apoptotic pathway in C. elegans 

 Multiple mechanisms have evolved to ensure the fidelity of genome duplication and 

to guarantee faithful partitioning of chromosomes at cell division in C. elegans. The 

effect of genotoxic stress shows that little or no checkpoint exists during embryonic 
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development, except for a transient intra-S checkpoint during early embryo 

development483.  However, in the germ line, DNA damage induces cell cycle arrest and 

apoptosis, both of which are spatially separated. Ionizing radiation (IR) causes a transient 

halt in cell cycle progression in the mitotic zone, but in the meiotic compartment, after 

the exit from the pachytene region causes apoptotic cell death 2-3 hours after the 

genotoxic insult. Other DNA damaging agents such as alkylating agents induce germ cell 

death484. In the worm, DDR and repair pathways dealing with DNA double strand breaks 

(DSBs) are well characterized. Two major pathways of DSB repair are non-homologous 

end joining (NHEJ) restricted to G1 cell cycle stage and homologous recombination (HR) 

predominant at the germ line. In C. elegans, DDR is mediated largely by ATL-1, the 

worm Atr ortholog.  

 Three prominent genes were revealed by genetic screens to cause cell cycle arrest and 

apoptosis after DNA damage; mortal germline-2 (mrt-2), hus-1 and rad-5483,485,486. HUS-1 

is a nuclear protein that interacts physically with MRT-2, and localizes to distinct nuclear 

foci of unrepaired damage, thus acting as a sensor of DDR. CtIP, a protein related to 

yeast Sae2, acts in conjunction with the MRN (MRE11, RAD50, NBS1) complex to 

resect the DBSs yielding 3’ overhangs that can initiate homologous recombination. The 

SPO-11 gene product is responsible for enzymatic DNA cleavage to create DSBs and 

MRE-11 subsequently processes these though its intrinsic exonuclease activity. The 

MRE-11 nuclease is required for ATL-1 loading487. RAD-51, a member of the RecA-

strand exchange proteins catalyzes the invasion of the single stranded DNA overhangs 

generated by MRE-11, initiating the formation of D-loops for meiotic recombination. In 

the worm chk-1, like atl-1 is required for all checkpoint responses in unchallenged germ 

lines and mediating IR induced cell cycle arrest and apoptosis488.  It also activates the 

secondary wave of phosphorylation waves. chk-2 doesn’t affect IR-dependent checkpoint 

responses but is rather required for UV-induced DDR489 and meiotic recombination490.  

 Another gene gen-1 likely acts a Holliday junction resolvase for Holliday junctions 

generated during HR491. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to 

ensure genome stability.  The heterotrimeric 9-1-1 complex (RAD-9, RAD-1 and HUS-1) 

is phosphorylated by ATL-1 and needed for full ATL-1 activation. Mutants of this 

complex fail to trigger the DDR upon IR treatment 484,492,493 (Fig. 20). 
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 The tumor suppressor protein p53 homolog, CEP-1 (C. elegans p53 like-1) plays a 

key role in the integration of cellular responses to genotoxic stimuli494,495. CEP-1 is 

required for DNA damage-induced germ cell apoptosis. It is a direct transcriptional 

activator of egl-1 (egg laying defective) and a second BH3-only protein, CED-13 (cell 

death abnormal-13)496. 

       
 
Figure 20:  DNA damage responses at the germ line (diagram adapted from 
wormbook.org).  
 

 Three C. elegans death promoting genes, egl-1, ced-4 and ced-3 seem to be required 

for all somatic PCD to occur497,498 (Fig. 21). These three genes act within the dying cell to 

promote apoptosis suggesting an intrinsic suicide mechanism. egl-1, coding for a BH3-

only protein, acts upstream of ced-9, the only anti-apoptotic Bcl-2 homolog in C. elegans, 

which protect cells from PCD499. EGL-1 is expressed in cells destined to die497 and 

appears to be regulated at the level of transcription. The egl-1 gene encodes a small 

protein of 91 amino acids with BH3 motif. After activation by upstream signals, the 

EGL-1 interacts with CED-9 at the mitochondrial outer membrane. CED-9 like other Bcl-

2 family members has a hydrophobic C-terminus that causes it to be membrane 
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associated. CED-9 localizes to the outer mitochondrial membrane, and it is through the 

physical interaction between CED-9 and an asymmetric dimer of CED-4 that the ability 

to CED-4 to form an active apoptosome and to mediate procaspase-3 activation is 

blocked500,501. Notably, CED-9 is the only C. elegans anti-apoptotic member of the core 

Bcl-2 family. There is no evidence of pro-apoptotic Bax-like molecule in C. elegans. 

Once EGL-1 acts to induce apoptosis, CED-9 undergoes a conformational change 

releasing CED-4502. EGL-1 binds to CED-9 and adopts an extended α-helical 

conformation that induces substantial structural rearrangements in CED-9.  Once CED-4 

is released from the CED-9-mediated inhibition, it is freed to translocate to the 

perinuclear membranes, and undergoes oligomerization. Endogenous CED-9 and CED-4 

protein co-localize at the surface of mitochondria in C. elegans embryos and the 

mitochondrial localization of CED-4 is dependent on CED-9503. ced-4 encodes a protein 

similar to human Apaf-1 (apoptotic protease activating factor), an activator of human 

caspase-9504. Like Apaf-1, CED-4 contains a CARD (caspase recruitment domain) 

domain and nucleotide binding motifs that are critical for their function. Active 

oligomerized CED-4 interacts with and facilitates the processing of inactive pro-CED-3 

to active proteases p13 and p17. ced-3 encodes a caspase (member of family of aspartate-

specific cysteine proteases) synthesized as proenzyme and must be proteolytically 

activated to generate active proteases containing p13 and p17 subunit505,506. The active 

caspases acts as the mediators of downstream events in cell death, eventually leading to 

the destruction of the cell by cleaving and, thereby activating additional killing proteins.  

       Recently it was shown that EGL-1 induced mitochondrial fragmentation, is 

dependent on the functions of ced-9 gene and is mediated by dynamin-related GTPase 

DRP-1, which is required for mitochondrial fission507,508. Other genes are also shown to 

be implicated in supressing apoptotic programs during C. elegans development: dad-1 

(defender against apoptotic death-1) and icd-1 (inhibitor of cell death-1). How these 

genes interact with the core apoptotic program is currently unclear. CED-13, another 

BH3-only protein, also directly interacts with CED-9. ced-13 mRNA accumulates after 

DNA damage, and this accumulation is dependent on the cep-1 gene509. 
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Figure 21. Direct and indirect pathway of apoptosis in C. elegans (diagram inspired 
from Nehme and Conradt 2008510). 
 
   

 Apoptotic cells signal at their surface for the neighbouring engulfing cells to engulf 

them. The engulfment signal is transduced to the cellular machinery in the phagocyte to 

trigger the phagocytic process. Eight genes have been identified in this process: ced-1, 

ced-2, ced-3, ced-5, ced-7, ced-10, ced-12 and psr-1 (phosphatidylserine receptor 

homologue)511. Most of these genes act in engulfing cells to promote corpse removal, 

with the exception of ced-7 whose activity is required in both dying cells and the 

engulfing cells512.  
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2. Rationale of the thesis and contribution of authors 

 Previous work in the laboratory using a series of mutants with functional assays, in 

addition to molecular analysis and live-cell imaging, revealed that Bcl-xL functions in 

mitosis are governed by 2 major sequential phosphorylation and dephosphorylation 

events that occur on Bcl-xL at Ser49 and Ser62, residues located within the unstructured 

loop domain of the protein101,103. Phosphorylation at Ser62 is mediated by Plk1 and 

Mapk14/Sapk p38a during prophase, metaphase and the anaphase boundary. 

Phosphorylation at Ser49 is mediated by Plk3 during G2 and at telophase and cytokinesis 
101, 103. Phospho-Bcl-xL (Ser62) localizes to centrosomes with γ-tubulin, and the mitotic 

cytosol with some SAC signaling components, including Plk1, BubR1 and Mad2. In 

taxol- and nocodazole-exposed cells, phospho-Bcl-xL(S62) also binds to Cdc20- Mad2- 

BubR1- and Bub3-bound complexes, while the phosphorylation mutant Bcl-xL(S62A) 

does not103. Phospho-Bcl-xL(S49) is found in in centrosomes with γ-tubulin at G2 and in 

association with MT-associated dynein motor protein and at the mid-zone body during 

telophase/cytokinesis101. Silencing Bcl-xL expression, or expressing the Bcl-xL (S62A) 

and (S49A) mutants in cancer cells, leads to important defects in mitosis associated with 

chromosome mis-segregation and cytokinesis failure103. Because the above observations 

were made in tumor cells which already display genomic instability, chromosome 

instability and aneuploidy, the present studies were performed in normal human diploid 

cells, and in vivo in C. elegans, to monitor the importance of Bcl-xL mitotic function to 

maintain chromosome stability in normal cells. 

 Section 3 described the studies conducted in BJ normal foreskin diploid fibroblast 

cells, where Bcl-xL(wt), Bcl-xL(S49A), (S49D), (S62A), (S62D) and the dual (S49/62A) 

and (S49/62D) mutants were expressed using a Lentivirus system. The BJ cells have a 

very stable normal diploid karyotype at population doubling up to 62, but display an 

abnormal karyotype at the outbreak of senescence at population doubling 80513. We 

hypothesized that although BJ cells contain a very stable and normal genetic background, 

the expression of Bcl-xL (S49) and/or (S62) phosphorylation mutants alone will provoke 

chromosome instability and aneuploidy. Indeed, normal diploid human BJ foreskin 

fibroblasts expressing exogenous Bcl-xL phospho-mutants showed a decrease in the 

kinetics of cell population doubling, which is associated with appearance of chromosome 
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instability and aneuploidy, coupled to the occurrence of cellular senescence with no 

striking effects on cell death. Experimental design, data collection and data analysis were 

conducted by PS Baruah (55%), M. Beauchemin (40%) and J. Hébert (5%).  R. Bertrand 

supervised all aspects of the project. 

 Section 4 described the in vivo studies conducted in the nematode C. elegans. 

Although the Ced-9 protein, which correspond to Bcl-2 and Bcl-xL orthologs in C. 

elegans, lacks the functional loop domain, we hypothesised that expression of the 

mutants will have dominant effects on mitotic behaviours and on development of the 

worms. A series of transgenic worms expressing Bcl-xL(wt) and the phosphorylation 

mutants Bcl-xL(S49A), (S49D), (S62A), (S62D) and (S49/62A) have been generated 

with the Mos1-mediated Single Copy Insertion technique (MosSCI)514 and provided to us 

by Knudra transgenics. The transgenic worms expressing the phosphorylation mutants 

showed a decrease in egg laying capacity, decreased hatching, aberrant mitotic and 

meiotic germ cells, and increased number of apoptotic bodies in the gonads of adult 

hermaphrodites. The mutant worms displayed an increased or decreased length of the 

mitotic regions and transition zones suggesting delay in mitotic exit, with some cells 

exhibiting an abnormal number of chromosomes, or increased apoptosis, respectively. In 

addition, variable life spans of the adult transgenic hermaphrodites were monitored 

compared to the wild type worms N2 in animal expressing the Ser to Ala phosphorylation 

mutants. Experimental design, data collection and data analysis were conducted by PS 

Baruah (90%) and M. Beauchemin (10%).  JA Parker and R. Bertrand co-supervised all 

aspects of the project. 
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3.1 Summary 

Bcl-xL proteins undergo dynamic phosphorylation/dephosphorylation on Ser49 and 

Ser62 residues during mitosis. The expression of Bcl-xL(S49A), (S62A) and dual 

(S49/62A) phosphorylation mutants in tumor cells lead to severe mitotic defects 

associated with multipolar spindle, chromosome lagging and bridging, and micro-, bi- 

and multi-nucleated cells (Wang J. et al,., Cell Cycle 2014; 13:1313-1326). As the above 

observations were made in tumor cells, which display genomic instability, we now 

address the questions: will similar outcome occur in normal human diploid cells? and 

what will be the fate of normal cells?  We studied normal human diploid BJ foreskin 

fibroblast cells expressing Bcl-xL(wt), (S49A), (S49D), (S62A), (S62D) and the dual 

(S49/62A) and (S49/62D) mutants. Cells expressing S49 and/or S62 phosphorylation 

mutants showed reduced kinetics of cell population doubling. These effects on cell 

population doubling kinetics correlated with early outbreak of senescence with no impact 

on the cell death rate. Senescent cells displayed typical senescence-associated phenotypes 

including high-level of senescence-associated β-galactosidase activity, interleukin-6 (IL-

6) secretion, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21Waf1/Cip1 

activation as well as γH2A.X-associated nuclear chromatin foci. Fluorescence in situ 

hybridization analysis and Giemsa-banded karyotypes revealed that the expression of 

Bcl-xL phosphorylation mutants in normal diploid BJ cells provoked chromosome 

instability and aneuploidy. These findings suggest that dynamic Bcl-xL(S49) and (S62) 

phosphorylation/dephosphorylation cycles are important in the maintenance of 

chromosome integrity during mitosis in normal cells. They could impact future strategies 

aiming to develop and identify compounds that could target not only the anti-apoptotic 

domain of Bcl-xL protein, but also its mitotic domain for cancer therapy.   
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3.2  Introduction 

 The Bcl-2 family of proteins, including Bcl-xL (1), stands out among key 

regulators of apoptosis, executing crucial functions and controlling whether cells will live 

or die during development and cellular stress (2). Studies have revealed that members of 

the Bcl-2 family, in addition to their central role in apoptosis, are also involved in 

membrane dynamics and remodelling (3, 4), cell cycle regulation (5-12), DNA damage 

responses, repair and recombination (13-17), effects that are generally distinct from their 

purpose in apoptosis.  

 The pleiotropic functions of Bcl-xL depend at least on post-translational 

modifications and its sub-cellular location. Bcl-xL phosphorylation on Ser62 residues 

was first detected in various cancer cell lines treated with microtubule inhibitors (18-20), 

and later found in synchronized cells (11). A subset of the Bcl-xL protein pool undergoes 

dynamic phosphorylation at Ser62 during the S and G2 phases of the cell cycle, followed 

by a high phosphorylation peak during the early step of mitosis (11, 12). During cell 

cycle progression, Polo kinase 1 (PLK1) and mitogen-activated protein kinase 9 / c-jun 

N-terminal kinase 2 (MAPK9/JNK2) are major protein kinases associated with 

progressive phosphorylation of Bcl-xL(S62) during G2, where it accumulates in nuclear 

structures, including nucleoli and Cajal bodies (11).  

 During mitosis, Bcl-xL(S62) is strongly phosphorylated by PLK1 and MAPK14/ 

stress-activated protein kinase p38α (SAPKp38α) at the prometaphase, metaphase and 

anaphase boundaries, with its rapid dephosphorylation at telophase and cytokinesis (12). 

At mitosis, phospho-Bcl-xL(S62) localizes in centrosomes with γ-tubulin and in mitotic 

cytosol with some spindle-assembly checkpoint (SAC) signaling components including 

PLK1, BubR1 and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(S62) 

also binds to Cdc20-, Mad2-, BubR1-, and Bub3-complexes, while the phosphorylation 

mutant Bcl-xL(S62A) does not (12).  

 Dynamic cell cycle-dependent Bcl-xL phosphorylation at Ser49 also has been 

reported. In synchronized cells, phospho-Bcl-xL(S49) appears during the S and G2 

phases, whereas it disappears rapidly in early mitosis during prometaphase and 

metaphase, re-appearing during ongoing anaphase, telophase and cytokinesis (10). 

During G2, a significant phospho-Bcl-xL(S49) protein pool accumulates in centrosomes, 
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particularly after DNA damage-induced G2 arrest, while during telophase and 

cytokinesis, it is found with microtubule-associated dynein motor protein and in the mid-

zone body. PLK3 is the key protein kinase involved in Bcl-xL(S49) phosphorylation (10). 

  Ser49 and Ser62 residues are located within the unstructured loop domain of Bcl-

xL, a region generally not essential for its anti-apoptotic function (9-12, 21, 22). Indeed, 

Bcl-xL's anti-apoptotic function is inherent to the BH1, BH2 and BH3 domains of the 

protein that create a hydrophobic pocket where the amphipathic α-helix of another BH3-

containing protein can bind (23-25). Bcl-xL proteins exert their anti-apoptotic activity by 

binding to and inactivating pro-apoptotic members of the family, including Bax and Bak. 

In contrast, a subset of Bcl-2 pro-apoptotic members (BH3-only proteins), mediate 

interaction with Bcl-xL and inhibit the anti-apoptotic function, thereby promoting 

apoptosis (26-28).  

 In tumor cells, expression of the phosphorylation mutants Bcl-xL(S62A), Bcl-

xL(S49A) and dual Bcl-xL(S49/62A) shows anti-apoptotic properties similar to Bcl-xL 

wild-type (wt)  protein. However, expression of the phosphorylation mutants Bcl-

xL(S62A), Bcl-xL(S49A) and dual Bcl-xL(S49/62A) leads to an increased number of 

cells harboring mitotic defects, as visualized by time-lapse live-cell imaging microscopy 

(12).  These defects include multipolar spindle, chromosome lagging and bridging, 

micro-, bi- and multi-nucleated cells, and cells that fail to complete mitosis (12). 

Together, these observations indicate that during mitosis, Bcl-xL(S49) and (S62) 

phosphorylation/dephosphorylation dynamics impact on chromosome stability, mitosis 

resolution and cytokinesis completion. In these studies, exogenous Bcl-xL phospho-

mutants showed dominant effects even in the presence of endogenous Bcl-xL. In 

addition, when endogenous Bcl-xL expression was silenced, expression of the mutants 

showed stronger effects indicating competition between the wild-type and mutant forms 

(12).  

 Because the above findings occurred in tumor cells, which already display 

genomic instability with chromosome aberrations and aneuploidy, the present studies 

were performed in normal human diploid BJ fibroblast cells. BJ cells have a normal very 

stable diploid karyotype at population doubling up to 62, but begin to display karyotype 

abnormalities at population doubling of 80 at the outbreak of replicative senescence (29). 
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We hypothesized that although BJ cells have a normal and very stable genetics until the 

outbreak of replicative senescence, the expression of Bcl-xL (S49) and/or (S62) 

phosphorylation mutants will provoke their early chromosomal instabilty and aneuploidy.  

 

3.3 Results 

Expression of Bcl-xL phosphorylation mutants in BJ cells and effects on cell 

population doubling and cell fate 

 First, we confirmed that Bcl-xL proteins undergo dynamic phosphorylation and 

dephosphorylation cycles on Ser49 and Ser62 at different steps of mitosis in normal 

human diploid foreskin fibroblast BJ cells (Fig. 1A). Indeed, in highly-enriched cell 

populations synchronized either at G2 or at specific steps of mitosis, Western 

immunoblotting disclosed that Bcl-xL proteins were highly phosphorylated at Ser62 at 

the prophase, prometaphase, metaphase and anaphase boundaries, but dephosphorylated 

at telophase/cytokinesis. In contrast, Bcl-xL proteins were phosphorylated at Ser49 

during G2, but not at Ser49 at prophase, prometaphase and metaphase, while they were 

re-phosphorylated later at telophase and cytokinesis (Fig. 1A). To obtain highly-enriched 

sub-populations of cells at specific steps of mitosis, BJ cells were synchronized by 

double-thymidine block (2 mM) and released upon progression to G2. They were then 

treated with nocodazole (0.35 µM, 5 h), and prophase/prometaphase cells were collected 

by mitotic shake-off. A portion of these cells was released from nocodazole and grown in 

the presence of MG-132 (25 µM, 3 h), a proteasome inhibitor that prevents cyclin B1 and 

securin destruction, to obtain cell populations at the metaphase/anaphase boundary by 

mitotic shake-off. A second set was released from nocodazole and grown in the presence 

of blebbistatin (10 µM, 3 h), a selective non-muscle contractile motor myosin II inhibitor 

that prevents furrow ingression, to attain cell populations at telophase/cytokinesis (10, 

12).  Bcl-xL expression levels remained stable along G2 and mitosis, with cyclinB1 and 

phospho-H3(Ser10) expression shown as specific mitotic phase markers (Fig. 1A). 

Identical Bcl-xL phosphorylation patterns were observed previously in cancer cells (10, 

12). Studies were therefore conducted in BJ cells expressing human influenza 

hemagglutinin (HA)-tagged Bcl-xL(wt), (S49A), (S49D), (S62A), (S62D) or dual 

(S49/62A) and (S49/62D) phosphorylation mutants. The cells were infected with 
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lentiviruses expressing various cDNAs at early cell population doubling, and the kinetics 

of cell population doubling were monitored over a period of 4 months post-infection.  

 Figure 1B represents a typical experiment and Figure 1C illustrates the expression 

of endogenous Bcl-xL, HA-Bcl-xL(wt) and various phosphorylation mutants, by Western 

immunoblotting, at different cell population doublings. Two similar additional 

experiments are reported in expanded view (Fig. S-1). The kinetics of cell population 

doubling were similar in control BJ cells and BJ cells infected by control lentivirus vector 

or HA-Bcl-xL(wt) (Fig. 1B). In contrast, cells expressing Ser49 and/or Ser62 

phosphorylation mutants showed reduced kinetics of cell population doubling (Fig. 1B). 

The observed decrease in the kinetics of cell population doubling was associated with 

increased senescence, as measured by senescence-associated β-galactosidase assays (30) 

(Fig. 2A and 2B) and senescence-associated secretory phenotypes, with Il-6 secretion as 

biomarker (31) (Fig. 2C).  

 No significant effects on apoptotic or necrotic cell death were seen in cells 

expressing the HA-Bcl-xL phosphorylation mutants, with cell death rates less than 2-3% 

over the time-course of the experiments. The morphology of more than 25,000 Hoechst 

33342- and propidium iodide (PI)-stained cells was analyzed for each phosphorylation 

mutant at different population doublings (data not shown).  

Expression of HA-Bcl-xL phosphorylation mutants in BJ cells and chromosome 

instability and aneuploidy 

 Striking effects were noted by time-lapse live-cell imaging microscopy of human 

cancer HeLa cells expressing HA-Bcl-xL(S49A), (S62A) and dual (S49/62A) 

phosphorylation mutants with an increased number of cells harboring multiple mitotic 

defects, including multipolar spindle, chromosome lagging and bridging, micro-, bi- or 

multi-nucleated cells, and cells that fail to complete mitosis (12). To establish if the 

expression of Bcl-xL phosphorylation mutants in normal diploid BJ cells provokes 

chromosome instability and aneuploidy, fluorescence in situ hybridization (FISH) 

analysis of interphasic cells was performed at various cell population doublings, with a 

fluorophobe-labeled 6p11.1-q11 alpha satellite DNA probe (Fig. 3A). These analyses 

provided simple determination by looking at chromosome 6.  
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 Figure 3A shows a significant increase of aneuploidy in all Bcl-xL 

phosphorylation mutants compared to control BJ cells or BJ cells infected by control 

lentivirus vector or HA-Bcl-xL(wt). Typical FISH micrographs are represented in Figure 

3B. To validate these observations, standard cytogenetic analysis was also performed on 

mitotic cells at various cell population doublings. Table 1 list the various chromosomal 

aberrations detected and monitored by G-banded karyotyping. It is noteworthy that, 

typically, FISH analysis was performed on interphasic cells (either proliferative and non-

proliferative or senescent cells), while G-banded karyotyping was done on metaphasic 

cells, which implies that these cells are proliferative, at least through 1 mitotic cycle.  

 In cells expressing Bcl-xL phosphorylation mutants S62A, S49D and S62D, 

chromosomal abnormalities were detected, indicating that even in the presence of 

chromosome abnormalities, these cells were able to undergo at least through 1 mitotic 

cycle (Table 1). Control BJ cells or BJ cells infected by control lentivirus vector or HA-

Bcl-xL(wt) presented very low-level aneuploidy, based on FISH analysis (Fig. 3A,  3B),  

and have normal karyotypes, based on cytogenetic analysis (Table 1).  

Expression of senescence-associated phenotypes and biomarkers in BJ cells 

expressing HA-Bcl-xL phosphorylation mutants 

 Senescent cells can display a series of phenotypes: senescence-associated β-

galactosidase activity (30) (Fig. 2A, 2B), senescence-associated secretory phenotypes 

(31) (Fig. 2C), as well as nuclear foci linked to chromatin alterations and 

activation/recruitment of DNA damage response proteins, such as phospho-histone 

γH2A.X (32). Senescence is also often associated with sustained expression of the cell 

cycle-dependent kinase inhibitors p16INK4A and/or p21Waf1/Cip1 (33). Figures 4A, 4B 

and 4C (left panels) illustrate, at the single cell level, the expression of key biomarkers 

revealed by immunofluorescence (IF) imaging and analysis. Both p21Waf1/Cip1 (Fig. 

4A) and γH2A.X (Fig. 4B) expression increased significantly in late population doubling 

BJ cell compared to corresponding early population doubling cells. p21Waf1/Cip1 and 

γH2A.X expression was increased much more significantly in late population doubling 

BJ cells expressing Bcl-xL phosphorylation mutants compared to late population 

doubling control BJ cells or BJ cells infected by control lentivirus vector or HA-Bcl-

xL(wt) (p < 0.01; not indicated on graphs).  In contrast, Ki67 expression (Fig. 4C), a 
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marker of proliferative cells, decreased significantly in late population doubling BJ cells 

expressing Bcl-xL phosphorylation mutants compared to corresponding early population 

doubling cells, and population doubling control BJ cells or BJ cells infected by control 

lentivirus vector or HA-Bcl-xL(wt) (p < 0.01; not indicated on graphs).  These 

observations are consistent with the kinetics of population doubling (Fig. 1B) and the 

outbreak of senescence in late population doubling BJ cells expressing Bcl-xL 

phosphorylation mutants (Fig. 2A).  

 Typical IF micrographs are presented in Figures 4A, 4B and 4C (right panels).  

Involvement of the p53 and p21Waf1/Cip1 DNA damage response pathway was 

confirmed by Western blottings (Fig. 4D). p16INK4A expression was barely detectable 

in BJ cells, even in late population doubling cells exhibiting a high senescence rate (data 

not shown), suggesting that p16INK4A is not part of the process.   

 We attempted to correlate the expression of these biomarkers with aneuploidy at 

the single cell level in a limited number of samples. To do so, we implemented a FISH 

labeling experimental protocol, followed by IF labeling.  Most, but not all cells, 

harbouring aneuploidy, detected by FISH, displayed high-level p21Waf1/Cip1 expression 

(Fig. S-2A) and low-level Ki67 expression (Fig. S-2B). These observations correlated at 

the single cell level, with aneuploidy, p21Waf1/Cip1 and Ki67 expression, consistent 

with non-proliferative and/or senescent cells.  Interestingly, correlation did not fit all 

aneuploid cells, indicating a mosaic or progressive response, where some aneuploid cells 

still had proliferative potency at least for 1 or a few cell cycle divisions, finding 

consistent with our ability to perform G-banding analysis at metaphase (Table 1). 

Attempts to detect aneuploidy and γH2A.X-associated nuclear foci or senescence-

associated β-galactosidase activity by similar experimental approaches were 

unsuccessful; the FISH experimental protocol involved an alkaline DNA denaturation 

step that most likely released nuclear foci-associated proteins from chromatin and 

destroyed acidic β-galactosidase activity (data not shown).  

 

3.4 Conclusion and discussion 

 Together, our experiments revealed that the expression of Bcl-xL(S49) and (S62) 

phosphorylation mutants in normal human diploid BJ cells provoked chromosome 
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instability and aneuploidy. These effects correlated with reduced cell population doubling 

and the outbreak of senescence with typical senescence-associated phenotypes, including 

high-level senescence-associated β-galactosidase activity, IL-6 secretion, p53 and 

p21Waf1/Cip1 expression and γH2A.X-associated nuclear foci. Our observations suggest 

that dynamic Bcl-xL(S49) and (S62) phosphorylation and dephosphorylation cycles are 

key determinants of Bcl-xL functions in maintaining chromosome integrity. These 

effects, by Bcl-xL(S49) and (S62) phosphorylation mutants during mitosis, are consistent 

with previous findings in cancer cells (10, 12). They are also consistent with Ser49 and 

Ser62 which are located within the protein's unstructured loop domain (21, 22), are non-

essential for Bcl-xL anti-apoptotic function (9-12), but indeed play roles in chromosome 

stability.  

 Our study revealed that, concomitant with chromosome abnormalities mediated 

by the expression of Bcl-xL(S49) and (S62) phosphorylation mutants, BJ cells underwent 

senescence. This observation further reinforced the concept that senescence can act as a 

potent tumor suppressing mechanism in normal cells (34).  Interestingly, Bcl-xL is very 

rarely mutated in human tumors, suggesting that putative key mutations within Bcl-xL 

would be unsuitable for cell proliferation and survival (see mutations and polymorphisms 

in  Figure S-3A and -3B). Bcl-xL overexpression rather than mutation is associated with 

tumor development and poor treatment response in various cancers (35-41). Indeed, 

tumor cells are believed to depend on, or are addicted to, anti-apoptotic Bcl-2 family 

members, including Bcl-xL (42), providing a selective advantage to cancer cells by 

allowing them to survive various stressful environments, cell stress phenotypes and/or 

cell death signals that directly ensue from oncogenic signaling, tumor suppressor 

deficiency or anticancer treatments (42). Although Bcl-xL(S49) and (S62) are not found 

yet mutated in cancer cells, the two major protein kinases involved in Bcl-xL 

phosphorylation during mitosis, PLK-1 and PLK-3 are often linked to aneuploidy and 

cancer development. Indeed, human PLK-1 is essential during mitosis, DNA damage 

responses and for maintenance of genomic stability (43). The spatio-temporal regulation 

of PLK-1 direct its activity at various locations, including cytoplasm, centrosomes, along 

microtubules, at spindle midzones, kinetochore/centromere regions and in post-mitotic 

bridges of the dividing cells (43). Many studies showed the various roles of PLK-1 
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during mitosis, more importantly, its role in ensuring SAC fidelity, kinetochore-

microtubule attachment and sister chromatid separation. Misexpression of PLK-1 causes  

mitotic abnormalities including aneuploidy leading to tumorigenesis, and its often found 

overexpressed in a variety of tumors (43). PLK-3 is also involved in regulating a variety 

of molecular and cellular events, including DNA replication, DNA damage responses, 

cell cycle control and tumor angiogenesis (44). Aberrant expression of PLK-3 is also 

found in different types of tumors (44). Small-molecule inhibitors of PLK are under 

clinical trials and provided a survival benefit for patients with leukemia (45-47).  

 Our data indicate that if a putative mutation occurs randomly within Bcl-xL(S49) 

or (S62) in normal cells, they will undergo aneuploidy with senescence, rather than 

outbreak into a tumorigenesis path. However, the possibility that mutations within 

oncogenes or tumor suppressor genes, in combination with Bcl-xL mutations, could lead 

to a tumorigenesis path cannot be ruled out completely. Nevertheless, the fact that Bcl-xL 

mutations are very rarely found in human tumors, and yet, to the best of our knowledge, 

have never been detected on Ser49 and Ser62, strongly suggests that putative random 

mutations within Bcl-xL(S49) or (S62) in normal cells will lead to senescence outbreak. 

Perturbation of the SAC is well-known to result in chromosome mis-segregation and 

aneuploidy. Only few studies have ascertained correlations between aneuploidy and the 

outbreak of senescence. Reduced BubR1 expression in mouse embryonic fibroblasts 

causes increased aneuploidy and senescence, an effect associated with opposing roles of 

p16INK4A and p19Arf controlling senescence and aging (48, 49). Furthermore, in mouse 

embryonic fibroblasts, Bub1 mutation which causes high rates of chromosome mis-

segregation and aneuploidy, has been reported to be accompanied by growth defects, 

premature senescence, as well as tumorigenesis (50). 

 One of the main questions raised by this study is: how do phospho-Bcl-xL(S62) 

and (S49) act at the molecular level during mitosis?  In a previous study, we 

demonstrated that phospho-Bcl-xL(S62) localizes in mitotic cytosol with some SAC 

signalling components, including Plk1, BubR1 and Mad2. In addition, a series of co-

immunoprecipitation experiments, on taxol- and nocodazole-exposed cells, revealed that 

phospho-Bcl-xL(S62) binds with Mad2-, BubR1-, Bub3- and Cdc20-complexes, but not 

Bub1 and Cdc27, a subunit of anaphase-promoting complex/cyclosome (APC/C) itself 
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(12). These interactions were confirmed by series of reciprocal co-immunoprecipitations 

in 2 cancer cell lines (12). Intriguingly, when Bcl-xL is phosphorylated on Ser62, mitosis 

occurs normally, while expression of the non-phosphorylation mutant S62A, leads to 

many defects, including, delayed anaphase and chromosome mis-segregation (12). 

Moreover, only the phospho-Bcl-xL(S62) form, and not the S62A form, binds to Cdc20-, 

Mad2-, BubR1-, Bub3-bound complexes, suggesting that it has a salutary effect on SAC 

resolution and proper mitosis progression (12). Further work is ongoing to understand 

these protein:protein interactions and their impact on APC/C-cdc20 ubiquitin ligase 

activity and anaphase entry. 

 The molecular mechanisms of phospho-Bcl-xL(S49) action is more mysterious. 

Our previous observations indicate that phospho-Bcl-xL(S49) localizes at centrosomes in 

the G2 phase of the cell cycle and in the mid-zone body during telophase/cytokinesis 

(10), a region where membrane vesicule fusion occurs, to provide the necessary 

membrane addition that will surround 2 daughters cells during full ingression of the 

contractile ring and abscission (51). Considering that Bcl-xL has been reported to play 

role in membrane remodeling (4), it is tempting to speculate on phospho-Bcl-xL(S49) in 

the mid-zone body, promoting membrane vesicle recruitment to provide the necessary 

membrane addition for complete abscission of mother cells into daughters cells. This 

hypothesis will need to be evaluated in the near future. Similarly, the involvement of 

centrosome-associated phospho-Bcl-xL(S49) (late G2) and phospho-Bcl-xL(S62) 

(prometaphase and metaphase) in microtubule elongation and chromosome capture 

remains to be elucidated. 

 Many efforts, including new clinical trials, are currently being pursued to develop 

new drugs targeting the anti-apoptotic domain of Bcl-2 protein members, including Bcl-

xL (52-56, 57 ). In addition, recent findings, including our observations suggest that other 

protein activities could be of interest as targets for cancer therapy. Understanding how 

Bcl-xL proteins governs their mitotic functions will help to develop and explore 

strategies in the near future to identify novel compounds that focus not only on the anti-

apoptotic domain, but also on the mitotic domain of Bcl-xL for cancer treatment.  
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3.5 Materials and methods 

Cell culture, cDNA constructs, lentivirus preparations and cell analysis. Human BJ 

cell lines were obtained from the American Type Culture Collection at population 

doubling of 22 and grown at 37°C under 5% CO2 in Eagle's minimum essential medium 

(EMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml 

penicillin and 100 µg/ml streptomycin, respectively. Cell numbers were counted by 

standard hemocytometer in duplicate.  All cDNA constructs were generated and 

subcloned in pLenti6.2 Blast DEST vector (Invitrogen Corporation, Carlsbad, CA) as 

described previously (10-12). All vectors were sequenced in both orientations.  

 Lentiviruses were produced in 293FT cells, also obtained from Invitrogen. 

Transduced BJ cells with lentiviruses were grown under blasticidin (7 µg/ml) selection. 

Titrations of the lentivirus were performed and determined according to the 

manufacturer’s protocol. MOI ratio of 1:1 was used during the infection. 

 The kinetics of cell cycle phase distribution were monitored by BD-LSRII 

Fortessa cytometer with BD FacsDiva (v6) software (Becton, Dickinson & Company, 

San Jose, CA),  phospho-H3(Ser10) labeling and PI staining. In senescence-associated β-

galactosidase assays, cells were fixed in 3% formaldehyde buffered with phosphote-

buffered saline (PBS) for 2-3 min, then washed with PBS. They were incubated in a 

staining solution containing  20 mM citrate-phosphate, pH 6.0, 150 mM NaCl, 5 mM 

potassium ferricyanide, 5 mM potassium ferrocyanide, 2 mM MgCl2 and 200 µM 

chromogenic substrate 5-bromo-4-chloro-3-indoyl β-D-galactopyranoside in a humidified 

chamber at 37°C for 24h in the dark (9). The cells were then washed and visualized by 

phase contrast microscopy. Cell death was monitored by standard Hoechst 33342- and 

PI-staining with visualization by fluorescence microscopy. IL-6 secretion was measured 

using Human IL-6 ELISA Ready-Set-Go reagent set, according to the manufacturer's 

instructions (eBioscience Inc, SanDiego, CA).  

Protein extraction and immunoblotting. To prepare total protein, cells were extracted 

with lysis buffer containing 20 mM Hepes- KOH, pH 7.4, 120 mM NaCl, 1% Triton X-

100, 2 mM phenylmethylsulfonyl fluoride, a cocktail of protease inhibitors (CompleteTM, 

Roche Applied Science, Laval QC) and a cocktail of phosphatase inhibitors (PhosStopTM, 
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Roche Applied Science). The antibodies (Abs) in this study were Bcl-xL (54H6) rabbit 

monoclonal Ab (mAb), Ki-67(8D5) mouse mAb, p21Waf1/Cip1(12D1) rabbit mAb, 

p16INK4A rabbit polyclonal Ab (pAb), p53(1C12) mouse mAb and phospho-Histone 

H3(Ser10) Alexa 488 rabbit pAb obtained from Cell Signaling Technology Inc. (Beverly, 

MA). Phospho-histone H3(Ser10) rabbit pAb, and phospho-histone H2A.X (Ser139) 

(JBW301) mouse mAb were purchased from EMD Millipore Corporation (Temecula, 

CA), β-actin (AC-15) mouse mAb was from Abcam Inc. (Cambridge, MA). The 

production and controls of phospho-Bcl-xL(S62) and phospho-Bcl-xL(S49) rabbit pAb 

specificities have been well documented, with competitive phosphorylated and 

unphosphorylated peptides and small interfering RNAs, by Western blotting and 

immunofluorescence staining (10-12). Peroxidase-labeled secondary Ab were detected by 

enhanced chemiluminescence with reagent set from GE Healthcare Life Science 

(Mississauga, ON) or SuperSignal WestPico chemiluminescence substrates from Thermo 

Scientific (Rockford, IL). 

FISH analysis, IF microscopy and cytogenetic analysis. For FISH analysis, BJ cells 

were seeded and grown directly on coverslips, then hybridized with fluorophobe-labeled 

chromosome enumeration 6p11.1-q11 alpha satellite DNA FISH probe employing 

manufacturer's protocol and reagents (Abbott Molecular, Abbott Park, IL). For IF 

microscopy, BJ cells seeded and grown on coverslips, were fixed in methanol at -20°C 

for 30 min, then immersed rapidly in ice-cold acetone for a few seconds. The slides were 

allowed to dry at room temperature and rehydrated in PBS. Nonspecific binding sites 

were blocked in PBS containing 5% FBS (blocking solution); then, the slides were 

incubated sequentially with specific primary Ab (10 µg/ml in blocking solution) and 

specific labeled secondary Ab (10 µg/ml in blocking solution; Alexa-594 Fluor goat anti-

mouse or goat anti-rabbit from Invitrogen Corp.), followed by 4′,6-diamidino-2-

phenylindole (DAPI) staining, also in blocking solution.  

 For dual FISH/IF-labeling, FISH was performed prior to IF staining. Images were 

generated with a Nikon microsystem mounted on a Nikon Eclipse E600 microscope with 

a photometric Cool-Snap HQ2 camera and Nikon NIS-Elements software 9 (v 3.8AR) 

and with a Zeiss Axio Observer Z1 automated microscope and Axiovision software 

(v4.8.2). Images were analysed by Image J software (v1.49), a Java-based processing 
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program developed by the National Institutes of Health (USA). Metaphase preparation, 

G-banding techniques and cytogenetic analysis were performed according to standard 

cytogenetic procedures. Clonal chromosomal abnormalities were reported according to 

the recommendations of the International System for Human Cytogenetic Nomenclature 

(2013). Statistical analyses (student's t test) were conducted with Prism GraphPad 

software (v 5.0d). 
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Table 1  Chromosomal aberrations in control BJ cells and BJ cells expressing Bcl-
xL (wt) and Bcl-xL phosphorylation mutants at various cell population 
doublings 

 
 
 
  

Cell population doubling  Karyotypes  
        
BJ control (PD 43.3)   46,XY[22] 
BJ control (PD 70.1)   46,XY[10] 
 
pLenti (PD 53.7)   46,XY[22] 
 
Bcl-xL wt (PD 52.0)   46,XY[22] 
   
Bcl-xL S49A (PD 42.4)  46,XY[18] 
Bcl-xL S49A (PD 53.6)  46,XY[20] 
 
Bcl-xL S62A (PD 39.2)  46,XY,t(6;7)(q21;q32)[3]/46, XY[17] 
Bcl-xL S62A (PD 55.3)         46,XY,add(16)p13.1[9]/48,XY,+2mar[2]/46,XY[10] 
 
Bcl-xL S49/62A  (PD 39.0)  46,XY[22]         
Bcl-xL S49/62A  (PD 52.1)  46,XY[7] 
 
Bcl-xL S49D (PD 37.1)         46,XY,add(16)q2?2)[4]/46,XY[12]      
Bcl-xL S49D (PD 54.1)  46,XY,i(18)(q10)[3]/46,XY[18] 
         
Bcl-xL S62D (PD 40.1)  46,XY[22] 
Bcl-xL S62D (PD 52.5)         46,XY,t(4:5)(p16:q15)[9]/47,XY,+7[3]/46,XY[5] 
         
Bcl-xL S49/62D (PD 50.1)  46,XY[12] 
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Figure 1  Effect of Bcl-xL and Bcl-xL phosphorylation mutant expression on cell 

population doubling of BJ cells. (A) Kinetics of Bcl-xL, phospho-Bcl-xL(S49), phospho-

Bcl-xL(S62), cyclinB1 and phospho-H3(S10) expression in control BJ cells at different 

steps of mitosis; β-actin expression is shown as control. SDS-PAGE was run on 9-18% 

gradient gels. (B) Population doubling kinetics of control BJ cells and BJ cells expressing 

empty lentivirus vector or lentivirus vectors encoding HA-Bcl-xL(wt), (S49A), (S49D), 

(S62A), (S62D) or dual (S49/62A) and (S49/62D) phosphorylation mutants. (C) 

Expression kinetics of endogenous Bcl-xL, HA-Bcl-xL(wt) and various phosphorylation 

mutants at various cell population doublings;  β-actin expression is shown as control. 

SDS-PAGE was run on 9-18% gradient gels.  
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Figure 2  Effect of Bcl-xL and Bcl-xL phosphorylation mutant expression on 

outbreak of senescence in BJ cells.  (A) Kinetics of senescence-associated β-

galactosidase activity in control BJ cells and BJ cells expressing empty lentivirus vector 

or lentivirus vectors encoding HA-Bcl-xL(wt), (S49A), (S49D), (S62A), (S62D) or dual 

(S49/62A) and (S49/62D) phosphorylation mutants at various cell population doublings. 

The data from 3 independent experiments.  (B) Typical micrographs of senescence-

associated β-galactosidase activity in various cell populations. (C) Kinetics of IL-6 

secretion from control BJ cells and BJ cells expressing empty lentivirus vector or 

lentivirus vectors encoding HA-Bcl-xL(wt), (S49A), (S49D), (S62A), (S62D) or dual 

(S49/62A) and (S49/62D) phosphorylation mutants at various cell population doublings 

(n: 4).  
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 Figure 3   Effect of Bcl-xL and Bcl-xL phosphorylation mutant expression on 

chromosome stability and aneuploidy in BJ cells. (A) % of aneuploid kinetics in 

interphasic control BJ cells and BJ cells expressing empty lentivirus vector or lentivirus 

vectors encoding HA-Bcl-xL(wt), (S49A), (S49D), (S62A), (S62D) or dual (S49/62A) 

and (S49/62D) phosphorylation mutants at various cell population doublings. Total 

number of cells analysed: 2,639 (wt), 1,718 (S49A), 2,168 (S49D), 2,914 (S62A), 2,096 

(S62D), 2,194 (S49/62A) and 2,333 (S49/62D). Micrographs from 3 to 5 independent 

experiments.  (B) Typical micrographs of FISH-labeling with a fluorophobe-labeled 

6p11.1-q11 alpha satellite DNA probe. G-banding karyotypes are liste in Table 1.  
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Figure 4  Effect of Bcl-xL and Bcl-xL phosphorylation mutant expression on 

senescence-associated biomarkers in BJ cells. IF-revealed expression level of (A) 

p21Waf1/Cip1, (B) γH2A.X, and (C) Ki-67 in early versus late population doubling of 

control BJ cells and BJ cells expressing empty lentivirus vector or lentivirus vectors 

encoding Bcl-xL(wt) and various Bcl-xL phosphorylation mutants. Left panels, X axis: 

The BJ cell population is indicated with population doubling range (DP [range]) and the 

numbers of individual cells analysed and represented in the histographs (n). Data were 

collected from a multitude of independent micrographs. Right panels: Typical 

micrographs showing all cell populations at early (29 to 32) and late (50 to 55) 

population doubling.  (D) Expression kinetics of Bcl-xL, HA-Bcl-xL (and 

phosphorylation mutants), p53 and p21Waf1/Cip1 in the control BJ cell population and 

BJ cells expressing empty lentivirus vector or lentivirus vectors encoding Bcl-xL(wt) and 

the various Bcl-xL phosphorylation mutants at early (29 to 32), middle (40 to 45) and late 

(50 to 55) population doublings, revealed by Western blotting;  β-actin expression is 

shown as control. SDS-PAGE was run on 9-18% gradient gels.  
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Figure S-1  Kinetics of cell population doubling of control BJ cells and BJ cells 

expressing empty lentivirus vector or lentivirus vectors encoding HA-Bcl-xL(wt), 

(S49A), (S49D), (S62A), (S62D) or dual (S49/62A) and (S49/62D) phosphorylation 

mutants. Two independents experiments are reported. 

  



 88 

 
 

 

 

Figure S-2  Correlation between aneuploidy and senescence-associated biomarkers in 

control BJ cells and BJ cells expressing Bcl-xL(wt) and Bcl-xL phosphorylation mutants. 

IF-revealed expression of (A) p21Waf1/Cip1 and (B) Ki-67 in late population doubling 

of control BJ cells and BJ cells expressing Bcl-xL(wt) or various Bcl-xL phosphorylation 

mutants harbouring aneuploidy on chromosome 6. Left panels X axis: The BJ cell 

population is indicated with population doubling number (DP [range] ) and numbers of 

individual aneuploid cells detected over total number of cells observed (n). Right panels: 

Typical micrographs of aneuploid cells (upper panels). Controls are shown in lower 

panels.  
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Figure S-3 Bcl-xL somatic mutations found in human tumors and short genetic 
variations. 
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4.1 Summary 

An interesting feature of Bcl-xL protein is the presence of an unstructured loop domain 

between α1 and α2 helices, a domain not essential for its anti-apoptotic function and 

absent in CED-9 protein. Within this domain, Bcl-xL undergoes dynamic 

phosphorylation and de-phosphorylation at Ser49 and Ser62 during G2 and mitosis in 

human cells. Studies have revealed that when these residues are mutated, cells harbour 

mitotic defects, including chromosome mis-attachment, lagging, bridging and mis-

segregation with, ultimately, chromosome instability and aneuploidy. We undertook 

experiments in Caenorhabditis elegans to understand the importance of Bcl-xL (Ser49) 

and (Ser62) in-vivo. Transgenic worms carrying single-site S49A, S62A, S49D, S62D 

and dual site S49/62A mutants were generated and their effects were analyzed in 

germlines of young adult worms. Worms expressing Bcl-xL variants showed decreased 

egg-laying and hatching, variations in the length of their mitotic regions and transition 

zones, appearance of chromosomal abnormalities at their diplotene stages, and increased 

germline apoptosis. Some of these transgenic strains, particularly the Ser to Ala variants, 

also showed slight modulations of lifespan compared to their controls. Our in vivo 

observations confirmed the importance of Ser49 and Ser62 within the loop domain of 

Bcl-xL in maintaining chromosome stability.  
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4.2 Introduction  

 Core components of the cell death machinery, identified by genetic and 

biochemical studies, are well-conserved across eukaryotes, from nematodes to mammals. 

First identified in Caenorhabditis elegans (C. elegans), ced-9 is required to protect 

healthy cells from apoptosis1. Initially reported at t(14;18) chromosomal translocation in 

follicular lymphomas2, human BCL2 gene, was latter ascertained to be an ortholog of 

ced-9, whose expression plays a key role in controlling cell death3. BCL2 is the founding 

member of a large family of genes and proteins, now referred to as the Bcl-2 family4,5. 

Transient expression of human Bcl-2 in ced-9 loss-of-function C. elegans, reduces cell 

death during nematode development and interacts with the cell death machinery of the 

worms, revealing the highly-conserved structure and function of these proteins among 

various species6,7. Indeed, anti-apoptotic proteins, e.g., mammalian Bcl-2, Bcl-xL 8 and 

C. elegans CED-9 share structural homology in terms of their Bcl-2 homology (BH) 

domains that control their apoptosis-regulating functions9,10. However, Bcl-2 and Bcl-xL 

proteins contain an additional domain, an unstructured loop domain between α1 and α2 

helices, a protein domain that is not essential for their anti-apoptotic functions and absent 

in CED-9 protein11-15.  

 Studies have revealed that 2 serine residues within the unstructured loop domain 

of human Bcl-xL, Ser49 and Ser62, are subjected to cell cycle-dependent, dynamic 

phosphorylation when cells are subjected to various stresses, but also during normal cell 

cycle progression16-22. Bcl-xL undergoes cell cycle-dependent phosphorylation on Ser49, 

and accumulates in centrosomes in G2 phase, particularly during DNA single- and 

double-strand break-mediated G2 arrest20. Bcl-xL(Ser49) is rapidly dephosphorylated in 

early mitotic phases and is re-phosphorylated during telophase/cytokinesis by Polo kinase 

3 (Plk3).  

 Phospho-Bcl-xL(S49) is found in conjunction with microtubule-associated dynein 

motor proteins and in mid-zone bodies during telephase/cytokinesis20.  Bcl-xL is also 

phosphorylated at Ser62 by Plk1 and mitogen-activated protein kinase 9/c-jun N-terminal 

kinase 2 (Mapk9/Jnk2) during normal cell cycle progression at G2 and after DNA 

damage21. At G2, phospho-Bcl-xL(Ser62) accumulates in nucleolar structures including 

nucleoli and Cajal bodies and co-localizes with cyclin-dependent kinase 1 (Cdk1)21. 
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During mitosis, Bcl-xL(Ser62) is strongly phosphorylated by Plk1 and Mapk14/stress-

activated protein kinase p38α in prophase, prometaphase, metaphase and the anaphase 

boundary, while it is dephosphorylated in telophase and cytokinesis22. At mitosis, 

phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin, and in the mitotic 

cytosol with some spindle-assembly checkpoint (SAC) signalling proteins, including Plk1 

and the Mad2-, BubR1-, Bub3- and Cdc20-bound complexes22.  

		 In normal human fibroblasts or human tumor cells, expression of the 

phosphorylation mutants Bcl-xL(S49A) or (S49D), Bcl-xL(S62A) or (S62D), or dual 

Bcl-xL(S49/62A) or (S49/62D) has no significant effect on the apoptosis rate, but leads 

to mitotic defects associated with chromosome mis-attachement, lagging, bridging, mis-

segregation, cytokinesis failure and aneuploidy (submitted manuscripts and 22). These 

findings conferred novel functions to the protein linked with the unstructured loop 

domain of Bcl-xL. In the present study, to better characterize this function in vivo, we 

hypothesize that, although CED-9 lacks Bcl-xL's loop domain, introduction of Bcl-

xL(Ser49) and (Ser62) mutants in C. elegans has dominant effects and can cause 

proliferating germline cell defects as well as aneuploidy.  

 

4.3 Results  

Expression of human Bcl-xL variants in C. elegans. Several strains of transgenic 

worms containing human Bcl-xL wild-type (wt) and single-site (S49A, S49D, S62A, 

S62D) or dual-site (S49/62A) mutants were generated (Table 1). First, 2 strains for each 

Bcl-xL variant were used, and N2 (wt) worms served as controls. Transgenes were 

confirmed by polymerase chain reaction (PCR) assays of genomic DNA (Fig. 1A), and 

all PCR products were sequenced for validation (data not shown).  mRNA levels were 

then evaluated by quantitative reverse-transcriptase (q-RT)-PCR using pmp-3 expression 

as referencence gene23, and all transgenic worms expressed similar levels of BCL-XL 

variant mRNAs (Fig. 1B).  Ced-9 mRNA levels were monitored in parallel in these 

experiments (Fig. 1C). Overall, BCL-XL mRNA expression was found slightly lower 

compared to ced-9 mRNA expression, with BCL-XL / ced-9 ratios ranging from 0.56 to 

0.88 (Fig. 1D).  
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Mutations within the loop domain of Bcl-xL affect C. elegans progeny fecundity. N2 

(wt) hermaphrodites under laboratory conditions released embryos from the uterus during 

their development, and these eggs were easily counted. To determine whether the 

expression of Bcl-xL (wt) and mutants in C. elegans affects their egg-laying capacity, 

eggs were counted and compared among various transgenic strains. Synchronized L4 

hermaphrodite transgenic larvae were plated individually, and eggs laid were counted 

over a 3-day period once they have reached adulthood (about 12 h after plating).  

 The transgenic strains expressing Bcl-xL (wt) showed no significant difference in 

egg-laying potency (Fig. 2A) and in percentage (%) of eggs that hatched (Fig. 2B) 

compared to N2 (wt) worms. The number of eggs laid by transgenic worms expressing 

Bcl-xL mutants was decreased significantly compared to Bcl-xL (wt)-expressing worms 

and N2 (wt) worms (Fig. 2A). When these eggs were followed, the % that hatched was 

significantly affected across all the mutants with a few exceptions (Bcl-xL (S62D) variant 

strain 311) that may reflect strain and/or animal variations. In addition, preliminary and 

simple chromatin staining of germlines revealed increased numbers of aberrant cells 

harboring condensed chromatin and/or fragmented chromatin and/or doublet cells as well 

as global spatial disorganization of germline alignment in the transgenic strains 

expressing the Bcl-xL Ser to Ala mutants, supporting these hypothesis (Supplemental 

Fig. S1A). Our preliminary observations were then analyzed in more detail. 

Mutations within the loop domain of Bcl-xL causes germ cell aberrations in the 

gonads. To determine if Bcl-xL mutations at Ser49 and Ser62 affect the process of 

mitosis, we analyzed the germline in the transgenic worms. The C. elegans germline 

contains an anatomically-restricted mitotic cell population that persists throughout life 

and is thought to be self-renewing24. The mitotic region (MR) in the gonads showed 

reduced lengths in all Bcl-xL variants compared to Bcl-xL (wt)-expressing worms or N2 

control worms (Fig. 3A) with the exception of Bcl-xL (S62D) variant (COP299 strain). In 

contrast, the transition zones (TZ) in the gonads presented no overall difference in all 

Bcl-xL variants compared to Bcl-xL (wt)-expressing worms or N2 control worms (Fig. 

3B). Representative micrographs are reported in Figure 3C. 

Mutations within the loop domain of Bcl-xL cause germ line aneuploidy. 

Chromosome mis-alignment, lagging or bridging, mis-segregation and cytokinesis failure 
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are major defects that could occur during mitosis and confer chromosome instability as 

well as aneuploidy25,26. Cells will respond in various ways including cell cycle 

checkpoint activation, cell cycle arrest, premature senescence or cell death and, in 

mammal cells, they could also enter into an immortalization or tumorigenesis path, 

depending on particular cellular and environmental contexts27-29. To evaluate the effect of 

the various Bcl-xL variants on chromosome stability, chromosomes were analyzed at the 

diplotene stage in control and transgenic worms. In N2 control and in Bcl-xL (wt) worms, 

6 pairs of chromosomes were clearly visible in the diplotene stage at the end of the 

gonads. However, various Bcl-xL mutants, with the exception of Bcl-xL (S62D) variant, 

underwent aneuploidy and/or chromosome fragmentation compared to N2 control and 

Bcl-xL (wt) strains  (Fig. 4).  

Mutations within the loop domain of Bcl-xL cause increased apoptosis in the 

gonads. Finally, to assess apoptosis in germlines, we took advantage of a CED-1:GFP 

strain30 by crossing it with our transgenic worms. CED-1, expressed in sheath cells, is a 

phagocytic receptor that initiates pathways for degrading engulfed apoptotic cells and is 

thus a good indicator apoptotic bodies31. With the exception of the Bcl-xL (S62D) 

variant, worms expressing Bcl-xL mutants showed significantly increased apoptotic 

bodies compared to those expressing Bcl-xL (wt) and the N2 (wt) worms (Fig. 5).  

Longevity changes due to the expression of Bcl-xL mutants  The C. elegans N2 strain 

has an average lifespan of around 2-3 weeks at 20°C32. N2 and Bcl-xL (wt) worms  

showed no significant differences in their lifespan (Fig. 6). Strains expressing Ser to Asp 

variants also presented no significant differences compared to N2 controls. In contrast, 

overall lifespan was significantly increased in strains expressing Ser to Ala variants (Fig. 

6). This increase might be due to aneuploidy, DNA stand-breaks and apoptosis in the 

germline serving as nurse cell for the worms. However, the gene expression changes that 

may contribute to the increased lifespan of these mutants, have yet to be analyzed.  

Reversion of the phenotypes  Finally, to confirm that the phenotypes observed were due 

to the expression of Bcl-xL variants in transgenic C. elegans, a serie of RNA interference 

experiments were conducted. Silencing BCL-XL mRNA variant expression in the 

transgenic worms reversed most phenotypes, including effects on germline fecundity, 
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egg-laying and egg-hatching potency, mitotic region length, germline aneuploidy and 

apoptotic corpse appearance in the gonads (Supplemental Fig 2 A-G). 

 

4.4 Conclusion and discussion  

 The loop domain between α1 and α2 helices of Bcl-xL in higher organisms may 

be due to gain-of-function domain through evolution. In most studies, the loop domain is 

not necessary for the Bcl-xL's anti-apoptotic activity in mammallian cells11-15,20-22. 

However, mutations within Bcl-xL (Ser49) and (Ser62) residues lead to chromosome 

instability and aneuploidy in human cells (submitted manuscripts and22). C. elegans 

CED-9, the only anti-apoptotic ortholog of the Bcl-2 family, does not contain the Bcl-xL 

loop domain. A search for sequence homology in the National Center for Biotechnology 

Information (NCBI) and WormBase failed to identify other putative proteins possibly 

containing a similar domain in C. elegans. The presence, or absence, of a similar 

conserved function within C. elegans protein remains to be discovered. However, PLK-1 

is well conserved in C. elegans and involved in multiple process of mitosis, including 

spindle formation, kinetochore-microtubule attachments, sister chromatid separation and 

cytokinesis33,34. PLK-1 is shown to be involved in nuclear envelope breakdown in the 

oocyte during meiosis and in mixing maternal and paternal genomes after fertilization. 

Partial inactivation of PLK-1 caused failure of alignment of chromosomes at metaphase 

during mitosis and the nuclear membrane remains intact35. In contrast, PLK-3 mutations 

caused delay in chromosome condensation at diakinesis indicating that PLK-3 does not 

play a major role in meiosis36. PLK-1 and PLK-2 are proposed to function together in 

vivo, with PLK-1 contributing more than PLK-2 to net PLK activity37. In this study, Bcl-

xL phosphorylation in C. elegans was not determined; however the presence of 

conserved PLK-1 and PLK-3 activities in C. elegans raises a probability of similar 

phosphorylation at Ser62 and Ser49 alike human cells.  

 Although the CED-9 protein lacks the Bcl-xL functional loop domain, we tested 

whether or not human Bcl-xL (Ser49) and (Ser62) variant expression in C. elegans 

exhibits dominant effects on mitotic behaviors, as observed previously in human cells. 

The proliferative properties of germlines of adult young worms38, as well as the short and 

reproducible lifespan of C. elegans is well-characterized39. Expression of mammalian 
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proteins is prevalent in C. elegans and viceversa is prevalent. Expression of human Bcl-2 

itself partially prevents apoptosis in C. elegans7,40, whereas CED-9 expression in monkey 

fibroblast COS cells and embryonic drosophila Schneider's L2 cells reveals co-

localization of the 2 proteins, suggesting similar functions41.  

 In the present study, we observed that human Bcl-xL (Ser49) and (Ser62) variant 

expression in C. elegans interfered with germline fertility, effects that correlated with MR 

length variations, the appearance of chromosomal aberrations and increase apoptosis with 

the exception of Bcl-xL (S62D) variants. Most likely, reduced fecundity resulted from 

cell division errors in germlines (and embryos), resulting in chromosome aberrations, 

aneuploidy and augmented apoptosis. MR length variations were seen as being decreased 

in individual worms and strains bearing Bcl-xL variants. Perhaps defects in mitosis and 

elevated apoptosis could account for shortened length. All experiments were performed 

on proliferative germline in the gonads. In the near future, time-lapse imaging on 

embryos could further document mitotic behaviours and chromosome stability/instability 

in dividing embryos.  

 Lifespan modulation also has been observed in Ser to Ala variants, a possible 

consequence of aneuploidy, DNA damage and increased apoptosis of germlines. Indeed, 

repeated ultra-violet electromagnetic radiation exposure has been shown to severely 

reduce lifespan in C. elegans42, whereas mutations in the nucleotide excision repair 

proteins ERCC-1 and XPF-1 extend lifespan in daf-2 worms. Fecundity also decreased in 

worms expressing mutant ERCC-1, XPF-1 and XPG-1 compared to wt proteins43. In the 

long-term, it would be interesting to monitor gene expression profiles in various strains to 

identify genes whose expression could be altered as well.  

 The exact mechanisms by which Bcl-xL exerts its function on chromosome 

stability are unknown, but Ser49 and Ser62 are 2 essential residues associated with this 

activity in human cells. Previous studies have revealed the presence of phospho-Bcl-

xL(Ser49) and (Ser62) in centrosomes with γ-tubulin during G2 and mitosis, 

respectively20,22. In addition, phospho-Bcl-xL(Ser62) interacts in mitotic cytosol with 

some SAC signaling proteins during prometaphase/metaphase, including the Mad2-, 

BubR1-, Bub3- and Cdc20-bound complexes22, while phospho-Bcl-xL(Ser49) is found in 

mid-zone bodies during telephase/cytokinesis20.  In C. elegans, most of these key players 
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in the SAC signaling pathway are functionally and structurally conserved, including 

MAD1, MAD2, MAD3/BubR1, BUB1, BUB3 and FZY-1/Cdc2044. Proliferating 

germlines have functional SAC45, but SAC function in C. elegans embryos is unclear due 

to their lack of apparent mitotic arrest phenotype46. SPDL-1, a C. elegans homolog of 

kinetochore-specific dynein recruiter protein47 that senses the microtubule attachment 

status of kinetochore and functions upstream of MAD1MDF-1, is part of the kinetochore 

receptor of the MAD1MDF-1–MAD2MDF-2 complex that regulate APC/C activity47,48. 

Whether or not, and how, human Bcl-xL interplays with these C. elegans components 

remains to be elucidated.   

 Bcl-xL expression in human cancers is often associated with poor prognosis and 

chemotherapy resistance49-51. Current efforts are being made to develop and test new 

drugs targeting the conventional BH1-, BH2-, BH3-forming hydrophobic pocket domain 

of Bcl-2 anti-apoptotic members including Bcl-xL52-57. Future perspectives should also 

focus on the loop domain of Bcl-xL and Bcl-2 for therapeutic evaluation. These in vivo 

transgenic strains will be an important tool to screen and evaluate the effects of future 

putative new compounds targeting this function.  

 

4.5 Materials and methods 

Worm-handling. Worms were manipulated according to standard methods and 

maintained at 15°C in nematode growth media (NGM) plates seeded with OP50 

Escherichai coli (E. coli), unless otherwise indicated for specific assays.  

C. elegans genetic manipulations and molecular assays. Human influenza 

hemagglutinin (HA)-tagged Bcl-xL (wt) and single-site (S49A, S49D, S62A, S62D) or 

dual-site (S49/62A, S49/62D) mutant cDNAs containing the ced-9 promoter and 3'UTR 

sequences were generated with the MultiSite GatewayTM recombinational cloning system 

(Thermo Fisher Scientific , Waltham MA), and inserted into the final destination plasmid 

pCFJ150-pDESTttTi5605[R4-R3] obtained from Addgene (Cambridge, MA). The strain 

EG4322 (ttTi5605 II; unc-119(ced9) III) was studied, and transgenic worms were 

generated by Knudra Trangenics (Murray, UT) with the mos1-mediated single copy 

insertion (MosSCI) method58.  Transgenic worm insertions were tested by PCR with 

primers, 5’-ATGGGCCGCATCTTTTAC-3’ and 5’-TCATTTCCGACTGAAGAG-3’. 



	 103	

All insertions were validated by DNA sequencing.  Quantitative reverse transcriptase 

PCR (qRT-PCR) was performed on the transgenic worms with pmp-3 as a control of 

constitutive gene expression23. The oligonucleotide primers for pmp-3 were 5’-

GTTCCCGTGTTCATCACTCAT-3’ and 5’-ACACCGTCGAGATGTAGA-3’. The 

oligonucleotide primers for BCL-XL (wt) and mutants were 5’-

GGTAAACTGGGGTCGCATTG-3’ and 5’-GTTCTCCTGGATCCAAGGCT-3’, and for  

ced-9 were 5'-ACGGTTGGAAATGCACAGAC-3' and 5'-TGTTCCCAGTTGTTGCG-

3'. To monitor apoptotic body formation, transgenic worms expressing CED-1:GFP in 

sheath cells (strain HR1459 (bcls39[lim7:ced-1:GFP;lim-15(+)]V), generously provided 

by Dr. Jean-Claude Labbé (Institut de recherche en immunologie et cancer, Montréal 

QC), were crossed with transgenic male worms expressing Bcl-xL (wt) and mutants. 

Homozygous progeny were screened and processed for assays.  For the RNA interference 

(RNAi) assays, BCL-XL open reading frame (ORF) cDNA was cloned into the vector 

L4440-gateway (Addgene) and transformed into the HT115 competent bacteria, 

generously donated by Dr. Jean Claude Labbé. The transformed bacteria colonies were 

selected and PCR sequenced. The worms were grown in plates containing IPTG (1 mM) 

and HT115 containing L4440-BCL-XL vector. The transgenic worms were grown up to 5 

generations prior to perform experiments to achieve high penetrance of BCL-XL 

silencing. Empty L4440 vector was used as negative control in the RNAi assays. All 

experiments were performed in parallel wild type control N2 worms. 

Progeny count.  Adult worms were collected and washed with M9 buffer to remove 

bacterial contamination. Worm pellets were treated with freshly-prepared 0.5 ml 

NaOH(5N) mixed with 1 ml commercial bleach for 10 min. Samples were briefly 

vortexed at 2-min interval, then centrifuged for 30 s at 1,300g to pellet the released eggs. 

The pelleted eggs were washed with sterile H2O, volume reduced to 100 µl and then 

plated in fresh NGM. When larvae reached the L4 stage, they were placed individually in 

fresh NGM plates. Progeny count was started 12 h latter, once they reached the young 

adult stage. Eggs layed were counted for the first 3 days of adulthood, and hatched eggs 

were counted every 8 h. Worms were transferred into fresh NGM plates every day.  

Gonad staining, MR and TZ measurements, and germ cell count. Young adult worms 

(12 h from the L4 larvae stage) were washed with M9 buffer and placed on glass slides. 
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Worms were fixed with 100% cold methanol (-20°C) for 30 s and washed with M9 

buffer. Gonads were stained with DAPI at a concentration of 1.0 ng/ml for 3 min and 

washed with phosphate buffered saline (PBS) prior to microscopy. MR/TZ or 

TZ/pachytene boundaries were well marked under the microscope. Germ cell numbers in 

the gonad were also determined by first marking MR/TZ or TZ/pachytene with the 

microscope, and then counting nuclei through germline width. Images were generated 

with a Zeiss Axio Observer Z1 automated microscope equipped with Axiovision software 

(v4.8.2). 

Lifespan assay.  Lifespan assays were peformed at 20°C. Briefly, 45 to 50 L4 

hermaphrodite transgenic larvae, and N2 (wt) larvae were placed in 400 µM 

5'flurodeoxyuridine-NGM plates in triplicate, for 6 days.  Day 1 was defined as the day 

when the worms reached adulthood. Worms were scored every 1 to 3 days. On the 6th 

day, they were transferred to fresh NGM plates. Strains were considered to have lost 

viability if they exhibited arrested development or died. 
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Table 1   Vector design and transgenic strains 
 

Vector design       Transgenic strains 
 
unc-119 ced-9 promoter / HA-Bcl-xL wt / 3'UTR              COP287, COP297,COP672,COP689 
 
unc-119 ced-9 promoter / HA-Bcl-xL(S49A) / 3'UTR             COP285, COP286,COP322 
unc-119 ced-9 promoter / HA-Bcl-xL(S62A) / 3'UTR            COP355, COP690,COP691 
 
unc-119 ced-9 promoter / HA-Bcl-xL(S49D) / 3'UTR            COP288, COP298,COP310 
unc-119 ced-9 promoter / HA-Bcl-xL(S62D) / 3'UTR  COP289,COP290,COP295, 

COP299,COP311 
 
unc-119 ced-9 promoter / HA-Bcl-xL(S49/62A) / 3'UTR           COP291,COP293,COP300, 
                                                                                                                COP301,COP312 
unc-119 ced-9 promoter / HA-Bcl-xL(S49/62D) / 3'UTR  - none -  
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Figure 1  Expression of Bcl-xL (wt) and Bcl-xL variants in transgenic worms. A) 
Ethidium bromide-stained PCR products obtained by genomic DNA amplification 
reactions. mRNA expression levels assessed by qRT-PCR of B)  BCL-XL and pmp-3, C) 
ced-9 and pmp-3 and D) relative expression of BCL-XL and ced-9 in the transgenic 
worms.  Results from 2 independent determinations. Bars are means ±	variations.  
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Figure 2  Effects of Bcl-xL (wt) and Bcl-xL variants on C. elegans progeny fecundity. 
Number of A) total viable progeny, and B) percentages of eggs hatched in various 
transgenic strains and control worms. Each point show in the graphs represents data 
obtained from a single worm. Bars are means ±	  s.d.  Arrows on top indicate statistical 
significance with p<0.05 when compared to N2 control.   



	 109	

 



	 110	

 
Figure 3  Effects of Bcl-xL (wt) and Bcl-xL variants on mitotic region and transition 
zone length in C. elegans gonads. Length (µm) of A) mitotic regions and B) transition 
zones of the gonads. Each point in the graphs represents data obtained from a single 
worm; both MR and TZ were determined from the same worms. Bars are means ±	  s.d.  
Arrows on top indicate statistical significance with p<0.05 when compared to N2 control 
C) low-maginification images of DAPI-stained cells. 
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Figure 4 Effects of Bcl-xL (wt) and Bcl-xL variants on C. elegans chromosome 
stability and aneuploidy. The graph on left shows the number of cells with normal (black) 
and abnormal genotype (red). Right panels: images of DAPI-stained structures observed 
at the diplotene stages at the end of the gonads. N2 animals subjected to radiation were 
used as reference controls. 
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Figure 5  Effects of Bcl-xL (wt) and Bcl-xL variants on germline apoptosis. Left 
graph: Number of cells showing apoptotic corpses. Left panel, each point in the graphs 
represents data obtained from a single worm. Bars are means ±	  s.d.  Arrows on top 
indicate statistical significance with p<0.05. Right panels: Typical low-magnification 
images of CED1:GFP expression in various transgenic strains and control worms. N2 
animals subjected to radiation were used as reference controls. 
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Figure 6  Effects of Bcl-xL (wt) and Bcl-xL variants on C. elegans lifespan. Lifespan 
kinetics of Bcl-xL(wt)-expressing worms (left graph), Bcl-xL (Ser to Ala) variants 
(middle graph) and Bcl-xL (Ser to Asp) variants (right graph). Data obtained from 2 
independent triplicate experiments (n=6). Bars are means ±	  s.d. Statistical significance is 
indicated below the graphs. 
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Supplemental Figure S1  Effects of Bcl-xL (wt) and Bcl-xL variants on the gonads. 
Graph showing the percentage of aberrant cells per worms and images of DAPI-stained 
germlines of various trangenic strains and control worms. Each point in graph represent 
data obtained from a single worm. Bars are means ±	  s.d.  Arrows on top indicate 
statistical significance with p<0.05 when compared to N2 control. 
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Supplemental Figure S2  Effects of silencing the expression of BCL-XL variants in 
various transgenic strains and control worms.  A) RNAi efficiency,  B)  total viable 
progeny and  C) percentages of eggs hatched, D) mitotic regions and E) transition zones,  
F) chromosome stability and aneuploidy, G) germline apoptosis of the gonads. Each 
point in graph (B-G) represent data obtained from single worm. Bars are means ±	  s.d.  
Brackets on top indicate statistical significance with p<0.05 between worms subjected to 
control RNAi (-) and BCL-XL RNAi (+). 
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5.0  Discussion and perspectives 

5.1 Interplay of Bcl-xL in the cell cycle  
 In addition to their functions on apoptosis, the anti-apoptotic proteins Bcl-2, Bcl-xL 

and Mcl-1 also have effects on cell cycle progression. Studies have shown that Bcl-2, 

Bcl-xL and Mcl-1 can delay the progression of cell cycle in presence of DNA damage or 

cellular stress 53,64, 101-103, 515,516.  Bcl-2 and Bcl-xL elevate p27 during G0 arrest and inhibit 

G1 Cdks during cell cycle re-entry, thus delaying progression to S phase515,517.	Mutation at 

the conserved tyrosine 28 (Y28) residue in the BH4 domain of Bcl-2 and Y22 in Bcl-xL 

eliminated their ability to delay S-phase entry without affecting their ability to inhibit 

apoptosis516.  Bcl-2 has been shown to be present in a complex with nucleolin, Cdc2 

kinase and PP1 phosphatase at the onset of mitosis111. Previous work in the laboratory 

revealed functions of Bcl-xL during the G2 checkpoint and mitosis53,101-103.  Studies 

indicate that the anti-apoptotic role of these proteins can be separated from their function 

in cell cycle.  However one study argue that these two activities cannot be altered 

independently65.   

 Both Bcl-2 and Bcl-xL contain a loop domain between their BH3 and BH4 domains. 

In one study, the loop domain of Bcl-2 was reported to be necessary for the anti-apoptotic 

effects of Bcl-2 against paclitaxel-induced apoptosis in HL-60 cells518. In contrast, most 

works indicated that the loop domain is not essential for the anti-apoptotic function of 

either Bcl-2 or Bcl-xL53,95,98,101-103.  The exact mechanism by which the Bcl-xL loop 

domain acts during mitosis has not yet been elucidated. Our lab has determined that Bcl-

xL undergoes phosphorylation and dephosphorylation in its loop domain at Ser49 and 

Ser62 during the course of mitosis and has identified the kinases involved in these 

phosphorylation processes101-103. Bcl-xL (Ser49) and (Ser62) mutants expressed in HeLa 

cells display insignificant defects in MT-kinetochores attachment, chromosome 

segregation and cytokinesis completion101-103. Because these observations were made in 

tumor cells, our primary goal was to evaluate the importance of Bcl-xL (Ser49) and 

(Ser62) in promoting chromosome stability in normal cells and in vivo. 

 Normal BJ foreskin fibroblasts were investigated in our first study. These cells are 

well-described and can be followed by population doubling to determine their age. The 

cells are also suitable for various analyses, including staining and immunofluorescence 
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assays, or to ascertain aneuploidy.  They also have the main advantage over HeLa or 

other cancer cell lines as they have a very stable diploid genome. Fibroblasts are well- 

characterized as they appear to accumulate senescence and genomic stress after a certain 

number of population doublings.  

 BJ fibroblasts were infected by pLenti6/V5-DEST gateway vector (Invitrogen) for the 

lentiviral expression of Bcl-xL and various mutants. This system provides stable 

expression of the proteins of interest, and infected cells are selected for blasticidin 

resistance. The disadvantage of this exogeneous system of expression is its non-similarity 

with the endogenous gene expression environment, the lentiviral expression system been 

susceptible to insertion and position effects. However by selecting a mixed population of 

infected cells rather than individual clones, position effects are attenuated. Furthermore, 

by calculating the lentiviral titre used to infect the cells, HA-Bcl-xL and mutant 

expression levels were comparable to those of the endogenous proteins.  

 The exogenous expression of Bcl-xL phospho-refractile mutations with serine to 

alanine (S49A, S62A, S49/62A) showed significantly decreased kinetics of population 

doubling in BJ fibroblasts compared to the controls and cells expressing Bcl-xL (wt). 

Mutants with serine to aspartate (S49D, S62D, S49/62D) substitution also presented 

significantly reduced kinetics of cell population doubling. The decrease kinetics of 

population doubling in cells expressing mutants correlated with the occurrence of cellular 

senescence, which may be due to the hindrance of normal mitosis and chromosome 

instability mediated by Bcl-xL mutation at Ser49 and Ser62, suggesting that 

phosphorylation and dephosphorylation at Ser49 and Ser62 during mitosis play a role in 

maintaining the proliferative properties of the BJ cells.  

 

5.2 Expression of Bcl-xL (Ser49) and (Ser62) mutants leads to cellular senescence in 

BJ fibroblasts: association with the p53-p21 pathway  

 In this study, we observed a decrease in the kinetics of population doubling in BJ 

fibroblasts expressing Bcl-xL mutants at Ser49 and/or Ser62 compared to the controls. 

The kinetics of cellular senescence in these mutant cell lines were observed by 

performing standard SA-β-gal assay. SA-β-gal is a manifestation of residual lysosomal 

activity at a suboptimal pH, which becomes detectable due to the increased lysosomal 
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content in senescent cells519. SA-β-gal activity is expressed from GLB1, the gene 

encoding lysosomal β-galactosidade, the activity of which is typically measured at acidic 

pH 4.5. SA-β-gal induction during senescence is due to at least in part to increased 

expression of lysosomal β-gal protein but SA-β-gal is not required for senescence520. 

Western blotting revealed p53 and p21 activation at the protein level in cells expressing 

Bcl-xL mutants compared to the controls. p53 pathway activation depicts presence of 

cellular stress such as DNA strand-breaks. Increased p53 expression leads to heightened 

protein levels of the Cdk inhibitor p21. This elevation of p21 usually results in cell cycle 

arrest at G1 in the interphase, but significant arrest can also occur at G2/M transition521-

522.  

 Proliferating cells continuously experience endogenous or exogenous stress and their 

response can range from complete recovery from these stresses to cellular senescence, 

cell death and, in rare situation, to immortalization or tumorigenesis334. Cellular 

senescence represents permanent cell cycle arrest. Fibroblasts or other cell types, when 

they undergo senescence, show a broad G1 or G2 DNA content. In general, fibroblasts 

are more resistant to apoptosis and incur senescence in the face of cellular stress. This 

may be ascribed to their inherent function as a component of the tissue repair machinery 

during injury.  

 Cellular senescence is generally associated with elevated p53 levels. P53 is a 

transcription factor that imparts its tumor suppressive and anti-proliferative effects 

through the induction of key downstream regulatory factors. As a sequence specific 

transcription factor, p53 regulates gene expression by directly binding to a p53-

responsive element (p53-RE) in the target genes as a tetramer. p53 induces genes, such as 

p21, to halt cell cycle progression, or genes such as Puma, Noxa and Pidd that trigger 

apoptosis. Most tumor-associated p53 mutations have been shown to interfere with p53’s 

transcriptional activity, emphasizing its importance as a target of gene regulation in 

tumor suppression. The most frequently- mutated p53 residues are those that bind directly 

to DNA523. Microarray data show increasing numbers of p53 target genes. The Cki p21, 

which induces G1/S cell cycle arrest is an immediate and direct target of p53. p53 can 

also induce 14-3-3σ expression, which has been suggested to halt the cell cycle at G2/M 

phase524. Additionally, p53 has been reported to induce at least 16 genes involved in 
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PCD525. p53 stimulates the BH3-only proteins Puma and Noxa as well as Bax526-529. It also 

induces p53Aip1, p53Dinp1, Pidd and Apaf-1, among others530,531, which is not surprising 

as p53 is under tight regulation by various proteins. The regulation of p53 function and 

transcriptional activity requires multiple layers of signaling and post-translational 

controls. Mdm2 (HDM2 in human), an E3 ubiquitin ligase that constantly mediates p53 

shuttle from the nucleus to the cytoplasm and to the 26S proteosome for degradation532, is 

a major regulator of p53. Temporal control of Mdm2 is critically important for the proper 

function of p53. Upon genotoxic stresses, rapid phosphorylation of p53 at Ser15 by Atm, 

a serine/threonine protein kinase, and at Ser20 by the checkpoint kinase Chk2 results in 

p53 dissociation from Mdm2533. This results in p53 stabilization and activation of its 

downstream processes. In the absence of Atm, Atr substitutes the function of Atm 

through Chk1-induced p53 phosphorylation at Ser15 of p53386. ATM also phosphorylates 

Mdm2 at Ser395, which attenuates the capability of Mdm2 in exporting nuclear p53 to 

cytoplasm for subsequent p53 degradation, causing p53 nuclear accumulation534,535. p53 

was also identified as the first non-histone substrate of HATs (histone 

acetyltransferases)536 and HDACs (histone deacetylases)537. In response to DNA damage, 

CBP/p300 acetylates p53 on 6 C-terminal lysine (K) residues (K370, K372, K373, K381, 

K382, and K386), the same target sites of Mdm2-mediated ubiquitination, and hence 

leads to enhanced stability and DNA binding activity of p53538. In addition, acetylation of 

p53 on K320 by Pcaf preferentially directs p53 to activate target genes involved in cell 

cycle arrest539, whereas acetylation of p53 on K120 by Tip60/hMof promotes p53-

mediated cell death540.  

      Another protein Mdmx is found to directly inhibit p53-mediated transcriptional 

activity541. Mdmx and Mdm2 are also recruited to the promoters of p53-responsive genes 

and form complexes with p53, which in turn inhibit various p53-target genes542,543. Mdmx 

does not have a ubiquitin ligase activity towards p53 despite having intrinsic ubiquitin 

ligase activity. Interestingly, although p53 level is elevated in the absence of Mdm2, it is 

still vitiated in Mdm2 null mice cells, which indicates the presence of Mdm2- 

independent pathways for p53 degradation in vivo544. Indeed, the E3 ubiquitin ligases, 

Cop1545, Pirh2346 and Arf-BP1346 have been found to contribute to the control of p53 

levels in vitro. Upon genotoxic insults, p53 is stabilized through post-translational 
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modifications. Its phosphorylation is classically regarded as the first crucial step in its 

stabilization. p53 can be phosphorylated by a broad range of kinases, including Atm, Atr, 

DNA-Pk and Chk1 and Chk2. Ser15 and Ser20 phosphorylation mediated by DNA 

damage, are generally thought to stabilize p53 by inhibiting its interaction with 

Mdm2546,547.  

      Tumor suppressor homeodomain-interacting protein kinase-2 (HipK2) is a crucial 

regulator of p53 apoptotic function by phosphorylation of its N-terminal Ser46 residue 

that facilitates Lys382 acetylation at the C-terminus. HipK2 is activated by numerous 

genotoxic agents and can be deregulated in tumors by several mechanisms548. Chromatin 

immunoprecipitation (ChIP) assays have confirmed the specific DNA-binding sequence 

of p53 that contains two inverted pentameric sequences with the 5’-

RRR(A/T)I(A/T)GYYY-3’ pattern549. Gene transactivation requires p53 interaction with 

the promoter regions of p53 target genes550.  DNA binding is thought to occur via the 

conserved central core domain of the protein, whereas the C-terminal region is believed 

to act as a negative modulator that allows sequence-specific DNA binding. Various post-

translational modifications alter the C-terminal region, and thus affect the ability of p53 

to bind DNA551. 

     Expression of oncogenic Ras promotes acute senescence-like G1 arrest in primary 

human or rodent cells containing wild-type p53 through Mapk pathways. Ras utilizes 

Mapk signal transduction pathways, including Raf-1, Mek1/2 and Erk1/2 to promote cell 

cycle arrest in primary cells but abolished in cells lacking p53552. Oncogenic Ras initially 

forces uncontrolled proliferation, and only later do cells arrest. The fact that oncogenic 

Ras uses the Mapk signal-transduction pathways to promote both arrest and forced 

mitogenesis reinforces the view that normal cells counter malignant transformation by 

actively responding to hyperproliferative signals; in this case, by sensing excessive 

Mek/Mapk activity and activating senescence552. In contrast the ability of Ras to activate 

PI(3)K promotes membrane ruffling perhaps through Rac and Rho553 and may also 

suppress apoptosis through activation of Akt/Pkb554. Although p53 and p16 play 

fundamental roles in Ras-induced arrest, neither have essential roles in differentiation. 

Cell-cycle arrest induced by Ras and Mek1/2 is accompanied by accumulation of p53, 

p21, p16, and SA-β-gal activity552. 
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 The P21 gene, localized on chromosome 6p21.2, generates a polypeptide of 164 

amino acids (p21)555 or a smaller protein of 132 amino acids (p21B) attributed to the use 

of alternative promoters556. The P21 promoter contains 2 highly conserved p53-response 

elements (p53-RE). Moreover, two p53 homologues, p63 and p73 transactivate P21 and 

P21B mRNAs through binding to the p53-REs557. Brca1 has been shown to function as a 

p53 coactivator, activating the P21 promoter by recruiting p300/CreBP which, in turn, 

acetylates and stabilizes p53558. P21 is also activated in p53-independent manner. Various 

stimuli and stress signals, including Ngf, butyrate, phorbol myristate acetate and Tgf-β 

are known to regulate p21 expression at Sp1 and Sp3 binding sites in the proximal P21 

promoter559.  

 p21 was first identified as an overexpressed marker in senescent cells and later found 

to be capable of inducing premature senescence in both normal and tumor cells in a p53-

dependent and -independent manner. Studies shows that p21 is upregulated during 

oncogenic Ras-induced cellular senescence and inhibits Ras-induced transformation342,560.  

 p21 is accumulated in normal human fibroblasts arrested in G0 when the conditions 

for cell cycle entry are not optimal and maintains cells in G0. It inhibits cell cycle 

progression primarily by curbing Cdk2 activity. p21 also associates with and inactivates 

E2f, leading to cell cycle arrest and cellular senescence561.  

 The ability of p21 to promote cell cycle arrest may depend on its ability to mediate 

p53-dependent gene repression, as p21 is both necessary and sufficient for p53-dependent 

repression of genes regulating cell cycle repression, including Cdc25c, Cdc2, Chek1, 

Ccnb1, Tert and survivin562,563. Cdc2, Chek1 and Tert are repressed by p21, via its 

inhibition of Cdk2 and phosphorylation of pRb563,564. p21 also activates gene transcription 

by de-repressing p300-CreBP, and p300-CreBP,  in turn, cooperates with multiple factors 

to promote the transcriptional induction of CDKN1A as a positive feedback loop565. In 

diploid, non-immortalized, non-transformed cells, oncogenic Ras activates CDKN1A 

transcription through both p53-dependent and p53-independent mechanisms. The p53-

independent transactivation of CDKN1A gene by activated Ras requires the transcription 

factor E2f1566. Oncogenic Ras and Raf, however induce p21-dependent senescence and 

other genetic mutations are necessary to bypass oncogene-induced senescence, which 

acts as a barrier to tumorigenesis567. However, p21 can also exhibit oncogenic activities 
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and has been shown to be overexpressed in various human cancers including prostate, 

cervical, breast and squamous cell carcinomas. In many cases, p21 upregulation 

correlates positively with tumor grade, invasiveness and aggressiveness and is a poor 

prognostic indicator568.  

 

5.3 Expression of Bcl-xL (Ser49) and (Ser62) mutants leads to cellular senescence in 

BJ fibroblasts: association with various markers 

 Elevated p53 levels are indicative of DNA damage. This was confirmed by 

immunofluorescence assay, which showed increased γ-H2A.X-associated nuclear foci in 

cells expressing the Bcl-xL mutants.  γ-H2A.X, often considered, as a marker associated 

to replicative and premature senescence, is a key factor in the repair process of DNA 

double strand-breaks. It is recruited to DNA strand breaks, and is implicated in recruiting 

other DNA repair proteins569. In human, H2A.X constitutes ≈10% of the H2A protein.  

γ-H2A.X differs from H2A because it is phosphorylated on Ser139 in response to DNA 

strand breaks. In mammalian cells, Atm is one of the major protein kinase that 

phosphorylates γ-H2A.X570,571.  However, γ-H2A.X levels are low in the S-phase, even 

when Atm is inhibited, implying that other protein kinases could be responsible for its 

phosphorylation572. γ-H2A.X interacts with Brca1 through the C-terminal BRCT or FHA 

domain. Nbs1 associates with γ-H2A.X through FHA and BRCT domains and is needed 

for the recruitment of MRE complexes which form around DNA strand break-sites569.  

53BP1 and Mdc1 contain a BRCT domain and co-localize with γ-H2A.X. When DNA 

strand-breaks are repaired, γ-H2A.X is dephosphorylated by protein phosphatase 2A 

(PP2A)573. The effect of PP2A on γ-H2A.X expression level is independent of Atm, Atr 

or DNA-Pk activity573.  

 In this study, Ki-67 served as a marker of proliferating cells. Cells expressing Bcl-xL 

mutants showed markedly decreased Ki-67 expression as they progressed in population 

doubling experiments. Human Ki-67 expression is strictly associated with cell 

proliferation. Ki-67 is present during all active phases of the cell cycle (G1, S, G2 and 

mitosis) with peak during the S-phase, but is absent from resting cells (G0), making it an 

excellent marker for cell proliferation574.  Ki-67 protein was originally defined by the Ki-

67 antibody, which was generated by immunizing mice with nuclei of the Hodgkin 
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lymphoma cell line L428. The name Ki-67 is derived from the city of origin (Kiel) and 

the original clone number in a 96-well plate575.  

 BJ fibroblasts harboring Bcl-xL mutants showed augmented Il-6 secretion compared 

to that of control and Bcl-xL (wt)-expressing cells. Increased Il-6 indicates the onset of a 

senescence-associated secretory phenotype (SASP). In DNA damage- and oncogenic 

stress-induced senescence, SASP with Il-6 secretion has been observed in mouse and 

human fibroblasts and epithelial cells356. The exact consequence of SASP is yet unknown, 

but it is believed to impact neighboring cells. Il-6 is a multifunctional cytokine that 

regulates cell proliferation, survival, and differentiation, enhancing cellular function in 

multiple cell lineages576,577. Il-6 and its soluble form Il-6Rα are secreted abundantly in 

tissues with inflammation, aging and tumor infiltration. Il-6 acts on cell as a dimer by 

binding to specific Il-6 receptors (Il-6R). Upon interaction of Il-6R with Il-6Rα, it 

activates Jak kinases that will galvanize downstream transduction pathways.  

 Normal human fibroblastic TIG3 cells have a senescent phenotype after about 55 

population doublings, and display constitutive IL-6 and IL-6R expression, while younger 

cells at population doubling 33 do not express either of them578. TIG3 cells, which lack 

p53 expression, show no sign of senescence under the same conditions, and proliferate 

normally in the presence of Il-6/Il-6R578. RelA, a component of NFκB transcription 

factor, is required for SASP579. However, IL-6 has been also shown to have anti-

senescence activity by itself580. Indeed, in HCT116 colon cancer cells, secreted IL-6 and 

activated STAT3 are required for proliferation response581. More studies are clearly 

required to understand the role of SASP. 

 In this study, no increase in the cell death rate was observed in the course of the 

experiments. The major cell phenotype was premature senescence. The interplay between 

apoptosis and senescence is not well-understood. Obviously, a cell must not undergo 

apoptosis to enter senescence. Often, fibroblast senescence has been linked with 

apoptosis resistance through mechanisms that are not well-understood. Senescent human 

fibroblasts are more resistant to oxidative stress-induced apoptosis compared to non-

senescent cells. This has been associated with high level expression of anti-apoptotic 

proteins, including Bcl-2582, survivin583, c-myb584, major vault protein585 and low Bax 

expression586. Senescent human diploid fibroblasts are shown to be associated with 
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globally increased repressive histone modification (H4K20Me3), but enriched in 

association with BAX; in contrast, although the active histone modification (H4K16Ac) is 

globally decreased in senescent human diploid fibroblasts, it is enriched at locus in 

association with BCL-2, consistent with a high Bcl-2 to Bax protein ratio in senescent 

human diploid fibroblasts586. Compared to BCL-2 locus, the epigenetic modification at 

BCL-X locus remains to be studied. Nevertheless, one can argue the possibility of similar 

epigenetic modifications at the BCL-X locus during senescence alike BCL-2. Moreover, 

expressing the anti-apoptotic protein Bcl-xL in our study, certainly contribute to 

apoptosis resistance in the BJ cells in a similar fashion.   

 Although not investigated in our study, others have reported that chromatin 

modifications are needed to modulate gene expression that induce and support the 

establishment of a senescence-like state588. Methylation and acetylation of lysine residues 

on the tail of nucleosome core histones have a pivotal role in the regulation of gene 

expression589. The N-terminal region of histone proteins is subjected to various post-

translational modifications, including acetylation, methylation, sumoylation and 

phosphorylation, which constitute the so-called histone code590. In general, histone 

acetylation enhances gene transcription, while histone methylation determines 

transcriptional repression or activation, depending on the particular lysine residue that is 

methylated. Histone acetylation and deacetylation are balanced by the activities of HATs 

and HDACs589. HAT activity is lowered in senescent fibroblasts586. Reduced H4K16 

acetylation is strongly correlated with cellular senescence591. Mof, an HAT, is responsible 

for the acetylation of H4K16592 and its expression is reduced in senescent cells592. Sirt1, 

an HDAC, has been reported to deacetylate H4K16593 and increased Sirt1 expression is 

observed in senescent cells586.  

 The methytransferase Suv4-20h1/2 is active in senescent cells and mediates histone 

H4 lysine 20 tri-methylation (H4K20Me3), a modification associated with transcriptional 

repression594. Interestingly, ChIP analysis revealed that the BCL2 gene was significantly 

enriched in acetylated H4K16, while BAX gene was enriched with methylated 

H4K20Me3586 in senescent cells. This shows how epigenetic mechanisms play role in the 

regulation of apoptosis-related gene expression, that, in turn, support the establishment of 

senescence. Other histone modification relevant to cellular senescence include 
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H3K27Me3 and H3K9Me3, that are catalyzed by Suv39H1/2 and Ezh1/2595.  

 Cellular senescence is associated with profound chromatin changes. The most 

dramatic is the formation of senescence-associated heterochromatin foci (SAHF), 

visually seen with discrete DAPI-dense regions. SAHF present highly compacted 

heterochromatin that stains with H3K9Me3, Hp1 proteins, and macroH2A380. SAHF have 

been proposed to enforce and maintain senescence by suppressing the transcription of 

proliferative E2f-target genes379. Indeed the promoters of these genes are stably repressed 

in senescent cells379.  

 H3K9Me3 seems to serve as a specific binding site for the chromodomain 

heterochromatin proteins Hp1343,596-599, which in turn recruits DNA methyltransferase 

Dnmt3a and Dnmt3b600,601. H3K9 methytransferase-deficient Suv39h1/2 double knock-out 

cells show that Hp1 proteins and Dnmt3b fail to concentrate at heterochromatin foci602,603. 

H3K9 trimethylation clusters may provide a proper environment to recruit DNA 

methyltransferases coupled with CpG dinucleotide methylation. These CpG dinucleotides 

are not evenly distributed across the genome, but are concentrated either within short 

CpG-rich sequences, called CpG islands, in or near approximately 40% of gene 

promoters, or within repetitive sequences, including large centromeric/pericentromeric 

repeats and retro-transposon elements, to ensure silencing of these elements. Global DNA 

methylation changes have been observed in human fibroblasts undergoing hydrogen 

peroxide-induced premature senescence604, due to progressive loss of Dnmt1 

methyltransferase activity605,606.  Demethylation of pericentric satellite II and III DNA has 

been reported in senescent human fibroblasts607. Demethylation of genomic DNA may 

allow transcription of repetitive DNA sequences. Increased transcription of human 

pericentromeric satellite DNA has been reported in senescent fibroblasts and correlated 

with demethylation of the locus608.  

 

5.4 Ser49 and Ser62 of the Bcl-xL loop domain contributes to the maintenance of 
chromosome stability in BJ cells 

 Two experimental approaches were undertaken in BJ cells to monitor chromosome 

instability.  First, fluorescent in situ hybridization (FISH) assays were performed with a 

fluorescent-labeled chromosome 6 subcentromeric enumerization DNA probe. This assay 
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has the advantage of detecting aneuploidy in interphasic cells, whether they are 

proliferating, non-proliferating or senescent. BJ cells expressing Bcl-xL phospho-mutants 

showed significantly increased chromosome instability that correlates with senescence 

output. Interestingly, the majority of cells harboring aneuploidy according to this assay 

also disclosed enhanced p21 and reduced Ki-67 expression. The occurrence of 

aneuploidy in these cells is concordant with our previous work on cancer cells101-103 

revealing that sequential phosphorylation and dephosphorylation of Bcl-xL (Ser49) and 

(Ser62) during mitosis are key events that prevent mitotic defects associated with MT-

kinetochore attachment, chromosome segregation and cytokinesis failure. Giemsa-

banding assay was performed at various population doublings of control BJ fibroblasts or 

cells expressing Bcl-xL phospho-mutants. Some of the BJ fibroblast cells expressing Bcl-

xL phospho-mutants revealed various random chromosomal structural rearrangement, 

including deletion, translocation or addition of chromosomal materials. This assay was 

performed on metaphase cells indicating that although the occurrence of senescence 

seems to be the main phenotype, some cells that harbor aneuploidy still have a 

proliferating potency. These findings were in agreement with the immunofluorescence 

studies where very few cells harboring chromosome 6 aneuploidy where negative for p21 

and positive for Ki-67. It suggests a mosaic of responses where a few cells can escape 

senescence for at least a few cell cycles. This important observation will be addressed in 

the future as it may have consequence, at least in theory, for immortalization or cancer 

development in an eventual scenario where other mutations leading to oncogene 

activation and tumour suppressor gene inactivation occur in the same cells. Our 

observations are similar to those of others (reviewed in section 1.6.1) who suggested that 

modulation of the expression of SAC components could lead to aneuploidy and 

senescence.  

 

5.5 Expression of Bcl-xL (Ser49) and (Ser62) mutants affects germline development 
in C. elegans 

 C. elegans is a model well-suited to study the consequences of DNA damage and 

repair deficiency with respect to tissue decline and aging. Replicative declines can be 

caused by accumulation of stochastic DNA damage that blocks replication and induces 
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cell cycle checkpoints609.  DNA damage can contribute to trans-generational functional 

decline that can include growth and developmental arrest of germ cells, embryos, larvae 

and adult animals with reduction of viability observed after ultraviolet irradiation of C. 

elegans610-612.  Accumulation of DNA damage can contribute to diminished growth and 

fecundity. When mutated, different genes have been found to increase the lifespan of C. 

elegans. The mammalian homologue of insulin and insulin-like growth factor 1 (IGF-1) 

signaling pathway daf-2, when mutated, can extend C. elegans lifespan up to three-

fold613-615. During C. elegans larval development, the PI3K pathway, composed of the 

insulin/IGF-1 receptor tyrosine kinase (InsR) DAF-2, the PI3K AGE-1 and the 3-

phosphoinositide-dependent protein kinase PDK-1, controls the redundant activities of 

AKT-1 and AKT-2 on the forkhead transcription factor DAF-16616,617. Phosphorylation of 

DAF-16 by AKT-1/AKT-2 prevents the translocation of DAF-16 into the nucleus and the 

subsequent induction of genes required for lifespan618 and stress response619. Whereas 

AKT-1 dampens the transcriptional activity of the p53 family member CEP-1, AKT-2 

functions independently or downstream of CEP-1. AKT-1 transmits an anti-apoptotic 

signal by negatively regulating the p53-like transcription factor CEP-1620. Interestingly 

components of the worm PI3K pathway upstream of akt-1  (Daf-2, Age-1) opposes its 

anti-apoptotic function. DAF-2 and PDK-1 selectively engage AKT-2, DAF-16/FOXO 

and the RAS/MAPK pathway to promote apoptosis of damaged germ cells621.	 The C. 

elegans p53 gene, cep-1, is not a DAF-16/FOXO target gene. Instead, it is postulated that 

DAF-16/FOXO induces the same response in cells as if they were under genotoxic stress, 

enabling p53 to stimulate apoptosis622.	 daf-2 mutation can stimulate apoptosis in gld-1 

germlines and in wt germline cells undergoing apoptosis. Therefore, daf-2 mutations 

appear to trigger a general increase in germline cell death623.  Furthermore, loss-of-

function of the nucleotide excision repair protein ERCC-1/XPF can extend the lifespan in 

daf-2 mutants via increased germline apoptosis624. The effect of CEP-1 (ortholog of 

mammalian p53) on longevity in worms is controversial623,625-627. Physiological apoptosis 

is part of C. elegans development wherein a fixed number of oogenic germ cells die 

during the development wherein a fixed number of oogenic germ cells die during 

development of the worm and are proposed to serve as nurse cells for maturing 

oocytes482.  
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 In our study, although CED-9 protein, which corresponds to Bcl-2 and Bcl-xL 

orthologs in C. elegans, lacks the functional loop domain, it is possible that the loop 

domain function is conserved within an another protein in C. elegans. We therefore 

hypothesized that the expression of Bcl-xL and its mutants will undergo gain-of-function 

and have dominant effects on mitotic behaviors and in the development of the worms.  

The Bcl-xL cDNAs coding for the wt and mutant proteins (S49A, S62A, S49/62A, S49D, 

S62D, S49/62D) were constructed under control of the ced-9 promoter and common  

C. elegans 3'-UTR region to achieve physiological expression compared to its 

endogenous homolog ced-9. Transgenic worms with Bcl-xL (wt) and its variants were 

derived according to the MosSCI technique514. For unknown reasons, despite several 

attempts, no transgenic worms expressing the S49/62D mutant were obtained. All 

transgenic worms were homozygous for Bcl-xL (wt) and its mutants, and the insertions 

were tested by PCR and sequenced. N2 (wt) strain was used as controls for the assays. 

  qRT-PCR assays showed similar expression of Bcl-xL (wt) and its mutants in the 

transgenic worms. pmp3 and ced-9 were used as control reference gene in qRT-PCR 

assays628. Only young adults (12 h post-synchronized L4 stage) were studied. In our 

experiments, we examined and calculated the number of eggs laid by transgenic worms 

expressing Bcl-xL (wt) and its mutants, and found significantly fewer number of eggs 

laid in the Bcl-xL mutants transgenic worms compared to N2 controls and worms with 

Bcl-xL (wt). When these eggs were monitored post-10 h, again, a decreased number of 

them hatched into L1 larvae across most of mutants compared to N2 controls and Bcl-xL 

(wt) transgenic worms. This was probably due to the introduction of Bcl-xL loop domain 

mutants into the C. elegans system where it might interfere with the normal progression 

of mitosis and presumably evokes chromosome instability. This impairment may be 

enough to stall mitosis and activate cell cycle checkpoints.  

 

5.6 Expression of Bcl-xL (Ser62) and (Ser49) mutants lead to chromosomal 

instability and cellular apoptosis in C. elegans  

 The gonad arm provides an excellent location to study effects on the cell cycle. Germ 

cells progress from mitosis into meiosis as they pass through the gonadic arm. In each 

region, underlying specific control regulates this progression and maintains chromosome 
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stability. C. elegans has emerged as an excellent model for molecular studies of mitosis 

and meiosis, enabling investigators to combine the power of molecular genetics, cytology 

and live analysis. C. elegans bears holokinetochores, and kinetochores of other 

eukaryotes share conserved properties structurally and functionally. Gonad dissection 

followed by DAPI staining disclosed the presence of aberrant cells in the gonads of 

young adult hermaphrodite transgenic worms expressing Bcl-xL mutants. The mitotic 

regions appeared shorter in most mutants (except the S62D variants) than in N2 controls 

and worms that express Bcl-xL (wt), with no significant difference in the transition zone 

length. It could suggests defects in the progression of mitotic germline cells to the 

meiotic phase, or/and increased apoptosis.  

 The occurrence of aneuploidy was tested in C. elegans, which comprises 6 

chromosomes that are very visible under microscope in oocytes at their diakinesis stage 

of meiosis. When we looked at the gonadic arm with DAPI staining, oocytes in diakinesis 

stage appeared to be aneuploidic in worms expressing Bcl-xL mutants, except for S62D 

mutants.  Also, DAPI staining in the mitotic zone of the gonads showed the presence of 

cells that appeared to be larger in size than surrounding cells. We suspect that these cells 

might be aneuploidic too, but they are difficult to visualize for aneuploidy as the 

chromatin is dispersed.  

 Transgenic worms were then crossed with strain HR1459 (bcls39[lim7:ced-

1:GFP;lim-15(+)]V) to express CED-1:GFP in the sheath cells of the gonad.  It is a 

sensitive method to visualize germ cell apoptosis, CED-1:GFP highlightening the somatic 

sheath cell cluster around each apoptotic germ cell during engulfment629.	CED-1 is a 

phagocytic receptor that initiates pathway for degrading engulfed apoptotic cells630. 

Increased CED-1:GFP expression was seen in all mutants with the exception of S62D 

mutants. Furthermore, DAPI staining of the gonadic arm revealed a disorganized pattern 

of germ cells in worms containing the Bcl-xL mutants. The exact reason of this 

phenotype is not well understood. One putative reason could be due to cell apoptosis due 

to chromosome instability. Germ cells that undergo apoptosis lose their attachment to 

neighboring cells in the gonads and are cellularized for engulfment by sheath cells631. 

Overall, the Bcl-xL mutations, except S62D variants, probably lead to errors in 

chromosome segregation that result in aneuploidy. Apoptosis was not seen in the 
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intestinal cells (data not shown), in agreement with the literature showing their resistance 

to apoptosis632.  

 How Bcl-xL interacts with the C. elegans machinery to maintain chromosome 

stability is unknown. In C. elegans the attachment of sister chromosomes to microtubules 

can be achieved by proper chromosomal organization, which relies on orchestrated 

spatio-temporal functions of conserved protein complexes such as the cohesin, condensin, 

and chromosomal passenger complexes during mitosis and meiosis. The structure of SAC 

components and their safeguard function are also well-conserved in C. elegans. 

Kinetochore assembly in C. elegans depends on 2 conserved proteins, the holocentric 

proteins HCP-3/CeCENP-A and its associating protein, HCP-4/CeCENP-C633.  HCP-

3/CeCENP-A with chromatin creates the foundation for kinetochore assembly, whereas 

HCP-4/CeCENP-C serves as a linker between HCP-3/CeCENP-A chromatin and the 

highly ordered outer kinetochore complex. Depletion of HCP-3/CeCENP-A causes 

misassembly of functional kinetochores, leading to complete to loss of kinetochore-

microtubule attachment. Kinetochore localization of HCP-4/CeCENP-C depends on 

HCP-3/CeCENP-A and is required for the localization of all kinetochore proteins, except 

HCP-3/CeCENP-A634,635. During interphase, KNL2 protein and HCP-3/CeNP-A are in 

physical proximity on the chromatin636. KNL-2 depletion causes similar chromosome 

condensation defects as those observed in cells depleted of HCP-3/CeCENP-A. These 

results suggest that KNL-2 is important in chromosome condensation and kinetochore 

assembly by physically and functionally interacting with HCP-3/CeCENP-A636. KNL-3 

lies downstream of HCP-3/CeCENP-A and HCP-4/CeCENP-C and is upstream of  

KNL-1 in a linear-assembly hierarchy, and HCP-4/CeCENP-C connects the KMN 

network to HCP-3/CeCENP-A chromatin by interacting with KNL-3637. 

 Conserved chromosomal passenger complexes are crucial for accurate chromosome 

segregation by correcting aberrant microtubule-kinetochore attachment307. C. elegans 

chromosomal passenger complex is composed of AIR-2 and three non-enzymatic 

proteins, BIR-1/Survivin, ICP-1/INCENP, and CSC-1/BIR-1638. CSC-1/ BIR-1 depletion 

causes a defect in mitotic chromosome segregation identical to AIR-2 depletion639. AIR-2 

activity regulates NDC-80 microtubule-binding status, which, in turn, regulates the 

chromosomal passenger complex–dependent elimination of incorrect kinetochore-
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microtubule attachment167. Whether or not, and how, human Bcl-xL interplays with these 

C. elegans components remains to be elucidated.  
 DNA damage and chromosomal instability lead to apoptosis in C. elegans. The C. 

elegans DNA damage response mutants mrt-2, hus-1, and clk-2(mn159) display 8- to 15-

fold increases in the frequency of spontaneous mutation in their germlines640. Checkpoint 

proteins such as 9-1-1 complexes or ATL-1, can either initiate apoptosis in meiotic germ 

cells at the pachytene stage or cell cycle arrest in the mitotic germ cells487,641. Somatic 

cells are refractory to cellular responses to DNA damage484. Deficiency for the C. elegans 

HUS-1 or MRT-2 results in defective responses to both ionizing radiation (IR)-induced 

apoptosis and cell cycle arrest in germ cells486,642. Mutation of CLK-2 can confer 

additional defect in the S-phase DNA-replication checkpoint and has been show to act 

downstream of ATL-1 which interacts with DNA strand-breaks487. In C. elegant, HUS-1 

mediates an apoptotic response to DNA damage and acts cell-autonomously to control 

mitotic checkpoints. After DNA damage, it is delocalized in the nucleus to distinct foci 

that are likely sites of double strand-breaks. RAD-51 is required for efficient repair of 

DNA damage either downstream or independent of HUS-1642.	Deletion of hus-1 also 

shows meoitic non-disjunction and/or chromosome loss. Chromosome abnormalities are 

also documented in mouse HUS-1-/- cells643. Hus-1 is required to prevent telomere 

shortening during genomic replication. Compared to mammalian cells, C. elegans does 

not undergo cell cycle arrest at loss-of-cep-1 in response to DNA damage, suggesting that 

induction of apoptosis might have been the original role of p53 family members along 

evolution.		CEP-1 function is essential for HUS-1-mediated apoptosis. Induction of EGL-

1 requires also HUS-1 and CEP-1. HUS-1 and CEP-1 likely functions in a common 

pathway to activate the apoptotic pathway in C. elegans. 

 

5.7 Expression of Bcl-xL (Ser62) and (Ser49) mutants affects C. elegans lifespan 

 Finally, when we measured the lifespan of transgenic worms, we did not see any 

significant differences between the N2 controls and worms expressing Bcl-xL (wt) and 

the Ser to Asp mutants. In comparison, worms expressing the Ser to Ala variants showed 

an increase in lifespan. This could be due to the increase of apoptotic cells monitored in 

the germ cells that serve as nurse cell in those worms. However, the exact pathway for 
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this phenotype has yet to be examined and requires further work. In future, RNA 

sequencing could help to identify the variations of gene expression in worms expressing 

the Bcl-xL mutants that perhaps contribute to the longevity of these transgenic worms. 

Similarly, variations of gene expression could help explain the discrepancy with the 

Ser49D variants. 

 

5.8 Future perspectives 
 Our study documented the importance of two residues in the Bcl-xL loop domain for 

the maintenance of chromosome stability in two experimental models. These results and 

those reported previously by the laboratory, bring us to various future avenues to 

understand the interaction of the Bcl-xL loop domain with various cellular components 

during mitosis and to gain better insights into the molecular mechanisms behind the 

observed phenotypes.  

 

5.8.1 Bcl-xL (Ser62) and MCC complexes for SAC activation and SAC resolution 
 Previously, our laboratory reported that phospho-Bcl-xL(Ser62) binds to MCC 

complexes at early step of mitosis, during prophase, metaphase and the metaphase-

anaphase boundary. MCC complex consists of Mad2, BubR1, Bub3 along with Cdc20- 

bound complexes. In contrast, this association does not appear when Ser62 is mutated to 

Ala. It suggests the potential role of phospho-Bcl-xL(Ser62) at checkpoint scrutiny before 

the onset of anaphase. To analyse the orderly interaction of phospho-Bcl-xL(Ser62) with 

MCC and its consequence on SAC activation/resolution, reconstitution in a cell-free 

system644 will be deployed.  

 Briefly, kinetochore-mediated SAC signalling is reconstructed by adding 

sequentially, one by one, purified components of the SAC to isolated chromosomes with 

unattached kinetochores and then, the resulting effects on the ubiquitin-ligase activity of 

APC/C are measured with purified cyclin B1, as substrate644. By incorporating 

sequentially recombinant Bcl-xL (wt), phospho-Bcl-xL(Ser62) or Bcl-xL(S62A) or Bcl-

xL(S62D) (but also Bcl-xL(S49A) or Bcl-xL(S49D) as additional controls) to the system, 

we will determine the molecular interactions between Bcl-xL and its phosphorylation 

mutants to the described Cdc20- Mad2- BubR1- Bub3 -bound complexes, and their 
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effects on APCcdc20 ubiquitin-ligase activity. Chromosomes with unattached kinetochores 

will be obtained from colcemid-arrested HeLa mitotic cells (16 h treatment) expressing 

GFP-H2B collected by mitotic shake-off and then, subjected to hypotonic conditions. 

Lysates will be purified by 2 successive sucrose step gradient (30%-40%-50%-60% 

layers) to obtain highly purified chromosomes644. The presence of GFP-H2B will 

facilitate detection of the chromosomes during the purification procedure and will allow 

us to visualize the quality of the preparations under a microscope.  APC/C is obtained by 

immunoprecipitation using a peptide-derived Cdc27 antibody linked to protein A/G 

sepharose beads. Incubation of the purified chromosomes with various SAC components 

at equimolar concentration, alone and in various combinations, in the presence or absence 

of Bcl-xL (wt), or phospho-Bcl-xL(Ser62) or Bcl-xL(S62A) or Bcl-xL(S62D) or Bcl-

xL(S49A) or Bcl-xL(S49D), and APC/C beads will be tested. The APC/C-unbound 

complexes remaining in the soluble fraction, will contain Cdc20- Mad2- BubR1- Bub3 -

bound complexes in association or not, with various Bcl-xL forms. These protein 

complexes will be resolved by Superose 6 gel filtration chromatography, and proteins in 

each column fraction analyzed by SDS-PAGE and western blotting. Complex formation 

will be analysed by gel filtration chromatography and the resulting effects on the APC/C 

ubiquitin ligase activity analysed with cyclin B1 as a substrate.  

 By adding Bcl-xL (wt), phospho-Bcl-xL(Ser62) and mutants to the system, we will 

carefully define their interaction and their effects on SAC activation and resolution. If 

phospho-Bcl-xL(Ser62) leads to SAC activation or resolution, it will be visible with 

decreasing or increasing in vitro APC/C ubiquitin ligase activity on cyclin B1 

ubiquitination.  If this hypothesis is true it will open new doors to understand how Bcl-xL 

influence SAC functions. By comprehending the molecular interaction, it would be 

possible to design simple screening assays and develop new inhibitors of this activity. 

The Bcl-xL loop domain will unveil the importance of an anti-apoptotic protein working 

hand-in-hand in controlling the segregation of mitotic chromosome and, in turn, deciding 

the fate of cells.  

      In addition, to further elucidate the role of Bcl-xL during the progression of mitosis, 

Bcl-xL expression can be targeted at a specific step of mitosis progression taking 

advantage of the specific APC/C activity at the metaphase-anaphase boundary, and that 
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of our Bcl-xL cDNA constructs that are resistant to specific siRNA103.  Indeed, APC/C is 

an ubiquitin ligase that regulates metaphase to anaphase transition by targeting specific 

substrates645. The APC/C co-activators, Cdc20 and Cdh1, function as specific adaptor 

proteins to recruit specific substrates to APC/C by their capacity to recognize 2 conserved 

degron motifs present in APC/C substrates; the 9 residue destruction box or D box646 and 

the K-E-N (Lys-Glu-Asn) signal, also called the KEN box647.  The D box is engaged by 

Cdc20 and one of the core APC/C subunit,  Apc10648 at the metaphase to anaphase step of 

mitosis. Both Cdc20 and Apc10 contribute to D-box-dependent recognition and 

processive ubiquitylation step648 of D box-containing proteins including securin and 

cyclin B1 promoting the metaphase-to-anaphase transition645. The D-box peptide 

NVPKKRHALDDVSNFHNK	648	can be fused to the N-terminal of Bcl-xL wt and mutant 

variant constructs and expressed in BJ fibroblast using lentiviral expression system. In 

association with specific siRNAs that target endogenous Bcl-xL expression without 

affecting the expression of our constructs103, we will be able to modulate Bcl-xL 

expression specifically at the metaphase to anaphase transition.  The D-box henceforth 

will be recognized at the metaphase-anaphase boundary by APC/C – Cdc20 complexes, 

that will target D box-containing Bcl-xL protein for degradation. This will reveal the 

importance of Bcl-xL at the metaphase-anaphase boundary by manipulating its 

expression level at this specific step of mitosis.  

 

5.8.2 Bcl-xL (Ser49) and (Ser62) and its interaction with cytoplasmic dynein  
 Our laboratory has also shown that phospho-Bcl-xL (Ser49) is found in centrosomes 

during G2 and phospho-Bcl-xL(Ser62) is also encountered at centrosomes with γ-tubulin 

and along the microtubule spindle with dynein proteins during prophase, metaphase and 

the metaphase-anaphase boundary. Dynein proteins are required for the attachment and 

migration of centrosomes along the nuclear envelope during interphase and to maintain 

the attachment of centrosomes to mitotic spindle poles649. To understand the role of 

phospho-Bcl-xL(Ser49) and phospho-Bcl-xL(Ser62) at these locations, we can use 

Drosophila menalogaster, which provides exceptional cytology to analyze dynein 

proteins in mitosis in both embryos and somatic cells649.   

 Transgenic Drosophila menalogaster for Bcl-xL and its mutants can be created with 
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the phage φC31 integrase system which catalyzes recombination between two non-

identical recognition sites, attP and attB650,651. φC31-mediated recombination generates 

stable integrants that cannot be excised or further exchanged652.  Interaction between Bcl-

xL(wt) and variants with the dynein heavy chain Dhc64C will be studied in the syncytial 

embryo. Immunoprecipitation and immunofluorescence assays will be used to see the 

effect of Bcl-xL (wt) and mutants on mictrotubule elongation, formation and assembly 

during mitosis, from centrosome to cytoplasm. Dhc64C inhibition can be achieved with 

ciliobrevin-D, a cell permeable, reversible and specific blocker of cytoplasmic dynein. It 

can disrupt spindle pole focusing and kinetochore microtubule attachment653. Inhibiting 

Dhc64C will shed light on whether Bcl-xL uses dynein during mitotic progression to 

change its location from centrosomes to spindle. Live cell imaging on embryos will help 

to dissect Bcl-xL interaction with dynein motor proteins.  

   

5.8.3 Bcl-xL (Ser49) and membrane remodelling and trafficking 

 Phospho-Bcl-xL(Ser49) is located at mid-zone bodies during telophase and 

cytokinesis101, a location where dynamin and dynamin-related proteins have been shown 

to play essential roles in membrane remodelling for cytokinesis654. Membrane vesicle 

trafficking and vesicle fusion to existing membrane regulate the addition of new 

membranes along the ingressing cleavage furrow at the mid-zone654,655. The process 

involved a complex molecular machinery, including Syntaxins, Rab, Dynamin and 

Dynamin-like family GTPases, Kinesin, Dynein motor proteins, and subunits of the 

ESCRT complex654,655. Similar membrane fusion occurs in synaptic endocytosis of 

hippocampal neurons, where Dynamin-1 (Dyn-1) and the Dynamin-like GTPase (Drp-1) 

co-localizes with Bcl-xL. Bcl-xL binds to and activates the GTPase activity of Drp1, 

which in turn, enhances the rate of membrane remodeling and recycling75,656.  

 We suggest from these lines of evidence that Bcl-xL(Ser49) could interact with Dyn-

1 and Drp-1 at the mid-zone bodies to enhance membrane fusion and facilitate 

cytokinesis. To observe this, first, direct interaction between phospho-Bcl-xL(S49) and 

mutants with Drp1 and Dyn1 at mid-zone bodies will be monitored in cells by 

immunofluorescence microscopy. In parallel, co-immunoprecipitation and reversed co-

immunoprecipitation studies of phospho-Bcl-xL(S49) and mutants with Drp1 and Dyn1 
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will be performed from cells highly enriched at telophase and cytokinesis. Second, to 

visualize membrane fusion mechanisms at mid-zone bodies that will provide the 

necessary membrane for complete abscission of mother cell into two daughters cells, 

live-cell microscopy will be performed using the cell membrane marker MyrPalm-

mCherry657. Cells expressing YFP-Bcl-xL (wt) and mutants with CFP-tagged H2B will be 

infected to express MyrPalm-mCherry to visualize plasma membrane association and 

addition at mid-zone bodies. These experiments, in addition to permit visualization of 

plasma membrane at mid-zone bodies until abscission, will allow us to measure the 

length of mitosis exit from anaphase onset to complete abscission. In parallel, these 

experiments will monitor the location of YFP-Bcl-xL and its mutants at mid-zone bodies 

in live-cells.  Its is expected that cells expressing the phosphorylation mutant YFP-Bcl-

xL(Ser49A) will show defect in plasma membrane assembly with plasma membrane 

detached from the mid-zone body leading to cytokinesis failure. A variation of these 

experiments will imply the silencing of Drp1 and Dyn175, to further document their roles 

in association with Bcl-xL in membrane remodeling during cytokinesis. A key control of 

these experiments will consist of expressing MgcRacGap mutant lacking its C1 domain - 

a protein interacting domain with phosphoinositide lipids657. Indeed, this mutant prevents 

association of the protein with the plasma membrane, leading to plasma membrane 

detachment at the mid-zone body and cytokinesis failure657. Knowing the molecular 

interaction involved in the process could help in the design screening assays and develop 

novel specific inhibitors of the process.  

 
5.8.4 Bcl-xL and mouse embryonic development  

 Though our lab has so far studied the role of Bcl-xL (Ser62) and (Ser49)  in vitro and 

in vivo in C. elegans.  These two residues and the loop domain are well conserved in 

mouse Bcl-xL. The mouse model will be used to investigate and distinguish the two 

functions of Bcl-xL, its anti-apoptotic and cell cycle function, during early 

embryogenesis and organogenesis. To achieve this goal, we can use mice homozygous in 

the C57BL/6J background expressing H2B-GFP, and CRISP /Cas9 system to create 

embryos with Bcl-xL (wt) and various mutants. CRISP-Cas9 system is an excellent 

knock-in system for gene editing658,659. In brief, recombinant Bcl-x DNA template 
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containing Bcl-xL (wt) and Ser49 and Ser62 mutants will be microinjected into the two-

cell stage of oocyte. In parallel, to distinguish mitotic function from anti-apoptotic 

functions, Bcl-xL will be mutated at the conserved NWGR sequence located in its BH1 

domain at Trp137 and Arg139 residues. All embryos in this experiment will contain the 

inherent histone H2B-GFP for better chromatin/chromosome visualization. First, we will 

isolate two-cell embryo to monitor the kinetic behaviours of early cell division and 

segmentation during the early cell division ex vivo, from morula to blastocyst starting 

from the 8-16 cell stage to the 64-128 cell stage, by life fluorescence imaging. It will 

allow us to study the effects of Bcl-xL and its mutants during early embryogenesis. 

Simultaneously, the anti-apoptotic role of Bcl-xL and its mutants carrying mutation at 

Trp137 and Arg139, will be monitored for the first time in early cell division of embryo 

post-fertilization.   

 In parallel, the CRISPR/Cas-edited blastocytes containing various Bcl-x mutants will 

be implanted into the uterine walls for gastrulation and organogenesis development. 

Whole mice histological phenotypes will be analyzed in detail in developing embryos 

post-implantation, to detect growth disturbances and pathological changes at the 

microscopic level. The embryos will be properly controlled to validate the DNA 

sequence of the BCLX gene. During development, various tissues will be collected at 

various intervals post-implantation. First, simple hematoxylin-eosin staining will be 

undertaken. Further analyses would involved FISH for aneuploidy analysis, TUNEL 

assay for cell death analysis, SA-β-gal assay for senescence analysis, and 

immunofluorescence microscopy for Bcl-xL expression in various tissues. Specific bio-

markers will characterize sub-cell type population abundance, primarily focusing on the 

hematopoietic system with flow cytometry. This study will allow us to address the 

importance of Bcl-xL mitotic function versus its anti-apoptotic function during early 

development.  

 
5.8.5 Bcl-xL and cell fate 
 Bcl-xL is very rarely mutated in human tumors, suggesting that putative key 

mutations within Bcl-xL would be unsuitable for cell proliferation and survival. Indeed, 

tumor cells are believed to depend on, or are addicted to, anti-apoptotic Bcl-2 family 

members, including Bcl-xL660. This addiction provides a selective advantage to cancer 
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cells by allowing them to survive cell stress phenotypes and/or cell death signals that 

directly ensue from oncogenic signaling, tumor suppressor deficiency or anticancer 

treatments660. In normal BJ cells challenged with Bcl-xL (Ser49) and (Ser62) mutants, 

aneuploidy occurs with outbreak of senescence. What would be the consequences of 

inhibiting senescence in these cells? Whether the cells will die or undergo an 

immortalization and/or tumourigenesis path is yet unknown. We could take advantage of 

the Bcl-xL mutant properties that cause aneuploidy but maintain its anti-apoptotic 

activity in normal BJ cells. The system will permit the investigation of the interplays 

between aneuploidy, senescence, apoptosis and immortalization/tumorigenesis. To block 

senescence in these cells, we will inhibit p53 activity or expression, as well as silencing 

p21 expression. We will also express oncogene like Ha-Ras or c-Myc and evaluate if any 

combinations could lead to an immortalization and tumorigenesis path.  Similarly,t he 

knock-in Bclx mutant mice obtained in the previous section, could be crossed with mice 

expressing oncogenes like c-Myc or Ha-Ras, or with mice that lack tumor suppressor 

genes like p53 or p21 to study the potential input of Bcl-xL and its cell cycle function 

mutants and anti-apoptotic mutants, on immortalization, tumor initiation, development 

and progression. 
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6. Summary of major findings 

 The first appended manuscript reports that Bcl-xL undergoes dynamic 

phosphorylation and dephosphorylation in normal BJ diploid fibroblasts at Ser62 during 

prometaphase, metaphase and anaphase boundary. In contrast, the Bcl-xL (Ser49) residue 

undergoes phosphorylation during telophase and cytokinesis. This phosphorylation/ 

dephosphorylation process has been previously observed in cancer cells101-103.  In BJ 

normal cells, expression of Bcl-xL (Ser49) and (Ser62) mutants lead to chromosomal 

instability, increased expression of p53 and p21, recruitment of γ-H2A.X at chromatin 

foci and activation of senescence. Senescence was detected with increased activity of SA-

β-Gal staining. They also showed increased secretion of IL-6, a marker of SASP. 

Immunofluorescence and G-banding reveal the presence of chromosomal structural 

mutations and aneuploidy. A schematic view of our findings is presented in Figure 22. 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

Figure 22.  Summary of major finding in normal human BJ fibroblasts. 

 

 



	 144	

 The second appended manuscript reports that when Bcl-xL (Ser49) and (Ser62) 

mutants are introduced and expressed in C. elegans, they interfere with normal mitosis 

progression in the germline. These mutations result in chromosome instability and 

aneuploidy, visualized by abnormal chromosome at diplotene germ cell stage. These 

effects also trigger apoptosis in the germline. Apoptosis also leads to the spatial 

disorganization of germ cells, lowered fecundity and variations in the length of mitotic 

regions and transition zones in the gonads. Germline apoptosis may be the reason for a 

slight increment of lifespan of these worms. A schematic view of the findings is 

presented in Figure 23.  

 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

Figure 23: Summary of major finding in C. elegans 
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