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Résumé
La recherche d’informations s’intéresse, entre autres, à répondre à des ques-

tions comme: est-ce qu’un document est pertinent à une requête ? Est-ce que deux
requêtes ou deux documents sont similaires ? Comment la similarité entre deux re-
quêtes ou documents peut être utilisée pour améliorer l’estimation de la pertinence ?
Pour donner réponse à ces questions, il est nécessaire d’associer chaque document
et requête à des représentations interprétables par ordinateur. Une fois ces repré-
sentations estimées, la similarité peut correspondre, par exemple, à une distance ou
une divergence qui opère dans l’espace de représentation. On admet généralement
que la qualité d’une représentation a un impact direct sur l’erreur d’estimation par
rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représen-
tations des documents et des requêtes a longtemps été un problème central de la
recherche d’informations. Le but de cette thèse est de proposer des nouvelles mé-
thodes pour estimer les représentations des documents et des requêtes, la relation
de pertinence entre eux et ainsi modestement avancer l’état de l’art du domaine.
Nous présentons quatre articles publiés dans des conférences internationales et un
article publié dans un forum d’évaluation. Les deux premiers articles concernent
des méthodes qui créent l’espace de représentation selon une connaissance à priori
sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci
nous amènent à présenter un nouveau modèle de recherche d’informations qui dif-
fère des modèles existants sur le plan théorique et de l’efficacité expérimentale.
Les deux derniers articles marquent un changement fondamental dans l’approche
de construction des représentations. Ils bénéficient notamment de l’intérêt de re-
cherche dont les techniques d’apprentissage profond par réseaux de neurones, ou
deep learning, ont fait récemment l’objet. Ces modèles d’apprentissage élicitent au-
tomatiquement les caractéristiques importantes pour la tâche demandée à partir
d’une quantité importante de données. Nous nous intéressons à la modélisation des
relations sémantiques entre documents et requêtes ainsi qu’entre deux ou plusieurs
requêtes. Ces derniers articles marquent les premières applications de l’apprentis-
sage de représentations par réseaux de neurones à la recherche d’informations. Les
modèles proposés ont aussi produit une performance améliorée sur des collections
de test standard. Nos travaux nous mènent à la conclusion générale suivante: la
performance en recherche d’informations pourrait drastiquement être améliorée en
se basant sur les approches d’apprentissage de représentations.

Mots-clés: modèle de recherche, suggestion de requête, recherche ad-hoc, expan-
sion de requête, théorie quantique, matrice de densité, vecteurs de mot, apprentis-
sage supervisé, réseaux de neurones, apprentissage profond.
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Summary
Information retrieval is generally concerned with answering questions such as:

is this document relevant to this query? How similar are two queries or two doc-
uments? How query and document similarity can be used to enhance relevance
estimation? In order to answer these questions, it is necessary to access computa-
tional representations of documents and queries. For example, similarities between
documents and queries may correspond to a distance or a divergence defined on the
representation space. It is generally assumed that the quality of the representation
has a direct impact on the bias with respect to the true similarity, estimated by
means of human intervention. Building useful representations for documents and
queries has always been central to information retrieval research. The goal of this
thesis is to provide new ways of estimating such representations and the relevance
relationship between them. We present four articles that have been published in
international conferences and one published in an information retrieval evaluation
forum. The first two articles can be categorized as feature engineering approaches,
which transduce a priori knowledge about the domain into the features of the rep-
resentation. We present a novel retrieval model that compares favorably to existing
models in terms of both theoretical originality and experimental effectiveness. The
remaining two articles mark a significant change in our vision and originate from
the widespread interest in deep learning research that took place during the time
they were written. Therefore, they naturally belong to the category of representa-
tion learning approaches, also known as feature learning. Differently from previous
approaches, the learning model discovers alone the most important features for the
task at hand, given a considerable amount of labeled data. We propose to model the
semantic relationships between documents and queries and between queries them-
selves. The models presented have also shown improved effectiveness on standard
test collections. These last articles are amongst the first applications of representa-
tion learning with neural networks for information retrieval. This series of research
leads to the following observation: future improvements of information retrieval
effectiveness has to rely on representation learning techniques instead of manually
defining the representation space.

Keywords: retrieval models, query suggestion, ad-hoc retrieval, query expansion,
quantum theory, density matrix, word embeddings, supervised learning, neural
network, deep learning, recurrent neural networks.
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1 Introduction

In this thesis, our aim is to estimate more accurate representations of doc-

uments and queries and to adapt these representations for specific information

retrieval tasks. Estimating representations for document and queries is central to

information retrieval. We hope to advance the state of the art by proposing new

solutions to this problem. To support our purpose, we present four articles that

have been published in peer-reviewed international conferences and one published

in a retrieval evaluation forum.

This chapter provides some background on the aspects of information retrieval

we will be dealing with along with the general motivation of our work. In addition,

we outline the content of the articles we present in this thesis. The following

chapters introduce previous related work and the datasets we will use to support

our experimental evaluation.

1.1 Research Context

An information retrieval (IR) process can be viewed as a user-based needle-in-

a-haystack problem: a user seeking for information is typically faced with an enor-

mous amount of varied and interconnected information items. A retrieval system

is committed to support the user in the search process by returning the informa-

tion items relevant to her information need. In this thesis, we focus on document

search, for which information items are textual documents, such as web pages, and

the information need is expressed by means of a textual query.

In its basic form, a retrieval system consists of an index structure, which pro-

vides fast access to the documents in the collection, and a retrieval model, which

is an algorithm responsible for predicting the relevance of each document with re-

spect to the user query. Predicting relevance is a complex task that may depend on

1
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Figure 1.1 – In the vector space model (Salton et al., 1975), documents and queries are repre-
sented as vectors in a high-dimensional term space. Relevance is assumed to be correlated to the
degree of terms matching between documents and queries. The assumption that term matching
is important for retrieval is hard-coded into the model. The example uses a binary weighting
corresponding to the presence of a term, but other choices are possible (Salton, 1986).

multiple factors including the quality of a document itself, the current geograph-

ical context and educational background of the user and on other documents the

user has previously inspected during the search. In order to harness the complex-

ity of relevance prediction, industrial search engines such as Google 1 and Bing 2

are multi-modular systems employing a number of retrieval models and additional

strategies. For example, when the query is short or ambiguous, they may opt to

explicitly diversify the search results to cover all possible aspects of the user query

and to minimize the risk of user dissatisfaction. Moreover, they offer query auto-

completion or suggestion services, promoting those reformulations that are more

likely to lead to the documents the user is searching for.

In order to provide the aforementioned services, retrieval systems do need to

come up with computational representations of documents and queries. In other

words, they need to transform the textual input and other useful contextual in-

formation into a representation that can be processed by internal algorithms. For

example, in the vector-space retrieval model (VSM) (Luhn, 1957; Salton et al.,

1975; Salton and Buckley, 1988), documents and queries are represented as vectors

in a high-dimensional vector-space. The dimensions of the vector-space may cor-

respond to single terms, phrases or other indexing units, depending on the manual

choices of the indexer. An entry of the document (query) vector is non-zero if

the corresponding index unit appears in the document (query). The relevance of

a document is estimated by computing a distance measure between the document

vector and the query vector (see Figure 1.1).

1. http://www.google.ca
2. http://www.bing.com
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Finding suitable query and document representations in order to perform re-

trieval has always been a central problem in IR. In general, most retrieval models

associate both the document and the query to their corresponding representations

and estimate the relevance based on the degree of matching between the repre-

sentations. Some retrieval models, such as the early probabilistic Binary Indepen-

dence Retrieval model (Robertson and Jones, 1976; Rijsbergen, 1979; Croft and

Harper, 1979), drop the explicit query representation and directly estimate the

probability of relevance given a document. Unlike the vector-space model, the

probabilistic framework provides formal guidance in order to approximate rele-

vance. However, the absence of a query representation makes it difficult to in-

corporate additional query evidence into the model (Metzler, 2011). The initial

Language Modeling (Ponte and Croft, 1998) approach also sacrifices the query rep-

resentation by interpreting the query as a sequence of samples from the document

distribution. Later, Lafferty and Zhai (2001); Zhai (2008) generalize the LM ap-

proach by restoring an explicit query representation: both queries and documents

are associated to n-gram distributions and relevance correlates to a probabilistic

divergence between the distributions. The flexible model developed by Turtle and

Croft (1989, 1991) provides another example in which queries and documents are

explicitly represented, in this particular case by means of an inference network.

In general, by having separate document and query representations, it is possible

to integrate evidence about other queries that point to the same relevant docu-

ment and about other documents that are relevant to the same query (Robertson

et al., 1983; Robertson, 2003; Bodoff and Robertson, 2004). Research on retrieval

models has been moving towards representational frameworks flexible enough to

allow the integration of evidence about the query and the document in a principled

way (Croft, 2002; van Rijsbergen, 2004; Melucci, 2008; Buccio et al., 2010).

Regardless of the specific representational framework, when task-oriented, query

and document representations should be estimated in such a way that they make

the task easier to succeed. For example, in the vector-space model, the ideal con-

figuration would put the query representation close to its relevant documents and

far away from all its non-relevant documents (Rocchio, 1971). In this case, rele-

vance can be easily computed by calculating the distance between the query and

the document representations. If the task is to suggest alternative queries to the

user, this kind of property should hold for similar queries. Therefore, as a general

3



rule, the representation should account for those input characteristics, or features,

that are important for the task and be invariant to, i.e. do not change for, those

input traits that have no impact on the task.

Historically, retrieval models tried to enforce this principle by hard-coding into

the representations those features that were known to correlate well with the task.

This feature engineering approach is adopted by basic retrieval models, such as the

vector-space and language models, which generally rely on the intuitive assumption

that term or phrase matching correlates with relevance (see Figure 1.1). Another

example of prior knowledge is the use of document term frequency (TF). The fact

that the frequency of a query term in a document is important to decide whether

a document is “about” the query is hard-coded into the representation itself by

weighting the corresponding term feature. Curiously, the common use of term fre-

quency coupled with inverse document frequency (IDF), i.e. the well-known tf-idf

weighting scheme (Salton and Buckley, 1988), can be interpreted as an attempt to

make the representation invariant to those terms that are less discriminative for

relevance, i.e. the representations tend to be invariant to overly common terms

having a low IDF value. More recent and complex non-bag-of-words (Metzler and

Croft, 2005; Bendersky and Croft, 2012) and learning-to-rank (Li, 2011) techniques

adopt a similar approach by engineering a feature space composed by various ev-

idence and by learning a complex, composite function mapping the fixed feature

space to the desired output.

One of the shortcomings of the previous approach is that it is usually unhandy

or even impossible to enumerate all the features that could help in predicting rele-

vance. In supervised feature learning, the representation features are automatically

learned in order to maximize the success of the task, i.e. one learns both the map-

ping from the input to the feature space and from the features to the output. This

is a relatively new avenue in information retrieval research and is based on the

emerging representation learning techniques based on deep learning architectures.

Deep learning refers to the layered structure of the learning algorithm, each layer

corresponding to an increasingly abstract representation of the input data. The

major advantage of this approach is that there is little to no prior knowledge in-

volved. The learning algorithm is able to carve its own feature space and to detect

the proper invariances in such a way that the discovered representations minimize

the task error. This research direction allowed to obtain ground-breaking results in
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computer vision and general natural language processing (Goodfellow et al., 2016)

but has just started to be explored in IR (Shen et al., 2014; Severyn and Moschitti,

2015; Mitra, 2015; Zheng and Callan, 2015). One of the most prominent exam-

ples of feature learning is the estimation of words embeddings (Bengio et al., 2003;

Mikolov et al., 2013), i.e. each word is associated to a vector encoding syntactic

and semantic characteristics thereof. As a consequence, the distance between word

vectors corresponds to a degree of relatedness between words. The dimensions

of the representation space do not directly encode the a priori knowledge about

word similarities, which would be impractical for large vocabularies, but rather

correspond to semantic descriptors that are automatically learned to fit the task

at hand.

Our view is that the latter techniques, eventually in combination with estab-

lished retrieval approaches, are well-suited to learn high-quality representations for

documents and queries and may set a new state of the art in IR. For example,

when applied to relevance estimation, the learned feature space may encode se-

mantic features of documents and queries thus moving retrieval models closer to

the human relevance assessment process. The papers included in this thesis are

stepping stones on a path that, departing from feature engineering methods, led

us to the application of feature learning models for IR. Particularly, the first two

articles are naturally based on the paradigm of feature engineering. The last two

articles are an attempt to move general IR towards feature learning approaches.

1.2 Articles Outline

The first article has been published in the proceedings of the 2013 Quantum

Interaction (QI) conference and is presented in Chapter 4. We analyze the repre-

sentational assumptions made by well-known term matching retrieval models, such

as VSM (Salton, 1986) and the Language Models (LM) (Ponte and Croft, 1998;

Zhai, 2008) for IR. We unify the methodologies using the mathematical framework

borrowed from quantum physics. Unlike previously thought, our study reveals that

the approaches are rather complimentary. We highlight that it is possible to mix

the strengths of both models.
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The second article has been published in the proceedings of the 2013 SIGIR con-

ference (Annual Conference of the Special Interest Group in Information Retrieval)

and is presented in Chapter 5. It presents an operational instantiation of the idea

presented in the previous chapter. Our Quantum Language Model (QLM) retrieval

approach is a hybrid VSM/LM approach that represents documents and queries

as matrices. The rich representation space allows us to consider both term-level

matching and phrase-level matching without artificially extending the term space

to account for phrases, as previously done in the literature. QLM achieves statisti-

cal significant improvements over strong non-bag-of-words models and establishes

a new state-of-the-art amongst phrase-based retrieval models for web retrieval. We

also include the results of our participation in the Text REtrieval Conference eval-

uation forum (TREC 2013) using the same model, with which good results have

been obtained.

The third article has been published in the proceedings of the 2014 Association

for the Advancement of Artificial Intelligence (AAAI) and is presented in Chap-

ter 6. It marks our first exploration of feature learning models for IR. Contrarily

to the first two articles, in which documents and queries are embedded into an ar-

tificially created term space, we estimate, by means of a novel algorithm, a feature

space whose dimensions do not necessarily correspond to single terms but rather

to semantic descriptors. Our learning algorithm is trained using a query log, i.e. a

collection of query and relevant document pairs (as described in Section 3.3). Our

objective function pushes a query representation near its relevant documents and

far away from all its non-relevant documents. The resulting representations are

used to improve ad-hoc retrieval in a query expansion setting.

The fourth article has been published in the proceedings of the 2015 Conference

of Information Knowledge and Management (CIKM) and is presented in Chapter 7.

We propose a way to estimate query representations for query suggestion through

a deep learning based architecture. Unlike existing suggestion models exploiting

query co-occurrence features, our system automatically learns which features are

important for query suggestion and represents one of the first applications of deep

learning to IR.
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2 Related Works

This chapter provides an overview of the literature related to this thesis. Sec-

tion 2.1 narrates a short history of vector-space, language and quantum-based

retrieval models along with a highlight of their representational assumptions. We

focus on both bag-of-words and term dependency models, which will provide the

necessary basis to contextualize Chapter 4 and 5. In Section 2.2, we briefly intro-

duce the foundational works on the field of representation learning and its deploy-

ment in IR, which is relevant to Chapters 6 and 7.

2.1 Retrieval Models

2.1.1 Vector Space Models

In the well-known vector space model (VSM) (Salton et al., 1975), documents

and queries are represented in a vector space whose dimensions correspond to single

terms. The coordinates for each document/query are determined by leveraging

weight functions such as inverse document frequency (IDF) and term frequency

(TF). The relevance score for a document corresponds to the inner product between

the document and the query vectors. The assumed orthogonality between terms

causes the exact matching problem, i.e. only documents that contain at least one

query term have a non-null score. This is clearly a simplistic assumption due to

linguistic phenomena such as synonymy.

Fagan (1987) and successively Mitra et al. (1997) try to incorporate phrases,

such as multiword concepts, into the VSM. Phrases are considered additional di-

mensions in the representation space, orthogonal to their component terms. The

score of a phrase in a document is the average of the TF-IDF (Salton and Buckley,

1988) weights of its component terms. The dependencies between phrases and com-

ponent terms are either ignored or taken care of in an ad-hoc fashion by weighting
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the constituent words more than the phrases. In these models, the ranking function

boils down to a combination of scores from single terms and from phrases:

s(Q,D) = wterm · sterm(Q,D)︸ ︷︷ ︸
term score

+ wphr · sphr(Q,D)︸ ︷︷ ︸
phrase score

,

where wterm, wphr are the combination weights for the term score and phrase score

respectively. Phrases are considered as additional indexing units and their impor-

tance is adjusted in order to achieve weight normalization (Jones et al., 2000a), i.e.

to compensate for the fact that the occurrence of single terms is counted twice,

in the term score and in the phrase score. Addressing the weight normalization

problem in new ways will be one of the main foci of Chapter 5.

Other attempts of incorporating phrases into a retrieval model belong to the lit-

erature of passage-retrieval with vector-space models (Kaszkiel et al., 1999; Kaszkiel

and Zobel, 2001). The document is split into (non-)overlapping windows of contigu-

ous words, i.e. passages, and a vector is built from each passage. The query vector

is then compared to each passage vector and the obtained scores are aggregated

for each document. Passage retrieval has potential advantages such as encoding

proximity information. Proximity is a clear indicator of relevance, i.e. a document

having a short passage with a lot of query words is more likely to be relevant than

a document with no such passage (Kaszkiel et al., 1999).

One of the strengths of the VSM approach is the explicit definition of two

separate representations, for the query and for the document. Keeping two separate

representations gives the flexibility of integrating evidence both in the query and

in the document (Zhai, 2007). In the VSM, this flexibility comes at the price of

the heuristic flavor of the weight schemes and the multiplicity of existing scoring

functions. Considering phrases as additional indexing units comes at the cost of

having no guidance for the estimation of coordinates on such dimensions. Among

the works that pinned these issues, Zobel and Moffat (1998) conclude that “no

component or weight scheme was shown to be consistently valuable across all of

the experimental domains” and “the measures do not form a space that can be

explored in any meaningful way, other than by exhaustion”.
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2.1.2 Language Models

Language models (LM) for IR (Ponte and Croft, 1998) were at first seen as

a solution to the heuristic flavor of vector space models weight schemes. In IR,

a statistical language model ranks a document by the likelihood of a query given

the probabilistic model associated to the document. Each document is associated

to an unigram language model, i.e. θd = (θd1, . . . , θdV ), where θdi corresponds to

the probability of observing word i in the vocabulary V . Therefore, the query

likelihood writes as p(q|θd) =
∏

i p(qi|θd), leading to the multinomial language

model. However, other choices are also possible (Ponte and Croft, 1998; Zhai,

2007; Bravo-Marquez et al., 2010). The assumption of word independence is always

assumed by the factorization of the joint probability 1. In Chapter 4, we will explore

interesting links between the representational assumptions of independence posited

by LM and VSM.

The advent of the LM approach opens new perspectives for integrating phrases

into the retrieval model. Srikanth and Srihari (2002) claim that “the elegance of

LM approach to IR facilitates a better representation of the dependencies between

the constituent words of a phrase”. Term dependencies such as those arising in

phrases may be modeled as joint probabilities. Song and Croft (1999) take into

consideration bigrams and trigrams. The scoring function considers whether the

document can generate the n-grams appearing in the query. This approach turned

out to lack flexibility because a document containing“retrieval of information”could

also be relevant to the query “information retrieval”. Srikanth and Srihari (2002)

propose to relax the strong bigram assumption by modeling biterms. A biterm is

defined as an unordered occurrence of two terms. These probabilities being difficult

to compute, the authors propose three different heuristics. Although the model

1. Nevertheless, it is instantiated in different ways. The multinomial model assumes that every
occurrence of a word, including the multiple occurrences of the same word, is independent. On
the contrary, the multiple Bernoulli model assumes that the occurrences of different words are
independent. The multiple-Bernoulli model makes a weaker independence assumption, but this
is at the price of not being able to model multiple occurrences. Empirically, there has been some
evidence that Multinomial outperforms multiple-Bernoulli (Metzler et al., 2004) but not for all
tasks (Losada and Azzopardi, 2008) thus more work is clearly required in this direction (Tao
and Zhai, 2007). Moreover, we would like to stress that a multinomial language model naturally
embodies the assumption of words as atomic units of information by structuring terms as disjoint
events. Disjoint events can be represented as orthogonal dimensions in a vector space, as in the
VSM. This strong probabilistic constraint is not required in the Bernoulli and the Poisson model
because they only assume terms to be stochastically independent.
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performs better than n-grams LMs, its underlying probabilistic space become less

clear. Nallapati and Allan (2002) try to capture useful dependencies at sentence

level. A document is divided into sentences and independence is hypothesized

among sentences rather than among terms. The dependency amongst terms in a

sentence is calculated by using the Jaccard coefficient. The joint distribution over

the sentence is approximated by building a maximum spanning tree in which the

nodes represent the terms and the link represents bigram dependencies.

In general, these approaches only saw marginal improvements over the unigram

LM at the expense of greatly increased computational complexity. A possible reason

is that the models generally assume that any sequential pair of query terms is in a

dependence relation. A number of authors recur to syntactical parsing of queries in

order to overcome this issue (Srikanth and Srihari, 2003; Chelba and Jelinek, 2000;

Lee et al., 2006; Maisonnasse et al., 2007; Gao et al., 2004). Srikanth and Srihari

(2003) use syntactical parsing in order to divide the query into span of words, called

concepts. They assume independence between concepts but bigram dependence

between the words constituting query concepts. Gao et al. (2004) formulate a

general dependence model retaining bigram and biterm models as special cases 2.

They posit the existence of a hidden linkage that represents the dependence between

query terms by means of an acyclic planar graph. For a document to be retrieved, it

has to contain not only the query words as in the classical bag-of-words model, but

also the dependencies between query terms. The authors come to the interesting

conclusion that the linguistic structure such as discovered by syntactic grammars

does not probably reflect those dependencies that are needed for IR. New evidence

supporting this conclusion has been provided by Bendersky et al. (2010).

2.1.3 Markov Random Fields

Despite the increased complexity of term dependencies models, the obtained

improvements tend to be insignificant with respect to the unigram model, or at

least not so significant as some other extensions solving exact matching problems

by tackling synonymy and word relatedness, discussed next. Lavrenko (2004) ad-

vances that the information gained by integrating term dependencies may not be

2. This model has recently been reviewed by Maisonnasse et al. (2007). The authors give a
simpler interpretation of (Gao et al., 2004), which must be preferred to the original one for it has
shown to be equivalent in performance.
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as large as it was initially thought. The Markov Random Field (MRF) approach

for IR (Metzler and Croft, 2005) reports the first clear improvement for term de-

pendencies models over bag-of-words baseline models. The MRF model is a general

discriminative approach to ranking that exploits different types of evidence includ-

ing proximity and n-grams occurrence. The evidence is combined in the scoring

function in a log-linear way. Formally, the score of a document under the MRF

model is given by:

s(Q,D) = λT
∑
t∈Q

log sT (t,D) + λU
∑
u∈Q

log sU(u,D) + λO
∑
o∈Q

log sO(o,D),

where λT , λU and λB are the weights for the term score sT , proximity (unordered)

score sU and n-gram (ordered) score sO respectively. From a representational point

of view, the MRF model marks an implicit turn-back towards the first VSM, where

phrases, or unordered matches, are considered as additional dimensions and added

to the final score. In our opinion, the success of MRF is due to multiple concurring

factors: a) the interpolation coefficients λ are optimized towards the measure of

interest, namely mean average precision (see Section 3.2.1); b) document weights

are chosen using the frequency-based weight estimation principles inherited from

language models, which provide robust performance, i.e. see (Zhai, 2008; Hazimeh

and Zhai, 2015); c) the advent of large web collections, which highlighted the useful-

ness of capturing phrases. In Chapter 5, we obtain significative improvements over

the MRF by switching to a truly new, more general representational framework.

2.1.4 Recent Term Dependency Models

Following the success of MRFs, a huge number of works have been dedicated

in integrating proximity information of query terms in the document (Tao and

Zhai, 2007; Cummins and O’Riordan, 2009; Lv and Zhai, 2009b; Svore et al., 2010;

Cummins et al., 2010; Lu et al., 2014; Lu, 2015). Proximity can be seen as a

“work-well-on-average” method that avoids the complexity to estimate the exact

dependency between terms. Other methods made efforts to account for the impor-

tance of a phrase in characterizing the user information need (Shi and Nie, 2009,

2010; Cummins and O’Riordan, 2009; Song et al., 2008, 2009; Bendersky et al.,

2010; Svore et al., 2010; Cummins et al., 2010; Bendersky and Croft, 2012; Hou
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et al., 2013). Related to this line of work, Lioma et al. (2015) detect whether a

phrase is compositional or non-compositional. Only non-compositional phrases are

integrated into the MRF as useful term dependencies. Although not explored in this

thesis, these methods may be applied to the model presented in Chapter 5. Eickhoff

et al. (2015) present a new retrieval model based on statistical copulas. This model

is principled and make use of sentence-level co-occurrence as a signal of depen-

dence between terms. Similarly to the model presented in Chapter 5, this model

doesn’t heuristically mix a term score with a dependence score. Finally, a recent

comparison of term dependencies models can be found in Huston and Croft (2014).

2.1.5 Quantum-Based Models

Most of the literature that has appeared since Van Rijsbergen’s book (van Rijs-

bergen, 2004) tries to apply the new representation space offered by quantum theory

(QT) to IR or to computational semantics. Widdows and Peters (2003) use vector

spaces in order to model a geometry of word meaning. The authors represent word

negation with the notion of orthogonality. By joining vector space and Boolean

concepts, the model handles structured Boolean queries while providing a flexible

framework for word sense disambiguation (WSD). A survey on vector space models

of semantics is provided by Turney et al. (2010). Symonds et al. (2012) propose

the Tensor Query Expansion (TQE), which uses ideas from the vector space model

of meaning in order to mine candidate terms for query expansion. The method

achieved interesting results on modest test collections but it is still unclear if it can

handle current web datasets with millions of documents.

Melucci (2008) establishes a principled framework to address contextual infor-

mation retrieval by bringing together vector space models and quantum probability.

This work is motivated by the fact that an IR system should be context-aware thus

providing an explicit representation of all the factors that could influence relevance

computation, i.e. user preferences, location or search history. Documents are rep-

resented as vectors in the space and define a quantum probability distribution on

the contextual factors, represented as subspaces. The author applies the model in

a pseudo-relevance feedback scenario by building a relevance subspace. Although

the approach being principled and quite general, documents representations do

not exploit the full generality of the quantum probability space in the sense that

12



they are simply vectors and not density matrices. Nonetheless, this work can be

seen as a precursor in the important questioning about what to observe from a

document. The formalization of contextual factors is motivated by the need of

observing more discriminative properties than single terms in order to character-

ize relevant documents. The work by Piwowarski et al. (2010) tests if acceptable

performance for ad-hoc tasks can be achieved with a quantum approach to IR.

Differently from Melucci (2008), the authors represent documents as subspaces

and queries as density operators. The subspaces corresponding to the documents

are estimated through passage-retrieval heuristics, i.e. a document is divided into

passages and is associated to a subspace spanned by the vectors corresponding to

the document passages. Different representations for the query density matrix are

tested but none of them led to good retrieval performance. Successively, a num-

ber of works took inspiration from quantum phenomena in order to relax some

common assumption in IR (Zuccon et al., 2010; Zhao et al., 2011). Zuccon et al.

(2010) introduce interference effects into the Probability Ranking Principle in order

to rank interdependent documents. Although this method achieves good results,

it does not make principled use of the quantum probability space and cannot be

considered as evidence towards the usefulness of the enlarged probabilistic space.

The intrinsic heuristic flavor in preceding approaches motivated some authors to

provide evidence to the hypothesis that there exists an IR situation in which classi-

cal probabilistic IR fails and it is thus necessary to switch to a more general prob-

abilistic theory. This is generally done by testing probabilistic invariants (Accardi,

1984) or Bell’s inequality (Khrennikov, 2007). Melucci (2010) provides evidence for

the necessity of adopting a quantum probability framework in IR by arguing that

the “best” terms selected for query expansion show “non-classical” probabilistic be-

havior, in the sense that they violate Accardi’s statistical invariant. Later, Melucci

(2013) derives interesting links between the probability ranking principle and the

problem of quantum detection. Similar attempts but in different contexts are the

works by Bruza et al. (2009); Bruza and Cole (2005), Kitto et al. (2010), Aerts and

Sozzo (2011) in computational semantics and cognitive science and by Busemeyer

et al. (2011); Trueblood and Busemeyer (2011), Pothos and Busemeyer (2009) in

decision theory. Cognitive science and human decision theory deal with user stud-

ies and consequently small datasets. Therefore, differently from the IR domain,

computational issues are not of strict concern. Although being inspiring, it is not
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clear how these studies are applicable to retrieval tasks and thus their utility for

our purposes remains limited. Although not related to IR, the works by Tsuda

et al. (2006), Warmuth and Kuzmin (2009) and Koolen et al. (2011) apply learn-

ing techniques to estimate density matrices. These works highly determined our

general comprehension of the density matrix formalism. Finally, Melucci (2015)

provides a recent review of the state-of-the-art in the domain.

2.1.6 Other Retrieval Models

In addition to the models described above, several other models and represen-

tations have been proposed in IR literature. Here we sketch a brief picture of some

of them without providing all the details, as they are less related to our work. In

the early Binary Independence Model (BIR) (Robertson and Jones, 1976) docu-

ments are represented as vectors of binary random variables, each corresponding

to a word in the vocabulary. Therefore, an entry in the document vector is 1 if

the corresponding word appears in the document and 0 otherwise. The model does

not assign an explicit representation to the query but rather relies on the probabil-

ities of each term given relevance, represented as a binary random variable. In this

sense, it is difficult to integrate evidence about the query into the model. Robertson

et al. (1983); Robertson (2003); Bodoff and Robertson (2004) try to overcome this

problem by formulating a probabilistic model capable of integrating both query

and document information. These works reinforce the intuition on how important

it is to have separate document and query representations.

Overall, the BIR model had a profound impact on IR and generated a number

of extensions, such as the Tree Dependence Model (van Rijsbergen, 1977) and the

2-Poisson Model (Robertson et al., 1980). The former tries to capture dependen-

cies between document terms considered as conditionally independent in the BIR

model (Cooper, 1995). The latter integrates information about the frequency of

occurrence of a term by modeling the document as a vector of term frequencies

drawn from a mixture of two Poisson distributions. The 2-Poisson model further

inspired the successful BM25 weight scheme (Robertson, 2010) which is very sim-

ple to implement and does not suffer from data sparsity issues as previous models.

The BM25 model can be viewed as a wise instantiation of the early vector-space

model, i.e. it represents both documents and queries as vectors but chooses a
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different weight scheme for terms occurring in documents and queries.

Turtle and Croft (1989) propose an inference network model for retrieval com-

prising document nodes, representation nodes, query nodes and a single information

need node. Relevance is computed by applying the probabilistic inference while

the link probabilities are estimated rather heuristically. Later, Metzler and Croft

(2004) combine the inference network model with the statistical principles of the

language modeling approach and give birth to the Indri search engine (Strohman

et al., 2005), deploying the successful MRF model, presented in Section 2.1.3. We

will not delve into the details of these models as they are less relevant to our work.

2.2 Representation Learning for IR

2.2.1 Matrix Factorization Methods

Latent Semantic Indexing The work on representation learning for IR starts

with a generalization of the vector space model (GVSM) (Wong et al., 1985), in

which documents and queries vectors pass through a linear transformation before

computing the inner product, i.e. s(Q,D) = cos(AT q, ATd), where q, d are the doc-

ument and query vectors and A is the linear transformation matrix. The matrix

A contains information about term relationships. Each row of A is an embedding

of a term in a latent space in which the orthogonality constraint between terms is

relaxed. One question naturally arises about how to choose A. Deerwester et al.

(1990) answer to this question a few years later by proposing the Latent Seman-

tic Indexing (LSI) approach. LSI chooses A to be a low-rank approximation to

the document-term matrix obtained by a truncated Singular Value Decomposition

(SVD) 3. The level of truncation corresponds to the dimensionality of the latent

space. Synonymy is considered as semantic noise, masking the true concept be-

hind the different word use. By reducing the dimensions of the term vector space,

document and queries acquire a compressed representation that avoids the noise

induced by synonymy thus becoming less prone to exact matching problems. Kon-

tostathis and Pottenger (2006) show that the method also succeeds in capturing

3. An entry of the document-term matrix stores the frequency but also other weight functions
can be used.
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second order term co-occurrence information 4. However, due to its complexity and

low performance on standard TREC test collections (Atreya and Elkan, 2011), LSI

has recently received modest attention from the IR community. In particular, Tip-

ping and Bishop (1999) show that the method implicitly assumes that the entries

of the document-term matrix are drawn from an isotropic Gaussian distribution.

This may be harmful for count data and can thus undermine the effectiveness of

the model.

Topic Models The application of dimensionality reduction in order to enhance

latent patterns in the data stimulated a vast amount of research. Notably, it orig-

inated the topic modeling discipline. Its goal is to estimate latent dimensions, i.e.

topics, which summarize well a collection of documents (Blei, 2012). In general,

a topic is represented as a probability distribution over words, and documents are

defined as combinations, probabilistic mixtures, of topic distributions. In this set-

ting, a word is a vector in the topic space where each dimension is weighted by

the conditional probability of belonging to that topic. Although being completely

probabilistic, the link between topic models and linear algebra matrix factorization

methods is strong (Ding et al., 2008). Among the best-known models, we cite the

foundational works of Latent Dirichelet Allocation (LDA) (Blei et al., 2003) and

Non-negative Matrix Factorization (Hoyer, 2004). In general, these models have

shown to be very effective in IR ad-hoc tasks (Wei and Croft, 2006; Lu et al.,

2010; Wang et al., 2013) as well as in a variety of other applications. In Sordoni

et al. (2013), which is peripheral to this thesis, we modify the scoring function

of (Wei and Croft, 2006) to account for dependencies between topics and achieved

significant gains with respect to the baseline methods.

2.2.2 Neural Networks for IR

A huge amount of work has been published about neural networks and deep

learning (see Goodfellow et al. (2016) for a recent account). The rise of neural net-

work models in the NLP field notably began with the Neural Network Language

Models (NLM) (Bengio et al., 2006). The authors first advanced the idea of ex-

plicitly learning word embeddings in order to boost the performance of statistical

4. A second order co-occurrence between two terms w1 and w3 holds when w1 co-occurs with
w2 and w2 co-occurs with w3.
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Language Modeling (LM) tasks. By exploiting word embeddings, it is possible

to consider large n-gram contexts without suffering from data sparsity problems:

semantic similarity between n-grams can be leveraged to achieve better generaliza-

tion in predicting the next word. A notable amount of work followed these first

approaches in order to lower their computational requirements, i.e. see (Morin and

Bengio, 2005) or (Bengio, 2013) for a review. Recently, Mikolov et al. (2013) pro-

posed the particularly successful Skip-Gram model offering fast unsupervised learn-

ing of word embeddings and accurate semantic resolution. Skip-Gram embeddings

generated widespread interest from the community due to their versatility both

as an effective out-of-the-box estimator and as a means to bootstrap more com-

plex neural network models, i.e. (Serban et al., 2016; Severyn and Moschitti, 2015).

The learning is completely unsupervised and exploits the distributional hypothesis,

i.e. the embeddings of words that occur in similar contexts in the training corpus

should be similar in the semantic space. In this sense, the estimation exploits local

co-occurrence instead of global document-level co-occurrence. A global embedding

estimation method has been proposed (Pennington et al., 2014). Levy and Goldberg

(2014) shed light on the differences between local and global co-occurrence infor-

mation and linked these embeddings models with the matrix factorization methods

reviewed in the previous section. Overall, Skip-Gram determined the widespread

use of word embeddings in a variety of fields.

The application of representation learning with neural networks is growing in

IR. The Supervised Semantic Indexing (SSI) model (Bai et al., 2009) first practi-

cally exploited the idea of IR-oriented learning of embedding spaces. SSI learns a

low-dimensional linear transformation by aligning Wikipedia documents to their ti-

tles. Differently from LSI, the estimation of the linear transformation is supervised

and aims to minimize the ranking error. In Chapter 6, we contrast this method to

our proposal. A work similar to SSI is the semantic hashing method, in which the

representations are obtained through an auto-encoder Salakhutdinov and Hinton

(2009). The Deep Semantic Structured Model (DSSM) (Huang et al., 2013) signed

the first application of more complex neural network models for ad-hoc IR. The

DSSM uses two deep neural networks, estimating the representation of a document

and for a query. By exploiting proprietary query logs, the networks are trained to

maximize the similarity between a user query and the clicked document title. Dif-

ferently from SSI, documents and queries representations are obtained by a highly
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non-linear transformation. However, the input of the deep forward network is still

a bag-of-words. Shen et al. (2014) relax the bag-of-word assumption by employ-

ing a convolutional structure and propose the convolutional DSSM (CDSSM). The

DSSM model has been used by Mitra (2015) to encode query similarities in the

context of query auto-completion. Grbovic et al. (2015) embed queries using the

Skip-Gram model and exploit the semantic space for query rewriting in sponsored

search. Severyn and Moschitti (2015) propose a deep convolutional neural-network

to rank short text pairs where elements of the pair are sentences. Recently, Zheng

and Callan (2015) used continuous word embeddings estimated with the Skip-Gram

model to determine the weight of query terms in a classical LM retrieval model.
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3 Evaluation

This chapter describes the evaluation framework used throughout the thesis.

Section 3.1 describes the anatomy of the datasets we used to conduct the exper-

iments. Section 3.2 presents the evaluation metrics, their properties in capturing

different aspects of system performance and the statistical significance tests we used

in the thesis. Section 3.3 describes the anatomy of a query log and the Wikipedia

dump we used in our experiments.

3.1 TREC Corpora

The Text REtrieval Conference (TREC) 1 series produced the test corpora used

in this thesis. The first edition of TREC was held in 1992. Since then, TREC

supported the IR community with a variety of open test corpora that provide a

means to automatic system evaluation and thus are a fundamental resource in

the advancement of the research in the field. TREC corpora consist of document

collections, test topics and their relevance judgments. Each year, a number of

participants take part to a TREC competition by submitting the runs of their

retrieval systems on a provided set of topics and a document collection. For each

run, the top results from a set of runs are combined to form the pool of documents

to judge for relevance. Next, TREC assessors judge the pool with either binary

or graded relevance judgments. The documents not appearing in the pool are not

considered relevant.

3.1.1 Document Collections and Topics

We employ diversified retrieval collections to extensively test the capabilities

of our models. We use both newswire and web test corpora. The newswire cor-

1. http://trec.nist.gov/
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Name Content # Docs Topic Numbers

SJMN Newswire 90,257 51-150

TREC7-8 Newswire 528,155 351-450

WT10g Web 1,692,096 451-550

ClueWeb-B Web 50,220,423 51-200

Table 3.1 – The TREC collections used for evaluation.

Grade Label Description

4 Nav This page represents a home page of an entity directly named by
the query; the user may be searching for this specific page or site.

3 Key This page or site is dedicated to the topic; authoritative and com-
prehensive, it is worthy of being a top result in a web search engine.

2 HRel The content of this page provides substantial information on the
topic.

1 Rel The content of this page provides some information on the topic,
which may be minimal; the relevant information must be on that
page, not just promising-looking anchor text pointing to a possibly
useful page

0 Non The content of this page does not provide useful information on
the topic, but may provide useful information on other topics,
including other interpretations of the same query

-2 Junk This page does not appear to be useful for any reasonable purpose;
it may be spam or junk

Table 3.2 – Graded relevance scale for ClueWeb-B.

pora SJMN and TREC7-8 contain news articles from different sources (e.g., San

Jose Morning News, Financial Times or LA Times). WT10G and ClueWeb-B con-

tain web pages. At the time of our experiments, ClueWeb09 was the largest Web

collection available to the IR researchers containing approximately one billion doc-

uments. In this work, we only use the Category-B of the corpus which contains

about 50 million documents with the highest crawl priority.

3.1.2 Relevance Judgments

The relevance judgments of a TREC corpus are binary, i.e. a document is either

relevant or non-relevant, or graded. For newswire collections, binary judgments are
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used. Web collections use graded relevance judgments ranging from -2 to 4. Ta-

ble 3.2 describes the meaning of the graded relevance judgments. The graded scale

better captures the usefulness of a document to the user query and enables the

computation of the refined performance metrics we introduce next. Note that rel-

evance grades can be promptly used to calculate binary effectiveness measures, i.e.

we treat 1/2/3/4 as relevant and grades 0/-2 as non-relevant.

3.2 Metrics

One can compute the effectiveness of a retrieval system by comparing a set

of ranked documents with their relevance grade. For example, it is possible to

compute the standard precision/recall curves. However, especially in web search,

users might only be interested in examining the result list until a certain cutoff k is

reached. Therefore, most of the measures presented next are computed at different

cutoffs k. In general, TREC evaluates at k = 10, 20.

3.2.1 Binary Metrics

P@k One of the simplest strategies to compute the effectiveness of a system is to

measure the proportion of relevant documents up to the k-th position in the ranking

list. This measure is called precision at k, abbreviated P@k, and is defined as:

P@k =
k∑
i=1

r(Di)

k
, (3.1)

where r(Di) ∈ {0, 1} indicates the binary relevance score for document Di in the

returned ranked list.

AP The average precision takes into account both precision and recall by com-

puting an average of the precision at different cutoffs k, k being chosen as the

positions where recall increases, i.e. the positions of relevant documents. Formally,

AP is defined as:

AP =
∑

i:r(Di)=1

P@i

|R| , (3.2)
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where |R| is the number of relevant documents. AP can be considered as an ap-

proximation of the area under the precision/recall curve. Usually, average precision

is computed over a ranked list of 1000 documents.

MAP The mean average precision is simply defined as the mean AP over the set

of evaluation topics T :

MAP =
∑
t∈T

AP (t)

|T | , (3.3)

MRR In tasks such that there is only one relevant document, simply computing

the reciprocal rank of the relevant document is a reliable way to measure effective-

ness of competing systems. Formally:

MRR =
1

|T |
∑
t∈T

1

it
, (3.4)

where it is the rank of the relevant document for topic t. We use this measure in

Chapter 7 to evaluate the effectiveness of our query suggestion system.

3.2.2 Graded Metrics

NDCG@k The normalized discounted cumulative gain is a metric using graded

relevance judgment which was first proposed by Järvelin and Kekäläinen (2002).

The gain of a document in the result list is obtained by discounting its relevance

score with the logarithm of its rank. The discounted gain of each document in the

result list is accumulated to form the discounted cumulative gain (DCG):

DCG@k =
k∑
i=1

2r(Di)−1

log2(i+ 1)
, (3.5)

where r(Di) is the relevance grade of document Di. The DCG depend on the

relevance scores available for each topic. In order to normalize the performance

scores across topics, one divides the DCG score by the DCG obtained by the ideal

ordering of documents in the ranked list. Formally:

NDCG@k =
DCG@k

IDCG@k
, (3.6)
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where IDCG@k is the DCG of the optimal ranking list.

ERR@k The expected reciprocal rank is based on the cascade user browsing

model Craswell et al. (2008) for which the user examines the result list and stops

at the first document that satisfy the query. Differently from NDCG, which re-

wards ranked lists that show highly relevant documents in the top ranks, the ERR

discounts the relevance score of a document if it appears after a highly relevant

document. Formally:

ERR@k =
k∑
i=1

Pi
i

i−1∏
j=1

(1− Pj) (3.7)

where Pi = 2r(Di)−1
2max(r) is a normalized relevance grade and max(r) is the maximum

relevance score.

3.2.3 Statistical Significance

Given two systems A and B, the goal of statistical significance testing is to

bound the uncertainty on the difference of performance between the two systems.

The null hypothesis is that the mean of the distribution of the differences in per-

formance between the two systems A and B is zero, i.e. the two runs are identical.

Then, the statistical significance test computes a p-value, which is the probability

of obtaining the observed difference in performance, assuming that the null hypoth-

esis is true. Low p-values reinforce the confidence of the experimenter in rejecting

the null hypothesis, i.e. the difference between the two systems does not depend

on inherent noise in the evaluation. Several statistical significance tests have been

used in the IR literature. Wilcoxon signed rank test and the Student t-test are no-

torious examples. Following the recommendations of Smucker et al. (2007), we use

both t-test and the two-sided Fisher randomization test with 25,000 permutations

evaluated at α < 0.05.

3.3 External Resources

Historically, information retrieval models benefited from the use of external

resources which are independent of the document collection (Bendersky and Croft,
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Anchor Text Title of the linked page

disorder of neural development neurodevelopmental disorder

genetics of autism heritability of autism

agents that cause birth defects teratology

embryonic stage human embryogenesis

Table 3.3 – Each line of the anchor-log consists of an anchor text and the title of the link.

User ID Query Date Time # URL

3,496,052 cat 2006-03-01 00:01:09

3,489,966 tropical rain forest 2006-03-01 00:01:09

1,270,972 head hunters 2006-03-01 00:01:10 2 www.headhunters.com

1,270,972 head hunters 2006-03-01 00:01:10 3 www.planetquake.com

2,622,800 singlesnet 2006-03-01 00:01:11 1 www.singlesnet.com

1,346,136 douglas county libary 2006-03-01 00:01:13

465,778 google 2006-03-01 00:01:13 1 www.google.com

Table 3.4 – Each line of the AOL query log contains a user ID, the textual query, the date and
time of submission, the position of the clicked document and its URL.

2012; Kotov and Zhai, 2012; Liu et al., 2014). In this thesis, we consider two typical

sources of information to support our systems: the English Wikipedia dumps of

July 8th, 2013 and the query log data of AOL released in 2006 (Pass et al., 2006).

In Chapter 6, we use the English Wikipedia dump to build an anchor-log to

mine term relationships for query expansion. An anchor-log is a paired corpus in

which the first entry is an anchor text and the second entry is the title of the page

referenced by the anchor (see Table 3.4). For query reformulation purposes, Dang

and Croft (2010) show that an anchor log can bring similar performance to a corpus

composed of query and clicked document title extracted from real proprietary query

log. Overall, our anchor log contains 14,358,573 pairs.

In Chapter 7, we exploit the AOL query log to build the training corpus for our

query suggestion system. The AOL query log contains 32,777,610 queries submitted

by 657,426 anonymous users between March 1st and May 31, 2006. The structure

of AOL query log is reported in Table 3.4. Due to our requirements for query

suggestion, we process the query log to carve out a session-log, a dataset in which

each entry is a sequence of queries by the same user such that each two consecutive

queries in the sequence have been submitted within a predefined time frame (usually
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Query Sessions

lulac - second language acquisition theory

houston texas - newspaper houston chronicle - galena park independent school district

fox news - fox 16 news rock ar

walmart best buy - walmart circuit city

Table 3.5 – Each line of the session log is a sequence of queries that the same user submitted
within a time frame, usually 30 minutes. In the table, we use the symbol “-” mark the end of each
query.

30 minutes). An example of the session-log we use in our experiments is given in

Table 3.5. Further statistics of the session log are reported in Chapter 7.

3.4 Summary

Each TREC corpus includes a document collection, a set of topics and a set of

relevance judgments. In this thesis, we will use SJMN and TREC 7-8 as newswire

collections and ClueWeb09-B and WT10G as web collections. In addition, we

presented the graded and binary effectiveness measures we will recur to evaluate

our systems. MAP, NDCG and ERR will be used in Chapter 5 and 6, while MRR

will be used in Chapter 7. Finally, we introduced the Wikipedia anchor-log and

our AOL session-log that will be employed respectively in Chapter 6 and 7.
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4
Looking at Vector-Space
and Language Models for
IR using Density Matrices

Prologue

Article Details

Looking at Vector Space and Language Models for IR Using Density Matrices.

Alessandro Sordoni, Jian-Yun Nie. Proceedings of Quantum Interaction (QI ’13),

pp. 147-159.

Context

At the time we wrote this article, most of the literature investigating the re-

lationship between Quantum Theory (QT) and Information Retrieval (IR) was

dedicated to study wether purely quantum effects such as interference and entan-

glement could shed new light on classical IR problems (Sordoni et al., 2013; Zuccon

et al., 2010; Melucci and Rijsbergen, 2011). A few works were focused to interpret

existing IR models using the mathematical framework given by QT (Melucci, 2013).

Similarly, we are interested in analyzing whether the mathematics of density ma-

trices could be used to interpret and generalize well-known retrieval models.

Contributions

The main contribution of this article is to propose a representational analysis

of the well-known Language Modelling (LM) and Vector Space Model (VSM) ap-

proaches under the unifying formalism of density matrices. Our analysis reveals

that the two approaches are complementary and new retrieval models may be built

upon this complementarity. Notably, this article provided ground for the develop-

ment of the Quantum Language Model (QLM), a new retrieval model that will be

presented in Chapter 5.
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Glossary

We provide a short glossary of the concepts we will be using. These will be

discussed in more details throughout the article.

Ket/Bra In quantum theory, complex vectors are represented using the Dirac’s

notation. Therefore, a column vector u ∈ Hn, where Hn is a vector-space in n

dimensions, is denoted using a ket, |u〉. Its transpose is denoted using a bra, 〈u|.

Dyad/Projector A dyad is a unit-rank projection matrix. Given a ket |u〉, the

dyad |u〉〈u| ∈ Hn×n is a projector onto the ray |u〉.

Quantum State In quantum theory, the state of a system, i.e. a particle or, in

the case of information retrieval, a document or a query, is described by a ket |u〉.

Superposition We say that a system is in a superposition of states if it is de-

scribed by a ket |s〉 = α|u〉+ β|v〉, where |u〉, |v〉 are the components of the super-

position and α, β their weights. Superposition is peculiar in quantum theory and

can be viewed as the system being both in state |u〉 and in state |v〉.

Density Matrix/Mixed State Unlike superposition, a density matrix expresses

uncertainty about the actual state of the system. It is a symmetric, positive-definite

matrix of trace equal to one. If a system is in state |u〉 with probability α and in

state |v〉 with probability β = 1 − α, it can be described by the density matrix

S = α|u〉〈u| + β|v〉〈v|. When the state of a system can be expressed by means of

a density matrix, we say that the system is in a mixed state.

4.1 Introduction

Information Retrieval (IR) has nowadays become the focus of a multidisciplinary

research, combining mathematics, statistics, philosophy of language and of the

mind and cognitive sciences. In addition to these, it has been recently argued that

IR researchers should be looking into particular concepts borrowed from physics.

Particularly, it was first evoked in 2004 in Van Rijsbergen’s pioneering manuscript
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“The Geometry of Information Retrieval” (van Rijsbergen, 2004) that Quantum

Theory principles could be beneficial to IR.

Despite Quantum Theory (QT) being an extremely successful theory in a num-

ber of fields, the idea of giving a quantum look to Information Retrieval could

be at first classified as unjustified euphoria. However, the main motivation for

this big leap is found in the powerful mathematical framework embraced by the

theory which offers a generalized view of probability measures defined on vector

spaces. Events correspond to subspaces and generalized probability measures are

parametrized by a special matrix, usually called density matrix or density opera-

tor. From an IR point of view, it is extremely attractive to deal with a formalism

which embraces probability and geometry, those being two amongst the pillars of

modern retrieval models. Even if we believe that an unification of retrieval ap-

proaches would be out-of-reach due to the intrinsic complexity of modern models,

the framework of QT could give interesting overlooks and change of perspective

thus fostering the design of new models. The opening lines of van Rijsbergen

(2004) perfectly reflect this interpretation: “It is about a way of looking, and it is

about a formal language that can be used to describe the objects and processes in

Information Retrieval”. To this end, the last chapter of Van Rijsbergen’s book is

mainly dedicated to a preliminary analysis of IR models and tasks by means of the

language of QT. Amongst others, the author deals with coordinate level matching

and pseudo-relevance feedback.

Since then, the methods that stemmed from Van Rijsbergen’s initial intuition

provided only limited evidence about the real usefulness and effectiveness of the

framework for IR tasks (Piwowarski et al., 2010; Zhao et al., 2011; Zuccon et al.,

2011). Several proposed approaches took inspiration from the key notions of the

theory such as superposition, interference or entanglement. In Zuccon et al. (2010),

the authors use interference effects in order to model document dependence thus

relaxing the strong assumption imposed by the probability ranking principle (PRP).

An alternative solution to this problem has been proposed in Zhao et al. (2011), in

which a novel reranking approach is proposed using a probabilistic model inspired

by the notion of quantum measurement. In Piwowarski et al. (2010), the authors

represent documents as subspaces and queries as density matrices. However, both

documents and queries are estimated through passage-retrieval like heuristics, i.e.

a document is divided into passages and is associated to a subspace spanned by
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the vectors corresponding to document passages. Different representations for the

query density matrix are tested but none of them led to good retrieval performance.

In Sordoni et al. (2013), the authors work out an explicit interference formula in a

topic model setting. Although improvements are obtained over the baseline model,

the ad-hoc application of the interference formula does not provide solid evidence

towards the usefulness of the theory itself.

In order to give a stronger theoretical status to QT as a necessary or more

general theory for IR, some authors step back into more theoretical considerations

exposing potential improvements achievable over state-of-the-art models (Widdows

and Peters, 2003; Melucci, 2010, 2013; Piwowarski et al., 2012). In Melucci (2013),

the author shows how detection theory in QT offers a generalization of the Neyman-

Pearson Lemma (NPL), which is shown to be strictly linked to the PRP. Dramatic

potential improvements could be obtained by switching to such more general frame-

work. Widdows and Peters (2003) observed that the Vector Space Model (VSM)

lacked a logic like the Boolean model. Through the formalism for quantum logic

illustrated in Birkhoff and Neumann (1936), the author defines a geometry of word

meaning by expressing word negation based on the notion of orthogonality. Re-

cently, Melucci and Rijsbergen (2011) offered a comprehensive review of QT meth-

ods for IR along with some insightful thoughts about possible reinterpretations of

general IR methods – such as LSI (Deerwester et al., 1990) – from a quantum point

of view. This paper shares the main purpose of the latter works.

In the ending section of his book, Van Rijsbergen calls for a reinterpretation

of the Language Modeling (LM) approach for IR by means of the quantum frame-

work. To our knowledge, such an interpretation has not been presented yet in the

literature and this work can be considered as a first attempt to fill this gap. We

provide a theoretical analysis of both LM and the VSM approach from a quantum

point of view. In both models, documents and queries can be represented by means

of density matrices. A density matrix is shown to be a general representational tool

capable of leveraging capabilities of both VSM and LM representations thus paving

the way for a new generation of retrieval models. As a conclusion, we analyze the

possible implications suggested by our findings.
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4.2 Quantum Probability and Density Matrices

In QT, the probabilistic space is naturally encapsulated in a complex vector

space, specifically a Hilbert space, noted Hn. We adopt the notation |e1〉, . . . , |en〉 1

to denote the standard basis vectors in Hn. In QT, events are no more defined as

subsets but as subspaces, more specifically as projectors onto subspaces. Given a

ket |u〉, the projector |u〉〈u| onto |u〉 is an elementary event of the quantum prob-

ability space, also called dyad. A dyad is always a projector onto a 1-dimensional

space. Generally, a unit vector |v〉 =
∑

i υi|ui〉, υi ∈ H,
∑

i |υi|2 = 1, is called a

superposition of the |ui〉 where |u1〉, . . . , |un〉 form an orthonormal basis for Hn.

A density matrix ρ is a symmetric positive semi-definite matrix of trace one.

In QT, a density matrix defines the state of a system (a particle or an ensem-

ble of particles) under consideration. Gleason’s famous theorem (Gleason, 1957)

ensures that a density matrix is the unique way of defining quantum probability

measures through the mapping µ(|u〉〈u||ρ) = tr (ρ|u〉〈u|). The measure µ ensures

that ∀|u〉, µ(|u〉〈u||ρ) ≥ 0. This is because, tr (ρ|u〉〈u|) = 〈u|ρ|u〉 ≥ 0 because ρ is

positive semi-definite. Moreover, if |u1〉, . . . , |un〉 form an orthonormal system for

Hn, the probabilities for the dyads |ui〉〈ui| sum to one, i.e. they can be understood

as disjoints events of a classical sample space. Given that
∑

i |ui〉〈ui| = In, the

identity matrix, we have
∑

i tr (ρ|ui〉〈ui|) = tr (ρ
∑

i |ui〉〈ui|) = tr (ρ) = 1. There-

fore, for orthogonal decompositions of the vector space 2, a quantum probability

measure µ reduces to a classical probability measure.

Any classical discrete probability distribution can be seen as a mixture over n

elementary points, i.e. a parameter θ = (θ1, . . . , θn), θi ≥ 0,
∑

i θi = 1. The density

matrix is the straightforward generalization of this idea by considering a mixture

over orthogonal dyads 3, i.e. ρ =
∑

i υi|ui〉〈ui|, υi ≥ 0,
∑

i υi = 1. Given a density

matrix ρ, one can find the components dyads by taking its eigendecomposition

1. The Dirac notation establishes that |u〉 denotes a unit norm vector in Hn and 〈u| its con-
jugate transpose.

2. In a more general formulation of the theory, a quantum probability measure reduces to
a classical probability measure for any set M = {Mi} of positive operators Mi such that∑

iMi = In. The set M is called Positive-Operator Valued Measure (POVM) (Nielsen and
Chuang, 2010). Therefore, the properties reported in this paper which apply to a complete set of
mutually orthogonal projectors equally hold for a general POVM.

3. In general, the dyads in the mixture don’t need to be orthogonal. However, in this case,
the coefficients υi cannot be easily interpreted as the probabilities assigned by the density matrix
to each dyad.
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and building a dyad for each eigenvector. We note such decomposition by ρ =

RΛR† =
∑n

i=1 λi|ri〉〈ri|, where |r〉i are the eigenvectors and λi their corresponding

eigenvalues. This decomposition always exists for density matrices (Nielsen and

Chuang, 2010). Note that the vector of eigenvalues λ = (λ1, . . . , λn) belongs to the

simplex of classical discrete distributions over n points. If the distribution λ lies

at a corner of the multinomial simplex, i.e. λi = 1 for some i, then the resulting

density matrix consists of a single dyad and is called pure state. In the other cases,

the density is called mixed state.

Conventional probability distributions can be represented by diagonal density

matrices. In this case, a classical sample space of n points corresponds to the set

of projectors onto the standard basis {|e1〉〈e1|, . . . , |en〉〈en|}. Hence, the density

matrix corresponding to the multinomial parameter θ above can be represented

as a mixture, ρθ = diag(θ) =
∑

i θi|ei〉〈ei|. As an example, the density matrix ρθ

below corresponds to a classical probability distribution with n = 2, σ is a pure

state and ρ is a general quantum density, a mixed state:

ρθ =
1

2
|ea〉〈ea|+

1

2
|eb〉〈eb| =

(
0.5 0

0 0.5

)

σ =

(
0.5 0.5

0.5 0.5

)
,

ρ =

(
0.5 0.25

0.25 0.5

)
.

4.3 Looking at Language Models

In the Language Modeling approach to IR, each document is usually assigned

a unigram language model θd = (θd1, . . . , θdn), i.e. a categorical distribution over

the vocabulary sample space V (of size n), w ∈ V , p(w|θd) = θdw (Zhai, 2007).

A query is represented as a sequence of terms {q1, . . . , qm}, sampled i.i.d. (inde-

pendent and identically distributed) from the document model. The score for a

document is obtained by computing the likelihood for the query to be generated
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by the corresponding document model:

L({q1, . . . , qm}|θd) =
m∏
i=1

p(qi|θd). (4.1)

This scoring function is generally called Query Likelihood (QL). On the other

hand, Kullback-Leibler (KL) divergence models can be seen as a generalization

of QL models introduced in order to facilitate the use of feedback information

in Language Modeling framework (Zhai, 2007). In KL-divergence models, both

documents and queries are assigned to unigram language models. The score for a

document is calculated as the negative query to document KL-divergence:

−KL(θq‖θd) = −
∑
w

θqw log
θqw
θdw

.

4.3.1 Query Likelihood View

As presented in Section 4.2, conventional probability distributions can be seen

as diagonal density matrices. A straightforward quantum interpretation of the QL

scoring function can be obtained by associating a diagonal density matrix to each

document and consider a query as a sequence of dyads. Formally, we associate the

vocabulary sample space to the orthogonal set of projectors on the standard basis,

E = {|e1〉〈e1|, . . . , |en〉〈en|}. The density matrix ρ for a document is a mixture

over E whose vector of weights corresponds to the parameters θd. Therefore, ρ =

diag(θd) =
∑

i θdi|ei〉〈ei|. It is straightforward to show that restricted to E , µρ

generates the same statistics as p(·|θd), i.e. ∀w ∈ V :

µ(|ew〉〈ew||ρ) = tr (ρ|ew〉〈ew|) =
∑
i

θdi tr (|ei〉〈ei||ew〉〈ew|) = θdw = p(w|θd).

In the query likelihood view, the query is represented as an i.i.d. sample of

word events. As word events correspond to projectors onto the standard basis,

we represent a query as a sequence of i.i.d. 4 quantum events belonging to E ,

{|eq1〉〈eq1|, . . . , |eqm〉〈eqm|}. Therefore, the score for a document is computed by the

4. In quantum physics, the meaning of i.i.d. can be associated to the physical notion of
measurement. If a density matrix ρ represents the state of a system, an i.i.d. set of m quantum
events is obtained by performing a measurement on m different copies of ρ and by recording the
outcomes.
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following product:

L({|eq1〉〈eq1|, . . . , |eqm〉〈eqm |}|ρ) =
m∏
i=1

µ(|eqi〉〈eqi ||ρ) =
m∏
i=1

p(qi|θd), (4.2)

which indeed corresponds to the classical QL scoring function. However, we shall

stress out an important point about the equation above. If the projectors included

in the query sequence are mutually orthogonal (as above), the calculation above

behaves as a proper classical likelihood, i.e. the sum of the likelihoods of all possible

samples of length m is one. On the contrary, the product cannot be considered as

a classical likelihood because quantum probabilities for arbitrary events does not

need to sum to one. Further considerations on these issues will be made in Section

6.

4.3.2 Divergence View

The KL scoring function computes a divergence between a query language model

θq and document language model θd. In QT, the KL-divergence is a special case of

a more general divergence function acting on density matrices called Von-Neumann

(VN) Divergence. Note ρ =
∑

i λi|ri〉〈ri|, and σ =
∑

i ζi|si〉〈si| the eigendecompo-

sitions of two arbitrary density matrices. In the following, the log function applied

to a matrix refers to the matrix logarithm, i.e. the natural logarithm applied to

the matrix eigenvalues, log ρ =
∑

i log λi|ri〉〈ri|. The VN divergence writes as:

VN(ρ‖σ) = tr (ρ(log ρ− log σ)) =
∑
i

λi log λi −
∑
i,j

λi log ζj|〈ri|sj〉|2.

This divergence quantifies the difference in the eigenvalues as well as in the eigen-

vectors of the two density matrices Tsuda et al. (2006).

In order to see how the classical KL retrieval framework is recovered, we assign

a density matrix to the query very similarly to what has been done for a document.

Precisely, ρq and ρd are diagonal density matrices such that ρd =
∑

i θqi|ei〉〈ei| and

ρd =
∑

i θdi|ei〉〈ei|. As ρq (ρd) is diagonal in the standard basis, its eigenvalues
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correspond to θq (θd), thus:

VN(ρq‖ρd) =
∑
i

θqi log θqi −
∑
i,j

θqi log θdj|〈ei|ej〉|2 =
∑
i

θqi log
θqi
θdi
,

which corresponds to the KL divergence. As conventional probability distributions

correspond to diagonal density matrices, their eigensystem is fixed to be the identity

matrix. Intuitively, KL divergence captures the dissimilarities in the way they

distribute the probability mass on that eigensystem, i.e. by their eigenvalues.

4.4 Looking at the Vector Space Model

In this section, we are attempting to look at the VSM (Salton and Buckley,

1988) in a new way. In its original formulation, no probabilistic interpretation

could be given because of the lack of an explicit link between vector spaces and

probability theory (Wong and Yao, 1995). In the model, documents and queries

are represented in the non-negative part of the vector space Rn
+, where n is the

number of terms in the collection vocabulary. In VSM, each term corresponds to a

standard basis vector. The location of each object in the term space is defined by

term weights (i.e. tf, idf, tf-idf ) on each dimension. Similarity between documents

and queries are computed through a vector similarity score q>d, where q, d are

the vector representations of the query and the document. In Salton and Buckley

(1988), the authors show that normalizing document vectors is important to reduce

bias introduced by variance on document lengths. By normalizing both document

vector and query vector, the similarity score reduces to the cosine similarity between

the two vectors, which is an effective similarity measure (Zobel and Moffat, 1998).

Denote |q〉, |d〉 ∈ Rn
+, the normalized (‖ · ‖2) query vectors. Documents can thus be

safely ranked by decreasing cosine 〈q|d〉 ∈ [0, 1], which cannot be negative because

the ambient space is Rn
+. 5

5. In this paper, we do not explicitly take into account situations in which the vectors could
contain negative entries. For example, this could easily happen after the application of Rocchio’s
algorithm (Rocchio, 1971) in feedback situations or by reducing the dimensionality of the vector
space by LSI (Deerwester et al., 1990). Besides the historically encountered difficulties in the
interpretation of such negative entries (Hofmann, 2001), in these particular cases, the rank equiv-
alence situations discussed here may not hold. We argue that ignoring these situations causes no
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4.4.1 Query Likelihood View

In this interpretation of the VSM, each document is associated to a probabilistic

“model” in the same spirit of the Language Modeling approach. We define a density

matrix ρ for the document as ρd = |d〉〈d|, which is a pure state, i.e. its mixture

weights are concentrated onto the projector |d〉〈d|. Note that this density matrix

does not have a statistical meaning. It has been determined by merely normalizing

heuristic weighing schemes and it cannot be related to a statistical estimators such

as Maximum Likelihood (MLE).

A query can be represented as the quantum event corresponding to the subspace

spanned by |q〉. This subspace naturally corresponds to the dyad |q〉〈q|. Hence, a

query can be seen as the sequence of quantum events of length one {|q〉〈q|}. In this

setting, the likelihood given the document model is calculated by:

L({|q〉〈q|}|ρd) = µ(|q〉〈q||ρd) = tr(ρd|q〉〈q|) = tr(〈q|d〉〈d|q〉) = |〈q|d〉|2, (4.3)

The above calculation shows that the quantum “likelihood” assigned to the event

|q〉〈q| by the density ρd is the square of the cosine similarity between the query and

the document. When restricted to the non-negative domain, the square function

is a monotonic, increasing transformation. This means that µ(|q〉〈q||ρd) rank
= 〈q|d〉,

i.e. the two formulations lead to the same document ranking.

4.4.2 Divergence View

According to the original VSM, queries and documents should share the same

representation and the scoring function should be a distance measure between these

representations. In the previous formalization, this initial paradigm seems appar-

ently lost. The following alternative quantum interpretation of the VSM is perhaps

closer to the original vision of the model. We associate a density matrix both to

the document and to the query. Specifically, those density matrices would be pure

states, projectors onto the corresponding vectors, i.e. ρd = |d〉〈d|, ρq = |q〉〈q|. It

turns out that computing the Fidelity measure (Nielsen and Chuang, 2010) between

harm to the generality of our conclusions on the need of an enlarged representation space.
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density matrices produces a ranking function equivalent to cosine similarity:

Fid(ρq, ρd) = tr (
√√

ρqρd
√
ρq) = tr (

√
|q〉〈q|d〉〈d|q〉〈q|) = |〈q|d〉|tr (ρq) = |〈q|d〉|

obtained by noting that ρq is a projector thus
√
ρq = ρq, and tr (ρq) = 1. As

|q〉, |d〉 ∈ Rn
+, ranking by Fidelity measure is equivalent to ranking by cosine simi-

larity, thus F(ρq, ρd)
rank
= 〈q|d〉.

4.5 A joint analysis

In this section, we will try to summarize the commonalities and the differences

arising from the quantum formalizations of the two models given in the preceding

sections. The following analysis is succinctly reported in Table 4.1. As a starting

point, we shall note that the ambient space for both models is the Hilbert space

Hn, where n is the size of the collection vocabulary. Each standard basis vec-

tor E = {|e1〉, . . . , |en〉} is associated to a word event. Therefore, the vocabulary

sample space corresponds to the set of projectors onto the standard basis vectors

{|ei〉〈ei|}ni=1.

4.5.1 Query Likelihood View

In query likelihood interpretations, the query is represented as a sequence of

i.i.d. dyads. In the VSM, the sequence contains one dyad corresponding to the

projector onto the query vector {|q〉〈q|}. On the contrary, in the LM approach the

sequence contains a dyad for each classical word event, i.e. {|eq1〉〈eqi |}mi=1.

Besides the number of dyads included in the sequence, a major difference dis-

tinguishes the two formalizations. Contrary to probabilistic retrieval models such

as LM, a query is not considered as a sequence of independent classical word events

but as a single event and a particular kind thereof. The query event is a superposi-

tion of word events. This can be seen because the vector |q〉 can be expressed, up

to normalization, as |q〉 =
∑

w f(w) |ew〉 where f(w) is the weight for term w in the

query vector. This kind of event cannot be expressed using set theoretic operations

neither it has a clear classical probabilistic interpretation: it does not belong to E
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Query Likelihood View

Query Document Scoring

VSM {|q〉〈q|} ρd = |d〉〈d| µ(|q〉〈q||ρ)

LM {|eq1〉〈eq1 |, . . . , |eqm〉〈eqm |} ρd =
∑

w θdw|ew〉〈ew|
∏
i µ(|eqi〉〈eqi ||ρd)

Divergence View

VSM ρq = |q〉〈q| ρd = |d〉〈d| Fid(ρq, ρd)

LM ρq =
∑

w θqw|ew〉〈ew| ρd =
∑

w θdw|ew〉〈ew| −VN(ρq‖ρd)

Table 4.1 – Density-matrix based interpretation of query-likelihood and divergence view to
retrieval. In the query-likelihood view the query is a “quantum” event (a dyad, or a collection
thereof), a document is a general density matrix and the scoring is the quantum likelihood of the
query event given the document matrix. In the divergence view, both documents and queries are
density matrices and the scoring corresponds to a divergence defined on the manifold of density
matrices.

thus it can only be justified in the quantum probabilistic space. Arguing further,

we would say that, in the case of VSM, term weighting methods aim at estimat-

ing the “best” query event, i.e. the event which is the most representative for the

information need of the user. Intuitively, if a single choice would be given to us

on what to observe, we would rather be observing in the “direction” of important

words in the query.

It follows from the considerations above that VSM creates query representations

by accessing the whole projective space through appropriate choices of f(w). On

the contrary, LM“sees”, and consequently can handle, only events from the classical

sample space E . However, the principled probabilistic foundations of the model give

the flexibility of adding an arbitrary number of such events in the sequence, thus

refining query representation 6. In the next section, this kind of duality between

VSM and LM approaches will be strengthened by analyzing the properties of the

density matrices used in the two models.

Before continuing, we shall make one last consideration about the “likelihood”

written in Eq. 4.2. This equation and its corresponding maximization algorithm

have already been proposed by Lvovsky et al. (Lvovsky, 2003) in Quantum Tomog-

6. This is indeed the practice of Query Expansion (QE), see for example (Carpineto and
Romano, 2012).
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Figure 4.1 – The set D2 visualized using the Bloch sphere parametrization. We highlight in
black the regions of D2 used by LM (to the left) and VSM (to the right).

raphy applications in order to achieve a Maximum Likelihood Estimation (MLE)

of a density matrix. Eq. 4.2 reduces to a classical likelihood if and only if the

projectors in the sequence are picked from the same eigensystem. Therefore, the

product in its general form cannot be understood as a proper likelihood. We believe

that it would be interesting to focus future research in finding a proper likelihood

formulation in the quantum case that would enable principled statistical estimation

and Bayesian inference (see Warmuth and Kuzmin (2009) for a recent attempt in

formulating a Bayesian calculus for density matrices).

4.5.2 Divergence View

In the divergence view, a density matrix is associated both to the document and

to the query and the scoring function is a divergence defined on the set Dn of n×n
density matrices. Valuable insights can be provided by noting that the models gain

access to different regions within Dn. As an example, in Fig. 4.1, we plot the set

D2 using the Bloch parametrization (Nielsen and Chuang, 2010). Highlighted in

black are the regions of the space used by LM (left) and VSM (right). Distinct

regions are likely to denote different representational capabilities.

In the case of LM, density matrices are restricted to be diagonal, i.e. mixtures

over the identity eigensystem. For two density matrices to be different, one has

to modify the distribution of the eigenvalues. Therefore, LM ranks based upon

differences in the eigenvalues between density matrices. The picture of the VSM
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approach appears as the perfect dual of the preceding situation. Query and docu-

ments are represented by pure states, i.e. dyads. Whatever the dimensionality of

the Hilbert space, the mixture weights of these density matrices are concentrated

onto a single projector. In order to be different, density matrices must be defined

over different eigensystems. Therefore, VSM ranks based on the difference in the

eigensystem between query and document density matrices.

The set of diagonal density matrices is represented in Fig. 4.1 (left). Any two

antipodal points on the surface of the sphere correspond to a particular eigensystem.

Diagonal density matrices are restricted to the identity eigensystem. However,

they can delve inside the sphere by spreading the probability mass across their

eigenvalues. The black circle in Fig. 4.1 (right) highlights pure states with real

positive entries. These naturally lie on the surface of the Bloch sphere.

In summary, the VSM restriction to pure states leaves free choice on the eigen-

system while fixing the eigenvalues. Conversely, by restricting density matrices to

be diagonal, i.e. classical probability distributions, LM leaves free choice on the

eigenvalues while fixing the eigensystem. Leveraging both degrees of freedom by

employing the machinery of density matrices seems to be a natural step in order to

achieve more precise representation for documents and queries. VSM and LM also

differ in the choice of scoring functions. The former uses the Fidelity measure which

is a metric on Dn. The latter uses an asymmetric divergence on Dn. More insights

into these differences are given in the next section, where we try to contextualize

our considerations by referring to common IR issues and concepts.

4.6 A Joint Interpretation and Perspectives

In Zhai (2007), the author presents KL divergence models as “essentially similar

to the vector-space model except that text representation is based on probability

distributions rather than heuristically weighted term vectors”. The analysis done in

the previous section extends this remark and highlights how VSM and LM leverage

very different degrees of freedom by allocating different regions in Dn. However,

no clue is given about what should be the meaning of the eigensystems and the

eigenvalues from an IR point of view, nor why controlling both could be useful for
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IR. We will try to give some perspective for the potential usefulness of the enlarged

representation space.

In basic bag-of-words retrieval models such as LM or VSM, terms are assumed

to be unrelated, in the sense that each term is considered to be an atomic unit of

information. To enforce this view, LM associates to each term a sample point and

the VSM a dimension in a vector space. Our analysis showed that sample points

correspond to dimensions in a vector space. The heritage left by LSI (Deerwester

et al., 1990) suggests that a natural interpretation for such dimensions is to consider

them as concepts. In this work, we interpret projectors onto directions as concepts.

Because terms are considered as unrelated, the projectors onto the standard basis

|e1〉〈e1|, . . . , |en〉〈en| in Hn form a conceptual basis in which each term labels its

own underlying concept. 7

From this point of view, LM builds representations of queries and documents

by expressing uncertainty on which concept chosen from the standard basis repre-

sents the information need. On the contrary, VSM does not have the flexibility of

spreading probability weights. However, it can represent documents and queries by

a unique but arbitrary concept. In VSM, the similarity score is computed by com-

paring how similar the query concept is to the document concept. In this picture,

the cosine similarity reveals to be a measure of relatedness between concepts. In

LM, the score is not at all computed on concept similarity, but by considering how

the query and the document spread uncertainty on the same conceptual basis.

In order to see how this all could be instantiated, let us suppose that compound

phrases such as“computer architecture”express a different concept than“computer”

and“architecture”taken separately. Modelling interactions between terms has been

a longstanding problem in IR (Gao et al., 2004). We conjecture that a very natural

way to handle such cases stems from our analysis. Assume that both “computer”

and “architecture” are associated to their corresponding single term concepts, i.e.

|ec〉〈ec|, |ea〉〈ea|. The concept expressed by the compound could be associated to

a superposition event |kca〉〈kca| where |kca〉 = f(c)|ec〉+ f(a)|ea〉 and f is a weight

function (assuming normalization) expressing how compound and single term con-

7. In Melucci (2008), each basis of a vector space is considered as describing a contextual prop-
erty and the vectors in the basis as contextual factors. We prefer not to adopt such interpretation
for two reasons: (1) in this paper, classical sample spaces are exclusively associated to orthonor-
mal basis and (2) we believe that referring to concepts leads to a more general formulation, better
tailored to our needs.
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cepts are related. In this setting, the enlarged representation space turns out to

be useful in order to express uncertainty on this set of concepts. The next step is

to build a density matrix associated both to a query and to a document assigning

uncertainty to both single term concepts |ec〉〈ec|, |ea〉〈ea| and compound concepts

|kca〉〈kca|. This could be done, for example, by leveraging quantum estimation

methods such as described in (Lvovsky, 2003). As we have pointed out before, the

VN divergence could be the suitable scoring function in order to take into account

both divergences in uncertainty distribution and concept similarities.

The considerations made so far did not necessitate of the whole machinery of

complex vector spaces. We do not have a practical justification for the usefulness

of vector spaces defined over the complex fields (see Zuccon et al. (2011) for a

discussion on these issues). However, we speculate that these could bring improved

representational power and thus remains an interesting direction to explore.

4.7 Conclusion

In this work, we showed how VSM and LM can be considered dual in how they

allocate the representation space of density matrices and in the nature of their

scoring functions. In our interpretation, VSM adopt a symmetric scoring function

which measures the concept similarity. LM fixes the standard conceptual basis and

scores documents against queries based on how they spread the probability mass on

such basis. We argued that leveraging both degrees of freedom could lend a more

precise representations of documents and queries and could be especially effective

in modelling compound concepts arising from phrasal structures.
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of the article and gave several insights on possible future directions.

Context

The previous chapter provided us with the insight that new retrieval models

may be built by means of a more general representational space. In this article,

we present a new retrieval model that stems from the conclusions of the previous

chapter. Our model estimates representations for documents and queries based

on the presence of single terms and multi-word phrases. Until its formulation

in (Metzler and Croft, 2005), the Markov Random Field Model (MRF) for IR held

the state-of-the-art performance for term dependency models. MRFs consists in a

scoring function mixing unigram scores with higher-order phrase scores. A major

concern with this approach is that words and phrases are considered independently,

i.e. phrases are associated to additional dimensions in the representation space.

Clearly, phrases are not independent of their component words: as stated by Jones

et al. (1998),“they represent a particular example of an extreme form of dependence

between indexing units: the phrase entails the presence of single words”. Differently

from previous approaches, we propose to estimate the representations of documents
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and queries by considering the interdependency between terms and phrases. We

reproduce the article here as it appeared in SIGIR in its original form. In addition,

we report the additional results obtained from our participation to the TREC 2013

Web Track conference (Sordoni et al., 2013).

Contributions

The contribution of this article is two-fold. First, we propose a novel application

of quantum probability to IR and we show that significant improvements over a

strong baseline bag-of-words model and a strong non bag-of-words model. Second,

we show that the new phrase representation allows to specify the relationship be-

tween the phrase and its component terms. In our model, the phrasal information

is not integrated in the scoring phase, but in the estimation phase.

Recent Developments

Our article can be considered as the first experimental evidence of the usefulness

for IR of the mathematical framework of QT (Balkir et al., 2016). A number of

extensions of the model have been proposed. For example, Li et al. (2015) proposes

a Session-based Quantum Language Model (SQLM) that deals with multi-query

session search task. Xie et al. (2015) uses QLMs to integrate term dependencies as

quantum entanglements. This work has also provided ground for our next article,

in which we will show how it is possible to learn, in an unsupervised way, the QLM

projectors for each term (Sordoni et al., 2014).

5.1 Introduction

The quest for the effective modeling of term dependencies has been of central

interest in the information retrieval (IR) community since the inception of first

retrieval models. However, the gradual shift towards non bag-of-words models is

strewn with modeling difficulties. One of the central problems is to find an effective

way of representing and scoring documents based on such dependencies. As pointed

out by Gao et al. (2004), dependencies can be handled in two ways.
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The first approach is to extend the dimensionality of the representation space.

In early geometrical retrieval models such as the Vector Space Model (VSM), de-

pendencies arising from phrases (compound terms) are represented by defining

additional dimensions in the space, i.e. both the phrase and its component single

terms are regarded as representation features Fagan (1987); Mitra et al. (1997);

Salton et al. (1974). For example, computer architecture is considered as disjoint

from computer and architecture, which is a strong modeling assumption, and does

not take advantage of the semantic relation that generally exists between a com-

pound phrase and its component terms.

The second approach is more principled in such that simple terms are kept

as representational units and term dependencies are modeled statistically as joint

probabilities, i.e. p(computer, architecture). Proposed dependence models such as

n-gram Language Model (LM) for IR (Song and Croft, 1999), bi-term LM (Srikanth

and Srihari, 2002) or the dependence LM (Gao et al., 2004) adopt such a rep-

resentation. However, the gain from integrating dependencies was smaller than

hoped (Zhai, 2007) and it came with higher computational costs due to dependency

parsing or n-gram models (Lee et al., 2006; Song and Croft, 1999), or unsupervised

iterative methods for estimating the joint probability (Gao et al., 2004).

Recently, non bag-of-words models such Markov random field (MRF) (Metzler

and Croft, 2005), quasi-synchronous dependence model (Park et al., 2011) and the

query hypergraph model (Bendersky and Croft, 2012) have been proposed. Most

of these retrieval models take a log-linear form, which offers a very flexible way of

taking into account term dependencies by integrating different sources of evidence,

such as proximity heuristics and exact matching. However, the LM is used as a

black box to estimate single-term and compound-term influences separately and

then the model combines them to compute the final score. We believe that, from

a representational point of view, these models have implicitly made a turn back to

the first VSM approach in the sense that the dependencies are assumed to repre-

sent additional concepts, i.e. atomic units for the purpose of document and query

representation, thus disjoint from the component terms (Bendersky et al., 2011;

Bendersky and Croft, 2012). This choice indeed allows for flexible scoring func-

tions. However, the retrieval model boils down to a combination of scores obtained

separately from matching single terms and from matching compound dependencies.

This is the main cause of the weight-normalization problem (Jones et al., 2000b;
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Gao et al., 2004) which is that a dependency may be counted twice, as a compound

and as component terms. In the context of phrases Jones et al. (2000b) state: “the

weight of the phrase should reflect not the increased odds of relevance implied by its

presence as compared to its absence, as a whole unit, but the increased odds com-

pared to the presence of its components words”. When integrating the evidence, the

weights for the combination are usually estimated by optimizing a retrieval measure

such as Mean Average Precision (MAP). In this sense, a principled probabilistic

interpretation of these models is difficult.

The pioneering work by van Rijsbergen (2004) officially formalized the idea

that Quantum Theory (QT) could be seen as a “formal language that can be used

to describe the objects and processes in information retrieval”. The idea of QT as a

framework for manipulating vector spaces and probability is appealing. However,

the methods that stem from this initial intuition provided only limited evidence

about the usefulness and effectiveness of the framework for IR tasks. For exam-

ple, Piwowarski et al. (2010) test if acceptable performance for ad-hoc tasks can

be achieved with a quantum approach to IR. The authors represent documents

as subspaces and queries as density operators. However, both documents and

queries representations are estimated through passage-retrieval like heuristics, i.e.

a document is divided into passages and is associated to a subspace spanned by

the vectors corresponding to document passages. Different representations for the

query density matrix are tested but none of them led to good retrieval perfor-

mance. Successively, a number of works took inspiration from quantum phenom-

ena in order to relax some common assumption in IR (Zhao et al., 2011; Zuccon

et al., 2010). Zuccon et al. (2010) introduce interference effects into the Probability

Ranking Principle (PRP) in order to rank interdependent documents. Although

this method achieves good results, it does not make principled use of the quantum

probability space and cannot be considered as evidence towards the usefulness of

the enlarged probabilistic space. In general, these methods made heuristic use of

the concepts of the theory and no clear probabilistic interpretation can be given.

The intrinsic heuristic flavor in preceding approaches motivated some authors to

provide evidence to the hypothesis that there exists an IR situation in which classi-

cal probabilistic IR fails, or it is severely limited, and it is thus necessary to switch

to a more general probabilistic theory (Warmuth and Kuzmin, 2009; Melucci and

Rijsbergen, 2011; Melucci, 2013). Although these works are theoretically grounded
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and heavily influenced our general vision of the theory, no clue is given on how to

operationalize such results in real-world applications.

In this paper, we propose a novel retrieval framework for modeling term de-

pendencies based on the probabilistic calculus offered by QT. In our model, both

single terms and compound dependencies are mathematically modeled as projec-

tors in a vector space, i.e. elementary events in an enlarged probabilistic space. In

particular, a compound dependency is represented as a superposition event which

is a special kind of projector that is neither disjoint from its component terms, nor

a joint event. Documents and queries are represented as a sequence of projectors

associated to a Quantum Language Model (QLM), encapsulated in a particular

matrix. The scoring function is a divergence between query and document QLMs.

We will show that our model is a generalization of classical unigram LMs. To our

knowledge, this work can be seen as the first work to use the quantum probabilistic

calculus in order to achieve improvements over state-of-the-art models.

5.2 A Broader View on Probability

5.2.1 The Quantum Sample Space

In quantum probability, the probabilistic space is naturally encapsulated in a

vector space, specifically a Hilbert space, noted Hn, but for the sake of simplicity,

in this paper we limit ourselves to finite real spaces, noted Rn. We will be using

Dirac’s notation restricted to the real field, for which a unit vector u ∈ Rn, ‖u‖2 = 1

and its transpose u> are respectively written as a ket |u〉 and a bra 〈u|. Using this

notation, the projector onto the direction u writes as |u〉〈u|. The inner product

between two vectors writes as 〈u|v〉. Moreover, we note by |ei〉 the elements of the

standard basis in Rn, i.e. |ei〉 = (δ1i, . . . , δni)
>, where δij = 1 iff i = j.

Events are no more defined as subsets but as subspaces, more specifically as pro-

jectors onto subspaces (Nielsen and Chuang, 2010; Warmuth and Kuzmin, 2009).

Given a 1-dimensional subspace spanned by a ket |u〉, the projector onto the unit

norm vector |u〉, |u〉〈u|, is an elementary event of the quantum probability space,

also called a dyad. A dyad is always a projector onto a 1-dimensional space. Given

the bijection between subspaces and projectors, it is correct to state that |u〉 is
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itself an elementary event. For example, if n = 2, the quantum elementary events

|e1〉 = (1, 0)>, |f1〉 = ( 1√
2
, 1√

2
)>, can be represented by the following dyads:

|e1〉〈e1| =
(

1 0

0 0

)
, |f1〉〈f1| =

(
0.5 0.5

0.5 0.5

)
. (5.1)

Generally, any ket |v〉 =
∑

i υi|ui〉 is called a superposition of the {|ui〉} where

{|u1〉, . . . , |un〉} form an orthonormal basis. In order to see the generalization that

is taking place, one has to consider that in Rn there is an infinite number of vectors

even if the dimension n is finite. Hence, contrary to the classical case, an infinite

number of elementary events can be defined.

5.2.2 Density Matrices

A quantum probability measure µ is the generalization of a classical probability

measure such that (i) for every dyad |u〉〈u|, µ(|u〉〈u|) ∈ [0, 1] and (ii) it reduces

to a classical probability measure for any orthonormal basis {|u1〉, . . . , |un〉}, i.e.∑
i µ(|ui〉〈ui|) = 1. Gleason’s Theorem (Gleason, 1957) states that, for any real

vector space with dimension greater than 2, there is a one-to-one correspondence

between quantum probability measures µ and density matrices ρ. The form of this

correspondence is given by:

µρ(|v〉〈v|) = tr (ρ|v〉〈v|). (5.2)

A real density matrix is symmetric, ρ = ρ>, positive semidefinite, ρ ≥ 0, and of

trace 1, tr ρ = 1 1. From now on, the set of n × n real density matrices would be

noted Sn.

By Gleason’s theorem, a density matrix can be seen as the proper quantum gen-

eralization of a classical probability distribution. It assigns a quantum probability

to each one of the infinite dyads. For example, the density matrix:

ρ =

(
0.5 0.5

0.5 0.5

)
, (5.3)

assigns probabilities tr (ρ|e1〉〈e1|) = 0.5 and tr (ρ|f1〉〈f1|) = 1. Hence, the event

1. The trace is equal to the sum of the diagonal terms in a matrix.
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|f1〉〈f1| is certain and still there is non-classical uncertainty on |e1〉〈e1|. Only

if {|u1〉, . . . , |un〉} form an orthonormal system of Rn can the dyads |ui〉〈ui| be

understood as disjoints events of a classical sample space, i.e. their probabilities

sum to one. The relation that ties |e1〉〈e1| and |f1〉〈f1| is purely geometrical and

cannot be expressed using set theoretic operations.

Any classical discrete probability distribution can be seen as a mixture over n

elementary points, i.e. a parameter θ = (θ1, . . . , θn), where θi ≥ 0 and
∑

i θi = 1.

The density matrix is the straightforward generalization of this idea by considering

a mixture over orthogonal dyads ρ =
∑

i υi|ui〉〈ui| where υi ≥ 0 and
∑

i υi = 1.

Given a density matrix ρ, one can find the components dyads by taking its eigen-

decomposition and building a dyad for each eigenvector. We note such decom-

position by ρ = RΛR> =
∑n

i=1 λi|ri〉〈ri|, where |ri〉 are the eigenvectors and λi

their corresponding eigenvalues. This decomposition always exists for density ma-

trices (Nielsen and Chuang, 2010).

Conventional probability distributions can be represented by diagonal density

matrices. The sample space corresponds to the standard basis E = {|ei〉〈ei|}ni=1.

Hence, the density matrix corresponding to the parameter θ above can be repre-

sented as a mixture over E , i.e. ρθ = diag(θ) =
∑

i θi|ei〉〈ei|. Consider a vocabulary

of two terms V = {a, b}. A unigram language model θ = (0.75, 0.25) defined on V
is represented by:

ρθ =
3

4
|ea〉〈ea|+

1

4
|eb〉〈eb| =

(
0.75 0

0 0.25

)
.

Hence, term projectors are orthogonal, i.e. terms correspond to disjoint events.

For example, the probability of the term a is computed by tr (ρθ|ea〉〈ea|) = 0.75.

As conventional probability distributions are restricted to the identity eigensystem,

they differ in their eigenvalues, which correspond to diagonal entries. On the con-

trary, general density matrices can differ also in the eigensystem. For example, the

density matrix ρ of Eq. 5.3 has eigenvector |f1〉 = ( 1√
2
, 1√

2
)> with eigenvalue 1 and

the eigenvector |f2〉 = ( 1√
2
,− 1√

2
)> with eigenvalue 0. Hence, it can be represented

as a one-element mixture containing the projector ρ = |f1〉〈f1|. When the mixture

weights are concentrated into a single projector, the corresponding density matrix

is called pure state. Otherwise, it is called mixed state.

When defined over Rn, density matrices can be seen as ellipsoids, i.e. defor-
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mations of the unit sphere (Figure 5.1) (Warmuth and Kuzmin, 2009). Classical

probability distributions, i.e. diagonal density matrices, are ellipsoids stretched

along the identity eigensystem. As quantum probability has access to an infinite

number of eigensystems, the ellipsoid can be “rotated”, i.e. defined on a different

eigensystem. In this work, we will use this additional feature in order to build a

more reliable representation of documents and queries taking into account more

complex information than single terms.
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(
0.75 0

0 0.25

) (
0.5 0.25
0.25 0.5

)

(
0.5 0.5
0.5 0.5

)
Figure 5.1 – The ellipses depict the action of the density matrices on the 2-D circle, i.e.
{ρ|u〉 : |u〉 ∈ R2}. The eigenvalues of ρ define how much each ellipse is stretched along the
corresponding eigenvectors. To the left, ρ corresponds to a classical probability distribution. To
the center, a general density matrix for which we vary both the eigenvalues and the eigensystem.
To the right, ρ is a pure state, thus the ellipse degenerates along the eigenvector corresponding
to its unit eigenvalue.
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5.3 Quantum Language Models

The approach Quantum Language Modeling (QLM) retains the classical Lan-

guage Modeling for IR as a special case. Hereafter, we will present in details the

quantum counterpart of unigram language models. Although it is not explicitly

developed in this paper, we argue that arbitrary n-gram models could be modeled

as well.

5.3.1 Representation

In classical bag-of-words language models, a document d is represented by a

sequence of i.i.d. term events, i.e. Wd = {wi : i = 1, . . . , N}, where N is the

document length. Each wi belongs to a sample space V , corresponding to the

vocabulary, of size n. It is assumed that such sequences correspond to a sample

from an unknown distribution θ over the vocabulary V , for which we want to gain

insight.

A quantum language model assigns quantum probabilities to arbitrary subsets

of the vocabulary. It is parametrized by an n×n density matrix ρ, ρ ∈ Sn, where n

is the size of the vocabulary V . In QLM, a document d is considered as a sequence

of M quantum events associated with a density matrix ρ:

Pd = {Πi : i = 1, . . . ,M}, (5.4)

where each Πi is a general dyad |u〉〈u| and represents a subset of the vocabulary.

Note that the number of dyads M can be different from N , the total number of

terms in the document. The sequence Pd is constructed from the observed terms

Wd: we have to define how to map subsets of terms to projectors. Separating

the observed text from the observed projectors constitutes the main flexibility of

our model. In what follows, we define a way of mapping single terms and arbitrary

dependencies to quantum elementary events. Formally, we seek to define a mapping

m : P(V) → L(Rn), where P(V) is the powerset of the vocabulary and L(Rn) is

the set of dyads on Rn. As an initial assumption, we set m(∅) = O, where O is the

projector onto the zero vector.
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Representing Single Terms

In Section 5.2.2, we showed that unigram sample spaces can be represented as

the set of projectors on the standard basis E = {|ei〉〈ei|}ni=1 and unigram language

models can be represented as mixtures over E , i.e. diagonal matrices. Therefore, a

straightforward mapping from single terms to quantum events is:

m({w}) = |ew〉〈ew|, (5.5)

where w ∈ V . This choice associates the occurrence of each term to a dyad |ew〉〈ew|,
and these dyads form an orthonormal basis. Hence, occurrences of single terms are

still represented as disjoint events. Consider n = 3 and V = {computer, archi-

tecture, games}. If Wd = {computer, architecture} and one applies m to each of

the terms, the sequence of corresponding projectors is Pd = {Ecomputer, Earchitecture}
where Ew = |ew〉〈ew|:

Ecomputer =

1 0 0

0 0 0

0 0 0

 , Earchitecture =

0 0 0

0 1 0

0 0 0

 . (5.6)

Note that if we decide to observe only single terms, Pd turns out to be the quantum

counterpart of classical observed terms Wd, i.e. M = N .

Representing Dependencies

In this paper, by dependency, we mean a relationship linking two or more

terms and we represent such an entity abstractly by a subset of the vocabulary, i.e.

κ = {w1, . . . , wK}. We define the following mapping for an arbitrary dependency

κ:

m(κ) = m({w1, . . . , wK}) = |κ〉〈κ|, |κ〉 =
K∑
i=1

σi|ewi
〉, (5.7)

where the coefficients σi ∈ R must be chosen such that
∑

i σ
2
i = 1, in order to ensure

the proper normalization of |κ〉. The well-defined dyad |κ〉〈κ| is a superposition

event. As we showed in Section 5.2.2, superposition events are justifiable only in

the quantum probabilistic space. They are neither disjoint from their constituents

|ewi
〉〈ewi

| nor do they solely constitute joint events in the sense of n-grams: here,
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Figure 5.2 – The dependency κca is modeled as a projector onto |κca〉, i.e. as a superposition
event.

the compound dependency is not considered as an additional entity, as done in

previous models (Mitra et al., 1997; Metzler and Croft, 2005; Bendersky et al., 2011;

Bendersky and Croft, 2012). The proposed mapping allows for the representation

of relationships within a group of terms by creating a new quantum event in the

same n-dimensional space.

In addition, superposition events come with a flexible way in quantifying how

much evidence the observation of dependency κ brings to its component terms. This

is achieved by changing the distribution of the σi: if one wants to attempt a classical

interpretation, the σi can be viewed as relative pseudo-counts, i.e. observing |κ〉〈κ|
adds fractional occurrence to the events of its component terms |ewi

〉〈ewi
|. To

our knowledge, until now this feature has been only modeled heuristically, or not

modeled at all. In our framework, it fits nicely in the quantum probabilistic space

by specifying how a compound dependency event and its constituent single terms

events are related.

As an example, one could model the compound dependency between computer

and architecture, κca = {computer, architecture}, by the dyad Kca = |κca〉〈κca|,
where |κca〉 =

√
2/3|ec〉 +

√
1/3|ea〉 (Figure 5.2). With respect to the example
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taken above, the event is represented by the matrix:

Kca =


2
3

√
2

3
0

√
2

3
1
3

0

0 0 0

 . (5.8)

The superposition coefficients entail that observing Kca adds more evidence to

|ec〉〈ec| than to |ea〉〈ea|.

Choosing When and What to Observe

Once we have defined the mapping m, one must ask three questions:

1. Which compound dependencies to consider?

2. When does such a compound dependency hold in a document?

3. When the compound dependency is detected, should we also consider the

projectors for its subsets as observed events?

Regarding the first question, one may (a) use a dictionary of phrases or frequent

n-grams, or (b) assume that any subset of terms that appear in short queries are

candidate compound dependencies to capture. In this paper, we want to make

the approach as independent as possible of any linguistic resource. So the second

approach (b) is used. This will also allow us to make a fair comparison with the

previous approaches using the same strategy, such as the MRF model (Metzler and

Croft, 2005).

The second question regards whether such selected compound dependencies

hold in a given document. In other words, one has to decide when to add the

selected dependency projector into a document sequence Pd. This can be done for

example by assuming that the components terms in the dependency appear as a

bigram in a document, as biterm or in a unordered window of L terms. Convergent

evidence from different works (Bai et al., 2008; Lv and Zhai, 2009b; Metzler and

Bruce Croft, 2007; Srikanth and Srihari, 2002; Zhao and Yun, 2009) confirms that

proximity is a strong indicator of dependence. Therefore, in this work we choose

to detect a dependency if its component terms appear in a window of length L.

The third question regards how to apply the mapping m and can be more eas-

ily understood by a practical example. Consider a document Wd = {computer,
architecture} and a query Wq = {computer, architecture}. Once the dependency
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κca = {computer, architecture} has been detected in the document, i.e. the com-

ponent terms appear next to each other, one can further decide:

1. to map only the dependency, i.e. Pd = {Kca},
2. to map both the dependency and the component terms, i.e.

Pd = {Ecomputer, Earchitecture,Kca}.
These two choices are illustrated in Figure 5.3. The first choice is a highly non-

classical one because it completely obfuscates the occurrence of the component

terms. Nevertheless, it becomes a valid choice in our framework. Differently from

classical approaches, the fact that we only consider a count for the compound

computer architecture does not mean that we assume that the terms computer and

architecture do not occur. The dependency event is not disjoint from the single term

events, and its occurrence partially entails the occurrence of its component terms.

However, this choice is more dangerous because it over-penalizes the component

terms: we should know very precisely when such a strong dependency is observed

and which coefficients to assign to it.

The second choice is implicitly done in current dependency models and is at the

basis of the weight-normalization problem. From this point of view, the sequence

Pd could be seen as composed by concepts as recently formalized by Bendersky

and Croft (2012); Bendersky et al. (2011). However, there are crucial differences

from that work: (1) we give a clear probabilistic status to such concepts and (2)

we do not assume that concepts are atomic units of information, completely unre-

lated from each other. In classical dependence models, single terms and compound

dependencies are scored separately and then the scores are combined together (Ben-

dersky and Croft, 2012; Metzler and Croft, 2005; Zhai, 2007). A critical aspect of

such models is that the occurrence of the phrase computer architecture will be

counted twice - as single terms and as a compound. That is why the score on com-

pound dependencies must be reweighed before integrating it with the independence

score (Gao et al., 2004; Jones et al., 2000b; Metzler and Croft, 2005). Contrary

to classical models, our model does not suffer from such a problem because the

evidences brought by the compound dependency as a whole and by its component

terms are integrated in the estimation phase. Even if not reported explicitly in

the experiments section, conducted experiments show that including projectors for

both the dependency and its subsets is much more effective for the ad-hoc task

evaluated here and thus this strategy will be preferred throughout this paper. An
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algorithm building the sequence of projectors from the document sequence will be

presented in Section 5.4.3.

5.3.2 Estimation

Maximum Likelihood Estimation

Given that a document is represented by a set of observed projectors, one has

to find ways to learn a quantum language model ρ to associate with a document. In

QT, a number of objective functions have been proposed to estimate an unknown

density matrix from a set of projectors: Linear Inversion (Nielsen and Chuang,

2010) and Hedged ML (Blume-Kohout, 2010) are notorious examples. In this work,

we use the Maximum Likelihood (ML) formulation proposed by Lvovsky (2003),

because (1) it can easily be seen as a quantum generalization of a classical likeli-

hood function (2) contrary to linear inversion, ML generates a well-defined density

matrix, i.e. ρ ∈ Sn, and (3) proposed estimation methods remain computationally

affordable in high-dimensional spaces.

Given the observed projectors Pd = {Π1, . . . ,ΠM} for document d, we define

as training criterion for the quantum language model ρ the maximization of the

following product proposed in Lvovsky (2003) and corresponding in the unigram

case to a proper likelihood:

L(Pd|ρ) =
M∏
i=1

tr (ρΠi). (5.9)

The estimate ρ̂ can be obtained by approximately solving the following maximiza-

tion problem:

maximize
ρ

logL(Pd|ρ)

subject to ρ ∈ Sn
(5.10)

This maximization is difficult and must be approximated by using iterative meth-

ods. In Lvovsky (2003), the following iterative scheme is proposed, also called the

“RρR algorithm”. One introduces the operator:

R(ρ) =
M∑
i=1

1

tr (ρΠi)
Πi, (5.11)
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and updates an initial density matrix ρ̂(0) by applying repetitive iterations:

ρ̂(k+1) =
1

Z
R(ρ̂(k))ρ̂(k)R(ρ̂(k)), (5.12)

where, Z = tr (R(ρ̂(k))ρ̂(k)R(ρ̂(k))) is a normalization factor in order to ensure

that ρ̂(k+1) respects the constraint of unitary trace Lvovsky (2003). Despite the

RρR algorithm being a quantum generalization of the well-behaving Expectation

Maximization (EM) algorithm, the likelihood is not guaranteed to increase at each

step because the nonlinear iteration may overshoot, similarly to a gradient descent

algorithm with a too big step size. Characterizing such situations still remains an

open problem (Řeháček et al., 2007). In this work, in order to ensure convergence,

if the likelihood is decreased at k + 1, we use the following damped update:

ρ̃(k+1) = (1− γ)ρ̂(k) + γρ̂(k+1), (5.13)

where γ ∈ [0, 1) controls the amount of damping and is optimized by linear search

in order to ensure the maximum increase of the training objective 2. As Sn is

convex Nielsen and Chuang (2010), ρ̃(k+1) is a proper candidate density matrix.

The process stops if the change in the likelihood is below a certain threshold or if

a maximum number of iterations is attained.

From an IR point of view, the metric divergence problem (Morgan et al., 2004)

tells us that the maximization of the likelihood does not mean that the evaluation

metric under consideration, such as mean average precision, is also maximized. In

the experiments section, we address the two following questions from a perspective

closer to IR concerns:

1. Which initial matrix ρ̂(0) to choose?

2. When to stop the update process?

As the estimation of a quantum document model requires an iterative process, one

may believe that the complexity will make the process intractable. In Section 5.4.5,

we provide an analysis of the complexity of the proposed computation, which will

show that the process is quite tractable.

2. Similar damped updates were successfully used in Heskes (2002) to improve conver-
gence and stability of the loopy belief propagation algorithm.
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Smoothing Density Matrices

The ML estimation presented above suffers from a generalization of the usual

zero-probability problem of classical ML, i.e. the estimator assigns zero probability

to unseen data Zhai (2007). This is also referred to as the zero eigenvalue prob-

lem (Blume-Kohout, 2010). Bayesian smoothing for density matrices has not yet

been proposed. Bayesian inference in the quantum setting has just started to be

the subject of intensive research (Warmuth and Kuzmin, 2009). In this work, we

propose to smooth density matrices by linear interpolation. If ρ̂d is a document

quantum language model obtained by ML, its smoothed version is obtained by

interpolation with the ML collection quantum language model ρ̂c:

ρd = (1− αd) ρ̂d + αd ρ̂c, (5.14)

where αd ∈ [0, 1] controls the amount of smoothing. As the set of density matrices

Sn is convex, the resulting ρd is a proper density matrix. In this work, we assume

that αd = µ
(µ+M)

, which is the well-known form of the parameter for Dirichlet

smoothing (Zhai, 2007).

5.3.3 Scoring

The flexibility of the Kullback Liebler (KL) divergence approach in keeping

distinct query and document representations makes it attractive for a candidate

scoring function in our new framework. The direct generalization of classical KL

divergence was introduced in Umegaki (1962) and is called quantum relative entropy

or Von-Neumann (VN) divergence. Given two quantum language models ρq and

ρd for the query and a document respectively, our scoring function is the negative

query-to-document VN divergence:

−VN(ρq‖ρd) = −tr (ρq(log ρq − log ρd))
rank
= tr (ρq log ρd),

(5.15)

where log applied to a matrix denotes the matrix logarithm, i.e. the classical

logarithm applied to the matrix eigenvalues. Rank equivalence is obtained by

noting that tr (ρq log ρq) does not depend on the particular document. Denote

by ρq =
∑

i λqi |qi〉〈qi|, ρd =
∑

i λdi |di〉〈di| the eigendecompositions of the density
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matrices ρq and ρd respectively. By substituting into the above equation, the scoring

function rewrites as:

− VN(ρq||ρd) rank
=
∑
i

λqi
∑
j

log λdj〈qi|dj〉2. (5.16)

Compared to a classical KL divergence, the additional term 〈qi|dj〉2 quantifies

the difference in the eigenvectors between the two models. Following the represen-

tation introduced in Section 5.2.2, the VN divergence compares two ellipsoids not

only by differences in the “shape” but also by differences in the “rotation”.

If a VSM-like interpretation is attempted, one can think about {|qi〉}, {|dj〉}
as semantic concepts for the query and the document respectively, whereas the

vectors of eigenvalues λq, λd denote the importance of the corresponding semantic

concepts in the two models. The VN divergence offers a way of matching query

concepts by analyzing how much such concepts are related to documents concepts,

i.e. ∀i, j, 〈qi|dj〉2. Particularly,
∑

j〈qi|dj〉2 = 1. Thus, 〈qi|dj〉2 can be interpreted as

the quantum probability associated with the pure state |qi〉〈qi| for the elementary

event |dj〉〈dj|, i.e. µqi(|dj〉〈dj|) = tr (|qi〉〈qi|dj〉〈dj|) = 〈qi|dj〉2. Hence, one could

rewrite Eq. 5.16 as:

− VN(ρq||ρd) rank
=
∑
i

λqi Eµqi
[log λd] . (5.17)

Therefore, the VN divergence scores a document based on the expectation of how

important concept |qi〉 is in document d even if it does not appear in it explicitly.

5.3.4 Final Considerations

The estimation and scoring process of quantum language models retains classical

unigram LMs and KL divergence as special cases. The classical unigram LM is

recovered by restricting the maximization in Eq. 6.4 to diagonal density matrices

and including into the sequence of projectors Pd only an orthonormal basis, such as

the elements of E . Classical KL divergence is recovered by noting that if ρq and ρd

are diagonal density matrices, they share the same eigensystem. Hence, |qi〉 = |di〉
and λqi = θqi, λdi = θdi, where θq, θd are the parameters of classical unigram LMs

for the query and the document respectively. In this setting, 〈qi|dj〉2 = 0 for i 6= j
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−VN(ρq‖ρd1) ∝ −.76 −VN(ρq‖ρd2) ∝ −1.06

o Wo Po

q {computer, architecture} {Ec, Ea,Kca}
d1 {computer, architecture, and, games} {Ec, Ea,Kca, Eg}
d2 {computer, games, and, architecture} {Ec, Eg, Ea}

Figure 5.4 – A synthetic example of QLM with a vocabulary of n = 3 terms. The orthogonal
rays are the eigenvectors of the ellipsoids. ρq is not smoothed thus degenerates onto a ray. ρd1

rotates towards the direction of observed query dependencies and is thus ranked higher.

and the VN divergence reduces to classical KL, i.e. −VN(ρq‖ρd) = −KL(θq‖θd) rank
=∑

i θqi log θdi.

In Figure 5.4, we report a synthetic example of the application of the model.

We plot the density matrices obtained by the MLE (Section 5.3.2) on the sequence

of projectors reported in the table. As usual in ad-hoc tasks, we smooth only the

QLMs of the documents. The model corresponding to the query is a projector,

i.e. it has two zero eigenvalues, because we did not apply smoothing. If the

dependencies are included in the sequence Po, the MLE rotates the corresponding

QLM towards the direction spanned by the observed projector (i.e. Kca). This

entails that the model ρd1 is considered more similar to the query than the model

ρd2 which corresponds to a classical language model.
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Name Content # Docs Topic Numbers

SJMN Newswire 90,257 51-150

TREC7-8 Newswire 528,155 351-450

WT10g Web 1,692,096 451-550

ClueWeb-B Web 50,220,423 51-200

Table 5.1 – Summary of the TREC collections used to support the experimental evaluation.

5.4 Evaluation

5.4.1 Experimental Setup

All the experiments reported in this work were conducted using the open source

Indri search engine (version 5.3) 3. The test collections used are reported in Ta-

ble 5.1. We choose the collections in order to vary (1) the collection size and (2)

collection type. This will produce a comprehensive test set in order to verify the

properties of our approach. All the collections have been stemmed with the Krovetz

stemmer. Both documents and queries have been stopped using the standard IN-

QUERY stopword list. For all the methods, the Dirichlet smoothing parameter

µ is set to the default Indri value (µ = 2500). The optimization of all the other

free parameters for the proposed model and the baselines is done using five-fold

cross validation using coordinate ascent (Metzler and Bruce Croft, 2007) with mean

average precision (MAP) as the target metric. The performance is measured on

the top-1000 ranked documents. In addition to MAP, for newswire collections we

report the early precision metric @10 (precision at 10) and for web collections with

graded relevance judgements we report the recent ERR@10, which correlates better

with click metrics than other editorial metrics (Chapelle et al., 2009). The statis-

tical significance of differences in the performance of tested methods is determined

using a two-sided Fisher’s randomization test (Smucker et al., 2007) with 25,000

permutations evaluated at α < 0.05.

3. http://www.lemurproject.org
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5.4.2 Methodology

Our experimental methodology goes as follows. In a first step, we compare our

QLM approach to a unigram Language Modeling baseline (denoted LM) based on

Dirichlet smoothing (Zhai, 2007), which is a strong bag-of-words baseline. This

comparison is done by assigning uniform superposition weights to each dependency

κ, i.e. σi = 1/
√
|κ|, where |κ| is the cardinality of κ (denoted QLM-UNI). This step

has two main objectives: (1) to test if quantum probability can bring better perfor-

mance than a standard bag-of-words model and (2) to test if uniform superposition

weights are a reasonable baseline setting.

As a second step, we test the proposed model against the strong non bag-of-

words MRF model, which has shown to be highly effective especially for large scale

web collections (Metzler and Croft, 2005). We test the full dependence version

of the model (denoted MRF-FD) which captures dependencies between all the

query terms and thus is the most natural choice for a comparison with our model.

However, MRF-FD exploits both proximity (#uw) and exact matching (#1). As

our model only exploits proximity as an indicator of dependence, we also propose

to test the variant MRF-FD-U, which is a MRF using only the proximity feature.

This could provide interesting insights on how the models score based upon the

same evidence.

Finally, we propose a slightly more elaborate version of our model (denoted

QLM-IDF) in which the superposition weights are no more assumed to be uniform.

Instead, we assign to each σi the normalized idf weight of the corresponding term

wi. The objective is to test if a more reasonable parametrization of superposition

weights can improve the retrieval effectiveness.

All the results exposed in this paper have been obtained by reranking. We

rerank a pool of 20000 documents retrieved using LM in order to make a fair

comparison between our method and the baselines.
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5.4.3 Setting up QLM

Building the Sequence of Projectors

Very similarly to MRF-FD, given a query Q = {q1, . . . , qn}, we assume that the

interesting dependencies to consider correspond to the power set P(Q) 4. In order

to build the set of projectors for the given document we apply Algorithm 1.

Algorithm 1 Builds the sequence Pd given Wd, Q
Require: Wd,Q

1: Pd ← ∅
2: for κ ∈ P(Q) do
3: for #(κ,Wd) do
4: Pd ← Pd ⊕m(κ) %Adds the projector to the sequence

5: end for
6: end for
7: return Pd

For each dependency κ in P(Q), the algorithm scans the document sequence

Wd. For each occurrence of κ, it adds a projector m(κ) to the sequence Pd. The

function #(κ,Wd) returns how many times the dependency κ is observed in Wd.

Therefore, the algorithm adds as many projectors as the number of detected com-

pound dependencies. Note that by looping on P(Q), we are actually implementing

the strategy exposed in Section 5.3.1, i.e. adding both the dependence and all of

its subsets. Following Section 5.3.1, we choose to parametrize # as the unordered

window operator in Indri (#uwL). Therefore, a given dependency κ will be de-

tected if the component terms appear in any order in a fixed-window of length

L = l|κ|. This kind of adaptive parametrization of the window length is state-

of-the-art for dependence models such as MRF-FD (Bendersky and Croft, 2012;

Metzler and Croft, 2005). For all the dependence models, the coordinate ascent for

l spans {1, 2, 4, 8, 16, 32}, which is a robust pool covering different window lengths,

including the standard value (l = 4) for MRF-FD.

4. In order to keep the retrieval complexity reasonable both for MRF and QLM, we limit
ourselves to query term subsets with at most three terms.
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MLE Convergence Analysis

Before doing any comparisons, we answer the questions related to the construc-

tion of a quantum language model, i.e. (1) how to initialize ρ̂(0)? (2) when to stop

the update process? In order to help the maximum likelihood process to converge

faster, we initialize the matrix ρ̂(0) to the density matrix corresponding to the clas-

sical maximum likelihood language model θML of the document or query under

consideration. This is a diagonal matrix ρ̂(0) = diag(θML). We also tested with

the uniform density matrix, as suggested in Lvovsky (2003), but we found that the

MAP was severely harmed.
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Figure 5.5 – Plots of MAP (QLM-UNI and LM) and MLE objective against the number of updates of the density matrix for SJMN,
TREC7-8 and WT10g (left, right and bottom).
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In order to address the second question, we analyze the variation of MAP with

respect to the maximum number of iterations nit ∈ [1, 50]. The damping factor γ

is optimized over the set of values Γ = {0, 0.1, ..., 0.9}. The iterative process stops

before nit if the change in the likelihood is below 10−4. In order to check for possible

variations due to the collection type, we plot the iteration-MAP curve for two

similar collections, i.e. SJMN and TREC7-8, and a web collection, WT10g. We also

plot the training objective in Eq. 6.4 over the set of topics: 1
|R|
∑

d∈R logLPd
(ρ̂d),

where R is the multiset of retrieved documents. The trend is shown in Figure 5.5.

Generally, at any number of iterations, the MAP stays significantly above the

baseline. It seems that there is a good correlation between likelihood maximization

and MAP, although one can note some overfitting at high number of iterations.

Capping by 10 ≤ nit ≤ 20 seems a good trade-off between likelihood maximization

and MAP. However, to provide a fair comparison with the baselines, we choose to

include nit as a free parameter to train by coordinate ascent.

5.4.4 Results

The results discussed in this section are compactly reported in Table 5.2 and 5.3.

Language Modeling Baseline

From the comparisons with the LM baseline, one can see that QLM-UNI outper-

forms LM significantly, with relative improvements in MAP going up to 12.1% in

the case of WT10g collection and 19.2% for the ClueWeb-B collection (Table 5.3).

This seems to be in line with the hypothesis formulated in Metzler and Croft (2005),

for which dependence models may yield larger improvements for large collections.

The weight-normalization problem seems to be addressed automatically: our

model does not need for any combination weights. Moreover, it is robust across

the folds. From an analysis of the optimal values of the parameters obtained across

the different folds, we found that optimal window sizes were l ∈ {1, 2}. This can

be explained by considering that in the current version of QLM, it is possible to

decide if the dependency is detected or not, but the model cannot discriminate its

“importance”. If one decides to increase l, more inaccurate dependencies will be

detected and the performance will be deteriorated. However, even with a larger

window size, statistical significance over LM is maintained. From these consider-
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SJMN TREC7-8

P@10 MAP P@10 MAP

LM .3064 .1995 .4230 .2120

MRF-FD-U .3138 .2071 .4350 .2228

MRF-FD .3074 .2061 .4460 .2243

QLM-UNI .3181 .2077 .4480 .2240
(+1.4/+3.5) (+0.3/+0.8) (+3.0/+0.4) (+0.5/-0.1)

QLM-IDF .3170 .2093 .4450 .2254
(+1.0/+3.1) (+1.1/+1.6) (+2.3/-0.2) (+1.2/+0.5)

Table 5.2 – Evaluation of the performance for newswire collections shows that dependence
models perform similarly. Numbers in parentheses indicate relative improvement (%) over MRF-
FD-U/MRF-FD. All the results for dependence models are significant with respect to the baseline
LM.

ations, we suggest l = 2 as a default setting for our model. Finally, the results

endorse that our QLM does not need an engineered estimation of superposition

weights to perform well.

Markov Random Fields Baseline

As a second test, we report the results obtained for the MRF-FD and MRF-FD-

U baselines. These have proved to be very robust non bag-of-words baselines (Ben-

dersky and Croft, 2012; Metzler and Croft, 2005). Contrary to our model, MRF

does not handle dependency information in the estimation phase. One has to

specify the coefficients (λT , λO, λU) for the combination of dependence and inde-

pendence scores. To limit per-fold overfitting, for the dependence models, we first

train combination parameters (λf ∈ {0, 0.01, ..., 1}) then l for each fold. For MRF-

FD-U, we set λO = 0.

Results show that for SJMN and TREC7-8, QLM-UNI, MRF-FD and MRF-

FD-U are essentially equivalent (Table 5.2). However, for the two Web collections,

our model significantly outperforms both MRF variants (Table 5.3). On ClueWeb-

B, statistical significance is attained for the two reported measures. As conjectured

in Metzler and Croft (2005), noisy web collections could be a more discriminative

testbed for dependence models. Optimal l values for MRF-FD were very small

for SJMN (l ∈ {1, 2}) in contrast to the optimal setting for ClueWeb-B (l ∈
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WT10g ClueWeb-B

ERR@10 MAP ERR@10 MAP

LM .1068 .1975 .0718 .1003

MRF-FD-U .1136 .2097 .0828 .1103

MRF-FD .1147 .2146 .0881 .1137

QLM-UNI .1162 .2215αβ .1015αβ .1196αβ

(+2.2/+1.3) (+5.6/+3.2) (+22.6/+15.2) (+8.4/+5.2)

QLM-IDF .1176 .2264αβ .0997αβ .1189αβ

(+3.5/+2.6) (+7.9/+5.5) (+20.4/+13.1) (+7.8/+4.5)

Table 5.3 – When applied to noisy web collections, the QLM variants achieve significant
improvements over MRF counterparts. Numbers in parentheses indicate relative improvement
(%) over MRF-FD-U/MRF-FD. All the results for dependence models are significant with respect
to the baseline LM.

{16, 32}). In Metzler and Croft (2005), the authors suggest that for homogenous

newswire collections a small window is enough to capture useful dependencies,

while for large, noisy web collections, a larger span must be set. However, the

performances obtained by our model seem to suggest that it can greatly benefit

from term dependencies, on a variety of collections, even when a small window size

is used. This elucidates the fact that even short range information can be extremely

useful if integrated in the estimation phase. In order to get a more comprehensive

view on such issues, we trained on the entire set of ClueWeb-B topics three versions

of MRF-FD-U, each obtained by clamping a different value of l ∈ {1, 2, 4}. The

best performing model obtained a MAP of 10.91. It seems that our model can

exploit this short range information in a better way than MRF models.

Setting Superposition Weights

Our last test aimed at verifying if a more reasonable setting of the super-

position weights could further improve retrieval performance. For a dependency

{w1, . . . , wK}, we set σi =
√

idfwi
/
∑

i idfwi
. This has the effect of attributing a

larger count to the more “important” term in the dependency. QLM-IDF generally

increases MAP. However, this is not the case for ClueWeb-B. From a query-by-query

analysis, we noticed that QLM-IDF increases the performance for noisy queries by

promoting the most “important” terms in unnecessary subsets. For multiword ex-
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pressions such as ClueWeb-B topics continental plates and rock art, weighting by

idf may be misleading by assigning more weight to one of the terms. In this cases, a

uniform parametrization is far more effective. This demonstrates that there is still

room for improvement by a clever tuning of superposition parameters, for exam-

ple by leveraging feature functions (Bendersky and Croft, 2012; Bendersky et al.,

2011).

5.4.5 Complexity Analysis

Complexity issues can be tackled by noting that it is not necessary to manipulate

n × n matrices. We associate a dimension for each query term and an additional

dimension for a “don’t care” term that will store the probability mass for the other

terms in the vocabulary. Therefore, a multinomial over n points is reduced to

a multinomial over |Q| + 1 points, where |Q| is the number of unique terms in

the query and the additional dimension is simply a relabeling of the other term

events. In this way, the QLM to manipulate is k × k, where k = |Q| + 1. The

eigendecomposition generally requires O(k3). The iterative process requires at most

|P(Q)| = 2|Q| matrix multiplications for the expectation step, where 2|Q| is the

maximum number of unique projectors in Pd and 2 matrix multiplications for the

maximization step. In the case the likelihood is decreased, |Γ| more iterations are

done giving a worst-case complexity of O(nit|Γ|2k + k3), i.e. if each iteration needs

damping. We showed that 10 ≤ nit ≤ 20 is enough; we use |Γ| = 10 and k is

very small for title queries, which make the process computationally tractable. In

practice, we observed that the damping process is very effective and dramatically

improves convergence speed. As an example, the mean number of iterations for

ClueWeb-B when nit = 15 is 7.02 which is orders of magnitude less than nit|Γ| =

150. Finally, we conjecture that such process could be executed at indexing time,

thus eliminating any additional on-line costs.

5.5 Conclusion

We presented a principled application of quantum probability for IR. We showed

how the flexibility of vector spaces joined with the powerful tools of probabilistic

70



calculus can be mixed together for a flexible, yet principled account of term depen-

dencies for IR. In our model, dependencies are neither represented as additional

dimensions, nor stochastically as joint probabilities. They assume a new status

as superposition events. The relationship of such an event to the traditional term

events are encoded by the off-diagonal values in the corresponding projection ma-

trix. Both documents and queries are associated to density matrices estimated

through the maximization of a product, which in the classical case reduces to a

likelihood. As our model integrates the dependencies in the estimation phase, it

has no need for combination parameters. Experiments showed that it performs

equivalently to the existing dependence models on newswire test collections and

outperforms the latter on web data.

To our knowledge, this work provides the first experimental result showing the

usefulness of this kind of probabilistic calculus for IR. The marriage between vector

spaces and probability can be endlessly improved in the future. One straightforward

direction is to relax the assumption that single terms represent orthogonal projec-

tors. This could lead to a new way of integrating latent directions as estimated

by purely geometric methods such as Latent Semantic Indexing (LSI) (Deerwester

et al., 1990) into a probabilistic model. In this work, we did not exploit the full

machinery of complex vector spaces. We do not have a practical justification for

the use of the complex field for IR tasks. However, we speculate that this could

bring improved representational power and thus remains an interesting direction

to explore. At last, we believe that our model could be potentially applied to other

fields of natural language processing only by means of a principled Bayesian calcu-

lus capable of manipulating density matrices. We hope that this work will foster

future research in this direction.

5.6 QLMs in the TREC Web Track

To verify the effectiveness of the proposed retrieval approach over large-scale

subsets of the Web, we took part to the 2013 TREC Web Track. The 2013 Web

Track is composed of two tasks: the ad-hoc task tests the effectiveness of the pro-

posed methods using standard retrieval metrics, such as ERR and NDCG; the novel

risk-sensitive task aims at testing the robustness of the proposed methods in terms
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of gains versus losses with respect to a baseline model provided by the organizers.

Specifically, the risk-sensitive metric is described by the following formula:

URISK(Q) =
1

N
[
∑
q∈Q+

∆(q)− (α + 1)
∑
q∈Q−

∆(q)], (5.18)

where Q+ (Q−) is the set of queries for which the system improves (decreases) the

baseline score, and α is the key risk-aversion parameter – i.e. the metric weights

losses α + 1 times as heavily as successes (Collins-Thompson and Voorhees, 2013).

5.6.1 Experimental setup

We use the english portion of the ClueWeb12 corpus (109 documents, Category

A). We use the ClueWebB Web Track 2010, 2011 and 2012 queries to choose the

parameters of our model. Both the index and the queries were stopped using the

standard INQUERY stoplist and no stemming was performed. To demonstrate the

efficiency of QLMs, all the retrieval experiments were performed using our modified

version of Indri, with a built-in version of QLM, without recurring to reranking.

For example, for the query usda food pyramid, we submit the following query

expression to our modified version of Indri:

#q(usda food pyramid

#uw2(usda food)

#uw2(food pyramid)

#uw2(usda pyramid)

#uw3(usda food pyramid))

Notice that in QLM, no parameters are needed for the combination of unordered

and single term scores. We further extended Indri’s query language in order to run

expanded queries. The modified syntax goes as follows:

#qweight(0.8 #q(usda food pyramid

#uw2(usda food)

#uw2(food pyramid)

#uw2(usda pyramid)

#uw3(usda food pyramid))

0.2 #qweight( 0.8 health 0.2 nutrition ))
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where health and nutrition are considered expansion terms with their respective

probability weights.

Previously, we have shown that the QLM estimation process weakly suffers the

metric divergence problem. Hence, we choose to avoid early-stopping and run the

estimation algorithm until the improvement in likelihood between iterations drops

below a threshold ε = 0.001. Spam-filtering was applied on the entire ClueWeb12A

corpus using the publicly available Waterloo Spam Ranking for the ClueWeb12

Dataset. We filter out the bottom 30% of the documents, as determined by the

spam ranking. This threshold was found to optimize ERR@10 and NDCG@10

in our preliminary experiments with the ClueWebB queries. If compared to the

standard TREC setting of filtering out the bottom 70% of the documents, our

spam-filtering choice is more risk-inclined. However, we found that our model is

quite robust to spam.

5.6.2 Query Expansion with QLM

Query expansion can be promptly introduced for the tasks addressed here. The

idea is a straightforward generalization of query expansion in the classical LM

framework: one smooths the original query model ρO with an expanded model ρL

which is supposed to encode the latent aspects of the user information need and is

simply obtained by selecting relevant terms in the top-K retrieved documents, for

example using a Relevance Model (RM) (Lavrenko and Croft, 2001). The amount

of smoothing is determined by a parameter λ as follows:

ρE = λ ρO + (1− λ) ρL, (5.19)

where ρE indicates the obtained expanded model. These operations are legit when

manipulating density matrices because the set Sn+ is convex.

5.6.3 Description of the Runs

The description of the three runs is as follows:

— udemQlml1 is a “vanilla” run of QLM with the parameter settings described

above. The purpose of this run was to evaluate the effectiveness of the

retrieval approach on a single-pass batch retrieval setting.
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Run nDCG@20 ERR@20

TREC median 0.1738 0.098

udemQlml1 0.2286 0.1312

udemQlml1Fb 0.2074 0.1144

udemQlml1FbWiki 0.2541 0.1515

Table 5.4 – Summary of results for the TREC Web Track ad-hoc task.

— udemQlml1Fb performs query expansion using RM3 (Lv and Zhai, 2009a).

We considered the top K = 10 retrieved documents obtained by udemQlml1

and set the smoothing parameter λ = 0.8.

— udemQlml1FbWiki performs query expansion using expansion terms from

Wikipedia pages. To this end, we indexed the 2009 Wikipedia dump and

performed a run of QLM. We extracted expansion terms from the top K = 5

retrieved documents and set the smoothing parameter λ = 0.6.

5.6.4 Ad-hoc Results

Table 5.4 compares the retrieval performance of these runs for the ad-hoc task.

The expansion from the top-K retrieved documents from the Web collection fails

to improve performance due to the noisy nature of the retrieved set. This result

is in-line with past results trying to apply RM3 on Web collections (Lv and Zhai,

2009a). On the other hand, the expansion from Wikipedia pages has a significant

positive impact on the retrieval performance for all the retrieval metrics reported.

Wikipedia documents are less noisy and bear more useful feedback terms.

In Table 5.5, we report the comparison of the automatic runs submitted to the

Web Track, ordered by ERR. Despite the simplicity of our run, which leverages only

feedback from the entire Wikipedia pages and performs a single-pass retrieval over

the whole ClueWeb index, our model performs consistently with respect to other

participants in ERR, and perform similarly to the system ranked fourth. The

first four systems either make use of complex reranking approaches (Technion), use

learning-to-rank methods trained to maximize ERR (uogTr), use snippets of leading

Web search engines (udel fang) or parse the queries for entities exploiting external

resources such as Freebase (ICTNET) (Bollacker et al., 2008). Interestingly, our

method performs consistently also in NDCG, gaining three ranks and sitting in
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third position.

We performed a query-by-query analysis to investigate which queries hurt our

model the most. Two sources of performance loss may be identified: 1) selection

of poor feedback terms and 2) selection of useless query term dependencies. An

example of 1) is topic 234, “dark chocolate health benefits”, for which Wikipedia

expansion terms were overly generic (“brand”, “found”) or focused solely on the

“chocolate” aspect of the query (“cocoa”, “mars”, “cocoavia”). For this topic, after

query expansion, our model (udemQlml1Wiki) underperforms the organizers base-

line. Instead, our non-expanded baseline QLM run (udemQlml1) achieves a relative

improvement of 157% over the organizers baseline. The shortcomings concerning

query expansion are well-known and may be addressed by explicitly penalizing

overly common expansion terms (Metzler and Croft, 2007) and by explicitly diver-

sifying expansion terms such that they cover all query aspects (Liu et al., 2014). On

the contrary, we expect that the errors coming from capturing useless term depen-

dencies be evident both in the expanded and non-expanded runs. An example is

topic 216, “nicholas cage movies”, in which the performance before expansion could

be hurt by the useless term dependencies “nicholas movies” and “cage movies”. A

long line of works has already been dedicated in selecting important phrases and

their weights in the user query, i.e. see Bendersky et al. (2011); Maxwell and Croft

(2013). Although these strategies could also be applied to our model, our focus here

was to provide experimental evidence of the effectiveness of QLMs in large-scale

retrieval scenarios.

5.6.5 Risk-sensitive Results

QLM is a generalization of the LM approach for IR, which was used by the

organizers to create the baseline run. Differently from existing term dependency

retrieval models such as MRF, when a query phrase is not observed in a document,

i.e. when the document contains only single query terms, then the QLM score

corresponds exactly to the classical LM score. We expect this feature to bring

increased robustness to our run when the performance is compared to the standard

baseline LM. Table 5.6 show the ranking of systems for the risk-sensitive task. The

systems are ordered by the performance of their best run obtained using Eq. 5.18

when α = 1. Results show that our system gains two ranks with respect to the
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Group Run ERR@10 NDCG@10

Technion clustmrfaf 0.175 0.298

udel fang UDInfolabWEB2 0.167 0.284

uogTr uogTrAIwLmb 0.151 0.247

ICTNET ICTNET13RSR2 0.150 0.241

ut ut22exact 0.149 0.224

diro web 13 udemQlml1FbWiki 0.1436 0.2553

CWI cwiwt13cps 0.121 0.211

webis webisrandom 0.101 0.181

RMIT RMITSC75 0.093 0.171

Organizers baseline 0.088 0.162

UWaterlooCLAC UWCWEB13RISK02 0.080 0.134

Table 5.5 – Ad-hoc results for automatic runs on Category A and ordered by ERR@10. We
specify the rank of our run near the performance measure.

ad-hoc ranking showing robustness with respect to uogTr, ICTNET and ut runs.
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Group ERR@10 ∆, α = 0 ∆, α = 1 ∆, α = 5

Technion 0.175 0.087 0.076 0.033

udel fang 0.167 0.078 0.059 -0.018

udel 0.150 0.061 0.047 -0.011

diro web 13 0.143 0.0556 0.0344 -0.0514

uogTr 0.151 0.062 0.030 -0.101

ICTNET 0.149 0.060 0.028 -0.079

ut 0.144 0.056 0.025 -0.098

CWI 0.121 0.033 0.003 -0.115

Organizers 0.088 0.000 0.000 0.000

RMIT 0.093 0.005 -0.027 -0.156

webis 0.093 0.005 -0.029 -0.163

UWaterlooCLAC 0.080 -0.009 -0.040 -0.164

Table 5.6 – Ad-hoc results for automatic runs on Category A and ordered by ∆ ERR@10 when
α = 1. We specify the rank of our run near the performance measure.
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6

Learning Concept
Embeddings for Query
Expansion by Quantum
Entropy Minimization

Prologue

In the previous chapter, queries and documents representations account for

phrases without the need of artificially extending the representation space: docu-

ments and queries still lie in a “term space”, i.e. the features of the representation

are single terms. Considering terms as atomic descriptors has a major drawback:

the decision on whether a relevance relation holds between a document and a query

boils down to counting exact matches. The common assumption of orthogonality

between terms clearly does not hold in practice because of the phenomena of word

polysemy and synonymy and because of the contextual nature of meaning: for

example, a query “car” would not match a document containing only the word “au-

tomobile” even if both words truly exhibit semantic commonalities and are likely

to be equally correlated with relevance.

One strategy to overcome this problem is to change the representation features

and embed documents, queries and terms themselves in a latent feature space.

Feature learning techniques learn the feature space along with the representations

of the objects of interest. The learning may be unsupervised as well as guided by

the minimization of a specific task loss. Unsupervised feature learning has been

known in IR since the inception of Latent Semantic Indexing (Deerwester et al.,

1990). Instead, research on its supervised counterpart for IR remains relatively

unexplored. The works we will present next employ the latter strategy in one way

or another. In this chapter, we present an embedding method that learns a feature

space given a labeled dataset of queries and relevant documents. The obtained

semantic representations are used to perform query expansion, i.e. to artificially

expand the user query with related terms in order to overcome the vocabulary

mismatch occurring between documents and queries.
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Article Details

Learning Concept Embeddings for Query Expansion by Quantum Entropy Min-

imization. Alessandro Sordoni, Yoshua Bengio and Jian-Yun Nie. Proceedings of

the 28th AAAI conference (AAAI ’14), pp. 1586–1592.

Personal Contribution. The ideas, the writing and the experiments in this

article are my own. Yoshua Bengio backed the theoretical considerations we put

forward and provided guidance on how to perform cross-validation experiments

with neural embeddings.

Context

At the time we wrote this article, very few supervised feature learning models

were used for IR purposes. The most known were the Deep Structured Seman-

tic Model (DSSM) of Huang et al. (2013) and the Supervised Semantic Indexing

(SSI) (Bai et al., 2009). DSSM was used to perform retrieval of titles on a propri-

etary corpus. SSI was benchmarked solely on a custom Wikipedia retrieval task

which may not be representative of standard TREC large-scale, open-domain re-

trieval tasks. This article exploits this research gap and brings additional evidence

towards the usefulness of carefully estimated semantic word representations for IR

purposes.

Contributions

This article presents a novel way of estimating word embeddings from a paired

corpus and provides the first experimental evidence of the usefulness of the esti-

mated representations for query expansion (QE). Our theoretical analysis shows

that a particular class of word embedding models operating on paired corpora

shares similarities with the relevance feedback method proposed in Rocchio (1971).
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6.1 Introduction

Traditional information retrieval (IR) models consider terms as atomic units of

information, disregarding the semantic commonalities and the complex syntactic

relationships interweaving them in the discourse. One of the direct implications

of this strong assumption is the vocabulary mismatch, i.e. a IR system could not

retrieve documents which express the same query concepts using different linguistic

expressions. For example, given a query chevrolet trucks, a document containing

chevy trucks could be missed even if chevrolet and chevy are strictly related. A

well-known, effective strategy to solve this issue is to perform query expansion

(QE) (Carpineto and Romano, 2012), i.e. to expand the query by adding seman-

tically related terms or compound concepts, which could be bigrams or longer

phrases, i.e. chevy could be an important expansion term. In this setting, it is

crucial to have a rich computational representation of the information need for

valuable expansion terms to be mined.

The tradition of creating continuous word embeddings embodies the idea of

folding sequences of terms into a “semantic” space capturing their topical content.

Generally, a word embedding is a mathematical object associated to a word lying

in a hidden high-dimensional semantic space equipped with a metric. The metric

can naturally encode semantic or syntactic similarities between the corresponding

terms. A typical instantiation is to choose a vector embedding for each term and

estimate a similarity between terms in the latent space by taking the inner product

of their corresponding embeddings (Deerwester et al., 1990). The meaning of this

similarity highly depends on how the embeddings were obtained. Therefore, it is

crucial to carve the semantic space for the task at hand using some task-specific

training data (Bengio et al., 2006).

In this paper, we target at learning semantic representations of single terms

and bigrams as a way to encode valuable semantic relationships for expanding a

user query. Recently, a particularly successful way of selecting expansion terms

was to use correlation and statistical translation models trained on aligned query

/ relevant document corpus obtained by memorizing users’ clicks, i.e. clickthrough

data. We believe that a careful structured latent space has several advantages

over translation models. First, the information need has an explicit representation

in the concept space, hence it is straightforward to ask questions about the most

80



similar terms given a query. Second, high-order term co-occurrences would be

automatically captured, thus achieving better generalization. As a result of high-

order co-occurrences, we automatically embed in the same space candidate terms

both from relevant documents and similar queries without additional effort. Finally,

using task-specific data, we learn the similarity function in such a way that query

representations lie in a neighbourhood of relevant document terms, thus naturally

increasing the likelihood of selecting good expansion terms. To our knowledge,

the utility of semantic representations for query expansion purposes has not been

investigated yet.

We propose a new model capable of learning, from clickthrough data, semantic

representations for queries and arbitrary term or bigram concepts. Our model

relies on the theoretical framework of the recently proposed Quantum Language

Modeling (QLM) for IR (Sordoni et al., 2013). By employing such framework,

our model embeds documents and queries in a larger space than single terms thus

achieving higher semantic resolution without any computational fallout. This is

in stark contrast to existing approaches, which use simple vectors as term and

query representations. It is intuitive that text sequences should not lie in the same

semantic space as single terms, as their informative content is higher. We will

shed light on the theoretical implications of this enlarged representation space by

analyzing our gradient updates. From an experimental standpoint, we show that

this increased semantic resolution is important for query expansion purposes.

6.2 Related work

We briefly review the work which is close to this paper. We organize the related

work in two subsections: query expansion approaches and semantic spaces.

6.2.1 Query expansion

Typical sources of query expansion terms are pseudo-relevant documents (Xu

and Croft, 2000) or external static resources, such as clickthrough data (Cui et al.,

2002; Gao et al., 2010; Gao and Nie, 2012), Wikipedia (Arguello et al., 2008) or

ConceptNet (Kotov and Zhai, 2012). A classical model based on pseudo-relevant
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documents was proposed by Rocchio for the SMART retrieval system (Rocchio,

1971). The new query vector is obtained by updating the original vector in the

direction of the centroid of pseudo-relevant documents and far away from non-

relevant ones. We will show that existing supervised embedding approaches perform

similar embedding gradient updates. Our model performs a refinement of those

updates.

Recently, attention turned towards static resources which allow to avoid multi-

phase retrieval and noisy pseudo-relevant document sets. In particular, click-

through data has shown great success as it can naturally bridge the gap from

queries terms to documents terms. Recently, Gao and Nie (2012) and Gao et al.

(2010) successfully performed QE by training a statistical translation model on

clickthrough data and showed that it performed better than a standard correlation

model (Cui et al., 2002).

6.2.2 Semantic spaces

In IR, the idea of using semantic term representations has been first put forward

by the advent of LSI (Deerwester et al., 1990) and later by Probabilistic Latent Se-

mantic Indexing (PLSI) (Hofmann, 1999), Non-Negative Matrix Factorization (Lee

and Seung, 2000) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Al-

though these models are usually referred to as topic models, they can be considered

as implicitly learning semantic term representations from document co-occurrence

statistics. Neural-Network Language Models (NLM) (Bengio et al., 2006) first ad-

vanced the idea of explicitly learning word embeddings in order to boost the perfor-

mance of statistical Language Modeling tasks. A notable amount of work followed

these first approaches in order to lower their computational requirements (Morin

and Bengio, 2005; Mnih and Kavukcuoglu, 2013). Recently, Mikolov et al. (2013)

proposed the particularly successful Skip-Gram word embedding model, combining

fast learning and accurate semantic resolution. In general, very few embedding

models have been used for IR purposes. The most known are the recent Deep

Structured Semantic Model (DSSM) (Huang et al., 2013) and Supervised Semantic

Indexing (SSI) (Bai et al., 2009). These models learn embeddings by exploiting

clickthrough data and thus are related to our work. Both models try to learn an

embedding structure so as to maximize the final objective function closely related
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to retrieval. However, the scoring function and the representation paradigm are still

inherited from the vector space model (VSM) approach (Salton et al., 1974) and

thus differ from our approach: queries and documents are represented as weighted

word vectors and then projected into a lower-dimensional vector space before tak-

ing their inner product. Our model can be seen as using a different scoring function

and representation rationale which allow documents and queries to have a richer

representation than single concepts. As our model shares many similarities with

SSI, we will describe this method in more details in the next section.

6.3 Learning Concepts Embeddings

This section details our proposed approach for estimating latent concept em-

beddings. We recall the notions behind the SSI algorithm, shedding some light on

its gradient updates rationale. This will facilitate the task in highlighting the major

departures with respect to our model. In what follows, we assume that we dispose

of a dataset D = {(Ql, Dl)}Ll=1 composed of query / relevant document pairs. For

all the presented models, the parameters to learn are the latent embeddings for

each entry in a concept vocabulary V , containing terms, bigrams or longer phrases,

of size N . The unifying rationale of all the models is to represents concepts, doc-

uments and queries in a latent space in order to maximize a measure of similarity

between Ql and Dl.

6.3.1 Supervised Semantic Indexing

Representation

In SSI, the parameters to learn can be represented as a matrix U ∈ RK×N ,

where K is the dimensionality of the latent embedding space and N the size of the

vocabulary. Each κ ∈ V can be represented as a one-hot vector xκ = {δ1κ, . . . , δNκ},
where δij = 1 iff i = j. In this way, the latent embedding of concept κ, x̃κ, can be

easily recovered by multiplying the parameter matrix by the one-hot representation,

x̃κ = Uxκ, x̃κ ∈ RK . In other words, the latent embeddings x̃ are arranged in

the columns of U , U:κ = x̃κ. Documents and queries are seen as unit-vectors

in the vocabulary space, i.e. q ∈ RN , ‖q‖2 = 1, where for example qκ will be the
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frequency of occurrence κth concept in the query. The latent queries and documents

are represented as linear combinations of concept embeddings which is the same

rationale behind the LSI linear projection model:

q̃ = Uq = Z−1
q

∑
κ∈Q

Uxκ = Z−1
q

∑
κ∈Q

x̃κ, (6.1)

where the sum is over all the concepts appearing in the query and Zq is the nor-

malization factor for q.

Scoring

In order to produce a score for a document given a query, SSI adopts a mod-

ification of the classical dot product used in the classical VSM. Specifically, the

scoring function writes as:

sSSI(Q,D) = qT (UTU + I)d = q̃T d̃+ qTd. (6.2)

SSI combines two scores obtained in different representation spaces: the first one

is the dot product on the latent space and the second one is the dot product

in the original space. This way the model learns the tradeoff between using low

dimensional space and a classical term-based score.

Learning

The parameter matrix U is learned by employing a margin ranking-loss which

has already been used in several learning-to-rank scenarios (Collobert et al., 2011):

LSSID (U) =
L∑
l=1

[1− sSSI(Ql, Dl) + sSSI(Ql, Dc)]+ (6.3)

where Dc is a non-relevant document for this query and [y]+ = max(0, y) and 1

is called margin. This loss encourages the model to keep the scores of relevant

documents greater than the scores of non-relevant ones at least by 1. The loss

is minimized through stochastic gradient descent (SGD). Iteratively, one picks a

random triplet (ql, dl, dc) and update the parameters U by taking a gradient step for

that triplet. In order to gather more insights on how the model behaves, we write
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the derivatives with respect to each of the hidden embeddings appearing in the

current update. Denote x̃q, x̃d and x̃c the embedding of a concept appearing in the

query, relevant document and non-relevant document respectively. The negative

gradients for these parameters are:

−∂L
SSI
D

∂x̃q
≈ d̃l − d̃c, −

∂LSSID
∂x̃d

≈ q̃l, −
∂LSSID
∂x̃c

≈ −q̃l,

where the approximation sign means up to a normalization constant, i.e. the gra-

dients should be multiplied respectively by Z−1
ql

, Z−1
dl

and Z−1
c . By analyzing the

gradient update step, we recognize the familiar form of Rocchio query updates (Roc-

chio, 1971). Each query word is moved towards the direction of relevant documents

and far from non-relevant ones. As a by-product, the updated query representa-

tion will point in that direction. We will see that the updates of our model can be

seen as a refinement of these updates, where the contribution of the relevant and

non-relevant documents is weighted by its similarity to the query.

6.3.2 Quantum Entropy Minimization

In order to learn the latent embeddings, we stem from the computational frame-

work proposed by the recent Quantum Language Modeling (QLM) approach for

IR (Sordoni et al., 2013). This formal retrieval framework embeds concepts into

rank-one projectors. Documents and queries are embedded into a special matrix

called density matrix, a well-known mathematical object in physics. The authors

show that this representation extends classical unigram language models and can

be used to capture richer information than single terms from text excerpts. Given

a query, documents are scored using a generalization of classical relative entropy to

matrix domains called quantum relative entropy. Our contribution here is to show

how it is possible to leverage the proposed representation and scoring function in

order to learn semantic representations for each concept. From now on, we will call

our model Quantum Entropy Minimization (QEM).

Representation

Stemming from the original QLM approach, we embed each concept in the

vocabulary with a rank-one projector Π̃κ. Rank-one projectors are projection ma-
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trices onto one-dimensional subspaces. They are parameterized as outer products

of unit-norm vectors, i.e. they have only K free parameters, Π̃κ = x̃κx̃
T
κ , ‖x̃κ‖2 = 1.

Hence, we can still consider our latent embeddings as columns vectors of a param-

eter matrix U ∈ RK×N , without entering matrix domains. Also, our embeddings

are normalized and lie on the unit sphere.

Documents and queries are associated to a density matrix, which can be un-

derstood as a convex combination of concepts projectors. From a linear algebra

perspective, a density matrix W is symmetric, positive-semidefinite and of unitary

trace, W ∈ SK+ = {W : W ∈ RK×K ,W = W T ,W � 0, trW = 1}. In QLM, the

density matrix for a query (or a document) is obtained by maximizing the following

convex log-likelihood form:

LQ(W ) =
∑
κ∈Q

log trWΠκ, (6.4)

where the sum is over the number of concepts appearing in the query. The maxi-

mization should be restricted to the feasible set SK+ , i.e. the solution should be a

proper density matrix. The expression trWΠκ can be considered as a similarity

between the query and the concept representations. This maximization is difficult

and has to be approximated by iterative methods (Sordoni et al., 2013).

In order to have a smooth analytic solution of Eq. 5, we choose to approximate

the objective by a linear Taylor’s expansion of log x around x = 1, log x ≈ x − 1.

Hence, the linear Taylor approximation LIQ(W ) of LQ(W ) writes as:

LIQ(W ) =
∑
κ∈Q

trW Π̃κ (6.5)

up to a constant shift. In order to see what is the effect of this approximation,

note that 0 ≤ trW Π̃κ ≤ 1. The linear approximation cuts-off the infinity of the log

function around zero. Hence, the approximation is very accurate when the density

matrix is “around” Π̃, but badly underestimates the loss when trW Π̃κ is small. As

a result, the approximate objective could “forget” to represent some concepts in the

documents, i.e. the objective could be high even if trW Π̃κ is very low for some κ.

Coming up with more accurate approximations is certainly an interesting way to

improve the model. Nevertheless, we found that this linear approximation works

well in practice.
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The maximization of Eq. 6.5 is performed by enforcing the unit-trace constraint

trW = 1 through a Langrangian multiplier λ. We have:

LIQ(W ) =
∑
κ∈Q

trW Π̃κ − λ (trW − 1) (6.6)

We compute the gradient with respect to W and we set it to zero obtaining λW =∑
κ∈Q Π̃κ. By taking the trace on both sides and exploiting the fact that for unit

rank projectors tr Π̃κ = 1, we find that the multiplier λ = NQ, the number of

concepts in the query. Therefore, the latent representation W̃Q for the query Q can

be written as:

W̃Q = NQ
−1
∑
κ∈Q

Π̃κ = NQ
−1
∑
κ∈Q

x̃κx̃
T
κ , (6.7)

As the combination of symmetric positive-definite matrices is still positive-definite -

see for example (Nielsen and Chuang, 2010) - the solution above is a valid maximizer

of LIQ(W ), i.e. W̃Q lies in the feasible set SK .

Considering the solution presented in Eq. 6.7, we see that our model represents

documents and queries as mixtures of rank-one projectors. Contrary to existing

embeddings models such as SSI, documents and queries lie in a larger space than the

concepts themselves. This is intuitively appealing for it seems reductive to consider

them as carrying the same information as single concepts. In our model, this idea

is embodied by the notion of rank : concepts from the vocabulary are embedded

in rank-one matrices; as documents and queries are mixtures of rank-one matrices,

they can have higher rank and tend to degenerate to rank-one matrices if and only

if the projectors for their component terms get closer to each other, i.e. they all

encode the same semantic information.

Scoring

Given a document density matrix WD and a query density matrix WQ, both

estimated through Eq. 6.7, QLM defines the retrieval score for a document with

respect to a query with a generalization of the classical relative entropy called

quantum relative entropy:

s(Q,D) = trWQ logWD, (6.8)
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where log denotes the matrix logarithm, i.e. the classical logarithm applied to

the matrix eigenvalues. In order to formulate a differentiable form of the scoring

function, we expand the matrix logarithm in Eq. 6.8 by its Taylor’s series around IK ,

the identity matrix in RK×K . This is a common choice for matrix logarithm (Nielsen

and Chuang, 2010). Truncating to the linear expansion term we obtain:

logW ≈ logIW = W − IK . (6.9)

Hence, the first-order approximation of the matrix logarithm is just the matrix

itself, up to a constant shift. By substituting the expression above in our scoring

function we obtain our linear approximation:

sQEM(Q,D) = trWQ(WD − IK)
rank
= trWQWD, (6.10)

where the rank equivalence is obtained by noting that the constant shift does not

depend on a particular document thus cannot influence the relative rank of two

documents with respect to a given query. This scoring function is the generalization

of dot product for symmetric matrices. However, in the case of density matrices,

sQEM(Q,D) is bounded and ranges in [0, 1] (Nielsen and Chuang, 2010).

Learning

Similarly to SSI, we adopt margin-ranking loss in order to train our model. In

our case however, instead of fixing the margin to 1, we consider it as an hyperpa-

rameter:

LQEMD (U) =
L∑
l=1

[m− sQEM(Ql, Dl) + sQEM(Ql, Dc)]+. (6.11)

As our scoring function is bounded from above exactly by 1, parameterizing the

margin is necessary. If the margin was fixed to 1, the model would always suffer a

loss. We also choose to minimize our objective function by SGD. By exploiting the

analytic approximate solution for the density matrices in Eq. 6.7, we can rewrite
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our scoring function as:

sQEM (Q,D) = Z
∑
κ∈Q

∑
η∈D

tr x̃κx̃
T
κ x̃ηx̃

T
η (Linearity of trace)

= Z
∑
κ∈Q

∑
η∈D

tr x̃Tκ x̃ηx̃
T
η x̃κ (Circular Property)

= Z
∑
κ∈Q

∑
η∈D

(x̃Tκ x̃η)
2,

where the first inequality is given by the linearity of the trace, the second one by

the circular property of the trace and Z = N−1
Q N−1

D . Working out the gradients

is straightforward. Denote x̃q, x̃d and x̃c the embedding of a concept appearing in

the query, in the relevant document and in the non relevant document respectively.

Our updates are:

−
∂LQEMD

∂ x̃q
≈ x̃Tq (W̃Dl

− W̃Dc), −
∂LQEMD

∂x̃d
≈ x̃Td W̃Q, −

∂LQEMD

∂x̃c
≈ −x̃Tc W̃Q,

where the approximation sign means up to a normalization constant, i.e. the gra-

dients should be multiplied respectively by 2N−1
Q , 2N−1

Dl
and 2N−1

Dc
. The updates

look very similar to the SSI updates except for a dot product, which appears in the

update. In order to gain more insight on what’s happening, let’s develop the update

for x̃q by substituting the density matrices with their explicit form in Eq. 6.7:

− ∂LQEMD
∂x̃q

≈ N−1
Dl

∑
κ∈Dl

(x̃Tκ x̃q)x̃κ −N−1
Dc

∑
η∈Dc

(x̃Tη x̃q)x̃η. (6.12)

Differently from SSI, the update direction for a query concept is not a static linear

combination of relevant and non-relevant document embeddings: our model does

not require x̃q to be near each of the concepts of the relevant document x̃κ and far

away each of the concepts of the non-relevant document x̃η. Instead, x̃q is moved

towards the region of its nearest document concepts x̃κ and farther away from

its nearest non-relevant document concepts x̃η. Similarly to a translation model,

this has the effect of selecting which document concepts the query concept should

be aligned to: in general the selection will be driven by co-occurrence patterns.

Interestingly, we also obtain a refinement of the Rocchio expansion method. The

update direction for query expansion is obtained by weighting relevant and non-

relevant documents by their similarity to the query: we require the query to be
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Anchor Log # Anchors # κ # Uni # Big

WIKI 13,570,292 442,738 167,615 275,123

Table 6.1 – Number of anchors, concepts, unigram and bigram concepts in the anchor log used
in the experiments.

near to the most similar relevant documents and far away from the most similar

non-relevant documents, which is intuitive and can help to filter out noise in the

relevance labels.

6.4 Experimental study

6.4.1 Experimental setup

All our experiments were conducted using the open source Indri search engine.

As query expansion with external resources have shown to be effective for difficult

web queries, we test the effectiveness of our approach on the ClueWeb09B collec-

tion, a noisy web collection containing 50,220,423 documents. We choose to use

the three set of topics of the TREC Web Track from 2010 to 2012 (topics 51-200).

In addition to MAP, precision at top-ranks is an important feature for query ex-

pansion models. Hence, we also report NDCG@10 and the recent ERR@10, which

correlates better with click metrics than other editorial metrics (Chapelle et al.,

2009). The statistical significance of differences in the performance of tested meth-

ods is determined using a randomization test (Smucker et al., 2007) evaluated at

α < 0.05.

Baselines

We first propose to compare all our baselines to a standard language modelling

(LM) approach for IR, which does not exploit query expansion techniques. In order

to provide a strong baseline performing traditional query expansion, we compare

our model with the successful concept translation model (CTM), which allows to

find translations from/to terms or longer phrases (Gao and Nie, 2012). We also

propose to compare our model to SSI as it shares the same learning rationale and

was conceived for similar datasets.
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Model p(κ|θE)

CTM
∑

η∈Q p(κ|η)p(η|θQ) ≈∑η∈Q p(κ|η)

SSI exp x̃Tκ q̃ ≈ exp
∑

η∈Q x̃
T
κ x̃η

QEM exp tr W̃Q Π̃κ ≈ exp
∑

η∈Q(x̃Tκ x̃η)
2

Table 6.2 – Explicit parameterizations of the probability of an expansion concept given the
query for each of the models.

Anchor log

The studies asserting the efficiency of clickthrough data for QE nearly all make

use of proprietary query logs (Gao and Nie, 2012; Gao et al., 2010). In Dang and

Croft (2010), the authors show that an anchor log made of anchor text / title

pairs can bring similar performance to a real query log for query reformulation

purposes. For this paper, we built the anchor log from the high-quality Wikipedia

collection 1. Anchor texts on Wikipedia have already been successfully used for

expansion purposes in Arguello et al. (2008) for blog recommendation task. In order

to embed both terms and compound concepts, we included all terms and bigrams

occurring more than 6 times in the corpus. Table 6.1 reports some statistics about

our paired corpus.

Query expansion

In order to evaluate the effectiveness of the proposed approach and the baselines,

we perform QE using the powerful KL-divergence framework (Zhai, 2008). KL has

been used in numerous QE studies as a way of integrating expansion terms mined

from a variety of external resources (Kotov and Zhai, 2012). Given a query language

model θQ and a document model θD, the documents in the collection are scored

according to the relative entropy:

sKL(Q,D) =
∑
κ∈V

p(κ|θQ) log p(κ|θD) (6.13)

where κ is an entry of the vocabulary. The process of QE is obtained by smoothing

the query language model with a concept model θE obtained by external resources:

p(κ|θ̃Q) = λ p(κ|θQ) + (1− λ) p(κ|θE), (6.14)

1. http://www.wikipedia.org
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which has the effect of assigning non-zero probability of an expansion concept. The

training of λ is discussed in more details in the next section. In order to test the

quality of the mined expansion terms, it is necessary to parameterize the probability

p(κ|θE) for each of the tested models. These are reported in Table 6.2. In CTM,

the model θE is considered as a mixture of translation probabilities corresponding

to query concepts where the translation probabilities p(κ|η) are estimated on the

anchor log and p(η|θQ) = N−1
Q is the uniform query distribution. For all the latent

models, we parameterize the probability of a term given a query by employing

a softmax formulation, i.e. (Mikolov et al., 2013). The energy is the similarity

between a concept and a query which conjugates differently in the different models.

In SSI, this similarity is the inner product between the query and the concept latent

representations, i.e. x̃Tκ q̃. In QEM, we follow the formulation in Eq. 6 and naturally

consider the similarity of a concept given a query as tr W̃QΠ̃κ. Differently from SSI

and similarly to CTM, in our approach the contributions of query terms are always

positive, which reminds the basic rationale of successful approaches such as NMF

or LDA.

Hyperparameter Selection

A novelty of this work is that we choose to train all the hyperparameters of

the models in order to optimize expansion performance measured with MAP. In

this paper, we use a random search recently proposed in Bergstra and Bengio

(2012). Our procedure is depicted in Fig. 6.1. Given our anchor log D, we sample

hyper parameters Φ from a uniform distribution over a fine-grained set of possible

values ΩΦ. Clamping Φ, we train the model parameters (embeddings or translation

probabilities) on the anchor log. We expand the original queries by selecting the

top-10 concepts according to the parameterization discussed previously. Finally,

we tune by grid-search the smoothing parameter λ. We repeat the process n = 50

times in order to have good chances to find minima of the hyperparameter space.

We report the results obtained by performing 5-fold cross-validation. For all the

models we cross-validate λ. For all the embeddings model, we fix the number of

latent dimensions to K = 100, the number of epochs to 3. For SSI, we cross-validate

the gradient step, while for QEM we include also the margin m.
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(a) Training Phase
Q ← Train queries
For t = 1 . . . n
1. Φt ∼ Random(ΩΦ)
2. Mt ← Train(D, Φt)
3. QE ← Expand(Q,Mt)
4. λt ← Grid(QE , λ)
5. MAPΦt ← Search(QE , λt)
6. If MAPΦt ≥ MAPΦ∗

5.1 Φ∗ = Φt, λ∗ = λt

Return Φ∗, λ∗

(a) Testing Phase
Q ← Test queries

1. M∗ ← Train(D, Φ∗)
2. QE ← Expand(Q,M∗)
3. MAPΦ∗ ← Search(QE , λ∗)
4. Return MAPΦ∗

Figure 6.1 – Algorithms for training (a) and testing (b) the hyper parameters Φ of the expansion
models directly on MAP.

Queries Model nDCG@10 ERR@10 MAP

WT10

LM .0850 .0443 .1069

CTM .0954 .0494 .1128

SSI .0877 .0437 .1123

QEM .1091s .0583cs .1137

WT11

LM .1341 .0613 .0894

CTM .1278 .0611 .0936

SSI .1331 .0624 .0882

QEM .1514cs .0727cs .1002s

WT12

LM .0738 .1087 .1047

CTM .0837 .1144 .1095

SSI .1063 .1475 .1200

QEM .1040c .1488c .1210c

Table 6.3 – Evaluation of the performance for the four methods tested. Best results are
highlighted in boldface. Numbers in parentheses indicate relative improvement (%) over SSI and
CTM. s, c means statistical significance over SSI and CTM.
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6.4.2 Results

Table 6.3 resumes all our experimental results. First of all, we note that all the

expansion methods increase significantly on the term-matching retrieval baseline

LM. Our implementation of CTM trained on the high-quality Wikipedia anchor

logs has overall positive effects on the three reported measures and on the three

collections of topics tested. CTM increases considerably the precision at top-ranks,

achieving relative improvements up to 13.4% on nDCG@10 and 11.51% on ERR@10

for WT-10 and WT-12. For WT-11, CTM suffers non-significant losses with re-

spect to LM on precision-oriented measures while still achieving 4.69% relative

improvement on MAP. Analyzing the average query length on three collections of

topics tested, we found for WT-10, WT-11 and WT-12 respectively 1.979, 3.396

and 2.122. WT-11 queries are thus longer on average and reflect long-tail queries

which are particularly difficult to expand because of the complex syntactic relation-

ships between terms in the query formulation. We then compared latent semantic

models with CTM. Experimental results confirm that learned semantic spaces can

be useful in encoding useful relationships for query expansion. Even when fixing

a relatively low latent dimensionality, i.e. K = 100, SSI performs as well as CTM

on WT-10 while outperforming the latter on WT-12 on all measures. QEM out-

performs both SSI and CTM yielding consistent improvements for all the topics

tested. It is interesting to note that SSI is not effective on WT11 and actually

degrades performance with respect to the baseline LM nearly for all the measures

reported. By representing queries as linear combination of concepts embeddings,

SSI seems to fail in capturing semantic content of relatively long queries such as

those found in WT-11. The fact that QEM increases significantly all measures on

those difficult topics brings evidence towards the usefulness of the enriched query

representation space, capable of adequate modelling of longer text sequences. It

is also striking how QEM can bring relative improvements both on SSI and CTM

for precision at top-ranks by at least 14% in WT-10 and 13% for difficult WT-

11 topics. This is especially important in web search where top-ranks are most

valuable for users. It seems that QEM can select compact and focused expansion

concepts in order to increase the quality of top-ranked documents. On WT-12, the

situation is more mitigated but still QEM can bring improvements over CTM and

SSI. Even if not reported here, we conducted preliminary experiments by varying

the number of dimensions and by choosing a more appropriate ranking loss such as
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proposed in Weston et al. (2011) and found that the performance of QEM can be

further increased by a significant amount with respect to classical CTM and SSI.

Therefore, the automatic setting of appropriate dimensions will be an interesting

research in the future.

6.5 Conclusion

Overall, we believe that the potential of latent semantic model for encoding

useful semantic relationship is real and should be fostered by enriching query and

document representations. To this end, we proposed a new method called Quan-

tum Entropy Minimization (QEM) which is, to our knowledge, the first model

to allocate text sequences in a larger space than their component terms. This is

automatically encoded in the notion of rank. Higher-rank objects encode broader

semantic information while unit-rank objects bring only localized semantic content.

Experimental results show that our model is useful in order to boost precision at

top-ranks with respect to a state-of-the-art expansion model and a recently pro-

posed semantic model. Particularly striking was the ability of our model to find

useful expansion terms for longer queries: we believe this is a direct consequence

of the higher semantic resolution allocated by our model. There are many interest-

ing directions for future research. One could find more reasonable approximations

both to the scoring function and the representation capable of bringing further

improvements. Finally, we argue that incorporating existing advanced gradient de-

scent procedures, refined loss functions can certainly further increase the retrieval

performance, well beyond traditional query expansion methods.

Related Articles

Although not explicitly discussed in this thesis, we published two related papers

on supervised feature learning to encode semantic relationships and overcome exact

matching problems:
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Modelling Latent Topic Interactions using Quantum Interference for IR. Alessan-

dro Sordoni, Jing He, Jian-Yun Nie, Proceedings of CIKM (CIKM ’13).

Summary. In this article, we use an unsupervised feature learning technique

called Latent Dirichlet Allocation (LDA) to estimate a latent topic space (Blei

et al., 2003) and we apply the mathematical framework of quantum interference to

model the interactions between topics. Instead of performing query expansion, we

evaluate our model in a document expansion setting.

Compact Aspect Embedding for Diversified Query Expansions. Xiaohua Liu,

Arbi Bouchoucha, Alessandro Sordoni, Jian-Yun Nie, Proceedings of the 28th AAAI

conference (AAAI ’14).

Summary. In this paper, we propose a novel method for query expansion, called

compact aspect embedding, which exploits trace norm regularization to learn a low

rank embedding space for each query, with each eigenvector of the learnt vector

space representing an aspect of the query, and the absolute value of its correspond-

ing eigenvalue representing the association strength of that aspect to the query.

Meanwhile, each expansion term is mapped into the vector space as well.
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7

A Hierarchical Recurrent
Encoder-Decoder for
Generative Context-Aware
Query Suggestion

Prologue

Article Details

A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query

Suggestion. Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma,

Jakob G. Simonsen, Jian-Yun Nie. Proceedings of CIKM (CIKM ’15), pp. 553–562.

Personal Contribution The idea for the new hierarchical architecture is my

own. I wrote the code for the model with initial support from Caglar Gulcehre

and ran all the experiments. Hossein Vahabi provided guidance on setting up the

experimental framework to benchmark the effectiveness of the proposed method.

The idea of performing a robust prediction task was my own. Christina Lioma and

Jakob G. Simonsen participated to the initial brainstorming while I was interning

in Copenhagen. All the authors contributed to the correction of the article.

Context

In order to support users during their search tasks, current search engines pro-

vide query suggestions, i.e. alternative textual formulations of the user information

need which are likely to lead to more relevant results. In this article, we investigate

the use of recurrent neural networks (RNN) for the problem of contextual query

suggestion: given a sequence of past queries issued by the user, our objective is

to predict the query the user will issue next. RNNs are notorious deep learning

architectures that have demonstrated to be extremely effective in a variety of NLP

tasks such as Language Modeling (LM) (Mikolov et al., 2010; Pascanu et al., 2013)

and Machine Translation (MT) (Cho et al., 2014; Sutskever et al., 2014). The

overwhelming success of RNNs stems from their ability to model long-term de-
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pendencies appearing in the input sequences. In our setting, capturing long-term

dependencies is important as the user may have issued a large number of previous

queries. Moreover, RNNs come with other desirable properties such as robustness

to long-tail queries and query generation capabilities. Until today, the application

of RNNs techniques to IR remains unexplored.

Contributions

The core contribution of the article is to present a first application of RNNs

to query suggestion. Our novel hierarchical recurrent encoder-decoder (HRED)

architecture makes possible to condition the suggestion on a – theoretically un-

limited – number of previously submitted queries. Additionally, our model can

suggest for rare, or long-tail, queries. The produced suggestions are synthetic and

are sampled one word at a time, using computationally cheap decoding techniques.

This is in contrast to current synthetic suggestion models relying upon machine

learning pipelines and hand-engineered feature sets. We believe that, in addition

to query suggestion, our architecture is general enough to be used in a variety of

other applications.

Recent Developments

Although the article has been published very recently, some works expanded

upon its core ideas and architecture. Serban et al. (2016) extend the hierarchical ar-

chitecture to deal with a response generation in conversational tasks. Similarly, Yao

et al. (2015) extend the architecture by introducing a neural attention component.

7.1 Introduction

Modern search engines heavily rely on query suggestions to support users during

their search task. Query suggestions can be in the form of auto-completions or

query reformulations. Auto-completion suggestions help users to complete their

queries while they are typing in the search box. In this paper, we focus on query

98



reformulation suggestions, that are produced after one or more queries have already

been submitted to the search engine.

Search query logs are an important resource to mine user reformulation be-

haviour. The query log is partitioned into query sessions, i.e. sequences of queries

issued by a unique user and submitted within a short time interval. A query session

contains the sequence of query reformulations issued by the user while attempting

to complete the search mission. Therefore, query co-occurrence in the same session

is a strong signal of query relatedness and can be straightforwardly used to produce

suggestions.

Methods solely relying on query co-occurrence are prone to data sparsity and

lack coverage for rare and long-tail queries, i.e. unseen in the training data. A

suggestion system should be able to translate infrequent queries to more common

and effective formulations based on similar queries that have been seen in the train-

ing data. Amongst the interesting models that have been proposed, some capture

higher order collocations (Boldi et al., 2008), consider additional resources (Jain

et al., 2011; Vahabi et al., 2013), move towards a word-level representation (Bonchi

et al., 2012; Broccolo et al., 2012) or describe queries using a rich feature space and

apply learning to rank techniques to select meaningful candidates (Ozertem et al.,

2012; Santos et al., 2013).

An additional desirable property of a suggestion system is context-awareness.

Pairwise suggestion systems operate by considering only the most recent query.

However, previous submitted queries provide useful context to narrow down ambi-

guity in the current query and to produce more focused suggestions (Jiang et al.,

2014). Equally important is the order in which past queries are submitted, as it

denotes generalization or specification reformulation patterns (Huang and Efthimi-

adis, 2009). A major hurdle for current context-aware models is dealing with the

dramatic growth of diverse contexts, since it induces sparsity, and classical count-

based models become unreliable (Cao et al., 2008; He et al., 2009).

Finally, relatively unexplored for suggestion systems is the ability to produce

synthetic suggestions. Typically, we assume that useful suggestions are already

present in the training data. The assumption weakens for rare queries or complex

information needs, for which it is possible that the best suggestion has not been

previously seen (Jain et al., 2011; Szpektor et al., 2011). In these cases, synthetic

suggestions can be leveraged to increase coverage and can be used as candidates in
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complex learning to rank models (Ozertem et al., 2012).

We present a generative probabilistic model capable of producing synthetic,

context-aware suggestions not only for popular queries, but also for long tail queries.

Given a sequence of queries as prefix, it predicts the most likely sequence of words

that follow the prefix. Variable context lengths can be accounted for without strict

built-in limits. Query suggestions can be mined by sampling likely continuations

given one or more queries as context. Prediction is efficient and can be performed

using standard natural language processing word-level decoding techniques (Koehn,

2009). The model is robust to long-tail effects as the prefix is considered as a

sequence of words that share statistical weight and not as a sequence of atomic

queries.

As an example, given a user query session composed of two queries cleveland

gallery → lake erie art issued sequentially, our model predicts sequentially the

words cleveland, indian, art and ◦, where ◦ is a special end-of-query symbol that we

artificially add to our vocabulary. As the end-of-query token has been reached, the

suggestion given by our model is cleveland indian art. The suggestion is contextual

as the concept of cleveland is justified by the first query thus the model does not

merely rely on the most recent query only. Additionally, the produced suggestion

is synthetic as it does not need to exist in the training set.

To endow our model with such capabilities, we rely on recent advances in gener-

ative natural language applications with neural networks (Bengio, 2013; Cho et al.,

2014; Mitra, 2015). We contribute with a new hierarchical neural network architec-

ture, called hierarchical recurrent encoder-decoder (HRED), that allows to embed

a complex distribution over sequences of sentences within a compact parameter

space. Differently from count-based models, we avoid data sparsity by assigning

single words, queries and sequences of queries to embeddings, i.e. dense vectors

bearing syntactic and semantic characteristics (Figure 7.1) (Bengio et al., 2003).

Our model is compact in memory and can be trained end-to-end on query sessions.

We envision future applications to various tasks, such as query auto-completion,

query next-word prediction and general language modeling.
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Figure 7.1 – Projection of the (a) word and (b) query embeddings learnt by our neural network
architecture. Topically similar terms and queries are close in the embedding space.

7.2 Key Idea

Suggestion models need to capture the underlying similarities between queries.

Vector representations of words and phrases, also known as embeddings, have been

successfully used to encode syntactic or semantic characteristics thereof (Bengio,

2013; Bengio et al., 2003; Mikolov et al., 2013; Shen et al., 2014). We focus on how

to capture query similarity and query term similarity by means of such embeddings.

In Figure 7.1 (a) and (b), we plot a two-dimensional projection of the word and

query embeddings learnt by our model. The vectors of topically similar terms or

queries are close to each other in the vector space.

Vector representations for phrases can be obtained by averaging word vec-

tors (Mikolov et al., 2013). However, the order of terms in queries is usually

important (Sordoni et al., 2013). To obtain an order-sensitive representation of

a query, we use a particular neural network architecture called Recurrent Neural

Network (RNN) (Bengio, 2013; Mikolov et al., 2010). For each word in the query,

the RNN takes as input its embedding and updates an internal vector, called recur-

rent state, that can be viewed as an order-sensitive summary of all the information

seen up to that word. The first recurrent state is usually set to the zero vector.

After the last word has been processed, the recurrent state can be considered as a

compact order-sensitive encoding of the query (Figure 7.2 (a)).

A RNN can also be trained to decode a sentence out of a given query encod-

ing. Precisely, it parameterizes a conditional probability distribution on the space

of possible queries given the input encoding. The process is illustrated in Fig-
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Figure 7.2 – (a) An encoder RNN processing the query cleveland gallery followed by a special
end-of-query symbol ◦. Each solid arrow represents a non-linear transformation. (b) A decoder
RNN generating the next query in the session, lake erie art, from a query encoding as input.

ure 7.2 (b). The input encoding may be used as initialization of the recurrence.

Then, each of the recurrent states is used to estimate the probability of the next

word in the sequence. When a word is sampled, the recurrent state is updated to

take into account the generated word. The process continues until the end-of-query

symbol ◦ is produced.

The previous two use cases of RNNs can be pipelined into a single recurrent

encoder-decoder, as proposed in (Cho et al., 2014; Sutskever et al., 2014) for Ma-

chine Translation purposes. The architecture can be used to parameterize a map-

ping between sequences of words. This idea can be promptly casted in our frame-

work by predicting the next query in a session given the previous one. With respect

to our example, the query encoding estimated by the RNN in Figure 7.2 (a) can be

used as input to the RNN in Figure 7.2 (b): the model learns a mapping between

the consecutive queries cleveland gallery and lake erie art. At test time, the user

query is encoded and then decoded into likely continuations that may be used as

suggestions.

Although powerful, such mapping is pairwise, and as a result, most of the query

context is lost. To condition the prediction of the next query on the previous queries

in the session, we deploy an additional, session-level RNN on top of the query-level

RNN encoder, thus forming a hierarchy of RNNs (Figure 7.3). The query-level

RNN is responsible to encode a query. The session-level RNN takes as input the

query encoding and updates its own recurrent state. At a given position in the

session, the session-level recurrent state is a learnt summary of the past queries,
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keeping the information that is relevant to predict the next one. At this point, the

decoder RNN takes as input the session-level recurrent state, thus making the next

query prediction contextual.

The contribution of our hierarchical recurrent encoder-decoder is two-fold. The

query-level encoder RNN maps similar queries to vectors close in the embedding

space (Figure 7.1 (b)). The mapping generalizes to queries that have not been

seen during training, as long as their words appear in the model vocabulary. This

allows the model to map rare queries to more useful and general formulations, well

beyond past co-occurred queries. The session-level RNN models the sequence of the

previous queries, contextualizing the prediction of the next query. Similar contexts

are mapped close to each other in the vector space. This property allows to avoid

sparsity, and differently from count-based models (Cao et al., 2008; He et al., 2009),

to account for contexts of arbitrary length.

7.3 Mathematical Framework

We start by presenting the technical details of the RNN architecture, which

our model extends. We consider a query session as a sequence of M queries S =

{Q1, . . . , QM} submitted by a user in chronological order, i.e. Qm <t Qm+1 where

<t is the total order generated by the submission time, and within a time frame,

usually 30 minutes. A query Qm is a sequence of words Qm = {wm,1 , . . . , wm,Nm},
where Nm is the length of query m. V is the size of the vocabulary.

7.3.1 Recurrent Neural Network

For each query word wn, a RNN computes a dense vector called recurrent state,

denoted hn, that combines wn with the information that has already been processed,

i.e. the recurrent state hn−1. Formally:

hn = f(hn−1, wn), h0 = 0 (7.1)

where hn ∈ Rdh , dh is the number of dimensions of the recurrent state, f is non-

linear transformation and the recurrence is seeded with the 0 vector. The recurrent

103



state hn acts as a compact summary of the words seen up to position n.

Usually, f consists of a non-linear function, i.e. the logistic sigmoid or hyperbolic

tangent, applied element-wise to a time-independent affine transformation (Mikolov

et al., 2010). The complexity of the function f has an impact on how accurately

the RNN can represent sentence information for the task at hand. To reduce the

fundamental difficulty in learning long-term dependencies (Bengio et al., 1994),

i.e. to store information for longer sequences, more complex functions have been

proposed such as the Long Short-Term Memory (LSTM) (Hochreiter and Schmid-

huber, 1997) and the Gated Recurrent Unit (GRU) (Cho et al., 2014).

Once Eq. 7.1 has been run through the entire query, the recurrent states h1, . . . , hN

can be used in various ways. In an encoder RNN, the last state hN may be viewed

as an order-sensitive compact summary of the input query. In a decoder RNN, the

recurrent states are used to predict the next word in a sequence (Cho et al., 2014;

Mikolov et al., 2010). Specifically, the word at position n is predicted using hn−1.

The probability of seeing word v at position n is:

P (wn = v|w1:n−1) =
exp o>v hn−1∑
k exp o>k hn−1

, (7.2)

where oi ∈ Rde is a real-valued vector of dimensions de associated to word i, i.e. a

word embedding, and the denominator is a normalization factor. A representation

of the embeddings learnt by our model is given in Figure 7.1 (a). The semantics

of Eq. 7.2 dictates that the probability of seeing word v at position n increases if

its corresponding embedding vector ov is “near” the context encoded in the vector

hn−1. The parameters of the RNN are learned by maximizing the likelihood of the

sequence, computed using Eq. 2.

Gated Recurrent Unit

We choose to use the Gated Recurrent Unit (GRU) as our non-linear transfor-

mation f . GRUs have demonstrated to achieve better performance than simpler

parameterizations at an affordable computational cost (Cho et al., 2014). This

function reduces the difficulties in learning our model by easing the propagation of

the gradients. We let wn denote the one-hot representation of wn = v, i.e. a vector

of the size of the vocabulary with a 1 corresponding to the index of the query word
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v. The specific parameterization of f is given by:

rn = σ(Irwn +Hrhn−1), (reset gate)

un = σ(Iuwn +Huhn−1), (update gate)

h̄n = tanh(Iwn +H(rn · hn−1)), (candidate update)

hn = (1− un) · hn−1 + un · h̄n, (final update)

(7.3)

where σ is the logistic sigmoid, σ(x) ∈ [0, 1], · represents the element-wise scalar

product between vectors, I, Iu, Ir ∈ Rdh×V and H,Hr, Hu are in Rdh×dh . The

I matrices encode the word wn while the H matrices specialize in retaining or

forgetting the information in hn−1. In the following, this function will be noted

GRU(hn−1, wn).

The gates rn and un are computed in parallel. If, given the current word, it

is preferable to forget information about the past, i.e. to reset parts of hn, the

elements of rn will be pushed towards 0. The update gate un plays the opposite

role, i.e. it judges whether the current word contains relevant information that

should be stored in hn. In the final update, if the elements of un are close to 0, the

network discards the update h̄n and keeps the last recurrent state hn−1. The gating

behaviour provides robustness to noise in the input sequence: this is particularly

important for IR as it allows, for example, to exclude from the summary non-

discriminative terms appearing in the query.

7.3.2 Architecture

Our hierarchical recurrent encoder-decoder (HRED) is pictured in Figure 7.3.

Given a query in the session, the model encodes the information seen up to that

position and tries to predict the following query. The process is iterated throughout

all the queries in the session. In the forward pass, the model computes the query-

level encodings, the session-level recurrent states and the log-likelihood of each

query in the session given the previous ones. In the backward pass, the gradients

are computed and the parameters are updated.
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Figure 7.3 – The hierarchical recurrent encoder-decoder (HRED). The user types cleveland
gallery → lake erie art. During training, the model encodes cleveland gallery, updates the session-
level recurrent state and maximize the probability of seeing the following query lake erie art.
The process is repeated for all queries in the session. During testing, a contextual suggestion
is generated by encoding the previous queries, by updating the session-level recurrent states
accordingly and by sampling a new query from the last obtained session-level recurrent state. In
the example, the generated contextual suggestion is cleveland indian art.

Query-Level Encoding

For each query Qm = {wm,1, . . . , wm,Nm} in the training session S, the query-

level RNN reads the words of the query sequentially and updates its hidden state

according to:

hm,n = GRUenc(hm,n−1, wm,n), n = 1, . . . , Nm, (7.4)

where GRUenc is the query-level encoder GRU function in Eq. 7.3, hm,n ∈ Rdh

and hm,0 = 0, the null vector. The recurrent state hm,Nm is a vector storing

order-sensitive information about all the words in the query. To keep the nota-

tion uncluttered, we denote qm ≡ hm,Nm the vector for query m. In summary, the

query-level RNN encoder maps a query to a fixed-length vector. Its parameters

are shared across the queries. Therefore, the obtained query representation qm is a

general, acontextual representation of query m. The computation of the q1, . . . , qM

can be performed in parallel, thus lowering computational costs. A projection of

the generated query vectors is provided in Figure 7.1 (b).
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Session-Level Encoding

The session-level RNN takes as input the sequence of query representations

q1, . . . , qM and computes the sequence of session-level recurrent states. For the

session-level RNN, we also use the GRU function:

sm = GRUses(sm−1, qm), m = 1, . . . ,M, (7.5)

where sm ∈ Rds is the session-level recurrent state, ds is its dimensionality and

s0 = 0. The number of session-level recurrent states sm is M , the number of

queries in the session.

The session-level recurrent state sm summarizes the queries that have been

processed up to position m. Each sm bears a particularly powerful characteristic:

it is sensitive to the order of previous queries and, as such, it can potentially encode

order-dependent reformulation patterns such as generalization or specification of

the previous queries (Huang and Efthimiadis, 2009). Additionally, it inherits from

the query vectors qm the sensitivity to the order of words in the queries.

Next-Query Decoding

The RNN decoder is responsible to predict the next query Qm given the previous

queries Q1:m−1, i.e. to estimate the probability:

P (Qm|Q1:m−1) =
Nm∏
n=1

P (wn|w1:n−1, Q1:m−1). (7.6)

The desired conditioning on previous queries is obtained by initializing the recur-

rence of the RNN decoder with a non-linear transformation of sm−1:

dm,0 = tanh(D0sm−1 + b0), (7.7)

where dm,0 ∈ Rdh is the decoder initial recurrent state (depicted in Figure 7.3),

D0 ∈ Rdh×ds projects the context summary into the decoder space and b0 ∈ Rdh .

This way, the information about previous queries is transferred to the decoder

RNN. The recurrence takes the usual form:

dm,n = GRUdec(dm,n−1 , wm,n), n = 1, . . . , Nm, (7.8)
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where GRUdec is the decoder GRU, dm,n ∈ Rdh (Cho et al., 2014). In a RNN

decoder, each recurrent state dm,n−1 is used to compute the probability of the next

word wm,n. The probability of word wm,n given previous words and queries is:

P (wm,n = v |wm,1:n−1, Q1:m−1) =

=
exp o>v ω(dm,n−1 , wm,n−1)∑
k exp o>k ω(dm,n−1 , wm,n−1)

,
(7.9)

where ov ∈ Rde is the output embedding of word v and ω is a function of both the

recurrent state at position n and the last input word:

ω(dm,n−1, wm,n−1) = Ho dm,n−1 + Eowm,n−1 + bo, (7.10)

where Ho ∈ Rde×dh , Eo ∈ Rde×V and bo ∈ Rde . To predict the first word of Qm, we

set wm,0 = 0, the 0 vector. Instead of using the recurrent state directly as in Eq. 7.2,

we add another layer of linear transformation ω. The Eo parameter accentuates

the responsibility of the previous word to predict the next one. This formulation

has shown to be beneficial for language modelling tasks (Pascanu et al., 2013; Cho

et al., 2014; Mikolov et al., 2010). If ov is “near” the vector ω(dm,n−1, wm,n−1) the

word v has high probability under the model.

7.3.3 Learning

The model parameters comprise the parameters of the three GRU functions,

GRUenc, GRUdec, GRUses, the output parameters Ho, Eo, bo and the V output

vectors oi. These are learned by maximizing the log-likelihood of a session S,

defined by the probabilities estimated with Eq. 7.6 and Eq 7.9:

L(S) =
M∑
m=1

logP (Qm|Q1:m−1)

=
M∑
m=1

Nm∑
n=1

logP (wm,n|wm,1:n−1, Q1:m−1).

(7.11)

The gradients of the objective function are computed using the back-propagation

through time (BPTT) algorithm (Rumelhart et al., 1986).
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Context Synthetic Suggestions

ace series drive ace hardware
ace hard drive
hp officejet drive
ace hardware series

cleveland gallery → lake erie art cleveland indian art
lake erie art gallery
lake erie picture gallery
sandusky ohio art gallery

Table 7.1 – HRED suggestions given the context.

7.3.4 Generation and Rescoring
Generation In our framework, the query suggestion task corresponds to an in-

ference problem. A user submits the sequence of queries S = {Q1, . . . , QM}. A

query suggestion is a query Q∗ such that:

Q∗ = arg max
Q∈Q

P (Q|Q1:M), (7.12)

where Q is the space of possible queries, i.e. the space of sentences ending by

the end-of-query symbol. The solution to the problem can be approximated using

standard word-level decoding techniques such as beam-search (Cho et al., 2014;

Koehn, 2009). We iteratively consider a set of k best prefixes up to length n as

candidates and we extend each of them by sampling the most probable k words

given the distribution in Eq. 7.9. We obtain k2 queries of length n + 1 and keep

only the k best of them. The process ends when we obtain k well-formed queries

containing the special end-of-query token ◦.

Example Consider a user who submits the queries cleveland gallery → lake erie

artist. The suggestion system proceeds as follows. We apply Eq. 7.4 to each query

obtaining the query vectors qcleveland gallery and qlake erie art. Then, we compute the

session-level recurrent states by applying Eq. 7.5 to the query vectors. At this

point, we obtain two session-level recurrent states, scleveland gallery and slake erie art.

To generate context-aware suggestions, we start by mapping the last session-level

recurrent state, slake erie art, into the initial decoder input d0 using Eq. 7.7. We are

ready to start the sampling of the suggestion. Let assume that the beam-search
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size is 1. The probability of the first word w1 in the suggestion is computed using

Eq. 7.9 by using d0 and w0 = 0, the null vector. The word with the highest

probability, i.e. cleveland, is added to the beam. The next decoder recurrent state

d1 is computed by means of Eq. 7.8 using d0 and w1 = cleveland. Using d1, we are

able to pick w2 = indian as the second most likely word. The process repeats and

the model selects art and ◦. As soon as the end-of-query symbol is sampled, the

context-aware suggestion cleveland indian art is presented to the user. In Table 7.1

we give an idea of the generated suggestions for 2 contexts in our test set.

Rescoring Our model can evaluate the likelihood of a given suggestion condi-

tioned on the history of previous queries through Eq. 7.6. This makes our model

integrable into more complex suggestion systems. In the next section, we choose

to evaluate our model by adding the likelihood scores of candidate suggestions as

additional features into a learning-to-rank system.

7.4 Experiments

We test how well our query suggestion model can predict the next query in

the session given the history of previous queries. This evaluation scenario aims at

measuring the ability of a model to propose the target next query, which is assumed

to be one desired by the user. We evaluate this with a learning-to-rank approach

(explained in Section 7.4.3), similar to the one used in Mitra (2015); Shokouhi

(2013) for query auto-completion and in Ozertem et al. (2012); Santos et al. (2013)

for query suggestion. We first generate candidates using a co-occurrence based

suggestion model. Then, we train a baseline ranker comprising a set of contextual

features depending on the history of previous queries as well as pairwise features

which depend only on the most recent query. The likelihood scores given by our

model are used as additional features in the supervised ranker. At the end, we have

three systems: (1) the original co-occurrence based ranking, denoted ADJ; (2) the

supervised context-aware ranker, which we refer to as Baseline Ranker; and (3) a

supervised ranker with our HRED feature. We evaluate the performance of the

model and the baselines using mean reciprocal rank (MRR). This is common for

tasks whose ground truth is only one instance (Jiang et al., 2014; Mitra, 2015).
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Batches Seen Training Decoding (50) Memory

135,350 44h 01m ∼ 1s 301 Mb

Table 7.2 – Full statistics about training time, memory impact and decoding time with a beam
size of 50.

7.4.1 Dataset

We conduct our experiments on the well-known search log from AOL, which

is the only available search log that is large enough to train our model and the

baselines. The queries in this dataset were sampled between 1 March, 2006 and

31 May, 2006. In total there are 16,946,938 queries submitted by 657,426 unique

users. We remove all non-alphanumeric characters from the queries, apply a spelling

corrector and lowercasing. After filtering, we sort the queries by timestamp and

we use those submitted before 1 May, 2006 as our background data to estimate

the proposed model and the baselines. The next two weeks of data are used as

a training set for tuning the ranking models. The remaining two weeks are split

into the validation and the test set. We define the end of a session by a 30 minute

window of idle time (Jansen et al., 2007). After filtering, there are 1,708,224 sessions

in the background set, 435,705 in the training set, 166,836 in the validation and

230,359 in the test set.

7.4.2 Model Training

The most frequent 90K words in the background set form our vocabulary V .

This is a common setting for RNN applied to language and allows to speed-up the

repeated summations over V in Eq. 7.9 (Cho et al., 2014; Sutskever et al., 2014).

Parameter optimization is done using mini-batch RMSPROP (Graves, 2013). We

normalize the gradients if their norm exceeds a threshold c = 1 (Pascanu et al.,

2013). The training stops if the likelihood of the validation set does not improve

for 5 consecutive iterations. We train our model using the Theano library (Bastien

et al., 2012; Bergstra et al., 2010). The dimensionality of the query-level RNN

is set to dh = 1000. To memorize complex information about previous queries,

we ensure a high-capacity session-level RNN by setting ds = 1500. The output

word embeddings oi are 300 dimensional vectors, i.e. de = 300. Our model is
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compact and can easily fit in memory (Table 7.2). The complexity of the decoding is

largely dominated by the computation of the output probabilities, givingO(nkV de),

where n is the generated query length and k the beam size. In the future, the

computational cost may be greatly reduced by employing locality sensitive hashing

(LSH) based techniques (Shrivastava and Li, 2014).

7.4.3 Learning to Rank

Given a session S = {Q1, . . . , QM}, we aim to predict the target query QM given

the context Q1, . . . , QM−1. QM−1 is called the anchor query and will play a crucial

role in the selection of the candidates to rerank. To probe different capabilities of

our model, we predict the next query in three scenarios: (a) when the anchor query

exists in the background data (Section 7.4.4); (b) when the context is perturbed

with overly common queries (Section 7.4.5); (c) when the anchor is not present in

the background data (Section 7.4.6).

For each session, we select a list of 20 possible candidates to rerank. The exact

method used to produce the candidates will be discussed in the next sections. Once

the candidates are extracted, we label the true target as relevant and all the others

as non-relevant. We choose to use one of the state-of-the-art ranking algorithms

LambdaMART as our supervised ranker, which is the winner in the Yahoo! Learn-

ing to Rank Challenge in 2010 (Wu et al., 2010). We tune the LambdaMART model

with 500 trees and the parameters are learnt using standard separate training and

validation set. We describe the set of pairwise and contextual features (17 in total)

used to train a supervised baseline prediction model, denoted Baseline Ranker. The

baseline ranker is a competitive system comprising features that are comparable

with the ones described in the literature for query auto-completion (Jiang et al.,

2014; Mitra, 2015) and next-query prediction (He et al., 2009).

Pairwise and Suggestion Features For each candidate suggestion, we count

how many times it follows the anchor query in the background data and add this

count as a feature. Additionally, we use the frequency of the anchor query in the

background data. Following Jiang et al. (2014); Ozertem et al. (2012) we also

add the Levenshtein distance between the anchor and the suggestion. Suggestion

features include: the suggestion length (characters and words) and its frequency in

the background set.
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Figure 7.4 – Proportion (%) of short (2 queries), medium (3 or 4 queries) and long (at least 5
queries) sessions in our test scenarios.

Contextual Features Similarly to Mitra (2015); Shokouhi (2013), we add 10

features corresponding to the character n-gram similarity between the suggestion

and the 10 most recent queries in the context. We add the average Levenshtein

distance between the suggestion and each query in the context (Jiang et al., 2014).

We use the scores estimated using the context-aware Query Variable Markov Model

(QVMM) (He et al., 2009) as an additional feature. QVMM models the context

with a variable memory Markov model able to automatically back-off shorter query

n-grams if the exact context is not found in the background data.

HRED Score The proposed hierarchical recurrent encoder-decoder contributes

one additional feature corresponding to the log-likelihood of the suggestion given

the context, as detailed in Section 7.3.4.

7.4.4 Test Scenario 1: Next-Query Prediction

For each session in the training, validation and test set, we extract 20 queries

that most likely follow the anchor query in the background data, i.e. with the

highest ADJ score. The session is included if and only if at least 20 queries have

been extracted and the target query appears in the candidate list. In that case, the

target query is the positive candidate and the 19 other candidates are the negative

examples. Note that a similar setting has been used in Jiang et al. (2014); Mitra

(2015) for query auto-completion. We have 18,882 sessions in the training, 6,988
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Method MRR ∆%

ADJ 0.5334 -

Baseline Ranker 0.5563 +4.3%

+ HRED 0.5749 +7.8%/+3.3%

Table 7.3 – Next-query prediction results. All improvements are significant by the t-test (p <
0.01).

sessions in the validation and 9,348 sessions in the test set. The distribution of the

session length is reported in Figure 7.4. The scores obtained by the ADJ counts

are used as an additional non-supervised baseline.

Main Result Table 7.3 shows the MRR performance for our model and the

baselines. Baseline Ranker achieves a relative improvement of 4.3% with respect to

the ADJ model. We find that the HRED feature brings additional gains achieving

7.8% relative improvement over ADJ. The differences in performance with respect

to ADJ and the Baseline Ranker are significant using a t-test with p < 0.01. In this

general next-query prediction setting, HRED boosts the rank of the first relevant

result.

Impact of Session Length We expect the session length to have an impact on

the performance of context-aware models. In Figure 7.5, we report separate results

for short (2 queries), medium (3 or 4 queries) and long sessions (at least 5 queries).

HRED brings statistically significant improvements across all the session lengths.

For short sessions, the improvement is marginal but consistent even though only

a short context is available in this case. The semantic mapping learnt by the

model appears to be useful, even in the pairwise case. ADJ is affected by the lack

of context-awareness and suffers a dramatic loss of performance with increasing

session length. In the medium range, context-aware models account for previous

queries and achieve the highest performance. The trend is not maintained for long

sessions, seemingly the hardest for the Baseline Ranker. Long sessions can be

the result of complex search tasks involving a topically broad information need or

changes of search topics. Beyond the intrinsic difficulty in predicting the target

query in these cases, exact context matches may be too coarse to infer the user

need. Count-based methods such as QVMM meet their limitations due to data
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Figure 7.5 – Next-query performance in short, medium and long sessions. All differences in
MRR are statistically significant by the t-test (p < 0.01).

sparsity. In this difficult range, HRED achieves its highest relative improvement

with respect to both ADJ (+15%) and the Baseline Ranker (+7%), thus showing

robustness across different session lengths.

Impact of Context Length We test whether the performance obtained by

HRED on long sessions can be obtained using a shorter context. For each long

session in our test set, we artificially truncate the context to make the prediction

depend on the anchor query, QM−1, only (1 query), on QM−2 and QM−1 (2 queries),

on 3 queries and on the entire context. When one query is considered, our model

behaves similarly to a pairwise recurrent encoder-decoder model trained on con-

secutive queries. Figure 7.6 shows that when only one query is considered, the

performance of HRED is similar to the Baseline Ranker (0.529) which uses the

whole context. HRED appears to perform best when the whole context is consid-

ered. Additional gains can be obtained by considering more than 3 queries, which

highlights the ability of our model to consider long contexts.

7.4.5 Test Scenario 2: Robust Prediction

Query sessions contain a lot of common and navigational queries such as google

or facebook which do not correspond to a specific search topic. A context-aware
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Figure 7.6 – Variation of HRED performance with respect to the number of previous queries
considered. The evolution is computed on long sessions.

suggestion system should be robust to noisy queries and learn to discard them from

the relevant history that should be retained. We propose to probe this capability

by formulating an original robust prediction task as follows. We label the 100 most

frequent queries in the background set as noisy 1. For each entry in the training,

validation and test set of the previous next-query prediction task, we corrupt its

context by inserting a noisy query at a random position. The candidates and the

target rest unchanged. The probability of sampling a noisy query is proportional

to its frequency in the background set. For example, given the context airlines →
united airlines and the true target delta airlines, the noisy sample google is inserted

at a random position, forcing the models to predict the target given the corrupted

context airlines → united airlines → google.

Main Result Table 7.4 shows that corruption considerably affects the perfor-

mance of ADJ. Cases in which the corruption occurred at the position of the an-

chor query severely harm pairwise models. The Baseline Ranker achieves significant

gains over ADJ by leveraging context matches. Its performance is inferior to the

baseline ADJ performance in the next-query setting reported in Table 7.3 (0.5334).

HRED appears to be particularly effective in this difficult setting achieving a rel-

ative improvement of 17.8% over ADJ and 9.9% over the Baseline Ranker, both

1. A similar categorization has been proposed in Raman et al. (2014).
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Method MRR ∆%

ADJ 0.4507 -

Baseline Ranker 0.4831 +7,2%

+ HRED 0.5309 +17,8%/+9.9%

Table 7.4 – Robust prediction results. The improvements are significant by the t-test (p < 0.01).

uguuaua

Figure 7.7 – Magnitude of the elements in the session-level update gates. The darker the image,
the more the model discards the current query. The vector corresponding to google, ug, is darker,
i.e. the network mainly keeps its previous recurrent state.

statistically significant. Comparative to the next-query task, the improvements

over ADJ and the Baseline Ranker are 2.5 and 3 times higher respectively. Our

model appears to be more robust than the baselines in these extreme cases and can

better reduce the impact of the noisy query.

Impact of the Hierarchical Structure As noisy queries bring little informa-

tion to predict future queries in the session, HRED may automatically learn to be

robust to the noise at training time. The hierarchical structure allows to decide,

for each query, if it is profitable to account for its contribution to predict future

queries. This capability is sustained by the session-level GRU, which can ignore

the noisy queries by “turning-off” the update gate un when they appear (see Sec-

tion 7.3.1). Given the corrupted context airlines → united airlines → google, the

session-level GRU computes three update gate vectors: ua, uua, ug, each corre-

sponding to a position in the context. In Figure 7.7, we plot the magnitude of the

elements in these vectors. As the model needs to memorize the initial information,

ua shows a significant number of non-zero (bright) entries. At this point, general

topical information has already been stored in the first recurrent state. Hence,

uua shows a larger number of zero (dark) entries. When google is processed, the
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Method MRR ∆%

ADJ 0.3830 -

Baseline Ranker 0.6788 +77.2%

+ HRED 0.7112 +85.3%/+5.6%

Table 7.5 – Long-tail prediction results. All improvements are significant by the t-test (p <
0.01).

network tends to keep past information in memory by further zeroing entries in the

update gate. This sheds an interesting perspective: this mechanism may be used

to address other search log related tasks such as session-boundary detection.

7.4.6 Test Scenario 3: Long-Tail Prediction

To analyze the performance of the models in the long-tail, we build our training,

validation and test set by retaining the sessions for which the anchor query has

not been seen in the background set, i.e. it is a long-tail query. In this case, we

cannot leverage the ADJ score to select candidates to rerank. For each session,

we iteratively shorten the anchor query by dropping terms until we have a query

that appears in the background data. If a match is found, we proceed as described

in the next-query prediction setting, that is, we guarantee that the target appears

in the top 20 queries that have the highest ADJ scores given the anchor prefix.

The statistics of the obtained dataset are reported in Figure 7.4. As expected, the

distribution of lengths changes substantially with respect to the previous settings.

Long-tail queries are likely to appear in medium and long sessions, in which the

user strives to find an adequate textual query.

Main Result Table 7.5 shows that, due to the anchor prefix matching, ADJ suffer

a significant loss of performance. The performances of the models generally confirm

our previous findings. HRED improves significantly by 5.6% over the Baseline

Ranker and proves to be useful even for long-tail queries. Supervised models appear

to achieve higher absolute scores in the long-tail setting than in the general next-

query setting reported in Table 7.3. After analysis of the long-tail testing set, we

found that only 8% of the session contexts contain at least one noisy query. In

the general next-query prediction case, this number grows to 37%. Noisy queries
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generally harm performance of the models by increasing the ambiguity in the next

query prediction task. This fact may explain why the Baseline ranker and HRED

perform better on long-tail queries than in the general case. It is interesting to see

how the improvement of HRED with respect to the Baseline Ranker is larger for

long-tail queries than in the general setup (5.6% to 3.3%). Although not explicitly

reported, we analyzed the performance with respect to the session length in the

long-tail setting. Similarly to the general next-query prediction setting, we found

that the Baseline Ranker suffers significant losses for long sessions while our model

appears robust to different session lengths.

7.4.7 User Study

The previous re-ranking setting doesn’t allow to test the generative capabilities

of our suggestion system. We perform an additional user study and ask human

evaluators to assess the quality of synthetic suggestions. To avoid sampling bias

towards overly common queries, we choose to generate suggestions for the 50 topics

of the TREC Web Track 2011 Clarke et al. (2011). The assessment was conducted

by a group of 5 assessors. To palliate the lack of context information for TREC

queries, we proceed as follows: for each TREC topic QM , we extract from the test

set the sessions ending exactly with QM and we take their context Q1, . . . , QM−1.

After contextualization, 19 TREC queries have one or more queries as context and

the remaining are singletons. For HRED, we build synthetic queries following the

generative procedure described in Section 7.3.4. In addition to QVMM and ADJ,

we compare our model with two other baselines: CACB (Cao et al., 2008), which

is similar to QVMM but builds clusters of queries to avoid sparsity, and SS (Search

Shortcuts) (Broccolo et al., 2012), which builds an index of the query sessions and

extracts the last query of the most similar sessions to the source context. Note that

we do not compare the output of the previous supervised rankers as this would not

test the generative capability of our model. Each assessor was provided with a ran-

dom query from the test bed, its context, if any, and a list of recommended queries

(the top-5 for each of the methods) selected by the different methods. Recommen-

dations were randomly shuffled, so that the assessors could not distinguish which

method produced them. Each assessor was asked to judge each recommended query

using the following scale: useful, somewhat useful, and not useful. The user study
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Figure 7.8 – User study results, which compare the effectiveness of HRED with the baseline
techniques.

finished when each assessor had assessed all recommendations for all 50 queries

in the test bed. Figure 7.8 reports the results of the user study averaged over

all raters. Overall, for HRED, 64% of the recommendations were judged useful or

somewhat useful. The quality of the queries recommended by HRED is higher than

our baselines both in the somewhat and in the useful category.

7.5 Related Works

Query Suggestion A notorious context-aware method was proposed in He et al.

(2009). The authors use a Variable Memory Markov model (QVMM) and build

a suffix tree to model the user query sequence. We used this model as a context-

aware baseline feature in our supervised ranker. The method by Cao et al. (2008) is

similar but they build a suffix tree on clusters of queries and model the transitions

between clusters. We didn’t notice any improvements by adding this model as a

feature in our case. For both models, the number of parameters increases with

the depth of the tree inducing sparsity. Instead, our model can consider arbitrary

length contexts with a fixed number of parameters. Jiang et al. (2014) and Shokouhi

(2013) propose context-aware approaches for query auto-completion. We adopted

a similar framework for query suggestion and use our model as a feature to rank

the next-query. Santos et al. (2013) and Ozertem et al. (2012) also use learning to
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rank approach for query suggestion. In those cases, the rankers are trained using

pairwise features and do not consider previous queries. Interestingly, the authors

model explicitly the usefulness of a suggestion by using click data and the result

list.

Query suggestion algorithms use clustering methods to find similar queries so

that they can be used as suggestions for one another (Baeza-Yates et al., 2004;

Wen et al., 2001). We demonstrated that our model exhibits similar clustering

properties due to the embeddings learnt by the neural network.

Other works build a Query Flow Graph (QFG) to capture high-order query

co-occurrence (Boldi et al., 2008; Sadikov et al., 2010). Operating at the query-

level, these methods suffer from the long-tail problem. Bonchi et al. (2012) propose

a solution to these problems by introducing the Term-QFG (TQG), where single

query terms are also included into the graph. However, suggestion requires re-

peated complex random walks with restart. Similarly, our model can handle rare

queries as long as their words appear in the model vocabulary. Vahabi et al. (2013)

find suggestions to long-tail queries by comparing their search results. Although

effective, the approach requires to have 100 results per query. A related approach is

the Search Shortcut (SS) (Broccolo et al., 2012) which avoids the long-tail problem

by means of a retrieval algorithm.

Few synthetic suggestion models have been proposed in the literature. Szpektor

et al. (2011) use a template generation method by leveraging WordNet. Jain et al.

(2011) combine different resources and use a machine learning approach to prune

redundant suggestions. These methods achieve automatic addition, removal and

substitution of related terms into the queries. By maximizing the likelihood of the

session data, our model learns to perform similar modifications.

Neural Networks for NLP Neural networks have found several applications

in a variety of tasks, ranging from Information Retrieval (IR) (Huang et al., 2013;

Shen et al., 2014), Language Modeling (LM) (Mikolov et al., 2010; Pascanu et al.,

2013) and Machine Translation (MT) (Cho et al., 2014; Sutskever et al., 2014).

Cho et al. (2014) and Sutskever et al. (2014) use a Recurrent Neural Network

(RNN) for end-to-end MT. Our model bears similarities to these approaches but

we contribute with the hierarchical structure. The idea of encoding hierarchical

multi-scale representations is also explored in Hihi and Bengio (1995). In IR, neural
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networks embeddings were used in Li et al. (2014). The authors used deep feed-

forward neural networks to use previous queries by the same user to boost document

ranking. In Huang et al. (2013); Shen et al. (2014), the authors propose to use

clickthrough data to learn a ranking model for ad-hoc IR. Recently, Grbovic et al.

(2015) used query embeddings to include session-based information for sponsor

search. Our model shares similarities with the interesting recent work by Mitra

(2015). The authors use the pairwise neural model described in Shen et al. (2014)

to measure similarity between queries. Context-awareness is achieved at ranking

time, by measuring the similarity between the candidates and each query in the

context. Our work has several key differences. First, we deploy a novel RNN

architecture. Second, our model is generative. Third, we model the session context

at training time. To our knowledge, this is the first work applying RNNs to an IR

task.

7.6 Conclusion

In this paper, we formulated a novel hierarchical neural network architecture

and used it to produce query suggestions. Our model is context-aware and it can

handle rare queries. It can be trained end-to-end on query sessions by simple

optimization procedures. Our experiments show that the scores provided by our

model help improving MRR for next-query ranking. Additionally, it is generative

by definition. We showed with a user study that the synthetic generated queries

are better than the compared methods.

In future works, we aim to extend our model to explicitly capture the usefulness

of a suggestion by exploiting user clicks (Ozertem et al., 2012). Then, we plan to

further study the synthetic generation by means of a large-scale automatic eval-

uation. Currently, the synthetic suggestions tend to be horizontal, i.e. the model

prefers to add or remove terms from the context queries and rarely proposes or-

thogonal but related reformulations (Jain et al., 2011; Vahabi et al., 2013). Future

efforts may be dedicated to diversify the generated suggestions to account for this

effect. Finally, the interactions of the user with previous suggestions can also be

leveraged to better capture the behaviour of the user and to make better sug-

gestions accordingly. We are the most excited about possible future applications

122



beyond query suggestion: auto-completion, next-word prediction and other NLP

tasks such as Language Modelling may be fit as possible candidates.
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8 General Conclusion

This thesis presented four articles dealing with the estimation of documents

and queries representations. The first two articles can be categorized as feature

engineering approaches, which transduce a priori knowledge about the domain into

the features of the representation. The remaining two articles originate from the

widespread interest in deep learning research that took place during the time they

were written. Therefore, they naturally belong to the category of representation

learning approaches, also known as feature learning, which let the learning model

discover the most important features for the task at hand.

Initially, we investigated the possibilities opened by applying the density ma-

trix formalism to IR, which mixes probability theory with linear algebra. For this

reason, it appealed to us as an appropriate framework to glean insights on both

probabilistic and geometric retrieval models. After shedding light on the assump-

tions behind well-known retrieval models, we proposed the Quantum Language

Model (QLM), a novel retrieval model capturing the presence of words and phrases

into an holistic representation. The success of the QLM is attributable in part to

the fact that phrases are not considered as additional indexing units but related to

their component terms.

Our study of past IR literature taught us that each retrieval model may easily

be extended by employing well-known techniques: query expansion or relevance

feedback may be used to tackle the semantic gap between queries and documents

while phrase selection algorithms may help in identifying which phrases are most

discriminative for relevance. Our view is that their application to a novel retrieval

model only brings incremental improvements to the state-of-the-art and is likely to

generate limited impact on future research. Instead, we tracked the rising interest

towards deep learning research in hopes of dealing with old problems in radically

new ways.

Following this line of thought, we proposed a word and phrase embedding model

for IR, which takes inspiration from the mathematics of QLMs but carves query
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and document representations in order to bring relevance estimation to a more

semantic level. Both documents and queries are special matrices within a vector-

space whose dimensions are semantic descriptors rather than single atomic terms.

Finally, we moved further into the deep learning of representations by considering

the task of query suggestions. In this case, in-context query representations are

obtained by leveraging a new deep learning architecture.

Representation learning methods are extremely flexible and have the potential

to bring dramatic improvements to the state-of-the-art in IR. However, one lesson

that can be gleaned from our articles is that, in order to obtain good results, it

is necessary to mix the learned semantic representations with standard retrieval

techniques. This shows that the current models based on deep learning are still

unable to capture some important characteristics of traditional models. An inter-

esting future research topic is to understand which characteristics are missing in

deep learning models and how to incorporate them into these models. We identify

two possible improvements that can help in bringing robust performance. First of

all, it is necessary to augment the capacity of the representation learning models.

Compressing entire documents and queries into a single vector representation may

not be sufficient to reflect the complexity of their information content. Recent

developments critically augmented the capacity of deep learning architectures by

employing neural attention techniques and dynamic memory modules. It would

be interesting to apply these more complex representational models to IR. Second,

currently, it is crucial to get access to large amounts of high-quality labeled data.

The scarcity of publicly available relevance data makes it difficult to train reliable

high-capacity deep learning models in an academic setting. Approximations to the

true relevance labels are possible but often weakly correlated to the true underlying

distribution. In academia, it is necessary to investigate new ways to learn robust

models in this low-data regime.

Overall, we believe that information retrieval may greatly benefit from the study

and application of representation learning techniques. In our two last papers, the

models based on learned representations showed some capability to capture im-

portant hidden characteristics, which would be difficult to define manually. As IR

systems become more complex and take into account more signals, it becomes very

difficult to manually design a good representation for documents and queries. We

see the representation learning techniques as an effective way to cope with such a
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complex situation. These may allow, for example, to move retrieval models closer

to artificial intelligence agents capable of simulating the human relevance assess-

ment process. Conversely, information retrieval researchers may benefit the entire

representation learning field by addressing weaknesses of existing learning tech-

niques when applied to IR challenges. Representation learning is a fast-developing

field and has already set unrivaled state-of-the-art in a variety of domains including

computer vision and machine translation. Overall, we hope this thesis will help in

closing the gap between representation learning and information retrieval and will

foster future research in this direction.
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