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RÉSUMÉ 
 

La	 Sclérose	 Latérale	 Amyotrophique	 (SLA)	 est	 une	 maladie	 neurodégénérative	 qui	

affecte	 les	 neurones	 moteurs.	 10%	 des	 cas	 sont	 des	 cas	 familiaux	 et	 l’étude	 de	 ces	

familles	a	mené	à	la	découverte	de	plusieurs	gènes	pouvant	causer	la	SLA,	incluant	SOD1,	

TARDBP	et	FUS.	L’expansion	de	la	répétition	GGGGCC	dans	le	gène	C9orf72	est,	à	ce	jour,	

la	 cause	 la	 plus	 connue	 de	 SLA.	 L’impact	 de	 cette	 expansion	 est	 encore	méconnu	 et	 il	

reste	à	déterminer	si	la	toxicité	est	causée	par	un	gain	de	fonction,	une	perte	de	fonction	

ou	les	deux.	

Plusieurs	 gènes	 impliqués	 dans	 la	 SLA	 sont	 conservés	 entre	 le	 nématode	

Caenorhabditis	 elegans	 et	 l’humain.	 C.	 elegans	 est	 un	 vers	 transparent	 fréquemment	

utilisé	 pour	 des	 études	 anatomiques,	 comportementales	 et	 génétiques.	 Il	 possède	 une	

lignée	cellulaire	invariable	qui	inclue	302	neurones.	Aussi,	les	mécanismes	de	réponse	au	

stress	 ainsi	 que	 les	 mécanismes	 de	 vieillissement	 sont	 très	 bien	 conservés	 entre	 ce	

nématode	et	l’humain.	Donc,	notre	groupe,	et	plusieurs	autres,	ont	utilisé	C.	elegans	pour	

étudier	plusieurs	aspects	de	la	SLA.	

Pour	mieux	 comprendre	 la	 toxicité	 causée	 par	 l’expansion	 GGGGCC	 de	C9orf72,	

nous	 avons	 développé	 deux	 modèles	 de	 vers	 pour	 étudier	 l’impact	 d’une	 perte	 de	

fonction	ainsi	que	d’un	gain	de	toxicité	de	l’ARN.	Pour	voir	les	conséquences	d’une	perte	

de	fonction,	nous	avons	étudié	l’orthologue	de	C9orf72	dans	C.	elegans,	alfa-1	(ALS/FTD	

associated	gene	homolog).	 Les	vers	mutants	alfa-1(ok3062)	 développent	des	problèmes	
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moteurs	causant	une	paralysie	et	une	dégénérescence	spécifique	des	neurones	moteurs	

GABAergiques.	De	plus,	les	mutants	sont	sensibles	au	stress	osmotique	qui	provoque	une	

dégénérescence.	 D’autre	 part,	 l’expression	 de	 la	 séquence	 d’ARN	 contenant	 une	

répétition	 pathogénique	 GGGGCC	 cause	 aussi	 des	 problèmes	 moteurs	 et	 de	 la	

dégénérescence	affectant	les	neurones	moteurs.	Nos	résultats	suggèrent	donc	qu’un	gain	

de	toxicité	de	l’ARN	ainsi	qu’une	perte	de	fonction	de	C9orf72	sont	donc	toxiques	pour	les	

neurones.		

Puisque	le	mouvement	du	vers	peut	être	rapidement	évalué	en	cultivant	les	vers	

dans	un	milieu	liquide,	nous	avons	développé	un	criblage	de	molécules	pouvant	affecter	

le	mouvement	des	vers	mutants	alfa-1	en	culture	liquide.	Plus	de	4	000	composés	ont	été	

évalués	et	80	ameliore	 la	mobilité	des	vers	alfa-1.	Onze	molécules	ont	aussi	été	testées	

dans	 les	 vers	 exprimant	 l’expansion	 GGGGCC	 et	 huit	 diminuent	 aussi	 le	 phénotype	

moteur	de	ces	vers.		

Finalement,	 des	 huit	 molécules	 qui	 diminent	 la	 toxicité	 causée	 par	 la	 perte	 de	

fonction	de	C9orf72	et	 la	toxicité	de	l’ARN,	deux	restaurent	aussi	 l’expression	anormale	

de	 plusieurs	 transcrits	 d’ARN	 observée	 dans	 des	 cellules	 dérivées	 de	 patient	 C9orf72.		

Avec	ce	projet,	nous	voulons	identifier	des	molécules	pouvant	affecter	tous	les	modes	de	

toxicité	de	C9orf72	et	possiblement	ouvrir	de	nouvelles	avenues	thérapeutiques.		

 

Mots	clés:	sclérose	latérale	amyotrophique;	C.	elegans;	C9orf72;	criblage	 	de	molecules;	
dégénérescence	
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ABSTRACT  
	

Amyotrophic	lateral	sclerosis	(ALS)	is	a	neurodegenerative	disorder	affecting	the	motor	

neurons.	10%	of	the	cases	are	familial	and	using	those	families,	many	genes	were	shown	

to	 be	 involved	 in	 ALS	 pathogenesis,	 including	 SOD1,	 TARDBP	 and	 FUS.	The	 GGGGCC	

repeat	found	in	the	first	intron	of	C9orf72	is,	to	this	day,	the	most	common	genetic	cause	

of	ALS.	Many	hypotheses	have	been	speculated	to	explain	the	toxicity	of	the	pathogenic	

GGGGCC	repeat,	including	loss	and	gain	of	function	mechanisms.	

Many	proteins	involved	in	amyotrophic	lateral	sclerosis	(ALS)	are	evolutionarily	

conserved	 in	 the	 worm	 Caenorhabditis	 elegans.	 C.	elegans	 is	 a	 transparent	 nematode	

widely	 used	 for	 anatomical,	 behavioural	 and	 genetic	 studies.	 It	 possesses	 an	 invariant	

cell	 lineage	 that	 includes	 302	 neurons	 in	 the	 adult	 nematode.	 Also,	 cellular	 stress	

responses	 and	 survival	mechanisms	 are	 genetically	 regulated	 and	 conserved	 from	 the	

nematode	and	human.	Therefore,	our	group,	and	others,	have	used	C.	elegans	 to	model	

different	aspects	of	neurodegenerative	diseases	including	ALS.		

To	 better	 understand	 the	 toxicity	 caused	 by	 the	 GGGGCC	 repeat	 expansion	 in	

C9orf72,	we	have	developed	two	C.	elegans	models	to	understand	either	the	impact	of	the	

loss	 of	 function	 of	 C9orf72	 or	 the	 gain	 of	 toxicity	 of	 the	 RNA	 containing	 the	 GGGGCC	

repeat.	 To	 understand	 the	 loss	 of	 function,	 we	 have	 characterized	 the	 orthologue	 of	

C9orf72	 in	 C.	elegans,	 alfa-1	 (ALS/FTD	associated	gene	homolog).	 Mutant	 alfa-1	 worms	

exhibit	 motor	 impairments	 leading	 to	 paralysis	 and	 neurodegenereation	 of	 the	

GABAergic	neurons.	Mutant	worms	are	also	sensitive	to	osmotic	stress	which	can	lead	to	

increased	neurodegeneration.	On	 the	other	part,	 exposure	of	C.	elegans	 neurons	 to	 the	
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RNA	 containing	 the	 GGGGCC	 repeat	 causes	 also	 motor	 problem	 and	 degeneration	

affecting	 the	motor	 neurons.	 Therefore,	 our	 data	 suggest	 that	 both	 loss	 of	 function	 of	

C9orf72	and	toxic	gain	of	function	are	detrimental	to	neurons.		

Since	motor	dysfunctions	 in	worms	 can	be	 easily	 accessed	 in	 liquid	 culture,	we	

have	screened	more	than	4,000	FDA	approved	compounds	in	the	alfa-1(ok3062)	worms.	

80	molecules	were	shown	to	improve	alfa-1	impaired	function	and	eleven	of	those	were	

also	tested	for	their	effect	to	reduce	the	neurotoxicity	caused	by	the	GGGGCC	repeat	RNA.	

Eight	molecules	were	shown	to	affect	both	types	of	neurotoxicity.		

Finally,	 from	 these	 eight	molecules	 that	 can	 improveboth	 types	 of	 toxicity,	 two	

were	shown	to	restore	the	abnormal	RNA	expression	observed	in	C9orf72	patient-derive	

cells.	With	this	project,	we	aimed	to	identify	molecules	that	can	affect	the	loss	of	C9orf72	

toxicity	 and	 the	 toxic	 gain	of	RNA	 function	 containing	 the	GGGGCC	 repeat	 to	hopefully	

open	new	therapeutic	avenues	for	ALS	patients.		

	

Key	 words:	 Amyotrophic	 lateral	 sclerosis;	 C.	 elegans;	 C9orf72;	 drug	 screening;	

neurodegeneration	
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CHAPTER 1: INTRODUCTION1 

ALS 

 

DISEASE	INCIDENCE	AND	DEVELOPMENT		

Amyotrophic	 lateral	sclerosis	(ALS)	is	a	fatal,	 late	onset,	neurodegenerative	disorder.	It	 is	

speculated	 that	 most	 cases	 of	 ALS	 are	 sporadic	 (sALS)	 (∼90%),	 but	 ∼10%	 are	 familial	

(fALS).	Many	groups	have	suggested	that	these	numbers	are	probably	an	underestimation	

of	the	fALS	cases	3,4.	There	is	no	definitive	criterion	for	fALS	but	the	general	consensus	is	

that	the	presence	of	ALS	in	either	a	first	or	second	degree	relative	constitutes	the	familial	

form	of	the	disease	5.	ALS	cases	with	no	known	family	history	are	therefore	referred	to	as	

sALS.	However,	sALS	and	fALS	are	clinically	indistinguishable	4.		

The	 disease	 is	 characterized	 by	 the	 loss	 of	 motor	 neurons	 in	 the	 brainstem	 and	

spinal	 cord	 leading	 to	muscle	weakness,	 fasciculation	 and	wasting	 6.	 Symptoms	 typically	

start	in	a	specific	region	of	the	body,	causing	either	bulbar	(25%),	cervical	or	lumbar	onset	

(75%),	 which	 specifically	 characterizes	 the	 type	 of	 ALS.	 Ultimately	most	motor	 neurons	

become	affected	and	death	by	respiratory	failure	usually	occurs	3-5	years	after	the	onset	of	

symptoms	when	the	respiratory	muscles	are	denervated.		
                                                        

1	This	chapter	is	inspired	by	literature	reviews	written	by	Martine	Therrien,	including	1,	2	and	Therrien	et	al.	
Current	Neurology	and	Neuroscience	report,	submitted	
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	 Incidence	 of	 ALS	 in	 western	 countries	 is	 2-16/100	 000	 individuals	 but	 it	 affects	

people	worldwide	6.	Men	are	more	at	risk	than	women	to	develop	sALS,	but	the	risk	ratio	is	

the	same	for	fALS	cases	6.	The	age	of	onset	varies	between	47-63	years	old	with	a	slightly	

earlier	age	of	onset	in	fALS	cases;	however	the	incidence	decreases	drastically	after	the	age	

of	80	years	6.		

	 Diagnosis	of	ALS	is	usually	a	long	process	and	a	definite	diagnosis	is	often	only	made	

when	the	patient’s	symptoms	do	not	fit	the	symptoms	of	any	other	possible	conditions.	ALS	

can	 be	 mistaken	 with	 other	 motor	 neuron	 or	 nerve	 diseases	 or	 lesions;	 neuromuscular	

junction	 disorders;	 or	 myopathies6.	 Clinicians	 base	 their	 diagnostics	 on	 the	 presence	 of	

upper	 and	 lower	 motor	 neuron	 signs	 in	 the	 same	 region	 of	 the	 body6	 and	 the	 lack	 of	

neuroimaging,	electrophysiological	and	pathological	evidences	of	other	diseases	that	could	

explain	the	symptoms	7.	According	to	the	‘El	Escorial’	and	‘Airlie	House’	diagnostic	criteria,	

which	include	the	main	elements	for	the	classification	of	ALS	patients,	to	obtain	a	‘definite’	

ALS	 diagnosis,	 patients	 must	 have	 clinical	 evidences	 of	 upper	 and	 lower	 motor	 neuron	

signs	in	three	distinct	regions	of	the	body.	At	diagnosis,	only	40%	of	patients	with	a	family	

history	of	ALS	 fit	 the	 ‘definite’	 diagnostic	 criteria	while	 at	death,	10%	of	 all	 patients	 still	

remain	with	only	a	‘possible’	diagnostic	of	ALS	8.			

	

TREATMENT		

Riluzole,	an	inhibitor	of	glutamate	release,	is	the	only	drug	presently	used	to	alleviate	the	

symptoms	of	ALS	patients	 6.	 It	 has	 a	modest	 effect,	 increasing	 survival	 from	3-6	months.	

Therefore,	 symptomatic	 treatment	 is	 the	 sole	 alternative	 for	 patients.	 Multidisciplinary	
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teams	of	physiotherapists,	occupational	therapists,	respiratory	physicians	and	neurologists	

guide	patients	throughout	the	development	of	the	symptoms	and	this	type	of	therapy	was	

shown	 to	 reduce	 the	 risk	 of	 death	 by	 45%,	 within	 5	 years	 6.	 Finally,	 weight	 loss	 and	

respiratory	failure	are	the	main	outcomes	in	ALS	patients,	thus	the	use	of	a	ventilator	and	

percutaneous	gastrostomy	are	used	to	manage	symptoms	and	delay	death.	

	

GENETICS	

Most	cases	of	ALS	are	sALS	(90%),	but	

10%	are	fALS		and	exhibit	a	Mendelian	

pattern	 of	 inheritance	 9.	 The	 study	 of	

fALS	 has	 led	 to	 the	 identification	 of	

many	 disease	 causative	 genes	 10	 that	

explain	fALS	and	sALS	cases	(Figure	1.1	

and	Table	1.1).	

In	 1993,	 mutations	 in	 the	 gene	

SOD1	 (Superoxide	 dismutase	 1)	 were	

linked	 to	many	 fALS	cases	11	 and	a	 few	unrelated	cases	of	sALS	12.	Since	 then,	more	 than	

160	mutations	 have	 been	 linked	 to	 sALS	 and	 fALS	 13.	 SOD1	 is	 a	 ubiquitous	 enzyme	 that	

catalyzes	 the	 removal	 of	 superoxide	 into	 oxygen	 and	peroxide.	Mutations	 are	 thought	 to	

affect	the	folding	of	the	protein	causing	a	toxic	gain	of	function	of	the	mutant	proteins	that	

accumulate	at	the	mitochondria	14,15.	Even	though	it	is	not	the	only	possible	mechanism,	it	

is	speculated	that	mitochondrial	dysfunction	is	central	to	SOD1	pathogenesis	15.		

 

Figure 1.1: Genetic causes of ALS. In red are the 
fALS cases and blue the sALS explained by a 
genetic mutation. In grey are the sALS and fALS 
cases with unknown cause 
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The	identification	of	TDP-43	as	the	main	constituent	of	the	aggregates	found	in	post-

mortem	patient	 spinal	 cord	 and	 brain	 tissues	 16	 led	 to	 the	 identification	 of	mutations	 in	

TARDBP	 (Tar	DNA	binding	 protein),	 the	 gene	 encoding	 TDP-43	 protein	 17,18.	 Since	 then,	

more	than	40	mutations	in	this	gene	were	shown	to	be	causative	of	fALS	and	sALS	13,17,18.	

TDP-43	 is	 a	 ubiquitous	 protein	 that	 contains	 two	 RNA	 binding	 domains,	 a	 glycine	 rich	

domain	and	nuclear	 import	and	export	 signals	 19.	 In	 the	wild-type	state,	TDP-43	shuttles	

between	 the	 cytoplasm	 and	 the	 nucleus,	 but	 its	 specific	 function	 is	 unknown.	 It	 was	

identified	 as	 an	 important	 player	 in	 various	 aspects	 of	 RNA	 processing,	 including,	

transcription,	 translation,	 splicing	 and	 micro	 RNA	 processing;	 and	 involved	 in	 RNA	

transport	 and	 stress	 granules	 formation	 19.	 Shortly	 after	 the	 identification	 of	 TARDBP,	

mutations	 in	FUS	 (Fused	in	sarcoma)	were	 found	 in	ALS	 patients	 20,21.	 FUS	 is	 also	 a	RNA	

binding	protein	that	shares	many	functions	with	TDP-43	22.	It	is	speculated	that	mutations	

in	FUS	and	TARDBP	cause	a	toxic	gain	of	function	of	the	mutant	proteins	that	relocalize	in	

the	cytoplasm,	but	much	remains	to	be	understood	about	their	specific	role	and	toxicity	in	

motor	neurons.		
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With	the	fast	evolution	of	sequencing	techniques,	many	genes	were	recently	linked	

to	ALS	10	(Table	1.1).	To	this	day,	over	twenty	genes	have	been	speculated	to	be	involved	in	

ALS	pathogenesis.	Studies	to	clearly	evaluate	the	importance	of	the	individual	genes	have	

been	 undertaken	 	 23,24	 but	 large	 studies	 are	 required	 to	 unambiguously	 confirm	 their	

contributions	to	ALS	pathogenesis	in	different	subtypes	of	patients	and	in	different	regions	

of	the	world.		

	

	

 

Table	 1.1	ALS	 genes.	 Genes	 linked	 to	 ALS,	 their	 C.	elegans	 orthologues	 and	 a	 summary	 of	 the	
transgenic	C.	elegans	models	published.	The	importance	of	the	gene	is	based	on	23,24	
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Sequencing	and	resequencing	of	 large	ALS	cohorts	have	led	to	the	identification	of	

many	individuals	with	more	than	one	disease	causative	mutation	(reviewed	by	Lattante	et	

al	 25).	 These	 mutated	 genes	 might	 reflect	 low	 penetrance	 genes,	 or	 genes	 that	 cannot	

induce	ALS	alone.	However,	it	cannot	be	excluded	that	those	genes	interact	to	vary	disease	

onset,	progression	and	symptoms.	

New	 genetic	 concepts	 are	 emerging	 to	 explain	 some	 sALS	 cases.	 One	 of	 the	main	

hypotheses	explaining	sALS	cases	was	the	impact	of	the	environment	in	the	development	of	

the	disease	26	.	Groups	have	studied	the	impact	of	smoking,	exercise	and	exposure	to	heavy	

metals	 and	 pesticides	 in	 different	 ALS	 cohorts	 (reviewed	 by	 Al-Chalabi	 &	 Hardiman	 26).	

However,	epidemiological	studies	like	these	can	be	challenging	and	few	are	reliable,	most	

of	the	time	because	of	the	lack	resources	available	to	do	the	study	26.	Therefore,	no	specific	

environmental	factors	have	been	found	thus	far	to	clearly	explain	sALS	cases.	

With	the	rapid	advancement	of	sequencing	technologies,	new	genetic	concepts	have	

emerged	 to	 explain	 sALS.	 Amongst	 these	 is	 the	 concept	 of	de	novo	mutations	which	was	

previously	 shown	 to	 be	 a	 key	 player	 for	 many	 neurodevelopmental	 and	 psychiatric	

diseases	 27,28.	De	novo	mutations	 arise	 during	 the	 fertilization	 of	 germline	 and	 results	 in	

mutations	 found	 in	 the	offspring	 that	were	absent	 in	 the	parents,	 therefore	causing	sALS	

with	 a	 genetic	 cause.	 Mutations	 in	 a	 few	 known	 ALS	 genes	 were	 found	 in	 some	 sALS	

patients	29,30.	FUS	 is	 the	gene	that	 is	 the	most	affected	by	de	novo	mutations	so	 far.	Many	

novel	and	previously	 identified	mutations	affecting	 the	coding	region	and	splicing	of	FUS	

were	 linked	to	early	onset	sALS	31-34,	hence	suggesting	that	de	novo	mutations	can	have	a	

role	in	sALS	cases.		
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Many	pathological	pathways	were	speculated	 to	play	a	role	 in	 the	pathogenesis	of	

ALS.	At	the	functional	level,	many	of	the	genes	linked	to	ALS	share	common	cellular	roles.	

RNA	processing,	mitochondrial	dysfunction,	stress	response	and	protein	degradation	have	

emerged	to	be	important	pathological	concepts.	However,	for	most	of	the	genes,	the	exact	

cellular	function	and	the	impact	of	the	mutant	proteins	still	remain	to	be	established.	It	is	

still	 necessary	 to	 elucidate	 how	 these	 mutant	 genes	 can	 be	 specifically	 detrimental	 to	

motor	 neurons	 and	 how	 disease	 progression	 can	 vary	 among	 individuals	with	 the	 same	

mutation.		

	

PATHOLOGICAL	CHARACTERISTICS	OF	ALS	

Aside	 from	 the	motor	 neurons,	which	 cells	 contribute	 to	 ALS	 pathogenesis	 is	 still	 under	

evaluation.	 TDP-43	 inclusions	 are	 observed	 in	 glia	 and	 neurons	 of	 the	motor	 cortex,	 but	

also	 in	 the	 brainstem,	 the	 spinal	 cord	 and	 in	white	matter	 35.	 Based	 on	 the	 pathological	

observation	 that	 protein	 inclusions	 are	 also	 present	 in	 glial	 cells,	 different	 groups	 have	

speculated	that	these	non-neuronal	cells	may	participate	in	the	death	of	the	motor	neurons.	

Using	 SOD1	 mouse	models,	 it	 was	 shown	 that	 onset	 of	 symptoms	 require	 expression	 of	

mutant	protein	 in	 the	motor	neurons	but	 the	mutant	protein	also	had	to	be	expressed	 in	

non-neuronal	 cells	 such	as	astrocytes	and	microglia	 to	affect	 to	disease	progression	 36,37.	

Therefore	 indicating	 that	 dysfunction	 of	 different	 cell	 types	 might	 be	 involved	 in	 ALS	

pathogenesis.	 However,	 thus	 far	 these	 types	 of	 in	vivo	 observations	were	 only	made	 for		

SOD1.	 A	 few	 in	vitro	 studies	have	been	done	with	mutant	TDP-43	 toxicity	 and	 suggested	



	 27	

opposite	 results	38,39	 therefore,	more	studies	are	required	 to	examine	 the	contribution	of	

non-neuronal	cells	in	ALS	pathogenesis.		

Protein	aggregates	are	often	observed	in	neurodegenerative	disorders	and	it	is	also	

the	 case	 for	 ALS.	 TDP-43	 is	 the	 main	 constituent	 of	 the	 aggregates	 observed	 in	 motor	

neurons	of	 fALS	and	sALS	16.	Protein	aggregates	containing	FUS,	p62,	SOD1,	UBQLN2	and	

C9orf72	dipeptides	repeat	proteins	are	also	observed	in	post-mortem,	brain	and	spinal	cord	

tissues	 of	 different	 subset	 of	ALS	patients	 7,40.	 Protein	 aggregates	 are	 observed	 in	motor	

neurons	 of	 the	motor	 cortex,	 brainstem	 and	 spinal	 cord	 as	well	 as	 in	 glial	 cells	 in	 those	

regions	35.	It	is	interesting	to	note	that	some	aggregates	are	mutually	exclusive	suggesting	

independent	 toxic	 pathways	 in	 motor	 neurons7.	 However,	 it	 is	 still	 unclear	 if	 these	

aggregates	are	toxic	or	protective.	Many	proteins	that	were	found	in	aggregates	as	well	as	

the	 proteins	 encoded	 by	 some	 ALS	 genes	 were	 shown	 to	 participate	 to	 protein	

homoeostasis	 and	 could	 therefore	 affect	 the	 formation	 and/or	 clearance	 of	 these	

aggregates	41,42.	Abnormal	protein	homoeostasis	 leading	 to	 the	presence	of	aggregates	or	

inclusions	 is	 a	hallmark	of	many	neurodegenerative	disorders	 so	 it	 is	difficult	 to	know	 if	

these	are	specific	to	ALS	or	are	a	general	feature	of	age-related	neuronal	death.	

	

SIMILARITIES	BETWEEN	ALS	AND	OTHER	NEURODEGENERATIVE	DISORDERS	

FRONTOTEMPORAL DEMENTIA (FTD) 

FTD	 is	 a	 group	 of	 non-Alzheimer	 dementia	 characterized	 by	 atrophy	 of	 frontal	 and/or	

temporal	lobes	leading	to	behavioural	changes	or	language	decline	43.	It	is	characterized	by	
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pathological	protein	inclusions	in	which	either	TDP-43,	TAU	or	FUS	proteins	are	found	in	

the	 affected	 regions	of	 the	brain	 43.	Most	 cases	 are	 sporadic	 but	10-20%	of	 cases	have	 a	

genetic	 component.	 Mutations	 in	 MAPT	 (microtubule-associated	 protein	 tau),	 GRN	

(Granulin)	or	C9orf72	are	linked	to	FTD	and	are	the	most	common	genetic	causes	of	FTD	43.	

	 For	 many	 years,	 it	 was	 speculated	 that	 ALS	 solely	 causes	 motor	 dysfunction,	

however,	 it	 is	now	established	that	subsets	of	ALS	patients	also	exhibit	cognitive	deficits.	

Patients’	cognitive	dysfunctions	range	 from	mild	cognitive	deficits	 to	dementia	 fitting	 the	

criteria	of	FTD.	50%	of	ALS	patients	have	been	shown	to	develop	cognitive	deficits	44,45	and	

15-20%	were	 shown	 to	 fit	 the	 criteria	 for	 FTD.	 Also,	 up	 to	 27%	 of	 FTD	 patients	 exhibit	

motor	dysfunction	46.	Therefore,	 it	 is	now	accepted	that	ALS	and	FTD	are	along	the	same	

pathogenic	 continuum	where	patients	 range	 from	pure	motor	neuron	 symptoms	 to	pure	

dementia	with	many	 individuals	 found	 to	 have	 a	mixture	 of	 both.	Mutations	 in	C9orf72,	

TARDBP,	and	UBQLN2	were	found	to	be	causative	of	ALS	and	FTD	17,18,47-49.	It	is	still	unclear	

how	 in	 a	 single	 family,	 the	 same	 genetic	 variant	 can	 cause	 either	 ALS	 and	 FTD	 (for	 an	

example	of	C9orf72	50).	Therefore,	much	remains	to	be	 investigated	about	the	similarities	

and	differences	leading	to	ALS	or	FTD	pathogenesis.	

	

POLYGLUTAMINE DISORDERS 

ALS	proteins	 are	 also	 found	 in	 aggregates	 of	 other	neurodegenerative	disorders	 51-53.	 An	

example	 is	 the	 presence	 of	 TDP-43	 and	 FUS	 proteins	 in	 aggregates	 of	 polyglutamine	

disorders.	Those	proteins	have	been	shown	to	co-localize	to	the	polyglutamine	aggregates	

in	 Huntington’s	 Disease	 in	 cells	 and	 tissue	mouse	model,	 and	 in	 post-mortem	 tissues	 of	
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patients	 affected	 by	Machado-Joseph	 Disease	 54,55.	 FUS	 and	 TDP-43	 were	 also	 shown	 to	

interact	with	 ATXN-2	 (encoded	 by	ATXN2(Ataxin-2)	 gene)	 56,57	 a	 protein	 that	 contains	 a	

polyglutamine	 tract	 that	 has	 been	 shown	 to	 cause	 Spinocerebellar	 ataxia	 type	 2	 (SCA2)	

when	 the	 polyglutamine	 repeat	 is	 longer	 than	 34	 units	 58.	 Intermediate	 CAG	 repeat	 (i.e.	

repeat	 length	 around	 28	 units)	 found	 in	 ATXN2,	 have	 been	 shown	 to	 be	 a	 modifier	 of	

pathogenesis	 in	 TDP-43	model	 organisms	 and	 sALS	 patients	 56	 ,	 highlighting	 the	 special	

relationship	between	ALS	and	CAG	repeat	disorders.		

	

COMMON PATHWAYS IN NEURODEGENERATIVE DISEASES 

Neurodegenerative	 disorders	 share	 many	 common	 pathological	 pathways.	 Impaired	

protein	degradation,	endoplasmic	reticulum	(ER)	stress	and	neuroinflammation	are	some	

examples.		

Many	 neurodegenerative	 diseases	 are	 characterized	 by	 the	 composition	 of	 the	

protein	aggregates	that	are	observed	in	tissues	of	affected	individuals.	Alzheimer’s	disease	

is	 characterized	 by	 the	 presence	 of	 amyloid	 plaques	 and	 tau	 filaments	 59,	 Parkinson’s	

disease	 is	 characterized	 by	 the	 presence	 of	 Lewy	 bodies,	which	 are	 composed	mainly	 of	

alpha-synuclein	protein	60	and	most	polyglutamine	diseases	are	characterized	by	inclusions	

containing	the	expanded	polyglutamine	tract61.	As	mentioned	above	(section	Pathological	

characteristics	of	ALS),	impaired	protein	homoeostasis	is	a	key	feature	of	ALS	pathogenesis.	

Therefore,	 abnormal	 protein	 synthesis	 or	 degradation	 leading	 to	 the	 formation	 of	

cytoplasmic	 or	 nuclear	 protein	 aggregates	 is	 a	 recurrent	 theme	 in	 neurodegeneration.	

However,	the	role	that	these	aggregates	play	in	pathogenesis	is	still	unclear.	
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	Also,	 ER	 stress	 has	 been	 a	 recurrent	 theme	 regarding	 ALS	 pathogenesis	 in	many	

models	as	well	as	in	patients	62	 .	 In	addition,	neuroinflammation,	was	observed	in	patient	

post-mortem	 tissues	 and	 has	 been	 shown	 to	 alleviate	 phenotypes	 observed	 in	 different	

model	organisms	63.	Similar	toxic	mechanisms	were	also	implicated	in	Parkinson’s	disease	

and	Alzheimer’s	disease	 64-67.	These	data	suggest	 that	neurodegenerative	disorders	share	

many	 common	 toxic	 pathways	 and	 insight	 into	 a	 specific	 disease	 could	 be	 gained	 by	

comparing	them.		
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C9ORF72  

GENETICS		

Many	linkage	studies	using	families	affected	by	ALS	and/or	FTD	from	different	areas	of	the	

world	 identified	 a	 region	 on	 chromosome	9p	 as	 a	 common	 genetic	 cause	 of	 ALS	 68-70.	 In	

2011,	 two	 independent	 groups	 simultaneously	 identified	 a	 causative	 ALS	 gene	 on	

chromosome	9p	as	being	the	non-coding	repeat	expansion	GGGGCC	found	in	the	first	intron	

of	the	C9orf72	gene.	C9orf72	generates	three	alternatively	spliced	transcripts;	two	of	which	

(V1	and	V3)	produce	 the	 long	protein	 form	of	C9orf72	 (481	a.a)	and	 the	other	 transcript	

(V2)	produces	a	shorter	form	(222	a.a.)	(Figure	1.2).	The	GGGGCC	repeat	is	located	in	the	

promoter	region	of	the	V1	isoform	and	the	first	intron	of	the	two	others	(Figure	1.2).		

In	the	first	reports,	the	size	of	the	repeat	was	suggested	to	be	less	than	10	units	in	

healthy	individuals.	Its	size	in	affected	individuals	appeared	to	be	at	least	30	units;	while	it	

was	already	clear	that	the	number	of	repeats	could	reach	hundreds	and	even	thousands	of	

units	in	patients	47,48.	More	recent	reports	have	since	then	identified	some	ALS	and/or	FTD	

cases	 with	 repeat	 size	 as	 small	 as	 22	 units	 71,72.	 Nonetheless	 several	 studies	 have	 now	

 

Figure 1.2: C9orf72 gene and isoform structure. V1 refers to transcript NM_145005, V2 refers 
to transcript NM_018352 and V3 refers to transcript NM_1256054 
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reported	healthy	individuals	with	20-30	repeats	71-73	so	the	minimal	repeat	length	that	can	

trigger	ALS/FTD	still	remains	to	be	precisely	established.	

Following	these	first	reports,	many	others	have	followed	and	identified	the	GGGGCC	

expansion	 as	 being	 a	 major	 cause	 of	 ALS	 and/or	 FTD	 in	 individuals	 from	 European	

countries	 (Finland74,	 France75,	 United	 Kingdom,	 Ireland76,	 Spain77,	 Italy78,	 Holland79,	

Grece80,	 Portugal81,	 Belgium	 and	 Poland),	 the	 Americas	 (USA82,	 Canada50,	 Brezil83)	 and	

Australia	 84.	 Most	 individuals	 are	 heterozygous	 for	 the	 expansion,	 carrying	 an	 expanded	

and	 a	 wild-type	 allele,	 but	 a	 few	 cases	 were	 identified	 to	 be	 homozygous	 85,86.	 In	 one	

homozygous	case,	disease	severity	was	stronger	than	what	is	typical	of		FTD	cases	86	but	in	

the	other	one,	the	disease	progression	and	severity	of	ALS/FTD	symptoms	were	similar	to	

typical	ALS/FTD	cases	85.	Interestingly,	with	the	exception	of	the	Kii	peninsula	of	Japan	87,	

most	 studies	 done	 in	 Asian	 populations	 have	 shown	 that	C9orf72	 is	 not	 a	major	 genetic	

cause	of	ALS	in	this	area	of	the	world	(Korea	88,89,	China	90,91,	Japan	92-94,	Taiwan	95).			

Even	 though	 the	ALS/FTD	 symptoms	have	 a	 variable	 age	of	 onset,	 several	 groups	

reported	almost	 complete	penetrance	of	 the	expansion	by	 the	age	of	80	 96,97.	However,	 a	

few	 individuals	 were	 reported	 with	 an	 expanded	 GGGGCC	 repeat	 and	 did	 not	 develop	

neurodegenerative	symptoms	after	this	age	92,98	.	

	

CHARACTERISATION OF REPEAT LENGHT 

Since	the	expansion	in	C9orf72	is	a	pure	G/C	repeat,	its	quantification	has	been	challenging.	

Repeat	primed	PCR	can	accurately	only	detect	repeats	smaller	than	60	units	and	Southern	
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blot	 analysis	 requires	 large	 amounts	 of	 DNA	 so	 it	 has	 not	 been	 carried	 out	 for	 most	

individuals.	Also,	when	using	 the	same	DNA	samples,	groups	using	repeat	primed	PCR	to	

quantify	 the	 repeat	 length	often	misquantified	 it,	 suggesting	 that	 interpretation	of	 repeat	

size	should	be	done	carefully,	if	not	exclusively	done	by	Southern	blotting	99.		

Anticipation	 is	a	concept	by	which	 the	number	of	repeats	can	expand	 in	size	 from	

one	 generation	 to	 the	 next	 and	 correlates	 with	 an	 increase	 in	 disease	 severity	 and	 an	

earlier	age	of	onset.	This	phenomenon	is	observed	in	most	coding	and	non-coding	repeat	

disorders	100.	Some	researchers	have	speculated	a	link	between	age	of	onset	or	survival	and	

repeat	size	in	C9orf7296,101.	Also,	one	group	reported	major	anticipation	in	C9orf72	patients	

102,	 with	 disease	 affecting	 children	 7	 years	 younger	 than	 the	 age	 at	 which	 their	 parents	

became	affected.	Nonetheless,	other	independent	teams	could	not	replicate	these	findings	

and	 the	 importance	 of	 anticipation	 in	 C9orf72	 toxicity	 remains	 a	 matter	 of	 debate	

47,48,74,103,104	 .	 The	 small	 sample	 sizes	 might	 be	 the	 reasons	 for	 these	 conflicting	

observations.		

	 Most	 studies	 that	 evaluated	 the	 repeat	 length	 have	 used	 genomic	 DNA	 prepared	

from	peripheral	 blood.	However,	 in	 repeat	 disorders	 it	 is	 often	 observed	 that	 the	 repeat	

length	 varies	 across	 different	 tissues	 105.	 Many	 reports	 showed	 similar	 results	 for	 the	

GGGGCC	 expansion	 of	 C9orf72	 and	 neuronal	 cells	 seem	 to	 exhibit	 an	 increase	 in	 repeat	

length	when	compared	 to	non-neuronal	 cells	of	 the	 same	 individual	 104,106,107	 .	Therefore	

suggesting	that	the	repeat	length	expressed	in	neurons	is	probably	underestimated.		
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OTHER MUTATIONS 

Aside	 from	the	GGGGCC	repeat	 found	 in	 the	 first	 intron	of	C9orf72,	different	groups	have	

tried	 to	 identify	mutations	outside	 this	 region	 in	ALS	and	FTD	patients.	Different	 groups	

have	confirmed	that	most	expansion	carriers	share	a	common	haplotype	that	 includes	10	

nucleotides	surrounding	the	repeat	47,92,94,108.		

Outside	the	expansion	region,	a	10	bp	deletion	has	also	been	identified	 in	the	first	

intron	 in	 a	 few	FTD	patients	 109	 and	 some	missense	variations	were	 found	 in	 the	 coding	

region	of	C9orf72	in	sALS	110.	However,	the	pathogenic	contribution	of	these	variants	is	still	

unclear.		

	

C9ORF72	EXPRESSION		

EXPRESSION OF C9ORF72 IN MICE 

The	 expression	 of	C9orf72	 was	 studied	 in	mice	 by	 using	 a	 Lac-Z	 insertion	 in	 the	mouse	

C9orf72	 sequence	 111	 and	 by	 in	 situ	 hybridization	 112.	 In	 adult	 animals,	 expression	 was	

found	 in	 the	brain,	 spinal	 cord,	 spleen,	kidney	and	 testes	 112,	whereas	no	expression	was	

observed	 in	 muscle,	 heart,	 lungs	 and	 liver	 111.	 Expression	 of	 mouse	 C9orf72	 during	

development	was	 reported	 in	neurons	 and	different	 organs	during	 embryonic	 stages	 112.	

mRNA	 and	 protein	 expression	 of	 the	 different	 isoforms	 was	 shown	 to	 change	 during	

development	113	 .	For	example,	 isoform	1	 is	 the	most	expressed	at	postnatal	day	1	and	 is	

found	mainly	 in	the	nucleus.	 Isoform	2,	however,	 is	expressed	mainly	 in	the	cytoplasm	at	

postnatal	day	1,	but	its	expression	increases	in	the	nucleus,	during	development,	to	reach	
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its	 maximum	 at	 postnatal	 day	 56	 113.	 In	 primary	 mouse	 culture,	 cortical	 neurons	 show	

expression	of	C9orf72	 in	neurites	and	growth	cones	113	 .	Thus,	experiments	 in	mice	show	

that	C9orf72	 is	 expressed	during	development	 and	adulthood	 in	 the	nervous	 system	and	

suggest	that	the	different	isoforms	could	have	different	roles	during	development.	

	

EXPRESSION OF C9ORF72 IN HUMANS 

In	 humans,	 expression	 of	 C9orf72	 was	 studied	 with	 in	 situ	 hybridization	 probes	 and	

showed	expression	 in	neuronal	 cells	of	 the	 spinal	 cord	 111.	Using	qRT-PCR,	 expression	of	

the	 C9orf72	 isoforms	 1	 and	 2	was	 shown	 in	 cervical	 spinal	 cord,	 cerebellum	 and	motor	

cortex	in	post-mortem	tissues	114.	In	the	central	nervous	system,	the	highest	expression	of	

C9orf72	occurs	in	the	cerebellum	and	the	lowest	in	the	putamen	48.	Expression	in	cultured	

fibroblasts	 is	 low	and	seems	to	 increase	when	the	cells	are	used	for	the	differentiation	of	

iPSC-neurons	114,115,	suggesting	an	important	tissue	specific	expression	of	C9orf72.		

Few	 antibodies	 are	 commercially	 available	 to	 clearly	 detect	 C9ORF72	 protein,	

however,	one	 study	has	confirmed	C9ORF72	protein	expression	 in	 frontal	 and	cerebellar	

cortex	116.	Novel	antibodies	were	recently	generated	to	detect	the	long	and	short	C9ORF72	

isoforms	 and	 confirmed	 the	 expression	 of	 both	 isoforms	 in	motor,	 temporal	 and	 frontal	

cortexes	as	well	as	cerebellum	and	lumbar	spinal	cord	117.			

The	exact	cellular	expression	and	localization	of	C9orf72	in	humans	still	need	to	be	

elucidated,	 but	 preliminary	 results	 suggest	 localization	 at	 the	 nuclear	membrane	 for	 the	

short	 isoform,	 and	 in	mischaracterized	 cytoplasmic	 puncta	 for	 the	 long	 isoform	 117.	 It	 is	
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interesting	 to	 mention	 that	 in	 Western	 blotting,	 the	 isoforms	 were	 found	 in	 different	

solubility	fractions,	where	the	long	isoform	seems	to	be	more	insoluble	than	the	short	one	

117,	suggesting	that	the	cytoplasmic	puncta	might	be	insoluble	and	less	dynamic.		

In	conclusion,	expression	analysis	of	C9orf72	in	mice	and	humans	has	confirmed	the	

importance	 of	 this	 protein	 in	 the	 nervous	 system	 during	 development	 and	 adulthood.	

Furthermore,	 even	 though	 these	 results	 remain	 to	 be	 confirmed,	 expression	 analysis	

suggests	a	role	for	C9ORF72	protein	in	the	cytoplasm	and	at	the	nuclear	membrane.		

	

FUNCTION	OF	C9ORF72		

Very	little	was	known	about	the	regular	function	of	C9orf72	when	it	was	first	linked	to	ALS.	

Bioinformatic	 analysis	 showed	 that	 the	 full	 sequence	 of	 C9ORF72	 protein	 shares	 many	

characteristics	 with	 DENN	 proteins	 (Differentially	 Expressed	 in	 Normal	 and	 Neoplastic	

cells)	118,119.	DENN	proteins	are	highly	conserved	guanine	nucleotide	exchange	factor	(GEF)	

proteins	 involved	 in	 endocytosis	 and	 intracellular	 trafficking	 120.	 In	 motor	 neurons,	

C9ORF72	 protein	 was	 shown	 to	 colocalize	 with	 some	 RAB	 proteins	 and	 regulates	

autophagy,	partially	confirming	that	C9ORF72	can	act	as	a	DENN	protein	121.		

	Recently,	different	 in	vivo	models	suggested	that	the	GGGGCC	expansion	can	affect	

RNA	export	from	the	nucleus	and	different	modifier	screens	conducted	in	model	organisms	

have	shown	that	nuclear	import	and	export	proteins	could	modify	this	toxicity	122-124.	These	

data	are	also	supported	by	the	fact	that	the	short	protein	isoform	of	C9ORF72	was	shown	

to	be	located	at	the	nuclear	membrane	117,	suggesting	a	function	at	C9ORF72	at	the	nuclear	
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membrane.	 However,	 a	 recent	 study	 also	 suggested	 that	 the	 presence	 of	 cytoplasmic	

aggregates	alone	could	affect	nucleo-cytoplasmic	shuttling	independently	of	the	function	of	

the	proteins	found	in	the	aggregates	125.	Therefore,	knowing	that	C9orf72	positive	patients	

exhibit	 many	 protein	 aggregates,	 the	 toxicity	 caused	 by	 the	 expanded	 GGGGCC	 and	 the	

function	of	C9ORF72	protein	at	the	nuclear	membrane	still	remains	to	be	confirmed.		

Additionally,	 the	 pathogenic	 GGGGCC	 repeat	 expansion	 was	 shown	 to	 affect	 the	

formation	 of	 stress	 granules	 121,126,127.	 Even	 though	 other	ALS	 proteins,	 such	 as	 FUS	 and	

TDP-43,	were	also	shown	to	participate	in	stress	granule	formation	(reviewed	by	Ling	et	al	

128),	little	is	known	about	this	function	of	C9orf72	in	regards	to	ALS	pathogenicity.			

	 The	 functions	 of	C9orf72	 in	 normal	 and	 disease	 states	 remain	 to	 be	 elucidated	 in	

different	cell	types.	However,	it	seems	to	affect	RNA	metabolism	and	endosomal	trafficking,	

two	important	pathways	that	were	previously	shown	to	be	involved	in	ALS	pathogenesis.		

	

CONSERVATION	OF	C9ORF72	ACROSS	SPECIES	

Model	 organisms	 are	 important	 tools	 to	 learn	 about	 the	 function	 of	 new	 proteins.	

Therefore,	conservation	of	C9orf72	in	different	species	was	examined.	The	GGGGCC	repeat	

found	in	the	first	intron	of	the	gene	has	only	been	found	in	primates	and	it	is	not	conserved	

in	 mice	 or	 lower	 model	 organisms.	 However,	 the	 gene	 is	 highly	 conserved	 (over	 90%	

identity)	 in	 chimpanzees	 and	marmosets	 111.	 In	 lower	 organisms,	 most	 amino	 acids	 are	

conserved	in	mouse,	rat,	chick	embryo,	zebrafish	with	between	66%-98%	identity	in	these	
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organisms	111.	Most	conserved	residues	are	distributed	across	the	protein	suggesting	that	

its	function	is	conserved	across	the	species	118.			
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REPEAT DISORDERS 
ALS	 is	 not	 the	 only	 disease	 that	 can	 be	 caused	 by	 a	 nucleotide	 repeat	 expansions.	

Nucleotide	repeats	represent	30%	of	the	human	genome	and	vary	in	length	and	frequency	

129.	 Many	 repeats	 were	 shown	 to	 cause	 neuro-developmental	 or	 neurodegenerative	

disorders	 when	 the	 repeat	 exceeds	 a	 certain	 threshold	 130.	 Repeats	 can	 be	 found	 in	 the	

coding	 or	 non-coding	 regions,	 introns	 or	 UTRs,	 of	 the	 affected	 genes	 and	 cause	 either	 a	

toxic	 loss	 and/or	 gain	 of	 function	 mechanism.	 Here	 are	 a	 few	 examples	 of	 well-studied	

repeat	disorders	and	how	those	repeats	can	induce	cellular	toxicity.		

	

MYOTONIC	DYSTROPHY	AND	THE	TOXICITY	OF	RNA	FOCI		

Myotonic	 dystrophy	 type	 1	 (DM1)	 is	 a	 common	 repeat	 disorder	 and	 the	 most	 common	

muscular	 dystrophy.	 It	 is	 clinically	 similar	 to	 myotonic	 dystrophy	 type	 2.	 The	 onset	 of	

symptoms	 can	 be	 observed	 during	 birth,	 childhood	 or	 at	 adulthood	 leading	 to	 a	 wide	

variety	of	symptoms	including	mental	retardation,	muscle	degeneration,	heart	defects	and	

cataracts	 131.	 It	 is	 caused	by	a	CTG	repeat	 in	 the	3’	UTR	of	DMPK1	 (Dystrophia	myotonica	

protein	kinase)	gene	132-134.	Healthy	individuals	have	between	5-35	units	of	the	CTG	repeat,	

whereas	patients	have	at	 least	50	units.	Repeat	can	be	as	 long	as	 thousands	of	units	and	

disease	severity	correlates	with	repeat	length.	

Most	of	the	research	concerning	the	toxicity	of	RNA	foci	arises	from	studying	DM1.	

The	transcript	containing	the	expanded	repeat	causing	DM1	accumulates	in	the	nucleus	of	

muscle	 cells.	 Interestingly,	 it	 was	 shown	 that	 those	 RNA	 foci	 sequester	muscleblind-like	

(MBLN),	a	protein	that	binds	to	CUG	repeats	135,	 leading	to	 its	 loss	of	 function.	Knock-out	
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mice	of	Mbln	recapitulates	features	of	DM1	including	myotonia,	heart	defects	and	abnormal	

splicing	135	suggesting	that	toxicity	observed	in	DM1	reflects	the	loss	of	function	of	Mbln	in	

muscle	cells.	Therefore,	RNA	foci	can	be	toxic	to	cells	by	sequestrating	proteins.		

	

POLYGLUTAMINE	DISEASES	AND	ABNORMAL	TRANSLATION		

One	of	the	most	common	toxic	nucleotide	repeat	is	the	CAG	expansion.	CAG	codon	encodes	

for	 glutamine	 and	 coding	 and	 non-coding	 CAG	 pathogenic	 expansions	 were	 found	 in	 a	

dozen	genes	causing	a	wide	variety	of	symptoms	136.	While	the	genetic	causes	underlying	

these	diseases	are	known,	the	toxic	mechanisms	involved	are	unclear	and	no	treatment	is	

available.	 Aside	 from	 the	 CAG	 repeat	 encoding	 gene,	 genes	 encoding	 a	 CTG	 repeat	were	

found	 to	 be	 transcribed	 in	 the	 anti-sense	 direction	 leading	 to	 the	 production	 of	 toxic	

transcript	 containing	 CAG	 and	 CUG	 codons	 137	 therefore	 increasing	 the	 spectrum	 of	

disorders	caused	by	CAG	repeats.	The	presence	of	a	long	C/G	rich	repeat	in	a	transcript	can	

lead	to	the	formation	of	an	abnormal	secondary	structure	138.	Knowing	that	translation	is	

highly	 sensitive	 to	 RNA	 secondary	 structure,	 researchers	 have	 studied	 the	 impact	 of	

expanded	toxic	repeat	on	translation.		

	 The	 gene	ATXN3	 (Ataxin-3)	 contains	 a	 coding	CAG	 repeat	 in	 its	 3’	 end	 .	When	 the	

repeat	 reaches	 55	 units,	 it	 causes	 Machado-Joseph	 disease,	 also	 called	 Spinocerebellar	

ataxia	type	3	(SCA3),	a	neurodegenerative	disorder	causing	the	loss	of	Purkinje	cells	in	the	

cerebellum	 139.	 The	CAG	 repeat	 causes	 the	production	of	 toxic	 long	polyglutamine	 tracts.	

However,	when	the	polyglutamine	tract	is	encoded	by	CAA	codons,	which	also	leads	to	the	

production	of	polyglutamine,	no	toxicity	is	observed140-142.	Therefore,	it	was	hypothesized	



	 41	

that	 a	 change	 in	 reading	 frame,	 called	 ribosomal	 frameshifting,	 occurred	 along	 the	 CAG	

tract	during	translation	leading	to	the	production	of	polyalanine	instead	of	polyglutamine.	

This	 phenomenon	 was	 shown	 in	 cell	 models	 and	 model	 organisms	 141,142.	 Ribosomal	

frameshifting	 is	 widely	 characterized	 in	 viruses	 that	 use	 this	 method	 to	 increase	 the	

efficiency	 of	 their	 genomes	 by	 encoding	 more	 than	 one	 protein	 from	 a	 single	 RNA	

transcript	143.		

Another	method	used	by	viruses	to	increase	the	efficiency	of	their	genome	is	called	

internal	 ribosomal	 entry	 site	 (IRES)144.	 It	was	 shown	 that	 the	 secondary	 structure	of	 the	

RNA	that	contains	a	CAG	repeat	can	attract	the	cellular	translation	machinery	and	initiate	

translation	 in	a	non-ATG	manner,	a	process	called	repeat-associated	non-ATG	translation	

(RAN	 translation).	Even	 though	RAN	 translation	does	not	 act	 exactly	 like	an	 IRES,	 it	was	

speculated	 that	 the	 structure	 formed	 by	 the	 repeat	 can	 act	 in	 a	 similar	 manner145.		

Interestingly,	the	phenomenon	was	shown	to	happen	along	the	ATXN8	(Ataxin-8)	and	HTT	

(Huntingtin)	 transcripts,	 causing	 Spinocerebellar	 ataxia	 type	 8	 and	Huntington’s	 disease,	

respectively,	when	the	CAG	repeats	that	is	encoded	in	the	ATXN8	and	huntingtin	genes	are	

above	 a	 certain	 threshold	 146,147.	 When	 RAN	 translation	 occurs,	 expression	 of	

polyglutamine	 is	 independent	of	 the	presence	of	 the	ATG	starting	codon	upstream	of	 the	

repeat	 148,149.	 Since	no	ATG	 is	used,	 translation	 can	occur	 in	all	 reading	 frames	along	 the	

sense	and	anti-sense	transcripts,	leading	to	the	production	of	numerous	polypeptides	from	

a	single	CAG	repeat	containing	transcript.	 	This	phenomenon	was	also	observed	along	the	

CGG	non-coding	repeat	of	FMR1(Fragile	X	mental	retardation	1)	gene,	 the	genetic	cause	of	

Fragile-X-associated	 tremor	 ataxia,	 leading	 to	 the	 production	 of	 polyglycine	 and	

polyalanine	peptides	150.	
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FRAGILE	X	SYNDROME	AND	TOXICITY	OF	A	DECREASE	OF	GENE	EXPRESSION	

The	CGC	repeat	found	in	5’	UTR	of	FMR1	is	an	example	of	how	a	repeat	expansion	can	affect	

its	 own	 gene	 expression.	 In	 healthy	 individuals,	 the	 repeat	 length	 varies	 between	 6-55	

units.	 When	 the	 expansion	 is	 longer	 than	 200	 units,	 its	 causes	 a	 neurodevelopmental	

disorder	called	Fragile-X	syndrome	151.	The	disease	is	characterised	by	mental	retardation,	

as	well	as	behavioural	and	social	problems	similar	to	autism	spectrum	disorders	136.	FMRP,	

the	protein	encoded	by	FMR1,	is	an	RNA	binding	protein	that	shuttles	between	the	nucleus	

and	 the	 cytoplasm	 and	 directly	 binds	 to	 mRNA.	 In	 Fragile-X	 syndrome	 patients,	 a	

hypermethylation	of	the	CpG	islands	located	in	the	5’	UTR	has	been	observed	causing	a	loss	

of	 FMR1	 expression	 151.	 Interestingly,	 a	 knock-out	mouse	model	 of	 FMR1	 exhibits	 many	

features	 similar	 to	 patient	 symptoms	 including	 hyperactivity,	 anxiety	 behaviours	 and	

cognitive	deficits	136.	Therefore,	these	data	suggest	that	a	decreased	expression	of	FMR1	is	

sufficient	to	induce	the	phenotypes	observed	in	Fragile-X	syndrome.	

	 Interestingly,	 if	 the	CGC	 repeat	 length	 is	 intermediate	 (i.e.	 between	70-200	units),	

expression	 of	 the	 FMR1	 RNA	 is	 elevated	 and	 was	 shown	 to	 cause	 a	 neurodegenerative	

disease	 called	Fragile-X	 tremor/ataxia	 syndrome.	This	disease	 is	 characterised	by	 loss	of	

Purkinje	cells	and	atrophy	of	 the	cerebellum.	 Intranuclear	aggregates	containing	proteins	

and	the	FMR1	mRNA	are	observed	 in	patients	post-mortem	tissues	and	are	speculated	to	

cause	toxicity	by	sequestrating	other	RNA	binding	proteins,	but	 the	toxicity	of	 these	RNA	

foci	is	not	as	clear	as	for	DM1152.			
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C. ELEGANS 

CURRENT	MODELS	TO	UNDERSTAND	ALS	

With	more	than	20	genes	now	linked	to	ALS,	the	consequences	of	the	mutant	proteins	need	

to	be	evaluated.	Since	 the	 identification	of	SOD1	 in	1993,	many	mouse	models	have	been	

established	to	understand	the	function	of	the	mutant	proteins	in	normal	and	disease	states.	

Transgenic	mouse	models	expressing	mutant	SOD1	were	able	to	successfully	model	the	ALS	

progression	 and	 the	 motor	 neuron	 phenotypes	 observed	 in	 patients	 (among	 others153-

155).However,	 SOD1	 mutations	 are	 found	 in	 only	 a	 small	 fraction	 of	 ALS	 patients.	 	 Even	

though	some	models	seem	promising	to	understand	different	aspects	of	ALS	pathogenesis,	

transgenic	 animals	 expressing	 either	 TDP-43	 and	 FUS	 proteins	 cannot	 recapitulate	 the	

involvement	 of	 these	proteins	 in	motor	neuron	 integrity	 as	well	 as	 the	SOD1	models.	 By	

itself,	 expression	of	wild-type	TDP-43	 in	mouse	 causes	neuronal	 loss,	 decreased	 survival	

and	pathological	 characteristics	 of	ALS	 156,157.	When	expressing	mutant	TDP-43	proteins,	

some	models	 exhibit	phenotypes	 related	 to	ALS	pathology,	motor	phenotypes,	decreased	

survival	and	astrogliosis,	but	surprisingly,	many	models	exhibited	only	minimal	neuronal	

loss	 and	 TDP-43	 aggregates	 158-163	 .	 Expression	 of	 wild-type	 and	 mutant	 FUS	 in	 mouse	

spinal	cord	can	recapitulate	pathological	characteristics	of	ALS	but,	again,	in	neither	cases	

was	neuronal	loss	observed	162,164.	Also,	ALS	mouse	models	have	failed	over	the	past	years	

to	correctly	predict	the	efficacy	of	drugs	that	were	tested	in	clinical	trials,	which	led	many	

researchers	 to	 speculate	 that	 alternative	 approaches	 should	 be	 developed	 to	 evaluate	

potential	drugs	7,165-167	
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In	recent	years,	some	groups	have	started	using	human	derived	induced	pluripotent	

stem	cell	(iPSC)	derived	neurons	to	study	ALS	pathogenesis.	Since	these	iPSC	neurons	are	

derived	from	patient	cells,	they	represent	the	complete	genetic	background	of	the	patients.	

In	the	case	of	C9orf72	where	the	repeat	is	difficult	to	manipulate	genetically,	for	cloning	for	

example,	 using	 the	 full	 expansion	 in	 the	 gene	 context	 would	 be	 ideal.	 However,	 iPSC-

derived	neurons	are	costly,	time-	consuming,	and	only	a	fraction	of	the	neurons	(20-30%)	

exhibit	C9orf72	pathological	characteristics	(among	others168,169).		

The	 recent	 identification	 of	 many	 new	 genes,	 and	 the	 failure	 of	 many	 of	 the	

mammalian	 models	 to	 fully	 represent	 ALS	 pathogenesis,	 have	 driven	 the	 use	 of	 small	

animal	models,	 including	yeast,	zebrafish,	 flies	or	worms.	Many	disease-related	genes	are	

highly	 conserved	 among	 species,	 plus	 model	 organisms	 can	 be	 easily	 genetically	

manipulated	and	have	rapid	reproduction	cycles.		

The	worm	Caenorhabditis	elegans	 is	 a	multicellular,	 transparent	 nematode	 that	 is	

used	to	study	many	areas	of	biology,	including	aging	and	stress	pathways	170.	Also,	with	its	

fully	sequenced	genome,	and	 its	cell	 lineage	 fully	characterized,	 it	 is	a	highly	studied	and	

well	 characterized	 model	 organism.	 Therefore,	 C.	 elegans	 was	 chosen	 by	 our	 group	 to	

model	and	understand	ALS.		

	

LIFESPAN	AND	GENOME	OF	C.	ELEGANS	

C.	elegans	is	a	transparent,	non-parasitic	roundworm.	In	the	wild,	the	worm	is	found	in	soil	

and	 includes	 mainly	 self-fertilizing	 hermaphrodites.	 However,	 a	 small	 proportion	 of	 the	
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population	are	male	worms	that	can	fertilize	the	hermaphrodite.	In	laboratory	conditions,	

worms	are	grown	on	nematode	growth	media	plate	and	are	fed	with	E.	coli	171.		

	 Under	normal	conditions,	 the	 lifecycle	of	C.	elegans	 includes	four	 larval	stages	(L1-

L4)	and	adulthood.	When	under	harsh	environmental	conditions	during	development,	such	

as	high	temperature,	low	food	supply	or	high	population	density,	the	L1	worm	switches	to	

a	 dauer	 larval	 stage	 instead	 of	 the	 L2	 larval	 stage172	 .	 The	 dauer	 larvae	 have	 a	 distinct	

morphology	 and	 metabolism	 that	 allow	 the	 worm	 to	 survive	 in	 difficult	 conditions172.	

When	conditions	become	favourable,	 the	animal	 leaves	the	dauer	stage	and	returns	to	 its	

normal	 life	 cycle172	 .	When	kept	at	20°C,	 it	 takes	3-4	days	 for	a	wild-type	worm	to	begin	

laying	eggs	and	it	will	produce	more	than	200	during	its	lifespan.	The	lifecycle	of	C.	elegans	

is	temperature	sensitive;	kept	at	15°C	the	worms	develop	slower	and	temperatures	above	

25°C	can	be	harmful.	At	20°C,	a	wild-type	worm	lives	on	average	20	days.	Different	signs	of	

aging	are	visible	in	C.	elegans	including	loss	of	motility,	presence	of	necrotic	cells,	presence	

of	oxidized	protein,	deterioration	of	different	tissues	and	decline	in	immune	function	173.		

The	complete	genome	of	C.	elegans	was	sequenced	 in	1998	 174.	 It	 consists	of	more	

than	19,000	genes	distributed	across	six	chromosomes,	whereas	40%	of	these	are	found	in	

higher	organisms	175.	Many	genetic	biochemical	pathways	are	highly	conserved	between	C.	

elegans	 and	 human	 including	 different	 stress	 response	 pathways,	 the	 insulin-IGF,	

apoptosis,	necrosis	and	the	innate	immune	response	pathways176-179	.		

	

C.	ELEGANS	NERVOUS	SYSTEM	

The	C.	elegans	nervous	system	includes	302	neurons	in	hermaphrodite	worms.	Neurons	are	

classified	 by	 their	 functions,	 their	 locations	 or	 by	 the	 neurotransmitter	 they	 express.	
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Ongoing	studies	aim	to	completely	characterize	the	 interactome	of	 the	C.	elegans	nervous	

system.	 C.	 elegans	 have	 four	 types	 of	 neurons;	 motor	 neurons,	 sensory	 neurons,	

interneurons	and	polymodal	neurons	180.		

Two	types	of	motor	neurons	coordinate	 the	movement	of	 the	worms;	 the	gamma-

aminobutyric	acid	(GABA)	and	the	cholinergic	neurons.	Both	types	of	neurons	are	located	

on	the	dorsal	side	and	innervate	muscle	cells	on	the	dorsal	and	ventral	side	of	the	worm.	

Cholinergic	 neurons	 are	 involved	 in	 locomotion,	 egg	 laying,	 feeding	 and	 male	 mating	

(reviewed	by	Rand	181	).	Acetylcholine	is	synthesized	by	choline	acetyl	transferase	(CHA-1	

protein),	 loaded	 in	vesicles	by	vesicular	 transporter	 (UNC-17protein)	and	secreted	at	 the	

synaptic	 cleft	 where	 it	 activates	 the	 acetylcholine	 receptors	 on	 the	 post-synaptic	 cells.	

Subsequently,	it	is	hydrolyzed	to	be	recycled	by	acetylcholine	esterases	(ACHE	protein)	and	

re-enter	the	pre-synaptic	cell	(CHO-1	protein).		

GABAergic	 neurons	 are	 inhibitory	 neurons	 involved	 in	 locomotion	 and	 defecation	

(for	 a	 review	 see	 Jorgensen182).	 They	 are	 activated	 by	 cholinergic	 neurons.	 GABA	 is	

synthesized	 by	 glutamic	 acid	 decarboxylase	 (UNC-25	 protein),	 loaded	 in	 vesicles	 by	 a	

vesicular	 transporter	 (UNC-47	 protein)	 and	 will	 activate	 the	 inhibitory	 GABA	 receptor	

(UNC-49	protein)	on	the	post-synaptic	cells	and	causing	relaxation	of	the	muscle	cells.		

The	 tight	 coordination	between	 the	GABAergic	and	cholinergic	neurons	allows	 for	

the	 movement	 of	 the	 worm.	 Hence,	 when	 one	 side	 of	 the	 worm	 is	 contracting	 due	 to	

cholinergic	 activation,	 the	 opposite	 side	 is	 relaxing	 due	 to	 GABA	 inhibition,	 therefore	

causing	this	smooth	sinusoidal	movement	along	the	animal	body	182(Figure	1.3).		
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Deletion	 mutant	 worms	 of	 any	 of	 the	 genes	 involved	 in	 GABA	 or	 acetylcholine	

production	 or	 secretion,	 or	 pharmacological	 alteration	 of	 these	 pathways	 will	 cause	

abnormal	 locomotion	of	 the	 animals.	 The	mutant	worms	are	often	used	 as	 control	when	

studying	 worm’s	 locomotion	 and	 the	 promoter	 of	 these	 genes	 are	 used	 to	 expressed	

proteins	 specifically	 in	 the	 motor	 neurons	 both	 of	 which	 are	 often	 used	 in	 ALS	 worm	

research.		

	

STRESS	RESPONSE	PATHWAYS	IN	C.	ELEGANS	

Stress	 response	 is	a	major	part	of	C.	elegans	 research.	Animals	can	be	easily	 subjected	 to	

many	different	types	of	environmental	stress	and	many	genes	involved	have	turned	out	to	

be	 involved	 in	 human	 diseases	 such	 as	 cancer,	 infantile	 diseases	 and	 neurodegenerative	

 Figure 1.3: C. elegans GABAergic motor neurons. Upper: The GABAergic neurons include 
20 ventral cord motor neurons innervating either dorsal or ventral muscles, 4 ring motor 
neurons (green) innervating the head and 3 interneurons (pink, yellow and blue). Bottom: tight 
coordination between the GABAergic and cholinergic (Ach) motor neurons allow for contraction 
of one side of the body and relaxation of the opposite side of the animal causing the sinusoidal 
movement of the animal. Figure inspired by 182 
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diseases	183,184.	The	insulin	and	insulin-like	growth	factor	signaling	(IIS)	pathway	is	among	

the	most	 studied	 stress	 response	 pathways	 in	C.	elegans.	 It	 functions	 by	 activating	 a	 cell	

surface	receptor,	in	C.	elegans	DAF-2	(abnormal	DAuer	Formation	1),	that	acts	to	induce	a	

cascade	of	kinases,	including	AGE-1	(AGEing	alteration1)	and	AKT-1(AKT	kinase	family	1),	

and	 promotes	 cell	 death	 by	 inhibiting	 different	

transcription	 factors	 such	 as	 DAF-16	 (abnormal	 DAuer	

formation	 16)	 and	 SKN-1(SKiNhead	 1)	 (Figure	 1.4).	 This	

pathway	was	shown	to	also	play	a	role	in	aging,	longevity,	

fat	 metabolism,	 and	 in	 different	 neuronal	 phenotypes176.	

Mutants	 that	 result	 in	 reduced	 IIS	 are	 long-lived,	 stress	

resistant	,	exhibit	increased	fat	content	and	have	a	reduced	

neuronal	decline.		

The	 role	 of	 the	 IIS	 in	 aging	 and	 stress	 response	 is	 mainly	 regulated	 by	 the	

transcription	factor	DAF-16.	In	its	unphosphorylated	form,	DAF-16	is	activated	and	moves	

to	 the	nucleus	where	 it	 induces	expression	of	genes	associated	with	 longevity	and	stress	

resistance.	When	 the	 IIS	 is	activated,	DAF-16	becomes	phosphorylated	and	 is	 retained	 in	

the	cytoplasm	where	it	cannot	affect	gene	expression	176.	

IIS	 was	 shown	 to	 play	 an	 important	 role	 in	 aging	 of	 the	 nervous	 system.	 Aged	

neurons	in	C.	elegans	display	increased	branching	and	neuronal	defects,	both	of	which	are	

delayed	when	 the	 IIS	 is	 reduced.	Also,	DAF-16	 is	 involved	 in	proteostasis	 and	chaperone	

expression	which	were	also	shown	to	affect	neuronal	defects.	However,	not	all	 long-lived	

mutants	acting	through	DAF-16	affect	aging	of	the	nervous	system	173	

 

 

Figure 1.4: The insulin-IGF 
signaling pathway. In black are 
the C. elegans genes and in 
blue their human orthologues 
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C.	ELEGANS	TOOL	BOX	

Different	 consortiums	 and	 groups	 have	 generated	 many	 mutant	 worm	 strains.	 Most	 of	

these	 strains	 are	 generated	 by	mutagenesis,	 generating	 small	 deletions	 randomly	 in	 the	

genome.	 Ethyl	 methanesulfonate	 (EMS),	 and	 4,5’,8-trimethylpsoralen	 (TMP)	 are	 mainly	

used	for	this	and	deletions	or	point	mutations	are	generated185,186.	After	mutagenesis,	the	

mutants	 are	 then	 screened	 for	 visible	 phenotypes,	 such	 as	 lethality,	 progeny	 numbers,	

developmental	 problems,	 and	 sequenced	 to	 identify	 the	mutations	 generated.	 Using	 this	

method	a	large	proportion	of	the	genome	has	been	mutagenized.	The	few	genes	for	which	

mutations	could	not	be	generated	are	now	being	inactivated	using	the	most	recent	genetic	

tools	 including	 the	 clustered	 regulatory-interspaced	 short	 palindromic	 repeats/CRISPR	

associated	protein	9	(CRISPR/CAS9)	method.		

Forward	genetics	 is	a	valuable	tool	to	identify	genes	that	are	involved	in	a	specific	

function.	However,	 it	can	be	time	consuming	and	the	sequencing	and	identification	of	the	

proper	mutation	that	is	causing	the	observed	phenotype	are	the	major	rate-limiting	steps.	

Therefore,	 reverse	genetic	 tools	have	also	been	developed	 in	C.	elegans.	RNA	 interference	

(RNAi)	is	the	process	by	which	one	can	decrease	the	expression	of	a	gene	by	targeting	the	

degradation	of	 its	RNA	through	expressing	a	complement	strand	to	the	target	RNA.	 	Most	

organisms	 and	 cells	 	 express	 the	machinery	 to	 cause	 gene	 silencing	but	 it	 is	 particularly	

powerful	 in	 C.	elegans	 187.	 The	worms	 express	 a	 systemic	 RNAi	machinery	 that	 includes	

RNA-directed	RNA	polymerase	that	allows	for	the	amplification	of	the	RNA	strand,	also	the	

RNA	strand	can	be	easily	expressed	in	worms	187.	For	example,	RNA	can	be	expressed	in	the	

bacteria	that	the	worms	eat	and	will	end	up	in	their	intestine.	There,	it	will	be	transported	

to	different	cells	across	the	organism.	SID	(systemic	RNAi	defective)	proteins	are	important	
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for	export	and	intake	of	the	

RNA.	 After	 being	 taken	 up	

by	 the	 cell,	 RNA	 is	 cleaved	

and	 processed	 using	 DCR	

(Dicer	 related)	 and	 RDE	

(RNAi	 defective)	 proteins.	

The	 RNA	 strand	 is	 then	

amplified	by	the	RRF	(RNA-

dependant	 RNA	

polymerase	 family)	 family	

of	 proteins	 and	binds	 to	 its	 target	mRNA	causing	 its	 degradation	 (Figure	1.5).	Mutations	

affecting	any	of	these	genes	make	the	worm	partially	or	completely	resistant	to	RNAi.	

	

The	RNAi	process	is	highly	efficient	in	almost	all	cell	types	with	the	exception	of	the	

nervous	system.	Neurons	do	not	express	the	SID	proteins,	and	therefore	cannot	uptake	the	

RNA	 strand.	 However,	 genetic	 manipulations	 have	 allowed	 the	 expression	 of	 the	 SID	

proteins	 specifically	 in	 neurons	 resulting	 in	 animals	 sensitized	 to	 RNAi	 in	 the	 nervous	

system	188.	Using	similar	 transgenic	and	deletion	mutant	worms,	many	transgenic	worms	

are	available	with	tissue	or	cell	specific	RNAi	sensitivity	188-190.	

Finally,	one	of	the	first	uses	of	green	fluorescent	protein	(GFP)	was	in	C.	elegans	191.	

The	worm	is	transparent,	so	expression	of	the	GFP	protein	can	be	expressed	in	fusion	with	

a	known	protein	allowing	 for	direct	visualization	of	 the	protein	at	different	 stages	of	 the	

 

Figure 1.5: RNAi machinery in C. elegans. RNA strand in the 
intestine will be send to all cells of the animal and uptake by SID-1. 
Then, RNA will be process by DCER, RDF and RRF proteins and 
bind to its target RNA to degrade it 
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worm’s	life	cycle.	Translational	or	transcriptional	GFP	reporters	are	also	available	for	many	

genes	to	visualize	the	expression	and	localization	of	genes	and	proteins	and	the	tissue	and	

cellular	levels.		

The	 first	 transgenic	 worms	 were	 created	 by	 inserting	 transgenes	 in	 the	 genome	

using	 ultraviolet	 (UV)	 or	 gamma	 radiation192.	 This	 caused	 random	 integration	 of	 the	

transgene	into	the	genome,	often	in	multiple	copies.	This	technique	frequently	resulted	in	

copy-number	 variation	 and	 integration	 site	 effects	 rather	 than	 specifically	 looking	 at	 a	

phenotype	caused	by	expression	of	a	sole	transgene.	Now,	new	technologies	are	available	

and	single	insertion	site	methods	193	and	CRISPR/Cas9	194	have	led	to	the	generation	of	new	

transgenic	 models	 with	 low	 expression	 levels	 of	 the	 transgene	 and	 targeting	 the	

endogenous	genes	in	their	genome	contexts	(promoter,	regulatory	regions,	etc.).	Hopefully,	

these	new	models	will	better	recapitulate	what	is	observed	in	non-transgenic	conditions.		

	

ALS	C.	ELEGANS	MODELS	

C.	elegans	have	been	previously	used	to	model	ALS	(Table	1.1)	1,175.	Transgenic	models	in	

which	neuronal	and	non-neuronal	expression	of	human	SOD1,	TDP-43	and	FUS	proteins	in	

C.	 elegans	 have	 been	 characterized	 (Table	 1.1)	 195-203.	 The	 mutant	 proteins	 induced	 an	

abnormal	 stress	 response	 and	protein	 aggregates	 in	many	 cases	 195-198,200-202.	 Transgenic	

expression	of	mutant	SOD1,	TDP-43	and	FUS	proteins	in	neurons	caused	neuronal	loss	and	

motility	195,198,199,203.		

	 Being	the	most	studied	ALS	protein	 in	C.	elegans,	TDP-43	 is	a	good	example	of	 the	

variety	 of	 experiments	 that	 can	 be	 carried	 in	 worms	 to	 understand	 its	 role	 in	

neurodegeneration.	Many	models	using	 various	 expression	patterns	of	TDP-43	wild-type	
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or	mutant	proteins	(Δ	RNA	recognition	motif,	G290A,	A315T,	M337V,	Δ	C’	end)	have	been	

developed	and	recapitulate	key	features	observed	in	patients	195,197-199.	Models	expressing	

TDP-43	 in	 all	 neurons,	 or	 in	 just	 a	 subset	 of	 neurons	 have	 been	 characterized	 195,197-199.	

Mutant	 TDP-43	 proteins	 generate	 numerous	 phenotypes	 including	 motility	 problems,	

synaptic	dysfunctions,	protein	aggregation,	and,	neuronal	loss	195,197-199.	ER	stress	response	

pathways	and	the	 innate	 immune	system	pathways	were	both	also	shown	to	be	 involved	

the	toxicity	caused	by	TDP-4363,204,	which	recapitulates	key	features	of	ALS	pathogenesis.	

Also,	 the	 characterization	 of	 the	 worm	 orthologue	 of	 TARDBP,	 tdp-1,	 showed	 that	 TDP-

1/TDP-43	 is	 involved	 in	 regulation	 of	 stress	 response	 and	 lifespan	 pathways	 205-207.	 By	

itself,	a	 loss	of	expression	of	tdp-1/TARDBP	 can	 induce	motility	problem	in	 the	worm	206,	

but	it	was	also	shown	to	alleviate	proteotoxicity	induced	by	expression	of	mutant	TDP-43,	

FUS,	SOD1,	polyglutamine	and	progranulin	proteins	205,206,208.			

	 Finally,	 a	 screen	 to	 identify	 compounds	 that	 decrease	 TDP-	 43	 aggregation	 was	

performed	 in	 cell	 lines	 and	many	 of	 the	molecules	 identified	were	 able	 to	 suppress	 the	

impaired	 motility	 phenotype	 of	 worms	 expressing	 mutant	 human	 TDP-43	 209.	 Thus,	 C.	

elegans	 has	 proven	 to	 be	 a	 useful	 model	 to	 better	 understand	 TDP-43	 toxicity	 with	

relevance	to	ALS.		

Most	studies	using	C.	elegans,	have	focused	on	the	toxicity	of	known	ALS	genes.	It	is	

important	to	note	that	almost	90%	of	ALS	cases	have	no	known	genetic	causes.	Also,	there	

is	 wide	 variation	 in	 the	 onset	 of	 symptoms,	 for	 ALS,	 even	 amongst	 individuals	 with	 the	

same	genetic	cause.	Furthermore,	ALS	patients	can	live	between	6	months	and	6	years	after	

diagnosis,	thus	there	is	speculation	that	environmental	factors	may	influence	disease	onset	

and	progression	26.	Several	groups	have	used	C.	elegans	 to	 identify	compounds	that	cause	



	 53	

specific	 degeneration	 of	 motor	 neurons	 210-212	 opening	 the	 door	 to	 identifying	

environmental	 modifiers	 of	 degeneration	 in	 ALS	 models.	 However,	 confirmation	 will	 be	

required	and	 large	epidemiological	 studies	are	needed	 to	evaluate	 the	relevance	of	 these	

compounds	in	humans.		

	

OTHER	DISEASE	RELATED	C.	ELEGANS	MODELS	

C.	 elegans	 have	 been	 widely	 used	 to	 study	 neurodegenerative	 disorders.	 Parkinson’s	

disease,	Huntington’s	disease	and	Alzheimer’s	disease	models	(reviewed	in	213-215)	were	all	

developed	 expressing	 human	mutant	 proteins	 in	 the	worms.	Motor	 neuron	diseases	 and	

non-coding	diseases	have	also	been	studied.		

Hereditary	spastic	paraplegia	(HSP)	is	a	group	of	diseases	affecting	mainly	the	lower	

motor	neurons.	This	group	is	genetically	heterologous,	with	more	than	40	loci	linked	to	the	

HSP	 216,217.	 Using	 deletion	 mutants,	 spas-1	 (SPAStin	human	neurodegeneration-associated	

AAA	ATPase	related	1)	 and	 nipa-1(nonimprinted	gene	 in	Prader/Willi/angelman	syndrome	

region	 1	 homolog	 1),	 the	 orthologues	 of	 human	 SPG-4	 (Spastic	 paraplegia	 4)	 and	 NIPA	

(ZC3HC1,	zinc	finger,	C3HC-	type	containing	1)	 respectively,	 two	 genes	 link	 to	HSP,	 it	was	

shown	that	these	genes	have	a	conserved	function	between	human	and	C.	elegans	and	that	

deletion	of	nipa-1	was	detrimental	to	neurons	218,219	.	

Spinal	 muscular	 atrophy	 (SMA)	 is	 another	 motor	 neuron	 disorder	 caused	 by	 a	

decreased	 expression	 in	 SMN1/2	 (Survival	 in	 motor	 neuron	 proteins	 1	 and	 2)	 220.	 A	

decreased	 expression	 of	 smn-1(human	 survival	 motor	 neuron	 gene	 homolog),	 the	
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orthologue	 in	C	.elegans,	was	 shown	 to	 induce	 severe	 locomotion	 deficits	 221	 and	 known	

modifiers	and	interactors	of	SMN	proteins	were	confirmed	in	worms	221,222.		

Finally,	 in	 an	 attempt	 to	 understand	 more	 about	 myotonic	 dystrophy,	 RNA	

expression	 of	 CAG	 or	 CUG	 repeats	 in	 muscle	 cells	 was	 shown	 to	 be	 toxic	 and	 could	

recapitulate	key	features	of	DM1	such	as	presence	of	RNA	foci	223,224.	Also,	similar	to	what	

is	 observed	 in	 patients,	 a	 decreased	 expression	 in	 mbl-1(muscleblind	 splicing	 regulator	

homolog),	 the	 orthologue	 of	 human	 muscle-blind	 genes,	 was	 shown	 to	 cause	

neuromuscular	junction	abnormalities	225	.		

Therefore	these	models	confirm	that	C.	elegans	can	be	a	suitable	model	organism	to	

understand	more	about	motor	neuron	and/or	repeat	disorders.		
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RESEARCH	HYPOTHESIS	

The	 identification	of	 the	non-coding	 repeat	of	C9orf72	 as	a	major	player	 in	ALS	was	 first	

reported	at	 the	end	of	2011.	At	 the	 time	 this	project	was	 initiated,	 in	 January	2012,	very	

little	 was	 known	 about	 the	 cellular	 impact	 of	 this	 specific	 repeat.	 Therefore,	 the	 first	

models	were	 developed	 to	 better	 understand	 specific	 phenotypes	 that	were	 observed	 in	

patient	cells	and	tissue,	over	the	years	these	models	were	adapted	to	take	into	account	new	

findings.	 Extrapolating	 about	 the	 toxicity	 of	 the	 GGGGCC	 repeat	 with	 other	 non-coding	

repeat	 diseases	 has	 been	 a	 great	 value.	 The	main	 goal	 of	 this	 project	 was	 to	 develop	 C.	

elegans	 models	 to	 characterized	 C9orf72	 toxicity	 and	 apply	 our	 findings	 to	 ALS	 C9orf72	

positive	patient	cells.	More	specifically,	we	have:	

	

Goal	#1:	 To	 characterize	 the	 impact	of	 a	decreased	expression	of	C9orf72	 orthologue	on	

the	worm	nervous	system	(Chapter	2)	

Goal	#2:	To	characterize	the	 impact	of	the	expression	of	an	expanded	GGGGCC	RNA	in	C.	

elegans	(Chapter	3)	

Goal	#3:	To	identify	drugs	that	can	alleviate	C9orf72	loss	and	gain	of	function	toxicity	in	C.	

elegans	and	confirm	their	actions	in	patient	cells	(Chapter	3).		
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CHAPTER 2 

INTRODUCTION 
The	 first	 reports	 of	 C9orf72	 involvement	 in	 ALS	 revealed	 an	 abnormal	 expression	 of	

C9orf72	in	individuals	carrying	the	pathogenic	GGGGCC	expansion47,74.	In	patients	positive	

for	 C9orf72	 expansion,	 a	 decreased	 expression	 of	 C9orf72	 mRNA	 was	 seen	 in	

lymphoblastoid	 cells,	 iPSC-derived	 neurons,	 frontal	 cortex,	 spinal	 cord	 and	 cerebellum	

47,74,114,116.	 Correlating	 with	 a	 decreased	 mRNA	 level,	 a	 decreased	 in	 protein	 expression	

level	of	C9orf72	was	also	observed	in	motor,	temporal	and	frontal	cortexes	as	well	as	in	the	

cerebellum	 and	 lumbar	 spinal	 cord	 116,117.	 However,	 a	 few	 groups	 failed	 to	 observe	 this	

finding	 in	 iPSC-derived	 neurons	 and	 frontal	 cortex	 48,226,	 thus	 	 suggesting	 this	 reduced	

expression	might	 vary	 across	different	ALS-	C9orf72	 patients.	Methylation	of	CpG	 islands	

surrounding	 the	 repeat	 and	 of	 the	 GGGGCC	 repeat	 itself	 was	 speculated	 to	 cause	 the	

decreased	expression.	Methylation	was	observed	in	ALS	and/or	FTD	patients	blood	cells;	in	

the	hippocampus;	frontal,	temporal	and		motor	cortices;	cerebellum	and	in	spinal	cord	227-

231.		

To	 understand	 more	 about	 the	 impact	 of	 this	 decreased	 expression,	 we	

characterized	the	alfa-1	gene	in	C.	elegans,	the	sole	orthologue	of	C9orf72	in	the	nematode.	

alfa-1	 (sequence	 F18A1.6)	 shares	 26%	 identity	 and	 59%	 similarity	 111,232.	 Similar	 to	 the	

human	sequence,	it	encodes	two	isoforms,	a	short	and	a	long	one	with	an	alternative	exon	

1,	coding	for	two	proteins	(731	and	734	amino	acids	long).	Since	it	is	conserved	throughout	

its	 sequence,	 it	 is	 speculated	 that	 even	 in	 worms	 the	 function	 of	 C9ORF72	 protein	 is	

conserved.		
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	Using	 a	mutant	worm	 carrying	 a	 240	 base	 pair	 deletion	 in	alfa-1	 gene	 causing	 a	

complete	 loss	 of	 expression,	 we	 have	 evaluated	 the	 effect	 of	 loss	 of	 function	 of	 alfa-1/	

C9orf72	in	the	nematode	nervous	system.		
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MANUSCRIPT	

ABSTRACT	

An	expansion	of	the	hexanucleotide	GGGGCC	repeat	in	the	first	intron	of	C9orf72	gene	was	

recently	linked	to	amyotrophic	lateral	sclerosis.	It	is	not	known	if	the	mutation	results	in	a	

gain	 of	 function,	 a	 loss	 of	 function	 or	 if,	 perhaps	 both	 mechanisms	 are	 linked	 to	

pathogenesis.	We	generated	a	genetic	model	of	ALS	to	explore	the	biological	consequences	

of	 a	 null	mutation	 of	 the	Caenorhabditis	elegans	C9orf72	 orthologue,	F18A1.6,	also	 called	

alfa-1.	alfa-1	mutants	displayed	age-dependent	motility	defects	leading	to	paralysis	and	the	
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specific	 degeneration	 of	 GABAergic	 motor	 neurons.	 alfa-1	mutants	 showed	 differential	

susceptibility	to	environmental	stress	where	osmotic	stress	provoked	neurodegeneration.	

Finally,	we	observed	that	the	motor	defects	caused	by	loss	of	alfa-1	were	additive	with	the	

toxicity	caused	by	mutant	TDP-43	proteins,	but	not	by	the	mutant	FUS	proteins.	These	data	

suggest	 that	 a	 loss	 of	 alfa-1/	 C9orf72	 expression	 may	 contribute	 to	 motor	 neuron	

degeneration	in	a	pathway	associated	with	other	known	ALS	genes.	
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INTRODUCTION	

Amyotrophic	 lateral	 sclerosis	 (ALS)	 is	 one	 of	 the	 most	 common	 neurodegenerative	

disorders	and	 it	 is	characterized	by	progressive	death	of	motor	neurons	 in	 the	brain	and	

spinal	cord.	In	1993,	the	first	ALS	gene	identified	was	superoxide	dismutase	1	(SOD1)[1]	and	

thanks	to	recent	genetic	advances	there	are	now	over	twenty	genes	linked	to	ALS	[2].	Genes	

recently	 shown	 to	 be	 mutated	 in	 ALS	 include	 the	 DNA/RNA	 binding	 proteins	 TAR	DNA	

binding	protein	43	(TDP-43)	and	Fused-in-sarcoma	(FUS)	[3-6],	and	C9orf72,	the	latter	being	

a	major	cause	of	familial	and	sporadic	ALS	[7,8].	

GGGGCC	repeat	expansions	are	found	in	the	first	intron	of	C9orf72	and	the	presence	

of	such	long	non-coding	repeat	is	suggestive	of	a	toxic	gain	of	function	mechanism	driving	

neurodegeneration,	perhaps	through	RNA	toxicity,	or	uncontrolled	translation	of	the	repeat	

into	non-native	protein	species	[9].	Very	little	is	known	about	the	biological	role	of	C9orf72	

other	 than	 its	 sequence	 similarity	 to	 the	 GDP/GTP	 exchange	 factor	 “Differentially	

Expressed	in	Normal	and	Neoplasia”	(DENN)	[10].	To	learn	more	about	the	biological	role	

of	C9orf72	we	turned	to	the	model	organism	Caenorhabditis	elegans	and	characterized	the	

C9orf72	orthologue	F18A1.6,	also	called	alfa-1,	in	a	number	of	behavioural	assays.	Although	

appearing	 morphologically	 normal	 we	 observed	 that	 alfa-1(ok3062)	 null	 mutants	

developed	 an	 age-dependent	 motor	 phenotype	 and	 neurodegeneration	 specific	 to	

GABAergic	motor	neurons.	Furthermore,	alfa-1(ok3062)	mutants	showed	hypersensitivity	

to	 osmotic	 stress	 which	 further	 exacerbated	 motor	 neuron	 degeneration.	 Lastly,	 we	

observed	 that	alfa-1(ok3062)	 shows	differential	genetic	 interactions	with	mutant	TDP-43	

and	FUS	proteins	suggesting	a	complex	interaction	amongst	some	ALS	genes.	
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RESULTS		

alfa-1	(ok3062)	mutants	develop	an	age-dependent	motor	phenotype	

To	 better	 understand	 the	 pathogenesis	 that	 could	 result	 from	 a	 decreased	

expression	of	C9orf72,	we	examined	ok3062	a	null	allele	of	alfa-1,	the	C.	elegans	orthologue	

of	C9orf72.	 ALFA-1	 shares	 60%	 homology	with	 C9ORF72	 (Blast	 e-value	 2x10-15)	 (Figure	

1A).	The	alfa-1(ok3062)	mutation	is	a	deletion	spanning	portions	of	exons	3	and	4	resulting	

in	 no	 detectable	 alfa-1	 RNA	 expression	 (Figure	 1B,	 C).	 alfa-1(ok3062)	 mutants	 were	

superficially	 normal	 and	had	 total	 progeny	 and	 lifespan	 comparable	 to	wild	 type	worms	

(Figure	S1	and	Table	S2).	However,	when	worms	were	grown	on	solid	media	we	observed	

motility	 defects	when	 the	alfa-1(ok3062)	mutants	 reached	 adulthood,	 and	 it	 ended	 as	 an	

age-dependent	 paralysis	 phenotype	 affecting	 on	 average	 60%	 of	 worms	 by	 day	 12	 of	

adulthood	 compared	 to	 approximately	20%	seen	 in	wild	 type	N2	worms	 (Figure	2A	and	

Table	S1).	The	progressive	paralysis	phenotype	may	indicate	impaired	transmission	at	the	

neuromuscular	 junction	 similar	 to	 what	 we	 previously	 observed	 in	 our	 ALS	 models	

expressing	TDP-43	and	FUS	proteins	in	C.	elegans	motor	neurons	[11].	

In	worms,	body	movement	is	coordinated	by	excitatory	input	from	acetylcholine	and	

inhibitory	 inputs	 from	 GABA	 [12].	 Aldicarb	 is	 an	 acetylcholinesterase	 inhibitor	 used	 to	

indirectly	 detect	 dysfunctional	 transmission	 at	 the	 neuromuscular	 junction	 in	 C.	elegans	

[13],	 and	worms	with	 impaired	 GABA	 processing	 are	 hypersensitive	 to	 aldicarb-induced	

paralysis	 [14].	alfa-1(ok3062)	mutants	were	more	 sensitive	 to	 aldicarb	 induced	 paralysis	

compared	to	wild	type	worms		(Figure	2B).	These	data	suggest	that	alfa-1(ok3062)	mutants	
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may	 have	 impaired	 inhibitory	 GABAergic	 signalling,	 perhaps	 recapitulating	 the	

neurotransmitter	 imbalance	 observed	 in	 ALS	 patients	 [15].	 When	 worms	 are	 grown	 in	

liquid	culture	they	display	a	swimming	behaviour,	a	vigorous	activity	that	actively	engages	

the	 neuromuscular	 junction	 to	maintain	 activity	 of	 the	 body	wall	muscles.	 The	 paralysis	

phenotype	of	alfa-1(ok3062)	mutants	was	greatly	accelerated	when	the	worms	were	grown	

in	 liquid	 culture,	 where	 approximately	 60%	 of	 the	worms	 became	 paralyzed	 in	 8	 hours	

(Figure	2C),	compared	to	12	days	when	grown	on	solid	media.		

In	 addition	 to	 neuronal	 dysfunction,	 our	 previous	 TDP-43	 and	 FUS	 models	 also	

showed	age-dependent	degeneration	of	motor	neurons	[11].	Therefore,	to	assess	for	similar	

phenotypes	we	examined	several	neuronal	populations	in	our	alfa-1(ok3062)	mutants.	To	

do	 so,	 we	 crossed	 the	 alfa-1(ok3062)	 mutation	 into	 strains	 with	 integrated	 reporters	

expressing	GFP	in	different	neurons	 including	the	GABAergic	neurons	(unc-47p::GFP),	 the	

dopaminergic	 neurons	 (dat-1p::GFP)	 and	 cholinergic	 neurons	 (unc-17p::GFP).	At	 day	9	 of	

adulthood	we	 observed	 neurodegeneration,	 in	 the	 form	 of	 gaps	 and	 breaks,	 only	within	

GABAergic	neurons	(Figure	2D,	E).	Thus,	our	data	demonstrate	that	decreased	expression	

of	 alfa-1	 causes	 age-dependent	 motor	 defects	 accompanied	 by	 the	 specific	

neurodegeneration	of	the	GABAergic	motor	neurons.	

	

ALFA-1	is	required	for	resistance	to	osmotic	stress	

A	number	of	genes	linked	to	ALS	have	roles	in	the	cellular	stress	response	[16],	and	

C.	elegans	 is	a	convenient	system	to	investigate	ALS	gene	orthologues	and	stress	signaling	

[17].	 To	 gain	 further	 insight	 into	 the	 role	 of	 ALS	 genes	 and	 stress,	 we	 subjected	 alfa-
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1(ok3062)	mutants	 to	 several,	 distinct	 environmental	 insults.	 A	 major	 regulator	 of	 the	

cellular,	 and	 organism-wide	 stress	 response	 signalling	 in	 C.	 elegans	 is	 the	 Insulin-IGF	

pathway.	 DAF-2	 is	 the	 sole	 Insulin/IGF-like	 receptor	 in	 C.	 elegans	 and	 hypomorphic	

mutations	 in	daf-2	 result	 in	 stress	 resistant	and	 long-lived	phenotypes	 compared	 to	wild	

type	 animals[18]	 .	 In	 our	 environmental	 stress	 assays,	wild	 type	N2	worms	 are	 typically	

stress-sensitive	 and	 show	 progressive	 lethality	 while	 daf-2(e1370)	 animals	 sre	 highly	

resistant	 to	 stress-induced	 lethality.	 Thus,	 we	 asked	 where	 alfa-1(ok3062)	 mutants	

functioned	 along	 this	 stress	 sensitivity	 axis.	 Wild	 type	 N2	 worms	 and	 alfa-1(ok3062)	

mutants	 were	 equally	 sensitive	 to	 thermal	 stress,	 while	 daf-2(e1370)	 and	 alfa-

1(ok3062);daf-2(e1370)	mutants	 were	 both	 highly	 resistant	 (Figure	 3A).	 We	 used	 the	

natural	compound	juglone	to	test	for	oxidative	stress	associated	lethality	and	observed	that	

N2	 and	alfa-1(ok3062)	mutants	were	 comparably	 sensitive,	while	daf-2(e1370)	 and	alfa-

1(ok3062);daf-2(e1370)	mutants	 were	 equally	 resistant	 to	 oxidative	 stress	 (Figure	 3B).	

Finally,	 we	 examined	 osmotic	 stress	 using	 sodium	 chloride	 and	 observed	 that	 alfa-

1(ok3062)	mutants	were	more	sensitive	to	osmotic	stress	associated	lethality	compared	to	

N2	worms.	These	results	were	also	confirmed	by	RNAi	(Figure	S2	A).	In	the	absence	of	alfa-

1(ok3062),	 daf-2(e1370)	 mutants	 are	 slightly	 less	 resistant	 to	 osmotic	 stress	 at	 a	

concentration	of	400	mM	NaCl	(Figure	3C).	When	increasing	the	concentration	to	500	mM	

NaCl,	a	 significant	difference	 is	 seen	when	comparing	alfa-1(ok3062);daf-2(e1370)	 to	daf-

2(e1370),	where	a	loss	of	alfa-1	impairs	the	resistance	of	daf-2(e1370)	worms	(Figure	3D).	

At	600	mM	NaCl,	both	strains	die	after	60	mins	(Figure	3D).	alfa-1(ok3062)	had	no	effect	on	

dauer	formation	or	the	long-lived	phenotypes	of	daf-2(e1370)	mutants	(Figure	S2	C,	D	and	
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Table	S2).	These	data	suggest	that	ALFA-1	has	a	specific	role	in	protecting	worms	against	

osmotic	stress,	and	might	be	involve	in	the	Insulin-IGF	pathway.		

It	has	been	hypothesized	that	in	addition	to	causative	mutations,	secondary	genetic	

or	environmental	factors	may	contribute	to	motor	neuron	degeneration	in	ALS	[19].	Thus,	

we	investigated	whether	an	impaired	response	to	osmotic	stress	in	alfa-1(ok3062)	worms	

would	 impact	 the	 degeneration	 of	 motor	 neurons.	 Using	 the	 unc-47p::GFP	 reporter	 to	

visualize	 the	GABAergic	motor	 neurons,	we	 subjected	unc-47p::GFP	 or	unc-47p::GFP;alfa-

1(ok3062)	 worms	 to	 acute	 thermal	 stress	 which	 induced	 comparable	 levels	 of	

neurodegeneration	(Figure	3E).	However,	we	observed	that	acute	osmotic	stress	resulted	

in	 a	 higher	 rate	 of	 motor	 neurodegeneration	 in	 unc-47p::GFP;alfa-1(ok3062)	 animals	

compared	 to	 unc-47p::GFP	 transgenic	 controls	 (Figure	 3F).	 The	 same	 experiment	 was	

carried	out	using	the	RNAi	hypersensitive	strain	and	similar	results	were	obtained	(Figure	

S2	B)	These	data	suggest	that	the	motor	neurons	of	alfa-1(ok3062)	animals	are	specifically	

sensitive	to	osmotic	stress	and	that	this	type	of	environmental	stress	may	be	relevant	to	the	

function	of	C9ORF72.	

	

ALFA-1	differentially	interacts	with	TDP-43	and	FUS	

There	 are	now	over	 twenty	 genes	 linked	 to	ALS	and	an	open	question	 is	whether	

these	 genes	 interact	 to	 modify	 neurodegenerative	 phenotypes.	 We	 have	 previously	

reported	 that	 the	 neuronal	 toxicity	 of	 dominantly-acting	 human	 TDP-43A315T	 or	 FUSS57∆	

mutations	in	C.	elegans	motor	neurons	can	be	suppressed	by	deletion	of	the	worm’s	TDP-43	

orthologue,	 tdp-1[17].	 Thus	we	 investigated	 if	alfa-1	could	modify	 the	 toxicity	 of	mutant	
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TDP-43	 or	 FUS	 proteins	 in	 C.	 elegans	 motor	 neurons.	 We	 generated	 TDP-43A315T	 ;alfa-

1(ok3062)		and	FUSS57∆;alfa-1(ok3062)	strains	and	assayed	for	the	age-dependent	paralysis	

phenotype	caused	by	expression	of	 these	mutant	TDP-43	and	FUS	proteins.	We	observed	

that	 motor	 dysfunction	 was	 additive	 for	 the	 TDP-43A315T;alfa-1(ok3062)	 strain,	 since	 the	

rate	of	paralysis	for	this	strain	was	greater	than	either	alfa-1(ok3062)	or	TDP-43A315T	alone	

(Figure	4A	and	Table	S1).	However,	the	effects	were	not	additive	for	FUSS57∆;alfa-1(ok3062)		

strain	 since	 this	 strain	 had	 a	 comparable	 rate	 of	 paralysis	 compared	 to	 either	 alfa-

1(ok3062)	or	FUSS57∆	 alone	(Figure	4B	and	Table	S1).	These	data	suggest	 that	 the	genetic	

interactions	between	alfa-1	and	TDP-43	or	FUS	are	not	equivalent,	and	that	perhaps	alfa-1	

and	FUSS57∆	function	 in	the	same	pathway,	while	TDP-43	may	use	parallel	or	 independent	

pathways	resulting	in	motor	neuron	dysfunction.	
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DISCUSSION	

Many	 questions	 remain	 to	 be	 answered	 about	 the	 role	 of	 C9orf72	 in	 the	

pathogenesis	of	ALS.	It	is	still	not	clear	whether	the	GGGGCC	repeat	expansion	results	in	a	

loss	of	function,	a	gain	of	function	or	both,	or	if	the	size	of	the	repeat	has	differential	effects	

on	 these	 mechanisms	 of	 action.	 Recent	 reports	 have	 observed	 decreased	 expression	 of	

C9orf72	 when	 the	 GGGGCC	 repeat	 reaches	 pathogenic	 length[7,20,21].	 Since	 no	 clear	

mechanisms	 have	 been	 demonstrated	 for	 C9orf72	 toxicity,	 in	vivo	 models	 are	 important	

tools	to	investigate	normal	biological	functions	that	may	lead	to	insights	about	the	disease	

state.		

C9ORF72	 protein	 sequence	 is	 highly	 similar	 to	 ALFA-1	 protein	 sequence.	 It	 was	

hypothesized	 by	 two	 different	 groups	 that	 C9ORF72	 share	 common	 feature	 with	 DENN	

proteins[10,22].	 Interestingly,	 Zhang	 et	 al.	 have	 also	 shown	 that	 most	 amino	 acids	

conserved	 between	 C9ORF72	 and	 other	 DENN	 proteins	 are	 also	 conserved	 between	

C9ORF72	and	ALFA-1[22].	Therefore,	we	hypothesized	that	depletion	of	ALFA-1	represents	

the	depletion	of	C9ORF72	and	its	impact	as	a	DENN	protein.		

We	investigated	the	biological	consequences	of	deleting	the	alfa-1	from	C.	elegans	as	

a	putative	model	for	decreased	expression	of	C9orf72in	ALS.	alfa-1(ok3062)	mutant	worms	

displayed	motility	 defects	 that	 progressed	 into	 age-dependent	 paralysis	 accompanied	 by	

the	specific	neurodegeneration	of	GABAergic	motor	neurons.	A	 locomotion	deficit	 caused	

by	a	decreased	expression	of	C9orf72	was	recently	reported	in	zebrafish	[20]	corroborating	

our	 results	 that	 decreased	 expression	of	 this	 protein	 causes	 a	motor	phenotype.	 Further	

characterization	of	ALFA-1	 remains	 to	be	done,	 as	 it	will	be	 important	 to	determine	 that	
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ALFA-1	 is	expressed	 in	 the	nervous	system,	which	has	been	reported	 for	 fish	and	mouse	

models	[8,20].	However,	the	rapid	onset	of	motor	phenotypes	in	alfa-1(ok3062)	mutants	in	

liquid	 culture	 sets	 the	 stage	 for	 chemical	 screens	 using	 neuroprotective	 molecules.	 Our	

nascent	drug	testing	experiments	suggest	that	alfa-1(ok3062)	toxicity	may	be	distinct	from	

TDP-43,	 since	 protective	 molecules	 identified	previously	 [23,24]do	 not	 suppress	 motor	

alfa-1(ok3062)	phenotypes	(data	not	shown).	

Of	interest	is	the	recurring	theme	involving	ALS	genes	in	the	cellular	stress	response	

[16].	We	have	previously	shown	that	TDP-1,	the	orthologue	of	TDP-43	in	C.	elegans,	is	also	

involved	 in	 response	 to	 osmotic	 stress	 [17].	 Also,	 in	 cellular	 models	 FUS	 was	 shown	 to	

robustly	 react	 to	 osmotic	 stress	 and	 increase	 resistance	 to	 this	 stress	 [25].	We	 observed	

that	alfa-1	mutants	were	specifically	sensitive	to	osmotic	stress	and	that	exposure	to	this	

stress	 enhanced	 motor	 neuron	 degeneration.	 Cells	 maintain	 extensive	 quality	 control	

mechanisms	to	preserve	protein	homeostasis	against	environmental	or	intrinsic	challenges	

[26].	Osmotic	stress	can	lead	to	cellular	shrinkage,	macromolecular	crowding	and	increased	

protein	aggregation	with	perhaps	irreversible	degenerative	outcomes	 [27].	Thus	it	 is	easy	

to	 appreciate	 the	 importance	 of	 maintaining	 osmotic	 balance	 over	 the	 life	 of	 a	 neuron	

especially	since	many	proteins	 linked	to	ALS	have	a	propensity	 to	misfold	and	aggregate.	

Here	 we	 showed	 that	 osmotic	 stress	 enhanced	 neurodegeneration	 in	 alfa-1(ok3062)	

mutants,	 but	 the	 impact	 of	 osmotic	 stress	 on	 motor	 neuron	 health	 awaits	 further	

investigation,	which	may	in	time	open	a	new	avenue	for	potential	therapeutic	strategies.	

Recent	 progress	 in	 genetics	 is	 developing	 a	 more	 complete	 picture	 of	 the	 ALS	

spectrum,	but	with	this	information	comes	the	need	to	better	understand	the	interactions	
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of	 ALS	 genes	 under	 normal,	 pathogenic	 and	 aging	 conditions	 [2].	Work	 from	 genetically	

expedient	 model	 organisms	 has	 investigated	 the	 genetic	 interactions	 of	 several	 ALS	

genes[17,28-30].	However,	the	picture	is	not	yet	complete	and	nothing	is	currently	known	

about	genetic	 interactions	of	C9orf72	with	other	ALS	genes.	We	observed	that	deletion	of	

alfa-1	 enhanced	 motor	 defects	 by	 mutant	 TDP-43,	 but	 not	 by	 mutant	 FUS.	 One	

interpretation	of	these	data	is	that	since	the	motor	neuron	degeneration	caused	by	the	loss	

of	alfa-1	is	additive	to	the	toxicity	of	mutant	TDP-43	proteins,	these	mechanisms	function	

in	 parallel	 or	 separate	 pathways.	 Oppositely,	 a	mechanism	may	 be	 shared	 by	alfa-1	and	

mutant	FUS,	as	the	level	of	paralysis	observed	was	comparable	to	each	condition	alone	or	

in	 combination.	 Additional	 tools	 and	 experiments	 are	 required	 to	 better	 understand	 the	

basis	of	these	genetic	interactions.			

The	molecular	pathogenic	mechanisms	behind	 the	genetic	mutations	of	many	ALS	

genes	are	not	fully	understood.	For	many	of	these	genes	it	is	not	known	whether	mutations	

lead	to	a	gain	of	 function,	a	 loss	of	 function,	or	both.	An	informative	example	comes	from	

studies	of	TDP-43	where	several	 in	vivo	models	suggested	that	both	occur	simultaneously	

[17,31,32].	 A	 similar	 situation	 may	 exist	 for	 C9orf72	where	 loss	 of	 expression	 leads	 to	

motor	phenotypes,	 in	conjunction	with	recent	findings	demonstrating	that	the	expression	

of	GGGGCC	RNA	is	toxic	in	a	Drosophila	model	[33],	and	that	repeats	can	be	inappropriately	

translated	into	different	peptides	with	additional	potential	cytotoxic	effects	 [34,35].	Thus,	

further	 characterization	 of	 both	 mechanisms	 will	 unravel	 the	 toxicity	 caused	 by	 the	

presence	of	the	GGGGCC	repeat	in	the	first	intron	of	C9orf72.	
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MATERIALS	AND	METHODS	

Nematode	strains	

Standard	methods	for	culturing	and	handling	the	worms	were	used	(Stiernagle,	2006).	N2,	

daf-2(e1370),	F18A1.6(ok3062),	oxIs12	[unc-47p::GFP	+	lin-15(+)],	vsIs48	[unc-17::GFP],	vtIs1	

[dat-1p::GFP;rol-6(su1006)],	 rrf-3(pk1426)	 were	 obtained	 form	 the	 C.	 elegans	 Genetics	

Center	(University	of	Minnesota,	Minneanapolis)	and	maintained	at	20°C	on	standard	NMG	

petri	 streaked	 with	 OP-50	 E.	 coli.	 Transgenic	 FUSS57∆	 and	 TDP-43A315T	 strains	 were	

previously	described	(Vaccaro,	Tauffenberger,	Aggad,	et	al.,	2012b).	F18A1.6(ok3062)	was	

outcrossed	to	wild	type	N2	five	times	before	use.	

		

RT-PCR	

RNA	 was	 extracted	 using	 Trizol.	 After	 worm	 lysis	 and	 homogenization,	 chloroform	 was	

added	 and	 tubes	were	 centrifuged.	 RNA	was	 precipitated	 from	 the	 aqueous	 phase	 using	

isopropanol,	pellets	were	washed	with	75%	ethanol	and	resuspended	 in	water.	RNA	was	

reverse	 transcribed	with	 the	QuantiTect	 kit	 (Qiagen)	preceded	by	gDNA	wipeout.	 1	µl	 of	

cDNA	was	used	for	act-3	and	F18A1.6	amplification	using	the	following	primers;	F18A1.6	

forward	5’	AATGAGCGGAACATCAAGC	3’,	F18A1.6	reverse	5’	TTCGGATATGTCAGGCTGAAG	

3’,	 act-3	 forward	 5’GTTGCCGCTCTTGTTGTAGAC	 3’,	 act-3	 reverse	 5’	

GGAGAGGACAGCTTGGATGG3’	
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Paralysis	assay		

30	adult,	day	one	worms	were	transferred	to	NGM	with	FUDR	plates	and	scored	daily	for	

movement.	Worms	were	counted	as	paralysed	if	they	failed	to	move	after	being	prodded	in	

the	nose.	Experiments	were	conducted	at	20°C	and	done	in	triplicates.	Survival	curves	were	

produced	and	compared	using	the	Log-rank	(Mantel-Cox)	test.	

	

Aldicarb	test	

30	adult,	day	one	worms	were	transferred	to	NGM	with	1mM	aldicarb	plates.	Worms	were	

scored	every	30	minutes	for	two	hours	and	counted	paralysed	if	they	failed	to	move	after	

being	prodded	on	 the	nose.	Experiments	were	conducted	at	20°C	and	done	 in	 triplicates.	

Survival	curves	were	produced	and	compared	using	the	Log-rank	(Mantel-Cox)	test	using	

GraphPad	Prism	software.	

	

Liquid	culture		

Synchronized	populations	of	worms	was	obtained	by	hypochlorite	extraction.	20-30	young	

adults	were	distributed	in	96-well	plate	containing	OP50	and	incubated	for	eight	hours	at	

25°C.Worms	were	counted	paralysed	if	they	failed	to	moved	after	gently	tapping	the	side	of	

the	 plate.	 The	 mean	 and	 SEM	 were	 calculated	 and	 two-tailed	 t-tests	 were	 used	 for	

statistical	analysis.	
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Lifespan	assay	

30	 adult,	 day	 one	worms	were	 transferred	 to	 NGM-FUDR	 plates	 and	 counted	 every	 two	

days.	Worms	were	 counted	 as	 dead	 if	 they	 did	 not	 respond	 to	 tactile	 stimulus.	 Survival	

curves	were	produced	and	compared	using	the	Log-rank	(Mantel-Cox)	test.	

	

RNAi	experiments	

RNAi-treated	strains	were	fed	with	E.	coli	(HT115)	containing	an	empty	vector	(EV)	or	alfa-

1	 (F18A1.6)	 RNAi	 clones	 from	 the	 ORFeome	 RNAi	 librairy	 (Open	 Biosystems).	 RNAi	

experiments	 were	 performed	 at	 20°C.	Worms	were	 grown	 on	 NGM	 enriched	with	 1mM	

Isopropyl-b-thiogalacto-pyranoside	(IPTG).		

	

Stress	assays	

Worms	were	grown	at	20°C	on	normal	NGM	plates	until	day	one	of	adulthood.	30	adult,	day	

one	worms	were	 then	 transferred	 to	NGM	plates	+	240	µM	 juglone	 (oxidative	 stress),	 or	

NGM	+	400	mM	NaCl,	or	NGM	+	500mM	NaCl,	or	NGN	+	600	mM	 	NaCl	 (osmotic	 stress).	

Tests	 were	 carried	 at	 20°C	 for	 oxidative	 and	 osmotic	 stresses	 and	 at	 37°C	 for	 thermal	

stress.	 Worms	 were	 counted	 every	 two	 hours	 for	 up	 to	 14	 hours.	 For	 all	 experiments,	

worms	were	 counted	as	dead	 if	 they	did	not	 respond	 to	 tactile	 stimulus.	 Survival	 curves	

were	produced	and	compared	using	the	Log-rank	(Mantel-Cox)	test.		
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Neurodegeneration	assay	

To	score	gaps	or	breaks,	synchronized	animals	were	selected	at	day	one,	 five	and	nine	of	

adulthood	for	 in	vivo	visualization.	For	neurodegeneration	count	during	stress	tests,	adult	

day	 one	 worms	 were	 transferred	 to	 NGM	 +	 400	 mM	 NaCl	 at	 20°C	 (osmotic	 stress)	 or	

normal	NGM	and	put	at	37°C	(thermal	stress)	for	six	hours.	To	confirm	those	results	with	

RNAi,	 rrf-3(pk1426)	 worms	 submitted	 to	 alfa-1	 or	 EV	 RNAi	 up	 to	 day	 1	 of	 adulthood.	

Worms	were	 then	 transferred	 on	 400	mM	NaCl	 for	 six	 hours.	 For	 visualization,	 animals	

were	immobilized	in	M9	with	5	mM	of	levamisole	and	mounted	on	slides	with	2%	agarose	

pads.	Neurons	were	visualized	with	a	Leica	6000	microscope	and	a	Leica	DFC	480	camera.	

For	 all	 experiments,	 a	 minimum	 of	 100	 worms	 was	 scored	 over	 at	 least	 3	 trials	 for	 all	

conditions.	 The	 mean	 and	 SEM	 were	 calculated	 and	 two-tailed	 t-tests	 were	 used	 for	

statistical	analysis.		
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FIGURES 

	

Figure	2.1.	alfa-1	is	the	orthologue	of	C9orf72	in	C.	elegans.	
(A)	Protein	sequence	alignment	(using	Clustal	W)	of	C9orf72	isoform	1	and	ALFA-1	isoform	
1.	Overall,	these	sequences	share	26%	identify	and	59%	similarity.		
(B)alfa-1	 has	 two	predicted	 transcripts	 and	 the	ok3062	 deletion	mutation	 spans	 exons	3	
and	4	for	both	transcripts.	
(C)	RT-PCR	confirming	the	complete	loss	of	expression	of	the	alfa-1	transcripts.	act-3	was	
used	as	a	control.		
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Figure	2.2.	Age-dependent	motility	defects	and	neurodegeneration	in	alfa-1(ok3062)	
mutants.	
	(A)	 alfa-1(ok3062)	 mutants	 showed	 motility	 defects	 leading	 to	 paralysis	 of	 60%	 of	 the	
population	by	day	12	of	adulthood	compared	to	20%	for	N2	worms	(P<0.0001).	
(B)	alfa-1(ok3062)	worms	are	more	sensitive	to	aldicarb-induced	paralysis	than	N2	worms	
(P<0.0001).	
(C)	Percentage	of	wild	 type	N2	or	alfa-1(ok3062)	worms	displaying	a	 swimming-induced	
paralysis	phenotype	after	8	hours	in	liquid	culture	(**	P<0.001).	
(D)	Example	of	gap	 (indicated	by	arrow)	along	a	neuronal	process	 in	animals	expressing	
the	unc-47p::GFP	reporter.	
(E)	 Quantification	 of	 neurodegeneration	 at	 day	 9	 of	 adulthood	 associated	 with	 alfa-
1(ok3062)	in	different	neuronal	populations	including	cholinergic	neurons	marked	by	unc-
17p::GFP,	 dopaminergic	 neurons	 visualized	 with	 dat-1p::GFP,	 or	 GABAergic	 neurons	
revealed	 by	unc-47p::GFP.	 Significant	 neurodegeneration	was	 observed	 in	 the	 GABAergic	
neurons	of	alfa-1(ok3062)	mutants	(**P<0.001).	
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Figure	2.3.	alfa-1(ok3062)	mutants	are	sensitive	to	osmotic	stress.		
(A)	 In	 thermal	 stress	 resistance	 assays,	 alfa-1(ok3062)	mutants	 were	 indistinguishable	
from	 wild	 type	 N2	 worms,	 and	 daf-2(e1370)	 were	 not	 statistically	 different	 alfa-
1(ok3062);daf-2(e1370)	mutants. 	
(B)	 In	 oxidative	 stress	 resistance	 assays,	 alfa-1(ok3062)	mutants	 were	 indistinguishable	
from	 wild	 type	 N2	 worms,	 and	 daf-2(e1370)	 were	 not	 statistically	 different	 alfa-
1(ok3062);daf-2(e1370)	mutants.		
(C)	 alfa-1(ok3062)	 mutants	 were	 more	 sensitive	 to	 osmotic	 stress	 than	 N2	 worms	
(P<0.005),	 while	 alfa-1(ok3062);daf-2(e1370)	 worms	 are	 slightly	 more	 sensitive	 when	
compared	to	daf-2(e1370)	worms	alone. 	
(D)	 The	 difference	 in	 sensitivity	 between	 alfa-1(ok3062);daf-2(e1370)	 and	 daf-2(e1370)	
increases	at	500	mM	NaCl	(P<0.005).	At	600	mM	NaCl,	 the	effect	of	NaCl	 is	 too	drastic	to	
see	a	difference.		
(E)	 During	 thermal	 stress,	 alfa-1(ok3062)	 worms	 are	 not	 more	 sensitive	 to	
neurodegeneration	than	the	unc-47p::GFP	worms. 	
(F)	 When	 exposed	 to	 400	 mM	 NaCl,	 alfa-1(ok3062)	 worms	 had	 a	 higher	 rate	 of	
neurodegeneration	than	unc-47p::GFP	worms	(*P<0.05). 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Figure	2.4.	Genetic	interactions	between	alfa-1(ok3062),	TDP-43,	and	FUS.	
(A)	 TDP-43A315T;	 alfa-1(ok3062)	 worms	 had	 a	 higher	 rate	 of	 paralysis	 that	 either	 TDP-
43A315T	or	alfa-1(ok3062)	worms	alone	(P<0.005).	
(B)	 FUSS57∆	 worms	 ,	 alfa-1(ok3062)	worms,	 and	 FUSS57∆;	 alfa-1(ok3062)	 worms	 showed	
similar	rates	of	paralysis.		
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	Figure	2.S1	
(A)(B)	 alfa-1(ok3062)	 worms	 had	 normal	 (A)	 progeny	 and	 (B)	 lifespan	 compared	 to	 N2	
worms.		
(C)	rrf-3(pk1426)	 worms	 submitted	 to	alfa-1	RNAi	 display	 motility	 defects	 causing	
paralysis	 at	 day	 12	 of	 adulthood	 compared	 to	rrf-3(pk1426)	 worms	 submitted	 to	 empty	
vector	(EV).	
(D)	rrf-3(pk1426)	 worms	 submitted	 to	alfa-1	RNAi	 have	 increased	 neurodegeneration	 at	
day	9	of	adulthood	compared	to	rrf-3(pk1426)	worms	submitted	to	EV	RNAi.	
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Figure	2.S2		
(A)	N2	worms	 subjected	 to	RNAi	against	alfa-1	 are	more	 sensitive	 to	400	mM	NaCl	 than	
those	submitted	to	empty	vector	(EV)	(P<0.0001)	
(B)	rrf-3(pk1426)	worms	submitted	to	alfa-1	RNAi	showed	an	 increase	neurodegenration	
of	GABAergic	motor	neurons	(unc47p::GFP)	after	6	hours	under	osmotic	stress	compared	to	
rrf-3(pk1426)	worms	submitted	EV	in	the	same	conditions	(P<0.0001).		
(C)	 (D)	 The	 alfa-1(ok3062)	 mutation	 had	 no	 effect	 on	 (C)	 dauer	 formation	 or	 (D)	 the	
extended	lifespan	of	daf-2(e1370)	mutants.	
 	



	 84	

	
	 Strain	 P-value	 Number	animals	

Paralysed/Total	

Figure	1A	 N2	 	 47/382	

	 alfa-1(ok3062)	 <0.0001	 158/375	

Figure	4A	 TDP-43A315T	 	 153/438	

	 alfa-1(ok3062)	 0.009	 111/389	

	 TDP-43A315T;alfa-1(ok3062)	 0.001	 172/397	

Figure	4B	 FUSS57∆	 	 80/249	

	 alfa-1(ok3062)	 ns	0.17	 116/255	

	 FUSS57∆;alfa-1(ok3062)	 ns	0.79	 116/296	
	

Table	2.S1.	Paralysis	tests	for	all	experiments,	ns=non	significant.	

	 Strain	 P-value	 Number	animals	
Dead/Total		

Figure	S1B	 N2	 	 235/400	

	 alfa-1	(ok3062)	 ns	0.68	 305/414	

Figure	S2B	 alfa-1	(ok3062);daf-2(e1370)	 ns	0.1184	 137/216	

	 daf-2(e1370)	 	 65/134	
	

Table	2.S2.	Lifespan	assay	for	all	experiments,	ns=non	significant.	
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CHAPTER 3 

INTRODUCTION 

Even	though	the	loss	of	expression	of	C9orf72	was	detrimental	to	neurons	in	C.	elegans	we	

could	not	underestimate	the	toxicity	that	might	be	caused	by	the	presence	of	an	expanded	

GGGGCC	repeat	 in	C9orf72.	Different	teams	have	speculated	about	a	possible	toxic	gain	of	

function	 of	 the	 RNA	 containing	 an	 expanded	 GGGGCC	 repeat.	 The	 repeat	might	 underlie	

similar	event	to	those	observed	for	other	expanded	non-coding	repeat	expansion,	 like	for	

instance	 the	 formation	of	RNA	 foci	 and	 the	production	of	peptides	 in	a	non-ATG	manner	

(RAN	translation).		

The	presence	of	the	expanded	GGGGCC	repeat	in	the	C9orf72	V2	and	V3	isoforms	is	

speculated	to	affect	the	structure	of	the	RNA.	Analysis	of	 the	GGGGCC	repeat	by	 itself	has	

shown	that	the	G/C	rich	RNA	forms	a	G-quadruplex	233	which	could	cause	abnormal	protein	

and	 RNA	 interactions	 and	 repeat	 instability234.	 Molecules	 affecting	 the	 RNA	 structure	 of	

G/C	rich	repeat,	such	as	TMPγP4,	were	shown	to	also	change	the	structure	of	the	GGGGCC	

repeat	of	C9orf72	234.		

In	patient	tissues,	the	presence	of	RNA	foci	caused	by	the	accumulation	of	sense	and	

anti-sense	C9orf72	transcripts	containing	the	GGGGCC	repeat	was	observed	in	the	nucleus	

of	 neuronal	 cells	 47.	 Also,	 even	 though	 the	 repeat	 is	 located	 in	 the	 intron,	 it	 can	 initiate	

translation	in	a	non-ATG	manner,	leading	to	the	production	of	potentially	toxic	dipeptides	

repeat	 proteins	 235,236.	 In	 C9orf72,	 sense	 and	 antisense	 transcripts	 of	 C9orf2	 lead	 to	 the	

production	of	glycine-alanine,	glycine-proline	and	glycine-arginine	peptides	from	the	sense	
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transcript	 and	 proline-arginine,	 glycine-proline	 and	 proline-alanine	 peptide	 from	 the	

antisense	transcript	

Abnormal	RNA	processing	was	shown	to	be	a	major	player	in	ALS	pathogenesis	237.	

C9orf72	transcripts	were	shown	to	cause	the	formation	of	RNA	and	protein	aggregates	and	

to	be	 involved	 in	 stress	granule	 formation	all	 of	which,	 could	 impair	RNA	metabolism	as	

well.	Therefore,	many	groups	have	tried	to	evaluate	the	 impact	of	C9orf72	on	global	RNA	

expression	by	whole-transcriptome	sequencing	114,226,238.	Even	though	no	RNA	was	clearly	

identified	as	 a	 consequence	of	 the	presence	of	C9orf72,	 this	method	 is	useful	 to	 evaluate	

global	RNA	metabolism	114,226,238.		

The	small	size	of	C.	elegans,	 its	rapid	 life	cycle,	 its	ease	of	cultivation	and	ability	to	

obtain	 large	 numbers	 of	 animals	 make	 it	 an	 attractive	 model	 for	 drug	 discovery.	

Furthermore,	 worms	 can	 be	 grown	 in	 liquid	 culture	 which	 is	 easy	 to	 adapt	 for	 drug	

screening	purposes	239.	Boyd	et	al.	,	using	a	TDP-43	trangenic	model,	have	shown	that	drugs	

identified	from	cells	often	have	relevance	in	C.	elegans	209.	

In	this	chapter,	we	have	developed	a	new	model	to	understand	the	toxicity	caused	

by	 an	 expanded	 GGGGCC	 repeat	 RNA.	 Using	 this	 new	 C.	 elegans	 model	 and	 the	 one	

developed	 in	 the	 previous	 chapter	 (alfa-1	 loss	 of	 function),	 a	 drug	 screen	 was	 carried	

where	 more	 than	 4,000	 compounds	 were	 assessed	 for	 their	 effect	 on	 alfa-1/	 C9orf72	

toxicity	and	confirmed	in	our	RNA	GGGGCC	toxicity	model.	Finally,	the	availability	of	cells	

from	 C9orf72	 positive	 patients	 has	 allowed	 us	 to	 confirm	 the	 effect	 of	 those	 drugs	 in	 a	

mammalian	cell	model.		
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Amyotrophic	 lateral	 sclerosis	 (ALS)	 is	 a	 fatal	neurodegenerative	disorder	affecting	upper	

and	 lower	 motor	 neurons.	 10%	 of	 the	 cases	 are	 familial	 and	 the	 GGGGCC	 expansion	 in	

C9orf72	 gene	 is	 the	most	 common	 known	 cause	 of	 ALS	 thus	 far.	 Many	 researchers	 have	

attempted	to	explain	the	toxicity	of	the	pathogenic	GGGGCC	repeat,	including	loss	and	gain	

of	function	mechanisms.	We	show	here,	that	in	the	nematode	C.	elegans,	gain	of	function	of	

the	GGGGCC	repeat	and	 loss	of	alfa-1	are	toxic	to	neurons.	A	high-throughput	screen	was	

carried	 to	 identify	 molecules	 that	 could	 alleviate	 both	 types	 of	 toxicity	 in	 worms	 and	

identified	eight	molecules	that	could	be	neuroprotective.	From	these,	two	also	restore	that	

abnormal	gene	expression	observed	in	C9orf72	positive	patient-derived	cell	lines.		
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INTRODUCTION	

Amyotrophic	 lateral	sclerosis	 is	a	 fatal,	neurodegenerative	disorder.	 It	causes	progressive	

loss	 of	 the	motor	 neurons	 leading	 to	muscle	weakness.	 Death	 typically	 occurs	 3-5	 years	

after	 diagnosis	 from	 respiratory	 failure	 due	 to	 denervation	 of	 the	 respiratory	 muscles1.	

High	variability	is	observed	among	patients	regarding	disease	age	of	onset	and	progression.	

Even	though	more	than	15	molecules	have	been	tested	in	phase	2-3	clinical	trials	over	the	

past	decade2,	riluzole	is	still	the	only	drug	approved	to	treat	ALS	patients1.	Therefore,	there	

is	an	urgent	need	to	identify	new,	effective	therapeutic	molecules	for	ALS	patients.		

	 In	most	cases	of	ALS,	there	is	no	familial	history	of	the	disease,	and	those	cases	are	

referred	 to	 as	 sporadic	 ALS	 (sALS),	 but	 10%	 of	 all	 ALS	 cases	 do	 and	 are	 referred	 to	 as	

familial	 ALS	 (fALS)3.	 More	 than	 20	 genes	 are	 genetically	 linked	 to	 ALS,	 including	 SOD1,	

TARDBP,	FUS	and	C9orf724.	Being	the	cause	of	more	than	30%	of	fALS	cases	and	of	7%	of	

sALS	 cases,	 the	 expansion	 of	 GGGGCC	 repeat	 in	 the	 first	 intron	 of	 C9orf72	 is	 the	 most	

prevalent	known	cause	of	ALS	thus	far	 identified5.	The	presence	of	more	than	30	units	of	

the	GGGGCC	 repeat	was	 shown	 to	 cause	 a	decreased	expression	of	C9orf72,	 formation	of	

nuclear	 RNA	 foci	 and	 production	 of	 different	 dipeptides	 repeats	 through	 abnormal	

translation	mechanisms	6.	The	mechanism	by	which	the	presence	of	the	expanded	GGGGCC	

repeat	is	toxic	to	motor	neurons	is	still	unclear.		

To	 better	 understand	 the	 toxicity	 of	C9orf72,	 and	 to	 identify	molecules	 that	 could	

alleviate	it,	we	turned	to	the	worm	Caenorhabditis	elegans.	Using	this	model	organism,	we	

show	 that	 both	 expanded	GGGGCC	 repeat	RNA,	 and	 loss	 of	alfa-1,	 the	 sole	 orthologue	 of	

C9orf72,	 is	toxic	to	the	animal’s	motor	neurons.	Using	these	models,	we	conducted	a	drug	
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screen	and	identified	molecules	that	reduce	both	forms	of	toxicity.	Two	of	those	drugs	were	

also	 shown	 to	 ameliorate	 abnormal	 RNA	 expression	 in	 C9orf72	 positive	 cell	 lines,	

suggesting	they	may	be	useful	for	testing	in	clinical	settings.		

	 			

RESULTS	

Generation	of	a	C.	elegans	GGGGCC50	RNA	model	

To	evaluate	the	toxicity	caused	by	the	expression	of	a	pathogenic	GGGGCC	repeat	of	C9orf72	

we	 generated	 a	 50-unit	 long	 repeat	 expression	 vector.	 However,	 knowing	 that	 repeat	

expression	by	themselves	can	be	highly	toxic,	we	turned	to	a	transient	expression	model.	

The	RNA	interference	(RNAi)	system	in	C.	elegans	 is	highly	characterized	and	C.	elegans	 is	

one	of	 the	only	organisms	that	can	easily	uptake	and	amplify	the	RNA.	Since	the	GGGGCC	

repeat	is	not	conserved	in	the	C.	elegans	orthologue	of	C9orf72,	alfa-1,	 the	expression	of	a	

GGGGCC	RNA	would	 not	 cause	 the	 degradation	 of	 a	 target	 RNA,	 but	 rather	 result	 in	 the	

expression	of	the	RNA	strand	in	most	cells	of	the	organism.	BLAST	searches	did	not	identify	

any	GGGGCC2	sequence	in	the	C.	elegans	genome	and	the	CCCCGG2	sequence	(the	anti-sense	

transcript)	only	blasted	to	a	non-coding	region	outside	of	hpo-25	(clone	F16G10.4),	which	

suggest	that	expression	of	the	GGGGCC50	sequence	should	not	target	any	gene	in	C.	elegans	

for	 degradation.	 The	 repeat	 was	 cloned	 into	 the	 L4440	 vector,	 which	 contains	 two	 T7	

promoters	allowing	for	the	production	of	the	RNA	encoding	the	GGGGCC	repeat	containing	

50	units,	but	not	of	the	protein	encoded	(Supplementary		Fig.	1	A).		

In	Drosophila,	 the	 expression	of	 a	pathogenic	GGGGCC	 repeat	was	 shown	 to	 affect	

neuronal	 integrity	 7-9.	 Locomotion	 of	 C.	 elegans	 was	 often	 shown	 to	 provide	 a	 good	
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evaluation	 of	 neuronal	 integrity	 10-12.	 Therefore,	 the	 toxicity	 of	 the	 GGGGCC	 repeat	 was	

evaluated	 by	 looking	 at	 its	 effect	 on	 worm’s	 motility.	 First,	 RNAi	 resistant	 strains	 were	

tested.	 These	mutant	 strains	 have	mutation	 in	major	 component	 of	 the	 RNAi	 processing	

machinery	make	them	resistant	to	RNAi,	so	there	should	not	be	a	difference	between	the	

toxicity	of	the	GGGGCC50		and	the	one	caused	by	the	GFP	RNA.	Both	strains	were	resistant	to	

the	GGGGCC50	 RNA,	 and	worms	 did	 not	 exhibit	 paralysis	 rates	 higher	 than	 the	GFP	RNA	

used	as	control,	even	at	day	12	of	adulthood	(Supplementary	Fig.	1	B,	C	and	Supplementary	

Table	1A-B).	We	have	previously	demonstrated	that	GABAergic	neurons	were	shown	to	be	

sensitive	to	an	alfa-1	loss	of	function	toxicity13,	so	mutant	animals	genetically	sensitized	to	

RNAi-effect	only	the	GABAergic	neurons	were	used.	Exposure	of	the	GABAergic	neurons	to	

GGGGCC50	RNA	caused	age-dependant	motility	problems	leading	to	paralysis	of	the	animals	

(Fig.	1	A	and	Supplementary	Table	1C).	Also,	using	a	unc-47p::mCherry	marker	to	visualize	

the	 GABAergic	 neurons,	 breaks	 along	 the	 axons	 were	 observed	 at	 days	 1,	 5	 and	 9	 and	

increased	with	the	age	of	the	animals	(Fig.	1	B,	C),	confirming	that	exposure	to	GGGGCC50	

RNA	affects	neuronal	integrity	in	an	age-dependent	manner.		

Finally,	to	compare	our	model	with	previous	C9orf72	models	characterized,	animals	

were	 submitted	 to	 TMPγP4	 (5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin	 tetra(p-

toluenesulfonate)).	 TMPγP4	 binds	 to	 the	G-quadruplex	RNA	 structure	 and	was	 shown	 to	

alleviate	the	toxicity	of	the	expanded	GGGGCC	repeat	in	model	organisms	9,14.	In	C.	elegans,	

TMPγP4	 was	 demonstrated	 to	 alleviate	 the	 motility	 impairment	 and	 neurodegeneration	

caused	 by	 the	 exposure	 to	 GGGGCC50	 at	 different	 concentrations	 (Fig.	 1	 D,	 E	 and	

Supplementary	Table	1D),	confirming	that	our	model	recapitulates	key	features	of	C9orf72	
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GGGGCC	 repeat	 expansion	 toxicity.	 Taken	 together,	 our	 data	 indicate	 that	 exposure	 to	

GGGGCC50	RNA	is	toxic	to	C.	elegans	neurons	and	could	be	alleviated	with	drugs	acting	on	

GGGGCC	repeat	toxicity.		

	

GGGGCC50	RNA	and	alfa-1	loss	of	function	are	toxic	to	different	tissues	

Using	a	deletion	mutant	worm	strain,	we	previously	showed	that	decreased	expression	of	

the	 C9orf72	 orthologue,	 alfa-1,	 was	 detrimental	 to	 C.	 elegans	 movement.	 Using	 newly	

available	transgenic	strains,	we	reevaluated	the	effect	of	a	decreased	expression	of	alfa-1	in	

different	 tissues	 using	 RNAi.	 Interestingly,	 alfa-1	 RNAi	 caused	 motility	 problems	 in	 C.	

elegans	when	alfa-1	 expression	was	decreased	 in	neuronal,	muscle	 and	 intestinal	 tissues	

(Supplementary	 Fig.	 2	 A,	 B,	 C),	 suggesting	 that	 a	 decreased	 expression	 of	 alfa-1	 is	

detrimental	to	many	types	of	tissue	in	C.	elegans.		

To	determine	 the	 toxicity	of	 the	GGGGCC50	RNA,	we	used	 the	same	RNAi-sensitive	

strains	to	monitor	the	effect	of	the	transport	of	GGGGCC50	RNA	into	different	cell	types	of	

the	 animal.	 Exposure	 to	 pathogenic	 GGGGCC50	 RNA	 did	 not	 cause	 paralysis	 when	 using	

animals	sensitized	to	RNAi-effects	in	muscle	or	intestinal	cells	(Supplementary	Fig.	2	F,	E),	

but	 caused	 high	 level	 of	 paralysis	 to	 animals	 sensitized	 to	 RNAi	 effects	 in	 the	 nervous	

system	(Supplementary	Fig.	2	D).	When	evaluated	as	a	ratio	of	worms	paralyzed	at	day	12	

submitted	to	target	RNA/control	RNA,	our	data	suggest	that	decreased	expression	of	alfa-1	

resulted	in	paralysis	(ratio	>1)	in	all	tissues,	while	the	susceptibility	to	GGGGCC50		RNA	only	

caused	paralysis	in	neuronally-sensitized	animals,	while	the	RNAi	resistant	strains	showed	

no	 overt	 paralysis	 when	 exposed	 to	 GGGGCC50	 RNA	 (Fig.	 2).	 These	 data	 indicate	 that	 in	
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C.	elegans,	 the	 GGGGCC50	 RNA	 is	 toxic	 only	 to	 neurons	 while	 a	 decreased	 in	 alfa-1	 is	

detrimental	to	many	types	of	cells.		

	

Development	of	a	rapid	high	throughput	drug	screening	

C.	elegans	 is	 usually	 cultured	 on	 Petri	 plates	where	 they	 crawl	 across	 the	 surface	 as	 the	

main	form	of	motility.	However,	worms	can	be	grown	in	liquid	culture	where	they	exhibit	a	

stereotypical	 swimming	motion.	 Using	 our	 different	 ALS	models,	 we	 previously	 showed	

that	when	 the	worms	 are	 put	 in	 liquid	 culture,	 the	 paralysis	 that	 is	 observed	 after	 days	

when	 they	are	 grown	on	plates,	 is	highly	 accelerated	and	 can	be	detected	after	only	 few	

hours	 in	 liquid	 culture	 13,15.	 The	 swimming	 activity	 of	 the	 animal	 actively	 engages	 the	

neuromuscular	junction	and	may	be	a	good	way	to	evaluate	motor	neuron	health.	We	have	

previously	 shown	 that	 the	 alfa-1(ok3062)	 animals	 exhibit	 specific	 neurodegeneration	

affecting	 the	motor	 neurons	 and	 abnormal	 neuromuscular	 junction	 function13.	 Therefore	

we	sought	 to	evaluate	their	movement	 in	 liquid	culture.	Worms	were	placed	 in	a	96-well	

plate	 and	 their	 movements	 were	 quantified	 with	 an	 automated	 method	 that	 measures	

locomotion	activity	based	on	infrared	beam	scattering	16	 .	After	only	30	minutes	 in	 liquid	

culture,	 a	difference	between	 the	wild-type	N2	worms	and	alfa-1(ok3062)	was	observed,	

where	 the	alfa-1(ok3062)	mutants	 exhibit	 less	movement.	 This	 phenotype	 is	maintained	

during	up	to	six	hours	and	is	suitable	for	phenotypic	screening	(Fig.	3	A).	

	 Using	this	automated	method	we	have	developed	a	drug-screening	platform.	Young	

adults	were	put	in	liquid	culture	with	control	(DMSO)	or	with	compounds	(at	20	µM)	and	

their	movement	was	evaluated	 for	 two	hours.	More	 than	4,000	bioactive	molecules	 from	
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several	commercialised	drug	libraries	were	screened.	After	two	hours	in	liquid	culture,	80	

compounds	 were	 shown	 to	 affect	 significantly	 motility	 of	 the	 alfa-1	 (ok3062)	 worms	

(Supplementary	 Table	 3).	 From	 these	 80	 drugs,	 25%	 are	 known	 to	 act	 on	 the	 central	

nervous	 system	 or	 at	 the	 neuromuscular	 junction	 in	 humans	 and	 include	 mainly	

antipsychotic	 drugs	 as	 well	 as	 antidepressants,	 antispastics,	 anticonvulsants,	 analgesics,	

antiemetics	and	central	nervous	system	stimulants	(Fig.	3	B)	

A	similar	screen	was	previously	done	 in	our	 laboratory	using	 the	same	method	 to	

identify	 compounds	 that	 could	 alleviate	 the	 toxicity	 observed	 in	 transgenic	 C.	 elegans	

models	expressing	TDP-43	or	FUS	ALS	causing	mutations	or	by	the	deletion	of	kcc-2	 in	C.	

elegans	 (unpublished	results).	The	 transgenic	TDP-43A315T	and	FUSS57Δ	worms	also	exhibit	

age-dependent	paralysis	and	neurodegeneration	of	the	GABAergic	motor	neuron	probably	

due	 to	 high	 proteotoxic	 burden11.	 Few	 similarities	 are	 observed	 between	 the	 different	

drug-screening	 data	 sets.	 alfa-1	 deletion	 mutation	 and	 TDP-43	 transgenic	 worms	 share	

only	 three	 common	 target	 drugs,	 which	 included	 pizotifen	 maleate,	 cyproheptadine	

hydrochloride	 and	 melatonin	 (Fig.	 3	 C).	 The	 kcc-2	 deletion	 mutant	 exhibits	 motility	

impairments	due	to	GABAergic	neuron	developmental	problems	(unpublished	data	and	17).	

Also,	 the	 movement	 impairments	 of	 alfa-1	 and	 kcc-2	 mutants	 are	 rescued	 by	 only	 one	

common	 compound,	 chlorpromazine	 (Fig.	 3	 C).	 These	 data	 confirmed	 that	 the	 drugs	

identified	 to	 increase	 the	motility	 of	alfa-1	 deletion	mutants	 are	 highly	 specific	 to	alfa-1	

toxicity.		
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Small	molecules	 rescue	 neuromuscular	 hypersensitivity	 and	neurodegeneration	 in	
alfa-1(ok3062)	mutants		

Knowing	that	the	liquid	environment	in	which	the	screen	was	performed	is	not	the	normal	

conditions	 in	 which	 C.	 elegans	 are	 assessed,	 11	 of	 the	 80	 drugs	 were	 chosen	 for	

characterization	 on	 solid	 media.	 The	 11	 drugs	 were	 chosen	 based	 on	 their	 efficacy	 and	

included	melatonin	and	pizotifen	maleate.	Melatonin	and	pizotifen	maleate	also	were	both	

shown	 to	 alleviate	 transgenic	 TDP-43A315T	 toxicity	 (data	 not	 shown)	 and	melatonin	 was	

previously	 demonstrated	 to	 alleviate	 psychiatric	 and	 age-associated	 disorders18,19	 .	 On	

solid	 media,	 we	 have	 previously	 shown	 that	 the	 alfa-1(ok3062)	 animals	 exhibit	 age-

dependent	 paralysis,	 and	 neurodegeneration	 of	 the	 GABAergic	 motor	 neurons10.	 Also,	

young	adult	animals	exhibit	hyperexcitability	to	aldicarb,	a	compound	used	to	evaluate	the	

function	of	the	neuromuscular	junction	10.		

All	 molecules	 were	 tested	 at	 20	 µM,	 with	 the	 exception	 of	 zuclopenthixol	

dihydrochloride	which	was	toxic	at	this	concentration	and	was	therefore	used	at	2	µM.	On	

solid	plates,	 all	11	 compounds	were	 shown	 to	 significantly	 reduce	 the	number	of	worms	

that	were	paralyzed	on	day	12	of	adulthood	(Fig.	3D).	Furthermore,	all	of	them	rescued	the	

neurodegeneration	observed	at	day	9	 in	 the	alfa-1(ok3062)	 animals	 (Fig.	3	D,	E).	 Finally,	

the	majority	of	the	compounds	(9/11)	rescued	the	hypersensitivity	to	aldicarb	observed	in	

the	alfa-1(ok3062)	 animals	 (Figure	 3	 F).	 These	 data	 therefore	 confirmed	 that	 the	 screen	

done	in	liquid	culture	could	identify	compounds	that	affect	C.	elegans	age-dependent	loss	of	

motility	and	neurodegeneration.		
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Small	molecules	rescue	of	GGGGCC50	RNA	toxicity	

In	order	 to	determine	 if	 the	molecules	 identified	 in	previous	 screen	 could	also	affect	 the	

toxicity	caused	by	the	exposure	of	 the	GGGGCC50	RNA,	all	eleven	drugs	were	tested	 in	the	

animals	sensitive	to	RNAi	in	GABAergic	neurons	and	exposed	to	GGGGCC50	RNA.	Only	eight	

of	 these	 molecules	 rescued	 the	 paralysis	 phenotype	 including:	 prednicarbate,	

perphenazine,	 thioridazine	 hydrochloride,	 tridihexethyl	 chloride,	 milirinone,	 tremorine	

dihydrochloride,	 pizotifen	 malate	 and	 melatonin	 (Fig.	 4A	 and	 Supplementary	 Fig.	 3).	

However,	only	two	compounds	had	a	protective	effect	against	neurodegeneration	(Fig.	4	B).	

None	 of	 these	 compounds	 had	 an	 effect	 on	 the	 growth	 of	 the	 bacteria	 that	 deliver	 the	

GGGCC50	RNA	by	itself	(data	not	shown).	

Interestingly,	four	of	these	compounds,	perphenazine,	pizotigen	malate,	thioridazine	

hydrochloride	and	tremorine	dihydrocloride,	also	had	an	influence	on	the	motility	of	wild	

type	N2	worms	(Fig.	4	C),	suggesting	that	they	act	to	generally	maintain	neuronal	integrity	

and	neuromuscular	junction	function.	

	

Abnormal	RNA	expression	in	cells	derived	from	patients	carrying	C9orf72	expansions		

RNA	dysregulation	is	speculated	to	be	a	key	aspect	of	ALS	pathogenesis	20.	Additionally,	the	

formation	 of	 RNA	 foci	 and	 production	 of	 dipeptides	 caused	 by	 the	 presence	 of	 the	

expanded	 GGGGCC	 RNA	 were	 also	 reported	 to	 lead	 to	 abnormal	 RNA	 expression	 21-24	 .	

Therefore,	 we	 sought	 to	 characterize	 the	 transcriptome	 of	 cell	 lines	 derived	 from	 ALS	

patients	presenting	C9orf72	expansions.	In	order	to	do	so,	whole-transcriptome	sequencing	

(RNA-Seq)	 was	 prepared	 from	 C9orf72	 positive	 fibroblasts,	 along	 wild-type	 control	
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fibroblasts.	Additional	RNA-Seq	was	 carried	also	 from	 lymphoblastoid	 cells	derived	 from	

the	very	same	individuals	from	which	the	fibroblasts	were	derived.	Such	an	approach	was	

used	 to	 identify	 changes	 in	 expression	 that	 would	 be	 due	 to	 the	 presence	 of	 expanded	

GGGGCC	 C9orf72	 and	 not	 to	 a	 cell	 specific	 expression	 profile.	 Additionally,	 we	 further	

examined	RNA	expression	in	two	additional	C9orf72	positive	fibroblast	cell	lines	for	which	

lymphoblastoid	 cell	 lines	were	 not	 available.	 For	 each	 sample,	 a	minimum	 of	 50	million	

reads	mapped	 to	 the	human	genome.	An	analysis	of	 the	different	data	 sets	 revealed	 that	

130	 transcripts	 had	 a	 differential	 expression	 with	 a	 non-adjusted	 p	 value	 <	 0.05	

(Supplementary	 Table	 4).	 Functional	 annotation	 using	 DAVID	 annotation	 tool	 identified	

many	clusters	of	dysregulated	transcripts	including	signal	peptide,	glycoprotein	and	splice	

variant	which	is	similar	to	the	observed	enrichment	identified	in	sALS	25		

	

Molecules	identified	restored	abnormal	gene	expression	

We	next	evaluated	the	effect	of	the	molecules	identified	in	C.	elegans	for	their	activity	using	

ALS	patient	derived	cell	lines.	Three	transcripts	for	which	expression	was	dysregulated	in	

C9orf72	 positive	 cells	 were	 selected.	 These	 transcripts	 are:	 	 beta-secreatse-2	 (BACE2),	

which	is	involved	in	the	processing	of	amyloid	precursor	protein,	interleukin-6	(IL6),	which	

was	 shown	 to	 be	 involved	 in	 the	 immune	 system	 in	 ALS,	 and	 protocadherin-gamma	

A4(PCDHGA4),	 which	 plays	 a	 role	 in	 RNA	 processing26,27.	 These	 transcripts	were	 chosen	

because	they	are	expressed	at	high	levels	 in	fibroblast	cell	 lines	and	their	functions	could	

be	relevant	to	ALS	pathogenesis.	All	three	transcripts	were	observed	to	be	upregulated	in	

cells	from	patients	carrying	an	expanded	GGGGCC	repeat	(Fig.	5	B).		
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As	a	proof	of	principle	TPMγP4,	a	molecule	that	was	shown	to	disrupt	the	toxic	G-

quadruplex	 structure	 of	 the	 expanded	 GGGGCC	 RNA,	 was	 tested	 to	 evaluate	 if	 it	 could	

restore	 the	 abnormal	 expression	 of	 those	 three	 transcripts.	 Three	 lines	 of	 fibroblast	 cell	

lines	 were	 submitted	 to	 TMPγP4	 for	 72	 hours	 and	 dose-response	was	 observed	 in	 cells	

treated	with	TMPγP4	compared	 to	 the	untreated	controls	 (Fig.	6	B).	Thus,	we	speculated	

that	the	RNA	abnormal	expression	could	be	a	good	phenotype	to	evaluate	C9orf72	toxicity.	

The	eight	molecules	that	were	shown	to	alleviate	the	toxicity	of	both	the	decreased	

expression	 of	 alfa-1	 and	 the	 susceptibility	 to	 GGGGCC50	 RNA	 were	 tested	 in	 three	

fibroblastoid	 cell	 lines.	 From	 these	 eight	 molecules,	 prednicarbate	 and	 tridihexethyl	

chloride	were	found	to	restore	the	normal	expression	of	BACE2,	IL6	and	PCDHGA4	(Fig.	6	C,	

D,	 Supplementary	Fig	4).	Our	 results	demonstrate	 that	 some	of	 the	drugs	 identified	 in	C.	

elegans	also	alleviate	toxic	RNA	metabolism	observed	in	C9orf72	positive	patient	cells.		

	

DISCUSSION		

C9orf72	 is	 the	 most	 common	 known	 cause	 of	 ALS	 and	 many	 toxic	 mechanisms	 were	

speculated	 regarding	 its	 toxicity.	 A	 decreased	 expression	 of	 C9orf72,	 the	 formation	 of	

nuclear	 RNA	 foci	 and	 the	 expression	 of	 many	 dipeptides	 were	 all	 observed	 in	 patient	

neuronal	cells28-31.	To	understand	more	about	these	modes	of	toxicity,	model	organisms	are	

essential.	Using	the	worm	C.	elegans,	we	developed	models	to	understand	the	toxicity	of	a	

decreased	expression,	as	well	as	the	toxicity	caused	by	the	GGGGCC	repeat	RNA.	Our	data	

suggest	that	both	means	of	toxicity	are	toxic	to	C.	elegans	neurons.	Because	of	its	small	size,	

its	short	generation	time	and	the	high	conservation	of	many	genetic	and	cellular	pathways	
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with	 humans,	 C.	elegans	 is	 an	 increasingly	 popular	 choice	 in	 organism-based	 high	

throughput	 screening	 32.	 Therefore,	 having	 different	 worms	 that	 recapitulated	 C9orf72	

toxicity,	 we	 carried	 out	 a	 drug	 screening	 to	 identify	molecules	 that	 could	 alleviate	 both	

types	of	toxicity.	Eight	drugs	were	shown	to	attenuate	the	motility	impairments	observed	

in	 both	 models	 and	 two	 molecules	 were	 also	 shown	 to	 restore	 the	 abnormal	 RNA	

expression	observed	in	patient	cells.	We	speculated	that	these	drugs	could	be	promising	for	

ALS	patients	and	should	be	 further	 tested	 in	other	animal	models	of	C9orf72.	Finally,	 the	

characterization	of	 their	effect	 could	highlight	pathogenic	mechanisms	regarding	C9orf72	

and	its	expanded	GGGGCC	repeat.		

	 From	the	eight	molecules	 that	could	alleviate	motor	 impairment	 in	both	C.	elegans	

models,	 pizotifen	 malate	 and	 melatonin	 were	 also	 shown	 to	 mediate	 the	 motor	

impairments	 caused	by	 the	expression	of	mutant	TDP-43	and	FUS	 in	C.	elegans.	 Pizotifen	

malate	was	also	shown	to	increase	the	movement	of	the	N2,	wild-type	worms,	suggesting	

that	it	may	act	in	a	non-specific	manner	to	maintain	neuromuscular	junction	health.	It	was	

previously	shown	that	drugs	acting	specifically	targeting	the	function	of	the	neuromuscular	

junction	could	be	promising	to	treat	neuromuscular	disorders33.	

Of	 interest,	melatonin	was	also	observed	to	modulate	phenotype	in	animal	models	

of	 other	 neurodegenerative	 disorders	 including	 Alzheimer’s	 disease	 and	 Parkinson’s	

disease	34,35.	Melatonin	is	synthesized	from	tryptophan	and	is	known	to	participate	to	many	

cellular	 processes	 including	 immune	 function,	 cell	 growth,	 circadian	 rhythms	 and	 free	

radical	 scavenging19.	 Melatonin’s	 protective	 role	 in	 neurodegenerative	 disorders	 is	

speculated	to	be	due	to	its	activity	as	an	antioxidant	19.	Since	the	identification	of	mutations	
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in	SOD1	in	fALS	cases,	mitochondrial	dysfunction	and	reactive	oxygen	species	have	been	a	

recurrent	 theme	 in	ALS	pathogenesis.	Melatonin	was	shown	 to	attenuate	 the	phenotypes	

observed	 in	SOD1	mouse	model	and	was	even	demonstrated	 to	be	safe	 in	ALS	patients36.	

Even	 though	 melatonin	 was	 only	 found	 to	 affect	 C9orf72	neuronal	 toxicity,	 it	 could	 be	

speculated	 that	 it	 acts	 specifically	 on	neuronal	 cells.	 Interestingly,	 Zhang	et	al.	 suggested	

that	 neurotoxicity	 of	 C9orf72	 dipeptides	 induced	 endoplasmic	 reticulum	 stress	 (ER	

stress)37	and	a	cross-talk	between	ER	and	mitochondria,	that	would	affect	ROS	generation,	

is	speculated	in	ALS	38,	perhaps		explaining	the	role	of	melatonin	in	C9orf72	toxicity.	These	

data	suggest	that	melatonin	could	influence	the	neurotoxicity	caused	by	many	ALS	mutant	

proteins	and	its	effect	in	patients	should	be	re-evaluated.		

	 The	 two	 drugs	 that	 restored	 the	 phenotypes	 in	 C.	 elegans	 and	 in	 patient	 cells	

included	 prednicarbate	 and	 tridihexethyl	 chloride.	 Tridihexethyl	 chloride	 is	 an	

anticholinergic	 agent	 that	 used	 to	 be	 taken	 to	 treat	 eye	movement39.	 It	was	 reported	 to	

have	many	side	effects	so	it	is	no	longer	in	use.	However,	either	it’s	anticholinergic	effect,	or	

other	 off	 target	 effects	 specifically	 affects	 C9orf72	 toxicity	 suggesting	 that	 a	

characterization	 of	 its	 interacting	 partners	 might	 highlight	 major	 protective	 pathways	

regarding	C9orf72	 toxicity.	Also,	 it	 is	 important	to	note	that	riluzole,	 the	only	drug	that	 is	

approved	 to	 treat	 ALS,	 was	 also	 shown	 to	 be	 an	 anticholinergic	 agent40.	 Therefore,	

suggesting	 that	 the	 effect	 of	 anticholinergic	 agents	might	 be	more	 protective	 in	 C9orf72	

positive	patients.			

	 The	 pathogenic	 molecular	 mechanism	 of	 C9orf72	 is	 still	 unclear.	 The	 loss	 of	

expression,	 and	 the	 RNA	 containing	 the	 expanded	 repeat	 are	 both	 toxic	 in	 our	 models.	
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Furthermore	the	mechanisms	of	TDP-43	or	FUS	toxicity	are	not	fully	resolved	since	both	a	

gain,	 and	 a	 loss	 of	 function	 are	 speculated	 to	 be	 toxic	 6,41.	 Moreover,	 for	 some	 repeat	

disorders,	a	gain	of	 function	at	 the	protein	and/or	RNA	 levels	 is	often	observed,	and	 this	

can	be	accompanied	by	a	loss	of	the	normal	function	of	the	protein42.	Our	data	indicate	that	

a	similar	situation	is	observed	in	C9orf72	where	both	would	be	highly	toxic	to	neurons	but	

the	 loss	 of	 C9orf72	 would	 be	 the	 most	 detrimental	 to	 non-neuronal	 cells.	 The	 drugs	

identified	 in	our	screen	also	highlight	 the	 importance	of	 the	ER	stress	and	mitochondrial	

dysfunctions	 regarding	 C9orf72	 pathogenesis	 and	 suggest	 that	 anticholinergic	 drugs,	

similar	to	riluzole,	might	be	more	effective	in	C9orf72	positive	patients.		

	

METHODS	

C.	elegans	strains	and	maintenance	

Standard	method	for	culturing	and	handling	the	worms	were	used43.	Worms	were	cultured	

on	 standard	 NGM	 media	 streak	 with	 OP-50	 Escherichia	 and	 maintained	 at	 20oC	 if	 not	

specified	otherwise.	For	a	list	of	strains	used	see	Supplementary	Table	3		

	

RNAi	experiments	

RNAi-treated	strains	were	fed	with	E.	coli(HT115)	containing	an	empty	vector	(EV)	or	alfa-

1	 (F18A1.6)	 RNAi	 clones	 from	 the	 ORFeome	 RNAi	 library	 (Open	 Biosystems).	 RNAi	

experiments	 were	 performed	 at	 20°C.	Worms	were	 grown	 on	 NGM	 enriched	with	 1mM	

Isopropyl-b-thiogalacto-pyranoside	(IPTG).		
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Construction	of	the	GGGGCC50	RNAi	expression	vector	and	worm	maintenance	

Generation	 of	 the	 GGGGCC50	 was	 created	 by	 annealing	 oligonucleotide	 sequence	 of	

GGGGCCGGGGCCGGGGCC	 at	 37C.	 The	 generated	 longer	 repeat	 was	 purified	 on	 gel	 and	

inserted	 into	a	pBLueScript	vector	(Addgene)	containing	HA,	His	and	6x	Myc	 in	the	three	

different	potential	 reading	 frames.	The	GGGGCC50	and	 the	 tags	were	 then	cloned	 into	 the	

L4440	vector	 (Addgene)	 that	was	 transformed	 into	HT115	E.	coli.	Worms	were	 fed	 from	

hatching	with	the	GGGGCC50	containing	bacteria	and	transferred	every	three	days	on	fresh	

plates.		

	

Paralysis	assay	

Worms	 were	 transferred	 on	 5μM	 fluorodeoxyuridin	 (FUDR)	 plates	 one	 day	 after	 L4.	

Worms	were	scored	daily	for	movement	for	12	days.	Worms	were	counted	as	paralyzed	if	

they	failed	to	move	after	they	were	prodded	on	the	nose.	Experiments	were	performed	at	

20oC	 and	 at	 least	 60	worms	were	 counted	 per	 conditions.	 Survival	 curves	 and	 statistics	

were	produced	using	Log-rank	(Mantel-Cox)	test	using	GraphPad	Prism	software.	

	

Liquid	culture	assay	

A	 synchronized	 population	 was	 obtained	 using	 hypochlorite	 extraction.	 Worms	 were	

grown	on	solid	media	up	to	day	1	of	adulthood.	At	day	1,	50	worms	per	well	were	placed	in	

S	 basal	 with	 OP-50	 E.	 coli	 (optical	 density	 0.5)	 in	 a	 flat-bottom	 96-well	 plate.	 Standard	

errors	are	shown	on	the	graph.	Measurement	was	done	using	Microtracker	(Phylumtech)	

with	standard	parameters	for	C.	elegans.	
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Drug	screening	

Preparation	of	the	animals	for	liquid	culture	was	made	as	described	above.	Drugs	included	

the	 following	 libraries:	 SIGMA	 Lopas,	 Microsource	 Discovery	 Spectrum,	 Biomol	 Natural	

Products	and	the	Prestwick	Commercialized	products	libraries.	Drugs	were	received	frozen	

and	 were	 kept	 in	 DMSO.	 All	 drugs	 were	 first	 tested	 in	 1	 well/drug	 condition	 at	

concentration	of	20uM	for	2	hours.	Drugs	that	have	caused	an	increased	in	alfa-1(ok3062)	

movement	 were	 then	 retested	 in	 triplicate	 at	 the	 same	 concentration	 and	 time.	

Measurement	was	done	using	Microtracker	(Phylumtech)	with	standard	parameters	for	C.	

elegans.		

	

Neuronal	integrity	

Animals	were	selected	at	day	1,	5	or	9	of	adulthood	(post	L4	stage)	for	in	vivo	visualisation.	

Animals	were	immobilised	in	5	mM	levamisole	and	mounted	on	2%	agarose	pads.	Neurons	

were	visualised	with	a	Zeiss	Axio	Imager	M2	microscope.	The	software	used	was	Zen	Pro	

2012.	At	least	30	worms	were	counted	per	conditions.	Statistics	were	produced	using	Log-

rank	(Mantel-Cox)	test	using	GraphPad	Prism	software.	

	

Cell	culture	

Lymphoblastoid	 cell	 lines	 (LCL)	 from	ALS	and	 controls	 individuals	were	 grown	 in	 IMDM	

(Gibco)	supplemented	with	foetal	bovine	serum	(10%),	fungizone	(1.25	ug/ml),	penicillin	

&	 streptomycin	 (100	 units/ml)	 and	 L-glutamine	 (0.292	 mg/ml).	 The	 fibroblasts	 were	
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derived	 from	skin	biopsies	of	 control	 individuals	 as	described	by	Villegas	 and	McPhaul21	

and	were	grown	in	MEM	(Gibco)	supplemented	with	foetal	bovine	serum	(20%),	fungizone	

(1.25	ug/ml),	penicillin	&	streptomycin	(100	units/ml).	

For	cells	treatment	with	different	molecules,	0.2	µM,	2	µM	and	20	µM	concentrations	were	

mixed	in	the	cell	medium	for	72h	and	then	collected	for	RNA	extraction.		

	

RNA	extraction		

RNAs	 were	 extracted	 using	 trizol/chloroform	 protocol	 (Ambion),	 for	 q-RT-PCR	 with	

Taqman	probes,	or	RNeasy	kit	(Qiagen),	for	RNA-sequencing.		

	

cDNA	and	Quantitative-PCR	(Q-PCR)	

For	all	experiments,	cDNA	was	produced	using	up	to	1.25	ug	of	RNA	and	1	ul	of	SuperScript	

enzyme	in	a	final	volume	of	10	ul	(SuperScript	Vilo	cDNA	synthesis,	Invitrogen).	

	

Quantitative	 gene	 expression	 analysis	 of	 C9orf72	 was	 performed	 using	 Taqman	 probe	

assays	(C9orf72	universal	probe,	Hs00376619_m1)	and	Taqman	2X	universal	PCR	master	

mix	(Life	Technologies).	The	fluorescence	was	read	with	the	7900HT	Fast	Real-Time	PCR	

System	 from	 Applied	 Biosystems.	 Each	 assay	was	 conducted	 in	 three	 replicates	 and	 the	

delta	 Cycle	 threshold	 (Ct)	method	was	 used	 to	 assess	 the	 relative	 quantification	 (RQ)	 of	
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C9orf72.	The	endogenous	gene	used	for	the	calculation	of	the	delta	Ct	was	POLR2A	(POLR2A	

probe,	Hs00172187_m1).		

	

Whole-transcriptome	sequencing		

2ug	 amount	 of	 RNA	 was	 sent	 for	 RNA-sequencing.	 CDNA	 libraries	 and	 sequencing	 was	

performed	 at	 the	 McGill	 Innovation	 center	 (Montreal,	 Canada).	 cDNA	 libraries	 were	

prepared	 with	 the	 firststrand	 TrueSeq	 mRNA	 protocol	 of	 Illumina	 and	 sequencing	 was	

done	on	the	Illumina	Hiseq	2000/2500	sequencer.	Sequencing	generated	between	42-173	

million	paired	read/library.		

Resultant	reads	were	aligned	to	GRCh37	human	genome	with	the	STAR-rna	software	in	a	2	

pass-mode.	 Reads	 were	 then	 assemble	 using	 Cufflinks	 program44	 and	 differential	 gene	

expression	analysis	was	done	using	DESeq	45	and	edgeR	46	R	bioconductor	package	
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Figure	 3.1:	 Expression	 of	 GGGGCC50	 is	 detrimental	 to	 C.	 elegans	 neurons.	 A)	
Expression	of	GGGGCC	caused	a	age-dependent	paralysis	(A)	and	neuronal	breaks	(B)	when	
expressed	 in	GABEergic	of	C.	elegans	compared	to	GFP	control.	 (C)	Fluorescence,	DIC	and	
merge	 pictures	 representing	 the	 normal	 GABAergic	 neurons	 (upper)	 and	 an	 example	 of	
gaps	 (indicated	 by	 arrow)	 observed	 in	 animals	 exposed	 to	 GGGGCC	 RNA.	 TMPγP4	 can	
rescue	motility	 impairments	 (D)	 and	neurodegeneration	 (E)	 caused	by	 the	 expression	of	
GGGGCC50	RNA.	*	p	value≤	0.05	
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Figure	3.2:	alfa-1	loss	of	function	and	exposure	to	GGGGCC	RNA	are	both	neurotoxic.	
Ratio	 of	 worms	 paralysed	 at	 day	 12	 when	 submitted	 to	 alfa-1	 RNAi	 or	 when	
submitted	to	GGGGCC	RNA	in	different	tissues.		

	 	

Figure 2
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Figure	3.3:	Molecules	that	alleviate	alfa-1/	C9orf72	loss	of	expression	phenotype.	(A)	
Liquid	culture	accelerates	the	paralysis	of	alfa-1(ok3062)	worms.	(B)	Effect	of	the	80	
drugs	 that	 alleviate	 alfa-1(ok3062)	 motor	 phenotype.	 (C)	 Molecules	 that	 alleviate	
alfa-1(ok3062)	 toxicity	 share	 few	common	 targets	with	TDP-43	and	FUS,	and	kcc-2	
mutant	animals.	(D)	Molecules	that	alleviate	motility	impairment	of	alfa-1(ok3062)	in	
liquid	 culture	 also	 alleviate	 the	 age-dependent	motility	 phenotype	 on	 solid	media.	
(E)	Most	molecules	also	alleviate	neurodegeneration	phenotype	observed	in	the	alfa-
1(ok3062)	 animals.	 (F)	 Some	 molecules	 also	 alleviate	 neuromuscular	 junction	
hypersensitivity	of	alfa-1(ok3062).	*	p	value≤	0.05	
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Figure	3.4:	Molecules	that	alleviate	GGGGCC50	phenotypes.	(A)Eight	molecules	alleviate	
the	 paralysis	 observed	 in	 worms	 exposed	 to	 GGGGCC	 RNA.	 (B)Thioridazine	
hydrochloride	and	tridihexethyl	chloride	attenuate	the	neuronal	breaks	obserbed	in	
the	 GGGGCC50	 animals.	 (C)	 Perphenazine,	 pizotifen	 malate,	 thioridazine	
hydrochloride	and	tremorine	dihydrochloride	also	improve	motility	of	N2,	wild-type	
animals.	*	p	value≤	0.05	
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Figure	 3.5:	 Small-molecule	 restoration	 of	 C9orf72	 abnormal	 transcriptome	
phenotypes	 (A)	 IL6,	 BACE	 and	 PCDHG4A	 are	 upregulated	 in	 C9orf72	 positive	
fibroblastoid	 cells	 (3	 different	 cell	 lines	 used).	 (B)	 TMPγP4	 restore	 that	 abnormal	
expression	 of	 IL6,	 BACE	 and	 PCDHG4A.	 (C-D).	 Prednicarbate	 and	 tridihexethyl	
chloride	 restore	 that	 abnormal	 expression	 of	 IL6,	 BACE	 and	 PCDHG4A.	 *	 p	 value≤	
0.05	
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SUPPLEMENTARY	MATERIAL	

	

Supplementary	Fig.	3.1-	GGGGCC50	constructs.	 (A)	 50	 units	 of	 the	 GGGGCC	 repeat	was	
cloned	in	the	L4440	vector	causing	the	expression	of	sense	ans	anti-sense	transcript.	
Size	of	the	repeat	was	confirmed	by	enzymatic	digestion.	(B-C)Exposure	to	GGGGCC	
RNA	do	not	cause	motility	impairement	in	RNAi	resistant	strains	
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Supplementary	Fig.	3.2-	Tissue	specific	exposure	to	alfa-1	RNAi	and	GGGGCC	RNA.	(A-
C)	 alfa-1	 RNAi	 caused	 an	 increase	 paralysis	 when	 either	 the	 neuronal,	 muscle	 or	
intestinal	cells	are	sensitized	to	RNAi	effect.	(D-F)	exposure	to	GGGGCC	RNA	is	only	
toxic	 in	neuronal	sensitized	animals	and	has	no	effect	 in	 intestinal	or	muscle	tissue	
sensitized	animals.	

	 	

Supplementary Figure 2
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Supplementary	Fig.	3.3-	Molecules	that	can	alleviate	the	toxicity	caused	by	GGGGCC	
RNA	exposure	

Supplementary 
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Supplementary	 Fig.	 3.4-	Molecules	 that	 do	 not	 restore	 the	 abnormal	 expression	 of	
IL6,	BACE	and	PCDHG4A			
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Supplementary Table 3.1 

 

A)Statistics table for paralysis test Supplementary Fig. 1B 

strain % worms paralysed at day 12 P value  
rde-1(me219) GFP RNA 50.5% ----- 
rde-1(me219)  GGGGCC50  RNA 19.2% 0.0004 
 

B)Statistics table for paralysis test Supplementary Fig. 1B 

strain % worms paralysed at day 12 P value  
sid-1(pk3321) GFP RNA 36.4% ----- 
sid-1(pk3321) GGGGCC50  RNA 41.2% 0.8688 
 

C)Statistic table paralysis Fig 1A 

Strain : unc-47p ::SID-1 % worms paralysed at day 12 P value  
GFP RNA 52.7% ----- 
GGGGCC50  RNA 78.4% ≤0.0001 
 

D) Statistics for paralysis Figure 1D 

treatment % worms paralysed at day 12 P value  
Untreated 68.8% ----- 
20uM TMPyP4 31% ≤0.0001 
50uM TMPyP4 41.1% 0.0024 
100 uM TMPyP4 47.8% 0.0290 
 

  



	121	

 

Supplementary Table 3.2 

A)Statistics table for paralysis Supplementary Fig. 2A 

Strain : unc-119p ::SID-1 % worms paralysed at day 12 P value  
GFP RNA 40.0% ----- 
alfa-1  RNAi 62.7% 0.0378 
 

B) Statistics table for paralysis Supplementary Fig. 2B 

Strain : nhx-2p ::RDE-1 % worms paralysed at day 12 P value  
GFP RNA 18.7% ----- 
alfa-1  RNAi 46.07% 0.0029 
 

C)Statistics table for paralysis Supplementary Fig 2C 

Strain : hlp-1p ::RDE-1 % worms paralysed at day 12 P value  
GFP RNA 21.0% ----- 
alfa-1  RNAi 52.38% 0.0316 
 

D)Statistic table for paralysis Supplementary Fig 2D 

Strain : unc-119p ::SID-1 % worms paralysed at day 12 P value  
GFP RNA 29.6% ----- 
GGGGCC50  RNA 70.6% ≤0.0001 
 

E)Statistic table for paralysis Supplementary Fig. 2E 

Strain : nhx-2p ::RDE-1 % worms paralysed at day 12 P value  
GFP RNA 13.9% ----- 
GGGGCC50  RNA 16.8% 0.5457 
 

F)Statistic table for paralysis Supplementary Fig. 2F 

Strain : hlp-1p ::RDE-1 % worms paralysed at day 12 P value  
GFP RNA 32.6% ----- 
GGGGCC50  RNA 37.6% 0.5499 
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Supplementary Table 3.3- Molecules identified to increase alfa-1(ok3063) motility in liquid culture 
 

Molecules identified to increase alfa-1(ok3063) motility in liquid culture 
1,2-dimethylhydrazine 

hydrochloride 
2'-methoxyformonetin 3beta-hydroxy-23,24-

bisnorchol-5-enic acid 
3-hydroxyflavone 

5alpha-cholestanol 8-hydroxycarapanic 
acid 

Aminopurine, 6-benzul Amoxicillin 

Apramycin Astemizole Azaperone Benzamil hydrochloride 
Bromperidol Camptothecine Capsanthin Cefepime hydrochloride 

Chlorpromazine 
hydrochloride 

Chlorzoxazone Clonixin lysinate Cloxacillin sodium salt 

Colchiceine Cyproheptadine 
hydrochloride 

Diallyl sulfide Diflunisal 

Dimaprit 
dihydrochloride 

Dimethadione Dosulepin hydrochloride Estropipate 

Ethosuximide Fenbendazole Fendiline hydrochloride Fluspirilien 
Fluticasone propionate Fluvastatin sodium 

salt 
Fluvoxamine maleate Homatropine 

hydrobromide (R,S) 
Hydralazine 

hydrochloride 
Indapamide Imidurea Iproniazide phosphate 

Iopanoic acid Isocarboxazid Lapachol Lomefloxacin 
hydrochloride 

Mebendazole Melatonin Memantine hydrochloride Merogedunin 
Mesalamine Methapyrilene 

hydrochloride 
Mevastatin Milrinone 

Minocycline 
hydrochloride 

Moricizine 
hydrochloride 

N- (9-
fluorenylmethoxycarbonyl)-

L-leucine 

Ononetin 

Oxymetazoline 
hydrochloride 

Ozagrel hydrochloride Pelletierine hydrochloride Perphenazine 

Phenelzine sulfate Pinacidil Piperacetazine Piperidolate 
hydrochloride 

Pizotifen malate Prednicarbate Promethazine 
hydrochloride 

Pronethalol 
hydrochloride 

Purpurin Quinethazone Sertraline Spiramycin 
Streptomycin sulfate Thioridazine 

hydrochloride 
Tremorine dihydrochloride Trimedlure 

Trimethoprim Trimeprazine tartrate Tridihexethyl chloride Ziprasidone  
Hydrochloride 

Zuclopenthixol 
dihydrochloride 
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Supplementary Table 3.4- Transcripts misregulated in C9orf72 cells : Transcripts that were 
misregulated in C9orf72 positive lymphoblast and fibroblastoid cell lines 

 

		 		

ENSG00000254838	 GVINP1	

ENSG00000242588	 RP11-274B21.1	

ENSG00000081059	 TCF7	

ENSG00000175265	 GOLGA8A	

ENSG00000010310	 GIPR	

ENSG00000244479	 OR2A1-AS1	

ENSG00000182319	 SGK223	

ENSG00000204531	 POU5F1	

ENSG00000101605	 MYOM1	

ENSG00000095637	 SORBS1	

ENSG00000213949	 ITGA1	

ENSG00000254122	 PCDHGB7	

ENSG00000185551	 NR2F2	

ENSG00000178631	 ACTG1P1	

ENSG00000176485	 PLA2G16	

ENSG00000206417	 H1FX-AS1	

ENSG00000148798	 INA	

ENSG00000181031	 RPH3AL	

ENSG00000198208	 RPS6KL1	

ENSG00000236453	 AC003092.1	

ENSG00000109861	 CTSC	

ENSG00000118257	 NRP2	

ENSG00000203499	 FAM83H-AS1	

ENSG00000251580	 RP11-539L10.3	

ENSG00000185864	 NPIPB4	

ENSG00000183421	 RIPK4	

ENSG00000185291	 IL3RA	

ENSG00000133048	 CHI3L1	

ENSG00000182472	 CAPN12	

ENSG00000166689	 PLEKHA7	

ENSG00000165171	 WBSCR27	

ENSG00000162692	 VCAM1	

ENSG00000203867	 RBM20	

ENSG00000064692	 SNCAIP	

ENSG00000188064	 WNT7B	

ENSG00000105339	 DENND3	

ENSG00000161243	 FBXO27	

ENSG00000140450	 ARRDC4	

ENSG00000159733	 ZFYVE28	

ENSG00000175899	 A2M	

ENSG00000151079	 KCNA6	

ENSG00000198915	 RASGEF1A	

ENSG00000133424	 LARGE	

ENSG00000111052	 LIN7A	

ENSG00000243797	 CTB-111H14.1	

ENSG00000235505	 RP11-693N9.2	

ENSG00000145934	 TENM2	

ENSG00000062524	 LTK	

ENSG00000132465	 IGJ	

ENSG00000182022	 CHST15	

ENSG00000182397	 DNM1P46	

ENSG00000255320	 RP11-755F10.1	

ENSG00000215252	 GOLGA8B	

ENSG00000006210	 CX3CL1	

ENSG00000125378	 BMP4	

ENSG00000154864	 PIEZO2	

ENSG00000184232	 OAF	

ENSG00000109943	 CRTAM	

ENSG00000218537	 AP000350.4	

ENSG00000158089	 GALNT14	

ENSG00000086717	 PPEF1	

ENSG00000116991	 SIPA1L2	

ENSG00000164929	 BAALC	

ENSG00000131773	 KHDRBS3	

ENSG00000142949	 PTPRF	
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ENSG00000141314	 RHBDL3	

ENSG00000136244	 IL6	

ENSG00000228463	 AP006222.2	

ENSG00000120658	 ENOX1	

ENSG00000157064	 NMNAT2	

ENSG00000088836	 SLC4A11	

ENSG00000135074	 ADAM19	

ENSG00000123243	 ITIH5	

ENSG00000169129	 AFAP1L2	

ENSG00000182621	 PLCB1	

ENSG00000162551	 ALPL	

ENSG00000105825	 TFPI2	

ENSG00000232745	 ANKRD20A14P	

ENSG00000123612	 ACVR1C	

ENSG00000145358	 DDIT4L	

ENSG00000273295	 AP000350.5	

ENSG00000183570	 PCBP3	

ENSG00000039560	 RAI14	

ENSG00000177875	 C12orf68	

ENSG00000064886	 CHI3L2	

ENSG00000077943	 ITGA8	

ENSG00000042980	 ADAM28	

ENSG00000165023	 DIRAS2	

ENSG00000186297	 GABRA5	

ENSG00000129596	 CDO1	

ENSG00000162877	 PM20D1	

ENSG00000182240	 BACE2	

ENSG00000169169	 CPT1C	

ENSG00000234380	 AP000330.8	

ENSG00000139910	 NOVA1	

ENSG00000197632	 SERPINB2	

ENSG00000178919	 FOXE1	

ENSG00000255020	 AF131216.5	

ENSG00000251003	 RP11-152P17.2	

ENSG00000226278	 PSPHP1	

ENSG00000015475	 BID	

ENSG00000197134	 ZNF257	

ENSG00000164105	 SAP30	

ENSG00000174669	 SLC29A2	

ENSG00000232040	 SCAND3	

ENSG00000131941	 RHPN2	

ENSG00000233328	 PFN1P1	

ENSG00000230795	 HLA-K	

ENSG00000102755	 FLT1	

ENSG00000197046	 SIGLEC15	

ENSG00000006757	 PNPLA4	

ENSG00000189060	 H1F0	

ENSG00000237161	 RP11-32B5.1	

ENSG00000176659	 C20orf197	

ENSG00000154102	 C16orf74	

ENSG00000144488	 ESPNL	

ENSG00000048540	 LMO3	

ENSG00000075651	 PLD1	

ENSG00000260409	 RP11-403B2.7	

ENSG00000126562	 WNK4	

ENSG00000152527	 PLEKHH2	

ENSG00000272870	 RP11-798M19.6	

ENSG00000205045	 SLFN12L	

ENSG00000262576	 PCDHGA4	

ENSG00000114541	 FRMD4B	

ENSG00000248874	 C5orf17	

ENSG00000247095	 MIR210HG	

ENSG00000155511	 GRIA1	

ENSG00000143847	 PPFIA4	

ENSG00000099984	 GSTT2	

ENSG00000099974	 DDTL	

ENSG00000231007	 CDC20P1	

ENSG00000147862	 NFIB	

ENSG00000272787	 KB-226F1.2	

ENSG00000261613	 RP11-20I23.13	

ENSG00000234449	 RP11-706O15.3	

ENSG00000254913	 RP4-791M13.5	

ENSG00000158825	 CDA	
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Supplementary Table 3.5- C. elegans strains used in the study 

 

Strain  source genotype 
N2 CGC  
RB2260 CGC alfa-1(ok3062) 
EG1285 CGC unc-47p::GFP + lin-15(+) 
NL3321 CGC sid-1(pk3321) 
WM27 CGC rde-1(ne219) 
VP303 CGC rde-1(ne219) V; kbIs7. kbIs7 [nhx-

2p::rde-1 + rol-6(su1006) 
TU3401 CGC (myo-2p::mCherry) + unc-119p::sid-1 
NR350 CGC rde-1(ne219) V; kzIs20 

kzIs20[pDM#715(hlh-1p::rde-1) + 
pTG95(sur-5p::nls::GFP)]. 

XE1375 CGC [unc-47p::mCherry] I. wpSi1 [unc-
47p::rde-1::SL2::sid-1 + Cbr-unc-
119(+)]  
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DISCUSSION 

INTRODUCTION 

 

SUMMARY	OF	WORK	PRESENTED	

The	work	presented	here	has	used	C.	elegans	models	to	learn	more	about	the	toxicity	of	

C9orf72.	The	studies	that	were	conducted	were	designed	to	address	the	different	modes	

of	 toxicity	hypothesized.	Hence,	both	 loss	of	 function	and	gain	of	RNA	 function	models	

were	examined	and	the	two	mechanisms	are	toxic	to	the	C.	elegans	nervous	system.		

Using	these	models,	we	conducted	a	drug	screen	and	identified	the	first	molecules	

that	could	alleviate	the	toxicity	of	both	C9orf72	loss	of	function	and	gain	of	RNA	function.	

The	drugs	identified	were	specific	to	C9orf72	toxicity	in	worms,	having	little	overlap	with	

molecules	 that	 alleviate	 toxicity	 in	 other	 neuronal	 dysfunction	 and/or	

neurodegeneration	models.	Finally,	a	number	of	neuroprotective	molecules	were	tested	

in	C9orf72	 patient	 fibroblasts	 and	 some	were	 shown	 to	 correct	 the	 dysregulated	 RNA	

expression	observed	in	those	cells.		

It	has	been	speculated	that	links	between	C9orf72	and	other	ALS	genes	might	help	

to	 identify	 toxic	 mechanisms	 that	 could	 lead	 to	 motor	 neuron	 death.	 To	 further	

understand	 the	 role	 of	 C9orf72	 across	 common	 biological	 pathways	 shared	 between	

different	ALS	genes,	our	laboratory	is	working	toward	the	development	of	a	large	genetic	
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interaction	map	2.	If	genes	interact	genetically,	it	means	that	they	function	in	the	same	or	

compensating	 cellular	 pathways	 240.	 Using	 different	 loss	 of	 function	 and	 transgenic	 C.	

elegans	models,	we	have	identified	genes	that	can	modify	each	other	phenotypes.	Using	

the	 loss	of	 function	model	of	alfa-1/	C9orf72,	C9orf72	was	shown	to	 interact	differently	

with	 TDP-43	 and	 FUS	 proteotoxicity	 where	 a	 decreased	 expression	 of	 alfa-1/	C9orf72	

exacerbated	only	TDP-43	toxicity.	

In	summary,	the	work	presented	here	has	led	to	the	development	of	new	animal	

models	 of	 C9orf72,	 increased	 our	 understanding	 regarding	 C9orf72	 toxicity	 and	

developed	 a	 new	 strategy	 to	 identify	 molecules	 that	 could	 alleviate	 C9orf72	 toxicity.	

Therefore,	these	three	topics	will	be	discussed	in	more	details	in	this	chapter.		
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ANIMAL	MODELS	OF	C9ORF72	

Since	 the	 beginning	 of	 our	 work,	many	 new	 animal	models	 were	 developed	 to	 better	

understand	C9orf72.	Interestingly,	even	though	none	of	these	models	had	been	published	

at	the	time	we	undertook	the	development	of	our	C.	elegans	models,	many	characteristics	

are	 shared	 between	 our	 models	 and	 these.	 Here	 is	 a	 brief	 summary	 of	 these	 models	

followed	by	a	discussion	on	how	they	relate	to	our	C.	elegans	models.		

	

SUMMARY	OF	NEW	C9ORF72	MODELS		

The	first	published	C9orf72	model	organism	used	Drosophila.	C9orf72	is	not	conserved	in	

Drosophila	but	by	expressing	different	GGGGCC	repeat	lengths	under	various	promoters,	

many	groups	have	worked	to	gain	insight	into	C9orf72	toxicity	122,124,241-244.	Interestingly	

in	many	of	these	models	only	30	GGGGCC	repeats	were	required	to	induce	toxicity	in	the	

fly	 eyes	 and	 nervous	 system,	 leading	 to	 age-dependent	 neuromuscular	 problems,	

motility	 impairment,	 eye	 structure	 disorganization	 and	 lethality	 124,241,242.	 It	 is	 also	

noteworthy	that	even	if	the	production	of	C9orf72-derived	dipeptide	aggregates	and	RNA	

foci	 have	 been	 observed	 in	 several	 models,	 a	 direct	 causative	 link	 between	 these	

pathological	features	and	toxicity	could	not	always	be	observed.		

In	a	first	attempt	to	develop	a	mouse	model	to	understand	C9orf72	toxicity,	Chew	

et	al.	 used	an	adenoviral	 expression	 system	 to	express	a	pathogenic	GGGGCC	repeat	 in	

the	 central	 nervous	 system.	 Six	months	 after	 a	 single	 injection	 of	 the	 virus,	 RNA	 foci,	

dipeptides	 and	 aggregates	 of	 phosphorylated	 TDP-43	 were	 observed	 in	 post-mortem	

tissues.	Neither	neuronal	loss	nor	motility	problem	was	observed,	but	the	mice	had	slight	

balance	 problem	 and	 an	 anxiety	 behaviour	 245.	 Interestingly,	 these	 observations	 are	
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supported	 by	 the	 recent	 reports	 of	 two	 independent	 groups	 that	 have	 also	 developed	

C9orf72	mouse	models	but	failed	to	observe	neurodegeneration	246,247.	Both	groups	used	

a	bacterial	 artificial	 chromosome	 (BAC)	 system	 to	 express	 a	partial	 (exons	1-6)	or	 full	

length	human	C9orf72	 that	comprised	a	pathogenic	GGGGCC	repeat	(ranging	from	100-

1,000	 units	 long).	 Overall,	mouse	model	 data	 have	 revealed	 that	 even	 if	 RNA	 foci	 and	

different	 dipeptides	were	 produced	 in	 glial	 cells	 and	 neurons,	 neurodegeneration	 and	

motility	 impairments	were	 not	 observed,	 even	 at	 advanced	 age,	 in	 the	 animals	 246,247.	

Also,	 it	 appears	 that	 animals	 did	not	 openly	 exhibit	 cognitive	 features	 similar	 to	 other	

FTD	mouse	models	 246,247.	 Taken	 together,	 these	 results	 suggest	 that	 neither	 cognitive	

deficit	 nor	 motor	 deficit	 could	 be	 caused	 only	 by	 the	 expression	 of	 human	 C9orf72	

harbouring	a	pathogenic	repeat	in	mice.		

 	

CONCLUSION	

Each	model	organism	comes	with	 its	own	 inherent	 advantages	 and	disadvantages.	 For	

the	models	developed	 in	 this	work,	 the	use	of	 the	RNAi	system	to	expose	neurons	 to	a	

RNA	 containing	 a	 pathogenic	 GGGGCC	 repeat	 expansion	 proved	 to	 be	 useful;	 albeit	 it	

could	not	 insure	 an	 equal	 expression	 level	 in	 all	 individual	 animals.	While	 it	 is	 known	

that	loss	of	alfa-1	expression	causes	a	significant	motor	phenotype	in	worm,	we	cannot	

exclude	that	potential	mutations	in	other	genes	participate	to	this	phenotype.	Moreover,	

most	C9orf72	positive	patients	are	heterozygous	and	as	such	only	have	a	partial	 loss	of	

function,	 a	 condition	 that	 could	 not	 be	 evaluated	 in	 the	 alfa-1	 loss	 of	 function	model.	

However,	the	models	developed	in	this	work	share	common	characteristics	with	other	C.	

elegans	models	of	ALS	and	with	other	repeat	disorder	models.	
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Published	 work	 shows	 that	 C.	 elegans	 transgenic	 models	 of	 TDP-43	 exhibit	

specific	neuronal	vulnerability	of	the	GABAergic	neurons198,	similar	to	what	is	observed	

in	the	alfa-1(ok3062)	models.	This	interesting	aspect	shows	that	in	worm	some	neurons	

are	 more	 vulnerable	 to	 ALS	 proteins,	 recapitulating	 an	 important	 feature	 of	 ALS	

pathogenesis	 in	 humans.	 Also,	 our	 data	 have	 demonstrated	 that	 alfa-1/	 C9orf72	 was	

involved	 in	 osmotic	 stress	 response	 which	 was	 also	 the	 case	 for	 fust-1/FUS	 and	 tdp-

1/TDP-43	 205(Therrien	 et	 al.	 annexe	 I.)	 In	 different	 polyglutamine	 models,	 impaired	

osmotic	stress	response	was	shown	to	be	involved	in	protein	aggregation	248.	Therefore,	

knowing	 the	 importance	 of	 aggregation	 in	 ALS	 pathogenesis	 (see	 section	 Pathological	

characteristics	of	ALS),	the	involvement	of	three	major	ALS	proteins	linked	to	the	osmotic	

stress	response	could	highlight	a	specific	major	pathogenic	pathway.	Osmolarity	 in	 the	

human	nervous	system	is	one	of	the	most	regulated	processes	and	do	not	change	much	

in	normal	state249,	therefore	it	is	difficult	to	evaluate	the	importance	of	those	findings	in	

regards	to	ALS	pathogenesis.	However,	these	data	suggest	that	cells	exhibiting	a	loss	of	

expression	 of	 alfa-1/	 C9orf72,	 tdp-1/TDP-43	 or	 fust-1/FUS	 might	 be	 more	 prone	 to	

protein	aggregation	leading	to	increased	neuronal	vulnerability.		

	 	The	 work	 presented	 here	 has	 also	 shown	 that	 expression	 of	 a	 pathogenic	

GGGGCC	repeat	results	in	neuronal	phenotypes	in	C.	elegans.	The	toxicity	we	observed	is	

similar	 to	 what	 other	 groups	 have	 observed	 in	 Drosophila,	 but	 different	 from	 the	

mammalian	models	 published	 so	 far.	 It	would	 not	 be	 the	 first	 time	 that	 simple	model	

organisms	recapitulate	ALS	better	 than	mouse	models	 from	which	many	 failed	 to	 fully	

recapitulate	 ALS	 pathogenesis	 (see	 section	 Current	 models	 to	 understand	 ALS).	 It	 is	

important	to	note	that	many	repeat	containing	genes	forming	aggregates	are	more	toxic	
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in	 their	 cleaved	 form	 than	 in	 the	 full-length	 version	 (among	 others	 250,251).	 Also,	

Huntington’s	disease	mouse	models	have	shown	that	expression	of	a	truncated	version	

of	 the	 HTT	 gene	 is	 more	 toxic	 than	 the	 expression	 of	 a	 full-length	 gene	 where	 the	

truncated	version	caused	earlier	and	more	severe	phenotypes	in	the	animals	(reviewed	

by	Pouladi	et	al.	252).	Thus,	it	is	not	surprising	that	overexpression	of	the	GGGGCC	repeat	

by	 itself	 is	 toxic	 in	many	model	 organisms,	 and	 that	models	 based	 on	BAC	 expression	

might	exhibit	reduced	toxicity.	Therefore	our	work	and	the	work	of	others	suggest	that	

the	surrounding	region	of	 the	GGGGCC	repeat	of	C9orf72	 is	highly	 important	and	could	

influence	its	toxicity.	

Simple	 model	 organisms	 can	 be	 useful	 but	 cannot	 always	 model	 complex	

compensatory	 mechanisms	 that	 are	 observed	 in	 humans.	 For	 example,	 FUS,	 EWS	 and	

TAF15	genes	are	highly	similar	RNA	binding	proteins	that	are	genetically	 linked	to	ALS	

20,21,253,254.	 In	C.	elegans,	 the	deletion	of	 fust-1,	 the	orthologue	of	all	 three	genes,	 causes	

age-dependent	 neurodegeneration	 (Therrien	 et	 al.	 annexe	 I).	 However,	 in	 mice,	

decreased	 expression	 of	 FUS	 causes	 an	 increased	 expression	 of	 TAF15	 and	 EWS	 255,	

therefore	suggesting	a	complex	relationship	between	these	proteins.	These	data	suggest	

that	 this	 family	of	proteins	play	an	essential	and	complex	role	 in	maintaining	neuronal	

integrity.	 In	 light	 of	 data	 from	us	 and	other	 groups	 that	have	 tried	 to	develop	C9orf72	

models,	 we	 speculate	 that	 C9orf72	 and	 its	 GGGGCC	 repeat	 play	 a	 role	 in	 neuronal	

integrity	 but	 compensatory	 mechanisms	 may	 alleviate	 their	 effect	 in	 mammalian	

systems.		

	

PERSPECTIVE	
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With	the	rapid	advances	of	genetic	technologies,	new	models	can	be	developed	to	better	

recapitulate	the	conditions	that	are	observed	in	patients.	Considering	that	no	sole	model	

organism	 can	 fully	 recapitulate	 the	 cellular	 physiology	 and	 structure	 of	 humans,	 it	 is	

important	 to	 take	 into	 account	 the	 different	 models	 where	 a	 relevant	 phenotype	

provides	useful	insight	to	advance	ALS	research.		

Small	 pathogenic	 repeat	 lengths	 of	 GGGGCC	 seem	 to	 be	 highly	 toxic	 in	 model	

organisms	(i.e.	only	30	repeats	are	required	in	Drosophila	 to	be	toxic	and	50	units	 in	C.	

elegans)	 but	 in	 patients	 the	 repeat	 length	 seems	 to	 be	 much	 longer.	 The	 blurry	

characterization	 of	 the	 length	 of	 the	 GGGGCC	 repeat	 of	 C9orf72	 in	 ALS	 and/or	 FTD	

patients	 hampers	 efforts	 to	 develop	 relevant	 models.	 The	 most	 toxic	 length	 of	 the	

GGGGCC	 repeat	 needs	 to	 be	 identified	 to	 avoid	 the	 development	 of	 non-toxic	 GGGGCC	

models.	

	 The	next	generation	of	C9orf72	C.	elegans	models	 should	 take	 into	account	both	

the	decreased	expression	of	alfa-1/	C9orf72	 and	 the	 toxicity	of	 the	pathogenic	GGGGCC	

repeat.	New	technologies	such	as	CRISPR/Cas9	would	allow	the	insertion	of	a	pathogenic	

GGGGCC	repeat	within	the	first	intron	of	alfa-1	gene,	and	is	currently	under	development	

in	the	laboratory.	Also,	using	a	wide	variety	of	repeat	lengths	within	the	same	cells,	along	

with	similar	expression	level,	could	help	elucidate	the	question	regarding	the	toxicity	of	

the	repeat	length.		

C.	elegans	might	not	fully	recapitulates	ALS	pathogenesis	observed	in	patients	but,	

its	 ease	 of	 cultivation	 and	 its	 speed	make	 it	 a	 great	model	 to	 study	 specific	 aspects	 of	

C9orf72	 pathogenesis.	 The	 current	 models,	 as	 well	 as	 newer	 ones	 could	 be	 used	 to	
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identify	modifiers	of	alfa-1/	C9orf72	expression,	or	modifiers	of	translation	mechanisms	

that	induce	the	production	of	toxic	dipeptide	species.		
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MODES OF TOXICITY OF C9ORF72 

Since	the	beginning	of	this	project,	many	research	articles	have	been	published	regarding	

the	potential	toxicity	caused	by	the	expanded	GGGGCC	repeat	of	C9orf72.	Here	is	a	brief	

summary	including	the	most	important	findings	regarding	this	ongoing	debate	and	how	

the	work	presented	here	played	an	important	role	in	this	debate.	

 

SUMMARY	OF	ADVANCEMENTS	OF	RESEARCH	

 

LOSS OF C9ORF72 EXPRESSION 

Loss	 of	 expression	 of	 C9orf72	 has	 been	 observed	 at	 the	 RNA	 and	 protein	 levels	 in	

different	 regions	of	 the	brain	 and	 spinal	 cord	 47,117.	 Similar	 to	what	was	 shown	 in	 this	

work	 using	 C.	 elegans,	 in	 zebrafish,	 complete	 loss	 of	 expression	 of	 the	 orthologue	 of	

C9orf72,	 zC9orf72,	 was	 shown	 to	 induce	 motility	 problems	 that	 could	 be	 rescued	 by	

expression	of	the	human	C9orf72	256,	suggesting	that	both	genes	play	similar	function	in	

neurons.	 However,	 in	 mice,	 transient	 decreased	 expression	 of	 C9orf72	 in	 the	 central	

nervous	system	and	a	conditional	knock-out	model,	did	not	induce	pathological	(TDP-43	

and	 p62	 aggregates)	 or	 behavioural	 changes	 in	 the	 animals	 238	 112.	 Also,	 some	 groups	

have	 suggested	 that	 hypermethylation	might	 be	 neuroprotective257,258,	 however,	 these	

data	still	remain	to	be	confirmed	in	neuronal	cells.		

 

RAN TRANSLATION LEADING TO PRODUCTION OF DIPEPTIDES  
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As	 observed	 in	 other	 repeat	 disorders,	 even	 though	 the	 GGGGCC	 repeat	 of	 C9orf72	 is	

found	in	the	first	intron	of	the	gene,	it	was	speculated	that	it	could	cause	the	production	

of	dipeptides	repeat	proteins	 through	RAN	translation	 (for	more	details	 see	Chapter	3-	

Introduction).	 The	 presence	 of	 dipeptides	 was	 shown	 in	 numerous	 patients	 neuronal	

tissues	 including	 the	 cerebellum,	 spinal	 cord	 and	 frontal	 cortex	 236,259,260.	 The	 glycine-

alanine	 and	 glycine-proline	 seem	 to	 be	 the	most	 abundant	 dipeptides	 produced	 259,260	

and	 glycine-proline	 was	 even	 found	 in	 cerebrospinal	 fluid	 of	 C9orf72	 positive	 ALS	

patients	261.		

	 Using	 different	 model	 organisms,	 the	 toxicity	 of	 the	 different	 dipeptides	 was	

assessed.	Results	of	 these	studies	are,	however,	 controversial	and	expression	 level	and	

tissue	 specificity	 could	 explain	 some	 variations	 between	 the	 different	 models.	 The	

dipeptides	that	seem	to	be	the	most	toxic	are	the	glycine-arginine	and	proline-arginine	

dipeptides	122,169,242,262.	However,	these	are	among	the	least	abundant	dipeptides	found	

in	 patient	 post-mortem	 tissues	 259,260,263.	 Also,	 toxicity	 of	 the	 dipeptides	 produced	 by	

other	 repeat	 disorder	 transcripts	 (such	 as	 Atx-8	 and	 Htt	 transcripts)	 is	 also	 unclear.	

Therefore,	 additional	 studies	 are	 required	 to	 evaluate	 the	 importance	 of	 dipeptide	

formation	in	ALS	pathogenesis.	

	

RNA FOCI 	
RNA	foci	were	observed	in	C9orf72	positive	patients	neuronal	and	non-neuronal	cells	259.	

The	RNA	aggregates	were	shown	to	bind	 to	numerous	RNA	binding	protein	 in	vitro	264	

and	to	bind	and	sequester	some	of	these	RNA	binding	proteins	in	the	nucleus	226,265.	PUR-
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ALPHA	was	identified	by	many	groups	as	one	of	the	main	binding	protein	of	the	GGGGCC	

expanded	RNA,	and	was	found	in	the	RNA	foci	of	in	vitro	and	in	vivo	models	of	C9orf72	as	

well	 as	 in	 patients	 derived	 cells	 115,127,241.	 The	 overexpression	 of	 PUR-ALPHA	 rescued	

phenotypes	caused	by	the	expression	of	GGGGCC	repeat	in	Drosophila	and	in	transfected	

cells	 241.	 Interestingly,	 PUR-ALPHA	 was	 also	 found	 to	 bind	 the	 CGC	 repeat	 of	 FMR1	

causing	Fragile-X	ataxia/tremor	syndrome.	PUR-ALPHA	 is	an	RNA	binding	protein	 that	

binds	purine	rich	sequence	and	a	knock-out	mouse	model	has	shown	that	it	is	involved	in	

neuronal	proliferation	and	postnatal	brain	development266.	Therefore	these	data	suggest	

a	general	implication	for	this	protein	within	C-G	rich	repeat	disorders	and	in	the	nervous	
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system.	 However,	 so	 far	 the	 data	 have	 not	 shown	 a	 clear	 correlation	 between	 the	

presence	of	RNA	foci	and	neuronal	toxicity.		

	

CONCLUSION	

Loss	of	 function	of	 the	protein	affected	by	 the	 repeat,	 toxicity	of	 the	RNA	 foci,	 and	 the	

production	of	 toxic	dipeptides	have	 all	 been	 shown	 to	occur	 in	many	 repeat	disorders	

(for	more	 details	 see	Repeat	disorders	 section).	 Generally,	 it	 is	 thought	 that	 expanded	

repeats	 employ	 several	mechanisms	 to	ultimately	 trigger	neurodegeneration.	The	data	

presented	here	suggest	that	both	a	loss	of	function,	and	RNA	toxicity,	that	could	lead	to	

 

Figure 4.1: Summary of C9orf72 potential modes of toxicity: The expanded GGGGCC repeat found in 
the C9orf72 can induce the loss of C9orf72 expression, the formation of RNA foci and the production of 
many dipeptides, all of which were observed in patient post-mortem tissues. 
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the	formation	of	RNA	foci	or	to	the	production	of	dipeptides,	are	toxic	to	neurons.		

We	have	shown	that	a	constitutive	loss	of	alfa-1/	C9orf72	function	is	detrimental	

to	neurons.	However,	mouse	models	using	a	transient	or	conditional	 loss	of	expression	

did	 not	 cause	 any	 neuronal	 abnormalities	 in	 the	 animals.	 Expression	 level	 of	 C9orf72	

throughout	 the	progression	of	 the	disease	 is	not	well	characterized,	but	 the	absence	of	

C9orf72	 during	 development	 could	 lead	 to	 a	 loss	 of	 neuronal	 integrity	 later	 in	 life.	

Furthermore,	 in	 most	 neurodegenerative	 disorders	 caused	 by	 a	 genetic	 variant,	 the	

mutant	protein	is	present	and	expressed	from	birth	but	only	become	toxic	during	aging.		

The	 work	 presented	 here	 has	 shown	 that	 the	 expression	 of	 RNA	 containing	 an	

expanded	GGGGCC	repeat	is	toxic	to	neurons	and	could	lead	to	abnormal	RNA	expression	

of	many	other	transcripts.	Also,	other	groups	have	shown	that	 in	patient	cells,	where	a	

decreased	 expression	of	C9orf72	 is	 not	 observed,	 abnormal	RNA	expression	 is	 seen226.	

Several	research	groups	have	tried	to	differentiate	between	the	toxicity	of	the	RNA	and	

the	 dipeptides	 and	 all	 have	 concluded	 that	 the	 GGGGCC	 repeat	 was	more	 toxic	 at	 the	

protein	 level	 than	 at	 the	RNA	 level	 242.	 However,	 no	 clear	 validation	has	 been	done	 in	

patient	tissue	where	production	of	dipeptides	does	not	correlate	with	signs	of	neuronal	

degeneration	 263,267.	 It	 is	 also	 noteworthy	 to	 remember	 that	 the	 dipeptides	 form	

aggregates,	 and	 for	 most	 neurodegenerative	 disorders,	 the	 toxicity	 of	 these	 protein	

aggregates	 is	 still	 unclear.	 Our	 data	 do	 not	 allow	 us	 to	 suggest	 if	 the	 neurotoxicity	 is	

caused	by	the	presence	of	dipeptides	and/or	the	RNA	foci,	but	the	sole	presence	of	the	

RNA	 containing	 a	 pathogenic	 GGGGCC	 repeat	 affects	 neurons.	 However,	 in	 patient-

derived	 cells,	where	many	 abnormal	RNA	 expression	 events	were	 observed	 and	 could	

impair	cellular	function,	only	the	dipeptides	were	observed.		
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The	work	presented	here	also	suggests	that	tissue	specificity	is	important	for	C9orf72	

toxicity,	where	a	loss	of	expression	is	detrimental	to	many	cell	types	in	C. elegans	while	

only	neurons	are	affected	by	the	GGGGCC	repeat.	These	results	are	novel	and	bring	a	new	

perspective	about	C9orf72	toxicity	because	most	expression	models	published	so	far	only	

characterize	 the	 impact	 of	 the	 expanded	 GGGGCC	 in	 a	 single	 type	 of	 cells	 or	 neurons.	

Tissue	specificity	is	an	important	aspect	of	ALS	pathogenesis	and	it	is	not	surprising	that	

change	 cell	 vulnerability	 is	 observed.	 The	 best	 example	 of	 tissue	 specificity	 regarding	

C9orf72	toxicity	is	the	decreased	expression	observed	in	many	neuronal	and	blood	cells	

but	 not	 in	 fibroblasts.	 Different	 groups,	 including	 ourselves,	 have	 used	 fibroblast	 cell	

lines	 derived	 from	 patients	 and	 could	 not	 observe	 a	 decrease	 in	 C9orf72	 expression	

114,226.	Therefore,	it	shows	that	fibroblasts	may	be	useful	to	understand	RAN	translation	

leading	to	the	production	of	dipeptides	or	RNA	foci	toxicity,	but	we	cannot	assume	that	

they	will	give	full	insights	into	neuronal	characteristics	of	C9orf72.	Most	ALS	proteins	are	

ubiquitously	expressed	but	neuronal	loss	is	focused,	therefore	neuronal	specificity	is	an	

important,	unresolved	topic	relevant	to	ALS.	

For	many	repeat	disorders,	where	it	was	first	speculated	to	be	a	toxic	gain	of	function	

mechanism,	 studies	 have	 shown	 that	 a	 decreased	 expression	 of	 the	 endogenous	 gene	

could	contribute	 to	neuronal	 toxicity	268-270.	Thus,	 there	may	be	a	cellular	environment	

where	both	a	gain,	and	a	 loss	of	 function	participate	to	the	pathogenesis.	Also,	 the	CGC	

repeat	found	in	FMR1	provides	a	good	example	of	a	repeat	causing	a	loss	of	function	and	

a	 gain	 of	 function	 toxicity	 151.	When	 the	 repeat	 is	 between	 70-200	 units,	 it	 causes	 an	

increase	 in	 mRNA	 expression	 which	 leads	 to	 a	 neurodegenerative	 disorder	 called	

Fragile-X	tremor/ataxia	syndrome	and	the	toxicity	is	speculated	to	be	a	gain	of	function	
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of	the	protein.	When	the	repeat	is	longer	than	200	units,	it	causes	a	decreased	in	FMR1	

gene	 expression	 leading	 to	 a	 neurodevelopmental	 disorder	 called	 Fragile-X	 syndrome,	

likely	causing	toxicity	through	the	loss	of	FMR1	function	(reviewed	in	Fragile	X	syndrome	

and	toxicity	of	a	decreased	gene	expression	section).	Therefore,	a	similar	mechanism	could	

participate	to	explain	the	involvement	of	C9orf72	in	ALS	and	FTD.	

	It	 is	 important	 to	 note	 that	 even	 though	 mutations	 in	 TARDBP	 and	 FUS	 are	

speculated	to	cause	a	gain	of	function,	 loss	of	the	normal	functions	of	the	proteins	they	

encode	have	been	shown	to	be	detrimental	to	cells	128.	Similar	mechanisms	could	easily	

be	envisaged	for	C9orf72	 toxicity	where	loss	of	expression,	and	gain	of	toxic	properties	

from	 the	 RNA	 leave	 the	 neurons	 vulnerable	 to	 cell	 death.	 For	 example,	 if	 C9orf72	 is	

confirmed	 to	 act	 with	 RAB	 proteins	 and	 affect	 protein	 degradation,	 a	 decreased	

expression	of	C9orf72	could	exacerbate	the	toxicity	of	the	dipeptides	by	impairing	their	

proper	degradation.		

	

PERSPECTIVES	

Some	characteristics	of	C9orf72	toxicity	could	help	us	respond	to	the	questions	related	to	

C9orf72	toxicity,	however.	What	is	the	timeline	of	these	phenomena?	What	happens	first	

to	 initiate	 the	 toxicity	 cascade	 that	 ultimately	 kills	 neurons?	 Patient	 tissues	 are	 just	 a	

snapshot	of	the	histopathological	view	when	the	patients	die.	The	RNA	foci	and	dipeptide	

aggregates	could	be	involved	in	protecting	neurons,	since	the	neurons	observed	are	the	

ones	that	survived.	This	question	is	highly	relevant	since	mouse	models	exhibiting	RNA	

foci	and	dipeptide	aggregates	caused	by	the	expression	of	a	pathogenic	GGGGCC	repeat	

do	not	show	any	neuronal	toxicity	245-247.		
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Are	 all	 types	 of	 ALS	 similar?	 Could	 a	 better	 characterization	 of	 the	 symptoms	

observed	in	patients	lead	to	a	categorization	of	different	ALS	cases?	If	we	speculate	that	

C9orf72	 could	 cause	 a	 dose-dependent	 effect	 similar	 to	 what	 is	 observed	 in	 Fragile-X	

syndrome/tremor	 ataxia,	 a	 comprehensive	 characterization	 of	 patient	 phenotypes	will	

be	necessary.	Finally,	a	clear	connection	between	C9orf72	GGGGCC	repeat	length,	C9orf72	

expression	 level	and	motor	and	cognitive	dysfunctions	will	be	necessary.	 Interestingly,	

here,	 model	 organisms	 could	 prove	 to	 be	 highly	 useful	 to	 evaluate	 the	 variation	 of	

C9orf72	expression,	the	formation	of	RNA	foci	and	production	of	dipeptides	throughout	

development	of	the	disease.		
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ALS DRUG DEVELOPMENT 

Using	 different	 C.	elegans	models,	 we	 employed	 a	multistep	 strategy	 to	 identify	 drugs	

that	could	alleviate	C9orf72	 toxicity	and	could	highlight	potential	therapeutic	pathways	

for	C9orf72	 positive	patients.	We	 identified	 small	molecules	 that	 alleviated	 the	 toxicity	

from	the	 loss	of	alfa-1/	C9orf72	expression,	 the	GGGGCC	RNA	toxicity	 in	C.	elegans,	and	

attenuated	 the	 abnormal	 RNA	 expression	 observed	 in	 patient-derived	 cells.	 Here	 is	 a	

summary	 of	 the	 standard	 drug	 development	 process	 and	 the	 challenges	 posed	 to	 the	

identification	of	effective	ALS	therapies.		

	

USUAL	DRUG	DEVELOPMENT	PROCESS2	

Drug	development	 is	 a	 lengthy	process	 that	 can	 often	 take	 two	decades	 before	 a	 drug	

makes	 it	 to	 the	 market.	 According	 to	 the	 US	 Food	 and	 Drug	 Administration	 (FDA),	

molecules	are	first	identified	in	the	research	laboratory	and	are	then	tested	in	different	

in	 vitro	 and	 in	 vivo	 models	

(called	 preclinical	 trials).	

These	 models	 are	 often	

mouse	models	recapitulating	

key	features	of	the	disease.	If	

the	molecule	 is	efficient,	and	

                                                        

2	FDA	website	http://www.fda.gov/ForPatients/Approvals/default.htm	page	visited	December	13,		2015	

 

Figure 4.2: Outline of drug development 
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if	they	are	available,	the	molecules	are	tested	in	larger	mammalian	models.	From	there,	

clinical	 trials	 are	 started	 that	 include	 four	 phases,	 testing	 an	 increasing	 number	 of	

individuals	with	or	without	a	disease	to	assay	for	drug	safety,	efficacy	and	potential	side	

effects	(Figure	4.2).	Finally,	drugs	will	be	evaluated	by	the	health	agency	of	the	country,	

and	if	the	agency	finds	it	to	be	safe,	the	drug	will	be	released	for	treatment	of	ALS		

	 Needless	 to	 say,	 drug	development	 is	 a	 lengthy	and	expensive	process.	Using	C.	

elegans	 and	 FDA	 approved	 molecules,	 we	 speculated	 that	 we	 could	 develop	 a	 high-

throughput	 drug	 screening	 of	 molecules	 that	 would	 specifically	 target	 some	 specific	

phenotypes	 in	 the	worm.	 Development	 of	 new	C.	elegans	models	 is	 relatively	 fast	 and	

repurposing	 molecules	 that	 are	 already	 approved	 by	 the	 FDA	 could	 accelerate	 their	

testing	in	clinical	settings.		

	

CHALLENGES	FOR	THE	DEVELOPMENT	OF	ALS	DRUGS	

EFFICACY OF RILUZOLE 

Riluzole	was	first	approved	in	1995	and	still	remains	the	only	drug	approved	to	treat	ALS	

patients.	It	has	a	modest	effect,	increasing	survival	from	3-6	months6.	The	exact	function	

of	riluzole	is	still	unclear	but	it	is	speculated	to	act	on	excitotoxicity.	The	first	evaluation	

of	riluzole	in	ALS	patients	was	published	in	1994	and	the	rationale	for	it	was	solely	based	

on	patient	characteristics	which	include	an	observed	decreased	in	glutamate	uptake	and	

abnormal	glutamate	metabolism	in	patients271.	Riluzole	has	also	been	shown	to	improve	

phenotypes	in	Spinal	muscular	atrophy	mouse	272,	another	motor	neuron	disorder,	and	
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clinical	 trials	 are	now	being	done	 to	 test	 its	 efficacy	 in	patients3.	Riluzole	 is	 also	being	

tested	for	many	neurodegenerative	disorders	including	Parkinson’s	disease,	Alzheimer’s	

disease,	 Huntington’s	 disease	 and	 cerebellar	 ataxia,	 and	 for	 treatment	 in	 many	

psychiatric	 disorders	 such	 as	 bipolar	 disorder,	 obsessive-compulsive	 disorder,	 post-

traumatic	 stress	 injury	 and	depression2.	Thus	 riluzole	has	 general	 activity	 in	 restoring	

neuronal	function.			

	

THE DIFFICULTIES IN ALS CLINICAL TRIALS  

For	the	past	50	years,	over	50	clinical	trials	were	undertaken	to	test	molecules	that	could	

treat	or	delay	 symptoms	 in	ALS	patients166.	 Even	now,	more	 than	40	 clinical	 trials	 are	

being	 conducted	worldwide	 to	 test	 the	 efficacy	 of	molecules	 or	 care	management	 that	

could	alleviate	disease	progression4	.	 In	 just	the	past	10	years,	more	than	15	molecules	

have	 failed	 during	 phases	 2	 or	 3	 of	 clinical	 trial	 166.	 Many	 of	 these	 molecules	 were	

believed	 to	 target	 mechanisms	 with	 central	 roles	 in	 ALS	 pathogenesis	 including;	

excitotoxicity,	 neuroinflammation,	 oxidative	 stress,	 apoptosis,	 mitochondrial	

dysfunction,	autophagy	and	astrocyte	functions.		

Many	 researchers	 are	 questioning	 the	 failures	 of	 these	 clinical	 trials	 suggesting	

that	 the	 simple	 measurement	 of	 lifespan	 extension	 in	 patients	 is	 inappropriate	 for	 a	
                                                        

3	U.S.	National	Institutes	of	Health-Clinical	trials	website	clinicaltrials.gov	page	visited	Dec	26,	2015		

4U.S.	National	Institutes	of	Health-Clinical	trials	website	
https://www.clinicaltrials.gov/ct2/results?cond=ALS&pg=2		page	visited	December	26,	2015	
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disease	 in	 which	 the	 disease	 cause,	 duration	 and	 development	 is	 so	 variable	 273.	

However,	 the	 lack	of	efficient	biomarkers	 to	predict	disease	progression	had	made	 the	

use	of	other	endpoints	very	difficult	274	.		

The	 use	 of	 mouse	 models	 in	 pre-clinical	 studies	 has	 also	 been	 questioned.	 If	

molecules	have	made	it	to	phase	2	and	3,	it	is	because	they	were	successful	in	pre-clinical	

phases	 using	mouse	models.	 To	 this	 day,	 the	 transition	 of	 observation	 that	was	made	

with	mouse	models	to	humans	has	been	disappointing,	thus	it	 is	difficult	to	predict	the	

effectiveness	of	molecules	that	are	promising	in	mice	to	ALS	patients.	

	

CONCLUSION		

An	important	question	is	how	to	identify	drugs	that	could	delay	the	progression	of	ALS?	

Although	 bolstered	 by	 promising	 results	 in	 model	 systems,	 drugs	 that	 have	 targeted	

known	pathogenic	mechanisms	have	failed	so	far	in	ALS	clinical	trials.	Additionally,	even	

with	 the	 knowledge	 that	 riluzole	 has	 a	 beneficial	 effect,	 the	 ALS	 community	 has	 been	

unable	to	make	this	drug	more	effective	more	than	20	years	after	its	approval.	With	the	

fast	development	of	genetic	techniques,	many	genes	have	been	linked	to	ALS,	and	while	

some	share	common	functions,	many	questions	remain	regarding	how	they	cause	motor	

neuron	 death.	 Therefore,	 finding	 a	 single	 molecule	 that	 can	 target	 one	 specific	 toxic	

mechanism	 and	 improve	 survival	 in	 most	 ALS	 patients	 is	 becoming	 seemingly	

impossible.	 Also,	 ALS	 has	 become	 a	 spectrum	 of	 motor	 neuron	 disorders	 that	 can	 or	

cannot	 include	cognitive	deficits,	 increasing	the	complexity	 in	 finding	a	single	molecule	
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to	 address	 all	 causes.	 We	 speculated	 that	 identifying	 specific	 phenotypes	 in	 a	 model	

organism	caused	by	a	specific	genetic	variant	would	be	the	most	promising	approach.			

	 Molecules	 have	 typically	 been	 developed	 based	 on	 their	 known	 target	 and	 the	

target	 pathway	 that	 is	 believed	 to	 be	 involved	 in	 the	 cellular	 toxicity.	 However,	 some	

groups	 have	 speculated	 that	 phenotypic	 screens	 could	 be	 more	 efficient	 than	 target-

based	screen	to	identify	molecules	that	could	be	relevant	in	human275,276.	We	speculated	

in	this	project	that	C.	elegans	is	a	valid	model	to	carry	large	molecule	screens	based	on	a	

specific	phenotype,	independently	of	the	known	function	of	the	molecules.	Furthermore,	

testing	the	chosen	molecules	in	patient	derived-cells	has	allowed	us	to	confirm	that	some	

of	 these	molecules	could	also	act	on	pathological	 features	observed	 in	C9orf72	positive	

patients.	Using	FDA	approved	molecules	has	helped	 identify	bioactive	molecules,	many	

of	which	 are	 known	 to	 cross	 the	 blood-brain	 barrier	 and	 increasing	 their	 potential	 as	

therapeutics	 for	ALS	patients.	Lastly,	 similarly	 to	 riluzole,	many	of	 the	drugs	 identified	

here	 are	 known	 to	 be	 beneficial	 in	 psychiatric	 diseases,	 demonstrating	 their	 ability	 to	

influence	neuronal	phenotypes.		

The	 work	 presented	 here	 is	 focused	 on	 C.	 elegans	 models	 of	 C9orf72	 and	 we	

present	 molecules	 that	 specifically	 rescue	 the	 neuronal	 loss	 in	 an	 in	 vivo	 context	

Furthermore,	 we	 have	 shown	 that	 the	 drugs	 identified	 in	 worms	 are	 also	 active	 in	

mammalian	 systems,	 here	 by	 reducing	 the	 abnormal	 RNA	 expression	 observed	 in	

patient-derived	cells.	Of	 course,	optimisation	of	 these	drugs	might	be	necessary	before	

they	 are	 tested	 in	 humans	 but	 they	 are	 prime	 candidates	 for	 testing	 in	 other	C9orf72	

models.	Some	of	 these	molecules	have	many	cellular	targets	but	 finding	which	of	 these	
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targets	 are	 involved	 in	 the	 neuroprotection	 against	 C9orf72	 toxicity	 could	 highlight	

specific	 pathways	 that	 are	 protective	 against	 C9orf72	 toxicity,	 therefore	 opening	 new	

research	avenues	regarding	C9orf72	research.		

	

PERSPECTIVES	

Gene	 therapy	 and	 stem	 cell	 transplants	 represent	 alternatives	 to	 the	 use	 of	 small-

molecule	for	the	treatment	of	ALS.	The	identification	of	CRISPR/Cas9	method	to	modify	

genetic	variant	is	promising	and	much	effort	is	being	done	to	investigate	this	technique	

in	 human277-279.	 The	 reversal	 of	 the	 toxic	 genetic	 variant	would	 be	 the	most	 upstream	

treatment	 for	 patients	 in	 which	 ALS	 as	 a	 genetic	 composition.	 	 However,	 ethical	 and	

safety	considerations	will	delay	its	application	in	humans.		

	 Personalized	medicine	 is	 becoming	 useful	 and	popular,	 so	 a	 similar	mechanism	

could	be	proposed	for	the	future	of	ALS	drug	discovery.	Therefore,	finding	molecules	that	

would	specifically	act	on	C9orf72	would	be	an	important	first	step	toward	the	treatment	

of	ALS.	In	the	best-case	scenario,	finding	drugs	that	could	completely	halt	neuronal	death	

would	 be	 ideal.	 However,	 the	 identification	 of	 molecules	 that	 could	 slow	 disease	

progression	in	one	type	of	ALS	would	be	a	major	step	for	patients.	Given	that	aging	is	a	

major	 contributing	 factor	 for	 diseases	 like	 ALS,	 delaying	 disease	 onset	may	 effectively	

cure	the	disease	in	some	cases.	

	 The	molecules	 identified	during	this	project	should	be	tested	 in	other	models	of	

C9orf72	 exhibiting	 neuronal	 loss,	 either	 mice	 or	 iPSC-neurons	 derived	 from	 patients.	
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Also,	 finding	 the	 targets	 of	 those	drugs	 could	 confirm	 their	potential	 actions	 and	open	

new	research	avenues	regarding	C9orf72	toxicity.	
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CONCLUSION 
	

At	this	point	on,	10-20%	of	the	genetic	mutations	underlying	of	ALS	cases	are	known	and	

many	more	genetic	variations	and	risk	factors	remain	to	be	identified.	Among	the	genetic	

risk	 factors,	 the	 C9orf72	 GGGGCC	 repeat	 expansion	 is	 currently	 the	 most	 prevalent	

known	cause	of	fALS	and	sALS.	Even	though	much	effort	is	still	needed	to	understand	the	

cases	 that	 cannot	 be	 explained	 by	 genetics,	 identification	 of	 molecules	 that	 could	

alleviate	the	toxicity	of,	at	least	one	toxic	protein	would	have	a	tremendous	impact.	The	

work	presented	here	aimed	to	develop	new	models	to	understand	C9orf72	toxicity	and	to	

identify	molecules	that	could	alleviate	neurodegeneration.	

	 Much	 remains	 to	 be	 understood	 about	 the	 toxicity	 of	 C9orf72.	 The	 repeat	 is	

subject	 to	 methylation	 causing	 a	 decreased	 expression	 of	 C9orf72.	 Additionally,	 RNA	

containing	the	expanded	repeat	forms	nuclear	RNA	foci,	and	has	been	shown	to	induce	

the	 production	 of	 several	 dipeptides.	 To	 assess	 all	 of	 these	modes	 of	 toxicity	we	 have	

developed	 and	 characterized	 two	 new	C.	elegans	models.	 Our	worm	models	 helped	 us	

better	 understand	 about	 the	 loss	 of	 function	 of	 C9orf72,	 and	 the	 toxicity	 of	 the	 RNA	

containing	 the	 expanded	 repeat.	 Both	 modes	 of	 toxicity	 were	 detrimental	 to	 neurons	

although	they	seem	to	have	distinct	cellular	toxicity	mechanisms.	Using	these	models,	we	

identified	molecules	that	suppressed	the	toxicity	in	both	models.	Finally,	we	have	tested	

the	effectiveness	of	these	molecules	in	ALS	using	C9orf72	positive	patient	cells.		

	 The	work	presented	here	 includes	 some	of	 the	 first	models	 to	 study	C9orf72	 in	

which	 neuronal	 integrity	 was	 evaluated.	 Also,	 this	 work	 represents	 the	 first	 C9orf72	

specific	drug	screening.		
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	 The	 field	of	C9orf72	 research	 is	still	young	but	 is	beginning	to	uncover	common	

themes	between	all	neurodegenerative	disorders.	Study	of	C9orf72	shows	the	similarities	

between	 ALS	 and	many	 other	 diseases	 including	 age-related	 diseases,	motor	 diseases,	

repeat	disorders,	 and	any	disorder	 caused	by	abnormal	RNA	and	protein	homeostasis.	

Therefore,	the	work	and	models	presented	here	will	hopefully	be	proven	useful	not	only	

for	ALS	patients,	but	also	for	other	age-related	disorders,	motor	neuron	disease,	repeat	

disorders	and	any	diseases	where	RNA	and/or	protein	homeostasis	are	involved.		
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ABSTRACT:	

The	FET	protein	 family	 includes	FUS,	EWS	and	TAF15	proteins,	all	of	which	have	been	

linked	to	amyotrophic	lateral	sclerosis,	a	fatal	neurodegenerative	disease	affecting	motor	

neurons.	Here,	we	show	that	a	reduction	of	FET	proteins	in	the	nematode	Caenorhabditis	

elegans	 causes	 synaptic	 dysfunction	 accompanied	 by	 impaired	motor	 phenotypes.	 FET	

proteins	 are	 also	 involved	 in	 the	 regulation	 of	 lifespan	 and	 stress	 resistance,	 acting	

partially	through	the	insulin/IGF-signalling	pathway.	We	propose	that	FET	proteins	are	

essential	 for	 the	 maintenance	 of	 lifespan,	 cellular	 stress	 resistance	 and	 neuronal	

integrity.		
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INTRODUCTION	

Mutations	 in	 fused-in-sarcoma	 (FUS)	 are	 one	 of	 the	 causes	 of	 amyotrophic	 lateral	

sclerosis	 (ALS)	 (1-3),	 a	 fatal	neurodegenerative	disease	causing	 loss	of	motor	neurons.	

Mutations	 are	 found	 in	 different	 domains	 of	 the	 protein	 and	 cause	 its	 cellular	

mislocalization	 (3).	 The	 presence	 of	 FUS	 in	 the	 cytoplasm	 suggests	 a	 gain	 of	 toxic	

function	mechanism,	but	 the	depletion	of	FUS	 from	the	nucleus	also	points	 to	a	 loss	of	

normal	function	being	implicated	in	motor	neuron	degeneration.	Due	to	its	nature	as	an	

RNA/DNA	binding	protein,	FUS	has	been	shown	to	participate	in	many	cellular	functions	

including	 translation,	 splicing,	 and	 RNA	 transport	 (4).	 FUS	 is	 part	 of	 the	 FET	 protein	

family	that	includes	two	other	RNA	binding	proteins;	Ewin	sarcoma	breakpoint	region	1	

(EWSR1	gene	encoding	 the	EWS	protein)	and	TBP	associated	 factor	15	 (TAF15).	These	

proteins	 are	 highly	 similar	 and	 it	 is	 thought	 that	 they	 share	 common	 functions(5,	 6).	

Furthermore,	EWSR1	and	TAF15	mutations	have	been	linked	to	some	sporadic	cases	of	

ALS(7,	8).	However,	how	mutant	FET	proteins	cause	neuronal	loss	is	still	unclear.		

Many	 proteins	 associated	 with	 ALS	 are	 evolutionarily	 conserved	 in	 the	 nematode	

Caenorhabditis	 elegans.	 C.	 elegans	 are	 transparent	 nematodes	 that	 have	 been	 used	 to	

make	 important	contributions	 to	 the	 fields	of	neuroscience	and	aging.	More	recently	C.	

elegans	 has	 emerged	 as	 a	 useful	 model	 to	 study	 human	 diseases,	 namely	 conserved	

aspects	of	age-dependent	neurodegeneration(9).		

To	better	understand	the	function	of	FET	proteins,	we	characterised	the	fust-1(tm4439)	

deletion	mutant	 in	worms.	C.	elegans	 has	 a	 simple,	 largely	non-redundant	 genome	and	

many	 highly	 conserved	 human	 genes	 have	 a	 single	 orthologue	 in	 the	 nematode.	 Here,	
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fust-1	is	the	orthologue	of	FUS,	EWSR1	and	TAF15.	Using	a	loss	of	function	mutation,	we	

show	that	fust-1	is	a	key	gene	acting	to	regulate	neuronal	integrity,	lifespan	and	cellular	

stress	responses.	Also,	 for	some	of	these	functions,	fust-1	 is	an	active	component	of	the	

insulin/IGF-like	signalling	pathway	(ISS).		
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RESULTS	

FUST-1	is	required	for	neuronal	integrity.	To	understand	the	 function	and	role	of	 the	

FET	proteins,	we	 characterised	 fust-1,	which	 encodes	 the	C.	elegans	 orthologue	of	FUS,	

EWSR1,	TAF15.	 At	 the	 protein	 level,	 FUST-1	 shares	 50%	 identity	with	 the	 FUS	 human	

protein,	 32%	 identity	with	EWS	and	35%	 identity	with	TAF15.	Bioinformatic	 analyses	

using	 NetNes	 (http://www.cbs.dtu.dk/services/NetNES/)	 and	 Prosite	

(http://prosite.expasy.org/scanprosite/)	 confirmed	 the	 conservation	 the	 main	

functional	 domains	 of	 FET	proteins	 including	 the	RNA	binding	domain,	 the	 zinc	 finger	

motif	and	the	nuclear	export	signal	(Fig.	1A	and	Supplementary	Material,	Fig.	S1A	and	B).	

To	 investigate	 the	 role	 of	 FUST-1,	 we	 used	 a	 C.	 elegans	 deletion	 mutant	 strain,	 fust-

1(tm4439)	which	 contains	 240	 base	 pair	 deletion.	 The	 deletion	 mutant	 worms	 fust-

1(tm4439)	 show	 50%	 decreased	 expression	 of	 fust-1	 compared	 wild-type	 N2	 worms	

(Supplementary	Material,	Fig.	S1C),	suggesting	that	those	worms	could	be	used	to	model	

the	effect	of	a	loss	of	function	of	FUST-1.		

Previous	reports	studying	the	function	of	the	ortholog	of	FUS	in	Drosophila,	Cabeza,	have	

suggested	that	a	decreased	expression	of	Cabeza	in	flies	induces	loss	of	neurons(10-13).	

To	 evaluate	 if	 this	 function	was	 conserved	 in	C.	elegans,	 deletion	mutant	worms	were	

evaluated	for	age-dependent	paralysis,	a	motor	phenotype	that	has	been	shown	to	be	a	

good	 predictor	 of	 neuronal	 integrity(14-16).	 At	 day	 1	 of	 adulthood,	 fust-1(tm4439)	

mutants	had	a	normal	motor	behaviour	when	compared	to	wild-type	N2	worms,	but	as	

the	mutants	aged	they	showed	progressive	motility	defects	leading	to	paralysis,	reaching	
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66%	paralysis	by	day	12	of	adulthood	compare	 to	 the	13%	observed	 for	wild-type	N2	

controls	 (Fig.	 1B	 and	 Supplementary	Material,	 Table	 S1A).	We	 have	 previously	 shown	

that	 the	 paralysis	 phenotype	 that	 occurs	when	worms	 are	 grown	on	 solid	media	 after	

several	 days	 can	 be	 observed	 within	 hours	 when	 the	 worms	 are	 grown	 in	 liquid	

culture(17,	18).	The	swimming	behaviour	of	C.	elegans	is	an	energetically	costly	activity	

that	 actively	 engages	 the	neuromuscular	 junction	 and	may	be	 a	phenotype	 relevant	 to	

the	study	of	the	health	of	motor	neurons.	To	study	the	movement	of	the	animals	in	liquid,	

worms	 were	 placed	 in	 a	 96-well	 plate	 and	 their	 movements	 were	 evaluated	 with	 an	

automated	 method	 that	 measures	 locomotion	 activity	 based	 on	 infrared	 beam	

scattering(19).	 With	 this	 method,	 fust-1	 mutants	 initially	 exhibit	 normal	 motility	

behaviour	 but	 show	 a	 drastic	 decrease	 in	 movement	 over	 time	 (Fig.	 1C	 and	

Supplementary	Material,	Table	S1B).		

Next	we	assessed	the	integrity	of	GABAergic	motor	neurons	using	an	unc-47p::mCherry	

reporter	strain(20).	UNC-47	is	a	GABA	vesicular	transporter	and	is	expressed	in	the	26	

GABAergic	motor	neurons	of	the	worm	(21).	At	day	9,	fust-1(tm4439)	mutants	exhibit	an	

increase	 in	 the	number	of	gaps	or	breaks	along	 the	ventral	cord	(Fig.	1D	and	E)	which	

coincides	with	the	onset	of	the	paralysis	phenotype.		

To	 evaluate	 potential	 synaptic	 dysfunction,	 an	 unc25p::snb-1::GFP	 reporter	 strain	 was	

used.	SNB-1	is	a	synaptic	vesicle	protein	and	has	been	used	to	visualized	synapses(22).	

Starting	 at	 day	 1	 of	 adulthood,	 fust-1	 deletion	 mutant	 worms	 exhibit	 abnormal	

organization	 of	 SNB-1	 protein	 compared	 to	 wild-type	 worms.	 SNB-1	 abnormal	

localization	affected	motor	neurons	that	also	exhibit	gaps	along	their	axons	(Fig.	1D	ii)	or	



	 vii	

could	affect	neuron	prior	to	breakage	of	the	axons	(Fig.	1D	iii).	The	proportion	of	worms	

with	 abnormal	 SNB-1	 localization	 increased	with	 aging	 reaching	60%	of	 the	worms	 at	

day	9	compared	to	35%	of	the	wild-type	worms	(Fig.	1F).		

To	evaluate	the	health	of	the	neuromuscular	 junction,	worms	were	exposed	to	aldicarb	

(2-methyl-2(methylthio)	propanal	o-[(methylamino)-carbonyl]	oxime),	an	acetylcholine	

esterase	 inhibitor	 that	 causes	 the	 build-up	 of	 acetyl	 choline	 at	 the	 neuromuscular	

junction	 leading	 to	 paralysis(23).	 Worms	 with	 defects	 in	 vesicular	 release	 at	 the	

neuromuscular	 junction	 exhibit	 hypersensitivity,	 similar	 to	 unc-47	 mutants(24),	 or	

hyper-resistance,	 similar	 to	 unc-64/Syntaxin	 mutants(25).	 fust-1	 mutants	 exhibit	

hypersensitivity	 on	 aldicarb	 when	 compare	 to	 wild-type	 N2,	 reaching	 80%	 paralysis	

compared	to	40%	for	the	wild-type	control	after	two	hours	in	aldicarb	(Fig.	1G).	These	

data	 suggest	 an	 abnormal	 function	 of	 the	 neuromuscular	 junction	 perhaps	 due	 to	 a	

decrease	of	GABA	release	in	the	fust-1	mutants.		

To	confirm	that	the	effects	observed	in	our	fust-1(tm4439)	worms	were	due	to	the	loss	of	

function	of	fust-1,	we	generated	a	transgenic	worm	expressing	full-length	fust-1	linked	to	

GFP	under	the	control	of	its	own	promoter	(fust-1p::fust-1::GFP).	This	strain	exhibits	GFP	

expression	 throughout	 development	 and	 adulthood	 with	 expression	 in	 the	 head,	

pharynx,	intestine	and	tail	of	the	adult	worm	(Supplementary	Material,	Fig.	S1H).	When	

crossed	 to	 the	mutant	worms,	 the	 fust-1p::fust-1::GFP	 construct	completely	rescued	the	

paralysis	phenotype	of	the	fust-1(tm4439)	worms	(Fig.	1H	and	Supplementary	Material,	

Table	S1C)	suggesting	that	indeed	the	motor	phenotype	is	due	to	a	loss	of	fust-1.		
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Overall,	these	results	suggest	that	synaptic	dysfunction	precedes	neuronal	loss	and	that	

aging	 could	 promote	 the	 development	 of	 the	 motor	 phenotype	 observed	 in	 the	 fust-

1(tm4439)	deletion	mutant	worms.		

	

FUST-1	is	involved	in	lifespan	regulation.	Genetic	signalling	pathways	regulating	aging	

have	been	extensively	 studied	 in	C.	elegans	 and	central	 to	 lifespan	and	stress	 response	

mechanisms	 is	 the	 insulin	 /IGF-like	 signalling	 pathway	 (IIS)(26).	 DAF-2	 is	 the	 sole	

insulin/IGF	 receptor	 in	 C.	elegans	 and	 hypomorphic	 daf-2	 mutants	 are	 long-lived	 and	

highly	 resistant	 to	 environmental	 stress(26).	 We	 constructed	 a	 daf-2(e1370);	 fust-

1(tm4439)	 double	 mutant	 strain	 and	 observed	 that	 the	 loss	 of	 fust-1	 completely	

abolished	 the	 extended	 lifespan	 phenotype	 of	 daf-2(e1370)	 mutants	 (Fig.	 2A	 and	

Supplementary	Material,	Table	S2A).	These	data	suggest	that	that	fust-1	functions	within	

the	IIS	to	regulate	longevity.		

In	 C.	 elegans,	 a	 crucial	 downstream	 effector	 of	 the	 IIS	 is	 the	 forkhead	 box	 O	 (FOXO)	

transcription	 factor	 encoded	 by	 daf-16.	 The	 long-lived	 phenotypes	 of	daf-2	mutants	 is	

completely	dependent	on	daf-16(26).	The	daf-16(mu86)	mutants	are	short-lived	but	fust-

1(tm4439);	daf-16(mu86)	double	mutants	have	lifespan	similar	to	daf-16(mu86)	mutants	

alone	 (Fig.	 2B	 and	 	 Supplementary	 Material,	 Table	 S2B).	 These	 data	 suggest	 that	

regulation	of	 lifespan	by	 fust-1	is	dependent	on	daf-16	and	the	decreased	expression	of	

fust-1	does	not	affect	the	lifespan	of	daf-16(mu86).		
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We	observed	that	although	 fust-1(tm4439)	mutants	have	a	normal	 lifespan	at	20°C	and	

25°C	(Supplementary	Material,	Fig.	S3A	and	B	and	Table	S2C	and	D),	the	overexpression	

of	 fust-1	 caused	 an	 increased	 lifespan	 compared	 to	 wild-type	 worms	 (Fig.	 2C,	

Supplementary	 Material	 Table	 S2E).	 Additionally,	 the	 overexpression	 of	 fust-1	 had	 an	

additive	 effect	 on	 daf-2	 mutant	 lifespan	 (Fig.	 2D,	 Supplementary	 Material	 Table	 S2F).	

Thus	 our	 data	 suggest	 that	 fust-1	 is	 essential	 regulating	 lifespan	 via	 the	 IIS	 and	 that	

lifespan-extension	is	modulated	by	FUST-1	in	a	dose-dependent	manner.		

	

FUST-1	 is	 involved	 in	 resistance	 to	 environmental	 stress.	Another	 important	 role	 of	

the	IIS	is	the	regulation	of	cellular	stress	response.	Worms	were	tested	against	different	

environmental	stresses	to	evaluate	the	contribution	of	fust-1	within	the	IIS.	First,	worms	

were	exposed	to	juglone	(5-hydroxy-1,4-naphthoquinone	),	a	natural	product	that	causes	

the	 production	 of	 intracellular	 free	 radical	 in	 worms	 causing	 an	 acute	 oxidative	

stress(27).	 The	 fust-1	 deletion	mutants	were	more	 sensitive	 than	wild-type	N2	worms	

(Fig.	 3A)	 and	 the	 sensitivity	 was	 rescued	 by	 the	 fust-1p::fust-1::GFP	 transgene	 in	 fust-

1(tm4439)	mutants	(Supplementary	Material,	Fig.	4A).	Next	we	examined	daf-2(e1370);	

fust-1(tm4439)	double	mutants	and	observed	that	these	animals	were	more	sensitive	to	

oxidative	stress	than	daf-2(e1370)	mutants,	but	more	resistant	than	fust-1	mutants	alone	

(Fig.	 3B).	 These	 data	 suggest	 that	 the	 IIS	 pathway	 is	 only	 partially	 reliant	 on	 fust-1	 in	

response	to	oxidative	stress.	These	data	suggest	that	fust-1	is	involved	in	the	IIS.	

fust-1	 deletion	mutants	 were	 then	 tested	 for	 their	 resistance	 to	 osmotic	 stress.	 fust-1	

mutants	showed	sensitivity	 to	a	hypertonic	environment	 induced	by	NaCl	(Fig	3C)	and	
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this	 phenotype	 was	 partially	 rescued	 by	 the	 overexpression	 of	 fust-1	 (Supplementary	

Material,	Fig	S4B).	The	deletion	of	fust-1	did	not	affect	the	sensitivity	of	daf-2	mutants	to	

osmotic	stress	(Fig	3D)	suggesting	that	fust-1	is	completely	independent	of	the	IIS	for	the	

regulation	of	osmotic	stress.		

Finally,	worms	were	exposed	to	thermal	stress.	The	fust-1	deletion	mutants	had	a	normal	

sensitivity	when	 submitted	 to	 37°C	 even	 after	 14	 hours	 (Supplementary	Material,	 Fig.	

S4C).	 Also,	 the	 deletion	 of	 fust-1	 in	 daf-2	 mutants	 did	 not	 significantly	 change	 their	

resistance	 to	 this	 stress	 (Supplementary	Material,	Fig.	S4D)	suggesting	 that	 fust-1	does	

not	participate	in	responses	to	thermal	stress.		

	

fust-1	expression	is	regulated	by	the	IIS.	Genes	participating	 in	 the	 IIS	are	known	to	

have	their	expressions	modulated	under	stress	conditions	or	in	IIS	mutants(28),(29).	To	

test	 if	 environmental	 stresses	 could	 induce	 the	 expression	 of	 fust-1,	 a	 transcriptional	

reporter	 of	 fust-1	 (fust-1p::GFP)	 (Supplementary	 Material,	 Fig.	 S5)	 was	 used	 to	

specifically	evaluate	the	gene	expression	profile	of	fust-1	and	not	the	protein	stability	or	

degradation	 under	 these	 conditions.	Worms	were	 submitted	 to	 oxidative	 and	 osmotic	

stresses,	the	two	types	of	stresses	where	fust-1	seems	to	be	the	most	involved.	Osmotic	

but	not	oxidative	could	induce	the	expression	of	fust-1	(Fig.	4A	and	B).	To	evaluate	if	fust-

1	expression	is	regulated	by	the	IIS,	expression	level	was	measured	in	IIS	mutant	worms.	

When	measured	by	qRT-PCR	the	daf-2	mutants	exhibit	a	two-fold	higher	expression	level	

of	 fust-1	 than	 wild-type	 N2	 (Fig.	 4C).	 However,	 daf-16	 mutants	 exhibit	 a	 decreased	

expression	level	of	fust-1	(Fig.	4C)	suggesting	that	fust-1	is	overexpressed	when	the	IIS	is	
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reduced.	 Therefore,	 IIS	 pathway	 mutants	 have	 an	 abnormal	 expression	 of	 fust-1	 and	

osmotic	stress	can	induce	fust-1	expression	independently.	

	

fust-1	 involvement	 in	 neuronal	 integrity	 is	 independent	 of	 the	 IIS.	 The	 IIS	 is	

involved	 in	 maintaining	 neuronal	 integrity(30)	 and	 some	 reports	 have	 previously	

suggested	a	link	between	the	IIS	and	neurodegeneration	in	C.	elegans(31,	32)	.	Therefore	

the	impact	of	the	daf-16	mutants	was	tested	on	fust-1	motor	phenotypes.	The	lack	of	daf-

16	did	not	increase	nor	decreased	the	paralysis	of	the	fust-1(tm4439)	mutants	(Fig.	5A).	

In	 previous	 studies,	 it	 was	 shown	 that	 stress	 sensitivity	 could	 cause	

neurodegeneration(14).	 In	 order	 to	 test	 this	 hypothesis,	 worms	 were	 tested	 against	

oxidative,	osmotic	or	thermal	stresses	and	neurodegeneration	of	the	GABAergic	neurons	

was	 evaluated.	 Oxidative	 and	 osmotic	 stresses	 cause	 neurodegeneration	 in	 the	 fust-1	

deletion	mutants	but	thermal	stress	had	no	significant	effect	(Fig.	5B),	suggesting	a	link	

between	 the	 role	 of	 fust-1	 in	 neuronal	 integrity	 and	 the	 survival	 to	 these	 stresses.	

However,	 the	 lack	 daf-16	 did	 not	 change	 the	 percentage	 of	 animal	 with	

neurodegeneration	(Fig.	5B).	Therefore,	fust-1	seems	to	be	involved	in	neuronal	integrity	

independently	of	the	IIS.		
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DISCUSSION	

FUS,	EWS	and	TAF15	are	RNA	binding	proteins	 that	 form	 the	FET	protein	 family.	 FET	

proteins	 were	 first	 identified	 as	 being	 involved	 in	 tumorigenensis,	 causing	 DNA	

translocation	(6).	Mutations	in	FET	proteins	have	recently	been	linked	to	ALS	(3,	7,	8).	In	

ALS,	 most	 mutations	 affecting	 these	 genes	 are	 missense	 mutations	 and	 cause	 their	

mislocalization	 from	 the	 nucleus	 to	 the	 cytoplasm(1,	 2,	 7,	 8)	 The	 effect	 of	 this	

mislocalization	 and	 how	 the	 mutant	 proteins	 cause	 toxicity	 to	 motor	 neurons	 is	

unknown.	Because	of	their	high	sequence	and	domain	similarity,	all	three	proteins	have	

the	 same	 orthologue	 in	 the	 nematode	 C.	elegans,	 encoded	 by	 the	 gene	 fust-1.	 Using	 a	

deletion	 mutant	 strain,	 we	 have	 shown	 here	 that	 a	 decrease	 in	 fust-1	 expression	 can	

cause	impaired	stress	resistance,	lifespan	regulation	and	neuronal	integrity.	

Using	 C.	elegans,	 other	 ALS	 proteins	 have	 been	 reported	 to	 be	 involved	 in	 stress	 and	

lifespan	 regulation.	 tdp-1,	 the	 orthologue	 of	 TDP-43,	 and	 alfa-1,	 the	 orthologue	 of	

C9orf72,	have	been	shown	to	impair	stress	response	and	TDP-1	was	shown	the	be	a	key	

regulator	of	 longevity(17,	33-35).	 In	human,	TDP-43	 localization	was	shown	 to	 change	

upon	stress	where	wild-type	TDP-43	relocalizes	 in	 stress	granules(36,	37).	 In	humans,	

FUS	was	also	shown	to	participate	to	stress	granules	formation	and	exhibit	a	change	in	

localization	 upon	 stress	 induction(38,	 39).	 More	 specifically,	 FUS	 localization	 changes	

after	osmotic	stress	and	a	reduction	of	expression	of	FUS	 in	human	cell	 lines	induced	a	

loss	 of	 cell	 viability	 in	 a	 hyperosmolar	 environment(40).	 EWS	 and	 TAF-15	 were	 also	

shown	to	translocate	to	stress	granules	 in	human	cells	and	the	RNA	binding	domain	of	
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these	 proteins	 seem	 essential	 for	 this	 phenomenon(41,	 42).	 Together,	 these	 results	

suggest	the	FET	proteins	are	involved	in	stress	response	in	C.	elegans	and	humans.	

The	 Drosophila	 gene	 Cabeza	 is	 the	 orthologue	 of	 FUS,	 TAF15	 and	 EWSR1	 (from	

http://flybase.org/reports/FBgn0011571.html).	Interestingly	in	Drosophila,	Cabeza	was	

also	 shown	 to	be	 involved	 in	 lifespan,	 neuronal	 integrity,	 synaptic	 function(10,	 11,	 13,	

43).	 Synaptic	 dysfunctions	 were	 also	 shown	 to	 precede	 neuronal	 loss	 recapitulating	

features	 observed	 in	 C.	 elegans.	 In	 a	 recent	 FUS	 knock-out	 model,	 the	 mice	 with	 a	

complete	 loss	 of	 expression	 of	 FUS	 exhibit	 change	 in	 behaviour	 but	 no	motor	 neuron	

loss(44).	However,	whole	transcriptome	analysis	of	spinal	cord	tissue	of	these	mice	has	

shown	 an	 increase	 in	 EWSR1	 and	 TAF15	 expression(44).	 It	 is	 known	 that	 FUS	 can	

regulate	 itself(45)	 and	 it	 seems	 that	 it	 can	 also	 regulate	 expression	 of	 protein	 with	

similar	 function	 such	 as	TAF-15	 and	EWS-1.	 Therefore,	 using	 simple	model	 organisms	

where	 compensatory	mechanisms	are	 less	 frequent	we	 can	 reveal	 functions	of	protein	

family	 more	 easily	 and	 suggest	 here	 that	 the	 FET	 proteins	 act	 together	 to	 maintain	

neuron	integrity	and	lifespan.		

Using	 the	 fust-1	 deletion	 mutant,	 we	 have	 also	 shown	 that	 the	 FET	 protein	 family	 is	

involved	 in	 the	 IIS	 to	 maintain	 longevity	 and	 stress	 resistance.	 Also,	 the	 FUST-1	

expression	 level	 was	 dysregulated	 in	 IIS	 mutants	 suggesting	 that	 a	 reduction	 in	 the	

pathway	 causes	 an	 overexpression	 of	 FUST-1.	 In	 human,	 IIS	 exerts	 its	 effect	 through	

many	effectors	including	its	many	receptors,	the	kinases	PI3K	and	AKT	as	well	as	FOXO	

transcription	factors.	TAF-15,	EWS	and	FUS	all	contain	a	RNA	binding	domain	suggestive	

of	a	role	in	RNA	expression	and	metabolism.	In	a	previous	study,	using	UV	cross-linking	
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immunoprecipitation	 followed	 by	 whole	 transcriptome	 sequencing	 (CLIP-seq),	 many	

RNA	targets	of	the	FET	protein	family	have	been	revealed.	Interestingly,	members	of	the	

AKT	and	FOXO	protein	 family	were	 identified	as	 targets	of	wild	 type	TAF-15,	EWS	and	

FUS	 proteins	 in	 human	 cells(5).	 Using	 different	 C.	 elegans	 mutants,	 we	 have	 shown	

genetic	interactions	between	the	FET	proteins	and	members	of	the	IIS,	results	in	human	

further	our	hypothesis	and	suggest	direct	interactions	with	members	of	the	IIS.		

In	 conclusion,	 using	C.	elegans	 deletion	mutants,	 several	 functions	 of	 the	 FET	 proteins	

have	 been	 revealed.	 FUST-1	 is	 actively	 participating	 and	 regulated	 by	 the	 IIS	 for	 the	

maintenance	of	 lifespan	and	for	proper	resistance	to	oxidative	stress.	 Independently	of	

the	 IIS,	 FUST-1	 is	 involved	 in	 neuronal	 integrity	 and	 the	 osmotic	 stress	 response	

suggesting	 its	 participation	 in	 other	 stress	 response	 pathways.	 It	 is	 still	 unclear	 if	

mutations	of	the	FET	protein	family	causative	of	ALS	cause	a	loss	of	function	or	a	gain	of	

function.	However,	mutations	 in	essential	 tremor,	another	neurodegenerative	disorder,	

were	 found	 in	FUS	and	are	suggestive	of	a	 loss	of	 function	mechanism	(46).	Therefore,	

therapies	 targeting	 one	 of	 those	 proteins	will	 have	 to	 be	 highly	 specific	 and	 take	 into	

account	the	impact	on	the	other	members	of	the	FET	family.		
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MATERIALS	AND	METHODS	

Strains	and	maintenance	

Standard	 method	 for	 culturing	 and	 handling	 the	 worms	 were	 used(47).	 Worms	 were	

cultured	on	standard	NGM	media	streak	with	OP-50	Escherichia.	coli	strain	at	20oC	if	not	

specified	otherwise.	 For	 a	 list	 of	 strains	used	 see	 Supplementary	Table	4.	 fust-1p::fust-

1::GFP	 fosmid	 was	 obtained	 by	 the	 TransgenOme	 project	 (48)	 and	 confirmed	 by	

sequencing.	Strain	was	created	by	microinjection	in	unc-119(ed3)	worms.		

	

Bioinformatic	analyses	

For	 amino	 acid	 alignment,	 FUST-1	 protein	 sequence	 was	 used	 as	 query	 sequence	

(Wormbase)	 and	 compared	 to	 FUS	 (CCDS58454.1),	 EWS	 isoform	 (CCDS54513.1)	 and	

TAF15	 (CCDS59279.1)	 as	 subject	 sequence	 and	 align	 using	 BlastP	

(http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSear

ch&LINK_LOC=blasthome).	 For	 prediction	 of	 the	 functional	 domain	 of	 FUST-1	 NetNes	

(http://www.cbs.dtu.dk/services/NetNES/)	 and	 Prosite	

(http://prosite.expasy.org/scanprosite/)	 were	 used	 with	 FUST-1	 coding	 sequence	

(Wormbase).		

	

Paralysis	assay	

Worms	were	transferred	on	5μM	FUDR	plates	one	day	after	L4.	Worms	were	scored	daily	

for	movement	for	12	days.	Worms	were	counted	as	paralysed	if	they	failed	to	move	after	
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they	were	 prodded	 on	 the	 nose.	 Experiments	were	 performed	 at	 20oC	 and	 at	 least	 60	

worms	were	counted	per	conditions.	Survival	curves	and	statistics	were	produced	using	

Log-rank	(Mantel-Cox)	test.	Standard	error	are	shown	on	graph	

	

Liquid	culture	assay	

A	 synchronised	 population	 was	 obtained	 using	 hypochlorite	 extraction.	 Worms	 were	

grown	on	solid	media	up	to	day	1	of	adulthood.	At	day	1,	30	worms	per	well	were	placed	

in	 S	 basal	 with	 OP-50	 E.	 coli	 (optical	 density	 0.5)	 in	 a	 flat-bottom	 96-well	 plate.	

Measurement	was	done	using	Microtracker	(Phylumtech),	at	least	3	wells	were	done	per	

condition.	Standard	error	are	shown	on	graph	

	

Neuronal	integrity	

To	 score	 gaps	 along	 the	GABAergic	 neurons,	 day	 one,	 five	 and	nine	worms	 expressing	

unc47p::mCherry	marker	were	selected	 for	visualisation.	To	evaluate	synaptic	 integrity,	

worms	expressing	snb-1p::GFP	were	selected.	For	neurodegeneration	count	during	stress	

tests,	adult	day	one	worms	were	 transferred	 to	NGM	+	400	mM	NaCl	at	20°C	(osmotic	

stress)	or	normal	NGM	and	put	at	37°C	(thermal	stress)	for	six	hours	or	for	oxidative	test	

worms	were	 transferred	 on	 240uM	 juglone	 for	 30	minutes	 at	 20°C.	 For	 visualization,	

animals	were	 immobilized	 in	M9	with	5	mM	of	 levamisole	and	mounted	on	slides	with	

2%	 agarose	 pads.	 For	 all	 experiments,	 a	 minimum	 of	 100	 worms	 was	 scored	 for	 all	
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conditions.	 The	 mean	 and	 SEM	 were	 calculated	 and	 two-tailed	 t-tests	 were	 used	 for	

statistical	analysis.		

	

Lifespan	assays	

Worms	were	grown	on	NGM	and	transferred	on	NMG+	5μM	FUDR	at	day	1	of	adulthood.	

Worms	were	counted	every	two	days	until	their	death.	At	least	100	worms	were	counted	

per	 strain.	 Survival	 curves	 and	 statistics	 were	 produced	 using	 Log-rank	 (Mantel-Cox)	

test.	Standard	error	are	shown	on	graph	

	

Stress	sensitivity	assay	

Worms	were	grown	on	NGM	until	day	1	of	adulthood.	At	day	1,	worms	were	transferred	

onto	 400mM	NaCl	 plates	 for	 osmotic	 stress,	 or	 240	uM	 juglone	 for	 oxidative	 stress	 or	

onto	NGM	and	put	at	37°C	for	thermal	stress.	Worms	were	counted	every	two	hours	for	

up	to	14	hours	for	osmotic	and	thermal	stress	and	every	30	minutes	for	three	hours	for	

oxidative	stress.	 	Survival	curves	and	statistics	were	produced	using	Log-rank	(Mantel-

Cox)	test.	Standard	error	are	shown	on	graph	

	

RT-PCR	

Worms	grown	on	NGM	plates	were	collected	before	starvation	and	froze	in	Trizol.	Total	

RNA	 was	 extracted	 according	 to	 the	 manufacturer	 protocol.	 1ug	 of	 RNA	 was	 used	 to	
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produce	 cDNA	 using	 Vilo	 cDNA	 enzyme.	 Taqman	 probes	 detecting	 fust-1	 (probe	

Ce02434658_g1	Life	 technologies)	 and	act-5	 (probe	Ce02454560_g1	Life	 technologies)	

as	 endogenous	 control	were	 used.	 Expression	 level	were	 calculated	 by	 converting	 the	

threshold	cycle	(Ct)	values	using	the	2-ΔΔCt	method	(49)		
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FIGURE 
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Figure	 AI.1.	 Deletion	 of	 fust-1	 causes	 motility	 impairment	 and	 loss	 of	 neuronal	
integrity.	 (A)	 C.	 elegans	 fust-1	 is	 the	 ortholog	 of	 human	 FUS,	 EWSR1	 and	 TAF15	 and	
contains	 the	 conserved	RNA	 recognition	motif	 (RRM),	nuclear	 export	 signal	 (NES)	 and	
zinc	 finger	motif	 (ZFM)	(b-c)	Loss	of	 fust-1	 expression	causes	age-dependant	paralysis	
(B)	on	solid	media	(p	value	<0.0001)	and	 	(C)	 the	phenomenon	is	accelerated	in	 liquid	
media	(p	value	<0.0001)	(D-F)	(D)	unc-47	promoter	(red)	and	SNB-1	(green)	were	used	
to	 visualise	 motor	 neurons	 and	 synapse	 formation(normal	 expression	 i)	 Decreased	
expression	of	fust-1	caused	gaps	along	the	motor	neurons	(ii)	and	disorganisation	of	the	
SNB-1	protein	(ii-iii).	Quantification	of	the	number	of	animals	at	day	1,	5	and	9	with	(E)	
neurodegeneration	in	motor	neuron	(unc-47p::mCherry)	(*p	value	<0.05,	n≥100	for	each	
conditions)	 and	 	 (F)	 synaptic	 disorganisation	 (unc25p::SNB-1::GFP)	 (*p	 value	 <0.05,	
n≥100	 for	each	 conditions).	(G)	 fust-1(tm4439)	mutants	are	more	 sensitive	 to	aldicarb	
than	N2	and	unc-64(e246)	but	less	than	the	hypersensitive	strain	unc-47(307)	p<0.001	.	
(H)	Overexpression	of	fust-1	rescues	the	age	dependant	paralysis	phenotype	observed	in	
fust-1(tm4439)	mutants	(p	value	<0.001)	
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Figure	 AI.2.	 fust-1	 functions	 within	 the	 IIS	 pathway	 to	 regulate	 lifespan.	 (A)	
Decreased	 expression	 of	 fust-1	 abolished	 the	 long-lived	 phenotype	 of	 daf-2(e1370)	 (p	
value	<0.005)	but	(B)	has	no	effect	on	daf-16	mutants.	Overexpression	of	fust-1	increased	
the	lifespan	(C)	of	N2	worms	(p	value	<0.0001)	and	(D)	of	daf-2(e1370)	mutants	(p	value	
<0.005)	
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Figure	AI.3.	Oxidative	and	osmotic	stress	responses	require	fust-1	(A-B)	(A)	 fust-1	
mutants	 are	 more	 sensitive	 to	 oxidative	 stress	 induced	 by	 juglone	 compared	 to	 N2	
controls	 (p	 value	 <0.0005).	 (B)	 fust-1;	 daf-2	 mutants	 are	 more	 sensitive	 to	 oxidative	
stress	 than	 daf-2	 controls	 (p	 value	 <0.0001.	 (C-D)	 (C)	 fust-1	 mutants	 are	 sensitive	 to	
osmotic	stress	(p	value	<0.001)	but	the	fust-1	mutation	does	affect	the	stress	sensitivity	
of	(D)	daf-2(e1370).	
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Figure	 AI.4.	 fust-1	 expression	 is	 induced	 by	 osmotic	 stress	 and	 IIS.	 (A)	
Representative,	 black	 and	white,	 photo-reversed	 images	 of	 the	 transgenic	 fust-1p::GFP	
reporter	strains	(control	i)	showing	increased	expression	in	response	to	osmotic	(ii),	but	
not	 oxidative	 stress	 (iii).	 (B)	 Relative	 quantification	 level	 of	 fust-1p::GFP	 under	 stress	
conditions	(*	p	value	<0.0001,	n≥30	for	each	condition).	(C)	qRT-PCR	with	ΔΔCT	analysis	
of	 fust-1	 expression	 showing	 an	 increased	 expression	 in	 daf-2(e1370)	mutants	 and	
decreased	expression	in	daf-16(mu86)	mutants.	
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Figure	AI.5.	Maintenance	of	neuronal	integrity	by	fust-1	is	not	regulated	by	the	IIS.	
(A)	daf-16(mu86);	fust-1(tm443)	mutants	had	rates	of	paralysis	similar	to	fust-1(tm443)	
mutants	 alone.	 (B)	 Acute	 osmotic	 and	 oxidative	 stresses	 induce	 neurodegeneration	 in	
day	1	 fust-1	mutants	but	not	 thermal	 stress.	daf-16	mutants	do	not	 influence	 the	%	of	
animals	with	neurodegeneration	(*p	value	<	0.05,		n≥60	for	each	conditions).	

  



	xxx	

 

SUPPLEMENTARY	MATERIAL	

 

	Figure	AI.S1.	FUST-1	has	the	functional	domains	of	human	FUS,	EWSR1	and	TAF15.	
(A)	 NetNES	 prediction	 showing	 the	 presence	 of	 a	 potential	 NES	 at	 amino	 acid	 200	 of	
FUST-1.	 (B)	 Prosite	prediction	of	 FUST-1	 showing	 the	presence	of	 an	RNA-recognition	
motif	 and	 a	 zinc-finger	 motif.	 (C)	 qRT-PCR	 with	 ΔΔCT	 analysis	 of	 fust-1	 expression	
showing	 that	 fust-1(tm4439)	 exhibit	 50%	 expression	when	 compared	 to	wild-type	 N2	
worms.		
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Figure	AI.S2.	 FUST-1	overexpression	 strain	 (A)	 Picture	 of	 fust-1p::fust-1::GFP	 strain	
showing	expression	of	fust-1	in	head,	pharynx,	intestine	and	tail	of	the	adult	animal.	Left	
panel	is	showing	GFP	image	merged	with	DIC	image	and	right	image	is	black	and	white	
inversion	of	the	same	image.		
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Figure	 AI.S3.	 Loss	 of	 fust-1	 does	 not	 affect	 lifespan.	 fust-1(tm4439)	mutants	 had	
lifespans	similar	to	N2	controls	when	grown	at	either	(A)	20°C	or	(B)	25°C.			
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Figure	AI.S4.	Overexpression	of	fust-1	rescues	stress	sensitivity	of	fust-1(tm4439).	
Overexpression	 of	 fust-1	 (A)	 rescues	 fust-1(tm4439)	 sensitivity	 to	 juglone	 (p	 value	
<0.001)	 and	 (B)	 partially	 rescues	 sensitivity	 to	 osmotic	 stress	 (p	 value<	 0.16).	 (C-D)	
Decreased	 expression	 of	 fust-1	 does	 not	 affect	 response	 to	 thermal	 stress	 of	wild-type	
and	daf-2	mutants.			
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Figure	 AI.S5.	 Representative	 picture	 of	 fust-1p::GFP	worm.	 Picture	 of	 fust-1p::GFP	
strain	 showing	 expression	 of	 fust-1	 in	 head,	 pharynx,	 intestine	 and	 tail	 of	 the	 adult	
animal.	Left	panel	is	showing	GFP	and	DIC	image	and	right	panel	is	the	black	and	white	
inversion	of	the	same	image.		

  



	xxxv	

 

Table AI.S1: Statistic tables of figure AI.1  

A) paralysis on solid media of fust-1(tm4439) 

 % paralysed at day 12 P value vs N2 
N2 13% --- 
fust-1(tm4439) 66% <0.0001 
 

B)paralysis in liquid culture of fust-1(tm4439) 

 P value vs N2 
N2 --- 
fust-1(tm4439) <0.0001 
 

C) fust-1prom::FUST-1::GFP rescue fust-1(tm4439) motor phenotype 

 % paralysed at day 12 P value vs N2 P value vs 
fust-1 
(tm4439) 

N2 16% --- 0.0010 
fust-1(tm4439) 43% 0.0010 ----- 
fust-1p::fust-1::GFP 21% 0.5907 <0.0001 
fust-1(tm4439); fust-1p::fust-1::GFP 22% 0.6629 0.0006 
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Table AI.S2: Statistic tables of figure AI.2  

A) fust-1(tm4439) decreased long-lived phenotype of daf-2(e1370) mutants  

 Median survival P value vs N2 P value vs 
fust-1 
(tm4439) 

N2 14 days --- 0.4206 
fust-1(tm4439) 14 days 0.4206 --- 
daf-2(e1370) 45 days <0.0001 <0.0001 
fust-1(tm4439);daf-2(e1370) 18 days 0.003 <0.0001 
 

B) fust-1(tm4439) does not affect daf-16  mutants lifespan 

 Median survival P value vs N2 P value vs 
fust-1 
(tm4439) 

N2 16 days --- 0.0761 
fust-1(tm4439) 14 days 0.0761 ----- 
daf-16(mu86) 14 days <0.0001 0.0500 
fust-1(tm4439);daf 16(mu86) 13 days <0.0001 0.0072 
 

C) fust-1(tm4439) has no effect on lifespan at 20°C 

At 20°C Median survival P value vs N2 
N2 13 days --- 
fust-1(tm4439) 14 days 0.5728 
 

D) fust-1(tm4439)  has no effect on lifespan at 25°C 

At 25°C Median survival P value vs N2 

N2 15 days --- 
fust-1(tm4439) 15 days 0.3910 
 

E) fust-1 overexpression increases lifespan  

At 20°C Median survival P value vs N2 
N2 16 days --- 
fust-1p::fust-1::GFP 18 days <0.0001 



	xxxvii	

 

F) fust-1 overexpression increases daf-2(e1370) lifespan  

 Median survival P value vs N2 P value vs fust-
1prom::FUST-
1::GFP 

N2 16 days --- <0.0001 
fust-1p::fust-1::GFP 18 days <0.0001 ----- 
daf2(e1370) 37 days <0.0001 <0.0001 
fust-1p::fust-1::GFP;daf-2(e1370) 49.5 days <0.0001 <0.0001 
 

Table AI.S3 –Statistic tables of figure AI.5 

 % paralysed at day 12 P value vs N2 P value vs 
fust-1 
(tm4439) 

N2 16% --- <0.0001 
fust-1(tm4439) 58% <0.0001 ----- 
daf-16(mu86) 30% 0.0708 0.0008 
fust-1(tm4439); daf-16(mu86) 53% <0.0001 0.5059 
 

Table AI.S4 - List of strains 

Strain  Source Genotype 
N2 CGC Wild-type 
FX4439  National Bioresource 

Project of Japan 
fust-1(tm4439) 

ufIs34 M. Francis lab ufIs34 (unc-47::mCherry) 
CZ333 CGC unc25p::snb-1::GFP 
CB307  CGC unc-47(e307) 
CB246  CGC unc-64(e246) 
CB1370  CGC daf-2(e1370) 
CF1038  CGC daf-16(mu86) 
XQ 307 JA. Parker lab unc-119(ed3);sEx307 (fust-1p::fust-

1::GFP) 
BC10929  CGC dpy-5(e907)I;sEx10929(rCes 

C27H5.3::GFP + pCeh361) 
 

	


