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Abstract

A set ranking method assigns to each tournament on a given set an ordering of the subsets

of that set. Such a method is consistent if (i) the items in the set are ranked in the same

order as the sets of items they beat and (ii) the ordering of the items fully determines the

ordering of the sets of items. We describe two consistent set ranking methods.
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1 Introduction

We reconsider the problem of extracting an ordering from a tournament. If the incidence matrix

of a tournament on m items is irreducible, the Perron-Frobenius theorem ensures that it possesses

a unique eigenvector in the m-simplex. The eigenvector solution assigns to each item x a rating

equal to the value of the xth coordinate of that eigenvector (Landau (1895), Wei (1952), Kendall

(1955)). The rating of x is thus proportional to the sum of the ratings of the items that x beats

in the tournament. This self-consistency property is what lends appeal to the solution.

Implicitly, the eigenvector solution defines what may be called a set rating method. It assigns

a rating not only to each item but also to each set of items: the rating of a set is the sum of the

ratings of its members.

Of course, as a by-product, the solution delivers a ranking of the sets of items —a set is ranked

above another if and only if its rating is higher. But the construction of this ranking (hence

also the construction of the ranking of items it induces) requires that the strength of an item be

cardinally measurable. Indeed, the condition that an item’s rating be proportional to the rating

of the set it beats is based on that assumption. Moreover, if the items’ratings have no cardinal

meaning, the ordering of two sets of items should not vary with an increasing transformation of
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the ratings of their members —but it clearly does since it depends upon the sum of these ratings.

The eigenvector solution is inherently cardinal.

This note formulates a version of the consistency property of the eigenvector solution that

does not assume cardinal measurability of the strength of the items. We call a set ranking method

consistent if (i) the items are ranked in the same order as the sets they beat and (ii) the ordering

of the items completely determines the ordering of the sets of items. While the eigenvector set

ranking method satisfies the first condition, it violates the second. The question arises whether

these conditions are compatible. We prove that they are, and describe two consistent set ranking

solutions.

2 Definitions

Let X be a finite set of m items and let X be the set of nonempty subsets of X. A tournament

is a complete and asymmetric binary relation T on X. Let T denote the set of tournaments. If
T ∈ T and x ∈ X, let t(x) = {y ∈ X : xTy} . Let R(X) be the set of orderings of X and let R(X )
be the set of orderings of X .
A set ranking method is a function R : T → R(X ). We interpret R(T ) as the ordering of

X recommended by the method R for the tournament T. Let P (T ) and I(T ) denote, respec-

tively, the strict ordering and the equivalence relation generated by the ordering R(T ). Denote by

RX(T ) ∈ R(X) the ordering of the items induced by R(T ) : by definition, xRX(T )y if and only if
{x}R(T ) {y} . We call RX : T → R(X) a ranking method.

A set ranking method R is consistent if it satisfies the following two conditions:

(i) for all T ∈ T and x, y ∈ X, xRX(T )y ⇔ t(x)R(T )t(y),

(ii) for all T, T ′ ∈ T , RX(T ) = RX(T ′)⇒ R(T ) = R(T ′).

The first condition says that the ranking of two items should be the same as the ranking of the

sets they beat: item x is stronger than y if and only if x beats a stronger set than y does. This

is the ordinal version of the self-consistency property of the eigenvector solution. The second

condition says that the ranking of the items fully determines the ranking of the sets of items: the

extension rule for deriving an ordering on X from one on X is the same in every tournament. The

eigenvector solution imposes a cardinal version of this requirement: the rule for extending ratings

from items to sets does not vary with T —moreover, it takes the particular form of the summation.

Note that in the absence of condition (ii), condition (i) has no bite: the partial ordering on X
derived from RX(T ) and condition (i) can always be completed.

Condition (i) imposes severe restrictions on the extension procedure in condition (ii). We

describe two examples of consistent set ranking methods. Characterizing the set of consistent

methods is an open problem.
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3 Results

A tournament is irreducible if its transitive closure is a complete relation. Every tournament can be

decomposed into a collection of uniquely defined irreducible components: the top component is the

top cycle, the second is the top cycle of the restriction of the tournament to the remaining items,

and so on. The decomposition ordering ranks the items according to the irreducible component

they belong to.

Formally, for any ordering R0 ∈ R(X) and Y ∈ X , let maxY R0 denote the set of max-
imal elements of R0 in Y. Since yI0y′ for all y, y′ ∈ maxY R0, we abuse notation and write

(maxY R0)R0(maxZ R0) if yR0z for all y ∈ maxY R0 and z ∈ maxZ R0. The top cycle of a tourna-
ment T is the set X1(T ) := maxX T of maximal elements of the transitive closure T of T in X. For

any Y ∈ X , let TY denote the restriction of tournament T to the subset of items Y. Define induc-
tively Xk(T ) to be the set of maximal elements of TX\∪kh=1Xh(T ) in X \ ∪

k
h=1Xh(T ). The resulting

partition {X1(T ), ..., XK(T )} of X defines the decomposition ordering R∗X(T ) of X :

xR∗X(T )y ⇔ k(x, T ) ≤ k(y, T ),

where k(z, T ) is the unique integer k such that z ∈ Xk(T ).

Call a set ranking method R′ finer than R if for all T ∈ T and all Y, Z ∈ X , Y P (T )Z ⇒
Y P ′(T )Z.

Proposition 1. There exists a unique finest consistent set ranking method R such that

Y R(T )Z ⇔ (max
Y
RX(T )) RX(T ) (max

Y
RX(T )) (1)

for all T ∈ T and Y, Z ∈ X . The induced ranking method RX chooses the decomposition ordering
of X in each T ∈ T .

Like the eigenvector method, the set ranking method in Proposition 1 ranks items according to

the strength of the set of items they beat —it satisfies condition (i) in the definition of Consistency.

But the method ranks sets of items according to the strength of their strongest member, not

according to the sum of the strengths of their members. This ensures that it satisfies condition

(ii) in the definition of Consistency, contrary to the eigenvector method.

Proof of Proposition 1. For every a ∈ {0, 1, ...,m− 1}X , define the ordering Ra ∈ R(X ) by

Y RaZ ⇔ max
y∈Y

ay ≥ max
z∈Z

az. (2)

Call a, a′ ∈ {0, 1, ...,m− 1}X ordinally equivalent if they generate the same ordering, that is,
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Ra = Ra
′
. Call them ordinally compatible if they generate compatible orderings:

Y P aZ ⇒ Y Ra
′
Z and Y P a

′
Z ⇒ Y RaZ. (3)

Call a′ finer than a if for all Y, Z ∈ X , Y P aZ ⇒ Y P a
′
Z.

For any T ∈ T , define the function fT : {0, 1, ...,m− 1}X → {0, 1, ...,m− 1}X by

fTx (a) = max
y∈t(x)

ay for all x ∈ X,

where, by convention, maxy∈∅ ay = 0. Since {0, 1, ...,m− 1}X is a complete lattice and fT is non-
decreasing, Tarski’s theorem implies that fT has a fixed point: there exists a ∈ {0, 1, ...,m− 1}X

such that

ax = max
y∈t(x)

ay for all x ∈ X.

We claim that all fixed points of fT are ordinally compatible. To see why, let a, a′ be two such

fixed points and check first that for any x, y ∈ X,

ax > ay ⇒ a′x ≥ a′y and a′x > a′y ⇒ ax ≥ ay. (4)

If, say, ax > ay and a′x < a
′
y, then maxz∈t(x) az > maxz∈t(y) az and maxz∈t(x) a

′
z < maxz∈t(y) a

′
z. But

either xTy or yTx. If xTy, then y ∈ t(x) and

a′y ≤ max
z∈t(x)

a′z < max
z∈t(y)

a′z = a
′
y,

a contradiction. If yTx, a similar contradiction arises. Statements (4) and (2) now imply (3), i.e.,

a, a′ are ordinally compatible.

It follows that the finest fixed points of fT are all ordinally equivalent. Call R(T ) the common

ordering they induce on X through (2). By construction, R is consistent, and it is the finest con-
sistent set ranking method satisfying (1). That RX(T ) coincides with the decomposition ordering

of X at T is a matter of checking.�

The method in Proposition 1 is somewhat unsatisfactory because the ordering RX(T ) is typi-

cally quite coarse; it ties all items whenever the tournament T is irreducible.

We now turn to a consistent set ranking method inducing on the items in each tournament

a refinement of the Copeland ranking. The Copeland score of item x in tournament T is |t(x)| ,
the number of items x beats. The Copeland ordering RCX(T ) of X ranks items according to their

Copeland scores: xRCX(T )y ⇔ |t(x)| ≥ |t(y)| . For each possible Copeland score, consider the
restriction of the tournament T to the items having that score. The decomposition refinement of

the Copeland ordering ranks these items according to the decomposition ordering of that restriction
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of T .

Proposition 2 states that there is a finest consistent set ranking method that induces the

decomposition refinement of the Copeland ordering of the items. It compares any two sets of

items by first looking at their size, and breaks ties by comparing the strongest members of these

sets according to the decomposition refinement of the Copeland ordering of the items.

Proposition 2. There exists a unique finest consistent set ranking method R such that

Y R(T )Z ⇔ (i) |Y | > |Z| or (ii) |Y | = |Z| and (max
Y
RX(T )) RX(T ) (max

Z
RX(T )) (5)

for all T ∈ T and Y, Z ∈ X . The induced ranking method RX chooses the decomposition refinement
of the Copeland ordering in each T ∈ T .

Example 1. Consider the tournament T on X = {1, 2, 3, 4} with incidence matrix

M(T ) =


0 1 1 0

0 0 1 1

0 0 0 1

1 0 0 0

 .

Up to a permutation of the items, this is the unique irreducible 4-item tournament. The set

ranking method R in Proposition 2 delivers the ranking

{1, 2, 3, 4} ,
{1, 2, 3} , {1, 2, 4} , {1, 3, 4} ,
{2, 3, 4} ,
{1, 2} , {1, 3} , {1, 4} ,
{2, 3} , {2, 4} ,
{3, 4} ,
{1} ,
{2} ,
{4} ,
{3} .

Condition (i) in the definition of Consistency is met since t(1) = {2, 3} P (T ) t(2) = {3, 4} P (T )
t(4) = {1} P (T ) t(3) = {4} . In this example, the ranking induced on the items is strict and
coincides with the eigenvector ranking.
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Proof of Proposition 2. For every a ∈ [0,m− 1]X , define the ordering Ra ∈ R(X ) by

Y RaZ ⇔ m

m+ 1
|Y |+ 1

m+ 1
max
y∈Y

ay ≥
m

m+ 1
|Z|+ 1

m+ 1
max
z∈Z

az. (6)

The ordering Ra compares sets on the basis of (i) their size and (ii) the rating of their strongest

member. Despite its weighted average representation, Ra is a lexicographic ordering where size

comes first:

|Y | > |Z| ⇒ Y P aZ. (7)

Indeed, if |Y | > |Z| , then m
m+1
|Y |+ 1

m+1
maxy∈Y ay ≥ m

m+1
(|Z|+1)+ 1

m+1
maxy∈Y ay ≥ m

m+1
|Z|+

m
m+1

> m
m+1
|Z|+ 1

m+1
maxz∈Z az, hence Y P aZ. The ratings of the strongest members of X and Y

matter only if |X| = |Y | .
For any T ∈ T , define the function fT : [0,m− 1]X → [0,m− 1]X by

fTx (a) =
m

m+ 1
|t(x)|+ 1

m+ 1
max
y∈t(x)

ay.

The range of fT is included in [0,m− 1]X because 0 ≤ fTx (a) ≤ m
m+1

(m−1)+ 1
m+1

(m−1) = m−1
for all a ∈ [1,m− 1]X and x ∈ X. Since [1,m− 1]X is a complete lattice and fT is nondecreasing,
Tarski’s theorem implies that fT has a fixed point: there exists a ∈ [1,m− 1]X such that

ax =
m

m+ 1
|t(x)|+ 1

m+ 1
max
y∈t(x)

ay for all x ∈ X.

As in the proof of Proposition 1, statement (4) is true for all x, y ∈ X and any two fixed points

a, a′ of fT . To check this claim, suppose again that ax > ay and a′x < a
′
y. Then

m

m+ 1
|t(x)|+ 1

m+ 1
max
z∈t(x)

az >
m

m+ 1
|t(y)|+ 1

m+ 1
max
z∈t(y)

az

and
m

m+ 1
|t(x)|+ 1

m+ 1
max
z∈t(x)

a′z <
m

m+ 1
|t(y)|+ 1

m+ 1
max
z∈t(y)

a′z.

By (6) and (7), this implies that |t(x)| = |t(y)| and

max
z∈t(x)

az > max
z∈t(y)

az and max
z∈t(x)

a′z < max
z∈t(y)

a′z,

leading to the same contradiction as in the proof of Proposition 1.

The rest of the argument is the same as before. The finest fixed points of fT are all ordinally

equivalent. If R(T ) is the common ordering they induce on X , then R is consistent, and it is

the finest consistent set ranking method satisfying (5). It is straightforward to check that RX(T )

coincides with the decomposition refinement of the Copeland ordering of X at T .�
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4 Discussion

The consistent set ranking methods described in Propositions 1 and 2 are based on particular rules

for extending an order from a set to the set of its subsets: the first method ranks sets according to

the strength of their strongest member, the second ranks them by comparing their size first and,

in case of a tie, the strength of their strongest member.

Determining which of the many possible extension rules (see Barberà, Bossert and Pattanaik

(2004)) are compatible with Consistency is an open problem1. It seems that many popular rules

are not: here are two examples.

Example 2. The rank of item x in an orderingR0 ∈ R(X) is the number r(x,R0) = |{y ∈ X : xRy}| .
Note that r(x,R0) > 0 for all x ∈ X. A natural extension rule consists in ranking sets according
to the sum of the ranks of their members. This extension rule is incompatible with Consistency:

there is no consistent set ranking method R such that

Y R(T )Z ⇔
∑
y∈Y

r(y,RX(T )) ≥
∑
z∈Z

r(z, RX(T )) (8)

for all T ∈ T and Y, Z ∈ X .
This may be proved by using the irreducible 4-item tournament of Example 1. Suppose R is

a consistent set ranking method satisfying (8) for all Y, Z ∈ X . To simplify notation, write r(x)
instead of r(x,RX(T )), where T is the tournament of Example 1. We derive a contradiction in

four steps:

Step 1: 4PX(T )3.

If 3RX(T )4, then by Consistency {4} = t(3)R(T )t(4) = {1} , hence 4RX(T )1 and by transitiv-
ity 3RX(T )1. By Consistency again, this implies {4} = t(3)R(T )t(1) = {2, 3} . Since {3}R(T ) {4} ,
it follows by transitivity that {3}R(T ) {2, 3} , which contradicts (8) since r(2) > 0.

Step 2: 2PX(T )4.

If 4RX(T )2, (8) implies r(4) ≥ r(2). It follows that r(3) + r(4) ≥ r(2) + r(3), that is,

{3, 4}R(T ) {2, 3} . Since {3, 4} = t(2) and {2, 3} = t(1), Consistency implies 2RX(T )1.
On the other hand, 4RX(T )2 implies, by Consistency, {1} = t(4)R(T )t(2) = {3, 4} . Since

(8) implies {3, 4}P (T ) {4} , it follows that {1}P (T ) {4} , hence 1PX(T )4 and, by transitivity,
1PX(T )2, a contradiction.

Step 3: 1PX(T )2.

If 2RX(T )1, then by Consistency {3, 4} = t(2)R(T )t(1) = {2, 3} , and it follows from (8) that

r(4) ≥ r(2), a contradiction to Step 2.
1The corresponding problem also arises for set rating methods. Call such a method cardinally consistent if (i)

the ratings of the items are proportional to the ratings of the sets of items they beat and (ii) the ratings of the
items fully determine the ratings of the sets of items. The eigenvector set rating method is cardinally consistent.
Are there cardinally consistent methods where the rating of a set is not the sum of the ratings of its members?
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Step 4: From Steps 1, 2, 3, 1PX(T )2PX(T )4PX(T )3. Therefore r(1) = 4 = 3 + 1 = r(2) + r(3).

Since {1} = t(4) and {2, 3} = t(1), it follows that t(4)I(T )t(1), violating Consistency since 1PX4.

Example 3. Given an ordering R0 ∈ R(X), the rank vector of a set Y ∈ X , is the m-dimensional
vector r(Y,R0) whose first |Y | coordinates are the ranks of the items in Y listed in non-increasing
order, and whose remaining m − |Y | coordinates are all zero. The leximax extension rule ranks
sets by applying the lexicographic ordering ≥L to their rank vectors. Thus, sets are ranked by
comparing their strongest members first, their second strongest members second, and so on. This

rule too is incompatible with Consistency: there is no consistent set ranking method R such that

Y R(T )Z ⇔ r(Y,RX(T )) ≥L r(Z,RX(T )).

for all T ∈ T and Y, Z ∈ X . This may again be proved by using the tournament of Example 1.
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