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ABSTRACT  

Study Design. Concurrent validity between postural indices obtained from digital 

photographs (2D), surface topography  imaging (3D) and radiographs.  

Objective. To assess the validity of a quantitative clinical postural assessment tool of 

the trunk based on photographs (2D) as compared to a surface topography system (3D) 

as well as spinal indices calculated from radiographs. 

Summary of Background Data. To monitor progression of scoliosis or change in 

posture over time in young persons with idiopathic scoliosis, non invasive and non 

ionizing methods are recommended. In a clinical setting, posture can be quite easily 

assessed by calculating key postural indices from photographs.  

Methods. Quantitative postural indices of 70 subjects aged 10 to 20 years old with 

idiopathic scoliosis (Cobb angle: 15º to 60º) were measured from photographs and also 

from 3D trunk surface images taken in the standing position. Shoulder, scapula, trunk 

list, pelvis, scoliosis and waist angles indices were calculated with specially designed 

software. Frontal and sagittal Cobb angles and trunk list were also calculated on 

radiographs. The Pearson correlation coefficients (r) was used to estimate concurrent 

validity of the 2D clinical postural tool of the trunk with indices extracted from the 3D 

system and with those obtained from radiographs.  

Results. The correlation between 2D and 3D indices was good to excellent for shoulder, 

pelvis, trunk list and thoracic scoliosis (0.81> r < 0.97; p < 0.01) but fair to moderate for 

thoracic kyphosis, lumbar lordosis and thoracolumbar or lumbar scoliosis (0.30> r 

<0.56; p < 0.05). The correlation between 2D and radiograph spinal indices was fair to 

good (-0.33 to-0.80 with Cobb angles and 0.76 for trunk list; p < 0.05).  

Conclusion. This tool will facilitate clinical practice by monitoring trunk posture among 

persons with idiopathic scoliosis. Further, it may contribute to a reduction in the use of 

x-rays to monitor scoliosis progression.  

 

Keywords: posture, surface topography, validity, idiopathic scoliosis  
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Key points 

1) Development of non invasive methods is recommended to monitor progression 

of scoliosis or change in posture over time in persons with idiopathic scoliosis.  

2) Quantitative assessment of trunk posture from photographs is valid among 

subjects with idiopathic scoliosis. 

3) Measurement of spinal indices such as trunk list and thoracic scoliosis from 

surface markers may be a clinical alternative to reduce radiograph frequency. 

4) This non-invasive tool may facilitate the follow-up of trunk posture and scoliosis 

progression.  
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INTRODUCTION  

Idiopathic scoliosis (IS) is associated with three-dimensional (3D) morphologic 

modifications of the trunk which result in postural asymmetries. These asymmetries are 

associated with the risk of progression of the deformation1-3 which can affect functional 

activities4,5 and limit participation in active life6. Correction of posture is thus an 

important goal of treatment in children and adolescents with IS. To monitor change in 

scoliosis over time, the Cobb angle remains the gold standard7. Calculated from 

radiographs, it gives information on bony structures or vertebral alignment. The use of 

non invasive methods to monitor progression of scoliosis or change in posture over time 

will decrease the risk associated with repeated radiation doses8-11. The scoliometer12-14  

is an example of a simple, reliable and non radiating tool that has demonstrated its 

usefulness in school screening and prediction of scoliosis progression. However, this 

tool measures rib hump which is only one index of posture. Various 3D posture analysis 

systems such as Optotrak, Vicon, Motion Analysis and surface topography systems have 

been used to quantitatively assess posture of subjects with IS11,15-19. Among these 

approaches, surface topography systems appear to be more appropriate to assess trunk 

postural impairments as they offer a better 3D description of the morphological 

deformity associated with scoliosis 8,15,16,18. However, these systems are not accessible 

for most clinicians since they are expensive, require specialized trained technicians and 

the data processing is complex. Thus a simpler tool is needed to measure posture 

quantitatively in a clinical setting and to monitor scoliosis progression. A promising 

technique to easily assess posture in clinic is based on the calculation of body angles and 

distances on photographs20-24. Photograph acquisition has demonstrated good intra and 

inter-rater reliability for several postural indices in normal subjects21-23, 25,26 and subjects 

with IS27. However, the validity of only a few trunk postural indices taken from 

photographs or surface markers has been assessed9,23,26,28. Except for the trunk list 

index9,28, the validity of these indices was evaluated among normal persons and not on 

persons having trunk deformities and were not specific enough to characterize scoliosis 

progression.  
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Since postural indices (angles or distances) taken on photographs are in 2D 

while the postural asymmetries are in 3D, it is important to verify if the 2D indices 

correlate well with the 3D postural asymmetries. Thus, our objective was to determine 

the validity of a new quantitative clinical postural assessment tool among subjects with 

IS. More specifically, we wanted to: 1) verify the concurrent validity of each 2D 

postural index of the trunk with a 3D surface topography system; 2) evaluate the 

concurrent validity of the spinal indices in the frontal and sagittal planes with 

conventional radiographs.  

 

Methods  

Participants 

Seventy subjects (60 females and 10 males) were recruited from the scoliosis 

clinic at the Sainte-Justine University Hospital Center in Montreal. Inclusion criteria 

were: ages 10 to 20 years old, idiopathic scoliosis diagnosis with a frontal deformity 

between 15º and 60º (Cobb angle) and pain-free at the time of evaluation. Patients who 

had a leg length discrepancy greater than 1.5 centimetres as well as those who had had 

spine surgery were excluded. For the radiograph study, 20 subjects were excluded 

because their X-rays had not been taken within four months of the photographic 

evaluation. Mean age of participants was 15.7 ± 2.5 years and average weight and height 

were 51.9 ± 9.3 Kg and 161 ± 9.5 cm, respectively. Twenty-six subjects had a right 

thoracic scoliosis (mean of 37.9º ± 11.4º), 22 a double major scoliosis (means for each 

curve of 34.8º ± 13.0º; 33.2º ±11.2º), 16 a thoraco-lumbar scoliosis (mean of 25.8º ± 

7.2º) and six a lumbar scoliosis (mean of 26.7º ±13.3º). All subjects and their parents 

signed informed consent forms and the project was approved by the ethics committee of 

the Sainte-Justine University Hospital Center.  

 

Procedure  

Participants were assessed by a trained physiotherapist at our laboratory at 

Sainte-Justine University Hospital Center and a quantitative postural evaluation software 

was used to calculate postural indices of the trunk. The software has a user-friendly 
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graphical interface and it allows calculation of postural indices from a set of markers 

selected interactively on the digital photographs (Figure 1). These markers (5 mm in 

diameter) were placed on the subject by the physiotherapist on the spinous processes (C7 

to S1), coracoid process, inferior angle of the scapulae, anterior superior iliac spine 

(ASIS) and posterior superior iliac spine (PSIS). To facilitate measurement of sagittal 

postural indices, hemispheric 10 mm reflective markers were added on C7, upper end, 

apex and lower end vertebrae of the thoracic and lumbar spine, ASIS and PSIS. Other 

anatomical reference points such as upper end, lower end and center of the waist were 

also used for angle calculation of the right and left waist angle indices.   

Our surface acquisition of trunk geometry was achieved with four 3D optical 

digitizers (3D Capturor, InSpeck Inc., Montreal, Canada). Each digitizer includes a 

structured light projector and a CCD camera connected to a computer. For the 

acquisition, the subject stands in erect position in the center of the set-up at an 

approximate distance of 1.5 m from each digitizer (Figure 2). The four projectors are 

turned on in succession and project structured light, i.e. a pattern of black and white 

narrow stripes which is deformed by the trunk’s external shape. The fringe pattern is 

shifted three times, thus each CCD camera captures four fringe images. A fifth image 

without the fringes, allowing texture mapping on the reconstructed geometry, is also 

acquired by each camera. The complete process requires around 4 to 6 s 10. Each 

digitizer acquires 4 fringe images as well as a texture image using FAPS (Fringes 

Acquisition and Processing Software, InSpeck Inc.). This device uses Phase-Shifted 

Moiré projection, an interferometry measurement method and an active optical 

triangulation technique to reconstruct 3D textured surface models. Spatial relations 

between the digitizers are established previously by a calibration procedure, in order to 

allow merging of the 3D polygonal surfaces obtained from the four digitizers. Thus, 

using this spatial information, EM (Editing and Merging, InSpeck Inc.) software 

automatically merges the partial views together to create a single 3D model. Textures 

from the various images are also merged and mapped onto the surface model. 

Digital photographs were taken with two Panasonic Lumix cameras (DMC-

FX01, 6.3 mega pixels) placed at a distance of 1.59 m for anterior and right lateral views 
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and 1.73 m for posterior and left lateral views at a height of 87.5 cm. Vertical and 

horizontal level adjustments of the cameras were done with a carpenter level. Placement 

and instructions given to all subjects concerning the positioning for data collection were 

standardized. To limit the variability associated with subject’s position, two reference 

frames for feet placement (triangles of 30º) were drawn on the floor for frontal and 

sagittal views29. Subjects were asked to look straight ahead and stand in a normally 

comfortable position21,22,29. Supplementary sagittal photographs were taken with flexed 

elbows if ASIS were not visible21,25 and oblique (45º) as proposed by Watson and Mac 

Donncha 29 to allow better visualisation of markers on the vertebra for thoracic kyphosis 

and lumbar lordosis measurement. 

A complete acquisition took 8 s and consisted of the following sequence: 

acquisition of trunk with surface topography (four 3D digitizers) and digital photographs 

of front and back views. The subject was then asked to turn and hemispheric markers 

were added on anatomical landmarks as previously mentioned. The subject was placed 

in the lateral position for acquisition of right and left lateral photographs with the digital 

cameras.  

Quantitative postural indices from digital photographs and from 3D trunk surface 

were calculated with custom software programs allowing the operator to select a specific 

marker from the graphical interface and to put it directly on the corresponding 

anatomical landmark on a subject’s photograph or surface. Different sets of markers are 

available according to each view (anterior, posterior or lateral). Following the selection 

of the markers associated with the calculation of an angle, its value is automatically 

displayed (Fig 1 and 3). For angle calculation on photographs, the origin of the 

horizontal and vertical axes is located at the left bottom corner of the image. For 

calibration, a cube of 15 cm was used. For the computation of postural indices from the 

3D surface of the trunk, angle and distance calculations were obtained by performing 

first an orthogonal projection of each selected marker on the frontal and sagittal planes, 

then the postural indices were measured in the corresponding planes. The Appendix 

describes the methods for angle and distance calculations from 2D, radiographs and the 

3D trunk surface. Measurements taken on radiographs were the frontal and sagittal Cobb 
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angles and trunk list (C7/S1). One operator was assigned to one type of measurement 

i.e. 2D, or 3D or radiographs. 

 

Data analysis 

     Descriptive statistics (mean, standard deviation (SD)) were used to characterize 

participants and postural indices.  

We used Pearson product moment correlation coefficients to estimate concurrent 

validity of 2D trunk postural indices (photograph) with 3D postural indices (mean of 

three measurements obtained from the surface topography system). The Pearson product 

moment correlation coefficients also served to assess correlation between 2D spinal 

indices and corresponding measurements on radiographs (frontal and sagittal Cobb 

angles and trunk list). Our interpretation of the coefficients was: <0.25 as little or no 

relationship; 0.25 to 0.50 as fair; 0.50 to 0.75 as moderate to good; and >0.75 as good to 

excellent30.  All calculations were done using SPSS statistical analysis software (version 

17.0 for Windows).   

 

RESULTS  

Descriptive data 

The mean and standard deviation (SD) of each postural index from the 2D and 

3D methods are presented in Table 1. Independent t-tests performed on our cohort reveal 

that the thoracic scoliosis was statistically larger than the thoracolumbar or lumbar 

scoliosis as measured by the 2D tool (p=0.001) and the 3D system (p=0.004).  

 

Concurrent validity of postural indices with 3D system  

The Pearson product moment coefficients for each postural index ranged from 

0.30 to 0.97 and were all statistically significant (Table 1). The level of correlation 

between the 2D and 3D indices was good for ten indices (r ranging from 0.81 to 0.97) 

with the highest value for the scapula asymmetry index. The lumbar lordosis, thoracic 

kyphosis and thoracolumbar or lumbar scoliosis 2D indices are fairly to moderately 

correlated with the 3D indices (r ranging from 0.30 to 0.56).  
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Concurrent validity of spinal indices with X-rays 

The Pearson product moment coefficients for each spinal index were all 

statistically significant (Table 2). There were good negative correlations between 2D and 

X-ray spinal indices for thoracic scoliosis and thoracic kyphosis and good correlation for 

trunk list. Correlations were fair for lumbar lordosis and thoracolumbar or lumbar 

scoliosis.  

Trunk list, thoracic scoliosis and thoracolumbar or lumbar scoliosis demonstrated 

a higher degree of correlation with the 3D system whereas thoracic kyphosis and lumbar 

lordosis were more highly correlated with the Cobb angle measurement method.   

 

DISCUSSION  

To our knowledge, this study is the first to assess the validity of a quantitative 

clinical postural assessment tool of the trunk among subjects with IS, using photographs, 

a 3D system and radiographs. Surface topography systems have been largely used in 

research to characterise the 3D morphology of persons with IS 8,15-19. These systems 

have adequate accuracy (mean errors for all markers: 1.1 ± 0.9 mm), good correlations 

with Cobb angle for several indices of the trunk, an excellent inter-trial level of 

reliability (ICCs ≥ 0.91) and a short acquisition time (5 s) 10,15,16,18.  

Our results show a good to excellent correlation between 2D postural indices 

from photographs and postural indices obtained from 3D trunk surface for indices 

representing shoulder, pelvis, trunk alignment and thoracic scoliosis angle. Correlation 

was only fair to moderate for the thoracic kyphosis, lumbar lordosis and thoracolumbar 

or lumbar scoliosis spinal indices. For thoracolumbar or lumbar scoliosis index, the low 

correlation may be attributable to differences in the selection of the vertebrae for this 

calculation. Two different technicians performed the 2D photographs and 3D surface 

measurements. According to Mior et al. 31 and Cheung et al. 32, the inter-rater reliability 

for identification of upper end, apex and lower end vertebra is higher on the larger curve. 

Thoracolumbar or lumbar scoliosis curves were smaller than the thoracic scoliosis ones. 

As for Cobb angle measurement on x-rays, it is recommended that the same person 

perform the vertebrae selection for scoliosis calculation. Also, the line segments used in 
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the calculation of the lumbar scoliosis are shorter. Thus, a small deviation in marker 

placement from shorter line segments will produce a larger difference in angle 

calculation as compared with longer ones.  

The low relationship between 2D and 3D measurements for sagittal spinal curves 

may arise from the oblique (45º) position in which the measurements were taken. 

Because of the trunk asymmetry, reflective markers were not always visible on sagittal 

views. The relationship between these 2D sagittal spinal indices was higher with the 

Cobb angle, in agreement with the results of Raine and Twomey 23. Even though the 

thoracic kyphosis has demonstrated a good negative relationship with the sagittal Cobb 

angle, the results with the 3D system suggest that oblique measurements are not 

representative of the 3D thoracic kyphosis and lumbar lordosis. Van Niekerck et al.26 

proposed a technique using sticks with reflective markers and showed good correlation 

(r=0.81) between photo and X-rays for the thoracic kyphosis taken in upright sitting 

position among normal youths. This may be a more appropriate way to assess sagittal 

spinal curves on photographs, but will need to be verified in the standing position among 

subjects with IS. 

Except for the thoracic kyphosis and lumbar lordosis, 2D spinal indices had 

higher correlation with the 3D system than with X-ray measurements. This could be 

attributable to the fact that 2D and 3D measurements were calculated from the same 

markers, were done in the same position, and only a few seconds apart whereas 

radiographs were taken in a different position, and not necessarily on the same day. As 

demonstrated by Engsberg et al.9 and Lenke et al.,28 for trunk list measurement, the 

relationship between measurement from surface markers and anatomical landmarks on 

radiographs was strong only when taken simultaneously. For thoracic scoliosis and 

thoracolumbar or lumbar scoliosis indices, measurements on photographs derive from 

markers placed on spinous processes whereas measurements on radiographs were 

determined by the Cobb angle technique. The curve described by the spinous processes 

underestimated the magnitude of scoliosis33 and is more influenced by the rotation of the 

apical vertebra34.  According to our results, it seems that the correlation between surface 
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markers and identified vertebral bodies on X-ray is better for C7 and the thoracic 

region than for the lumbar region.  

The main limitations of this study are related to the time lapse between 

photograph and radiograph acquisitions and to the differences in upper end, apex and 

lower end vertebrae selection for the calculation of scoliosis angles from photographs, 

3D surface topography system and radiographs. The acquisition of a low-dose 

radiograph device (EOS system) by the hospital will facilitate the realisation of future 

studies where the concordance of surface reflective markers placed on the trunk can be 

assessed against the real position of the vertebrae.  

This non-invasive tool should be easy to use in a clinical setting to monitor trunk 

posture as both the digital camera and the software are inexpensive, the graphical 

interface of the software is user-friendly (two hours of training were enough to achieve 

reliable measurements) and the time required to complete a trunk evaluation is about 20 

minutes (10 minutes for marker placement and photograph acquisitions and 10 minutes 

for angles and distances calculation with the software). Some indices such as waist 

angles, trunk list and thoracic scoliosis are good indices to characterize scoliosis and 

present a good relationship with the 3D system or with both, the 3D system and X-rays. 

In a previous study, we found an excellent level of inter-occasion and inter-rater 

reliability for these indices 27. The good validity and the excellent reliability of these 

clinical indices taken from photographs, in combination with the scoliometer, may 

support their use as a good alternative for scoliosis screening, to reduce the number of 

radiographs for the monitoring of scoliosis progression and to document cosmetic 

changes after conservative or surgical treatment.  

 

Conclusion 

 

The good to excellent correlations between measurements taken on photographs 

and those obtained from the 3D surface topography system found in this study suggest 

that 10 out of 13 postural indices of the quantitative clinical postural assessment tool of 

the trunk are valid. Trunk list and thoracic scoliosis indices measured from surface 
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markers on photographs are sufficiently well correlated with measurements on 

radiographs to be considered as an alternative to monitor scoliosis progression in a 

clinical setting. This tool will facilitate clinical practice by monitoring trunk posture and 

may contribute to a reduction in the use of x-rays among persons with IS. However, 

future studies are still needed to demonstrate if postural indices included in this tool are 

sensitive enough to detect scoliosis progression or treatment effectiveness. 
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                                                                         APPENDIX 

 

Postural indices of the trunk and methods of angle and distance calculation on 2D, 3D 

and X-ray 

Postural indices of the 
trunk 

Body angle and distance calculation 
2D/3D and X-ray* 

1. Shoulder Elevation 
 
 
2. Scapula Asymmetry 
 
 
3. Waist Angle R  
4. Waist Angle L  
 
 
5. Trunk List  
 
 
 
6. Thoracic scoliosis  
    (modified Ferguson angle) 
7. Thoracolumbar or lumbar  

scoliosis 
    (modified Ferguson angle) 
 
8. Thoracic kyphosis 
 
 
 
 
9. Lumbar Lordosis 
 
 
 
10. Frontal Pelvic tilt (front)  
11. Frontal Pelvic tilt (back)  
 
12. Sagittal Pelvic tilt R  
13. Sagittal Pelvic tilt L  

A line drawn between the left and right coracoid process markers, 
and the angle of this line to the horizontal. 
 
The angle formed by a line drawn from the left and right inferior 
angle of scapula and the horizontal. 
 
The angle subtended by lines drawn through the upper end of waist 
to the center of waist and the center of waist through the lower end 
of waist. 
 
Distance between a line from C7 to S1. 
*X-ray: distance between a line from the center of vertebral body of 

C7 to the center of vertebral body of S1. 
 
The angle subtended by lines drawn through the upper end-vertebra 
of the curve to the apex of the thoracic/thoraco-lumbar/lumbar 
scoliosis and the apex through the lower end-vertebra of the curve. 
*X-ray: Frontal Cobb angle.  
                
 
The angle subtended by lines drawn through the upper end-vertebra 
of the curve to the apex of the kyphosis and the apex through the 
lower end-vertebra of the curve. 
*X-ray: Sagittal thoracic Cobb angle. 
 
The angle subtended by lines drawn through the upper end-vertebra 
of the curve to the apex of the lordosis and the apex through L5. 
*X-ray: Sagittal lumbar Cobb angle. 
 
The angle subtended by the horizontal and by the line joining the 
two ASIS (front) and the two PSIS (back). 
 
The angle subtended by the horizontal and by the line joining the 
PSIS and ASIS. 
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Figure legends 

 

Figure 1 

Graphical interface with a reduced set of markers of the quantitative postural assessment 

tool at the left and a numerical photograph of a subject at the right. The green circles can 

be individually displaced by the operator for the calculation of 2D postural indices. The 

six figures represent the scapula asymmetry, the thoracic scoliosis, the right and left 

waist angles, the trunk list distance and the frontal pelvic tilt.  

 

Figure 2 

Trunk surface topography measurement and reconstruction.  A) Experimental set-up 

with four Capturor InSpeck optical digitizers.  B) Example of a Capturor 3D optical 

digitizer, consisting of a CCD camera coupled with a structured light projector.  C) Set 

of four fringe images, each offset by ¼ phase, projected by a digitizer onto the back of a 

torso manikin. The fifth image provided the surface texture.  D) Resulting phase image 

from the four fringe images; surface reconstruction uses the interferometry principle 

combined with active triangulation.  E) The process of registering and merging the 

partial surfaces from the different digitizers produces the complete trunk surface. 

 

Figure 3 

Graphical interface for the trunk surface reconstruction (left panel) with all the tools 

available for the calculation of 3D postural indices (right panel). The red bars and lines 

represent different angles and distances calculated and displayed in the right panel.  
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Table 1. Means and standard deviations (SD) of 2D and 3D indices and concurrent 

validity (r) of 2D with 3D postural indices of the trunk 

 

Postural Indices 
(N) 

Mean (SD) 
(º or mm*) 

2D                        3D 

Validity (r) 
2D with 3D 

Shoulder elevation (68) 
Scapula asymmetry (68) 
Waist angle (left) (68) 
Waist angle (right) (68) 
Thoracic scoliosis  (59) 
Thoracolumbar or lumbar scoliosis  (51) 
Thoracic kyphosis (61) 
Lumbar Lordosis (59) 
Trunk list (68) 
Pelvic frontal tilt (face) (69) 
Pelvic frontal tilt (back) (68) 
Pelvic sagittal tilt (left) (62) 
Pelvic sagittal tilt (right) (58) 
 

        -2.1 (3.9)             -0.9 (3.0) 
       -4.3 (7.3)             -3.2 (6.1)  

154.8 (9.9)         154.8 (10.6) 
     152.8 (10.0)       149.9 (12.5) 
     163.0 (8.3)         162.0 (7.7) 
     168.3 (6.5)         166.0 (6.3) 
     166.0 (8.5)         166.0 (5.8) 
     161.9 (7.8)         169.3 (7.7) 
        8.8 (19.4)*        9.6 (16.6)* 
        -1.5 (2.2)            -1.1 (2.0) 
        -1.6 (3.5)            -1.4 (3.2) 
        11.3 (5.3)           12.9 (4.9) 
        12.5 (5.5)           13.0 (5.1) 

0.88 
0.97 
0.82 
0.87 
0.83 
0.56 
0.35 

 0.30† 
0.89 
0.81 
0.90 
0.87 
0.89 

 
Legend: *Data is in mm. 

      All correlations were statistically significant p < 0.01, except †: p < 0.05 

 

 

 

Table 2. Means and standard deviations (SD) of X-Ray measurements and concurrent 

validity of 2D postural indices with X-Ray measurements for each spinal index 

Spinal Indices 
(N) 

Mean (SD) 
(º or mm*) 

2D                     X-Rays 

Validity (r) 
2D with X-

Rays 
Thoracic Scoliosis  (37) 
Thoracolumbar or lumbar scoliosis (36) 
Thoracic kyphosis (40) 
Lumbar lordosis (44) 
Trunk list (50) 
 

   163 (9)                  34 (13) 
   168 (7)                  30 (10) 
   167 (8)                  27 (11) 
   163 (8)                  46 (11)  
   11.4 (19.7)*         5.0 (18.2)*         

-0.80 
-0.33 
-0.77 
-0.48 
 0.76 

                    
Legend: *Data is in mm. 

      All correlations were statistically significant p < 0.01 
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Figure 1 
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Figure 2 
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Figure 3 

 


