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Abstract

I provide choice-theoretic foundations for a simple two-stage model, called transitive shortlist methods, where
choices are made by sequentially by applying a pair of transitive preferences (or rationales) to eliminate inferior
alternatives. Despite its simplicity, the model accommodates a wide range of choice phenomena including
the status quo bias, framing, homophily, compromise, and limited willpower.

I establish that the model can be succinctly characterized in terms of some well-documented context
effects in choice. I also show that the underlying rationales are straightforward to determine from readily
observable reversals in choice. Finally, I highlight the usefulness of these results in a variety of applications.

JEL Codes: D01 Keywords: Shortlisting; Axiomatization; Revealed Preference; Identification.

∗A previous version of this paper was circulated under the title “A Simple Model of Biased Choice.” I acknowledge
financial support from the FQRSC. I also thank Rohan Dutta, Jawwad Noor, Koichi Tadenuma, and Kemal Yildiz for
enlightening discussions; and, audiences at the University of Minnesota, University of Ottawa, Université de Montréal,
Canadian Economic Theory Conference, and Midwest Economic Theory Workshop for their feedback.
†Contact: Département de sciences économiques, C-6018 Pavillon Lionel-Groulx, 3150 rue Jean-Brillant, Montréal QC,

Canada H3T 1N8. E-mail: sean.horan@umontreal.ca.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Université de Montréal

https://core.ac.uk/display/151554547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Since Manzini and Mariotti [2007], the theory literature has witnessed a proliferation of bounded ratio-
nality models where the decision maker follows a two-stage choice procedure.1 Broadly, the purpose of
these models is to accommodate context effects in choice—related to a variety of psychological, social,
or environmental factors—that are inconsistent with preference maximization.2

In this paper, I consider a simple two-stage procedure, transitive shortlist methods (TSM), which
departs only mildly from the standard model. Instead of maximizing a single preference, the decision
maker sequentially maximizes a pair (P1,P2) of transitive but potentially incomplete rationales. From
the “shortlist” of feasible alternatives that maximize the first rationale P1, the decision maker ultimately
selects the unique alternative that maximizes the second rationale P2.

The main results establish solid choice-theoretic foundations for the TSM model. Axiomatically, it
is characterized by a Strong Exclusivity condition which imposes clear limitations on the possibility of
context effects in choice (Theorem 2). This axiom stipulates that behavior consistent with the model
cannot simultaneously display two (types of) choice reversals frequently observed in the data. In terms
of identification, these choice reversals bear a straightforward connection to revealed preference in the
model: each type of reversal independently reveals the content of one rationale (Theorem 4). What is
more, these revealed rationales may be determined from choices on “small” menus (Theorem 3); and,
they may be used to characterize the TSM-representations consistent with behavior (Theorem 5).

To put these results in context, it is worth noting that the TSM model has been studied in several
papers (Au and Kawai [2011]; Lleras et al. [2011]; and, Yildiz [2015]) since it was suggested by Manzini
and Mariotti [2006].3 As discussed in Section 7, the characterizations provided in these papers rely on a
technical acyclicity condition (similar to SARP) that provides little insight into the behavior associated
with the model. In addition, the limited work on identification in these papers does not establish the
simple connection between the rationales and some readily observable context effects in choice.

Three separate motivations underlie the main results. First and foremost is the view that a clear
grasp of foundations can provide insights in applications (Dekel and Lipman [2010]; and Spiegler [2008]).
Recently, the literature has displayed a growing interest to integrate bounded rationality considerations
into classical theory models of industrial organization (Spiegler [2011]), contracts (Koszegi [2014]), and
implementation (Korpela [2012]; and, de Clippel [2014]). Among two-stage procedures, the TSM model
seems particularly well-suited to these applications: while it departs only marginally from the standard
paradigm, it accommodates a wide range of choice phenomena (see the examples in Section 2). In the

1Besides the other papers cited in footnote 2 and the Introduction, see: Alcantud and García-Sanz [2015]; Bajraj and
Ülkü [2015]; Manzini and Mariotti [2012]; Houy [2008]; and, Spears [2011].

2Some psychological factors that have been considered include: compromise (Chandrasekher [2015]); limited atten-
tion/consideration (Masatlioglu et al. [2012]; Lleras et al. [2011]); willpower (Masatlioglu et al. [2011]); rationalization
(Cherepanov et al. [2013]); and, status quo bias (Masatlioglu and Ok [2005]; Apesteguia and Ballester [2013]). Environ-
mental and social factors include framing (Salant and Siegel [2013]) and homophily (Cuhadaroglu [2015]).

3In fact, the origins of the TSM model (and every other shortlist method in Table 1 below) can be traced back to some
early work by Soviet mathematicians (see Aizerman [1985]). However, this work is not well-known in economics.
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hope of encouraging further applications of the TSM model, I devote Section 6 of the paper to illustrate
how the main results are useful in a variety of natural applications (see Remarks 1-3).

A second motivation is to establish clear connections in the empirical scope of various two-stage
procedures. Frequently, differences in axiomatic approaches make it difficult to compare these models in
terms of behavior.4 The characterization of the TSM model suggests that exclusivity conditions might
provide a simple basis to compare shortlist methods. To support this intuition, I establish an additional
result (Theorem 6): by progressively weakening Strong Exclusivity, one obtains characterizations of
related models that dispense with transitivity for the second rationale (Matsuki and Tadenuma [2013])
or both rationales (see Manzini and Mariotti [2007]; and, Rubinstein and Salant [2008]). While these
models were originally characterized along different lines, the treatment here provides a unified approach
for understanding all three models in terms of choice reversals.

A final (but equally significant) motivation relates to the principle of parsimony. Given the wealth
of recent two-stage models (see Section 7), it is worth understanding whether the TSM model accom-
modates the kinds of choice anomalies most frequently observed in practice—or whether a more general
model is required. The main results furnish the tools necessary to pursue this question. The identification
results give a simple way to infer the rationales from choice data that is readily collected in experimental
and market settings. What is more, Strong Exclusivity makes it easy to test the model (Theorem 7): for
choice data consistent with Manzini and Mariotti’s [2007] more general model, Strong Exclusivity holds
if and only if there is no “short” cycle of reversals related to choices from “small” menus. By comparison,
the acyclicity condition used in prior characterizations of the model is stronger and, consequently, more
difficult to test. Even though it is unlikely to be relevant in practice, it is worth noting that this advantage
disappears when Strong Exclusivity is tested on its own. In that case, the computational complexity of
testing Strong Exclusivity is comparable to the acyclicity condition used in prior characterizations.5

Layout: Section 2 presents the TSM model, briefly discussing some applications and related models.
The next two sections contain the main theoretical results of the paper: Section 3 provides an axiomatic
characterization of the model while Section 4 gives identification results. Section 5 takes a step back
from the TSM model to highlight the important role played by exclusivity conditions in a broader range
of two-stage procedures. In turn, Section 6 illustrates the usefulness of the theoretical results in a variety
of applications. Finally, Section 7 discusses the contribution of the paper relative to prior work.

2 Preliminaries

I first present the TSM model more formally before discussing some applications and related models.
4In recent work, Tyson [2013] makes clear progress on this question by developing a common framework to characterize

a variety of models. One drawback is that his approach relies on acyclicity conditions as an essential ingredient.
5Two distinct tasks are involved in testing each of these axioms: definition and evaluation. The first requires the analyst

to identify the relevant reversals by considering every menu in the choice data. When there are n alternatives, this means
that up to O(2n) menus must be considered. In turn, the second task requires the analyst to search for a combination of
reversals that is “prohibited” by the axiom. For both axioms, the complexity of this task is O(n2).
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2.1 The TSM Model

Let X denote a finite choice domain. A rationale P is an asymmetric binary relation on X (i.e., for all
x , y ∈ X , xPy precludes yPx). It is total if xPy or yPx for all distinct x , y ∈ X ; and, transitive if xPy

and yPz imply xPz for all x , y , z ∈ X . A transitive shortlist method (TSM) is a pair (P1,P2) of
transitive rationales (i.e., quasi-transitive preferences) that defines a choice function c(P1,P2) : 2

X → X

as follows:
c(P1,P2)(B) ≡ max(max(B ;P1);P2) for all B ⊆ X

where max(A;P) ≡ {x ∈ A : no y ∈ B s.t. yPx} denotes the P-maximal alternatives in A. Conversely,
a pair of transitive rationales (P1,P2) on X is a TSM-representation of the choice function c : 2X → X

if c(B) = c(P1,P2)(B) for every menu B ⊆ X . In this case, c is said to be TSM-representable.

2.2 Applications

Despite its simplicity, the TSM model accommodates a wide range of choice phenomena. To highlight
its flexibility and relevance in applications, consider some examples drawn from the recent literature:

Extreme Status Quo (Apesteguia and Ballester [2013]; see also Masatlioglu and Ok [2005]) A default
(or status quo) option d biases the consumer against choosing products in Ad ⊆ X . When her feasible
choices B include d , she ignores everything in Ad ∩ B and maximizes her total preference P on B \ Ad .

Framing (Salant and Siegel [2013]) Because of framing at the point of sale, the consumer chooses
from the seller’s menu of products B according to a total preference Pf that differs from her “true” total
preference P . After the consumer leaves the store and the framing effect dissipates, she returns the
product chosen from B unless it is preferred to her outside option o /∈ B according to P .

Homophily (Cuhadaroglu [2015]) Two friends influence the choice behavior of one another. Each first
maximizes her own preference P before using her friend’s preference P ′ to refine her choices.

Compromise (Chandrasekher [2015]) The domain X is partitioned into categories {C1, ...,Cn}. The
agent consists of conflicting selves: a “planner” with total preference P ; and, a “doer” with preference
P−1. Given a menu B , the planner selects a (non-empty) category Ci ∩ B ; and, the doer selects an
alternative from Ci ∩B . When picking a category, the planner accounts for the doer’s adverse interests.

Willpower (Masatlioglu et al. [2011]) The decision maker relies on a stock of willpower w to resist
against the alternative b∗ that presents the greatest temptation v in the menu B . Relative to another
alternative x ∈ B , she cannot resist b∗ when v(b∗) > v(x) +w . To select among the alternatives in the
menu B that resist against b∗ (if any),6 the decision maker maximizes her total preference P .

In each of these applications, the rationales have very natural interpretations.7 In the compromise
6Formally, this first stage involves the maximization of a special transitive rationale Pv ,w called a semiorder.
7In each case, behavior is consistent with the TSM model as long as the “preferences” specified are transitive rationales.
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model, for instance, they capture strategic considerations in a two-stage game: the first reflects the
intra-category preferences of the doer while the second reflects the preferences of the forward-looking
planner. In the other applications, the rationales reflect the tension between “true” preference P and
another factor (whether psychological, environmental, or social) that influences behavior.8

In each case, the interpretation imposes some structure on one of the rationales (beyond transitivity).
In the compromise model, for instance, the first rationale prefers x to y precisely when: the second
rationale prefers y to x ; and, the two alternatives belong to the same category. In the other examples,
the rationale with additional structure is the one unrelated to true preference. For instance, every
comparison in the first rationale of the status quo model involves the default; and, no comparison in the
first rationale of the framing model involves the outside option.

Of these models, only the homophily model is well-understood in terms of choice behavior.9 What
is more, Cuhadaroglu’s characterization of that model exploits the kinds of insights developed here. In
Section 6, I show how the results provide an understanding of behavior in the other applications as well.

2.3 Other Shortlist Methods

The TSM model is related to a variety of other shortlist methods which impose more or less structure on
the rationales. The most general, Manzini and Mariotti’s [2007] rational shortlist methods (RSM) (see
also Rubinstein and Salant [2008]; and, Dutta and Horan [2015]), places no formal restrictions on either
rationale (P1 and P2 are asymmetric binary relations). Between the RSM and TSM models are shortlist
methods that only require one of the rationales to be transitive (P1 in Matsuki and Tadenuma [2013];
and, P2 in Houy [2008]). Finally, the transitive RSM model (Au and Kawai [2011]; Lleras et al. [2011];
and, Yildiz [2015]) specializes the TSM model by requiring the second rationale to be total. Since the
added structure of the second rationale in this model imposes no restrictions on behavior beyond those
associated with the TSM model, the two models are equivalent in terms of axiomatics and identification.

The table below summarizes the features of the rationales in each of these models:

To simplify, I ignore the possibility of multi-valued choice (which is ruled out by the TSM model). As stated, choice in
the homophily model can be multi-valued. While the other examples all rule out this possibility, each can be extended to
accommodate multi-valued choice by dropping “total” where it is specified (as is done in some of the cited papers).

8In the homophily model, the first rationale reflects true preference. In the other three models, it is the second.
9The extreme status quo model has only been characterized jointly with a second status quo model (described in

Section 6). In turn, characterizations of the compromise and willpower models exist only for the menu preference domain.
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Model P1 rationale10 P2 rationale11

RSM unrestricted unrestricted

T1SM transitive unrestricted

T2SM unrestricted transitive

TSM transitive transitive

Transitive RSM transitive transitive and total

Table 1: Comparing shortlist methods

Besides the TSM model, I also establish results related to some other shortlist methods in Table 1. To
facilitate the discussion, I postpone the comparison to previous work on these models until Section 7.

3 Axiomatic Foundations

I show that the TSM model may be characterized in terms of two prevalent choice reversals.

3.1 Choice Reversals

The standard model of strict preference maximization is characterized by the Independence of Irrelevant
Alternatives (IIA). Intuitively, this axiom ensures that choice behavior does not depend on the availability
of alternatives which are not ultimately chosen by the decision maker. Formally:

IIA If c(A) = x , then c(B) = x for all B such that {x} ⊆ B ⊆ A.

Intuitively, IIA rules out context effects where the choice of one alternative requires the presence of
another. When such effects are present, the addition or removal of an unchosen alternative may cause
the decision maker to reverse her choice.

The experimental literature points to two choice reversals that are particularly prevalent. In the
first type of reversal, the addition of an unchosen alternative “directly” prevents the choice of another.
Formally, a choice function c displays a direct 〈x , y〉 reversal on B ⊆ X \ {x} if

c(B) = y and c(B ∪ {x}) /∈ {x , y}.

A well-documented bias consistent with this behavior is the attraction effect (Huber et al. [1982]). Put
in terms of this effect, the idea is that the presence of x attracts the decision maker to choose c(B∪{x})
over y . Intuitively, this violates IIA because x plays an attracting role unrelated to preference.

10To rule out empty choice, P1 is nonetheless required to be acyclic (see Dutta and Horan [2015]).
11Requiring P2 to be transitive (and total) is equivalent to requiring P2 to be acyclic (see Lemma 14 of the Appendix).
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In the second type of reversal, the removal of an apparently “weak” alternative has an impact on
choice. Formally, a choice function c displays a weak 〈x , y〉 reversal on B ⊃ {x , y} if

c(x , y) = x and c(B) 6= c(B \ {y}).

With this type of behavior, y affects the choice from B despite the availability of an alternative x that
is pairwise preferred.12 When c(B) = y , a weak alternative is chosen from B despite the presence of
an apparently stronger alternative. When c(B) 6= y , the behavior is suggestive of limited attention
(Masatlioglu et al. [2012]). Here, the idea is that the decision maker only considers (and ultimately
chooses) the alternative c(B) because y attracts attention to it. In either case, the behavior violates IIA
because y plays a special role that is unrelated to preference.

While this discussion makes it clear that these two choice reversals are inconsistent with IIA, more
surprising is that any choice behavior inconsistent with IIA must display both types of reversal:

Theorem 1 For a choice function c , the following are equivalent:

(i) c satisfies the Independence of Irrelevant Alternatives;
(ii) c displays no direct reversals for any pair of alternatives; and,
(iii) c displays no weak reversals for any pair of alternatives.

3.2 A Simple Axiomatization

It turns out that a single axiom, called Strong Exclusivity, characterizes the class of RSMs with TSM-
representations. The strength of this axiom is to provide a clear understanding of the context effects
consistent with the TSM model. To illustrate, first consider a weaker version of this axiom:

Exclusivity For every pair of alternatives 〈x , y〉 ∈ X × X , either:
(i) c displays no weak 〈x , y〉 reversals; or,
(ii) c displays no direct 〈x , y〉 reversals.

For any pair of alternatives, this axiom precludes choice behavior which exhibits both of the context
effects discussed above. Put differently, the possibility of weak reversals for a given pair of alternatives
is ruled out by observing a single direct reversal for that pair (and vice versa).

In terms of choice, Exclusivity is tantamount to the transitivity of the first rationale:

Lemma 1 If c is RSM-representable, then: it is T1SM-representable iff it satisfies Exclusivity.
12For the TSM model, this generalizes to non-binary menus. If c(A) = x for some menu A such that {x , y} ⊂ A ⊂ B,

then c(x , y) = x (see Lemma 30 of the Supplemental Appendix; and, Lleras et al. [2011]).
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When both rationales are transitive, weak reversals are also ruled out “indirectly” by certain pairs of
direct reversals.13 Formally, c displays an indirect 〈x , y〉 reversal on B ⊆ X \ {w , x} if

c(B) = y , c(B ∪ {x}) = x , c(B ∪ {w , x}) = w , and c(B ∪ {w}) = z /∈ {y ,w}.

Here, the role of x is to “obscure” that y is directly reversed by w . To elaborate, observe that the first
three choices are IIA-consistent. In fact, the second and third choices are consistent because the direct
〈x , z〉 reversal on B ∪ {w} leads to c(B ∪ {w , x}) = w . If it led to any other choice, the attracting role
of w would be apparent even without observing c(B ∪ {w}). In this way, the direct 〈x , z〉 reversal on
B ∪ {w} serves to obscure the direct 〈w , y〉 reversal on B .

Using this notion of indirect reversals, Strong Exclusivity may be stated as follows:

Strong Exclusivity For every pair of alternatives 〈x , y〉 ∈ X × X , either:
(i) c displays no weak 〈x , y〉 reversals; or,
(ii) c displays no direct or indirect 〈x , y〉 reversals.

This axiom strengthens Exclusivity. For a given pair of alternatives, direct reversals and indirect reversals
both rule out weak reversals. This restriction on choice captures the transitivity of both rationales:

Lemma 2 If c is RSM-representable, then: it is TSM-representable iff it satisfies Strong Exclusivity.

Manzini and Mariotti [2007, Theorem 1] identify two axioms, Expansion and Weak WARP, that charac-
terize every RSM-representable choice function c . To state these for the unfamiliar reader:

Expansion If c(A) = x = c(B), then c(A ∪ B) = x .

Weak WARP If c(A) = x = c(x , y), then c(B) 6= y for all B such that {x , y} ⊂ B ⊂ A.

The first axiom (also called Sen’s γ) is the standard requirement that choices from larger menus be
consistent with choices from smaller menus. In turn, the second axiom weakens IIA (or, equivalently,
WARP for choice functions) since it requires c(B) 6= y rather than c(B) = x when c(A) = x = c(x , y).
Interestingly, Weak WARP also has a natural interpretation in terms of exclusivity:

Weak Exclusivity For every pair of alternatives 〈x , y〉 ∈ X × X , either:
(i) c displays no weak 〈x , y〉 reversal for any menu B such that c(B) = y ; or,
(ii) c displays no direct 〈x , y〉 reversals.

This axiom weakens Exclusivity. For a given pair of alternatives, direct reversals continue to rule out
weak reversals where the weak alternative is chosen. However, they do not rule out weak reversals where
the weak alternative merely “attracts” the decision maker to a different choice.

13In the standard model of preference maximization, an “indirect” revealed preference x �c
I y is a chain of “connected”

pairwise preferences x �c ... �c y (see Section 4.1 below). In the TSM model, an indirect 〈x , y〉 reversal is a chain of
three connected weak reversals 〈y , z〉, 〈z ,w〉, and 〈w , x〉 (see Section 5.2 below).
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In the presence of Expansion, Weak Exclusivity is equivalent to Weak WARP.14

Lemma 3 If c satisfies Expansion, then: it satisfies Weak Exclusivity iff it satisfies Weak WARP.

In light of Manzini and Mariotti’s result, Lemmas 2 and 3 characterize the TSM model:

Theorem 2 c is TSM-representable if and only if it satisfies Expansion and Strong Exclusivity.

Examples 2-3 of the Supplemental Appendix establish the independence of the two axioms.
The proofs of Lemmas 1-3 are given in the Appendix. For these results, the main challenge is to

establish the sufficiency of Strong Exclusivity in Lemma 2. Effectively, this amounts to showing that the
revealed preference Rc

2 for the second rationale (as defined in Section 4.1 below) is acyclic.

4 Identification

I first show that choice reversals on small menus define revealed rationales for the TSM model before
showing that these revealed preference definitions extend naturally to larger menus. Finally, I show how
revealed preference may be used to characterize the entire class of TSM-representations.

4.1 Revealed Rationales

The proof of Lemma 1 provides an insight that will serve as the foundation for the revealed preference
exercise. To formalize, define the (usual) pairwise preference �c by x �c y if c(x , y) = x ; and, define
an n-cycle to be a sequence x0...xi ...xn−1 such that xi−1 �c xi for 1 ≤ i ≤ n − 1 and xn−1 �c x0.

Corollary 1 If c and c̃ are T1SM-representable, then c(·) = c̃(·) if and only if:

(i) c(x , y) = c̃(x , y) for all {x , y} ⊆ X ; and,
(ii) c(x , y , z) = c̃(x , y , z) for all 3-cycles xyz .

This shows that choices from small menus pin down behavior in the TSM model. The standard model of
preference maximization exhibits the same kind of “small menu” feature. As in that model, this feature
makes it possible to provide simple revealed preference definitions in the TSM model.15

To fix ideas, suppose (P1,P2) is a TSM-representation of c . Notice that the two rationales together
(P1∪P2) must contain the pairwise preferences in �c . Otherwise, (P1,P2) cannot induce choice behavior
consistent with c for every menu of two alternatives. This observation shows that identification in the
model effectively boils down to assigning the preference pairs in �c to one of the rationales.

First, consider the task of assigning the pairwise preferences of a 3-cycle xyz :
14Without Expansion, this equivalence no longer holds. In fact, it can be shown that even Strong Exclusivity and Weak

WARP are independent in the presence of Expansion(see Examples 5-4 of the Supplemental Appendix).
15In fact, the same is true for the T1SM model. See Remark 10 of the Supplemental Appendix.
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z

yx �c

Figure 1: Pairwise preferences of the 3-cycle xyz

In this case, the choice from {x , y , z} determines how to divide the preference pairs. If c(x , y , z) = z , for
instance, x must eliminate y before y eliminates z . So, xP1y and yP2z . Since P1 is transitive, zP2x as
well. Otherwise, zP1xP1y so that zP1y which contradicts y �c z . (Since it depends on the transitivity
of P1, this inference about P2 is not justified in the RSM or T2SM models.)

Next, consider the task of assigning the pairwise preference x �c y when wxyz is a 4-cycle consisting
of overlapping 3-cycles wxz and wyz such that c(w , x , z) = w and c(w , y , z) = z :

z w

y x

�c

Figure 2: Pairwise preferences of the 4-cycle wxyz

Following the same reasoning as in the last paragraph, yP2zP2wP2x . Since P2 is a transitive rationale,
xP1y as well. Otherwise, yP2zP2wP2xP2y so that P2 contains a cycle. (Since it depends on the
acyclicity of P2, this inference about P1 is not justified in the RSM or T1SM models.)

Collecting the observations from the last two paragraphs motivates the following definitions:

Definition 1 Given a choice function c , first define the binary relations Rc
1 and Rc

2 by:

(1) xRc
1 y if c(x , y) = x and —

(i) there exists a 3-cycle xyz such that c(x , y , z) = z ; or,
(ii) there exist 3-cycles wxz , wyz such that c(w , x , z) = w and c(w , y , z) = z .

(2) xRc
2 y if there exists a 3-cycle xyz such that c(x , y , z) 6= z .

For i = 1, 2, next define the revealed i-rationale Pc
i ≡ tc(Rc

i ) to be the transitive closure of Rc
i . (In

other words, let xPc
i y if there exists a sequence {zi}ni=1 in X such that xRc

i z1Rc
i ...R

c
i zn = y .)

These definitions reflect some features of the representation that are particularly straightforward to
infer from behavior. Surprisingly, they capture everything that choice reveals about the rationales:
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Theorem 3 If c is TSM-representable, then:

(1) xPc
1 y if and only if xP1y for every TSM-representation (P1,P2) of c ; and,

(2) xPc
2 y if and only if xP2y for every TSM-representation (P1,P2) of c .

This result shows that Pc
1 and Pc

2 characterize revealed preference in the TSM model. To elaborate,
the only features of the rationales with potential implications for choice are those which are common to
all TSM-representations of behavior. Since the revealed rationales capture precisely these features, they
reflect all possible inferences about revealed preference in the model.

4.2 Role of Choice Reversals

Choice reversals are closely related to revealed preference in the TSM model. In fact, one might have
defined Rc

1 and Rc
2 directly in terms of choice reversals on small menus. In particular:

(1) xRc
1 y if and only if c displays a direct or indirect 〈x , y〉 reversal on {y , z} for some z ;16 and,

(2) xRc
2 y if and only if c displays a weak 〈x , y〉 reversal on {x , y , z} for some z .

In this section, I show that this relationship extends naturally to choice reversals on larger menus.
Effectively, the “small menu” feature of the T1SM model (Corollary 1) implies that all reversals boil

down to reversals on small menus.17 Both direct and indirect reversals imply the same type of reversal
on a single small menu: if a direct or indirect 〈x , y〉 reversal occurs on B , then it also occurs on {y , z}
for some z ∈ B . Indeed, the same is true for all weak reversals where the “weak” alternative is chosen.18

However, there are weak reversals which are not reducible to a single small menu reversal.
To illustrate, consider a T1SM-representable choice function c that exhibits the pairwise preferences

in Figure 2. Now, suppose c(w , x , y , z) = w 6= z = c(w , x , z). Since c(x , y) = x , this means that c

displays a weak 〈x , y〉 reversal on {w , x , y , z}. Since Expansion requires c(w , x , y) = w = c(w , x) and
c(x , y , z) = x = c(x , z) however, c does not display a weak 〈x , y〉 reversal on any smaller menu.

This example suggests how to extend Rc
2 to weak reversals that are not fully reducible:

Definition 2 Given a choice function c , define the relation R̂c
2 by xR̂c

2 y if c(x , y) = x and —
(i) there exists a 3-cycle xyz such that c(x , y , z) 6= z (i.e. xRc

2 y); or,
(ii) there exist 3-cycles wxz , wyz such that c(w , x , z) = z and c(w , y , z) = w .

Part (ii) of the definition reflects the weak 〈x , y〉 reversal in the example above.19 As the next result
shows, this captures the extent to which weak reversals are irreducible in the T1SM model:

Theorem 4 If c is T1SM-representable, then:
16Since c(w , x , y , z) = w by Expansion, Definition 1(1)(ii) describes an indirect 〈x , y〉 reversal on {y , z}.
17In the standard model, the revealed preference Pc is defined by xPcy if x ∈ c(B) and y /∈ c(B) for some menu B

such that y ∈ B. The “small menu” feature of that model implies that this boils down to the pairwise preference �c .
18Formally: if a weak 〈x , y〉 reversal where y is chosen occurs on B, then it also occurs on {x , y , z} for some z ∈ B.
19To see this, note that Expansion and Weak WARP require c(w , y , z) = w for the choices in this example.
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(1) xRc
1 y if and only if c displays a direct or indirect 〈x , y〉 reversal; and,

(2) xR̂c
2 y if and only if c displays a weak 〈x , y〉 reversal.

This result shows that large menu reversals have the same revealed preference implications as small menu
reversals. Although R̂c

2 is weakly finer than Rc
2 , the transitive closure of R̂c

2 coincides with Pc
2 .

20

4.3 Representations of Behavior

The proof of Lemma 2 uses revealed preference to construct a representation for any choice function c

consistent with the model. Specifically, it shows that c is TSM-represented by (Q̂c
1 ,Pc

2 ) where Q̂c
1 is a

transitive rationale defined by Q̂c
1 ≡ �c \R̂c

2 . Given Theorem 4, Q̂c
1 reflects the pairs of alternatives that

display no weak reversals (i.e. xQ̂c
1y if and only if c(B) = c(B \ {y}) for all B ⊇ {x , y}).

In general, behavior consistent with the model admits a number of TSM-representations. In this
section, I show that revealed preference can be used to describe the class of all such representations.

For the first rationale, the representation (Q̂c
1 ,Pc

2 ) provides a key insight. Because it excludes only
those pairwise preferences which are directly revealed to be in the second rationale, Q̂c

1 must be the
finest first rationale that can be used to represent c (see Lemma 25 of the Appendix). Just as Theorem
3 identifies the revealed rationale Pc

1 as the most conservative estimate of P1, this establishes Q̂c
1 as the

most liberal estimate. In other words, every P1 used to represent c must satisfy Pc
1 ⊆ P1 ⊆ Q̂c

1 .
Turning to the second rationale, P2 must include every pairwise preference not in the first rationale P1.

Otherwise, (P1,P2) cannot induce choice behavior consistent with c for every menu of two alternatives.
In other words, every P2 used to represent c must satisfy P2 ⊇ tc(�c \P1).21

In fact, these two necessary conditions are also sufficient for a TSM-representation:

Theorem 5 If c is TSM-representable, then (P1,P2) represents c if and only if:

(1) P1 is a transitive rationale such that Pc
1 ⊆ P1 ⊆ Q̂c

1 ; and,
(2) P2 is a transitive rationale such that P2 ⊇ tc(�c \P1).

This result characterizes the class of TSM-representations in terms of the first rationale. By fixing a
transitive P1 such that Pc

1 ⊆ P1 ⊆ Q̂c
1 , any transitive P2 finer than tc(�c \P1) can be used to represent

c . Equivalently, the class of TSM-representations can be characterized in terms of the second rationale:
a transitive pair (P1,P2) represents c iff (1) tc(�c \P2) ⊆ P1 ⊆ Q̂c

1 and (2) P2 ⊇ Pc
2 .

Theorem 5 reflects an inherent trade-off in TSM-representations. To the extent that the analyst
takes a more conservative view about what to include in one rationale, she must take a less conservative
view about the other. Since it forces the analyst to take a position, this feature might be viewed as a
shortcoming of the model. However, it might also be viewed as a strength. Precisely because of the

20For any weak 〈x , y〉 reversal which is not fully reducible (i.e. a pair (x , y) ∈ R̂c
2 \ Rc

2 ), Definition 2 implies that there
exists a chain of three small menu weak reversals 〈x , z〉, 〈z ,w〉, and 〈w , y〉. As a result, it follows that xRc

2 zRc
2 wRc

2 y .
21Since Pc

2 ⊆ tc(�c \Pc
1 ) in the TSM model, this generally rules out (Pc

1 ,Pc
2 ) as a possible TSM-representation.
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flexibility in TSM-representations, the model accommodates a range of applications where the rationales
are given a specific interpretation and some additional structure (as discussed in Section 2).

Even without a particular application in mind, the analyst may wish to rule out certain representations.
In general, a TSM-representation (P1,P2) may contain duplication (xP1y and xP2y) or conflict (xP1y

and yP2x) between the rationales. To limit this kind of redundancy, the analyst might focus on minimal
representations. Formally, a TSM-representation (P1,P2) is minimal if P ′1 ⊆ P1 and P ′2 ⊆ P2 for
no other TSM-representation (P ′1,P ′2). Intuitively, these representations estimate each rationale Pi as
conservatively as possible given the estimate P−i of the other rationale.

Theorem 5 shows that either of the revealed rationales Pc
i defines a minimal representation when the

other rationale is Qc
−i ≡ tc(�c \Pc

i ).
22 Intuitively, these minimal representations reflect opposite (but

equally conservative) views about how to assign the preferences in �c that are not in either revealed
rationale: (Pc

1 ,Qc
2 ) assigns them all to the second rationale; and, (Qc

1 ,Pc
2 ) assigns them all to the first.

Between these extremes, there is a range of minimal representations that reflect intermediate views about
how to assign the preference pairs in �c \(Pc

1∪Pc
2 ). For the interested reader, I provide a characterization

of minimal representations in Section B.2 of the Supplemental Appendix.

5 Exclusivity in Shortlist Methods

I first show that two generalizations of the TSM model (the T1SM and RSM models discussed in Section
2 above) may also be characterized in terms of Expansion and an exclusivity condition. I then show how
the exclusivity requirements of the TSM and T1SM models are particularly straightforward to test.

5.1 Empirical Scope

Given Manzini and Mariotti’s characterization, Lemmas 1 and 3 establish the following:

Theorem 6 A choice function c is:

(i) T1SM-representable if and only if it satisfies Expansion and Exclusivity; and,

(ii) RSM-representable if and only if it satisfies Expansion and Weak Exclusivity.

Combined with Theorem 2, this result pinpoints the key similarities and differences in behavior among
three shortlist methods. While all three models satisfy Expansion, the two generalizations of the TSM
model impose progressively weaker exclusivity restrictions on potential choice reversals.

This suggests a parallel with choice under uncertainty. Just as independence conditions differenti-
ate among models in that setting, exclusivity conditions provide a basis to distinguish among shortlist
methods. The analysis in Section 6 below only serves to reinforce this point. For the specialized TSM
models considered there, exclusivity considerations play a key role.

22It is worth noting some features of these rationales. First, Qc
2 is total (see Lemma 22 of the Appendix). Second, Qc

1

and Q̂c
1 are distinct (see Example 1 of the Appendix for a TSM-representable choice function where Qc

1 ⊂ Q̂c
1 ).
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To be clear, the point is not to undermine the significance of Weak WARP. To the contrary, this
condition describes the exclusivity inherent in every shortlist method (Lemma 3). Rather, the point is to
suggest that the concept of exclusivity itself provides a powerful tool for analyzing two-stage procedures.
Indeed, one can develop key insights into specialized shortlisting models simply by considering how they
strengthen the exclusivity requirements associated with the RSM model.

5.2 Testability

Not only do exclusivity conditions help distinguish among shortlist methods, but they provide a practical
way to test these models in experimental and market settings. To rule out the possibility that choice
data is consistent with a given exclusivity condition, it is sufficient to identify a pair of “incompatible”
choice reversals. In the worst case, all of the reversals in the data must be considered.

While it is quite simple, this “naive” approach actually overstates the difficulty of testing axioms
like Strong Exclusivity. The intuition comes from observing the connection between indirect and weak
reversals: if c is RSM-representable, then an indirect 〈x , y〉 reversal amounts to a chain of three connected
weak reversals 〈y , z〉, 〈z ,w〉, and 〈w , x〉.23 As such, Strong Exclusivity rules out particular four-cycles
of weak reversals: if c displays a chain of weak reversals (arising from an indirect 〈x , y〉 reversal), then it
cannot display a weak 〈x , y〉 reversal. In a similar fashion, the incompatibility between direct and weak
reversals implied by Strong Exclusivity rules out particular three-cycles of weak reversals.24

As it turns out, the connection to cycles of weak reversals is even more fundamental than these
observations suggest. For RSM-representable behavior, Strong Exclusivity precludes all three- and four-
cycles of weak reversals; and, conversely, choice functions without such cycles satisfy Strong Exclusivity.
What is more, there is a similar connection between Exclusivity and three-cycles of weak reversals. Given
Theorem 4, these observations can be stated more succinctly as follows:

Theorem 7 If c is RSM-representable, then:

(i) it satisfies Strong Exclusivity if and only if R̂c
2 is quadruple-acyclic; and,

(ii) it satisfies Exclusivity if and only if R̂c
2 is triple-acyclic.

This result provides a very practical way to test the requirements of (Strong) Exclusivity beyond Expansion
and Weak WARP.25 It is worth emphasizing three features of this test that are particularly appealing: (i)
the test is based on one type of choice reversal only; (ii) the behavior of interest is restricted to small
menus; and, (iii) the scope of the test is limited to “short” cycles.

23An indirect 〈x , y〉 reversal consists of choices c(B) = y , c(B ∪ {x}) = x , c(B ∪ {w , x}) = w , and c(B ∪ {w}) = z /∈
{y ,w} for some menu B. To see where the stated weak reversals arise, first observe that: c(y , z) = y and c(z ,w) = z
by Weak WARP; and c(w , x) = w by Expansion. Then, it is easy to see that c displays the following weak reversals: a
〈y , z〉 reversal at B ∪ {w}; a 〈z ,w〉 reversal at B ∪ {w , x}; and, a 〈w , x〉 reversal at B ∪ {w , x}.

24A direct 〈x , y〉 reversal consists of choices c(B) = y and c(B ∪ {x}) ≡ z /∈ {x , y} for some menu B. If c(x , z) = z ,
then this can be parsed into a pair weak reversals at B ∪ {x}: a 〈y , z〉 reversal (since c(y , z) = y by WWARP); and a
〈z , x〉 reversal. So, Strong Exclusivity also rules out the particular three-cycle of weak reversals 〈x , y〉, 〈y , z〉, and 〈z , x〉.

25In fact, it also provides another way to characterize the TSM and T1SM models. In particular: c is TSM-representable
(T1SM-representable) iff it satisfies Expansion, Weak WARP, and its weak reversals are quadruple-acyclic (triple-acyclic).
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6 Applications of the Results

The theoretical results presented in the previous sections are motivated by the fact that the TSM model
is well-suited to applications. In this section, I first show how these results provide insights into the kinds
of specialized choice models that are likely to figure in applied work. I then highlight the implications for
some classical theory applications where it is natural to incorporate two-stage choice.

6.1 Specialized Models of Two-Stage Choice

The homophily model in Section 2 concerns mutual influence between two agents: the choices c of
one agent are determined by the transitive rationale pair (P ,P ′) while the choices c ′ of the other are
determined by (P ′,P). To axiomatize the model, Cuhadaroglu [2015] relies on a simple observation: for
any pair of alternatives, c and c ′ cannot both display weak reversals. This natural exclusivity condition
follows from Theorem 4. Since the “second” rationale of one agent is the “first” rationale of the other,
no pairwise preference can be revealed to be in the “second” rationale for both agents.

Cuhadaroglu’s analysis highlights how the revealed rationales may yield insights into specialized TSM
models. In this section, I show how the other results in Sections 3 and 4 also provide tools to understand
these models. To illustrate, I first consider the model of status quo bias described in Section 2 before
outlining a general recipe that is suitable for any specialized TSM model.

Status Quo Bias

Formally, the extreme status quo (ESQ) model from Section 2 is parametrized by (d ,P ,Ud) where:
d ∈ X is the default option; P is a transitive and total rationale on X ; and, Ud ⊆ {x ∈ X : xPd} are
the alternatives “unaffected” by the status quo bias. The choice from a given menu B ⊆ X is:

c(d ,P,Ud )(B) ≡


max(B ;P) if d /∈ B

d if d ∈ B and Ud ∩ B = ∅

max(Ud ∩ B ;P) otherwise.

This model amounts to a shortlist method where the first rationale reflects the bias against the “affected”
alternatives Ad ≡ X \ Ud while the second reflects the “true” preference P . In particular, (d ,P ,Ud) is
TSM-represented by (E ,P) where the rationale E is defined by dE a if a ∈ Ad .

This natural representation shows that the model displays a limited range of reversals on small
menus. Given parameters (d ,P ,Ud), every 3-cycle must take the form aud where a ∈ Ad , u ∈ Ud , and
aPuPdE a. Since c(d ,P,Ud )(a, u, d) = u, the only direct reversals on small menus are 〈d , a〉 reversals. By
Theorem 4, every direct reversal must take this form. So, choice must satisfy the following condition:

ESQ Exclusivity For all distinct alternatives x , y ∈ X , either:

(i) c displays no direct 〈x , z〉 reversal for any z ∈ X ; or,
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(ii) c displays no direct 〈y , z〉 reversal for any z ∈ X .

In other words, at most one alternative (the default) causes direct reversals. Effectively, this is the
behavioral implication of the observation in Section 2 about the special structure of the rationales.

Because it limits direct reversals in this way, ESQ Exclusivity also rules out indirect reversals. Given
Theorem 6, these two observations lead to a very simple characterization of the ESQ model:

Remark 1 c is ESQ-representable if and only if it satisfies Expansion, Exclusivity, and ESQ Exclusivity.

Relative to more general shortlist methods, the ESQ model is succinctly characterized by an exclusivity
property which reflects the decision maker’s “extreme” reaction to the default.

Apesteguia and Ballester [2013] also consider a weak status quo (WSQ) model where the default
induces a “weak” reaction: when d ∈ B and Ud ∩ B 6= ∅, the choice is max(B \ {d};P) rather than
max(Ud ∩ B ;P). For small menus, the only direct reversals in this model are 〈u, d〉 reversals. Following
the same kind of reasoning as above, this observation allows one to characterize the WSQ model.
Compared with Remark 1, the only difference is that ESQ Exclusivity is replaced by WSQ Exclusivity, a
property which states that at most one alternative (the default) suffers direct reversals.

A General Recipe

While the goal of the preceding analysis was to illustrate the implications of the results for a particular
model, it actually provides a general recipe to understand any specialized TSM model. Starting from
a “natural” TSM-representation of the model in question, one can first determine the scope of possible
small menu reversals. Given Theorem 4, one can then extend these observations to larger menus in a
natural way; and, ultimately formulate a variety of necessary conditions on choice reversals.

The basic intuition is to leverage the “small menu” feature of the model (Corollary 1) to gain broader
insights into choice behavior. Consider, for instance, the framing and compromise models from Section
2. By applying the recipe outlined above, it is straightforward to establish the following:

Remark 2 In both the framing and compromise models, choice displays no indirect reversals.

For the framing model, this follows from a simple observation about small menus: one alternative (the
outside option) must appear in every weak reversal.26 For the compromise model, a different observation
about about small menus plays a key role: direct reversals only occur between alternatives from the same
category. Of the two, the second observation is much more difficult to state in terms of choice behavior.
Instead of tying reversals to a single alternative, it ties them to a group of alternatives.

To formulate it in terms of behavior, one must first define an equivalence relation ≈c that partitions
X into revealed categories (of alternatives linked through direct reversals).27 For ≈c to be consistent
with the natural representation described in Section 2, alternatives from the same revealed category must

26Using this observation, one can in fact characterize the framing model along the lines of the status quo models.
27To formalize, let x ∼c y if c displays a direct 〈x , y〉 or 〈y , x〉 reversal. And, let x ≈c y if x ∼c ... ∼c y .
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be compared by the first rationale. Let Sc
1 denote the restriction of the pairwise preference to alternatives

in the same revealed categories (i.e. xSc
1 y if x �c y and x ≈c y). Then, for Sc

1 to be consistent with
some TSM-representation, Theorem 5 requires Pc

1 ⊆ Sc
1 ⊆ Q̂c

1 . From the definition of Q̂c
1 and Theorem

4, the last set inclusion entails a necessary condition that strengthens Exclusivity:

Categorical Exclusivity For every pair of alternatives 〈x , y〉 ∈ X × X , either:

(i) c displays no weak 〈x , y〉 reversals; or, (ii) the relation x ≈c y does not hold.

This effectively formulates the simple observation about the compromise model in terms of behavior:
alternatives from the same category are not involved in weak reversals (and vice versa).

This analysis highlights how Theorem 5 may be used to supplement the recipe outlined above. For
some specialized models, one must refine Pc

1 to obtain a natural TSM-representation. Since Theorem 5
limits what can be added to Pc

1 , it can be used to formulate special exclusivity requirements. Besides
the compromise model, the willpower model described in Section 2 also requires this kind of analysis.
Without getting into the details, the issue is that the first rationale of the natural TSM-representation
has the added structure of a semiorder.28

6.2 Two-Stage Choice in Applications

In this section, I first illustrate how the results of the paper provide insights into a simple model of
monopolistic screening before briefly discussing some other natural applications.

Monopolistic Screening

A monopolist encounters each consumer type i ∈ I with a given probability pi . Her objective is to design
a menu of products M ⊆ X to maximize expected profits. For a given menu M , individual rationality
(IR) and incentive compatibility (IC) limit the monopolist’s ability to sell product mi ∈ M to consumer
type i . These conditions require i to select mi above the outside option o as well as every product in
M . In the standard setting where the choice behavior ci of type i is represented by a utility ui function,
IR and IC impose familiar inequality constraints on the profit maximization objective:

ui(mi) ≥ ui(o) (IRi)

ui(mi) ≥ ui(m) for all m ∈ M (ICi)

When ci does not admit a utility representation, IRi and ICi reduce to a single constraint:

mi ∈ ci(M ∪ {o}) (IR-ICi)

28An interval order is a rationale P such that (xPy and wPz) ⇒ (xPz or wPy). (Letting y = w shows that this
condition strengthens transitivity.) In turn, a semiorder is an interval order such that xPyPz ⇒ (xPw or wPz).
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Since it precludes the use of basic optimization techniques (like those relying on convexity), this type of
constraint can make it significantly more difficult to characterize the optimal menu.

When consumer behavior is TSM-representable however, the results of the paper can be leveraged
to characterize key features of the optimal menu. To illustrate, suppose each consumer type ci is TSM-
represented by (P1,P i

2) where P1 is fixed across consumers and P i
2 is a type-specific linear order. The

idea is that the monopolist knows the “bias” P1 of consumers but not their “true” preference P i
2. This

setup captures a private values environment where the behavior of consumers is nonetheless shaped
by a common external influence, such as framing at the point of sale or information obtained from a
biased media source. Unlike other models in the literature, the private information relates to consumer
preferences rather than a psychological parameter (see Koszegi [2014] for a survey). Accordingly, this
setup addresses a gap in our understanding of screening with boundedly rational consumers.

To fix ideas, let mi denote the product that consumer type i selects from M ∪ {o}. Then,

Π(M) ≡
∑

i∈I s.t. mi 6=o

pi · π(mi) −
∑
m∈M

ε(m)

defines the expected profits for M . In words, the monopolist obtains a marginal profit π(mi) > 0 for
each consumer type i ∈ I that purchases a product in M and faces a menu cost ε(m) > 0 for each
product m ∈ M .29 In the sequel, I assume that menu costs are sufficiently small that they only serve to
discourage the monopolist from offering a product that does not affect consumer purchases.

In the full information benchmark where the monopolist faces a single consumer type (to whom it
is profitable to sell), the optimal menu contains at most two alternatives: a purchase product that is
chosen by the consumer; and, in some cases, a decoy product that prevents the consumer from choosing
the outside option over the purchase product. Theorem 5 shows that this simple feature extends to the
case of asymmetric information about the true preferences of consumers:

Remark 3 If P1 6= ∅, the optimal menu M∗ contains at most one product d that is never chosen. This
product acts a decoy in the sense that ci(M

∗ \ {d} ∪ {o}) = o for some consumer type(s) i ∈ I .

This contrasts with the result in the standard setting. When consumers are unbiased (P1 = ∅), every
product in the optimal menu M∗∅ is purchased by some type. When consumers are biased (P1 6= ∅)
however, it may be profitable for the monopolist to introduce a decoy. Intuitively, this allows the optimal
menu M∗ to violate the IRi constraint associated with the true preference of some types. Since the
decoy eliminates the outside option (dP1o), a biased consumer type (P1,P i

2) may purchase mi ∈ M∗

even when her unbiased counterpart (∅,P i
2) would select the outside option o.

Having said this, the effect on monopoly profits is ambiguous.30 While bias may help with the IRi

constraints of some types, it can also work against the monopolist. When xP1mi for some x ∈ M∗∅ ∪{o},
29When the product m ≡ (x , q) ∈ R2

+ consists of a price x and a non-price dimension q, it is conventional to assume
that π(m) ≡ x − c(q) where the cost function c is increasing, convex, and c(0) = 0.

30When M∗ contains no decoy, the monopolist prefers unbiased consumers (∅,P i
2). Since they choose like their biased

counterparts (P1,P i
2) from M∗ ∪ {o}, the monopolist can achieve the same profits (and potentially more) with M∗∅ .
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for instance, the biased consumer type (P1,P i
2) cannot select the mi ∈ M∗∅ purchased by her unbiased

counterpart (∅,P i
2). As a result, monopoly profits may be larger with unbiased consumers.

Perhaps not surprisingly, the effects on consumer welfare are equally ambiguous (see Example 6 of the
Supplemental Appendix). Depending on the specific parametrization, a biased consumer type might be
better off choosing from the menu M∗∅ offered to unbiased consumers. Likewise, an unbiased consumer
type might be better off choosing from the menu M∗ offered to biased consumers.

To emphasize that Remark 3 depends on the particular features of the TSM model, notice that the
optimal menu M∗ may contain multiple unchosen products in the more general case where P1 fails to
be transitive. Even in the full information benchmark, it may include a decoy product d0, a product d1

to prevent d0 from being chosen, a product d2 to prevent d1 from being chosen, and so on.

Some Additional Applications

It is worth noting that Remark 3 does not depend on any assumptions about the marginal profits π,
the type distribution p, or the bias P1. This begs the following question: what (other) features of the
optimal contract can be determined non-parametrically from the results of the paper? Indeed, the same
might be asked in any contract setting where agents choose according to the TSM model. The question
has bearing on recent work by Salant and Siegel [2013], who study monopolistic screening when agents
choose according to the framing model. In their setting, some features of the optimal contract are
independent of the type distribution. In light of Remark 3, it would be interesting to see what might be
learned directly from the insights about the framing model (described in Section 6.1).

Besides contracting, implementation is another area where there have been efforts to incorporate
bounded rationality. For Nash implementation, Moore and Repullo’s [1990] condition µ is necessary and
sufficient in the standard setting where agents are preference maximizers. Recent work shows that part
of this condition remains necessary even when no restrictions are placed on agents’ behavior (Korpela
[2012]; and de Clippel [2014]). In general, this Weak µ condition (see Remark 4 of the Supplemental
Appendix) can be difficult to check. When agents choose according to the TSM model however, it may
be possible to check this condition more systematically. Since the model satisfies Expansion, a result
of Korpela [2012, Lemma 1] effectively limits what needs to be checked. It would be interesting to see
whether the results of the current paper might be used to impose further limitations.

Another natural application to implementation is dominant-strategy house allocation. In the stan-
dard setting, serial dictatorship and top trading cycles each implement the Pareto optimal allocations
(Abdulkadiroglu and Sonmez [1998]). In recent work, Bade [2008, 2013] shows that the two mechanisms
need not coincide when agents choose according to the TSM model. Based on a few simple inferences
about revealed preference (related to Figure 1), she also develops some insights into both mechanisms.
In light of Bade’s work, it would be interesting to see whether the results of the current paper might be
used to characterize the outcomes implemented by these simple mechanisms.
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7 Discussion of Related Work

The TSM model is related to a variety of two-stage models proposed in the recent literature. Most closely
related are the other shortlist methods discussed in Section 2. Also related are two-stage procedures
where the filtering in the first stage results from something more general than preference maximization
(see Tyson [2013] for an overview). Some of these procedures, such as limited attention/consideration
(Masatlioglu et al. [2012]; Lleras et al. [2011]) generalize the TSM model but maintain the transitivity
of P2. Others, like rationalization (Spears [2011]; Manzini and Mariotti [2012]; and, Cherepanov et al.
[2013]), also generalize the RSM model by imposing no restrictions on P2.31

To conclude, I discuss the contribution of the paper in terms of the related work on these models.

7.1 Axiomatics

The TSM Model. The discussion after Theorem 2 suggests an alternative characterization of the TSM
model. In lieu of Strong Exclusivity, one might require Rc

2 to be acyclic. In fact, several papers follow this
approach (Au and Kawai [2011]; Lleras et al. [2011]; and, Yildiz [2015]).32 While this approach makes
it easier to show the sufficiency of the axioms, it comes at the cost of a “technical” acyclicity condition.
Since acyclicity conditions (like SARP) can be difficult to interpret and generally yield few insights into
behavior that cannot be determined from the representation directly, they are seldom employed when
more straightforward conditions (like WARP) are available.33

With this in mind, a key contribution of Theorem 2 is to establish that Rc
2 -acyclicity is not essential

to characterize the TSM model. Indeed, this technical condition can be replaced by one which imposes
restrictions on readily observable reversals in choice. What is more, this Strong Exclusivity condition
implies that the TSM model is much simpler to test than the previous characterizations might suggest.
According to Theorem 7(i), it is not necessary to rule out Rc

2 cycles of arbitrary length.

Other Models. Regarding the T1SM model, Matsuki and Tadenuma [2013] provide a characterization
using Expansion, Weak WARP, and a condition called Elimination. Since their Elimination condition for-
mally captures the additional content of Exclusivity beyond Weak WARP (Remark 9 of the Supplemental
Appendix), their approach complements the characterizations in Theorems 6(i) and 7(ii).

Regarding the T2SM model, Houy’s [2008] characterization requires Expansion and an acyclicity
condition. Given Theorem 2, one might ask whether this model can also be characterized by Expansion
and a “simple” exclusivity requirement. Since exclusivity amounts to no overlap between the revealed
rationales, the issue is whether there exists a simple way to define revealed preference in the model.34 A
potential impediment is that the T2SM model does not possess the “small menu” feature (so integral to

31Another generalization of the RSM model allows for more than two rationales (Apesteguia and Ballester [2013];
Manzini and Mariotti [2011]). In turn, the rigid sequential structure of the rationales can also be relaxed (Horan [2013]).

32Since Expansion and Rc
2 -acyclicity imply Weak WARP, one of Au and Kawai’s conditions is redundant.

33For broader discussions of the axiomatic method in decision theory, see Dekel and Lipman [2010].
34The issue is the first rationale. For the second rationale, the revealed preference is the same as the RSM model.
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obtaining simple revealed preference definitions for the TSM model).

7.2 Identification

The TSM Model. The prior literature partly addresses some identification issues considered here.
Arguably the closest point of comparison is that several papers define binary relations which are

equivalent to Rc
2 or R̂c

2 (Remark 5 of the Supplemental Appendix). An important difference is that none
of these definitions is stated in terms of small menus. What is more, the sole purpose in two of these
papers (Au and Kawai [2011]; Yildiz [2015]) is to characterize the TSM model in terms of an acyclicity
condition. While a third paper (Lleras et al. [2011]) is concerned with revealed preference, the focus is
not the TSM model, but rather the more general model of limited consideration.

Of these three papers, only Au and Kawai address the first rationale. While they identify a binary
relation equivalent to Pc

1 (Remark 7 of the Supplemental Appendix), their definition (which amounts
to Q̂c

1 ∩ (Pc
2 )
−1) is not easy to interpret in terms of behavior. In fact, it gives the impression that the

first rationale is difficult to determine from choice data. Though they go on to show that any transitive
rationale P1 in the range Pc

1 ⊆ P1 ⊆ Q̂c
1 may be used in some TSM-representation (an implication of

Theorem 5), the practical value of this result is limited by their intricate definition of Pc
1 .

35

Other Models. Dutta and Horan [2015] characterize revealed preference in the RSM model. In terms
of choice reversals, they show that the first rationale is identified with direct reversals; and, the second
with weak reversals where the “weak” alternative is chosen (Remark 11 of the Supplemental Appendix).
Given their result, Theorem 4 shows how the added structure of the TSM model strengthens revealed
preference. The basic insight is that the transitivity of one rationale sharpens the revealed preference
of the other : unless P2 (P1) is transitive, one cannot draw any inference about P1 (P2) from indirect
reversals (weak reversals where the “weak” alternative is not chosen).36

This insight extends to the T1SM model. In that model, revealed preference is “half-way” between
the RSM and TSM models (Remark 10 of the Supplemental Appendix): like the RSM model, direct
reversals identify the first rationale; and, like the TSM model, weak reversals identify the second.

To close, I emphasize the key role that the “small menu” feature of the TSM model (Corollary 1)
plays in identification. While the T1SM model shares this feature, many other generalizations of the
TSM model do not. In practical terms, this can make it very difficult to do identification in these models.
In the RSM model, for instance, observing choices from arbitrarily large menus may be necessary to infer
certain aspects of either rationale (Examples 7 and 8 of the Supplemental Appendix).

35While they suggest that Q̂c
1 might be defined in terms of choice from menus of four or fewer alternatives (see Remark

1 of their paper), they do not actually define it this way (see Remark 6 of the Supplemental Appendix for the details).
36The revealed preference analysis in Section 4.1 shows exactly where these two inferences break down.
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A Appendix

A.1 Axiomatic Foundations
The proof of Theorem 2 relies on two results: Manzini and Mariotti’s (M&M) [2007] axiomatic characterization of the
RSM model; and, Dutta and Horan’s (D&H) [2015] complete characterization of RSM-representations.

For the sake of convenience, both results are restated below.

Theorem 1 (M&M) c is RSM-representable if and only if it satisfies Expansion and Weak WARP.

Dutta and Horan (D&H) [2015] define revealed rationales for any RSM-representable choice function c :
(1) xPRSM

1 y if c(A) = y for some A ⊂ X and c(A ∪ {x}) /∈ {x , y}; and,
(2) xPRSM

2 y if c(A) = x and c(B) = y for some A,B s.t. {x , y} ⊆ A ⊂ B.

In turn, they use these definitions to characterize the class of RSM-representations:

Proposition (D&H) If c is RSM-representable, then (P1,P2) represents c if and only if:
(i) P1 is a rationale such that PRSM

1 ⊆ P1 ⊆ (�c \PRSM
2 ); and,

(ii) P2 is a rationale such that P2 ⊇ (�c \P1).

The proof also relies on the following five choice properties. The first is due to Au and Kawai (A&K) [2011]:

Reduction (A&K) If c(A) = y and c(B) = x for {x , y} ⊆ B ⊂ A, then:
xyz is a 3-cycle s.t. c(x , y , z) = y for some z ∈ A \ B.

The four other properties are as follows:

Selective IIA If c(A) = y and c(x , y) = x , then c(A \ {x}) = y .

3-Acyclicity If wxz and wyz are 3-cycles, then c(w , x , z) = x if and only if c(w , y , z) = y .

4-Acyclicity If wxz and wyz are 3-cycles s.t. c(w , x , z) = w and c(w , y , z) = z , then:

c(x , y) = x implies c(x , y , v) = v for any 3-cycle xyv .

5-Acyclicity If wxz and wyz are 3-cycles s.t. c(w , x , z) = z and c(w , y , z) = w , then:

c(x , y) = x implies c(x , y , v) 6= v for any 3-cycle xyv .

Briefly, Selective IIA is a weakening of IIA which states that any alternative chosen pairwise over c(A) can be discarded
without affecting choice. In turn, the other properties restrict Strong Exclusivity to 3-cycles.

A.1.1 Proof of Theorem 1

Since (i)⇒ (i i) and (i)⇒ (i i i) are obvious, I show (i i)⇒ (i) and (i i i)⇒ (i).

(i i)⇒ (i): By way of contradiction, suppose c(A) = x and c violates IIA for {x , y} ⊆ B ⊂ A. By finiteness, there is
a {x , y} ⊆ D ⊂ A s.t. c(D) = z 6= x and c(D ∪ {a}) = x for all a ∈ A \ D. Then, c displays a direct 〈a, z〉 reversal on
D, which violates the assumption of no direct reversals.

(i i i) ⇒ (i): Fix any A s.t. c(A) = x . Then, c(A) = x = c(x). It suffices to show c(B) = x for all {x} ⊂ B ⊂ A.
By way of contradiction, suppose c(B) = y 6= x for some such B. If c(x , y) = x , then c(B) = y 6= c(B \ {y}) is a weak
〈x , y〉 reversal. If c(x , y) = y , then c(A) = x 6= c(A \ {x}) is a weak 〈y , x〉 reversal. But both possibilities violate the
assumption of no weak reversals.
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A.1.2 Preliminary Results

Lemma 4 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then it satisfies Selective IIA.

Proof. Let c(A) = y and c(x , y) = x . By way of contradiction, suppose c(A \ {x}) = z 6= y .

The case |A| = 2 cannot arise. For |A| = 3, it follows that c(x , y , z) = y , c(x , y) = x , and c(y , z) = z . If
c(x , z) = x , then c(x , y , z) = c({x , y} ∪ {x , z}) = x 6= y by Expansion, a contradiction. If c(x , z) = z , then c(x , y , z) =

c({y , z} ∪ {x , z}) = z 6= y by Expansion, another contradiction.

The proof that c(A) = y , c(x , y) = x , and c(A \ {x}) = z 6= y generate a contradiction for |A| = n ≥ 4 is by
induction. From these choices, c(x , z) = x and c(y , z) = z . If c(x , z) = z , then c(A) = c(A \ {x} ∪ {x , z}) = z 6= y by
Expansion, a contradiction. If c(y , z) = y , then c(A) = y implies c(A \ {x}) 6= z by Weak WARP, a contradiction.

Base case: Suppose A = {w , x , y , z}. First, (i) c(w , x) = w . Otherwise, c(w , x , y , z) = c({x , y}∪{x , z}∪{x ,w}) =
x 6= y by Expansion, a contradiction. Next, (ii) c(y ,w) = y . Otherwise, c(w , x , y , z) = c({a, y} ∪ {w , x , z}) = a 6= y

by Expansion where c(w , x , z) ≡ a, a contradiction. Finally, (iii) c(w , x , y) = y . If c(w , x , y) = x , then c(w , x , y , z) =

c({x , z} ∪ {w , x , y}) = x 6= y by Expansion. If c(w , x , y) = w , then c(w , x , y , z) = y = c(y ,w) violates Weak WARP.
By (i)-(ii), wxy is a 3-cycle. If c(w , z) = w , wzy is a 3-cycle. Given (iii), c(A \ {x}) = c(w , y , z) 6= z by 3-

Acyclicity, which is a contradiction. If c(w , z) = z , wxz is a 3-cycle. Given (iii), c(w , x , z) = z by 3-Acyclicity. So,
c(A) = c({y , z} ∪ {w , x , z}) = c(w , x , y , z) = z 6= y by Expansion, which is another contradiction.

Induction Step: Suppose Selective IIA holds for |A| = n but some A s.t. |A| = n + 1 violates it. First, suppose
c(A\{a′}) = b = c(A\{a′′}) for distinct a′, a′′ ∈ A\{b} and b ∈ A\{y}. By Expansion, c(A) = c([A\{a′}]∪[A\{a′′}]) =
b 6= y , which is a contradiction. So, (i) for all b ∈ A \ {y}, c(A \ {a}) = b for at most one a ∈ A \ {b}. Next, consider
any a ∈ A \ {y} s.t. c(A \ {a}) = y . (By (i) and the pigeonhole principle, it must be that c(A \ {a}) = y for some
a ∈ A \ {y}.) Since c(A \ {x}) = z , a 6= x . By the induction hypothesis, c(x , y) = x implies c(A \ {x , a}) = y . If a 6= z ,
then c(A \ {x}) = z = c(y , z) and c(A \ {x , a}) = y , which contradicts Weak WARP. So, (ii) a = z . Together, (i) and
(ii) establish: (iii) for all b ∈ A, c(A \ {a}) = b for exactly one a ∈ A \ {b}; and, (iv) c(A \ {z}) = y .

By Weak WARP, c(A\{a}) = b for a, b 6= y implies c(b, y) = y . Setting w ≡ c(A\{y}), (iii) implies (v) c(b, y) = y

for all b ∈ A \ {y ,w}. Moreover, (vi) c(y ,w) = y . Otherwise, c(A) = c([A \ {y}] ∪ {y ,w}) = w 6= y by Expansion,
which is a contradiction. By the induction hypothesis, (iv)-(vi) imply (vii) c(w , y , b) = y for all b ∈ A \ {y ,w , z}. Finally,
fix a b ∈ A \ {y ,w , z} s.t. c(A \ {a}) = b and a 6= y ,w . Since |A| ≥ 5, there exists such a b. (In particular, the only
〈b, a〉 pairs ruled out are: 〈y , z〉, 〈w , y〉, 〈z , x〉, and 〈v ,w〉 where v ≡ c(A \ {w}).) Since c(A \ {a}) = b = c(b, y) and
{b, y} ⊂ {b,w , y} ⊂ A \ {a}, (vii) contradicts Weak WARP, which establishes the induction step.

Lemma 5 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then it satisfies Reduction.

Proof. Suppose c(A) = y and c(B) = x for distinct x , y ∈ B ⊂ A. Then, c(x , y) = x . Otherwise, c(A) = y = c(x , y)

and c(B) = x violate Weak WARP. First, define L ≡ {l ∈ A \ B : c(x , l) = x} and B ′ ≡ B ∪ L. By Expansion,
c(B ′) = c(B

⋃
l∈L{x , l}) = x . Next, define W ≡ {w ∈ A \ B ′ : c(y ,w) = w} and A′ ≡ A \W . By Selective IIA,

c(A′) = y . If B ′ = A′, then x = c(A′) = y . So, B ′ ⊂ A′. By construction, xyz is a 3-cycle for any z ∈ A′ \B ′. Moreover,
c(x , y , z) 6= z . Otherwise, c(A) = y = c(y , z) and c(x , y , z) = z violate Weak WARP. If c(x , y , z) = x for all z ∈ A′ \B ′,
then c(A′) = c(B ′

⋃
z∈A′\B′{x , y , z}) = x 6= y . So, c(x , y , z) = y for some z ∈ A′ \ B ′.

Lemma 6 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then: xR̂c
2 y iff c displays a weak 〈x , y〉 reversal.

Proof. (⇒) From Definition 2: (i) there exists a 3-cycle xyz s.t. c(x , y , z) 6= z ; or, (ii) c(x , y) = x and there exist
3-cycles wxz , wyz s.t. c(w , x , z) = z and c(w , y , z) = w . In case (i), c displays a weak 〈x , y〉 reversal on {x , y , z}. In
case (ii), Expansion implies c(w , x , y , z) = c({w , y , z} ∪ {w , x}) = w . So, c displays a weak 〈x , y〉 on {w , x , y , z}.
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(⇐) By definition, c(x , y) = x and c(A) 6= c(A \ {y}) for some A ⊃ {x , y}. If c(x , y , z) 6= z for some 3-cycle xyz ,
then xR̂c

2 y follows by definition. So, suppose c(x , y , z) = z for every 3-cycle xyz .
By Lemma 5, c satisfies Reduction. First, suppose c(A) = x . Since c(A \ {y}) = b 6= x , Reduction implies xyb is

a 3-cycle s.t c(b, x , y) = x . But this contradicts c(x , y , z) = z for any 3-cycle xyz . Next, suppose c(A) = y . Since
c(x , y) = x , Reduction implies there exists a 3-cycle xyz with z ∈ A \ {x , y} s.t. c(x , y , z) = y . This also contradicts
c(x , y , z) = z for any 3-cycle xyz . So, c(A) = a 6= x , y . Moreover, c(A \ {y}) 6= x . Otherwise, Expansion requires
c(A) = c({x , y} ∪ (A \ {y})) = x 6= a. So, c(A \ {y}) ≡ b 6= x . Since the elements of {a, b, x , y} are distinct, |A| ≥ 4.

Next, observe: (I) bay is a 3-cycle s.t c(a, b, y) = a; and, (II) bdx is a 3-cycle s.t c(b, d , x) = b for d ∈ A \ {b, x , y}.

Proof of (I): By Reduction on c(A) = a and c(A \ {y}) = b. �

Proof of (II): If c(b, x) = x , Reduction implies the desired result since c(A \ y) = b and c(b, x) = x . To see that
c(b, x) = x , suppose otherwise. If c(b, x) = b, xyb is a 3-cycle. Since c(b, y) = y by (I) and c(x , y) = x , c(b, x) = b

by assumption, xyb is a 3-cycle. By assumption, c(b, x , y) = b. By Expansion, c(A) = c({b, x , y} ∪ [A \ {y}]) = b 6= a,
which is a contradiction. �

To complete the proof, there are three cases to consider: (1) c(x , a) = a; (2) c(x , a) = x , c(y , d) = d ; and, (3)
c(x , a) = x , c(y , d) = y . (If |A| = 4, case (1) obtains automatically because d = a.) I show that cases (1) and (2) imply
xR̂c

2 y (under branch (ii) of the definition) while case (3) implies a contradiction.

(1) Since c(a, b) = b and c(b, x) = x by (I) and (II), bax is a 3-cycle. Moreover, c(a, b, x) = b. To see this, note
that c(a, b, x) = x contradicts Weak WARP since c(a, x) = a = c(A). Similarly, c(a, b, x) = a contradicts Weak WARP
since c(a, b) = b = c(A \ {y}). Combined with (I), this gives xR̂c

2 y with w = a and z = b. (2) Since c(b, y) = y

and c(b, d) = b by (I) and (II), bdy is a 3-cycle. Since bay is a 3-cycle s.t. c(a, b, y) = a by (I), 3-Acyclicity implies
c(b, d , y) = d . Combined with (II), this gives xR̂c

2 y with w = d and z = b. (3) Since c(x , y) = x and c(d , x) = d

by (II), xyd is a 3-cycle. Since xbd is a 3-cycle and c(b, x , d) = b by (II), 3-Acyclicity implies c(x , y , d) = y . But, this
contradicts the assumption that c(x , y , z) = z for any 3-cycle xyz .

Lemma 7 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then: xQ̂c
1 y iff c(A) = c(A \ {y}) for all A ⊃ {x , y}.

Proof. Since Q̂c
1 ≡ (�c \R̂c

2 ) by definition, the result follows immediately from Lemma 6.

Lemma 8 If c satisfies Weak WARP, Expansion, and {3, 4, 5}-Acyclicity, then Rc
2 is acyclic.37

Proof. Suppose there exists an Rc
2 -cycle x0...xi ...xn−1 (i.e. x0Rc

2 ...R
c
2 xiR

c
2 ...R

c
2 xn−1Rc

2 x0). Notice that Rc
2 is asymmetric

by definition. Thus, x0Rc
2 x0 and x0Rc

2 x1Rc
2 x0 both entail a contradiction. The proof of a contradiction for n ≥ 3 is by

strong induction on the length of the Rc
2 -cycle.

Base case n = 3: Note that x0x1x2 is a 3-cycle. Without loss of generality, suppose c(x0, x1, x2) = x0. Then,
x2Rc

2 x0Rc
2 x1 by definition of Rc

2 . Since x1Rc
2 x2, there exists an a /∈ {x0, x1, x2} s.t. ax1x2 is a 3-cycle and c(a, x1, x2) 6= a.

But, by 3-Acyclicity, this is a contradicts c(x0, x1, x2) = x0.

Induction step: Without loss of generality, suppose c(x0, ..., xn−1) = x0. First, observe that:
(I) xi−1xixi+1 is a 3-cycle for i 6= 1, 2 [to be understood (mod n) when i = 0, n − 1];
(II) there are no other 3-cycles xjxixk ; and,
(III) c(xi−1, xi , xi+1) = xi .

These observations, in turn, follow from: (i) c(x0, x2) = x0; and, (ii) c(x1, x3) = x1.

Proof of (i): By way of contradiction, suppose c(x0, x2) = x2. Then, x0x1x2 is a 3-cycle. From the base case of the
induction, c(x0, x1, x2) = x1. Otherwise, x2Rc

2 x0 so that x0x1x2 is an Rc
2 -cycle of length 3. Since {x0, x1} ⊂ {x0, x1, x2} ⊂

37The notation I -Acyclicity for the index set I refers to i-Acyclicity for all i ∈ I .
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{x0, ..., xn−1} and c(x0, x1) = x0 = c(x0, ..., xn−1) however, c(x0, x1, x2) = x1 violates Weak WARP. This is the desired
contradiction. �

To establish (ii), first observe that, for n ≥ 5, (i) implies:

c(xi , xj) = xi for [i = 0 and 2 ≤ j ≤ n − 2] or [i ≥ 4 and 2 ≤ j ≤ i − 2] (1)

To see this, first observe that c(x0, x2) = x0 implies c(x0, x3) = x0. Otherwise, x0x2x3 is a 3-cycle so that x0Rc
2 x2 or

x3Rc
2 x0. Both contradict the induction hypothesis: either x0x2...xn−1 is an Rc

2 -cycle of length n − 1; or, x0x1x2x3 is an
Rc
2 -cycle of length 4. By a simple induction argument, it then follows that c(x0, xj) = x0 for any j s.t. 2 ≤ j ≤ n − 2.

By the same kind of reasoning as the last paragraph, c(x0, x2) = x0 also implies c(xn−1, x2) = xn−1. By a simple
induction argument, it then follows that c(xi , x2) = xi for any i ≥ 4. Applied to each i ≥ 4, the same kind of induction
argument gives c(xi , xj) = xi for any 2 ≤ j ≤ i − 2.

Proof of (ii): Suppose c(x1, x3) = x3. Consider the cases n = 4, n = 5, and n > 5 separately:

n = 4: Since c(x0, x2) = x0, x2x3x0 is a 3-cycle. From the base case, c(x0, x2, x3) = x3. Otherwise, x0Rc
2 x2 so that x0x2x3

is an Rc
2 -cycle of length 3. Since c(x1, x3) = x3, Expansion implies c(x0, x1, x2, x3) = c({x0, x2, x3} ∪ {x1, x3}) = x3 6= x0,

a contradiction. So, c(x1, x3) = x1.

For n ≥ 5, xn−1x0x1 is a 3-cycle s.t. c(x0, x1, xn−1) = x0. To see that c(x1, xn−1) = x1, suppose otherwise. Since
c(xi , xn−1) = xn−1 for i 6= 1 by observation (1) and c(x1, xn−1) = xn−1 by assumption, repeated application of Expansion
on {x1, xn−1} implies c(x0, ..., xn−1) = xn−1. Since this contradicts c(x0, ..., xn−1) = x0, c(x1, xn−1) = x1. By the base
case, c(x0, x1, xn−1) = x0. Otherwise, x1Rc

2 xn−1 so that xn−1x0x1 is an Rc
2 -cycle of length 3.

n = 5: Since c(x4, x2) = x4 by (1), x2x3x4 is a 3-cycle. By the base case, c(x2, x3, x4) = x3. Otherwise, x2x3x4 is
an Rc

2 -cycle of length 3. Since c(x1, x3) = x3 by assumption, x1x2x3 is a 3-cycle. By the base case, c(x1, x2, x3) = x2.
Otherwise, x3Rc

2 x1 so that x1x2x3 is an Rc
2 -cycle of length 3. Since c(x1, x2, x3) = x2, c(x2, x3, x4) = x3, and c(x1, x4) = x1,

5-Acyclicity implies c(x1, x4, v) 6= v for any 3-cycle x1x4v . Since this contradicts c(x0, x1, x4) = x0, c(x1, x3) = x1.

n > 5: Since c(x3, xn−1) = xn−1 by (1), x1xn−1x3 is a 3-cycle. Since x0x1xn−1 is a 3-cycle s.t. c(x0, x1, xn−1) = x0,
3-Acyclicity implies c(x1, x3, xn−1) = x3 so that x3Rc

2 x1 and x1x2x3 is an Rc
2 -cycle of length 3. Since this contradicts the

base case, c(x1, x3) = x1. �

For n = 4, (i)-(ii) and c(xi , xi+1) = xi directly imply (I)-(III). For n ≥ 5, (ii) implies c(x1, xi ) = x1 for any i 6= 0, 1

by a simple induction argument along the same lines as (1). Together with (1) and the fact that c(xi , xi+1) = xi , this
establishes (I)-(III) for n ≥ 5. Since choice from all pairs {xi , xj} are identified, (I) and (II) are immediate. In turn, (III)
follows from the base case. If c(xi−1, xi , xi+1) 6= xi , xi+1Rc

2 xi−1 so that xi−1xixi+1 is an Rc
2 -cycle of length 3.

x0

x1

x2x3

x0

x4 x1

x3 x2

x5 x0

x4 x1

x3 x2

Figure 3: Preference pairs for the cases n = 4, n = 5, and n = 6.

(I) and (II) imply that there exists no 3-cycle x1x2xi . Since x1Rc
2 x2, there exists an a /∈ {x0, ..., xn−1} s.t. ax1x2 is a 3-cycle

and c(a, x1, x2) 6= a. Consider any such a.
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To complete the proof, I show that each of the cases n = 4, n = 5, and n > 5 entails a contradiction.

n = 4: Here, x0x1x3 and x0x2x3 are 3-cycles s.t. c(x0, x1, x3) = x0 and c(x0, x2, x3) = x3 (see Figure 3). Since
c(x1, x2) = x1, 4-Acyclicity implies c(x1, x2, v) = v for any 3-cycle x1x2v . But, this contradicts c(a, x1, x2) 6= a.

n = 5: Since c(x1, x4) = x1 and c(x2, x4) = x4, ax1x4x2 is a 4-cycle (see Figure 3). There are two cases to consider: (5.1)
c(x4, a) = x4; and, (5.2) c(x4, a) = a. (5.1) Here, x1x4a is a 3-cycle. Since x0x1x4 is a 3-cycle s.t. c(x0, x1, x4) = x0,
c(a, x1, x4) = a by 3-Acyclicity. So, c(a, x1, x2) 6= x2 by 3-Acyclicity. Since c(a, x1, x2) 6= a by assumption, c(a, x1, x2) = x1.
So, x1x4a and x1x2a are 3-cycles s.t. c(a, x1, x4) = a and c(a, x1, x2) = x1. Since c(x2, x4) = x4, 5-Acyclicity implies
c(x2, x4, v) 6= v for any 3-cycle x4x2v . But, this contradicts the fact that x2x3x4 is a 3-cycle s.t. c(x2, x3, x4) = x3. (5.2)
By reasoning similar to (5.1), ax1x2 and ax4x2 are 3-cycles s.t. c(a, x1, x2) = x2 and c(a, x2, x4) = a. Since c(x1, x4) = x1,
5-Acyclicity implies c(x1, x4, v) 6= v for any 3-cycle x1x4v . But, this contradicts c(x0, x1, x4) = x0.

n > 5: First, observe that (n.1) c(a, xn−1) = xn−1 and (n.2) c(a, xn−2) = a (see Figure 3). (n.1) Here, axn−1x2 is a 3-cycle.
By the induction hypothesis, c(a, x2, xn−1) = a. Otherwise xn−1Rc

2 x2 so that x2...xn−1 is an Rc
2 -cycle of length n−2. Since

c(a, x2, xn−1) = a, x2Rc
2 aRc

2 xn−1. So, x0x1x2axn−1 is an Rc
2 -cycle of length 5, which contradicts the induction hypothesis.

(n.2) The reasoning is similar to (n.1). Here, ax1xn−2 is a 3-cycle. By the induction hypothesis, c(a, x1, xn−2) = a.
Otherwise x1Rc

2 xn−2 so that xn−2...x1 is an Rc
2 -cycle of length 4. Since c(a, x1, xn−2) = a, xn−2Rc

2 aRc
2 x1 so that x1...xn−2a

is an Rc
2 -cycle of length n − 1, which contradicts the induction hypothesis.

Given (n.1) and (n.2), ax1xn−1 and axn−2x2 are 3-cycles. Since xn−1x0x1 is a 3-cycle s.t. c(xn−1, x0, x1) = x0,
c(xn−1, a, x1) = a by 3-Acyclicity. So, c(a, x1, x2) 6= x2 by 3-Acyclicity. Since c(a, x1, x2) 6= a by assumption, c(a, x1, x2) =

x1. So, c(a, x2, xn−2) = xn−2 by 3-Acyclicity. Then, xn−2Rc
2 x2 so that x2...xn−2 is an Rc

2 -cycle of length n−3, contradicting
the induction hypothesis.

A.1.3 The Exclusivity Axioms (and Proof of Lemma 3)

Proof of Lemma 3. (⇒) By way of contradiction, suppose c(A) = x = c(x , y) and c(B) = y for {x , y} ⊂ B ⊂ A.
Given c(A) = x , Weak Exclusivity ensures that (o) c displays no direct 〈w , x〉 reversals for any w ∈ A s.t. c(x ,w) = w .
To derive a contradiction, first define L ≡ {l ∈ B : c(x , l) = x} and B1 ≡ {x} ∪ L. Then, c(B1) = c(

⋃
l∈L{x , l}) = x by

Expansion. Moreover, c(x ,w) = w for all w ∈ B \ B1. Given (o), c(B1 ∪ {w}) ∈ {x ,w} for all w ∈ B \ B1. Next, define
the following menus by recursion: Wi ≡ {w ∈ B \ Bi : c(Bi ∪ {w}) = x}; and, Bi+1 ≡ Bi ∪Wi . By a simple induction
using Expansion:

c(Bi ) = c(
⋃

w∈Wi−1

[Bi−1 ∪ {w}]) = x for all i ≥ 1.

Since B \ B1 is finite, Bi+1 = Bi for some i ≥ 1. Let i∗ be the smallest such i . There are two cases. If Bi∗ = B, then
c(B) = x , which contradicts c(B) = y . If Bi∗ ⊂ B, then (o) implies c(Bi∗ ∪ {w}) = w for all w ∈ B \ Bi∗ . Define
w∗ ≡ c(B \ Bi∗). By Expansion, c(B) = c([Bi∗ ∪ {w∗}] ∪ [B \ Bi∗ ]) = w∗, which contradicts c(B) = y . Since there are
contradictions in both cases, the result follows.

(⇐) By way of contradiction, suppose: (i) c(B) = y for some B ⊇ {x , y} s.t. c(x , y) = x ; and, (ii) c displays a direct
〈x , y〉 reversal on D so that c(D) = y and c(D ∪{x}) = z /∈ {x , y}. By Expansion, c(B ∪D) = y . Since c(D ∪{x}) = z

and c(B ∪ D) = y , Weak WARP implies c(y , z) = z . But this contradicts Weak WARP given (ii).

Lemma 9 If c satisfies Exclusivity, then it satisfies 3-Acyclicity.

Proof. By contradiction, suppose wxz , wyz are 3-cycles s.t. c(w , x , z) = x and c(w , y , z) 6= y . Contradicting Exclusivity,
c displays: a direct 〈z ,w〉 reversal on {w , x}; and, a weak 〈z ,w〉 reversal on {w , y , z}.

Lemma 10 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then: it satisfies 5-Acyclicity iff it satisfies Exclusivity.
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Proof. (⇒) By way of contradiction, suppose: (a) c(A) = y and c(A∪{x}) = v /∈ {x , y}; and, (b) c(B) 6= c(B \{y}) for
some B ⊇ {x , y}. By Lemma 5, c satisfies Reduction. By Reduction, (a) implies (a′) xyv is a 3-cycle s.t. c(x , y , v) = v .
By Lemma 6, (b) implies xR̂c

2 y . There are two cases: (i) there is a 3-cycle xyz s.t. c(x , y , z) 6= z ; or, (ii) there
are 3-cycles wxz and wyz s.t. c(w , x , z) = z and c(w , y , z) = w . Given (a′), (i) contradicts 3-Acyclicity while (ii)
contradicts 5-Acyclicity. (⇐)38 Suppose wxz and wyz are 3-cycles s.t. c(w , x , z) = z and c(w , y , z) = w . By Expansion,
c(w , x , y , z) = c({w , y , z} ∪ {w , x}) = w . So, c displays a weak 〈x , y〉 reversal on {w , x , y , z}. By Exclusivity, c displays
no direct 〈x , y〉 reversals. Now, consider any 3-cycle xyv . Then, c(x , y , v) 6= v as required.

Lemma 11 If c satisfies Weak WARP, Expansion, and {3, 5}-Acyclicity, then it satisfies 4-Acyclicity iff the following:

If c displays an indirect 〈x , y〉 reversal, then c displays no weak 〈x , y〉 reversals.

Proof. (⇒) By way of contradiction, suppose c displays both indirect and weak 〈x , y〉 reversals. In particular: (i)
c(B) = y , c(B ∪ {x}) = x , c(B ∪ {w}) = z /∈ {y ,w} and c(B ∪ {w , x}) = w for some B ⊆ X \ {w , x}; and, (ii)
c(x , y) = x and c(D) 6= c(D \ {y} for some D ⊃ {x , y}. By Reduction, (i) implies that wxz and wyz are 3-cycles s.t.
c(w , x , z) = w and c(w , y , z) = z . So, (i′) yRc

2 zRc
2 wRc

2 x . By Lemma 6, (ii) implies (ii′) xR̂c
2 y . By (i′)-(ii′), Rc

2 contains
a cycle, which contradicts Lemma 8. (⇐)39 Suppose wxz and wyz are 3-cycles s.t. c(w , x , z) = w and c(w , y , z) = z .
Then, c(w , x , y , z) = c({w , x , z} ∪ {w , x}) = w by Expansion. So, c displays an indirect 〈x , y〉 reversal on {y , z}. By
the stated property, c displays no weak 〈x , y〉 reversals. Now, consider any 3-cycle xyv . If c(x , y , v) 6= v , then c displays
a weak 〈x , y〉 reversal on {v , x , y}. So, c(x , y , v) = v .

Lemma 12 If c satisfies Expansion, then:
(i) it satisfies {3, 5}-Acyclicity and Weak WARP iff it satisfies Exclusivity; and,
(ii) it satisfies {3, 4, 5}-Acyclicity and Weak WARP iff it satisfies Strong Exclusivity.

Proof. (i) This follows from Lemmas 3, 9, and 10. (ii) Given (i), this follows from Lemma 11.

A.1.4 Proof of Lemmas 1 and 2

Lemma 13 If c satisfies Weak WARP, Expansion, and {3, 5}-Acyclicity, then: Q̂c
1 ⊇ PRSM

1 and R̂c
2 ⊇ PRSM

2 .

Proof. First, observe that c satisfies Reduction by Lemma 5 and Exclusivity by Lemma 10.

Q̂c
1 ⊇ PRSM

1 : If xPRSM
1 y , then c(A ∪ {x}) /∈ {x , y} for some A s.t. c(A) = y . Thus, c displays a direct 〈x , y〉

reversal. So, c displays no weak 〈x , y〉 reversals by Exclusivity. Since c(x , y) = x by Expansion, c(B) = c(B \ {y}) for all
B ⊇ {x , y}. Then, xQ̂c

1 y by Lemma 7.

R̂c
2 ⊇ PRSM

2 : If xPRSM
2 y , then c(A) = x and c(B) = y for some A and B s.t. B ⊃ A ⊇ {x , y}. By Reduction, xyz

is a 3-cycle s.t. c(x , y , z) = y for some z ∈ B \ A. By definition, xR̂c
2 y .

Lemma 14 If (P1,P2) RSM-represents c with P2 acyclic, then:
(i) (P1,P∗2 ) RSM-represents c where P∗2 ≡ tc(P2); and,
(ii) (P1,P∗∗2 ) RSM-represents c where P∗∗2 is a completion of P∗2 (as guaranteed to exist by the Szpilrajn theorem).

38In fact, the proof given here only depends on the fact that c satisfies Expansion.
39In fact, the proof given here only depends on the fact that c satisfies Expansion.
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Proof. (i) Consider any A ⊆ X and suppose c(P1,P2)(A) = x . Let B ≡ max(A;P1). Since max(B;P2) = x , ¬[bP2x ] for
all b ∈ B \ {x}. Hence, ¬[bP∗2 x ] for all b ∈ B \ {x}. So, x ∈ max(B;P∗2 ). Since P2 ⊆ P∗2 , max(B;P∗2 ) ⊆ max(B;P2).
And, since max(B;P2) = x , max(B;P∗2 ) = x . So, c(P1,P∗2 )

(A) = x . (ii) The reasoning is identical with P∗2 in place of P2

and P∗∗2 in place of P∗2 .

Proof of Lemma 2. (⇒) Suppose the following about c : (i) it is RSM-representable; and, (ii) it satisfies Strong
Exclusivity. Given (i), c satisfies Weak WARP and Expansion by Theorem 1 of M&M. Given (ii), c satisfies Exclusivity
and, hence, {3, 5}-Acyclicity by Lemma 12(i). Likewise, c satisfies {3, 4, 5}-Acyclicity by Lemma 12(ii).

For the result, I show that: (a) Q̂c
1 is transitive given assumption (i) and Exclusivity; (b) (Q̂c

1 , R̂c
2 ) RSM-represents c

given assumption (i) and Exclusivity; and, (c) (Q̂c
1 ,Pc

2 ) TSM-represents c given assumptions (i) and (ii).

(a) By Lemma 7, aQ̂c
1b iff c(A) = c(A \ {b}) for all A ⊇ {a, b}. So, suppose xQ̂c

1 yQ̂c
1 z and fix A ⊇ {x , z}. Then,

c(A) = c(A ∪ {y}) = c(A ∪ {y} \ {z}) = c(A \ {z}) so xQ̂c
1 z .40 (b) By Lemma 13, Q̂c

1 ⊇ PRSM
1 and R̂c

2 ⊇ PRSM
2 .

Moreover, Q̂c
1 ≡ �c \R̂c

2 and R̂c
2 ⊆ �c . So: PRSM

1 ⊆ Q̂c
1 ⊆ (�c \PRSM

2 ); and, R̂c
2 is a rationale s.t. (�c \Q̂c

1 ) ⊆ R̂c
2 .

By the Proposition of D&H, (Q̂c
1 , R̂c

2 ) RSM-represents c . (c) By Lemma 8, Rc
2 is acyclic. So, R̂c

2 is as well. Moreover,
tc(R̂c

2 ) = tc(Rc
2 ) ≡ Pc

2 . Given (b), (Q̂c
1 ,Pc

2 ) TSM-represents c by Lemma 14.

(⇐) Suppose c is TSM-represented by (P1,P2). By Theorem 1 of M&M, c satisfies Weak WARP and Expansion. Then,
by Lemma 12, it suffices to show {3, 4, 5}-Acyclicity:

3-Acyclicity: By way of contradiction, suppose c(w , x , z) = x and c(w , y , z) 6= y for 3-cycles wxz and wyz . Since
c(w , x , z) = x , zP1w . So, c(w , y , z) 6= w . Since c(w , y , z) 6= y , c(w , y , z) = z . So, wP1y . Since zP1wP1y , zP1y by
transitivity of P1. But, this contradicts c(y , z) = y .

5-Acyclicity: Suppose wxz and wyz are 3-cycles s.t. c(w , x , z) = z and c(w , y , z) = w . Then, wP1x and yP1z . By
way of contradiction, suppose c(x , y , v) = v for some 3-cycle xyv . So, xP1y . Since wP1xP1yP1z , wP1z by transitivity
of P1. But, this contradicts c(w , z) = z .

4-Acyclicity: Suppose wxz and wyz are 3-cycles s.t. c(w , x , z) = w and c(w , y , z) = z . Then, yP2zP2wP2x .
By transitivity of P2, yP2x . By way of contradiction, suppose c(x , y , v) 6= v for some 3-cycle xyv . Then, xP2y , which
contradicts yP2x by the asymmetry of P2.

Inspection of the proof above shows that it also establishes Lemma 1:

Proof of Lemma 1. (⇒) Points (a) and (b) in the proof of Lemma 2 establish sufficiency. (⇐) By Lemma 12(i), it
suffices to show that c satisfies {3, 5}-Acyclicity. The proof of these properties is the same as in the proof of Lemma 2
(since the proofs only rely on the transitivity of P1).

A.2 Identification

A.2.1 Proof of Corollary 1

Proof of Corollary 1. (⇒) Trivial. (⇐) By Lemma 1, (Q̂c
1 , R̂c

2 ) T1SM-represents c . By definition, Q̂c
1 and R̂c

2 are
determined by choice on pairs and 3-cycles. Since c and c̃ coincide on pairs and 3-cycles, (Q̂c

1 , R̂c
2 ) also T1SM-represents

c̃ . Thus, c(A) = c
(Q̂c

1 ,R̂
c
2 )
(A) = c̃(A) for all A ⊆ X .

Lemma 15 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then Qc
1 ⊆ Q̂c

1 .

Proof. Since Q̂c
1 ≡ (�c \R̂c

2 ) and R̂c
2 ⊆ Pc

2 , (�c \Pc
2 ) ⊆ Q̂c

1 . So, Qc
1 ≡ tc(�c \Pc

2 ) ⊆ tc(Q̂c
1 ). Since Q̂c

1 is transitive by
Lemma 2, tc(Q̂c

1 ) = Q̂c
1 . Consequently, Qc

1 ⊆ Q̂c
1 as required.

40The same argument is found in the proof of A&K’s Theorem 1.
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Example 1 Consider a choice function c on X = {v ,w , x , y , z} with pairwise choice defined by Figure 4 below and
c(v ,w , x) = c(w , x , y) = c(x , y , z) = x .

w

v x

yz

Figure 4: Preference pairs on the 5-cycle vwxyz .

For c to be TSM-representable, c(i , j , k) = i for any {i , j , k} ⊂ X s.t. i �c j �c k and i �c k . Consistency also requires
c(v , x , y , z) = c(v ,w , x , y) = c(w , x , y , z) = c(v ,w , x , y , z) = x , c(v ,w , y , z) = y , and c(v ,w , x , z) = z . This pins
down c for every subset of X . From these choices:

R̂c
2 = Rc

2 = {(w , x), (x , v), (x , y), (z , x)} and Pc
2 = Rc

2 ∪ {(w , y), (w , v), (z, v), (z , y)}.

So, Q̂c
1 is the strict weak order yQ̂c

1 zQ̂c
1 vQ̂c

1w and Qc
1 ≡ tc(�c \Pc

2 ) = Q̂c
1 \ (z, v). Since (Q̂c

1 ,Pc
2 ) and (Qc

1 ,Pc
2 ) both

represent c , Qc
1 6= Q̂c

1 for some TSM-representable choice functions.41

A.2.2 Proof of Theorem 3

Lemma 16 If (P1,P2) TSM-represents c , then P1 ⊆�c .

Proof. By way of contradiction, suppose xP1y and y �c x . Then, c(P1,P2)(x , y) 6= y = c(x , y).

Lemma 17 If (P1,P2) TSM-represents c , then P1 ⊇ Pc
1 and P2 ⊇ Pc

2 .

Proof. From the discussion in Section 3.1 of the text, Rc
1 ⊆ P1 and Rc

2 ⊆ P2. So, Pc
1 ⊆ P1 and Pc

2 ⊆ P2.

Lemma 18 If c is TSM-representable, then (a) Rc
1 ⊆ (Pc

2 )
−1 and (b) Rc

1 ⊆ (�c \Pc
2 ).

Proof. Suppose xRc
1 y . In turn, I establish (a) yPc

2 x and (b) x(�c \Pc
2 )y .

(a) Under branch (i) of Rc
1 , there exists a 3-cycle xyz s.t. c(x , y , z) = z . By definition, yRc

2 zRc
2 x so that yPc

2 x . Under
branch (ii), there exist 3-cycles wxz and wyz s.t. c(w , x , z) = w and c(w , y , z) = z . By definition, yRc

2 zRc
2 wRc

2 x so
that yPc

2 x . (b) Since xRc
1 y , x �c y . By way of contradiction, suppose ¬[x(�c \Pc

2 )y ]. Since x �c y , xPc
2 y . Since yPc

2 x

(by claim (a) of the lemma), this contradicts the fact that Rc
2 is acyclic by Lemma 8. So, x(�c \Pc

2 )y .

Lemma 19 If c is TSM-representable, then Pc
1 ⊆ (Pc

2 )
−1.

Proof. Suppose xPc
1 y . By definition, there exists an Rc

1 -chain z0...zn s.t. x = z0 and y = zn. By Lemma 18, zi+1Pc
2 zi for

all 0 ≤ i ≤ n. Thus, yPc
2 ...P

c
2 x . By transitivity, yPc

2 x .

41One could equally construct examples where c3 = 〈v , y , x〉 or c3 = 〈x ,w , z〉.
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Lemma 20 If c is TSM-representable, then (a) Rc
2 ∩ Qc

1 = ∅ and Rc
2 ⊆ (�c \Pc

1 ).

Proof. Suppose xRc
2 y . In turn, I establish (a) ¬[xQc

1 y ] and (b) x(�c \Pc
1 )y .

(a) Since xRc
2 y , there exists a 3-cycle xyz s.t. c(x , y , z) 6= z . By way of contradiction, suppose xQc

1 y . If c(x , y , z) = x ,
then zRc

2 xRc
2 y . Since Rc

2 is acyclic by Lemma 8, ¬[yPc
2 z ]. Since y �c z , y(�c \Pc

2 )z so that yQc
1 z . Since xQc

1 y ,
xQc

1 z by transitivity. Since Q̂c
1 ⊆ �c by Lemma 7 and Qc

1 ⊆ Q̂c
1 by Lemma 15, x �c z which contradicts z �c x . If

c(x , y , z) = y , a similar argument establishes z �c y , which contradicts y �c z . (b) Since Rc
2 ⊆ �c by definition and

Qc
1 ⊆ �c by Lemmas 7 and 15, Rc

2 ∪ Qc
1 ⊆ �c . Since Rc

2 ∩ Qc
1 = ∅ (by claim (a) of the lemma), (i) Rc

2 ⊆ (�c \Qc
1 ). By

Lemma 18, Pc
1 ⊆ Qc

1 . So, (ii) (�c \Qc
1 ) ⊆ (�c \Pc

1 ). Combining (i) and (ii), Rc
2 ⊆ (�c \Pc

1 ).

Lemma 21 If c is TSM-representable, then the following relations are acyclic: (i) �c \Pc
2 ; (ii) Rc

1 ; and, (iii) �c \Pc
1 .

Proof. (i) Since R̂c
2 ⊆ Pc

2 and (�c \R̂c
2 ) ≡ Q̂c

1 , (�c \Pc
2 ) ⊆ Q̂c

1 . Since Q̂c
1 is acyclic by Theorem 2, so is �c \Pc

2 .

(ii) Since Rc
1 ⊆ (�c \Pc

2 ) by Lemma 18 and �c \Pc
2 is acyclic by (i), so is Rc

1 .

(iii) Let R̃c
2 ≡ (�c \Pc

1 ). By way of contradiction, suppose there exists an R̃c
2 -cycle. Since X is finite, there is an R̃c

2 -cycle
x0...xn−1 of minimal length. To establish the result, I show that no such minimal R̃c

2 -cycle exists. For n = 3, x0x1x2 is
a 3-cycle. Without loss of generality, let c(x0, x1, x2) = x0. By definition, x1Rc

1 x2. So, ¬[x1R̃c
2 x2], a contradiction. For

n ≥ 4, the proof is by strong induction.

For the base case n = 4, x0x1x2x3 is a 4-cycle. Without loss of generality, suppose x2x0x1 and x0x1x3 are 3-cycles.
Since there are no R̃c

2 -cycles of length n = 3, ¬[x2R̃c
2 x0] and ¬[x1R̃c

2 x3]. By definition, x2Pc
1 x0 and x1Pc

1 x3. As a result,
(o) c(x0, x1, x2) = x1 and c(x0, x1, x3) = x0. Since c(x2, x3) = x2, (o) implies x2Rc

1 x3. But this contradicts x2R̃c
2 x3. To

establish (o), suppose c(x0, x1, x2) = x2. Then, x0Rc
1 x1 so that x2Pc

1 x1 by transitivity. Since Pc
1 ⊆ �c ,42 x2 �c x1 which

contradicts x1 �c x2. Similar contradictions arise if c(x0, x1, x2) = x0 or c(x0, x2, x3) 6= x0.

For the induction step, suppose there are no R̃c
2 -cycles of length 3 ≤ i ≤ n. By way of contradiction, suppose x0...xn is

an R̃c
2 -cycle of length n+1. First, fix an xi and any xj s.t. j 6= i±1 (mod n). Then: (a) xiP

c
1 xj if xi �c xj ; and, (b) xjP

c
1 xi if

xj �c xi . To show (a), suppose otherwise. Then, xi R̃c
2 xj so that xj ...xi is a R̃c

2 -cycle of length 4 ≤ i ≤ n, which contradicts
the induction hypothesis. The proof of (b) is analogous. Next, fix xi , xi+1, and any xj s.t. j /∈ {i − 1, i , i + 1, i + 2}.
Then: (i) xi �c xj and xi+1 �c xj ; or, (ii) xj �c xi and xj �c xi+1. In every other case, (a) and (b) imply xiP

c
1 xjP

c
1 xi+1

or xi+1Pc
1 xjP

c
1 xi . By transitivity, xiP

c
1 xi+1 or xi+1Pc

1 xi . Since both possibilities contradict xi R̃c
2 xi+1, either (i) or (ii) must

obtain. Finally, define j∗ ≡ d n2e and suppose x0 �c xj∗ . (The case where xj∗ �c x0 is analogous.) By (i)-(ii), x1 �c xj∗ ,
x0 �c xj∗+1, and x1 �c xj∗+1. Summarize these choices by {x0, x1} �c {xj∗ , xj∗+1}. By a simple induction argument,
{xi , xi+1} �c {xj∗+i , xj∗+i+1} for all 0 ≤ i ≤ n − 1. In particular, {xj∗ , xj∗+1} �c {x2j∗ , x2j∗+1}. If n is even, 2j∗ = 0

(mod n) so xj∗ �c x0. If n is odd, 2j∗ = 1 (mod n) so xj∗ �c x1. In either case, {xj∗ , xj∗+1} �c {x2j∗ , x2j∗+1} contradicts
{x0, x1} �c {xj∗ , xj∗+1}, which gives the result.

Lemma 22 If c is TSM-representable, then Qc
2 is a strict weak order.

Proof. By Lemma 21, Qc
2 is asymmetric and transitive. To show that Qc

2 is total, fix any x , y s.t. x �c y . If ¬[xPc
1 y ],

then �c⊆ Pc
1 ∪Qc

2 implies xQc
2 y . If xPc

1 y , then yPc
2 x by Lemma 19. Since Pc

2 ⊆ Qc
2 by Lemma 20, yQc

2 x . Thus, x �c y

implies xQc
2 y or yQc

2 x . Since �c is total, so is Qc
2 .

Lemma 23 Given a choice function c and two rationales P and P̃, P ⊆ P̃ implies tc(�c \P̃) ⊆ tc(�c \P).

Proof. Since P ⊆ P̃, it follows that (�c \P̃) ⊆ (�c \P). The result then follows by transitive closure.

42In particular: Pc
1 ⊆ Qc

1 by Lemma 18; Qc
1 ⊆ Q̂c

1 by Lemma 15; and, Q̂c
1 ⊆ �c by Lemma 7.
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Lemma 24 If c is TSM-representable, then (Pc
1 ,Qc

2 ) and (Qc
1 ,Pc

2 ) are TSM-representations of c .

Proof. By Lemmas 8 and 21, Rc
2 , Rc

1 , and (�c \Pc
2 ) are acyclic. So, Pc

1 , Pc
2 , and Qc

1 are transitive rationales. By
Lemma 22, Qc

2 is a strict weak order. To establish the result, it suffices to show that (Pc
1 ,Qc

2 ) and (Qc
1 ,Pc

2 ) satisfy the
two conditions in the Proposition of D&H (and, thus, RSM-represent c).

For the first condition, note the following set inclusions: Pc
1 ⊆ Qc

1 by Lemma 18; Qc
1 ⊆ Q̂c

1 by Lemma 15; and,
Q̂c

1 ⊆ (�c \PRSM
2 ) by Lemma 2. To see that PRSM

1 ⊆ Pc
1 , suppose xPRSM

1 y . Then, xRc
1 y by Reduction and hence xPc

1 y .
Combining these set inclusions gives PRSM

1 ⊆ Pc
1 ⊆ Qc

1 ⊆ (�c \PRSM
2 ) as required.

For the second condition, note that Qc
i ≡ tc(�c \Pc

−i ) ⊇ (�c \Pc
−i ) for i = 1, 2. So, Qc

2 ⊇ (�c \Pc
1 ) and

Pc
2 ⊇ (�c \Qc

1 ) as required (where the second inclusion follows from Qc
1 ⊇ (�c \Pc

2 ) and Lemma 23).

Proof of Theorem 3. Let {(P j
1,P j

2)}nj=1 denote the collection of all TSM-representations for c . By Lemma 17,
Pc
i ⊆ ∩nj=1P j

i for i = 1, 2. Since (Pc
1 ,Qc

2 ) and (Qc
1 ,Pc

2 ) are TSM-representations of c by Lemma 24, Pc
i ⊇ ∩nj=1P j

i for
i = 1, 2 as well. Combining these set inclusions gives Pc

i = ∩nj=1P j
i for i = 1, 2. This establishes (1) and (2).

A.2.3 Proof of Theorem 4

First, note that c satisfies Expansion, Weak WARP, and 3-acyclicity by Theorem 6 and Lemma 12.
Part (2) follows from Lemma 6. For part (1): (⇒) Suppose xRc

1 y . If xyz is a 3-cycle s.t. c(x , y , z) = z , c displays
a direct 〈x , y〉 reversal on {y , z}. If c(x , y) = x and wxz , wyz are 3-cycles s.t. c(w , x , z) = w and c(w , y , z) = z , c

displays an indirect 〈x , y〉 reversal on {y , z}. (⇐) If c displays a direct 〈x , y〉 reversal, there is some B s.t. c(B) = y

and c(B ∪ {x}) ≡ z /∈ {x , y}. By Reduction, xyz is a 3-cycle s.t. c(x , y , z) = z . So, xRc
1 y by part (i) of the definition.

If c displays an indirect 〈x , y〉 reversal, there is some B s.t. c(B) = y , c(B ∪ {x}) = x , c(B ∪ {w}) = z /∈ {y ,w},
and c(B ∪ {x ,w}) = w . By Reduction, wxz and wyz are 3-cycles s.t. c(w , x , z) = w and c(w , y , z) = z . Moreover,
c(x , y) = x . Otherwise, c(B ∪ {x}) = c(B ∪ {x , y}) = y 6= x by Expansion. So, xRc

1 y by part (ii) of the definition.

A.2.4 Proof of Theorem 5

Lemma 25 If (P1,P2) TSM-represents c , then P1 ⊆ Q̂c
1 .

Proof. By way of contradiction, suppose xP1y and ¬(xQ̂c
1 y). If y �c x , then c(P1,P2)(x , y) = y 6= x = c(x , y), a

contradiction. If x �c y , then ¬(xQ̂c
1 y) implies xR̂c

2 y . By definition, either: (i) there is a 3-cycle xyz s.t. c(x , y , z) 6= z ;
or, (ii) there are 3-cycles wxz , wyz s.t. c(w , x , z) = z and c(w , y , z) = w . To see that both entail contradictions: (i) If
c(x , y , z) = x , then yPc

1 z . Since P1 ⊇ Pc
1 by Theorem 3, xP1yP1z . By transitivity, xP1z . But, then c(P1,P2)(x , z) = x 6=

z = c(x , z), a contradiction. If c(x , y , z) = y , a similar contradiction arises for {y , z}. (ii) In this case, wPc
1 x and yPc

1 z .
Since P1 ⊇ Pc

1 , wP1xP1yP1z . By transitivity, wP1z . But, then c(P1,P2)(w , z) = w 6= z = c(w , z), a contradiction.

Lemma 26 If (P1,P2) TSM-represents c , then P ′i ⊆ P−i for i = 1, 2.

Proof. Suppose xP ′i y . By definition, there exists a (�c \Pi )-chain x0...xn s.t. x0 = x and xn = y . Consider any link
xj(�c \Pi )xj+1 of this chain. Since xj �c xj+1 and ¬[xjPixj+1], it follows that xjP−ixj+1. Otherwise, (P1,P2) cannot
TSM-represent c . So, xP−i ...P−iy . By transitivity, it follows that xP−iy .

Proof of Theorem 5. (⇒) Suppose (P1,P2) represents c . By Theorem 3, Pc
1 ⊆ P1. By Lemma 25, P1 ⊆ Q̂c

1 .
So, Pc

1 ⊆ P1 ⊆ Q̂c
1 as required. By Lemma 26, P ′1 ⊆ P2 as required. (⇐) Suppose P1, P2 are transitive rationales

s.t. Pc
1 ⊆ P1 ⊆ Q̂c

1 and P ′1 ⊆ P2. Since PRSM
1 ⊆ Pc

1 by Theorem 3 and Q̂c
1 ⊆ (�c \PRSM

2 ) by Lemma 2, (P1,P2)

TSM-represents c by the Proposition of D&H.
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A.3 Exclusivity in Shortlist Methods
Proof of Theorem 6. (i) By Lemma 1 and part (ii). (ii) By Lemma 3.

Proof of Theorem 7. Suppose c is RSM-representable. By Lemma 12, it suffices to show that:

(a) c satisfies {3, 5}-acyclicity iff R̂c
2 is triple-acyclic; and

(b) c satisfies {3, 4, 5}-acyclicity iff R̂c
2 is quadruple-acyclic.

(a) (⇒) By way of contradiction, suppose xR̂c
2 yR̂c

2 vR̂c
2 x . By definition of R̂c

2 , xyv is a 3-cycle. Without loss of generality,
suppose c(x , y , z) = v . Then, yR̂c

2 vR̂c
2 x by definition. Since xR̂c

2 y as well: (i) there is a 3-cycle xyz s.t. c(x , y , v) 6= z ;
or, (ii) there are 3-cycles wxz and wyz s.t. c(w , x , z) = z and c(w , y , z) = w . Since xyv is a 3-cycle s.t. c(x , y , z) = v :
(i) contradicts 3-acyclicity; and, (ii) contradicts 5-acyclicity. So, R̂c

2 is triple-acyclic. (⇐) To establish 3-acyclicity, suppose
wxz is a 3-cycle s.t. that c(w , x , z) = x . By definition, wR̂c

2 xR̂c
2 z . If wyz is a 3-cycle such that c(w , y , z) 6= y , then

zR̂c
2 w by definition, which contradicts the assumption that R̂c

2 is triple-acyclic. To establish 5-acyclicity, suppose wxz and
wyz are 3-cycles s.t. c(w , x , z) = z and c(w , y , z) = w ; and, suppose c(x , y) = x . By definition, xR̂c

2 y . If xyv is a
3-cycle such thatc(x , y , v) = v , then yR̂c

2 vR̂c
2 x by definition, which contradicts the assumption that R̂c

2 is triple-acyclic.

(b) (⇒) By Lemma 8, Rc
2 is acyclic. Then, by definition, R̂c

2 is also acyclic. So, R̂c
2 is quadruple-acyclic. (⇐) Since R̂c

2 is
triple-acyclic, c satisfies {3, 5}-acyclicity by part (a) above. To establish 4-acyclicity, suppose wxz and wyz are 3-cycles
s.t. c(w , x , z) = w and c(w , y , z) = z ; and, suppose c(x , y) = x . By definition, yR̂c

2 zR̂c
2 wR̂c

2 x . If xyv is a 3-cycle such
thatc(x , y , v) 6= v , then xR̂c

2 y by definition, which contradicts the assumption that R̂c
2 is quadruple-acyclic.
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B Supplemental Appendix
Section B.1 shows the independence of the axioms, Section B.2 establishes the results mentioned in Section 4.3, Section
B.3 establishes the remarks in Section 6, and Section B.4 provides results formalizing the connection to related models.

B.1 Independence of the Axioms
The first two examples describe choice functions that satisfy exactly one of the two axioms for the TSM model:

Example 2 Consider a choice function c on {w , x , y , z} with the pairwise choices given by Figure 2. In addition, suppose
c(w , x , z) = z , c(w , y , z) = y , c(w , x , y) = w , c(x , y , z) = x , and c(w , x , y , z) = y .

It is straightforward to check that c satisfies Expansion. However, it violates (Strong) Exclusivity because it displays a
direct 〈z ,w〉 reversal on {w , y} and a weak 〈z ,w〉 reversal on {w , x , z}. (Still, it does satisfy Weak Exclusivity. Indeed,
c is RSM-represented by the pair (P1,P2) where P1 ≡ {(z ,w), (w , x)} and P2 ≡ {(y , z), (w , y), (x , z), (x , y)}.)

Example 3 Consider a choice function c on {x , y , z} such that c(x , y) = c(x , z) = x , c(y , z) = y , and c(x , y , z) = y .

It is easy to check that c satisfies (Strong) Exclusivity: it displays a weak 〈x , y〉 reversal on {x , y , z}; and, a direct 〈z , x〉
reversal on {x , y}. However, it violates Expansion because c({x , y} ∪ {x , z}) = y 6= x .

The last two examples shows that Strong Exclusivity is independent from Weak WARP:

Example 4 Consider a choice function c on {x , y , z} such that c(x , y) = c(x , z) = x , c(y , z) = y , and c(x , y , z) = z .

Clearly, c satisfies Weak WARP (since this condition imposes no restrictions on the domain {x , y , z}). However, it violates
(Strong) Exclusivity because it displays both weak and direct 〈x , y〉 reversals (on {x , y , z} and {x , z}, respectively).

Example 5 Consider a choice function c on {w , x , y , z} with pairwise choice given by the linear order w > x > y > z .
In addition, suppose c(w , x , z) = c(w , y , z) = c(w , x , y) = w , c(x , y , z) = y , and c(w , x , y , z) = x .

It is straightforward (but computationally intensive) to check that c satisfies (Strong) Exclusivity: the weak reversals are
〈a, b〉 for a, b ∈ {w , x , y , z} and a > b; the direct reversals are 〈y ,w〉, 〈z ,w〉, and 〈z , x〉; and, there are no indirect
reversals. However, it violates Weak WARP because c(w , x , y , z) = x = c(x , y) and c(x , y , z) = y .

B.2 Minimal Representations
In this section, I use the additional notation that P ′ ≡ tc(�c \P).

Lemma 27 If (P1,P2) TSM-represents c , then Rc
i ∩ P−i = ∅ for i = 1, 2.

Proof. (i = 1) By way of contradiction, suppose (i) xRc
1 y and (ii) xP2y . Given (i), yPc

2 x by Lemma 19. Since Pc
2 ⊆ P2

by Theorem 3, yP2x . Given (ii), this contradicts the asymmetry of P2. (i = 2) By way of contradiction, suppose (i) xRc
2 y

and (ii) xP1y . Given (i), there is a 3-cycle xyz s.t. c(x , y , z) 6= z . If c(x , y , z) = x , yRc
1 z . Since Pc

1 ⊆ P1 by Theorem 3,
yP1z . Given (ii), xP1z by transitivity. So, c(x , z) 6= z , a contradiction. If c(x , y , z) = y , a similar contradiction arises.

Definition 3 Given a choice function c , let Pi (c) ≡ {P : Pc
i ⊆ P ⊆ Qc

i } and P ′′i (c) ≡ {P ′′i : Pi ∈ Pi (c)}.

Definition 4 A rationale P1 is P2-minimal if (i) (P1,P2) TSM-represents c and (ii) there exists no transitive rationale
P̃1 ⊂ P1 such that (P̃1,P2) TSM-represents c . The notion of P1-minimality is defined analogously.
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Proposition 1 If (P1,P2) TSM-represents c , then P ′i ∈ P−i (c) is the unique Pi -minimal rationale.

Proof. I show: (i) P ′i ∈ P−i (c); (ii) P ′i ⊆ P−i ; (iii.a) (P1,P ′1) represents c ; and, (iii.b) (P ′2,P1) represents c .

(i) By Theorem 3, Pc
i ⊆ Pi . So, (a) P ′i ⊆ Qc

−i by Lemma 23. By Lemma 27, Rc
i ∩ P−i = ∅. So, Rc

i ⊆ (�c \P−i ). By
transitive closure, (b) Pc

i ⊆ P ′−i . Given (a)-(b), P ′i ∈ P−i (c). (ii) By Lemma 26.

(iii.a) Since (P1,P2) RSM-represents c , PRSM
1 ⊆ P1 ⊆ (�c \PRSM

2 ) by the Proposition of D&H. Moreover, P ′1 ≡ tc(�c

\P1) ⊇ (�c \P1). Since P ′1 ∈ P2(c) by (i) and Pc
2 , Qc

2 are asymmetric by Lemma 24, so is P ′1. Since P1, P ′1 are transitive,
(P1,P ′1) represents c by the Proposition of D&H. (iii.b) Given (i), P ′2 ∈ P1(c). So, PRSM

1 ⊆ P ′2 ⊆ (�c \PRSM
2 ) by

Theorem 3. Since P ′2 ⊇ (�c \P2), P2 ⊇ (�c \P ′2) by Lemma 23. Since P ′2 ∈ P1(c) and Pc
1 , Qc

1 are asymmetric by Lemma
24, P ′1 is as well. Since P ′2 and P2 are transitive, (P ′2,P2) TSM-represents c by the Proposition of D&H.

Lemma 28 Given a choice function c and a transitive rationale P, xP ′′y implies xPy .

Proof. Suppose xP ′′y . First, suppose x(�c \P ′)y . Then, ¬[xP ′y ]. By definition, ¬[x(tc(�c \P))y ]. Since x �c y ,
xPy . Next, suppose there is a (�c \P ′)-chain x0...xn with x0 = x and xn = y . From the first case, xiPxi+1 for any link
in the chain. So, xPx1P...Pxn−1Py . By transitivity, xPy .

Definition 5 A TSM-representation (P1,P2) of c is minimal (i) P1 is P2-minimal and (i) P2 is P1-minimal.

Lemma 29 If (P1,P2) TSM-represents c , then (P ′′1 ,P ′1) and (P ′2,P ′′2 ) are minimal.

Proof. I show that (P ′′1 ,P ′1) is minimal. The proof for (P ′2,P ′′2 ) is analogous. By Proposition 1, (P1,P ′1) TSM-represents
c and P ′1 is P1-minimal. So: (i) (P ′′1 ,P ′1) TSM-represents c and P ′′1 is P ′1-minimal; and, (ii) (P ′′1 ,P ′′′1 ) TSM-represents c

and P ′′′1 is P ′′1 -minimal. Given (i)-(ii), it suffices to show P ′′′1 = P ′1. By Lemma 28, (1) P ′′1 ⊆ P1 (using P = P1) and (2)
P ′′′1 ⊆ P ′1 (using P = P ′1). By Lemma 23, (1) implies P ′1 ⊆ P ′′′1 . Given (2), it follows that P ′′′1 = P ′1.

Proposition 2 If (P1,P2) TSM-represents c , then: (P1,P2) is minimal iff Pi ∈ P ′′i (c) and P−i = P ′i .

Proof. I show that (P1,P2) is minimal iff P1 ∈ P ′′1 (c) and P2 = P ′1. The proof for P2 ∈ P ′′2 (c) and P1 = P ′2 is similar.
(⇒) Suppose (P1,P2) is minimal. By Proposition 1, P2 = P ′1 as required. Similarly, P1 = P ′2 = P ′′1 . So, P1 = P ′′1 ∈ P ′′1 (c)
as required. (⇐) Suppose (P1,P2) TSM-represents c and P̃1 ∈ P1(c) is a transitive rationale s.t. P1 = P̃ ′′1 and P2 = P̃ ′′′1 .
It suffices to show that (P1, P̃ ′1) TSM-represents c . Then, (P1,P2) = (P̃ ′′1 , P̃ ′′′1 ) is minimal by Lemma 29. To see this,
note: PRSM

1 ⊆ P1 ⊆ (�c \PRSM
2 ) because (P1,P2) RSM-represents c ; and, P2 = P̃ ′′′1 ⊆ P̃ ′1 by Lemma 28. So, (P1, P̃ ′1)

RSM-represents c by the Proposition of D&H. Since P1 and P̃ ′1 are transitive rationales, (P1, P̃ ′1) TSM-represents c .

B.3 Proof of Remarks 1 to 3
Proof of Remark 1. (⇒) This follows from the discussion in the text. (⇐) By ESQ Exclusivity, there exists at most one
alternative d that creates direct reversals. It suffices to show that (E c ,Pc) satisfies the conditions of Theorem 5 where:
E c is defined by dE ca if d �c a; and, Pc ≡ Qc

2 . By definition of Rc
1 and ESQ Exclusivity, xRc

1 y implies x = d . So,
Pc
1 = Rc

1 ⊆ E c . To show that E c ⊆ Q̂c
1 , it is enough to see that dR̂c

2 z cannot occur. By definition of Rc
2 , Exclusivity, and

ESQ Exclusivity, xRc
2 y implies x 6= d . By definition of R̂c

2 , it follows that dR̂c
2 z cannot occur.

Proof of Remark 2. For the framing model: Since the induced choice function c is TSM-represented by (Pf ,P), the
only 3-cycles involve the outside option o (and alternatives a, b ∈ X ). In particular, aPoPbPf a and c(a, b, o) = o. By
way of contradiction, suppose c(x , y) = x , c(w , x , z) = z , and c(w , y , z) = w for some 3-cycles wxz and wyz . From the
simple observation above, it follows that w = o = z . But, this contradicts the fact that w and z are distinct.
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For the compromise model: Suppose C is the set of categories and P is the preference of the planner. Then, it is easy
to show that the induced choice function c is TSM-represented by the pair (P−1C ,P) where P−1C is defined by xP−1C y if
yPx and x , y ∈ Ci for some Ci ∈ C. As a result, the only 3-cycles involve a, a′ ∈ Ci from one category and b ∈ Cj from
another. In particular, aPbPa′P−1C a and c(a, a′, b) = b. So, direct reversals on small menus involve alternatives in the
same category while weak reversals involve alternatives in different categories. (For the alternatives specified: there is a
direct reversal 〈a′, a〉; and, two weak reversals 〈a, b〉 and 〈b, a′〉.)

By way of contradiction, suppose c(x , y) = x , c(w , x , z) = z , and c(w , y , z) = w for some 3-cycles wxz and wyz

(see Definition 1). From the observation in the last paragraph, it follows that x ≈c w 6≈c z ≈c y . Since this means that
x and y are in different categories, they are not compared according to the first rationale of (P−1C ,P). Since Pc

1 ⊆ P−1C
by Theorem 3 however, this contradicts the inference that xRc

1 y .

Proof of Remark 3. Suppose M∗ is profit-maximal. First, observe the following: if yP1x for x , y ∈ M∗∪{o}, then x = o.
To see this, suppose to the contrary that x ∈ M∗. Since P1 ⊆ Q̂c

1 (by Theorem 5), ci (M
∗ ∪ {o}) = ci ([M

∗ ∪ {o}] \ {x})
for all i ∈ I (by Lemma 7). Since x can be removed without affecting choice, M∗ is not profit-maximal.

Next, suppose m ∈ M∗ is not purchased by any consumer types. Since M∗ maximizes profits, there must be some
consumer i such that ci (M

∗ ∪ {o}) ≡ y 6= x ≡ ci ([M
∗ ∪ {o}] \ {m}). By Reduction, xym is a 3-cycle for i such that

ci (x , y ,m) = y . So, mRc
1 x . Since Pc

1 ⊆ P1 (by Theorem 5), the observation in the last paragraph implies x = o. So,
mP1o and m serves as a decoy for consumer i . To complete the proof, note that m must be the only unchosen alternative
in M∗. If there was another unchosen m′ ∈ M∗, it could not be optimal to offer both: either m or m′ could be removed
without affecting choice. This follows from the fact that both mP1o and m′P1o.

Example 6 Let X = {a, b}. Suppose it is unprofitable for the monopolist to sell product b; but that this product alone
discourages biased consumers from choosing the outside option o. In other words, suppose π(a) > π(o) = 0 > π(b) and
P1 = {(b, o)}. Then, the six possible types of biased consumer (P1,P i

2) would choose as follows:

Type P i
2 pi ci ({a, o}) ci ({b, o}) ci ({a, b, o})

1 a, o, b 1/4 a b a

2 a, b, o 1/4 a b a

3 o, a, b 1/4 o b a

4 o, b, a 1/4 o b b

5 b, a, o 0 a b b

6 b, o, a 0 o b b

Given the type distribution p, it is optimal for the monopolist to offer biased consumers M∗ = {a, b} if and only if
π(a) + π(b) > 0. In contrast, it is optimal to offer M∗∅ = {a} when consumers are unbiased (since b imposes a menu
cost ε(b) but is not chosen by types 1 to 4). In other words, the monopolist offers different menus to biased and unbiased
consumers when π(a) + π(b) > 0. Clearly, biased types 3 and 4 are better off with the menu M∗∅ offered to unbiased
consumers. In contrast, unbiased types 5 and 6 are better off with the menu M∗ offered to biased consumers.

Remark 4 (Nash Implementation) The choice behavior ci (·, θ) of each agent i ∈ I depends on a state θ ∈ Θ that is
unknown to the planner. The social welfare function f defines the set of acceptable outcomes f (θ) ⊆ X in each state
θ ∈ Θ. The objective is to design a simultaneous game form G such that x ∈ X is a Nash equilibrium outcome of the
game (G , θ) if and only if it is acceptable at θ. Where NE (G , θ) denotes the Nash equilibrium outcomes of (G , θ), the
social welfare function f is Nash implementable if there exists a game form G such that NE (G , θ) = f (θ) for all θ ∈ Θ.
Korpela [2012] and de Clippel [2014] show that the following is necessary for f to be Nash implementable:
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Weak µ For every θ ∈ Θ and x ∈ f (θ), there exists a collection X (θ, x) ≡ {Xi (θ, x) ⊆ X : i ∈ I} such that

(i) x ∈ ci (Xi (θ, x), θ) for all i ∈ I ; and,
(ii) x ∈ ci (Xi (θ, x),φ) for all i ∈ I only if x ∈ f (φ).

B.4 Related Models

B.4.1 The Transitive RSM Model

Remark 5 Several papers characterize the transitive RSM model by defining a “revealed 2-rationale” and requiring this
binary relation to be acyclic. For convenience, I restate the definitions used in these papers:

xRa
2y if c(x , y) = x and c(A) 6= c(A \ {y}) for some A ⊃ {x , y} (Au and Kawai [2011, Theorem 1])

xR l
2y if c(B) = x and c(A) 6= c(A \ {y}) for some {x , y} ⊆ B ⊂ A (Lleras et al. [2011, Theorem 4])

xRy
2 y if

c(x , y) = x and c(A) = y for some A ⊃ {x , y}; or,

c(B ∪ {y}) = x 6= c(B).
(Yildiz [2015, Proposition 2])

By Lemma 6, Ra
2 is equivalent to R̂c

2 (given Weak WARP, Expansion, and 3-Acyclicity). Lemma 30 treats R l
2 and Ry

2 .

Lemma 30 If c satisfies Weak WARP, Expansion, and 3-Acyclicity, then: (i) R l
2 = R̂c

2 ; and, (ii) Ry
2 = Rc

2 .

Proof. (i) Since R̂c
2 = Ra

2 by Lemma 6, the proof can be carried out with Ra
2 in place of R̂c

2 . (⇐) Suppose xRa
2y . Then,

by definition of Ra
2 , the implication holds with B = {x , y}. (⇒) Suppose c(B) = x and c(A) 6= c(A \ {y}) for some

{x , y} ⊆ B ⊂ A. It suffices to show that c(x , y) = x when B 6= {x , y}. By Lemma 5, c satisfies Reduction. If c(A) = x ,
Reduction implies that xya′ is a 3-cycle where a′ ≡ c(A\{y}). So, c(x , y) = x as required. If c(A) = y , then c(x , y) = x

as required. Otherwise, c(x , y) = y = c(A) and c(B) = x contradict Weak WARP. Finally, suppose c(A) = a /∈ {x , y}.
If c(A \ {y}) = x , c(A) = c(A \ {y} ∪ B) = x by Expansion, which contradicts c(A) 6= x . So, c(A \ {y}) = a′ 6= x .
By way of contradiction, suppose c(x , y) = y . Since c(A) = a and c(B) = x , the same kind of argument given in the
previous paragraph establishes c(a, x) = x by Weak WARP. Since c(A) = a 6= a′ = c(A \ {y}), Reduction implies that
a′ay is a 3-cycle s.t. c(a, a′, y) = a. Since c(a, y) = a, xay is also a 3-cycle. By 3-Acyclicity, c(a, a′, y) = a implies
c(a, x , y) 6= x . If c(a, x , y) = y , then c(a, y) = a = c(A) and c(a, x , y) = y contradict Weak WARP. So, c(a, x , y) = a.
Since c(x , a) = x = c(B), Expansion implies c(B ∪{a}) = x . Since c(a, x , y) = a = c(A) however, this contradicts Weak
WARP. So, c(x , y) = x as required.

(ii) (⇐) Suppose xRc
2 y . Then, there exists a 3-cycle xyz s.t. c(x , y , z) 6= z . If c(x , y , z) = y , the first branch is satisfied

with A = {x , y , z}. If c(x , y , z) = x , the second branch is satisfied with B = {x , z}. (⇒) First, suppose c(x , y) = x and
c(A) = y for some A ⊃ {x , y}. By Reduction, there exists a 3-cycle xyz s.t. c(x , y , z) = y . By definition, xRc

2 y . Next,
suppose c(B ∪ {y}) = x 6= b = c(B). By Reduction, bxy is a 3-cycle s.t. c(b, x , y) = x . By definition, xRc

2 y .

Remark 6 Au and Kawai show that any transitive RSM can be represented by (Q̂a
1 ,�a

2) where: xQ̂a
1y if c(A) = c(A \ y)

for all A ⊇ {x , y}; and, �a
2 is any linear order that completes Ra

2 . Lemma 7 shows that Q̂c
1 and Q̂a

1 are equivalent.

Lemma 31 If c can be represented in terms of shortlisting, then xPc
1 y iff c(x , y) = x and yPc

2 x .

Proof. (⇒) Suppose xPc
1 y . By Lemma 19, yPc

2 x . By Lemmas 16-17, Pc
1 ⊆ �c . So, c(x , y) = x . (⇐) Suppose

c(x , y) = x and yPc
2 x . Since Pc

2 ⊆ Qc
2 by Lemma 20, yQc

2 x . By way of contradiction, suppose ¬[xPc
1 y ]. Then,

x(�c \Pc
1 )y so that xQc

2 y . Since yQc
2 x , this contradicts Lemma 22.
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Remark 7 Au and Kawai define a revealed preference Pa
1 for the first rationale by xPa

1y if xQ̂a
1y and yRa

2 ...R
a
2x . Lemma

31 above effectively shows the equivalence between Pc
1 and Pa

1 . By Lemma 6, yPc
2 x is equivalent to yRa

2 ...R
a
2x . To see

that xQ̂a
1y can be replaced by c(x , y) = x in their definition:

Proof. (⇒) Suppose xQ̂a
1y . By definition of Q̂a

1 , c(x , y) = x . (⇐) Suppose c(x , y) = x and yRa
2 ...R

a
2x . To see that

xQ̂a
1y , suppose otherwise. Then, c(x , y) = y (which contradicts c(x , y) = x) or xRa

2y (which contradicts the acyclicity
of Ra

2 ). Thus, xQ̂a
1y as required.

To conclude, I correct an oversight in the proof of Au and Kawai’s Theorem 1:

Remark 8 While Claim 5 of their paper is correct, the proof contains an error. Along the lines of Lemma 5, they establish
that c(B ′) = x by Expansion. Using Weak WARP, Expansion, and Ra

2 -Acyclicity, they also show that c(A′′) = x where
A′′ ≡ A \ {z ∈ A \ B ′ : c(y , z) = z or xyz is a 3-cycle s.t. c(x , y , z) = x}. Then, they claim that Weak WARP and
Expansion imply c(B ′ ∪ {w}) = x for some w ∈ A′′ \ B ′ such that c(w , y) = w . The choice function c in Example 2
provides a counter-example to this claim. It satisfies Expansion and Weak WARP but violates the property claimed by Au
and Kawai (as well as Selective IIA) since c(w , y) = w but c(w , x , y , z) = y 6= x = c(x , y , z).

By Lemma 32 below however, Claim 5 is nonetheless correct by the argument given in Lemma 5.

Lemma 32 If c satisfies Expansion, Weak WARP, and Ra
2 -Acyclicity, then it satisfies Selective IIA.

Proof. By Lemma 4, it suffices to show that Ra
2 -Acyclicity implies 3-Acyclicity. By way of contradiction, suppose there

exist 3-cycles wxz , wyz s.t. c(w , x , z) = x and c(w , y , z) 6= y . Then, wRa
2xRa

2z and zRa
2w . But, this contradicts

Ra-Acyclicity, which establishes that c satisfies 3-Acyclicity.

B.4.2 The T1SM Model

Remark 9 Matsuki and Tadenuma [2013] axiomatize the T1SM model with Expansion, Weak WARP, and the following:

Elimination If c(A) 6= y for all A ⊇ {x , y}, then:
(i) c(B ∪ {x}) = x for all B s.t. c(B) = y ; or, (ii) c(B) = c(B \ {y}) for all B s.t. B ⊇ {x , y}.

Formally, Elimination limits Exclusivity to pairs 〈x , y〉 where c(A) 6= y for all A ⊇ {x , y}.

Remark 10 Matsuki and Tadenuma also show that behavior consistent with the model can be T1SM-represented by
(P̂m

1 , Q̂m
2 ) where: P̂m

1 ≡ tc(R̂m
1 ); xR̂m

1 y if there exists a 3-cycle xyz s.t. c(x , y , z) = z ; and, Q̂m
2 ≡ �c \P̂m

1 . Lemma 1
establishes that (Q̂c

1 , R̂c
2 ) defines another T1SM-representation. The proof below shows P̂m

1 ⊆ P1 and R̂c
2 ⊆ P2. Together,

these facts establish that P̂m
1 and R̂c

2 define revealed preference in the T1SM model:

- xP̂m
1 y iff xP1y for every T1SM-representation (P1,P2) of c ; and,

- xR̂c
2 y iff xP2y for every T1SM-representation (P1,P2) of c .

Proof. Given a T1SM-representation (P1,P2), the inclusions R̂m
1 ⊆ P1 and Rc

2 ⊆ P2 are straightforward. I show: (a)
P̂m
1 ⊆ P1; and, (b) R̂c

2 ⊆ P2. (a) Since R̂m
1 ⊆ P1, P̂m

1 ≡ tc(R̂m
1 ) ⊆ tc(P1) = P1. (b) Since Rc

2 ⊆ P2, I show that xR̂c
2 y

implies xP2y under branch (ii) of R̂c
2 . In that case: c(x , y) = x ; and, c(w , x , z) = z , c(w , y , z) = w for some 3-cycles

wxz and wyz . By definition, wR̂c
1 x and yR̂c

1 z . By (a), wP1x and yP1z . By way of contradiction, suppose ¬(xP2y).
Since c(x , y) = x , xP1y . Since wP1xP1yP1z , wP1z by transitivity. But, this contradicts c(w , z) = z .
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B.4.3 The RSM Model

Remark 11 Dutta and Horan’s definitions of the revealed rationales PRSM
1 and PRSM

2 may be restated as follows:
(1) xPRSM

1 y if c displays a direct 〈x , y〉 reversal; and,
(2) xPRSM

2 y if c displays a weak 〈x , y〉 reversal for some menu B such that c(B) = y .
The restatement of (1) is only a matter of definitions. However, the restatement of (2) depends on the additional
observation that c(A) = x and c(B) = y for B ⊃ A imply c(x , y) = x by Weak WARP.

Example 7 Let (P1,P2) denote the T2SM on X ≡ {xi}ni=1 defined by:
– xiP1xj if and only if j = i + 1; and
– P2 defined as a transitive rationale such that xnP2...P2x1.

For n ≥ 4, c(P1,P2) is not TSM-representable. This follows from the fact that it violates 3-Acyclicity. To see this, note that
xi−1xixi+1 is a 3-cycle s.t. c(P1,P2)(xi−1, xi , xi+1) = xi−1 for 1 < i < n. Moreover, one cannot infer xnPRSM

2 x1 without
c(P1,P2)(X ) = x1 – since c(P1,P2)(A) 6= x1 for all {x1, xn} ⊂ A ⊂ X .

Example 8 Let (P1,P2) denote the T2SM on X ≡ {xi}ni=1 ∪ {w , y , z} defined by:
– xiP1xj if and only if j = i + 1 and xnP1yP1zP1w ; and
– P2 defined as a transitive rationale such that zP2yP2x2P2...P2xnP2wP2x1.

For n ≥ 1, c(P1,P2) is not TSM-representable. This follows from the fact that it violates 3-Acyclicity. To see this, note
that x1x2w and x1x2x3 are 3-cycles s.t. c(P1,P2)(x1, x2,w) = w and c(P1,P2)(x1, x2, x2) = x1. Moreover, one cannot infer
zPRSM

1 w without c(P1,P2)(X ) = x1 – since c(P1,P2)(A ∪ {z}) = z for all A ⊂ X \ {z} such that c(P1,P2)(A) = w .
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