
Université de Montréal

Photorealistic Surface Rendering with Microfacet Theory

par
Jonathan Dupuy

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures et postdoctorales
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Septembre, 2015

c© Jonathan Dupuy, 2015

Résumé

La synthèse d’images dites photoréalistes nécessite d’évaluer numériquement la manière dont la lumière et

la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous béné-

ficions aujourd’hui et qui ne cesse d’augmenter, est encore bien loin de devenir une tâche triviale pour nos

ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets : afin de reproduire

les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phéno-

ménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes

d’entrées-sorties, qui, couplées à des évaluations d’opérateurs de filtrage complexes, rendent les temps de calcul

nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous

les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière.

Dans cette thèse, nous construisons une telle représentation pour la matière dont l’interface correspond à une

surface perturbée, une configuration qui se construit généralement via des cartes d’élévations en infographie.

Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l’origine pour

modéliser la réflectance de surfaces rugueuses), que nous présentons d’abord, puis augmentons en deux temps.

Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d’observation en la

généralisant aux statistiques de microfacettes décentrées. Dans l’autre, nous dérivons une procédure d’inversion

capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d’un matériau arbitraire

dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée

afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d’élévations qui

(a) préserve l’anisotropie du transport de la lumière pour n’importe quelle résolution, (b) peut être appliqué en

amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d’entrées-

sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des

temps de rendu plus courts. Afin de valider et démontrer l’efficacité de notre opérateur, nous synthétisons des

images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une

implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus.

Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous

restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale.

Mots clés : microfacettes, rendu, photoréalisme, anticrénelage, filtrage, MIP map

Abstract

Photorealistic rendering involves the numeric resolution of physically accurate light/matter interactions which,

despite the tremendous and continuously increasing computational power that we now have at our disposal,

is nowhere from becoming a quick and simple task for our computers. This is mainly due to the way that

we represent objects: in order to reproduce the subtle interactions that create detail, tremendous amounts of

geometry need to be queried. Hence, at render time, this complexity leads to heavy input/output operations

which, combined with numerically complex filtering operators, require unreasonable amounts of computation

times to guarantee artifact-free images. In order to alleviate such issues with today’s constraints, a multiscale

representation for matter must be derived.

In this thesis, we derive such a representation for matter whose interface can be modelled as a displaced sur-

face, a configuration that is typically simulated with displacement texture mapping in computer graphics. Our

representation is derived within the realm of microfacet theory (a framework originally designed to model

reflection of rough surfaces), which we review and augment in two respects. First, we render the theory ap-

plicable across multiple scales by extending it to support noncentral microfacet statistics. Second, we derive

an inversion procedure that retrieves microfacet statistics from backscattering reflection evaluations. We show

how this augmented framework may be applied to derive a general and efficient (although approximate) down-

sampling operator for displacement texture maps that (a) preserves the anisotropy exhibited by light transport

for any resolution, (b) can be applied prior to rendering and stored into MIP texture maps to drastically reduce

the number of input/output operations, and (c) considerably simplifies per-pixel filtering operations, resulting

overall in shorter rendering times. In order to validate and demonstrate the effectiveness of our operator, we

render antialiased photorealistic images against ground truth. In addition, we provide C++ implementations all

along the dissertation to facilitate the reproduction of the presented results. We conclude with a discussion on

limitations of our approach, and avenues for a more general multiscale representation for matter.

Keywords: microfacet theory, rendering, photorealism, antialiasing, filtering, MIP map

Contents

Résumé . ii

Abstract . iii

Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgements . ix

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Overview . 4

1.3 Theoretical Background . 5

1.4 Practical Considerations . 7

Chapter 2: State-of-the-art Microfacet Theory . 11

2.1 Torrance-Sparrow Equation . 15

2.2 Importance Sampling . 21

2.3 Controlling Roughness . 24

2.4 Implementation Details . 31

Chapter 3: Noncentral Microfacet Theory . 35

3.1 Motivation . 36

3.2 Noncentral Microfacet BRDF Equations . 37

3.3 LEAN/LEADR Mapping . 42

3.4 Practical Considerations . 48

Chapter 4: Inverted Microfacet Theory . 56

4.1 Motivation . 57

4.2 Microfacet Terms Extraction . 58

4.3 Experiments . 66

4.4 Implementation Details . 71

Chapter 5: Conclusion . 80

5.1 Downsampling Operator . 81

5.2 Positioning and Discussions . 85

5.3 Future Research . 90

5.4 List of Publications . 92

Bibliography . 94

v

List of Tables

2.I Popular Fresnel terms used in computer graphics. 16

2.II Analytic microfacet slope probability density functions. 20

2.III The Smith masking term of analytic microfacet slope distributions. 22

2.IV Various microfacet GAF terms. The Smith model is considered as the most plausible. . . 22

2.V Conditional CDF and QF of analytic visible slope distributions. 25

4.I Maximum relative error in backscattering between Beckmann BRDFs with varying rough-

ness and their respective fits computed with our algorithm. 67

List of Figures

1.1 Shape versus appearance. 1

1.2 Shape versus appearance in computer graphics. 2

1.3 Various texture mapping techniques. 2

1.4 Theoretical background illustrated. 5

2.1 Geometric overview of microfacet theory. 11

2.2 Varying the Fresnel term on a microfacet BRDF. 13

2.3 Impact of the GAF term on a microfacet BRDF. 13

2.4 Effect of isotropic roughness on a microfacet BRDF. 14

2.5 Effect of anisotropic roughness on a microfacet BRDF. 14

2.6 Effect of anisotropy orientation on a microfacet BRDF. 14

2.7 Bijection between slopes and normals. 19

2.8 Typical surface profiles handled by existing microfacet GAFs. 21

2.9 Geometric interpretation of roughness. 25

2.10 Roughness invariance of the monostatic shadowing term. 29

2.11 Sampling a rough microsurface from a standard microsurface. 30

3.1 Geometric overview of noncentral microfacet theory. 35

3.2 Overview of the displacement mapping technique. 37

3.3 Shear invariance of the monostatic shadowing term. 40

3.4 Sampling a sheared microsurface from a standard microsurface. 41

3.5 Experimental validation for our filtering scheme. 49

3.6 Finite differencing schemes comparison for LEAN maps precomputations. 50

3.7 Surface stretching. 51

3.8 Surface shearing. 52

3.9 Impact of scale on the displacement mapping technique. 53

3.10 A displacement mapped ocean rendered in real time with LEADR mapping. 54

3.11 A production asset rendered in real time with LEADR mapping. 54

4.1 Geometric overview of inverted microfacet theory. 56

4.2 Mean delta-E difference image on the MERL database. 68

4.3 Side-by-side fitting comparisons of a few isotropic materials. 69

4.4 Side-by-side fitting comparisons of a few anisotropic materials. 70

4.5 Fitting timings (in seconds) of our algorithms. 71

4.6 Multiple material design on a production asset. 72

5.1 Geometric overview of our displacement map filtering algorithm. 80

5.2 GPU pipeline of our displacement map filtering technique. 84

5.3 Comparison between naive MIP mapping and our downsampling operator. 85

5.4 Effect of our downsampling operator on displaced surfaces with MERL materials (1/2). . 86

5.5 Effect of our downsampling operator on displaced surfaces with MERL materials (2/2). . 87

viii

Acknowledgements

This thesis concludes four invaluable years of research; I have learned so much and met so many great people.

I first wish to thank my advisors Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov, who gave me the

opportunity to experience this intense adventure in the first place. Thank you Jean-Claude for introducing me to

the world of computer graphics, to OpenGL and the challenging problem of level-of-detail during my bachelor

degree. Thank you Pierre for spending so much time on the deadlines with me, and for always being available

for discussions during my stay at LIGUM; this year and a half spent in Montreal was unforgettable. Thank you

Victor for sharing with me your fascinating stories on tilings and quasicrystals, and for always introducing me

to the people you would invite over at LIRIS. My next thoughts go to my colleague and friend Eric Heitz, who

has been by far my most important collaborator since the beginning on my PhD. To you, Eric, I must say that

it has been both a pleasure and privilege to work with you; it really feels to me that no problem is too hard

when we are working together. Next, I wish to thank several colleagues I have had the chance to meet during

my PhD and who also had a great influence on my work. Stephen Hill: for giving me the opportunity to be a

part of the fantastic physically based shading course you have been organizing along with Stephen McAuley so

tremendously well for several years in a row now. Antoine Bouthors: for inviting me over at Weta Digital, and

giving the chance to integrate some of my research in your rendering pipeline. Wenzel Jakob: for providing

the amazing Mistuba renderer; the figures and source code snippets I included in my manuscript are inspired

from the documentation you wrote for Mitsuba. Fabrice Neyret and Eric Bruneton: for sharing with me your

philosophy of level-of-detail and scientific methodology during my master thesis. Brent Burley: for providing

me with the T-Rex model and sharing your insights on BRDF authoring. Thiago Da Costa and Arno Zinke: for

providing me with the LAGOA robot asset. Cyril Crassin: for perhaps being the only one I can talk to about

OpenGL ARB extensions and politics at the same time. Guillaume Bouchard: for sharing with me your wise

thoughts on rendering, always in a very unique, entertaining way. Lastly, I thank all my old friends and family:

your continuous support throughout the years has been invaluable.

Financial Support Financial support was partly provided by grants from GRAND and the NSERC Discovery

of Pierre Poulin, and the ANR AMCQMCSCGA of Victor Ostromoukhov. I also acknowledge an Explo’ra Doc

grant from the Rhône-Alpes region.

Chapter 1

Introduction

1.1 Motivation

Most objects we see in everyday life can be described in two steps: first by shape, then by appearance; Figure 1.1

illustrates their differences. Computer graphics applications tend to follow this approach, relying on polygon

meshes for the former, and physically based shading for the latter; Figure 1.2 shows a few such combinations.

When high-frequency detail is desired, these representations are further augmented with texture maps that either

affect shape (e.g., displacement maps) or appearance (e.g., normal maps); Figure 1.3 shows a few common

texture mapping techniques.

Despite being a remarkably effective solution for detail management, this combination of descriptors has led

to a challenging problem for physically based rendering: we now have to somehow process thousands (or even

more) of polygons and/or texels per pixel just to properly capture visibility and direct lighting effects. Since

there usually are no analytic solutions to this problem, it must be solved numerically with, inexorably, a large

number of samples (recall that the sampling rate should be at least twice the maximum frequency component

of the scene according to the Nyquist sampling theorem). In most cases unfortunately, the computational

cost induced by the Nyquist sampling theorem is too high to be practical. As a consequence, the integration

ends up being undersampled for the sake of reasonable rendering times, ultimately leading in final images to

unacceptable artifacts such as aliasing or noise.

In order to deal with this specific issue, computer graphics applications commonly rely on more or less sophisti-

cated screen-space filters, ranging from fully automatic (e.g., SMAA [JESG12]) to fully manual (e.g., an artist

working overtime in Photoshop). As can be evidenced by the quality of current photorealistic renderings, this

Figure 1.1 – Shape versus appearance. Left: Objects with different shapes but the same appearance. Right:
Objects with the same shape but different appearance. The plasma ball image was created by Soenke Rahn and
is available at http://commons.wikimedia.org/wiki/File:Plasmakugel_%28Plasma_Ball%29.JPG

http://commons.wikimedia.org/wiki/File:Plasmakugel_%28Plasma_Ball%29.JPG

Shapes Appearance 1 Appearance 2 Appearance 3
(diffuse) (dielectric) (conductor)

Figure 1.2 – Shape versus appearance in computer graphics.

Texture pattern Reflectance Roughness Bump/normal

Figure 1.3 – Various texture mapping techniques.

2

approach works reasonably well in practice. However, it does tend to defeat some the main benefits of physi-

cally based rendering. In particular, screen-space filters do not guarantee shading consistency across pixels and

time, thus requiring extensive tweaking to achieve satisfying results. Such limitations can quickly bottleneck a

rendering pipeline, so it makes sense to look for alternative solutions.

Given the current evolution of computational power and the innovations in higher resolution / higher framerate

displays, it seems that brute-force supersampling will remain out of reach for the foreseeable future (note: it will

also be interesting to see how screen-space filters evolve, as their performance is intimately linked to display

characteristics). In the meantime, rather than trying to adapt sampling rates to geometric complexity, there are

potentially great benefits to be had by doing the opposite, i.e., adapting geometry to fixed amounts of samples;

this can be achieved through the use of precomputed level-of-detail schemes.

Finding generic and lightweight object representations that can maintain physically based principles at all

scales is quite difficult, however. The difficulty mainly resides in the mathematics involved, which are mostly

nonlinear, highly dimensional, and sensitive to discretization. The main goal of this thesis is to motivate the

conjecture that, despite difficulty, viable solutions for precomputed level-of-detail schemes can be derived. We

demonstrate this by introducing an effective prefiltering scheme for displacement mapped surfaces of arbitrary

appearance, which works similarly to MIP mapping [Wil83]. Our prefiltering scheme is derived within an aug-

mented microfacet theory framework. Originally, microfacet theory is a mathematical framework designed for

describing appearance through a bidirectional reflectance distribution function (BRDF) in a biscale approach;

microfacet BRDFs are the object of Chapter 2. In order to make this framework applicable to displacement

mapped surface filtering, we extend it in two ways. First, we generalize the theory to multiple scales; this is

the purpose of Chapter 3. Second, we introduce an inverted theory, i.e., a framework to recover a microfacet

configuration given an input material; this is the purpose of Chapter 4. Our extensions of microfacet theory

can then be used to derive a multiscale representation for displaced surfaces that is general, yet simple, robust,

and straightforward to implement in a physically based rendering pipeline. To emphasize this last point, a

complete state-of-the-art C++ implementation of a multiscale microfacet BRDF library is presented progres-

sively throughout the manuscript, along with numeric validation tests to help the interested reader in better

understanding and reproducing the results of this thesis.

3

1.2 Thesis Overview

More formally, this thesis is structured as follows (note: each chapter starts with a visual summary of its

contents).

• In the remainder of this chapter, we make a more rigorous mathematical treatment of the problem of

filtering displacement mapped surfaces of arbitrary reflectance. We take advantage of this effort to re-

call some of the fundamental rules that apply to physically based rendering, to introduce mathematical

notations, and to describe a general approach that we employ to solve numerical problems.

• In Chapter 2, we review previous and concurrent work on BRDF modelling with microfacet theory. While

microfacet BRDFs can be found in the microfacet literature since the 1960s, some of its most powerful

properties, e.g., importance sampling with the distribution of visible normals and roughness invariance,

were introduced concurrently to the development of this thesis.

• In Chapter 3, we introduce noncentral microfacet theory, a generalization of microfacet theory to derive

the BRDF of a rough specular microsurface at any scale. This contribution allows us to transpose the

difficult problem of displacement map filtering into that of evaluating a microfacet BRDF. By approxi-

mating the microsurface with a Gaussian random process, we derive an analytic displacement filtering

scheme that can be precomputed into MIP maps. We refer to this scheme as LEADR mapping.

• In Chapter 4, we introduce inverted microfacet theory, a framework to extract state-of-the-art microfacet

BRDF components from arbitrary materials. This contribution allows us to convert any material into a mi-

crofacet configuration, which may then benefit from useful microfacet BRDF properties, e.g., roughness

authoring and fast importance sampling. We also show how to approximate the extracted microfacets

into Gaussian or GGX random processes, which are very popular in the industry.

• In Chapter 5, we show how to combine the contributions of the thesis to derive a general multiscale

representation for displaced surfaces that is lightweight, efficient, and authorable. We discuss benefits and

limitations of this representation with respect to previous work, and identify future extensions required

to derive a more general multiscale representation for matter.

4

(1) 3D coordinate system. (2) Camera model (located at point p). (3) The Rendering Equation [Kaj86].

z

x

y

(4) Subpixel footprint. (5) Pixel footprint.

subpixel pixel

Figure 1.4 – Theoretical background illustrated.

1.3 Theoretical Background

Camera Model A photorealistic renderer is concerned with the problem of generating a purely synthetic

image that is indistinguishable from a real photograph. In the simplest cases, this problem is approached by

discretizing a continuous distribution of incident radiance L > 0 into a set of pixels that constitute the final

image, thereby mimicking the behavior of a pinhole camera sensor with instantaneous exposure. We restrict

our mathematical treatment of light transport to geometric optics, i.e., light propagates as straight rays that

can be reflected or absorbed by geometry throughout the 3D scene; this is a common assumption in physically

based rendering. We can determine the radiance incident to any 3D point p ∈ R3 by measuring the amount of

light rays that pass through this point. We can visualize such light rays by mapping the radiance incident to p

on a unit sphere centered on p; this is illustrated in Figure 1.4 (2). Any portion of this sphere can be used to

define the image plane of a virtual pinhole camera.

5

Photorealistic Pixels Since we wish to generate a discrete image, the frequencies exhibited by the incident

radiance distribution function L that exceed the Nyquist limit should be removed in order to avoid artifacts.

This is why the discretization process of L is typically done after low-pass filtering. Mathematically, letting

W ∈R denote the low-pass filter (e.g., box or Gaussian) weight associated to a given screen pixel, the intensity

I > 0 of the pixel is an inner product [Hec89, BN12]

I =
∫

∆W
Lo ·W (o) ·dωo, (1.1)

where, letting Ω denote the unit 3D sphere, ∆W ⊆ Ω is the filter’s angular support on the sphere, o is the

unit direction associated to the infinitesimal solid angle dωo, and Lo ≥ 0 denotes the value of L at direction o,

i.e., Lo = L(o). Note that throughout this thesis, we manipulate unit directions either from their Cartesian

components, or their spherical coordinates, which we link according to the following convention

o =

sinθo · cosφo = xo

sinθo · sinφo = yo

cosθo = zo

 ∈Ω. (1.2)

The geometry of the coordinate system used throughout this thesis is illustrated in Figure 1.4 (1). We reserve

the θ and φ notations to denote elevation and azimuthal angles, respectively.

The Rendering Equation In order to evaluate the incident radiance distribution function L during the low-

pass filtering process, i.e., Equation (1.1), a physically based renderer computes the rendering equation [Kaj86]

Lo =
∫

Ω+

Li · fr · cosθi ·dωi. (1.3)

This equation gives the amount of light reflected towards o as a measure of the interactions occurring between

an incident lighting distribution function Li ≥ 0 and a BRDF fr ≥ 0 over the set of unit directions defined on the

hemisphere Ω+ aligned with the tangent space of an infinitesimal surface element that projects into the pixel;

the geometric configuration of the rendering equation is illustrated in Figure 1.4 (3). It is interesting to note

that Equation (1.1) and Equation (1.3) look very similar; as such, the projected BRDF term of Equation (1.3),

i.e., fr · cosθi, can be interpreted as a filter applied to the incident radiance distribution function Li.

6

Displacement Mapped Surfaces The filter’s angular support ∆W defines the footprint of the pixel in the 3D

scene. Assuming that this footprint projects onto a displacement mapped surface (if not, split the footprint in

two parts), then we know from the Nyquist sampling theorem that the amount of samples required to compute

Equation (1.1) without artifacts should be at least twice the number of texels; the same logic applies to Equa-

tion (1.3). Hence, the further away we are from displacement mapped surfaces, the greater the rendering cost.

The practical contribution of this thesis is to show that this costly filtering operation can be accelerated with

precomputations. In particular, we show that in the case where displacement mapped surfaces fill the pixels’

footprints, Equation (1.1) can be approximated by the rendering equation directly by using a multiscale micro-

facet BRDF, effectively reducing a 4D integration problem into a 2D integration problem, which, furthermore,

can be measured with efficient importance sampling; these ideas are illustrated in Figure 1.4 (4, 5), and will be

formulated mathematically throughout this thesis.

1.4 Practical Considerations

Numerical Integrations Throughout this thesis, we often rely on numerical integrations to solve and/or vali-

date certain equations. Whenever we face an integral of the form

I =
∫

D
f (x) ·dx, (1.4)

where D denotes the domain of integration, we always proceed in two steps. First, we reformulate the integral

in the unit segment [0,1). If D = [0,+∞) for instance, then we can first perform the change of variable x = tanθ

(dx = sec2 θ ·dθ) so that the integration domain becomes [0,π/2)

I =
∫

π/2

0
f (tanθ) · sec2

θ ·dθ. (1.5)

We apply next a simple scaling operation, i.e., x = uπ/2 (dx = π

2 ·du) to arrive at the unit segment

I =
π

2

∫ 1

0
f (tan(uπ/2)) · sec2(uπ/2) ·du. (1.6)

Note that this technique is also known as transform sampling. Whenever the transformation involves quantile

functions, we say that the integral is importance sampled according to the distributions from which the quantile

functions originate. Once the transformation complete, we rely on Euler’s method to compute the integration.

7

Recalling that computing the integral of a function boils down to finding the area under its curve, Euler’s

technique consists in discretizing the integral into a sum of rectangular areas. The width of the rectangles is

constant and set to one over the number of rectangles, while their heights are given by the function evaluated at

their lower-left corner, which defines the location of the samples. This gives

I =
1
N

π

2

N−1

∑
i=0

f (tan(uiπ/2)) · sec2(uiπ/2), (1.7)

where ui = i/N. This sum is particularly simple to implement on a computer, as illustrated in Listing 1.1, which

provides a pseudocode to evaluate the above equation with N = 100 samples. Whenever it is of interest to

compute an integral numerically, the series of substitutions that leads to such configurations will be provided.

double nint = 0;
const int cnt = 100;

for (int i = 0; i < cnt; ++i) {
double u = (double)i / (double)cnt;
double theta = u * M_PI * 0.5;
double x = tan(theta);
double cos_term = cos(theta);

nint+= my_func(x) / (cos_term * cos_term);
}
nint*= M_PI * 0.5 / (double)cnt;

Listing 1.1 – Simple numeric integration in C++.

Implementing Bidirectional Reflectance Distribution Functions Due to its role in the rendering equation,

i.e., Equation (1.3), the BRDF is a central component of a physically renderer. Thoroughly described by

Nicodemus et al. [NRH+77], the BRDF implements the concept that a material can be described from the

moment we know the fraction of light it reflects for any pair of unit directions involving an emitter and a receiver

direction. We reserve the notation i to refer to the former and o for the latter. The emitter and receiver direction

couple is used as the standard parameterization for the BRDF, and an implementation should be capable of

returning its value for any i and o located on the hemisphere Ω+. Alternatively, it is also convenient to evaluate

the BRDF with the Rusinkiewicz parameterization [Rus98], which involves the halfway vector h ∈ Ω+ and

a difference vector d ∈ Ω+. The Rusinkiewicz parameters are linked to the standard parameters through the

relations h =
i+o
‖i+o‖

d = Roty(−θh) ·Rotz(−φh) · i
⇔

 i = Rotz(+φh) ·Roty(+θh) ·d

o = 2(i ·h)h− i
(1.8)

8

Finally, a BRDF implementation should expose a transform sampling procedure. This ability is crucial for

solving the rendering equation quickly, as the incident radiance function Li is generally not known in advance.

In general, the transform sampling procedure accounts for the cosine term too, so that we end up importance

sampling the projected BRDF term fr · cosθi. All these features are present in the C++ interface of Listing 1.2,

which we rely on to implement a multiscale microfacet BRDF library in the following chapters.

/* BRDF interface */
class brdf {
public:

// evaluate f_r
virtual vec3 eval(const vec3& i, const vec3& o,

const void *user_param = NULL) const = 0;
virtual vec3 eval_hd(const vec3& h, const vec3& d,

const void *user_param = NULL) const;
// evaluate f_r * cos
virtual vec3 evalp(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
virtual vec3 evalp_hd(const vec3& h, const vec3& d,

const void *user_param = NULL) const;
// evaluate f_r * cos / pdf
virtual vec3 evalp_is(float_t u1, float_t u2,

const vec3& o,
vec3 *i, float_t *pdf,
const void *user_param = NULL) const;

// importance sample f_r * cos using two uniform numbers
virtual vec3 sample(float_t u1, float_t u2,

const vec3& o,
const void *user_param = NULL) const;

// evaluate the PDF of a sample
virtual float_t pdf(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
// utilities
static void io_to_hd(const vec3& i, const vec3& o, vec3 *h, vec3 *d);
static void hd_to_io(const vec3& h, const vec3& d, vec3 *i, vec3 *o);
// dtor
virtual ~brdf() {}

};

Listing 1.2 – C++ interface of a BRDF.

To make the C++ interface more intuitive to the reader, Listing 1.3 provides an implementation for a Lambertian

material of (wavelength-dependent) reflectance parameter kd ∈ [0,1], i.e.,

fr =
kd

π
. (1.9)

Note that such BRDFs are very limited in terms of artistic control and plausibility compared to microfacet

BRDFs, which are the main focus of this thesis.

9

/* Lambertian BRDF */
class lambertian {
public:

/* Lambertian Parameters */
class params {
public:

params(const vec3& reflectance = vec3(1));
vec3 m_reflectance;

};
/* Implementation */
vec3 eval(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
};

/* Default BRDF importance sampling */
vec3
brdf::sample(

float_t u1, float_t u2,
const vec3& o,
const void *user_param

) const {
float_t x, y, z;

uniform_to_concentric(u1, u2, &x, &y);
z = sqrt(1.0 - x * x - y * y);
DJB_ASSERT(z >= 0.0);

return vec3(x, y, z);
}

/* Default BRDF PDF */
float_t brdf::pdf(const vec3& i, const vec3& o, const void *user_param) const
{

return /* cos(theta_i) */i.z / M_PI;
}

/* Lambertian BRDF evaluation */
vec3
lambertian::eval(const vec3& i, const vec3& o, const void *user_param) const
{

const lambertian::params params =
user_param ? *reinterpret_cast<const lambertian::params *>(user_param)

: lambertian::params();

return (params.m_reflectance / M_PI);
}

Listing 1.3 – C++ implementation of an ideal Lambertian BRDF.

10

Chapter 2

State-of-the-art Microfacet Theory

(1) BRDF at macroscopic scale. (2) BRDF at microscopic scale. (3) Geometry of mirror reflection.

(4) Visible microfacets. (5) Illuminated microfacets. (6) Microfacets involved in reflection.

Receiver direction

Emitter direction

Halfway vector

Smooth surface

Rough surface

BRDF lobe

Visible microsurface

Illuminated microsurface

Scattering microsurface

Legend

Tangent plane

Figure 2.1 – Geometric overview of microfacet theory. Microfacet theory describes (1) the BRDF as the global
response of (2) a microfaceted heightfield, whose microfacets act as (3) Fresnel mirrors. When considering
single-bounce reflections, the fraction (with respect to the entire microsurface) of (4) visible and (5) illuminated
mirror microfacets that face the halfway vector gives (6) the response of the BRDF.

/* Microfacet Public API */
class microfacet : public brdf {
public:

enum {GAF_NMAP, GAF_VGROOVE, GAF_SMITH};
/* microfacet parameters */
class params;
// Dtor
virtual ~microfacet() {delete m_fresnel;}
// BRDF interface
vec3 eval(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
vec3 evalp(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
vec3 sample(float_t u1, float_t u2, const vec3& o,

const void *user_param = NULL) const;
float_t pdf(const vec3& i, const vec3& o,

const void *user_param = NULL) const;
vec3 evalp_is(float_t u1, float_t u2, const vec3& o,

vec3 *i, float_t *pdf, const void *user_param = NULL) const;
// eval queries
vec3 fresnel(float_t cos_theta_d) const {return m_fresnel->eval(cos_theta_d);}
float_t ndf(const vec3& h,

const params& params = params::standard()) const;
float_t gaf(const vec3& h, const vec3& i, const vec3& o,

const params& params = params::standard()) const;
float_t g1(const vec3& h, const vec3& k,

const params& params = params::standard()) const;
float_t p22(float_t x, float_t y,

const params& params = params::standard()) const;
float_t vp22(float_t x, float_t y, const vec3& k,

const params& params = params::standard()) const;
float_t vndf(const vec3& h, const vec3& k,

const params& params = params::standard()) const;
// sampling queries
virtual bool supports_smith_vndf_sampling() const = 0;
virtual float_t qf2(float_t u, const vec3& k) const {return 0.0;}
virtual float_t qf3(float_t u, float_t qf2) const {return 0.0;}
// mutators
void set_gaf(int gaf);
void set_shadow(bool shadow) {m_shadow = shadow;}
void set_fresnel(const fresnel::impl& f);
// accessors
int get_gaf() const {return m_gaf;}
int get_shadow() const {return m_shadow;}
const fresnel::impl& get_fresnel() const {return *m_fresnel;}

};

Listing 2.1 – C++ interface of microfacet BRDF.

12

B
ec

km
an

n
(α

=
0.

1)
G

G
X

(α
=

0.
1)

Ideal Gold Cubic diamond Copper

Figure 2.2 – Varying the Fresnel term on a microfacet BRDF.

B
ec

km
an

n
no

rm
al

m
ap

B
ec

km
an

n
∨-

gr
oo

ve
B

ec
km

an
n

Sm
ith

α = 0.01 α = 0.1 α = 0.3 Standard (α = 1)

Figure 2.3 – Impact of the GAF term on a microfacet BRDF.

13

B
ec

km
an

n
G

G
X

α = 0.01 α = 0.1 α = 0.3 Standard (α = 1)

Figure 2.4 – Effect of isotropic roughness on a microfacet BRDF.

B
ec

km
an

n
G

G
X

α1 = 0.050, α2 = 0.2 α1 = 0.033, α2 = 0.3 α1 = 0.025, α2 = 0.4 α1 = 0.020, α2 = 0.5

Figure 2.5 – Effect of anisotropic roughness on a microfacet BRDF.

B
ec

km
an

n

φα = 0◦ φα = 45◦ φα = 90◦ φα = 135◦

Figure 2.6 – Effect of anisotropy orientation on a microfacet BRDF.

14

2.1 Torrance-Sparrow Equation

Microfacet theory [TS67] is a framework that models the reflectance of rough materials. It defines the BRDF

as a global response of a microscopic surface, referred hereafter as microsurface, composed of microfacets

that act as Fresnel mirrors when radiated by light rays. What makes this approach particularly elegant is

that, under the assumption that single-bounce mirror reflection dominates on the microsurface, it transposes the

problem of evaluating the response of the BRDF into that of determinining the amount of visible and illuminated

microfacets whose orientations form a mirror-like reflection between given viewing and illumination directions,

which is mathematically tractable; Figure 2.1 (1, 2, 3) illustrates this idea. While determining the unoccluded

areas of an arbitrary surface is a difficult problem in general, some solutions can be derived for certain types

of surfaces. For such surfaces, the BRDF can be derived analytically from three main terms, according to the

microfacet BRDF equation [WMLT07]

fr =
F ·D ·G

4 · cosθi · cosθo
. (2.1)

We follow standard computer graphics notation for the various terms: F ∈ [0,1] is the microfacet Fresnel term,

D ≥ 0 the microfacet normal distribution function (NDF) of the microsurface, and G ∈ [0,1] the geometric

attenuation factor (GAF) of the microsurface. We now discuss each of these terms in detail.

vec3
microfacet::evalp(const vec3& i, const vec3& o, const void *user_param) const
{

const microfacet::params params =
user_param ? *reinterpret_cast<const microfacet::params *>(user_param)

: microfacet::params::standard();
vec3 h = normalize(i + o);
float_t G = gaf(h, i, o, params);

if (G > 0.0) {
float_t cos_theta_d = dot(o, h);
vec3 F = fresnel(cos_theta_d);
float_t D = ndf(h, params);

return (F * D * G) / (4.0 * o.z);
}

return vec3(0);
}

vec3
microfacet::eval(const vec3& i, const vec3& o, const void *user_param) const
{

return (evalp(i, o, user_param) / i.z);
}

Listing 2.2 – Evaluating a microfacet BRDF in C++.

15

Microfacet Fresnel Term The microfacet Fresnel term F describes how microfacets act when a light ray hits

them; it can be seen as the fundamental interaction between light and microsurfaces. In contrast to the other

terms of Equation (2.1), F may vary across wavelengths and is thus responsible for explaining the color of the

material. In general, F is parameterized by Rusinkiewicz’s difference angle

F = F(θd). (2.2)

Various analytic expressions for F have been proposed in the computer graphics literature. Among the most

popular models, we find the Fresnel equation for unpolarized light, which was introduced in computer graphics

by Cook and Torrance [CT82], as well as its approximation derived by Schlick [Sch94b]; their expressions are

given in Table 2.I. When computational performance is critical, such as for video games, Schlick’s approxi-

mation is often preferred over the unpolarized formulation, due to the simpler arithmetic operations involved.

Finally, note that if we set F = 1 at any light wavelength, then we can simulate a microsurface composed of

ideal mirrors. In such cases, the microfacet BRDF takes on the analytic form

fr,id =
D ·G

4 · cosθi · cosθo
. (2.3)

Figure 2.2 shows materials generated with different F terms, while D and G are fixed.

Ideal Unpolarized Schlick [Sch94b]

F(θd) = 1 F(θd) =
1
2
(g− c)2

(g+ c)2

[
1+

(c(g+ c)−1)2

(c(g− c)+1)2

]
F(θd) = F0 +(1−F0)(1− c)5

Notation η: index of refraction
θd : difference angle
c = cosθd
g2 = η2 + c2−1
F0 = (η−1)2/(η+1)2

Table 2.I – Popular Fresnel terms used in computer graphics.

16

/* Fresnel API */
namespace fresnel {

/* Interface */
class impl {
public:

virtual ~impl() {}
virtual vec3 eval(float_t cos_theta_d) const = 0;
virtual impl *copy() const = 0;

};

} // namespace fresnel

Listing 2.3 – Fresnel interface in C++.

Microfacet Normal Distribution Function The microfacet NDF term D gives the proportion of microfacets

oriented towards the halfway vector, i.e., the normals that connect the emitter and receiver directions through

mirror reflection

i = 2(o ·h)h−o (2.4)

h =
i+o
‖i+o‖

(2.5)

Note that these relations are illustrated in Figure 2.1 (3). The microfacet NDF is a directional distribution,

defined on the hemisphere Ω+ oriented towards the up direction of the tangent frame

D = D(h). (2.6)

The measure of D over Ω+ gives the area of the microsurface [Hei14], and should be finite to be geometrically

valid, i.e., ∫
Ω+

D(h) ·dωh ∈ [1,+∞). (2.7)

In addition, D should be normalized such that the projection of the microfacets onto the tangent plane has unit

area [WMLT07, Hei14], i.e., ∫
Ω+

D(h) · cosθh ·dωh = 1. (2.8)

Various analytic expressions of D can be found in the computer graphics literature [WMLT07, BSH12, LKYU12].

In the general case, analytic directional distributions are not straightforward to manipulate or design. In contrast

to unit directions, the slopes of the microsurface, i.e., its derivatives, are much easier to study, as they live in

17

the R2 plane. In the Ω+ set, normals and slopes are linked through the bijection

h̃ =

− tanθh · cosφh = x̃h

− tanθh · sinφh = ỹh

 , h̃ ∈ R2, (2.9)

whose inverse is

h =
1√

x̃2
h + ỹ2

h +1

−x̃h

−ỹh

1

 , h ∈Ω+. (2.10)

The bijection between normals and slopes is illustrated geometrically in Figure 2.7. From this bijection, we

may define a microfacet NDF from a bivariate slope probability distribution function (PDF) P≥ 0 such that

D(h) = P(h̃) · sec4
θh. (2.11)

float_t microfacet::ndf(const vec3& h, const microfacet::params& params) const
{

float_t cos_theta_h_sqr = h.z * h.z;
float_t cos_theta_h_sqr_sqr = cos_theta_h_sqr * cos_theta_h_sqr;
float_t xslope = -h.x / h.z;
float_t yslope = -h.y / h.z;

return (p22(xslope, yslope, params) / cos_theta_h_sqr_sqr);
}

Listing 2.4 – Evaluating the NDF term in C++.

The secant term is the Jacobian that converts the measure of microfacet slope probability into a microfacet

normal distribution [Hei14]. As long as P is a normalized PDF, i.e.,

∫
R2

P(h̃) ·dh̃ = 1, (2.12)

Equation (2.8) holds. Among the most popular microfacet slope distributions, we find the Beckmann distri-

bution [Bec65], and the GGX distribution [WMLT07]. The Beckmann distribution is simply a Gaussian PDF,

while the GGX distribution emerges from the curvature of ellipsoids [TR75]; their respective expressions are

provided in Table 2.II. Figures 2.2 and 2.4 show materials generated with different D terms, while F and G are

fixed. Note that the GGX distribution is known as the Trowbridge-Reitz model in the physics literature [TR75],

and the bivariate t distribution with two degrees of freedom in the mathematics literature [Jon02].

18

(1) Set of normals. (2) Normals seen as points.

(3) Normals on the lower hemisphere. (4) The slopes are obtained by stereographic projection.

Figure 2.7 – Bijection between slopes and normals. (1) A set of normals defined within Ω+ can also be seen as
(2) a set of points lying on the boundary of Ω+. In order to compute the slope associated to each normal, we
first negate the z component of these points, which creates (3) a set of points that lie on the boundary of Ω−.
(4) The stereographic projection of each of these points onto the plane (shown in green) yields the associated
slope; note that this transformation is nonlinear.

Microfacet Geometric Attenuation Factor The microfacet GAF term G is responsible for modelling occlu-

sion effects occurring on the microsurface. Occlusions can be due to shadowing, i.e., the emitter direction, and

to masking, i.e., the receiver direction; this idea is illustrated in Figure 2.1 (4, 5). Note that, although their

appellation is different, computing the amount of either shadowing or masking boils down to determining the

hidden portions of the microsurface from a specific direction. This problem is extremely difficult to solve for

arbitrary surfaces, and solutions only exist for very specific surface profiles. In current state-of-the-art models,

the GAF is given by the correlated bistatic Smith shadowing function [HMD+14]

G(i,o) =
G1(i) ·G1(o)

G1(i)+G1(o)−G1(i) ·G1(o)
, (2.13)

19

Beckmann GGX

P(h̃) =
1
π

exp
(
−x̃2

h− ỹ2
h
)

P(h̃) =
1
π

1
(1+ x̃2

h + ỹ2
h)

2

Notation h̃ ∈ R2: slope of the halfway vector.

Table 2.II – Analytic microfacet slope probability density functions.

float_t
microfacet::gaf_smith(

const vec3& h, const vec3& i, const vec3& o,
const microfacet::params& params

) const {
float_t G1_o = g1(h, o, params);
float_t G1_i = g1(h, i, params);
float_t tmp = G1_i * G1_o;

if (tmp > 0.0)
return (tmp / (G1_i + G1_o - tmp));

return 0.0; // fully attenuated
}

Listing 2.5 – Evaluating the Smith GAF term in C++.

where G1 ∈ [0,1] denotes the Smith monostatic shadowing function [Smi67, Hei14]

G1(k) =
cosθk∫

Ω+
kh ·D(h) ·dωh

. (2.14)

Note that we use the notation kh to express vector dot products, and the underlining to denote a quantity

clamped to zero if it is negative, e.g., kh = max(0,k · h). The Smith model assumes that the microsurface

structure is independent from the GAF term, which essentially means that the microsurface can be approximated

by a collection of flakes [Hei14], as illustrated in Figure 2.8. While this approximation may appear to be quite

crude, it matches experiments very well in practice [BSB00, BBS02, Hei14]. We also mention here two less

realistic GAF models, namely the ∨-groove model of Torrance and Sparrow [TS67], and the normal map model.

The former assumes that the microsurface is composed exclusively of symmetrical ∨-groove cavities, while the

latter models the microsurface as a normal mapped surface, which is equivalent to neglecting occlusion effects;

both models are illustrated in Figure 2.8, and their equations are given in Table 2.IV. Figure 2.3 shows materials

generated with different G terms, while F and D are fixed.

20

(1) Visible Smith microfacets. (2) Visible ∨-groove microfacets. (3) Visible normal map microfacets.

(4) Illuminated Smith microfacets. (5) Illuminated ∨-groove microfacets. (6) Illuminated normal map microfacets.

Figure 2.8 – Typical surface profiles handled by existing microfacet GAFs. (1, 4) The Smith GAF assumes
that the microsurface structure is irrelevant for occlusion effects. (2, 5) The ∨-groove GAF assumes that the
microsurface consists exclusively of symmetric ∨-groove cavities. (3, 6) The normal map GAF neglects all
occlusion effects.

2.2 Importance Sampling

Distribution of Visible Slopes Physically based renderers employ BRDFs for shading. On such platforms,

shading is typically computed by solving the rendering equation [Kaj86], which we already mentioned in the

previous chapter (see Equation (1.3))

Lo =
∫

Ω+

Li · fr · cosθi ·dωi.

In the general case, the integral is computed numerically because the incident radiance Li is not known in ad-

vance. When relying on microfacet BRDFs, we can compute this integral efficiently by transforming uniformly

distributed samples into the space of visible microfacet normals with a quantile transform [HD14]. The PDF

21

Beckmann GGX

G1(k) =
2

1+ erf(ν)+ exp(−ν2)
ν
√

π

G1(k) =
2

1+
√

1+ν−2

Notation k ∈Ω+: incident direction, of elevation angle θk ∈ [0,π/2]
ν = cotθk

Table 2.III – The Smith masking term of analytic microfacet slope distributions.

Smith ∨-groove Normal map

G =
G1(i) ·G1(o)

G1(i)+G1(o)−G1(i) ·G1(o)
G = min

(
1,2

zi · zh

(i ·h)
,2

zo · zh

(o ·h)

)
G =

zo · zh

(o ·h)

Notation i ∈Ω+: emitter direction, with elevation zi ≥ 0
o ∈Ω+: receiver direction, with elevation zo ≥ 0
h ∈Ω+: halfway direction, with elevation zh ≥ 0

Table 2.IV – Various microfacet GAF terms. The Smith model is considered as the most plausible.

Pvis > 0 of the distribution of visible microfacet slopes is defined as [HD14]

Pvis(h̃;k) =
kh ·P(h̃) ·G1(k)

cosθh · cosθk
. (2.15)

Note that in order to simplify notations, we will make the direction parameter k implicit, thus writing, e.g.,

Pvis(h̃) instead of Pvis(h̃;k).

Quantile Functions Let P2 ≥ 0 denote the marginal PDF

P2(x̃h) =
∫

∞

−∞

Pvis(x̃h, ỹh) ·dỹh. (2.16)

The PDFs Pvis and P2 are linked through the relation

Pvis(x̃h, ỹh) = P2(x̃h) ·P3(ỹh|x̃h)⇒ P3(ỹh|x̃h) =
Pvis(x̃h, ỹh)

P2(x̃h)
,

22

where P3≥ 0 is the PDF of ỹh conditioned on x̃h. Let F2 ∈ [0,1] and F3 ∈ [0,1] respectively denote the cumulative

distribution function of P2 and P3, i.e.,

F2(x̃h) =
∫ x̃h

−∞

P2(x̃) ·dx̃,

F3(ỹh|x̃h) =
∫ ỹh

−∞

P3(ỹ|x̃h) ·dỹ,

and Q2 = F−1
2 and Q3 = F−1

3 their respective quantile functions. Given realizations u1,u2 ∈ [0,1] of two

independent uniform variates, the variates obtained by the quantile transformation

h̃ =

 Q2(u1)

Q3(u2|Q2(u1))

are distributed according to Pvis [HD14]. Note that if we transform these slopes into normals according to

Equation (2.10), then the resulting normals are distributed according to the distribution of visible microfacet

normals [HD14], which has the PDF

Dvis(h;k) =
kh ·D(h) ·G1(k)

cosθk
. (2.17)

float_t
microfacet::vndf(

const vec3& h, const vec3& k,
const microfacet::params& params

) const {
float_t D = ndf(h, params);
float_t G1 = g1(h, k, params);
float_t kh = max((float_t)0.0, dot(k, h));

return (kh * D * G1 / k.z);
}

Listing 2.6 – Evaluating the distribution of visible normals in C++.

Solving the Rendering Equation In order to compute the rendering equation numerically, we first reexpress

the integral as a measure in terms of infinitesimal solid angles oriented towards halfway vectors. We accomplish

this with the change of variable ωi = 2(ωh ·ωo)ωh−ωo (dωi = 4 ·oh ·dωh [WMLT07]), which yields

Lo =
∫

Ω+

Li · fr · cosθi ·4 ·oh ·dωh. (2.18)

23

We then express this measure in slope space with the change of variable ωh = ωh(h̃) (dωh = cos3 θh ·dh̃)

Lo =
∫
R2

Li · fr · cosθi ·4 ·oh · cos3
θh ·dh̃ (2.19)

=
∫

∞

−∞

∫
∞

−∞

Li · fr · cosθi ·4 ·oh · cos3
θh ·dx̃h ·dỹh. (2.20)

From this double integral, we can then apply quantile transformations. We start with the x̃ slope component.

Letting x̃h = Q2(u1) (dx̃h = Q′2(u1) ·du1 =
1

P2(Q2(u1))
·du1), we get

Lo =
∫

∞

−∞

∫ 1

0

Li · fr · cosθi ·4 ·oh · cos3 θh

P2(Q2(u1))
·du1 ·dỹh. (2.21)

We then apply the second quantile substitution. Letting ỹh = Q3(u2|x̃h) (dỹh = Q′3(u2|x̃h) · du2, and so dỹh =

1
P3(Q3(u2)|Q2(u1))

·du2), we get

Lo =
∫ 1

0

∫ 1

0

Li · fr · cosθi ·4 ·oh · cos3 θh

P2(Q2(u1)) ·P3(Q3(u2)|Q2(u1))
·du1 ·du2, (2.22)

which, using the fact that Pvis = P2 ·P3, as well as the definition of the microfacet BRDF, i.e., Equation (2.1),

leads after simplifications to

Lo =
∫ 1

0

∫ 1

0
Li ·F(θd) ·

G(i,o)
G1(o)

·du1 ·du2. (2.23)

We can then apply Euler’s rule to compute the integral numerically.

2.3 Controlling Roughness

We can control the roughness of a microfacet BRDF intuitively by scaling the slopes of the microsurface, i.e., its

derivatives. This feature is particularly relevant for artistic authoring. As scale increases, the surface becomes

rougher. Conversely, as scale decreases, the surface becomes smoother. These ideas are illustrated in Figure 2.9.

Isotropic Roughness If we scale the microsurface isotropically by a factor α > 0, then the distribution of

microfacet slopes is also scaled. This means that we can retrieve the value of D by simply offsetting the slope

distribution. Thus, we can define a microfacet NDF with explicit control over isotropic roughness as

D(h;α) = P
(

x̃h

α
,
ỹh

α

)
sec4 θh

α2 . (2.24)

24

Beckmann GGX

F3(ỹh|x̃h) =
1
2
+

1
2

erf(x̃h) F3(ỹh|x̃h) =
1
2
+

σỹh

πσ+πỹ2
h
+

arctan(ỹh
σ
)

π

Q3(u|x̃h) = erfinv(2u−1) Q3(u|x̃h) = σ

−
√

1
ribinv(2u, 3

2 ,
1
2)
−1 if u < 1

2√
1

ribinv(2−2u, 3
2 ,

1
2)
−1 else.

Notation x̃h ∈ R: x component of the halfway slope
u ∈ [0,1): uniform variate
erfinv: inverse of the error function
ribinv: inverse of the regularized incomplete beta function
σ2 = 1+ x̃h

Table 2.V – Conditional CDF and QF of analytic visible slope distributions.

(1) Smoother microsurface. (2) Standard microsurface. (3) Rougher microsurface.

Figure 2.9 – Geometric interpretation of roughness. Roughness can be interpreted as an amount of vertical
stretch that is applied to a standard microsurface, whose roughness is α = 1 by convention.

Note that this expression of D still satisfies Equation (2.8) and thus remains physically sound. The visual impact

of isotropic roughness on the microfacet BRDF is illustrated in Figure 2.4.

Elliptically Anisotropic Roughness We can also provide control over the anisotropy of materials. For this,

we can stretch and rotate the microsurface along two major directions. These transformations can be controlled

by tweaking the parameters of an ellipse, i.e., two radii α1,α2 > 0 and an angle φα ∈ [−π/2,π/2]. Thus, we

25

can define a microfacet NDF with explicit control over anisotropic roughness as

D(h;α1,α2,φα) = P
(
− tanθh · cos(φh +φα)

α1
,
− tanθh · sin(φh +φα)

α2

)
sec4 θh

α1α2
. (2.25)

Note that this expression of D still satisfies Equation (2.8) and thus remains physically sound. Alternatively, we

may write the transformation in terms of bivariate distribution parameters, which involve two scale parameters

αx,αy > 0 and a correlation coefficient ρ ∈ (−1,1)

D(h;α1,α2,φα) = P

(
x̃h

αx
,
αx · ỹh−ραy · x̃h

αxαy
√

1−ρ2

)
sec4 θh

αxαy
√

1−ρ2
. (2.26)

Note that in order to simplify notations, we shall use the notation

P(h̃;α1,α2,φα) = Pstd

(
x̃h

αx
,
αx · ỹh−ραy · x̃h

αxαy
√

1−ρ2

)
1

αxαy
√

1−ρ2
, (2.27)

so that we can write

D(h;α1,α2,φα) = P(h̃;α1,α2,φα)sec4
θh, (2.28)

where Pstd(h̃) = P(h̃;1,1,0) gives the microfacet slope PDF of the standard surface, i.e., free of transformations.
float_t microfacet::ndf(const vec3& h, const microfacet::params& params) const
{

float_t cos_theta_h_sqr = h.z * h.z;
float_t cos_theta_h_sqr_sqr = cos_theta_h_sqr * cos_theta_h_sqr;
float_t xslope = -h.x / h.z;
float_t yslope = -h.y / h.z;

return (p22(xslope, yslope, params) / cos_theta_h_sqr_sqr);
}

float_t microfacet::p22(float_t x, float_t y, const params& params) const
{

float_t nrm = params.m_a1 * params.m_a2;
float_t x_ = x / params.m_ax;
float_t tmp1 = params.m_ax * y - params.m_rho * params.m_ay * x;
float_t tmp2 = params.m_ax * params.m_ay * params.m_rho;
float_t y_ = tmp1 / tmp2;

return p22_std(x_, y_) / nrm;
}

Listing 2.7 – Evaluating the distribution of visible normals in C++.

From an implementation standpoint, Equation (2.26) is preferable to Equation (2.25) whenever trigonometric

functions induce performance issues. Note that the bivariate distribution parameters are linked to the ellipse

26

parameters through the relations

α
2
x =

1
2
(
α

2
1 +α

2
2 +(α2

1−α
2
2) · cos(2φα)

)
(2.29)

α
2
y =

1
2
(
α

2
1 +α

2
2− (α2

1−α
2
2) · cos(2φα)

)
(2.30)

ρ =
α2

1−α2
2

αxαy
· cosφα · sinφα, (2.31)

whose inverses are

α
2
1 =

1
2

(
α

2
x +α

2
y +
√
(α2

x−α2
y)

2 +4ρ2α2
xα2

y

)
(2.32)

α
2
2 =

1
2

(
α

2
x +α

2
y−
√
(α2

x−α2
y)

2 +4ρ2α2
xα2

y

)
(2.33)

φ = arctan

α2
x−α2

y−
√

(α2
x−α2

y)
2 +4ρ2α2

xα2
y

2ραxαy

 . (2.34)

The visual impact of anisotropic roughness on a microfacet BRDF is illustrated in Figure 2.5.

Roughness Invariance of the Masking Term Defining roughness as a slope-space scaling operation makes

it possible to define a wide variety of microfacet NDFs from a single slope distribution by using offset eval-

uations; we refer to this property as roughness invariance. The Smith masking term is also subject to this

property [Hei14], which we prove here mathematically. We start with the definition of the Smith masking

term, i.e., Equation (2.14), using an elliptically stretched NDF. We employ several substitutions and algebric

27

manipulations provided in the parentheses on the right-hand side for convenience

G1(k;α1,α2,φα) =
zk∫

Ω+
D(h;α1,α2,φα) ·kh ·dωh

=
zk∫

R2 Pstd

(
x̃h
αx
,

αx·ỹh−ραy·x̃h

αxαy
√

1−ρ2

)
secθh

αxαy
√

1−ρ2
·kh ·dh̃

 ωh = ωh(h̃)

⇒ dωh = cos3 θh ·dh̃

=
zk∫

R2 Pstd

(
x̃h
αx
,

αx·ỹh−ραy·x̃h

αxαy
√

1−ρ2

)
1

αxαy
√

1−ρ2
· zk− xkx̃h− ykỹh ·dh̃

secθh ·h =

−x̃h

−ỹh

1

=
zk∫

R2 Pstd(x̃m, ỹm) · zk− xkx̃h− ykỹh ·dm̃

x̃h = αxx̃m,

ỹh = αy(ρx̃m +
√

1−ρ2ỹm)

⇒ dh̃ = αxαy
√

1−ρ2 ·dm̃

=

zk∫
R2 Pstd(x̃m, ỹm) · zk−ax̃m−bỹm ·dm̃

a = αxxk +ραyyk

b = αyyk
√

1−ρ2

=
zk′∫

R2 Pstd(x̃m, ỹm)secθm ·k′m ·dm̃

k′ =
1√

a2 +b2 + z2
k

a

b

zk

=
zk′∫

Ω+
D(m;1,1,0) ·k′m ·dωm

 m̃ = m̃(ωm)

⇒ dm̃ = sec3 θm ·dωm

= G1(k′;1,1,0)

= G1,std(k′).

This demonstration shows that the Smith term of a scaled surface is equal to the Smith term of an unscaled

Smith term evaluated with an offset parameter; the relation is illustrated in Figure 2.10.

float_t
microfacet::g1_smith(

const vec3& h, const vec3& k,
const microfacet::params& params

) const {
float_t a = k.x * params.m_ax + k.y * params.m_ay * params.m_rho;
float_t b = k.y * params.m_ay * params.m_sqrt_one_minus_rho_sqr;
vec3 kprime = normalize(vec3(a, b, k.z));

return g1_smith_std(h, kprime);
}

Listing 2.8 – Evaluating the Smith masking term with arbitrary roughness parameters in C++.

28

(1) Visible scaled microsurface. (2) Visible standard microsurface. (3) Geometric link between directions.

(4) Visible scaled microsurface. (5) Visible standard microsurface. (6) Geometric link between directions.

Figure 2.10 – Roughness invariance of the monostatic shadowing term. Shadowing from any direction on
(1, 4) a scaled surface can be transposed into (2, 5) shadowing on the standard surface due to another direction.
(3, 6) The incident directions are linked geometrically.

Importance Sampling with Roughness Parameters Since both NDF and GAF are roughness invariant, it

follows by construction (see Equation (2.15)) that the distribution of visible slopes is also roughness invariant.

We can also exploit roughness invariance to produce samples that are distributed according to a scaled microsur-

face from an unscaled microsurface. Indeed, if m̃ ∈ R2 constitutes a sample of an unscaled visible microfacet

slope distribution from direction k′, then the slope

h̃ =

 αx · x̃m

αy(ρ · x̃m +
√

1−ρ2 · ỹm)

 ∈ R2 (2.35)

constitutes a sample of the visible microfacet slope distribution of the scaled surface from direction k; this

operation is illustrated in Figure 2.11. We can thus exploit the quantile functions introduced in the previous

section to produce visible slope samples of arbitrary roughness.

29

(1) Standard microsurface sample. (2) Rougher microsurface sample. (3) Geometric link between samples.

Figure 2.11 – Sampling a rough microsurface from a standard microsurface.

vec3
microfacet::sample(

float_t u1, float_t u2,
const vec3& o,
const void *user_param

) const {
const microfacet::params params =

user_param ? *reinterpret_cast<const microfacet::params *>(user_param)
: microfacet::params::standard();

float_t tx_h, ty_h, tx_m, ty_m;

// create a standard variate
switch (m_gaf) {

case GAF_NONE: sample_nmap(u1, u2, o, &tx_m, &ty_m); break;
case GAF_VGROOVE: sample_vgroove(u1, u2, o, &tx_m, &ty_m); break;
case GAF_SMITH: sample_smith(u1, u2, o, &tx_m, &ty_m); break;
default: abort(); // should never happen

}

// warp the variate with the microfacet parameters
tx_h = params.m_ax * tx_m;
float_t choleski = params.m_rho * tx_m

+ params.m_sqrt_one_minus_rho_sqr * ty_m;
ty_h = params.m_ay * choleski;

// return the associated normal
return normalize(vec3(-tx_h, -ty_h, 1));

}

Listing 2.9 – Importance sampling a microfacet BRDF with arbitrary roughness parameters in C++.

30

2.4 Implementation Details

/* Radial microfacets */
class radial : public microfacet {
public:

radial(int gaf = microfacet::GAF_SMITH,
const fresnel::impl& fresnel = fresnel::ideal(),
bool shadow = true):

microfacet(gaf, fresnel, shadow) {}

// queries
virtual float_t g1_radial(float_t cot_theta_k) const = 0;
virtual float_t p22_radial(float_t r_sqr) const = 0;

private:
float_t p22_std(float_t x, float_t y) const;
float_t g1_smith_std(const vec3& k) const;

};

Listing 2.10 – C++ implementation for radial microfacet slope distributions.

Radial Slope Distributions Some slope distributions such as the Beckmann and GGX slope distributions are

radial distributions, i.e., their PDF can be expressed as a 1D function

P(h̃) = Pr(rh), (2.36)

where rh = tanθh =
√

x̃2
h + ỹ2

h is the radius of the slope in polar coordinates, and function Pr > 0 is normalized

such that ∫ 2π

0

∫
∞

0
rh ·Pr(rh) ·drh ·dφh = 1. (2.37)

We can exploit Equation (2.36) to improve the implementation of microfacet BRDFs built from radial slope

distributions. Indeed, for such distributions, the evaluation of the microfacet NDF becomes

D(h;α1,α2,φα) = Pr

√√√√(x̃h

αx

)2

+

(
αx · ỹh−ραy · x̃h

αxαy
√

1−ρ2

)2
 sec4 θh

αxαy
√

1−ρ2
. (2.38)

float_t radial::p22_std(float_t x, float_t y) const
{

return p22_radial(sqrt(x * x + y * y));
}

Listing 2.11 – C++ implementation for radial microfacet slope distributions.

31

The Smith masking term can also be simplified into a 1D function. To show this, we start from Equation (2.14)

and reexpress the integral in slope space with the change of variables ωh = ωh(h̃) (dωh = sec3 θh ·dh̃)

G1(k) =
cosθk∫

R2 zk− xkx̃h− ykỹh ·P(h̃) ·dh̃
.

Using the fact that xk = sinθk ·cosφk, yk = sinθk ·cosφk, and zk = cosθk, we factorize the denominator by sinθk,

which yields

G1(k) =
cotθk∫

R2 cotθk− (cosφk · x̃h + sinφk · ỹh) ·P(h̃) ·dh̃
.

We then reexpress the integral in polar coordinates, letting x̃h = rh ·cosφh and ỹh = rh ·sinφh (dh̃ = rh ·drh ·dφh)

G1(k) =
cotθk∫ 2π

0
∫

∞

0 cotθk− rh(cosφk · cosφh + sinφk · sinφh) ·Pr(rh) · rh ·drh ·dφh
,

which, using the relation cos(a−b) = cosa · cosb+ sina · sinb, yields

G1(k) =
cotθk∫ 2π

0
∫

∞

0 cotθk− rh · cos(φh−φk)) ·Pr(rh) · rh ·drh ·dφh
.

Letting φh = φm + φk (dφh = dφm), and going back to slope space with x̃m = rh · cosφm and ỹm = rh · sinφm

(drh ·dφm = cotθh ·dm̃) yields

G1(k) =
cotθk∫ 2π

0
∫

∞

0 cotθk− rh · cosφm ·Pr(rh) · rh ·drh ·dφm

=
cotθk∫

R2 cotθk− x̃h ·P(x̃h, ỹh) ·dh̃
,

which may be written more concisely as

G1(k) =
cotθk∫ cotθk

−∞
(cotθk− x̃h) ·P1(x̃h) ·dx̃h

= G1_radial(cotθk),

where P1 is the marginal slope PDF

P1(x̃h) =
∫ +∞

−∞

P(x̃h, ỹh) ·dỹh. (2.39)

32

float_t radial::g1_smith_std(const vec3& h, const vec3& k) const
{

if (k.z <= DJB_EPSILON) return 0.0;
if (k.z >= 1.0 - DJB_EPSILON) return 1.0;
float_t cot_theta_k = k.z * inversesqrt(1.0 - k.z * k.z);

return g1_radial(cot_theta_k);
}

Listing 2.12 – C++ implementation for radial microfacet slope distributions.

Validating the Evaluation API Two simple tests can be devised to validate the evaluation API of a microfacet

BRDF. The first test consists in checking the normalization of the NDF, i.e., making sure that Equation (2.8)

holds ∫
Ω+

D(h) · cosθh ·dωh = 1.

The second test consists in checking the normalization of the distribution of the visible NDF, i.e., making sure

that the following equation holds for any k ∈Ω+

∫
Ω+

Dvis(h;k) ·dωh = 1.

To compute these integrals, we first express the integrals in spherical coordinates with the change of variable

ωh = ωh(θh,φh) (dωh = sinθh ·dθh ·dφh). We then make the changes of variable θh = u2
1π/2 (dθh = πu1 ·du1)

and φh = 2πu2 (dφh = 2π ·du2) so that we can apply Euler’s rule. We thus have

∫
Ω+

cosθh ·D(h) ·dωh =
∫ 2π

0

∫
π/2

0
cosθh ·D(h) · sinθh ·dθh ·dφh

= 2π
2
∫ 1

0

∫ 1

0
cos(u2

1π/2) ·D(h) · sin(u2
1π/2) ·u1 ·du1 ·du2

= 2π
2 1

Ni

1
N j

Ni

∑
i=0

N j

∑
j=0

cos(u2
i π/2) ·D(h) · sin(u2

i π/2) ·ui,

and similarly

∫
Ω+

Dvis(h;k) ·dωh = 2π
2 1

Ni

1
N j

Ni

∑
i=0

N j

∑
j=0

Dvis(h;k) · sin(u2
i π/2) ·ui,

where ui = i/Ni, u j = j/N j, θh = πui/2, and φh = 2πu j. Note that the change of variable θh = u2
1π/2 pro-

duces more evaluations near the pole of Ω+, which usually results in faster convergence than with uniform

hemispherical sampling, i.e., with the change of variable θh = u1π/2.

33

bool test_ndf(const djb::microfacet& brdf)
{

int N_i = 270;
int N_j = 360;
double nint = 0.0;

for (int i = 0; i < N_i; ++i) {
double u_i = (double)i / (double)N_i;
double theta_h = u_i * u_i * M_PI / 2.0;

for (int j = 0; j < N_j; ++j) {
double u_j = (double)j / (double)N_j;
double phi_h = u_j * 2.0 * M_PI;
djb::vec3 h = djb::vec3(theta_h, phi_h);

nint+= cos(theta_h) * brdf.ndf(h) * sin(theta_h) * u_i;
}

}
nint*= 2.0 * M_PI * M_PI / (double)(N_i * N_j);

return (fabs(nint - 1.0) < EPSILON);
}

Listing 2.13 – C++ microfacet NDF validation test.

bool test_vndf(const djb::microfacet& brdf, const djb::vec3& k)
{

int N_i = 270;
int N_j = 360;
double nint = 0.0;

for (int i = 0; i < N_i; ++i) {
double u_i = (double)i / (double)N_i;
double theta_h = u_i * u_i * M_PI / 2.0;

for (int j = 0; j < N_j; ++j) {
double u_j = (double)j / (double)N_j;
double phi_h = u_j * 2.0 * M_PI;
djb::vec3 h = djb::vec3(theta_h, phi_h);

nint+= brdf.vndf(h, k) * sin(theta_h) * u_i;
}

}
nint*= 2.0 * M_PI * M_PI / (double)(N_i * N_j);

return (fabs(nint - 1.0) < EPSILON);
}

Listing 2.14 – C++ microfacet visible NDF validation test.

34

Chapter 3

Noncentral Microfacet Theory

(1) Microsurface. (2) Magnified microsurface region. (3) Sheared microsurface.

(4) Illuminated microfacets. (5) Noncentral reflection. (6) Equivalent central reflection.

Receiver direction

Emitter direction

Halfway vector

Smooth surface

Rough surface

Visible microsurface

Illuminated microsurface

Scattering microsurface

Legend

Tangent plane

Mesonormal Mesosurface

Figure 3.1 – Geometric overview of noncentral microfacet theory. Can microfacet theory be made applicable to
multiple scales? (1) In order to derive the microfacet BRDF of a microsurface at any scale, microfacet theory
must be extended to account for (2) configurations where the mean surface differs from the tangent plane. (3) By
shearing such surfaces back to a standard configuration, we show that (4) the BRDF of such surfaces can be
determined from the standard microsurface by (5, 6) transforming the illumination and observation directions.

3.1 Motivation

This chapter encompasses the main contributions of the LEADR mapping paper [DHI+13], which addresses

the problem of accelerating displacement texture map filtering with MIP mapping [Wil83]. A displacement

map [Coo84, CCC87] is a texture that displaces the surface it is mapped onto. In a physically based render-

ing context, the elements (texels) of such textures typically combine a scalar value and a normal. The former

gives the magnitude of the displacement along the surface normal, while the latter provides the final normal

of the surface, which should be used for shading. Although historically reserved to offline rendering contexts,

displacement maps have progressively become ubiquitous in real-time rendering applications thanks to the avail-

ability of hardware accelerated subdivision surfaces [NLMD12, NL13]. As such, they are now a fundamental

tool for rendering.

Similarly to, e.g., albedo texture maps, displacement maps must be filtered to match the resolution of the pixels

they project into in order to guarantee consistent surface shading across scales [Hec89]. The simplest form of

physically sound filtering is linear filtering, which consists in averaging the texels that contribute to the same

pixel. But for this approach to work, the texels must interact linearly with shading [BN12]. Put more intuitively,

the average shading of a texture mapped surface should be similar to the shading of the average texture mapped

surface. Although this restriction holds most of the time for albedo texture maps (see, e.g., the work of Heitz et

al. for counterexamples [HNPN13]), it does not for displacement maps. The reason why this is so is one of the

main justifications for microfacet theory: the average BRDF of a displaced surface is not equal to the BRDF of

its mean (hence smooth) surface.

The response of a proper displacement texture map filter should account for the BRDF of the surface, along

with the view-dependent effects produced by the displacements. Since this is a complex task, we restrict for

now the base surface BRDF to a Fresnel mirror, and postpone the treatment of the general case to Chapter 5.

Such a restriction is useful here because the filtering configuration we are now considering corresponds to what

is handled by microfacet BRDFs with only two notable differences, which we address in the remainder of

this chapter. First, displacement mapped surfaces are typically defined in a frame where their mean surface

differs from the tangent plane; in Section 3.2, we extend microfacet theory to support noncentral microfacet

distributions that can account for such configurations. Second, because in a rendering context we expect to be

able to visualize arbitrary portions of the displaced surfaces at multiple resolutions, we need an effective way

to retrieve the NDF of the filtered texels; in Section 3.3, we leverage the linear representation introduced by

Olano and Baker [OB10] to efficiently (though approximately) retrieve an anisotropic microfacet NDF at all

36

scales. The combination of these tools constitutes the LEADR mapping framework, which we discuss from a

more practical point of view in Section 3.4.

3.2 Noncentral Microfacet BRDF Equations

Scalar texture map Normal texture map Base surface Displaced surface

Figure 3.2 – Overview of the displacement mapping technique. Displacement mapping consists in displacing a
surface along its geometric normal using a scalar texture map, and using a normal texture map to compute the
final shading. Here, the scalar texture map is visualized as grey-scale values, while the normal texture map is
color-coded.

The purpose of a displacement map is to add high-frequency details on top of a coarser surface. The pertur-

bations produced by the displacements result in a new surface, whose shading can differ quite significantly

from the base surface; Figure 3.2 shows such an example. In order to derive a microfacet BRDF for such a

surface, we wish to account for configurations where the mean displaced surface differs from the plane tangent

of the base surface, in which the displacement is defined. That way, we can rely on the same representation

at any scale to evaluate shading. We can accomplish this by exploiting another invariance property of micro-

facet BRDFs, namely shear invariance: the microfacet BRDF of a sheared surface, whose mean surface normal

n ∈ Ω+ differs from the tangent up direction, can be retrieved from the components of the same unsheared

surface, whose mean surface normal corresponds to the tangent up direction. Whenever the components of the

mean surface slope ñ = (x̃n, ỹn) ∈R2 associated to the mean surface normal n differs from zero, we say that the

microfacet BRDF associated to such a surface is noncentral, with shear parameters ñ (the mean slope can also

be interpreted as the amount of shear that has been applied to the microsurface). We also introduce the notions

of meso- and macrosurfaces to respectively denote the mean microsurface and the tangent plane.

37

Noncentral Microfacet NDF If h̃ is a slope defined on the sheared microsurface, then it may be written as the

offset slope of an unsheared microsurface h̃ = m̃+ ñ, where ñ ∈R2 gives the shear applied to the microsurface

(recall that shearing offsets the derivative). It follows that the NDF of any sheared surface may be retrieved

from the NDF of the unsheared surface since m̃ = h̃− ñ and hence

D(h; ñ) = Pstd(x̃h− x̃n, ỹh− ỹn)sec4
θh.

Note that shearing preserves the area of the surface projected onto the tangent plane, since for any ñ we have

∫
Ω+

D(h; ñ) · cosθh ·dωh = 1. (3.1)

Combining shear invariance with roughness invariance leads to the more general microfacet NDF expression

D(h;α1,α2,φα; ñ) = Pstd

(
x̃h− x̃n

αx
,
αx(ỹh− ỹn)−ραy(x̃h− x̃n)

αxαy
√

1−ρ2

)
sec4 θh

αxαy
√

1−ρ2
, (3.2)

which gives the microfacet NDF of a surface that has been arbitrarily sheared and scaled from a single micro-

facet slope PDF.

float_t microfacet::ndf(const vec3& h, const microfacet::params& params) const
{

float_t cos_theta_h_sqr = h.z * h.z;
float_t cos_theta_h_sqr_sqr = cos_theta_h_sqr * cos_theta_h_sqr;
float_t xslope = -h.x / h.z - params.m_tx_n;
float_t yslope = -h.y / h.z - params.m_ty_n;

return (p22(xslope, yslope, params) / cos_theta_h_sqr_sqr);
}

Listing 3.1 – Evaluating the NDF term with arbitrary roughness and shear parameters in C++.

Noncentral Microfacet GAF Just like the microfacet NDF, the Smith masking term is also subject to shear

invariance. We can prove this algebraically with a few manipulations provided in the parentheses on the right-

38

hand side for convenience

G1(k; ñ) =
zk∫

Ω+
D(h; x̃n, ỹn) ·kh ·dωh

=
zk∫

R2 Pstd(x̃h− x̃n, ỹh− ỹn)secθh ·kh ·dh̃

 ωh = ωh(h̃)

⇒ dωh = cos3 θh ·dh̃

=
zk∫

R2 Pstd(x̃h− x̃n, ỹh− ỹn) · zk− xkx̃h− ykỹh ·dh̃

secθh ·h =

−x̃h

−ỹh

1

=
zk∫

R2 Pstd(x̃m, ỹm) · zk− xkx̃h− ykỹh ·dm̃

x̃h = x̃m + x̃n,

ỹh = ỹm + ỹn

⇒ dh̃ = dm̃

=

zk∫
R2 Pstd(x̃m, ỹm) · zk− xkx̃n− ykỹn− xkx̃m− ykỹm ·dm̃

=
zk∫

R2 Pstd(x̃m, ỹm) · c− xkx̃m− ykỹm ·dm̃

c = zk− xkx̃n− ykỹn

= kn · secθn

=

zk

c
c∫

R2 Pstd(x̃m, ỹm) · c− xkx̃m− ykỹm ·dm̃

=
zk

c
z′k∫

R2 Pstd(x̃m, ỹm)secθm ·k′m ·dm̃

k′ =
1√

x2
k + y2

k + c2

xk

yk

c

=
zk

c
zk′∫

Ω+
D(m;0,0) ·k′m ·dωm

 m̃ = m̃(ωm)

⇒ dm̃ = sec3 θm ·dωm

=

zk

c
G1(k′;0)

=
zk

c
G1,std(k′),

which reveal that the G1 term of any sheared microsurface can be determined from the unsheared microsurface.

Combining shear invariance with roughness invariance leads to the more general microfacet Smith monostatic

39

shadowing expression

G1(k;α1,α2,φα; ñ) = G1,std

 1√
a2 +b2 + c2

a

b

c

 cosθk

kn · secθn
, (3.3)

where a = αxxk +ραyyk, b = αyyk
√

1−ρ2, and c = zk− xkx̃n− ykỹn. Since the G1 term is shear invariant, it

follows that the microfacet GAF term is also shear invariant. Note that both the ∨-groove and normal map

GAFs are also shear invariant.

float_t
microfacet::g1_smith(

const vec3& h, const vec3& k,
const microfacet::params& params

) const {
float_t a = k.x * params.m_ax + k.y * params.m_ay * params.m_rho;
float_t b = k.y * params.m_ay * params.m_sqrt_one_minus_rho_sqr;
float_t c = k.z - k.x * params.m_tx_n - k.y * params.m_ty_n;
vec3 kprime = normalize(vec3(a, b, c));
float_t g1 = g1_smith_std(h, kprime);

if (g1 > 0.0)
return g1 * (k.z / c);

else
return 0.0;

}

Listing 3.2 – Evaluating the Smith masking term with arbitrary roughness and shear parameters in C++.

(1) Visible sheared microsurface. (2) Visible standard microsurface. (3) Geometric link between directions.

Figure 3.3 – Shear invariance of the monostatic shadowing term.

Importance Sampling Since the microfacet NDF and the microfacet GAF terms are shear invariant, it fol-

lows by construction (see Equation (2.15)) that the distribution of visible slopes is also shear invariant. Thus, we

can also adapt the importance sampling scheme of a standard microsurface to that of an arbitrary sheared and

scaled microsurface. Indeed, if m̃ constitutes a sample of the untransformed visible slope PDF from direction

40

(1) Standard microsurface sample. (2) Sheared microsurface sample. (3) Geometric link between samples.

Figure 3.4 – Sampling a sheared microsurface from a standard microsurface.

k′, then the slope

h̃ =

 αx · x̃m + x̃n

αy(ρ · x̃m +
√

1−ρ2 · ỹm)+ ỹn

 (3.4)

constitutes a sample of the visible slope PDF from direction k of the sheared and scaled microsurface; this

operation is illustrated in Figure 3.4.

vec3
microfacet::sample(

float_t u1, float_t u2,
const vec3& o,
const void *user_param

) const {
const microfacet::params params =

user_param ? *reinterpret_cast<const microfacet::params *>(user_param)
: microfacet::params::standard();

float_t tx_h, ty_h, tx_m, ty_m;

// create a standard variate
switch (m_gaf) {

case GAF_NONE: sample_nmap(u1, u2, o, &tx_h, &ty_h); break;
case GAF_VGROOVE: sample_vgroove(u1, u2, o, &tx_h, &ty_h); break;
case GAF_SMITH: sample_smith(u1, u2, o, &tx_h, &ty_h); break;
default: abort(); // should never happen

}

// warp the variate with the microfacet parameters
tx_m = params.m_ax * tx_h + params.m_tx_n;
float_t choleski = params.m_rho * tx_h

+ params.m_sqrt_one_minus_rho_sqr * ty_h;
ty_m = params.m_ay * choleski + params.m_ty_n;

// return the associated normal
return normalize(vec3(-tx_m, -ty_m, 1));

}

Listing 3.3 – Importance sampling a microfacet BRDF with arbitrary roughness and shear parameters in C++.

41

3.3 LEAN/LEADR Mapping

Because the constant increase in texture and screen resolutions has been counteracting the growth in computa-

tional power over the years, texture filtering remains an expensive operation. This is why prefiltered textures

such as MIP mapped texture maps [Wil83, Hec89], which were introduced over thirty years ago, are still widely

used and will probably remain popular for quite some time. MIP mapping consists in filtering an input texture

at smaller resolutions prior to rendering and storing the output in texture maps of decreasing resolutions, called

MIP maps. At render time, only the MIP texels that best match the on-screen resolution need to be evaluated,

resulting in greater performance (due to the precomputations, and reduced input/output operations) and images

with drastically reduced aliasing. Unfortunately, MIP mapping only works with linearly filterable textures,

which means that in order to prefilter a displacement map, we first need to convert it into a linear representation.

As a first step towards this direction, we can use the observation that the filtered response of a displaced Fresnel

mirror can be approximated by the evaluation of a noncentral microfacet BRDF. Note that if the GAF can accu-

rately predict the occlusion effects produced by the displacements, then the filtering operation is exact. In any

case, this means that we can transpose the problem of representing a displacement map into that of representing

a noncentral microfacet slope NDF, i.e., Equation (3.2), from which we can derive a microfacet BRDF; the

remainder of this section is dedicated to this problem.

Beckmann Surfaces Finding a generic and linear representation for arbitrary noncentral microfacet NDFs

is too difficult. Nevertheless, we can make significant progress if we assume that the microfacet NDF encom-

passes a Beckmann slope PDF at all scales, i.e.,

Pstd(h̃)≈
1
π

exp(−x̃2
h− ỹ2

h).

This assumption essentially restricts the behavior of the filtered surface to a specific distribution (Gaussian in

this case), which simplifies the filtering problem to that of recovering roughness and shear parameters. For

this purpose, Beckmann slope PDFs are extremely practical because their parameters can be retrieved from five

42

moments:

E1 :=
∫
R2

x̃h ·P(h̃;α1,α2,φα; ñ) ·dh̃ = x̃n (3.5)

E2 :=
∫
R2

ỹh ·P(h̃;α1,α2,φα; ñ) ·dh̃ = ỹn (3.6)

E3 :=
∫
R2

x̃2
h ·P(h̃;α1,α2,φα; ñ) ·dh̃ =

α2
x

2
+ x̃2

n (3.7)

E4 :=
∫
R2

ỹ2
h ·P(h̃;α1,α2,φα; ñ) ·dh̃ =

α2
y

2
+ ỹ2

n (3.8)

E5 :=
∫
R2

x̃h · ỹh ·P(h̃;α1,α2,φα; ñ) ·dh̃ =
ραxαy

2
+ x̃nỹn. (3.9)

Note that we provide the derivations that lead to these terms in the next paragraph. The reason why this is

useful is that, by exploiting the summation form of these moments, we can retrieve the parameters from any set

of N > 0 slope texels that project into a pixel

E1 =
1
N

N−1

∑
j=0

x̃ j (3.10)

E2 =
1
N

N−1

∑
j=0

ỹ j (3.11)

E3 =
1
N

N−1

∑
j=0

x̃2
j (3.12)

E4 =
1
N

N−1

∑
j=0

ỹ2
j (3.13)

E5 =
1
N

N−1

∑
j=0

x̃ j · ỹ j, (3.14)

where (x̃ j, ỹ j) denotes the j-th slope sample of the surface. Since the summation form of the moments is linear

with respect to slopes, we can store slopes (rather than normals) in a texture map and precompute MIP maps

texels as the average of their higher resolution counterparts. This linear representation was first introduced by

Olano and Baker [OB10] under the name of LEAN mapping. It requires five floating-point numbers per MIP

texel and is capable of capturing the roughness and main direction of anisotropy of a set of slopes, which is

usually sufficient for most filtering cases.

43

// Linear Representation
class beckmann::lrep {
friend class beckmann;
public:

// Ctor
lrep(float_t E1 = 0.0, float_t E2 = 0.0,

float_t E3 = 0.5, float_t E4 = 0.5,
float_t E5 = 0.0);

private:
// members
float_t m_E1, m_E2; // first order slope moments
float_t m_E3, m_E4; // second order slope moments
float_t m_E5; // first order joint slope moment

};

Listing 3.4 – C++ implementation of a linear representation for Beckmann microfacet distributions.

void beckmann::params_to_lrep(const microfacet::params& params, lrep *lrep)
{

float_t ax, ay, rho, tx_n, ty_n;
params.get_pdfparams(&ax, &ay, &rho, &tx_n, &ty_n);
(*lrep) = beckmann::lrep(tx_n, ty_n,

0.5 * ax * ax + tx_n * tx_n,
0.5 * ay * ay + ty_n * ty_n,
0.5 * rho * ax * ay + tx_n * ty_n);

}

void beckmann::lrep_to_params(const lrep& lrep, microfacet::params *params)
{

float_t tx_n = lrep.m_E1;
float_t ty_n = lrep.m_E2;
float_t tmp1 = max((float_t)0.0, lrep.m_E3 - lrep.m_E1 * lrep.m_E1);
float_t tmp2 = max((float_t)0.0, lrep.m_E4 - lrep.m_E2 * lrep.m_E2);
/* clamp the parameters to valid values */
float_t ax = max(1e-5, sqrt(2.0 * tmp1));
float_t ay = max(1e-5, sqrt(2.0 * tmp2));
float_t rho = 2.0 * (lrep.m_E5 - lrep.m_E1 * lrep.m_E2) / (ax * ay);
rho = min((float_t)0.99, max((float_t)-0.99, rho));

(*params) = microfacet::params::pdfparams(ax, ay, rho, tx_n, ty_n);
}

Listing 3.5 – C++ conversion routines for Beckmann microfacet distributions.

Beckmann Moments We can recover the scale and shear parameters of a Beckmann NDF from its first and

second order slope moments. We prove here the results of Equations (3.5, 3.6, 3.7, 3.8, 3.9). First, we prove

that the Beckmann slope PDF with expression

Pstd(h̃) =
1
π

exp(−x̃2
h− ỹ2

h)

44

is properly normalized, as it integrates to one

∫
R2

Pstd(h̃) ·dh̃ =
1
π

∫
∞

−∞

∫
∞

−∞

exp(−x̃2
h− ỹ2

h) ·dx̃h ·dỹh

=
1
π

∫ 2π

0

∫
∞

0
exp(−r2) · r ·dr ·dφ

x̃h = r · cosφ, ỹh = r · sinφ

⇒ dh̃ = r ·dr ·dφ

= 2

∫
∞

0
exp(−r2) · r ·dr

(∫ 2π

0
dφ = 2π

)

=
∫

∞

0
exp(−x) ·dx

 r =
√

x

⇒ dr = 1
2
√

x ·dx

= 1. (3.15)

Next, we prove that the first order moments of the standard PDF integrate to zero. We have

∫
R2

x̃h ·Pstd(h̃) ·dh̃ =
1
π

∫
∞

−∞

∫
∞

−∞

x̃h · exp(−x̃2
h− ỹ2

h) ·dx̃h ·dỹh

=
1√
π

∫
∞

−∞

x̃h · exp(−x̃2
h) ·dx̃h

(
1√
π

∫
∞

−∞

exp(−ỹ2
h) ·dỹh = 1

)
=

1√
π

∫
∞

0
x̃h · exp(−x̃2

h) ·dx̃h

− 1√
π

∫
∞

0
x̃h · exp(−x̃2

h) ·dx̃h

= 0. (3.16)

The same demonstration applies to the second first order moment, i.e.,
∫
R2 ỹh ·Pstd(h̃) ·dh̃ = 0.

45

We also prove that the second order moments of the standard PDF integrate to 1
2 . We have

∫
R2

x̃2
h ·Pstd(h̃) ·dh̃ =

1
π

∫
∞

−∞

∫
∞

−∞

x̃2
h · exp(−x̃2

h− ỹ2
h) ·dx̃h ·dỹh

=
1√
π

∫
∞

−∞

x̃2
h · exp(−x̃2

h) ·dx̃h

(
1√
π

∫
∞

−∞

exp(−ỹ2
h) ·dỹh = 1

)
=

1
2
√

π

∫
∞

−∞

x̃h · f ′(x̃h) ·dx̃h
(

f ′(x̃h) =−2x̃h · exp(−x̃2
h)
)

=
1

2
√

π

x̃h · f (x̃h)
∣∣∣∞
−∞︸ ︷︷ ︸

=0

+
∫

∞

−∞

exp(−x̃2
h) ·dx̃h︸ ︷︷ ︸

=
√

π

 (integration by parts)

=
1
2
. (3.17)

The same demonstration applies to the second second order moment, i.e.,
∫
R2 ỹ2

h ·Pstd(h̃) ·dh̃ = 1
2 .

Now we can proceed to prove that

E1 =
∫
R2

x̃h ·P(h̃;α1,α2,φα; ñ) ·dh̃

=
∫
R2
(αxx̃m + x̃n) ·Pstd(m̃) ·dm̃

x̃h = αxx̃m + x̃n,

ỹh = αy(ρx̃m +
√

1−ρ2ỹm)+ ỹn

⇒ dh̃ = αxαy
√

1−ρ2 ·dm̃

=

∫
R2

x̃n ·Pstd(m̃) ·dm̃ (Equation (3.16))

= x̃n. (Equation (3.15))

The proof for E2 = ỹn can be done similarly.

46

Next, we have

E3 =
∫
R2

x̃2
h ·P(h̃;α1,α2,φα; ñ) ·dh̃

=
∫
R2
(αxx̃m + x̃n)

2 ·Pstd(m̃) ·dm̃

x̃h = αxx̃m + x̃n,

ỹh = αy(ρx̃m +
√

1−ρ2ỹm)+ ỹn

⇒ dh̃ = αxαy
√

1−ρ2 ·dm̃

=

∫
R2
(α2

x x̃2
m + x̃2

n +��
��2αxx̃nx̃m) ·Pstd(m̃) ·dm̃ (Equation (3.16))

=
∫
R2

α
2
x x̃2

m ·Pstd(m̃) ·dm̃+ x̃2
n (Equation (3.15))

=
α2

x

2
+ x̃2

n. (Equation (3.17))

The proof for E4 =
α2

y
2 + ỹ2

n can be done similarly. Finally, we have

E5 =
∫
R2

x̃h · ỹh ·P(h̃;α1,α2,φα; ñ) ·dh̃

=
∫
R2

x̃h · ỹh ·Pstd(m̃) ·dm̃

x̃h = αxx̃m + x̃n,

ỹh = αy(ρx̃m +
√

1−ρ2ỹm)+ ỹn

⇒ dh̃ = αxαy
√

1−ρ2 ·dm̃

=

∫
R2

αxαy(ρx̃2
m +���

���
�√

1−ρ2x̃mỹm) ·Pstd(m̃) ·dm̃ (Equation (3.16))

+
��

���
���

���
�∫

R2
αxỹnx̃m ·Pstd(m̃) ·dm̃ (Equation (3.16))

+
((((

((((
(((

((((
((((∫

R2
x̃nαy(ρx̃m +

√
1−ρ2ỹm) ·Pstd(m̃) ·dm̃ (Equation (3.16))

+
∫
R2

x̃nỹn ·Pstd(m̃) ·dm̃

=
∫
R2

αxαyρx̃2
m ·Pstd(m̃) ·dm̃+ x̃nỹn (Equation (3.15))

=
ραxαy

2
+ x̃nỹn. (Equation (3.17))

Experimental Validation Our filtering scheme predicts the appearance of Beckmann microgeometries. In

order to validate this property, we can compare the appearance yielded by our multiscale microfacet BRDF

against supersampled renderings of Gaussian microgeometries; Figure 3.5 shows the result of such an exper-

iment based on displaced spheres under directional lighting, which clearly demonstrates a good match for

various illumination directions and roughness configurations between our filtering scheme (computed with one

47

sample per pixel) and the reference images (computed using 256 samples per pixel). Note that more exhaustive

tests are provided in the supplemental document of the original article [DHI+13].

3.4 Practical Considerations

Precomputations The first thing we need to do to use LEADR mapping is to extract a LEAN map from a dis-

placement map. If the displacement map carries a normal map, then the conversion is straightforward [OB10].

Here, we show how to precompute LEAN maps from a displacement texture map that only consists of scalar dis-

placement values. In this case, the texture can be interpreted as a discrete, scalar valued function ξ : [0,1]2→R,

living in the unit parametric space [0,1]2. To find the slopes produced by ξ at any location in (u,v) ∈ [0,1]2, we

need to compute the gradient ∇ξ≡ [∂ξ/∂u,∂ξ/∂v]t . We can then express the slopes as

x̃(u,v) =
∂ξ(u,v)

∂u
, ỹ(u,v) =

∂ξ(u,v)
∂v

.

In order to compute these derivatives from texel space [0,w]× [0,h], where w and h respectively denote the

width and height of the texture, the slopes must be scaled by the resolution of the texture

x̃(p,q) = w · ∂ξ(p,q)
∂p

, ỹ(p,q) = h · ∂ξ(p,q)
∂q

.

We can use this last equation to approximate the gradient with forward or backward differencing—depending

on whether the texel coordinate is even or odd—just as GPUs compute screen-space derivatives. This yields

x̃(p,q)≈ w(ξ(p±1,q)−ξ(p,q)), ỹ(p,q)≈ h(ξ(p,q±1)−ξ(p,q)).

In practice, however, it is better to favor central differencing

x̃(p,q)≈ w
2
(ξ(p+1,q)−ξ(p−1,q)), ỹ(p,q)≈ h

2
(ξ(p,q+1)−ξ(p,q−1))

because it results in smoother shading; Figure 3.6 compares a rendering obtained with both approaches. For

the sake of completeness, conversions of displacement maps into normal maps and normal maps into the first

MIP of a LEAN/LEADR map are provided in Listings 3.6 and 3.7, respectively (the rest of the LEAN/LEADR

MIP maps can be computed using a simple GenerateMipmap() routine).

48

Roughness Microsurface θi = 90o;φi = 90o θi = 90o;φi = 0o θi = 90o;φi =−25o

Isotropy Reference LEADR Reference LEADR Reference LEADR

αθ = 0.10
αφ = 0.10

αθ = 0.25
αφ = 0.25

αθ = 0.50
αφ = 0.50

Anisotropy Microsurface θi = 90o;φi = 90o θi = 90o;φi = 0o θi = 90o;φi =−25o

Latitudinal Reference LEADR Reference LEADR Reference LEADR

αθ = 0.05
αφ = 0.10

αθ = 0.05
αφ = 0.25

αθ = 0.05
αφ = 0.50

Anisotropy Microsurface θi = 90o;φi = 90o θi = 90o;φi = 0o θi = 90o;φi =−25o

Longitudinal Reference LEADR Reference LEADR Reference LEADR

αθ = 0.10
αφ = 0.05

αθ = 0.25
αφ = 0.05

αθ = 0.50
αφ = 0.05

Figure 3.5 – Experimental validation of our filtering scheme. We compare the appearance of supersampled
(256 samples per pixel) Beckmann microgeometries against the response of our multiscale microfacet BRDF
for several roughnesses and lighting conditions. The Microsurface column is a preview of the Beckmann
microgeometry.

49

Forward/backward differencing Central differencing

Figure 3.6 – Finite differencing scheme comparison for LEAN map precomputations. Central differencing
results in smoother shading. The displacement map used as input comes from http://www.gamedev.net/
blog/33/entry-2198619-stone/.

void
dmap2nmap(const CImg<uint8_t>& dmap, CImg<uint8_t>& nmap, float scale = 0.1f)
{

int w = dmap.width();
int h = dmap.height();

nmap.resize(w, h, /*depth*/1, /*channels*/3);
for (int i = 0; i < w; ++i)
for (int j = 0; j < h; ++j) {

uint8_t px_l = dmap.atXY(i - 1, j); // in [0,255]
uint8_t px_r = dmap.atXY(i + 1, j); // in [0,255]
uint8_t px_b = dmap.atXY(i, j + 1); // in [0,255]
uint8_t px_t = dmap.atXY(i, j - 1); // in [0,255]
float z_l = (float)px_l / 255.f; // in [0, 1]
float z_r = (float)px_r / 255.f; // in [0, 1]
float z_b = (float)px_b / 255.f; // in [0, 1]
float z_t = (float)px_t / 255.f; // in [0, 1]
float slope_x = (float)w * 0.5f * scale * (z_r - z_l);
float slope_y = (float)h * 0.5f * scale * (z_t - z_b);
float nrm_sqr = 1.f + slope_x * slope_x + slope_y * slope_y;
float nrm_inv = 1.0 / sqrt(nrm_sqr);
float nx = -slope_x * nrm_inv;
float ny = -slope_y * nrm_inv;
float nz = nrm_inv;
float tmp1 = 0.5 * nx + 0.5; // in [0, 1]
float tmp2 = 0.5 * ny + 0.5; // in [0, 1]

nmap(i, j, 0, 0) = (uint8_t)(tmp1 * 255);
nmap(i, j, 0, 1) = (uint8_t)(tmp2 * 255);
nmap(i, j, 0, 2) = (uint8_t)(nz * 255);

}
}

Listing 3.6 – C++ implementation of a routine to compute a normal map from a displacement map.

50

http://www.gamedev.net/blog/33/entry-2198619-stone/
http://www.gamedev.net/blog/33/entry-2198619-stone/

void
nmap2leanmap(

const CImg<uint8_t>& nmap,
CImg<float>& leanmap_1,
CImg<float>& leanmap_2,
float base_roughness = 1e-5

) {
int w = nmap.width();
int h = nmap.height();

leanmap_1.resize(w, h, /*depth*/1, /*channels*/4);
leanmap_2.resize(w, h, /*depth*/1, /*channels*/4);
for (int i = 0; i < w; ++i)
for (int j = 0; j < h; ++j) {

uint8_t px_r = nmap.atXY(i, j, 0, 0); // in [0,255]
uint8_t px_g = nmap.atXY(i, j, 0, 1); // in [0,255]
uint8_t px_b = nmap.atXY(i, j, 0, 2); // in [0,255]
float tmp1 = ((float)px_r / 255.f) * 2.0f - 1.0f; // in [-1, 1]
float tmp2 = ((float)px_g / 255.f) * 2.0f - 1.0f; // in [-1, 1]
float tmp3 = ((float)px_b / 255.f); // in [0, 1]
float slope_x = -tmp1 / tmp3;
float slope_y = -tmp2 / tmp3;
float slope_x_sqr = slope_x * slope_x;
float slope_y_sqr = slope_y * slope_y;
float slope_xy = slope_x * slope_y;
float base_roughness_sqr = 0.5f * base_roughness * base_roughness;

leanmap_1(i, j, 0, 0) = slope_x; // E1
leanmap_1(i, j, 0, 1) = slope_y; // E2
leanmap_1(i, j, 0, 2) = 1.f;
leanmap_1(i, j, 0, 3) = 1.f;
leanmap_2(i, j, 0, 0) = slope_x_sqr + base_roughness_sqr; // E3
leanmap_2(i, j, 0, 1) = slope_y_sqr + base_roughness_sqr; // E4
leanmap_2(i, j, 0, 2) = slope_xy; // E5
leanmap_2(i, j, 0, 3) = 1.f;

}
}

Listing 3.7 – C++ implementation of a routine to compute a LEAN/LEADR map from a normal map.

Surface Stretching and Shearing In practice, it is more convenient to store the moments of the unit paramet-

ric space slopes. We denote these moments as E ′1, E ′2, E ′3, E ′4, and E ′5. The distribution must be expressed in the

macrosurface tangent frame (x,y,z). Since meshes are rarely perfectly parameterized, the texture parameteri-

zation u(x,y),v(x,y) usually produces distortions, which can be further accentuated in the case of animations.

Figure 3.7 – Surface stretching.

51

Figure 3.8 – Surface shearing.

The slopes in world space can be defined by(
∂ξ

∂x
,
∂ξ

∂y

)
=

(
∂ξ

∂u
∂u
∂x

+
∂ξ

∂v
∂v
∂x

,
∂ξ

∂u
∂u
∂y

+
∂ξ

∂v
∂v
∂y

)
.

If the distortions occurring on the macrosurface have low spatial variations, then we can reasonably assume

that the mapping distortions represented by the terms ∂u
∂x , ∂v

∂x , ∂u
∂y , and ∂v

∂y are locally constant. It follows that the

appropriate slope distribution in world space gives

E1 =
∂u
∂x

E ′1 +
∂v
∂x

E ′2

E2 =
∂u
∂y

E ′1 +
∂v
∂y

E ′2

E3 =

(
∂u
∂x

)2

E ′3 +

(
∂v
∂x

)2

E ′4 +2
∂u
∂x

∂v
∂x

E ′5

E ′4 =

(
∂u
∂y

)2

E ′3 +

(
∂v
∂y

)2

E ′4 +2
∂u
∂y

∂v
∂y

E ′5

E ′5 =
∂u
∂x

∂u
∂y

E ′3 +
∂v
∂x

∂v
∂y

E ′4 +

(
∂u
∂x

∂v
∂y

+
∂v
∂x

∂u
∂y

)
E ′5.

Computing the moments in this way allows support for animated geometry without having to update the

LEADR MIP map hierarchy during animation: the distribution is adapted on the fly from the distortions, and

adequately modulates the resulting appearance; this is illustrated in Figure 3.7 and Figure 3.8.

Height Scaling One may wish to apply a scaling factor β≥ 0 on displacements ξ to increase or reduce surface

displacement. If β also exhibits low spatial variation across the surface, then it suffices to scale the first order

moments E1 and E2 by β, and the second order moments E3, E4, and E5 by β2. Note that this can be done

52

Figure 3.9 – Impact of scale on the displacement mapping technique.

at runtime without having to update the LEADR MIP map hierarchy. Figure 3.9 shows an example of scaled

displacement map that uses the same LEAN map.

A Note on CLEAN Mapping Some applications may not be able to afford five floating-point numbers

per texel for specular antialiasing purposes. For such scenarios, Baker introduces CLEAN maps [Bak11],

which require only three floating-point numbers per texel at the cost of slightly less satisfying filtering quality

(anisotropy is lost). When filtering with a CLEAN map, we are assuming that slope roughness is isotropic, i.e.,

αx = αy, and ρ = 0. The x̃n and ỹn parameters are determined similarly to a LEAN/LEADR map using the

first slope moments in the x and y directions, which constitute the first two floating-point numbers of a CLEAN

map. In order to retrieve the isotropic roughness parameter α = αx = αy, Baker suggests to store and filter the

squared magnitude of the second moments, i.e., x̃2
h + ỹ2

h. The roughness is then determined as follows

α
2 =

∫
R2
(x̃2

h + ỹ2
h) ·P(h̃) ·dh̃︸ ︷︷ ︸

=CLEAN 3rd component

−x̃2
n− ỹ2

n. (3.18)

Depending on the textures however, this approach may result in aliasing because some directions may require

higher roughness values. In order to guarantee antialiased highlights, the lobe of the slope distribution should

be as large as the major radius of the ellipse produced by a LEAN/LEADR map, i.e., max(α1,α2). If we set

the third component of the CLEAN map to yield the roughness value max(α1,α2), then the resulting highlights

should always be large enough to avoid aliasing. Note that this is only a conjecture, since this approach has not

been tested.

53

Figure 3.10 – A displacement mapped ocean rendered at different scales in real time with LEADR mapping.

Figure 3.11 – A production asset (Ptex T-rex model c©Walt Disney Animation Studios.) rendered in real time
with LEADR mapping.

GPU Acceleration The LEADR mapping technique can be implemented on the GPU to produce high-quality

renderings in real time with environment maps. Since a typical GPU rendering pipeline can only afford a limited

number of shading evaluations per pixel, we can devise a filtered sampling approach that guarantees artifact-

free images at the cost of slight bias, as follows. First, we recall from the previous chapter (see Equation (2.23))

that we can rewrite the rendering equation as

Lo =
1

N2

N−1

∑
j=0

N−1

∑
k=0

Li ·F(θd) ·
G(i,o)
G1(o)

,

having

i = 2(o ·h)h−o,

where h is the microfacet normal sample simulated with the uniform variates u1 = j/N and u2 = k/N. By using

prefiltered samples of Li, we can emulate a smooth reconstruction filter that is guaranteed to produce antialiased

results; this technique is also known as filtered importance sampling [CK07, KC08]. The problem is then to

determine the size of the filter. A simple solution is to compute it according to the solid angle ω covered in the

54

incident direction i

ω≈ cosθ
3
o ·A,

where A ∝ (max(α1,α2)/N)2 is the surface area of a sample in slope space [DHI+13]. This guarantees that

the solid angles overlap across neighboring samples and avoids banding artifacts for any value of N ≥ 1. This

technique was used to produce the images in, e.g., Figure 3.10 and Figure 3.11.

55

Chapter 4

Inverted Microfacet Theory

(1) BRDF at macro- vs microscale. (2) Backscattering at macroscale. (3) Backscattering at microscale.

(4) Visible microfacets. (5) Illuminated microfacets. (6) Backscattering microfacets.

Receiver direction

Emitter direction

Smooth surface

Rough surface

Visible microsurface

Illuminated microsurface

Scattering microsurface

Legend

Tangent plane

BRDF

Inverted theoryMicrofacet theoryBackscatter direction

Figure 4.1 – Geometric overview of inverted microfacet theory. A microfacet BRDF extracts a BRDF from a
microsurface. (1) Can we solve the inverse problem, i.e., is it possible to extract a microsurface from a BRDF?
We can tackle this problem by considering the BRDF in (2, 3) backscattering configurations (o = i = h). For
such configurations, occlusions due to (4) masking and (5) shadowing become equal, and (6) the evaluation of
the BRDF is directly proportional to the fraction (with respect to the entire microsurface) of microfacets that
are visible from the backscattering direction. This observation is the key to solve the inverse problem.

4.1 Motivation

This chapter encompasses the main contributions of the paper entitled “Extracting Microfacet-based BRDF

Parameters from Arbitrary Materials with Power Iterations” [DHI+15], which shows how to convert the re-

flectance of an arbitrary material into a microfacet BRDF. In order to alleviate the Fresnel mirror restriction

that we imposed to displaced surfaces in the previous chapter, we will approximate the material of the undis-

placed surface with a microfacet BRDF. But for this approach to be general (and hence practical), we need

to design a procedure that can recover the components of a microfacet BRDF by solely evaluating the input

material. Traditionally, this is done with a microfacet BRDF fitting procedure.

Existing microfacet-based fitting procedures may be classified in two categories. On the one hand, we find

methods that typically introduce a new parametric microfacet normal distribution, and rely on sophisticated

optimizations to fit its parameters [NDM05, LKYU12, BSH12]. Although this approach has been used success-

fully to fit measured materials, current methods suffer from two main problems. First, optimizations are not

guaranteed to converge to a valid solution. Second, available parametric models are isotropic and single lobed,

which limits the range of materials that they can fit accurately. On the other hand, we find methods that extract

an arbitrary microfacet normal distribution into a table [AP07, WZT+08]. While this approach is considerably

more general than the ones from the first category, as it naturally supports complex lobes and anisotropy, exist-

ing methods are not entirely satisfactory. Indeed, current methods either rely on crude approximations for visi-

bility effects [AP07], or require a complex implementation involving sophisticated optimizations [WZT+08].

In the following sections, we introduce a new tabulation strategy that takes an arbitrary material as input,

and extracts a microfacet normal distribution from backscattering configurations, and then a Fresnel function.

Our approach combines the simplicity of the method of Ashikmnin and Premože [AP07], i.e., it is free from

sophisticated optimizations, while retaining an accurate model for visibility effects. Specifically, we use the

Smith microfacet visibility model, and also provide the derivations for the ∨-groove and normal map models,

which we introduced in Chapter 2. In addition, we provide straightforward routines to convert our fits to

Beckmann and GGX microfacet roughness parameters [WMLT07]. Finally, we discuss how implementations

may take advantage of microfacet slope space to precompute importance sampling tables that support spatially

varying roughness for our fitted materials.

57

4.2 Microfacet Terms Extraction

Backscattering Configurations In order to retrieve a microfacet slope distribution from an input material, we

are going to use a simplified form of Equation (2.1). Specifically, we focus on backscattering configurations,

which reduces the dimensionality of the BRDF from 4D to 2D, and simplifies the Fresnel term to a constant;

Figure 4.1 (2, 3) shows the geometry of a backscattering configuration. Indeed, in such configurations, we have

i = o = h, as well as θd = 0; for convenience, we write F0 = F(0). Equation (2.1) predicts that the BRDF takes

the form

fr(o,o) =
F0 ·D(o) ·G(o,o)

4 · cos2 θo
. (4.1)

However, this expression is not entirely accurate because the GAF term G overestimates occlusion effects.

When i = o, shadowing and masking are fully correlated, and the GAF should degenerate into the monostatic

form [Hei14]

G(o,o) = G1(o). (4.2)

The geometry of shadowing and masking in a backscattering configuration is illustrated in Figure 4.1 (4, 5).

The accurate form of the GAF term leads to the microfacet backscattering equation

fr(o,o) =
F0 ·D(o) ·G1(o)

4 · cos2 θo
. (4.3)

With this equation at hand, we may now proceed to the extraction of a microfacet slope distribution P, given an

input material fr. Note that the inability of Equation (2.13) to degenerate into Equation (4.2) is known as the

“hotspot” problem, and remains an open problem. In practice, we use Equation (4.2) for fitting purposes and

Equation (2.13) for rendering. Our results thus overestimate occlusion effects in hotspot configurations by the

factor 1/(2−G1) ∈ [0.5,1].

Eigensystem Construction In our microfacet BRDF fitting problem, we are given an input material fr and

asked to extract a microfacet Fresnel term and a microfacet slope distribution. As a first step towards this

direction, we swap the product F0 ·D and fr to the other side of the equality in the microfacet backscattering

equation, i.e., Equation (4.3). This yields

F0 ·D(o) =
4 · fr(o,o) · cos2 θo

G1(o)
. (4.4)

58

Next, by replacing D and G1 in Equation (4.4) by their definitions, i.e., Equation (2.11) and Equation (2.14)

respectively, we get an equation for the microfacet slope PDF

F0 ·P(õ) =
∫

Ω+

K(o,h) ·P(h̃) ·dωh, (4.5)

where

K(o,h) = 4 · fr(o,o) · cos5
θo ·oh · sec4

θh. (4.6)

Equation (4.5) is not trivial to solve: in the mathematics literature, it belongs to the family of multivariate

Fredholm equations of the second kind with kernel K [PM12]. In our case, the form of the kernel is not known

in advance due to the input material fr, so we solve this equation numerically by discretizing Equation (4.5)

with a quadrature rule. Letting w j denote the j-th quadrature rule weight and i = 1, · · · ,N, we obtain the new

relation

F0 ·P(õi) =
N

∑
j=1

w j ·K(oi,h j) ·P(h̃ j), (4.7)

where õ1 = h̃1, · · · , õN = h̃N are the (slope) quadrature points, located in R2. Now, letting p denote the dis-

cretized PDF vector p = (P(õ1), · · · ,P(õN))
t , and K the matrix

K =

w1 K(o1,h1) · · · wN K(o1,hN)

...
. . .

...

w1 K(oN ,h1) · · · wN K(oN ,hN)

 , (4.8)

Equation (4.7) rewrites as the eigenvalue problem

F0 ·p = K ·p. (4.9)

This result shows that the problem of retrieving a microfacet slope PDF given an input material BRDF fr

translates into finding an eigenvector p whose components are all nonnegative.

Resolution via Power Iterations Since the entries of matrix K are all nonnegative, the Perron-Frobenius

theorem [Per07, Fro12] states that it always has a unique eigenvector p whose values are all nonnegative. It

is thus a valid solution for the microfacet slope distribution P. By solving Equation (4.9), we therefore have

the guaranteed ability to compute a valid microfacet slope PDF from an input material BRDF. Furthermore,

the theorem states that this eigenvector is associated to the largest eigenvalue of the matrix. As such, we can

59

compute it straightforwardly with the power iteration method.

The power iteration method is based on the property that the eigenvector associated to the largest eigenvalue

of a matrix emerges after successive multiplications with a vector. In our implementation, we initialize p =

(1, · · · ,1)t , and successively multiply it by K. In practice, we use only four successive multiplications, which

has turned out to be sufficient for all our test cases. Once the vector has been determined, we build a continuous

PDF by linearly interpolating the values of p, and normalize it to satisfy Equation (2.12). We store the result in

a table, which completes the extraction of P. Algorithm 1 provides pseudocode for our method.

Algorithm 1 Extract P

function EXTRACT_P(fr,N)
for each i, j ∈ [1,N] do . Build kernel matrix

Ki, j← w j 4 fr(oi,oi) cos5 θoi oih j sec4 θh j

p← (1, · · · ,1)t

for 0≤ i < M do . Power iterations (we set M = 4)
p←K ·p

P← normalize(p)

With the extraction process of P complete, we can now evaluate the microfacet NDF D extracted from the

input material thanks to Equation (2.11). It follows from Equation (2.14) that we can also compute the Smith

term G1. At this point, we can already create a fully functional microfacet BRDF whose microfacets act as

“ideal” mirrors, i.e.,

fr,id(i,o) =
D(h) ·G(i,o)

4 · cosθi · cosθo
. (4.10)

Note that this equation is a special case of Equation (2.1), where F(θd) = 1 for any θd . We can thus turn to the

problem of retrieving the microfacet Fresnel term in order to complete the fitting process.

Fresnel Extraction In order to extract the Fresnel term, we compute for each color channel the average ratio

between the input material BRDF and Equation (4.10) over all possible θd configurations, i.e.,

F(θd) = E
[

fr(i,o)
fr,id(i,o)

| ih = cosθd

]
, (4.11)

where we use the notation E[x|y] to denote the expectation of variable x over the domain that satisfies condition y.

Algorithm 2 provides pseudocode for our method.

The main advantage of our approach is that it is fully automatic. It is very accurate when the behavior of

60

Algorithm 2 Extract F

function EXTRACT_F(fr, fr,id)
for θd ∈ [0,π/2] do

F(θd)← 0
N← 0
for φd ,φh ∈ [0,2π],θh ∈ [0,π/2] do

i← from_half_diff(h,d)
o← reflect(i,h)
F(θd)← F(θd)+ fr(i,o)/ fr,id(i,o)
N← N +1

F(θd)← F(θd)/N

the input material accords to microfacet theory, i.e., when fr is roughly equal to Equation (2.1). When this

condition does not hold, our algorithm will propagate the fitting errors into the Fresnel term. Such situations

will arise for, e.g., materials with directionally dependent albedos, such as certain fabrics or car paints. In such

cases, the extracted behavior of F differs significantly from what is predicted by the Fresnel law, and the term

should be regarded as a residual function instead of an actual Fresnel function.

Optimization: Eigensystem Construction for Isotropic Materials Although our fitting process is already

complete, we introduce here an optimization for the extraction of P that works for isotropic materials. If the

input material is isotropic, then the microfacet NDF D depends only on the elevation angle θh. It follows from

Equation (2.11) that the microfacet slope PDF is also isotropic, which implies that it may be expressed as a 1D

radial function

P(h̃) = g(θh). (4.12)

In such cases, the problem of retrieving the 2D function P, i.e., Equation (4.5), simplifies to that of finding the

1D function g. This problem also translates into a (univariate) Fredholm equation of the second kind

F0 ·g(θo) =
∫

π/2

0
K′(θo,θh) ·g(θh) ·dθh, (4.13)

with kernel K′

K′(θo,θh) =
∫ 2π

0
K(o,h) · sinθh ·dφh. (4.14)

61

To arrive at this particular result, we start from Equation (4.5) and apply Equation (4.12)

F0 ·g(θo) =
∫

Ω+

K(o,h) ·g(θh) ·dωh.

We then proceed with a few simple algebric manipulations, and Equation (4.13) naturally emerges

F0 ·g(θo) =
∫ 2π

0

∫
π/2

0
K(o,h) ·g(θh) · sinθh ·dθh ·dφh

=
∫

π/2

0

[∫ 2π

0
K(o,h) · sinθh ·dφh

]
·g(θh) ·dθh

=
∫

π/2

0
K′(θo,θh) ·g(θh) ·dθh.

Note that the choice of the azimuthal angle φo to fully define o is arbitrary in Equation (4.14). As for the general

case, Equation (4.13) may be expressed as an eigenvalue problem of the form

F0 ·p′ = K′ ·p′, (4.15)

where p′ = (g(θo1), · · · ,g(θoN))
t . Since the entries of matrix K′ are all nonnegative, we can also solve Equa-

tion (4.15) with the power iteration method. In practice, we also use four successive multiplications to recover

the solution p′. Algorithm 3 provides pseudocode for this specialized method.

Algorithm 3 Extract Isotropic P

function EXTRACT_P_ISOTROPIC(fr,N)
φo← 0 . The choice is arbitrary here
for each i, j ∈ [1,N] do . Build kernel matrix

K′i, j←
∫ 2π

0 w j ·K(oi,h j) · sinθh j ·dφh

p′← (1, · · · ,1)t

for 0≤ i < M do . Power iterations (we set M = 4)
p′←K′ ·p′

P← normalize(p′)

62

void tabular::compute_p22_smith(const brdf& brdf, int res)
{

int cnt = res - 1;
float_t dtheta = sqrt(M_PI * 0.5) / (float_t)cnt;
matrix km(cnt);

for (int i = 0; i < cnt; ++i) {
float_t tmp = (float_t)i / (float_t)cnt;
float_t theta = tmp * sqrt(M_PI * 0.5);
float_t theta_o = theta * theta;
float_t cos_theta_o = cos(theta_o);
float_t tan_theta_o = tan(theta_o);
vec3 fr = brdf.eval(vec3(theta_o, 0.0), vec3(theta_o, 0.0));
float_t fr_i = fr.intensity();
float_t kji_tmp = (dtheta * pow(cos_theta_o, 6.0)) * (8.0 * fr_i);

for (int j = 0; j < cnt; ++j) {
const float_t dphi_h = M_PI / 180.0;
float_t tmp = (float_t)j / (float_t)cnt;
float_t theta = tmp * sqrt(M_PI * 0.5);
float_t theta_h = theta * theta;
float_t cos_theta_h = cos(theta_h);
float_t tan_theta_h = tan(theta_h);
float_t tan_product = tan_theta_h * tan_theta_o;
float_t nint = 0.0;

for (float_t phi_h = 0.0; phi_h < 2.0 * M_PI; phi_h+= dphi_h)
nint+= max(1.0, tan_product * cos(phi_h));

nint*= dphi_h;

km(j, i) = theta * kji_tmp * nint * tan_theta_h
/ (cos_theta_h * cos_theta_h);

}
}

// compute slope pdf
const std::vector<double> v = km.eigenvector(4);
for (int i = 0; i < (int)v.size(); ++i)

m_p22.push_back(1e-2 * v[i]);
m_p22.push_back(0);

}

Listing 4.1 – Extracting a microfacet slope PDF assuming a Smith GAF in C++.

Inversion with the ∨-Groove GAF We give here the procedure to extract a microfacet slope PDF assuming a

∨-groove GAF. In this case, the inversion procedure is much simpler than for the Smith GAF and only requires

a few algebric manipulations

P(h̃) =
4 · cos6 θh · fr(h,h)

F0 ·min(1,2 · cos2 θh)
, (4.16)

which may also be rewritten in the numerically stable form

P(h̃) =
4
F0
· cos4

θh · fr(h,h) ·max
(

cos2
θh,

1
2

)
. (4.17)

63

void tabular::compute_p22_vgroove(const brdf& brdf, int res)
{

int cnt = res - 1;

for (int i = 0; i < cnt; ++i) {
float_t u = (float_t)i / (float_t)cnt; // in [0, 1)
float_t theta_h = u * u * M_PI * 0.5; // in [0, pi/2)
float_t cos_theta_h = cos(theta_h);
float_t cos_theta_h_sqr = cos_theta_h * cos_theta_h;
float_t gaf = max((float_t)0.5, cos_theta_h_sqr);
vec3 fr = brdf.eval(vec3(theta_h, 0), vec3(theta_h, 0));
float_t fr_i = fr.intensity();
float_t pdf = gaf * (cos_theta_h_sqr * cos_theta_h_sqr) * (4.0 * fr_i);

m_p22.push_back(pdf);
}
m_p22.push_back(0);

}

Listing 4.2 – Extracting a microfacet slope PDF assuming a ∨ groove GAF in C++.

Inversion with the Normal Map GAF We give here the procedure to extract a microfacet slope PDF assum-

ing a normal map GAF. In this case, the inversion procedure is even simpler than for the ∨-groove GAF, and

only requires a few algebric manipulations

P(h̃) =
4
F0
· cos4

θh · fr(h,h). (4.18)

void tabular::compute_p22_nmap(const brdf& brdf, int res)
{

int cnt = res - 1;

for (int i = 0; i < cnt; ++i) {
float_t u = (float_t)i / (float_t)cnt; // in [0, 1)
float_t theta_h = u * u * M_PI * 0.5; // in [0, pi/2)
float_t cos_theta_h = cos(theta_h);
float_t cos_theta_h_sqr = cos_theta_h * cos_theta_h;
vec3 fr = brdf.eval(vec3(theta_h, 0), vec3(theta_h, 0));
float_t fr_i = fr.intensity();
float_t pdf = (cos_theta_h_sqr * cos_theta_h_sqr) * (4.0 * fr_i);

m_p22.push_back(pdf);
}
m_p22.push_back(0);

}

Listing 4.3 – Extracting a microfacet slope PDF assuming a normal map GAF in C++.

64

Conversion to Beckmann Roughness We retrieve the parameters by computing 2nd order moments like in

LEAN/LEADR mapping [DHI+13]

α
2
x = 2

∫
R2

x̃2
h ·P(h̃) ·dh̃

α
2
y = 2

∫
R2

ỹ2
h ·P(h̃) ·dh̃

ραxαy = 2
∫
R2

x̃h · ỹh ·P(h̃) ·dh̃.

Note that if P is a Beckmann slope PDF, then our conversion is exact.

microfacet::params tabular::fit_beckmann_parameters(const tabular& tab)
{

const int ntheta = 128;
float_t dtheta = M_PI / (float_t)ntheta;
float_t nint = 0.0;
float_t alpha;

for (int i = 0; i < ntheta; ++i) {
float_t u = (float_t)i / (float_t)ntheta; // in [0,1)
float_t theta_h = u * u * M_PI * 0.5;
float_t cos_theta_h = cos(theta_h);
float_t r_h = tan(theta_h);
float_t r_h_sqr = r_h * r_h;
float_t p22_r = tab.p22_radial(r_h_sqr);

nint+= (u * r_h_sqr * r_h * p22_r) / (cos_theta_h * cos_theta_h);
}
nint*= dtheta * M_PI; /* M_PI = int_0^2pi cos^2 phi dphi */
alpha = sqrt(2.0 * nint);

return microfacet::params::isotropic(alpha);
}

Listing 4.4 – Converting a radial tabulated slope PDF into a Beckmann roughness parameter in C++.

Conversion to GGX Roughness Note that the 2nd order moments diverge with GGX. We propose an alter-

native estimation to retrieve the parameters of the scale matrix

αx =
∫
R2
|x̃h| ·P(h̃) ·dh̃

αy =
∫
R2
|ỹh| ·P(h̃) ·dh̃

β1 =
∫
R2

x̃h ỹh

x̃2
h + ỹ2

h
·P(h̃) ·dh̃

β2 =
∫
R2

ỹ2
h

x̃2
h + ỹ2

h
·P(h̃) ·dh̃

ρ =
αy

αx

β1

β2
1 +β2

2
.

65

Note that if P is a GGX slope PDF, then our conversion is exact.

microfacet::params tabular::fit_ggx_parameters(const tabular& tab)
{

const int ntheta = 128;
float_t dtheta = M_PI / (float_t)ntheta;
float_t nint = 0.0;
float_t alpha;

for (int i = 0; i < ntheta; ++i) {
float_t u = (float_t)i / (float_t)ntheta; // in [0,1)
float_t theta_h = u * u * M_PI * 0.5;
float_t cos_theta_h = cos(theta_h);
float_t r_h = tan(theta_h);
float_t r_h_sqr = r_h * r_h;
float_t p22_r = tab.p22_radial(r_h_sqr);

nint+= (u * r_h_sqr * p22_r) / (cos_theta_h * cos_theta_h);
}
nint*= dtheta * 4.0; /* 4.0 = int_0^2pi fabs(cos(phi)) dphi */
alpha = nint;

return microfacet::params::isotropic(alpha);
}

Listing 4.5 – Converting a radial tabulated slope PDF into a GGX roughness parameter in C++.

4.3 Experiments

A Note on Precomputations In our implementation, we rely exclusively on rectangle quadrature rules to

compute our integrals. This includes the microfacet slope PDF, i.e., w1 = · · · = wN = 1/N. We store one

RGB 1D table for the microfacet Fresnel, and three scalar-valued 1D (resp. 2D) tables for each of P, G1, and

the quantile function for isotropic (resp. anisotropic) materials. The dimensions of the tables depend on the

number of samples that we evaluate from the material in the elevation and azimuthal directions. In the isotropic

configuration, the number of samples is equal to N. In this case, our representation stores (including Fresnel

and the other tables) 3N + 3N = 6N scalar values. In the anisotropic configuration, the number of samples is

equal to N = Nθ×Nφ, where Nθ and Nφ respectively denote the number of elevation and azimuthal samples

used to evaluate the reflectance of the input material. In this case, our representation stores (including Fresnel

and the other tables) 3Nθ× (1+Nφ) scalar values.

Unit Testing We can validate our microfacet slope PDF extraction by testing our algorithms against an ana-

lytic model of Equation (4.3) based on a Beckmann distribution [WMLT07] with varying roughness. Table 4.I

shows the maximum relative errors that we measured during our experiment in the isotropic case, using N = 360

BRDF evaluations. As can be seen from the reported numbers, the error is small (less than 3%). We attribute

66

this error to the quadrature rules that we use to solve integral Equations (4.5) and (4.13), and consider it as the

minimum error produced by our algorithms. The anisotropic case produces the same amount of relative error.

α 0.01 0.02 0.05 0.15
δmax 0.03 0.004 0.002 0.0005

Table 4.I – Maximum relative error in backscattering between Beckmann BRDFs with varying roughness and
their respective fits computed with our algorithm.

Fitting Isotropic Materials We proceeded to an extensive fitting comparison against the state-of-the-art para-

metric model, referred hereafter as SGD, of Bagher et al. [BSH12] using the MERL material database of Ma-

tusik et al. [MPBM03]. To compute our fits, we initialized our algorithm with N = 90 and made sure that

the entire backscattering data was sampled only once. At 32-bit floating-point precision, each of our fits re-

quires 2.1 KB of memory. The exhaustive tests are provided in the supplemental document of the original

article [DHI+15], which also includes more detailed numerical analyses as well as delta-E difference im-

ages. Figure 4.3 shows some comparative renderings of both methods as well as with the ABC microfacet

model [LKYU12] against the reference for a few materials, using 512 samples per pixel. Note that for the two-

layer-gold and changing-paint1 materials, the SGD fitting optimization failed and resulted in flawed images.

This example emphasizes one of the strengths of our fitting method over optimization techniques, since, as we

showed in the previous section, our fits can not result in such failures. Note that these materials were not the

only ones affected by this issue in the database. In general, we believe our method is qualitatively superior to

SGD and on par with ABC for metallic materials. Differences with SGD and ABC are most visible in Figure 4.3

at grazing angles. For most other materials in the supplemental document of the original article [DHI+15], our

fits are either on par or slightly below the SGD model. While our observation is mainly qualitative, it is also

in agreement with the average delta-E difference image of our supplemental document, which is illustrated in

Figure 4.2.

Worse Isotropic Fitting For certain isotropic materials of the MERL database, we noticed that our method

could produce fits that were qualitatively less satisfying than previous work. Figure 4.3 carries a few such ma-

terials, which can also be found in our supplemental document. In this particular figure, our fit of the alumina-

oxide material is worse than those of the ABC and SGD models. We see two reasons why our method would

produce less satisfying fits. The first reason is due to the input material itself: since our method extracts the

microfacet NDF from backscattering data exclusively, it is highly sensitive to the quality of such configurations.

67

SGD [BSH12] Ours: Tabulated Ours: GGX Ours: Beckmann

Figure 4.2 – Mean delta-E difference image on the entire MERL database [MPBM03].

Thus, if backscattering is poorly acquired, then our method will fail at reproducing the input BRDF faithfully.

The second reason is due to our BRDF model: our model is based on a microfacet BRDF model alone and,

as such, is limited to material behaviors that are close to what is predicted by the equations. Layered and/or

composite materials (e.g., alumina-oxide in Figure 4.3) as well as strong Lambertian component (e.g., some

paints and acrylics) tend to be qualitatively less satisfying than the SGD fits in our supplemental document.

For the specific case of isotropic materials with poor backscattering data and/or strong Lambertian components,

fitting methods based on optimizations [NDM05, LKYU12, BSH12, WZT+08] should also perform better than

our method in general. As for layered and color-changing materials (e.g., changing-paint1 in Figure 4.3), they

remain a challenging open problem.

Fitting Anisotropic Materials Our method also supports anisotropic materials. To review its performance,

we tested some highly anisotropic materials from the recent database of Filip and Vavra [FV14]. To compute

our fits, we initialized our algorithm with θN = 90 and φN = 90. At 32-bit floating-point precision, each of our

fits requires 6 KB of memory. Our results were computed using 512 samples per pixel and are illustrated in

Figure 4.4. For each material, the lobe of the BRDF (and hence the microfacet NDF) is captured accurately.

Note however that, as we predicted in the previous section, our fit of the fabric106 material failed at reproducing

the directionally dependent albedo exhibited by the reference.

Speed Our fitting algorithms are very fast: it takes us less than 1 second to fit an isotropic material from the

MERL database of Matusik et al. [MPBM03], and less than 20 seconds for an anisotropic material of Filip and

Vavra [FV14]. Naturally, fitting performance depends on the resolution of the tables, i.e., on N. We measured

the impact of such a factor for both isotropic and anisotropic algorithms. Results are plotted in Figure 4.5,

where the timings include the computations of the slope PDF, the Smith term, the quantile functions, and the

68

ABC [LKYU12] SGD [BSH12] Reference Ours: Tabulated Ours: GGX Ours: Beckmann

bl
ue

-m
et

al
lic

-p
ai

nt
go

ld
-m

et
al

lic
-p

ai
nt

tw
o-

la
ye

r-
go

ld
pi

nk
-p

la
st

ic
al

um
in

a-
ox

id
e

pi
nk

-p
la

st
ic

ch
an

gi
ng

-p
ai

nt
1

Figure 4.3 – Side-by-side fitting comparisons of a few representative isotropic materials from the MERL
database [MPBM03].

69

Reference Ours: Tabulated Reference Ours: Tabulated
fa

br
ic

00
5

fa
br

ic
13

4

fa
br

ic
09

9

fa
br

ic
10

6

Figure 4.4 – Side-by-side fitting comparisons of a few representative anisotropic materials from the UTIA
database [FV14].

Fresnel term on an Intel 2.4GHz Core i5 CPU. We believe such timings make our method much faster than

previous work.

Memory Because our representation is roughness invariant, it allows us to create a multitude of materials at

constant memory costs. As an example, we rendered the scene illustrated in Figure 4.6 using 512 samples per

pixel and a few KB of memory. Such rendering configurations are only possible with slope-space tables. Oth-

erwise, the per-pixel sampling rate and/or memory consumption to store importance sampling tables should be

increased. For roughness mapped models such as ones shown in Figure 4.6, where the number of different ma-

terials is very large, such approaches would have been particularly impractical. Alongside analytic microfacet

BRDF models, we believe our tabulation strategy is the first to support such rendering configurations trivially.

Conversion to Analytic BRDFs Although our memory footprint is constant per fitted material, some appli-

cations might not be able to afford the storage of precomputed tables. This is typically the case in real-time

rendering contexts, where analytic microfacet BRDF models such as the Beckmann or GGX models are a

necessity. We showed that our tabulated microfacet slope PDF can be converted straightforwardly to either

Beckmann or GGX roughness parameters using slope moments. With such analytic microfacet models, only

the Fresnel table needs to be stored. In order to quantify the loss in fitting quality compared to our tabu-

70

10
-2

10
-1

1

10

100

 2 4 8 16 32 64 128 256 512

P
e
rf

o
rm

a
n
c
e
 (

s
e
c
)

Elevation samples

Isotropic
Anisotropic

Figure 4.5 – Fitting timings (in seconds) of our algorithms as a function of the number of input material
evaluations along the elevation direction.

lated representation, we placed some renderings obtained with the analytic models next to our tabulated fits

in Figure 4.3. We noticed that the GGX model performs generally better than the Beckmann model (see also

Figure 4.2), which is in agreement with previous observations [TR75, WMLT07, Bur12]. Note that the ana-

lytic models are also incorporated in the detailed fitting analysis provided in the supplemental document of the

original article [DHI+15].

4.4 Implementation Details

Online Computations We implemented BSDF plugins in the Mitsuba renderer [Jak10] to use our microfacet

model. Our plugins implement the functions eval sample and pdf, which are called by Mitsuba’s Monte-Carlo

integrator. Because our tables are roughness invariant, we produce a wide variety of roughness effects on the

fly by scaling the lookup parameters by αx, αy, and ρ.

71

(a) (b) (c)

Figure 4.6 – Multiple material design on a production asset. (a) Measured BRDFs. (b) Our fitted microfacet
BRDFs. (c) Our fitted microfacet BRDFs controled by a roughness texture map. Model courtesy of LAGOA.

Slope PDF Normalization We store the tabulated radial slope PDF. Once we have retrieved the coefficients

with the power iteration method, we normalize the PDF by dividing each coefficient of the table by the integral

k =
∫ 2π

0

∫ +∞

0
rh ·Pr(rh) ·drh

= 2π

∫
π/2

0
tanθh ·Pr(tanθh) · sec2

θh ·dθh
(
rh = tanθh⇒ drh = sec2

θh ·dθh
)

= 2π
2
∫ 1

0
tan(u2

π/2) ·Pr(tan(u2
π/2)) · sec2(u2

π/2) ·u ·du
(
θh = u2

π/2⇒ dθh = πu ·du
)

=
2π2

N

N

∑
i=0

tan(u2
i π/2) ·Pr(tan(u2

i π/2)) · sec2(u2
i π/2) ·ui. (ui = i/N)

72

void tabular::normalize_p22()
{

const int ntheta = 128;
const float_t dphi = 2.0 * M_PI;
const float_t dtheta = M_PI / (float_t)ntheta;
float_t k, nint = 0.0;

for (int i = 0; i < ntheta; ++i) {
float_t u = (float_t)i / (float_t)ntheta; // in [0,1)
float_t theta_h = u * u * M_PI * 0.5;
float_t r_h = tan(theta_h);
float_t cos_theta_h = cos(theta_h);
float_t p22_r = p22_radial(r_h * r_h);

nint+= (u * p22_r * r_h) / (cos_theta_h * cos_theta_h);
}
nint*= dtheta * dphi;

// normalize the slope pdf
k = 1.0 / nint;
for (int i = 0; i < (int)m_p22.size(); ++i)

m_p22[i]*= k;
}

Listing 4.6 – Slope PDF normalization in C++.

Smith Masking Term We compute the Smith masking term with the following integral

G1(k) =
cosθk∫

Ω+
kh ·D(h) ·dωh

=
cosθk∫ 2π

0
∫ π/2

0 kh ·D(h) · sinθh ·dθh ·dφh

 ωh = ωh(θh,φh)

⇒ dωh = sinθh ·dθh ·dφh

=

cosθk

2π2
∫ 1

0
∫ 1

0 kh ·D(h) · sin(u2
1π/2) ·du1 ·du2

 θh = u2
1π/2, φh = 2πu2

⇒ dθh = πu1 ·du1, dφh = 2π ·du2

=

NiN j · cosθk

2π2 ∑
Ni
i=0 ∑

N j
j=0 kh ·D(h) · sin(u2

i π/2)
. (ui = i/Ni, u j = j/N j)

Note that for isotropic materials, the Smith term is independent from the azimuthal component of the incident

vector φk. So in practice, we only store the results for the case φk = 0.

73

void tabular::compute_g1()
{

const int ntheta = 90;
const int nphi = 180;
float_t dtheta = M_PI / (float_t)ntheta;
float_t dphi = 2.0 * M_PI / (float_t)nphi;
int cnt = m_p22.size() - 1;

for (int i = 0; i < cnt; ++i) {
float_t tmp = (float_t)i / (float_t)cnt; // in [0, 1)
float_t theta_k = tmp * 0.5 * M_PI; // in [0, pi/2)
float_t cos_theta_k = cos(theta_k);
float_t sin_theta_k = sin(theta_k);
float_t nint = 0.0;

for (int j2 = 0; j2 < nphi; ++j2) {
float_t u_j = (float_t)j2 / (float_t)nphi; // in [0, 1)
float_t phi_h = u_j * 2.0 * M_PI; // in [0, 2pi)
for (int j1 = 0; j1 < ntheta; ++j1) {

float_t u_i = (float_t)j1 / (float_t)ntheta; // in [0, 1)
float_t theta_h = u_i * u_i * M_PI * 0.5; // in [0, sqrt(pi/2))
float_t sin_theta_h = sin(theta_h);
float_t kh = sin_theta_k * sin_theta_h * cos(phi_h)

+ cos_theta_k * cos(theta_h);

nint+= max((float_t)0.0, kh)
* ndf(vec3(theta_h, phi_h))
* u_i * sin_theta_h;

}
}
nint*= dtheta * dphi;
m_g1.push_back(min((float_t)1.0, cos_theta_k / nint));

}
m_g1.push_back(0);

}

Listing 4.7 – Computation of the Smith monostatic shadowing term in C++.

Importance Sampling Table Our tabulated representation does not use the distribution of visible normals for

importance sampling. Rather, it relies on the less effective scheme of Walter et al. [WMLT07], which consists

in sampling the distribution of slopes. We describe here the procedure to build the table in the case of radial

slope distributions. In this case, we produce a sample in polar coordinates. The angle is taken uniformly, while

the radius is sampled from the quantile function associated to the radial component of the distribution Pr. First,

74

we compute the radial CDF Fr ∈ [0,1] associated to Pr

Fr(rh) = 2π

∫ rh

0
r ·Pr(r) ·dr

= 2π

∫ rh

0
tanθ ·Pr(tanθ) · sec2

θ ·dθ

 r = tanθ

⇒ dr = sec2 θ ·dθ

= 2π

2
∫ rh

0
tan(u2

π/2) ·Pr(tan(u2
π/2)) · sec2(u2

π/2) ·dθ

 θ = u2π/2

⇒ dθ = uπ ·du

=

2π2

N

ri<rh

∑
i=0

tan(u2
i π/2) ·Pr(tan(u2

i π/2)) · sec2(u2
i π/2) ·dθ.

 ui = i/N

ri = tan(u2
i π/2)

Once the CDF is computed, we invert it numerically to get the quantile function Qr = F−1

r .

void tabular::compute_cdf()
{

int cnt = (int)m_p22.size() - 1;
float_t dtheta = M_PI / (float_t)cnt;
float_t nint = 0.0;

m_cdf.resize(0);
for (int i = 0; i < cnt; ++i) {

float_t u = (float_t)i / (float_t)cnt;
float_t theta_h = u * u * M_PI * 0.5;
float_t cos_theta_h = cos(theta_h);
float_t r_h = tan(theta_h);
float_t p22_r = p22_radial(r_h * r_h);

nint+= (u * r_h * p22_r) / (cos_theta_h * cos_theta_h);
m_cdf.push_back(nint * dtheta * /* normalize */(2.0 * M_PI));

}
m_cdf.push_back(1);

}

Listing 4.8 – Computation of the radial CDF of a tabulated radial microfacet slope PDF in C++.

75

void tabular::compute_qf()
{

int cnt = (int)m_p22.size() - 1;
int res = cnt * 8; // resolution of inversion

m_qf.resize(0);
m_qf.push_back(0);
for (int i = 1; i < cnt; ++i) {

float_t cdf = (float_t)i / (float_t)cnt;

for (int j = 0; j < res; ++j) {
float_t u = (float_t)j / (float_t)res;
float_t theta_h = u * M_PI * 0.5;
float_t qf = cdf_radial(tan(theta_h));

// lerp lookup
if (qf >= cdf) {

m_qf.push_back(u);
break;

} else if (j == res) {
m_qf.push_back(1.0);

}
}

}
m_qf.push_back(1.0);

}

Listing 4.9 – Computation of the radial QF of a tabulated radial microfacet slope PDF in C++.

In the following paragraphs, we describe a way to precompute the tables for importance sampling with a

tabulated distribution of visible normals.

Marginal Slope Quantile Function Before building the quantile functions for importance sampling with the

distribution of visible slopes, we need to compute the quantile function associated to the marginal slope PDF

P1 > 0, which is

P1(x̃h) =
∫

∞

−∞

P(x̃h, ỹh) ·dỹh

=
∫

π/2

−π/2
P(x̃h, tanθh) · sec2

θh ·dθh
(
ỹh = tanθh⇒ dỹh = sec2

θh ·dθh
)

= 2
∫

π/2

0
P(x̃h, tanθh) · sec2

θh ·dθh (P(x,y) = P(x,−y))

= 2π

∫ 1

0
P(x̃h, tan(u2

π/2)) · sec2(u2
π/2) ·u ·du

(
θh = u2

π/2⇒ dθh = uπ ·du
)

=
2π

N

N

∑
i=0

P(x̃h, tan(u2
i π/2)) · sec2(u2

i π/2) ·ui. (ui = i/N)

Note that the property P(x,y) = P(x,−y) is only true for isotropic materials, as P1 is even, i.e., P1(x) = P1(−x).

We take advantage of this property to precompute the PDF for x∈ [0,+∞), rather than x∈ (−∞,+∞). The CDF

76

F1 ∈ [0,1] associated to P1 can also benefit from symmetry. Indeed, we can write it as

F1(x) =
1
2
+ sign(x) ·

∫ |x|
0

P1(y) ·dy.

So in practice, we precompute for x ∈ [0,+∞) the integral

∫ x

0
P1(y) ·dy =

∫ arctanx

0
P1(tanθ) · sec2

θ ·dθ
(
y = tanθ⇒ dy = sec2

θ ·dθ
)

= π

∫ 2
π

arctanx

0
P1(tan(u2

π/2)) · sec2(u2
π/2) ·u ·du

(
θ = u2

π/2⇒ dθ = πu ·du
)

=
π

N

j

∑
i=0

P1(tan(u2
i π/2)) · sec2(u2

i π/2) ·ui.

(
ui = i/N, j =

2N
π

arctanx
)

Once we have computed the CDF, we can compute the quantile function Q1 = F−1
1 . Since F1 is symmetric, we

only need to compute and store half of the quantile function.

Marginal Visible Slope Quantile Function We exploit a property of isotropic materials to make the pre-

computation of the quantile function of the marginal visible slope PDF practical. For isotropic materials, the

distribution of visible slopes is independent of the azimuthal angle of the incident vector. Hence, by choosing

φk = 0, we can express the marginal visible slope PDF as

Pvis(h̃;k) = max(0,1− tanθk · x̃h) ·P(h̃) ·G1(k).

From this equation, it follows that the marginal visible slope PDF P2 > 0 is

P2(x̃h;k) =
∫

∞

−∞

Pvis(x̃h, ỹ;k) ·dỹ

= max(0, 1− tanθk · x̃h) ·P1(x̃h) ·G1(k).

77

Assuming that x̃h < cotθk, the marginal visible slope CDF is defined as

F2(x̃h;k) =
∫ x̃h

−∞

P2(x̃;k) ·dx̃

= G1(k)
∫ x̃h

−∞

(1− tanθk · x̃) ·P1(x̃) ·dx̃

= G1(k)
∫ F1(x̃h)

0
(1− tanθk ·Q1(p)) ·d p

(
x̃ = Q1(p)⇒ dx̃ =

1
P1(Q1(p))

·d p
)

= F1(x̃h) ·G1(k)
[

1− tanθk ·
∫ 1

0
Q1(F1(x̃h) ·u) ·du

]
(p = F1(x̃h) ·u⇒ d p = F1(x̃h) ·du)

= F1(x̃h) ·G1(k)

[
1− tanθk

N

N

∑
i=0

Q1(F1(x̃h) ·ui)

]
. (ui = i/N)

In order to invert F2, we use the fact that the CDF may be written as a composition

F2(x̃h;k) = g(F1(x̃h);k)⇒ Q2(u) = Q1(g−1(u;k)),

where

g(x;k) = x ·G1(k)
[

1− tanθk ·
∫ 1

0
Q1(x ·u) ·du

]
.

Conditional Visible Slope Quantile Function The conditional visible slope PDF is defined as

P3(ỹh|x̃h;k) =
Pvis(x̃h, ỹh;k)

P2(x̃h;k)

=
P(x̃h, ỹh)

P1(x̃h)
.

For isotropic materials, P3 is a symmetric PDF. Therefore, we can apply some of the treatments we used to

compute F1 and Q1 for F3 and Q3, respectively. Note that computing F3 by integrating the ratio of P and

P1 becomes numerically unstable as soon as we consider large x̃h values. To avoid this issue, we proceed as

follows. Let F ∈ [0,1] denote the bivariate CDF associated to P. We have

F(x̃h, ỹh) =
∫ x̃h

−∞

∫ ỹh

−∞

P(x̃, ỹ) ·dx̃ ·dỹ

=
∫ F1(x̃h)

0

∫ F1(ỹh)

0

P(Q1(u1),Q1(u2))

P1(Q1(u1)) ·P1(Q1(u2))
·du1 ·du2

 x̃ = Q1(u1), ỹ = Q1(u2)

⇒ dx̃ = 1
P1(Q1(u1))

·du1, dỹ = 1
P1(Q1(u2))

·du2

=C(F1(x̃h),F1(ỹh)),

78

where C ∈ [0,1] is the copula CDF [Sch07] associated to the microfacet slope distribution. We can express the

PDF of the microfacet slope distribution as the derivative of the copula

P(x̃h, ỹh) =
∂2C(F1(x̃h),F1(ỹh))

∂x̃h ·∂ỹh

= c(F1(x̃h),F1(ỹh)) ·P1(x̃h) ·P1(ỹh),

where c = ∂2C(u1,u2)
∂u1·∂u2

≥ 0 is the copula PDF associated to the microfacet slope distribution. It follows that we

can write

F3(ỹh|x̃h) =
∫ ỹh

−∞

P(x̃h, ỹ)
P1(x̃h)

·dỹ

=
∫ ỹh

−∞

c(F1(x̃h),F1(ỹ)) ·���P1(x̃h) ·P1(ỹ)
���P1(x̃h)

·dỹ

=
∫ F1(ỹh)

0

c(F1(x̃h),u) ·���
��P1(Q1(u))

��
���P1(Q1(u))

·du

 ỹ = Q1(u)

⇒ dỹ = 1
P1(Q1(u))

·du

=

∂C(F1(x̃h),F1(ỹh))

∂u1
.

(
∂C(F1(x̃h),0)

∂u1
= 0
)

Hence, we can compute and store the partial derivative of the copula in practice, which avoids numerical issues

since no divisions are involved. The quantile function Q3 is computed and stored similarly to Q1 for multiple

x̃h values.

79

Chapter 5

Conclusion

(1) Subpixel surface. (2) Microsurface of the subpixel BRDF. (3) Combined subpixel surfaces.

subpixel subpixel subpixel

(4) Sheared combined subpixel surface. (5) BRDF of a subpixel surface.

subpixel pixel

Receiver direction

Emitter direction

Smooth surface

Rough surface

Multiscale BRDF

Legend

Tangent plane

BRDF

Inverted theory

Microfacet theory

Noncentral theory

Microsurface combination

Mesonormal

Mesosurface

Figure 5.1 – Geometric overview of our displacement map filtering algorithm. In order to handle (1) displaced
surfaces of arbitrary reflectance, we first (2) extract a microsurface from the BRDF of the base surface. (3) We
show how to combine the microsurface and the displaced surface together in order to produce a noncentral
microsurface, which (4) can be handled with noncentral microfacet theory. (5) The filtered response of a
displaced surface can thus be computed from a multiscale microfacet BRDF.

5.1 Downsampling Operator

In the previous chapters, we saw how to filter displaced Fresnel mirrors at any scale with noncentral micro-

facet theory, and how to convert any material into a microfacet BRDF with inverted microfacet theory. With

both these tools at hand, we can formulate a more general filtering scheme for displaced surfaces of arbitrary

reflectance as the problem of deriving a microfacet BRDF of a surface displaced by the sum of two random

processes: one that comes from the displacement map itself, and another that comes from the base material of

the surface (if the base material of the surface is a microfacet BRDF, then the displacement is already known;

otherwise, we convert it using the algorithms we presented in Chapter 4). It follows that if we can retrieve the

microfacet NDF that emerges from the combination of both processes, then we solve our filtering problem; the

entire idea is illustrated in Figure 5.1.

Combining Displacements By noting that summing displacement processes also implies summing their

derivatives, i.e., their slopes, we can express the problem of retrieving the slope PDF (and hence, the NDF)

of the combined displacement process more formally as follows: If we denote by X and Y the random slope

processes yielded by the displacement map, and the base material with PDFs PX ≥ 0 and PY ≥ 0 respectively,

then what is the PDF PZ ≥ 0 of the random process Z = X+Y? We can solve this problem by using the

characteristic function [Luk72, GA02]. The characteristic function CZ ≥ 0 of a bivariate random process Z is

defined as the Fourier transform of its PDF, i.e.,

CZ(t) =
∫
R2

ei t h̃ ·PZ(h̃) ·dh̃. (5.1)

Equivalently, Equation (5.1) can be seen as a complex moment function

CZ(t) = E[eiZt]. (5.2)

Since Z = X+Y, we can also write CZ(t) = E[ei(X+Y)t], so that the characteristic function of Z becomes a

function of the PDFs of X and Y

CZ(t) =
∫
R2

∫
R2

ei t(x̃+ỹ) ·PX(x̃) ·PY(ỹ) ·dx̃ ·dỹ. (5.3)

81

The PDF of Z is then the inverse Fourier transform of Equation (5.3), which, after a few manipulations and

using the definition of the Dirac delta function, expresses PZ as the convolution PX ∗PY between PX and PY

PZ(h̃) =
1

4π2

∫
R2

e−i h̃ t ·CZ(t) ·dt

=
1

4π2

∫
R2

e−i h̃ t ·
[∫

R2

∫
R2

ei(x̃+ỹ)t ·PX(x̃) ·PY(ỹ) ·dx̃ ·dỹ
]
·dt (Equation (5.3))

=
1

4π2

∫
R2

∫
R2

∫
R2

ei(x̃+ỹ−h̃)t ·PX(x̃) ·PY(ỹ) ·dx̃ ·dỹ ·dt

=
∫
R2

∫
R2

δ(x̃+ ỹ− h̃) ·PX(x̃) ·PY(ỹ) ·dx̃ ·dỹ
(

δ(x) def
=

1
4π2

∫
R2

eixt ·dt
)

=
∫
R2

PX(x̃) ·PY(h̃− x̃) ·dx̃
(∫

R2
δ(x̃+ ỹ− h̃) ·PY(ỹ) ·dỹ = PY(h̃− x̃)

)
= (PX ∗PY)(h̃).

We can thus retrieve the microfacet NDF of the combined process by computing a convolution of microfacet

slope PDFs. Note that this property only works if X and Y are statistically independent, which is a valid

assumption in the case of merging a displacement map into a microfacet BRDF process.

Beckmann Distributions In a physically based rendering context, numerical convolutions are too expensive

to be practical. We can avoid numerical convolutions by relying on Beckmann slope distributions. Indeed, Beck-

mann slope distributions belong to the family of stable distributions [Nol13] (as they are equivalent to Gaussian

distributions, up to a scale factor), which have the convenient particularity of being invariant to convolution,

i.e., the convolution of two Beckmann PDFs is also a Beckmann PDF. More formally, if X and Y follow inde-

pendent Beckmann distributions with respective PDF parameters {αx,X,αy,X,ρX, ñX} and {αx,Y,αx,Y,ρY, ñY},

then the random process Z = X+Y follows a Beckmann distribution with parameters {αx,αy,ρ, ñ}, where

α
2
x = α

2
x,X +α

2
x,Y

α
2
y = α

2
y,X +α

2
y,Y

ρ =
ρXαx,Xαy,X +ρYαx,Yαy,Y

(α2
x,X +α2

y,X)(α
2
x,Y +α2

y,Y)

ñ = ñX + ñY.

82

These parameters can be computed from the linear representation of Beckmann distributions, since we have [OB10]

E[Z] = E[X]+E[Y]

E[Z2] = E[X2]+E[Y2]+2E[X]E[Y]

E[ZxZy] = E[XxXy]+E[YxYy]+E[Xx]E[Yy]+E[Xy]E[Yx],

which implies that the convolution of Beckmann PDFs can be computed by simply summing their linear repre-

sentation.

beckmann::lrep beckmann::lrep::operator+(const lrep& r) const
{

return beckmann::lrep(m_E1 + r.m_E1,
m_E2 + r.m_E2,
m_E3 + r.m_E3 + 2.0 * m_E1 * r.m_E1,
m_E4 + r.m_E4 + 2.0 * m_E2 * r.m_E2,
m_E5 + r.m_E5 + m_E1 * r.m_E2 + m_E2 * r.m_E1);

}

beckmann::lrep& beckmann::lrep::operator+=(const lrep& rep)
{

m_E1+= rep.m_E1;
m_E2+= rep.m_E2;
m_E3+= rep.m_E3 + 2.0 * m_E1 * rep.m_E1;
m_E4+= rep.m_E4 + 2.0 * m_E2 * rep.m_E2;
m_E5+= rep.m_E5 + m_E1 * rep.m_E2 + m_E2 * rep.m_E1;

return (*this);
}

Listing 5.1 – Summing the linear representation of a Beckmann distribution in C++.

Implementation Details The implementation of our displacement map downsampling operator is divided

into two stages: a precomputation stage and a runtime stage. The precomputation stage consists in converting

the input displacement texture maps into LEAN/LEADR maps using Listing 3.6 and Listing 3.7, and com-

puting the associated MIP maps. Furthermore, if the input BRDF of the displaced surface is not based on a

Beckmann microfacet BRDF, then it must also be converted into Beckmann roughness parameters using the

procedure we described in Listing 4.4. This completes the precomputation stage. At runtime, we incorporate

the displacements that are too fine to be perceived at the pixel level into shading by evaluating a noncentral mi-

crofacet BRDF, i.e., the equations we introduced in Chapter 3. In order to retrieve the parameters of the BRDF,

we evaluate a MIP texture lookup of the LEAN/LEADR map and merge the retrieved linear data with the base

roughness of the surface BRDF using Listing 5.1 and Listing 3.5. Figure 5.2 illustrates the GPU pipeline of our

implementation.

83

adaptive
tessellation

rasterization

LEADR textures
(mipmapped)

roughness
extraction
Lst. 3.5

evaluation
BRDF
Lst. 2.2

environment
map
sampling
Lst. 2.9

ve
rt

ex
 p

ro
ce

ss
in

g
fr

ag
m

en
t p

ro
ce

ss
in

g

refined mesh

base mesh

directional &
point lights

pixel color

environment
light

(prefiltered)

position, tangent frame,
texture coordinates

fr
am

e
bu

ff
er

displacement map
(mipmapped)

displaced mesh

LEADR
textures
creation

Lst. 3.6, 3.7

Beckmann distribution

Surface BRDF

roughness
extraction
Lst. 4.4

convolution
Lst. 3.5, 5.1

Figure 5.2 – GPU pipeline of our displacement map filtering technique.

Downsampling Results Our downsampling operator for displaced surfaces of arbitrary reflectance takes a

displacement map and a BRDF as input, and produces a MIP map hierarchy that can preserve the anisotropy of

light transport at any resolution. Figure 5.3 illustrates the importance of this property, where a displacement map

is progressively rendered at lower resolutions with the nickel material from the MERL database. Notice how

the overall appearance is preserved across resolutions with our method; in contrast, naive MIP mapping results

in a smoother appearance. Figures 5.4 and 5.5 show the effect of our downsampling operator on two different

high resolution displacement maps, applied on surfaces with a base material from the MERL database. The

84

leftmost image provides a supersampled rendering (using 2562 samples per pixel) of the original material and

displacement map, and serves as a reference image. Thanks to our representation, physically based renderers

can load lower texture resolutions for distant objects without biasing the final image, thus reducing input-output

operations as well as variance.

(MIP 0, 48 MB) (MIP 2, 12 MB) (MIP 4, 3 MB) (MIP 6, 0.75 MB)

(MIP 0, 96 MB) (MIP 2, 24 MB) (MIP 4, 6 MB) (MIP 6, 1.5 MB)

Figure 5.3 – Comparison between (top) naive MIP mapping and (bottom) our downsampling operator. The
base material is nickel from the MERL database.

5.2 Positioning and Discussions

The problem of appearance modeling and filtering is not new in the computer graphics literature. Here, we

position and discuss some properties and aspects of the contributions of this thesis with respect to existing

solutions.

Computer Graphics BRDFs Reflectance modeling has a long history in computer graphics, and entire sur-

veys are dedicated to this only topic [Sch94a, KE09, MSUA12]. According to Blinn [Bli77], the very first

computer graphics BRDF models acted as ideal Lambertian reflectors. While matte surfaces tend to be well

approximated by such BRDFs, they quickly turned out to be inadequate to mimic glossy apperances. In or-

85

Reference Ours: MIP 0 (96MB) Ours: MIP 2 (24MB) Ours: MIP 4 (6MB) Ours: MIP 6 (1.5MB) Ours: MIP 8 (0.75MB)

bl
ue

-m
et

al
lic

-p
ai

nt
2

go
ld

-m
et

al
lic

-p
ai

nt
2

ni
ck

el
re

d-
m

et
al

lic
-p

ai
nt

ss
44

0
bl

ue
-m

et
al

lic
-p

ai
nt

vi
ol

et
-a

cr
yl

ic

Figure 5.4 – Effect of our downsampling operator on scratch-like displaced surfaces with a few representative
isotropic materials from the MERL database [MPBM03].

86

Reference Ours: MIP 0 (96MB) Ours: MIP 2 (24MB) Ours: MIP 4 (6MB) Ours: MIP 6 (1.5MB) Ours: MIP 8 (0.75MB)

bl
ue

-m
et

al
lic

-p
ai

nt
2

go
ld

-m
et

al
lic

-p
ai

nt
2

ni
ck

el
re

d-
m

et
al

lic
-p

ai
nt

ss
44

0
bl

ue
-m

et
al

lic
-p

ai
nt

vi
ol

et
-a

cr
yl

ic

Figure 5.5 – Effect of our downsampling operator on rugged displaced surfaces with a few representative
isotropic materials from the MERL database [MPBM03].

87

der to support such behaviors, Phong [Pho75] introduced an empirical model, known as the Phong BRDF,

that would produce sharp isotropic BRDF lobes around the direction of ideal specular reflection. A few years

later, Blinn [Bli77] suggested to reparameterize the Phong BRDF with the halfway direction, while also intro-

ducing microfacet theory to the computer graphics community; the newly parameterized Phong BRDF would

later become the Blinn-Phong BRDF and the subject of various extensions to account for proper normaliza-

tion [Lew94], and anisotropy [AS00]. It is worth mentioning that in this same 1977 article, Blinn introduced

the Trowbridge-Reitz distribution [TR75], which would later be rediscovered by Walter et al. [WMLT07] under

the name of GGX distribution [Bur12]. After the introduction of microfacet theory, other empirical mod-

els were introduced to account for complex scattering effects such as multiple scattering [ON94, Sch94b],

anisotropy [PF90, War92, Sch94b], and/or polarization [HTSG91]. These models are empirical in the sense

that some of their mathematical components do not have a geometric interpretation. In contrast, our microfacet

BRDF model, which is built upon and extends the formulation of Walter et al. [WMLT07], has a clear geometric

interpretation. Geometry is the key property that allows our appearance model to trivially support such features

as anisotropy, noncentrality, and inversion in an actual implementation.

A Note on the Diffuse Term of Some Microfacet BRDFs The microfacet BRDF equation may sometimes

come with an additional Lambertian term under the form

fr =
F ·D ·G

4 · cosθi · cosθo
+ kd

(
1
π
− F ·D ·G

4 · cosθi · cosθo

)
. (5.4)

Mathematically, this equation can be interpreted as a linear blend between our microfacet BRDF equation,

i.e., Equation (2.1), and a diffuse BRDF, with parameter kd ∈ [0,1]; notice how when kd = 0 and kd = 1, the

BRDF acts respectively as Equation (2.1), and as an ideal Lambertian BRDF. Originally, the diffuse term was

introduced by Torrance and Sparrow [TS67] as a purely empirical term for multiple and/or internal scattering

effects occurring on the microsurface. Indeed, they write at the beginning of the formulation section of their

paper: “The diffuse component may originate either from multiple reflections among the facets and/or from

internal scattering”. While incorporating a Lambertian term could have only resulted in improved BRDF fits,

as it increases the degrees of freedom of the BRDF, this thesis neglects it completely. This is due to the lack of

a clear geometric interpretation of Equation (5.4), which was the key property to introduce both the multiscale

microfacet theory of Chapter 3 and the inverse microfacet theory of Chapter 4. As we shall discuss in the next

section, deriving a microfacet BRDF model that accounts for the geometry scattering effects other than single

bounces remains a challenging problem. Nevertheless, if such a model could be derived, it seems plausible that

88

it would inherit the properties of the current theory.

Appearance Filtering Techniques The most accurate form of appearance filtering techniques relies on pre-

computing the complete BRDF at any location and for any scale, and store it in a bidirectional texture function

(BTF) [CMS87, BM93, MCT+05, WDR09]. While such methods are capable of better capturing the view-

dependent effects exhibited by the displacement and the base BRDF of the surface than our technique, they

carry two important limitations that strongly reduce their practicality. First, BTFs are very hard to manipu-

late for artists. Second, BTFs require dissuasive amounts of memory, as they typically store 6D functions,

including 4D for the BRDF, and 2D for the spatial parameters. In the context of multiscale rendering, an ad-

ditional dimension should be used, which overall adds considerable overhead on input/output operations. In

contrast, our representation is lightweight and linear, and can be manipulated by artists to achieve a wide range

of appearances.

Normal Map Filtering Techniques The problem of filtering arbitrary appearance was also studied with nor-

mal mapping. Convolution-based normal map filtering methods [Fou92, Tok05, HSRG07] use the fact that, at

any scale, the BRDF is the convolution of a base BRDF and an NDF. Since masking, shadowing, and projection

weighting are nonlinear functions of the view, light, and normal directions, incorporating these effects into the

convolution is difficult. Tan et al. [TLQ+05, TLQ+08] use several Gaussian lobes with a masking-shadowing

term, but omit the important view-dependent projection weighting effect and do not normalize their BRDF.

Note that if we employ the normal map GAF in our BRDF evaluations, then our framework acts as a normal

map filtering algorithm that supports arbitrary reflectance, thus generalizing some previous work in this area.

LEAN Mapping Olano and Baker [OB10, Bak11] introduced the lightweight representation we use in our

framework in the context of normal map filtering. We adopted their representation for the two following reasons.

First, their representation allows for linear filtering of the data in a manner that properly captures filtered

reflectance. Second, their representation supports anisotropy and multilayer superposition. The main limitation

of LEAN mapping in the context of our work comes from the non-physically based BRDF employed by the

model: It lacks proper normalization, as the Jacobian of the reflection operation is missing, and is not capable of

reproducing the important masking, shadowing, and projection weighting effects. Moreover, it is only designed

for specular microfacets under point and directional lighting. This thesis showed how to account for occlusion

effects, as well as arbitrary lighting conditions.

89

Multilobe Representations Some previous work uses multiple lobes to represent and store normal distribu-

tions [Fou92, TLQ+05, HSRG07, TLQ+08]. While multiple lobes can represent more complex distributions

than what we can, their precomputations are problematic. Indeed, in order to make interpolation possible,

every lobe in a texel must match the same lobe in the neighboring texels [TLQ+05, HSRG07, TLQ+08]. Solv-

ing this problem requires heavy nonlinear optimizations, and matching failures may result in visual artifacts

when two nonmatching lobes are interpolated. In contrast, our single anisotropic lobe representation allows for

lightweight memory storage, simple and fast precomputations, as well as no-failure interpolation.

5.3 Future Research

The main purpose of this thesis was to introduce a fully functional filtering framework for arbitrary complex

displacement mapped surfaces. Our framework builds upon microfacet theory, which we augmented in the

previous chapters, as well as upon the convenient properties of Beckmann distributions. While the presented

results can offer significant improvements in terms of rendering quality and speed, there is still much room for

improvement; the following paragraphs are dedicated to identifying current limitations and avenues for future

work.

Beckmann Distributions Despite their very practical properties (linear representation, stability under con-

volution), Beckmann distributions are probably not the best parametric model to use for filtering for two rea-

sons. First, their short (Gaussian) tails make them highly sensitive to outliers, which tends to yield overblurry

highlights as filtering footprints increase. Second, they may fit measured data quite poorly, which introduces

significant bias when fitting some materials. This effect is particularly visible for the gold-metallic-paint2 and

violet-acrylic materials in Figures 5.4 and 5.5. In order to improve on this second point, a mixture of Beckmann

distributions can be employed; an extensive filtering comparison between a single Beckmann lobe and a mix-

ture of eight lobes is available in the supplemental document of this thesis. Note however that mixture models

require more arithmetic operations, as well as an additional random number to determine the lobe to sample.

In contrast, GGX distributions [WMLT07] seem much more promising, because they fit measured data much

better, and their heavy tails should (note that this is a conjecture) result in sharper highlights in the presence

of outliers. Deriving a complete filtering framework for displaced surfaces of arbitrary reflectance using GGX

distributions remains an open problem.

90

BRDFs Despite its effectiveness to faithfully describe many real-world appearances, microfacet BRDFs re-

main applicable to a limited set of materials because effects such as transmission, multibounce scattering,

diffraction, or layers are not supported by the extended theory we have presented. While it has been shown that

certain effects could be incorporated, e.g., transmission [WMLT07], diffraction [Sta99], or layers [JDJM14],

most of the remaining effects are still open problems in the context of deriving a multiscale representation for

matter, and should be addressed in order to make the theory even more general.

Curvature Our displaced surface filtering model and its derivations are based on the fundamental assumption

that the displacement map is applied over a locally planar patch. In theory, this means that the method is not

valid when the pixel footprint covers a curved macrosurface since the curvature must be filtered along with the

displacement map. For instance, the claws of the T-rex model in Figure 3.11 are small, smooth, curved, and

highly specular. As such, they exhibit aliasing that cannot be filtered by our scheme alone. While, in practice,

we could deal with this problem by offsetting roughness heuristically due to curvature [DHI+13], the problem

of properly filtering displacement maps along with large pieces of macrosurfaces is complex and remains an

open problem [BN12].

Multiscale Representation for Matter Our filtering framework makes the per-pixel rendering complexity

proportional to the number of displaced surfaces that project into a pixel, where previous algorithms would

have been proportional to the total number of texels that project into a pixel. While this shift in complexity is

undoubtedly a step forward towards more reasonable rendering times, the ability to handle multiple surfaces

inside a pixel remains an open problem. Such scenarios arise for, e.g., trees and fur, whose geometry clearly can

not be solely described with displaced surfaces at all scales. A first attempt to deal with such configurations was

introduced concurrently to this thesis in the paper entitled “The SGGX Microflake Distribution” [HDCD15],

which addresses the problem of downsampling directional data represented as volumes (rather than surfaces),

using voxels. The paper shows how the GGX distribution can be extended to work in the spherical (rather

than hemispherical) domain, and plugged into a microflake phase function (the 3D analogue of a microfacet

BRDF [JAM+10]), to derive an efficient downsampling operator for 3D directional data. While downsampling

voxelized directional data is an important contribution, it only constitutes a small brick in the elaboration of

a more general multiscale representation for matter, which should be capable of accounting for correlations

between the way matter is oriented, structured, and how it interacts with light. Fulfilling these goals requires to

extend our current understanding of how light and matter interact, which should be worth the effort.

91

5.4 List of Publications

International Journals with Reviewing Committee

• [HDCD15] The SGGX Microflake Distribution.

Eric Heitz, Jonathan Dupuy, Cyril Crassin, Carsten Dachsbacher.

ACM SIGGRAPH 2015.

• [DHI+15] Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Itera-

tions.

Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Victor Ostromoukhov.

Eurographics Symposium on Rendering EGSR 2015.

• [DHI+13] Linear Efficient Antialiased Displacement and Reflectance Mapping.

Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, Victor Ostromoukhov.

ACM SIGGRAPH Asia 2013.

• [DB12] Real-time Animation and Rendering of Ocean Whitecaps.

Jonathan Dupuy, Eric Bruneton.

ACM SIGGRAPH Asia 2012 (Technical Briefs).

Chapters in Books

• [DIP14] Quadtrees on the GPU.

Jonathan Dupuy, Jean-Claude Iehl, Pierre Poulin.

GPU Pro 5: Advanced Rendering Techniques.

Courses

• [HMD+14] Physically based Shading in Theory and Practice.

Stephen Hill, Stephen McAuley, Jonathan Dupuy, Yoshiharu Gotanda, Eric Heitz, Naty Hoffman, Sébastien

Lagarde, Anders Langlands, Ian Megibben, Farhez Rayani, Charles de Rousiers.

ACM SIGGRAPH Course 2014.

92

Technical Reports

• [HD15] Implementing a Simple Anisotropic Rough Diffuse Material with Stochastic Evaluation.

Eric Heitz, Jonathan Dupuy.

• [Dup14] Phong Tessellation for Quads.

Jonathan Dupuy.

93

Bibliography

[AP07] Michael Ashikhmin and Simon Premože. Distribution-based BRDFs. Technical Report, University

of Utah, 2007.

[AS00] Michael Ashikhmin and Peter Shirley. An Anisotropic Phong BRDF Model. Journal of Graphics

Tools, 5(2):25–32, 2000.

[Bak11] Dan Baker. Spectacular Specular – LEAN and CLEAN Specular Highlights. In Proc. Game

Developer Conference 2011, 2011.

[BBS02] Christophe Bourlier, Gerard Berginc, and Joseph Saillard. One- and Two-dimensional Shadow-

ing Functions for Any Height and Slope Stationary Uncorrelated Surface in the Monostatic and

Bistatic Configurations. IEEE Trans. Antennas and Propagation, 50(3):312–324, 2002.

[Bec65] Petr Beckmann. Shadowing of Random Rough Surfaces. IEEE Trans. Antennas and Propagation,

13(3):384–388, May 1965.

[Bli77] James F. Blinn. Models of Light Reflection for Computer Synthesized Pictures. In Proc. SIG-

GRAPH ’77, pages 192–198. ACM, 1977.

[BM93] Barry G. Becker and Nelson L. Max. Smooth Transitions Between Bump Rendering Algorithms.

In Proc. SIGGRAPH ’93, pages 183–190, 1993.

[BN12] Eric Bruneton and Fabrice Neyret. A Survey of Non-linear Pre-filtering Methods for Efficient and

Accurate Surface Shading. IEEE Trans. Vis. Comput. Graph., 18(2):242–260, 2012.

[BSB00] Christophe Bourlier, Joseph Saillard, and Gerard Berginc. Effect of Correlation Between Shad-

owing and Shadowed Points on the Wagner and Smith Monostatic One-dimensional Shadowing

Functions. IEEE Trans. Antennas and Propagation, 48(3):437–446, 2000.

[BSH12] Mahdi Bagher, Cyril Soler, and Nicolas Holzschuch. Accurate Fitting of Measured Reflectances

using a Shifted Gamma Micro-facet Distribution. Computer Graphics Forum, 31(4):1509–1518,

2012.

[Bur12] Brent Burley. Physically-Based Shading at Disney. In SIGGRAPH 2012 Courses: Practical

physically-based shading in film and game production, 2012.

[CCC87] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes Image Rendering Architecture.

In Proc. SIGGRAPH ’87, pages 95–102. ACM, 1987.

[CK07] Mark Colbert and Jaroslav Křivánek. GPU-based importance sampling. In GPU Gems 3, chap-

ter 20. Addison-Wesley, 2007.

[CMS87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional Reflection Functions from

Surface Bump Maps. In Proc. SIGGRAPH ’87, pages 273–281, 1987.

[Coo84] Robert L. Cook. Shade trees. In Proc. SIGGRAPH ’84, pages 223–231. ACM, 1984.

[CT82] Robert L. Cook and Kenneth E. Torrance. A Reflectance Model for Computer Graphics. ACM

Trans. on Graphics, 1(1):7–24, January 1982.

[DB12] Jonathan Dupuy and Eric Bruneton. Real-time Animation and Rendering of Ocean Whitecaps. In

ACM SIGGRAPH Asia 2012 (Technical Briefs), pages 15:1–3. ACM, 2012.

[DHI+13] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostro-

moukhov. Linear Efficient Antialiased Displacement and Reflectance Mapping. ACM Trans. on

Graphics, 32(6):211:1–11, November 2013.

[DHI+15] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov. Extracting

Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations. Computer

Graphics Forum, 34(4):21–30, 2015.

[DIP14] Jonathan Dupuy, Jean-Claude Iehl, and Pierre Poulin. GPU Pro 5: Advanced Rendering Tech-

niques, chapter Quadtrees on the GPU. CRC Press, March 2014.

[Dup14] Jonathan Dupuy. Phong Tessellation for Quads. Technical report, 2014.

[Fou92] Alain Fournier. Normal Distribution Functions and Multiple Surfaces. In Proc. Graphics Inter-

face ’92 Workshop on Local Illumination, pages 45–52, 11 May 1992.

[Fro12] Georg Frobenius. Über Matrizen aus nicht Negativen Elementen, S. B. Preuss. Akad. Wiss. Berlin,

pages 456–477, 1912.

[FV14] Jiri Filip and Radomir Vavra. Template-Based Sampling of Anisotropic BRDFs. Computer Graph-

ics Forum (Pacific Graphics), 33(7):91–99, 2014.

95

[GA02] John E. Gray and Stephen R. Addison. Characteristic Functions in Radar and Sonar. In Proc.

Southeastern Symposium on System Theory, 2002, pages 31–35, 2002.

[HD14] Eric Heitz and Eugene D’Eon. Importance Sampling Microfacet-Based BSDFs using the Dis-

tribution of Visible Normals. In Computer Graphics Forum (Proc. Eurographics Symposium on

Rendering), EGSR, pages 103–112, 2014.

[HD15] Eric Heitz and Jonathan Dupuy. Implementing a Simple Anisotropic Rough Diffuse Material with

Stochastic Evaluation. Technical report, 2015.

[HDCD15] Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. The SGGX Microflake

Distribution. ACM Trans. on Graphics, 34(4):48:1–11, July 2015.

[Hec89] Paul S. Heckbert. Fundamentals of Texture Mapping and Image Warping. Technical report, 1989.

[Hei14] Eric Heitz. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Jour-

nal of Computer Graphics Techniques (JCGT), 3(2):32–91, 2014.

[HMD+14] Stephen Hill, Stephen McAuley, Jonathan Dupuy, Yoshiharu Gotanda, Eric Heitz, Naty Hoffman,

Sébastien Lagarde, Anders Langlands, Ian Megibben, Farhez Rayani, and Charles de Rousiers.

Physically based Shading in Theory and Practice. In SIGGRAPH 2014 Courses, pages 23:1–8.

ACM, 2014.

[HNPN13] Eric Heitz, Derek Nowrouzezahrai, Pierre Poulin, and Fabrice Neyret. Filtering Color Mapped

Textures and Surfaces. In Proc. Symp. on Interactive 3D Graphics and Games. ACM, 2013.

[HSRG07] Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. Frequency Domain Normal Map

Filtering. ACM Trans. on Graphics, 26(3):28:1–11, July 2007.

[HTSG91] Xiao D. He, Kenneth E. Torrance, François X. Sillion, and Donald P. Greenberg. A Comprehensive

Physical Model for Light Reflection. In Proc. SIGGRAPH ’91, pages 175–186. ACM, 1991.

[Jak10] Wenzel Jakob. Mitsuba Renderer, 2010. http://www.mitsuba-renderer.org.

[JAM+10] Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. A Radia-

tive Transfer Framework for Rendering Materials with Anisotropic Structure. In ACM Trans. on

Graphics, SIGGRAPH ’10, pages 53:1–13. ACM, 2010.

96

[JDJM14] Wenzel Jakob, Eugene D’Eon, Otto Jakob, and Steve Marschner. A Comprehensive Framework

for Rendering Layered Materials. ACM Trans. on Graphics (Proceedings of SIGGRAPH 2014),

33(4), 2014.

[JESG12] Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, and Diego Gutierrez. SMAA: Enhanced Morpho-

logical Antialiasing. Computer Graphics Forum (Proc. EUROGRAPHICS 2012), 31(2), 2012.

[Jon02] M. C. Jones. Student’s Simplest Distribution. Journal of the Royal Statistical Society. Series D

(The Statistician), 51(1):41–49, 2002.

[Kaj86] James T. Kajiya. The Rendering Equation. In Proc. of ACM SIGGRAPH ’86, pages 143–150,

1986.

[KC08] Jaroslav Křivánek and Mark Colbert. Real-time Shading with Filtered Importance Sampling. Com-

puter Graphics Forum (Proc. Eurographics Symposium on Rendering), 27(4):1147–1154, 2008.

[KE09] Murat Kurt and Dave Edwards. A Survey of BRDF Models for Computer Graphics. ACM SIG-

GRAPH Comput. Graph., 43(2):4:1–7, May 2009.

[Lew94] Robert R. Lewis. Making Shaders More Physically Plausible. Computer Graphics Forum,

13(2):109–120, 1994.

[LKYU12] Joakim Löw, Joel Kronander, Anders Ynnerman, and Jonas Unger. BRDF Models for Accurate

and Efficient Rendering of Glossy Surfaces. ACM Trans. on Graphics, 31(1):9:1–14, 2012.

[Luk72] Eugene Lukacs. A Survey of the Theory of Characteristic Functions. Advances in Applied Proba-

bility, 4(1):1–38, 1972.

[MCT+05] Wan-Chun Ma, Sung-Hsiang Chao, Yu-Ting Tseng, Yung-Yu Chuang, Chun-Fa Chang, Bing-Yu

Chen, and Ming Ouhyoung. Level-of-detail Representation of Bidirectional Texture Functions for

Real-time Rendering. In Proc. Symp. on Interactive 3D Graphics and Games, pages 187–194.

ACM, 2005.

[MPBM03] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A Data-Driven Re-

flectance Model. ACM Trans. on Graphics, 22(3):759–769, 2003.

[MSUA12] Rosana Montes Soldado and Carlos Ureña Almagro. An Overview of BRDF Models. Technical

Report LSI-2012-001, Universidad de Granada, 2012.

97

[NDM05] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental Analysis of BRDF Models. In

Proc. Eurographics Symposium on Rendering, EGSR, pages 117–226, 2005.

[NL13] Matthias Niessner and Charles Loop. Analytic Displacement Mapping Using Hardware Tessella-

tion. ACM Trans. on Graphics, 32(3):26:1–9, July 2013.

[NLMD12] Matthias Niessner, Charles Loop, Mark Meyer, and Tony Derose. Feature-adaptive GPU Ren-

dering of Catmull-Clark Subdivision Surfaces. ACM Trans. on Graphics, 31(1):6:1–11, February

2012.

[Nol13] John. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2013.

In progress, Chapter 1 online at http://academic2.american.edu/∼jpnolan/stable/stable.html.

[NRH+77] Fred E. Nicodemus, Joseph C. Richmond, J.J. Hsia, W.I. Ginsberg, and T. Limperis. Geometrical

Considerations and Nomenclature for Reflectance. Applied Optics, 9:1474–1475, 1977.

[OB10] Marc Olano and Dan Baker. LEAN Mapping. In Proc. Symp. on Interactive 3D Graphics and

Games, pages 181–188. ACM, 2010.

[ON94] Michael Oren and Shree K. Nayar. Generalization of Lambert’s Reflectance Model. In Proc.

SIGGRAPH ’94, pages 239–246, 1994.

[Per07] Oskar Perron. Zur Theorie der Matrices. Mathematische Annalen, 64(2):248–263, 1907.

[PF90] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. In Proc. SIGGRAPH ’90,

pages 273–282. ACM, 1990.

[Pho75] Bui Tuong Phong. Illumination for Computer Generated Pictures. Communications of the ACM,

18(6):311–317, June 1975.

[PM12] Andrei D Polyanin and Alexander V Manzhirov. Handbook of Integral Equations. CRC Press,

2012.

[Rus98] Szymon M Rusinkiewicz. A New Change of Variables for Efficient BRDF Representation. In

Rendering Techniques ’98, pages 11–22. Springer, 1998.

[Sch94a] Christophe Schlick. A Survey of Shading and Reflectance Models. Computer Graphics Forum,

13(2):121–131, 1994.

98

[Sch94b] Christophe Schlick. An Inexpensive BRDF Model for Physically-based Rendering. Computer

Graphics Forum, 13:233–246, 1994.

[Sch07] Thorsten Schmidt. Coping with Copulas. Copulas–From Theory to Application in Finance, pages

3–34, 2007.

[Smi67] B. Smith. Geometrical Shadowing of a Random Rough Surface. IEEE Trans. Antennas and

Propagation, 15(5):668–671, 1967.

[Sta99] Jos Stam. Diffraction Shaders. In Proc. SIGGRAPH ’99, pages 101–110. ACM, 1999.

[TLQ+05] Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Heung-Yeung Shum. Multiresolution Re-

flectance Filtering. In Proc. Eurographics Symposium on Rendering, EGSR’05, pages 111–116,

2005.

[TLQ+08] Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Harry Shum. Filtering and Rendering of

Resolution-Dependent Reflectance Models. IEEE Trans. Vis. Comput. Graph., 14(2):412–425,

2008.

[Tok05] Michael Toksvig. Mipmapping Normal Maps. Journal of Graphics, GPU, and Game Tools,

10(3):65–71, 2005.

[TR75] T. S. Trowbridge and K. P. Reitz. Average Irregularity Representation of a Rough Surface for Ray

Reflection. J. Opt. Soc. Am., 65(5):531–536, May 1975.

[TS67] K. E. Torrance and E. M. Sparrow. Theory for Off-Specular Reflection From Roughened Surfaces.

J. Opt. Soc. Am., 57(9):1105–1112, September 1967.

[War92] Gregory J Ward. Measuring and Modeling Anisotropic Reflection. In Proc. SIGGRAPH ’92, pages

265–272. ACM, 1992.

[WDR09] Hongzhi Wu, Julie Dorsey, and Holly Rushmeier. Characteristic Point Maps. Computer Graphics

Forum (Proc. of Eurographics Symposium on Rendering), 28(4):1227–1236, 2009.

[Wil83] Lance Williams. Pyramidal Parametrics. In Proc. SIGGRAPH ’83, pages 1–11. ACM, 1983.

[WMLT07] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet Mod-

els for Refraction Through Rough Surfaces. In Computer Graphics Forum (Proc. Eurographics

Symposium on Rendering), EGSR, pages 195–206, 2007.

99

[WZT+08] Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. Modeling Anisotropic Sur-

face Reflectance with Example-based Microfacet Synthesis. ACM Trans. on Graphics, 27(3):41:1–

9, August 2008.

100

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Thesis Overview
	Theoretical Background
	Practical Considerations

	State-of-the-art Microfacet Theory
	Torrance-Sparrow Equation
	Importance Sampling
	Controlling Roughness
	Implementation Details

	Noncentral Microfacet Theory
	Motivation
	Noncentral Microfacet BRDF Equations
	LEAN/LEADR Mapping
	Practical Considerations

	Inverted Microfacet Theory
	Motivation
	Microfacet Terms Extraction
	Experiments
	Implementation Details

	Conclusion
	Downsampling Operator
	Positioning and Discussions
	Future Research
	List of Publications

	Bibliography

