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Résumé

En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux translumi-

nescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image.

Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés

sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du

transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la

lumière incidente et sortante. Une composante importante de ces modèles est leur application à

évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet.

Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la translumi-

nescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles

de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique

d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière

sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration.

Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion,

octroyant une amélioration possible à leur efficacité et précision.

Fourier, traitement du signal, transluminescence, BSSRDF, structure d’accélération,

illumination globale, synthèse d’images



Abstract

In image synthesis, reproducing the complex appearance of objects with subsurface light

scattering, such as wax, marble and skin, greatly contributes to the realism of an image.

Unfortunately, this added realism comes at a high computational cost. Models based on

diffusion theory aim to reduce this computational cost by simulating the physical behaviour of

subsurface light scattering while imposing smoothness constraints on the incident and outgoing

light fields. An important component of these models is how they are employed to hierarchically

evaluate the numerical integral of lighting over the surface of an object.

This thesis will first review the existing literature on realistic subsurface lighting simulation,

before investigating in more depth the application and extension of modern diffusion models in

image synthesis. In doing so, we propose and evaluate a new hierarchical numerical integration

technique that uses a novel frequency analysis of the incident and outgoing light fields to reliably

adapt the sampling rate during integration. We realize our resulting theory in the context of

several state-of-the-art diffusion models, providing a marked improvement in their efficiency

and accuracy.

Fourier analysis, signal processing, subsurface scattering, BSSRDF, acceleration

data structure, global illumination, image synthesis
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Chapter 1

Introduction

The interaction of light in our environment produces many marvelous effects. Among these

effects is the scattering of light through liquids, precious gems, wax, leaves, flesh, and skin. The

properties of these materials are such that the light enters an object and does not exit it before

scattering irregularly within its volume, which complicates the simulation of these effects in

computer graphics (CG). To sidestep this challenge, CG has traditionally ignored these effects

for artistic and/or computational reasons: as traditional rendering methods only consider light

interactions at one surface point at a time, a more general function is necessary to describe the

way light scatters inside a volumetric medium. This area of interest gained attention in the past

15 years as the field has matured to consider more complex and realistic light transport effects.

1.1 Motivation

Accurately reproducing light’s interaction with non-opaque objects is fundamental for creating

realistic images. It adds pleasant details to objects, as observed in the real world. The appearance

of skin, for instance, is primarily due to subsurface scattering: only 6% of light is reflected

directly off the skin, whereas the remaining 94% is the result of subsurface scattering [KB04].

Needless to say, this effect is very important for any idealistically modelled character. It is this

quest for realism that has pushed scientists to develop and improve simulation, models, data

structures, and techniques over the recent years, aiming for accuracy and efficiency.

Accounting for the transparency of materials augments the dimensionality of the underlying

physically-based simulation of light transport, making it impractical to explicitly compute all

light interactions in the environment. In order to remain practical and efficient, it is necessary

to use adaptive methods. Doing so reduces the computational cost of generating images by

restraining the simulation to the regions of interest. Our work will aim to more accurately

determine these regions of interest during adaptive integration.



Figure 1.1 – Many techniques are used to produce realistic images of materials that undergo
subsurface scattering, such as (in reading order) marble [DJ05], skin, wax [HCJ13b], and
milk [DI11]. Properties like the (small) size of a character [JB02] can also be depicted with
translucence in non-photorealistic images.

1.2 Objectives

The growing theoretical understanding of light transport in dense scattering media has led to

the development of mathematical models dedicated to such materials. This thesis presents the

following contributions:

1. An extension of the frequency analysis of Durand et al. [DHS+05], Bagher et al. [BSS+12],

and Belcour et al. [BBS14] suited to dense volumetric media.
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2. A numerical technique to estimate the frequency spectrum of scattering light in such

media, which we use to determine the spatial and angular variation of outgoing radiance

over the surface of a translucent object, and which is capable of supporting any underlying

dipole model.

3. The application of a dual-tree structure to accelerate the spatial integration step in

joint image- and object-space, adaptively evaluating the translucent model for the final

rendering.

1.2.1 Outline

Prior to detailing our technical contributions, we will review the theory of light transport and

how it is modelled in the context of image synthesis. This thesis is structured as follows:

Introduction to Light Transport: We will introduce concepts and equations of light trans-

port, based on a set of radiometric formulations describing visible light. Given the

simplified formulation for light reflected directly off surfaces, we will detail the more

involved simulation of light scattering through a volumetric media.

Introduction to Computer Rendering Algorithms: The evolution from mathematical

models to practical application in computer graphics is subject to multiple restrictions

(physical material, complexity, lack of information in the model). The rendering simulation

process is complex and we will introduce its algorithmic details along with the theoretical

aspects of light transport concepts.

Subsurface Scattering and Adaptive Rendering: The state of the art in rendering dense

translucent media will be thoroughly detailed, identifying the pros and cons of current

approaches. An alternative space, the Fourier domain, will also be studied in order to

efficiently predict the variation of light. We will show how this prediction in that space can

be used as an oracle to perform adaptive rendering in a hierarchical integration scheme,

which will drive the contributions presented in this dissertation.
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Symbol Description

x Position

n Normalized surface normal

ω Normalized direction, always pointing away from the surface, ω · n > 0∫
2π

Integral over the hemisphere of the surface normal

A Surface area

Le Emitted radiance

Lr Reflected radiance

Li Incident radiance

Lo Outgoing radiance

fr(x,ωi,ωo) BRDF

S(xi,ωi,xo,ωo) BSSRDF

p(x,ωi,ωo) Phase function

σa Absorption coefficient

σs Scattering coefficient

σt Extinction coefficient σt = σs + σa

α Albedo α = σs/σt

g Mean cosine of the scattering angle

σ′s Reduced scattering coefficient σ′s = (1− g)σs

σ′t Reduced extinction coefficient σ′t = σ′s + σa

α′ Reduced albedo α′ = σ′s/σ
′
t

D Diffusion constant D = 1/3σ′t

σtr Effective transport coefficient σtr =
√
σa/D

C1, C2 Approximations of the Fresnel reflectance, define in d’Eon [d’E12]

Cφ Cφ = 1
4
(1− 2C1)

CE CE = 1
2
(1− 3C2)

Table 1.I – Nomenclature used throughout this thesis.
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Chapter 2

Light Transport

2.1 Radiometry

Radiometry provides a set of mathematical formalisms and tools to describe the evolution of

electromagnetic radiation. Visible light being one of these radiations, we will use a radiometric

formulation that encompasses light transport. This theory is required for further study of the

light transport process and its application in computer graphics.

Radiant Flux: Also referred to as power or simply flux, the radiant flux represents the amount

of energy, measured in Watts [W = J · s−1], passing through a surface per unit time. It

includes the energy emitted by a light source as well as the energy reflected, transmitted

or received by the surface. It is denoted by the symbol Φ.

Solid Angle: The extension of the two-dimensional planar angle to the third dimension is

called the solid angle. The planar angle, measured in radians [rad ], is the length of the arc

subtended by the projection of an object onto the unit circle. In the same way, the solid

angle, illustrated in Figure 2.1 and measured in steradians [sr ], is the area subtended by

an object projected onto the unit sphere, through the sphere’s center.

Figure 2.1 – The planar angle (left) is the length of the arc on a unit circle and the solid angle
(right) is the area on a unit sphere, both with respect to a central point and from a projected
object.



Radiant Intensity: The flux per unit solid angle from a single direction is called radiant

intensity or simply intensity. It is measured in Watts per steradian [W · sr−1] and is

denoted by the symbol I. It is expressed in terms of flux as

I(ω) =
dΦ(ω)

dω
. (2.1)

Since a unit sphere’s total surface area is 4π, an isotropic point light source would have a

uniform radiant intensity of I = Φ/4π.

Radiance: Denoted by the symbol L and measured in Watts per steradian per square meter

[W · sr−1 ·m−2], the radiance is the radiant intensity per unit projected area along its

direction. In terms of flux, it is expressed as

L(x,ω) =
d2Φ(x,ω)

dωdA(n · ω)
, (2.2)

with the normal n of the surface subjected to the projection. We can also define flux in

terms of the radiance by integrating over the surface area A and the hemisphere as

Φ =

∫
A

∫
2π

L(x,ω)(n · ω)dωdA. (2.3)

Irradiance and Radiant Exitance: The flux per unit area arriving at a surface is called

irradiance. It is denoted by the symbol E and is measured in Watts per square meter

[W ·m−2]. It can be expressed in terms of flux as

E(x) =
dΦ(x)

dA(x)
. (2.4)

The radiant exitance represents the flux per unit area leaving a surface and is denoted

by the symbol M , with the same units as the irradiance. In order to differentiate the

radiance arriving at a surface and the radiance leaving a surface, we will denote Li as

the incident radiance and Lo as the exitant, or outgoing, radiance. Thus, in terms of the

6



radiance, the irradiance and radiant exitance can be distinguished by

E(x,ω) =

∫
2π

Li(x,ω)(n · ω)dω (2.5)

M(x,ω) =

∫
2π

Lo(x,ω)(n · ω)dω. (2.6)

Spectroradiometry: The previous definitions can be extended to express variations as a

function of wavelength. For instance, the radiance per wavelength is called spectral

radiance. In image synthesis, we are interested in the range of wavelengths visible to the

human eye.

Luminance: The relative sensitivity of the human eye to wavelengths is described as luminance.

It accounts for the fact that, for instance, an amount of energy in the green wavelengths

will appear brighter to humans than the same amount of energy in the blue ones.

Polygon Mesh: A polygon mesh is a collection of vertices, edges and faces which defines the

shape of a polyhedral object. The sub-field of computer graphics that studies polygon

meshes is large, but we need to be conscious that our 3D objects, and more specifically

their surfaces, are modelled with such constructions of meshes.

Pixel: A picture element, or pixel, is a point (square) in an image where data is normally

represented as values on a regular grid. Physically, it is the smallest point of color visible

on a monitor. At a high level, rendering is the process of passing from a three-dimensional

domain to the pixel domain, i.e., an image. Thus, the appropriate colour for each pixel

has to be determined.

2.2 Rendering Equation

In computer graphics, and especially in realistic rendering, real world behaviours are the main

source of information in producing accurate images. When realism is the primary goal, physical

laws form the foundation of rendering convincing images. This section defines the rendering
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equation [Kaj86], which models the interaction of light with surfaces in a three-dimensional

scene, and presents several rendering techniques to numerically solve this equation.

The outgoing radiance at a surface location x is expressed by the rendering equation as the

sum of the emitted (Le) and reflected (Lr) radiance,

Lo(x,ω) = Le(x,ω) + Lr(x,ω). (2.7)

Without loss of generality, this radiance determines the colour perceived when observed from a

point of view ω with normal n. The relation between the irradiance and the reflected radiance

at point x of normal n, illustrated in Figure 2.2, is described by the bidirectional reflectance

distribution function or BRDF [NRH+92]. Often denoted as fr, it can be expressed in terms of

the irradiance (Equation 2.5) as

fr(x,ωi,ωo) =
dLr(x,ωo)

dE(x,ωi)
=

dLr(x,ωo)

Li(x,ωi)(n · ωi)dωi
, (2.8)

and so the reflected radiance can be written as

Lr(x,ωo) =

∫
2π

fr(x,ωi,ωo)Li(x,ωi)(n · ωi)dωi. (2.9)

The rendering equation (Equation 2.7) can now be rewritten as

Lo(x,ω) = Le(x,ω) +

∫
2π

fr(x,ωi,ωo)Li(x,ωi)(n · ωi)dωi. (2.10)

This means that, in order to compute the outgoing radiance at x in viewing direction ωo, we

need to integrate the incoming radiance from all incoming directions ωi. This is not an easy

task and there are numerous ways of approaching it.
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Figure 2.2 – The BRDF mathematically expresses the relation between the irradiance and
the reflected radiance at a given point on an object. Conceptually, the BRDF describes the
reflection behaviour of a surface.

2.3 Algorithms

As mentioned previously, analytical solutions to Equation 2.10 are only available in some specific,

simple scenarios. Instead, in general, we resort to numerical integration to solve the rendering

equation. There are several algorithms available, which can be grouped in three main categories:

sampling, density estimation, and finite element methods.

The main application of finite element methods for solving the rendering equation is radios-

ity [GTGB84]. The idea is to model and compute the irradiance exchanged between discrete

surfaces. The three-dimensional scene is subdivided into small patches that will contain the

final light distribution, i.e., the corresponding radiant exitance, related via a set of linear

equations. Initially, this technique was used for scenes containing only diffuse materials, which

are independent of the viewpoint. Subdividing a scene appropriately may also be a challenge

due to numerous known difficulties in the domain of geometry, making radiosity algorithms

impractical for complex scenes. We will therefore focus on sampling and density estimation

techniques.
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2.3.1 Path Tracing

It would be impractical to compute all the light interactions for an entire scene. Tracing

infinitesimal beams, starting from the pixels, allows a simulation limited to a domain visible in

an image. This technique is referred to as ray tracing [App68, Whi80] and these reversed rays

of “light” are good at handling mirror reflections and illumination that comes from the direct

incidence of a light source. In order to account for more effects, ray tracing has been extended with

Monte Carlo stochastic techniques to form the more comprehensive path tracing [KVH84, CPC84]

algorithm. The concept of rays is extended to paths, as light energy is transported and

accumulated along such paths. Here, several jittered rays can be averaged for each pixel,

according to the BRDFs, allowing an estimation of the integral over all light paths.

Path tracing additionally allows the simulation of realistic effects such as depth of field, glossy

reflection, color bleeding, and motion blur. However, this technique requires a large number of

samples to resolve the error due to numerical variance. The error, manifested in the form of

noise in a Monte Carlo integral estimate is proportional to 1/
√
N for N samples. Four times

the number of samples only reduces noise in an image by half, which leads to the problem that

high quality rendering with path tracing is extremely time consuming.

Figure 2.3 – Path tracing (left) computes the color of a pixel by averaging the contribution
of many light carrying paths through the scene, shot from the point of view. Photons are
accumulated on the surfaces in photon mapping (right) and used as a measure of the incident
radiance at rendering time.
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2.3.2 Photon Mapping

Because a scene can be non-rigid and is likely to be modified, it is important to decouple

illumination from geometry. Photon mapping [JC94, Jen96, JC98, Jen01] techniques propose

to accumulate light as packetized particles, i.e., photons, onto the surfaces. The photons are

traced from the light sources and deposited onto surfaces in the scene. The radiance is then

computed as a function of the number and power of the photons near an intersection point of the

surface for a given point of view, with each photon weighted by the BRDF. This is a two-step

algorithm, where the photons are accumulated in a first pass before the final rendering pass.

This decoupling allows the reutilization of lighting information on objects at rendering time.

Photon mapping is well suited for glossy surfaces as well as in generating realistic effects that

result from the formation of complex light paths, such as caustics. Even though this technique is

only subject to low frequency errors instead of high frequency noise in the rendered image, it is

a biased (but consistent) method, which requires many photons to converge and thus consumes

a large amount of memory.

Figure 2.4 – The Cornell box scene rendered with path tracing (left) and photon mapping
(right). Notice the high frequency noise in the shadowy parts of the first image and the constant
low frequency noise on the rectangular prisms’ faces in the second one.
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2.4 Radiative Transport Equation

As mentioned in Section 2.2, Equation 2.10 expresses the equilibrium energy balance of light

at surface points in a scene, and it is based on radiometry in order to respect physical laws.

However, this equation assumes that light travels from surfaces to surfaces freely, which is often

not the case in reality. Space is generally occupied by media like fog, dust, smoke, or even fire,

and these are referred to as participating media, since they are composed of small particles that

participate in the light transport process. When the light travels inside a volume that is not a

vacuum, specific equations are required to model the behaviour of light within it.

Figure 2.5 – Ecosystem scene rendered without (left) and with (right) participating media.
Additional effect makes the image look substantially more realistic. From pbrt [PH10].

The change in radiance along a ray in a participating medium is influenced by four types of

interactions, which together must respect the law of conservation of energy: absorption, emission,

outscattering, and inscattering. Considering the differential change of radiance (ω ·∆)L(x,ω),

this section derives the RTE, or radiative transport equation [Cha60], as the sum of these four

quantities. They will be expressed term by term through Equations 2.11 to 2.15.

Absorption: When light enters a participating medium, it has a chance of being absorbed and

converted into other forms of energy (e.g., heat) that can be omitted from the rendering

process, as they are invisible to humans. The denser the media, the more light it absorbs.
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This interaction is parameterized by an absorbtion coefficient σa and is described in

mathematical terms as

(ω · ∇)Lo(x,ω) = −σaLi(x,ω). (2.11)

Emission: As in the rendering equation for surfaces, participating media can also emit light

(flames, chemical reactions). It is similarly described as

(ω · ∇)Lo(x,ω) = Le(x,ω). (2.12)

Outscattering: When light enters a participating media, it also has a chance of being scattered

in a direction other than its initial ω. The likelihood of this event is also parameterized

by a scattering coefficient σs and is described as

(ω · ∇)Lo(x,ω) = −σsLi(x,ω). (2.13)

It is common to combine the effects of both the absorption and scattering with an extinction

coefficient σt = σa + σs, and so

(ω · ∇)Lo(x,ω) = −σtLi(x,ω). (2.14)

Inscattering: Just as light can be scattered away from the original direction ω, light from other

directions can be scattered into direction ω, increasing the radiance along the ray. The

inscattering contribution is computed by integrating over the sphere of possible directions,

weighted by the scattering coefficient σs and a phase function p. Similarly to how the

BRDF describes the relation between the irradiance and the reflected radiance for a given

point of view, the phase function describes the angular distribution of light intensity

scattered from incoming directions ωi into the outgoing direction ωo. The resulting

equation for the inscattered component of light along a ray in a participating media is

(ω · ∇)Lo(x,ω) = σs

∫
4π

p(x,ωi,ωo)Li(x,ωi)dωi. (2.15)
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The mean cosine of the scattering angle, denoted g, is

g =

∫
4π

(ωi · ωo)p(x,ωi,ωo)dωi. (2.16)

A positive g means the phase function is forward scattering, whereas a negative g corresponds

to a backward scattering function, and a constant phase function of g = 0 denotes isotropic

scattering.

By combining the effects of absorption, emission, outscattering and inscattering, we can fully

describe the differential change of radiance along a ray, which leads to the final expression for

the radiative transport equation

(ω · ∇)Lo(x,ω) = Le(x,ω)

− σtLi(x,ω)

+ σs

∫
4π

p(x,ωi,ωo)Li(x,ωi)dωi.

(2.17)

2.5 Volume Rendering Equation

In practice, we are interested in obtaining the radiance arriving from a ray instead of the change

in radiance along it. In order to find this radiance, Equation 2.17 has to be integrated on both

sides. To do so, we introduce the transmittance, which describes the fraction of light passing

through a medium for a travelled distance. Starting with Equation 2.14, integrating between x

and the point entering the medium x′ along a ray of light gives

Lo(x,ω) = e−τ(x,x′)Li(x
′,ω) (2.18)

where

τ(x,x′) =

∫ x′

x

σtdxt, (2.19)
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for 3D points xt on the straight line between x and x′. The transmittance is e−τ and τ is called

the optical depth. In a homogeneous medium, σt is constant and the optical depth is simply

τ(x,x′) = σt||x′ − x||, (2.20)

where || || is the Euclidean norm. Integrating the complete RTE yields the volume rendering

equation

Lo(x,ω) =

∫ x′

x

e−τ(x,x′)Le(xt,ω)dxt

− e−τ(x,x′)Li(x
′,ω)

+

∫ x′

x

e−τ(x,x′)σs

∫
4π

p(xt,ωi,ωo)Li(xt,ωi)dωidxt.

(2.21)

2.6 Algorithms

Again, analytic solutions to Equation 2.21 can only be derived for simple scenarios. In practice,

it has to be evaluated numerically. We review popular techniques used to solve the RTE in the

context of volumetric rendering, each of which are extensions of those introduced in Section 2.3.

2.6.1 Path Tracing

Extending path tracing to handle participating media is fairly straightforward. When a ray

passes through a participating medium, and before its intersection with an object, a random point

is selected along the ray and a stochastic scattering event is simulated, changing the trajectory

of the ray in space. If this point falls outside the participating medium, the initial path is

continued until it hits a surface and the standard surface rendering process is applied. Otherwise,

it is scattered in another direction with respect to its phase function. This modification is

easy to implement and introduces no bias. However, this process is subject to noise which

further increases the already high sampling rate requirements for path-tracing-based numerical

integration solutions.
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2.6.2 Photon Mapping

Photons can be stored inside a volume in the same way as they are on the surface (Section 2.3.2).

The transmittance affects the concentration of photons within the medium. Photon mapping

is good at handling heterogeneous media, where the transmittance varies along the ray. The

energy of these photons is finally weighted by the phase function. Much like ray tracing, storing

photons in a first pass is trivial and faster than regular path tracing. The density can be

estimated at rendering time by regularly sampling along a ray that passes through the volume.
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Chapter 3

State of the Art

The previously described numerical methods used to solve the RTE suffer from noise and

efficiency issues. In practice, this is a major problem since it requires trading precision in order

to have smooth (but approximated) renderings at affordable costs. This section introduces the

concept of diffusion based subsurface scattering and motivates the use of frequency analysis

and adaptive rendering, to solve the RTE more efficiently and accurately in certain important

practical circumstances.

3.1 Bidirectional Surface Scattering Reflectance Distribution Function

The bidirectional reflectance distribution function was introduced in Section 2.2, relating the

ratio of the radiance leaving the surface, towards a point of view, to the incident radiance, at

a given point. This concept can be generalized to bidirectional surface scattering reflectance

distribution function, or BSSRDF [NRH+92], for volumetric media with a surface boundary.

The BSSRDF describes the radiance leaving the surface, in the presence of subsurface volumetric

scattering underneath the boundary, as in Figure 3.1. As opposed to the BRDF, we cannot

assume that light enters and exits the surface boundary at the same point. Often denoted as S,

the BSSRDF can be written as

S(xi,ωi,xo,ωo) =
dLr(xo,ωo)

dΦi(xi,ωi)
, (3.1)

and so the reflected radiance expressed in terms of the BSSRDF is obtained from Equation 2.3,

Lr(xo,ωo) =

∫
A

∫
2π

S(xi,ωi,xo,ωo)Li(xi,ωi)(n · ωi)dωidA, (3.2)



for each patch of surface area A made up of points xi. This modification turns the 2D scattering

equation into a substantially more complex 4D integral. This implies major changes in traditional

rendering algorithms.

Figure 3.1 – As opposed to the BRDF (Figure 2.2), the BSSRDF does not assume that light
enters and leaves at the same surface point. It describes the relation between the irradiance at
an incident point and the reflected radiance at the exit point on a surface bounding a volumetric
scattering medium.

3.1.1 Decomposition of S

It is common to decompose S, in order to make use of specialized algorithms, as a sum of three

terms,

S = S(0) + S(1) + Sd, (3.3)

where S(0), the reduced radiance, accounts for the unscattered extinct (absorbed) radiance, S(1),

the single scattering term, accounts for the radiance scattered only once before leaving the

surface, and Sd, the multiple scattering or diffusion term, accounts for the radiance scattered

more than once.

3.1.2 Diffusion Theory

Equation 3.3 allows more specialized, efficient, and practical evaluation of the BSSRDF. The

quantities S(0) and S(1) are usually inexpensive to compute using Monte Carlo methods, as they

converge fast. Our main application of classical diffusion theory will be the calculation of Sd,

since using common algorithms to compute it gives noisy results and converges slowly.
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In a highly scattering media, the numerous scattering events tend to blur the light towards a

uniform distribution. Based on this observation, the diffuse reflectance distribution profile, Rd,

is approximated based on the diffusion approximation. The diffusion approximation considers

the first two angular moments of the radiance distribution in a medium, respectively denoted as

fluence, φ, and flux, E:

φ(x,ω) =

∫
4π

L(x,ω)dω, (3.4)

E(x,ω) =

∫
4π

L(x,ω)ωdω. (3.5)

The radiance is then expanded according to this first order approximation [MS67, RH01] and

normalized in order to maintain conservation of energy:

L(x,ω) ≈ 1

4π
φ(x,ω) +

3

4π
E(x,ω) · ω. (3.6)

Fick’s first law of diffusion postulates that, under the assumption of steady state, the vector flux

can be used to define fluence as E(x) = −D∇φ(x). By substituting Equation 3.6 into the RTE

and applying Fick’s law, the diffusion equation can be obtained by integrating over ω [Ish78],

which yields

−D∇2φ(x,ω) + σaφ(x,ω) = Q(x,ω), (3.7)

where Q is a light source function, D = 1/3σ′t is the diffusion constant and σ′t the reduced

extinction coefficient. In Equation 2.16, this reduces the anisotropic problem (g 6= 0) to an

approximated, simpler problem with isotropic scattering using modified scattering and extinction

coefficients,

σ′s = σs(1− g), (3.8)

σ′t = σ′s + σa. (3.9)

Assuming an isotropic unit point light source Q, or monopole, and an infinite medium, the
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diffusion equation has a simple solution, the diffusion Green’s function:

φm(x) =
1

4πD

e−σtrr

r
, (3.10)

where r is the distance to the monopole m at x and σtr =
√
σa/D is the transport coefficient.

When the medium is constrained in a finite region of space (e.g., when a surface bounds the

volume as in Figure 3.1), the diffusion approximation becomes subject to boundary conditions,

namely that the inward diffuse flux must be zero at each point xs on the surface,∫
2π−

L(xs,ω)(ω · n)dω = 0, (3.11)

where 2π− is the inward hemisphere of directions. For the case with mismatched indices of

refraction between the two media, there is an important reflection phenomenon at the surface

that must be taken into account. The average diffuse Fresnel reflectance, Fdr , from the Fresnel

formula for the reflectance at a dielectric surface, Fr, is

Fdr =

∫
2π

Fr(η,n · ωo)(n · ωo)dωo, (3.12)

for a relative index of refraction η. It can be computed analytically [KL69], but a rational

approximation is often used instead [EH79]

Fdr =


0.0636
η3
− 0.3319

η2
+ 0.7099

η
− 0.4399, η < 1

−1.4399
η2

+ 0.7099
η

+ 0.6681 + 0.0636η, η > 1
. (3.13)

This results in the following boundary conditions:

−
∫

2π−

L(x,ω)(ω · n−)dω = Fdr

∫
2π+

L(x,ω)(ω · n+)dω, (3.14)

where the - and + subscripts denote inward and outward directions respectively, explaining the

difference in signs between the two sides of the equation. Once again employing a first-order
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approximation of the radiance distribution, the boundary conditions can be reordered as

φ(xs)− 2AD(n · ∇)φ(xs) = 0, (3.15)

where

A =
1 + Fdr

1− Fdr

. (3.16)

The challenge now lies in solving this boundary condition for Sd.

3.1.3 Searchlight Problem

A simplified version of the diffusion approximation problem has been proposed in medical physics

and astrophysics [Cha58], known as the searchlight problem. As illustrated in Figure 3.2, it

consists of an infinitesimal pencil beam of light striking a semi-infinite slab at normal incidence.

Photons are then distributed as they scatter through the medium and leave the surface. This

distribution, denoted R, is called a reflectance distribution profile. Because the medium is

homogeneous and the pencil beam is at normal incidence, this profile is 1D radially symmetric,

which means

R(xo − xi) = R(||xo − xi||). (3.17)

Figure 3.2 – The searchlight problem consists of an infinitesimal beam of light striking a semi-
infinite slab at normal incidence. The scattered distribution of light is a 1D radially symmetric
function, denoted R.
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3.1.4 Dipole

The previously defined boundary conditions come from the observation that the incoming

radiance on the surface can be treated as a light source inside the medium, considering the

first-order scattering events. A well-known solution to solving these boundary conditions is

the method of images. This method extrapolates an analogous problem where a negative light

source is mirrored with respect to a mirror plane, convenient for subsurface reflection which is

often modeled as a semi-infinite planar medium.

Figure 3.3 – The dipole method consists of two point light sources, a positive (bottom) and
a negative (top), placed in such a way that the boundary condition (e.g., Equation 3.15) is
satisfied.

Jensen et al. [JMLH01] proposed a practical dipole model, based on Farrell et al. [FPW+92]’s

method, suitable for simulating the appearance of subsurface scattering in computer graphics.

By placing one positive real point light source at distance zr beneath the surface and one

negative virtual point light source at distance zv = zr + zb, where zb = 4AD, the boundary

conditions can be satisfied. The resulting fluence along the surface boundary is

φ(x) =
1

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
, (3.18)

where dr = ||x − xr|| is the distance from the surface point x to the real light source and

22



dv = ||x − xv|| the distance to the virtual light source. The real light source is located at a

distance of one mean-free path, zr = 1/σ′t, which is the average distance travelled by a photon

underneath the surface. With Fick’s law, we are now able to compute the diffuse reflectance,

Rd(||xo − xi||) =
1

4π

(
zr(1 + σtrdr)e

−σtrdr

d3
r

− zv(1 + σtrdv)e
−σtrdv

d3
v

)
. (3.19)

Finally, by taking into account the Fresnel reflection for both incoming and outgoing radiance,

we can obtain the multiple scattering term of the BSSRDF,

Sd(xi,ωi,xo,ωo) =
1

π
Ft(η,ωi)Rd(||xo − xi||)Ft(η,ωo) (3.20)

3.1.5 Quadpole

Assuming a flat surface with infinite extent on arbitrary geometry may lead to considerable

error in the diffuse reflectance. Commonly modelled with polygon meshes, objects are likely to

have sharp corners, which contradict the semi-infinite media assumption made earlier. Donner

and Jensen [DJ05] extended the dipole model to account for more complex geometry, resulting

in the quadpole method.

Assuming a geometry with convexity (e.g., the corner of a cube), as shown in Figure 3.4, the

initial real and virtual light sources are respectively placed as usual at a depth zr and zv. This

time, the infinite surface is replaced by a corner which adds another boundary surface to the

problem. This new boundary condition is solved again with the method of images by mirroring

the dipole around the side face at a distance 2zb. This defines the fluence along the surface as

φ(x) =
1

4πD

(
e−σtrdr

dr
− e−σtrdv

dv
+
e−σtrdrm

drm
− e−σtrdvm

dvm

)
, (3.21)

where drm and dvm are the distance from the surface point x to the new real and virtual light
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sources, respectively. The diffuse reflectance is then computed in the same way as the dipole, as

Rd(||xo − xi||) =
1

4π

(
zr(1 + σtrdr)e

−σtrdr

d3
r

− zv(1 + σtrdv)e
−σtrdv

d3
v

+
xr(1 + σtrdrm)e−σtrdrm

d3
rm

− xv(1 + σtrdvm)e−σtrdvm

d3
vm

)
,

(3.22)

where xr and xv are the distances to the side face for the initial dipole pair and the new one,

respectively, as in Figure 3.4.

Donner and Jensen [DJ05] suggest that, for non-trivial meshes, an interpolation could be used

between the dipole, quadpole, and the next extended model, the multipole.

Figure 3.4 – The basic dipole configuration is mirrored in the case of a π/2 angle with an
adjacent face, forming a quadpole, to satisfy the boundary condition.

3.1.6 Multipole

Another dangerous assumption that arises from the searchlight problems is the semi-infinity of

the medium. This prevents heterogeneous multilayered media to be handled or for a thin layer of

material to receive any backlit contribution of the light. Again, Donner and Jensen [DJ05, DJ08]

propose an extension of the dipole model to support such effects.

The new boundary condition is handled by mirroring the dipole analogously at the bottom side
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of the material slab and by doing the same for the upper side. By repeating the process a few

times, until the error gets negligible, the boundary condition is solved over the surface. This

setup is illustrated in Figure 3.5, where the poles are placed at depths

zr,i = 2i(d+ 2zb) + l

zv,i = 2i(d+ 2zb)− l + 2zb, i = −n, ..., n
, (3.23)

where 2n + 1 is the number of dipoles, l the depth of the original real source and d the slab

thickness. The corresponding fluence in this configuration is

φ(x) =
1

4πD

n∑
i=−n

(
e−σtrdr,i

dr,i
− e−σtrdv,i

dv,i

)
. (3.24)

The diffuse reflectance can finally be computed as

Rd(||xo − xi||) =
1

4π

n∑
i=−n

(
zr,i(1 + σtrdr,i)e

−σtrdr,i

d3
r,i

− zv,i(1 + σtrdv,i)e
−σtrdv,i

d3
v,i

)
. (3.25)

Figure 3.5 – The multipole configuration is an extension to regular dipole that may apply to
thin slabs and multilayered media.

25



3.1.7 Improving the Accuracy of Dipole Approximations

d’Eon and Irving [DI11, d’E12] suggested modifications to the diffusion equation and introduced

new parameters, relying on Grosjean’s work. Because the classical dipole model is easy to

implement, their goals were more accurate exitant radiance calculation and consistent boundary

conditions, all the while keeping the simplicity and ease of implementation. This new technique

requires negligible additional computation.

Grosjean [Gro51, Gro56, Gro59] introduced an alternative solution to the Green’s function

approximation of the fluence of Equation 3.10, still assuming a monopole and an infinite

medium, namely

φm(x) =
e−σ

′
tr

4πr2
+

α′

4πD

e−σtrr

r
, (3.26)

where α′ is the reduced albedo, or reduced reflection coefficient, which represents the diffuse

reflectivity, and D an improved diffusion coefficient,

D =
2σa + σ′s

3σ′2t
=

1

3σ′t
+

σa
3σ′2t

, (3.27)

with σtr =
√
σa/D defined with this new coefficient. Equation 3.26 is the sum of the exact single

scattering and an approximate multiple scattering. This approximation was found to be more

accurate for all absorption levels and distance than other proposed approximations [WWW58,

KI98, GR01]. The diffusion theory focusses on multiple scattering: the first term of the equation

is left for other methods to handle. This results in a modified diffusion equation:

−D∇2φ(x,ω) + σaφ(x,ω) = α′Q(x,ω). (3.28)

The boundary condition forcing fluence to be zero at distance zb = 2AD remains the same, but

with the modified D and an improved reflection parameter,

A ≈ 1 + 3C2

1− 2C1

, (3.29)
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where C1 and C2 are defined by d’Eon [d’E12]. With these changes, the resulting fluence

distribution along the boundary surface is

φ(x) =
α′

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
. (3.30)

Instead of using Fick’s law, which relies on the vector flux to define fluence, d’Eon and

Irving [DI11] used a Robin boundary condition for the exitant radiance, which is a linear

combination of the fluence and the vector flux,

Rd(x) = Cφφ(x)− CED(n · ∇)φ(x), (3.31)

where Cφ = 1
4
(1− 2C1) and CE = 1

2
(1− 3C2). From this, the diffuse reflectance can be rewritten

Rd(x) = Rφ
d(x) +REd (x), (3.32)

with

Rφ
d(x) = Cφ

α′

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
, (3.33)

REd (x) = CE
α′

4π

(
zr(1 + σtrdr)e

−σtrdr

d3
r

− zv(1 + σtrdv)e
−σtrdv

d3
v

)
. (3.34)

This reflectance profile can still be directly derived for the quadpole and multipole configurations.

This improved theory consistently results in more accurate profiles, with negligible additional

computation, making it suitable for CG purposes. Habel et al.’s [HCJ13a] technical report

provides an excellent, comprehensive survey of classical and improved diffusion theory.

3.1.8 Quantized Diffusion

d’Eon and Irving [DI11] proposed to approximate the diffuse reflectance using a sum of Gaussians.

One of the main objectives to quantized diffusion is to handle thin- and multi-layered media,

several orders of magnitude thinner than previously possible. Instead of placing all energy at
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a depth of one mean-free path, which is more or less accurate as the distance to the source is

reduced, they apply the light source function Q(l) = α′σ′te
−σ′tl to the 3D-normalized Gaussian

G3D(v, r) =
1

(2πv)3/2
e−r

2/(2v) (3.35)

of variance v. This allows the construction of a planar surface Gaussian∫ ∞
0

G3D(v,
√
r2 + l2)Q(l)dl =

1

2
σ′sf(σ′2t v/2)G2D(v, r), (3.36)

where G2D is the 2D-normalized Gaussian

G2D(v, r) =
1

2πv
e−r

2/(2v) (3.37)

and f(x) = ex erf(
√
x) contains the complementary error function erf.

Photons leaving a point source and undergoing diffusion produce Gaussian distributions with a

mean displacement proportional to
√
tD where t is the time since the emission. This is related

to Equation 3.10 by integrating over contributions from all emission times t in the past,

φm(x) =
1

4πD

e−σtrr

r
=

∫ ∞
0

c

(4πDc t)3/2
eσacte−r

2/(4Dc t)dt, (3.38)

where c is the speed of light in the medium. In terms of the 3D-normalized Gaussian, it is

expressed as ∫ ∞
0

c

(4πDc t)3/2
eσacte−r

2/(4Dct)dt =

∫ ∞
0

e−τσaG3D(2Dτ, r)dτ (3.39)

where τ = ct, measured in meters. The distribution of photons at time τ grows as a 3D Gaussian

of variance v = 2Dτ , and all photons have travelled a distance of τ = ct, weighting the Gaussian

distribution by an absorption of e−τσa . They quantize the interval τ ∈ [0,∞] with k+ 1 discrete

values τi with τ0 = 0 and τk =∞, weighting the Gaussian to approximate the distribution of
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photons as

φm(x) =

∫ ∞
0

e−τσaG3D(2Dτ, r)dτ ≈
k−1∑
i=0

wiG3D(vi, r), (3.40)

where

wi =

∫ τi+1

τi

e−τσadτ =
e−τ1σa − e−τ2σa

σa
. (3.41)

They showed that τi = si−1τ1 with s ∈ [1.5, 2.0] produces an accurate and sparse set of Gaussians.

The variance vi is chosen using v = 2Dτ and taking the average shape of the Gaussian in the

interval [τi, τi+1] as vi = D(τi + τi+1).

From the method of images, the fluence and flux weights for a Gaussian are

wφ(v, z) =

∫ ∞
0

e−
(−l+z)2

2v

√
2πv

α′σte
σtldl

=
α′σt

2
ezσt+

σ2t v

2

(
1− erf

[z + σtv√
2v

]) (3.42)

and

wE(v, z) = Dσt

(
− wφ(v, z) +

α′e−
z2

2v

√
2πv

)
, (3.43)

for a total reflectance weight of

wR(i) = Cφ

(
wφ(vi, zr)− wφ(vi,−zv)

)
+ CE

(
wE(vi, zr) + wE(vi,−zv)

)
. (3.44)

This leads to the diffuse reflectance approximated by the sum of Gaussians

Rd(x) ≈ α′
k−1∑
i=0

wR(i)wiG2D(vi, r). (3.45)

Note that the equations in this section are simplified to match a semi-infinite material configura-

tion. Indeed, one of the drawbacks of this technique is the high complexity of the mathematical

background. Extensive equations are available in d’Eon and Irving [DI11], based on the multipole

configuration of Section 3.1.6.
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Figure 3.6 – Comparison of quantized diffusion with other diffusion-based approaches for a semi-
infinite material with a white light at normal incidence. The QD model retains high-frequency
details present in a ground truth Monte Carlo simulation. From d’Eon and Irving [DI11].

3.1.9 Directional Dipole

Frisvad et al. [FHK14] proposed to replace point light sources with ray sources. Figure 3.6 shows

results of diffusion-based approaches with light forced at normal incidence. Indeed, previous

models were simplified that way, ignoring the angle of incidence of light. Using a ray source

allows taking that direction into account, which better matches the actual behaviour of light

refracting through media.

Figure 3.7 – Ray sources replace the point sources in this augmented diffusion configuration. The
refracted direction ωr, which stands as the positive source, is mirrored by a modified tangent
plane to obtain the negative ray source ωv. This model handles directionality and relaxes the
assumption of flat boundaries.
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The first step is to replace the isotropic light source in the diffusion equation by a ray of

light in an infinite medium. Based on recent solutions to the diffusion equation for a ray of

light in an infinite medium [MSG05a, MSG05b], a directional source term can be inserted into

Equation 3.10 to retrieve the fluence as a function of the incident ray angle θ for a monopole,

φm(x, θ) =
1

4πD

e−σtrr

r

(
1 + 3D

1 + σtrr

r
cos θ

)
. (3.46)

Note that for a perpendicular ray of light, cos θ = 0 and we obtain the solution of Equation 3.10

for a point light source. As opposed to previous work, the gradient of the previous equation is

computed,

∇φm =
1

4πD

e−σtrr

r3

(
ωr3D(1 + σtrr)− (xo − xi)(1 + σtrr)

− (xo − xi)3D
3(1 + σtrr) + (σtrr)

2

r
cos θ

)
,

(3.47)

where ωr is the refracted incident ray at xi. This allows the direct application of Equation 3.31

in order to obtain the exitant radiance of a directional monopole,

Rm
d (xi,ωr,xo) =

1

4π2

e−σtrr

r3

[
Cφ

(r2

D
+ 3(1 + σtrr)r cos θ

)
− CE

(
(ωr · no)3D(1 + σtrr)− (xo − xi)

· no
(

(1 + σtrr) + 3D
3(1 + σtrr) + (σtrr)

2

r
cos θ

))]
.

(3.48)

Again, the boundary condition that arises from the surface is treated using the method of

images. However, for the fluence to vanish at the boundary, as illustrated in Figure 3.7, the

direction has to be mirrored too. Mirroring the directional monopole through the tangent plane

defined by ni is numerically unstable on a rough detailed surface, and so a modified tangent

plane, defined by n∗i , is used to mirror the source:

n∗i =
xo − xi
|xo − xi|

× ni × (xo − xi)
|ni × (xo − xi)|

. (3.49)
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As opposed to previous methods, the real light source is not displaced one mean free path

underneath the surface. This choice was made since the light source corresponds more accurately

to the actual light ray, but it requires clamping the distance to r = |xo − xi| for numerical

stability where r tends towards zero, and for regions where the assumption of uniform emergent

radiance is invalid due to directionality. The clamping is performed as follows:

r =

max(|xo − xi|, de), ωr · ωe < 0

max(|xo − xi|, D), ωr · ωe > 0
, (3.50)

where de = 0.7104/σ′s = 2.121D/α′ is the distance at which the fluence vanishes for an

extrapolated boundary [GE52, Ish78].

With this configuration, depicted in Figure 3.7, the diffuse reflectance is computed as

Rd(xi,ω,xo) =
Rm
d (xi,ωr,xo)−Rm

d (xv,ωv,xo)

4Cφ(1/η)
, (3.51)

where the mirror positions are xv = xi + 2Aden
∗
i and ωv = ωr − 2(ωr · n∗i )n∗i .

This representation of light as ray sources increases realism, but is more complex and requires

more computation time due to the many light directions required to produce visually pleasing

results. This model, unlike the standard dipole, is not reciprocal (i.e. swapping incident and

emergent points), as it does not depend only on relative distance.

3.1.10 Related Techniques

In addition to the advances in diffusion theory, several related topics of interest to realistic

rendering of subsurface scattering have been explored. For instance, real-world measurement

techniques [OM85, Ant00, NGD+06] allow better understanding, comparison and image genera-

tion of highly scattering materials. These measurements can also be directly edited by artists

to manipulate the appearance of selected portions of an object, while maintaining a smooth

appearance [WZT+08, CP+08, STPP09]. Textures may also be applied to subsurface scattering,
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and this is often done in the context of human skin [Her05]. These alternative approaches have

different performances/accuracy requirements than the dipole-based techniques we base our

work on, such as interactivity for artists and extremely high precision for material information

gathering.

3.2 Numerical Integration for Realistic Image Synthesis

Rendering dense media with Monte Carlo path tracing is costly due to the growing number

of scattering events occurring in the material before the light leaves the surface. This is the

main issue that promoted the development of the aforementioned faster analytical approaches.

However, efficient integration remains an important part in making even these analytic approaches

practical. For every shading point xo, it is necessary to integrate the incoming light over the

entire object’s surface area in order to compute the final color, even with the use of fast analytic

approximations.

3.2.1 Monte Carlo

Instead of computing the contribution of millions of surface samples, Monte Carlo approaches

may be used to stochastically sample the surface with respect to the object mean free path and

the distance to the shading point. This allows for a faster evaluation. Variations of this strategy

include Russian roulette acceptance [Khi89] and dart throwing sample generation [CJW+09]

for creating points with uniform distribution, still based on distance and density, as well as

importance sampling [HCJ13b]. Unfortunately, these methods tend to introduce noise, something

we often want to avoid when reproducing the smooth appearance of BSSRDFs.

3.2.2 Two-pass Hierarchical Technique

To extend the practical application of their dipole model, Jensen and Buhler [JB02] introduced

a technique to approximate the dipole evaluation, with minimal additional bias, as they exploit
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the exponential-falloff-with-distance property of the diffuse reflectance. This method consists of

clustering the illumination points that are distant to the shading point in order to accelerate

the evaluation, allowing each shading point to only treat a subset of the dipole sources over the

object. It is decoupled into two passes: a sampling and an evaluation pass.

Figure 3.8 – Poisson disk samples on a complex 3D object. From Bowers et al. [BWWM10].

The first step caches the incoming irradiance at various surface locations. Such a set of points P

is referred to as a point cloud. For the basic algorithm, each sample p has an associated position

px, normal pn, and surface area pa. For an object of total surface area A,
∑
p∈P

pa = A must hold.

To ensure an accurate evaluation, the required number of points depends on multiple factors

including the geometry, the variation of the light, the scattering properties, and the integration

technique. Jensen and Buhler [JB02] suggest limiting the distance between the points to a

maximum of one mean free path, setting the approximate number of points required for a given

object as |P | = Aσ′t
π
. Various methods are available to generate these points, such as point

repulsion [Tur92], dart throwing [CJW+09] or Poisson disks [BWWM10]. These methods share

a common property: they ensure a minimal distance between all neighboring points, and the

resulting point cloud often satisfies a blue noise distribution constraint. It is also possible to

generate a non-uniform distribution, since surface points are not required to have the same pa.

For instance, the sampling density could be increased around discontinuities in the geometry

and decreased on flat surfaces. Once the samples are generated, the irradiance can be evaluated

using common techniques such as path tracing or photon mapping.
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From this set of irradiance points, it is possible to evaluate the contribution of all samples for a

given shading point xo, using one of the methods detailed earlier (dipole, directional dipole,

quantized diffusion). However, it would be impractical to do so since it is too expensive to

evaluate the exact contribution for all the points generated during the pre-pass. Indeed, this

pass can generate hundreds of thousands of points. The second pass adaptively evaluates the

contribution of the point cloud, based on the exponentially decreasing contribution of the light

samples with distance, as in Figure 3.2. Various hierarchical data structures can be used to

accelerate this process, such as an octree or a kd-tree. At each node, the average irradiance,

the total surface area, and the irradiance-weighted average location of its children are stored.

At rendering time, this tree is traversed until a node is determined to be close enough to the

actual contribution of its children. There are two major criteria used to make this decision: xo
must not be in the node’s bounding box, and the estimation of the solid angle subtended by the

irradiance samples, ∆ω = pa/||xo − px||2, must be larger than a user-defined quality threshold

ε. Algorithm 1 describes this tree-traversal scheme.

This technique can apply to most of the previously studied BSSRDF models, with a few

modifications. For instance, Frisvad et al. [FHK14] replace the irradiance sample with a list of

differential irradiance samples, and d’Eon and Irving [DI11] accumulate the irradiance into a

1D radial binning data structure.

3.2.3 Single-pass Hierarchical Technique

The gathering of illumination in a separate pass may become a significant expense in large,

complex scenes. Arbree et al. [AWB08] address this problem using a single-pass algorithm based

on Jensen et al. [JB02] and making use of lightcuts [WABG06].

They unify the evaluation of the surface irradiance and the subsurface transport by clustering

not only sample illumination points, but their entire light paths. To do so, along with the

surface being discretized with point samples, the lights in the scene are also discretized. The

discretized lights are then clustered similarly to the surface samples. This setup could remain a

two-pass summation of the contributions; however, they suggest using a single evaluation of
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the clusters’ contribution as illustrated in Figure 3.9, refining the node with the highest error

at each step, based on a heuristic. The contributions are stored in order to avoid recomputing

the light contribution, which was an important advantage of the original method of Jensen et

al. [JB02].

Figure 3.9 – In reading order: (1) the naive method where all the irradiance samples from all
the lights are computed per shading point e, (2) the method from Jensen and Buhler [JB02], (3)
clustering the point lights and using the method from Jensen and Buhler [JB02], and (4) the
links between the light clusters and the irradiance samples clusters are also clustered, allowing a
faster evaluation. From Arbree et al. [AWB08].

3.3 Frequency Analysis

One of the properties of participating media is their tendency to blur out details and decrease

contrast, typically requiring higher computational cost due to numerous scattering events that

must be simulated. This also applies to subsurface scattering, where the diffusion process results

in a smooth appearance. Frequency analysis of light transport studies how light propagation

may tend to increase or decrease the final color variation of an image.

In terms of signal processing, an image subject to a blurring from a band-limiting kernel

contains less relevant frequency content than its unblurred version. Thus, such an image may

require less information to be reconstructed correctly, if we are mindful of the content of its

Fourier spectrum. Using this approach, the rendering time could be reduced while producing a

perceptually equivalent image. We will study this variation in the Fourier domain. The Fourier

transform expresses a signal in terms of its frequency variation rather than its variation in the
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primal domain:

F [f ] =

∫
x∈RN

f(x)e−2πiξTxdx. (3.52)

The Fourier transform calculates the frequency spectrum of f . This complex signal s is presented

under the form s(ξ) = A(ξ) eiφ(ξ), where A describes the amplitude of the energy associated

with frequency ξ, and φ, the phase shift associated for that frequency. Intuitively, the amplitude

corresponds to the projected energy of the input signal to a given sinusoid with the associated

frequency and shifted by the associated phase. For instance, a slowly varying signal will result

in a tight spectrum around the origin of the Fourier domain, producing identifiable frequency

amplitude (with the possibility of identifying a direction of variation). On the contrary, a highly

varying signal will be spread in the Fourier domain in a hardly categorizable frequency content.

Figure 3.10 depicts the behaviour of the Fourier transform for various input signal images.

Figure 3.10 – The Fourier transform of a signal captures its frequency variations. Low spatial
frequency regions of the image are concentrated around the origin of the Fourier domain while
high spatial frequency regions may span the entire Fourier domain. From Belcour [Bel12].

Durand et al. [DHS+05] presented a frequency-analysis framework for computer graphics, by

establishing correspondences between light phenomena, such as shading, occlusion, and transport,

to equivalent operations in the Fourier domain. This resulted in an approach to accurately

predict the frequency content of a rendered image, which they used as an oracle to determine a
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sampling rate for rendering, such as the number of rays required in path tracing. This theory

was later used by Bagher et al. [BSS+12] to accelerate the rendering of diffuse and specular

materials.

More recently, Belcour et al. [BBS14] extended this analysis to the behavior of light along light

paths, thus improving the convergence of several existing methods in participating media. They

decompose the RTE in order to analyse it in the Fourier domain. Their approach works well

when the media is not optically thick, as the number of scattering events is not as high as with

dense media. We saw that, in the case of diffusion-based subsurface scattering, the equations

are simplified by various hypotheses, such as normal incidence and medium semi-infinity. In our

work, we wish to extend the Fourier analysis of light transport to these diffusion-based BSSRDF

models, which requires an adapted treatment. Indeed, no such analysis exists for BSSRDFs in

rendering and, in light of previously mentioned integration algorithms, the need for efficient

adaptive integration algorithms is another important requirement that we will address.

In this context where multiple BSSRDF models have been presented along with integration

techniques, we present the following contributions:

1. An extension of the frequency analysis of Durand et al. [DHS+05], Bagher et al. [BSS+12],

and Belcour et al. [BBS14] that apply to most of the previously studied BSSRDF models;

2. A numerical technique to estimate the frequency spectrum of scattering light for translucent

media, which we use to determine the spatial and angular variation of outgoing radiance

over the surface;

3. An extension to the integration technique from Jensen and Buhler [JB02] under the form

of a dual-tree. The spatial integration step is done in joint image- and object-space,

adaptively evaluating the underlying BSSRDF model for the final rendering.
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Chapter 4

A Frequency Analysis and Dual Hierarchy for Efficient

Rendering of Subsurface Scattering

This chapter presents our paper submitted to the Computer Graphics Forum, formatted to fit

this thesis. The authors are David Milaenen, Laurent Belcour, Jean-Philippe Guertin, Toshiya

Hachisuka and Derek Nowrouzezahrai.

4.0 Abstract

BSSRDFs are commonly used to model subsurface light transport in highly scattering media such

as skin and marble. Rendering with BSSRDFs requires an additional spatial integration, which

can be significantly more expensive than surface-only rendering with BRDFs. We introduce a

novel hierarchical rendering method that can mitigate this additional spatial integration cost.

Our method has two key components: a novel frequency analysis of subsurface light transport,

and a dual hierarchy over shading and illumination samples. Our frequency analysis predicts

the spatial and angular variation of outgoing radiance due to a BSSRDF. We use this analysis

to drive adaptive spatial BSSRDF integration with sparse image and illumination samples. We

propose the use of a dual-tree structure that allows us to simultaneously traverse a tree of shade

points (i.e., pixels) and a tree of object-space illumination samples. Our dual-tree approach

generalizes existing single-tree accelerations. Both our frequency analysis and the dual-tree

structure are compatible with most existing BSSRDF models, and we show that our method

improves rendering times compared to the state of the art method of Jensen and Buhler [JB02].



I. Illumination sampling II. Predicted sampling rate

III. Clustered pixels IV. BSSRDF contribution

Figure 4.1 – We introduce a hierarchical method to accelerate the rendering of multiple scattering
with BSSRDFs (IV). We overview our approach in the Picnik scene, above: our frequency
analysis of BSSRDFs allows us to predict the screen-space sampling rates (II) which are used
to devise bounds on the variation of outgoing radiance. These bounds allow us to efficiently
integrate the BSSRDF using a dual hierarchy over clustered illumination samples (I) and shading
points (i.e., pixels; III).

4.1 Introduction

Including subsurface scattering effects in virtual scenes can significantly increase the realism of

rendered images. Since many real-world materials exhibit subsurface scattering effects, modeling

and simulating them remains an important problem in realistic image synthesis.

Accurate light transport in highly absorbing media can be modeled mathematically with the

Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF). Many BSSRDF

models exist, with varying degrees of accuracy: classical dipole models [JMLH01, d’E12]

and quantized diffusion [DI11] do not account for the angular variation of incident radiance,

however more recent models do [FHK14, HCJ13b, d’E14]. Unlike BRDFs, BSSRDFs describe

light transport between two different locations on an object. As such, an additional spatial

integration (over the surface) is required in order to render objects with BSSRDFs. Jensen and

Buhler [JB02] introduced an adaptive hierarchical integration method to amortize the cost of

this spatial integration using clusters of spatial illumination samples. While this approach has

been successfully used in many applications, it does not take the smoothness of the resulting

outgoing radiance (i.e., in screen-space) into account.
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We propose a novel integration method that clusters both pixels and illumination points as

illustrated in Figure 4.1. We conduct a frequency analysis of subsurface scattering that is

agnostic to the underlying BSSRDF model. Specifically, we study the frequency content of

the spatial and angular variation of radiance after its BSSRDF interaction. This leads us to a

theoretically sound criterion for sparse sampling and adaptive integration. Using this criterion,

we leverage a dual hierarchical data structure to accelerate the final evaluation of the multiple

scattering term. Our hierarchical evaluation is motivated by the existing tree-based approach

of Jensen and Buhler [JB02]; our dual-tree structure, however, amortizes computation cost

across both pixels and illumination points. We are able to generate higher-quality results in less

rendering time compared to the single tree method of Jensen and Buhler [JB02]. Concretely, we

propose:

• a frequency analysis of shading with BSSRDFs,

• a numerical approach for estimating the BSSRDF spectra, which we use to determine

the variation of outgoing radiance over the surface of a translucent object, capable of

supporting any underlying dipole model, and

• the application of a dual-tree structure to the problem of BSSRDF estimation in joint

image- and object-space, directly leveraging our frequency analysis to adaptively traverse

the structure and accelerate the final rendering.

4.2 Previous Work

We focus on work that most closely aligns with our approach: specifically, we review integration

schemes for BSSRDF models, and frequency analyses of light transport.

BSSRDF Integration Techniques. In all cases, the bottleneck of dipole-like techniques

remains the numerical evaluation of the spatial-angular integration in Equation 4.1. Jensen and

Buhler [JB02] compute an approximate evaluation of this contribution from sparsely sampled
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irradiance samples distributed over a translucent object’s surface. Here, the outgoing radiance

at any shade point is computed by traversing a tree over the irradiance samples and terminating

traversal according to a quality criterion. This two-pass approach introduces a controllable

bias and has remained compatible (often without modification) with many of the newer dipole

models we discussed in Section 4.1: notably, Frisvad et al. need only substitute the (diffuse)

irradiance samples with a vector of differential irradiance samples, and d’Eon and Irving use a

supplemental 1D radial directional radiance bin.

Arbree et al. [AWB08] propose a scalable approach to rendering large translucent scenes based

on multidimensional lightcuts [WABG06]. They aggregate the computation of irradiance

samples by simultaneously clustering light sources and irradiance samples such that the resulting

contribution to a given shade point can be well approximated. While this work also uses two

trees, it treats each pixel independently without taking the resulting image smoothness into

account (see Figure 4 and Section 4.1 of [AWB08]). We do not consider the evaluation cost of

(ir)radiance samples, but we do cluster evaluation over pixels.

The idea of applying a doubly-adaptive traversal originates from the particle simulation litera-

ture [GR87], and the implementation of d’Eon and Irving’s quantized diffusion model [DI11]

in Pixar’s RenderMan implicitly leverages a similar principle (i.e., with REYES’ adaptive

micropolygon evaluation). We are similarly motivated by concurrent work that applies dual-

tree structures to density estimation problems in realistic image synthesis (an anonymized

manuscript of this concurrent work in submission is included in our supplemental material, for

reference) [Ano15]. One of our contributions is a well-founded oracle to terminate shading tree

traversal based on our BSSRDF frequency analysis.

Frequency Analyses of Light Transport. Durand et al. [DHS+05] presented the first

comprehensive Fourier analysis of light transport in scenes with opaque surfaces, and a proof-of-

concept adaptive image space sampling approach to reconstruct noise-free images at super-pixel

sampling rates. Bagher et al. [BSS+12] derived atomic operators for bandwidth estimation

in order to study environmental reflection with acquired BRDFs. Belcour et al. [BBS14]
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Figure 4.2 – We sample incident illumination over the object (a) according to its subsurface
scattering properties and construct two spatial acceleration structures: one over these samples
(c) and one over pixels (d). To render, we simultaneously traverse the trees (e), using our
outgoing radiance bandwidth estimate sp (b) to stop the tree traversal and shade super-pixels
of area A.

extend these frameworks to incorporate the study of scattering in arbitrary participating media,

however their analysis is not suited for dense media and BSSRDFs. We bridge this gap with a

frequency analysis of scattering in dense media, similarly leveraging matrix-vector formulations

of frequency-space bandwidth operators.

4.2.1 Overview

Figure 4.2 overviews our approach: after sparsely evaluating incident radiance on the surface

of each translucent object (Figure 4.2a), we compute a per-pixel bandwidth estimate of the

multiply-scattered outgoing radiance (Figure 4.2b). We build two spatial acceleration structures,

one over illumination samples (Figure 4.2c) and another over pixels (Figure 4.2d). In order

to compute the object’s final shading, we simultaneously traverse both trees, hierarchically

accumulating the contribution of groups of illumination samples to groups of pixels (Figure 4.2e).

We use the frequency bandwidth of the outgoing radiance predicted by our theory (Section 4.3)

to terminate traversal along each tree, significantly reducing the number of BSSRDF evaluations

necessary to compute the final image without introducing visible artifacts.

We present our BSSRDF frequency analysis theory, as well as its numerical realization for

computing image-space radiance bandwidths in Section 4.3. We introduce our variant of the

dual tree construction and explain how the bandwidth predictions are used during hierarchical
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traversal in Section 4.4. Finally, we discuss our implementation details in Section 4.5 and

compare our method to the state of the art in Section 4.6.

4.3 Fourier Analysis

We will derive conservative, numerical estimates of the frequency bandwidth of the outgoing

radiance in image space, taking into account the effects of curvature, foreshortening, transport

and multiple scattering on the incident light field’s frequency content. We will show that

the BSSRDF acts as a band-limiting filter on the incident radiance distribution, and we will

derive a conservative expression of the resulting spatio-angular bandwidth of the outgoing

radiance spectrum (Section 4.3). We will use these bandwidth estimates, combined with the

formulation of Bagher et al. [BSS+12], to predict the variation of outgoing radiance in image

space (Section 4.3.2), which will in turn drive our hierarchical dual tree traversal and integration

(Section 4.4).

4.3.1 Fourier Transform of a BSSRDF

Given a BSSRDF model S(xi,ωi,xo,ωo), the outgoing radiance at the object surface Lo in

direction ωo and at position xo is expressed as:

Lo(xo,ωo) =

∫∫
A×H

S(xi,ωi,xo,ωo)Li(xi,ωi) dω
⊥
i dxi, (4.1)

where A is the object’s surface area, H is the set of (hemispherical) incident directions, Li is

the incident radiance, and dω⊥i = cos θi dωi is the projected solid angle.

If we apply a Fourier transform to Equation 4.1, converting products in the primal domain to

convolutions in the frequency domain and integration in the primal domain to DC evaluation in
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Figure 4.3 – Assuming that the incoming light-field has infinite bandwidth, we conservatively
estimate the bandwidth of the outgoing light-field [Bs, Bθ] as the bandwidth of the BSSRDF
along the outgoing spatial positions and directions (a). The interaction with the material limits
the spectrum of the local light-field by the BSSRDF spatial and angular bandwidth (b). To
estimate the bandwidth at the camera position, we first shear spatially the spectrum to account
for curvature (c). Then, we scale spatially to account for foreshortening (d) and finally shear
angularly the spectrum to account for transport (e).

the frequency domain, we obtain:

F
[
Lo
]
(Ωxo ,Ωωo) =

[
F
[
Ŝ
]
◦ F
[
Li
]]

(0, 0,Ωxo ,Ωωo), (4.2)

where F
[
f
]
is the Fourier transform of f , ◦ the convolution operator, and Ωx the frequency varia-

tion of x. Concretely, the outgoing radiance’s spatial-angular frequency spectrum F
[
Lo
]
(Ωxo ,Ωωo)

results from evaluating the convolution of the Fourier transform of the cosine-weighted BSSRDF

F [Ŝ] = F [S(xi,ωi,xo,ωo) cos(θi)] with the Fourier transform of the incident light F [Li] at the

incoming spatial and directional DC frequencies (Ωxi ,Ωωi) = (0, 0).

Assuming that F
[
Li
]
contains all-frequency content, the resulting outgoing bandwidth (along

Ωxo and Ωωo) after convolution against the spectrum of the cosine-weighted BSSRDF F [Ŝ] will

match the bandlimit of F [Ŝ] (see Figure 4.3a). We will discuss how to compute the spatial and

angular bandwidths {Bo, Bθ} of the cosine-weighted BSSRDF given its local orientation.

Spatial Bandwidth. We compute the cosine-weighted BSSRDF’s spatial bandwidth numer-

ically by sampling and projecting S(xi,ωi,xo,ωo) cos(θi) into the frequency domain, across

its different dimensions. Depending on the underlying BSSRDF model, the cosine-weighted
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BSSRDF may depend on the viewing direction, the incident lighting direction, and the distance

and angle between xo and xi.

For instance, the dipole model has a separable form:

F [Ŝ] = F [Rd(||xi − xo||) Fi(θi) cos(θi) Fo(θo)] ,

where Rd is the diffuse reflectance, and Fi and Fo are the incident and outgoing Fresnel

terms [JMLH01, Equation 5]. Here, we take advantage of the separability of the model (w.r.t.

θi and θo) to express its Fourier transform as

F [Ŝ] = F [Rd(||xi − xo||) ] F [Fi(θi) cos θi]︸ ︷︷ ︸
F [Ŝi](Ωxi ,Ωxo ,Ωωi )

F [Fo(θo)] .

Since we are only concerned with the DC [Ωxi ,Ωωi ] = [0, 0] hyperplane, the spatial bandwidth

is computed with the 1D diffuse reflectance spectrum F [Rd] (Ωxo). We discuss the outgoing

term F [Fo] (Ωωo) below.

In contrast, the directional dipole [FHK14] additionally takes ωi and the direction between xi

and xo into account:

F [Ŝi] = F
[
e−σtr ||xi−xo||

4π2||xi − xo||3
M(xi − xo,ω12) Fi(θi) cos θi

]
,

where M(xi − xo,ω12) models the spatial-directional scattering distribution and ω12 is the

refraction of ωi at xi [FHK14, Equation 17]. We extract the outgoing spatial bandwidth by

taking the maximum 1D bandwidth for various angles between xi − xo, the normal at xi and

the refracted ray ω12.

In all instances, we compute a conservative estimate of the outgoing spatial and directional

frequency bandwidths, Bs and Bθ, as the values required to retain 95% of the energy of the

discrete power Fourier spectrum.
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Angular Variation. The angular variation of the BSSRDF is modulated by the outgoing

Fresnel term above, and we use a windowed Fourier transform to compute the bandwidth of

F [Fo] (Ωωo), again as the 95th energy percentile spectrum value. We tabulate these bandwidths

as a function of θo, and use them to modulate Bθ; this is particularly important at grazing

angles, where the effects of the spectrum of the outgoing Fresnel term can significantly impact

the angular bandwidth of the outgoing radiance.

4.3.2 Outgoing Radiance Bandwidth Computation

Given the spatial-angular bandwidth of the outgoing radiance at a shade point, conservatively

estimated as the BSSRDF bandwidth, we need to compute the associated pixel frequency

bandwidth. To do so, we are motivated by Bagher et al.’s [BSS+12] bandwidth tracking

approach, applying bandwidth evolution operators defined by Durand et al. [DHS+05] to the

bandwidth vector [Bs, Bθ]
T . Figure 4.3 (c – d) illustrates the transport operators in the following

order:

1. we transform from local shade point coordinates to global coordinates by projecting the

outgoing spectrum onto the shade point’s tangent plane, which amounts to a shear in the

spatial frequency according to the local curvature k,

2. we take the foreshortening towards the viewpoint due to cos θo into account, stretching

the spectrum spatially, and

3. we evaluate the spectrum at the sensor, after transport through free-space with a distance

d, by applying an angular shear to the spectrum.

These operations can be compactly expressed as matrix operators, if we act directly on frequency

bandwidths instead of the full spectra [BSS+12], as:

Td =

1 0

d 1

 , Px =

1/cos θx 0

0 1

 , and Ck =

1 k

0 1

 .
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a) Bunny b) Close-up Bunny c) Toad

Figure 4.4 – First row: The sampling rate sp computed from the screen-space bandwidth
estimation. Second row: Pixel areas from which the sampling rate predicts an adequate
approximation of the outgoing radiance variation.

We apply these operators, in order, to the outgoing radiance bandwidth (i.e., the BSSRDF

bandwidth [Bs, Bθ]), to predict the final screen space bandwidth vector for a pixel as:

[
Bp Ba

]T
= Td Px Ck

[
Bs Bθ

]T
. (4.3)

Isolating the screen space angular bandwidth Ba above,

Ba = Bθ + d (Bs + kBθ)
/

cos θ , (4.4)

and applying the Nyquist criterion, we arrive at the pixel sampling rate sp (in units of pixel−1)

as twice the angular screen space bandwidth,

sp = 2 Ba max
(
fx
/
W, fy

/
H
)
, (4.5)

for a W ×H image resolution and a horizontal and vertical field of view of fx and fy. Figure 4.4
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visualizes the screen space sampling rate for the scenes we render. We discuss how we use the

pixel sampling rate to drive our new dual hierarchical BSSRDF integration approach below.

4.4 Hierarchical Approach

We explain how to utilize our bandwidth estimation in order to accelerate rendering with

BSSRDFs. We first review the single hierarchy approach of Jensen and Buhler [JB02], then

explain how we can use a dual hierarchy to adaptively cluster both illumination samples and

pixels simultaneously.

4.4.1 Hierarchical Surface Integration

Jensen and Buhler [JB02] pointed out that we can cluster illumination samples over the surface

in order to reduce the cost of BSSRDF evaluations. The underlying observation is that we

can aggregate contributions from illumination samples that are distant from a given shading

point. We can thus evaluate the BSSRDF only once for a cluster of such illumination samples,

resulting in fewer BSSRDF evaluations.

This approach has two passes. In the first pass, pre-integrated illumination samples are inserted

into a tree data structure where each inner node i represents the aggregated information of

its children. For example, each node stores the average illumination, the total surface area Ai,

and the irradiance-weighted average location pi of its children. In the second pass, we traverse

this tree until the current node accurately represents all the contributions of its children to a

given shading point. If the shading point is in the bounding volume of the current node, we

keep traversing the tree and consider contributions from the children nodes. Otherwise, we

traverse to the child nodes only if the conservative estimate of the solid angle subtended by the

illumination samples , ∆ω = Ai

/
||xo − pi||2, is larger than the user-defined quality threshold ε

(Algorithm 1). While this approach significantly reduces the cost of integration over the surface,

it is repeated for each shading point without considering the smoothness of resulting pixels

values in screen-space.
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Algorithm 1 Single-hierarchy tree traversal: xo is the shading point/pixel, with IL and IR as
children of the active node.

procedure Single(xo, I)
if I is leaf or (∆ω < ε and xo 6∈ BBox(I)) then

c← contribution of I to xo

add c to xo

else
Single(xo, IL), Single(xo, IR)

4.4.2 Dual Hierarchy for Pixel-Surface Integration.

We leverage a dual hierarchy to avoid traversing the illumination tree at every pixel. Similar to

the spatial hierarchy of illumination samples in the previous approach, we also cluster pixels in

the screen space and traverse two trees simultaneously. Each node in our pixel-tree stores the

average world-space position po corresponding to the pixel group, its bounding box, the average

normal direction, the average view direction, and the list of pixels covered by the node. This

dual-tree approach allows us to evaluate the contribution from a cluster of illumination samples

to a cluster of pixels. Algorithm 2 is a pseudocode of our dual-tree approach.

The key difference from the single tree approach is that, at each traversal step, we have a choice

of refining the pixel and/or illumination point clusters. For refining clusters of illumination

samples, we use a criterion similar to the single tree approach. We always traverse down the tree

if bounding volumes of pixels and illumination samples intersect. Otherwise, we decide if we want

to keep traversing the tree based on the extended solid angle measure, ∆ω = Ai

/
||po − pi||2,

which uses the average position po of clustered pixels.

Criterion to Refine Pixel Clusters. To refine pixel clusters, we use our frequency analysis

to conservatively predict the potential variation in pixels. Given a pixel sampling rate sp[i] for

the ith pixel in a pixel tree node, a conservative estimate of a screen-space filter extent, centered

about the node, is

P = ρ
/

max
i

(sp[i]), (4.6)
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where ρ is a user-defined parameter that intuitively corresponds to the fraction of captured

outgoing radiance required to avoid discontinuity artifacts. For all our examples, we found that

using ρ = 0.75 produces good results. The ρ setting influences pixel cluster refinement during

traversal.

We refine the cluster only if our criterion predicts a high variation of outgoing radiance in the

parent node’s pixels (the Shade routine in Algorithm 2). During shading (Shade procedure)

we do not adaptively refine the illumination cluster and conservatively assume that ∆ω < ε is

satisfied for all the children nodes. We could alternatively continue refining along the illumination

tree for sub-nodes of the pixel tree. However, not refining results in better performance without

any noticeable visual artifacts.

Algorithm 2 Dual-hierarchy traversal: S and I are the root nodes of the shading point and
illumination trees, with S{L|R} and I{L|R} their respective left and right children.

procedure Dual(S, I)
if ∆ω < ε and BBox(S) ∩ BBox(I) = ∅ then

Shade(S, I)
else

if S is leaf and I is leaf then
Shade(S,L)

else if S is leaf then
Dual(S, IL), Dual(S, IR)

else if I is leaf then
Dual(SL, I), Dual(SR, I)

else
Dual(SL, IL), Dual(SR, IL)
Dual(SL, IR), Dual(SR, IR)

procedure Shade(S, I)
if Length(S) < ρ / Bandwdith(S) then

Shade(SL, I), Shade(SR, I)
else

c← contribution of I to S
add c to all pixels x in S

4.5 Implementation

We implemented our approach in the G3D Innovation Engine [MMO14] and our results were

measured on a 2.8 GHz Intel Core i7 930 with 12 GB of RAM. Both our illumination and pixels
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Figure 4.5 – We compare our approach (red) to Jensen and Bulher [JB02] (blue) for different
settings of ε. We highlight the ε ∈ [0.01, 0.2] values and consistently reach equal-quality
(measured in RMSE; y-axis) in less render time (in seconds; x-axis).

hierarchies are kd-trees, split along the largest bounding volume dimension. Our single- and

dual-tree implementations use the same underlying kd-tree structure.

We uniformly sample points on translucent objects with Bowers et al. [BWWM10] blue noise

approach, and image-space curvature values are interpolated from object-space values precom-

puted with the robust curvature estimator of Kalogerakis et al. [KSNS]. In Section 4.3.1 we

compute BSSRDF bandwidths as the 95th percentile of the discrete spectrum, where this setting

balances numerical stability and accuracy. We use ρ = 0.75 (Equation 4.6) in all our scenes and

plots, as we found this value avoids discontinuity artifacts while providing good performance.

We discuss the performance vs. accuracy trade-offs of ρ and ε in Section 4.6.

4.6 Results and Discussions

We have tested our approach on objects with a range of scattering parameters, as well as adapting

our frequency analysis to support several BSSRDF models: the standard dipole [JMLH01], the

“better dipole” [d’E12], and the directional dipole [FHK14]. We use three scenes of increasing

radiometric complexity: Bunny, Toad, and Picnik (Figures 4.7, 4.6, and 4.1). Toad uses the

directional dipole, and the remaining scenes use the better dipole.

52



We compare root mean square error (RMSE) of our technique to the single hierarchy of Jensen

and Buhler [JB02], for total render time, on the Bunny and Toad scenes (Figure 4.5). We

sampled ε to generate the plots, and our approach consistently reaches equal quality in less time.

Comparisons in the Bunny scene (Figure 4.7) illustrate our scalability with pixel coverage:

the performance discrepancy between the full-view (Figure 4.5a) and zoom-in (Figure 4.5b)

renderings is due to the total number of pixels present in the pixel hierarchy. As expected, the

benefit of our approach increases with the number of translucent pixels: one can expect our

approach to scale sub-linearly here, which is particularly favorable given recent trends towards

higher resolution renderings and higher pixel supersampling rates.

Dual-tree (Ours) Single-tree [JB02]

Figure 4.6 – The Toad scene has a bumpy geometry with detailed textures. We compare the
difference images of the multiple scattering term against the ground truth for an equal rendering
time (196s). The difference images are scaled by 50 for visualization. Our approach achieves
more accurate estimation than the single-tree in the same rendering time.
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Dual-tree (Ours) Single-tree [JB02]

Figure 4.7 – The Bunny scene. We compare the difference images of the multiple scattering
term against the ground truth for an equal rendering time (60s). The difference images are
scaled by 200 for visualization. In this example, our approach removes artifacts under the tail
and reduces moiré patterns present in the single-tree approach.

Our screen space adaptive sampling rate accounts both distance, local curvature, foreshortening

and BSSRDF properties from first principles. Moreover, it properly explains (and subsumes)

most of the previously used heuristics in the literature, e.g., depth and normal min/max

methods [NW09]. Our sampling rate formulation (Equation 4.4) is simple and only requires the
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precomputation of two values (Bθ, Bs) per material. We do not require an additional pass to

aggregate min/max statistics over the G-buffer.

Limitations. The Picnik scene (Figure 4.8) is a “failure” case: specifically, our current imple-

mentation creates a separate dual tree per object, and since the Picnik scene includes several

(smaller) translucent objects, we only obtain a benefit for a sub-region of the quality/performance

range. Moreover, the solid angles ∆ω spanned by pixel-tree nodes are more sensitive to errors

for small objects and small BSSRDF scales. Since our technique approximates ∆ω for a group

of pixels, it is sensitive to these scenarios and we plan to address this issue in the future by

devising more appropriate ∆ω estimates. Overall, the fact that the additional tree construction

time is amortized over fewer pixels, and the nature of our non-conservative ∆ω estimate in the

presence of smaller objects (in image-space), contribute to the suboptimal performance profile

in this scene. This also explains the reduced error reduction rate for small ε.
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Figure 4.8 – The Picnik scene challenges the assumptions of our work, and we only obtain
equal-quality benefit at lower rendering times (albeit enough for visual convergence).

In some difficult scenarios, high frequencies may be missed due to pixel discretization: for

instance, a worst-case scenario would involve a camera facing an object with staggered depth

discontinuities, which may miss small depth changes due to pixel aliasing. Here, we would group

pixels that should not have been grouped.
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4.7 Conclusion

We presented a new frequency analysis of BSSRDFs in order to predict the variation of outgoing

radiance for multiple subsurface scattered light. We build and traverse a dual hierarchy

over illumination samples and pixels using a well-founded refinement strategy that leverages

our frequency bandwidth estimates. This yields an adaptive rendering strategy that almost

consistently outperforms the state-of-the-art. Moreover, our frequency analysis and bandwidth

estimates apply to a variety of existing BSSRDF models with negligible precomputation, our

rendering technique scales positively with shading resolution, and all without introducing any

additional approximation error.

Our approach leads to several interesting open questions:

1. An interesting avenue would be to combine our work and the one of Arbree et al. [AWB08].

They cluster both light source positions and illumination points at the surface of the

object while we cluster both illumination points and shading points. Based on the same

multiple cluster idea, it should be possible to build a trial-tree that accounts for those

three components during rendering;

2. Our frequency analysis does not account for surface global illumination transport: we ignore

visibility, and the use of spatial illumination samples ignores incident radiance variation.

Modeling this behavior more accurately could lead to less conservative bandwidth estimates

and traversal criteria;

3. There are no reasons why our theory and implementation could not support other existing

diffusion models (e.g., quantized diffusion [DI11]), and so implementing these models

under our framework is interesting even if only for the sake of completeness;

4. Investigating how increases in ε should affect our choice of ρ, and vice versa, leads to the

interesting question of whether an “optimal” parameter setting for both these values could

be computed automatically;
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5. Lastly, we are exploring the effects on performance and accuracy of replacing our position-

based solid angle approximation with the actual projected solid angle of the underlying

surface elements.
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Chapter 5

Conclusion

Beginning with a foundational view of modern radiometry in the context of realistic image

synthesis, we introduced the mathematical formalisms necessary to understand the behaviour

of light transport in dense participating media. Specifically, we first presented the rendering

equation that models the global interaction of light in scenes comprising solid, opaque reflectors.

Here, the local interaction of light incident on different reflecting materials (e.g., metals, matte

reflectors) is modelled by the bidirectional reflectance distribution function (BRDF). Since

analytic solutions to the rendering equation are only possible in simple geometries, we also

detailed the most prevalent numerical techniques used to solve the rendering equation in the

most general setting. These techniques can roughly be categorized as either sampling-based or

density estimation-based solutions.

Since, in the most general case, free-space is occupied by media like fog, dust or smoke, the

assumption that light travels unimpeded from surfaces to surfaces no longer holds. To model the

behaviour of light in these more representative scenarios that include participating volumetric

media, we presented the radiative transport equation (RTE) that models four additional types of

interactions in the media: absorption, emission, outscattering, and inscattering. We showed how

the differential form of the RTE can be reformulated as an integration problem and, similarly

to the surface-only rendering equation, we presented numerical solutions to the RTE integration

problem in scene with participating media.

Theses aforementioned numerical methods suffer from noise and efficiency issues. To address

these problems, we presented the concept of diffusion based subsurface scattering to solve

the RTE more efficiently and accurately, under important practical circumstances. We have

described the generalization of BRDF to bidirectional surface scattering reflectance distribution

function (BSSRDF), which does not assume that light enters and exits the surface at the same

point (Figure 3.1). This imposes major changes in traditional rendering algorithms, for which we



have explored the state of the art of diffusion theory: the searchlight problem, dipole, quadpole,

multipole, quantized diffusion, directional dipole, and several related techniques.

The efficient numerical spatial integration necessary for these various analytic approaches is an

important part of making them practical. Since standard sampling approaches are prone to

noise, we have reviewed the two-pass hierarchical approach of Jensen and Buhler [JB02], along

with its single-pass extension by Arbree et al. [AWB08], which are the most common techniques

used to address this spatial integration noise.

Starting from the seminal frequency analysis of light transport by Durand et al. [DHS+05], we

have devised a novel extension to enable a similar frequency analysis of light transport in the

context of subsurface volumetric scattering with BSSRDF models. We have contributed a novel

numerical technique to estimate the frequency spectrum of scattered light in translucent media.

We demonstrated the practical benefits of our formulation and adapted a novel dual-tree data

structure to adaptively evaluate the underlying BSSRDF in joint image- and object-space.

Our frequency analysis has limitations, however: high frequency details may be missed due

to pixel discretization limitations. In its practical application, our cluster approximation is

sensitive to the size of objects on small BSSRDF scales. Further investigation of our solid angle

approximation of the cluster could lead to a more robust solution. Another interesting direction

of future work could aim for interactivity with progressive rendering, where pixel clusters could

be assigned importance values based on their predicted intensity.
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