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Résumé 

La réaction de macrocyclisation est une transformation fondamentale en chimie 

organique de synthèse. Le principal défi associcé à la formation de macrocycles est la 

compétition inhérente avec la réaction d’oligomérisation qui mène à la formation de sous-

produits indésirables. De plus, l’utilisation de conditions de dilutions élevées qui sont 

nécessaires afin d’obtenir une cyclisation “sélective”, sont souvent décourageantes pour les 

applications à l’échelle industrielle. Malgré cet intérêt pour les macrocycles, la recherche 

visant à développer des stratégies environnementalement bénignes, qui permettent d’utiliser 

des concentrations normales pour leur synthèse, sont encore rares. Cette thèse décrit le 

développement d’une nouvelle approche générale visant à améliorer l’efficacité des réactions 

de macrocyclisation en utilisant le contrôle des effets de dilution. Une stratégie de “séparation 

de phase” qui permet de réaliser des réactions à des concentrations plus élevées a été 

developpée. Elle se base sur un mélange de solvant aggrégé contrôlé par les propriétés du 

poly(éthylène glycol) (PEG). Des études de tension de surface, spectroscopie UV et tagging 

chimique ont été réalisées afin d’élucider le mécanisme de “séparation de phase”. Il est 

proposé que celui-ci fonctionne par diffusion lente du substrat organique vers la phase ou le 

catalyseur est actif. La nature du polymère co-solvant joue donc un rôle crutial dans le 

contrôle de l’aggrégation et de la catalyse La stratégie de “séparation de phase” a initiallement 

été étudiée en utilisant le couplage oxidatif d’alcynes de type Glaser-Hay co-catalysé par un 

complexe de cuivre et de nickel puis a été transposée à la chimie en flux continu. Elle fut 

ensuite appliquée à la cycloaddition d’alcynes et d’azotures catalysée par un complexe de 

cuivre en “batch” ainsi qu’en flux continu.  
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Abstract 

Macrocyclization is a fundamentally important transformation in organic synthetic 

chemistry. The main challenge associated with the synthesis of large ring compounds is the 

competing oligomerization processes that lead to unwanted side-products. Moreover, the high 

dilution conditions needed to achieved “selective” cyclization are often daunting for industrial 

applications. Despite the level of interest in macrocycles, research aimed at developing 

sustainable strategies that focus on catalysis at high concentrations in macrocyclization are 

still rare. The following thesis describes the development of a novel approach aimed at 

improving the efficiency of macrocyclization reactions through the control of dilution effects. 

A “phase separation” strategy that allows for macrocyclization to be conducted at higher 

concentrations was developped. It relies on an aggregated solvent mixture controlled by a 

poly(ethylene glycol) (PEG) co-solvent. Insight into the mechanism of “phase separation” was 

probed using surface tension measurments, UV spectroscopy and chemical tagging. It was 

proposed to function by allowing slow diffusion of an organic substrate to the phase where the 

catalyst is active. Consequently, the nature of the polymer co-solvent plays a role in 

controlling both aggregation and catalysis. The “phase separation” strategy was initially 

developed using the copper and nickel co-catalyzed Glaser-Hay oxidative coupling of terminal 

alkynes in batch and was also transposed to continuous flow conditions. The “phase 

separation” strategy was then applied to the copper-catalyzed alkyne-azide cycloaddition in 

both batch and continuous flow. 

Keywords : Macrocyclization, phase separation, poly(ethylene glycol), Glaser-Hay 

alkyne coupling, diynes, copper catalysis, azide-alkyne cycloaddition, triazole, continuous 

flow chemistry 
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Chapitre 1 : Introduction 

Macrocyclization is a fundamentally important and challenging transformation in 

organic synthetic chemistry. Despite the level of interest in macrocycles, research aimed 

at developing sustainable strategies in macrocyclization are still rare.1 The lack of 

sustainable approaches to prepare macrocycles is surprising, given how the principles of 

green chemistry have influenced synthetic organic chemists to promote a more 

responsible and environmentally benign approach in science.2 The following thesis 

describes the development of a novel approach aimed at improving the efficiency of 

macrocyclization reactions through the control of dilution effects. A “phase separation” 

strategy that allows for macrocyclization to be conducted at higher concentrations was 

developed relying on an aggregated solvent mixture controlled by a poly(ethylene glycol) 

(PEG) co-solvent. The subsequent introduction to the thesis will first discuss the 

importance and applications of macrocycles, including a brief description of the 

challenges and general solutions associated with their synthesis. Following the general 

section on macrocycles, an introduction to the properties and uses of poly(ethylene 

glycol) in synthetic organic chemistry will be presented (Chapter 2.2). An overview of 

concepts such as aggregation, phase transfer catalysis and micellar catalysis will also be 

presented, as they provide a background for the understanding of the mechanism of the 

“phase separation” strategy. The novel strategy was initially developed with the Glaser-

Hay oxidative coupling of alkynes (Chapter 2.1) and later applied to continuous flow 

condition. An overview of the reaction as well as a brief introduction to continuous flow 

chemistry (Chapter 7) will be presented. Finally, copper-catalyzed alkyne-azide 

cycloadditions will be introduced (Chapter 9) as the “phase separation” strategy was later 
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applied to the synthesis of triazole containing medicinally relevant macrocycles (Chapter 

10 and 11). 

1.1 – The Importance and Applications of Macrocycles 

Formaly, macrocycles are defined by IUPAC as a ring achitecture comprising of 

12 or more atoms in the ring.3 Noteworthy, it is common in the literature that >8-

membered ring sizes are considered macrocycles. As they occupy a unique chemical 

space, their distinctive properties have impacted many areas of chemistry including 

medicinal chemistry, the development of conjugated materials, perfumery and 

supramolecular chemistry.  

1.1.1 – Medicinal Chemistry 

In medicinal chemistry, macrocyclic structures provide a compromise between 

optimal structural preorganization, that moderates the entropic factors upon binding onto 

a biological target, and flexibility to adjust to the active site.4 Although the structural 

properties of macrocycles makes them potential drug candidates, macrocycles are only 

scarcely explored in medicinal chemistry.5 The lack of interest may be due to the 

acceptance of Lipinski’s rule of five6,7 as the predominant guidelines for identifiying 

desirable drug candidates in the pharmaceutical industry. Due to their prohibitively large 

molecular weight, the integration of macrocyclic structures in medicine has been limited 

despite their known therapeutic potential.4-5,8 Some exceptions include naturally occuring 

macrocycles such as erythromycin 1.1 (Figure 1.1a) or vancomycin, two potent 

antibiotics that can be isolated and produced from a bacterial source in significant 

quantities. Rapamycin 1.2 (Figure 1.1b) is another naturally occuring macrocycle that is 
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used as an immunomodulator for cancer therapy.9 Macrocyclic peptides are also 

prominent drug candidates due to their efficiency at modulating protein-protein 

interactions (PPIs), a challenge not easily solved by small molecule therapeutics.4-5 For 

example, macrolactone 1.3 (Figure 1.1c) can modulate PPIs of the Sonic hedgehog (Shh) 

pathway, a key factor in embryonic development.10 Furthermore, large ring compounds 

with low molecular weights (<500 g/mol) can also possess interesting biological activity 

as MacPherson reported macrocycle 1.4, a small molecule neutral endopeptidase (NEP) 

inhibitor (Figure 1.1d), implicated in cardiovascular diseases.11  

 
Figure 1.1 – Structures of biologically active macrocycles. a) erythromycin 1.1, b) 

rapamycin 1.2, c) Sonic hedgehog modulator 1.3, d) neutral endopeptidase inhibitor 1.4.  
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1.1.2 – Macrocycles in Conjugated Materials 

Porphyrin is one of the most widely known macrocycles. Its planar cyclic 

structure makes it Nature’s ligand of choice for metal ion integration. For example, the 

cofactor of hemoglobin, heme B 1.5 (Figure 1.2a), integrates a Fe2+ cation, allowing for 

oxygen transport in the human body.12 Light-harvesting in plants also relies on 

conjugated macrocycle chlorophyll c bearing a Mg2+ cation at its center.13  

In material sciences, the study of shape persistent conjugated macrocyclic 

structures attracts significant research interest since they can be used as building blocks 

for nanotubes or 2D porous materials.14 A recognized family of conjugated macrocycles 

are annulenes, such as [14]annulene 1.6 (Figure 1.2b). Interestingly, the alkyne moiety is 

often used in the synthesis of conjugated, shape persistent macrocycles due to its well-

defined geometry (typically 180o) and ability to rigidify the parent structures. For 

example, diethynylcarbazole macrocycle 1.7 (Figure 1.2c) has been reported to display 

interesting optical, electronic and magnetic properties.15 

 
Figure 1.2 – Structures of conjugated macrocycles. a) heme B 1.5, b) [14]annulene 1.6, c) 

diethynylcarbazole macrocycle 1.7. 
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1.1.3 – Macrocycles in Perfumery 

The quest for new flavors and fragrances continues to be an active field of both 

academic and industrial importance.16 In the 1920’s, muscone 1.8 (Figure 1.3a), a 

macrocyclic musk, was extracted from the musk deer apocrine glands. The death of the 

animal was a prerequisite for the extraction of the scent. Historically, the word “musk” is 

derived from the Sanskrit muská, which means testicle, and refers to the fragrant 

secretions of the apocrine glands of the male musk deer (Moschus moschiferus), a small 

asian deer.17 Other animals have also been scavenged and a large family of odorant 

macrocyclic ketones have been isolated. Moreover plants have also been investigated in 

the quest for new perfumes.18 Intriguely, animal sources yielded macrocyclic ketone 

containing musks such as muscone 1.8, while vegetable sources provided macrocyclic 

ester containing scents such as exaltolide 1.9 and isoambrettolide 1.10 (Figure 1.3 b and 

c, respectively).16,19  

Macrocyclic musks are of interest to the perfume industry as they have unique 

odor properties and possess superior biodegradability over polycyclic or nitro-containing 

musks.16 While the synthesis of macrocyclic musks was initially prohibitively 

challenging,19 their synthesis was rigourously optimized and they can now be 

manufactured on industrial scale; macrocyclic musks are commonly found in fine 

fragrances, shampoos, shower gels, soaps and detergents.16,18  
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Figure 1.3 – Structures of macrocyclic musks. a) muscone 1.8, b) exaltolide 1.9, c) 

isoambrettolide 1.10.  

 

1.1.4. – Macrocycles in Supramolecular Chemistry 

Heteroatom rich macrocycles are often used in supramolecular chemistry to take 

advantage of their available lone pairs in a cooperative manner.20 One example of such  

macrocycles are cyclodextrins (CD), cyclic oligomers of α-D-glucopyranose. The 

smallest cyclodextrin known is α-CD 1.11 (Figure I.4a) incorporating six glucose units. 

α-CD 1.11 is used in the food industry as soluble dietary fiber.21 CDs have also found 

applications in drug delivery since their hydrophobic interior cavity can accommodate 

organic molecules while their hydrophilic exterior ensures solubility in aqueous media.22 

Crown ethers such as [18]-crown-6 1.12 (Figure 1.4b) are also widely exploited in 

supramolecular chemistry for their ability to coordinate cations.23 The 1987 Nobel Prize 

in Chemistry rewarded, in part, Charles Petersen for his synthesis and studies on cyclic 

polyethers.24 An additional example of a heteroatom rich macrocycle is the anti-cancer 

agent AFP-Cide 1.13 (Figure I.4c), whose core is derived from DOTA (1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid), a 12-membered macrocycle that can 

chelate and deliver a radioactive ytterbium isotope (90Y3+) while being linked with the 

Tacatuzumab antibody.25  
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Figure 1.4 – Structures of macrocyclic supramolecules. a) α-cyclodextrin 1.11, b) [18]-

crown-6 1.12, c) AFP-Cide 1.13.  
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data with the reactivity profile graph for lactone 1.15 formation via SN2 from the 

corresponding bifunctional precursor 1.14 (Scheme 1.1, top) and the graph is often used 

as a guideline for macrocyclization (Scheme 1.1, bottom). As depicted in the graphic, 4 to 

6-membered rings have the highest rate of cyclization, while medium-sized rings (8 to 

12-membered rings) are the most challenging size to prepare as they have the lowest rate 

of intramolecular ring closure (kintra).29 Macrocycles ranging from 13 to 24-membered 

rings tend to have the similar rate of ring closure which are comparable to those for 3 or 

7-membered rings. 

 

 

  

 

 

 

 

 

 

Scheme 1.1 – (top) Lactone 1.15 formation reaction for the corresponding bifunctional 

precursor 1.14 and (bottom) reactivity profile in function of the ring size formed. 

(Reproduced with permission from ref 22. Copyright 1981 American Chemical Society.)  

  

Br ONa

O

n

DMSO (10 to 90 mM)
 50 oC O

O

n

1.14 1.15

lo
g 

k i
nt

ra
 



 

 9 

In order to compare the relative efficiency of a wide range of macrocyclization 

reactions, an index (Emac) was developped by James and co-workers in 2012 based on a 

literature review.30 They surveyed 896 macrocyclization reactions from 327 publications. 

The “Emac” is a comparative index that takes into account the yield of the reaction as 

well as its concentration and is defined as : Emac = log10(Y3 x C), where Y is the yield in 

% and C the concentration in mM. In the index, the yield of the reaction is worth three 

times the importance of the concentration. Arguably, the most common solution to the 

challenges associated with large ring synthesis is to perform the reaction under high 

dilution conditions (refer to section 1.3.1), hence the presence of the concentration factor 

in the “Emac” index.  Unfortunately, no parameter for catalytic efficiency, stoichiometric 

use of reagents, or conformational bias of the precusor are included in the index. 

1.2.1 – Reactive Conformation  

Neither previous analysis (Scheme 1.1 and “Emac”) take into account any 

substitution of the linear precursor that could lead to spatial preorganization that would 

affect the rate of cyclization. Importantly, it has been demonstrated that ring size is not 

the dictating factor in many macrocyclization reactions, but rather the ease with which 

the linear precursor can adopt the reactive conformation.27,31 A striking example is the 

macrocyclization by ring-closing metathesis (RCM) of diene precursor 1.16 (Scheme 1.2, 

top). As the precusor can easily adopt the reactive conformation, the cyclization yields 80 

% of desired macrocycle 1.17. On the other hand, the productive conformation is less 

abundant when the structure of the ester is inverted (the carbonyl has been transposed to 

the opposite side of the ester oxygen atom). Consequently, diene precursor 1.18 only 

affords 18 % of the desired macrocycle 1.19.32 
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Scheme 1.2 – The importance of conformation in macrocyclization by RCM.  
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Figure 1.4 – Attemps to synthesize the Pro-Ala-Ala-Phe-Leu macrocycle 1.20 using a Pfp 

ester activation strategy in dilute media.  
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Scheme 1.3. – Macrolactonization of seco-acids derived from octalactins. 

 

1.3 – Traditional Solutions for Macrocyclization Reactions 

1.3.1 – High Dilution and Slow Addition 

 Ruzicka’s application of physical chemistry principles to the synthesis of 

macrocycles36 established that the reaction between two reactive functionalities 

intramolecularly to yield a macrocycle was a first order reaction. The process is in 

competition with an intermolecular oligomerization, a second order reaction (Scheme 1.4, 

top). In order to favor the desired intramolecular pathway, Ziegler proposed that the high 

dilution of a reaction would favor the unimolecular reaction to afford the macrocycle.37 

The ratio of the rate constant for the two reactions is referred to as the effective molarity 

(EM) (Scheme 1.4, bottom).38 For an unstrained macrocyclization, the ratio is expected to 
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be one to one. Unfortunately, ring strain is often present and reduction of the 

intramolecular rate is observed.  

 

Scheme 1.4 – (top) Rate of macrocyclization vs dimerization and (bottom) effective 

molarity equation. 

 

 The concept of effective molarity can be useful when choosing a concentration at 

which to run a macrocyclization reaction. As depicted in Figure 1.5, high dilution 

significantly decreases the rate of intermolecular processes, favouring the desired 

cyclization. Pfizer Pharmaceutical Sciences reported that the benchmark concentration 

for a process macrocyclization is 200 mM.30 Similar comments on prefered 

concentrations were also made in a publication on the synthesis of macrocyclic HCV 

protease inhibitor BILN 2061 1.27 (Figure 1.6) from Boehringer Ingelheim 

Pharmaceuticals (refer to Table 1.1).39 Unfortunately, few macrocyclization reactions can 

be performed at such high concentration. Typically, a starting point for a tentative 

cyclization is approximately 2 mM and oftentimes more dilute.30 James and co-workers 

describe the hypothetical cyclization of a 500 Daltons molecular weight substrate on a 

kilogram scale (Figure 1.5).30 With the 1000 L of solvent needed at 2 mM to perform a 

k  intra

k  inter

Reactives
functionalities

k  intra

k  inter

= Effective Molarity (EM)
Macrocyclization rate = kintra[A]
Dimerization rate = kinter[A]2
Where A is a macrocyclization substrate



 

 14 

“selective” macrocyclization, it is obvious that high dilution is not an optimal solution at 

industrial scales.  

 

Figure 1.5 – Impact of concentration on ratio of macrocyclization vs dimerization rate 

and solvent volume.  

 

Figure 1.6 – Structure of macrocyclic HCV protease inhibitor BILN 2061 1.27. 

 

A striking example of the industrial challenges associated with macrocyclization 

is the synthesis of HCV protease inhibitor 1.27 (Figure 1.6). When initially reported, the 

macrocyclic ring closing metathesis step of linear precursor I.28 was performed under 

high dilution conditions (10 mM) with a high catalyst loading (Scheme 1.5) and afforded 
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the desired macrocycle 1.30 in 85 % yield.40 Although the transformation seemed 

somewhat efficient, it was still far from suitable for industrial production.  

 

Scheme 1.5 – Initial macrocyclic ring closing metathesis in the synthesis of BILN 2061 

1.30. 

 

An optimization was performed to render the macrocyclization viable on an 

industrial level.39-41 Fortunately, the “benchmark” of 200 mM was achieved for the 

cyclization of diene precursor 1.31 to yield macrocycle 1.33. As seen in Table 1.1, lower 

concentrations afforded higher yields (Entry 1 vs 2 and 3). A careful optimization of the 

structure of the precursor allowed for signification improvement in efficiency and 

selectivity of the macrocyclization. Moreover, lowering the catalyst loading, while 

increasing the concentration helped to maintain an intramolecular selectivity (Entry 4 to 

7).  

An “artificial” way to achieve high dilution conditions is to use a slow addition 

process where the macrocyclization substrate is slowly added to the reaction mixture, 

typically via a syringe pump. The technique allows the chemist to perfom a reaction with 

less solvent while maintaining a low concentration of the linear precursor in solution. 
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Although the strategy is efficient at controlling the effective molarity, the setup is tedious 

and not optimal for industrial scale up. 

 
Table 1.1 – Optimization of the macrocyclic ring closing metathesis reaction of 1.31. 

 

Entry Concentration (mM) 1.32 (mol %) Temperature (oC) Yield (%) 

1 10 1 60 98 

2 50 1 60 87 

3 100 1 60 80 

4 50 0.1 110 97 

5 100 0.1 110 95 

6 200 0.1 110 93 

7 400 0.1 110 80 

 

Another means to artificially achieve high dilution is via synthesis on solid 

support. Traditionally used to prepare peptides or oligonucleotides, the technique has 

demonstrated that having a linear precursor attached on a solid support can create a 

“pseudo-dilution” effect and increase the yield of the macrocyclization. An example was 

reported by Trost where the use of a solid-supported palladium catalyst allowed for facile 

macrocyclization of 10- and 15-membered rings 1.36 and 1.37 in good yields (Scheme 
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1.6, top).42 The corresponding reaction in solution (using a soluble catalyst) only formed 

unwanted oligomerization products (Scheme 1.6, bottom).  

 

 

 

 

 

 

 

 

 

 

Scheme 1.6 – Effect of solid supported catalyst on macrocyclic isomerization reaction.  

 

1.3.2 – Conformational Control 

An alternative strategy to high dilution/slow addition toward promoting a 

productive macrocyclization is to favor the end-to-end interactions of the linear substrate, 

thus facilitating ring closure. Conformational control is a valuable tool that can be used to 

lower the entropic barrier associated with preorganization of the linear precursor prior to 

cyclization. Favoring end-to-end interactions and augmenting the rate of 

macrocyclization (kintra) is often acheived through supramolecular interactions.  

1.3.2.1 – Templating and Metal Ion Chelates 

Templating a system to fix its conformation is a well known strategy to promote a 

macrocyclization. A well known example is the synthesis of crown ethers.23a For 

example, the efficiency of the macrocyclization to form crown ether-type structure 1.39 is 
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increased in the presence of a lithium salt, as the complexation of the ether functionalities 

to the cation prior to ring formation decreases the entropy associated with 

macrocyclization by bringing the reactive functionalities in close proximity of one 

another. (Scheme 1.7). 

 

Scheme 1.7 – Lithium salt’s template effect in the synthesis of 1.40. 

 

Sanders reported the synthesis of dioxoporphyrin-derived macrocycles by 

templating with multidentate pyridine based ligands before performing a Glaser-Hay 

cyclization (Scheme I.8). It was observed that the shape of the ligand could efficiently 

direct the formation of the product. Without a template, a mixture of trimer 1.46 and 

tetramer 1.47 was obtained. Remarkably, cyclic dimer 1.45 was obtained quantitatively 

when template 1.42 was used, while the use of template 1.43 or 1.44 yielded selectively 

the trimer 1.46 and tetramer 1.47, respectively (Scheme 1.8).43  
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Scheme 1.8 – Synthesis of dioxoporphyrin-derived macrocycles using a template 

strategy. 

 

1.3.2.2 – H-Bonding Interactions 

Intramolecular hydrogen (H)-bonding interactions can also assist in the 

preorganization of a linear precursor to favor productive macrocyclization.33,44 The 

synthesis of cyclic tripeptides via Heck reaction exploits transannular H-bonds. The 

authors noted that the presence of an intramolecular H-bond interaction locks the linear 

precursor 1.48 into a conformation resembling a peptidic β-turn (Scheme 1.9). The 

presence of the intramolecular H-bond in both the precursor 1.48 and the cyclized 

product 1.49 was confirmed by variable temperature NMR experiments.45 The strategy 

has been extensively used in the synthesis of peptide-containing macrocycles.33,44  
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Scheme 1.9 – Synthesis of small cyclic peptide 1.49 via Heck reaction assisted by an 

intramolecular H-bond interaction. 

 

1.3.2.3 – Auxiliary Based Methods 

Another supramolecular approach used to favor productive conformations for 

macrocyclization is through supramolecular π-stacking interactions. An example is in the 

synthesis of rigid cyclophane structures which is challenging even under high dilution 

conditions.46 When diene precursor 1.50 is submitted to a ruthenium-based catalyst to 

perform a macrocyclic ring-closing metathesis, no desired product 1.51 is formed and 

only oligomerization products are obtained (Scheme 1.10, top). Collins reported the use 

of an electron-poor aryl group as a conformational control element (CCE) to promote 

macrocyclization.47 The π-stacking interaction allows precursor 1.52 to adopt a 

productive conformation 1.53 which is productive for macrocyclization, affording 41 % 

yield of the cyclophane 1.54 (Scheme 1.10, bottom).  
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Scheme 1.10 – Synthesis of cyclophane macrocycle 1.54 using a CCE.  

 

1.4 – Alternative Solutions for Macrocyclization Reactions 

Alternatives to the high dilution and conformational control strategies for 

macrocyclization have been developed. In order to avoid the tedious macrocyclization 

step, cycloadditions, ring expansions or fragmentations have been employed for the 

formation of macrocyclic compounds. 

1.4.1 – Cycloaddition 

The Wilke trimerization reaction of diene 1.55 is a nickel catalyzed [4+4+4] 

cycloaddition that affords 12-membered macrocycle 1.56 in 95 % yield (Scheme 1.11).48 

The trienic 1.56 macrocycle can then easily be converted in two steps to the 

corresponding cyclododecanone 1.57. Cyclododecanone 1.57 is noteworthy as it is 

produced on industrial scale at more than 100,000 tons per year.19  
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Scheme 1.11 – Wilke’s trimerization and synthesis of cyclododecanone. 

 

1.4.2 – Ring Expansion and Fragmentation 

The Story synthesis of exaltolide 1.9 was discovered in 1968 and involves a 

thermal or photochemical decomposition of trisperoxide 1.58 (Scheme I.12).49 It should 

be noted that the strategy can be used to form various ring sizes depending on the number 

of carbons in the peroxide precursor. 

 

Scheme 1.12 – Story synthesis of exaltolide via ring expansion. 

 

Starting from commercially available medium-sized rings and proceeding via ring 

expansion is an alternative strategy to obtain macrocycles. Rüedi reported a thermal 

three-carbon ring expansion from cyclopropane-bearing precursor 1.59 to obtain the 

corresponding enone 1.60 (Scheme 1.13).50 The strategy allows for the formation of 

macrocyclic musk 1.61 with a well-defined olefin geometry. A ring expansion was also 

used to obtain the 10-membered macrolactam 1.4 (Figure 1.1d) in the synthesis of a NEP 

inhibitor by MacPherson.11 
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Scheme 1.13 – Cyclopropane ring expansion. 

 

Translactonization is a commonly employed ring-expansion strategy. When 12-

membered ring lactone 1.62 is submitted to acidic conditions, translactonization to the 

thermodynamically more stable 15-membered macrolactone 1.63 is observed (Scheme 

1.14).51  

 

Scheme 1.14 – Translactonization strategy for the synthesis of large ring compounds. 

 

Tan and co-workers reported that macrocyclic ketones could also be obtained by 

Grob fragmentation of a tricyclic system under acidic conditions.52 The authors were able 

to synthesize a library of medium-sized macrocycles using a biomimetic ring expansion 

strategy (Scheme 1.15). The tricyclic precursor 1.65 can be obtained from the 

corresponding phenol 1.64 using an hypervalent iodide reagent. It has been proposed that 

the ring-expansion and subsequent rearomatization reaction of polycyclic structures such 

as 1.65 could be the biosynthetic route for protostephanine and erythrina alkaloids.53 
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Scheme 1.15 – Acid-catalyzed ring expansion. 

 

1.5 – Conclusion 

The preceeding discussion underlines the inherent importance of macrocyclic 

structures as well as their existing and potential applications. Although several strategies 

have been developped for the synthesis of theses types of structures, the high dilution of 

the reaction media is the only strategy that is applicable for a wide scope of structures and 

macrocyclization reactions. With the idea of broadening the use of the dilution control 

strategy, it is appealing to develop a novel way to control the efficient concentration of 

the reaction in order to render it more environmentally bening. The phase separation 

strategy discussed herein allows to perform macrocyclization reactions up to 500 times 

the “traditionnal” high-dilution concentration while relying on the key control of dilution 

effects. The strategy has already been applied to three key bond forming macrocyclic 

reactions : Glaser-Hay oxidative coupling of alkynes, azide-alkyne cycloaddition and 

metathesis (not reviewed herein).  
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Chapter 2 : The Glaser-Hay Oxidative Coupling and an 

Introduction to Poly(ethylene glycol) Properties 

2.1 – Glaser-Hay Reaction 

2.1.1 – Seminal Discovery 

In 1869, Glaser discovered that copper acetylide 2.2 could be dimerized under an 

oxidative atmosphere to yield the corresponding diyne 2.3 (Scheme 2.1a).1 Since the 

isolation of copper acetylide 2.2 is tedious, the reaction did not attract much attention 

until 1959, when Eglinton discovered that diynes 2.3 could be formed in one pot from 

terminal alkynes using a stoichiometric amount of a Cu(II) salt in pyridine (Scheme 

2.1b).2 Subsequently, it was reported that a catalytic amount of Cu(I)/pyridine could also 

be used in combination with O2 as a terminal oxidant.2,3 Hay reported that the use of a 

bidentate ligand, such as TMEDA, could form a catalytically active and soluble complex 

(Scheme 2.1c).3 The Hay modification solved the issues associated with the unreliable 

solubility of the Cu(I)/pyridine complex in organic solvents. To date, the Glaser-Hay 

reaction has become a valuable synthetic tool in organic chemistry.4  
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Scheme 2.1 – General reaction conditions for : a) Glaser, b) Glaser-Eglinton and c) 

Glaser-Hay acetylene coupling reactions. 

 

2.1.2 – Reaction Mechanism 

The reaction mechanism for the Glaser-Hay reaction is highly dependant on the 

reaction conditions. Bohlmann was the first to propose a mechanism in 1964.5 He 

suggested the cupration of the alkyne 2.1 using a base (Scheme 2.2, top). The first 

cupration step is widely accepted by the scientific community and is implied in various 

organometallic reactions.6 Based on the fact that the reaction is second order in alkyne, 

the following step was proposed to be the formation of the bisacetylide complex 2.6, a 

subsequent reductive elimination would afford the desired diyne 2.3 (Scheme 2.2, 

bottom). However, Bohlmann’s mechanism neglected the crucial oxidation step as he 

implied a bimetallic Cu(II) complex 2.6 that gets reduced to Cu(I) upon formation of the 

product.  
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Scheme 2.2 – Bohlmann’s proposed mechanism for Glaser coupling. 

 

As the Glaser-Hay coupling became more prevalent in synthesis, interest into the 

reaction mechanism grew. Extensive DFT studies of the Glaser mechanism have been 

completed independently by Fomina7 and Masera.8 Empirically, electron-poor alkynes 

react faster. Basic conditions also improve the reaction rate. The proposed catalytic cycle 

from the DFT studies begins with a Cu(I)-TMEDA complex 2.7 that coordinates with an 

acetylene (Scheme 1.3). The resulting Cu(I)-acetylide complex 2.8 gets oxidized by O2 to 

generate a Cu(III)-oxoacetylide complex 2.9. It was calculated that the complex 2.9 

undergoes bimolecular reductive elimination to generate a Cu(II) complex and the diyne 

product 2.3. The Cu(II) intermediate 2.11 would then complex another molecule of 

acetylene to give complex 2.12 followed by bimolecular reductive elimination to 

regenerate the Cu(I) catalyst 2.7 and yield the diyne product 2.3. The last step intercepts 

Bohlmann’s proposed mechanism. Another study reporting the direct observation of 

reduction from Cu(II) to Cu(I) by a terminal alkyne further supports the computationally 

proposed mechanism.9 From the proposed catalytic cycle, both Cu(I) and Cu(II) salts 

could be used as the catalyst for the reaction. Even more interesting, it has been shown 
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that a positive effect can be obtained by using both oxidation states at the same time.6 

Lan and Lei reported that the formation of complex 2.12 is the rate determining step 

(RDS) and that the addition of a copper(I) salt helped lower the activation barrier of the 

step (Scheme 2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.3. – Glaser-Hay catalytic cycle based on DFT calculations. 

 

 

 

 

 

Scheme 2.4. – Proposed synergistic cooperative effect of Cu(I) and Cu(II) salts in the 

cupration of alkyne. 
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2.1.3 – Modern Reaction Conditions 

The synthesis of 1,3-diynes remains an active field of research (vide infra). Many 

variants of the Glaser-Hay oxidative coupling have been developed with new reaction 

conditions to access conjugated 1,3-diynes that are mild, efficient, functional group 

tolerant and selective.  

Shi and co-workers reported a mild, copper-catalyzed base-free oxidative 

coupling of terminal alkynes using diaziridinone.10 Noteworthy, the authors proposed a 

reductive elimination from a dialkynyl Cu(III) species. Sommer has shown that Cu(I)-

modified zeolites could be used as efficient and mild catalysts for Glaser couplings.11 A 

large zeolite pore size was important to achieve good yields. The method was tolerant of 

sensitive carbohydrate derivatives. A CuBr/NBS/DIPEA catalytic system was also shown 

to be highly active at room temperature and tolerant of sensitive funtional groups such as 

acetals, silyl ethers, esters and sugars.12 The improvements in Glaser couplings has 

opened the door for applications in the design and synthesis of biomolecules such as 

complex sugars and peptides.4 

Heterogeneous catalysis has also emerged as an efficient tool for Glaser-Hay 

coupling. Silica-supported copper catalysts have been shown to be active for the coupling 

of terminal alkynes.13 Radivoy also reported the use of Cu-nanoparticles on silica coated 

maghemite nanoparticules (CuNPs/MagSilica) as a heterogeneous recoverable catalyst to 

perform the Glaser transformation. Importantly CuNPs/MagSilica is also a competent 

catalyst for the azide-alkyne cycloaddition reaction.14  

1,3-Diynes can also be formed using a cobalt catalyst with nitrobenzene as the 

stoichiometric oxidant. The reaction manifold is formally reductive due to the presence of 
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a stoichiometric amount of zinc powder. The mild conditions may allow the scope to be 

expanded to include more oxidant sensitive functional groups.15 

2.1.4 – Synthesis of Unsymmetrical 1,3-Diynes 

The synthesis of unsymmetrical 1,3-diynes is challenging because the reactivity 

profile of the alkyne in the Glaser coupling is highly dependant on its pKa. Hay found in 

his seminal discovery that aryl alkyne 2.17 underwent homocoupling faster that propargyl 

alcohol 2.18, while the alkyl alkyne 2.19 was the slowest to react (Figure 2.1).3b 

Consequently, any attemps at forming a mixed 1,3-diyne via Glaser coupling usually 

resulted in a mixture of the three possible products favouring the homocoupling of the 

most reactive alkyne. Consequently, for the synthesis of unsymmetrical 1,3-diynes, a 

five-fold excess of the most reactive alkyne is typically used (refer to Table 2.1). 

 
Figure 2.1 – Relative reactivity of alkynes in oxidative couplings. 

 

Although many strategies have been reported for the synthesis of unsymmetrical 

diynes,16 the Cadiot-Chodkiewicz coupling remains the prefered method. The reaction 

was reported in 1957 as the first protocol for alkyne heterocoupling and has since been 

used in numerous syntheses.17 The reaction takes place between a terminal alkyne 2.20 

and a 1-haloalkyne 2.21 under copper catalysis to yield the mixed diyne 2.22 (Scheme 

2.5a). Although the method can be a powerful tool, some limitations exist. When the 

electronic properties of the alkynes are similar a substantial amount of dimerization of the 

halo-alkyne can be observed. To solve the selectivity issue, Lei recently reported a Pd/Cu 

OH
〉 〉

2.17 2.18 2.19
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co-catalyzed coupling of a terminal alkyne 2.24 with an haloalkyne 2.23. The reaction 

proceeds smoothly at room temperature and can also be used to synthesize triynes in one 

pot (Scheme 2.5b).18 Unsymmetrical 1,3-diyne 2.22 can also be accessed using magnetic 

copper nanoparticles (CuFe2O4) to couple alkynyl bromide 2.27 with alkynyl boronate 

2.26 (Scheme 2.5c).16  

  
Scheme 2.5 – Unsymmetrical diyne coupling protocols. a) Cadiot-Chodkiewicz, b) Lei’s 

Cu/Pd protocol and c) CuNPs protocol.  

 

Heterocoupling of different alkynes is also possible when one of the reactive 

partners is functionalized as an alkynylcarboxylic acid. As such, copper-catalyzed 

decarboxylative cross-coupling have been reported, affording unsymmetrical diyne from 

functionalized alkyne 2.29 and 1,1-dibromoalkenes 2.28 (Scheme 2.6a).19 The reaction 

takes place via in situ elimination of 2.28 to form an alkyne coupling partner. The 

elimination strategy is somewhat inspired by an analogous Negishi protocol in palladium-

catalyzed cross-coupling of a halo-alkyne 2.27 with ICH=CHCl 2.31 (Scheme 2.6b).20 
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Alternatively, a palladium catalyzed decarboxylative homocoupling of haloarene 2.34 

with propiolic acid 2.35 using a silver salt was reported by Kim (Scheme 2.6c).18b,21 The 

method could also be applied to the synthesis of unsymmetrical 1,3-diyne 2.36 and does 

not require prefunctionalization of the aryl group with an alkyne.  

 Scheme 2.6 – Unsymmetrical diyne coupling protocols. a) Decarboxylative cross-

coupling from dihaloalkenes, b) Negishi’s protocol, c) Cu/Pd/Ag decarboxylative cross-

coupling. 

 

In 2014, Shi reported a gold-catalyzed heterocoupling of terminal alkynes using a 

hypervalent iodide reagent as the oxidant.22 The reaction shows impressive functional 

group tolerance (Scheme 2.7). The authors propose that the gold cation might provide a 

discrimination effect toward different alkynes, thus leading to selective heterocoupling. 
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 Scheme 2.7 – Shi’s heterocoupling of terminal alkynes protocol. 

 

The development of a simple Glaser-like protocol for heterocoupling using 

unfunctionalized alkynes remains a challenge. Recently, Lei and co-workers reported the 

use of a nickel(II) co-catalyst to promote the formation of mixed 1,3-diynes 2.41 from 

terminal alkynes 2.20 and 2.40.23 As expected, using a five-fold excess of the less 

reactive alkyne 2.40 didn't significantly improve the yield of the desired product 2.41 

(Table 2.1 entry 2). An excess of the most reactive alkyne 2.20 had to be used to obtain 

86 % yield of the mixed diyne 2.41 (Table 2.1, entry 3). Interestingly, the Cu and Ni co-

catalysts seemed to work synergistically to promote efficient coupling at room 

temperature as a lower yield of 30 % was obtained in the absence of the nickel co-catalyst 

(Table 2.1, entry 4). Similar to a palladium-catalyzed cross coupling, the authors 

proposed that a Ni(II) complex 2.44 could undergo transmetallation from a Cu(I)-

acetylide intermediate 2.45 to form a Ni(II)-bisacetylide complex 2.46. Reductive 

elimination would give the expected diyne 2.42 and a Ni(0) complex 2.47 that could be 

reoxidized by O2 (Scheme 2.8a). Reductive elimination from a Ni(II)-bisacetylide 

complex 2.46 is well documented in the literature.24 The authors briefly investigated the 

proposed mechanism by monitoring the O2 consumption of the reaction. In a traditional 

copper-catalyzed oxidative coupling of terminal alkynes, each mole of O2 consumed 

leads to 2 moles of diyne (Scheme 2.8a). The authors observed a 1:1 ratio of O2 to diyne 

formed, supporting their proposed mechanism involving reductive elimination from a 
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Ni(II)-intermediate. To further support a transmetallation pathway, the authors perfomed 

the reaction in absence of the copper salt but used a preformed Zn(II)-acetylide 2.48. As 

expected, the reaction proceeded smoothly (Scheme 2.8b). Similarly, the reaction in 

absence of Cu but with added base (NaOtBu) also yielded the desired diyne 2.42 

(Scheme 2.8c). It should be noted that Lei’s Cu/Ni strategy also accelerates the 

homocoupling of terminal alkynes.  

 

Table 2.1 Cu/Ni co-catalyzed synthesis of unsymmetrical diynes. 

 

Entry 2.20 (mmol) 2.40 (mmol) 2.41 yield (%) 2.42 yield (%) 2.43 yield (%) 

1 1 1 46 42 54 

2 1 5 50 8 64 

3 5 1 86 64 6 

4* 5 1 30 20 8 

* Nickel catalyst was ommited. 
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Scheme 2.8 – Mechanistic investigation of the Cu/Ni co-catalyzed oxidative coupling of 

alkynes. 

 

 Another technique that can be used to access unsymmetrical 1,3-diynes is the use 

of solid-supported synthesis. Immobilizing one of the coupling partners allows for 

selective coupling with the solubilized partner in high yield.25  

 

2.1.5 – Naturally Occuring Diynes 

Interestingly, many natural products possess a diyne moiety (vide infra). For 

example, falcarindiol 2.49 is a polyyne isolated from carrots which was found to exhibit 

antimicrobial activity (Figure 2.2a).26 EV-086 2.50 is a potent antiplasmodial which also 

makes it a potential anti-malarial candidate (Figure 2.2b). The furan-containing lipid 2.50 

is part of a larger family of diyne-containing fatty acids that exhibit activity against 

tuberculosis, malaria, type 1 Herpes and lung cancer.27 Thiarubrine A 2.51 is a pseudo-

antiaromatic compound extracted from short ragweed roots that possesses antibacterial 

activity (Figure 2.2c).28 The naturally occuring 18-membered macrolactone ivorenolide A 

2.52 (Figure 2.2d) exhibits immunosupressive activity that could be exploited for the 

management of organ grafts or rheumatoid arthritis.29 
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Figure 2.2 – Naturally occuring diynes. 

 

2.1.6 – Applications of the Glaser-Hay Reaction in Synthesis 

With all the synthetic methods available for the synthesis of 1,3-diynes, it is not 

surprising that many diyne containing molecules have been successfully prepared. An 

enantioselective synthesis of falcarindiol has been reported where the key bond-forming 

step was a Cadiot-Chodkiewicz coupling. The natural product was obtained after 

subsequent deprotection of the silyl group from diyne 2.55 (Scheme 2.9).30 A similar 

strategy was used by Li and Yue in the total synthesis of macrolide iveronolide A 2.52.29 

  
Scheme 2.9 – Synthesis of falcarindiol via Cadiot-Chodkiewicz coupling. 

 

Perhaps the greatest impact of the Glaser-Hay reaction has been in materials and 

supramolecular chemistry, where the reaction is used in the construction of macrosystems 

with interesting and unique properties. Oxidative coupling of alkynes has been used to 

synthesize a family of optically active cyclophanes capable of carbohydrate-recognition. 

The trimer 2.57 is obtained in low yield and after deprotection, the internal cavity is 

aligned with other hydroxyl groups to coordinate with monosaccharides (Scheme 2.10).31 
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Scheme 2.10 – Synthesis of an optically active cyclophane capable of carbohydrate 

recognition. 

 

The mildness of the Glaser-Hay coupling was demonstrated in the synthesis of 

molecular rods incorporating cyclopentadienyl-π complexes that have interesting material 

properties.32 The sensitive MnCp(CO)3 units were stable under the oxidative conditions 

and the Glaser-Hay reaction yielded a mixture of separable oligomers 2.60 to 2.65 with 

an overall yield of 40 %. (Scheme 2.11) 

Another example of the use of alkyne coupling reactions in synthesis is the 

preparation of spirocyclopropanated macrocyclic polydiacetylenes by a combination of 

Glaser-Hay couplings and the Cadiot-Chodkiewicz reaction. The formation of the 

terminal diyne 2.66 by Cadiot-Chodkiewicz reaction followed by Glaser-Hay coupling 

afforded cyclic hexamer 2.67 in 39 % yield (Scheme 2.12).33 
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Scheme 2.11 – Synthesis of molecular rods incorporating cyclopentadienyl-π complexes. 

 

 

 

 

 

 

Scheme 2.12 – Synthesis a spirocyclopropanated macrocyclic polydiacetylene. 

 

Additionally, 1,3-diynes have also found applications in biochemistry due to their 

pronounced intensity in Raman spectroscopy and consequent ability to visualize mobile 

small molecules in living cells.34 The molecules used in the study possessed both 

bioactive functionalities and a diyne moiety that was synthesized using Lei’s Cu/Ni 

protocol.23 
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2.1.7 – Conclusion 

The Glaser-Hay coupling of terminal alkyne is an important transformation in 

organic synthesis. Since its discovery in 1869, it has impacted many fields of research 

such as synthesis, materials and biological chemistry. The reaction allows the formation 

of a challenging carbon-carbon bond under selective and mild catalytic conditions. 

Examples of catalytic macrocyclization reactions that allows for the formation of carbon-

carbon bonds are scarce and the Glaser-Hay reaction would be an ideal starting point for 

the proof of concept of the “phase separation strategy”. 
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2.2 – Introduction to Poly(ethylene glycol) Properties and 

Concepts of Phase Transfer and Micellar Catalysis 

2.2.1 – Definition and Physical Properties of Poly(ethylene glycol) 

 Poly(ethylene glycol) (PEG) is a polyether polymer with the repeating unit H-[O-

CH2-CH2]n-OH. PEGs are synthesized by aqueous anionic polymerization of ethylene 

oxide and are generally sold as polydispersed mixtures. For example, PEG400 2.68 refers 

to a polydisperse mixture of PEGs with an average molecular weight of 400 g/mol, 

meaning that there are approximatively nine repeating units (n ≈ 9) of ethylene oxide 

present (Figure 2.2). Davies demonstrated that a well-controlled polymerization of 

ethylene oxide 2.69 can produce monofunctional PEG 2.70 with polydispersity indices 

approaching 1 (Scheme 1.13).35 

 

Figure 2.2 –Structure of PEG400. 

 

 

Scheme 2.13 – Synthesis of low polydispersity monofunctional PEG polymer. 

 

Although PEGs have a large solubility preference for water (LogP = -4.8 for 

PEG400),36 they are regarded as a class of amphiphilic molecules as they can also dissolve 

in organic media. Low molecular weight PEGs (250 to 1000 g/mol) are typically viscous 

liquids and high molecular weight (≥ 1000 g/mol) PEGs are usually solids. Importantly, 
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they are also non-toxic and the FDA has approved PEGs for intravenous, oral and dermal 

applications.37 PEGs are also known for their ability to help solubilize organic molecules 

in aqueous media. Other characteristics of PEG-derived solvents include, thermal 

stability, low cost and high boiling points.38 

2.2.1.1 – Structure of PEG in Aqueous Media 

PEGs are completely soluble in water, but closely related polymers such as 

poly(propylene glycol)s H-[O-CH(CH3)-CH2]n-OH or poly(butylene glycol)s H-[O-CH2-

CH2-CH2]n-OH have variable solubility depending on the length of the polymer. Their 

water solubility typically decreases with increasing molecular weight. Interestingly, 

poly(methylene oxide)s H-[O-CH2]n-OH are also completely insoluble in water. Tasaki 

performed molecular dynamic calculations to investigate the conformation of PEG650 in 

water.39 Contrary to the gas phase where PEG is proposed to have an all-trans 

conformation, it was found that the polymer adopts a helical conformation in water with 

the backbone stabilized by a hydrogen bonding network (Figure 2.3). Unfortunately, the 

number of water molecules interacting with each unit of the polymer is still a debate in 

the literature, ranging from 1 to 6.39,40 PEGs are well known to aggregate in aqueous 

media.40 Privat recently demonstrated that PEG aggregates present themselves in the 

form of hydrated helices covered with CH2 groups, yielding hydrophobic regions.  
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Figure 2.3 – Calculated structure of PEG650 in water (2 ns). (Reproduced with permission 

from ref 39. Copyright 1996 American Chemical Society.)  

 

 Recently, the structure of a discrete polymer of PEG 2.71 (n = 16) has been 

studied by X-ray crystallography. Analysis of the structure of the discrete PEG polymer 

revealed that it also adopts a helical conformation in the solid state with the oxygens 

pointing towards the interior of the helix when crytallization occured in organic media 

(Figure 2.4).35  

   

Figure 2.4 – X-ray structure of discrete PEG polymer 2.71. (top view) Red = oxygen, 

green = carbon, white = hydrogen. (side view) Red = oxygen, grey = carbon, green = 

hydrogen. (Reproduced with permission from ref 35. Copyright 2009 WILEY-VCH 

Verlag GmbH & Co. KGaA, Weinheim.) 
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2.2.2 – Industrial Applications of PEGs 

PEGs have found myriad commercial uses.41,42 In medecine, they are often used to 

treat irritable bowel syndrome and constipation by osmotically attracting water in the 

intestine.41 PEGs are also often used as an excipient (i.e. substance formulated with the 

active ingredient) for various drugs. Other examples of pharmaceutical uses for low 

molecular weight PEGs involve its use as a solvent in soft capsules, while high molecular 

weight PEGs can be used as a binder for the ingredients in a tablet.42 In addition PEGs 

have also been used to improve the solubility of small molecule therapeutics and 

PEGylation of biologically active molecules has been shown to positively influence their 

stability, pharmacokinetics and mode of action.37a  

2.2.3 – Chemical Applications of PEGs 

 The unique physical properties of PEGs open up opportunities in organic 

synthesis. In contrast to polyethylene or polypropylene, PEGs are soluble polymers that 

have been used as a recyclable solvent in various organic reactions such as Ullmann43, 

Suzuki44 and Glaser-Hay45 couplings. Wang and He reported the use of PEG1000 as a 

recyclable reaction medium (i.e. catalyst containing solvent) for Glaser-Hay coupling. 

Interestingly, PEG1000 is a solid at ambient temperature and becomes a liquid upon 

heating. The authors demonstrated that extractions with diethyl ether could separate the 

desired product 2.42 from the reaction mixture which could then be reused (Scheme 

2.14). 
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Scheme 2.14 – PEG1000 as a recyclable medium for Glaser-Hay couplings. 

 

2.2.3.1 – Homogeneous Catalysis 

In contrast to less soluble polymers such as polystyrene, derivatization of PEGs 

can be done in a straightforward manner using synthetic procedures that mimic those 

used for the functionalization of small molecules; derivatized PEGs can be characterized 

using standard methods such as NMR and MS. The derivatization strategy is used when 

catalysis in water is desirable. PEGylation of a catalyst is often used to render it 

hydrophilic. For example, Grubbs reported a PEGylated ruthenium-based metathesis 

catalyst 2.74 that is highly active and stable in water (Scheme 2.15).46 When compared to 

cationic ruthenium catalyst 2.75, the PEGylation strategy produced a more active catalyst 

for ring opening metathesis polymerization (ROMP) of cationic norbornene substrate 

2.72. Moreover, the PEGylated catalyst 2.74 is also active in solvents such as methanol 

and dichloromethane and can be recycled by precipitation using diethyl ether. The 

precipitation stategy is a commonly employed procedure to recycle poly(ethylene 

glycol)-bound catalysts.47  

CuCl2.2H2O (10 mol %)
NaOAc (1 equiv)

PEG1000, O2 (1 MPa)
120 oC, 1.5 h

99 %
1st recycling : 98 %
2nd recycling : 98 %
3rd recycling : 93 %

2.17 2.42
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Scheme 2.15 – Ring opening metathesis polymerization using water soluble ruthenium 

based catalysts. 

 

2.2.3.2 – Phase Transfer Catalysis 

Traditional phase transfer catalysis typically consists of a biphasic reaction 

mixture involving an aqueous phase and an organic phase.48-51 In many instances, 

researchers design polymer-supported catalysts that render the catalyst water soluble. As 

such, the organic phase typically contains the organic substrate and the reaction could 

then occur at the interface of the aqueous and organic phases. After the reaction is 

completed, a facile extraction can be performed to obtain the organic product and recycle 

the hydrophilic catalyst. The strategy has been employed in numerous instances.49-51 For 

example, a hydrophilic phosphine ligand was designed to form a recyclable and water 

soluble rhodium complex that has shown catalytic activity in the hydroformylation of 

propene to yield butanal.49 Although the use of water soluble catalysts is a promising area 

of research, the use of water as a reaction medium can limit the choice of organic 
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substrates due to solubility issues. In the previous reaction, higher olefins were unreactive 

because of their lipophilicity. As an alternative, researchers have used co-solvents, 

surfactants and even biphasic fluorous systems in order to resolve the solubility issue.50  

An alternative strategy for phase transfer catalysis involves exploiting the intrinsic 

properties of PEGs. Zheng has developped a rhodium-catalyzed hydroformylation of 

higher olefins using PEG solvents (Scheme 2.16, top). The general principle involves 

thermoregulated phase-transfer catalysis (TRPTC) which exploits the temperature 

dependant solubility of PEGs. The cloud point (CP) for PEGs is defined as the 

temperature at which the polymer’s solubility in water decreases to the point where it 

forms an emulsion.51 Upon heating a biphasic mixture, the PEGylated catalyst (in the 

case of Zheng, PEGylation of the phosphine ligand of the rhodium catalyst) becomes 

preferentially solubilized in the organic phase. When the mixture is cooled below its 

cloud point, the PEGylated catalyst returns to the aqueous phase and the desired product 

can be obtained by liquid-liquid phase separation (Scheme 2.16, bottom). 50  
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Scheme 2.16 – Hydroformylation of 1-decene under thermoregulated phase-transfer 

catalysis (TRPTC). 

 

2.2.4 – Micellar Catalysis 

Micellar catalysis involves the acceleration of a chemical reaction in solution by 

the addition of a surfactant at a concentration higher than its critical micellar 

concentration (CMC) so that the reaction can proceed in the environment of surfactant 

aggregates or micelles. Rate enhancements may be due to higher concentrations of the 

reactants in that environment, more favourable orientations and solvation of the reactive 

species, or enhanced rate constants in the micellar pseudophase of the surfactant 

aggregate.52 

For example, the rhodium catalyzed intramolecular [4+2] annulation of 1,3-dien-

8-yne was conducted under micellar catalysis using sodium dodecylsulfate (SDS) in 

water. It was proposed that the rhodium catalyst exchanged its chlorine ligand for a SDS 

anion in aqueous media. The formation of a highly active cationic rhodium species 2.81 
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was proposed to be stabilized by the negative charges on the polar heads of the micelle 

(Scheme 1.17). The use of SDS was shown to be highly efficient, yielding 93 % of the 

desired bicyclic product 2.51 in only 20 min.  

 
Scheme 1.17 – Proposed formation of a micellar catalyst. 

 

To demonstrate the advantages of using micellar catalysis versus water 

solubilization of the catalyst, the same reaction was performed using a water soluble 

phosphine 2.84 and the catalytic activity in water was studied. Although the reaction 

afforded a 51 % yield of the desired bicyclic product 2.83, the reaction required a higher 

catalyst loading as well as elevated temperature and increased reaction time. The result 

demonstrates the advantages of micellar catalysis. Finally, the advantages of micellar 

catalysis were also demonstrated by replacing SDS by sodium methyl sulfate, which is 

unable to form micelles. The subsequent [4+2] annulation of 1,3-dien-8-yne 2.82 showed 

a complete loss of reactivity and no desired bicycle product 2.83 was observed.53  
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Scheme 2.18 – Rhodium catalyzed intramolecular [4+2] annulation of 1,3-dien-8-yne in 

water. 

 

2.2.5 – Conclusion 

The use of hydrophillic polymers in organic synthesis is emerging. Poly(ethylene 

glycol) has severals desirable features such as thermal stability, low cost and biological 

compatibility. Interestingly, although the aggregation properties of PEG have found many 

application in the biological field, they have yet to be explored in organic chemistry. 

Moreover, it has been demonstrated on several occasions that micellar catalysis is an 

efficient way to perform reactions in aqueous/polar media. Combining the aggeration 

properties of PEG with the micellar catalysis concept could be an efficient way to control 

the dilution effect in macrocyclization reactions.  
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3.1 – Abstract 

Macrocycles are abundant in numerous chemical applications, however the traditional 

strategy for the preparation of these compounds remains cumbersome and environmentally 

damaging; involving tedious reaction set-ups and extremely dilute reaction media. The 

development of a macrocyclization strategy conducted at high concentrations is described 

which exploits phase separation of the catalyst and substrate, as a strategy to control dilution 

effects. Sequestering a copper catalyst in a highly polar and/or hydrophilic phase can be 

achieved using a hydrophilic ligand, T-PEG1900, a PEGylated TMEDA derivative. Similarly, 

phase separation is possible when suitable copper complexes are soluble in PEG400, a green 

and efficient solvent which can be utilized in biphasic mixtures for promoting 

macrocyclization at high concentrations. The latter phase separation technique can be 

exploited for the synthesis of a wide range of industrially relevant macrocycles with varying 

ring sizes and functional groups.  
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3.2 – Introduction 

Macrocycles are one of the most common cyclic motifs found in Nature.1 Their unique 

chemical structures and properties have important applications in numerous scientific fields. 

Perhaps the greatest impact of macrocycles has been felt in the pharmaceutical and cosmetic 

industries.2 In terms of drug discovery, synthetic macrocycles with structures inspired from 

natural products have been used successfully against many biological targets, often as 

rigidified peptide ligand mimics.3 The cosmetic industry has been exploiting naturally 

occurring macrocyclic musks for use as perfumes,4-6 however these compounds are not 

obtained from their respective plant sources and are prepared by synthesis on a multi-ton scale 

annually. Strangely, as the application of macrocycles continues to grow, the general strategy 

for the preparation of these compounds remains a challenge.  

The efficiency of a macrocyclization is often controlled by the nature of the three-

dimensional conformation of the macrocyclization precursor. Although some exceptions are 

known where a precursor adopts a conformation that allows for selective and efficient 

macrocyclization,7-8 in most instances the preparation of large rings is plagued by slow rates of 

intramolecular cyclization (Figure 3.1a). Consequently, the rates of the intermolecular 

reactions between precursors become competitive and oligomerization or extensive 

polymerization becomes problematic. Accordingly, synthetic chemists have devised two 

techniques to improve macrocyclization processes. The first involves conformational control, 

whereby through some chemical method, the macrocyclization precursor is made to adopt a 

conformation highly conducive to ring closure, thereby increasing the rate of intramolecular 

cyclization. 
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Figure 3.1 – a) Traditional macrocyclization in homogeneous hydrophobic media. b) 

Macrocyclization employing phase separation. 

 

In contrast, the second and most popular strategy to improve macrocyclization 

reactions involves slowing the rate of intermolecular reactions. Most often, macrocyclization 

reactions are run at very low concentration and it is common that the precursor will be added 

to the reaction mixture via slow addition over an extended period of time. The extremely 

dilute reaction media requires that large volumes of solvent are used. In an era where most 

chemical processes are scrutinized for their environmental impact, the traditional macrocycle 

synthesis is perhaps one of the greatest offenders of the principles of green chemistry.9 Indeed, 

in both academic and industrial laboratories, macrocycle synthesis involving common 
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methods such standard peptide coupling techniques, the Yamaguchi lactonization10 and ring 

closing olefin metathesis11,12 are all normally conducted under high dilution conditions. In 

addition to the obvious environmental concerns, both the issues of cost and scale-up to 

industrially relevant quantities of material combine to make macrocyclization reactions 

prohibitive in many industrial applications. In some rare instances, a significant effort can 

result in a substantial increase in yields and concentrations for a macrocyclization process,13-15 

but the scarcity of examples underscores the need for new synthetic strategies. Considering 

both the importance of synthetic macrocycles and the widespread appeal of green chemical 

processes, the development of a general and green macrocyclization protocol that could be 

conducted via catalysis at high concentration, eliminating the need for high dilution, is an 

important synthetic goal that has yet to be achieved.16 Herein we describe a phase separation 

strategy that can be applied to catalytic macrocyclic Glaser-Hay couplings and demonstrate its 

application in the synthesis of macrocyclic musks. 

In traditional methods, the macrocyclization precursor is normally placed in a dilute 

homogenous solution with a reagent or catalyst which mediates the cyclization at low 

concentrations (Figure 3.1a). In order to achieve macrocyclization at high concentrations, we 

chose to investigate techniques whereby the macrocyclization event between the catalyst and 

precursor would take place in an environment where the relative concentration of the 

precursor is low. It was believed that replacing traditional homogeneous reaction media with 

biphasic media could achieve this goal. While chemistry at the solid/liquid interface has 

become common in organic synthesis, organic synthesis at a liquid/liquid interface is 

surprisingly rare17 and often instead exploited in separation techniques.18  
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In order to force a macrocyclization event to occur at the interface of the two phases, 

the catalyst or reagent that catalyzes or mediates the macrocyclization would be sequestered in 

a single phase while the substrate would preferentially solubilize in a different phase (Figure 

3.1b).19 In doing so, the effective concentration of the substrate at the interface would be small 

and mirror the low concentration typically employed in traditional macrocyclization reactions. 

Through phase separation of the catalyst and precursors, the need for high dilution becomes 

unnecessary and intramolecular cyclization should become the favoured reaction pathway. 

One method to achieve such a process would be to use two solvents that are sparingly miscible 

in conjunction with a catalyst whose ligands allow for it to be soluble and active in only one of 

the phases. Given that most organic substrates are soluble in hydrophobic media, the catalysts 

developed for such a process must maintain their activity in highly polar and/or hydrophilic 

media.20  

In order to evaluate whether such a process is feasible, we turned our attention towards 

developing a macrocyclization reaction that would not only demonstrate the proof-of-principle 

for phase separation as technique for achieving macrocyclization at high concentration, but 

also highlight its applicability towards macrocyclization in industrially relevant processes. We 

were attracted by the chemical challenges associated with the synthesis of macrocyclic musks, 

particularly the macrolactone exaltolide® 1, which is currently the most industrially produced 

macrocyclic musk (Scheme 3.1).21 In examining a retrosynthesis of 1, we choose to develop a 

route to 3 based upon a Glaser-Hay oxidative coupling of terminal alkynes. The Glaser-Hay 

coupling22-24 of 2 provides an appropriate starting point for the investigations for a number of 

reasons including: 1) the copper catalysts for these reactions are inexpensive, non-toxic and 

can easily by modified with ligands that permit solubility in hydrophilic media, 2) the reaction 
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results in the formation of a carbon-carbon bond, classically referred to as one of the most 

difficult bonds to prepare in organic synthesis and 3) the diyne precursor 2 exists as a linear 

aliphatic chain devoid of any conformational bias, hence efficient macrocyclization would 

only be achieved through control of the reaction concentration.  

The investigations began by conducting traditional Glaser-Hay coupling on diyne 2 

using standard conditions from the chemical literature.25 The cyclization of alkyl alkynes is 

notoriously slower than aryl alkynes and super-stoichiometric amounts of copper reagent are 

normally necessary to achieve acceptable rates of cyclization. As such, 2 was added by syringe 

pump to a solution of CuCl, tetramethylethylene diamine (TMEDA) in refluxing CH2Cl2 under 

an oxygen atmosphere over 24 h and the solution was allowed to stir for an additional 24 h 

(Scheme 3.1). Following purification by chromatography, a complete conversion of 2 was 

observed but only an 11 % yield of the desired macrocycle 3 was obtained. In addition, when 

the macrocyclization of 2 is carried out using the same reaction conditions but at 150X the 

concentration shown in Figure 3.2, only extensive polymerization of 2 is observed. With the 

result of the traditional macrocylization at various concentrations in hand, we sought to 

explore the phase separation strategy to improve the synthesis of 3. 
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Scheme 3.1 – Synthesis of 3 based upon traditional conditions. 

 

3.3 – Results and Discussion 

3.3.1 – Developing Hydrophilic Ligands for Transition Metal Complexes for 

Use in “Green” Macrocyclizations 

In order to develop a catalyst for macrocyclization via a Glaser-Hay coupling that 

could impart a preference for the catalyst complex to solubilize in hydrophilic media, it was 

necessary to modify the traditional TMEDA ligand to increase its water solubility. Our 

approach involved replacing one of the methyl groups of the ligand with a poly(ethylene 

glycol) (PEG) polymer (Scheme 3.2). The PEG alcohol monomethyl ether 4 can be easily 

transformed into its corresponding mesylate and used to alkylate trimethyldiamine 6, affording 

the ligand 7 (T-PEG1900). After both the mesylation of alcohol 4 and the alkylation of amine 6, 

the products are easily recovered via precipitation from the reaction mixture with Et2O. T-

PEG1900 7 can also be further purified by filtration on a short column of neutral alumina. 
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Scheme 3.2 – Synthesis of PEGylated TMEDA derivative, T-PEG1900. 

 

 
Figure 3.2 – Simplified experimental set-up for the “green” macrocyclization using phase 

separation. 

  



 

66 

As only extensive polymerization of 2 is observed under classical catalysis (CuCl, 

TMEDA) at 150X greater concentrations than the traditional synthesis depicted in Scheme 3.1, 

we next moved to investigating the macrocyclization of 2 in solvent mixtures. Initially, it was 

sought to study complexes of copper with the T-PEG1900 ligand in a mixture of non-miscible 

solvents such as H2O/PhMe (1:1), again at 150X the traditional concentration (Table 3.1). 

Under the aqueous solvent conditions however, the T-PEG1900 Cu complexes were not active 

in the Glaser-Hay coupling, however gratifyingly the starting material 2 was recovered 

quantitatively. As such, we chose to further improve the reactivity of the Glaser-Hay coupling 

through the inclusion of a Ni-based co-catalyst. Lei and co-workers26 have previously shown 

that a Ni co-catalyst can improve the reaction rates of Glaser-Hay couplings. Despite the 

addition of NiCl2 to the reaction mixture, no macrocyclization was observed. Substitution of 

H2O with MeOH in the solvent mixture produced a reaction that was initially biphasic but 

slowly became homogeneous at elevated temperatures. Gratifyingly, an isolated yield of 15 % 

for 3 was obtained, although the remaining starting material was oligomerized. Even though 

we had achieved identical yields to the traditional macrocycle synthesis (Figure 3.2), we 

sought to further improve the reaction through optimization of both the nature of the solvent 

and the ratio of hydrophilic to hydrophobic media. It was found that Et2O/MeOH (1:1) was an 

optimal solvent combination which resulted in a 34-42 % isolated yield of the 1,3-diyne 

product 3. Under these conditions, the NiCl2 co-catalyst was finely suspended in the reaction 

mixture and it was believed that the heterogeneity was responsible for the varying yields. A 

variety of Ni salts were investigated as alternatives to NiCl2 and Ni(NO3)2•6H2O was found to 

be highly soluble and provided similar yields of 3 (35 %). Finally, when the catalyst loading 

was increased to 25 mol %, the isolated yield of macrocycle 3 was also increased to 65 %. 
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Table 3.1 – Model studies on the macrocyclization of 3 using a copper/T-PEG1900 system and 

phase separation as a strategy to control reactivity. 

 
entry Ni catalyst Solvent (ratio) yield (%) 

1 none PhMe/H2O (1:1) 0 

2 NiCl2 PhMe/H2O (1:1) 0 

3 NiCl2 PhMe/MeOH (1:1) 15 

4 NiCl2 Et2O/MeOH (1:1) 34-42a 

5b Ni(NO3)2·6H2O Et2O/MeOH (1:1) 35 

6c Ni(NO3)2·6H2O Et2O/MeOH (1:1) 65 

a) In#some#cases#complete#consumption#of#the#starting#material#was#observed#while#in#other#instances#
10"20!%"could"be"recovered"and"up"to"38!%"of"a"linear"dimer"could"be"isolated."b) 5"days!reaction)

time. c) 25#mol!%"of"CuCl"and"Ni(NO3)2·6H2O"were"used."50"mol!%"of"7!was$used.!

 

The above results demonstrate that phase separation can be an effective technique to 

promote efficient macrocyclization at high concentrations. A novel Cu and Ni-based catalyst 

system was developed using a PEGylated diamine ligand T-PEG1900 which allowed the diyne 

macrocycle 3 to be prepared at significantly higher concentration (0.0002 M (600 mL) → 0.03 

M (5 mL)) and yields (11 % →65 %) than that utilized in traditional methods. 
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3.3.2 – Poly(ethylene glycol) (PEG) as a Solvent for “Green” 

Macrocyclization.  

The success of the T-PEG1900 ligand in the previous macrocyclization reactions 

encouraged us to investigate the use of PEG itself as a solvent in the phase separation strategy. 

Poly(ethylene glycol) (PEG) has already been extensively studied as a reaction media for 

transition metal catalyzed reactions, particularly cross coupling transformations.27,28 PEG (low 

molecular weight) is well suited as a “green” solvent as it is a water soluble hydrophilic 

polymer that is relatively non-toxic, non-volatile, inexpensive and thermally stable.29-31  

The aforementioned properties of PEG are normally highly sought after when 

searching for alternatives to traditional organic solvents and consequently, PEG400 was chosen 

as an ideal solvent for the development of a “green” macrocyclization protocol. In order to 

investigate the macrocyclization of 2 at high concentrations using PEG400 as a hydrophilic 

solvent, we initially performed a control experiment to demonstrate that complexes of Cu salts 

with TMEDA or pyridine were soluble and homogeneous in PEG400 solution under rapid 

stirring. Control experiments also demonstrated that in either homogeneous MeOH or PEG400 

solution, only polymerization of 2 is observed under classical catalysis (CuCl, TMEDA) at 

150X the concentration used in the traditional conditions.  

As with the macrocyclization reactions employing the T-PEG1900 ligand, we sought to 

improve the macrocyclization reaction using PEG400 as a solvent through the use of Ni-based 

co-catalysts. Upon repeating the macrocyclization reaction of 2 in the presence of a 

stoichiometric amount of NiCl2 a similar yield of 24 % yield was observed (Table 3.2).32 The 

reaction yields and rates could be increased (24→57 %, 3→1 day) by adjusting the ratio of 

PEG400/MeOH from 1:1 to 2:1. We investigated other ligands for the Cu catalyzed process and 
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pyridine was shown to be superior (66 % yield of 3) to TMEDA, phenanthroline or 2,6-

bipyridine (Table 3.2, entries 3-6). Gratifyingly, the catalyst loading could be decreased to 25 

mol % for both CuCl2 and NiCl2 without significant decreases in yield, although the reaction 

time was longer (Table 3.2, entries 6-9). The macrocyclization of 2 under these reaction 

conditions was slightly irreproducible, perhaps due to the fact that the NiCl2 co-catalyst was 

not completely soluble in the reaction media. Analogous to previous studies, a series of more 

soluble Ni co-catalysts was surveyed (Table 3.2, entries 10-14) and Ni(NO3)2·6H2O was again 

found to be highly soluble in PEG400, and afforded good yields of the product 3 (73 %) at 25 

mol % catalyst loading (Table 3.2, entry 16). 
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Table 3.2 – Model studies on the macrocyclization of 2 using a copper/nickel catalyst system 

and phase separation as a strategy to control reactivity. 

 

entry Cu/Ni (mol %); ligand time (d) yield (%) 

1 a CuCl (100); TMEDA 1 22 

2 a CuCl/NiCl2 (100); TMEDA 3 24 

3 CuCl/NiCl2 (100); TMEDA 1 57 

4 CuCl/NiCl2 (100); bipy 2 48 

5 CuCl/NiCl2 (100); phen 4 26 

6 CuCl/NiCl2 (100); pyridine 1 80 

7 CuCl2 /NiCl2 (100); pyridine 1 78 

8 CuCl2 / NiCl2 (50); pyridine 4 79 

9 CuCl2 / NiCl2 (25); pyridine 4 68 

10 CuCl2/Ni(acac)2 (50); pyridine 5 22 

11 CuCl2/NiBr2 (100); pyridine 1 67 

12 CuCl2/NiF2·4H2O (100); pyridine 1 68 

13 CuCl2/Ni (100); pyridine 2 76 

14 CuCl2/Ni(NO3)2·6H2O (100); pyridine 1 83 

15 CuCl2/Ni(NO3)2·6H2O (50); pyridine 1 68 

16 CuCl2/Ni(NO3)2·6H2O (25); pyridine 2 73 
a) Solvent(ratio(PEG400/MeOH&(1:1).  
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Table 3.3 – Model studies on the macrocyclization of 3 using a copper/T-PEG1900 system and 

phase separation as a strategy to control reactivity. 

 

entry scale  
(mmol 2) 

yield (%) solvent volume,a  
biphasic (mL) 

solvent volume, b  
monophasic (mL) 

1 0.12 73  5 600 

2 0.36 65  15 1800 

3 1.00 60  45 5400 
a) Total volume of solvent required for the reaction using PEG400/MeOH solvent mixture. b) Total solvent 
required if an analogous reaction were performed using the traditional conditions reported in Scheme 2.1. 
 

 

Upon optimization of the catalytic system and the reaction conditions, we performed 

some preliminary investigations on the feasibility of scale-up using the phase separation 

strategy for macrocyclization (Table 3.3). When the macrocyclization of diyne 2 was 

performed on three times the previous scale (0.36 mmol), we were pleased to observe very 

little change in the overall isolated yield of the reaction (Table 3.3, entry 2). When the reaction 

was scaled up to 1 mmol scale, an isolated yield of 60 % was obtained for the desired 

macrocycle 3. Importantly, the macrocyclization on 1 mmol scale needed only 45 mL of a 

mixture of PEG400/MeOH while the analogous macrocyclization would have required 5400 mL 

of PhMe or CH2Cl2 to perform (Table 3.3).  

While further optimization of the catalyst and/or ligand structure may afford higher 

yields, the increase in concentration, reduction of solvent and high yields demonstrate a 

significant step towards achieving a general and green macrocyclization protocol. In addition, 
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it should be noted that the phase separation strategy allows for a simpler experimental set-up 

when conducting the macrocyclization (Figure 3.2), whereby the use of cumbersome syringe 

pumps and expensive glassware is avoided and replaced by a simple screw-cap vial. 

To demonstrate some generality of the optimized catalytic system and reaction 

conditions, we explored the substrate scope of the macrocyclization. We first explored the 

scope of the ring size for the synthesis of macrolactones using the phase separation strategy 

(Table 3.4, entries 1-6). Each macrocyclization was performed using both stoichiometric and 

catalytic amounts of Cu and Ni complexes. In general, yields are good to excellent using 

catalytic amounts of Cu and Ni and only small increases were observed when using 

stoichiometric quantities. First, a smaller rigidified 14-membered macrolactone 8 was isolated 

in 62 % yield (Table 3.4, entry 1). Second, the macrocyclization of larger macrolactones was 

investigated and it was found that lactones having ring sizes of 18, 21 and 23 atoms at high 

concentrations were all possible using the phase separation strategy. The 18-membered 

macrolactone 9 was isolated in 74 % yield using 25 mol % of catalysts (stoichiometric Cu/Ni 

= 87 %). The synthesis of 21- and 23-membered macrolactones was equally efficient. The 

diyne macrocycles 10 and 11 were isolated in 81 % and 78 % yield respectively under 

catalytic conditions. Finally, a 28-membered macrolactone 12 was prepared in 91 % isolated 

yield using stoichiometric reagents and in 98 % when using the catalytic Cu/Ni combination. 

A variety of functional groups were also tolerant of the reactions conditions (Table 3.4, entries 

7-10). An 18-membered diyne macrocycle embedded within a suitably-protected glucose core 

13 was isolated in 65 % yield under catalytic conditions. Similarly, esters and phenolic ethers 

all afforded high yields of the corresponding macrocyclization products. Under catalytic 

conditions, the ester-containing macrocycle 14 was isolated in 70 % yield under the catalytic 
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conditions. In addition, the malonate derived macrocycle 15 was isolated in 63 % yield under 

catalytic conditions. Macrocyclization of aryl substituted alkynes was similarly efficient, as 

the the 16-membered diether 16 was isolated in nearly quantitative yields (98 %) under the 

optimized catalytic conditions.33  

Importantly, in all of the above examples, control reactions whereby the substrates 

were placed in homogeneous MeOH solution at the identical high concentrations only resulted 

in complete consumption of the diyne precursors and the formation of polymer products 

demonstrating that phase separation using transitional metal complexes solubilized in PEG400 

can be exploited to promote efficient macrocyclization of a wide range of diyne macrocycles 

(8-16) in good to excellent yields (65-98 %) at high concentrations. 
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Table 3.4 – Macrocyclization via Glaser-Hay coupling of various diynes using a copper/nickel 
co-catalyst system and phase separation. 

 
entry product  catalyst (mol %) yield (%) 

1 

 

3 100 
25 

83 
73 

2 

 

8 100 
25 

68 
62 

3 

 

9 100 
25 

87 
74 

4 

 

10 100 
25 

93 
81 

5 

 

11 100 
25 

85 
78 

6 

 

12 100 
25 

91 
98 

7 13 100 
25 

67 
65 



 

75 

 

8 

 

14 100 
25 

69 
70 

9 

 

15 100 
25 

 
65 
63 

10 

 

16 100 
25 

77 
98 

 

3.4 – Conclusions 

Macrocyclic Glaser-Hay coupling at high concentrations can be achieved using phase 

separation as a strategy to control dilution effects. Two different strategies for performing 

macrocyclizations in biphasic media have been developed using the diyne macrocycle 3 as a 

target to demonstrate that the developed macrocyclizations could be performed on industrially 

relevant compounds. First, we demonstrated that when necessary, phase separation between 

catalyst and substrates can be achieved by developing hydrophilic ligands for transition metal 

complexes that allow for the catalysts to be sequestered in a highly polar and/or hydrophilic 

phase. To demonstrate this strategy, a PEGylated TMEDA derivative T-PEG1900 was prepared 

and promoted the cyclization of 2 at a significantly higher concentration (0.0002 M (600 mL) 

→ 0.03 M (5 mL)) and better yields (11 % →65 %) than that utilized in traditional methods 

(Figure 2.3). Secondly, solubilization of Cu/pyridine complexes in PEG400 demonstrates it 
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applicability as a green and efficient solvent for use in biphasic mixtures for macrocyclization 

at high concentrations. Copper/nickel co-catalysts systems can be used to promote the 

macrocyclization of a wide range of macrocycles with varying ring sizes and functional 

groups. The concept that phase separation can be used to control dilution effects in 

macrocyclization reactions should allow for the practical synthesis of this class of compounds 

to provide highly valuable chemical products using practices that are significantly more 

environmentally benign. In addition, the phase separation strategies discussed herein are 

currently being applied to develop other macrocyclization protocols for macrocyclic olefin 

metathesis and macrolactonization, using environmentally benign solvents and concentrations.  
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4.1 – Abstract 

Efficient macrocyclization can be conducted at high concentrations employing 

microwave irradiation and a phase separation strategy. The rate of the Glaser-Hay 

macrocyclization is accelerated using microwave irradiation and reaction times decreased 

from 48 h to 1-6 h, depending on the nature of the substrate. Macrocyclization concentrations 

could be increased up to 0.1 M compared to traditional concentrations (0.2 mM). 

4.2 – Introduction 

The application of macrocycles in drug discovery, pharmaceuticals, agrochemicals and 

cosmetics continues to increase due to their unique chemical structures and properties.1-3 The 

preparation of macrocycles is often hampered by competing oligomerization reactions, hence 

the requirement that they be conducted under relatively low concentration.4 The large volumes 

of solvent required to attain the necessary dilution renders macrocyclization processes 

problematic on larger scales.5 It is also customary to heat macrocyclization reactions to high 

temperatures to help promote the slow rate of ring closure. Consequently, the rapid heating 

and high temperatures possible via microwave irradiation would seem an ideal tool to exploit 

in the synthesis of macrocycles.6 Microwave promoted macrocyclizations have been used to 

prepare macrocyclic peptides, most commonly during syntheses employing solid supports.7 

However, a drawback to the strategy is that most microwave reactors are restricted in size and 

it may be impossible to scale up or to use slow addition techniques to improve yields.8 Hence, 

it is difficult to envision performing macrocylizations in a microwave reactor when low 

concentrations are required. Herein we report a microwave accelerated synthesis of 
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macrocycles via Glaser-Hay coupling at high concentrations made possible through the use of 

a phase separation strategy. 

4.3 – Results and Discussion 

We have recently reported an improved protocol for macrocyclic Glaser-Hay coupling 

that employs phase separation as a strategy to control the effective molarity.9 The procedure 

employed mixtures of PEG400/MeOH as a solvent combination. It is assumed that the 

formation of aggregates by the PEG400 allows for separation of the substrate10 and catalyst and 

promotes reactions at the interphase of the two solvents,11 effectively controlling the molarity 

during the key bond forming process (Figure 4.1).12 

 

Figure 4.1 – Macrocyclization employing phase separation. 

 

As a result of the phase separation strategy, macrocycles containing 1,3-diyne moieties 

were prepared in increased yield compared to a traditional synthesis using high dilution and 

slow addition techniques. For example, the 16-membered macrolactone 2,13 was prepared in 

only 11 % yield when performed using high dilution conditions. Alternatively, when using the 

phase separation conditions employing a PEG400/MeOH solvent mixture, the product 2 was 

obtained in 73 % yield using catalytic amounts of catalysts and at 150X greater concentration. 
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Scheme 4.1 – Comparing macrocyclization routes to diyne 2. 

 

A drawback of the phase separation strategy was the long reaction times (1-2 d) due to 

slow reaction at the solvent interface (Scheme 4.1). In an effort to accelerate the reactions, we 

decided to investigate performing the cyclizations under microwave heating. The phase 

separation strategy described herein is ideally suited for batch reactor microwaves as it allows 

for the reactions to be conducted at relatively high concentrations, eliminating the need for a 

continuous flow microwave set-up.14,15 

Our initial investigations began with performing the previously reported 

macrocyclization with diyne 1 at 100 °C in a microwave vessel (Table 4.1). No desired 

product was isolated and precipitation of the catalyst (and/or precipitation of catalyst 

decomposition products) was observed. As such, we surveyed other bidentate ligands which 

may prevent the precipitation of the catalyst and/or co-catalyst and identified 

tetramethylethylene diamine (TMEDA) as the optimal ligand. The macrocycle 2 was then 

isolated in a yield (75 %) that was identical to what was observed under traditional heating (73 

%) and in just 6 h (traditional heating = 48 h) 
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Table 4.1 – Optimization of macrocyclization of diyne 1 under microwave irradiation. 

 

entry Cu/Ni (mol%) ligand temp (°C); time (h) yield (%)a 

1 50 pyridine 100; 6 0 

2 50 bipy 100; 6 18 

3 50 phen 100; 6 14 

4 50 TMEDA 100; 6 75 

5 25 TMEDA 100; 6 571 

6 25 TMEDA 100; 12 81 

a) Isolated yields following flash chromatography. b) Precipitation and/or decomposition of the Cu complex is 
observed at the elevated temperatures. bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline 

 

Having identified efficient reaction conditions (120 °C, TMEDA, 6 h), we decided to 

investigate the substrate scope (Table 4.2). Macrolactones having sizes of 21, 23 and 28-

membered rings were prepared using the microwave protocol and the results compared to the 

yields and rates obtained with traditional heating (Table 4.2, entries 2-4). In all cases, the 

reaction rate was improved from 48 h to just 6 h. In the case of the 21- and 23-membered 

macrolactones 3 and 4, the yields of the final products were within 10 % of those obtained 

with traditional heating. For the diester 5, the isolated yield of 61 % was lower than what was 

                                                

 

 
1 There is an error in the reported table. The yield at 100 oC for 6 h is 54 % (entry 5) and the yield at 120 oC for 6 
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obtained with traditional heating, however the reaction was stopped at 6 h and 25 % of the 

starting diyne was re-isolated.16 It is assumed that by extending the reaction further would 

result in complete conversion and an increase in the final yield of the product 5.  

The macrocyclic ether 6 was also obtained in yields that resemble those obtained with 

traditional heating (65 % vs. 70 % respectively) in just 6 h. Finally the diaryl macrocycle 7 

was also prepared in good yield (71 %) using the microwave heating in only 1 h.17 Having 

demonstrated that microwave assisted macrocyclizations were possible at higher 

concentrations using phase separation techniques, we also sought to illustrate the usefulness of 

the microwave protocol in the synthesis of some new macrocyclic structures (Table 4.2, 

entries 7 and 8). Consequently, we first sought to investigate the cyclization of some substrates 

having one aryl alkyne and one alkyl alkyne (Table 4.2, entries 7 and 8). The macrolactones 8 

and 9 were synthesized using the established conditions in just 3 h at 120 °C in yields of 67 

and 64 % respectively. The decrease in reaction time from the typical 6 h to 3 h is expected 

with substrates having more reactive aryl alkynes. 
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Table 4.2 – Comparision of macrocyclic Glaser-Hay couplings of diynes under traditional 
heating versus microwave irradiation. a 

 
entry product entry product 

1 
 

2 
 

(Δ): 60 °C; 48 h, 73 % 
(µw): 100 °C; 6 h, 57 % 

(Δ): 60 °C; 48 h, 81 % 
(µw): 100 °C; 6 h, 81 % 

3 
 

4 
 

(Δ): 60 °C; 48 h, 78 % 
 (µw): 100 °C; 6 h, 69 % 

(Δ): 60 °C; 24 h, 98 %  
(µw): 120 °C; 6 h, 61 %b 

5 
 

6 
 

(Δ): 60 °C; 24 h, 70 % 
 (µw): 120 °C; 6 h, 65 % 

(Δ): 60 °C; 24 h, 98 % 
 (µw): 120 °C; 1 h, 71 % 

7 

 

8 

 

(µw): 120 °C; 3 h, 67 % (µw): 120 °C; 3 h, 64 % 

a) Isolated yields following flash chromatography. b) 25% of the starting diyne was recovered. 

R

Ar

Arm

n

CuCl2 (25 mol %), Ni(NO3)2.6H2O (25 mol %)
PEG400/MeOH (2:1), Et3N (3 equiv)

Tradititonal Heating (Δ)
Pyridine (5 equiv), temp (oC), O2 (1 atm)

Microwave Irradiation (µW)
TMEDA (5 equiv), temp (oC), O2 (1 atm)

R

Ar

Arm

n

Ring
Size
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To further confirm the increase in the rate when using microwave irradiation, the 

cyclization of diyne 10 was conducted using both microwave irradiation and traditional 

heating. The isolated yield of macrocycle 3 was determined for various reaction times (Figure 

4.2). While a rapid formation of 3 under microwave irradiation was observed in the first two 

hours (with a 81 % yield observed after 6 h), the formation of 3 was much slower under 

traditional heating in an oil bath, where only 28 % of 3 was observed after 2 h and 36 % after 

6 h.18 

To demonstrate that the developed chemistry using microwave irradiation could 

potentially be used for performing reactions on larger scales, we performed the reactions using 

even higher concentrations (Figure 4.2). The macrocyclizations were run in either 

homogenous MeOH solution or in PEG400/MeOH (2:1) solvent mixture. When the reactions 

were conducted under traditional heating at 0.1 M in PEG400/MeOH (2:1), a 53 % isolated 

yield of macrocycle 3 was obtained. When the corresponding reaction was run in 

homogeneous MeOH, the yield of the desired product dropped significantly to only ~5 %. 

Similar trends were observed when the macrocyclizations were performed at high 

concentrations using microwave irradiation. The diyne 3 was formed in 75 % yield under the 

microwave irradiation protocol in PEG400/MeOH (2:1) at 0.03 M, but only 24 % was formed 

in MeOH solution. When the concentration was increased to 0.05 M, the use of phase 

separation conditions allowed for a 57 % isolated yield while MeOH alone as solvent gave 16 

%. Finally, at 0.1 M, 42 % of macrocyclic diyne 3 was obtained and only ~8 % was isolated 

when using MeOH as a solvent. The above results demonstrate the ability of phase separation 

to promote efficient cyclization at high concentrations (traditional 0.2 mM vs. phase separation 

0.1 M). 
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Figure 4.2 – (top) Comparison of the rate of formation of macrocycle 3 using different heating 

techniques. (bottom) Comparing homogenous solutions vs. phase separation in 

macrocyclizations at high concentrations 
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4.4 – Conclusion 

A protocol that allows for Glaser-Hay macrocyclizations to be performed at high 

concentrations using microwave reactors commonly used in academic/industrial laboratories 

without the need for a continuous flow apparatus. The microwave irradiation strategy utilizing 

a Cu/TMEDA catalyst and PEG400/MeOH solvent mixture promotes rate acceleration (versus 

thermal heating). Reactions could be effectively performed at concentrations up to 0.1 M.19 

Further study is aimed at studying the origin of the phase separation and understanding the 

role that aggregates may play in controlling the effective molarity. 
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5.1 – Abstract 

The aggregation properties of PEG can be exploited in organic synthesis to control 

dilution effects. Through the use of solvent mixtures containing PEG400/MeOH, 

macrocyclization via Glaser-Hay coupling can be conducted at high concentrations. The origin 

of the selectivity has been studied using surface tension measurements, UV spectroscopy and 

chemical “tagging” and demonstrate the dependence of the yield and selectivity on the 

aggregation of PEG400 and its ability to preferentially solubilize organic substrates, resulting in 

a phase separation from the catalyst system. 
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5.2 – Introduction 

The study of macrocycles and their unique properties,1 in both industrial and academic 

settings, are plagued by the difficulties associated with their synthesis. In the absence of any 

conformational restraint, the key ring closing reaction to synthesize a macrocycle is typically 

slow resulting in competing oligomerization. High dilution is the most common solution2 to 

inhibit intermolecular reactions between substrates, but the large volumes of solvent required 

can be problematic.3 In addition, the associated environmental impact of solvent disposal 

renders most macrocyclization reactions unacceptable under the principles of green 

chemistry.4 

In a program aimed at developing new macrocyclization strategies, our group has 

recently devised an alternative strategy for Glaser-Hay macrocyclization reactions, allowing 

them to be conducted at high concentrations (Scheme 5.1).5 The macrocyclization procedure 

employed mixtures of poly(ethylene glycol) (PEG)400/MeOH as a solvent combination and 

could be performed even at high temperatures using microwave heating.5b Employing the 

PEG400/MeOH solvent combination, the cyclization of diynes could be conducted at 

concentrations up to 0.1 M, which is an increase in the concentration of the reaction by a 

factor of 500 when compared to traditional conditions. The discovery of the PEG400/MeOH 

solvent system was spurred by the desire to develop a biphasic macrocyclization protocol. 
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Scheme 5.1 – Comparing macrocyclization routes to diyne 2. 

 

It was hoped that by sequestering the catalyst system and macrocyclization substrate 

into different phases,6 the key bond forming process would take place at the interface of the 

two solvents, where the relative concentration of substrate is low. Unfortunately, our initial 

investigations using organic/aqueous systems (PhMe/H2O) that remained biphasic throughout 

the reaction were unsuccessful at promoting the cyclization (Scheme 5.2). Remarkably, when 

homogeneous mixtures of PEG400/MeOH where employed, the macrocyclizations were 

promoted with high efficiency and selectivity.7,8 Although anxious to investigate whether 

PEG400/MeOH mixtures could be used in other macrocyclization reactions, we believed that 

the scope of the macrocyclization protocol could not be extended before more insight into the 

origin of the selectivity could be obtained. Given the well documented tendency for PEG to 

form aggregates in solution and consequently the numerous applications in medicinal 

chemistry and materials science,9,10 it is surprising that exploitation of its aggregation effects 

in organic synthesis had not previously been explored. 
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Scheme 5.2 – Macrocyclization to form 2 using biphasic conditions (PhMe/H2O) and using 

homogenous mixtures of PEG400/MeOH. 

 

Herein, we provide insight into a possible mechanism for the high selectivity observed 

during macrocyclization utilizing PEG400/MeOH mixtures that invokes the formation of 

aggregates by the PEG400. The importance of PEG aggregates has been studied using three 

different techniques including surface tension measurements, UV spectroscopy and chemical 

modification of the substrate and catalyst. 

  



 

96 

5.3 – Results and Discussion 

5.3.1 – Aggregate Formation in Poly(ethylene glycol) Homogenous Mixtures  

Poly(ethylene glycol) (PEG) is well known to form aggregate structures in solution; 

their properties can often be controlled through judicious choice of the length of the PEG 

polymer chain.9-10 The biocompatibility of PEG derived polymers has lead to applications as 

possible drug delivery agents in biological systems.11 PEG is considered a green solvent since 

in addition to its relative non-toxicity, it has a low volatility and its solubility properties are 

often tunable.12 In the Glaser-Hay macrocyclization systems previously reported (Scheme 

5.1), the formation of aggregates by PEG400 was proposed to account for the phase separation 

between the catalyst systems and the organic substrates, thus effectively controlling the 

molarity of the macrocyclization reaction. To confirm the existence of aggregates and their 

impact on macrocyclization, surface tension measurements13 with PEG400 in MeOH mixtures 

at 60 °C were performed to mimic the previously optimized reaction conditions (Figure 5.1, 

top). 
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Figure 5.1 – Surface tension measurements for homogenous mixtures of PEG400 (top) or 

ethylene glycol (bottom) in MeOH (in red) at 60 °C and influence on macrocyclization (3 → 

4) (in green, see Table 5.1). 

 

The surface tensions of homogenous mixtures of PEG400 in various ratios with MeOH 

were first studied (Figure 5.1, top). Gratifyingly, the resulting S-shaped curve confirmed the 

formation of aggregates with increasing ratios of PEG400/MeOH.14 The surface tension was 
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found to slowly increase at low ratios of PEG400/MeOH, then rapidly increase between 40-

70 % PEG400/MeOH ending in a plateau at approximately 70 % PEG400/MeOH, from which a 

critical aggregate concentration be calculated.14 As a control, surface tensions were measured 

in homogenous mixtures where the PEG solvent was replaced by ethylene glycol, as it 

represents the smallest building block or monomer of PEG, but is sufficiently short in length 

that it should not form aggregates in solution (Figure 5.1, bottom). As expected, the surface 

tension measurements showed a linear trend (R2 = 0.9922) over a range of different mixtures 

of ethylene glycol/MeOH which is indicative of a non-aggregated solution.  

Having confirmed the presence of aggregates in homogenous mixtures of 

PEG400/MeOH, we sought to study their influence on the yield of the cyclization of diyne 3 at 

various ratios of PEG400/MeOH (Table 5.1, entries 1-6). When the cyclization was performed 

in pure MeOH solution, a small quantity of product 4 was observed (22 %) and the remaining 

starting material 3 was oligomerized.15 However, even when only a small amount of PEG400 

was added (10 % PEG400/MeOH ), the isolated yield of the desired macrocyclic diyne 4 was 

increased to 45 % yield. As the ratio of PEG400/MeOH increased, so did the isolated yield of 

diyne 4 (62 % at 33 % PEG400/MeOH and 81 % at 66 % PEG400/MeOH). However, when the 

solvent ratio was further increased to 90 % PEG400/MeOH, the yield of the desired product 4 

dropped to 69 %. At the high ratio of 90 % PEG400/MeOH, the remaining mass balance was 

unreacted 3, suggesting that the reactivity of the catalyst system was decreased at high 

PEG400/MeOH ratios. Reactions performed in pure PEG400 exhibited extremely slow reaction 

rates and very little desired product was observed even after 7 days.16 
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Table 5.1 – Yields of macrocycle 4 at various ratios of PEG400 or ethylene glycol in MeOH.17 

 

entry additive % additive/ MeOH yield 4 (%)a 

1 

PEG400 

 

0 24 

2 10 45 

3 33 62 

4 66 81 

5 90 69b,c 

6 100 <5b,c 

7 

ethylene 

glycol 
 

0 24 

8 10 24 

9 33 34 

10 66 26b 

11 90 27b 

12 100 16b 

a) All#compounds#were#isolated#by#silica#gel#flash#chromatography.!Unless&otherwise&stated,&all&remaining&
starting(material(3!was$oligomerized,$see$ref$15. b) Some%precipitation%of%the%catalyst%mixture%was%

observed(after(2(d. c) Remaining(mass(balance(was(recovered(3. 

 

Once again as a control, the macrocyclization of 3 was investigated in solvent mixtures 

of ethylene glycol in MeOH which were confirmed to not form aggregates in solution (Figure 

5.1, bottom and Table 4.1, entries 7-12). When the cyclization of 3 to form 4 was conducted 

with low ratios of ethylene glycol/MeOH (10 % or 33 %), the yields were low and mirrored 
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the yields that were obtained when the cyclization was conducted in pure MeOH (Table 5.1, 

entry 7: 24 %). At higher ratios of ethylene glycol (66 % or 90 %), again the yields remained 

low (26 % and 27 % respectively) and identical to what was previously observed at other 

ratios of ethylene glycol/MeOH. In addition, when 90 % ethylene glycol or pure ethylene 

glycol was used, the starting diyne 3 was not recovered at the end of the reaction and extensive 

oligomerization was observed. The fact that the yield of 4 does not vary significantly in 

ethylene glycol/MeOH solutions that do not form aggregates further implies the importance of 

aggregation in achieving efficient macrocyclization at high concentrations. These results as a 

whole verify that aggregation has a direct influence on the yield of the macrocyclization 

reaction and proves its importance in achieving efficient macrocyclization at high 

concentrations. 

5.3.2 – Determination of the Phase Preference of Substrate and Catalyst 

Poly(ethylene glycol) has good solubility in a variety of organic solvents and can 

effectively dissolve organic molecules.12 The preferential conformation of PEG in polar media 

has been determined to be helical; this minimizes interactions of the aliphatic chains with the 

solvent.18,19 The folding creates a lipophilic environment that is responsible for PEG’s ability 

to solubilise organic molecules within its aggregates. Consequently, it was believed that the 

organic macrocyclization substrates were residing preferentially in the PEG aggregate as 

opposed to the MeOH solvent. To probe the solvent environment about a typical organic 

substrate, UV spectroscopy measurements were performed with the acyclic diyne 3 in 

homogenous mixtures of PEG400 and MeOH (Figure 5.2).20 
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Figure 5.2 – Absorbance measurements of diyne 3 in various solvent mixtures. 

 

Evidence for the preferential solubilization of the organic substrate 3 in PEG400 comes 

from the spectral changes observed under mixing 3 with various percentages of PEG400 in 

MeOH. The absorption maxima of the diyne 3 in 100 % PEG400 was 288 nm and was 

essentially identical to the absorption maxima in 100 % MeOH. However the absorbance 

intensities were different, with the absorbance maxima smaller in 100 % MeOH (0.64 in 

PEG400 vs. 0.57 in MeOH). When the spectrum was recorded for the diyne 3 in 75 % 

PEG400/MeOH (very close to the ratio of 66 % PEG400/MeOH which gave the highest yields of 

3 in previous studies, see Table 4.1), the absorbance measured was very similar (0.63) and the 
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spectrum closely resembled that of 3 in 100 % PEG400. As the amount of MeOH was increased 

to 50 %, the absorbance intensity (0.62) and curve shape continued to almost overlap with the 

spectrum obtained for 3 in PEG400. Even the spectra obtained for 3 in 25 % PEG400/MeOH 

shows only a slightly smaller absorbance intensity and is still similar to the curve observed for 

the diyne 3 in 100 % MeOH. The similarity of all the curves to the spectrum of 3 in 100 % 

PEG400 point to a preference for diyne 3 to reside within the PEG400 aggregate. To provide 

further insight into where the substrate and catalyst were preferentially solubilized, chemical 

tagging of both catalyst and substrate was performed. 

5.3.3 – Chemical “Tagging” of Substrate and Catalyst 

To elucidate the phase preference of the substrate and catalyst in the macrocyclization 

process, the ester diyne 7, in which the appended benzyl ester was substituted with three 

poly(ethylene ether) sidechains was prepared.21 The benzyl ester tag was included at a remote 

ester position to be sufficiently far away from the diynes as to not directly affect the 

macrocyclization. Most importantly, the appended tag can be used as a means to assure the 

ester 7 prefers inclusion into a PEG aggregate.22 The macrocyclization studies could then be 

compared to the isolated yields obtained for the ester substrate 5 that was previously 

investigated under the optimized macrocyclization conditions (Scheme 5.3). 
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Scheme 5.3 – Macrocyclization behavior of tagged ester 7. 

 

 

Scheme 5.4 – Macrocyclization of diyne 5 with a tagged TMEDA derivative 9. 

 

  Macrocyclization of diyne methyl ester 5 under the PEG400/MeOH optimized 

conditions afforded a 65 % yield of the desired product 6 when using microwave 

irradiation. As expected, when the tagged acyclic diyne 7 was submitted to identical 

reactions conditions, little change in yield was observed (64 % yield of 8 using microwave 
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irradiation). Because the cyclization behavior of the two esters 5 and 7 were identical, it 

suggests that the organic substrate 5 preferentially resides within the PEG aggregate. Next, 

the solubility preference of the copper catalyst was probed. Towards this goal, a derivative 

of TMEDA 9 was prepared and tagged with the same benzyl group as ester 7 (see 9), and 

was studied in the macrocyclization of 5 (Scheme 5.4). Once again, the macrocyclization 

using ligand 9 would be compared to the cyclization using TMEDA (5 → 6, 65 % yield). It 

was assumed that the PEGylated 9 would force the resulting Cu complex into the PEG 

phase. The macrocyclization of 5 in homogenous PEG400 using TMEDA/Cu complexes 

displayed very slow reaction rates (>90 % 5 recovered) and low yields of desired products 

(<5 % yield of 6 in 100 % PEG400, Scheme 4.4). As such, we expected the results of the 

macrocyclization of 5 using tagged ligand 9 to display a similar reactivity profile to 

reactions that were performed in pure PEG400. When the cyclization (5 → 6) using ligand 9 

was performed the yield of the macrocyclization dropped dramatically (65→10 %). In 

addition, the reaction rate had slowed considerably and even after 18 h of microwave 

irradiation, 32 % of the starting material 5 was recovered. The rest of 5 was assumed to be 

converted to oligomers.15 The results of the above experiment point to the Cu/TMEDA 

catalyst system preferentially residing in a MeOH phase, while the organic substrate 

resides within a PEG400 aggregate or phase.  

The surface tension measurements, UV spectroscopy and chemical tagging 

experiments clearly invoke the formation of aggregates by the PEG400. The preferential 

solubility of the organic substrates within the PEG aggregate suggest that slow diffusion of the 

organic diyne towards the MeOH phase, in which the relative concentration of the diyne 

would be low, would be necessary for reaction with the catalyst system. The slow diffusion of 
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the organic diyne towards another phase effectively mimics the low concentration achieved 

using high dilution conditions. 

5.4 – Conclusion 

In summary, surface tension measurements, UV spectroscopy and chemical tagging 

have been used to elucidate the origin of the efficiency in macrocyclic Glaser-Hay couplings 

that can be performed at high concentrations. The present study confirms that the aggregation 

abilities of PEG400 can be harnessed for use in organic synthesis. In the Glaser-Hay 

macrocyclization protocol previously developed, the cyclization of diynes could be conducted 

in high yields at concentrations up to 0.1 M, which is an increase in the concentration of the 

reaction by a factor of 500. 

These selective and high yielding macrocyclizations are due to aggregates of PEG400 

that can act to mimic phase separation normally achieved using organic/aqueous mixtures. 

Chemical tagging displayed the solubility preferences of the catalyst system for MeOH and 

substrate for inclusion within a PEG aggregate. Furthermore, the degree of aggregation was 

shown to greatly influence the yields of macrocyclization. Despite the variety of applications 

for PEG-derived aggregates in medicinal chemistry and materials science, the application of 

its aggregation effects in organic synthesis have not been explored. The insight gained by the 

present can now be exploited to expand the scope to other important transformations such as 

macrocyclic olefin metathesis and macrolactonization. In addition, the present study suggests 

that the aggregation properties of PEG could be used to control concentration effects in other 

chemical reactions23 or as an alternative to traditional aqueous/organic biphasic reaction 

conditions. 
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 6.1 – Abstract 

The first evaluation of the structural effects of six different poly(ethylene glycol) 

(PEG)-derived polymers in MeOH mixtures on their aggregation abilities, ability to control 

dilution effects, and catalysis has been performed through examining surface tension 

measurements and the isolated yields of a model Glaser-Hay macrocyclization reaction of 

diyne 3. Three different structural effects were studied involving: 1) the presence of capping 

groups on the terminal hydroxyl functionalities of the polymers, 2) the length of the polymer 

chain, and 3) the effects of branching alkyl groups in the polymer backbone. The data obtained 

provides important guidelines for conducting macrocyclizations using PEG/MeOH, suggesting 

that macrocyclizations are most efficient at high ratios of PEG/MeOH and when employing 

medium-length lipophilic branched poly(propylene glycol) (PPG) polymers. In particular, the 

use of PPG bearing terminal uncapped hydroxyl groups allows for a significant reduction in 

the catalyst loading. The macrocyclization studies reinforce that the aggregation 

characteristics of PEG-derived solvents can be harnessed in catalysis, particularly in reactions 

where control of concentration effects is important. 
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6.2 – Introduction 

Concentration effects play an important role in the development of synthetic 

methodologies. For example, the rate of bimolecular reactions can be significantly accelerated 

or decelerated through changes in the reaction concentration. The specific concentration of 

reactive intermediates in chemical transformations can be controlled by using biphasic 

mixtures,1-3 through phase transfer catalysis, or both. The nature of a given reaction’s solvent 

and its concentration have become increasingly scrutinized in organic synthesis as chemists 

weigh the efficiency of a chemical transformation against the environmental impact and costs 

associated with the use of that solvent under the principles of green chemistry.4 Maintaining 

this balance becomes increasingly difficult when considering the preparation of highly 

valuable compounds. Macrocycles are a class of molecules whose unique structural features5 

have allowed them to find application in diverse fields of the chemical industry, including 

agrochemical, pharmaceutical, petrochemical, cosmetics, and materials science. Despite the 

abundance of possible applications, macrocycles are not as broadly investigated as other cyclic 

compounds because of the difficulties associated with their synthesis.6 The control of 

concentration effects is intrinsically key to conducting efficient macrocyclization reactions 

that avoid problematic oligomerization. Maintaining a relatively low concentration of a given 

substrate via high dilution, often using toxic, volatile organic solvents, is commonly 

employed7 to inhibit intermolecular reactions among substrates. The large volumes of solvent 

required can be problematic when conducting reactions on larger scales, and the disposal or 

recycling of the solvents is either environmentally damaging or energy-inefficient.8 
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In a program aimed at developing new catalytic macrocyclization strategies, our group 

recently reported a strategy for conducting Glaser–Hay macrocyclization reactions at high 

concentrations (Scheme 6.1).9 The macrocyclization procedure employed Cu catalysis and 

mixtures of poly(ethylene glycol) (PEG)400/MeOH as a solvent combination, which was 

postulated to form aggregates and control the dilution effects. The methodology afforded the 

diyne 2 and a series of related industrially relevant macrolactones in good to high yields in 48 

h, at concentrations ranging from 150 to 500 times greater than traditional protocols. The slow 

rate of the macrocyclization was subsequently improved upon through the development of a 

microwave heating strategy.9b 

 

Scheme 6.1 – Comparing macrocyclization routes to diyne 2. 

 

Although the aggregation properties of poly(propylene glycol) (PEG) solvents have 

been well documented in the literature, no report of their use in organic synthesis had been 

previously reported. Consequently, a mechanistic investigation was undertaken to understand 

the origin of efficient macrocyclization. Surface tension measurements confirmed the presence 
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of aggregates in PEG400/MeOH mixtures (Figure 6.1). As such, the acyclic diyne, the catalysts, 

and the resulting macrocycle all theoretically exist in equilibrium between the two phases. 

Subsequent investigations revealed that the acyclic diyne preferentially solubilized within the 

PEG aggregate10 and that the rate of reaction was significantly higher in MeOH than in 

PEG400. We concluded that high selectivity for macrocyclization vs. oligomerization could be 

achieved when there is a significant preference for the substrate to exist in a certain “phase” in 

which the rate of cyclization is very slow. Diffusion of the substrate into a separate “phase” in 

small concentration where the rate of cyclization is significantly greater would result in 

selective formation of macrocycles such as 2.11 

 
Figure 6.1 – The proposed origin of selectivity in Glaser-Hay macrocyclization reactions 

employing PEG400/MeOH mixtures. 
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The development of a macrocyclization protocol in which PEG was used to control 

concentration effects was the first report of exploiting PEG’s aggregation properties12 in 

organic synthesis. This was surprising, given the advantages to using PEG as a solvent in 

organic synthesis.13 PEG400 has already been used as a “green” solvent, particularly in cross-

coupling transformations,14 because it is a water-soluble hydrophilic polymer that is relatively 

nontoxic, nonvolatile, inexpensive, and thermally stable.15-17 The use of PEG in 

macrocyclization to partially replace existing toxic and volatile organic solvents was viewed 

as a step toward the development of a “green” macrocyclization protocol. An additional 

advantage to using PEG-derived solvents is the wide variety of structurally distinct PEG-

derived polymers that are commercially available. Indeed, PEG polymers can be obtained in 

varying chain lengths and with different functionalities attached to or replacing the terminal 

hydroxyl groups. Various poly(propylene glycols) (PPGs) can also be obtained and could be 

viewed as derivatives of PEG in which a branching Me group is located upon the polymer 

backbone. At first glance, it was unknown what effects these structural modifications to 

PEG400 would have upon the efficiency and selectivity of the macrocyclization reaction 

previously developed. However, we were motivated by the potential for further improvements 

in catalytic efficiency and a more detailed understanding of PEGs ability to control 

concentration effects. Consequently, herein, we report the first investigation of the effect of 

PEG structure on catalysis and its ability to control concentration effects in Glaser–Hay 

macrocyclization reactions. 
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6.3 – Results and Discussion 

The cyclization of the acyclic diyne 3 to macrocyclic diyne 4 under previously 

developed catalytic conditions at high concentration was investigated using different PEG or 

PPG polymers. The isolated yield of macrocycle 4 was determined at eight different ratios of 

PEG/MeOH (Table 6.1).18 In general, the yield of 4 tends to increase with an increase in the 

PEG/MeOH ratio. At a specific high ratio of PEG/MeOH that is characteristic of each PEG 

polymer studied, catalyst inhibition is observed, the yields of 4 drop, and the remaining mass 

balance is reisolated acyclic diyne 3.19 To investigate the effect of aggregation on the yield of 

the macrocyclization, surface tension measurements for each PEG/MeOH combination were 

also obtained.20 The plot of the surface tension experiments were conducted at 60 °C,21 and the 

resulting measurements (in red, Figures 6.3, 6.5, 6.7 and 6.8) were then overlaid with the 

isolated yields of macrocycle 4 (in green, Figures 6.3, 6.5, 6.7 and 6.8) that were obtained at 

the various ratios of PEG/MeOH. Depicted on each of the plots (Figures 6.3, 6.5, 6.7 and 6.8) 

is a region highlighted in gray, which indicates the PEG/MeOH ratios in which catalyst 

inhibition is observed and the remaining mass balance in reisolated diyne 3. 
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Table 6.1 – Yields of macrocycle 4 at various ratios of PEG in MeOH. 

 

entry 
% 

solvent/ 
MeOH 

solvent 
yield 

4 
(%)a 

entry solvent 
yield 

4 
(%)a 

entry solvent 
yield 

4 
(%)a 

1 0 

PEG190 

 

24 17 

PEG1450 

 

24 33 

PPG425 

 

24 

2 10 40 18 46 34 43 

3 33 56 19 53 35 45 

4 50 59 20 61 36 49 

5 66 69 21 68 37 62 

6 80 71 22 55 b 38 56 

7 90 42 b 23 45 b 39 58 

8 100 5 b 23 5 b 40 9 b 

9 0 

PEG250 

(OMe) 

 

24 25 

Pluronic 

 

24 41 

PEG400 

 

24 

10 10 30 26 36 42 44 

11 33 36 27 43 43 54 

12 50 36 28 49 44 62 

13 66 38 b 29 59 45 75 

14 80 44 b 30 62 46 77 

15 90 46 b 31 42 b 47 56 b 

16 100 15 b 32 24 b 48 5 b 

a) All compounds were isolated by silica gel flash chromatography. Unless otherwise stated, all 
remaining starting material 3 was oligomerized, see ref 17. b) Remaining mass balance was recovered 3. 

 
  

O
O

O
7 O

8

CuCl2 (25 mol %)
Ni(NO3)2.6H2O (25 mol %)

solvent mixture

TMEDA (5 equiv)
Et3N (3 equiv)

120 oC (µW),6 h, O2 (1 atm)

6
21

3

4



 

117 

With six different PEG/PPG polymers in hand, the effect of structural modifications of 

PEG polymers on their ability to promote Glaser–Hay macrocyclization at high concentration 

could be investigated. Three key structural features of the PEG solvents were to be explored: 

(1) the effect of “capping” the terminal hydroxyl groups of the PEG polymer, (2) the effects of 

the polymer length, and (3) the effect of branching in the PEG polymer (i.e., increased 

hydrophobicity). 

6.3.1 – “Capping” of the Terminal Hydroxyl Groups of PEG. 

 

Figure 6.2 – Short chain PEG polymers having different "capping" groups. 

 

The terminal hydroxyl groups of PEG polymers can participate in a number of chemical 

transformations to allow for the further functionalization of PEG polymers for various 

applications.22 Consequently, a number of PEGs bearing differently substituted hydroxyl 

groups are commercially available. In an effort to study the effect of the terminal hydroxyl 

groups on both the aggregation characteristics of the PEG and its ability to promote 

macrocyclization of acyclic diyne 3, PEG250(OMe) was identified as an ideal PEG for study 

(Figure 6.2).23 The two “capping” groups of the hydroxyl functionalities in PEG250(OMe) are 

simple methyl groups, which minimizes the contribution of the capping groups themselves on 

the macrocyclization reaction. In addition, PEG190, another commercially available PEG 

polymer, has a similar average molecular weight, allowing for a more accurate comparison of 

the similarities and differences between the two PEG solvents. 
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Figure 6.3 – The effect of using a "capped" PEG polymer PEG250(OMe) (bottom) versus 

PEG190 (top) when promoting macrocyclic Glaser-Hay coupling (3 → 4) at high concentration 

(0.03M). Surface tension measurements (red) and isolated yields (green) are plotted on the 

same figure. The region highlighted in grey indicated PEG/MeOH ratios in which catalyst 

inhibition is observed and the remaining mass balance in re-isolated diyne 3.  
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When comparing the surface tension measurements obtained for ratios of 

PEG190/MeOH (Figure 6.3, top) and PEG250(OMe)/MeOH (Figure 6.3, bottom), both solvents 

exhibit a nonlinear increase in the surface tension. The S-shaped increase in surface tension is 

characteristic of aggregate formation in solution; however, the surface tension measurements 

between the two PEG polymers changes as the ratio of PEG/MeOH increases. As the ratio of 

PEG/MeOH increases, the surface tension of mixtures of PEG190/MeOH increases much more 

dramatically than for the “capped” PEG250(OMe)/MeOH. More importantly, the ability of 

each PEG solvent to promote macrocyclization of diyne 3 was also very different. In solvent 

mixtures of PEG190/MeOH, the isolated yield of macrocycle 4 increases from 24 % at 100 % 

MeOH to a maximum of ∼71 % yield at 80 % PEG190/MeOH. At all the different ratios of 

PEG190/MeOH, no starting acyclic diyne 3 was recovered, and the formation of oligomers was 

observed.17 When the ratio of solvents was further increased to 90 % PEG190/MeOH, a 

significant drop in the isolated yield of 4 was observed (42 %). Macrocyclization of 3 in 100 

% PEG190 provided only traces of 4. Interestingly, at 90 % and 100% PEG190/MeOH, the 

remaining starting material 3 could be recovered, suggesting that the high ratios of 

PEG190/MeOH caused some degree of catalyst deactivation.24 The ability of 

PEG250(OMe)/MeOH solvent mixtures to promote macrocyclization of diyne 3 was markedly 

different. The isolated yield of macrocycle 4 also increased with the ratio of 

PEG250(OMe)/MeOH; however, the yields of 4 were almost always much lower than what was 

obtained in the PEG190/MeOH solvent mixtures. 

The yields of 4 using PEG250(OMe)/MeOH do not vary as dramatically as they do in 

PEG190/MeOH, just as the surface tension does not rapidly increase to same degree in 

PEG250(OMe)/MeOH as it does in PEG190/MeOH mixtures. The maximum yield of 4 when 
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using the “capped” PEG was observed at 90 % PEG250(OMe)/MeOH, although the yield 

of 4 again dropped to 15 % at 100 % PEG250(OMe). Again, in contrast to what was observed 

with PEG190/MeOH, the PEG250(OMe)/MeOH solvent mixture displayed catalyst inhibition at 

much lower ratios of PEG250(OMe)/MeOH (∼66 % PEG250(OMe)/MeOH), perhaps 

accounting for the lower yields of 4 observed. Taken as a whole, these results suggest that the 

terminal hydroxyl groups of PEG polymers play an important role in aggregation, and PEGs 

having terminal hydroxyl groups are much more efficient at promoting the Glaser–Hay 

macrocyclization at high concentrations. 

6.3.2 – Different Chain Lengths of PEG. 

 

Figure 6.4 – PEG polymers having different chain lengths. 

 

The chain length of PEG polymers can be exploited to alter their solubility properties, 

where the interior of a PEG polymer normally becomes increasingly hydrophobic as the 

number of ethylene glycol units multiply. Small-chain PEGs, such as PEG190, are normally 

free-flowing liquids, whereas larger-chain PEGs, such as PEG1450, are available as solids that 

can be melted to act as a solvent at elevated temperatures (Figure 6.4). Because the hydroxyl 

groups of the PEG polymer were identified to be important for aggregation and obtaining high 

yields of macrocycle product 4, three different PEG polymers (PEG190, PEG400, and PEG1450), 

all having terminal hydroxyl groups, were chosen to evaluate the benefit of increased chain 

length. 
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In general, the surface tension plots for all three solvent mixtures studied utilizing 

different chain-length polymers of PEG displayed a nonlinear increase in the surface tension 

between 100 % MeOH and ∼15–30 % PEG/MeOH, resulting in an S-shaped curve signaling 

the presence of aggregates in solution (Figure 6.5, PEG190 (top), PEG400 (middle), 

PEG1450 (bottom)). Regardless of the chain length of the PEG used, all the solvent mixtures 

had rapid increases in surface tension as the ratio of PEG/MeOH increased. Notably, the 

shorter PEG190/MeOH never reaches a plateau, but the longer PEG400/MeOH mixture does 

have its surface tension plateau at ∼70 % PEG400/MeOH. It was not possible to obtain surface 

tension data for the PEG1450/MeOH mixtures at ratios above 70 % PEG1450/MeOH because 

PEG1450 is a solid and forms saturated suspension at high ratios at 60 °C. The macrocyclization 

of acyclic diyne 3 was also investigated in each PEG/MeOH mixture; the isolated yields of 

macrocycle 4 are plotted in Figure 5.5 (PEG190 (top), PEG400 (middle), PEG1450 (bottom)). All 

three different chain lengths gave high yields of the macrocycle 4 at their optimal PEG/MeOH 

ratio. For PEG190/MeOH and PEG400/MeOH, the maximum yields of 71 % and 77 % occurred 

at a ratio of 80 % PEG/MeOH, whereas the longer PEG1450 had a lower maximum yield (69 

%) at a lower ratio of 66 % PEG1450/MeOH. Note that isolated yields for macrocycle 4 were 

obtained at high ratios of PEG1450/MeOH, since PEG1450 is a liquid at the elevated 

temperatures in the microwave. The biggest difference when comparing the behavior of all 

three PEG chain lengths in that the longer PEG1450 tended to show lower yields and caused 

catalyst inhibition at lower ratios of PEG/MeOH (catalyst inhibition was observed at 90 % 

PEG190 or PEG400/MeOH and at 66 % PEG1450/MeOH). In summary, short- and medium-

chain-length PEG polymers can be used as solvents to efficiently promote Glaser–Hay 

macrocyclization at high concentration when high ratios of PEG/MeOH are employed. Large-
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chain polymers can be problematic as a result of greater levels of catalyst inhibition at the high 

ratios of PEG/MeOH normally needed to promote efficient cyclization. 

 

 

Figure 6.5a – The effect of using different polymer lengths of PEG polymer (PEG190 (top), 

PEG400 (middle), PEG1450 (bottom)) when promoting macrocyclic Glaser-Hay coupling (3!4) 

at high concentration (0.03 M). Surface tension measurements (red) and isolated yields (green) 
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Figure 6.5b – The effect of using different polymer lengths of PEG polymer (PEG190 (top), 

PEG400 (middle), PEG1450 (bottom)) when promoting macrocyclic Glaser-Hay coupling (3→4) 

at high concentration (0.03 M). Surface tension measurements (red) and isolated yields (green) 

are plotted on the same figure. The region highlighted in grey indicated PEG/MeOH ratios in 

which catalyst inhibition is observed and the remaining mass balance in re-isolated diyne 3. 
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6.3.3 – Branched Polymers of PEG: PPG and Pluronic. 

 

Figure 5.6 – Comparison of different PEG polymers having different chain lengths and 

branching substituents. 

 

PPG polymers have a Me group along the ethylene subunit of the polymer and have 

been found to be slightly more toxic than PEG.25 PPG formed from polymerization of rac-

propylene oxide affords an atactic polymer, and polymerization from the optically pure 

epoxide monomer or polymerization with chiral catalysts affords the isotactic polymer.26 For 

the evaluation of branched PEG-derived polymers in controlling the effective molarity in 

macrocyclization reactions, the cheaper, commercially available atactic polymers were chosen 

for investigation. The addition of the Me group along the backbone makes PPG much more 

lipophilic than PEG, but PPG still prefers a tightly wound helix conformation in aqueous 

solution.27-29 To study the effects of branching in the macrocyclization reactions, two separate 

branched polymers having different chain lengths were identified for study (Figure 6.6). 

First, because PEG400 was identified as the optimal PEG solvent to date, PPG425 was 

evaluated, since it has a similar chain length and molecular weight and surface tension 

measurements of mixtures of PPG425/MeOH were obtained (Figure 6.7). The surface tension 

measurements of PPG425/MeOH closely mirror those obtained for mixtures of PEG400/MeOH, 

in that an S-shaped curve was observed with a plateau occurring at approximately 70 % 

PPG425/MeOH. The surface tension measurements for PPG425/MeOH, however, do not exhibit 

the steep increase in surface tension between 40 % and 60 % PPG425/MeOH that is observed in 
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the same region for mixtures of PEG400/MeOH. When the macrocyclization of diyne 3 was 

investigated at different ratios of Pluronic1100/MeOH, the yields of macrocycle 4 reached a 

maximum 62 % isolated yield at 80 % Pluronic1100/MeOH. Overall yields were similar or only 

slightly lower than those obtained in PEG1450/MeOH mixtures (see Table 6.1 to compare 

isolated yields). One distinct difference observed with PPG425/MeOH mixtures was that there 

was much less catalyst inhibition, and polymerization of the starting acyclic diyne 3 was 

observed, even when the macrocyclization was conducted in 100 % PPG425/MeOH. The lack 

of catalyst inhibition could be due to an increased solubility preference for the catalyst in 

MeOH, as opposed to the PPG425 aggregates, although further work is necessary to elucidate 

the origin of the reactivity in PPG425 mixtures. 
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Figure 6.7 – The effect of using branched polymers of short-chained PEGs (PEG400 (top) and 

PPG425 (bottom)) when promoting macrocyclic Glaser-Hay coupling (3→4) at high 

concentration (0.03M). Surface tension measurements (red) and isolated yields (green) are 

plotted on the same figure. The region highlighted in grey indicated PEG/MeOH ratios in 

which catalyst inhibition is observed and the remaining mass balance in re-isolated diyne 3. 
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Figure 6.8 – The effect of using branched polymers of long chained PEGs (PEG1450 (top) and 

Pluornic1100 (bottom)) when promoting macrocyclic Glaser-Hay coupling (3→4) at high 

concentration (0.03 M). Surface tension measurements (red) and isolated yields (green) are 

plotted on the same figure. The region highlighted in grey indicated PEG/MeOH ratios in 

which catalyst inhibition is observed and the remaining mass balance in re-isolated diyne 3. 
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The effects of branching in PEGs on the macrocyclization reaction of 3 were also 

investigated with longer polymer lengths. To make comparisons with the previously studied 

PEG1450, Pluronic1100 was chosen for study. Pluronic1100 is a well-defined block polymer 

having two ethylene oxide units at each terminus and 16 rac-propylene units (Figure 6.6). The 

resulting polymer has surfactant properties that are useful in cosmetic and pharmaceutical 

applications, most often for increasing the solubility of lipophilic substances in aqueous 

environments.30 Pluronics have also been evaluated for various drug delivery applications and 

were shown to have their own inherent biological activity due to their propensity to 

incorporate into cellular membranes.31 In contrast with the surface tension measurement 

observed for PEG1450/MeOH, the surface tension measurements of Pluronic110/MeOH could be 

obtained even up to 100 % Pluronic1100/MeOH, since Pluronic1100 is a liquid at room 

temperature. (Figure 6.8). The surface tension measurements for Pluronic1100/MeOH do not 

exhibit a steep increase in surface tension between 40 % and 60 % Pluronic1100/MeOH that is 

observed in the same region for mixtures of PEG1450/MeOH, but a distinct plateau and S-

shaped curve were observed, confirming the aggregation of Pluronic1100/MeOH mixtures at 

high ratios. When the macrocyclization of diyne 3 was investigated at different ratios of 

Pluronic1100/MeOH and the yields of macrocycle 4 reached a maximum 62 % isolated yield at 

80 % Pluronic1100/MeOH, overall yields were similar or only slightly lower than those 

obtained in PEG1450/MeOH mixtures (see Table 6.1 to compare isolated yields). As was 

observed with PPG425/MeOH mixtures, the branching in Pluronic1100/MeOH mixtures allows 

for much less catalyst inhibition at high ratios of Pluronic1100/MeOH when compared with 

PEG1450/MeOH. The reduction in catalyst inhibition can easily be observed when comparing 

the yields of macrocycle 4 at 100 % Pluronic1100 (24 %) and 100 % PEG1450 (< 5%). 



 

129 

Because catalyst inhibition was observed to a much lesser degree when reactions were 

performed in branched polymer solvents, such as PPG425 and Pluronic1100, it was believed that 

these solvents could allow for a reduction in the catalyst loading used to promote 

macrocyclization. Consequently, the catalyst loading in the cyclization of diyne 3 to 

macrocycle 4 was investigated in mixtures of 66 % PEG400/MeOH and 66 % PPG425/MeOH 

(Table 6.2). When the catalyst loading of the Cu and Ni catalysts was decreased in the 

macrocyclization of diyne 3 using a 66 % PEG400/MeOH solvent mixture, the yields of the 

desired macrocycle 4 also decreased (entries 1–4). Although the yield of macrocycle 4 was 75 

% when using a 25 mol % catalyst loading, macrocycle 4 was isolated in 67 % yield when 

decreasing the catalyst loading to 10 mol %. The use of even lower catalyst loadings of 5 or 

2.5 mol % resulted in even lower overall yields (54 % and 35 %, respectively) of the desired 

macrocycle 4 and large quantities of reisolated 3. In contrast, when the catalyst loading of the 

Cu and Ni catalysts was decreased in the macrocyclization of diyne 3 using the branched 

polymer solvent (66 % PPG425/MeOH), the yields of the desired macrocycle 4 were either 

maintained or increased (Table 6.2, entries 5–8). When the mol % of the Cu/Ni catalyst system 

was dropped from 25 % to 10 %, the yield of macrocycle 4 increased from 62 % to 81 %. 

Because reducing the catalyst loading is expected to slow the rate of reaction, it could 

consequently increase the selectivity for cyclization vs oligomerization and explain the 

increase in the isolated yield of 4. When the catalyst loading in the macrocyclization of 

diyne 3 using 66 % PPG425/MeOH was dropped to 5 mol %, the yield of 

macrocycle 4 remained high (74 %), and the remaining mass balance was recovered unreacted 

diyne 3. Finally, the catalyst loading was dropped to 2.5 mol %, which resulted in a very slow 

macrocyclization. However, if the reaction time was slightly increased (from 6 to 10 h), the 
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macrocycle 4 could be isolated in exactly the same yield as was obtained with a catalyst 

loading 10 times higher (entry 8 versus 5, Table 6.2). 

 

Table 6.2 – Effect of PEG structure on the catalyst loading in the macrocyclization to form 4. 

 

entry solvent catalyst loading (x mol%) yield 4 (%)a 

1 
PEG400 

25 75 

2 10 67b 

3  5 54b 

4  2.5 35b 

5 
PPG425 

25 62 

6 10 81 

7  5 74b 

8  2.5 62b,c 
a All compounds were isolated by silica gel flash chromatography. Unless otherwise stated, all remaining starting 

material 3 was oligomerized17. b Remaining mass balance was recovered 3. c Reaction time was 10 h (O2 was 
bubbled through the solution a second time after 5 h). 

 

6.4 – Conclusion 

In summary, the first evaluation of the structural effects of PEG-derived polymers and 

their aggregation abilities for exploitation in organic synthesis has been described. The 

evaluation of six different PEG polymers in MeOH mixtures for their ability to control 
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dilution effects has been performed through examining surface tension measurements and the 

isolated yields of a model Glaser–Hay macrocyclization reaction of diyne 3. Three different 

structural effects were studied involving (1) the presence of capping groups on the terminal 

hydroxyl functionalities of the polymers, (2) the length of the polymer chain, and (3) the 

effects of branching alkyl groups in the polymer backbone. The data obtained for isolated 

yields of macrocycle 4 provide important guidelines for conducting macrocyclizations using 

PEG/solvent mixtures: (1) regardless of the nature of the PEG solvent, the macrocyclizations 

exhibit greater efficiency at high ratios of PEG/MeOH, normally affording high yields and 

often recovered unreacted starting material, and (2) very high ratios (>90 % PEG/MeOH) 

often result in catalyst inhibition and lower yields. Importantly, when comparing the structural 

features of the various PEGs, other valuable insights come to light: (1) the terminal hydroxyl 

groups are important for inducing aggregation and provide surface tension graphs with a well-

defined S-shaped curve and overall higher yields of macrocycle 4 than when using “capped” 

PEGs; (2) long chained PEGs can provide a more lipophilic environment, but result in much 

greater degrees of catalyst inhibition at the high ratios of PEG/MeOH normally needed for 

efficient macrocyclization, which resulted in lower yields of macrocycle 4; and (3) 

polypropylene-containing PEGs (PPG425 and Pluronic1100) provided good yields of 

macrocycle 4 and are much more lipophilic than PEG, making them interesting alternatives for 

substrates that have problematic solubility. It should be noted that PPG425 and 

Pluronic1100 mixtures exhibited very high catalyst reactivities, even at very high ratios (>90 % 

PEG/MeOH), which resulted in greater levels of oligomerization observed and less efficient 

macrocyclization selectivity (i.e., macrocyclization vs oligomerization); however, the increase 

in catalyst reactivity when compared with other PEG solvents could be exploited to develop 
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macrocyclization reactions with reduced catalyst loadings. When macrocyclization was 

conducted in 66 % PPG425/MeOH, the catalyst loading could be reduced 10-fold (from 25 to 

2.5 mol %) and afford high yields of the desired macrocycle product.32 

The macrocyclization studies outlined herein reinforce that the aggregation 

characteristics of PEG-derived solvents can be harnessed in organic synthesis and are not 

limited to exploitation in medicinal chemistry and materials science. It is expected that as the 

properties of these solvents continue to be explored, they will become increasingly employed 

in catalysis. In particular, the high catalyst activities observed in branched PEG solvents could 

be especially useful in other fields of catalysis in which the “green” characteristics of PEG 

solvents are desired in concert with high catalyst activities. Considering the wealth of other 

synthetic processes that suffer from concentration effects,33 it is reasonable to assume that 

PEG or PEG/solvent mixtures could be used to improve such processes or provide alternatives 

to traditional aqueous/organic biphasic reaction conditions. 
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Chapter 7 : Introduction to Continuous Flow Chemistry 

 With rare exceptions, the improvement of chemical synthesis has focused more on 

the reactions themselves, rather than the reaction vessel. Modern organic synthesis 

generally uses the same glass or Pyrex round bottom flasks that were used in 19th century 

laboratories. In recent years, flow chemistry has become a fast growing area of synthetic 

organic chemistry research.1,2 In contrast with traditionally used batch chemistry, flow 

chemistry is described as a reaction performed in a continuous fashion as a stream in 

tubes. Continuous flow strategies have found numerous applications in large scale 

manufacturing3 and more recently in the preparative laboratory scale.1,2 The following 

chapter will address the description of flow chemistry equipment, the advantages of flow 

vs. batch chemistry and comparisons to microwave chemistry. The challenges associated 

with the synthesis of macrocycles in continuous flow will also be discussed. It should be 

noted, in the following chapter, continuous flow refers solely to mesofluidic flow (≥ 0.5 

mm tubing) and not microfluidic flow (< 0.5 mm tubing).1b,2 

7.1 – Description of Flow Equipment and Important 

Parameters 

7.1.1 – Flow Equipment 

An example of an integrated continuous flow apparatus is depicted in Figure 7.1. 

There are six key features: 1) the reservoir, such as the reagents bottles or the injection 

loops, 2) the pumping module, 3) the mixer, 4) the reactors, 5) the in-line analysis 
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instrumentation and 6) the fraction collector. A supplementary pumping module can be 

added if more than one reaction is performed in sequence.4 

Figure 7.1 – Example of an integrated flow system. 

 

A schematic of an integrated continuous flow reaction is shown in Figure 7.2. 

First, the reaction mixture is placed in the reservoir either in a bottle if the scale is large 

or in the injection loop if the scale is small (< 10 mL). The mixture is then moved toward 

the reacting module using a pump, usually an HPLC or high pressure pump that allows 

for high back pressures in the reaction (70-180 bar). If needed, a mixer can be installed to 

mix the reagents before entering the reactor, or at any point in the reaction set-up that 

would require addition of a reagent. The chemical transformation occurs in the reactor, 
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usually a PFA or stainless steel coil. The reaction can either be cooled down, heated or 

irradiated with light. The reactor (Figure 7.3) can typically accommodate reaction 

temperatures in the range of approximatively -80 to +350 oC. When the reaction exits the 

reactor, the reaction mixture passes through a back-pressure regulator. The regulator is 

crucial to guarantee the homogeneity of the reaction especially when superheating 

solvents. After the reaction is completed, the product can be analyzed and collected either 

in another reservoir or using a fraction collector. 

 

 

 

 

 

 

 

 

 

Figure 7.2 – General schematic diagram of a high-temperature/high-pressure continuous 

flow conditions. 
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a)   b)  

c)   d)  

Figure 7.3 – Flow reactors : a) High-temperature/high-pressure stainless steel reactor, b) 

PFA reactor, c) Cooled reactor (PFA), d) UV reactor 

 

7.1.2 – Important Parameters 

In flow chemistry, the flow rate (mL/min) dictates the residence time (min) of the 

reaction mixture in the reactor. Hence, the residence time is the same as the reaction time 

in batch chemistry. To optimize a reaction, one can either modify the flow rate or the 

reactor volume to adjust the reaction time. For example, for a 10 mL reactor volume and 

a 2.5 mL/min flow rate, the reaction time is 4 minutes. A 4 minutes reaction time can 

alternatively be maintained with a 1 mL/min flow rate using a 4 mL reactor. The 



 

142 

temperature and pressure of the system are also crucial parameters and will be discussed 

in detail in Section 7.2. 

7.2 – Advantages of Continuous Flow Synthesis vs Microwave 

and Batch Chemistry 

In academic laboratories, chemical reactions are typically performed on relatively 

small scale (< 1 mol). Hence, the inconveniences associated with scaling up a reaction are 

minimal. On an industrial level where the scales are much larger, continuous flow 

synthesis has been readily integrated.3a,5 In recent years, academics have found that flow 

chemistry was more than a scale up tool, but also exhibited several advantages over batch 

processes.  

The main advantages of flow over batch chemistry are summarized in Table 7.1. 

The precise control of the reaction temperature is perhaps the most important feature of 

flow chemistry. Since the tubing has a small diameter, the heat transfer is more efficient 

than in batch. As depicted in Figure 7.46, performing a reaction in small diameter tubing 

allows for precise control of the time and temperature reaction parameters.1b,7 In other 

words, the reaction starts and ends at very precise points (Figure 7.4, bottom) in the 

reactor and the chemist can precisely control the formation of the product or consumption 

of the substrate with the length of the reactor used (Figure 7.4, top). 
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Figure 7.4 – Control of the reaction time in continuous flow. (Reproduced with 

permission from ref 6. Copyright 2013 Royal Society of Chemistry.)  

 

The direct scalability is also a valuable feature of continuous flow. In continuous 

flow, it is straightforward to reproducibly synthesize either 2 mg or 2 kg of product since 

the reaction occurs on very small scale in a continuous fashion. Mixing efficiency in a 

continuous flow process is also superior to a batch process since the mixing occurs 

through mixers with small interior diameters which accelerates diffusion.6 Finally, very 

high temperatures and pressures can be used in continuous flow. While superheating of 

solvent and high pressure can also be achieved using microwave irradiation, the head 

space present in the microwave reactor vessel makes the technology susceptible to 

explosions.1a,8 Although continuous flow chemistry is not appropriate for heterogeneous 

reaction mixtures because of the possible blockage of reactors, insoluble reagents can be 

used on solid-supports in packed-bed cartridges.9 
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Table 7.1 – Different properties and advantages of the various techniques currently 

available. 

 Batch Flow (mesofluidics) 

Advantages Accessible 
Suitable for heterogeneous 
mixtures 

Superheating solvent 
High pressure (>200 bar) 

High temperature (>350 oC) 
Directly scalable 

No headspace 

Disadvantages Explosions 

Scalability 

No heteregeneous mixture 

 

 

7.2.1 – Glaser-Hay Reactions in Continuous Flow 

The growing interest in continuous flow chemistry has opened opportunities to 

explore well established reactions in a novel way. For example, Ley and co-workers 

reported the continuous flow synthesis of 1,3-diynes using the Glaser-Hay coupling.10 

The Ley group reported the use of a gas-liquid reactor (Scheme 7.1) with a permeable 

membrane that allows for facile inclusion of O2 in the reaction mixture, thus enhancing 

the rate of the Glaser-Hay coupling. The authors also reported the use of solid-supported 

reagents to perform an in-line work-up of the reaction. A first column was packed with a 

solid-supported thiourea to remove the copper catalyst while the second column 

contained an acid to scavenge the amine ligand. 
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Scheme 7.1 – Glaser-Hay coupling in flow using a gas-liquid reactor.  
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7.3 – Challenges Associated with Macrocyclization in 

Continuous Flow. 

The synthesis of macrocyclic structures is challenging due to the slow rate of ring 

closure. The use of high dilution or slow addition strategies also complicates the reaction 

set-up and scalability. Macrocyclization reactions are often plagued by the competing 

formation of oligomers which can precipitate from the reaction mixture. Therefore, it is 

not surprising that until 2010, macrocyclization had not been achieved in continuous 

flow.  

Macrocyclization often exhibits a slow rate of reaction, with many examples of 

macrocyclizations that require several days even with the use of slow addition 

techniques.11 The long reaction times can be problematic for a continuous flow process in 

which a minimal flow rate has to be maintained. Even if one managed to steadily pump at 

a very low flow rate for days, the procedure would be inefficient. In the synthesis of 

small ring molecules (5-8 membered rings), increasing the temperature could improve the 

reactivity and lower the reaction time, but in macrocyclization the increase in temperature 

can also lead to polymerization of the substrate. In order to transpose a macrocyclization 

from batch to continuous flow, one must render the macrocyclization more efficient 

while maintaining the intramolecular selectivity.12  

An additional challenge to overcome for performing macrocyclization in 

continuous flow is the potential formation of insoluble oligomers. The formation of 

unwanted oligomeric side-products with problematic solubility can clog the reactor upon 

precipitation.  
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7.4 – Examples of Macrocyclization in Continuous Flow 

James and co-workers were the first to report a macrocyclization reaction in 

continuous flow.13 With the goal to prepare a library of drug-like short peptide 

macrocycles, they developped a copper-catalyzed macrocyclization reaction using a tris-

(triazolyl) ligand in batch. James had shown that the family of ligands could improve the 

macrocycle to dimer ratio (Scheme 7.2).14 When compared to other amine-based ligands 

such a PMEDTA 7.6, tris-(triazolyl) tert-butylamine (TTTA) 7.5 was found to afford the 

highest yield along with the best product to dimer ratio. Using the same model substrate 

7.3, James transposed the copper-catalyzed azide-alkyne cycloaddition (CuAAC) 

macrocyclization to continuous flow. As discussed previously (Section 7.3), in order to 

achieve a suitable reactivity profile for flow, the reaction’s temperature had to be 

increased. James obtained the desired product 7.4, albeit in lower yield and with lower 

product/dimer selectivity. Although the authors cannot determine with certainty the 

identity of the active copper species involved in the reaction, they suggest that the use of 

a copper reactor might contribute to a ‘pseudo-dilution’ effect while increasing the 

reactivity profile of the cyclization. In the reported substrate scope, the yields are variable 

(28-87 %) depending on the inherent preorganization in the linear precursor. The 

methodology was also used to synthesize various strained cyclophane macrocycles.15 
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Scheme 7.2 – Macrocyclization of alkyne-azide 6.3 precursor in batch vs. continuous 

flow 

 

In 2011, James and co-workers used copper coil reactors to also perform an 

iodoalkyne-azide reaction in continuous flow. Similarly to the alkyne-azide 

macrocyclizations in continuous flow, the yield of the iodo-version of the reaction is 

strongly affected by the structure of the precursor, and affords yields ranging from 20 to 

80 %. When compared to the azide-alkyne cycloaddition reaction in continuous flow 

previously reported by James, the iodoalkyne-azide continuous flow variant is not as 

efficient (Scheme 7.3).16 The cycloaddition of iodinated precursor 7.7 that is analogus to 

precursor 7.3 only gave 43 % yield of the desired macrocycle 7.8, while the analogous 

macrocycle 7.4 was obtained in 73 % yield. 
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Scheme 7.3 – Iodo-“Click” macrocyclization in continuous flow. 

 

 Fogg and co-workers reported the transposition of the ruthenium-catalysed ring 

closing metathesis reaction in continuous flow. The authors found that high yield could 

be obtained when a continuous stirred tank reactor (CSTR) was used in series with the 

flow to help remove the ethylene 7.11 from the reaction media (Scheme 7.4). 

Noteworthy, a 16-membered macrolactone 7.10 was synthesized in 99 % yield.17 

 

 
Scheme 7.4 – Ring closing metathesis in continuous flow. 

 

7.5 – Conclusion 

Continuous flow methodology has revolutionised the chemical sector, not only 

from an environmental standpoint but also from a quality, safety and economic 

perspective. In the optic of the development of a green macrocyclization protocol, the use 

of such technology is imperative.  
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8.1 – Abstract 

A phase separation/continuous flow macrocyclization protocol eliminates the need for 

high-dilution conditions and can be used to prepare gram quantities of biologically relevant 

macrocyclic lipid structures. The method presents several green advantages towards 

macrocycle synthesis: 1) the prevention of unwanted oligomers and waste, 2) a reduction in 

the large quantities of toxic, volatile organic solvents and 3) the use of PEG as an 

environmentally benign reaction media. Macrocycles could be synthesized in high yields (up 

to 99 %) in short reaction times (1.5 h) and on gram scales without the need to alter the 

reaction conditions. 

 

8.2 – Introduction 

Continuous flow strategies for green chemical synthesis have impacted every area of 

organic synthesis, from academic to industrial research.1 Flow chemistry represents a powerful 

technology whose advantages include precise control of reaction time, temperature, 

concentration and stoichiometry. Consequently, many of the principles of green chemistry are 

fulfilled such as reduced energy requirements, minimized exposure to hazardous chemicals or 

intermediates and reduced amounts of unwanted by-products and waste. Given these 

advantages, flow chemistry is an ideal technique to use in tackling the challenges associated 

with macrocycle synthesis. Macrocycles are important structural motifs found in compounds 

O
O

O
7O

8

5

CuCl2 (25 mol %)
Ni(NO3)2.6H2O (25 mol %)
PEG:MeOH (1:1) (0.03M)

Et3N (3 equiv)
TMEDA (5 equiv)

120 oC, 1.5 h, 0.25 mL/min
97%
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with applications in pharmaceutical, agrochemical, cosmetic and material sciences.2 Their 

synthesis is challenging, often requiring significant amounts of solvent to control 

concentration effects and prevent the formation of undesirable oligomers. When the dilution 

requirements and inconvenient set-up are considered, macrocyclization reactions in general 

would benefit from improved protocols employing flow techniques. 

 Macrocyclization via continuous flow presents several challenges, including: 1) the 

need to accelerate the normally slow cyclization reactions to improve their efficiency and most 

importantly, 2) the need to prevent oligomerization, as these by-products have low solubilities 

and could block the flow reactor. Recently, James and co-workers have reported the first flow-

macrocyclization reaction that involved the synthesis of constrained macrocycles via alkyne-

azide cycloaddition chemistry.3 The reaction rates of the macrocyclizations reported were 

accelerated through judicious choice of ligands and the exploitation of copper tubing as the 

flow reactor. The efficient heat transfer that can be achieved in flow would seem to provide a 

solution to the challenge of macrocyclization efficiency, however the challenge of reaction 

dilution is often more daunting.4 

 Consequently, our group has recently reported a general, efficient and green 

macrocyclization protocol via oxidative Glaser-Hay coupling at high concentrations through 

the use of a “phase separation” strategy (Scheme 8.1).5 The concentration effects of the 

macrocyclization reaction were controlled through the aggregation properties of poly(ethylene 

glycol)400 (PEG400). The “phase separation” technique allowed for significantly higher 

concentrations (150-500x), a reduction of the amounts of toxic organic solvents that are 

eventually converted to waste, and replacement of the majority of the volatile organic solvents 

by the environmentally benign PEG. Given the advantages presented by the “phase 
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separation” strategy, we sought to apply it to the development of a continuous flow process to 

synthesize important medicinally relevant classes of macrocycles. Consequently, herein we 

report on the development of efficient continuous flow macrocyclization for the preparation of 

macrocyclic lipids that mimic those found in Archaeal membranes.6 

 

Scheme 8.1 – Advantages of the “phase separation” strategy in macrocyclization  

 

8.3 – Results and Discussion 

The investigations into a continuous flow/macrocyclization protocol began by transposing the 

previously optimized reaction conditions for the Glaser-Hay coupling utilizing microwave 

heating.7 The preliminary studies utilized the formation of macrolactone 4, as it provides a 

valid comparison for the continuous flow protocol versus other existing macrocyclization 

strategies (Table 8.1). TMEDA was chosen as the ligand as its bidentate nature provides 

increased solubility and stability of the resulting transition metal complexes at high 

temperatures.5 Intermolecular Glaser-Hay couplings have been previously studied in 

O
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(High Dilution/Slow Addition)

CuCl (12 equiv) or
CuCl2/Ni(NO3)2.6H2O) (25 mol %)

TMEDA (20 equiv), Toluene (0.0002 M)

2 d, reflux, O2 (1 atm)
(slow additions), 5 - 11 %

Novel Macrocyclization Route
(Phase Separation)

CuCl2/Ni(NO3)2.6H2O) (25 mol %)
Et3N (3 equiv), PEG400/MeOH (2:1) (up to 0.1 M)

TMEDA (5 equiv)
100 oC (µW), 12 h, O2 (1 atm) 81 %

From [0.0002 M] up to [0.1 M] : a 500
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continuous flow settings, where semi-permeable Teflon AF-2400 membranes8 were used to 

increase contact with oxygen gas. In the present study, the solutions for macrocyclization were 

only sparged with O2 for 5 min before injection into the flow apparatus. First, we investigated 

the effect of the temperature on the yields of the desired 21-membered macrolactone 4 (Table 

8.1, entries 1→4). When the reaction was performed at the same temperature as in the 

microwave heated reaction (120 °C), 4 was formed in higher yield using a flow strategy (85 % 

vs. 81 %, entry 3). Lower temperatures resulted in lower conversions and isolated yields. 

Increasing the temperature (140 °C) resulted in a decrease of selectivity (macrocyclization vs. 

oligomerization) as the yield of 4 decreased (72 %) and oligomers could be observed. 

Changing the ratio of PEG400/MeOH (Table 8.1, entries 4→6) did not result in significant 

changes in isolated yield, although larger ratios of PEG result in better solubility of the organic 

substrates. Higher ratios of PEG400/MeOH were not explored as previous work has indicated 

that catalyst inhibition becomes problematic at higher ratios.5  
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Table 8.1 – Optimization of Reaction Conditions For Macrocyclic Glaser-Hay Coupling of 3. 

 

Entry Temp.  
(oC) 

PEG400/MeOH  
(ratio) 

Flow Rate (mL/min); 
Residence Time (h) 

Yield  
(%) 

1 80 2 :1 5; 3 74 
2 100 2 :1 5; 3 73 
3 120 2 :1 5; 3 85 
4 140 2 :1 5; 3 72 
5 120 1 :1 5; 3 86 
6 120 1 :2 5; 3 82 
7 120 1 :1 5; 1.5 96 
8 120 1 :1 1; 1.5 91 
9 120 1 :1 0.22; 1.5 97 

 

 

The influence of reaction time and flow/rate were also investigated (Table 8.1, entries 

7→9). Due to the viscosity of PEG400, high flow rates were found to cause irregularities in 

pressure control. It was found that by using lower flow rates, pressure control was easily 

maintained and helped to provide more reproducible results. Gratifyingly, it was found that 

flow rates of 0.22 mL/min and a residence time of 1.5 h afforded a nearly quantitative yield 

(97 %) of the macrocyclic product 4. The high yield of macrocycle 4 achieved at relatively 

high concentration ([0.03 M]) denotes the high efficiencies that are possible when combining 

the two green chemistry techniques of phase separation and continuous flow synthesis. The 

calculated Emac (a recently proposed meter for grading the efficiency of macrocyclizations)9 of 

~7.4 for the macrocyclization (3→4) is high and similar to those obtained in James’ previously 
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reported continuous flow synthesis of constrained macrocycles via alkyne-azide 

cycloadditions. 

 In an effort to evaluate the generality of the optimized continuous flow conditions, the 

macrocyclization of three other diynes was performed (Table 8.2, entries 2→4). In each case, 

the results of the cyclization using the continuous flow conditions were compared with the 

isolated yields obtained utilizing the previously developed microwave heating protocol. First, 

the isolated yield of the 21-membered macrolactone 4 obtained via continuous flow (97 %) 

was found to be much better than that obtained via microwave heating (81 %). Given the 

excellent yield obtained for 4, the macrocyclization to afford 4 was scaled to 1 mmol and a 93 

% yield was obtained. 
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Table 8.2 – Macrocyclic Lactones and Ethers Synthesized via Continuous Flow-

Macrocyclization Using “Phase Separation”. 

 

Entry Product Yield: Flow (%) Yield: Microwave (%) 

1 

 

97a 81 

2 

 

58 75 

3 

 

72 47 

4 

 

71b 65 

a On a 1 mmol scale, 4 was isolated in 93 % yield. b The corresponding diyne precursor of 7 was insoluble in 
PEG400/MeOH mixtures. As such, a PEG400/MeOH (2:1) ratio was used. 

 

Microwave Heating Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)
Et3N (3 equiv), PEG400/MeOH (2:1) [0.03 M]

TMEDA (5 equiv)
120 oC (µW), 6 h, O2 (1 atm)

Continuous Flow Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)

PEG400/MeOH (1:1) [0.03 M]

TMEDA (5 equiv), Et3N (3 equiv)
120 oC, 0.22 mL/min, residence time = 1.5 h, O2 (1 atm)

diyne macrocycle
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The macrocyclization of other diynes was then investigated. When the cyclization to 

form the 20-membered macrocyclic diester 5 was investigated, a 72 % yield of the product 

was obtained utilizing continuous flow. A much lower yield (47 %) of 5 was obtained using 

the microwave heating protocol. The preparation of macrocyclic ether 6 was initially 

problematic, as its corresponding diyne precursor was partially insoluble in the PEG400/MeOH 

(1:1) mixture. However, as previous experiments demonstrated very little difference in yield 

between PEG400/MeOH (2:1) and (1:1) mixtures, the cyclization to form 6 was conducted 

using the higher ratio of PEG400/MeOH (2:1). The macrocycle 6 was once again obtained in 

higher yields (71 %) when using the continuous flow strategy. However, it was noted that 

when the synthesis of a smaller and significantly more strained macrocycle 2 was investigated, 

the trend reversed. The 16-membered macrocycle 2 was obtained in higher yield using 

microwave heating (75 %) versus the continuous flow (58 %). 

 Encouraged by the preliminary optimization of a continuous flow-macrocyclization 

protocol employing a “phase separation” strategy, the optimal conditions were also explored 

with a macrocyclic lipid precursor 7 which bears a protected glycerol motif (Table 8.3). The 

macrocyclic Archaeal lipids are typically composed of polyprenyl chains with glycerol or 

polyol head groups.6 Within the structure of the lipids, macrocyclization can occur through the 

alkyl chains of the same head group or between two lipids, producing dimers. As such, 36- or 

72-membered rings can be formed.10 Recently, much attention has been given to macrocyclic 

lipids for potential anti-cancer activities or in the design of novel vehicles for liposomal drug 

delivery.11 When the benzyl-protected glycerol derivative 7 was subjected to the optimized 

conditions from Table 8.2, it was found that 7 was poorly soluble in the 1:1 PEG400/MeOH 

solvent mixture (Table 8.3, entry 1). However, when the ratio of PEG400/MeOH was increased 
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(2:1), the 16-membered macrocyclic lipid 9 was isolated in 71 % yield. Variations in the 

reaction temperature followed the same trends that were observed for the synthesis of 

macrolactone 4 (Table 8.3). Lower temperatures resulted in lower conversions and isolated 

yields, although excellent selectivity was observed and the remaining mass balance was 

recovered starting diyne 7 (Table 8.3, entry 3). Increasing the reaction temperature once again 

lowered selectivity, resulting in the formation of oligomers and decreased isolated yields (63 

%). 

 

Table 8.3 – Optimization of Reactions Conditions for the Synthesis of a Protected 

Macrocyclic Lipid 8. 

 

Entry Temp. (oC) PEG400/MeOH (ratio) Yield (%) 
1 120 1 :1 -a 
2 120 2 :1 71 
3 100 2 :1 66 
4 140 2 :1 63 

a Diyne 7 precipitates from the solution when a PEG400/MeOH (1:1) ratio is used. 

 

With optimized continuous flow conditions in hand for the synthesis of macrocyclic 

lipids, the macrocyclization of 3 other substrates were performed (Table 8.4). The isolated 

yield of the 16-membered macrolipid 8 was found to be slightly higher under continuous flow 

conditions (71 %) compared to cyclization under microwave heating (65 %) (Table 8.4, entry 

1). As one of the advantages of continuous flow methods is the facile scale-up, the synthesis of 
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8 was repeated on ~4 mmol scale. The yield of the 16-membered macrolipid 8 did not change 

significantly (66 % isolated yield on ~4 mmol scale). Similar macrolipids based upon a 

glycerol head group were then prepared having different ring sizes. When the 26-membered 

macrocycle 9 was prepared via continuous flow, the isolated yield of 78 % was again higher 

than what was obtained via microwave heating (62 %). Similarly, the 30-membered 

macrocycle 10 was isolated in 99 % yield after synthesis via continuous flow (92 % isolated 

yield was obtained using microwave heating). As many macrocyclic lipids can be prepared 

with ester linkages, the macrocycle 11 was prepared by continuous flow synthesis and was 

isolated in 45 % yield. In all of the macrocyclizations, the products were obtained in higher 

yield when using continuous flow versus microwave heating. In general, the yields of the 

larger 21-, 26-and 30-membered macrocyclic lipids were higher than smaller macrocycles, 

perhaps due to the ring strain caused by the incorporation of a linear 1,3-diyne within the 

cyclic motif. 
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Table 8.4 – Macrocyclic Lipids Synthesized via Continuous Flow-Macrocyclization Using 

“Phase Separation”. 

 

Entry Product Yield: Flow (%) Yield: Microwave (%) 

1 

 

71a 65 

2 

 

78 62 

3 

 

99 92 

4 

 

45 42 

a When cyclization was performed on 3.8 mmol scale, the macrocycle was obtained in 66 % yield. 

 

Microwave Heating Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)
Et3N (3 equiv), PEG400/MeOH (2:1) [0.03 M]

TMEDA (5 equiv)
120 oC (µW), 6 h, O2 (1 atm)

Continuous Flow Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)

PEG400/MeOH (1:1) [0.03 M]

TMEDA (5 equiv), Et3N (3 equiv)
120 oC, 0.22 mL/min, residence time = 1.5 h, O2 (1 atm)

diyne macrocycle
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In an effort to further improve the continuous flow process, the use of other PEG 

solvents were investigated with the goal of reducing the catalyst loadings (Table 8.4).5 When 

the diyne 7 had been previously cyclised under optimum conditions using 25 mol % of 

catalysts and PEG400 as a co-solvent, the yield of the corresponding lipid macrocycle 8 was 71 

%. When the solvent PPG425 was used as a substitute for PEG400 at identical catalyst loadings 

a similar yield was observed (Table 8.4, entry 2). However, when the catalyst loading was 

dropped to 10 mol %, continuous flow conditions could be developed so that the desired 

macrocycle 8 could be isolated in 92 % yield. These preliminary results demonstrate that the 

catalyst loadings could be lowered and the yields increased through judicious choice of the 

PEG co-solvent in the continuous flow conditions. Further reductions in the catalyst loading to 

5 mol % also provided good yields of macrocycle 8 (78 %) and excellent selectivity for 

macrocyclization was observed, as the remaining mass balance was recovered diyne 7. Longer 

reaction times may be necessary for effective use of reduced catalyst loadings. 
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Table 8.5 – Reduction of Catalyst Loadings when Using PPG425 for the Synthesis of a 

Protected Macrocyclic Lipid 8. 

 

Entry mol % PEG Flow Rate (mL/min);  
Residence Time (h) 

Yield  
(%) 

1 25 PEG400 0.22; 1.5 71 
2 25 PPG425 0.22; 1.5 65 
3 10 PPG425 0.11; 3 92 
4 5 PPG425 0.11; 3 78 

 

As dimeric macrocyclic lipids are found in Nature,6 the macrocyclization of the diyne 

12 was investigated under the optimized reaction conditions (Scheme 8.2). Acyclic diyne 12 

cannot undergo intramolecular cyclization due to ring strain but selectively forms the dimer 13 

in 55 % yield via continuous flow (46 % using microwave heating). 

 

Scheme 8.2 – Synthesis of a dimeric macrocyclic lipid 13 as a mixture of head-to-tail and 

head-to-head isomers. 

Microwave Heating Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)
Et3N (3 equiv), PEG400/MeOH (2:1) [0.03 M]

TMEDA (5 equiv)
120 oC (µW), 6 h, O2 (1 atm)

46 %

Continuous Flow Conditions
CuCl2 (25 mol %), Ni(NO3)2.6H2O) (25 mol %)

PEG400/MeOH (2:1) [0.03 M]

TMEDA (5 equiv), Et3N (3 equiv)
120 oC, 0.22 mL/min, residence time = 1.5 h, O2 (1 atm)

55 %

O O

OBn O

O
BnO

O

O
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To demonstrate the utility of the novel macrocycles prepared in Table 7.4 as lipids, the 

synthesis of the 16-membered macrocyclic diyne 8 was performed on a multigram scale (~4 

mmol) and similar yields were obtained even when the reaction was scaled by a factor of 30X 

(Scheme 8.3). Upon isolation, macrocyclic lipid 8 was functionalized with a polar 

phosphonate group. A global hydrogenation (Pd/C, H2 (1 atm)) of macrocycle 8 results in 

cleavage of the Bn protecting group and exhaustive hydrogenation of the 1,3-diyne to afford 

the corresponding saturated macrocycle in 52 % yield. Subsequent phosphonation provided 

the saturated macrocyclic lipid 14 in 58 % yield. 

 

Scheme 8.3 – Conversion of Bn-protected macrocycle 8 into novel macrocyclic phosphonate 

containing lipid 14. 

8.4 – Conclusion 

The above studies demonstrate that a continuous flow-macrocyclization protocol 

utilizing “phase separation” eliminates the need for extremely high-dilution conditions and can 

be used to prepare meaningful quantities of biologically relevant macrocyclic lipid structures. 

The combination of the “phase separation” strategy with a continuous flow synthesis presents 

several green advantages towards macrocycle synthesis: the precise control of reaction time 
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and temperature prevent the formation of unwanted oligomers and waste, 2) the high 

concentrations reduce the large quantities of solvents that would have to be disposed of in 

environmentally damaging processes and 3) the use of PEG as a solvent represents a non-

volatile and non-toxic alternative to traditional organic solvents. Macrocycles could be 

synthesized in high yields (up to 99 %), in short reaction times (1.5 h) and on large scales 

without the need to alter the reactions conditions. Preliminary results demonstrate that reduced 

catalyst loadings may be possible when using modified PEG co-solvents. The demonstration 

of the viability of the phase separation/continuous flow synthetic strategy should find 

applicability in the synthesis of other macrocycles in academia and industry. 

 

Acknowledgement. The authors acknowledge the Natural Sciences and Engineering 

Research Council of Canada (NSERC), Université de Montreal and the Centre for Green 

Chemistry and Catalysis (CGCC) for generous funding. A.-C. B. thanks NSERC (Vanier 

Graduate Scholarship) and CGCC for graduate scholarships, and S. R. thanks CGCC for an 

undergraduate fellowship. 

Supporting Information Available: Electronic Supplementary Information (ESI) 

available: Experimental procedure and characterization data for all new compounds. See 

DOI: 10.1039/b000000x/ 

  



 

167 

8.5 – Bibliography 

(1)  P. Watts, and C. Wiles, J. Chem. Res., 2012, 36, 181; C. Wiles, 
PharmaChem, 2011, 10, 15; L. Malet-Sanz, and F. Susanne, J. Med. 
Chem., 2012, 55, 4062. 

(2)  J. C. Roxburgh, Tetrahedron, 1995, 51, 9767;  E. M. Driggers, S. P. Hale, J. Lee, and 
N. K. Terrett, Nat. Rev. Drug Discovery, 2008, 7, 608; E. Marsault, and M. L. 
Peterson, J. Med. Chem., 2011, 54, 1961; H. Matsuda, S. Watanabe, and K.Yamamoto, 
Chem. Biodiversity, 2004, 1, 1985. 

(3)  A. R. Bogdan, S. V. Jerome, K. N. Houk, and K. James, J. Am. Chem. 
Soc., 2012, 134, 2127; A. R. Bogdan, and K. James, Org. Lett., 2011, 13, 4060; A. R. 
Bogdan, and K. James, Chem.–Eur. J., 2010, 16, 14506. 

(4)  For an alternative synthetic route employing ring expansion to similar macrocycles that 
avoid high dilution and can be used in flow see: M. Nagel, G. Frater, and H.-J. Hansen, 
Chimia, 2003, 57, 196. 

(5)  A.-C. Bédard, and S. K. Collins, J. Am. Chem. Soc., 2011, 133, 19976; A.-C. Bédard, 
and S. K. Collins, Chem. Commun., 2012, 48, 6420; A.-C. Bédard, and S. K. Collins, 
Chem.–Eur. J., 2013, 19, 2108; A.-C. Bédard, and S. K. Collins, S. K. ACS Catal. 
2013, 3, 773. 

(6)  M. De Rosa, and A. Gambacorta, Prog. Lipid Res., 1988, 27, 153; M. Kates, 
Membrane Lipids of Archaeal, Elsevier, Oxford, 1993, 261; P. B. Comita, R. B. 
Gagosian, H. Pang, and C. E. Costello, J. Biol. Chem., 1984, 259, 15234. 

(7)  T. N. Glasnov, and C. O. Kappe, Chem.–Eur. J., 2011, 17, 11956. 
(8)  T. P. Petersen, A. Polyzos, M. O'Brien, T. Ulven, I. R. Baxendale, and S. V. Ley, 

ChemSusChem, 2012, 5, 274. 
(9)  An Emac above ~7.1 suggests a macrocyclization is within the top 10% of the most 

efficient macrocyclizations reported to date.  For a discussion on grading the efficiency 
of macrocyclization reactions through the use of the Emac factor see: J. C. Collins, and 
K. James, Med. Chem. Commun., 2012, 3, 1489. 

(10)  T. Eguchi, T. Terachi, and K. Kakinuma, J. Chem. Soc. Chem. Comm., 1994, 137; T. 
Eguchi, K. Arakawa, T. Terachi, and K. Kakinuma, J. Org. Chem., 1997, 62, 1924; K. 
Arakawa, T. Eguchi, and K. Kakinuma, Chem. Lett., 1998, 8, 901. 

(11)  H. Liu, C. E. Olsen, and S. B. Christensen, J. Nat. Prod., 2004, 67, 1439; T. Eguchi, K. 
Arakawa, K. Kakinuma, G. Rapp, S. Ghosh, Y. Nakatani, and G. Ourisson, Chem.–
Eur. J., 2000, 6, 3351; O. Dannenmuller, K. Arakawa, T. Eguchi, K. Kakinuma, S. 
Blanc, A.-M. Albrecht, M. Schmutz, Y. Nakatani, and G. Ourisson, Chem.–Eur. 
J., 2000, 6, 645; W. P. D. Goldring, E. Jubeli, R. A. Downs, A. J. S. Johnston, N. 
Abdul Khalique, L. Raju, D. Wafadari, and M. D. Pungente, Bioorg. Med. Chem. 
Lett., 2012, 22, 4686; M. Shibakami, S. Miyoshi, M. Nakamura, and R. Goto, 
Synlett, 2009, 16, 2651; S. Bhattacharya, and J. Biswas, Langmuir, 2010, 26, 4642; Q-
D. Huang, H. Chen, L-H. Zhou, J. Huang, J. Wu, and X-Q. Yu, Chem. Biol. Drug 
Des., 2008, 71, 224; M.-L. Miramon, N. Mignet, and J. Herscovici, J. Org. 
Chem., 2004, 69, 6949.  

 



 

 168 

 

 

 

 

 

 

 

 

 

 

PART 3 

 
  



 

 169 

Chapter 9 : Introduction to the Copper-Catalyzed Azide-

Alkyne Cycloaddition 

 Since the discovery of the copper-catalyzed azide-alkyne cycloaddition (CuAAC), it 

has made a significant impact on the scientific community.1,2 The simplicity of the 

transformation combined with the availability of the starting materials has allowed it to 

influence many areas of research such as material science, medicinal chemistry and 

supramolecular chemistry.1,2 CuAAC is often referred to as “Click” chemistry, meaning that it 

is part of a family of very efficient chemical transformations that have the following 

characteristics : 1) modular, 2) broad scope, 3) high yielding, 4) generates only inoffensive 

byproducts, 5) stereospecific, 6) simple reaction conditions (insensitive to oxygen and water) 

and 7) simple product isolation (nonchromatographic).2 The subsequent chapter will elaborate 

on the CuAAC reaction, its application in synthesis as well as insight into the reaction 

mechanism, ligand effects, and catalysis via other metals. In addition, the copper-catalyzed 

azide-iodoalkyne cycloaddition (CuAiAC) variant will be presented.  

9.1 – Discovery and Improvement of the Azide-Alkyne 

Cycloaddition Reaction 

The AAC was first investigated by Huisgen for over twenty years starting in the 

1950’s.3 The uncatalyzed cycloaddition of alkyne and azide is a relatively slow process that 

requires high temperatures and long reaction times. Although the overall process is exothermic 

(ΔH0 between -50 and -65 kcal/mol), it has an important calculated activation barrier of 25 

kcal/mol for methyl azide and propyne.4 While the triazole motif is a valuable moiety in 
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chemistry, the aformentionned process yields a mixture of the 1,4- and 1,5-triazole due to the 

similarity of the HOMO-LUMO energies of the precursors (Scheme 9.1a).  

 

Scheme 9.1 – (top) Triazole numbering (bottom) Synthesis of triazoles under a) thermal 

conditions, b) copper catalysis, c) ruthenium catalysis. 

 

In 2002, a copper-catalyzed variant was reported.5 The novel reaction conditions 

accelerated the rate by a factor of 107 and afforded solely the 1,4-isomer 9.5 under mild 

conditions (Scheme 9.1b).4 The CuAAC is tolerant to a wide range of functional groups and is 

minimally affected by the steric and electronic properties of the neighboring group. Moreover, 

the reaction proceeds in both aprotic and protic solvents, including water. Consequently, the 

CuAAC reaction has become a highly exploited tool in synthesis.6  

Recently, the selective synthesis of the 1,5-triazole 9.6 was reported (Scheme 9.1c). 

The use of a ruthenium catalyst allowed for facile cycloaddition of azide 9.1 and alkyne 9.2. 
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The reaction manifold also promotes cycloaddition with internal alkynes, in contrast with the 

copper-catalyzed version.7 Besides, iridium catalysts have also been used to form 1,5-triazole 

products using bromoalkynes as starting materials, under mild reaction conditions.8  

9.2 – Applications of the Copper-Catalyzed Azide-Alkyne 

Cycloaddition Reaction 

The versatility of the AAC has been demonstrated in various fields, particularly in 

medicinal chemistry9-12. First, AAC reactions have been exploited for the synthesis of 

macrocyclic peptides. For example, vancomycin-inspired tripeptide mimics 9.8 and 9.9 were 

synthesized using the copper and ruthenium variants of the reaction starting from the same 

peptidic precursor 9.7 (Scheme 9.2). It was found that the regioisomeric macrocycles 9.8 and 

9.9 had good overlap with balhimycin, a structural analog of vancomycin that also exhibits 

antibacterial properties (Figure 9.1).9,10 Macrocyclic CuAAC in continuous flow is also an 

emerging tool for the synthesis of macrocyclic drug candidates (refer to Chapter 7, Scheme 7.2 

and 7.3).11 
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Scheme 9.2 – CuAAC and RuAAC macrocyclization of vancomycin-inspired tripeptides. 

a) b)  

Figure 9.1 – a) Tripeptide 9.8 structure (blue) ovelay with balhimycin (red), b) Tripeptide 9.9 

structure (blue) ovelay with balhimycin (red). (Reproduced with permission from ref 10. 

Copyright 2011 American Chemical Society.) 
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A second example of the utility of the AAC reaction in medicinal chemistry is 

exploring the triazole moiety as a mimic of the trans amide bond. Mindt and co-workers12 

demonstrated that a 1,4-triazole unit could be inserted into a series of biologically relevant 

peptides where the triazole unit increased the stability of the peptide as well as its tumor-

targeting capacities.  

In supramolecular chemistry, CuAAC has found myriad applications due to its 

functional group compatibility.6e The formation of a triazole is often used as a tool for 

macrocylization for the formation of rotaxanes and catenanes. For example, a copper(I)-

template approach13 was used to synthesize catenane 9.13 in good yield.14 Macrocyclization of 

precursor 9.10 without the Cu(I)-template yields only oligomers (Scheme 9.3). 
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Scheme 9.3 – CuAAC macrocyclization using a template strategy. 
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9.3 – Mechanistic Aspects of the Copper-Catalyzed Azide-Alkyne 

Cycloaddition Reaction 

9.3.1 – Importance of the Copper Source 

 Only copper(I) salts are catalytically active in the CuAAC. Unfortunately, Cu(I) is not 

thermodynamically stable and prone to oxidation under atmospheric conditions.15 To maintain 

a source of Cu(I) in solution, the use of a stable Cu(II) salt and a reductant such as sodium 

ascorbate (NaAsc),5a in large excess compared to the Cu(II), is often used. The strategy allows 

for in situ reduction of copper(II). Typical reaction conditions are shown in Scheme 9.4. The 

exclusion of oxygen is not needed under these conditions.  

 

Scheme 9.4 – CuAAC promoted by in situ reduction of a Cu(II) salt. 

 

 When Cu(II) gets reduced in situ, the resulting catalytically active Cu(I) species rapidly 

forms the copper acetylide. Cu(I)-halide salts require at least an amine base and sometime 

high temperatures to form the copper-acetylide. The partial solubility of CuI in organic 

solvents such as THF or MeCN allowed for its use in anhydrous conditions.16 A range of Cu(I) 

salts (e.g. [Cu(CH3CN)4]PF6) were introduced as catalysts for the CuAAC reaction due to their 

increased solubility in organic solvents. Importantly, Cu(I) salts can often be isolated in high 

purity, a desirable feature for sensitive chemistry such as bioconjugations or polymerization.17 

Noteworthy, oxygen needs to be excluded from the reaction mixture when a Cu(I) source is 

Ph S
N
H

N3

OMeO2C

N

CO2HO

O

Ph
S

HN
O

CO2Me

N

CO2HO

O
N

N N

CuSO4 (1 mol %)
NaAsc (10 mol %)
H2O/tBuOH (1:1)

25 oC, 1 h
93 %

9.15 9.16 9.17



 

 176 

used. Typical reaction conditions using a Cu(I) source in combination with a ligand are shown 

in Scheme 8.5.18 

 

 

 

Scheme 9.5 – CuAAC promoted by a Cu(I) salt and amine ligand. 

 

 The use of Cu(0) in the form of a powder or nanoparticules has also been reported.19 

The addition of a Cu(II) salt is often needed in theses conditions. Cu(0) can be used in aqueous 

media. It is assumed that Cu(I) is formed under the reaction conditions. Moreover, facile 

separation of the catalyst from the reaction mixture facilitates the product isolation step.  

9.3.2 – Importance of Ligands 
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Figure 9.2 – Structure of ligands for CuAAC. 

 

An extensive study of the ligand effects was conducted by Finn and co-workers22 The 

authors demonstrated the impact of the ligand for the rate of the reaction. The results are 

summarized in Table 9.1. Although TBTA 9.21 is known to be a good ligand to achieve 

efficient CuAAC, when its loading is decreased to 0.5 mol % in the presence of a Cu(I) 

source, the reaction only yields 47 % of the desired triazole. Due to its improved water 

solubility, BimC4A 9.24 stays highly efficient even at 0.05 mol % in a 3:1 mixture of 

MeOH/H2O. In comparison, simple amine ligands such as iPr2NEt in the presence of CuI only 

affords 29 % of triazole 9.27 after 72 h. The role of the polytriazole ligands in improving the 

catalytic efficiency of the reaction will be discussed in the following section (Figure 9.3).  
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Table 9.1 – Comparison of ligand effects in CuAAC 

 

Entry! Ligand!(mol!%)! Cu(I)!source!(mol!%)! Time!(h)! Yield!(%)!
1! 9.21!(0.5)! CuSO4!(0.5),!NaAsc!(40!equiv)! 4.5! 47!
2! 9.24!(0.5)! CuSO4!(0.5),!NaAsc!(40!equiv)! 0.2! 100!
3! 9.24!(0.05)! CuSO4!(0.05),!NaAsc!(40!equiv)! 5! 98!
4*! iPr2NEt!(5)! CuI!(0.5)! 72! 29!

*Reaction in absolute MeOH 

 

Although it has been demonstrated on several occasions that the CuAAC is 

biocompatible, 23 the rate of the reaction is still slow when the reaction is run in dilute aqueous 

media. Hence, high catalyst loadings need to be used and although the CuAAC reaction can be 

succesful, the living organism is usually killed in the process. To solve the issue, a copper-free 

variant that relies on ring strain to activate the alkyne, typically cyclooctyne-based, was 

developed.24 Alternatively, water soluble ligand BTTES 9.23 was designed for biocompatible 

conjugation chemistry.21 It was shown to increase the rate of the cycloaddition by a factor of 

10 when compared to cyclooctyne-based copper-free click chemistry and survival of the 

organism was achieved. The discovery of BTTES 9.23 allowed for in vivo imaging of 

zebrafish embryogenesis.21 
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9.3.3 – Proposed Catalytic Cycle 

Insight into the mechanism of the CuAAC reaction is important for the continued 

evolution of “Click” chemistry. The mechanistic study was intially challenging because of the 

tendency of copper acetylides to form aggregates.25 Moreover, the mixture of Cu(I) with 

various ligands and alkynes can lead to many equilibria that can be difficult to characterize. 

Fokin and co-workers studied the mechanism using isotopic labeling of copper.26 When 

benzyl azide 9.25 was reacted in the presence of cuprated alkyne 9.28 (with the naturally 

occuring isotope distribution; 69 % 63Cu and 31 % 65Cu) in the presence of an isotopically 

enriched 63Cu(I) catalyst, the cuprated triazole formed was isotopically enriched in 63Cu 

(Scheme 8.6a). It was found that neither intermediate 9.28 or 9.29 exchanged their copper 

atom when given the possibility (Scheme 9.6b and c). Since it had been known that two 

copper atoms were implied in the mechanism, shuffling of isotopes was proposed to occur via 

intermediate 9.36 (Scheme 9.7). 

The now accepted catalytic cycle begins by cupration of the alkyne 9.30 to yield 

intermediate 9.31. Then, π-interaction with a second copper atom 9.32 and coordination of the 

azide 9.34 through the internal nitrogen gives rise to reactive intermediate 9.35. Stepwise 

cycloaddition can then proceed to yield the cuprated triazole 9.37, by passing through reactive 

intermediate 9.36. Proto-decupration can then provide the desired product 9.38 and regenerate 

the copper catalyst 9.32. 
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Scheme 9.6 – Mechanistic investigations of the CuAAC reaction.  

 

  
 

Scheme 9.7 –Proposed catalytic cycle for the CuAAC 
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Figure 9.3 – Proposed di-copper species 9.39 that could be favored in the presence of 

polytriazole or benzimidazole ligands.  

 

9.4 – Copper-Catalyzed Iodoalkyne-Azide Cycloaddition 

Apart from exceptions, copper-catalyzed AAC does not enable the synthesis of 1,4,5-

trisubstituted triazoles using internal alkynes. Only two isolated examples of internal alkynes 

being used in the CuAAC have been reported and they both report solely the reaction between 

benzyl azide 9.25 and 3-hexyne 9.40.27 A Cu-N-heterocyclic carbene (NHC) complex has 

been shown to catalyze the aforementionned transformation to yield the corresponding 1,4,5-

trisubstituted triazole 9.42 (Scheme 9.8).27a  

 

 

 

 

Scheme 9.8 – Rare example of CuAAC with an internal alkyne. 
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source instead of CuBr the reaction rate was improved and 14 % of the iodotriazole 9.46 was 

observed as a side product (Scheme 9.9).  

 

Scheme 9.9 – Copper-catalyzed cycloaddition of azides and 1-bromoalkynes 

 

The initial report did not attract much attention until 2009 when Fokin reported 1-

iodoalkynes as a viable alternative for the CuAAC reaction of internal alkynes (Scheme 

9.10).29 The reaction proceeded smoothly in a wide range of solvents and had an impressive 

functional group tolerance. Noteworthy, both TTTA 9.22 or Et3N could be used as ligands for 

the Cu(I) source. 

 

Scheme 9.10 – Copper-catalyzed cycloaddition of azide and 1-iodoalkynes. 
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CuAiAC, Diez-Gonzalez and co-workers studied the reaction mechanism by DFT (refer the 

Scheme 9.14).30  

 

Scheme 9.11 – Copper-NHC and copper-phosphine complex catalyzed cycloaddition of azide 

and 1-iodoalkynes. 

 

The CuAiAC reaction was later used by James in the synthesis of macrocyclic peptides 

in continuous flow (refer to Chapter 7, Scheme 7.3).11b The resulting iodotriazole could also 

be readily functionalized using well established palladium cross-coupling chemistry such as 

the Suzuki and the Heck cross-coupling reactions (Scheme 9.12).11b,31  
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Scheme 9.12 – Synthesis and derivatization of the iodotriazole moiety . 

 

9.4.1 – Proposed Catalytic Cycle 

The postulated mechanism for the CuAiAC reaction differs from the one depicted in 
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prototriazole would be expected since both paths shown in Scheme 9.13 would be possible to 

turn over the catalyst. In his seminal report, Fokin states that no prototriazole is observed and 

thus postulated a catalytic cycle where the copper only acts as a π-acid (Scheme 9.14). 
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Scheme 9.13 – Mechanistic postulation for CuAiAC 

 

 

 

 

 

 

 

 

 

Scheme 9.14 – Proposed catalytic cycle for CuAiAC 

 

9.4.2 – Application of Copper-Catalyzed Iodo-Alkyne-Azide Cycloaddition  

An interesting application of the CuAiAC is the synthesis of antifungal small 

molecules. The corresponding triazole has been identified as a lead candidate for the inhibition 

of Escherichia coli PDHc-E1 inhibitory activity and antifungal activity but lacked selectivity 

toward its target.32 The addition of an iodine on the triazole allowed for increased enzyme-

selectivity as well as a 6 fold increase in the potency (Figure 8.4).32 Iodotriazole 9.67 was 

readily synthesised using Fokin’s CuI/Et3N procedure.29 
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Figure 9.4 – Effect of the addition of an iodine on the triazole moiety of a Escherichia 

coli PDHc-E1 inhibitor and antifungal. 

 

9.5 – Conclusion  

The copper-catalyzed azide-alkyne cycloaddition reaction has already made a 

significant impact on the chemical society. It has been applied to key bond forming reaction in 

various context, including challenging macrocyclizatons. The development of an efficient 

CuAAC macrocyclization at high concentration using the “phase separation” strategy would, 

amongst other applications, allow the efficient synthesis of various medicinally relevant 

compounds.   
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10.1 – Abstract 

An advanced strategy for efficient macrocyclic Cu(I)-catalyzed cycloaddition is 

described. The key features include: employing azide-iodoalkyne cycloadditions (CuAiAC), 

low catalyst loadings, relatively high concentrations (30 mM→300 mM) and application to 

continuous flow. The remarkably efficient new tool affords a variety of macrocyclic skeletons 

having either different alkyl, aryl or amino acid spacers in high yields, (70-97 %). The 

macrocyclic CuAiAC process affords macrocycles having an iodotriazole moiety that can be 

further functionalized using standard Pd-catalyzed cross-couplings.  
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10.2 – Introduction 

The copper-catalyzed azide–alkyne cycloaddition reaction1 (CuAAC or commonly 

referred to as a “Click” reaction) has become an important synthetic strategy for the 

preparation of macrocycles.2,3 Macrocyclic CuAAC processes have found application in 

medicinal chemistry for the preparation of macrocyclic carbohydrates,4 peptides5 and even 

rigidified drug-like macrocycles under continuous flow conditions.6 Macrocyclic CuAAC has 

also found applications in materials science in the development of novel receptors, electronic 

materials and molecular machines.7 

 

Figure 10.1 – Macrocyclic azide-alkyne cycloaddition processes. 

 

Despite the wealth of applications, most macrocyclic CuAAC reactions still suffer 

from the slow rate of ring closing associated with conventional macrocyclization reactions 

(Figure 10.1). Consequently, long reaction times and high catalyst loadings (often super 
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stoichiometric quantities of Cu) can be required in combination with the use of high dilution 

and/or slow addition techniques to slow competing oligomerization, are necessary to obtain 

satisfactory macrocyclization.8 The fact that these characteristic challenges remain prevalent in 

contemporary synthesis highlights the need for general reliable tools and/or strategies for 

efficient macrocyclization at high concentrations.9 In an effort to develop such a process based 

upon “Click” strategies, the copper-catalyzed azide-iodoalkyne cycloaddition (CuAiAC) was 

identified as an ideal candidate for exploration as a macrocyclization technique. The CuAiAC 

process was recently reported as an efficient “Click” process, with several advantages over its 

CuAAC analog: 1) the iodoalkyne coupling partners are stable and readily accessible internal 

acetylenes10 that exhibit reactivity typically greater than terminal alkynes in the cycloaddition 

process,11,12 and 2) the formation of the product iodotriazoles also provides a convenient 

handle for further functionalization13 and possibilities for diversity-oriented synthesis.14 

Despite the advantages, the CuAiAC reaction remains poorly explored (Figure 10.1) and only 

a single report of a macrocyclic variant employing a copper tubing reactor under continuous 

flow conditions has been reported.15 Herein we report on an improved macrocyclic “Click” 

process through the development of an efficient macrocyclic Cu(I)-catalyzed azide-iodoalkyne 

cycloaddition process that can be performed at high concentrations using a phase separation 

strategy. 

10.3 – Results and Discussion 

The development of a CuAiAC macrocyclization protocol that could be performed at 

high concentrations began with the design of an appropriate model substrate. An ideal acyclic 

precursor would be devoid of any structural motifs (heteroatoms, aryl groups) that could 
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conformationally bias the molecule towards macrocyclization. Although the ring-closing of 

such a precursor would be challenging, successful macrocyclization could be attributed solely 

to control of dilution effects. 

 

Table 10.1 – Optimization of Macrocyclic CuAiAC using a Phase Separation Strategy. 

 

entry solvent yield 3 (%)a recovered 2 (%)a 

1 MeOH 23 poly 

2 PEG400 - 99b 

3 PEG400:MeOH 1:9 29 - 

4 PEG400:MeOH 1:2 60 - 

5 PEG400:MeOH 1:1 93 - 

6 PEG400:MeOH 2:1 97 - 

7 PEG400:MeOH 4:1 40 -b 

8 PEG400:MeOH 9:1 - 99b 
a Yields following chromatography. b Product recovered was azide-alkyne 1.  

No iodinated uncyclized products were observed 
 

Consequently, the azide-iodoalkyne 2 was selected for evaluation under phase 

separation conditions. The phase separation strategy has been previously reported to control 

dilution effects in macrocyclization reactions through the use of poly(ethylene glycol) (PEG) 

co-solvents.16 Reaction media consisting of high ratios of PEG400:MeOH formed aggregated 

mixtures, in which lipophilic PEG aggregates preferentially solubilize organic substrates. Slow 
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diffusion out of a PEG aggregate into the MeOH co-solvent and subsequent cyclization is 

believed to mimic slow addition conditions, allowing for macrocyclization processes to be 

conducted at much higher concentrations while affording higher yields. Consequently, the 

macrocyclization of azide-iodoalkyne 2 was explored using catalytic systems previously 

developed for either CuAiAC intermolecular cycloaddition or CuAAC reactions in aqueous 

media. Initial investigations targeted a concentration of 30 mM using 1:1 mixtures of 

PEG400:MeOH First, catalyst systems using tridentate ligands were investigated, but both the 

CuSO4·5H2O/(BimC4A)3/NaAsc17 and CuSO4·5H2O/TBTA18/NaAsc conditions failed to afford 

any of the desired 17-membered macrocycle 3 and none of the azide-iodoalkyne 2 was 

recovered.19 When a catalyst system of CuI/NEt3, previously exploited in intermolecular 

CuAiAC reactions,17,18 was evaluated in a PEG400:MeOH 1:1 solvent system, a 93 % yield of 

the desired iodo-triazole macrocycle 3 was isolated (Table 10.1). The best yield (97 % of 3) 

was obtained at a PEG400:MeOH 2:1 ratio.20 Control reactions in the individual reaction 

solvents were examined. When azide-iodoalkyne 2 was treated with CuI/NEt3 in MeOH, a 23 

% yield of macrocycle 3 was observed and extensive polymerization of the azide-iodoalkyne 

could be observed. When macrocyclization was attempted in PEG400:MeOH 9:1 or just PEG400, 

the de-iodinated azide-alkyne 1 was isolated quantitatively.21 The isolation of uncyclized 

azide-alkyne 1 at high PEG400:MeOH ratios suggests that the reactivity of the catalyst system 

towards triazole formation was inhibited by the increasing concentrations of PEG400, as is 

consistent with other reports of inhibition of transition metal catalysts by PEG solvent.14b 

To demonstrate the ability of the PEG400:MeOH solvent system to control dilution 

effects, the macrocyclization of azide-iodoalkyne 2 was first investigated at high dilution 

using the optimized catalyst system in MeOH (Table 10.2, entries 1→5). 
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Table 10.2 – Concentration Effects of Macrocyclic CuAiAC Using Both Traditional High 

Dilution and Phase Separation Strategies. 

 

entry solvent, concentration yield 3 (%)a yield 2 (%)a 

1 MeOH, [0.2 mM] - 99 

2 MeOH, [0.2 mM]b 43 22 

3 MeOH, [1 mM] - 99 

4 MeOH, [1 mM]c 56d - 

5 MeOH, [2 mM] - 99 

6 MeOH, [10 mM] 15d 15 

7 MeOH, [30 mM] 23d - 

8 PEG400:MeOH 2:1, [30 mM] 97 - 

9 PEG400:MeOH 2:1, [100 mM] 76 - 

10 PEG400:MeOH 2:1, [300 mM] 58 - 

a Yields following chromatography. b Using CuI (20 mol %) and NEt3 (8 equiv), 70 °C, 3 d.  
c Using CuI (2 equiv) and NEt3 (80 equiv). d Formation of insoluble polymeric materials observed. 

 

When the macrocyclization (2→3) was conducted at high dilution (0.2, 1 or 2 mM), 

little reaction was observed and the azide-iodoalkyne 2 was recovered quantitatively. In an 

effort to promote macrocyclization, a high dilution macrocyclization (0.2 mM) with higher 

catalyst loadings (20 mol %) and longer reaction times (3 d) was performed and afforded low 

yields and unconsumed azide-iodoalkyne (43 % of 3, 22 % recovered 2). Increased catalyst 
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loadings (CuI (2 equiv.)) could also coerce macrocyclization of 2 at 1 mM affording a 56 % 

yield of triazole 3 and oligomerizing the remaining mass balance. It was hypothesized that 

increasing the concentration would help promote conversion, so the macrocyclization (2→3) 

was examined at higher concentrations in MeOH, but with low catalyst loading (5 mol %) 

(entries 6 and 7). Macrocyclization at 10 mM afforded a 15 % yield of 3 and 15 % of azide-

iodoalkyne 2. At 30 mM, only a 23 % yield of macrocycle 3 and extensive polymerization of 

the 2 was observed. In contrast, at the identical concentration but using the PEG400: MeOH 

(2:1) mixture, a 97 % of macrocycle 3 was obtained. When employing the PEG400:MeOH 

mixtures, the concentration could be further increased to 100 mM and 300 mM and good 

yields of macrocycle 3 were still obtained (a 58 % yield of 3 at 300 mM). These results are in 

stark contrast to those obtained using traditional high dilution/slow addition techniques. 

Indeed, phase separation afforded superior yields at higher concentrations (1500X greater) 

with lower catalyst loadings (5-40X lower). The above results demonstrate that the phase 

separation allows for both greater concentrations and, consequently, lower catalyst loadings to 

be employed in macrocyclization reactions.  

To demonstrate that the method can be used to prepare meaningful quantities of 

desired macrocycles, a gram-scale macrocyclization was performed using the optimized 

conditions with azide-iodoalkyne 2. Upon scale-up to 1 mmol, the desired triazole macrocycle 

3 was obtained in 84 % yield. To develop a more efficient demonstration of the ability to 

scale-up, the “phase separation” strategy was adapted to a continuous flow protocol. Less than 

a handful of macrocyclizations under continuous flow conditions have been reported.6,15,16c 

Following optimization of temperature and flow rate, it was found that the azide-iodoalkyne 2 

could be cyclized in good yield (up to 83 %), in shorter reaction time than in batch (17 h vs. 
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~6.6 h (400 min)). Importantly, the slightly higher temperatures involved required a change in 

the catalyst system. The use of a bidentate TMEDA ligand, in place of NEt3, resulted in a 

reaction mixture which remained homogeneous throughout the reaction time. 

 

Scheme 10.1 – Macrocyclic CuAiAC under continuous flow conditions. 

 

With an optimized catalyst/solvent system in hand, a substrate scope for the 

macrocyclization was performed (Table 10.3).22 The first acyclic precursors selected were 

purposely designed with flexible alkyl chains to evaluate the efficiency of the methodology 

with compounds having little structural or conformational bias towards cyclization. The 17-

membered macrolactone 3 was obtained in 95 % isolated yield and the analogous 17-

membered macrocycle 4 having different alkyl spacers was also obtained in excellent yield 

(93 %) when subjected the identical reaction conditions. In an attempt to prepare more 

challenging smaller ring sizes, the macrocyclic CuAiAC reaction to form the 12-membered 

ring 5b was performed (entry 3). An excellent yield of 78 % was observed, however the 

macrocyclization had afforded a 1:1 ratio of two products: the desired 12-membered ring 5b 

and the 11-membered ring 5a which results from regioisomeric cycloaddition across the 

iodoalkyne.23 Larger macrocycles such as the 21-membered 7 and the 25-membered 8 could 

also be prepared in good yields (87 and 85 % respectively, entries 5 and 6). The 16-membered 
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macrolactone 6 obtained from reaction with an aryl alkyne was isolated in 70 % yield (entry 

4). Once again, larger macrocycles bearing an aryl spacer, such as 9, could be isolated in 75 % 

using the optimized reaction conditions. The macrocyclic CuAiAC reaction was also applied 

to the cyclization of substrates having more complex structures including the presence of 

heteroatoms and chiral centers (Table 10.3, entries 8→12). Macrocycles having an embedded 

phenylalanine residue with different alkyl spacers were prepared in good yields: the 20-

membered iodo-triazole macrocycle 10 was isolated in 91 % yield. The size of the macrocycle 

could be expanded while maintaining good yields as the slightly larger 24-membered analog 

11 was obtained in 83 % yield. Also, the position of the azide and alkyne functionalities in the 

products could easily be reversed, as the 21-membered macrocycle 12 was isolated in 84 % 

yield. Other amino acids could be incorporated as the 24-membered isoleucine-derived 

macrocycle 13 was also cyclized at high concentration in high yield (86 %). 
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Table 10.3 – Substrate Scope of Macrocyclic CuAiAC Using a Phase Separation Strategy.a 

 
entry product yield (%) entry product yield (%) 

1 

 

95 2 

 

93 

3 

 

78 (1:1) 4 

 

70 

5 

 

87 6 

 

85 

7 

 

75 8 

 

91 

9 

 

83 10 

 

84 

11 

 

86 12 

 

83 

a Yield following chromatagraphy. Ring size indicated in red. 
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Again, to demonstrate the efficiency of the protocol on complex substrates, the 

synthesis of the peptidic macrocycle 1715 was performed. Macrocycle 17 had already been 

prepared by Bogdan and James during the synthesis of a library of peptidic macrocycles for 

drug discovery efforts in good yield (75 %, [17 mM]). Bogdan and James also demonstrated 

further functionalization of the iodotriazole motif via Pd-catalysis. Under the optimized “phase 

separation” conditions, macrocycle 17 was obtained in 83 % yield ([30 mM]). 

10.4 – Conclusion 

In summary, a protocol for a macrocyclic Cu(I)-catalyzed azide-iodoalkyne 

cycloaddition (CuAiAC) is described. The CuAiAC is a remarkably efficient new tool for 

macrocyclization, affording high yields, at low catalyst loadings, at relatively high 

concentrations (30 mM→300 mM) using a phase separation strategy. A variety of macrocyclic 

skeletons could be prepared having either different alkyl, aryl or amino acid building blocks. 

The macrocyclic CuAiAC is particularly attractive for industrial purposes as: 1) the process 

affords macrocycles having an iodotriazole moiety that is a convenient handle for use in 

diversity-oriented syntheses of macrocyclic libraries,14 and 2) the ability to exploit continuous 

flow conditions allows for facile scale-up using non-volatile/non-toxic PEG in place of large 

volumes of organic solvents. The macrocyclic CuAiAC reactions presented herein further 

suggest that phase separation is a viable technique for improving or developing novel 

macrocyclization processes. The effectiveness of the CuAiAC macrocyclization should be 

highly useful, given the prevalence of “click”-type strategies in fields such as material science 

and chemical biology.  
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11.1 – Abstract 

The continuous flow synthesis of a series of 11- to 26-membered macrocycles via 

copper-catalyzed azide–alkyne cycloaddition is reported. The approach employs homogeneous 

catalysis to promote formation of triazole-containing macrocycles in good to excellent yields 

(65-90 %) at relatively high concentration (30-50 mM) using a phase separation strategy. 

 

11.2 – Introduction 

Macrocycles have become pharmaceutically relevant targets for drug design.1 Despite 

the industrial interest, few macrocyclization reactions have been adapted to continuous flow 

syntheses.2,3 Batch macrocyclization reactions almost always require large catalyst loadings, 

large dilution factors and are plagued by possible precipitation of unwanted oligomers. These 

characteristics make the transposition of macrocyclization from batch to continuous flow 

challenging. Recently, James and co-workers reported the first continuous flow synthesis of 

macrocycles via alkyne–azide cycloaddition (CuAAC) or copper-catalyzed azide-iodoalkyne 

cyclo-addition (CuAiAC) chemistry.3 Their protocols employed a heterogeneous copper 

tubing reactor to efficiently synthesize a library of drug-like macrocycles.  
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Figure 11.1 – Macrocyclic azide-alkyne cycloaddition processes in continuous flow. 

 

Our group recently reported that a homogeneous catalysis approach could be adapted 

to continuous flow and allow macrocyclization via Glaser-Hay coupling using a stainless steel 

reactor. The reactions exploited a “phase separation” strategy, in which aggregated solvent 

mixtures employing poly(ethylene glycol) (PEG) co-solvents allowed for macrocyclization at 

relatively high concentrations (30 mM) and low catalyst loadings.4 Given the interest in 

“Click”-type processes for the synthesis of various macrocycles,5 including macrocyclic 

carbohydrates6 and peptides,7 our group also recently reported the application of the “phase 

separation” strategy to macrocyclic CuAiAC8 processes in batch.9 The resulting iodotriazole-

containing macrocycles provide a convenient handle for further derivatization10 and 

opportunities for diversity-oriented synthesis.11 Our report provided preliminary data 

suggesting the transposition of the macrocyclic CuAiAC process under “phase separation” 

conditions would be possible. Herein, we report a full account of the macrocyclic CuAiAC 

reactions in continuous flow at relatively high concentrations made possible via the “phase 

separation” strategy and disclose an extension of the substrate scope to CuAAC processes. 
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11.3 – Results and Discussion 

The development of a CuAiAC macrocyclization using “phase separation” in continuous 

flow began with transposing the batch conditions.8 Preliminary studies explored the 

cyclization of ester 1, an unconformationally biased model, at higher temperatures with a 

variety of ligands in batch to afford the 17-membered macrocycle 2 (Table 11.1). The batch 

macrocyclization conditions utilized CuI (20 mol %), NEt3 (8 equiv) in PEG400:MeOH (2:1) at 

a reaction concentration of 30 mM. While these conditions provided an excellent yield of 

macrocycle 2, the reaction mixture became increasingly heterogeneous as the reaction 

progressed. As we had previously observed better homogeneity when using bidentate ligands 

in Cu-catalyzed macrocyclization reactions, we investigated TMEDA as a ligand alternative.12 

Although the resulting reaction mixture remained homogeneous, we observed no conversion 

of 1 to 2 (entry 2). Consequently, the ligand loading as well as the ratio of PEG400:MeOH were 

decreased. When CuI (20 mol %), ligand (2 equiv.) and a PEG400:MeOH (2:1) solvent ratio 

was used, a 50 % yield of 2 was observed. Other bidentate ligands such as 2,2’-bypyridine and 

1,10-phenanthroline did not afford any desired product, while other alkyl bidentate ligands 

such as ethylenediamine and DMEDA provided low yields of 2, but heterogeneous reaction 

mixtures. Given that TMEDA afforded a highly homogeneous reaction mixture and the 

highest yield (50 %) out of the ligands surveyed, it was chosen for optimization under 

continuous flow conditions. 
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Table 11.1 – Optimization of Macrocyclic CuAiAC using a Phase Separation Strategy in 

Batch. 

 

entry ligand equiv solvent ratio yield 2 (%)a recovered 1 (%)a homogeneityb 
1 triethylamine 8 2:1 95 - het 
2 TMEDA 8 2:1 - 99 homo 
3 TMEDA 2 2:1 33 67 homo 
4 TMEDA 2 1:1 50 50 homo 
5 bipy 2 1:1 - 99 homo 
6 phen 2 1:1 - 99 homo 
7 ethylenediamine 2 1:1 21 75 het 
8 DMEDA 2 1:1 32 65 het 

a Yields following chromatography. b Appearance of the reaction at the end of the 17 h reaction time. The term 
“het” refers to a heterogeneous mixture while “homo” refers to a homogeneous reaction mixture. bipy = 2,2’-

bipyridine, phen = 1,10-phenanthroline 

 

The optimization under continuous flow conditions utilized a Vapourtec R2+ pumping 

module in combination with a R4 heating module and four in-line 10 mL PFA coil tube 

reactors (Table 11.2). Using the optimized conditions from the “batch” experiments under 

continuous flow led to only traces of the desired CuAiAC product 2 after a residence time of 

300 minutes (entry 1). Relatively slow flow rates had to be used (0.1→0.4 ml/min) to maintain 

a consistent pressure due to the viscosity of PEG400. Increasing the temperature to 80 oC 

smoothly afforded the desired product 2 in 74 % yield with 21 % of recovered 1. Increasing 

the residence time to 400 min led to complete conversion of the starting material 1 and 83 % 

yield of 2. Increasing the concentration of the reaction to 50 mM afforded a similarly high 

yield (entry 4). Further increasing the temperature (100 oC) did not improve the yield and 



 

 209 

resulted in degradation of the acyclic iodoalkyne 1 (entry 5) and lowering the residence time 

to 100 minutes afforded low conversions. Gratifyingly, consistent yields were obtained upon 

scale-up (1 mmol of 1; 81 % of 2) (entry 7). 

 

Table 11.2 – Optimization of Macrocyclic CuAiAC under Continuous Flow Conditions. 

 

entry temp. (oC) flow rate (mL/min);  
residence time (min) yield 2 (%)a recovered 1 (%)a 

1 60 0.13; 300 <5 95 
2 80 0.13; 300 74 21 
3 80 0.10; 400 83 - 
4 80 0.10; 400 76b - 
5 100 0.13; 300 - - 
6 100 0.4; 100 - 83 
7 80 0.10:400 81c - 

a Yields following chromatography. b [50 mM]. c 1 mmol scale. 

 

Using the optimized macrocyclization conditions employing "phase separation" at high 

concentrations, a series of azido-iodoalkynes were synthesized (Table 11.3). While the 17-

membered macrolactone model substrate 2 cyclized in 83 % yield, the isomeric 17-membered 

ring 3 was cyclized in 90 % yield. The 21-membered ring phenolic ether 4 was also 

synthesized in 76 % yield. Amino acid containing macrocycles were also targeted. It was 

found that the incorporation of either isoleucine or phenylalanine was well tolerated. The 24-

membered isoleucine-derived macrocycle 5 was isolated in 82 % while the phenylalanine-

derived macrocycles 6 and 7 were obtained in 78 and 80 % yield respectively. 
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Table 11.3 – Substrate Scope of Macrocyclic CuAiAC Using a Phase Separation Strategy in 

Continuous Flow.a 

 
entry product yield (%) entry product yield (%) 

1 

 

83 2 

 

90 

3 

 

76 4 

\ 

82 

5 

 

78 6 

 

80 

a Yield following chromatagraphy. Ring size indicated in red. 
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In an effort to further broaden the scope of the reaction, the optimized continuous flow 

reaction conditions were applied to macrocyclic CuAAC. First, we investigated the use of 

acyclic substrates bearing aryl azides (Table 11.4). The desired 16-membered macrocycle 8 

was synthesized in 87 % yield with complete regioselectivity. Both a smaller 11-membered 

ring 10 and a larger 26-membered ring 11 could also be obtained (entries 3 and 4). The aryl 

azide moiety could be extended to afford a naphthalene-derived macrocycle 12 in good yield 

(81 %). Further aromatic substitutions were also possible. Macrocycle 13 bearing an electron 

withdrawing fluoride substituent para to the triazole was formed in 83 % yield. It was found 

that electron donating substituents on the aryl moiety were also well tolerated under the same 

conditions. The 16-membered macrocycles 13 and 14 bearing methyl and methoxy 

substituents could be formed in 76 % and 73 % respectively. Finally, aryl alkynes were also 

compatible with the continuous flow protocol, affording the 15-membered macrolactone 9 in 

85 % yield (entry 2).  
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Table 11.4 – Substrate Scope of Macrocyclic CuAAC Using a Phase Separation Strategy in 

Continuous Flow.a 

 

entry product yield (%) entry product yield (%) 

1 

 

87 2 

 

85 

3 

 

66 4 

 

61 

5 

 

81 6 

 

83 

7 

 

76 8 

 

73 

a Yield following chromatagraphy. Ring size indicated in red. 
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11.4 – Conclusion 

In conclusion, we have developed a simple and efficient method for the synthesis of 

triazole containing macrocycles. The method employs homogenous copper catalysis and a 

relatively simple catalyst system. Using a phase separation strategy under continuous flow 

conditions allows for reactions to be conducted at relatively high concentrations. A wide range 

of structurally diverse products were possible via either macrocyclic CuAiAC or CuAAC 

reactions. Given the interest macrocycles in various fields, we anticipate the protocols 

described herein to be use in a variety of applications. 
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Chapter 12 : Conclusion and Perspectives 

The preceding thesis describes the development of a novel approach aimed at 

improving the efficiency of macrocyclization reactions through the control of dilution effects. 

The “phase separation” strategy relies on an aggregated solvent mixture controlled by a 

poly(ethylene glycol) (PEG) co-solvent and allows for macrocyclization to be conducted at 

high concentrations.  

First, macrocyclic Glaser-Hay oxidative coupling of terminal alkynes was employed in 

combination with the “phase separation” strategy in order to successfully synthesize a variety 

of structurally diverse macrocycles with varying ring sizes (16- to 28-membered rings) and 

functional groups. Phase separation between catalyst and substrates can be achieved either by 

developing hydrophilic ligands for transition metal complexes that allow for the catalysts to be 

sequestered in a highly polar and/or hydrophilic phase (i.e. PEGylated TMEDA derivative T-

PEG1900, Scheme 12.1b) or through the use of aggregated mixtures of PEG400 in MeOH 

(Scheme 12.1b). When compared to the traditional high-dilution and slow addition strategy 

(Scheme 12.1a), both “phase separation” strategies promoted the macrocyclization of a linear 

unconformationally biased precursor at a significantly higher concentration (0.0002 M → 0.03 

M) with improved yields (11 % → 65 -73 %). 

Next, a “phase separation” protocol that allows for Glaser-Hay macrocyclizations to be 

performed at high concentrations using microwave irradiation was developed. The reaction 

time was considerably reduced from 24-48 to 1-6 h and relied on a Cu/TMEDA catalyst 

system to maintain stability and solubility of the catalysts at higher temperatures (vs. thermal 

heating, Scheme 12.1c). 
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Insight into the mechanism of “phase separation” was probed using surface tension 

measurements, UV spectroscopy and chemical tagging. The origin of the efficiency in 

macrocyclic Glaser-Hay couplings that can be performed at high concentrations using the 

“phase separation” strategy was elucidated. The selective and high yielding macrocyclizations 

are due to aggregates of PEG400 that can act to mimic phase separation normally achieved 

using organic/aqueous mixtures. Chemical tagging and UV measurements showed that the 

organic substrate preferentially resided within a PEG aggregate and can slowly diffuse to the 

MeOH phase where the catalysis is highly active leading to selective macrocyclization. 

Importantly, the degree of aggregation of the solvent was shown to greatly influence the yields 

of macrocyclizations. 

The nature of the polymer co-solvent plays a role in controlling both aggregation and 

catalysis in the “phase separation” strategy. The first evaluation of the structural effects of 

PEG-derived polymers and their aggregation abilities for exploitation in organic synthesis was 

studied. Of the different structural effects studied, several important observations were made: 

1) macrocyclizations exhibit greater efficiency at high ratios of PEG/MeOH, but very high 

ratios (>90 % PEG/MeOH) can result in catalyst inhibition, 2) the terminal hydroxyl groups 

are important for inducing aggregation; and 3) poly(propylene glycol)-containing PEGs 

(PPG425 and Pluronic1100) provided good yields and are much more lipophilic than PEG, 

making them interesting alternatives for substrates that have problematic solubility. Moreover, 

it was found that catalyst activity was considerably higher in PPG425 mixtures than in mixtures 

of other PEG solvents. Therefore, PPG425 mixtures were exploited to develop 

macrocyclization reactions with 10-fold reduced catalysts loadings (Scheme 12.1d). 
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The “phase separation” strategy was also transferred to a continuous flow-

macrocyclization protocol (Scheme 12.1e). The combination of the “phase separation” 

strategy with a continuous flow synthesis allowed for the precise control of reaction time and 

temperature, resulting in a reduction in the formation of unwanted oligomers and waste, high 

yields (up to 99 %), and short reaction times (1.5 h). 

Lastly, the “phase separation” strategy was applied to the copper-catalyzed iodoalkyne-

azide cycloaddition (CuAiAC) in both batch and continuous flow. The CuAiAC is an efficient 

new tool for macrocyclization, affording high yields, at low catalyst loadings (5 to 20 mol %) 

and high concentrations (up to 300 mM). A variety of macrocyclic skeletons were prepared 

having either different alkyl, aryl or amino acid building blocks. In addition to the advantages 

previously discussed that are associated with the “phase separation” strategy, the CuAiAC 

method developed employs a relatively simple catalyst system (i.e. CuI and Et3N) and was 

easily transposed to continuous flow conditions (Scheme 12.1f). Given the interest in 

macrocycles in various fields, we anticipate the protocols described herein to be of use in a 

variety of applications. 
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Scheme 12.1 − Evolution of the “phase separation” strategy.   

CuCl2 (25 mol %), Ni(NO3)2.6H2O (25 mol %)
PEG400:MeOH (2:1) [30 mM]

Et3N (3 equiv), Pyridine (5 equiv)
60 oC, 48 h, O2

(n = 1) 73 %

High-dilution/slow addition strategy :
CuCl (12 equiv), TMEDA (20 equiv)

PhMe (0.0002 M), 48 h, O2
(n = 1)  11 %

CuCl (5 mol %), Ni(NO3)2.6H2O (5 mol %)
T-PEG1900 (20 mol %), Et3N (3 equiv)

Et2O:MeOH (1:1) [30 mM]
60 oC, 24 h, O2

(n = 1) 65 %

CuCl2 (25 mol %), Ni(NO3)2.6H2O (25 mol %)
PEG400:MeOH (2:1) [30 mM]

Et3N (3 equiv), TMEDA (5 equiv)
100 oC, µW, 6 - 10 h, O2

(n = 1) 57 % and (n = 6) 75 %

CuCl2 (2.5 mol %), Ni(NO3)2.6H2O (2.5 mol %)
PPG425:MeOH (2:1) [30 mM]

Et3N (3 equiv), TMEDA (5 equiv)
120 oC, µW, 10 h, O2 

(n = 6) 62 %

CuCl2 (25 mol %), Ni(NO3)2.6H2O (25 mol %)
PEG400:MeOH (1:1) [30 mM]

Et3N (3 equiv), TMEDA (5 equiv)
120 oC, 1.5 h (0.25 mL/min) 

(n = 6) 97 %

N3

R

CuI (20 mol %)
TMEDA (8 equiv)

PEG400:MeOH (1:1) [30 - 50 mM]

80 oC, 400 min (0.1 mL/min)
65 - 90 %
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The “phase separation” technology has been demonstrated as a strategy for the 

construction of macrocycles via Glaser-Hay oxidative coupling of alkynes and copper-

catalyzed azide-alkyne and azide-iodoalkyne cycloadditions. Despite the successful synthesis 

of macrocycles with various ring sizes and functional groups, and the mechanistic insight into 

the origin of the control of dilution, there is much research that needs to be investigated before 

“phase separation” can be considered a general tool for the synthesis of macrocycles. The 

following section describes some perspectives into possible future goals and areas of 

exploration with respect to the “phase separation” strategy. 

One aspect of the “phase separation” strategy that would be important to investigate is 

expanding the limits of the substrate scope. As the Glaser-Hay coupling has to date been the 

most heavily investigated, it would be interesting to apply it to the total synthesis of complex 

macrocycles. Consequently, recent efforts in our group have identified two classes of 

“structurally complex” macrocycles for study: macrocyclic natural products and macrocyclic 

peptidic macrocycles explored in pharmaceutical drug discovery. For the former, our group 

has begun a total synthesis effort towards the diyne containing macrolide Ivorenolide A 

(Scheme 12.2). A previous synthesis utilized a Yamaguchi macrolactonization reaction at high 

dilution to construct the core macrocycle. Second, our group is exploring a synthesis of 

Vaniprevir (Scheme 12.2), a HCV protease inhibitor that was previously synthesized via an 

olefin metathesis reaction. In either of the synthesis projects, the key bond forming reaction 

will be a Glaser-Hay oxidative coupling using the “phase separation” strategy (shown in red, 

Scheme 12.2).  
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Scheme 12.2 − Structures of Ivorenolide A and Vaniprevir. Key bond forming reaction shown 

in red. 

 

A second aspect of the “phase separation” strategy that could be further explored is the 

“scope” of the catalysis. Both of the transformations previously developed are based on copper 

catalysis employing alkynyl functionalities. While there are a number of other copper-

catalyzed transformations of alkynes that could also be explored (e.g. Cadiot-Chadkowiecz 

couplings or ynamide couplings), an alternative would be exploring copper-catalyzed 

oxidative transformations of other motifs. A promising application would be in the formation 

of disulfide bonds. First, it is well known that S-S bond formation can typically be performed 

under oxidative copper-catalysis. Second, given the number of biologically active macrocycles 

with key disulfide bridges, the development of a catalytic macrocyclic S-S bond formation at 

high concentrations might open avenues for exploring new macrocycles in medicinal 

chemistry. 

In expanding the scope of catalysis of the “phase separation” strategy, the insight 

gained through the development of the “phase separation” strategy in the Cu-catalyzed 

reactions could be applied to catalysis with other metals. To date, our group has explored the 

application of macrocyclic olefin metathesis using a ruthenium-based catalyst to the “phase 

separation” strategy (Scheme 12.3).1 The protocol was shown to allow macrocyclization at up 
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to 60 times greater concentrations than literature procedures. The key to the success of the 

protocol was the discovery of a mixture of both a non-protic organic solvent and poly(ethylene 

glycol) polymer that promoted aggregation. With the knowledge that both copper and 

ruthenium catalysis are tolerated under the “phase separation” conditions, it would be 

interesting to investigate the ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC). The 

RuAAC methodology affords regioisomeric macrocyclic triazole products when compared to 

the CuAAC manifold (refer to Scheme 9.2). Given the interest in macrocyclic peptides in drug 

discovery, the development of such a protocol would have significant applications. 

 

Scheme 12.3 − Macrocyclic ring-closing metathesis using the “phase separation” strategy 

 

It should also be noted that there are a number of other macrocyclization reactions that 

have had considerable impact on the scientific community. Another example of a relevant 

class of reactions that could be investigated using the phase separation strategy are 

macrocyclic palladium-catalyzed cross-couplings. As palladium catalysis affords highly 

efficient transformations tolerant to functionality and exhibits compatiblity with PEG solvents, 

it is reasonable to assume that new protocols for the synthesis of carbon-carbons bonds via 

cross-coupling could be achieved through “phase separation”. 

Ru

O
Cl

Cl
NN

(10 mol %)

PEG500 (OMe)2 / MTBE (2:1) [19 mM]
100 oC, uW, 2 h

53 - 78 %
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Lastly, it is know that library generation of macrocycles is challenging due to the 

inefficiency of most macrocyclization reactions. Consequently, most libraries of macrocycles 

involed tedious diversity oriented synthesis (DOS)2 of linear precursors which subsequently 

undergo macrocyclization as the last step in the synthetic route. Having developed efficient 

macrocyclization reactions at high concentration in continuous flow, one can easily obtain 

significant amounts of a macrocyclic core structure early in a synthetic sequence. Performing 

subsequent structural modifications on the core macrocycle would result in a paradigm shift in 

the way medicinal chemists typically perform structure-activity relationship (SAR) studies on 

macrocycles. Making synthetic alterations to a macrocyclic core may also allow for varying 

topologies that could not be obtained through macrocyclization of an already functionalized 

linear precursor. As such, the new strategy for DOS of macrocycles would help probe for new 

biological activities (SAR). As a first step towards these goals, important knowledge for 

performing tandem reactions in continuous flow synthesis is needed. Two possible avenues for 

exploration using existing technology developed in the preceding theisis involve either a 

tandem Glaser-Hay macrocyclization/hydrogenation sequence or a tandem CuAiAC 

reaction/cross coupling sequence. (Scheme 12.4). 
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Scheme 12.4 − Examples of derivatization of macrocycles in continuous flow.  

 

To conclude, it should be noted that the “phase separation” strategy is not without 

significant limitations. Some challenges are inherent to the use of PEG and MeOH as the 

solvent combination. First, PEGs are highly Lewis basic due to the abundance of oxygen 

atoms in the polymer. Therefore, Lewis acid catalysis using the “phase separation” strategy 

will be challenging and alternative reaction manifolds must be postulated. Second, the use of 

MeOH as a co-solvent allows for efficient aggregation of the PEG polymer, but as a protic 

solvent, MeOH is not always compatible with certain forms of catalysis and further 

understanding of the properties of PEG in organic solvents must be investigated in order to 

render the “phase separation” strategy more general. Further studies on the aggregation of 

PEG in organic solvents using surface tension measurements, as well as investigation of other 

surfactants to induce aggregation, are currently on-going in our laboratory. It is hoped that 

these studies will help cement the status of the “phase separation” strategy as a tool for 

efficient macrocyclization in the toolbox of organic synthetic chemists. 
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Chapter 13 : Supporting Information of Chapter 2: Phase 

Separation as a Strategy Towards Controlling Dilution 

Effects in Macrocyclic Glaser-Hay Couplings 

 

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.2 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. Allyl 4,6-O-benzylidene-D-glucopyranoside was prepared according to 

literature procedures.3 Methyl-3,6-dihydroxybenzyl ester was prepared according to literature 

procedures.4 Technical solvents were obtained from VWR International Co. Anhydrous 

solvents (CH2Cl2, Et2O, THF, DMF, Toluene, and hexanes) were dried and deoxygenated 

using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following 

flash column silica gel chromatography. Organic compounds were purified using the method 

reported by W. C. Still5 and using silica gel obtained from Silicycle Chemical division (40-63 

nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glass-

backed silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, 0.25 

                                                

 

 
2 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
3 Tanaka, H.; Kawai, K.; Fujiwara, K.; Murai, A. Tetrahedron 2002, 5, 10017. 
4 Zhu, J.; Beugelmans, R.; Bourdet, S.; Chastanet, J.; Roussi, G. J. Org. Chem. 1995, 60, 6389. 
5 Still, W. C.; Kahn, M.; Mitra, A.J. Org. Chem. 1978, 43, 2923.  
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mm, F254.). Visualization of TLC plate was performed by UV (254 nm), KMnO4 or p-

anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. Concentration 

refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds 

were homogeneous by thin layer chromatography (TLC) and by 1H NMR. NMR spectra were 

taken in deuterated CDCl3 using Bruker AV-300 and AV-400 instruments unless otherwise 

noted. Signals due to the solvent served as the internal standard (CHCl3: δ 7.27 for 1H, δ 77.0 

for 13C). The 1H NMR chemical shifts and coupling constants were determined assuming first-

order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d 

(doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of couplings constants (J) 

corresponds to the order of the multiplicity assignment. The 1H NMR assignments were made 

based on chemical shift and multiplicity and were confirmed, where necessary, by 

homonuclear decoupling, 2D COSY experiments. The 13C NMR assignments were made on 

the basis of chemical shift and multiplicity and were confirmed, where necessary, by two 

dimensional correlation experiments (HSQC). High resolution mass spectroscopy (HRMS) 

was done by the Centre régional de spectrométrie de masse at the Département de Chimie, 

Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization 

unless otherwise noted. 
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SYNTHESIS OF TPEG1900 7 AND MACROCYCLIZATION PROTOCOL. 

 

Polyethylene glycol 1900 monomethyl ether mesylate6 (5.4 g, 2.8 mmol, 1 equiv.) was placed 

in a sealed tube equipped with a stirring bar. Dry dichloromethane (100 mL) and 

trimethylethylene diamine (2.8 mL, 28 mmol, 10 equiv.) were added and the clear solution 

was stirred for 15 h at 60 oC. The solution was then cooled to room temperature and 

diethylether (100 mL) was added. The mixture was placed in a laboratory refridgerator for 5 h 

to induce precipitation. The solid was filtered and washed with diethylether (3X 100 mL). The 

solid was redissolved in dichloromethane and passed through a short pad of neutral alumina 

(15 % methanol in dichloromethane). T-PEG1900 7 (5.7 g, 2.8 mmol) was obtained as a white 

solid in quantitative yield (>98 %). 1H NMR (500 MHz, CDCl3, 35 oC) δ ppm 5.49-5.47 (m, 

2H); 4.54-4.51 (m, 2H), 4.20-4.10 (m, 6H); 3.97-3.87 (m, 8H); 3.66-3.32 (m, PEG); 3.26 (s, 

55H); 3.13 (bs, 150H); 2.58-2.55 (m, 16H); 2.31 (s, 10H); 2.26 (s, 6H); 2.22 (s, 8H); 13C NMR 

(500 MHz, CDCl3) δ ppm 72.4, 71.5, 70.9, 70.22, 70.16, 70.13 (PEG), 70.1, 69.8, 61.1, 58.6, 

42.4; MALDI-TOF : m/z 1963.482. 

 

General Procedure for Macrocyclization using TPEG1900: The general procedure for the 

macrocylization of diynes under Glaser-Hay oxidative coupling conditions using TPEG1900 is 

as follows. To a vial equipped with a stirring bar was charged with CuCl (0.065 mmol, 12 mg, 
                                                

 

 
6 Polyethylene glycol 1900 monomethyl ether mesylate was synthesised from molecular weight 1900 PEG 
methyl ether purchased from Alfa Aesar. See : Zhao, X.; Janda, K. D. Tetrahedron Lett. 1997, 38, 5437-5440. 

N
NH

O 40

N
N

O 40

MsO CH2Cl2

15h, reflux



 

 e 

25 mol %), Ni(NO3)2.6H2O (0.065 mmol, 19 mg, 25 mol %) and TPEG1900 (250 mg, 0.13 

mmol, 50 mol %), methanol (5 mL) and triethylamine (0.36 mmol, 0.11 mL, 3 equiv.). The 

mixture was stirred at room temperature for 15 min or until the metals were solubilized. The 

diyne (0.26 mmol) was then added as an ether solution (5 mL) in one portion. Oxygen was 

bubbled in the solution for 5 min and the vial was then closed. The reaction was warmed to 60 

oC and monitored by TLC for consumption of the starting material (oxygen was bubbled again 

in the solution every 12 h). When the reaction was completed by TLC, the reaction was cooled 

to room temperature and silica gel was added. The crude mixture was dried under reduced 

pressure and purified by column chromatography (100 % hexanes→10 % ethyl acetate in 

hexanes) to afford pure macrocycle.  

 

SYNTHESIS OF MACROCYCLIZATION PRECURSORS. 

General Procedure for Steglich Esterifications: To a stirred solution of the alcohol (1 

equiv.) and the carboxylic acid (1.5 equiv.) in dry dichloromethane (0.2 M) was added N,N'-

dicyclohexylcarbodiimide (DCC, 2 equiv.) and 4-dimethylaminopyridine (DMAP, 3 equiv.) at 

room temperature. The reaction mixture was stirred at room temperature for 15 h. Upon 

complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture which 

was purified by column chromatography on silica-gel to afford the desired product.  
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8-nonyl-1-ol: To a flask containing ethylene diamine (70 mL) at 0 °C was added NaH (60 % 

in mineral oil, 5.7 g, 142.6 mmol, 4 equiv.). The mixture was slowly warmed to room 

temperature and stirred for 1 h. Then the reaction was warmed to 60 oC and stirred for 2 h. 

After cooling the reaction to 45 °C, 3-nonyl-1-ol (5 mL, 35.7 mmol, 1 equiv.) was added in 

one portion and the solution was stirred at 60 °C for 15 h. Upon cooling to 0 °C, 1M HCl (30 

mL) was added and the organic and aqueous layers were separated. The aqueous layer was 

extracted with ethyl acetate (2x), and the combined organic layers were dried over anhydrous 

Na2SO4. The suspension was filtered and the filtrate was concentrated in vacuo. Purification of 

the crude product by column chromatography on silica gel (20 % ethyl acetate in hexanes) 

afforded the product as a colorless oil (4.1 g, 82 %). The NMR data are in agreement with that 

obtained in the literature.7 

 

5-hexyn-1-ol: To a solution of lithium aluminum hydride (676 mg, 17.8 mmol, 2 equiv.) in 

anhydrous tetrahydrofuran (30 mL) at 0 °C was added 5-hexynoic acid (1 mL, 8.9 mmol, 1 

equiv.). The solution was warmed to room temperature and stirred for 15 h. The reaction was 

cooled to 0 °C and 2 M NaOH (10 mL) was added dropwise. Water and ethyl acetate were 

added and the organic and aqueous layers were separated. The aqueous layer was extracted 
                                                

 

 
7 (a) Denmark, S. E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595-4597. (b) Renauld, J. L.; Aubert, C.; Malacria, 
M. Tetrahedron 1999, 55, 5113-5128. 
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with ethyl acetate (2x), and the combined organic layers were dried over anhydrous Na2SO4. 

The suspension was filtered and the filtrate was concentrated in vacuo. Purification of the 

crude reaction product by column chromatography on silica gel (10→20 % ethyl acetate in 

hexanes) afforded the product as a colorless oil (713 mg, 82 %). 1H NMR (300 MHz, CDCl3) 

δ = 3.67 (t, J = 6.2 Hz, 2H), 2.23 (td, J = 6.8, 2.7 Hz, 2H), 1.96 (t, J = 2.6 Hz, 1H), 1.76 - 1.54 

(m, 4H); 13C NMR (75 MHz, CDCl3) δ = 84.3, 68.5, 62.3, 31.6, 24.7, 18.2 ppm; HRMS (ESI) 

m/z calculated for C6H11O [M+H]+, 99.0804; found: 99.0805. 

 

10-undecyn-1-ol: To a solution of lithium aluminum hydride (420 mg, 11.0 mmol, 2 equiv.) 

in anhydrous tetrahydrofuran (28 mL) at 0 °C was added 5-hexynoic acid (1 g, 5.5 mmol, 1 

equiv.). The solution was warmed to room temperature and stirred for 15 h. The reaction was 

cooled to 0 °C and 2 M NaOH (10 mL) was added dropwise. Water and ethyl acetate were 

added and the organic and aqueous layers were separated. The aqueous layer was extracted 

with ethyl acetate (2x), and the combined organic layers were dried over anhydrous Na2SO4. 

The suspension was filtered and the filtrate was concentrated in vacuo. Purification of the 

crude reaction product by column chromatography on silica gel (10→20 % ethyl acetate in 

hexanes) afforded the product as a colorless oil (924 mg, >98 %). The NMR data are in 

agreement with that in the literature.8  

                                                

 

 
8 Sharma, A.; Chattopadhyay, S. J. Org. Chem. 1998, 63, 6128.  
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Hex-5-yn-1-yl hept-6-ynoate: Following the General Procedure, 5-hexyl-1-ol (52 mg, 0.53 

mmol), 6-heptynoic acid (100 mg, 0.79 mmol), DCC (219 mg, 1.1 mmol) and DMAP (194 

mg, 1.6 mmol) in anhydrous DCM (5 mL) were added to the reaction flask. Following 

purification by column chromatography (10 % ethyl acetate in hexanes), the desired product 

was obtained as a colorless oil (106 mg, 86 %). 1H NMR (300 MHz, CDCl3) δ = 4.09 (t, J = 

6.4 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 2.27 - 2.15 (m, 4H), 1.95 (q, J = 2.6 Hz, 2H), 1.82 - 1.68 

(m, 4H), 1.66 - 1.49 (m, 4H); 13C NMR (75 MHz, CDCl3) δ = 173.4, 83.9, 83.8, 68.7, 68.6, 

63.6, 33.7, 27.8, 27.6, 24.9, 24.0, 18.1, 18.0 ppm; HRMS (ESI) m/z calculated for C13H19O2 

[M+H]+, 206.1387; found: 207.1390. 

 

Non-8-yn-1-yl hex-5-ynoate: Following the General Procedure, 8-nonyl-1-ol (2.1 g, 14.7 

mmol), 5-hexynoic acid (2.43 mL, 22.1 mmol), DCC (6.1 g, 29.4 mmol) and DMAP (5.4 g, 

44.1 mmol) in anhydrous DCM (74 mL) were added to the reaction flask. Following 

purification by column chromatography (10 % ethyl acetate in hexanes), the desired product 

was obtained as a colorless oil (2.7 g, 85 %). 1H NMR (400MHz, CDCl3) δ = 4.05 (t, J = 6.7 

Hz, 2H), 2.43 (t, J = 7.4 Hz, 2H), 2.25 (td, J = 7.0, 2.6 Hz, 2H), 2.17 (td, J = 7.0, 2.7 Hz, 2H), 

1.96 (t, J = 2.7 Hz, 1H), 1.93 (t, J = 2.7 Hz, 1H), 1.87-1.81 (m, 2H), 1.65-1.58 (m, 2H), 1.53-

1.48 (m, 2H), 1.43-1.28 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 173.1, 84.5, 83.2, 69.0, 68.1, 
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64.4, 32.9, 28.6, 28.5, 28.5, 28.3, 25.7, 23.6, 18.3, 17.8 ppm; HRMS (ESI) m/z calculated for 

C15H23O2 [M+H]+, 235.1693; found: 235.1698. 

 

Hex-5-yn-1-yl undec-10-ynoate: Following the General Procedure, 5-hexyl-1-ol (100 mg, 1.0 

mmol), 10-undecynoic acid (278 mg, 1.5 mmol), DCC (721 mg, 2.0 mmol) and DMAP (374 

mg, 3.0 mmol) in anhydrous DCM (7.7 mL) were added to the reaction flask. Following 

purification by column chromatography (5% ethyl acetate in hexanes), the desired product was 

obtained as a colorless oil (280 mg, 99 %). 1H NMR (400MHz, CDCl3) δ = 4.07 (t, J = 6.5 Hz, 

2H), 2.27 (t, J = 7.5 Hz, 2H), 2.21 (td, J = 7.0, 2.7 Hz, 2H), 2.15 (td, J = 7.0, 2.6 Hz, 2H), 1.94 

(td, J = 2.6, 0.6 Hz, 1H), 1.91 (td, J = 2.6, 0.6 Hz, 1H), 1.79 - 1.66 (m, 4H), 1.64 - 1.44 (m, 

6H), 1.42 - 1.20 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 173.9, 84.7, 83.9, 68.7, 68.1, 63.7, 

34.3, 29.08, 29.06, 28.9, 28.6, 28.4, 27.7, 24.9 (2C), 18.4, 18.1 ppm; HRMS (ESI) m/z 

calculated for C17H27O2 [M+H]+, 263.2006; found: 263.2013. 

 

Non-8-yn-1-yl undec-10-ynoate: Following the General Procedure, 8-nonyl-1-ol (100 mg, 

1.0 mmol), 10-undecynoic acid (195 mg, 1.5 mmol), DCC (294 mg, 2.0 mmol) and DMAP 

(260 mg, 3.0 mmol) in anhydrous DCM (5.0 mL) were added to the reaction flask. Following 

purification by column chromatography (5 % ethyl acetate in hexanes), the desired product 

was obtained as a colorless oil (196 mg, 65 %). 1H NMR (300 MHz, CDCl3) δ = 4.06 (t, J = 

6.7 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 2.22-2.15 (m, 4H), 1.94 (td, J = 2.6, 1.2 Hz, 2H), 1.65 - 
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1.48 (m, 8H), 1.47 - 1.23 (m, 14H); 13C NMR (75 MHz, CDCl3) δ = 173.9, 84.69, 84.59, 

68.15, 68.07, 64.3, 34.4, 29.08, 29.06, 28.9, 28.7, 28.64, 28.57 (2C), 28.4, 28.3, 25.8, 25.0, 

18.4, 18.3 ppm; HRMS (ESI) m/z calculated for C20H33O2 [M+H]+, 305.2475; found: 

305.2462. 

 

Dec-9-yn-1-yl undec-10-ynoate: Following the General Procedure, 10-undecyl-1-ol (172 mg, 

1.0 mmol), 10-undecynoic acid (278 mg, 1.5 mmol), DCC (421 mg, 2.0 mmol) and DMAP 

(374 mg, 3.0 mmol) in anhydrous DCM (7.7 mL) were added to the reaction flask. Following 

purification by column chromatography (5 % ethyl acetate in hexanes), the desired product 

was obtained as a colorless oil (297 mg, 88 %). 1H NMR (300 MHz, CDCl3) δ = 4.03 (t, J = 

6.7 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 2.18 - 2.13 (m, 4H), 1.91 (td, J = 2.6, 0.6 Hz, 2H), 1.62-

145 (m, 8H), 1.41 - 1.29 (m, 16H); 13C NMR (75 MHz, CDCl3) δ = 173.8, 84.58, 84.56, 68.0, 

64.3, 34.3, 29.3, 29.1, 29.02, 28.99, 28.9, 28.8, 28.61, 28.57 (2C), 28.56, 28.37, 28.35, 25.8, 

24.9, 18.3 (2C) ppm; HRMS (ESI) m/z calculated for C22H37O2 [M+H]+, 333.2778; found: 

333.2788. 

 

1,6-bis(2-iodophenoxy)hexane: To a stirred solution of 2-iodophenol (3.1 g, 14.1 mmol) in 

anhydrous THF (65 mL) was added triphenylphosphine (3.7 g, 2.2 equiv., 14.1 mmol), 1,6-

hexanediol (0.76 g, 1 equiv., 6.4 mmol) and diisopropyl azodicarboxylate (2.8 mL, 2.2 equiv., 

14.1 mmol) in that order under a N2 atmosphere. The reaction mixture was heated at reflux for 
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15 hours. The reaction was concentrated in vacuo to provide a crude reaction mixture which 

was purified by column chromatography on silica-gel (100 hexanes→10 % ethyl acetates in 

hexanes) to afford the desired product as a beige solid (1.0 g, 30 %). 1H NMR (300 MHz, 

CDCl3) δ = 7.77 (dd, J = 7.8, 1.7 Hz, 2H), 7.33 - 7.24 (m, 2H), 6.82 (dd, J = 8.2, 1.3, Hz, 2H), 

6.71 (td, J = 7.6, 1.3 Hz, 2H), 4.05 (t, J = 6.2 Hz, 4H), 1.95 - 1.87 (m, 4H), 1.68-1.63 (m, 4H); 

13C NMR (75 MHz, CDCl3) δ = 157.5, 139.3, 129.4, 122.3, 112.1, 86.7, 68.9, 29.0, 25.7 ppm; 

HRMS (ESI) m/z calculated for C18H20I2NaO2 [M+Na]+, 544.9445; found: 544.9447. 

 

2,2'-(hexane-1,6-diylbis(oxy))dibenzaldehyde: To a solution of 1,6-bis(2-

iodophenoxy)hexane (100 mg, 0.2 mmol, 1 equiv.) and tetramethylethylene diamine (22 mg, 

0.2 mmol, 1 equiv.) in anhydrous tetrahydrofuran (3 mL) at 0 °C under N2 was added freshly 

titrated n-BuLi (1.4 M in Hexanes, 0.55 mL, 0.77 mmol, 4 equiv.) dropwise. The reaction 

mixture was then warmed to room temperature and stirred for 1h. Anhydrous 

dimethylformamide (0.16 mL, 0.95 mmol, 5 equiv.) was added to the mixture in one portion at 

room temperature and the reaction was stirred for 1 h. Water and ethyl acetate are then added 

and the organic and aqueous layers were separated. The aqueous layer was extracted with 

ethyl acetate (2x), and the combined organic layers were washed (4x) with a saturated solution 

of CuSO4, dried over anhydrous Na2SO4. The suspension was filtered and the filtrate was 

concentrated in vacuo. Purification by column chromatography on silica gel (5→15 % ethyl 

acetate in hexanes) afforded the product as a beige solid (50 mg, 80 %). 1H NMR (300 MHz, 

CDCl3) δ = 10.52 (d, J = 0.6 Hz, 2H), 7.83 (dd, J = 7.6, 1.8 Hz, 2H), 7.56 - 7.51 (m, 2H), 7.04 

- 6.97 (m, 4H), 4.10 (t, J = 9 Hz, 4H), 1.91 (m, 4H), 1.66 - 1.55 (m, 4H); 13C NMR (75 MHz, 
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CDCl3) δ = 189.7, 161.4, 135.9, 128.2, 124.9, 120.5, 112.4, 68.2, 29.0, 25.8 ppm; HRMS 

(ESI) m/z calculated for C20H23O4 [M+H]+, 327.1591; found: 327.1595. 

 

1,6-bis(2-(2,2-dibromovinyl)phenoxy)hexane: Carbon tetrabromide (234 mg, 0.7 mmol, 2 

equiv.) and triphenylphosphine (413 mg, 1.6 mmol, 4.5 equiv.) were placed in a flask and 

dichloromethane (2.0 mL) was added at 0 °C. The orange mixture was stirred 10 min at 0 °C, 

then 2,2'-(hexane-1,6-diylbis(oxy))dibenzaldehyde (115 mg, 0.35 mmol, 1 equiv.) and 2,6-

lutidine (0.1 mL, 0.7 mmol, 2 equiv.) were added as a dichloromethane solution (2.0 mL) and 

the reaction was stirred 2 h at 0 °C. After warming to room temperature, a saturated solution 

of NH4Cl (5 mL) was added and the aqueous phase was extracted with dichloromethane (3x). 

The combined organic phases were dried with anhydrous Na2SO4. The suspension was filtered 

and the filtrate was concentrated in vacuo. Purification by column chromatography on silica 

gel (100 % hexanes→10 % ethyl acetate in hexanes) afforded the product as a yellow solid 

(147 mg, 66 %). 1H NMR (300 MHz, CDCl3) δ = 7.70 (dd, J = 7.7, 1.3 Hz, 2H), 7.61 (s, 2H), 

7.34 - 7.28 (m, 2H), 6.94 (t, J = 7.6 Hz, 2H), 6.88 (d, J = 7.9 Hz, 2H), 4.02 (t, J = 6 Hz, 4H), 

1.92 - 1.83 (m, 4H), 1.63 - 1.56 (m, 4H); 13C NMR (75 MHz, CDCl3) δ = 156.0, 133.0, 129.9, 

129.1, 124.6, 120.1, 111.7, 89.4, 68.3, 29.1, 25.9 ppm; HRMS (ESI) m/z calculated for 

C22H22AgBr4O4 [M+Ag]+, 740.7399; found: 740.7431. 
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1,6-bis(2-ethynylphenoxy)hexane: To a solution of 1,6-bis(2-(2,2-

dibromovinyl)phenoxy)hexane (110 mg, 0.2 mmol, 1 equiv.) in anhydrous tetrahydrofuran (3 

mL) at -78 °C was added a solution of freshly titrated n-BuLi (1.4 M in Hexanes, 0.6 mL, 0.85 

mmol, 5 equiv.) dropwise. The mixture was stirred 1 h at -78 °C then another 1 h at -20 °C. 

When complete consumption of the starting tetrabromide, the reaction is warmed to 0 °C and a 

saturated solution of NH4Cl (3 mL) is added dropwise. The organic and aqueous phases are 

separated and the aqueous phase is extracted with ethyl acetate (3x). The combined organic 

phases are washed with brine (1x) and dried over anhydrous Na2SO4. The suspension was 

filtered and the filtrate was concentrated in vacuo. Purification by column chromatography on 

silica gel (10 % ethyl acetate in hexanes) afforded the product as a yellow solid (110 mg, 50 

%). 1H NMR (300 MHz, CDCl3) δ = 7.46 (dd, J = 7.5, 1.6 Hz, 2H), 7.33 - 7.27 (m, 2H), 6.93 - 

6.86 (m, 4H), 4.06 (t, J = 6.5 Hz, 4H), 3.25 (s, 2H), 1.96 - 1.82 (m, 4H), 1.67 - 1.54 (m, 4H); 

13C NMR (75 MHz, CDCl3) δ = 160.2, 134.1, 130.1, 120.3, 112.0, 111.6, 81.0, 80.1, 68.5, 

28.9, 25.6 ppm; HRMS (ESI) m/z calculated for C22H23O2 [M+H]+, 319.1683; found: 

319.1695. 
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 (4aR,7R,8S,8aR)-6-(allyloxy)-2-phenylhexahydropyrano[3,2-d][1,3]dioxine-7,8-diyl 

bis(hept-6-ynoate): Following the General Procedure, allyl 4,6-O-benzylidene-D-

glucopyranoside (150 mg, 0.5 mmol, 1 equiv.), 5-hexynoic acid (0.2 mL, 1.46 mmol, 3 

equiv.), DCC (412 mg, 2.0 mmol, 4 equiv.) and DMAP (366 mg, 3.0 mmol, 6 equiv.) in 

anhydrous DCM (5 mL) were added to the reaction flask. Following purification by column 

chromatography (5 %→20 % ethyl acetate in hexanes), the desired product was obtained as a 

white solid (100 mg, 36 %) 1H NMR (400 MHz, CDCl3) (mixture of α and β anomers 

(0.85 :0.15), data reported for major anomer only) δ = 1H NMR (300MHz, CDCl3) δ = 7.46 - 

7.41 (m, 2H), 7.36 - 7.32 (m, 3H), 5.94 - 5.81 (m, 1H), 5.65 (t, J = 9.9 Hz, 1H), 5.51 (s, 1H), 

5.35 - 5.20 (m, 2H), 5.12 (d, J = 3.8 Hz, 1H), 4.91 (dd, J = 9.9, 3.8 Hz, 1H), 4.32 - 4.27 (m, 

1H), 4.23 (ddt, J = 13.0, 5.1, 1.4 Hz, 1H), 4.04 - 3.95 (m, 2H), 3.76 (t, J = 10.3 Hz, 1H), 3.65 

(t, J = 12 Hz, 1H), 2.39 - 2.31 (m, 4H), 2.22 (td, J = 7.0, 2.6 Hz, 2H), 2.12 (td, J = 7.0, 2.6 Hz, 

2H), 1.96 (t, J = 3 Hz, 1H), 1.92 (t, J = 2.7 Hz, 1H), 1.78 - 1.66 (m, 4H), 1.60 - 1.45 (m, 4H); 

13C NMR (100 MHz, CDCl3) δ = 172.7, 172.1, 136.9, 133.19, 133.16, 129.0, 128.18, 128.15, 

126.1, 118.0, 101.5, 95.6, 83.8, 83.7, 79.3, 71.4, 68.8, 68.70, 68.65 (2C), 68.6, 62.5, 33.7, 

33.5, 27.6, 27.5, 24.0, 23.9, 18.04, 17.96 ppm; HRMS (ESI) m/z calculated for C30H36NaO8 

[M+Na]+
, 547.2302; found: 547.2302.  
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Methyl 3,5-bis(undec-10-yn-1-yloxy)benzoate: To a solution of methyl 3,6-

dihydroxybenzoate (80.1 mg, 0.48 mmol) in anhydrous tetrahydrofuran (5 mL) was added 

triphenylphosphine (377.3 mg, 3 equiv., 1.44 mmol), 10-undedyn-1-ol (200 mg, 2.5 equiv., 

1.19 mmol) and diisopropyl azodicarboxylate (0.28 mL, 3 equiv., 1.44 mmol,) in that order 

under a N2 atmosphere. The reaction mixture was heated at reflux for 15 hours. The reaction 

was concentrated in vacuo to provide a crude reaction mixture which was purified by column 

chromatography on silica-gel (10 % ethyl acetate in hexanes) to afford the desired product as a 

white solid (188 mg, 84 %). 1H NMR (300 MHz, CDCl3) δ = 7.16 (d, J = 2.3 Hz, 2H), 6.64 (t, 

J = 2.3 Hz, 1H), 3.97 (t, J = 6.5 Hz, 4H), 3.90 (s, 3H), 2.22 - 2.16 (m, 4H), 1.95 (t, J = 2.7 Hz, 

2H), 1.83 - 1.73 (m, 4H), 1.56 - 1.23 (m, 24H); 13C NMR (125 MHz, CDCl3) δ = 167.0, 

160.13, 160.11, 131.8, 107.6, 106.6, 84.8, 68.3, 68.1, 52.2, 29.4, 29.3, 29.2, 29.0, 28.7, 28.5, 

26.0, 18.40, 18.38 ppm; HRMS (ESI) m/z calculated for C30H45O4 [M+H]+, 469.3312; found: 

469.3322. 

 

Butan-1,4-diyl bis(undec-10-ynoate): Following the General Procedure, butane-1,4-diol (250 

mg, 2.8 mmol), 10-undecynoic acid (1.51 g, 8.3 mmol), DCC (2.3 g, 11.2 mmol), DMAP (2.1 

g, 16.8 mmol) and anhydrous DCM (15 mL) were added to the reaction flask. Following 

purification by column chromatography (20 % ethyl acetate in hexanes), the desired product 

was obtained as a white solid (622 mg, 53 %). 1H NMR (300 MHz, CDCl3) δ = 4.06 - 3.87 (m, 

O
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4H), 2.16 (t, J = 7.5 Hz, 4H), 2.03 (td, J = 7.0, 2.7 Hz, 4H), 1.82 (t, J = 2.6 Hz, 2H), 1.66 - 

1.54 (m, 4H), 1.48 (t, J = 7.0 Hz, 4H), 1.44 - 1.32 (m, 4H), 1.32 - 1.10 (m, 16H); 13C NMR (75 

MHz, CDCl3) δ = 173.2, 84.1, 68.0, 63.3, 33.8, 28.74, 28.69, 28.5, 28.3, 28.1, 25.0, 24.6, 18.0 

ppm; HRMS (ESI) m/z calculated for C26H43O4 [M+H]+, 419.3156; found: 419.3154. 

 

Non-8-yn-1-yl methanesulfonate: 9-nonyn-1-ol (1 g, 7.14 mmol, 1 equiv.) was dissolved in 

anhydrous dichloromethane (60 mL) and cooled to 0 °C. Triethylamine (2 mL, 15 mmol, 2.1 

equiv.) was added, followed by methanesulfonyl chloride (0.6 mL, 7.8 mmol, 1.1 equiv.). The 

mixture was stirred at 0 °C for 1 h, then warmed to room temperature and stirred for another 

hour. Water (50 mL) was added and the organic and aqueous phases were separated. The 

aqueous phase was extracted with dichloromethane (2x), dried with anhydrous Na2SO4, and 

the resulting suspension was filtered. The filtrate was concentrated in vacuo and the crude 

product purified by chromatography over a short pad of silica gel (10 % ethyl acetate in 

hexanes). The product was isolated as a colorless oil (1.6 g, 7.1 mmol, 99 %) and immediately 

used in the following reaction. 9-iodonon-1-yne: Non-8-yn-1-yl methanesulfonate (1.6 g, 7.1 

mmol, 1 equiv.) was dissolved in DMSO (15 mL) and sodium iodide was added (3.1 g, 20.5 

mmol, 3 equiv.) and the mixture was stirred at 50 °C for 15 h. Ethyl acetate (30 mL) and water 

(30 mL) were added and the organic and aqueous phases were separated. The organic phase 

was washed with brine (5x), dried with anhydrous Na2SO4, the suspension was filtered and the 

OH
7
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7MsCl, Et3N

CH2Cl2, 99%
I
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50oC. 15h
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filtrate was concentrated in vacuo to afford the pure product as a colorless oil (1.5 g, 6.2 

mmol, 87%). The NMR data were in agreement with that found in the literature.9 

 

Undec-10-yn-1-yl methanesulfonate: 10-undecyn-1-ol (1 g, 5.95 mmol, 1 equiv.) was 

dissolved in anhydrous dichloromethane (50 mL) and cooled to 0 °C. Triethylamine (2 mL, 15 

mmol, 2.5 equiv.) was added, followed by methanesulfonyl chloride (0.6 mL, 7.8 mmol, 1.3 

equiv.). The mixture was stirred at 0 °C for 1 h, then warmed to room temperature and stirred 

for another hour. Water (50 mL) was added and the organic and aqueous phases were 

separated. The aqueous phase was extracted with dichloromethane (2x), dried with anhydrous 

Na2SO4, and the resulting suspension was filtered. The filtrate was concentrated in vacuo and 

the crude product purified by chromatography over a short pad of silica gel (10 % ethyl acetate 

in hexanes). The product was isolated as a colorless oil (1.5 g, 99 %) and immediately used in 

the following reaction. 10-iodoundec-1-yne: Undec-10-yn-1-yl methanesulfonate (1.46 g, 

5.95 mmol, 1 equiv.) was dissolved in DMSO (13 mL) and sodium iodide was added (3.1 g, 

20.5 mmol, 3,5 equiv.) and the mixture was stirred at 50 °C for 15 h. Ethyl acetate (30 mL) 

and water (30 mL) were added and the organic and aqueous phases were separated. The 

organic phase was washed with brine (5x), dried with anhydrous Na2SO4, the suspension was 

                                                

 

 
9 Knapp, Jr. F. F.; Srivastava, P. C.; Callahan, A. P.; Cunningham, E. B.; Kabalka, G. W.; Sastry, K. A. J. Med. 
Chem. 1984, 27, 57.  
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filtered and the filtrate was concentrated in vacuo to afford the pure product as a colorless oil 

(1.36 g, 4.9 mmol, 82 %). The NMR data were in agreement with that found in the literature.10 

 

Diethyl 2,2-di(undec-10-yn-1-yl)malonate: Diethylmalonate (83.2 mg, 0.52 mmol, 1 equiv.) 

was dissolved in anhydrous toluene (2 mL) in a flamed dried flask equipped with a stir bar and 

a condenser. NaH (60 % in mineral oil, 104 mg, 2.6 mmol, 5 equiv.) was added at room 

temperature, then 10-iodoundec-1-yne (440 mg, 1.59 mmol, 3 equiv.) was added in one 

portion as a toluene solution (1 mL). The mixture was warmed to 60 oC and stirred for 15 h. 

The reaction was then cooled back to room temperature, quenched with H2O and extracted 

with ethyl acetate (3x). The organic phases were dried over anhydrous Na2SO4, and the 

resulting suspension was filtered. The filtrate was concentrated in vacuo and the crude product 

purified by chromatography (5 % ethyl acetate in hexanes). The desired product was isolated 

as a colorless oil (65 mg, 27 %). 1H NMR (300 MHz, CDCl3) δ = 4.17 (q, J = 6.0 Hz, 4H), 

2.17 (td, J = 9.0, 3.0 Hz, 4H), 1.93 (t, J = 3.0, 2H), 1.87 – 1.82 (m, 4H), 1.56 - 1.46 (m, 4H), 

1.43 - 1.10 (m, 30H); 13C NMR (75 MHz, CDCl3) δ = 172.0, 84.7, 68.0, 60.9, 57.5, 32.1, 29.8, 

29.3, 29.2, 29.0, 28.7, 28.4, 23.9, 18.3, 14.1 ppm; HRMS (ESI) m/z calculated for C29H49O4 

[M+H]+, 461.3625; found: 461.3633. 

 

  
                                                

 

 
10 Crisp, T. G.; Gore, J. Tetrahedron 1997, 53, 1505-1522.  



 

 s 

SYNTHESIS OF MACROCYCLES 

 

General procedure for the macrocylization of diynes under Glaser-Hay oxidative 

coupling conditions: Macrocycle (3): To a vial equipped with a stirring bar was added CuCl2 

(5.5 mg, 0.48 mmol, 25 mol%) and Ni(NO3)2·6H2O (9.3 mg, 0.48 mmol, 25 mol %). 

Polyethylene glycol 400 (3.33 mL), triethylamine (0.05 mL, 0.36 mmol, 3 equiv.) and pyridine 

(0.05 mL, 0.6 mmol, 5 equiv.) were added and the mixture was stirred at room temperature for 

15 min or until the metals were solubilized. The diyne (0.12 mmol) was added to the 

homogenous mixture as a methanol solution (1.67 mL) in one portion. Oxygen was bubbled in 

the solution for 5 min and the vial was then closed with a screw cap. The reaction was warmed 

to 60 °C and monitored by TLC for consumption of the starting material (oxygen was bubbled 

again through the solution every 12 h). When the starting material was completely consumed 

(TLC), the reaction was cooled to room temperature and the crude mixture was loaded directly 

on a silica column. Purification by chromatography (100 % hexanes→10 % ethyl acetate in 

hexane) afforded the product as a colorless semi-solid (31 mg, 73 %). 1H NMR (400 MHz, 

CDCl3) δ = 4.09 (t, J = 8 Hz, 2H), 2.41 - 2.33 (m, 4H), 2.24 (t, J = 5.9 Hz, 2H), 1.93 - 1.87 (m, 

2H), 1.77 – 1.70 (m, 2H), 1.55 - 1.50 (m, 4H), 1.46 - 1.36 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ ppm = 173.4, 77.7, 75.7, 67.0, 66.6, 64.3, 33.3, 26.5, 25.2, 25.1, 24.9, 23.5, 22.1, 

19.0, 18.1; HRMS (ESI) m/z calculated for C15H21O2 [M+H]+, 233.1536; found: 233.1531. 



 

 t 

 

Macrocycle (8): Following the general procedure described above, macrocycle 8 was isolated. 

(15 mg, 62 %). 1H NMR (300 MHz, CDCl3) δ ppm 4.24 (t, J = 6 Hz, 2H); 2.69 (t, J = 6 Hz, 

2H); 2.28 – 2.21 (m, 4H); 1.92 – 1.77 (m, 8H); 13C NMR (125 MHz, CDCl3) δ ppm = 173.9, 

82.8, 82.5, 67.8, 67.7, 62.9, 32.3, 27.7, 25.8, 24.9, 23.3, 19.0, 10.1; HRMS (ESI) m/z 

calculated for C13H17O2 [M+H]+, 205.1223; found: 205.1225. 

 

Macrocycle (9): Following the general procedure described above, macrocycle 9 was isolated. 

(24 mg, 74 %) 1H NMR (300 MHz, CDCl3) δ = 4.17 (t, J = 6.3 Hz, 2H), 2.36 - 2.26 (m, 8H), 

1.88 - 1.78 (m, 2H), 1.68 - 1.26 (m, 12H); 13C NMR (125 MHz, CDCl3) δ ppm = 173.8, 78.0, 

76.9, 66.6, 66.3, 63.6, 34.8, 28.7, 28.0, 27.8, 27.6, 27.0, 26.8, 25.0, 24.6, 18.9, 18.8; HRMS 

(ESI) m/z calculated for C17H25O2 [M+H]+, 261.1849; found: 261.1844. 
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Macrocycle (10): Following the general procedure described above, macrocycle 10 was 

isolated. (30 mg, 0.1 mmol, 81 %). 1H NMR (300 MHz, CDCl3) δ = 4.10 (t, J = 6.5 Hz, 2H), 

2.36 - 2.26 (m, 6H), 1.70 - 1.61 (m, 6H), 1.50 - 1.26 (m, 14H); 13C NMR (125 MHz, CDCl3) δ 

ppm = 174.0, 77.6, 77.2, 66.0, 65.8, 64.2, 34.3, 29.1, 28.5, 28.23, 28.22, 28.19, 27.93, 27.91, 

27.63, 27.58, 25.7, 25.0, 19.03, 19.02; HRMS (ESI) m/z calculated for C20H31O2 [M+H]+, 

303.2319; found: 303.2325. 

 

Macrocycle (11): Following the general procedure described above, macrocycle 11 was 

isolated. (31 mg, 78 %). 1H NMR (300 MHz, CDCl3) δ = 4.09 (t, J = 6.5 Hz, 2H), 2.35 - 2.26 

(m, 6H), 1.68 - 1.62 (m, 6H), 1.53 - 1.26 (m, 16H); 13C NMR (125 MHz, CDCl3) δ ppm = 

174.0, 77.50, 77.46, 65.9, 65.7, 64.2, 34.2, 28.88, 28.86, 28.7, 28.4, 28.32, 28.28, 28.23, 28.1, 

27.83, 27.81, 27.5, 25.7, 25.0, 19.07, 18.99, ; HRMS (ESI) m/z calculated for C22H35O2 

[M+H]+, 331.2632; found: 331.2640. 
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Macrocycle (12): Following the general procedure described above, macrocycle 12 was 

isolated. (50 mg, 98 %). 1H NMR (400 MHz, CDCl3) δ = 4.16 - 4.04 (m, 4H), 2.32 (t, J = 7.6 

Hz, 4H), 2.27 (t, J = 6.3 Hz, 4H), 1.72 (m, 4H), 1.69 - 1.60 (m, 4H), 1.55 - 1.39 (m, 8H), 1.38 

- 1.28 (m, 12H); 13C NMR (75 MHz, CDCl3) δ ppm = 173.9, 77.4, 65.6, 63.8, 34.3, 28.69, 

28.68, 28.6, 28.2, 27.8, 25.4, 24.9, 19.1; HRMS (ESI) m/z calculated for C26H41O4 [M+H]+, 

417.2999; found: 417.3006. 

 

Macrocycle (13): Following the general procedure described above, macrocycle 13 was 

isolated. (42 mg, 0.08 mmol, 67 %). 1H NMR (300 MHz, CDCl3) (mixture of α and β anomers 

(0.75 : 0.25), data reported for major anomer only), δ = 7.49 - 7.40 (m, 2H), 7.39 - 7.31 (m, 

3H), 5.86 (dddd, J = 17.0, 10.8, 5.8, 5.2 Hz, 1H), 5.70 (t, J = 10.0 Hz, 1H), 5.5 1 (s, 1H), 5.38 

- 5.08 (m, 2 H), 4.83 (dd, J = 10.0, 3.7 Hz, 1 H), 4.30 (dd, J = 10.2, 4.8 Hz, 1H), 4.21 (ddt, J = 

16.0, 8.0, 4.0 Hz, 1H), 4.06 - 3.94 (m, 2H), 3.77 (t, J = 12.0 Hz, 1H), 3.62 (t, J = 12.0 Hz, 1H), 

2.85 - 2.69 (m, 1H), 2.65 - 2.51 (m, 1H), 2.43 - 2.26 (m, 6H), 1.98 - 1.64 (m, 5H), 1.63 - 1.43 

(m, 4H); 13C NMR (176 MHz, CDCl3) δ ppm = 173.3, 172.4, 137.0, 133.3, 129.0, 128.2, 

126.1, 117.8, 101.4, 95.6, 79.7, 78.1, 77.8, 71.9, 68.8, 68.7, 68.4, 62.6, 33.6, 33.4, 27.7, 27.5, 
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26.1, 26.0, 24.1, 23.6, 19.1, 18.7, 18.1, 18.0; HRMS (ESI) m/z calculated for C30H34NaO8 

[M+Na]+, 545.2146; found: 545.2147. 

 

Macrocycle (14): Following the general procedure described above, macrocycle 14 was 

isolated. (39 mg, 0.082 mmol, 69 %). 1H NMR (300 MHz, CDCl3) δ = 7.17 (d, J = 2.2 Hz, 

2H), 6.70 (t, J = 2.2 Hz, 1H), 4.08 - 3.99 (t, J = 6.0 Hz, 4H), 3.91 (s, 3H), 2.25 (t, J = 6.4 Hz, 

4H), 1.84 - 1.71 (m, 4H), 1.65 - 1.14 (m, 28H); 13C NMR (125 MHz, CDCl3) δ ppm = 167.0, 

160.1, 131.8, 107.6, 107.4, 77.5, 68.0, 65.5, 52.2, 29.1, 28.7, 28.73, 28.66, 28.65, 28.3, 28.1, 

25.8, 19.1 ppm; HRMS (ESI) m/z calculated for C30H43O4 [M+H]+, 467.3156; found: 

467.3165. 

 

Macrocycle (16): Following the general procedure described above, macrocycle 16 was 

isolated. (37.3 mg, 98 %). 1H NMR (300 MHz ,CDCl3) δ = 7.39 (dd, J = 7.6, 1.7 Hz, 2H), 7.33 

- 7.28 (m, 2H), 6.96 - 6.86 (m, 4H), 4.09 (t, J = 5.3 Hz, 4H), 1.96 - 1.85 (m, 4H), 1.84 - 1.74 

(m, 4H); 13C NMR (75 MHz, CDCl3) δ ppm = 162.5, 132.0, 130.4, 120.8, 113.7, 112.6, 79.8, 

79.2, 70.2, 30.0, 27.6 ppm; HRMS (ESI) m/z calculated for C22H21O2 [M+H]+, 317.1536; 

found: 317.1545. 
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Macrocycle (15): Following the general procedure described above, macrocycle 15 was 

isolated. (20 mg, 0.044 mmol, 63 %). 1H NMR (400 MHz, CDCl3) δ =4.18 (q, J = 8 Hz, 4H), 

2.30 (t, J = 4 Hz, 4H), 1.91 -1.87 (m, 4H), 1.49-1.43 (m, 8H), 1.34-1.26 (m, 20H), 1.24 (t, J = 

4 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ ppm = 172.1, 77.2, 61.0, 57.6, 31.3, 29.9, 29.7, 29.1, 

28.9, 28.3, 28.2, 27.9, 23.4, 19.2, 14.1 ppm; HRMS (ESI) m/z calculated for C29H47O4 

[M+H]+, 459.3469; found: 459.3475. 

 

Complete Reference From Text: 

(3)  Lamarre, D.; Anderson, P. C.; Bailey, M.; Beaulieu, P.; Bolger, G.; Bonneau, P.; Bös, 
M.; Cameron, D. R.; Cartier, M.; Cordingley, M. G.; Faucher, A.-M.; Goudreau, N.; 
Kawai, S. H.; Kukolj, G.; Lagacé, L.; Laplante, S. R.; Narjes, H.; Poupart, M.-A.; 
Rancourt, J.; Sentjens, R. E.; St-George, R.; Simoneau, B.; Steinmann, G.; Thibeault, 
D.; Tsantrizos, Y. S.; Weldon, S. M.; Yong, C.-L.; Llinàs-Brunet, M. Nature 2003, 
426, 186-189.  
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Chapter 14 : Supporting Information of Chapter 3: 

Microwave Accelerated Glaser-Hay Macrocyclizations at 

High Concentrations 
 

General: 

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.11 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. Technical solvents were obtained from VWR International Co. 

Anhydrous solvents (CH2Cl2, Et2O, THF, DMF, Toluene, and hexanes) were dried and 

deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass 

obtained following flash column silica gel chromatography. Organic compounds were purified 

using the method reported by W. C. Still12 and using silica gel obtained from Silicycle 

Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) 

was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle 

Chemical division, 0.25 mm, F254.). Visualization of TLC plate was performed by UV (254 

nm), KMnO4 or p-anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. 

Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All 
                                                

 

 
11 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
12 Still, W. C.; Kahn, M.; Mitra, A.J. Org. Chem. 1978, 43, 2923.  
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reported compounds were homogeneous by thin layer chromatography (TLC) and by 1H 

NMR. NMR spectra were taken in deuterated CDCl3 using Bruker AV-300 and AV-400 

instruments unless otherwise noted. Signals due to the solvent served as the internal standard 

(CHCl3: δ 7.27 for 1H, δ 77.0 for 13C). The 1H NMR chemical shifts and coupling constants 

were determined assuming first-order behavior. Multiplicity is indicated by one or more of the 

following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of 

couplings constants (J) corresponds to the order of the multiplicity assignment. The 1H NMR 

assignments were made based on chemical shift and multiplicity. The 13C NMR assignments 

were made on the basis of chemical shift and multiplicity. High resolution mass spectroscopy 

(HRMS) was done by the Centre régional de spectrométrie de masse at the Département de 

Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of 

ionization unless otherwise noted. The microwave used is a Biotage Initiator Sixty®.  
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SYNTHESIS OF MACROCYCLIZATION PRECURSORS. 

Note that macrocyclic diyne precursors for macrocycles 3-7 have been previous prepared.13  

  

The synthesis of the acyclic precursors to macrocycles S5 and S6 are described below. 

  

7-((tetrahydro-2H-pyran-2-yl)oxy)heptan-1-ol (S2): To a stirred solution of 1,7-heptane 

diol (2.0 g, 15.1 mmol, 1 equiv.) in dry dichloromethane (30 mL) at room temperature was 

added dihydropyran (1.3 g, 15.1 mmol, 1 equiv.) in one portion, followed by p-toluenesulfonic 

acid (154 mg, 0.8 mmol, 0.05 equiv.). The mixture was stirred for 20 h at room temperature. A 

saturated solution of NaHCO3 was then added and the mixture was extracted with ether (3X), 

                                                

 

 
13 Bédard, A.-C.; Collins, S. K. J. Am. Chem. Soc. 2011, 133, 19976-19981. 

OH

OTHP7
OH

OH7

DHP, p-TsOH, CH2Cl2

15h, rt
O OTHP

7

OH
DIAD, PPh3, THF

15h rt

O OH
7

p-TsOH, MeOH
30 min, rt

S1 S2 S3

S4

O O

O
7

4

HO

O

4
DCC, DMAP, CH2Cl2

15h, rt
S5

O O

O
7

8

HO

O

8
DCC, DMAP, CH2Cl2

15h, rt
S6

OH

OTHP7
OH

OH7

DHP, p-TsOH, CH2Cl2

15h, rt

S1 S2



 

 aaa 

then the organic layers were combined and dried with Na2SO4. Following purification by 

column chromatography on silica gel (10 % ethyl acetates in hexanes), the product was 

obtained as a colorless oil (60 %, 1.9 g). The NMR data are in agreement with that obtained in 

the literature.14 

 

2-((7-(3-ethynylphenoxy)heptyl)oxy)tetrahydro-2H-pyran (S3): To a stirred solution of 3-

hydroxyphenylacetylene (0.9 g, 7.5 mmol, 1 equiv.) in anhydrous THF (40 mL) was added 

triphenylphosphine (3.0 g, 11.3 mmol, 1.5 equiv.), 7-((tetrahydro-2H-pyran-2-yl)oxy)heptan-

1-ol (S2) (1.9 g, 8.9 mmol, 1 equiv.) and diisopropyl azodicarboxylate (2.2 mL, 11.3 mmol, 

1.5 equiv.) in that order under a N2 atmosphere. The reaction mixture was heated at reflux for 

15 hours. The reaction was concentrated in vacuo to provide a crude reaction mixture which 

was purified by silica gel column chromatography (100 % hexanes → 10 % ethyl acetates in 

hexanes) to afford the desired product as a colorless oil (26 %, 0.6 g). 1H NMR (400 MHz, 

CDCl3) δ = 7.25 - 7.18 (m, 1H), 7.07 (td, J = 7.6, 1.1 Hz, 1H), 7.01 (dd, J = 2.4, 1.5 Hz, 1H), 

6.90 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 4.58 (dd, J = 4.2, 2.7 Hz, 1H), 3.97 - 3.84 (m, 3H), 3.75 

(td, J = 9.6, 6.8 Hz, 1H), 3.56 - 3.46 (m, 1H), 3.40 (td, J = 9.6, 6.7 Hz, 1H), 3.06 (s, 1H), 1.91 

- 1.67 (m, 4H), 1.67 - 1.35 (m, 12H); 13C NMR (75 MHz, CDCl3) δ = 158.8, 129.3, 124.4, 

                                                

 

 
14 Poppe, L.; Hull, W. E.; Rétey, J. Helv. Chim. Acta 1993, 76, 2367-2383.  
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123.0, 117.6, 116.0, 98.8, 83.6, 76.8, 68.0, 67.6, 62.3, 30.8, 29.7, 29.2, 29.1, 26.2, 26.0, 25.5, 

19.7 ppm; HRMS (ESI) m/z calculated for C20H29O3 [M+H]+, 317.2111; found: 317.2117. 

 

7-(3-ethynylphenoxy)heptan-1-ol (S4): To a stirred solution of (S3) (0.5 g, 1.6 mmol, 1 

equiv.) in methanol (10 mL) at room temperature was added p-toluenesulfonic acid (30 mg, 

0.16 mmol, 0.1 equiv.). The mixture was stirred for 30 min at room temperature, then water 

and ethyl acetate were added to the mixture and the aqueous and organic layers were 

separated. The aqueous layer was extracted with ethyl acetate (3X). The organic phases were 

combined and washed with brine then dried with Na2SO4. The reaction was concentrated 

under vacuum to provide a crude reaction mixture which was purified by silica gel column 

chromatography (20 % ethyl acetate in hexanes → 50 % ethyl acetate in hexanes) to afford the 

desired product as a colorless oil (99 %, 0.46 g). 1H NMR (400 MHz, CDCl3) δ = 7.26 - 7.18 

(m, 1H), 7.08 (td, J = 7.6, 1.1 Hz, 1H), 7.02 (dd, J = 2.5, 1.4 Hz, 1H), 6.90 (ddd, J = 8.2, 2.6, 

0.9 Hz, 1H), 3.95 (t, J = 6.5 Hz, 2H), 3.66 (t, J = 6.6 Hz, 2H), 3.06 (s, 1H), 1.87 - 1.72 (m, 

2H), 1.66 - 1.53 (m, 2H), 1.52 - 1.31 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 158.8, 129.3, 

124.5, 123.0, 117.6, 115.9, 83.6, 76.8, 68.0, 63.0, 32.7, 29.11, 29.08, 26.0, 25.6 ppm; HRMS 

(ESI) m/z calculated for C15H21O2 [M+H]+, 233.1536; found: 233.1529. 
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7-(3-ethynylphenoxy)heptyl hept-6-ynoate (S5): To a stirred solution of 7-(3-

ethynylphenoxy)heptan-1-ol (S4) (210 mg, 0.92 mmol, 1 equiv.) and the 6-heptynoic acid 

(232 mg, 1.84 mmol, 2.0 equiv.) in dry dichloromethane (5 mL) was added N,N'-

dicyclohexylcarbodiimide (590 mg, 2.76 mmol, 3 equiv.) and 4-dimethylaminopyridine (337 

mg, 2.76 mmol, 3 equiv.) at room temperature. The reaction mixture was stirred at room 

temperature for 15 h. The crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated under vacuum to provide the crude reaction mixture which was purified by silica 

gel column chromatography (100 % hexanes → 10 % ethyl acetates in hexanes) to afford the 

desired product as a colorless oil (15 %, 53 mg). 1H NMR (300 MHz, CDCl3) δ = 7.25 - 7.19 

(m, 1H), 7.08 (td, J = 7.6, 1.1 Hz, 1H), 7.01 (dd, J = 2.6, 1.5 Hz, 1H), 6.90 (ddd, J = 8.3, 2.6, 

1.0 Hz, 1H), 4.08 (t, J = 6.7 Hz, 2H), 3.95 (t, J = 6.5 Hz, 2H), 3.06 (s, 1H), 2.34 (t, J = 7.4 Hz, 

2H), 2.27 - 2.19 (m, 2H), 1.96 (t, J = 2.7 Hz, 1H), 1.84 - 1.71 (m, 4H), 1.70 - 1.53 (m, 4H), 

1.53 - 1.36 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 173.5, 158.8, 129.4, 124.5, 123.0, 117.6, 

115.9, 84.0, 83.6, 76.8, 68.6, 67.4, 64.4, 33.8, 29.1, 29.0, 28.6, 27.9, 25.9 (2C), 24.0, 18.1 

ppm; HRMS (ESI) m/z calculated for C22H29O3 [M+H]+, 341.2111; found: 341.2126. 
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7-(3-ethynylphenoxy)heptyl undec-10-ynoate (S6) : To a stirred solution of 7-(3-

ethynylphenoxy)heptan-1-ol (S4) (210 mg, 0.92 mmol, 1 equiv.) and the 10-undecynoic acid 

(335 mg, 1.84 mmol, 2.0 equiv.) in dry dichloromethane (5 mL) was added N,N'-

dicyclohexylcarbodiimide (590 mg, 2.76 mmol, 3 equiv.) and 4-dimethylaminopyridine (337 

mg, 2.76 mmol, 3 equiv.) at room temperature. The reaction mixture was stirred at room 

temperature for 15 h. The crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated under vacuum to provide the crude reaction mixture which was purified by silica 

gel column chromatography (100 % hexanes → 10 % ethyl acetates in hexanes) to afford the 

desired product as a colorless oil (50 %, 97 mg). 1H NMR (400 MHz, CDCl3) δ = 7.26 - 7.19 

(m, 1H), 7.08 (td, J = 7.6, 1.1 Hz, 1H), 7.01 (dd, J = 2.4, 1.5 Hz, 1H), 6.90 (ddd, J = 8.3, 2.7, 

0.9 Hz, 1H), 4.07 (t, J = 6.8 Hz, 2H), 3.94 (t, J = 6.5 Hz, 2H), 3.06 (s, 1H), 2.30 (t, J = 7.5 Hz, 

2H), 2.22 - 2.13 (m, 3H), 1.94 (t, J = 2.7 Hz, 1H), 1.83 - 1.73 (m, 3H), 1.68 - 1.57 (m, 4H), 

1.57 - 1.44 (m, 4H), 1.44 - 1.22 (m, 10H); 13C NMR (75 MHz, CDCl3) δ = 173.9, 158.8, 

129.3, 124.5, 123.0, 117.6, 115.9, 84.7, 83.6, 76.8, 68.1, 67.9, 64.3, 34.3, 29.08 (2C), 29.06, 

29.0, 28.9, 28.64, 28.57, 28.4, 25.9, 25.0, 18.4 (2C) ppm; HRMS (ESI) m/z calculated for 

C26H37O3 [M+H]+, 397.2737; found: 397.2746. 

 

  

O OH
7

S4

DCC, DMAP, CH2Cl2

15h, rt
O O

O
7

8S6

HO

O

8



 

 eee 

SYNTHESIS OF MACROCYCLES 

Note that macrocycles 3, 4, 5, 6 and 7 have been previous prepared.3 

 

General procedure for the macrocyclization of diynes under Glaser-Hay oxidative 

coupling conditions using thermal heating: Macrocycle (2): To a vial equipped with a 

stirring bar was added CuCl2 (5.5 mg, 0.48 mmol, 25 mol %) and Ni(NO3)2·6H2O (9.3 mg, 

0.48 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), triethylamine (0.05 mL, 0.36 

mmol, 3 equiv.) and pyridine (0.05 mL, 0.6 mmol, 5 equiv.) were added and the mixture was 

stirred at room temperature for 15 min or until the metals were solubilized. The diyne (28 mg, 

0.12 mmol) was added to the homogenous mixture as a methanol solution (1.67 mL) in one 

portion. Oxygen was bubbled in the solution for 5 min and the vial was then closed with a 

screw cap. The reaction was warmed to 60 °C and monitored by TLC for consumption of the 

starting material (oxygen was bubbled again through the solution every 12 h). When the 

starting material was completely consumed (TLC), the reaction was cooled to room 

temperature and the crude mixture was loaded directly on a silica column. Purification by 

silica gel chromatography (100 % hexanes →10 % ethyl acetate in hexanes) afforded the 

product as a colorless semi-solid (31 mg, 73 %).  

 

General procedure for the macrocylization of diynes under Glaser-Hay oxidative 

coupling conditions using microwave irradition: Macrocycle (2): To a microwave vial 

equipped with a stirring bar was added CuCl2 (5.5 mg, 0.48 mmol, 25 mol %) and 

O
O
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Ni(NO3)2·6H2O (9.3 mg, 0.48 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), 

triethylamine (0.05 mL, 0.36 mmol, 3 equiv.) and tetramethylethylene diamine (0.09 mL, 0.6 

mmol, 5 equiv.) were added and the mixture was stirred at room temperature for 15 min or 

until the metals were solubilized. The diyne (28 mg, 0.12 mmol) was added to the 

homogenous mixture as a methanol solution (1.67 mL) in one portion. Oxygen was bubbled in 

the solution for 5 min and the vial was then sealed with a microwave cap. The reaction was 

warmed to 120 °C for 3 to 6 h. The crude mixture was loaded directly onto silica gel for 

purification by chromatography (100 % hexanes → 10 % ethyl acetate in hexanes) and 

afforded the product as a colorless semi-solid (16 mg, 57 %). 

 

Macrocycle (8): Following the general procedure described above, macrocycle 8 was isolated. 

(25 mg, 62 %). 1H NMR (400 MHz, CDCl3) δ 7.23 - 7.17 (m, 1H), 7.08 - 7.02 (m, 2H), 6.89 

(ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 4.08 (t, J = 6.4 Hz, 2H), 4.03 (t, J = 6.9 Hz, 2H), 2.42 - 2.38 

(m, 2H), 2.35 (t, J = 7.5 Hz, 2H), 1.78 (quin, J = 6.9 Hz, 2H), 1.72 - 1.60 (m, 4H), 1.60 - 1.44 

(m, 4H), 1.44 - 1.33 (m, 4H); 13C NMR (125 MHz, CDCl3) δ ppm = 173.9, 158.6, 129.5, 

124.2, 123.0, 118.3, 117.3, 85.1, 75.0, 74.3, 68.2, 64.1, 34.1, 28.5, 28.4, 28.1, 28.0, 27.6, 25.9, 

25.6, 24.8, 19.5; HRMS (ESI) m/z calculated for C22H27O3 [M+H]+, 339.1955; found: 

339.1964. 
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Macrocycle (9): Following the general procedure described above, macrocycle 9 was isolated. 

(32 mg, 64 %). 1H NMR (400 MHz, CDCl3) δ 7.23 - 7.16 (m, 1H), 7.09 - 7.01 (m, 2H), 6.89 

(dd, J = 8.3, 1.7 Hz, 1H), 4.08 (t, J = 6.4 Hz, 2H), 4.03 (t, J = 6.9 Hz, 2H), 2.42 - 2.37 (m, 2H), 

2.35 (t, J = 7.5 Hz, 2H), 1.78 (quin, J = 6.8 Hz, 2H), 1.71 - 1.60 (m, 4H), 1.60 - 1.45 (m, 4H), 

1.45 - 1.34 (m, 12H); 13C NMR (125 MHz, CDCl3) δ ppm = 173.9, 158.6, 129.5, 124.2, 123.0, 

118.3, 117.3, 85.1, 74.9, 74.3, 68.2, 65.6, 64.1, 34.1, 29.0, 28.5 (2C), 28.42, 28.40, 28.1, 27.6, 

25.9, 25.5, 19.5; HRMS (ESI) m/z calculated for C24H34NaO3 [M+Na]+, 417.2400; found: 

417.2408.  

 

Complete Reference From Text: 

 

(3) Lamarre, D.; Anderson, P. C.; Bailey, M.; Beaulieu, P.; Bolger, G.; Bonneau, P.; Bös, 
M.; Cameron, D. R.; Cartier, M.; Cordingley, M. G.; Faucher, A.-M.; Goudreau, N.; 
Kawai, S. H.; Kukolj, G.; Lagacé, L.; Laplante, S. R.; Narjes, H.; Poupart, M.-A.; 
Rancourt, J.; Sentjens, R. E.; St-George, R.; Simoneau, B.; Steinmann, G.; Thibeault, 
D.; Tsantrizos, Y. S.; Weldon, S. M.; Yong, C.-L.; Llinàs-Brunet, M. Nature 2003, 
426, 186-189. 
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NMR SPECTRA FOR NEW COMPOUNDS 
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Chapter 15 : Supporting Information of Chapter 4: 

Exploiting Aggregation to Achieve Phase Separation in 

Macrocyclization  
 

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.15 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. Methyl-3,6-dihydroxybenzoate was prepared according to literature 

procedures.16(3,4,5-Tris(2-(2-methoxyethoxy)ethoxy)-phenyl)methanol and 1-chloro-2-(2-

methoxyethoxy)ethane were prepared according to literature procedures.17 Acylic diynes 3 and 

5 and the macrocycles 4 and 6 were prepared as reported in the literature.18 Technical solvents 

were obtained from VWR International Co. Anhydrous solvents (CH2Cl2, Et2O, THF, DMF, 

Toluene, and hexanes) were dried and deoxygenated using a GlassContour system (Irvine, 

CA). Isolated yields reflect the mass obtained following flash column silica gel 

chromatography. Organic compounds were purified using the method reported by W. C. Still19 

and using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). 

                                                

 

 
15 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
16 Zhu, J.; Beugelmans, R.; Bourdet, S.; Chastanet, J.; Roussi, G. J. Org. Chem. 1995, 60, 6389. 
17 Gudipati, V.; Curran, D. P.; Wilcox, C. S. J. Org. Chem. 2006, 71, 3599. 
18 Bédard, A.-C.; Collins, S. K. J. Am. Chem. Soc. 2011, 133, 19976. 
19 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.  
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Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel 60 

coated with a fluorescence indicator (Silicycle Chemical division, 0.25 mm, F254.). 

Visualization of TLC plate was performed by UV (254 nm), KMnO4 or p-anisaldehyde stains. 

All mixed solvent eluents are reported as v/v solutions. Concentration refers to removal of 

volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous 

by thin layer chromatography (TLC) and by 1H NMR. NMR spectra were taken in deuterated 

CDCl3 using Bruker AV-300 and AV-400 instruments unless otherwise noted. Signals due to 

the solvent served as the internal standard (CHCl3: δ 7.27 for 1H, δ 77.0 for 13C). The 1H NMR 

chemical shifts and coupling constants were determined assuming first-order behavior. 

Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order 

of the multiplicity assignment. The 1H NMR assignments were made based on chemical shift 

and multiplicity. The 13C NMR assignments were made on the basis of chemical shift and 

multiplicity. High resolution mass spectroscopy (HRMS) was done by the Centre régional de 

spectrométrie de masse at the Département de Chimie, Université de Montréal from an Agilent 

LC-MSD TOF system using ESI mode of ionization unless otherwise noted. 
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SYNTHESIS OF TAGGED LIGAND AND SUBSTRATE 

 

N1-(3,4,5-tris(2-(2-methoxyethoxy)ethoxy)benzyl)-N1,N2,N2-trimethylethane-1,2-diamine 

(9): To a stirring solution of (3,4,5-tris(2-(2-methoxyethoxy)ethoxy)phenyl)methanol3 S1 (1.0 

g, 2.2 mmol) in anhydrous dichloromethane (7 mL) at 0 oC was added PBr3 (0.1 mL, 1.1 

mmol) dropwise. The mixture was left to stir for 1 h at 0 oC then warmed to room temperature 

and stirred for 18 h. Distilled water was added to the reaction mixture and the phases were 

separated. The aqueous phase was extracted with dichloromethane (2X). The organic phases 

were combined, washed with brine and dried over anhydrous Na2SO4. The suspension was 

filtered and the filtrate was concentrated in vacuo. The product 1,2,3-tris(2-(2-

methoxyethoxy)ethoxy)-5-(bromomethyl)benzene S2 was obtained as a brown oil (1.0 g, 87 

%) and was used crude directly in the next step. 1H NMR (400 MHz, CDCl3) δ = 6.52 (s, 2 H), 

4.30 (s, 2 H), 4.05 (t, J = 4.8 Hz, 6 H), 3.74 (t, J = 4.8 Hz, 4 H), 3.69 (t, J = 5.0 Hz, 2 H), 3.60 

(dd, J = 3.7, 5.5 Hz, 6 H), 3.44 (dd, J = 3.4, 5.6 Hz, 6 H), 3.26 (s, 9 H). Benzyl bromide S2 

(200 mg, 0.38 mmol), anhydrous acetonitrile (2 mL) and N,N,N-trimethylethylene diamine (39 

mg, 0.38 mmol) were placed in a sealed tube. NaI (3 mg, 0.02 mmol) and K2CO3 (52 mg, 0.38 
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mmol) were added to the mixture. The tube was sealed and the reaction was warmed to 90 oC 

(oil bath) for 18 h. The reaction was then cooled to room temperature and the crude mixture 

was purified by chromatography on neutral alumina (100 % CH2Cl2 to 15 % MeOH in 

CH2Cl2). The product was obtained as a colorless oil (114 mg, 55 %). 1H NMR (400 MHz, 

CDCl3) δ = 6.87 (s, 2 H), 4.26 - 4.21 (m, 4 H), 4.21 - 4.16 (m, 2 H), 3.93 (s, 2 H), 3.89 - 3.83 

(m, 4 H), 3.83 - 3.78 (m, 2 H), 3.75 - 3.69 (m, 7 H), 3.68 - 3.63 (m, 3 H), 3.58 - 3.52 (m, 7 H), 

3.38 (s, 3 H), 3.38 (s, 6 H), 2.64 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ = 153.0, 139.2, 125.5, 

110.1, 77.2, 72.4, 72.0, 71.9, 70.6 (2C), 70.5, 70.42, 70.35, 69.2, 62.2, 59.0, 42.9 ppm; HRMS 

(ESI) m/z calculated for C27H50N2NaO9 [M+Na]+, 569.3409; found: 569.3406. 

 

3,4,5-Tris(2-(2-methoxyethoxy)ethoxy)benzyl 3,5-bis(undec-10-ynyloxy)benzoate (7): To 

a solution of methyl 3,5-bis(undec-10-yn-1-yloxy)benzoate4 5 (852 mg, 1.82 mmol) in THF (8 

mL) and H2O (2 mL) was added LiOH (237 mg, 9.11 mmol). The mixture was warmed to 50 

oC and stirred for 18 h. The reaction was cooled to room temperature and EtOAc and H2O 

were added. The phases were separated and the aqueous phase’s pH was adjusted to 2 using 1 

N HCl. The aqueous phase was extracted with EtOAc (3X), the organic phases were 

combined, washed with brine and dried with anhydrous Na2SO4. The suspension was filtered 
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and the filtrate was concentrated in vacuo. The product 3,5-bis(undec-10-ynyloxy)benzoic 

acid S3 was obtained as a pale yellow solid (770 mg, 93%) and was used crude in the next 

step. 1H NMR (400MHz , acetone-d6) δ = 7.15 (d, J = 2.2 Hz, 2H), 6.70 (t, J = 2.3 Hz, 1H), 

4.02 (t, J = 6.4 Hz, 4H), 3.54 (t, J = 6.5 Hz, 1H), 2.28 (t, J = 2.7 Hz, 2H), 2.16 (dt, J = 6.9, 2.7, 

4H), 1.83 - 1.73 (m, 4H), 1.56 - 1.23 (m, 24H); HRMS (ESI) m/z calculated for C29H43O4 

[M+H]+, 455.3156; found: 455.3151. Bis(undec-10-ynyloxy)benzoic acid S3 (250 mg, 0.55 

mmol) and benzyl bromide S2 (317 mg, 0.61 mmol) were dissolved in anhydrous DMSO (3 

mL). K2CO3 (114 mg, 0.83 mmol) and NaI (9 mg, 0.06 mmol) were added and the resulting 

mixture was warmed to 50 oC and stirred for 18 h. The reaction was cooled back to room 

temperature and EtOAc and H2O were added. The phases were separated. The aqueous phase 

was then extracted with EtOAc (5X). The organic phases were combined and dried with 

anhydrous Na2SO4. The suspension was filtered and the filtrate was concentrated in vacuo. 

The crude mixture was purified by silica gel column chromatography (100 % DCM to 15 % 

MeOH in DCM). The product was isolated as a brown oil (106 mg, 21 %) 1H NMR (300 

MHz, CDCl3) δ = 7.15 (d, J = 2.3 Hz, 2H), 6.69 - 6.60 (m, 3H), 5.20 (s, 1H), 4.25 - 4.09 (m, 

6H), 3.95 (m, 4H), 3.82 (m, 6H), 3.75 - 3.63 (m, 8H), 3.59 - 3.49 (m, 6H), 3.37 (s, 9H), 2.17 

(td, J = 7.0, 2.6 Hz, 4H), 1.93 (t, J = 2.6 Hz, 2H), 1.82 - 1.70 (m, 4H), 1.58 - 1.23 (m, 23H); 

13C NMR (75 MHz, CDCl3) δ = 169.5, 166.2, 160.1 (2C), 152.6 (2C), 138.3, 131.7 (2C), 

131.4 (2C), 131.3, 108.0, 107.9, 107.7, 107.0, 106.4, 84.7 (2C), 72.3, 71.9 (2C), 70.6, 70.5, 

70.3 (2C), 69.7 (2C), 68.8, 68.2 (2C), 68.0 (2C), 66.8, 59.0, 29.3 (2C), 29.2 (2C), 29.1 (2C), 

28.9 (2C), 28.6 (2C), 28.4 (2C), 25.9 (2C), 18.3 (2C) ppm; HRMS (ESI) m/z calculated for 

C51H78NaO13 [M+Na]+, 921.5335; found: 921.5373. 
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SYNTHESIS OF MACROCYCLES 

 

General procedure A for the macrocyclization of diynes under Glaser-Hay oxidative 

coupling conditions using microwave irradiation: Macrocycle (2): To a microwave vial 

equipped with a stirring bar was added CuCl2 (5.5 mg, 0.03 mmol, 25 mol %) and 

Ni(NO3)2·6H2O (9.3 mg, 0.03 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), 

triethylamine (0.05 mL, 0.36 mmol, 3 equiv.) and tetramethylethylene diamine (0.09 mL, 0.6 

mmol, 5 equiv.) were added and the mixture was stirred at room temperature for 15 min or 

until the metals were solubilized. The diyne (28 mg, 0.12 mmol) was added to the 

homogenous mixture as a methanol solution (1.67 mL) in one portion. Oxygen was bubbled in 

the solution for 5 min and the vial was then sealed with a microwave cap. The reaction was 

warmed to 120 °C for 6 h. The crude mixture was loaded directly onto silica gel for 

purification by chromatography (100 % hexanes → 10 % ethyl acetate in hexanes) and 

afforded the product as a colorless semi-solid (23 mg, 81 %). 1H NMR (300 MHz, CDCl3) δ = 

4.10 (t, J = 6.5 Hz, 2H), 2.36 - 2.26 (m, 6H), 1.70 - 1.61 (m, 6H), 1.50 - 1.26 (m, 14H); 13C 

NMR (125 MHz, CDCl3) δ ppm = 174.0, 77.6, 77.2, 66.0, 65.8, 64.2, 34.3, 29.1, 28.5, 28.23, 

28.22, 28.19, 27.93, 27.91, 27.63, 27.58, 25.7, 25.0, 19.03, 19.02; HRMS (ESI) m/z calculated 

for C20H31O2 [M+H]+, 303.2319; found: 303.2325. 
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General procedure B for the macrocyclization of diynes under Glaser-Hay oxidative 

coupling conditions using thermal heating: Macrocycle (2): To a vial equipped with a 

stirring bar was added CuCl2 (5.5 mg, 0.03 mmol, 25 mol %) and Ni(NO3)2·6H2O (9.3 mg, 

0.03 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), triethylamine (0.05 mL, 0.36 

mmol, 3 equiv.) and pyridine (0.05 mL, 0.6 mmol, 5 equiv.) were added and the mixture was 

stirred at room temperature for 15 min or until the metals were solubilized. The diyne (28 mg, 

0.12 mmol) was added to the homogenous mixture as a methanol solution (1.67 mL) in one 

portion. Oxygen was bubbled in the solution for 5 min and the vial was then closed with a 

screw cap. The reaction was warmed to 60 °C and monitored by TLC for consumption of the 

starting material (oxygen was bubbled again through the solution every 12 h). When the 

starting material was completely consumed (TLC), the reaction was cooled to room 

temperature and the crude mixture was loaded directly on a silica column. Purification by 

silica gel chromatography (100 % hexanes →10 % ethyl acetate in hexanes) afforded the 

product as a colorless semi-solid (21 mg, 0.09 mmol, 73 %).  

 

Macrocycle (6): Following the general procedure B described above, macrocycle 6 was 

isolated. (38 mg, 0.080 mmol, 65 %). 1H NMR (300 MHz, CDCl3) δ = 7.17 (d, J = 2.2 Hz, 

2H), 6.70 (t, J = 2.2 Hz, 1H), 4.08 - 3.99 (t, J = 6.0 Hz, 4H), 3.91 (s, 3H), 2.25 (t, J = 6.4 Hz, 

4H), 1.84 - 1.71 (m, 4H), 1.65 - 1.14 (m, 28H); 13C NMR (125 MHz, CDCl3) δ ppm = 167.0, 

160.1, 131.8, 107.6, 107.4, 77.5, 68.0, 65.5, 52.2, 29.1, 28.7, 28.73, 28.66, 28.65, 28.3, 28.1, 
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25.8, 19.1 ppm; HRMS (ESI) m/z calculated for C30H43O4 [M+H]+, 467.3156; found: 

467.3165. 

 

Macrocycle (8): Following the general procedure B described above, macrocycle 8 was 

isolated. (68 mg, 0.077 mmol, 64 %). 1H NMR (400 MHz, CDCl3) δ = 7.18 (d, J = 2.2 Hz, 

2H), 6.70 (t, J = 2.2 Hz, 1H), 6.67 (s, 2H), 5.22 (s, 2H), 4.23 - 4.14 (m, 6H), 4.02 (t, J = 6.1 

Hz, 4H), 3.86 (t, J = 4.9 Hz, 4H), 3.81 (t, J = 5.0 Hz, 2H), 3.72 (m, 6H), 3.60 - 3.54 (m, 6H), 

3.39 (s, 9H), 2.25 (t, J = 6.4 Hz, 4H), 1.82 - 1.73 (m, 4H), 1.65 - 1.23 (m, 24H); 13C NMR 

(125 MHz, CDCl3) δ ppm = 166.3, 160.1(2C), 152.7 (2C), 131.8, 131.4, 108.1 (2C), 107.8 

(2C), 107.3, 77.5, 77.2, 72.4, 72.03 (2C), 71.98 (2C), 70.7 (2C), 70.6, 70.4 (2C), 69.7 (2C), 

68.9, 68.1, 66.9 (2C), 65.5 (2C), 59.04 (2C), 59.01 (2C), 29.1(2C), 28.74 (2C), 28.66 (2C), 

28.3 (2C), 28.1(2C), 25.8 (2C), 19.1 (2C) ppm; HRMS (ESI) m/z calculated for C51H76NaO13 

[M+Na]+, 919.5178; found: 919.5191. 
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COMPLETE TABLE 1 

Table 1 - Yields of macrocycle 4 at various ratios of PEG400 or ethylene glycol in MeOH using 
both traditional heating and microwave heating. 

 

   Traditional Heating Microwave Heating 

entry solvent % solvent/ 
MeOH yield 4 (%)a yield 4 (%)a 

1 

PEG400 

 

0 24 22 

2 10 45 44 

3 33 62 54 

4 66 81 75 

5 90 69b,c 56b,c 

6 100 <5b,c <5b,c 

7 

ethylene 

glycol 
 

0 24 22 

8 10 24 27 

9 33 34 24 

10 66 26b 24b 

11 90 27b 20b 

12 100 16b 14b 
a All compounds were isolated by silica gel flash chromatography. Unless otherwise stated, all remaining starting 
material 3 was oligomerized, see ref 13. b Some precipitation of the catalyst mixture was observed during the 
course of the reaction. c Remaining mass balance was recovered 3. 
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SURFACE TENSION DATA 

A solution of MeOH (40 mL) was placed at 60 oC in a Dataphysics DCAT11 surface 

tension analyser. Various amounts of PEG400 were added and the mixture was stirred until 

homogenous (the stirring was stopped during the time of the measurement). The surface 

tension was measured using a rectangular Wilhemy plate for every % PEG400 in MeOH 

following the same procedure.  

 

Table S1: Surface tension measurement for PEG400/MeOH 
 

%PEG400 in 
MeOH 

Surface Tension 
(mN/m) ± 

0 20.151 0.022 
1.2 20.012 0.023 
2.4 20.135 0.026 
4.8 20.255 0.029 
8.0 20.49 0.026 
13.0 20.957 0.026 
17.5 21.521 0.028 
20.0 21.828 0.018 
25.0 22.979 0.030 
29.3 23.861 0.023 
35.5 25.364 0.026 
39.4 26.451 0.022 
44.4 27.924 0.025 
50.0 32.716 0.022 
60.0 38.736 0.028 
65.2 40.523 0.027 
69.0 41.343 0.029 
89.0 41.223 0.024 
91.4 41.868 0.026 
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Table S2: Surface tension measurement for ethylene glycol/MeOH 
 

%ethylene glycol in 
MeOH 

Surface Tension 
(mN/m) ± 

0.0 20.583 0.023 
1.2 20.696 0.025 
2.4 20.924 0.026 
4.8 20.963 0.022 
8.0 21.996 0.027 
13.0 23.568 0.029 
17.5 25.065 0.021 
20.0 26.422 0.024 
25.0 27.483 0.056 
29.3 28.377 0.060 
35.5 29.477 0.054 
39.4 30.569 0.039 
50.0 32.168 0.071 
60.0 33.593 0.039 
65.2 34.268 0.029 
69.2 35.366 0.059 
80.0 37.554 0.030 
89.0 38.850 0.029 
91.4 38.999 0.025 

  
Linear regression for the surface tension graph of %ethylene glycol/MeOH 
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UV-VIS DATA 

Macrocyclization precursor 3 (36.3 mg, 0.12 mmol) was dissolved to make a stock 

solutions in PEG400 (5 mL) and in MeOH (5 mL). Aliquots from the stock solutions were used 

to prepare solutions of varying ratios of PEG400/MeOH (25 %, 50 %, 75 %). Each solution was 

stirred for 30 min at room temperature before the absorbance was recorded. The absorbance 

was recorded on a Cary100 using a 1 cm trajectory and a blank (appropriate solvent or solvent 

mixture) for each solution.  
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Table S3: Absorbance at maximum wavelength for various solutions of 3 

%PEG400 in MeOH λ max (nm) Absorbance 
100 287.7 0.642913 
75 288.0 0.627845 
50 288.3 0.627310 
25 288.0 0.617332 
0 287.7 0.567752 
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NMR SPECTRA FOR NEW COMPOUNDS 
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Chapter 16 : Supporting Information of Chapter 5: 

Influence of Poly(ethylene glycol) Structure in Catalytic 

Macrocyclization Reactions 
 

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.20 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. Technical solvents were obtained from VWR International Co. 

Anhydrous solvents (CH2Cl2, Et2O, THF, DMF, Toluene, and hexanes) were dried and 

deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass 

obtained following flash column silica gel chromatography. Organic compounds were purified 

using the method reported by W. C. Still21 and using silica gel obtained from Silicycle 

Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) 

was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle 

Chemical division, 0.25 mm, F254.). Visualization of TLC plate was performed by UV (254 

nm), KMnO4 or p-anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. 

Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All 

reported compounds were homogeneous by thin layer chromatography (TLC) and by 1H 
                                                

 

 
20 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
21 Still, W. C.; Kahn, M.; Mitra, A.J. Org. Chem. 1978, 43, 2923.  
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NMR. NMR spectra were taken in deuterated CDCl3 using Bruker AV-300 and AV-400 

instruments unless otherwise noted. Signals due to the solvent served as the internal standard 

(CHCl3: δ 7.27 for 1H, δ 77.0 for 13C). The 1H NMR chemical shifts and coupling constants 

were determined assuming first-order behavior. Multiplicity is indicated by one or more of the 

following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of 

couplings constants (J) corresponds to the order of the multiplicity assignment. The 1H NMR 

assignments were made based on chemical shift and multiplicity. The 13C NMR assignments 

were made on the basis of chemical shift and multiplicity. High resolution mass spectroscopy 

(HRMS) was done by the Centre régional de spectrométrie de masse at the Département de 

Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of 

ionization unless otherwise noted. 

 

SYNTHESIS OF SUBSTRATE AND MACROCYCLE. 

 

8-nonyl-1-ol: To a flask containing ethylene diamine (70 mL) at 0 °C was added NaH (60% in 

mineral oil, 5.7 g, 142.6 mmol, 4 equiv.). The mixture was slowly warmed to room 

temperature and stirred for 1h. Then the reaction was warmed to 60 oC and stirred for 2 h. 

After cooling the reaction to 45 °C, 3-nonyl-1-ol (5 mL, 35.7 mmol, 1 equiv.) was added in 

one portion and the solution was stirred at 60 °C for 15 h. Upon cooling to 0 °C, 1M HCl (30 

mL) was added and the organic and aqueous layers were separated. The aqueous layer was 

extracted with ethyl acetate (2x), and the combined organic layers were dried over anhydrous 

Na2SO4. The suspension was filtered and the filtrate was concentrated in vacuo. Purification of 

OH OH

NaH (60% in mineral oil)
ethylene diamine

60oC, 15h
82%

7
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the crude product by column chromatography on silica gel (20 % ethyl acetate in hexanes) 

afforded the product as a colorless oil (4.1 g, 82 %). The NMR data are in agreement with that 

obtained in the literature.22 

 

Hept-7-yn-1-yl undec-10-ynoate (3): To a stirred solution of 5-hexyl-1-ol (100 mg, 1.0 

mmol) and 10-undecynoic acid (278 mg, 1.5 mmol) in dry dichloromethane (7.7 mL, 0.2 M) 

was added N,N'-dicyclohexylcarbodiimide (DCC, 721 mg, 2.0 mmol, 2 equiv.) and 4-

dimethylaminopyridine (DMAP, 374 mg, 3.0 mmol, 3 equiv.) at room temperature. The 

reaction mixture was stirred at room temperature for 15 h. Upon complete conversion of the 

starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filteration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture. Following purification by column 

chromatography (5 % ethyl acetate in hexanes), the desired product was obtained as a 

colorless oil (280 mg, 99 %). 1H NMR (400MHz, CDCl3) δ = 4.07 (t, J = 6.5 Hz, 2H), 2.27 (t, 

J = 7.5 Hz, 2H), 2.21 (td, J = 7.0, 2.7 Hz, 2H), 2.15 (td, J = 7.0, 2.6 Hz, 2H), 1.94 (td, J = 2.6, 

0.6 Hz, 1H), 1.91 (td, J = 2.6, 0.6 Hz, 1H), 1.79 - 1.66 (m, 4H), 1.64 - 1.44 (m, 6H), 1.42 - 

1.20 (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 173.9, 84.7, 83.9, 68.7, 68.1, 63.7, 34.3, 29.08, 

                                                

 

 
22 (a) Denmark, S. E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595-4597. (b) Renauld, J. L.; Aubert, C.; Malacria, 
M. Tetrahedron 1999, 55, 5113-5128. 
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29.06, 28.9, 28.6, 28.4, 27.7, 24.9 (2C), 18.4, 18.1 ppm; HRMS (ESI) m/z calculated for 

C17H27O2 [M+H]+, 263.2006; found: 263.2013. 

 

General procedure for the macrocylization of 3 under Glaser-Hay oxidative coupling 

conditions using microwave irradition: Macrocycle (4): To a microwave vial equipped with 

a stirring bar was added CuCl2 (5.5 mg, 0.03 mmol, 25 mol %) and Ni(NO3)2·6H2O (9.3 mg, 

0.03 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), triethylamine (0.05 mL, 0.36 

mmol, 3 equiv.) and tetramethylethylene diamine (0.09 mL, 0.6 mmol, 5 equiv.) were added 

and the mixture was stirred at room temperature for 15 min or until the metals were 

solubilized. The diyne (28 mg, 0.12 mmol) was added to the homogenous mixture as a 

methanol solution (1.67 mL) in one portion. Oxygen was bubbled in the solution for 5 min and 

the vial was then sealed with a microwave cap. The reaction was warmed to 120 °C for 6 h. 

The crude mixture was loaded directly onto silica gel for purification by chromatography (100 

% hexanes → 10 % ethyl acetate in hexanes) and afforded the product as a colorless semi-

solid (23 mg, 81 %). 1H NMR (300 MHz, CDCl3) δ = 4.10 (t, J = 6.5 Hz, 2H), 2.36 - 2.26 (m, 

6H), 1.70 - 1.61 (m, 6H), 1.50 - 1.26 (m, 14H); 13C NMR (125 MHz, CDCl3) δ ppm = 174.0, 

77.6, 77.2, 66.0, 65.8, 64.2, 34.3, 29.1, 28.5, 28.23, 28.22, 28.19, 27.93, 27.91, 27.63, 27.58, 

25.7, 25.0, 19.03, 19.02; HRMS (ESI) m/z calculated for C20H31O2 [M+H]+, 303.2319; found: 

303.2325. 
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SURFACE TENSION DATA 

A solution of MeOH (40 mL) was placed at 60 oC in a dataphysics DCAT11 surface tension 

analyser. Various amounts of the appropriate polymer were added and the mixture was stirred 

until homogenous (the stirring was stopped during the time of the measurement). The surface 

tension was measured using a rectangular Wilhemy plate for every %polymer in MeOH 

following the same procedure.  

 
Table S1: Surface tension measurement for PEG190/MeOH 

 
%PEG190 in 

MeOH 
Surface Tension 

(mN/m) ± 
0 20.027 0.012 

1.2 20.121 0.028 
2.4 20.194 0.027 
4.8 20.338 0.020 
8.0 20.806 0.021 
13.0 21.603 0.023 
17.5 22.486 0.027 
20.0 23.369 0.029 
25.0 24.449 0.029 
29.3 25.888 0.028 
35.5 27.702 0.030 
39.4 28.727 0.030 
44.4 31.593 0.029 
50.0 34.322 0.029 
60.0 35.722 0.027 
65.2 37.169 0.030 
69.0 38.157 0.063 
89.0 40.749 0.025 
91.4 41.406 0.027 
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Table S2: Surface tension measurement for PEG250(OMe)/MeOH 
 

% PEG250(OMe) in MeOH 
Surface Tension 

(mN/m) ± 
0.0 20.365 0.020 
1.2 20.404 0.010 
2.4 20.464 0.027 
4.8 20.630 0.027 
8.0 20.880 0.013 
13.0 21.380 0.220 
17.5 22.000 0.028 
20.0 22.249 0.024 
25.0 23.267 0.003 
29.3 23.225 0.025 
35.5 24.291 0.003 
39.4 25.012 0.023 
50.0 27.049 0.028 
60.0 27.091 0.018 
65.2 27.530 0.017 
69.2 29.001 0.017 
79.0 29.165 0.018 
89.0 31.047 0.026 
91.4 31.836 0.022 
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Table S3: Surface tension measurement for PEG400/MeOH 
 

%PEG400 in 
MeOH 

Surface Tension 
(mN/m) ± 

0 20.151 0.022 
1.2 20.012 0.023 
2.4 20.135 0.026 
4.8 20.255 0.029 
8.0 20.49 0.026 
13.0 20.957 0.026 
17.5 21.521 0.028 
20.0 21.828 0.018 
25.0 22.979 0.030 
29.3 23.861 0.023 
35.5 25.364 0.026 
39.4 26.451 0.022 
44.4 27.924 0.025 
50.0 32.716 0.022 
60.0 38.736 0.028 
65.2 40.523 0.027 
69.0 41.343 0.029 
89.0 41.223 0.024 
91.4 41.868 0.026 
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Table S4: Surface tension measurement for PEG1450/MeOH 
 

% PEG1450 in MeOH 
Surface Tension 

(mN/m) ± 
0.0 19.883 0.015 
1.2 20.085 0.027 
2.4 20.169 0.026 
4.8 20.262 0.013 
8.0 20.907 0.027 
13.0 21.370 0.028 
17.5 21.884 0.021 
20.0 22.562 0.028 
25.0 23.512 0.027 
29.3 25.530 0.028 
35.5 27.401 0.015 
39.4 29.475 0.023 
50.0 32.683 0.027 
60.0 36.923 0.026 
65.2 39.112 0.061 
69.2 40.678 0.024 
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Table S5: Surface tension measurement for PPG425/MeOH 
 

%PPG425 in 
MeOH 

Surface Tension 
(mN/m) ± 

0 20.237 0.020 
1.2 20.467 0.030 
2.4 20.508 0.020 
4.8 20.795 0.028 
8.0 20.992 0.023 
13.0 21.615 0.016 
17.5 22.120 0.025 
20.0 22.423 0.029 
25.0 23.217 0.029 
29.3 24.571 0.030 
35.5 25.691 0.028 
39.4 25.804 0.027 
44.4 27.655 0.026 
50.0 28.633 0.025 
60.0 29.145 0.022 
65.2 30.009 0.028 
69.0 30.617 0.029 
79.0 30.679 0.028 
89.0 30.928 0.029 
91.4 30.928 0.029 

  



 

 rrrr 

Table S6: Surface tension measurement for Pluronic1100/MeOH 
 

%Pluronic1100 in MeOH 
Surface Tension 

(mN/m) ± 
0.0 20.385 0.010 
1.2 20.294 0.010 
2.4 20.386 0.015 
4.8 20.371 0.027 
8.0 20.595 0.027 
13.0 20.861 0.028 
17.5 21.127 0.025 
20.0 21.402 0.018 
25.0 22.070 0.020 
29.3 22.656 0.028 
35.5 24.042 0.027 
39.4 24.766 0.028 
50.0 25.440 0.027 
60.0 26.684 0.022 
65.2 28.584 0.029 
69.2 30.174 0.029 
79.0 30.899 0.029 
89.0 31.336 0.028 
91.4 32.043 0.030 
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NMR SPECTRA FOR NEW COMPOUNDS
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Chapter 17 : Supporting Information of Chapter 7: 

Continuous Flow Macrocyclization at High 

Concentrations: Synthesis of Macrocyclic Lipids 
 

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.23 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. 10-Undecyn-1-ol24 and 1-O-benzyl-rac-glycerol25 were prepared 

according to literature procedures. The macrocyclic precursors non-8-yn-1-yl hex-5-ynoate 

(1), non-8-yn-1-yl undec-10-ynoate (3) and methyl 3,5-bis(undec-10-yn-1-yloxy)benzoate as 

well as macrocycles 4, 5 and 7 have been previously reported in the literature.26 Technical 

solvents were obtained from VWR International Co. Anhydrous solvents (CH2Cl2, Et2O, THF, 

DMF, Toluene, and hexanes) were dried and deoxygenated using a GlassContour system 

(Irvine, CA). Isolated yields reflect the mass obtained following flash column silica gel 

chromatography. Organic compounds were purified using the method reported by W. C. Still27 

and using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). 
                                                

 

 
23 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
24 Sharma, A.; Chattopadhyay, S. J. Org. Chem. 1998, 63, 6128. 
25 Karmee, K. S. Synth. Comm. 2013, 43, 450. 
26 Bédard, A.-C.; Collins, S. K. J. Am. Chem. Soc. 2011, 133, 19976. 
27 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.  
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Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel 60 

coated with a fluorescence indicator (Silicycle Chemical division, 0.25 mm, F254.). 

Visualization of TLC plate was performed by UV (254 nm), KMnO4 or p-anisaldehyde stains. 

All mixed solvent eluents are reported as v/v solutions. Concentration refers to removal of 

volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous 

by thin layer chromatography (TLC) and by 1H NMR. NMR spectra were taken in deuterated 

CDCl3 using Bruker AV-300 and AV-400 instruments unless otherwise noted. Signals due to 

the solvent served as the internal standard (CHCl3: δ 7.27 for 1H, δ 77.0 for 13C). The 1H NMR 

chemical shifts and coupling constants were determined assuming first-order behavior. 

Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order 

of the multiplicity assignment. The 1H NMR assignments were made based on chemical shift 

and multiplicity and were confirmed, where necessary, by homonuclear decoupling, 2D COSY 

experiments. The 13C NMR assignments were made on the basis of chemical shift and 

multiplicity and were confirmed, where necessary, by two dimensional correlation 

experiments (HSQC). High resolution mass spectroscopy (HRMS) was done by the Centre 

régional de spectrométrie de masse at the Département de Chimie, Université de Montréal 

from an Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted. 
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SYNTHESIS OF MACROCYCLIZATION PRECURSORS. 

 

Butane-1,4-diyl dibut-3-ynoate (S3): To a stirred solution of the 1,4-butanediol (0.56 mL, 6.3 

mmol, 1 equiv.) and 6-heptynoic acid (1.6 g, 13 mmol, 2.0 equiv.) in anhydrous CH2Cl2 (63 

mL, 0.1 M) was added N,N'-dicyclohexylcarbodiimide (5.23 g, 25.4 mmol, 4.0 equiv.) and 4-

dimethylaminopyridine (3.88 g, 38 mmol, 6.0 equiv.) at room temperature. The reaction 

mixture was stirred at room temperature for 15 h. Upon complete conversion of the starting 

material (TLC), the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture, which was purified by silica gel 

column chromatography (100 % Hexanes to 20 % EtOAc/Hexanes) to afford the desired 

product S3 as a colorless semi-solid (1.24 g, 64 %). 1H NMR (300 MHz, CDCl3) δ = 4.19 - 

4.01 (m, 4H), 2.33 (t, J = 7.4 Hz, 4H), 2.21 (dt, J = 7.0, 2.6 Hz, 4H), 1.95 (t, J = 2.6 Hz, 2H), 

1.83 - 1.64 (m, 8H), 1.62 - 1.49 (m, 4H); 
13C NMR (75 MHz, CDCl3) δ ppm = 173.3, 83.9, 

68.6, 63.8, 33.7, 27.8, 25.3, 24.0, 18.1; HRMS (ESI) m/z calculated for C18H30NO4 

[M+NH4]+, 324.2169; found: 324.2172.  

 

((2,3-bis(prop-2-ynyloxy)propoxy)methyl)benzene (S6): In a flamed-dried flask, 1-hexyn-1-

ol (2.0 g, 20.4 mmol, 1 equiv.) was dissolved in anhydrous CH2Cl2 (100 mL) and Et3N (4.9 
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mL, 22.4 mmol, 1.1 equiv.) was added. The mixture was cooled to 0 oC and methanesulfonyl 

chloride (2.8 mL, 24.5 mmol, 1.2 equiv.) was added dropwise. The mixture was slowly 

warmed to room temperature and stirred for 2 h. Water was added to the mixture and the 

organic and aqueous phases were separated. The aqueous phase was extracted 2x with CH2Cl2 

and the organic phases were combined, dried over Na2SO4, filtered and concentrated in vacuo. 

The product prop-2-ynyl methanesulfonate S5 was obtained as a crude pale yellow oil was 

used directly in the next step. To a stirred solution of 1-O-benzyl-rac-glycerol (570 mg, 3.1 

mmol, 1 equiv.) at 0 oC in anhydrous DMF (20 mL) was added NaH (60 % in oil, 313 mg, 7.8 

mmol, 2.5 equiv.) in 5 portions. The mixture was warmed slowly to r.t. and prop-2-ynyl 

methanesulfonate S5 (1.38 g, 7.8 mmol, 2.5 equiv.) was added in one portion. The reaction 

was then warmed to 60 oC for 2 h (or until judged complete by TLC) and then cooled back to 

room temperature. Water and ethyl acetate were added and the organic and aqueous layers 

were separated. The aqueous phase was extracted with EtOAc (3x) and the combined organic 

layers were washed with brine (3x). The organic layer was dried with Na2SO4, filtered and 

concentrated in vacuo. The crude oil was purified by silica gel column chromatography (20 % 

EtOAc/Hexanes). The desired product S6 was obtained as a colorless oil (0.72 g, 65 %). 1H 

NMR (400 MHz, CDCl3) δ = 7.38 - 7.22 (m, 5H), 4.60 - 4.49 (m, 2H), 3.67 - 3.39 (m, 9H), 

2.24 - 2.15 (m, 4H), 2.00 - 1.96 (m, 2H), 1.73 - 1.52 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 

ppm =138.3, 128.3, 127.6, 127.5, 84.4, 84.3, 78.0, 73.4, 70.9, 70.8, 70.2, 69.8, 68.4, 68.3, 

29.1, 28.6, 25.2, 25.1, 18.18, 18.17; HRMS (ESI) m/z calculated for C22H31O3 [M+H]+, 

343.2268; found: 343.2269. 
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((2,3-bis(non-2-ynyloxy)propoxy)methyl)benzene (S9): In a flamed-dried flask, 1-undecyn-

1-ol (1.5g, 8.9 mmol, 1 equiv.) was dissolved in anhydrous CH2Cl2 (45 mL) and Et3N (2.5 

mL, 13.2 mmol, 1.5 equiv.) was added. The mixture was cooled to 0 oC and methanesulfonyl 

chloride (0.75 mL, 9.7 mmol, 1.1 equiv.) was added dropwise. The mixture was slowly 

warmed to room temperature and stirred for 2 h. Water was added to the mixture and the 

organic and aqueous phases were separated. The aqueous phase was extracted with CH2Cl2 

(2x) and the organic phases were combined, dried over Na2SO4, filtered and concentrated in 

vacuo. The non-2-ynyl methanesulfonate S8 was obtained as a yellow oil and was used crude 

directly in the next step. To a stirred solution of 1-O-benzyl-rac-glycerol (277 mg, 1.63 mmol, 

1 equiv.) at 0 oC in anhydrous DMF (10 mL) was added NaH (60 % in oil, 163 mg, 4.1 mmol, 

2.5 equiv.) in 5 portions. The mixture was warmed slowly to r.t. and non-2-ynyl 

methanesulfonate (883 mg, 3.6 mmol, 2.2 equiv.) was added in one portion. The reaction was 

then warmed to 60 oC for 2 h (or until complete as judged by TLC) and then cooled back to 

room temperature. Water and ethyl acetate were added and the organic and aqueous layers 

were separated. The aqueous phase was extracted with EtOAc (3x) and the combined organic 

layers were washed with brine (3x). The organic layer was dried over Na2SO4, filtered and 

concentrated in vacuo. The crude oil was purified by silica gel column chromatography (15 % 

EtOAc/Hexanes) and the desired product S9 was obtained as a colorless oil (200 mg, 29 %). 

1H NMR (300 MHz, CDCl3) δ = 7.41 - 7.23 (m, 5H), 4.56 (s, 2H), 3.68 - 3.47 (m, 7H), 3.43 (t, 

J = 6.7 Hz, 2H), 2.18 (dt, J = 6.9, 2.5 Hz, 4H), 1.94 (t, J = 2.5 Hz, 2H), 1.64 - 1.46 (m, 8H), 
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1.46 - 1.23 (m, 20H); 13C NMR (75 MHz, CDCl3) δ ppm = 138.4, 128.3, 127.5, 84.7, 77.9, 

73.3, 71.6, 70.7, 70.5, 70.3, 68.4 (2C), 30.1, 29.6, 29.41 (2C), 29.39 (2C), 29.0 (2C), 28.7 

(2C), 28.4 (2C), 26.1 (2C), 26.0 (2C), 18.4 (2C); HRMS (ESI) m/z calculated for C32H51O3 

[M+H]+, 483.3833; found: 483.3844. 

 

((2,3-bis(undec-2-ynyloxy)propoxy)methyl)benzene (S12): In a flamed-dried flask, 1-

tridecyn-1-ol (2.30 g, 11.7 mmol, 1 equiv.) was dissolved in anhydrous DCM (60 mL) and 

Et3N (1.9 mL, 14.0 mmol, 1.2 equiv.) was added. The mixture was cooled to 0 oC and 

methanesulfonyl chloride (1.0 mL, 12.9 mmol, 1.1 equiv.) was added dropwise. The mixture 

was slowly warmed to room temperature and stirred for 2 h. Water was added to the mixture 

and the organic and aqueous phases were separated. The aqueous phase was extracted with 

CH2Cl2 (2x) and the organic phases were combined, dried over Na2SO4, filtered and 

concentrated in vacuo. The product undec-2-ynyl methanesulfonate S11 was obtained as a 

crude yellow oil which was used directly in the next step. To a stirred solution of 1-O-benzyl-

rac-glycerol (0.85 g, 4.7 mmol, 1 equiv.) at 0 oC in anhydrous DMF (60 mL) was added NaH 

(60 % in oil, 468 mg, 11.7 mmol, 2.5 equiv.) in 5 portions. The mixture was warmed slowly to 

r.t. and undec-2-ynyl methanesulfonate (3.2 g, 11.7 mmol, 2.5 equiv.) was added in one 

portion. The reaction was then warmed to 60 oC for 2 h (or until judged complete by TLC) and 

then cooled back to room temperature. Water and ethyl acetate were added and the organic 

and aqueous layers were separated. The aqueous phase was extracted with EtOAc (3x) and the 

combined organic layers were washed with brine (3x). The organic layer was dried over 
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Na2SO4, filtered and concentrated in vacuo. The crude oil was purified by silica gel column 

chromatography (10 % EtOAc/Hexanes). The desired product S12 was obtained as a pale 

yellow oil (2.0 g, 32 %). 1H NMR (400 MHz, CDCl3) δ = 7.36 – 7.35 (m, 4H), 7.33 - 7.26 (m, 

1H), 4.58 (s, 2H), 3.68 - 3.49 (m, 7H), 3.45 (t, J = 6.6 Hz, 2H), 2.20 (dt, J = 7.1, 2.7 Hz, 4H), 

1.96 (t, J = 2.7 Hz, 2H), 1.66 - 1.49 (m, 8H), 1.46 - 1.23 (m, 28H); 13C NMR (75 MHz, 

CDCl3) δ ppm = 138.4, 128.3, 127.54, 127.47, 84.8, 77.9 (2C), 73.3, 71.6, 70.7, 70.6, 70.3, 

68.0 (2C), 30.1 (2C), 29.63 (2C), 29.57 (2C), 29.53 (2C), 29.47 (2C), 29.1 (2C), 28.7 (2C), 

28.5 (2C), 26.10 (2C), 26.07 (2C); HRMS (ESI) m/z calculated for C36H59O3 [M+H]+, 

539.4459; found: 539.4443.  

 

1,2-Bis(10-undecynoyl)-3-O-benzylglycerol (S14): To a stirred solution of 1-O-benzyl-rac-

glycerol (0.56 mL, 6.3 mmol, 1 equiv.) and undecynoic acid (1.6 g, 13 mmol, 2 equiv.) in 

anhydrous dichloromethane (63 mL) was added N,N'-dicyclohexylcarbodiimide (5.23 g, 25.4 

mmol, 4 equiv.) and 4-dimethylaminopyridine (3.88 g, 38 mmol, 6 equiv.) at room 

temperature. The reaction mixture was stirred at room temperature for 15 h. Upon complete 

conversion of the starting material (TLC), the crude reaction mixture was placed in a freezer 

for 5 h to induce the precipitation of the urea, which was subsequently removed by filtration. 

The filtrate was concentrated in vacuo to provide the crude reaction mixture, which was 

purified by silica gel column chromatography to afford the desired product S14 as a colorless 
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semi-solid (1.24 g, 64 %). The NMR data are in agreement with that obtained in the 

literature.28  

 

((2,3-bis(prop-2-ynyloxy)propoxy)methyl)benzene (S15): To a stirred solution of 1-O-

benzyl-rac-glycerol (600 mg, 3.3 mmol) at 0 oC in anhydrous DMF (17 mL) was added NaH 

(60 % in oil, 330 mg, 8.2 mmol) in 5 portions. The mixture was warmed slowly to room 

temperature and propargyl bromide (0.75 mL, 7.2 mmol) was added in one portion. The 

reaction was then warmed to 60 oC for 2 h and then cooled back to room temperature. Water 

and ethyl acetate were added and the organic and aqueous layers were separated. The aqueous 

phase was extracted with EtOAc (3x) and the combined organic layers were washed with brine 

(3x). The organic layer was dried over Na2SO4, filtered and concentrated in vacuo. The crude 

oil was purified by silica gel column chromatography (10 % EtOAc/Hexanes). The desired 

product S15 was obtained as a colorless oil in (612 mg, 72 %). 1H NMR (300 MHz, CDCl3) δ 

= 7.41 - 7.22 (m, 5H), 4.55 (s, 2H), 4.33 (d, J = 2.4 Hz, 2H), 4.16 (d, J = 2.4 Hz, 2H), 3.93 (m, 

1H), 3.74 - 3.57 (m, 4H), 2.47 (m, 2H); 13C NMR (75 MHz, CDCl3) δ ppm = 137.8, 128.0, 

127.2 (2C), 79.7, 79.2, 76.0, 74.5, 74.2, 72.9, 69.5, 69.3, 58.1, 57.1; HRMS (ESI) m/z 

calculated for C16H19O3 [M+H]+, 259.1329; found: 259.1340. 

 

                                                

 

 
28 Bhattacharya, S.; Ghosh, S.; Easwaran, K. R. K. J. Org. Chem. 1998, 63, 9232. 
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SYNTHESIS OF MACROCYCLES 

 

General procedure A for the macrocylization of diynes under Glaser-Hay oxidative 

coupling conditions using microwave irradiation: Macrocycle (4): To a microwave vial 

equipped with a stirring bar was added CuCl2 (5.5 mg, 0.03 mmol, 25 mol %) and 

Ni(NO3)2·6H2O (9.3 mg, 0.03 mmol, 25 mol %). Polyethylene glycol 400 (3.33 mL), 

triethylamine (0.05 mL, 0.36 mmol, 3 equiv.) and TMEDA (0.07 mL, 0.6 mmol, 5 equiv.) 

were added and the mixture was stirred at room temperature for 15 min or until the solution 

was homogenous. The diyne (0.12 mmol) was added to the mixture as a methanol solution 

(1.67 mL) in one portion. Oxygen was bubbled in the solution for 5 min and the vial was then 

closed with a microwave cap. The reaction was warmed to 120 °C for 6 h using a Biotage 

Initiator microwave reactor. The crude mixture was loaded directly on a silica column. 

Purification by chromatography (100 % Hexanes→20 % EtOAc/Hexanes) afforded the 

product 4 as a colorless semi-solid (31 mg, 81 %).  

 

General procedure B for the macrocylization of diynes under Glaser-Hay oxidative 

coupling conditions using continuous-flow: Macrocycle (4): To a pear shaped flask 

equipped with a stirring bar was added CuCl2 (11 mg, 0.06 mmol, 25 mol %) and 

Ni(NO3)2·6H2O (19 mg, 0.06 mmol, 25 mol %). Polyethylene glycol 400 (5 mL), 

triethylamine (0.1 mL, 0.72 mmol, 3 equiv.) and TMEDA (0.14 mL, 1.2 mmol, 5 equiv.) were 
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added and the mixture was stirred at room temperature for 15 min or until the solution was 

homogenous. The diyne (0.24 mmol) was added to the mixture as a methanol solution (5 mL) 

in one portion. The reaction was then passed through a 5 mL stainless-steel coil at 1 mL/min at 

120 °C using a VapourTech R4 reactor and a R2+ pumping module. The solution was cycled 

for a total residence time of 1.5 h (which for a 10 mL reaction mixture and a 5 mL coil takes a 

total reaction time of 3 h). To the crude reaction mixture, silica gel was added and the solvent 

was removed in vacuo. Purification by silica gel chromatography (100 % Hexanes→20 % 

EtOAc/Hexanes) afforded the product as a colorless semi-solid (66 mg, 91 %).  

 

General procedure C for the large scale macrocylization of diynes under Glaser-Hay 

oxidative coupling conditions using continuous-flow: Macrocycle (8): To a pear shaped 

flask equipped with a stirring bar was added CuCl2 (160 mg, 0.94 mmol, 25 mol %) and 

Ni(NO3)2·6H2O (273 mg, 0.94 mmol, 25 mol %). Polyethylene glycol 400 (96 mL), 

triethylamine (1.47 mL, 11.25 mmol, 3 equiv.) and TMEDA (3.0 mL, 18.75 mmol, 5 equiv.) 

were added and the mixture was stirred at room temperature for 15 min or until the metals 

were solubilized. The diyne (1.3g, 3.75 mmol) was added to the homogenous mixture as a 

methanol solution (48 mL) in one portion. The reaction was then passed through two 10 mL 

stainless-steel coil placed in series (connected with a short isolated stainless steel tube) at 0.22 

mL/min at 120 °C using a VapourTech R4 reactor and a R2+ pumping module. After 

collection of the reaction mixture, silica gel was added and the solvent was removed in vacuo. 
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Purification by chromatography (100 % Hexanes→20 % EtOAc/Hexanes) afforded the 

product 8 as a colorless semi-solid (860 mg, 66 %). 1H NMR (300 MHz, CDCl3) δ =7.42 - 

7.22 (m, 5H), 4.61 (s, 2H), 3.96 - 3.33 (m, 9H), 2.48 - 2.31 (m, 2H), 2.25 - 2.06 (m, 2H), 1.90 

- 1.53 (m, 6H), 1.26 (s, 2H); 13C NMR (125 MHz, CDCl3) δ ppm = 138.7, 128.3, 127.6, 127.4, 

79.5, 79.3, 73.3, 71.2, 69.5, 69.2, 69.0, 66.6, 66.3, 29.7, 29.1, 28.4, 23.5, 23.3, 19.3, 19.1; 

HRMS (ESI) m/z calculated for C22H28NaO3 [M+Na]+, 363.1931; found: 363.1930. 

 

Macrocycle (5): Following the general procedure B described above, macrocycle 5 was 

isolated as a colorless oil. (71 mg, 72 %). 1H NMR (300 MHz, CDCl3) δ ppm: 4.12 (m, 4H), 

2.46 - 2.24 (m, 8H), 1.95 - 1.44 (m, 12H); 13C NMR (75 MHz, CDCl3) δ ppm = 173.4, 76.7, 

66.2, 64.0, 34.6, 27.2, 25.4, 24.4, 18.8; HRMS (ESI) m/z calculated for C18H24NaO4 [M+Na]+, 

327.1567; found: 327.1572. 

 

Macrocycle (9): Following the general procedure B described above, macrocycle 9 was 

isolated as a colorless oil (90 mg, 78 %). 1H NMR (300 MHz, CDCl3) δ ppm: 7.40 - 7.23 (m, 

5H), 4.56 (s, 2H), 3.73 - 3.35 (m, 9H), 2.33 - 2.22 (m, 4H), 1.71 - 1.19 (m, 28H); 13C NMR 

(75 MHz, CDCl3) δ ppm = 138.4, 128.3, 127.6, 127.5, 77.9, 77.2, 73.3, 71.53, 71.45, 70.5, 
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70.3, 70.1, 65.7 (2C), 29.9, 29.7, 29.5 (2C), 29.3 (2C), 29.0, 28.9, 28.8, 28.28, 28.25, 27.82, 

27.81, 26.09, 26, 07, 19.1; HRMS (ESI) m/z calculated for C32H49O3 [M+H]+, 481.3676; 

found: 481.3678.  

 

Macrocycle (10): Following the general procedure B described above, macrocycle 10 was 

isolated as a colorless oil (64 mg, 99 %). 1H NMR (300 MHz, CDCl3) δ ppm: 7.41 - 7.25 (m, 

5H), 4.56 (s, 2H), 3.74 - 3.36 (m, 9H), 2.27 (t, J = 6.2 Hz, 4H), 1.68 - 1.20 (m, 16H); 13C 

NMR (75 MHz, CDCl3) δ ppm = 138.4, 128.3, 127.6, 127.5, 78.0, 77.49, 77.48, 73.3 (2C), 

71.6, 71.3 (2C), 70.6, 70.2 (2C), 65.594, 65.587, 30.0, 29.6, 29.50, 29.48, 29.3, 29.24, 29.214, 

29.207, 28.95, 28.94, 28.40, 28.38, 28.0, 26.09, 26.07, 19.14, 19.12; HRMS (ESI) m/z 

calculated for C36H56NaO3 [M+Na]+, 559.4122; found: 559.4130. 

 

Macrocycle (11): Following the general procedure B described above, macrocycle 11 was 

isolated as a colorless semi-solid (55 mg, 45 %). The NMR data are in agreement with that 
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obtained in the literature.29 

 

Macrocycle (12): Following the general procedure B described above, macrocycle 13 was 

isolated as a colorless semi-solid as a mixture of head-to-head and head-to-tail dimers (44 mg, 

55 %). 1H NMR (400 MHz, CDCl3) δ = 7.40 - 7.28 (m, 10H), 4.58 - 4.51 (m, 6H), 4.37 - 4.26 

(m, 6H), 3.99 - 3.88 (m, 2H), 3.81 - 3.65 (m, 4 H), 3.62 - 3.50 (m, 4 H); 13C NMR (100 MHz, 

CDCl3, signal for both dimer reported) δ ppm = 138.1, 128.4, 127.7, 127.6 (2C), 78.1, 77.6, 

77.20, 77.16, 75.96, 75.91, 75.86, 75.8, 75.4, 75.3, 75.1, 73.5, 70.9, 70.8, 70.74, 70.72, 70.6, 

70.4, 70.34, 70.32, 70.25, 70.24, 70.21, 69.73, 69.72, 69.51, 69.45, 59.24, 59.18, 59.15, 59.09, 

58.96, 58.85, 58.82. All attempts to characterize macrocycle 12 by ESI-Ms failed. As such 

macrocycle 12 (44 mg) was completely hydrogenated (THF (5 mL), Pd/C (10 %w/w, 4.4 mg), 

H2 (1 atm), 3 h, rt) to afford a single compound as a colorless oil. HRMS (ESI) m/z calculated 

for C18H36NaO6 [M+Na]+ 371.2404; found: 371.2410. 

  

                                                

 

 
29 Bhattacharya, S.; Ghosh, S.; Easwaran, K. R. K. J. Org. Chem. 1998, 63, 9232. 
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SYNTHESIS OF PHOSPHOLIPID 14 

 

(1,4-dioxacyclohexadecan-2-yl)methanol (S16): A stirring solution of macrocycle 8 (150 

mg, 0.44 mmol) in THF (5 mL) at room temperature was degassed with N2 for 5 minutes. 

Pd/C (15 mg, 10 % w/w) was added and hydrogen was bubbled through the mixture for 5 

minutes. The reaction was then stirred at room temperature for 3-4 h under an H2 atmosphere 

(or until complete by TLC). Nitrogen was bubbled again through the reaction mixture for 5 

minutes and the crude mixture was then filtered on Celite® and washed with THF (3x). The 

filtrate was concentrated in vacuo and purified by column chromatography (50 % 

EtOAc/Hexanes→100 % EtOAc) to afford the hydrogenated product S16 as a colorless oil (60 

mg, 52 %). 1H NMR (400 MHz, CDCl3) δ = 3.84 - 3.40 (m, 9H), 2.12 (dd, J = 6.6, 5.1 Hz, 

1H), 1.72 - 1.21 (m, 20H). 13C NMR (100 MHz, CDCl3) δ ppm = 78.7, 71.9, 71.0, 69.8, 62.4, 

29.2, 29.0, 26.93, 26.88, 26.75, 26.72, 25.67, 25.66, 24.63, 24.55; HRMS (ESI) m/z calculated 

for C15H30NaO3 [M+Na]+, 281.2087; found: 281.2095. 
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(1,4-dioxacyclohexadecan-2-yl)methyl-2-(1-methylpyrrolidinium-1-yl)ethyl phosphate 

(14): To a solution of (1,4-dioxacyclohexadecan-2-yl)methanol (25 mg, 0.1 mmol) in 

anhydrous benzene (1 mL) was added triethylamine (0.02 mL, 0.14 mmol). The solution was 

cooled to 0 oC and 2-chloro-1,3,2-dioxaphospholane-2-oxide (0.011 mL, 0.12 mmol) was 

added. The resulting mixture was stirred at 0 oC for 5 min, warmed to room temperature and 

stirred another 2 h. The crystalline Et3NHCl was removed by filtration and the filtrate was 

concentrated to afford a crude pale yellow oil. The crude oil was placed in a sealed tube, 

redissolved in anhydrous acetonitrile (2.4 mL) and cooled to -78 oC. N-Methylpyrrolidine 

(0.32 mL) was added in one portion. The tube was then sealed and warmed to 70 oC for 24 h. 

The reaction mixture was then concentrated in vaccuo until the excess N-Methylpyrrolidine 

was completely removed. Lipid 14 was obtained as a pale brown semi-solid in 58 % yield. 1H 

NMR (400 MHz, CDCl3) δ = 4.53 - 4.06 (m, 9H), 3.83 - 3.49 (m, 12H), 3.17 - 3.13 (m, 2H), 

1.55 - 1.26 (m, 22H). 13C NMR (125 MHz, CDCl3) δ ppm = 78.7, 77.2, 71.8 (2C), 71.03, 

70.99 (2C), 70.3, 69.8, 62.3, 30.3, 29.7, 29.2, 29.0, 26.93, 26.89, 26.75, 26.73, 26.69, 25.67, 

24.63, 24.55; 31P NMR (162 MHz, CDCl3) δ ppm = 3.31. HRMS (ESI) m/z calculated for 

C23H47NO6P [M+H]+, 464.3141; found: 464.3175. 
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NMR SPECTRA FOR ALL NEW COMPOUNDS 
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Chapter 18 : Supporting Information of Chapter 9: 

Advanced Strategies for Efficient Macrocyclic Cu(I)-

Catalyzed Cycloaddition of Azides 

 

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.30 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. 8-azidooctan-1-ol31, 4-azidobutan-1-ol32, 12-azidododecan-1-ol33 were 

prepared according to literature procedures. Technical solvents were obtained from VWR 

International Co. Anhydrous solvents (CH2Cl2, Et2O, THF, DMF, Toluene, and hexanes) were 

dried and deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the 

mass obtained following flash column silica gel chromatography. Organic compounds were 

purified using the method reported by W. C. Still34 and using silica gel obtained from Silicycle 

Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) 

was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle 

Chemical division, 0.25 mm, F254.). Visualization of TLC plate was performed by UV (254 

                                                

 

 
30 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
31 Kang, Y.; Lou, C.; Begam, K.; Ahmed, R.; Huang, H.; Jin, Z. Bioorg. Med. Chem. Lett. 2009, 19, 5166. 
32 Kotsuki, H. ; Sakai, H. ; Sugino, A. ; Yasuda, H. Heterocycles 2000, 53, 2561. 
33 Fujita, S.; Sato, T.; Hatanaka, K.; Kasuya, Maria C. Z.; Yamagata, T. Chem. Lett. 2004, 33, 580. 
34 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.  
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nm), KMnO4 or p-anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. 

Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All 

reported compounds were homogeneous by thin layer chromatography (TLC) and by 1H 

NMR. NMR spectra were taken in deuterated CDCl3 using Bruker AV-300 and AV-400 

instruments unless otherwise noted. Signals due to the solvent served as the internal standard 

(CHCl3: δ 7.27 for 1H, δ 77.0 for 13C). The 1H NMR chemical shifts and coupling constants 

were determined assuming first-order behavior. Multiplicity is indicated by one or more of the 

following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of 

couplings constants (J) corresponds to the order of the multiplicity assignment. The 1H NMR 

assignments were made based on chemical shift and multiplicity. The 13C NMR assignments 

were made on the basis of chemical shift. High resolution mass spectroscopy (HRMS) was 

done by the Centre régional de spectrométrie de masse at the Département de Chimie, 

Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization 

unless otherwise noted.  
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SYNTHESIS OF MACROCYCLIZATION PRECURSORS. 

General Procedure A for Steglich Esterifications: To a stirred solution of the alcohol (1 

equiv.) and the carboxylic acid (1.5 equiv.) in dry dichloromethane (0.2 M) was added N,N'-

dicyclohexylcarbodiimide (DCC, 2 equiv.) and 4-dimethylaminopyridine (DMAP, 3 equiv.) at 

room temperature. The reaction mixture was stirred at room temperature for 15 h. Upon 

complete conversion of the starting material (by TLC analysis), the crude reaction mixture was 

placed in a freezer for 5 h to induce the precipitation of the urea, which was subsequently 

removed by filtration. The filtrate was concentrated in vacuo to provide the crude reaction 

mixture, which was purified by column chromatography on silica gel to afford the desired 

product.  

 

8-azidooctyl hept-6-ynoate (1): Following the General Procedure A, 8-azidooctan-1-ol (3.96 

g, 23.1 mmol), 6-heptynoic acid (2.45 g, 19.4 mmol), DCC (7.90 g, 38.3 mmol) and DMAP 

(7.00 g, 57.3 mmol) in anhydrous DCM (100 mL) were added to the reaction flask. The 

reaction mixture was stirred at room temperature for 15 h. Upon complete conversion of the 

starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture. Following purification by column 

chromatography (10 % ethyl acetate in hexanes), the desired product was obtained as a 

colorless oil (3.36 g, 62 %). 1H NMR (300 MHz, CDCl3) d = 4.06 (t, J = 6.7 Hz, 2H), 3.26 (t, J 

= 6.9 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 2.22 (td, J = 7.0, 2.7 Hz, 2H), 1.95 (t, J = 2.6 Hz, 1H), 

1.85 - 1.47 (m, 8H), 1.47 - 1.20 (m, 8H); 13C NMR (75 MHz, CDCl3) d = 173.5, 83.9, 68.5, 
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64.4, 51.4, 33.8, 30.0, 29.0, 28.8, 28.6, 27.8, 26.6, 25.8, 24.0, 18.1 ppm; HRMS (ESI) m/z 

calculated for C15H25N3NaO2 [M+Na]+, 302.1839; found: 302.1836.  

 

4-azidobutyl undec-10-ynoate (S5): Following the General Procedure A, 4-azidobutan-1-ol 

(500 mg, 4.4 mmol), 10-undecynoic acid (528 mg, 2.9 mmol), DCC (1.20 g, 5.8 mmol) and 

DMAP (1.06 g, 8.7 mmol) in anhydrous DCM (15 mL) were added to the reaction flask. The 

reaction mixture was stirred at room temperature for 15 h. Upon complete conversion of the 

starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture. Following purification by column 

chromatography (10 % ethyl acetate in hexanes), the desired product was obtained as a 

colorless oil (406 mg, 50 %). 1H NMR (300 MHz, CDCl3) d = 4.10 (t, J = 6.1 Hz, 2H), 3.32 (t, 

J = 6.4 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 2.18 (td, J = 7.0, 2.6 Hz, 2H), 1.94 (t, J = 2.7 Hz, 

1H), 1.78 - 1.46 (m, 8H), 1.43 – 1.26 (m, 8H); 13C NMR (75 MHz, CDCl3) d = 173.8, 84.7, 

68.1, 63.5, 51.0, 34.3, 29.07, 29.05, 28.9, 28.6, 28.4, 25.9, 25.6, 24.9, 18.4 ppm; HRMS (ESI) 

m/z calculated for C15H25N3NaO2 [M+Na]+, 302.1839; found: 302.1837. 

 

Undec-10-yn-1-yl methanesulfonate (S7): To a stirred solution of undec-10-yn-1-ol (500 mg, 

2.97 mmol) in anhydrous DCM (15 mL) was added Et3N (0.83 mL, 5.94 mmol) followed by 

MsCl (0.28 mL, 3.56 mmol). The solution was stirred at room temperature for 2 h. Upon 

complete conversion of the starting material, water was added to the the crude reaction 
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mixture. Following extraction (3X) with DCM, the organic phase was dried with Na2SO4 and 

filtered. The filtrate was concentrated in vacuo to provide the crude reaction mixture that was 

taken to the next step without further purification. 11-azidoundec-1-yne (S8): To a stirred 

solution of undec-10-yn-1-yl methanesulfonate (732 mg, 2.97 mmol) in DMSO (15 mL) was 

added NaN3 (966 mg, 14.85 mmol) followed by NaI (222 mg, 1.5 mmol). The solution was 

stirred at room temperature for 16 h. Upon complete conversion of the starting material, water 

was added to the the crude reaction mixture. Following extraction (3X) with EtOAc, the 

organic phase was washed with brine, dried with Na2SO4 and filtered. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture Following purification by column 

chromatography (5 % ethyl acetate in hexanes), the desired product was obtained as a 

colorless oil (555 mg, 97 %). 1H NMR (400 MHz, CDCl3) d = 3.25 (t, J = 6.9 Hz, 2 H), 2.17 

(dt, J = 7.0, 2.7 Hz, 2 H), 1.93 (t, J = 2.6 Hz, 1 H), 1.64 - 1.55 (m, 2 H), 1.54 - 1.45 (m, 2 H), 

1.43 - 1.23 (m, 10 H); 13C NMR (100 MHz, CDCl3) d = 84.6, 68.0, 51.4, 29.2, 29.0, 28.9, 28.8, 

28.6, 28.4, 28.3, 26.6 ppm; HRMS (ESI) m/z calculated for C11H20N3 [M+H]+, 194.1657; 

found: 194.1654. 

 

8-azidooctyl undec-10-ynoate (S9): Following the General Procedure A, 8-azidooctan-1-ol 

(250 mg, 1.8 mmol), 10-undecynoic acid (181 mg, 1.0 mmol), DCC (410 mg, 2.0 mmol) and 

DMAP (380 mg, 3.1 mmol) in anhydrous DCM (5 mL) were added to the reaction flask. The 

reaction mixture was stirred at room temperature for 15 h. Upon complete conversion of the 

starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 
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concentrated in vacuo to provide the crude reaction mixture. Following purification by column 

chromatography (5 % ethyl acetate in hexanes), the desired product was obtained as a 

colorless oil (305 mg, 91 %). 1H NMR (300 MHz, CDCl3) d = 4.05 (t, J = 6.7 Hz, 2H), 3.26 (t, 

J = 6.9 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 2.17 (td, J = 7.0, 2.6 Hz, 2H), 1.93 (t, J = 2.6 Hz, 

1H), 1.66 – 1.49 (m, 8H), 1.44 - 1.18 (m, 16H); 13C NMR (75 MHz, CDCl3) d = 173.9, 84.7, 

68.1, 64.2, 51.4, 34.3, 29.1, 29.03 (2C), 28.98, 28.9, 28.8, 28.61, 28.56, 28.4, 26.6, 25.8, 24.9, 

18.3 ppm; HRMS (ESI) m/z calculated for C19H33N3NaO2 [M+Na]+, 358.2465; found: 

358.2465. 

 

12-azidodecyl undec-10-ynoate (S11): Following the General Procedure A, 8-azidooctan-1-

ol (150 mg, 0.7 mmol), 10-undecynoic acid (145 mg, 0.8 mmol), DCC (272 mg, 1.3 mmol) 

and DMAP (242 mg, 2.0 mmol) in anhydrous DCM (3.5 mL) were added to the reaction flask. 

The reaction mixture was stirred at room temperature for 15 h. Upon complete conversion of 

the starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture. Following purification by column 

chromatography (5 % ethyl acetate in hexanes), the desired product was obtained as a white 

solid (122 mg, 47 %). 1H NMR (400 MHz, CDCl3) d = 4.05 (t, J = 6.7 Hz, 2H), 3.25 (t, J = 7.0 

Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 2.17 (td, J = 7.0, 2.6 Hz, 2H), 1.93 (d, J = 2.8 Hz, 1H), 1.65 

- 1.48 (m, 8H), 1.45 - 1.18 (m, 24H); 13C NMR (100 MHz, CDCl3) d =173.9, 84.6, 68.0, 64.3, 

51.4, 34.3, 31.6, 29.45, 29.42, 29.2, 29.11, 29.07, 29.0, 28.9, 28.80, 28.6, 28.4, 26.7, 25.9, 
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24.9, 22.6, 18.3 ppm; HRMS (ESI) m/z calculated for C23H41N3NaO2 [M+Na]+, 414.3091; 

found: 414.3079. 

 

8-azidooctyl 7-iodohept-6-ynoate (5): To a stirred solution of 8-azidooctyl hept-6-ynoate 

(2.00 g, 7.2 mmol) in acetone (36 mL) was added N-iodosuccinimide (1.77 g, 7.9 mmol) 

followed by silver nitrate (121.5 mg, 0.7 mmol). The solution was stirred in the dark for 17 h. 

The crude mixture was reduced in vacuo and purified on silica gel (10 % ethyl acetate in 

hexanes) to afford the desired product as a colorless oil (1,02 g, 98 %). 1H NMR (400 MHz, 

CDCl3) d = 4.03 (t, J = 6.7 Hz, 2H), 3.23 (t, J = 6.9 Hz, 2H), 2.36 (t, J = 7.2 Hz, 2H), 2.29 (t, J 

= 7.2 Hz, 2H), 1.70 (m, 2H), 1.65 (m, 6H), 1.32 (m, 8H); 13C NMR (75 MHz, CDCl3) d = 

173.3, 93.9, 64.3, 51.3, 33.7, 28.97 (2C), 28.91, 28.7, 28.5, 27.8, 26.5, 25.7, 24.0, 20.4 ppm; 

HRMS (ESI) m/z calculated for C15H24IN3NaO2 [M+Na]+, 428.0805; found: 428.0806.  

 

4-azidobutyl 11-iodoundec-10-ynoate (S12): To a stirred solution of the 4-azidobutyl undec-

10-ynoate (400 mg, 1.4 mmol) in acetone (7 mL) was added N-iodosuccinimide (354 mg, 1.6 

mmol) followed by silver nitrate (24.3 mg, 0.14 mmol). The solution was stirred in the dark 

for 17 h. The crude mixture was reduced in vacuo and purified on silica-gel (10 % ethyl 

acetate in hexanes) to afford the desired product as a colorless oil (580 mg, 99 %). 1H NMR 

(400 MHz, CDCl3) d = 4.10 (t, J = 6.0 Hz, 2H), 3.33 (t, J = 6.4 Hz, 2H), 2.35 (t, J = 7.1 Hz, 

2H), 2.30 (t, J = 7.5 Hz, 2H), 1.78 - 1.45 (m, 8H), 1.43 - 1.24 (m, 8H); 13C NMR (100 MHz, 

CDCl3) d = 173.8, 94.7, 63.5, 51.0, 34.3, 29.0 (2C), 28.8, 28.6, 28.4, 25.9 (2C), 25.6, 24.9, 
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20.8 ppm; HRMS (ESI) m/z calculated for C15H28IN4O2 [M+NH4]+, 423.1252; found: 

423.1253. 

 

11-azido-1-iodoundec-1-yne (S13): To a stirred solution of 11-azidoundec-1-yne (500 mg, 

2.6 mmol) in acetone (13 mL) was added N-iodosuccinimide (484 mg, 2.9 mmol) followed by 

silver nitrate (59 mg, 0.26 mmol). The solution was stirred in the dark for 17 h. The crude 

mixture was reduced in vacuo and purified on silica-gel (5 % ethyl acetate in hexanes) to 

afford the desired product as a colorless oil (832 mg, 99 %). 1H NMR (300 MHz, CDCl3) d = 

3.25 (t, J = 6.8 Hz, 2H), 2.34 (t, J = 7.0 Hz, 2H), 1.65 - 1.54 (m, 2H), 1.53 - 1.43 (m, 2H), 1.43 

- 1.23 (m, 10H); 13C NMR (75 MHz, CDCl3) d = 94.6, 51.3, 29.1, 28.9 (2C), 28.8, 28.7, 28.5 

(2C), 28.3, 26.5 ppm; HRMS (ESI) m/z calculated for C11H19IN3 [M+H]+, 320.0624; found: 

320.0627.  

 

8-azidooctyl 11-iodoundec-10-ynoate (S14): To a stirred solution of the 8-azidooctyl undec-

10-ynoate (306 mg, 0.9 mmol) in acetone (5 mL) was added N-iodosuccinimide (225.2 mg, 

1.0 mmol) followed by silver nitrate (15.4 mg, 0.091 mmol). The solution was stirred in the 

dark for 17 h. The crude mixture was reduced in vacuo and purified on silica-gel (5 % ethyl 

acetate in hexanes) to afford the desired product. The desired product was obtained as a 

colorless oil (415 mg, 99 %). 1H NMR (300 MHz, CDCl3) d = 4.04 (t, J = 6.7 Hz, 2H), 3.24 (t, 

J = 6.9 Hz, 2H), 2.33 (t, J = 7.0 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 1.69 - 1.42 (m, 8H), 1.42 - 

1.22 (m, 16H); 13C NMR (75 MHz, CDCl3) d = 173.8, 94.6, 64.2, 51.3, 34.3, 28.98 (2C), 28.97 
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(2C), 28.93, 28.8, 28.7, 28.6, 28.5, 28.3, 26.5, 25.7, 24.9, 20.7 ppm; HRMS (ESI) m/z 

calculated for C19H36IN4O2 [M+NH4]+, 479.1878; found: 479.1877. 

 

12-azidodecyl 11-iodoundec-10-ynoate (S15): To a stirred solution of the 12-azidodecyl 

undec-10-ynoate (130 mg, 0.3 mmol) in acetone (2 mL) was added N-iodosuccinimide (82 

mg, 0.4 mmol) followed by silver nitrate (5.6 mg, 0.03 mmol). The solution was stirred in the 

dark for 17 h. The crude mixture was reduced in vacuo and purified on silica-gel (5 % ethyl 

acetate in hexanes) to afford the desired product. The desired product was obtained as a white 

solid (170 mg, 99 %). 1H NMR (400 MHz, CDCl3) d = 4.06 (t, J = 6.7 Hz, 2H), 3.26 (t, J = 6.9 

Hz, 2H), 2.35 (t, J = 7.0 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.64 – 1.49 (m, 8H), 1.42 - 1.22 (m, 

24H); 13C NMR (100 MHz, CDCl3) d = 173.9, 94.7, 64.4, 51.4, 34.3, 29.48, 29.46, 29.43, 

29.41, 29.2, 29.11, 29.10, 29.05, 29.0, 28.84, 28.79, 28.7, 28.6, 28.4, 26.7, 25.9, 24.9, 20.8 

ppm; HRMS (ESI) m/z calculated for C23H40IN3NaO2 [M+Na]+, 540.2057; found: 540.2049. 

 

(S)-methyl-2-(undec-10-ynamido)-3-phenylpropanoate (S17): Following the General 

Procedure A, L-phenylalanine methyl ester hydrochloride (500 mg, 2.8 mmol), 10-undecynoic 

acid (340 mg, 1.9 mmol), DCC (783 mg, 3.8 mmol) and DMAP (695 mg, 5.7 mmol) in 

anhydrous DCM (10 mL) were added to the reaction flask. The reaction was stirred for 17 h. 

Upon complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 
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filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture, which 

was purified by column chromatography on silica-gel (30 % ethyl acetate in hexanes). The 

desired product was obtained as a white solid (688 mg, 71 %). 1H NMR (300 MHz, CDCl3) d 

= 7.33 - 7.18 (m, 3 H), 7.14 - 7.04 (m, 2 H), 6.00 (d, J = 7.8 Hz, 1 H), 4.91 – 4.85 (m, 1 H), 

3.71 (s, 3 H), 3.21 - 2.98 (m, 2 H), 2.21 - 2.09 (m, 4 H), 1.92 (t, J = 3.0 Hz, 1 H), 1.66 - 1.18 

(m, 12 H); 13C NMR (75 MHz, CDCl3) d = 172.5, 172.1, 135.8, 129.1, 128.4, 126.9, 84.5, 

68.0, 52.8, 52.1, 37.8, 36.3, 29.02, 28.96, 28.7, 28.3, 28.5, 25.4, 18.2 ppm; HRMS (ESI) m/z 

calculated for C21H30NO3 [M+H]+, 344.2220; found: 344.2221. 

 

(S)-methyl-2-(undec-10-ynamido)-3-phenylpropanoic acid (S18): To a solution of (S)-

methyl-2-(undec-10-ynamido)-3-phenylpropanoate (688 mg, 2 mmol) in THF:H2O (4:1, 10 

mL and 3 mL) was added LiOH (240 mg, 10 mmol). The mixture was stirred at 60 oC for 2 h 

and then cooled to ambient temperature. EtOAc and HCl 1 N were added to the mixture and 

the aqueous and organic phases were separated. The aqueous phase was extracted (2x) with 

EtOAc. The organic phases where combined, dried with Na2SO4, filtered and concentrated in 

vacuo. The crude solid was directly used in the following reaction. (S)-azidooctan-2-(undec-

10-ynamido)-3-phenylpropanoate (S19): Following the General Procedure A, 8-azidooctan-

1-ol (100 mg, 0.6 mmol), (S)-methyl-2-(undec-10-ynamido)-3-phenylpropanoic acid (234 mg, 

0.7 mmol), DCC (243 mg, 1.2 mmol) and DMAP (216 mg, 1.8 mmol) in anhydrous DCM (3 

mL) were added to the reaction flask. Upon complete conversion of the starting material, the 

crude reaction mixture was placed in a freezer for 5 h to induce the precipitation of the urea, 
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which was subsequently removed by filtration. The filtrate was concentrated in vacuo to 

provide the crude reaction mixture, which was purified by column chromatography on silica-

gel (20 to 50 % ethyl acetate in hexanes). The desired product was obtained as a white solid 

(234 mg, 82 % over 2 steps). 1H NMR (300 MHz, CDCl3) d = 7.29 - 7.15 (m, 3 H), 7.10 - 7.03 

(m, 2 H), 5.85 (d, J = 7.8 Hz, 1 H), 4.88 – 4.81 (m, 1 H), 4.14 - 3.97 (m, 2 H), 3.22 (t, J = 6.9 

Hz, 2 H), 3.16 - 2.99 (m, 2 H), 2.19 - 2.08 (m, 4 H), 1.89 (t, J = 2.6 Hz, 1 H), 1.66 - 1.14 (m, 

24 H); 13C NMR (75 MHz, CDCl3) d = 172.5, 171.8, 135.9, 129.2, 128.4, 127.0, 84.7, 68.1, 

65.5, 52.9, 51.4, 38.0, 36.5, 29.11, 29.06, 28.97, 28.93, 28.8, 28.7, 28.6, 28.37, 28.36, 26.6, 

25.7, 25.5, 18.3 ppm; HRMS (ESI) m/z calculated for C28H43N4O3 [M+H]+, 483.3330; found: 

483.3335. 

 

(S)-methyl-2-(hept-6-ynamido)-3-phenylpropanoate (S20): Following the General 

Procedure A, L-phenylalanine methyl ester hydrochloride (500 mg, 2.8 mmol), 6-heptynoic 

acid (240 mg, 1.9 mmol), DCC (783 mg, 3.8 mmol) and DMAP (695 mg, 5.7 mmol) in 

anhydrous DCM (10 mL) were added to the reaction flask. The reaction was stirred for 17 h. 

Upon complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture, which 

was purified by column chromatography on silica-gel (30 % ethyl acetate in hexanes). The 

desired product was obtained as a white solid (646 mg, 80 %). 1H NMR (300 MHz, CDCl3) d 

= 7.35 - 7.19 (m, 3 H), 7.15 - 7.06 (m, 2 H), 6.01 (d, J = 7.8 Hz, 1 H), 4.94 – 4.87 (m, 1 H), 
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3.73 (s, 3 H), 3.20 – 3.06 (m, 2 H), 2.25 - 2.13 (m, 4 H), 1.95 (t, J = 2.6 Hz, 1 H), 1.79 - 1.65 

(m, 2 H), 1.58 - 1.44 (m, 2 H); 13C NMR (75 MHz, CDCl3) d = 172.1 (2C), 135.8, 129.1, 

128.5, 127.0, 83.9, 68.6, 52.8, 52.2, 37.8, 35.7, 27.7, 24.5, 18.0 ppm; HRMS (ESI) m/z 

calculated for C17H21NNaO3 [M+Na]+, 310.1414; found: 310.1413.  

 

(S)-methyl-2-(hept-6-ynamido)-3-phenylpropanoic acid (S21): To a solution of (S)-methyl-

2-(hept-6-ynamido)-3-phenylpropanoate (646 mg, 2.3 mmol) in THF:H2O (4:1, 9 mL and 2.3 

mL) was added LiOH (270 mg, 11 mmol). The mixture was stirred at 60 oC for 2 h and then 

cooled to ambient temperature. EtOAc and HCl 1 N were added to the mixture and the 

aqueous and organic phases were separated. The aqueous phase was extracted (2x) with 

EtOAc. The organic phases where combined, dried with Na2SO4, filtered and concentrated in 

vacuo. The crude solid was directly used in the following reaction.(S)-azidooctan-2-(hept-6-

ynamido)-3-phenylpropanoate (S22): Following the General Procedure A, 8-azidooctan-1-ol 

(100 mg, 0.6 mmol), (S)-methyl-2-(hept-7-ynamido)-3-phenylpropanoic acid (193 mg, 0.7 

mmol), DCC (243 mg, 1.2 mmol) and DMAP (215.9 mg, 1.8 mmol) in anhydrous DCM (3 

mL) were added to the reaction flask. Upon complete conversion of the starting material, the 

crude reaction mixture was placed in a freezer for 5 h to induce the precipitation of the urea, 

which was subsequently removed by filtration. The filtrate was concentrated in vacuo to 

provide the crude reaction mixture, which was purified by column chromatography on silica-

gel (20 to 50 % ethyl acetate in hexanes). The desired product was obtained as a white solid 

(173 mg, 69 % over 2 steps). 1H NMR (300 MHz, CDCl3) d = 7.30 - 7.16 (m, 3 H), 7.12 - 6.98 



 

 iiiiii 

(m, 2 H), 5.86 (d, J = 7.8 Hz, 1 H), 4.87 – 4.81 (m, 1 H), 4.16 - 3.95 (m, 2 H), 3.21 (t, J = 6.9, 

2 H), 3.15 - 2.99 (m, 2 H), 2.21 - 2.07 (m, 4 H), 1.90 (t, J = 2.6 Hz, 1 H), 1.80 - 1.13 (m, 16 

H); 13C NMR (75 MHz, CDCl3) d = 172.1, 171.8, 135.9, 129.3, 128.5, 127.1, 84.0, 68.6, 65.6, 

52.9, 51.4, 38.0, 35.8, 29.2, 29.0, 28.8, 28.4, 27.7, 26.6, 25.7, 24.5, 18.1 ppm; HRMS (ESI) 

m/z calculated for C24H35N4O3 [M+H]+, 427.2701; found: 427.2704.  

 

(S)-azidooctan-2-(11-iodoundec-10-ynamido)-3-phenylpropanoate (S23): To a stirred 

solution of the (S)-azidooctan-2-(undec-10-ynamido)-3-phenylpropanoate (82 mg, 0.17 mmol) 

in acetone (2 mL) was added N-iodosuccinimide (42 mg, 0.19 mmol) followed by silver 

nitrate (3 mg, 0.017 mmol). The solution was stirred in the dark for 17 h. The crude mixture 

was reduced in vacuo and purified on silica-gel (20 to 50 % ethyl acetate in hexanes) to afford 

the desired product as a colorless oil (92 mg, 89 %). 1H NMR (300 MHz, CDCl3) d = 7.40 - 

7.22 (m, 3H), 7.11 (dd, J = 7.6, 1.8 Hz, 2H), 5.89 (d, J = 7.8 Hz, 1H), 4.90 (dt, J = 7.9, 5.9 Hz, 

1H), 4.15 – 4.06 (m, 2H), 3.27 (t, J = 6.9 Hz, 2H), 3.13 (t, J = 5.3 Hz, 2H), 2.36 (t, J = 7.0 Hz, 

2H), 2.18 (t, J = 7.6 Hz, 2H), 1.76 - 1.09 (m, 24H); 13C NMR (75 MHz, CDCl3) d = 172.5, 

171.8, 135.9, 129.2, 128.5, 127.0, 94.7, 65.5, 52.9, 51.4, 38.0, 36.5, 29.09, 29.07, 29.00, 28.95 

(2C), 28.81, 28.77, 28.6, 28.4 (2C), 26.6, 25.7, 25.5, 20.8 ppm; HRMS (ESI) m/z calculated 

for C28H41IN4NaO3 [M+Na]+, 631.2116; found: 631.2110.  
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(S)-azidooctan-2-(7-iodohept-6-ynamido)-3-phenylpropanoate (S24): To a stirred solution 

of the (S)-azidooctan-2-(hept-6-ynamido)-3-phenylpropanoate (31 mg, 0.073 mmol) in 

acetone (2 mL) was added N-iodosuccinimide (18 mg, 0.08 mmol) followed by silver nitrate 

(1.2 mg, 0.0073 mmol). The solution was stirred in the dark for 17 h. The crude mixture was 

reduced in vacuo and purified on silica-gel (20 to 50 % ethyl acetate in hexanes) to afford the 

desired product as a colorless oil (33 mg, 81 %). 1H NMR (300 MHz, CDCl3) d = 7.28 - 7.12 

(m, 3H), 7.07 - 6.96 (m, 2H), 5.79 (d, J = 7.9 Hz, 1H), 4.87 - 4.75 (m, 1H), 4.16 – 3.95 (m, 

2H), 3.19 (t, J = 6.9, 2H), 3.05 (t, J = 6.9 Hz, 2H), 2.29 (t, J = 7.0 Hz, 2H), 2.12 (t, J = 7.5 Hz, 

2H), 1.65 – 1.40 (m, 8H), 1.35 - 1.16 (m, 8H); 13C NMR (75 MHz, CDCl3) d = 172.0, 171.8, 

135.9, 129.3, 128.6, 127.1, 94.0, 65.6, 52.9, 51.5, 38.0, 35.9, 29.2 (2C), 29.1, 29.0, 28.8, 27.8, 

26.6, 25.7, 25.6, 20.6 ppm; HRMS (ESI) m/z calculated for C24H34IN4O3 [M+H]+, 553.1670; 

found: 553.1669.  

 

(S)-methyl 2-(undec-10-ynamido)-4-methylpentanoate (S26): Following the General 

Procedure A, L-isoleucine methyl ester hydrochloride (800 mg, 4.8 mmol), 10-undecynoic 

acid (726 mg, 3.98 mmol), DCC (1.64 g, 8.0 mmol) and DMAP (1.46 g, 12.0 mmol) in 

anhydrous DCM (20 mL) were added to the reaction flask. The reaction was stirred for 17 h. 

Upon complete conversion of the starting material, the crude reaction mixture was placed in a 
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freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture, which 

was purified by column chromatography on silica-gel (30 % ethyl acetate in hexanes). The 

desired product was obtained as a white solid (1.24 g, 83 %). 1H NMR (400 MHz, CDCl3) d = 

6.63 (d, J = 8.2 Hz, 1H), 5.16 (m, 1H), 4.52 - 4.32 (m, 1H), 3.95 – 3.89 (m, 1H), 3.52 (s, 3H), 

2.04 (t, J = 7.6 Hz, 2H), 1.96 (t, J = 7.5 Hz, 2H), 1.84 (s, 1H), 1.78 (s, 1H), 1.56 - 1.26 (m, 

6H), 1.19 – 1.06 (m, 6H), 0.74 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) d =173.2, 

172.7, 84.0, 67.9, 51.5, 50.1, 40.7, 35.7, 28.7, 28.5, 28.2, 28.0, 25.2, 24.3, 22.4, 21.3, 17.8 

ppm; HRMS (ESI) m/z calculated for C18H32NO3 [M+H]+, 310.2377; found: 310.2376. 

 

(S)-methyl 2-(undec-10-ynamido)-4-methylpentanoaic acid (S27): To a solution of (S)-

methyl 2-(undec-10-ynamido)-4-methylpentanoate (1.24 g, 3.74 mmol) in THF:H2O (4:1, 16 

mL and 4 mL) was added LiOH (449 mg, 18.7 mmol). The mixture was stirred at 60 oC for 2 h 

and then cooled to ambient temperature. EtOAc and HCl 1N were added to the mixture and 

the aqueous and organic phases were separated. The aqueous phase was extracted (2x) with 

EtOAc. The organic phases where combined, dried with Na2SO4, filtered and concentrated in 

vacuo. The crude solid was directly used in the following reaction. (S)-azidooctan-2-(undec-

10-ynamido)-4-methylpentanoate (S28): Following the General Procedure A, 8-azidooctan-

1-ol (500 mg, 2.9 mmol), (S)-methyl 2-(undec-10-ynamido)-4-methylpentanoaic acid (929 

mg, 2.9 mmol), DCC (1.2 g, 5.8 mmol) and DMAP (1.1 mg, 8.8 mmol) in anhydrous DCM 

(15 mL) were added to the reaction flask. Upon complete conversion of the starting material, 
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the crude reaction mixture was placed in a freezer for 5 h to induce the precipitation of the 

urea, which was subsequently removed by filtration. The filtrate was concentrated in vacuo to 

provide the crude reaction mixture, which was purified by column chromatography on silica-

gel (20 to 50 % ethyl acetate in hexanes). The desired product was obtained as a white solid 

(720 mg, 55 % over 2 steps). 1H NMR (400 MHz, CDCl3) d = 5.84 (d, J = 8.4 Hz, 1 H), 4.69 - 

4.56 (m, 1 H), 4.11 (t, J = 6.8 Hz, 2 H), 3.26 (t, J = 7.0 Hz, 2 H), 2.26 - 2.11 (m, 4 H), 1.96 - 

1.91 (m, 1 H), 1.75 - 1.45 (m, 10 H), 1.42 - 1.24 (m, 17 H), 0.94 (d, J = 6.1 Hz, 6 H); 13C 

NMR (100 MHz, CDCl3) d = 173.3, 172.7, 84.7, 68.1, 65.3, 51.4, 50.6, 41.9, 36.5, 29.13, 

29.11, 29.0, 28.9, 28.8, 28.6, 28.42, 28.39, 26.6, 25.7, 25.5, 24.9, 22.8, 22.1, 18.3 ppm; HRMS 

(ESI) m/z calculated for C25H45N4O3 [M+H]+, 449.3486; found: 449.3507. 

 

(S)-azidooctan-2-(11-iodoundec-10-ynamido)-4-methylpentanoate (S29): To a stirred 

solution of the (S)-azidooctan-2-(undec-10-ynamido)-4-methylpentanoate (164 mg, 0.35 

mmol) in acetone (2 mL) was added N-iodosuccinimide (87 mg, 0.39 mmol) followed by 

silver nitrate (6 mg, 0.04 mmol). The solution was stirred in the dark for 17 h. The crude 

mixture was reduced in vacuo and purified on silica-gel (20 to 50 % ethyl acetate in hexanes) 

to afford the desired product as a yellow solid (156 mg, 78 %). 1H NMR (300 MHz, CDCl3) d 

= 5.82 (d, J = 8.4 Hz, 1H), 4.64 (dt, J = 8.5, 5.2 Hz, 1H), 4.11 (t, J = 6.7 Hz, 2H), 3.26 (t, J = 

6.9 Hz, 2H), 2.35 (t, J = 7.0 Hz, 2H), 2.26 - 2.15 (m, 2H), 1.76 - 1.43 (m, 10H), 1.35 – 1.27 

(m, 17H), 0.95 (d, J = 6.1, 6H); 13C NMR (75 MHz, CDCl3) d = 173.3, 172.7, 94.7, 65.3, 51.4, 

50.6, 41.9, 36.5, 31.6, 29.1, 29.0, 28.84, 28.77, 28.6, 28.4, 28.4, 26.6, 25.7, 25.5, 24.9, 22.8, 
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22.1, 20.8, 14.1; HRMS (ESI) m/z calculated for C25H44IN4O3 [M+H]+, 575.2453; found: 

575.2459. 

 

azidooctan 3-ethynylbenzoate (S31): Following the General Procedure A, 8-azidooctan-1-ol 

(250 mg, 1.47 mmol), 3-ethynylbenzoic acid (258 mg, 1.76 mmol), DCC (606 mg, 2.94 mmol) 

and DMAP (538 mg, 4.41 mmol) in anhydrous DCM (8 mL) were added to the reaction flask. 

Upon complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture, which 

was purified by column chromatography on silica-gel (15 % ethyl acetate in hexanes). The 

desired product was obtained as a colorless oil (318 mg, 72 %). 1H NMR (300 MHz, CDCl3) d 

= 8.16 - 8.10 (m, 1 H), 7.99 (td, J = 7.9, 1.4 Hz, 1 H), 7.63 (td, J = 7.8, 1.2 Hz, 1 H), 7.38 (t, J 

= 7.8 Hz, 1 H), 4.29 (t, J = 6.7 Hz, 2 H), 3.22 (t, J = 7.0 Hz, 2 H), 3.13 (s, 1 H), 1.81 - 1.68 (m, 

2 H), 1.63 - 1.50 (m, 2 H), 1.48 - 1.27 (m, 8 H); 13C NMR (75 MHz, CDCl3) d = 165.5, 136.0, 

133.0, 130.6, 129.6, 128.3, 122.4, 82.4, 78.1, 65.1, 51.2, 29.0, 28.8, 28.6, 28.4, 26.5, 25.7 

ppm; HRMS (ESI) m/z calculated for C17H22N3O2 [M+H]+, 300.1707; found: 300.1711. 

 

azidooctan 3-(iodoethynyl)benzoate (S32): To a stirred solution of the azidooctan 3-

ethynylbenzoate (318 mg, 1.1 mmol) in acetone (6 mL) was added N-iodosuccinimide (263 
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mg, 1.2 mmol) followed by silver nitrate (18 mg, 0.11 mmol). The solution was stirred in the 

dark for 17 h. The crude mixture was reduced in vacuo and purified on silica-gel (10 % ethyl 

acetate in hexanes) to afford the desired product. The desired product was obtained as a 

colorless oil (305 mg, 89 %). 1H NMR (300 MHz, CDCl3) d = 8.07 (t, J = 1.7 Hz, 1H), 7.97 

(dt, J = 7.9, 1.5 Hz, 1H), 7.58 (dt, J = 7.7, 1.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 4.29 (t, J = 6.7 

Hz, 2H), 3.24 (t, J = 6.9 Hz, 2H), 1.84 - 1.67 (m, 2H), 1.61 – 1.54 (m, 2H), 1.51 - 1.29 (m, 

8H); 13C NMR (75 MHz, CDCl3) d = 165.5, 136.2, 133.2, 130.5, 129.6, 128.2, 123.6, 93.0, 

65.2, 51.3, 29.0, 28.9, 28.7, 28.5, 26.5, 25.8, 8.2 ppm; HRMS (ESI) m/z calculated for 

C17H20IN3NaO2 [M+Na]+, 448.0492; found: 448.0490.  

 

methyl 3-(hex-5-yn-1-yloxy)benzoate (S35): To a stirred solution of methyl-3-

hydroxybenzoate (1.0 g, 6.6 mmol) in anhydrous THF (33 mL) was added triphenylphosphine 

(3.0 g, 12 mmol), 5-hexyn-1-ol (1.3 g, 12 mmol) and di-isopropyl azodicarboxylate (2.3 mL, 

12 mmol) in that order under a N2 atmosphere. The reaction mixture was heated at reflux for 

15 hours. The reaction was concentrated in vacuo to provide a crude reaction mixture which 

was purified by column chromatography on silica-gel (100 % hexanes to 10 % ethyl acetates 

in hexanes) to afford the desired product as a colorless oil (1.8 g, 95 %). 1H NMR (400 MHz, 

CDCl3) d =7.62 (dd, J = 7.5, 1.5 Hz, 1H), 7.57 - 7.52 (m, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.12 - 

7.05 (m, 1H), 4.02 (t, J = 6.2 Hz, 2H), 3.90 (d, J = 2.6 Hz, 3H), 2.28 (td, J = 7.0, 2.7 Hz, 2H), 

1.98 (t, J = 2.7 Hz, 1H), 1.96 - 1.85 (m, 2H), 1.76 – 1.69 (m, 2H); 13C NMR (100 MHz, 
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CDCl3) d = 166.8, 158.9, 131.3, 129.3, 121.8, 119.8, 114.5, 83.9, 68.7, 67.4, 52.1, 28.1, 24.9, 

18.1 ppm; HRMS (ESI) m/z calculated for C14H17O3 [M+H]+, 233.1172; found: 233.1161.  

 

methyl 3-(hex-5-yn-1-yloxy)benzoic acid (S36): To a solution of methyl 3-(hex-5-yn-1-

yloxy)benzoate (1.8 g, 7.6 mmol) in THF:H2O (4:1, 31 mL and 8 mL) was added LiOH (914 

mg, 38 mmol). The mixture was stirred at 60 oC for 2 h and then cooled to ambient 

temperature. EtOAc and HCl 1 N were added to the mixture and the aqueous and organic 

phases were separated. The aqueous phase was extracted (2x) with EtOAc. The organic phases 

where combined, dried with Na2SO4, filtered and concentrated in vacuo. The crude solid was 

directly used in the following reaction. azidooctyl 3-(hex-5-yn-1-yloxy)benzoate (S37): 

Following the General Procedure A, 8-azidooctan-1-ol (250 mg, 1.5 mmol), methyl 3-(hex-5-

yn-1-yloxy)benzoic acid (391 mg, 1.8 mmol), DCC (606 mg, 2.9 mmol) and DMAP (538 mg, 

4.4 mmol) in anhydrous DCM (8 mL) were added to the reaction flask. Upon complete 

conversion of the starting material, the crude reaction mixture was placed in a freezer for 5 h 

to induce the precipitation of the urea, which was subsequently removed by filtration. The 

filtrate was concentrated in vacuo to provide the crude reaction mixture, which was purified 

by column chromatography on silica-gel (20 % ethyl acetate in hexanes). The desired product 

was obtained as a colorless oil (305 mg, 55 % over 2 steps). 1H NMR (300 MHz, CDCl3) d = 

7.61 (d, J = 7.7 Hz, 1 H), 7.54 (s, 1 H), 7.32 (t, J = 7.9 Hz, 1 H), 7.12 - 7.03 (m, 1 H), 4.29 (t, J 

= 6.7 Hz, 2 H), 4.02 (t, J = 6.2 Hz, 2 H), 3.24 (t, J = 7.0 Hz, 2 H), 2.27 (td, J = 7.0, 2.6, 2 H), 
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2.01 - 1.96 (m, 1 H), 1.96 - 1.86 (m, 2 H), 1.77 – 1.70 (m, 4 H), 1.65 - 1.52 (m, 2 H), 1.50 - 

1.20 (m, 8 H); 13C NMR (75 MHz, CDCl3) d = 165.4, 158.8, 131.6, 129.2, 121.7, 119.4, 114.7, 

83.8, 68.6, 67.3, 65.0, 51.3, 29.0, 28.9, 28.7, 28.5, 28.1, 26.5, 25.8, 24.9, 18.0 ppm; HRMS 

(ESI) m/z calculated for C21H30N3O3 [M+H]+, 372.2282; found: 372.2283. 

 

azidooctyl 3-(6-iodohex-5-yn-1-yloxy)benzoate (S38): To a stirred solution of the azidooctyl 

3-(hex-5-yn-1-yloxy)benzoate (305 mg, 0.8 mmol) in acetone (4 mL) was added N-

iodosuccinimide (200 mg, 0.9 mmol) followed by silver nitrate (14 mg, 0.08 mmol). The 

solution was stirred in the dark for 17 h. The crude mixture was reduced in vacuo and purified 

on silica-gel (20 % ethyl acetate in hexanes) to afford the desired product as a colorless oil 

(371 mg, 92 %). 1H NMR (300 MHz, CDCl3) d = 7.59 (dt, J = 7.7, 1.2 Hz, 1H), 7.52 (dd, J = 

2.7, 1.5 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.05 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.28 (t, J = 6.6 

Hz, 2H), 3.99 (t, J = 6.2 Hz, 2H), 3.22 (t, J = 6.9 Hz, 2H), 2.43 (t, J = 7.0 Hz, 2H), 1.88 (m, 

2H), 1.80 - 1.50 (m, 6H), 1.37 (m, 8H); 13C NMR (75 MHz, CDCl3) d = 166.2, 158.7, 131.5, 

129.2, 121.6, 119.4, 114.6, 93.9, 67.2, 64.9, 51.2, 28.9, 28.9, 28.8, 28.6, 28.5, 28.1, 26.4, 25.7, 

24.9, 20.4 ppm; HRMS (ESI) m/z calculated for C21H28IN3NaO3 [M+Na]+, 520.1068; found: 

520.1064.  
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(S)-methyl 2-(5-azidopentamido)-3-phenylpropanoate (S40): Following the General 

Procedure A, L-Phenylalanine methyl ester hydrochloride (1 g, 5.6 mmol), 5-azidopent acid 

(798 mg, 5.6 mmol), DCC (2.3 g, 11.2 mmol) and DMAP (2.0 mg, 16.7 mmol) in anhydrous 

DCM (30 mL) were added to the reaction flask. The reaction was stirred for 17 h. Upon 

complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 h to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture, which 

was purified by column chromatography on silica-gel (30 % ethyl acetate in hexanes). The 

desired product was obtained as a white solid (1.3 g, 77 %). 1H NMR (400 MHz, CDCl3) d = 

7.36 - 7.16 (m, 3 H), 7.16 - 7.03 (m, 2 H), 6.46 (d, J = 7.9 Hz, 1 H), 4.96 - 4.74 (m, 1 H), 3.70 

(s, 3 H), 3.21 (t, J = 6.7 Hz, 2 H), 3.18 - 2.97 (m, 2 H), 2.94 - 2.80 (m, 1 H), 2.23 - 2.13 (m, 2 

H), 1.70 - 1.57 (m, 2 H), 1.57 - 1.45 (m, 2 H); 13C NMR (100 MHz, CDCl3) d = 171.94, 

171.86, 135.8, 128.9, 128.2, 129.7, 52.7, 52.0, 50.7, 37.5, 35.1, 27.8, 22.3 ppm; HRMS (ESI) 

m/z calculated for C15H21N4O3 [M+H]+, 305.1608; found: 305.1598. 

 

(S)-methyl 2-(5-azidopentamido)-3-phenylpropanoic acid (S41): To a solution of (S)-

methyl 2-(5-azidopentamido)-3-phenylpropanoate (4.0 g, 13 mmol) in THF:H2O (4:1, 53 mL 
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and 13 mL) was added LiOH (1.6 g, 65 mmol). The mixture was stirred at 60 oC for 2 h and 

then cooled to ambient temperature. EtOAc and HCl 1 N were added to the mixture and the 

aqueous and organic phases were separated. The aqueous phase was extracted (2x) with 

EtOAc. The organic phases where combined, dried with Na2SO4, filtered and concentrated in 

vacuo. A fraction of the crude solid was directly used in the following reaction. (S)-undec-11-

yn-1-yl 2-(5-azidopentamido)-3-phenylpropanoate (S42): Following the General Procedure 

A, 10-undecyn-1-ol (370 mg, 2.2 mmol), (S)-methyl 2-(5-azidopentamido)-3-phenylpropanoic 

acid (638 mg, 2.2 mmol), DCC (906 mg, 4.4 mmol) and DMAP (805 mg, 6.6 mmol) in 

anhydrous DCM (11 mL) were added to the reaction flask. Upon complete conversion of the 

starting material, the crude reaction mixture was placed in a freezer for 5 h to induce the 

precipitation of the urea, which was subsequently removed by filtration. The filtrate was 

concentrated in vacuo to provide the crude reaction mixture, which was purified by column 

chromatography on silica-gel (20 to 50 % ethyl acetate in hexanes). The desired product was 

obtained as a white solid (813 mg, 53 % over 2 steps). 1H NMR (400 MHz, CDCl3) d = 7.35 - 

7.21 (m, 3H), 7.14 - 7.07 (m, 2H), 5.89 (d, J = 7.9 Hz, 1H), 4.89 (dt, J = 7.9, 6.0 Hz, 1H), 4.10 

(tt, J = 10.7, 5.3 Hz, 2H), 3.27 (t, J = 6.7 Hz, 2H), 3.13 (dd, J = 13.6, 5.9 Hz, 2H), 2.27 - 2.12 

(m, 4H), 1.97 - 1.94 (m, 1H), 1.75 - 1.48 (m, 8H), 1.31 (d, J = 6.1 Hz, 10H); 13C NMR (100 

MHz, CDCl3) d =171.8, 171.7, 135.9, 129.2, 128.5, 127.1, 84.7, 68.1, 65.7, 52.9, 51.1, 38.0, 

35.7, 29.4, 29.3, 29.1, 29.0, 28.7, 28.4, 28.2, 25.8, 22.6, 18.4 ppm. HRMS (ESI) m/z 

calculated for C25H37N4O3 [M+H]+, 441.2860; found: 441.2840. 
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(S)-10-iodoundec-11-yn-1-yl 2-(5-azidopentamido)-3-phenylpropanoate (S43): To a stirred 

solution of the (S)-undec-11-yn-1-yl 2-(5-azidopentamido)-3-phenylpropanoate (813 mg, 1.9 

mmol) in acetone (10 mL) was added N-iodosuccinimide (457 mg, 2.0 mmol) followed by 

silver nitrate (31 mg, 0.2 mmol). The solution was stirred in the dark for 17 h. The crude 

mixture was reduced in vacuo and purified on silica-gel (20 to 50 % ethyl acetate in hexanes) 

to afford the desired product as a yellow solid (817 mg, 78 %). 1H NMR (400 MHz, CDCl3) d 

= 7.35 - 7.20 (m, 3H), 7.13 - 7.06 (m, 2H), 6.15 - 6.02 (m, 1H), 4.93 - 4.80 (m, 1H), 4.08 (td, J 

= 6.7, 3.7 Hz, 2H), 3.24 (t, J = 6.7 Hz, 2H), 3.18 - 3.00 (m, 2H), 2.33 (td, J = 7.1, 2.1 Hz, 2H), 

2.19 (t, J = 7.6 Hz, 2H), 1.72 - 1.43 (m, 8H), 1.64 – 1.28 (m, 10H); 13C NMR (100 MHz, 

CDCl3) d =171.72, 171.66, 135.8, 129.1, 128.4, 126.9, 94.6, 65.5, 62.7, 52.8, 50.9, 37.9, 35.5, 

29.2, 29.1, 28.9, 28.8, 28.5, 28.3, 28.1, 25.6, 22.5, 20.6 ppm; HRMS (ESI) m/z calculated for 

C25H35N4IO3 [M+H]+ 567.1827; found: 567.1831. 
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Table S1. Full Optimization of Macrocyclic CuAiAC using a Phase Separation Strategy. 

 

entry 
conditions 

solvent yield 3 (%)a recovered 2 (%)a 

 CuSO4·5H2O (10 mol %), (BimC4A)3 (20 mol %), NaAsc (4.5 eq.) 21°C, 17 h 

1 PEG400:MeOH 1:1 - - 

 CuSO4·5H2O (10 mol %), TBTA (20 mol %), NaAsc (4.5 eq.) 21°C, 17 h 

2 PEG400:MeOH 1:1 - - 

 CuI (5 mol %), NEt3 (2 eq.), 60°C, 17 h 

3 MeOH 23 poly 

4 PEG400 - 99b 

5 PEG400:MeOH 1:9 29 - 

6 PEG400:MeOH 1:2 60 - 

7 PEG400:MeOH 1:1 93 - 

8 PEG400:MeOH 2:1 97 - 

9 PEG400:MeOH 4:1 40 -b 

10 PEG400:MeOH 9:1 - 99b 
a Yields following chromatography. b Product recovered was azide-alkyne 1. No iodinated uncyclized products 

were observed. 



 

 uuuuuu 

SYNTHESIS OF MACROCYCLES 

 

General procedure B for the click macrocylization using phase separation conditions: 

macrocycle (3): To a sealed tube equipped with a stirring bar was added the precursor (49 mg, 

0.12 mmol, 1 equiv), polyethylene glycol 400 (3.33 mL) and methanol (1.67 mL). The mixture 

was stirred 30 seconds to mix the two solvents. Triethylamine (0.13 mL, 0.96 mmol, 8 equiv) 

and CuI (4.6 mg, 0.024 mmol, 20 mol %) were added to the mixture. The tube was closed and 

heated at 60 oC for 17 h (no precaution was taken to remove air or moisture). The reaction was 

then cooled back to room temperature and the crude mixture was loaded directly on a silica 

column. Purification by chromatography (20→50 % ethyl acetate in hexane) afforded the 

product as a colorless semi-solid (47 mg, 95 %). 1H NMR (400 MHz, CDCl3) d = 4.53-4.39 

(m, 2H), 4.07-3.96 (m, 2H), 2.77 (t, J = 6.4 Hz, 2H), 2.32-2.20 (m, 2H), 2.00–1.93 (m, 2H), 

1.85–1.77 (m, 2H), 1.51–1.43 (m, 4H), 1.28-1.03 (m, 8H); 13C NMR (100 MHz, CDCl3) d ppm 

=173.4, 150.9, 79.0, 64.2, 50.4, 35.4, 29.2, 28.4, 28.3, 27.6, 27.4, 25.1, 24.6, 24.4, 24.1 ppm; 

HRMS (ESI) m/z calculated for C15H24N3NaO2 [M+Na]+, 428.0805; found: 428.0815. 

 

Macrocycle (4): Following the general procedure B described above, macrocycle 4 was 

isolated as a colorless semi-solid (46 mg, 93 %). 1H NMR (400 MHz, CDCl3) d = 4.49 (t, J = 

6.2 Hz, 2H), 4.07 (t, J = 6.6 Hz, 2H), 2.80 - 2.72 (m, 2H), 2.30 - 2.23 (m, 2H), 2.00 - 1.96 (m, 
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2H), 1.80 - 1.77 (m, 2H), 1.61 - 1.37 (m, 4H), 1.29 - 1.01 (m, 8H); 13C NMR (100 MHz, 

CDCl3) d ppm = 173.5, 151.6, 79.05, 62.9, 49.7, 34.7, 28.6, 28.2, 28.1, 27.7, 26.63, 26.56, 

25.8, 25.4, 25.1; HRMS (ESI) m/z calculated for C15H24IN3NaO2 [M+Na]+, 428.0805; found: 

428.0804. 

 

Macrocycle (5b): Following the general procedure B described above, macrocycle 5a and 5b 

were isolated as a 1:1 mixture as a colorless semi-solid (30 mg, 78 %). As a pure sample of 5b 

could be obtained by silica gel chromatography. 1H NMR (700 MHz, CDCl3) d = 4.38 (t, J = 

6.7 Hz, 2H), 2.67 (t, J = 7.0 Hz, 2H), 1.93 - 1.84 (m, 2H), 1.73 - 1.65 (m, 2H), 1.32 - 1.25 (m, 

2H), 1.23 - 1.16 (m, 4H); 13C NMR (175 MHz, CDCl3) d ppm = 151.7, 78.6, 50.3, 29.5, 28.71, 

28.68, 28.53, 28.49, 28.1, 25.7, 25.4; HRMS (ESI) m/z calculated for C11H18IN3Na [M+Na]+, 

342.0443; found: 342.0439. 

 

Macrocycle (6): Following the general procedure B described above, macrocycle 6 was 

isolated. (36 mg, 70 %). 1H NMR (400 MHz, CDCl3) d = 8.21 (t, J = 1.5 Hz, 1H), 8.06 (dd, J 

= 7.9, 1.5 Hz, 1H), 7.72 (dd, J = 7.7, 1.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 4.35 (d, J = 6.6 Hz, 

2H), 3.28 (t, J = 6.9 Hz, 2H), 1.88 - 1.73 (m, 2H), 1.64 – 1.59 (m, 2H), 1.51 - 1.32 (m, 6H); 

13C NMR (100 MHz, CDCl3) d ppm = 165.6, 136.4, 133.6, 131.0, 130.3, 128.7, 122.0, 80.9, 

74.4, 65.4, 51.4, 29.1, 29.0, 28.8, 28.62, 26.64, 25.9; HRMS (ESI) m/z calculated for 

C17H21IN3O2 [M+H]+, 425.0600; found: 425.0609. 
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Macrocycle (7): Following the general procedure B described above, macrocycle 7 was 

isolated. (48 mg, 87 %). 1H NMR (700 MHz, CDCl3) d ppm = 4.41 (t, J = 6.5 Hz, 2 H), 4.09 

(t, J = 5.8 Hz, 2 H), 2.69 (t, J = 7.2 Hz, 2 H), 2.29 (t, J = 7.5 Hz, 2 H), 1.93 (m, 2 H), 1.77 - 

1.67 (m, 2 H), 1.67 - 1.57 (m, 4 H), 1.37 - 1.16 (m, 16 H); 13C NMR (175 MHz, CDCl3) d ppm 

=174.0, 151.7, 78.3, 64.3, 50.5, 33.9, 29.5, 28.9 (2C), 28.8, 28.41, 28.38, 28.3, 27.9, 27.5, 

26.0, 25.7, 25.4, 24.7; HRMS (ESI) m/z calculated for C19H32IN3O2 [M+H]+, 461.1539; found: 

461.1534  

 

Macrocycle (8): Following the general procedure B described above, macrocycle 8 was 

isolated. (53 mg, 85 %). 1H NMR (400 MHz, CDCl3) d ppm = 4.41 (t, J = 6.5 Hz, 2 H), 4.12 - 

4.05 (m, 2 H), 2.69 (t, J = 7.1 Hz, 2 H), 2.29 (t, J = 7.4 Hz, 2 H), 1.93 (m, 2 H), 1.76 - 1.67 (m, 

2 H), 1.67 - 1.54 (m, 4 H), 1.38 - 1.14 (m, 24 H); 13C NMR (125 MHz, CDCl3) d ppm = 173.9, 

151.7, 78.3, 64.3, 50.5, 31.7, 31.6, 29.7, 29.5, 29.08, 29.05, 29.01, 28.96, 28,9, 28.80, 28.81, 

28.6, 28.5, 28.4, 26.0, 25.7, 25.2, 14.1; HRMS (ESI) m/z calculated for C23H41IN3O2 [M+H]+, 

518.2244; found: 518.2251. 
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Macrocycle (9): Following the general procedure B described above, macrocycle 9 was 

isolated. (45 mg, 75 %). 1H NMR (400 MHz, CDCl3) d 7.63 (d, J = 7.7 Hz, 1 H), 7.55 (s, 1 H), 

7.34 (t, J = 8.0 Hz, 1 H), 7.09 (dd, J = 2.6, 8.2 Hz, 1 H), 4.32 (t, J = 6.7 Hz, 2 H), 4.03 (t, J = 

6.1 Hz, 2 H), 3.27 (t, J = 7.0 Hz, 2 H), 2.36 (t, J = 6.9 Hz, 2 H), 1.97 - 1.88 (m, 2 H), 1.76 (m, 

4 H), 1.66 - 1.58 (m, 2 H), 1.49 - 1.33 (m, 8 H); 13C NMR (100 MHz, CDCl3) d ppm = 166.3, 

158.6, 147.9, 131.8, 129.6, 122.1, 121.0, 118.3, 116.9, 68.0, 65.2, 50.3, 29.9, 28.94, 28.85, 

28.6, 27.5, 26.3, 26.0, 25.6, 24.8 ppm; HRMS (ESI) m/z calculated for C21H28IN3NaO3 

[M+Na]+, 520.1068; found: 520.1073. 

 

Macrocycle (10): Following the general procedure B described above, macrocycle 10 was 

isolated. (62 mg, 91 %). 1H NMR (400 MHz, CDCl3) d = 7.35 - 7.26 (m, 3 H), 7.22 - 7.15 (m, 

2 H), 6.24 (d, J = 7.9 Hz, 1 H), 4.90 - 4.76 (m, 1 H), 4.57 - 4.29 (m, 2 H), 4.22 - 3.97 (m, 2 H), 

3.16 (m, 2 H), 2.82 - 2.63 (m, 2 H), 2.20 (t, J = 7.4 Hz, 2 H), 1.94 (d, J = 7.0 Hz, 2 H), 1.85 - 

0.96 (m, 14 H); 13C NMR (100 MHz, CDCl3) d ppm =172.5, 171.3, 151.2, 136.5, 129.3, 128.6, 

127.0, 78.4, 65.1, 53.6, 50.6, 37.6, 36.1, 29.0, 28.6, 28.5, 28.2, 27.6, 25.3, 25.08, 25.05, 24.5; 

HRMS (ESI) m/z calculated for C24H33IN4NaO3 [M+Na]+, 575.1490; found: 575.1491. 
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Macrocycle (11): Following the general procedure B described above, macrocycle 11 was 

isolated. (61 mg, 83 %). 1H NMR (400 MHz, CDCl3) d = 7.30 – 7.25 (m, 3H), 7.15 – 7.13 (m, 

2H), 5.77 (d, J = 8.1 Hz, 1 H), 4.86 (td, J = 6.2, 8.3 Hz, 1 H), 4.44 - 4.26 (m, 2 H), 4.17 - 3.98 

(m, 2 H), 3.12 – 3.11 (m, 2 H), 2.80 - 2.68 (m, 2 H), 2.27 - 2.07 (m, 2 H), 1.94 - 1.81 (m, 2 H), 

1.75 - 1.46 (m, 8 H), 1.41 - 1.14 (m, 14 H); 13C NMR (175 MHz, CDCl3) d ppm = 172,8, 

172.4, 148.1, 136.1, 129.3, 128.6, 127.1, 120.8, 65.1, 53.2, 49.9, 37.7, 36.4, 29.9, 28.8, 28.7, 

28.51, 28.49, 28.4, 28.3, 28.2, 27.9, 25.9, 25.5, 25.2, 25.1 ppm; HRMS (ESI) m/z calculated 

for C28H42IN4O3 [M+H]+, 609.2296; found: 609.2303. 

 

Macrocycle (12): Following the general procedure B described above, macrocycle 12 was 

isolated. (57 mg, 84 %). 1H NMR (400 MHz, CDCl3) d = 7.36 - 7.28 (m, 3 H), 7.18 - 7.12 (m, 

2 H), 5.79 (d, J = 7.7 Hz, 1 H), 4.85 - 4.75 (m, 1 H), 4.39 – 4.35 (m, 2 H), 4.24 (td, J = 6.9, 

10.8 Hz, 2 H), 3.97 (td, J = 6.4, 10.7 Hz, 2 H), 3.16 - 3.03 (m, 2 H), 2.73 - 2.63 (m, 2 H), 2.25 

- 2.11 (m, 2 H), 1.97 - 1.88 (m, 2 H), 1.73 - 1.52 (m, 6 H), 1.42 - 1.07 (m, 8H); 13C NMR (100 

MHz, CDCl3) d ppm = 171.7, 171.5, 151.7, 136.0, 129.2, 128.6, 127.1, 78.7, 65.0, 53.3, 50.0, 

37.6, 35.5, 29.2, 27.9, 27.8, 27.7, 27.19, 27.17, 25.3, 24.6, 22.1 ppm; HRMS (ESI) m/z 

calculated for C24H36IN4O3 [M+H]+, 567.1827; found: 567.1833. 
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Macrocycle (13): Following the general procedure B described above, macrocycle 13 was 

isolated. (59 mg, 86 %). 1H NMR (400 MHz, CDCl3) d = 5.80 (d, J = 8.5 Hz, 1H), 4.62– 4.56 

(m, 1H), 4.43–4.38 (m, 2H), 4.15–4.05 (m, 2H), 2.77–2.65 (m, 2H), 2.27–2.11 (m, 2H), 1.94–

1.87 (m, 2H), 1.74-1.51 (m, 10H), 1.34-1.21 (m, 15H), 0.94 (d, J = 5.6 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) d ppm = 173.1, 172.7, 151.8, 78.7, 77.2, 64.9, 51.0, 50.3, 41.3, 36.4, 29.5, 

28.7, 28.47, 28.46, 28.4, 28.3, 27.6, 25.7, 25.5, 25.24, 25.21, 24.9, 22.9, 21.8 ppm; HRMS 

(ESI) m/z calculated for C25H43IN4O3 [M+H]+, 575.2453; found: 575.2467. 

 

Macrocycle (14): Following the general procedure B described above, macrocycle 14 was 

isolated. (52 mg, 83 %). 1H NMR (400 MHz, CDCl3) d = 6.69 (d, J = 7.2 Hz, 1 H), 5.18 - 5.14 

(m, 1 H), 4.74 - 4.65 (m, 3 H), 4.58 (s, 1 H), 4.37 (m, 2 H), 4.20 (s, 1 H), 3.97 (d, J = 11.0 Hz, 

1 H), 3.74 (s, 3 H), 3.71 (dd, J = 11.3, 3.7 Hz, 1 H), 3.28 (s, 1 H), 2.46 - 2.34 (m, 1 H), 2.26 - 

2.10 (m, 2 H), 2.03 (m, 1 H), 1.90 (m, 2 H), 1.60 (dt, J = 4.3, 7.3 Hz, 1 H), 1.34 (d, J = 6.9 Hz, 

3 H), 1.32 - 1.25 (m, 1 H); 13C NMR (100 MHz, CDCl3) d ppm = 172.5, 172.4, 171.8, 129.0, 

128.2, 77.2, 70.5, 57.8, 56.3, 55.4, 52.3, 50.4, 46.7, 37.7, 35.8, 28.9, 25.2, 24.0 ppm; HRMS 

(ESI) m/z calculated for C18H27IN5O5 [M+H]+, 520.1051; found: 520.1012. 
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FIGURE S1. THE EFFECTS OF AGGREGATION OF PEG400:MeOH MIXTURES ON 

A CuAiAC MACROCYCLIZATION. 

  

 

 

 

 

 

Surface tension measurements (black) observed at 60 °C. Yields (blue) of 3 are following 

purification by flash chromatography. 
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Chapter 19 : Supporting Information of Chapter 10: 

Efficient Continuous Flow Synthesis of Macrocyclic 

Triazoles 
  

General:  

All reactions that were carried out under anhydrous conditions were performed under an inert 

argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 oC 

or had been flame dried and cooled under a stream of argon or nitrogen.35 All chemical 

products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and 

were reagent quality. The following products were prepared according to their respective 

literature procedures: undec-10-yn-1-ol,36 henicos-20-yn-1-ol,37 and 8-azidooctoyl 3-

ethynylbenzoate.38 Technical solvents were obtained from VWR International Co. Anhydrous 

solvents (CH2Cl2, Et2O, THF, DMF, Toluene, and hexanes) were dried and deoxygenated 

using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following 

flash column silica gel chromatography. Organic compounds were purified using the method 

reported by W. C. Still39 and using silica gel obtained from Silicycle Chemical division (40-63 

nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glass-

                                                

 

 
35 Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986. 
36 Bédard, A.-C.; Collins, S. K. J. Am. Chem. Soc. 2011, 133, 19976. 
37 Lumbroso, A.; Abermil, N.; Breit, B. Chem. Sci. 2012, 3, 789. 
38 Bédard, A.-C.; Collins, S. K. Org. Lett. 2014, 16, 5286. 
39 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.  
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backed silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, 0.25 

mm, F254.). Visualization of TLC plate was performed by UV (254 nm), KMnO4 or p-

anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. Concentration 

refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds 

were homogeneous by thin layer chromatography (TLC) and by 1H NMR. NMR spectra were 

taken in deuterated CDCl3 using Bruker AV-300 and AV-400 instruments unless otherwise 

noted. Signals due to the solvent served as the internal standard (CHCl3: δ 7.27 for 1H, δ 77.0 

for 13C). The 1H NMR chemical shifts and coupling constants were determined assuming first-

order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d 

(doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of couplings constants (J) 

corresponds to the order of the multiplicity assignment. The 1H NMR assignments were made 

based on chemical shift and multiplicity. The 13C NMR assignments were made on the basis of 

chemical shift. High resolution mass spectroscopy (HRMS) was done by the Centre régional 

de spectrométrie de masse at the Département de Chimie, Université de Montréal from an 

Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted.   



 

 qqqqqqqq 

SYNTHESIS OF MACROCYCLIZATION PRECURSORS 

General Procedure A for Azidation: To a stirred solution of concentrated hydrochloric acid 

in water (25 % v/v, 0.2 M) was added the aniline (1 equiv.) at 0 °C. An aqueous solution of 

sodium nitrite (1.2 equiv) was added dropwise to the reaction mixture once the starting 

material was completely dissolved. The reaction mixture was stirred at 0 °C for 1 hour. An 

aqueous solution of sodium azide (1.2 equiv.) was then added dropwise and the reaction 

mixture was stirred at room temperature for 24 hours to induce the precipitation of the aryl 

azide. The precipitate was isolated by filtration and was subsequently washed with water and 

ether. The desired product was finally dried under vacuum and was used without further 

purification. 

 

2-Azidobenzoic acid (S1): Following the General Procedure A, 2-aminobenzoic acid (0.586 

g, 4.27 mmol, 1.0 equiv.) was dissolved in an aqueous solution of hydrochloric acid (20 mL) 

in a round bottom flask equipped with a stir bar. Aqueous solutions of sodium nitrite (0.345 g, 

5.00 mmol, 1.2 equiv.) in 2 mL of water and of sodium azide (0.325 g, 5.00 mmol, 1.2 equiv.) 

in 2 mL of water were then added subsequently to the reaction mixture. Following filtration, 

the desired product was obtained as a beige solid (0.548 g, 79 % yield). NMR data was in 

accordance with what was previously reported.40 

 

                                                

 

 
40 Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809. 
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3-Azido-2-naphthoic acid (S2): Following the General Procedure A, 3-amino-2-naphthoic 

acid (1.00 g, 4.27 mmol, 1.0 equiv.) was dissolved in an aqueous solution of hydrochloric acid 

(20 mL) in a round bottom flask equipped with a stir bar. Aqueous solutions of sodium nitrite 

(0.345 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water and of sodium azide (0.325 g, 5.00 mmol, 

1.2 equiv.) in 2 mL of water were then added subsequently to the reaction mixture. Following 

filtration, the desired product was obtained as a red solid (0.892g, 98 % yield). 1H NMR (400 

MHz, DMSO-d6) δ = 13.27 (br. s., 1H), 8.42 (s, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 8.1 

Hz, 1H), 7.90 (s, 1H), 7.61 - 7.67 (m, 1H), 7.50 - 7.57 (m, 1H); 13C NMR (100 MHz, DMSO-

d6) δ = 166.6, 135.3, 134.6, 132.0, 129.6, 128.8, 128.7, 126.6, 126.4, 123.6, 117.9; HRMS 

(ESI) m/z calculated for C11H6N3O2 [M-H]- 212.0466; found 212.0472. 

 

2-Azido-5-fluorobenzoic acid (S3): Following the General Procedure A, 2-amino-5-

fluorobenzoic acid (0.662 g, 4.27 mmol, 1.0 equiv.) was dissolved in an aqueous solution of 

hydrochloric acid (20 mL) in a round bottom flask equipped with a stir bar. Aqueous solutions 

of sodium nitrite (0.345 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water and of sodium azide 

(0.325 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water were then added subsequently to the 

reaction mixture. Following filtration, the desired product was obtained as a white solid (0.57 

g, 73 % yield). 1H NMR (400 MHz, DMSO-d6) δ = 13.47 (br. s., 1H), 7.56 (dd, J = 8.9, 3.0 

Hz, 1H), 7.45 - 7.51 (m, 1H), 7.39 - 7.44 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ = 165.3 

(d, J = 2.2 Hz), 158.5 (d, J = 243.4 Hz), 134.9 (d, J = 2.8 Hz), 125.6 (d, J = 7.2 Hz), 123.2 (d, 
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J = 8.2 Hz), 120.0 (d, J = 23.3 Hz), 117.3 (d, J = 24.4 Hz); 19F NMR (375 MHz, DMSO-d6) δ 

= 117.2 (td, J = 8.4, 4.8 Hz); HRMS (ESI) m/z calculated for C7H3FN3O2 [M-H]- 180.0215; 

found 180.0221. 

 

2-Azido-5-methylbenzoic acid (S4): Following the General Procedure A, 2-amino-5-

methylbenzoic acid (0.646 g, 4.27 mmol, 1.0 equiv.) was dissolved in an aqueous solution of 

hydrochloric acid (20 mL) in a round bottom flask equipped with a stir bar. Aqueous solutions 

of sodium nitrite (0.345 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water and of sodium azide 

(0.325 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water were then added subsequently to the 

reaction mixture. Following filtration, the desired product was obtained as a beige solid (0.37 

g, 49 % yield). 1H NMR (400 MHz, DMSO-d6) δ = 13.10 (br. s., 1H), 7.59 (dd, J = 1.6, 0.5 

Hz, 1H), 7.41 (ddd, J = 8.2, 2.2. 0.7 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 2.31 (s, 3H); 13C NMR 

(100 MHz, DMSO-d6) δ = 166.5, 136.0, 134.5, 133.6, 131.3, 123.7, 120.8, 20.1; HRMS (ESI) 

m/z calculated for C8H6N3O2 [M-H]- 176.0466; found 176.0458. 

 

2-Azido-5-methoxybenzoic acid (S5): Following the General Procedure A, 2-amino-5-

methoxybenzoic acid (0.714 g, 4.27 mmol, 1.0 equiv.) was dissolved in an aqueous solution of 

hydrochloric acid (20 mL) in a round bottom flask equipped with a stir bar. Aqueous solutions 

of sodium nitrite (0.345 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water and of sodium azide 

(0.325 g, 5.00 mmol, 1.2 equiv.) in 2 mL of water were then added subsequently to the 

reaction mixture. Following filtration, the desired product was obtained as a white solid (0.10 
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g, 12 % yield). 1H NMR (400 MHz, DMSO-d6) δ = 7.27 - 7.31 (m, 2H), 7.16 - 7.21 (m, 1H), 

3.78 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ = 166.2, 156.2, 131.0, 125.0, 122.4, 119.0, 

115.4, 55.6; HRMS (ESI) m/z calculated for C8H6N3O3 [M-H]- 192.0415; found 192.0407. 

 

General Procedure B for Steglich Esterification: To a stirred solution of the alcohol 

(1 equiv.) and the carboxylic acid (1.5 equiv.) in dry dichloromethane (0.1 M) was added N,N'-

dicyclohexylcarbodiimide (DCC, 2 equiv.) and 4-(dimethylamino)pyridine (DMAP, 3 equiv.) 

at room temperature. The reaction mixture was stirred at room temperature for 18 hours. Upon 

complete conversion of the starting material, the crude reaction mixture was placed in a 

freezer for 5 hours to induce the precipitation of the urea, which was subsequently removed by 

filtration. The filtrate was concentrated in vacuo to provide the crude reaction mixture which 

was purified by column chromatography on silica-gel to afford the desired product. 

 

Undec-10-yn-1-yl 2-azidobenzoate (S6): Following the General Procedure B, undec-10-yn-

1-ol (0.148 g, 0.879 mmol, 1.0 equiv.), 2-azidobenzoic acid (0.215 g, 1.32 mmol, 1.5 equiv.), 

DCC (0.363 g, 1.76 mmol, 2.0 equiv.) and DMAP (0.322 g, 2.64 mmol, 3.0 equiv.) were 

dissolved in anhydrous dichloromethane (10 mL) in a round bottom flask equipped with a stir 

bar. Following purification by column chromatography (100 % hexanes → 10 % diethyl ether 

in hexanes), the desired product was obtained as a colorless oil (0.23 g, 85 % yield). 1H NMR 

(400 MHz, CDCl3) δ = 7.85 (ddd, J = 7.9, 1.7, 0.3 Hz, 1H), 7.50 - 7.56 (m, 1H), 7.25 (dd, J = 

8.1, 0.8 Hz, 1H), 7.17 - 7.21 (m, 1H), 4.31 (t, J = 6.7 Hz, 2H), 2.19 (td, J = 7.1, 2.7 Hz, 2H), 

1.94 (t, J = 2.6 Hz, 1H), 1.72 - 1.81 (m, 2H), 1.49 - 1.57 (m, 2H), 1.31 - 1.49 (m, 10H) ; 13C 
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NMR (100 MHz, CDCl3) δ = 165.4, 139.9, 133.0, 131.7, 124.4, 123.0, 119.9, 84.7, 68.1, 65.5, 

29.3, 29.1, 29.0, 28.7, 28.6, 28.4, 26.0, 18.4; HRMS (ESI) m/z calculated for C18H24N3O2 

[M+H]+ 314.1863; found 314.1863. 

 

Hex-5-yn-1-yl 2-azidobenzoate (S7): Following the General Procedure B, hex-5-yn-1-ol 

(0.07 mL, 0.654 mmol, 1.0 equiv.), 2-azidobenzoic acid (0.160 g, 0.981 mmol, 1.5 equiv.), 

DCC (0.270 g, 1.31 mmol, 2.0 equiv.) and DMAP (0.240 g, 1.96 mmol, 3.0 equiv.) were 

dissolved in anhydrous dichloromethane (10 mL) in a round bottom flask equipped with a stir 

bar. Following purification by column chromatography (100 % hexanes → 10 % diethyl ether 

in hexanes), the desired product was obtained as a colorless oil (0.16 g, 98 % yield). 1H NMR 

(400 MHz, CDCl3) δ = 7.86 (ddd, J = 7.8, 1.6, 0.4 Hz, 1H), 7.51 - 7.57 (m, 1H), 7.25 (ddd, J = 

8.1, 1.0, 0.4 Hz, 1H), 7.17 - 7.22 (m, 1H), 4.35 (t, J = 6.4 Hz, 2H), 2.29 (td, J = 7.0, 2.7 Hz, 

2H), 1.98 (t, J = 2.6 Hz, 1H), 1.87 - 1.95 (m, 2H), 1.67 - 1.76 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ = 165.3, 140.0, 133.1, 131.7, 124.4, 122.8, 119.8, 83.8, 68.8, 64.8, 27.7, 25.0, 18.1; 

HRMS (ESI) m/z calculated for C13H14N3O2 [M+H]+ 244.1081; found 244.1077. 

 

Henicos-20-yn-1-yl 2-azidobenzoate (S8): Following the General Procedure B, henicos-20-

yn-1-ol (0.252 g, 0.817 mmol, 1.0 equiv.), 2-azidobenzoic acid (0.200 g, 1.23 mmol, 1.5 

equiv.), DCC (0.337 g, 1.63 mmol, 2.0 equiv.) and DMAP (0.300 g, 2.45 mmol, 3.0 equiv.) 

were dissolved in anhydrous dichloromethane (10 mL) in a round bottom flask equipped with 

a stir bar. Following purification by column chromatography (100 % hexanes → 10 % diethyl 
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ether in hexanes), the desired product was obtained as a white solid (0.26 g, 70 % yield). 1H 

NMR (400 MHz, CDCl3) δ = 7.85 (ddd, J = 7.8, 1.6, 0.8 Hz, 1H), 7.50 - 7.56 (m, 1H), 7.25 

(dd, J = 8.1, 0.7 Hz, 1H), 7.16 - 7.22 (m, 1H), 4.31 (t, J = 6.7 Hz, 2H), 2.19 (td, J = 7.11, 2.6 

Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.72 - 1.81 (m, 2H), 1.49 - 1.56 (m, 2H), 1.25 - 1.47 (m, 

30H); 13C NMR (100 MHz, CDCl3) δ = 165.4, 139.9, 133.0, 131.7, 124.4, 123.1, 119.9, 84.8, 

68.0, 65.5, 29.7 (5C), 29.64 (2C), 29.60, 29.57, 29.52, 29.50, 29.2, 29.1, 28.8, 28.6, 28.5, 26.0, 

18.4; HRMS (ESI) m/z calculated for C28H43N3NaO2 [M+Na]+ 476.3248; found 476.3247. 

 

Undec-10-yn-1-yl 3-azido-2-naphthoate (S9): Following the General Procedure B, undec-

10-yn-1-ol (0.211 g, 1.25 mmol, 1.0 equiv.), 3-azido-2-naphthoic acid (0.400 g, 1.88 mmol, 

1.5 equiv.), DCC (0.516 g, 2.50 mmol, 2.0 equiv.) and DMAP (0.459 g, 3.75 mmol, 3.0 

equiv.) were dissolved in anhydrous dichloromethane (15 mL) in a round bottom flask 

equipped with a stir bar. Following purification by column chromatography (100 % hexanes 

→ 10 % diethyl ether in hexanes), the desired product was obtained as a colorless oil (0.36 g, 

79 % yield). 1H NMR (400 MHz, CDCl3) δ = 8.38 (s, 1H), 7.88 (dd, J = 8.2, 0.7 Hz, 1H), 7.79 

(dd, J = 8.3, 0.7 Hz, 1H), 7.62 (s, 1H), 7.57 - 7.61 (m, 1H), 7.46 - 7.52 (m, 1H), 4.38 (t, J = 6.7 

Hz, 2H), 2.19 (td, J = 7.0, 2.7 Hz, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.77 - 1.86 (m, 2H), 1.51 - 

1.58 (m, 2H), 1.29 - 1.51 (m, 10H); 13C NMR (100 MHz, CDCl3) δ = 165.5, 136.3, 135.1, 

133.0, 129.8, 129.0, 128.8, 126.4, 126.2, 122.6, 117.2, 84.7, 68.1, 65.7, 29.4, 29.2, 29.0, 28.7, 

28.6, 28.4, 26.0, 18.4; HRMS (ESI) m/z calculated for C22H25N3NaO2 [M+Na]+ 386.1839; 

found 386.1839. 
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Undec-10-yn-1-yl 2-azido-5-fluorobenzoate (S10): Following the General Procedure B, 

undec-10-yn-1-ol (0.248 g, 1.47 mmol, 1.0 equiv.), 2-azido-5-fluorobenzoic acid (0.400 g, 

2.21 mmol, 1.5 equiv.), DCC (0.608 g, 2.95 mmol, 2.0 equiv.) and DMAP (0.540 g, 4.42 

mmol, 3.0 equiv.) were dissolved in anhydrous dichloromethane (15 mL) in a round bottom 

flask equipped with a stir bar. Following purification by column chromatography (100 % 

hexanes → 10 % diethyl ether in hexanes), the desired product was obtained as a colorless oil 

(0.47 g, 97 % yield). 1H NMR (400 MHz, CDCl3) δ = 7.56 (dd, J = 8.8, 2.9 Hz, 1H), 7.18 - 

7.28 (m, 2H), 4.31 (t, J = 6.7 Hz, 2H), 2.19 (td, J = 7.1, 2.7 Hz, 2H), 1.94 (t, J = 2.6 Hz, 1H), 

1.72 - 1.80 (m, 2H), 1.49 - 1.57 (m, 2H), 1.30 - 1.48 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 

= 164.2 (d, J = 2.2 Hz), 158.9 (d, J = 246.2 Hz), 136.0 (d, J = 3.0 Hz), 124.2 (d, J = 7.2 Hz), 

121.6 (d, J = 7.8 Hz), 120.3 (d, J = 23.3 Hz), 118.4 (d, J = 24.6 Hz), 84.7, 68.1, 65.8, 29.3, 

29.1, 29.0, 28.7, 28.5, 28.4, 25.9, 18.4; 19F NMR (375 MHz, CDCl3) δ = 117.0 (ddd, J = 8.6, 

7.3, 4.6 Hz); HRMS (ESI) m/z calculated for C18H23FN3O2 [M+H]+ 332.1769; found 

332.1768. 

 

Undec-10-yn-1-yl 2-azido-5-methylbenzoate (S11): Following the General Procedure B, 

undec-10-yn-1-ol (0.222 g, 1.32 mmol, 1.0 equiv.), 2-azido-5-methylbenzoic acid (0.351 g, 

1.98 mmol, 1.5 equiv.), DCC (0.545 g, 2.64 mmol, 2.0 equiv.) and DMAP (0.484 g, 3.96 

mmol, 3.0 equiv.) were dissolved in anhydrous dichloromethane (15 mL) in a round bottom 

flask equipped with a stir bar. Following purification by column chromatography (100 % 
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hexanes → 10 % diethyl ether in hexanes), the desired product was obtained as a colorless oil 

(0.37 g, 85 % yield). 1H NMR (400 MHz, CDCl3) δ = 7.64 (dd, J = 1.6, 0.6 Hz, 1H), 7.33 

(ddd, J = 8.2, 2.2, 0.7 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 4.30 (t, J = 6.7 Hz, 2H), 2.36 (s, 3H), 

2.19 (td, J = 7.1, 2.7 Hz, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.72 - 1.81 (m, 2H), 1.49 - 1.57 (m, 

2H), 1.30 - 1.48 (m, 10H); 13C NMR (100 MHz, CDCl3) δ = 165.6, 137.1, 134.3, 133.7, 132.0, 

122.8, 119.8, 84.7, 68.1, 65.4, 29.3, 29.2, 29.0, 28.7, 28.6, 28.4, 25.9, 20.7, 18.4; HRMS (ESI) 

m/z calculated for C19H26N3O2 [M+H]+ 328.2020; found 328.2019. 

 

Undec-10-yn-1-yl 2-azido-5-methoxybenzoate (S12): Following the General Procedure B, 

undec-10-yn-1-ol (0.052 g, 0.311 mmol, 1.0 equiv.), 2-azido-5-methoxybenzoic acid (0.090 g, 

0.466 mmol, 1.5 equiv.), DCC (0.128 g, 0.621 mmol, 2.0 equiv.) and DMAP (0.114 g, 0.932 

mmol, 3.0 equiv.) were dissolved in anhydrous dichloromethane (5 mL) in a round bottom 

flask equipped with a stir bar. Following purification by column chromatography (100 % 

hexanes → 10 % diethyl ether in hexanes), the desired product was obtained as a colorless oil 

(0.10 g, 90 % yield). 1H NMR (400 MHz, CDCl3) δ = 7.37 (d, J = 2.9 Hz, 1H), 7.16 (d, J = 8.8 

Hz, 1H), 7.08 (dd, J = 8.9, 3.1 Hz, 1H), 4.32 (t, J = 6.7 Hz, 2H), 3.83 (s, 3H), 2.19 (td, J = 7.0, 

2.6 Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.72 - 1.81 (m, 2H), 1.49 - 1.57 (m, 2H), 1.30 - 1.48 (m, 

10H); 13C NMR (100 MHz, CDCl3) δ = 165.3, 156.3, 132.4, 123.8, 121.3, 119.3, 116.0, 84.7, 

68.1, 65.6, 55.7, 29.3, 29.1, 29.0, 28.7, 28.6, 28.4, 25.9, 18.4; HRMS (ESI) m/z calculated for 

C19H26N3O3 [M+H]+ 344.1969; found 344.1971.  
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SYNTHESIS OF MACROCYCLES 

 

General procedure for the click macrocyclization using phase separation conditions in 

batch (C): Macrocycle (2): To an open sealed tube vessel equipped with a stirring bar was 

added the precursor (49 mg, 0.12 mmol, 1 equiv), polyethylene glycol 400 (3.33 mL) and 

methanol (1.67 mL). The mixture was stirred 30 seconds to mix the two solvents. 

Triethylamine (0.13 mL, 0.96 mmol, 8 equiv) and CuI (4.6 mg, 0.024 mmol, 20 mol%) were 

added to the mixture. The tube was sealeded and heated at 60 oC for 17 h (no precaution was 

taken to remove air or moisture). The reaction was then cooled back to room temperature and 

the crude mixture was loaded directly on a silica column. Purification by chromatography 

(20→50 % ethyl acetate in hexane) afforded the product as a colorless semi-solid (47 mg, 95 

%). 1H NMR (400 MHz, CDCl3) δ = 4.53-4.39 (m, 2H), 4.07-3.96 (m, 2H), 2.77 (t, J = 6.4 Hz, 

2H), 2.32-2.20 (m, 2H), 2.00–1.93 (m, 2H), 1.85–1.77 (m, 2H), 1.51–1.43 (m, 4H), 1.28-1.03 

(m, 8H); 13C NMR (100 MHz, CDCl3) δ ppm =173.4, 150.9, 79.0, 64.2, 50.4, 35.4, 29.2, 28.4, 

28.3, 27.6, 27.4, 25.1, 24.6, 24.4, 24.1 ppm; HRMS (ESI) m/z calculated for C15H24N3NaO2 

[M+Na]+, 428.0805; found: 428.0815. 

 

General procedure for the click macrocyclization using phase separation conditions in 

continuous flow (D): Macrocycle (2): To a vial equipped with a stirring bar was added the 

precursor (49 mg, 0.12 mmol, 1 equiv), polyethylene glycol 400 (2.5 mL) and methanol (2.5 

mL). The mixture was stirred 30 seconds to mix the two solvents. TMEDA (0.04 mL, 0.24 
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mmol, 2 equiv) and CuI (4.6 mg, 0.024 mmol, 20 mol%) were added to the mixture. The 

mixture was stirred at room temperature until everything was soluble then taken into a syringe. 

The reaction mixture was injected using a 5 mL injection loop into the flow reactor for a 

reaction time of 400 min (4 x 10 mL PFE reactors) at a flow rate of 0.1 mL/min. The flow 

reaction was conducted in a VapourTech R4 reactor and a R2+ pumping module. Upon 

completion, silica gel was added to the collection flask and the volatiles were removed under 

vacuum. The crude mixture was purified by chromatography (20→50 % ethyl acetate in 

hexane) and afforded the product as a colorless semi-solid (41 mg, 83 %).  

 

 

 

 

Figure S1. Continuous flow setup. 

 

 

Macrocycle (3): Following the general procedure D described above, macrocycle 3 was 

isolated as a colorless semi-solid (45 mg, 90 %). NMR data was in accordance with what was 

previously reported.41 

                                                

 

 
41 Bédard, A.-C.; Collins, S. K. Org. Lett. 2014, 16, 5286. 
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Macrocycle (4): Following the general procedure D described above, macrocycle 4 was 

isolated as a white solid (46 mg, 75 %). NMR data was in accordance with what was 

previously reported.7 

 

Macrocycle (5): Following the general procedure D described above, macrocycle 5 was 

isolated as a white solid (60 mg, 83 %). NMR data was in accordance with what was 

previously reported.7 

 

 

Macrocycle (6): Following the general procedure D described above, macrocycle 6 was 

isolated as a white solid (53 mg, 78 %). NMR data was in accordance with what was 

previously reported.7 
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Macrocycle (7): Following the general procedure D described above, macrocycle 7 was 

isolated as a white solid (55 mg, 86 %). NMR data was in accordance with what was 

previously reported.7 

 

Macrocycle (8): Following the general procedure D described above, macrocycle 8 was 

isolated as a white solid. (38 mg, 87 %). 1H NMR (400 MHz, CDCl3) δ = 8.01 (dd, J = 6.0, 1.8 

Hz, 1H), 7.69 - 7.57 (m, 2H), 7.53 (s, 1H), 7.46 (dd, J = 6.0, 1.8 Hz, 1H), 4.04 (t, J = 7.3 Hz, 

2H), 2.85 - 2.77 (m, 2H), 1.82 - 1.69 (m, 2H), 1.50 – 1.41 (m, 2H), 1.40 - 1.20 (m, 10H); 13C 

NMR (100 MHz, CDCl3) δ ppm = 166.0, 148.3, 136.1, 132.4, 131.5, 129.7, 128.3, 126.5, 

122.2, 66.0, 29.9, 29.8, 29.70, 29.66, 29.6, 28.4, 25.8, 25.7 ppm; HRMS (ESI) m/z calculated 

for C18H24N3O2 [M+H]+, 314.1863; found: 314.1866. 

 

Macrocycle (9): Following the general procedure D described above, macrocycle 9 was 

isolated as a white solid. (31 mg, 85 %). 1H NMR (400 MHz, CDCl3) δ = 8.42 (s, 1H), 8.08 (d, 

J = 7.9 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.85 (s, 1H), 7.50 (t, J = 7.7 Hz, 1H), 4.41 (t, J = 7.1 

Hz, 2H), 4.34 (t, J = 6.5 Hz, 2H), 1.95 (t, J = 6.7 Hz, 2H), 1.82 - 1.72 (m, 2H), 1.50 - 1.32 (m, 

8H); 13C NMR (100 MHz, CDCl3) δ ppm = 166.4, 146.8, 131.08, 131.05, 129.9, 129.1, 129.0, 
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126.6, 119.9, 65.1, 50.4, 30.2, 28.8, 28.7, 28.6, 26.2, 25.8 ppm; HRMS (ESI) m/z calculated 

for C17H22N3O2 [M+H]+, 300.1707; found: 300.1712 

 

Macrocycle (10): Following the general procedure D described above, macrocycle 10 was 

isolated as a white solid. (19 mg, 66 %). 1H NMR (300 MHz, CDCl3) δ = 8.04 (dd, J = 6.0, 1.8 

Hz, 1H), 7.68 - 7.57 (m, 3H), 7.40 (dd, J = 6.0, 1.8 Hz, 1H), 4.22 (t, J = 5.6 Hz, 2H), 2.75 - 

2.66 (m, 2H), 1.65 - 1.57 (m, 2H), 1.55 – 1.50 (m, 2H); 13C NMR (75 MHz, CDCl3) δ ppm = 

166.2, 147.8, 135.9, 132.5, 131.7, 129.7, 128.1, 126.1, 121.9, 65.3, 28.3, 25.4, 25.3 ppm; 

HRMS (ESI) m/z calculated for C13H14N3O2 [M+H]+, 244.1081; found: 244.1090. 

 

Macrocycle (11): Following the general procedure D described above, macrocycle 11 was 

isolated. (33 mg, 61 %). 1H NMR (400 MHz, CDCl3) δ = 7.98 (d, J = 6.8 Hz, 1H), 7.64 (d, J = 

7.5 Hz, 1H), 7.61 - 7.55 (m, 1H), 7.54 (s, 1H), 7.47 (d, J = 8.1 Hz, 1H), 4.09 (t, J = 7.3 Hz, 

2H), 2.84 - 2.77 (m, 2H), 1.81 - 1.69 (m, 2H), 1.48 - 1.15 (m, 32H); 13C NMR (175 MHz, 

CDCl3) δ ppm = 165.8, 148.3, 136.2, 132.4, 131.2, 129.6, 128.1, 126.5, 122.3, 65.9, 29.7 (7 

C), 29.63, 29.60, 29.50, 29.49, 29.44, 29.39, 29.3, 28.3, 25.74, 25.67, 25.6; HRMS (ESI) m/z 

calculated for C28H44N3O2 [M+H]+, 454.3428; found: 454.3431 
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Macrocycle (12): Following the general procedure D described above, macrocycle 12 was 

isolated. (35 mg, 81 %). 1H NMR (300 MHz, CDCl3) δ = 8.51 (s, 1H), 8.04 - 7.99 (m, 1H), 

7.94 - 7.88 (m, 2H), 7.71 (s, 1H), 7.69 - 7.64 (m, 2H), 4.32 - 4.22 (m, 2H), 2.97 - 2.87 (m, 

2H), 1.90 - 1.76 (m, 2H), 1.56 - 1.48 (m, 2H), 1.43 - 1.19 (m, 10H); 13C NMR (75 MHz, 

CDCl3) δ ppm = 166.6, 147.7, 134.0, 132.9, 132.5, 132.2, 129.1, 128.8, 128.1, 128.0, 125.8, 

124.8, 122.4, 65.4, 28.9, 27.2, 26.6, 26.5, 26.1, 25.1, 24.4, 24.3 ppm; HRMS (ESI) m/z 

calculated for C22H26N3O2 [M+H]+, 364.2020; found: 364.2023. 

 

Macrocycle (13): Following the general procedure D described above, macrocycle 13 was 

isolated as a white solid. (33 mg, 83 %). 1H NMR (700 MHz, CDCl3) δ = 7.72 (dd, J = 8.5, 2.8 

Hz, 1H), 7.51 (s, 1 H), 7.45 (dd, J = 8.7, 4.7 Hz, 1H), 7.35 (dd, J = 14.0, 2.8 Hz, 1H), 4.05 (t, J 

= 7.2 Hz, 2H), 2.83 - 2.77 (m, 2H), 1.80 - 1.72 (m, 2H), 1.50 - 1.42 (m, 2H), 1.40 - 1.22 (m, 

10H); 13C NMR (175 MHz, CDCl3) δ ppm = 164.7 (d, J = 2 Hz, 1C), 162.6 (d, J = 250.3 Hz, 

1C), 148.3, 132.3 (d, J = 1.8 Hz, 1C), 130.4 (d, J = 8.8 Hz, 1C), 128.8 (d, J = 8.8 Hz, 1C), 

122.5, 119.4 (d, J = 24.5 Hz, 1C), 118.5 (d, J = 24.5 Hz, 1C), 66.3, 29.9, 29.72, 29.67, 29.6 

(2C), 28.3, 25.7, 25.6 ppm; HRMS (ESI) m/z calculated for C18H22FN3O2 [M+H]+, 332.1769; 

found: 332.1784. 



 

 eeeeeeeee 

 

Macrocycle (14): Following the general procedure D described above, macrocycle 14 was 

isolated as a white solid. (29 mg, 76 %). 1H NMR (500 MHz, CDCl3) δ = 7.74 (d, J = 1.5 Hz, 

1H), 7.58 (s, 1H), 7.41 (dd, J = 8.1, 2.0 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 4.23 - 4.16 (m, 2H), 

2.91 - 2.84 (m, 2H), 2.47 (s, 3H), 1.85 - 1.76 (m, 2H), 1.53 - 1.45 (m, 2H), 1.41 - 1.18 (m, 

10H); 13C NMR (125 MHz, CDCl3) δ ppm = 166.8, 147.7, 139.7, 133.3, 132.6, 131.7, 127.8, 

125.5, 122.0, 65.4, 28.8, 27.2, 26.5, 26.0, 25.1, 24.3 (2C), 21.0 ppm; HRMS (ESI) m/z 

calculated for C19H25N3O2 [M+H]+, 328.2020; found: 328.2025. 

 

Macrocycle (15): Following the general procedure D described above, macrocycle 15 was 

isolated as a white solid (30 mg, 73 %). 1H NMR (500 MHz, CDCl3) δ = 7.54 (s, 1H), 7.43 (d, 

J = 2.9 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.11 (dd, J = 8.7, 2.9 Hz, 1H), 4.23 - 4.17 (m, 2H), 

3.91 (s, 3H), 2.91 - 2.84 (m, 2H), 1.87 - 1.76 (m, 2H), 1.53 - 1.44 (m, 2H), 1.41 - 1.19 (m, 

10H); 13C NMR (125 MHz, CDCl3) δ ppm = 166.4, 159.9, 147.6, 129.3, 128.8, 127.4, 122.3, 

118.0, 115.6, 65.5, 55.9, 28.8, 27.2, 26.5, 26.4, 26.0, 25.1, 24.3, 24.2 ppm; HRMS (ESI) m/z 

calculated for C19H25N3O3 [M+H]+, 344.1969; found: 344.1984. 
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