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RÉSUMÉ

La révision du code est un procédé essentiel quelque soit la maturité d’un projet ;

elle cherche à évaluer la contribution apportée par le code soumis par les développeurs.

En principe, la révision du code améliore la qualité des changements de code (patches)

avant qu’ils ne soient validés dans le repertoire maître du projet. En pratique, l’exécution

de ce procédé n’exclu pas la possibilité que certains bugs passent inaperçus.

Dans ce document, nous présentons une étude empirique enquétant la révision du

code d’un grand projet open source. Nous investissons les relations entre les inspections

des reviewers et les facteurs, sur les plans personnel et temporel, qui pourraient affecter

la qualité de telles inspections.

Premiérement, nous relatons une étude quantitative dans laquelle nous utilisons l’al-

gorithme SSZ pour détecter les modifications et les changements de code favorisant la

création de bogues (bug-inducing changes) que nous avons lié avec l’information conte-

nue dans les révisions de code (code review information) extraites du systéme de traçage

des erreurs (issue tracking system). Nous avons découvert que les raisons pour lesquelles

les réviseurs manquent certains bogues était corrélées autant à leurs caractéristiques per-

sonnelles qu’aux propriétés techniques des corrections en cours de revue. Ensuite, nous

relatons une étude qualitative invitant les développeurs de chez Mozilla à nous donner

leur opinion concernant les attributs favorables à la bonne formulation d’une révision de

code. Les résultats de notre sondage suggèrent que les développeurs considèrent les as-

pects techniques (taille de la correction, nombre de chunks et de modules) autant que les

caractéristiques personnelles (l’expérience et review queue) comme des facteurs influant

fortement la qualité des revues de code.

Mots clés: Code review, code review quality, bug-inducing changes, mining soft-

ware repositories, Mozilla, empirical study, quantitative analysis, qualitative study,

survey



ABSTRACT

Code review is an essential element of any mature software development project; it

aims at evaluating code contributions submitted by developers. In principle, code review

should improve the quality of code changes (patches) before they are committed to the

project’s master repository. In practice, the execution of this process can allow bugs to

get in unnoticed.

In this thesis, we present an empirical study investigating code review of a large

open source project. We explore the relationship between reviewers’ code inspections

and personal, temporal and participation factors that might affect the quality of such

inspections. We first report a quantitative study in which we applied the SZZ algorithm

to detect bug-inducing changes that were then linked to the code review information

extracted from the issue tracking system. We found that the reasons why reviewers miss

bugs are related to both their personal characteristics, as well as the technical properties

of the patches under review. We then report a qualitative study that aims at soliciting

opinions from Mozilla developers on their perception of the attributes associated with

a well-done code review. The results of our survey suggest that developers find both

technical (patch size, number of chunks, and module) and personal factors (reviewer’s

experience and review queue) to be strong contributors to the review quality.

Keywords: Code review, code review quality, bug-inducing changes, mining

software repositories, Mozilla, empirical study, quantitative analysis, qualitative

study, survey
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CHAPTER 1

INTRODUCTION

Code review is an essential element of any mature software development project; it

aims at evaluating code contributions submitted by developers. Code review is often

thought of as one of best practices of a software project. Code inspections have been

proven to be an effective way of identifying defects in the code changes before they are

committed into the project’s code base [14]. Reviewers, the gatekeepers of a project’s

master repository, must carefully validate the design and implementation of patches to

ensure they meet the expected quality standards.

In principle, code review should improve the quality of code changes (patches) before

they are committed to the project’s master repository. In fact, one of the main motivations

of modern code review is to improve a change to the software prior or after integration

with the software system [1]. However, in practice, the execution of this process can

allow bugs to get in unnoticed.

In this thesis, we studied code review of a large open source system, Mozilla project.

For Mozilla, code review is an important and vital part of their code development since

contributions may come not only from Mozilla developers but also from the greater user

community. Thus, Mozilla community embraces code review to help them maintain a

level of consistency in design and implementation practices among many hackers and

various modules of Mozilla [39]. In addition, they employ code review to increase code

quality, promote best practices, and reduce regressions [38].

Mozilla reviews every patch; each patch has to be evaluated by at least one reviewer.

According to the Mozilla’s code review policy [41], reviewers should grant a review if 1)

they believe that the patch does no harm and 2) the patch has test coverage appropriate

to the change. If reviewers feel that they are incapable of providing a careful review

on a certain patch (e.g., due to the lack of time or expertise on a module), they need to

re-direct the patch to other reviewers who have better expertise in the area and are able to

review code in a timely manner. However, software defects are found after the changes



have been reviewed and committed to the version control repository. These post-release

defects raise red flags over the quality of code reviews. Poor reviews that let bugs sneak

in unnoticed can introduce stability, reliability, and security problems, affecting user

experience and satisfaction with the product.

While existing research on code review studies its various aspects (e.g., the relation

between code coverage/participation and software/design quality [32, 35]), the topic re-

lated to the quality of code review remains unexplored. In this thesis, we perform an

empirical case study of a large open source Mozilla project including its top three largest

modules: Core, Firefox, and Firefox for Android. We apply the SZZ algorithm [50] to

detect bug-inducing changes that are then linked to the code review data extracted from

the issue tracking system.

The goal of this thesis is to investigate the impact of the variety of factors on code

review quality; to accomplish this, we formualte the following research questions:

RQ1: Do code reviewers miss bugs?

The goal of code review is to identify problems (e.g., the code-level problems) in

the proposed code changes. Yet, software systems remain bug-prone.

RQ2: Do personal factors affect the quality of code reviews?

Previous studies found that code ownership has a strong relationship with both

pre- and post-release defect-proneness [7, 31, 46]. A recent study demonstrated

that low review participation has a negative impact on software quality [32].

RQ3: Does participation in code review influence its quality?

A recent study demonstrated that low review participation has a negative impact

on software quality [32].

RQ4: Do temporal factors (i.e., related to time) influence the quality of the re-

view process?

Most studies conclude that day of the week the developers submit their patch

correlates with the volume of introduced defects [19, 50].

RQ5: What factors do developers perceive as most important in contributing to

code review quality?

Soliciting opinions from developers on what factors they find can affect the qual-
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ity of their review tasks is important. Qualitative study can allow us to gain such

insights into the developer attitudes and perceptions.

The results of our quantitative and qualitative investigation demonstrate that review-

ers do miss bugs when performing reviews always. Developer-related characteristics

such as their review experience and review loads, we well as the technical properties of

the patch such as its size and the number of files it affects are main contributors to the

quality of code review.

The work described in this thesis was peer-reviewed and published at the Interna-

tional Conference on Software Maintenance (ICSME-2015) [29].

Thesis organization. The rest of the thesis is organized as follows. Chapter 2

presents relevant research efforts related to code review, software quality, and code re-

view quality. Chapter 3 presents our quantitative study, describing the methodology (data

extraction, linkage of issue tracking and version control repositories, etc.), the analysis

and the results of our first four research questions. Chapter 4 reports our qualitative

study and the results of the survey that was conducted with Mozilla developers on their

perception of the main characteristics and factors that contribute to a high quality code

review. Chapter 5 concludes this thesis by highlighting our main findings. And finally,

Chapter 6 discusses possible future directions we can follow to improve this work.
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CHAPTER 2

RELATED WORK

To the best of our knowledge, the topic of code review quality has not been well

investigated by our research community. Thus, in this chapter we present most close and

relevant research to this topic, including: code review, software quality, as well as code

review and software quality.

2.1 Code Review

A large body of work has attempted to assess modern code review by large soft-

ware systems. Rigby and German presented a first investigation of code review pro-

cesses in open-source projects. They compared the code review processes of four-open

source projects namely, GCC, Linux, Mozilla, and Apache. They show the existence

of a number of review patterns and quantitatively analyzed the review process of the

Apache project [48]. Later, Rigby and Storey have investigated the mechanisms and be-

haviours adapted by developers to identify code changes they are competent to review.

They explore the way stakeholders interact with one another during the code review pro-

cess. Their findings provide insights to developers about how to effectively manage large

quantities of reviews. Additionally, their investigation reveals that the identification of

defects is not the sole motivation for modern code review. In effect, other motivations

exist including non-technical issues such as feature, scope, or process issues [49].

This finding is inline with those by Baysal et al. who have shown that review pos-

itivity, i.e., the proportion of accepted patches, is also influenced by non-technical fac-

tors [5]. The authors have also investigated organizational (the company) and personal

dimensions (reviewer load and activity, patch writer experience) on code review response

time and outcome. They find that organizational and personal factors influence review

timeliness, as well as the likelihood of a patch being accepted.

Prior to this work researchers have found that organizational structure can influence



software quality. Nagappan et al. demonstrated that organizational metrics such as the

number of developers working on a component, organizational distance between devel-

opers, as well as organizational code ownership are better predictors of defect-proneness

than traditional measures such as churn, complexity, coverage, dependencies, and pre-

release bug metrics [45]. Both Baysal et al. and Nagappan et al. findings agrees with

Conway’s law [11], which assume that a software system’s design reflects the structure

of the organization that develops it.

Jiang et al. empirically studied, through the analysis of the Linux Kernel, the relation

between patch characteristics and the probability of patch acceptance as well as the time

taken for patches to be integrated into the code base. The results of their study have

shown that developer experience, patch maturity, and priori subsystem churn affect the

patch acceptance while reviewing time is impacted by submission time, the number of

affected subsystems, the number of suggested reviewers and developer experience [23].

A recent qualitative study at Microsoft has been performed to explore the motiva-

tions, challenges, and outcomes of tool based code reviews. This investigation reveals

that while finding defects remains the main motivation for review, other motivations exist

such as knowledge sharing among team members [1].

2.2 Software Quality

Researchers have studied the impact of design and code review on software quality.

For example, Kemerer et al. have investigated the effect of review rate on the effec-

tiveness of defect removal and the quality of software products, while controlling for

a number of potential confounding factors. This study have empirically shown that al-

lowing sufficient preparation time for reviews and inspections can produce better perfor-

mance [26]. A more recent work by Kamaie [24] empirically evaluated a “Just-In-Time

Quality Assurance” approach to identify in real-time software risky changes. Their study

extensively evaluated change-level prediction through the analysis of six open-source

and five commercial projects. Their finding reveal that process metrics outperform prod-

uct metrics when software quality assurance effort is considered [24]. Kim et al. [28]

5



classified changes as being defect-prone or clean based on the use of the identifiers in

added and deleted source code and the words in change logs.

Śliwerski et al. investigated risky changes, they analyzed CVS archives for prob-

lematic fix-inducing changes. They suggested a technique called, SZZ, to automatically

locate fix-inducing changes by linking a version archive to a bug database [50]. In this

study we applied SZZ to detect bug-inducing changes which we later link to code re-

view data. SZZ was successfully applied to understand whether refactorings inducing

bug-fixes [2], as well as to build prediction models that focus on identifying defect-prone

software changes [24]. The investigation of Sliwerski et al. to the Mozilla and Eclipse

open-source projects shows that defect-introducing changes are generally a part of large

transactions and that defect-fixing changes and changes done on Fridays have a higher

chance of introducing defects. Recently, Eyolfson et al. [13] analyzed the relation be-

tween a change bugginess and the time of the day the change was committed and the

experience of the developer who made the change.

Several other metrics have been used to predict defects. For example, Graves et

al. [18] rely on the use of change history-based process metrics such as the number of

past defects and number of developers to build defect prediction models. Nagappan

and Ball [44] suggest the use relative code churn metrics, which measure the amount of

code change, to predict defect density at the file level. Jiang et al. [22] have compared

the performance of design and code metrics in predicting fault-prone modules. Their

work has shown that code-based models are better predictors of fault-prone modules

than design-level models. In a study performed by Moser et al. [36], the authors have

shown that process metrics perform similarly to code metrics when predicting defect-

prone files in the Eclipse project. Hassan [20] has demonstrated that scattered changes

can be used to determine defect-prone files. He analyzed 14 distinct factors leveraged

from code changes to predict whether or not a change is buggy. Zimmermann et al. [52]

have focused on investigating defect prediction from one project to another using seven

commercial projects and four-open source projects. They find that there is no single

factor that produce accurate predictions.

Rahman and Devanbu suggested the use of defect prediction models to compare

6



the impact of product and process metrics [47]. The results of their research suggest

that code metrics are generally less useful than process metrics for prediction. In their

other work, the authors find that lines of code implicated in a bug fix are more strongly

associated with single developer contributions. This finding suggests that code review is

an essential part of the software quality assurance [46]. Mende and Koschke [33] have

proposed effort-aware bug prediction models to help allocate software quality assurance

efforts including code review. The suggested models factor in the effort required to

perform code review or test code when evaluating the effectiveness of prediction models,

resulting in to more realistic performance evaluations.

Recent works investigated source code ownership for software quality. Bird et al.

find measures of ownership such as the number of low-expertise developers, and the

proportion of ownership for the top owner have a relationship with both pre-release

faults and post-release failures [7]. Matsumoto et al. have shown that their suggested

metrics of ownership (e.g., the number of developers and the code churn generated by

each developer) are also good indicators of defect-prone source code files [31].

Existing research indicates that personal factors such as ownership, experience, orga-

nizational structure, and geographic distribution significantly impact on software quality.

Understanding these factors, and properly allocating people resources can help managers

enhance quality outcomes. We hypothesize that a modern code review process can ne-

glect buggy changes and that this may be due to several factors technical, personal, and

organizational.

2.3 Code Review and Software Quality

Although modern code review has received a significant attention recently, there is

little empirical evidence on whether code review neglects bugs and the extent to which

this is related to factors such as personal ones (e.g., reviewers expertise), technical (e.g.,

patch characteristics), or temporal (e.g., review time).

Recently, McIntosh et al. empirically investigated the relationship between software

quality and code review coverage and code review participation. They find that both

7



code review coverage and participation significantly impact on software quality. Low

code review coverage and participation are estimated to produce components with up to

two and five additional post-release defects respectively. These results confirm that poor

code review negatively affect software quality [32].

Beller et al. have empirically explored the problems fixed through modern code

review in OSS systems. They find that the types of changes due to the modern code

review process in OSS are similar to those in the industry and academic systems from

literature, featuring a similar ratio of maintainability-related to functional problems [6].

Mäntylä and Lassenius classified the types of defects found in review on university

and three industrial software systems [30] suggesting that code reviews may be most

valuable for long-lived software products as the value of discovering evolvability defects

in them is greater than for short-lived systems. Hatton [21] found relevant differences in

defect finding capabilities among code reviewers.
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CHAPTER 3

QUANTITATIVE STUDY

To address our first four research questions we followed a data mining process shown

in Figure 3.1 that consists of the following stages. First, we extracted commits from

the Mozilla’s version control repository (step 1). We then linked these commits to the

corresponding bug reports in the Bugzilla issue tracking system (step 2). After that,

we extracted information about linked bug reports and review-related information for

patches attached to them (steps 3 and 4). Finally, we established the links between

commits and reviewed patches (step 5) and identified bug-inducing commits (step 6).

3.1 Background

For the Mozilla projects, the code review could be responsible for its maintaining

a level of consistency and compatibility in design and implementation practices. The

advantage of this mechanism is to guarantee the quality, security and continuous inte-

gration across the many submissions of patch and among the several code changes.

Mozilla employs a two-tier code review process for assessing submitted patches —

review and super review [39]. A review is performed by a module owner or peers of

the module; a reviewer is someone who has domain expertise in a problem area. Super

reviews are required if the patch involves integration or modifies core Mozilla infrastruc-

ture (e.g., major architectural refactoring, changes to API, or changes that affect how

code modules interact).

Currently, there are 30 super-reviewers [40] for all Mozilla modules, 162 reviewers

for Core module [42], 25 reviewers for Firefox [43], and 11 reviewers for Firefox for

Android (aka Fennec). However, any person with level three commit access — core

product access to the Mercurial version control system — Currently, there are 30 super-

reviewers [40] for all Mozilla modules, 162 reviewers for Core module [42], 25 review-

ers for Firefox [43], and 11 reviewers for Firefox for Android (i.e., Fennec). However,



any person who is not on the list of designated reviewers but has level three commit

access — core product access to the Mercurial version control system — can review a

patch.

Mozilla reviews every patch. Bugzilla 1 issue tracking system records and stores

all the information related to code review tasks. Developers submit a patch containing

their code changes to Bugzilla and request a review from a designated reviewer of the

module where the code will be checked in. Reviewers annotate the patch either positively

or negatively reflecting their opinion of the code under review. For highly-impactful

patches super reviews may be requested and performed. Once the reviewers approve a

patch, code changes are committed to the Mozilla’s source code repository.

A typical patch review process consists of the following steps:

1. Once the patch is ready and needs to be reviewed, the owner of the patch (writer)

requests a review from a reviewer (i.e., a module owner or a peer). The review

flag is set to “review?". If the owner of the patch decides to request a super

review, he or she may also do so and the flag is set to “super-review?".

2. When the patch passes a review or a super review, the flag is set to “review+" or

“super-review+" respectively. If the patch fails review, the reviewer sets the flag

to “review–" or “super-review–" and provides explanation on a review by adding

comments to a bug in Bugzilla.

3. If the patch is rejected, the patch owner may resubmit a new version of the patch

that will undergo a review process from the beginning. If the patch is approved,

it will be checked into the project’s official codebase.

1. http://bugzilla.mozilla.org
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3.2 Studied Systems

Mozilla uses Mercurial as their version control system and maintains several repos-

itories, with each repository built around a specific purpose and/or set of products. We

considered mozilla-central 2 as the main repository; it contains the master source

code for Firefox and Gecko, Mozilla’s layout engine.

For our study, we took all code changes that were committed to mozilla-central

between January 1, 2013 and January 1, 2014. In this work, we use terms “code change”

and “commit” interchangeably.

We studied four systems: Mozilla-all (full set of commits), as well as the three largest

modules: Core, Firefox, and Firefox for Android.

Core module contains components that are used by all other modules, e.g., Gecko

layout engine is located here and used by every Mozilla’s web browser. contains the

source code for the desktop version of Firefox web browser. Firefox for Android module

implements a mobile version of Firefox web browser.

Table 3.I describes the main characteristics of these systems; the numbers repre-

sent “clean” datasets that we obtained after performing the steps described in Sec-

tions 3.3, 3.4, and 3.5.

We report the number of commits, reviews, writers, and reviewers for our Mozilla-

all, Core, Firefox, and Firefox for Android datasets.

2. http://hg.mozilla.org/mozilla-central
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Figure 3.1 – Process overview.

Table 3.I – Overview of the studied systems.

System Commits Reviews Writers Reviewers
Mozilla-all 27,270 28,127 784 469
Core 18,203 18,759 544 362
Firefox 2,601 2,668 214 110
Firefox for Android 2,106 2,160 108 72

3.3 Data Extraction

We extracted a total of 44,595 commits from mozilla-central. During the

extraction phase, we collected a variety of information about each commit including

its unique identifier, the name and email address of the person who made this commit,

the date it was added to the repository, the textual description of a change, and the size

statistics of the commit. To calculate the size statistics, we analyzed the diff statements

of each commit. We looked only at textual diffs, and we excluded those that describe

a change in binary files such as images. We recorded the number of files changed, the

12



total number of lines that were added and removed, and the total number of code chunks

found in the investigated diffs.

Linking revisions to bugs.

Prior to identifying bug-inducing changes, we had to detect changes that aim to fix

bugs. For that, we linked commits in the version control repository to bugs in the issue

tracking system using the commit descriptions. Manual inspection of commit summaries

confirmed that developers consistently include a bug ID in the commit summary, and also

tend to use the same formatting. Based on this finding, we wrote a set of case-insensitive

regular expressions to extract bug ID values.

If a regular expression found a match, we checked whether a commit description

contains any review flags to eliminate matches from unreviewed commits. If such flags

were found and commits contained bug ID numbers, we linked bug ID numbers to them.

As a result of this, we were able to assign bug ID values to 35,668 (80%) commits.

As suggested by Kim et al. [28], we manually checked summaries of both matched

and non-matched commits and found no incorrectly assigned bug IDs. The analysis of

non-matched commits (8,927 in total) showed that 2,825 commits (6.3%) were backed

out commits, 5,520 (12.3%) commits were merges, 413 (1%) of them were “no bug”

commits, and 169 of them were other commits.

Getting additional data from Bugzilla.

We scraped Bugzilla for each linked bug ID to get detailed information, including

the date when the bug was submitted, the name and email address of the person who

reported the bug, the bug severity and priority, the module affected by the bug, and

the list of proposed patches. For each patch, we recorded the author of the patch, the

submission date, and the review-related flags.

For each review-related flag, we extracted the date and time it was added, as well as

the email address of the person who performed the flag update.

Out of 22,015 unique bug IDs assigned to the commits, we were unable to extract

the data for 188 bugs that required special permissions to access them. For 490 bugs, we

13



did find no patches with review-related flags.

Such a situation might arise in only two cases: if we incorrectly assigned bug ID in

the first place, or if a patch landed into the code base without undergoing the formal code

review process. To investigate this, we performed a manual check of several randomly-

selected bug IDs.

We found no examples of incorrect assignment: all of the checked bug IDs were

bugs with no reviewed patches in Bugzilla. Since commits having no information about

reviews can not contribute to our study, we disregarded them, reducing the number of

unique bug IDs by 678 and the number of commits in the dataset to 34,654.

3.4 Linking Patches and Commits

Since each commit in the version control system is typically associated with a single

patch, we linked each commit to its corresponding patch and its review-related informa-

tion. However, establishing these links requires effort. The best matching of a patch to

a commit can be achieved by comparing the content of the commit to the contents of

each patch, and then verifying if the two are the same. However, this approach does not

work in the environment where developers constantly make commits to the repository

independently from one another. For example, a patch p1 was added to Bugzilla at time

t1 and was committed to the repository at time t2. If there were no changes to the files

affected by the patch between t1 and t2, the commit and the patch would be the same. If

another patch p2 changing some of those files was committed to the repository during

that time frame, the content of the commit of p1 might not match the content of the patch

p1 itself.

This might happen if (a) the line numbers of the changed code in p1 were different

at t1 and t2, e.g., p2 added a line at the beginning of a file shifting all other content down,

or (b) p1 changed lines that had been changed by p2, i.e., the removed lines in the diff

statements of p1 would be different from the removed lines in the diff statements of

the commit of p1. The most precise way of matching patches and commits would be

to employ some code cloning techniques to detect matches on the string level; however,

14



applying such techniques was beyond the scope of our work.

In our approach, we decided to opt for a less precise but conservative way of map-

ping commits to patches. For each commit with a bug ID attached, we took all reviewed

patches ordering them by their submission date. We then searched for the newest patch

such that (1) the last review flag on that patch was review+ or super-review+,

and (2) this review was granted before the changes were committed to the version con-

trol system. Previous research showed that patches can be rejected after they receive

a positive review [3, 5]. The first heuristic makes sense as patches with last review

flags being review- are unlikely to land into the code. On the contrary, patches that

were first rejected and later accepted (e.g., another more experienced reviewer reverted

a previous negative review decision) are likely to be incorporated into the code base.

The second heuristic ensures that changes can not be committed without being reviewed

first; it facilitates proper mapping when several commits in the version control system

are linked to the same bug, and there are multiple patches on that bug. For example, a

bug can be fixed, reopened, and fixed again. In this case, we would have two different

patches linked to two commits; without the second heuristic, the same patch would be

linked to both commits.

By applying these heuristics, we were able to successfully link 28,888 out of a to-

tal of 34,654 (i.e., 83%) commits to appropriate patches. The manual inspection of

the remaining 17% of the commits revealed that the main reason why we did not find

corresponding patches in Bugzilla was incorrect date and time values of the commits

when they were added to the version control system. For example, a commit with ID

147321:81cee5ae7973 was “added” to the repository on 2013-01-28; the bug ID

value assigned to this commit is 904617. Checking this bug history in Bugzilla revealed

that the bug was reported on 2013-08-13, almost 7 months after it was fixed.

3.5 Data Pre-Processing

Prior to data analysis, we tried to minimize noise in our data. To eliminate outliers,

we performed data cleanup by applying three filters:
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1. We removed the largest 5% of commits to account for changes that are not related

to bug fixes but rather to global code refactoring or code imports (e.g., libraries).

Some of the commits are obvious outliers in terms of size. For example, the

largest commit (“Bug 724531 - Import ICU library into Mozilla tree”) is about

1.1 million lines of code, while the median value for change size is only 34 lines

of code. This procedure removed all commits that were larger than 650 lines

(1,403 commits in total).

2. Some changes to binary files underwent code review. However, since the SZZ al-

gorithm can not be applied to such changes, we removed the commits containing

only binary diffs (52 commits in total).

3. We found that for some changes the submission date of their associated patches

was before the start of our studied period. We believe that these patches fell on the

floor but later were found and reviewed. To eliminate these outliers, we removed

all commits representing patches that were submitted before 2012-09-01. This

filter excluded 163 commits.

Our final dataset contains 27,270 unique commits, which corresponds to 28,127 re-

views (some linked patches received multiple positive reviews, thus, commits can have

more than one review).
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Table 3.II – A taxonomy of considered technical and personal metrics used.

Type Metric Description Rationale

Te
ch

ni
ca

l

Size (LOC) The total number of added and
removed lines of code.

Large commits are more likely to be bug-
prone [51]; thus the intuition is it is eas-
ier for reviewers to miss problems in large
code changes.

Chunks The total number of isolated
places (as defined by diff)
inside the file(s) where the
changes were made.

We hypothesize that reviewers are more
likely to miss bugs if the change is divided
into multiple isolated places in a file.

Number of
files

The number of modified files. Similar, reviews are more likely to be
prone to bugs if the change spread across
multiple files.

Module The name of the Mozilla mod-
ule (e.g., Firefox).

Reviews of changes within certain modules
are more likely to be prone to bugs.

Priority Assigned urgency of resolving a
bug.

Our intuition is that patches with higher
priority are more likely to be rushed in and
thus be more bug-prone than patches with
lower priority levels.

Severity Assigned extend to which a bug
may affect the system.

We think that changes with higher levels of
severity introduce less bugs because they
are often reviewed by more experienced
developers or by multiple reviewers.

Super review Indicator of whether the change
required super review or not

Super review is required when changes af-
fect core infrastructure of the code and,
thus, more likely to be bug-prone.

Number of
previous
patches

The number of patches submit-
ted before the current one on a
bug.

Developers can collaborate on resolving
bugs by submitting improved versions of
previously rejected patches.

Number
of writer’s
previous
patches

The number of previous patches
submitted by the current patch
owner on a bug.

A developer can continue working on a
bug resolution and submit several versions
of the patch, or so called resubmits of the
same patch, to address reviewers concerns.

Pe
rs

on
al

Review queue The number of pending review
requests.

While our previous research [5] demon-
strated that review loads are weakly cor-
related with review time and outcome; we
were interested to find out whether re-
viewer work loads affect code review qual-
ity.

Reviewer ex-
perience

The overall number of com-
pleted reviews.

We expect that reviewers with high overall
expertise are less likely to miss a bug.

Reviewer
experience
for module

The number of completed re-
views by a developer for a mod-
ule.

Reviewers with high reviewing experience
in a certain module are less likely to miss
defects; and on the contrary, reviewers
with no past experience in performing code
reviews for some modules are more likely
to fail to catch bugs.

Writer experi-
ence

The overall number of submit-
ted patches.

Developers who contribute a lot to the
project — have high expertise — are less
likely to submit buggy changes.

Writer experi-
ence for mod-
ule

The number of submitted
patches for a module.

Developers who make few changes to a
module are more likely to submit buggy
patches.

3.6 Identifying Bug-Inducing Changes

To answer our research questions, we had to identify reviews that missed bugs, i.e.,

the reviews of the patches that were linked to bug-inducing commits. We applied the SZZ
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Table 3.III – A taxonomy of considered participation and temporal metrics used.

Type Metric Description Rationale
Pa

rt
ic

ip
at

io
n

Number of
developers on
CC

The number of developers on
the CC list at the moment of re-
view decision.

Linus’s law states that “given enough eye-
balls, all bugs are shallow” [12].

Number of
comments

The number of comments on a
bug.

The more discussion happens on a bug, the
better the quality of the code changes [32].

Number of
commenting
developers

The number of developers
participating in the discussion
around code changes.

The more people are involved in discussing
bugs, the higher software quality [32].

Average num-
ber of com-
ments per de-
veloper

The ratio of the comment count
over the developer count.

Does the number of comments per devel-
oper has an impact on review quality?

Number of
reviewer
comments

The number of comments made
by a reviewer.

Does reviewer participation in the bug dis-
cussion influence the quality of reviews?

Number
of writer
comments

The number of comments made
by a patch writer.

Does patch writer involvement in the bug
discussion affect review quality?

Te
m

po
ra

l

Review time Time in minutes taken to review
a patch.

Quickly reviewed code changes are more
likely to be bug-prone.

Review re-
quest week
day

Day of week (Mon, Tue, Wed,
Thu, Fri, Sat, Sun) the review
was requested on.

Are reviews requested on Mondays more
likely to introduce bugs than reviews asked
for during other weekdays or over the
weekend?

Review week
day

Day of week (Mon, Tue, Wed,
Thu, Fri, Sat, Sun) the review
was submitted on.

Are reviews performed on Mondays more
likely to introduce bugs than reviews done
during other weekdays or over the week-
end?

Review re-
quest month
day

Day of month (0-31) the review
was requested on.

Are review requests earlier in the month
more likely to introduce bugs than requests
towards the end of the month?

Review
month day

Day of month (0-31) the review
was submitted on.

Are reviews earlier in the month more
likely to introduce bugs than reviews at the
end of the month?

algorithm proposed by Śliwerski et al. [50] to identify the list of bug-inducing changes.

Śliwerski et al. [50] analyzed CVS archives to identify fix inducing changes —

changes that lead to problems caused by fixes. They developed an algorithm named SZZ

(Sliwerski, Zimmermann and Zeller) to automatically locate these fix inducing changes

by linking a version archive (such as CVS) to a bug database. Many researchers use and

apply the SZZ algorithm since it provides a very practical and convenient approach to

identify bug-introducing changes from bug-fix changes.
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To provide some background on how SZZ works, we now summarize the workflow

of the SZZ algorithm descibed in following three main steps:

1. We search for bug fix changes through retrieving bug identifiers or relevant key-

words in change logs, or tracking accurately a recorded linkage between a bug

tracking system and a specific commit from the version control system.

2. We apply the diff function to check out the modification during the bug fixing

process. Normally, the diff tool provides a list of regions that differ between the

two files. According the original authors’ point of view, each region of the code

change is called a “hunk”. The deleted or modified source code in each hunk is

the location of a bug.

3. We continue tracking the origins of the deleted or modified source code in the

hunks through using built-in annotate feature of the version control systems.

For each hunk in the source code, we search and catch the most recent revi-

sion that the hunk was modified in, and the developer who was in charged of

this change. As a result, we are able to identify the origins discovered as bug-

introducing changes.

While the SZZ algorithm allows us to link the bug and its bug introducing changes,

based on our experiments on Mercurial version control system, the SZZ algorithm has

some limitation. Main flaws can be described as follows:

1. Not all changes can be identified as bug fixing ones. Some modifications caused

by bug fix work are not actual bugs (false positives), for example, new comments

added, formatting changes and blank lines. Therefore, we can not assume that all

hunks in the modifications are relevant to bug fixes.

2. The Mercurial’s annotate command is not consistent with annotate in

other version control systems. While it is similar to blame in Git, it does not

provide the information sufficient to identify bug-introducing changes.

3. Mercurial does not provide a feature to directly track the parent of each line of

code in each revision.
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To overcome these limitations of the SZZ algorithm, we perfomed a number of mod-

ifications to the logic of the initial algorithm.

For each commit that is a bug fix, our implemented algorithm executes diff be-

tween the revision of the commit and the previous revision. In Mercurial, all revisions

are identified using both a sequential numeric ID and an alphanumeric hash code. Since

Mercurial is a distributed version control system, RevisionId - 1 is not always a

previous revision and thus cannot be used in the algorithm. To overcome this problem,

we extracted the parent revision identifier for each revision with our self-made script

tool and used it as a previous revision value for executing diff. The output of diff

produces the list of lines that were added and/or removed between the two revisions.

The SZZ algorithm ignores added lines and considers removed lines as locations of bug-

introducing changes.

Next, the Mercurial annotate command (similar to blame in Git) is executed for

the previous revision. For each line of code, annotate adds the identifier of the most

recent revision that modified the line in question. SZZ extracts revision identifiers for

each bug-introducing line found at the previous step, and builds the list of revisions that

are candidates for bug-inducing changes.

Kim et al. addressed some limitations of the SZZ algorithm as it may return im-

precise results if diff contains changes in comments, empty lines, or formatting [27].

The problem with false positives (precision) occurs because SZZ treats those changes as

bug-introducing changes even though such changes have no effect on the execution of

the program. Since we implemented SZZ according to the original paper, i.e., without

any additional checks, we wanted to find out how many false positives are returned by

SZZ. To assess the accuracy of the SZZ algorithm, we performed a manual inspection

of the returned results (that is, potential candidates returned by SZZ) for 100 randomly

selected commits. We found 9% (39 out of 429 candidates) of false positives with 19 of

those being changes in formatting and the rest 20 candidates being changes in comments

and/or empty lines. While we think the percentage of false positives is relatively small,

the limitations of SZZ remain a threat to validity.

Finally, the algorithm eliminates those candidates that were added to the repository
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after the bug associated with a commit was reported to the issue tracking system. The

remaining revisions are marked as bug-inducing code changes.

We ran our implemented SZZ algorithm on every commit with a bug ID, and obtained

the list of changes that led to bug fixes. Some of the changes might have been “fixed”

outside of our studied period and thus would not be marked as bug-inducing. To account

for such cases, we also analyzed the changes that were committed within a six-month

time frame after our studied period: we assigned bug ID values, scraped Bugzilla for

bug report date, and executed the SZZ algorithm; the results were added to the list of

bug-inducing commits. The commits from the data set were marked as bug-inducing if

they were present in this list; otherwise, they were marked as bug-free commits.

Figure 3.2 presents an illustrative example of how we link a bug reported to the issue

tracking system (Bugzilla) to the code changes committed to the version control system

and how we identify the change that introduced this bug in the first place. The example

also shows how we then link bug-inducing changes with the code review process and the

individual reviewer who missed this bug.

1. We extract the list of fixed/resolved bugs (in our example, the bug with bugID=892926)

from Bugzilla;

2. We identify the latest revision for bugID 892926 as revision #179722;

3. For each revision (in this example, for revision #179722), we identify all the files

changed. Here, we consider the tabbrowser.xml as the file modified in this

revision (there are typically many files modified in one single revision);

4. We then determine the lines changed for this file (using hg diff -git) and

identify the parent revision;

5. For each of the lines removed, we determine revision when the bug was intro-

duced (“blamed” revision). Here, we got revision #138289 by executing hg

annotate;

6. By linking the change back to Bugzilla, we determine the person who reviewed

this change (i.e., patch). In this example, the reviewer username is determined
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as “dao” who reviewed this patch that was commmitted in revision #138289 and

introduced bug #892926.

Figure 3.2 – Example of applying the SZZ algorithm to the bug with bugID=892926 for
the file tabbrowser.xml.

3.7 Determining Explanatory Factors

Previous work demonstrated that various types of metrics have relationship with code

review time and outcome [5]. Similarly, we grouped our metrics into four types: techni-

cal, personal, participation and temporal.

In this section, we describe our factors which practitioners may use to predict buggy

code reviews. Additionally, we explore the rational behind using various attributes re-

lated to these factors.

Table 3.II and Table 3.III describe the metrics used in our study and provides ratio-

nale for their selection. Once we finished building the datasets, we had all the required

data for technical and temporal factors. The metrics for technical factors and temporal

factors were calculated on our dataset. However, the personal and participation metrics

could not be extracted from our data due to its fixed time frame. For example, one devel-

oper started to participate in code review in 2013, while another one has been performing

review tasks since 2010; if we compute their expertise on the data from our dataset (i.e.,
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a 12-month period of 2013), the experience of the second developer will be incorrect,

i.e., his experience for previous three years (2010–2012) will be not taken into account.

To overcome this problem, we queried an Elastic Search cluster containing the complete

copy of the data from Bugzilla [37]. The nature of how Elastic Search stores the data

allowed us to get the “snapshots” of Bugzilla for any point in time and to accurately

compute the personal and participation metrics. While computing the review queue val-

ues, we found that many developers have a noticeable number of “abandoned” review

requests, i.e., the requests that were added to their loads but never completed. Such

requests have no value for the review queue metric; therefore, any pending review

request on the moment of 2014-01-01 was ignored when calculating developer review

queues.

The metrics of four types presented in this section served as explanatory variables

for building our models that we describe next.

3.8 Model Construction and Analysis

To study the relationship between personal and participation factors and the review

quality of the studied systems, we built Multiple Linear Regression (MLR) models. Mul-

tiple linear regression attempts to model the relationship between two or more explana-

tory variables and a response variable by fitting a linear equation to observed data [9].

The model is presented in the form of y = β0 + β1x1 + β2x2 + ... + βnxn, where y is the

response variable and x1, x2,... xn are explanatory variables. In our MLR models, the

response variable is the code review quality (buggy or not) and the explanatory variables

are the metrics described in Table 3.II.

The value of the response variable ranges between 0 and 1 — we used the value of

1 for bug-prone reviews and the value of 0 for bug-free inspections. Our goal was to

explain the relationship (if any) between the explanatory variables (personal and par-

ticipation metrics) and the response variable (code review quality). In our models we

control for several technical dependent factors (size, number of files, etc.) that are

likely to influence the review quality. We build our models similar to the ones described
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in [5, 8, 32, 34].

Transformation. To eliminate the impact of outliers on our models, we applied a

log transformation log(x+1) to the metrics whose values are natural numbers (e.g., size,

chunks, number of files, experience, review queues, etc.). Since categorical variables

can not be entered directly into a regression model and be meaningfully interpreted, we

transform such variables (e.g., priority, severity, etc.) using a “dummy coding” method,

which is a process of creating dichotomous variables from a categorical variable. For

example, if we have a categorical variable such as priority that has 5 levels (P1–P5),

then four dichotomous variables are constructed that contain the same information as the

single categorical variable. By using these dichotomous variables we were able to enter

the data presented by categorical metrics directly into the regression model.

Identifying Collinearity. Collinearity, or excessive correlation among explanatory

variables, can complicate or prevent the identification of an optimal set of explanatory

variables for a statistical model. We identified collinearity among explanatory variables

using the variance inflation factor (VIF). A VIF score for each explanatory variable is

obtained using the R-squared value of the regression of that variable against all other

explanatory variables. After calculating VIF scores, we removed those with high values.

The VIF score threshold was set to 5 [16], thus if the model contained a variable with

VIF score greater than 5, this variable was removed from the model and VIF scores for

the variables were recalculated. We repeated this step until all variables in our model

had VIF scores below the threshold.

Model Evaluation. We evaluated our models by reporting the Adjusted R2 values.

We also performed a stepwise selection [15], a method of adding or removing variables

based solely on the t-statistics of their estimates. Since we had many explanatory vari-

ables, it was useful to fine tune our model by selecting different variables. Our goal

was to identify the best subset of the explanatory variables from our full model. For the

stepwise variable selection, we applied both the “forward” and “backward” methods.
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3.9 Results

In this section, we present and discuss the results of our empirical study performed

on various Mozilla systems.

3.9.1 RQ1: Do code reviewers miss many bugs?

In theory, code review should have a preventive impact on the defect-proneness of

changes committed to the project’s source code. Yet, code review might induce bugs

since identifying the code-level problems and design flaws is not a trivial task [1]. We

determine the proportion of buggy code reviews for the different projects by computing

the number of bug-inducing code reviews for each Mozilla module.

Table 3.IV – Number of code reviews that missed bugs.

System # Reviews # Buggy Reviews % Buggy Reviews
Mozilla-all 28,127 15,188 54.0 %
Core 18,759 10,184 54.3 %
Firefox 2,668 1,447 54.2 %
Firefox4Android 2,160 1,210 56.0 %

As indicated in Table 3.IV, we find that overall 54% of Mozilla code reviews missed

bugs in the approved commits. This value proved to be remarkably consistent across

the different modules we looked at: the Core module contained 54.3% buggy reviews,

Firefox contained 54.2%, and Firefox for Android contained 56%. While the studied

systems are of widely varying sizes and have different numbers of commits and review-

ers (as reported in Table 3.I), the proportion of “buggy” code reviews in these modules

is almost identical.

While we were surprised to see such minute variation across the different modules,

the proportion of buggy changes (54–56%) we observed is within the limits of the pre-

viously reported findings. Kim et al. [28] reported that the percentage of buggy changes

can range from 10% to 74% depending on the project; with Mozilla project having 30%

of buggy changes for the 2003–2004 commit history when Mozilla code base was still

growing. Śliwerski, Zimmerman, and Zeller [50] found 42% of bug-inducing changes
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for Mozilla and 11% for Eclipse projects (the dataset contained changes and bugs before

2005).

3.9.2 RQ2: Do personal factors affect the quality of code reviews?

Intuitively, one would expect that an experienced reviewer would be less likely to

miss design or implementation problems in code; also, one would expect smaller work

loads would allow reviewers to spend more time on code inspections and, thus, promote

better code review quality. To investigate if these are accurate assumptions, we added

technical and personal metrics from Table 3.II and Table 3.III to our MLR model.

Table 3.V shows that review queue length has a statistically significant impact on

whether developers catch or miss bugs during code review for all the four studied sys-

tems. The regression coefficients of the review queue factor are positive, demonstrating

that reviewers with longer review queues are more likely to submit poor-quality code

evaluations. These results support our intuition that heavier review loads can jeopardize

the quality of code review. A possible improvement would be to “spread the load on

key reviewers” [4] by providing a better transparency on developer review queues to bug

triagers.

For all studied systems, reviewer experience seems to be a good predictor of whether

the changesets will be effectively reviewed or not. Negative regression coefficients for

this metric demonstrate that less experienced developers — those who have conducted

relatively fewer code review tasks — are more likely to neglect problems in changes

under review. These results follow our intuition about reviewer experience being a key

factor to ensure the quality of code reviews. It was surprising to us that writer experience

(overall or module-based) does not appear to be an important attribute in most of the

models (with the exception of Core). We expected to see that less active developers

having little experience in writing patches would be more likely to submit defect-prone

contributions [13, 46] and thus, increase the chances of reviewers in failing to detect all

defects in poorly written patches.

Factors such as the number of previous patches on a bug and the number of patches

re-submitted by a developer seem to have a positive effect on review quality for one of
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Table 3.V – Model statistics for fitting data. Values represent regression coefficients
associated with technical and personal factors.

Mozilla Core Firefox FF4A
Adjusted R2 0.128 0.123 0.173 0.138
Size (LOC) 0.102*** 0.098 *** 0.108*** 0.115***
Chunks † † † †
Number of
files

0.058*** 0.059 *** 0.109*** 0.062*

Module ? n/a n/a n/a
Priority ? ? ‡ ·
Severity ‡ ‡ · ‡
Super review -0.139** -0.177*** · n/a
Review queue 0.017*** 0.0204*** 0.038** 0.045**
Reviewer exp. -0.013*** -0.012*** -0.029*** -0.041***
Reviewer exp.
(mod.)

† † ‡ 0.018*

Writer exp. · -0.004* ‡ ‡
Writer exp.
(module)

† † ‡ ·

# prev patches † † † -0.045***
# writer
patches

-0.012*** · · †

†Disregarded during VIF analysis (VIF coefficient > 5).
? “It’s complicated": for categorical variables see explanation of the results in
Section 3.9.
FF4A = Firefox for Android.
‡Disregarded during stepwise selection.
Statistical significance: ’***’ p < 0.001; ’**’ p < 0.01; ’*’ p < 0.05; ’·’ p ≥

0.05.

the four systems: Firefox for Android (and also on the overall Mozilla-all). A possible

explanation is that Firefox for Android is a relatively new module, and the novelty of the

Android platform may attract a variety of developers to be more involved in contributing

to the Android-based browser support building on each other’s work (i.e., improving

previously submitted patches). However, we have not attempted to test this hypothesis.

Among the technical factors, size of the patch has a statistically significant effect on
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the response variable in all four models. Its regression coefficients are positive, indi-

cating that larger patches lead to a higher likelihood of reviewers missing some bugs.

Similarly, number of files has a good explanatory power in all four systems. The need

for a super review policy is well explained, as super reviews have a positive impact on

the review quality. This shows that such reviews are taken seriously by Mozilla-all and

Core projects (our dataset contains no super reviews for Firefox for Android). It is not

surprising as the role of super reviewer is given to highly experienced developers who

demonstrated their expertise of being a reviewer in the past and who has a greater overall

knowledge of the project’s code base.

When examining the impact of module factor on code review effectiveness, we no-

ticed that for some Mozilla modules such as Core, Fennec Graveyard, Firefox, Firefox

for Metro, Firefox Health Report, Mozilla Services, productmozilla.org, Seamonkey,

Testing, and Toolkit, the model contains negative regression coefficients that are statisti-

cally significant; this indicates that these modules maintain a better practice of ensuring

high quality of their code review process.

We found that while the bug priority level is associated with a decrease of poorly

conducted reviews (P5 patches for Mozilla-all with regression coefficient being -0.13,

p < 0.05 and P3 patches for Core module with the regression coefficient = -0.10, p <

0.05), it does not have a significant impact on other two modules.

3.9.3 RQ3: Does participation in code review influence its quality?

Previous research found that the lack of participation in code review has a negative

impact on quality of software systems [32]. To investigate whether code review quality is

affected by the involvement of the community, we added metrics that relate to developer

participation in review process, described in Table 3.III to our models.

Table 3.VI shows that the number of developers on the CC list has a statistically

significant impact on review bugginess for three of the four systems; and its regres-

sion coefficients are positive, indicating that the larger number of developer names is

associated with the decrease in review quality. This may sound counterintuitive at first.

However, from the developer perspective, their names can be added to CC for different
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reasons: developer submitted the bug, wrote a patch for the bug, wants to be aware of the

bug, commented on the bug, or voted on the bug. Thus, we think that CC is negatively

associated with review quality due to its ambiguous purpose: “CC is so overloaded it

doesn’t tell you why you are there” [4].

The number of commenting developers has a statistically significant impact on the

models of all four of the studied systems. The regression coefficients are negative, in-

dicating that the more developers that are involved in the discussion of bugs and their

resolution (that is, patches), the less likely the reviewers are to miss potential problems

in the patches. A similar correlation exists between review quality and the metric repre-

senting average number of comments per developer and having statistically significant

negative coefficients for two of the four systems (Mozilla-all and Core). This shows that

reviews that are accompanied with a good interactions among developers discussing bug

fixes and patches are less prone to bugs themselves. The number of comments made by

patch owners is also demonstrated to have a statistically significant negative impact on

review bug-proneness in the model for Firefox for Android only. These results reveal

that the higher rate of developer participation in patch discussions is associated with

higher review quality.

While any developer can collaborate in bug resolution or participate in critical anal-

ysis of submitted patches, reviewers typically play a leading role in providing feedback

on the patches. Thus, we expected to see that the number of comments made by review-

ers has a positive correlation with review quality. However, in Table 3.VI we can see

that while having a statistically significant impact in the models for two of the four sys-

tems, the regression coefficients are positive, indicating that more reviewers participate

in discussing patches, the more likely they would miss bugs in the patches they review. A

possible explanation of these surprising results is that if a reviewer posts many comments

on patches, it is possible that he is very concerned with the current bug fix (its imple-

mentation, coding style, etc.). Or, as our previous qualitative study revealed, the review

process can be sensitive due to its nature of dealing with people’s egos [4]. As one de-

veloper mentions “there is no accountability, reviewer says things to be addressed, there

is no guarantee that the person fixed the changes or saw the recommendations." Code
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Table 3.VI – Model statistics for fitting data. Values represent regression coefficients
associated with technical and participation metrics.

Mozilla Core Firefox FF4A
Adjusted R2 0.134 0.128 0.173 0.147
Size (LOC) 0.105*** 0.103*** 0.105*** 0.117***
Chunks † † † †
Number of
files

0.060*** 0.059*** 0.090*** 0.067***

Module ? n/a n/a n/a
Priority ‡ ? ‡ ?
Severity ? ‡ ? ‡
Super review -0.124*** -0.160*** ‡ n/a
# of devs on
CC

0.053*** 0.056*** ‡ 0.049*

# comments † † † †
# commenting
devs

-0.124*** -0.102*** -0.075*** -0.176***

# comments/
# dev

-0.039*** -0.029** ‡ ‡

# reviewer
comments

0.010** ‡ 0.026* ‡

# writer com-
ments

· · · -0.047**

†Disregarded during VIF analysis (VIF coefficient > 5).
? “It’s complicated": for categorical variables see explanation of the results in

Section 3.9.
FF4A = Firefox for Android.
‡Disregarded during stepwise selection.
Statistical significance: ’***’ p < 0.001; ’**’ p < 0.01; ’*’ p < 0.05; ’·’ p≥
0.05.

review is a complex process involving personal and social aspects [10].

Table 3.VI demonstrated that while developer participation has an effect on review

quality, technical attributes such as patch size and super review are also good predictors.

All models suggest that the larger the code changes, the easier it is for reviewers to

miss bugs. However, if changes require a super review, they are expected to undergo
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a more rigorous code inspections. For two of the three studied systems, super review

has negative regression coefficients; but it does not have a significant impact for Firefox

(Firefox for Android patches have no super reviews).

Code reviews in modules such as Core, Fennec Graveyard, Firefox, Firefox for

Metro, Firefox Health Report, Mozilla Services, productmozilla.org, Seamonkey, Test-

ing, and Toolkit are statistically less likely to be bug-prone; the regression coefficients for

these modules have negative values and are -0.209 (p < 0.05), -0.339 (p < 0.01), -0.191

(p < 0.05), -0.205 (p < 0.05), -0.197 (p < 0.05), -0.263 (p < 0.05), -0.679 (p < 0.001),

-0.553 (p < 0.01), -0.204 (p < 0.05) and -0.297 (p < 0.001) respectively. Similar to

the findings for RQ2, code inspections performed in these modules appear to be more

watchful than in other components.

Priority as a predictor has a statistically significant impact on review outcome for

Core and Firefox for Android only. For the Core module, priority P3 has a negative

effect (regression coefficient = -0.09, p < 0.05), i.e., the patches with P3 level are ex-

pected to undergo more careful code inspections. For Firefox for Android, patches with

priority P1 are more likely to be associated with poor reviews (regression coefficient =

0.17, p < 0.001). Among severity categories, we found that patches of trivial severity

have statistically significant negative impact on review bug-proneness in the models for

Mozilla-all and Firefox (regression coefficients =-0.125 and =-0.385 p < 0.05, respec-

tively). Developers find that “priority and severity are too vague to be useful” [4] as

these fields are not well defined in the project. But since these metrics are associated

with the review quality, developer should be given some estimation of the risks involved

to decide how much time to spend on patch reviews.

While the predictive power of our models remain low (even after rigorous tune-up

efforts), the best models appear to be for Firefox (Adjusted R2 = 0.173 for fitting tech-

nical and personal factors, as well as technical and participation metrics). The goal in

this study is not to use MLR models for predicting defect-prone code reviews but to un-

derstand the impact our personal and participation metrics have on code review quality,

while controlling for a variety of metrics that we believe are good explainers of review

quality. Thus, we believe that the Adjusted R2 scores should not become the main factor
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in validating the usefulness of this study.

3.9.4 RQ4: Do temporal factors influence the quality of the review process?

Previous research found that time-related factors do contribute to the quality of soft-

ware systems. A known fact is that developers should not commit their patches on

Fridays as they are more likely to introduce bugs on this day of the week [50]. Conse-

quently, builds in the first half of a month and builds on Wednesday are more likely to

pass certification (and not being buggy) [19]. Therefore, we want to investigate whether

temporal metrics such as review time, the day of the week/month when the review was

requested or done, influence the results of a code review process. The intuition here is

that the more time reviewers spends on a patch, the better inspection and feedback they

can provide. To investigate whether code review quality is affected by the time-related

attributes, we add the temporal metrics described in Table 3.III to our models.

We first examine the review time and rate. Table 3.VIII reports the median and mean

values of review time (in minutes) and rate (lines per hour) for all four systems. An

average review takes around 43 minutes, and review rate is 136 lines of code per hour

(i.e., mean values for Mozilla all). This shows that reviewers allocate an appropriate

amount of time to inspect code changes. According to Kemerer and Paulk [25], best

practices suggest that code should not be reviewed at a rate faster than 200 lines per

hour.

Table 3.VII shows that review time has a statistically significant impact on re-

view bugginess only for Firefox for Android system; and its estimated coefficient is

positive, indicating that an increase in time tends to make reviewers miss problems with

code. This is surprising because a common belief among reviewers is that “reviews are

only as good as the time you spend on them” 3. In the models for other three systems,

review time is removed due to the lack of explanatory power.

For Mozilla all and Core, regression coefficients for the categorical variable review

request week day = Friday are 0.035 (p < 0.05) and 0.05 (p < 0.01) respectively.

This demonstrates that if code reviews are requested on Friday, reviewers are more likely

3. http://benjamin.smedbergs.us/blog/2014-10-22/how-i-do-code-reviews-at-mozilla/
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Table 3.VII – Model statistics for fitting data. Values represent regression coefficients
associated with technical and temporal factors.

Mozilla Core Firefox FF4A
Adjusted R2 0.127 0.125 0.167 0.152
Size 0.208*** 0.202*** 0.218*** 0.167***
Chunks † † † 0.175***
Number of
files

0.115*** 0.118*** 0.152*** ‡

Module ? n/a n/a n/a
Priority ‡ ? ‡ ?
Severity ‡ ‡ · ‡
Super review -0.148*** -0.169*** · n/a
Review time · ‡ ‡ 0.009*
Review re-
quest week
day

? ? ‡ ‡

Review week
day

† † † †

Review re-
quest month
day

† † † †

Review
month day

‡ ? ‡ ?

†Disregarded during VIF analysis (VIF coefficient > 5).
? “It’s complicated": for categorical variables see explanation of the results in
Section 3.9.
FF4A = Firefox for Android.
‡Disregarded during stepwise selection.
Statistical significance: ’***’ p < 0.001; ’**’ p < 0.01; ’*’ p < 0.05; ’·’ p ≥
0.05.

Table 3.VIII – Review time (in minutes) and rate (lines per hour).

System
Review Time Review Rate

Median Mean Median Mean
Mozilla all 6.4 43.1 5.2 136.3
Core 7.2 47.5 4.9 142.3
Firefox 5.7 40.5 5.7 120.7
Firefox for Android 3.7 21.0 6.2 92.7
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to neglect bugs in these code changes. This confirms previous findings by Śliwerski et

al. that patches submitted on Fridays are more likely to induce fixes [50]. Developers,

examining these results, can derive simple rules of thumb to follow, such as the fact that

picking a Friday to ship your patches for review is not a good bet.

When examining the result for review month day, we see that for Core mod-

ule developers reviewing contributions on day=7 are less likely to miss bugs (regression

coefficient = 0.06, p < 0.05), while for the Firefox for Android module, reviews done in

the second half of the month are more likely to become rigorous in nature. For contrib-

utors, these findings suggest to submit their patches for review later in the month if they

are not quite sure whether their code changes are truly flawless.

From Table 3.VII we can see that while temporal metrics might have an effect on

review quality, technical attributes remain better predictors, in particular the size of the

changes and the number of files affected by these changes. All models suggest that the

larger the code changes, the easier it is for reviewers to miss bugs. However, if changes

require a super review, they are expected to undergo a more rigorous code inspections.

For two of the four studied systems, super review has negative regression coeffi-

cients; but it does not have a significant impact for Firefox (Firefox for Android patches

have no super reviews).

3.10 Threats to Validity

In this section, we discuss the possible threats to the validity of our quantitative study.

External validity. Threats to external validity concern the possibility of generaliz-

ing our results. To make our results as generalizable as possible, we analyzed various

modules of Mozilla including Core, Firefox, Firefox for Android. We believe the num-

ber of the analyzed modules is sufficient enough to generalize our results. However,

our findings cannot be generalized across all open source projects. Further research is

needed to be able to provide greater insight into code review quality.

Internal validity concerns with the rigour of the study design. In this study, the

heuristics used, as well as the data filtering techniques adopted may be a threat. We
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mitigate such a threat by providing details on the data extraction and filtering and by

using a well-known outliers filtering procedure. The choice of metrics may be seen as a

threat.

We selected widely used metrics characterizing code review activities, bugs, code

changes (patches/commits), and developer attributes.

We assume that a code review is documented and communicated via Bugzilla issue

tracking system. While this assumption holds in most cases, some code review tasks

can be carried out via other channels such as email, face-to-face meetings, etc. When

investigating the relation between code change and reviewer, we assumed that patches

are independent; this might have introduced some bias since several different patches

can often be associated with the same bug ID and “mentally” form one large patch. In

our study we considered that the most recent patch is the one that gets incorporated into

the code.

In Bugzilla, bug reports per se actually serve several purposed: they can be bug-fix

requests, or requests for adding new functionality, or documentation-related changes,

etc. Since Bugzilla does not provide mechanisms of distinguishing between “true” bugs

and new feature requests, we treat all changes as bug fixes. Also, Bugzilla stores all times

and dates in the UTC timezone. Thus, day of the week and day of the month metrics

might not reflect the actual timezone of developers and times/dates of the patches or

reviews they submit.

When calculating review queue length of developers, we assume that at any given

point the number of review requests for a developer defines his or her current review

load. This heuristic is a “best effort” approximation; accurate review loads are hard to

determine by scraping the data from the existing code review system.

Conclusion validity is the degree to which conclusions we reach about relationships

in our data are reasonable. Proper regression models were built for the sake of showing

the impact of studied factors on the code reviews bugginess. In particular, we built our

MLRs for two types of metrics and evaluated them based on the appropriate measures

such as the deviance explained and Adjusted R2.
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CHAPTER 4

QUALITATIVE STUDY

A survey is an efficient way that can promote understanding and communication

between researchers and developers. We decided to further explore how developers per-

form code review, what criteria affect their judgement on accepting or rejecting patches

and what challenges they face when performing these tasks. We conducted a qualitative

study with Mozilla developers to study the reasons of what factors they perceive as most

important in contributing to code review quality. In this chapter, we describe our survey,

its design, analysis, and results.

4.1 Methodology

In this section, we present how we design our survey, who our participants are and

how we analyze the feedback we received.

Our methodology of conducting the survey is similar to the method used by Gousios

et al. [17]. Our survey generally consists of three kinds of questions: the multiple choice

questions with fixed option, the Likert-scale questions and free answer questions. The

survey starts with general investigation and ends with specific questions we were inter-

ested in studying. We solicited responses from the Mozilla developers. Our survey was

design to have developers spend between 5 to 10 minutes to complete the questionnaire

and was published to two Mozilla forums such as “Mozilla developer platform” and

“Mozilla code review” forums, we also sent out an email with the link to the survey to

individual developers. Developers could browse our questionnaire and contribute their

opinion by answering 20 questions.

To better understand developers′ working background and context, we prepare some

question for investigating their demographic characteristics. We suspect that the devel-

oper’s working experience, occupational habits and professional preference are relevant

to code review quality. For example, their role in the project(s), experience, the type of



code review activity they are involved in (writing, reviewing, discussing or other), etc.

This information, we believe, can help us to get a clear picture of their personal working

background. On the other hand, some working context information, such as, the number

of patches that developers submit for a review every week, the period that developers

review patches, the environment and tools they typically conduct code review with and

the number of patches they review every week can satisfy our curiosity for exploring

the details about their code review practices. During this part of the survey, some ques-

tions are provided with simple selection of answers, and the open-ended questions are

intermixed with multiple choice ones.

For the purpose of investigating the influence and incidence of different factors on

the decisions made by code reviewers and the time code review processes take, we also

design the Likert-scale questions, that is the most widely used approach to scaling re-

sponses in survey research by asking people to respond to a series of statements about a

topic, in terms of the extent to which they agree with them, and so getting insights into

the cognitive components of attitudes and perception.

In our survey design, the Likert-type or frequency scales is used to fixed choice re-

sponse formats and is designed to measure developers’ perception of the different levels

of impact from different factors on their code review tasks. These ordinal scales measure

levels of developers’ agreement/disagreement to those different factors that we present

to them. Here, we assume, in our Likert-type scale approach, the concurrence/non-

concurrence of feeling is linear, which means a Likert-scale from strongly agree to

strongly disagree, and makes the assumption that attitudes can be measured here. In our

survey, participants were offered a choice of five pre-coded responses with the neutral

point (Strongly disagree, Disagree, Neither agree nor disagree, Agree, Strongly agree).

In the survey, developers should follow their interior feelings of choosing the right an-

swer from our Likert-scale metrics.

Although our main purpose of this research is to investigate the Influence of various

dimensions on code review quality, we expect that developers can provide useful and

rich information to validate our research. Therefore, we also design some open ended

question, which means there are no fixed choices and participants could answer the ques-
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tion according to their experience and beliefs. For example, we ask them to comment on

the other potential factors that could affect code review timeliness and outcome, as well

as to describe characteristics that could contribute to a well-done code review. Free-form

answers can facilitate unexpected results, yet they allow us to solicit interesting infor-

mation. On the other hand, we are also curious about what challenges developer face

when conducting code review and how they assess the quality of submitted patches. In

addition, we also ask participants about what tools they would like to have available to

them to assist their code review activities.

4.2 Analysis and Results

In this section, we present our findings and results of the survey.

In a survey, the background of participants and their working habits is an impor-

tant and interesting indicator to an investigator. To gather background and demographic

information, we carefully design several questions related to the developers’ working

context.

Figure 4.1 – Developer role on the
project(s).

Figure 4.2 – Developer experience
(years).

From Figure 4.1, we find that the majority of the participants (88%) associate them-

selves as software developers or engineers. Only 14.3 % of the participants perform the

role of a project manager or QA engineer; and the rest of them (approximately 13%)

38



Figure 4.3 – Developer participation in
code review activities.

Figure 4.4 – Weekly patch submission.

work as release managers. We believe that this distribution of roles is a typical one for a

mature development and code review team. We should note, however, that some devel-

opers play multiple roles on the same project. For example, a developer can be a team

lead and at the same time she can also perform tasks of a code reviewer; some responsi-

bilities such as code reviewer are given based on the developer expertise and experience

on the project.

Table 4.2 demonstrates the distribution of the developers’ experience (number of

years). We measured developer experience by their time being on a project and defined

5 levels: less than 1 year, 1 to 2 years, 3 to 5 years, 7 to 10 years, more than 10 years.

According to this table, it is clear that all the participants have substantial experience

of software development. One half of the participants have over 10 years of experience

accounted for the greatest proportion of whole population (50%). The group of “7 to 10

years” represented 25% of the population and the rest had at least 3 years of software

development. These results supported our confidence in the construct validity of our

survey.

Table 4.3 demonstrates how developers are involved in code review tasks. The re-

sults show that all participants have done patch reviews and the majority of them (88%)

participate in patch writing and discussions of patches and bugs. The majority of devel-

opers recognize the value of code review and enthusiastically participate in code review
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Figure 4.5 – Weekly patch reviews. Figure 4.6 – Developer code reviewing
experience.

to safeguard of project quality.

Table 4.4 and Table 4.5 provide information about how many patches developers

submit for a review and how many patches they review every week. Most developers,

about 75%, submit less than 5 patches every week, while there are 25% of developers

review more than 21 patches. The rest of them (approximately 13%) review 6 to 10 patch

every week. According to our previous questions, developers who review more than 21

patches per week have experience in software development (more than 10 years). By

contrast, when it comes to weekly review loads, 1/2 of the participants choose less than

5, 25% of them review 6 to 10 patches per week and 25% of them review more than 21

patches per week. It is clear that some developers at Mozilla work primarily on fixing

bugs, while others are primarily involved in conducting patch reviews. We speculate that

developers who take management positions in the project, like a team lead or a release

manager, always review a great amount of patches. While developers may be involved

in other duties on the project (meetings, educational activities, etc.), our findings suggest

that code review are more time consuming that bug fixing.

Table 4.6 demonstrates how long our participants have been reviewing patches, which

reflects their working experience as code reviewers. The majority of out participants

(38%) have a substantial experience reviewing patches (“more than 5 years”). 25% of

developers conducted code review for “3 to 4 years” and 25% of them have experience

of “1 to 2 years”. The beginner type makes up the rest of them (about 12%). Thus, our

participants have a wide range of reviewing experience levels.

Table 4.7 presents the environments developers typically conduct code review in.
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Figure 4.7 – Environments for conduct-
ing code review.

Figure 4.8 – Venues for discussing
patches.

The results demonstrate that the issue tracking system remains the most popular choice

for performing code review tasks. However, some developers review code using Mozilla’s

code review tool called MozReview, which offers each individual developer a Review-

Board.

Figure 4.8 shows where developers prefer to discuss patches. The issue tracking

system is the most common channel for patch or bug discussions (100%), compared to

13% of discussions that happen via email, 63% in the IRC, 25% via Skype/Hangout and

38% via face-to-face interactions. According to our result, issue tracking system, such

as Bugzilla, serves as a central environment for Mozilla developers to perform code re-

view as it integrates many important features, such as bug reporting, review assignment,

patch submission and status monitoring, etc., to assist developers with all their project

communication and tracking their daily activities.

Figure 4.9 illustrates the degree of recognition and the likelihood of detecting prob-

lems with a patch and demonstrates developer perceptions about the influence of dif-

ferent factors on the quality of code review. We can see that the reviewer experience

is strongly agreed by our participants to have a great impact on code review. Accord-

ing to developers’ opinions, the patch size (LOC), code chunks, module, review queue

(i.e., review load) are strong contributors to the quality of code review. Most of de-

velopers believe that review response time, the length of the discussion of a patch, the

41



Figure 4.9 – Factors influencing code review quality.

number of people involved in the discussion of a patch, priority of a bug do not have a

significant impact on review quality. Moreover, factors such as review response time,

priority/severity of a bug stimulated a controversy among the expressed opinions.

Now, we would like to report the analysis of two open questions related to the quality

of code review.

For the question related to the characteristics that may contribute to a well-done

code review, we received various answers. Some developers say that a good code review

should “understand the problem it’s trying to solve and at the same time to understand

the code it’s modifying”, as well as to “verify that the change solves the problem and ver-

ify that the fix is as clear, simple, and straightforward as it can be consider performance

implications”. Developers also suggest that it is quite important to give a constructive,

clear feedback to the author of the patch, “we should avoid nitpicking insignificant de-

tails, and make a clear distinction between “nits” and “important feedback”, thorough

understanding of the problem and solution (both by writer and reviewer)”. One of the
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Mozilla team manager believes that “it really does matter every party knowing what the

patch is for and exactly what problem it solves” and that it is essential that each party

involved in code review has a good understanding of how to test/run/write.

One developer mentions that a good reviewer should pay attention to security ele-

ments such as memory management, “no leaks”, “no unsafe memory usage”; while other

developers feel that tooling is important, “good diffs, as well as interdiffs of past sub-

mitted patches”. Most participants agree that a patch writer has to take the coding style

into consideration “to avoid loosing time on nitpicking”, while reviewers should provide

pointers to the patch writer about how to solve particular review feedback points.

Some developers report that the code and annotation should be thorough: a high

quality review is the one “done while attentive (as opposed to tired)” and “not done

under stress like when there’s a deadline”.

Finally, for the question about other factors that may affect code review quality, one

developer suggests that considering “how tricky/complex the code being modified is”

may be important. While others believe that reviewer’s style of making reviews may in-

fluence the outcome of the review. For example, “some reviewers expect more followup

bugs to be filed and fixed, some want all the issues to be fixed in the original bug”. Also,

one developer believes that reviewer’s expertise in a certain type of bugs/changes should

be considered, “say, I’m experienced in memory management issues, so I tend to focus

on those issues more than some other reviewers”.

The results of the survey suggest that, based on the developers’ opinions and feed-

back, both technical (such as patch size, number of chunks, and module) and personal

factors (reviewer’s experience and review queue) are strong contributors to the code re-

view quality. These findings confirm the results obtained during our quantitative study

(described in Chapter 3) which reported that both technical and personal factors are

strong predictors of the quality measures.
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4.3 Threats to Validity

In this section, we discuss the possible threats to the validity of our qualitative study.

External Validity: The results of our qualitative study can not be applied to all open

source projects since all our survey participants were Mozilla developers. Other OSS

projects might employ different code review practices, thus making the generalizability

of our findings a possible threat.

Internal Validity: We carefully designed the survey to gain insight related to the

code review practices and code review quality. We used both multiple choice questions,

as well as open ended questions (other). As with any explanatory study, it is possible

that we could introduce some bias when interpreting the open-ended answers.
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CHAPTER 5

CONCLUSION

Code review is an essential and vital part of modern software development. Code

review explicitly addresses the quality of contributions before they are integrated into

project’s codebase. Due to volume of submitted contributions and the need to handle

them in a timely manner, many code review processes have become more lightweight

and less formal in nature. This evolution of review process increases the risks of letting

bugs slip into the version control repository, as reviewers are unable to detect all of the

bugs.

In this thesis, we have explored the topic of code review quality by investigating what

factors might affect it. We tried to understand what aspects contribute to poor code re-

view quality to help software development projects better understand their processes and

practice. We built and analyzed MLR models to explain the relationships between per-

sonal characteristics of developers, team participation and involvement in code review,

and technical properties of contributions on the effectiveness of code review. Further-

more, we conduct a survey with the actual Mozilla developers to explore their attitudes

and perception of code review and its quality, as well as other factors that may influence

review quality.

Our findings suggest that developer participation in discussions surrounding bug

fixes and developer-related characteristics such as their review experience and review

loads are promising predictors of code review quality for all studied systems. Among

technical properties of a change, its size, the number of files it affects, its impact on the

rest of the project’s code (or the need to perform a super review) have also a significant

link with the review bug-proneness. We believe that these findings provide practitioners

with strong empirical evidence for revising current code review policies and promoting

better transparency of the developers’ review queues and their expertise on the modules.



CHAPTER 6

FUTURE WORK

In our quantitative study, we mainly investigate the influence of three groups of fac-

tors such as personal, temporal and participation, that can have an impact on code review

quality. However, the result of our qualitative study suggest that there are a number of

other factors that were not considered in this work but may be important indicators of

good or poor review quality. We plan to further explore the topic of code review quality

by exploring other data sources and metrics such as code change complexity, reviewer’s

style of conducting review tasks, as well as his expertise in a certain type of bugs.

In this work we only investigated code review process of one open source project.

While the Mozilla projects is a large OSS projects and is considered as a good represen-

tative, further research including other open source projects of various sizes is needed to

confirm our findings. We plan to conduct a large-scale qualitative study with developers

from various software development projects to validate our preliminary results on the

developer perceptions of high quality code review.

While we received good feedback from our participants, we believe that in order to

gain better insights into the quality of code reviews and how developers define quality in

this context, we need to hear individual stories. For that, we plan to interview developers

and seek their detailed opinions about code review practices, as well as to conduct ob-

servations of how they perform code review tasks to better understand, assess and assist

developers with their daily activities and tasks surrounding code reviews.
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Appendix I

Qualitative Study’s Supporting Materials (Survey Form)



A Study Investigating Code Review Quality
* Required

1) How would you describe your role on the project(s)? *
Check all that apply.
Check all that apply.

 Software Developer/Engineer

 Project Manager/Lead

 QA/Testing Engineer

 Other: 

1. 

2) How many years of experience do you have in software development? *
Mark only one oval.

 < 1

 1 to 2

 3 to 6

 7 to 10

 10+

2. 

3) You work for: *
Mark only one oval.

 Mozilla

 Red Hat

 Other: 

3. 

4) How are you involved in code review? *
Check all that apply.

 Writing patches

 Reviewing patches

 Discussing patches/bugs

 Other: 

4. 



5) On average, how many patches do you submit for a review every week? *
Mark only one oval.

 < 5

 6 to 10

 11 to 20

 21+

 I do not submit

5. 

6) How long have you been reviewing patches? *
Mark only one oval.

 less than 6 months

 6 to 12 months

 1 to 2 years

 3 to 4 years

 5+ years

 I do not review

6. 

7) On average, how many patches do you review every week? *
Mark only one oval.

 < 5

 6 to 10

 11 to 20

 21+

 I do not review

7. 

8) In what environment do you typically conduct code review?
Mark only one oval.

 Issue tracking (e.g., Bugzilla)

 Copy a patch locally into editor/IDE

 Other: 

8. 



9) Where do you discuss patches? *
Check all that apply.

 Issue tracking

 Email

 IRC

 Skype/Hangouts

 Face-to-face discussions

 Other: 

9. 

10) The following factors influence code review DECISIONS (Accept or Reject): *
Mark only one oval per row.

Strongly
disagree Disagree Neither agree

nor disagree Agree Strongly
agree

Patch size (LOC)
Code chunks
Number of modified
files
Module
Priority of a bug
Severity of a bug
Number of previous
patches (resubmits)
Review queue (aka
load)
Reviewer experience
Patch writer
experience
Number of people
involved in the
discussion of a patch
The length of the
discussion of a patch

10. 

11) In your opinion, what other factors affect code review DECISIONS?
 

 

 

 

 

11. 



12) The following factors influence code review TIME (duration): *
Mark only one oval per row.

Strongly
disagree Disagree Neither agree

nor disagree Agree Strongly
agree

Patch size (LOC)
Code chunks
Number of modified
files
Module
Priority of a bug
Severity of a bug
Number of previous
patches (resubmits)
Review queue (aka
load)
Reviewer experience
Patch writer
experience
Number of people
involved in the
discussion of a patch
The length of the
discussion of a patch

12. 

13) In your opinion, what other factors affect code review TIME?
 

 

 

 

 

13. 

14) How do you asses the quality of a patch? *
 

 

 

 

 

14. 



15) In your opinion, what characteristics do contribute to a well-done code review?
*
 

 

 

 

 

15. 

16) The following factors influence code review QUALITY (e.g., the likelihood of
detecting problems with a patch): *
Mark only one oval per row.

Strongly
disagree Disagree Neither agree

nor disagree Agree Strongly
agree

Patch size (LOC)
Code chunks
Number of modified
files
Module
Priority of a bug
Severity of a bug
Number of previous
patches (resubmits)
Review queue (aka
load)
Reviewer experience
Patch writer
experience
Number of people
involved in the
discussion of a patch
The length of the
discussion of a patch
Review response time

16. 

17) In your opinion, what other factors affect code review QUALITY?
 

 

 

 

 

17. 



Powered by

18) What is your biggest challenge in performing code review tasks?
 

 

 

 

 

18. 

19) What tools would you like to have to assist you with code review activities?
 

 

 

 

 

19. 

20) If you want us to keep you updated
on the results of this study, please
provide your email.

20. 
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