1	Propidium monoazide (PMA) and ethidium bromide monoazide (EMA) improve
2	DNA array and high-throughput sequencing of porcine reproductive and
3	respiratory syndrome virus identification.
4	
5	Christian Bellehumeur, ^{a,b} Brian Boyle, ^c Steve J. Charette, ^{b,c,d,e} Josée Harel, ^{a,b} Yvan
6	L'Homme, ^{b,f} Luke Masson, ^{b,g} Carl A. Gagnon ^{a,b} #*
7	
8	Groupe de recherche sur les maladies infectieuses du porc (GREMIP) ^a and Swine and
9	Poultry Infectious Diseases Research Center (CRIPA) ^b , Faculté de médecine vétérinaire,
10	Université de Montréal, Saint-Hyacinthe, QC, Canada; Institut de biologie intégrative et
11	des systèmes (IBIS), Université Laval, Québec, QC, Canada ^c ;
12	Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences
13	et de génie, Université Laval, Québec, QC, Canada ^d ;
14	Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de
15	Québec, Québec, QC, Canada ^e ;
16	Canadian food inspection agency, Saint-Hyacinthe, QC, Canada ^f ;
17	National Research Council Canada, Montréal, QC, Canada ^g
18	
19	Running Head: Improvement of virus detection from clinical samples
20	#Address correspondence to carl.a.gagnon@umontreal.ca
21	*Present mailing address: Faculté de médecine vétérinaire, Université de Montréal, 3200
22	rue Sicotte, Saint-Hyacinthe, Québec, Canada, J2S 7C6. Phone: 450-773-8521 (8681).
23	Fax: 450-778-8108.

24 Abstract

25 Pan-viral DNA array (PVDA) and high-throughput sequencing (HTS) are useful tools to 26 identify novel viruses of emerging diseases. However, both techniques have difficulties to 27 identify viruses in clinical samples because of the host genomic nucleic acid content 28 (hg/cont). Both propidium monoazide (PMA) and ethidium bromide monoazide (EMA) 29 have the capacity to bind free DNA/RNA, but are cell membrane-impermeable. Thus, 30 both are unable to bind protected nucleic acid such as viral genomes within intact virions. 31 However, EMA/PMA modified genetic material cannot be amplified by enzymes. In 32 order to assess the potential of EMA/PMA to lower the presence of amplifiable hg/cont in 33 samples and improve virus detection, serum and lung tissue homogenates were spiked 34 with porcine reproductive and respiratory virus (PRRSV) and were processed with 35 EMA/PMA. In addition, PRRSV RT-qPCR positive clinical samples were also tested. 36 EMA/PMA treatments significantly decreased amplifiable hg/cont and significantly 37 increased the number of PVDA positive probes and their signal intensity compared to 38 untreated spiked lung samples. EMA/PMA treatments also increased the sensitivity of 39 HTS by increasing the number of specific PRRSV reads and the PRRSV percentage of 40 coverage. Interestingly, EMA/PMA treatments significantly increased the sensitivity of 41 PVDA and HTS in two out of three clinical tissue samples. Thus, EMA/PMA treatments 42 offer a new approach to lower the amplifiable hg/cont in clinical samples and increase the 43 success of PVDA and HTS to identify viruses. 44 **Keywords:** DNA array; high-throughput sequencing; virus identification; porcine

45 reproductive and respiratory syndrome virus; PRRSV; propidium monoazide; PMA;

46 ethidium bromide monoazide; EMA.

<u>1.0 Introduction</u>

49	The emergence of new viral diseases represents a constant threat to human and animal
50	health. Fortunately, in the past decade, accesses to novel technologies have improved the
51	detection and identification of unknown viruses in clinical samples. Most of these novel
52	virus identification processes are based on viral genome detection using new technologies
53	like pan-viral DNA microarrays (PVDA) and high-throughput sequencing (HTS).
54	
55	The first PVDA, which contained 1,600 oligonucleotides probes targeting highly
56	conserved DNA sequences of 140 distinct selected viral genomes, was reported in 2002
57	[1]. Since then, the PVDA has been further developed and includes, in its latest version,
58	36,000 oligonucleotides probes targeting approximately 1,500 distinct viral genomes [2].
59	This technology has been used to rapidly identify viruses involved in human illness, like
60	severe acute respiratory syndrome (SARS) [3], and in animal diseases [2]. Use of this
61	technology is of interest as the results can be generally obtained within a day and does
62	not require other advanced technologies for results interpretation [2]. However, PVDA is
63	dependent on the selected probes it contains and their tolerance to nucleotide mismatch
64	during the DNA hybridization process required for the detection and identification of
65	viruses in a clinical sample [4].
66	
67	Decreasing costs has made HTS technology more accessible and consequently, its use in
68	identifying novel or unknown viruses affecting humans, animals or plants has increased

69 [5-7]. It has even led to the discovery of unforeseen viruses in clinical samples [8].

Metagenomic sequencing has the potential to determine the entirety of the nucleic acid sequences within a sample, including viral nucleic sequences of interest [9]. The metagenomic DNA sequences obtained with HTS are then compared to a genomic database in order to identify the nucleic acid sequences associated with known viruses [10]. One major benefit to metagenomic sequencing of clinical samples is the potential to detect and assemble the genome of novel viruses [11].

76

Although both PVDA and HTS have led to the discovery of new viruses in the last years, 77 78 especially from isolated viruses, both techniques are negatively impacted by the presence 79 of nucleic acid found in clinical samples, mainly host genomic DNA/RNA [10, 12]. The 80 high host to viral DNA ratio in extracted clinical samples greatly decreases PVDA 81 sensitivity since most of the amplified labeled DNA corresponds to host DNA [12]. For 82 sequencing, depending on the method of tissue preparation and viral particle 83 concentration, again the high host to viral DNA ratio decreases the sensitivity of the 84 technology [13]. As more reads must be obtained in order to detect the presence of a virus 85 in a clinical sample, this can increase sequencing costs and lower throughput while 86 creating a potential bioinformatics bottleneck. Thus, in order to improve viral detection in 87 clinical samples with HTS and PVDA, the levels of host genomic DNA must be lowered. 88 This is generally done by treating samples with a combination of ultracentrifugation, 89 filtration and/or nuclease treatment (typically DNase and/or RNase treatment) [9, 14]. As 90 these methods can introduce bias in viral identification (9) the development of alternative 91 methods to lower host genomic material in clinical samples is of interest.

92

93	Ethidium bromide monoazide (EMA) and its analog propidium monoazide (PMA), when
94	combined with PCR, allow the quantification of living cells such as bacteria [15-18].
95	Both are azide-bearing, DNA/RNA-intercalating dyes that only cross damaged lipid
96	membrane barriers. Both dyes can bind and covalently crosslink DNA/RNA when the
97	azide group is converted to a highly reactive nitrene radical upon exposure to bright
98	visible light. Thereafter, they are easily inactivated and the unbound inactivated
99	EMA/PMA remains free in solution. EMA/PMA-generated DNA/RNA cross-linking
100	strongly inhibits reverse-transcription and PCR amplification of the EMA/PMA modified
101	genomes while unmodified genomes from presumptively living bacteria (which possesses
102	intact membranes) can be amplified [17]. Interestingly, EMA/PMA treatments have been
103	used to distinguish infectious from non-infectious viruses such as Hepatitis A virus,
104	coxsakievirus, echovirus, norovirus and poliovirus, suggesting that intact virus particles
105	have the potential to protect their genetic material from EMA/PMA chemicals [19].
106	
107	In theory, EMA/PMA could be used to prevent host genomic amplification during the
108	PCR steps that are conducted within PVDA and HTS assays, while the viral genome
109	within intact virions are inaccessible to the dyes during treatment before amplification.
110	The main objective of this study was to determine if EMA or PMA treatments can

111 increase the efficacy of PVDA and HTS to detect viruses in clinical samples.

112	2.0 Materials and methods
113	
114	2.1. Cell and virus strains
115	
116	MARC-145 cells were maintained as described previously and were used for virus
117	production [20]. The Porcine reproductive and respiratory syndrome virus (PRRSV)
118	strain used to spike tissue and sera samples was the IAF-Klop reference strain [21]. The
119	PRRSV IAF-Klop strain stock was obtained following three cycles of freeze-thaw of
120	PRRSV MARC-145 infected cells. Afterward, the virus stocks were maintained at -70°C
121	until needed. The infectious dose of the stocks was calculated from MARC-145 infected
122	cells by the Kärber method as described previously [22]. Virus titers were expressed in
123	tissue culture infectious dose 50% per mL (TCID ₅₀ /mL).
124	
125	2.2 PRRSV spiked tissues and positive clinical samples
126	
127	Lung and blood samples were collected from negative control and PRRSV
128	experimentally infected piglets. Animals care was done according to the guidelines of the
129	Canadian Council of Animal Care and the protocol approved by the Institutional Animal
130	Care Committee (Protocol 12-Rech-1669). The PRRSV strain involved in this infection
131	was PRRSV FMV12-1425619 (GenBank accession number KJ1888950). Sera of non-
132	infected and infected piglets were collected at different time post-infection (pi) and kept
133	at -70°C until needed. Viral load in samples was determined with a specific PRRSV RT-
134	qPCR assay as previously described [8]. Lung samples were collected at necropsy at 28

135	days pi and stored at -70°C until needed. Three infected lung samples (PRRSV titers: 1)
136	4929, 2) 4336 and 3) 9408 TCID ₅₀ /g) were selected. Two sera samples were selected
137	from PRRSV positive clinical sera samples (PRRSV titers of 1) 1059 and 2) 7413
138	$TCID_{50}/mL$) submitted to the Molecular Diagnostic Laboratory (MDL) of the University
139	of Montreal were selected and stored at -70°C until needed. PRRSV negative swine lung
140	samples or PRRSV negative swine sera samples were spiked with a known quantity of
141	the PRRSV IAF-Klop strain to a final concentration of either $5,000 \text{ TCID}_{50}/\text{mL}$ or $50,000$
142	TCID ₅₀ /mL. Lung tissue samples (spiked samples or PRRSV positive clinical samples;
143	100 mg of tissue in 1 mL of PBS with glass beads) were homogenized twice for five
144	minutes in a Mini BeadBeater 96 Homogenizer, centrifuged one min at 10 000 rpm in a
145	table top centrifuge and kept at 4°C until used. Serum samples (spiked samples or
146	PRRSV positive clinical samples) were kept at 4°C once thawed.
147	
148	2.3 Samples processing
149	
150	2.3.1 Ultracentrifugation
151	
152	Lung tissue homogenate and serum samples (spiked with PRRSV or clinical samples)
153	were ultracentrifuged for 3h at 25,000 rpm in a Sorvall TH-641 swinging bucket rotor at
154	4°C through 1mL of a 20% sucrose cushion in TNE buffer (20 mM Tris-HCl (pH 8.0),
155	150 mM NaCl and 2 mM EDTA). The virus pellets were re-suspended in TNE buffer to
156	the initial sample volume prior to ultracentrifugation. Non-ultracentrifugated sample

157	aliquots were kept at 4°C for the duration of the ultracentrifugation step. Clinical samples
158	(lung tissue and serum) were assessed by ultracentrifugation only.

160 2.3.2. Ethidium bromide monoazide and propidium monoazide treatments

161

162 EMA and PMA (Biotium, Hayward, CA) were reconstituted according to manufacturer's 163 recommendation. Stock solutions were then diluted in RNase-free water to a working 164 concentration of 2 mM. Both stock and working solutions were kept at -20°C until used. 165 Lung tissue homogenates with and without ultracentrifugation (spiked or clinical 166 samples) and sera samples (spiked or clinical samples) were subsequently treated with EMA (final concentrations of 100 µM), PMA (final concentrations of 100 µM), or with 167 168 an equivalent volume of water. Treated samples were then incubated in the dark for five 169 minutes at room temperature, five minutes on ice, and then exposed during ten minutes to 170 two 500 watt halogen light sources (at a distance of 20 cm from the light source). Micro-171 centrifuge tubes were kept on ice during light exposure to avoid excessive heating. 172

173 2.4. Total nucleic acid extraction

174

175 Following treatments, total DNA and RNA were extracted using a phenol-chloroform-

isoamyl alcohol. Briefly, 200 μ L of a phenol solution at pH 7.6-7.8 (UltraPureTM buffer-

saturated phenol; Invitrogen, Burlington, ON), 200 µL of molecular grade chloroform

178 (Fisher scientific, Ottawa, ON) and 20 µL of isoamyl alcohol (Fisher scientific) were

added to each sample. Samples were then homogenized and centrifuged in a table-top

180	microcentrifuge for 1 min at 13,000 rpm. The supernatant was kept and assessed for a
181	second phenol-chloroform step. Finally, the supernatant was treated twice with 200 µL of
101	second phenor-emotoron step. Finany, the supermatant was treated twice with 200 μ L of
182	chloroform and total DNA and RNA precipitated by adding 500 μ L of ethanol and 20 μ L
183	of sodium acetate (3M, pH 5.2) and incubation at -70°C overnight followed by
184	centrifugation for 30 min at 4°C in a table-top microcentrifuge at 13,000 rpm. The pellet
185	representing total nucleic acid was resuspended in 50 μ L of RNase-free water and stored
186	in a freezer at -70°C until used.
187	
188	2.5. PRRSV and host genome quantification by qPCR and RT-qPCR
189	
190	PRRSV and swine β -Actin (representing swine host genomic DNA) were quantified in
191	extracted DNA/RNA by RT-qPCR and qPCR, respectively. Equal sample volumes were
192	used for each test to ensure comparable results. PRRSV was quantified in DNA/RNA
193	extracted from tested samples using the commercial EZ-PRRSV [™] MPX 4.0 Real Time
194	RT-PCR kit (Tetracore, Rockville, Maryland, USA), following the manufacturer's
195	recommendations. The β -actin quantification was done by qPCR using the SsoFast TM
196	EvaGreen® Supermix kit (Bio-rad, Hercules, CA, USA) in order to evaluate host genome
197	in spiked and clinical samples following each treatment. Samples were diluted in RNase
198	free water (1:16) prior to β -actin qPCR tests. The PCR amplification program for β -actin
199	quantification consisted of an enzyme activation step of 3 min at 98°C followed by 40
200	cycles of a denaturing step (2 s at 98°C) and an annealing/extension step (5 s at 58°C)
201	using the following primers: forward primer (5'- ATCTTCATGAGGTAGTCGGTCAGG
202	- 3') and reverse primer (5'- ACCACTGGCATTGTCATGGACTCT -3'). Both primers

203	were selected to achieve amplification efficiency between 90 and 110% (data not shown)
204	and were designed from the NCBI GenBank mRNA sequences using web-based software
205	primerquest from Integrated DNA technologies. All amplification steps were done on a
206	Bio-Rad CFX 96 apparatus with results expressed as Ct values.
207	
208	2.6. DNA/RNA samples amplification
209	
210	Following treatment and extraction, total nucleic acid samples used for all experiments
211	(i.e. both array detection and PMA/EMA treatment) were amplified using a modified
212	random PCR protocol [1, 2]. Random-amplified samples for PVDA testing were spiked
213	with 225 pg of purified pUC19 plasmid DNA and used both as a positive control and
214	localization marker on array slides.
215	
216	2.7. DNA array
217	
218	2.7.1 DNA array development
219	
220	Probe sequences targeting PRRSV American strains were selected from the PRRSV
221	probes used on the ViroChip developed by Wang et al. (2002)[1] and were deduced from
222	sequences alignment of full and partial PRRSV genomic sequences gathered from the
223	National Center for Biotechnology Information (NCBI) GenBank database using
224	Geneious pro software, version 5.6.6 (Biomatters, Auckland, New Zealand
225	[http://www.geneious.com/]). The PRRSV homology of candidate probes was verified

226	with BLASTN. Each selected oligonucleotide probe (70-mers) was unique and was
227	targeting specific PRRSV conserved regions. Reverse and forward sequences of 17
228	conserved regions were selected for the PRRSV genotype 2 strains. Two probes were
229	also selected to target a specific region of pUC19 plasmid DNA as an array positioning
230	control and one probe was selected as a negative hybridization control. A total of 37
231	probes were selected and were synthesized by Eurofins MWG Operon (Huntsville, AL,
232	USA). These probes are reported in the Gene Expression Omnibus (GEO) NCBI database
233	(accession number GSE62910). DNA array spotting was done at the National Research
234	Council Canada, as previously described [23].

236 2.7.2. DNA array hybridization and analysis

237

238 After RT and PCR random-amplification steps, PCR products were incubated with

aminoallyl (aa)-dUTP (Invitrogen, Burlington, ON, Canada) in the presence of Klentaq

240 (Clontech) as previously described [1, 2]. The generated aa-DNA was purified with the

241 QIAquick PCR purification kit (QIAGEN, Toronto, ON, Canada), re-suspended in 30 µL

of RNase-free water and supplemented with 3 µL of 1M sodium bicarbonate. Thereafter,

the aa-DNA was incubated for 1h in the presence of 1:10 DMSO-reconstituted Cy3

244 Mono-Reactive Dye (GE Healthcare Life Sciences, Pittsburgh, PA, USA). Labeled DNA

245 was then purified using a QIAquick PCR purification kit and assessed for quality using a

246 NanoDrop 1000 spectrophotometer (Fisher Scientific, Toronto, ON, Canada).

248	Microarray slides were pre-hybridized at 50°C for 1h with 85.5 μ L of DIG easy Hyb
249	buffer (Hoffmann-La Roche Limited, Mississauga, ON, Canada) supplemented with 4.5
250	μ L of 10% (w/v) bovine serum albumin (Invitrogen, Burlington, ON, Canada) under
251	22mm x 60mm x 0.25mm Grace Bio-Labs Hybrislip [™] coverslips (Sigma Aldrich,
252	Oakville, ON, Canada). Subsequently, cover slips were removed by dipping the glass
253	slides into 0.1x SSC (15mM NaCl, 1.5mM sodium citrate) and the slides dried by a quick
254	centrifugation. Total Cy3-labeled DNA (typically 3 μ g) was dried in a Speedvac (Fisher
255	scientific) then suspended in 7 μ L of DIG Easy Hyb buffer. Afterwards, the DNA was
256	denatured for five min in a boiling water bath followed by five min of incubation on ice.
257	Samples were hybridized overnight in a water bath at 50°C under 22 mm x 22 mm Grace
258	Bio-Labs Hybrislip [™] (Sigma Aldrich). Finally, coverslips were removed in 0.1x SSC,
259	0.1% (V/V) sodium dodecyl sulfate (SDS) and the slides washed three times in 0.1x SSC,
260	0.1% (v/v) SDS and once in 0.1x SSC for five minutes per wash. Hybridized arrays were
261	imaged using a fluorescence scanner (ScanArray; Perkin Elmer, Mississauga, ON,
262	Canada) and ScanArray software version 1.1. Fluorescent spot intensities were scanned at
263	a laser fluorescent intensity of 80 to 100 and quantified using ScanArray software version
264	1.1. DNA array fluorescent intensity results were analysed with Microsoft Excel TM . The
265	intensity of each spotted probe was compared to the average intensity of the two negative
266	control spots. For a probe to be considered positive, the average of signal-to-noise
267	fluorescence ratios of their duplicate spots had to be ≥ 2.0 .
268	

269 2.8. High-throughput sequencing

271	The random amplified samples were end-repaired and A-tailed using KAPA High
272	Throughput Library Preparation Kit with SPRI solution and Standard PCR Library
273	Amplification/Illumina series (Kapa Biosystems, Wilmington, MA, USA). Illumina
274	TruSeq HT dual indexed adapters (Illumina, SanDiego, CA, USA) were ligated to the
275	amplified samples and the libraries were amplified with the KAPA kit. After the final
276	cleanup, the quality of the libraries were assessed on High Sensitivity DNA Chips
277	(Agilent, Santa Clara, CA, USA) using a 2100 BioAnalyzer (Agilent). Equal amounts of
278	each library were pooled and sequenced on an Illumina MiSeq (2 x 300 paired-end reads,
279	dual-indexed) at the Plateforme d'Analyses Génomiques de l'institut de Biologie
280	Intégrative et des Systèmes de l'Université Laval (Quebec, QC, Canada). Raw sequencing
281	reads were trimmed for the random amplification primers and mapped to the Sus scrofa
282	genome v10.2 and the PRRSV IAF-Klop viral genome sequence using the gsMapper
283	application of Newbler v2.9.

285 2.9. Statistical analysis

286

A parametric one-way ANOVA model, followed by Tukey's Multiple Comparison tests
(GraphPad PRISM Version 5.03 software) was used to determine if a statistically
significant difference exists between the quantification of targeted genes (β-actin or
PRRSV) for each treated and untreated samples, as evaluated by qPCR and RT-qPCR. A
non-parametric one-way ANOVA model, followed by Dunn's Multiple Comparison Test
(GraphPad PRISM software), was used to determine if a statistically significant
difference exists between the mean relative fluorescent intensity of each PRRSV

294	detection probe on the DNA array for each treated and untreated samples. The ratio of
295	positive PRRSV reads compared to the total amount of reads following each treatment
296	was analysed with a mixed linear model, with trial number as a random factor and
297	treatment as a fixed factor, followed by Tukey's Multiple Comparison tests (SAS version
298	9.3 software, Cary, NC, USA). HTS results were also evaluated individually using chi-
299	square tests in order to determine if the odds to obtained positive PRRSV reads were
300	different following each selected treatments, compared to the total amount of reads not
301	related to PRRSV (GraphPad PRISM software). Finally, a Spearman's non-parametric
302	correlation was also used to evaluate the relation between the presence of DNA
303	contaminant reads and positive PRRSV reads as well as the ratio of PRRSV reads and the
304	PRRSV percent of coverage in HTS results (SAS version 9.3 software). Differences were
305	considered statistically significant with a $P < 0.05$, with the exception of chi-square tests
306	results where only $P < 0.003$ ($P < 0.05/15$) were considered significant.

<u>3.0. Results</u>

309 3.1. EMA or PMA treatment effects on host-genomic DNA and PRRSV detection in spiked
310 samples

312	In order to select an effective concentration for EMA and PMA treatment, a preliminary
313	experiment was done with PRRSV spiked lung samples (5,000 TCID ₅₀ /mL; data not
314	shown) and a final EMA and PMA concentration of 100 μ M was selected for the
315	realisation of subsequent experiments. Using this concentration, the effect of EMA or
316	PMA treatments on virus genome's presence and host genomic DNA was further
317	evaluated in tissue samples spiked with known quantities of PRRSV (5,000 TCID ₅₀ /mL
318	or 50,000 TCID ₅₀ /mL) but also in serum samples spiked with the same PRRSV
319	quantities. Results with lung homogenates spiked with both concentration of PRRSV
320	indicate that EMA and PMA treatments significantly lowered PRRSV detection
321	compared to non-treated samples (Fig. 1A; $P < 0.001$ and $P < 0.05$ respectively). However,
322	PRRSV detection was more negatively affected following EMA treatment (Fig. 1A;
323	P<0.01), indicating that PMA treatments have less negative impact on RT-qPCR PRRSV
324	detection as observed in the preliminary experiment. Ultracentrifugation had a significant
325	positive impact on PRRSV detection in lung tissue homogenates spiked with either
326	concentration of PRRSV following EMA treatment (Fig. 1A; P<0.001). In lung tissue
327	homogenates spiked only with the highest concentration of PRRSV, ultracentrifugation
328	had also increased significantly PRRSV detection following no treatment and following
329	PMA treatment (Fig. 1A; $P < 0.01$ and $P < 0.05$ respectively). In spiked serum samples,

330	only EMA treatment significantly decreased PRRSV detection (Fig. 1A; $P < 0.05$).							
331	Ultracentrifugation significantly improved PRRSV detection in non-treated spiked sera							
332	samples (Fig. 1A; P<0.001) and significantly decreased PRRSV RT-qPCR detection in							
333	EMA treated spiked sera samples (Fig. 1A; $P < 0.001$).							
334								
335	Both EMA and PMA treatments, combined or not with ultracentrifugation, were equally							
336	efficient in lowering β -actin amplification in PRRSV spiked lung tissue homogenates							
337	(Fig. 1B; $P < 0.001$). Ultracentrifugation of non-treated spiked lung tissue samples also							
338	slightly lowered β -actin amount (Fig. 1B; <i>P</i> <0.05). In spiked sera samples, β -actin was							
339	already at the limit of detection in untreated samples, which indicates that hg/cont is							
340	much lower in sera compared to lung tissue homogenates (Fig. 1B).							
341								
342								
343	3.2. DNA array sensitivity with EMA or PMA treated PRRSV spiked tissues.							
344								
345	After nucleic acid extraction, random amplification and DNA labeling were done on each							
346	spiked samples and the fluorescence of each PRRSV probe was measured following the							
347	hybridization of labeled samples on DNA arrays and compared to the negative probe							
348	fluorescence intensity (see accession number GSE62910 in the GEO NCBI database for							
349	raw data). Surprisingly, probes signals intensity and positivity were varying between							
350	experiments. For lung samples spiked with PRRSV (5,000 TCID ₅₀ /mL), a low number of							
351	slightly positive probes (probes relative signal intensity < 5) were detected in untreated							
352	samples (Fig. 2A). Interestingly, multiple probes with relative high fluorescence							

353	intensity (>5) were detected following PMA treatment when combined with
354	ultracentrifugation and were associated with a significantly higher number of positive
355	probes compared to untreated samples with ultracentrifugation and the PMA treated
356	samples without ultracentrifugation (Fig. 2A; P<0.001). In contrast, the fluorescence
357	intensity of detected positive probes of EMA-treated lung homogenates spiked with
358	PRRSV (5 000 TCID ₅₀ /mL) were significantly lower than all other experimental groups,
359	indicating a lower chance to detect positive probes following treatment with EMA
360	(<i>P</i> <0.05; Fig. 2A).
361	
362	In lung samples spiked with a higher concentration of PRRSV (50,000 TCID ₅₀ /mL), a
363	small number of low intensity positive probes (fluorescence relative signal <5) or no
364	positive probes (fluorescence relative signal <1) were detected in untreated samples (Fig.
365	2B). A significant increase in the number of high intensity positive probes (fluorescence
366	relative signal >5) were found in samples treated with PMA, with or without
367	ultracentrifugation, when compared to untreated samples without ultracentrifugation (Fig.
368	2B; $P < 0.001$). Surprisingly, only a few positive probes were found in samples treated
369	with ultracentrifugation and EMA, similar to untreated samples. However, the number
370	and intensity of probes in samples treated with EMA without ultracentrifugation were
371	significantly higher compared to untreated samples without ultracentrifugation
372	(<i>P</i> <0.001).
373	

374 In spiked sera samples, it was interesting to observe that all experimental groups had375 large numbers of probes with high intensity fluorescence signal against PRRSV,

- 376 including untreated samples (Fig. 2C), indicating overall that all treatments
- 377 (ultracentrifugation versus PMA/EMA) did not improve DNA array sensitivity when

378 used with sera samples. Interestingly, PMA treatment compared to untreated sera reduced

the PVDA sensitivity even if a high number of high intensity positive probes were

- 380 observed in PMA treated sera (Fig. 2C; *P*<0.05).
- 381
- 382 *3.3. HTS efficiency with EMA or PMA treated PRRSV spiked tissues.*
- 383

384 DNA sequences obtained from sequencing experiments were compared to the swine

385 mitochondrial (GenBank accession numbers NC_000845) and chromosomal genomic

386 DNA sequences (GenBank accession numbers NC_010443-NC_010462) as well as the

387 full genetic sequence of the PRRSV strain used in this study. All HTS reads associated

388 with PRRSV sequence were also considered to evaluate the virus coverage obtained

- 389 following each treatment combination.
- 390

391 In two out of three experiments, PMA and EMA treated PRRSV spiked lung tissues

392 (5,000 TCID₅₀/mL) had a significant increase in the number of PRRSV reads when

393 compared to untreated samples, as revealed by the chi-square analysis (Fig. 3A;

P < 0.001). A strong correlation was found between PRRSV percent of coverage and the

higher number of reads following treatment (r=0.81, P<0.001), indicating that the

396 increase in PRRSV coverage is related to the augmentation in PRRSV reads. However,

397 when all three HTS experiments were combined together in the statistical analyses, no

398 significant differences were obtained between the amount of PRRSV specific reads

399	against the total amount of reads (Fig. 3A; $P=0.4358$) or the PRRSV percentage of
400	coverage (Fig. 3B; $P=0.5585$). Noteworthy, the experiment showing no improvement in
401	the amount of PRRSV reads was associated with a higher level of hg/cont as revealed in
402	Fig. 3C. In fact, a strong negative correlation was found between the ratio of PRRSV
403	reads (number of PRRSV reads / total number of reads) and the ratio of host genomic
404	reads (number of genomic reads / total number of reads) (r=-0.66, P <0.005) in these three
405	experiments. The reason why this experiment indicates a low effect of treatments on the
406	percentage of host genomic DNA and possibly its transcripts is currently unknown but
407	might be caused by a higher rate of host genome released during the tissue preparation.
408	
409	In tissue homogenates spiked with higher amounts of PRRSV (50,000 TCID ₅₀ /mL),
410	although not statistically significant, statistical analyses revealed a tendency for an
411	increase of the ratio of PRRSV reads when the two HTS experiments were taken into
412	account (Fig. 3D; P=0.0772). Moreover, a significant variation was found in PRRSV
413	coverage in those samples (Fig. 3E; $P=0.0103$) and a significant increase in PRRSV
414	coverage in PMA treated samples without ultracentrifugation was observed (Fig. 3F;
415	P=0.0082). Ultracentrifugation of samples containing the higher amount of PRRSV did
416	not improve either the PRRSV number of reads or its coverage (Fig. 3D and E).
417	
418	In PRRSV spiked sera, there was an important increase in the ratio of PRRSV reads and

419 coverage in untreated samples compared to results obtained with lung homogenates (Fig.
420 3). This was in accordance with the lower amount of host genomic DNA detected in sera
421 of untreated samples (Fig. 1B, 3iC and 5F). According to the chi-square analysis, a slight

422	increase in PRRSV ratio of reads was observed following PMA and EMA treatments.
423	However, ultracentrifugation lowered the ratio of PRRSV reads when combined with
424	EMA treatment (Fig. 3G) and was associated with a lower PRRSV coverage (Fig. 3H).
425	
426	3.4. High-throughput sequencing efficiency with EMA or PMA treated PRRSV positive
427	clinical samples.
428	
429	In order to confirm the effectiveness of EMA and PMA treatments to increase the
430	sensitivity of PVDA and HTS to detect viruses, both techniques were evaluated with
431	different PRRSV positive clinical samples gathered from PRRSV experimentally infected
432	piglets and clinical samples submitted to the MDL. All clinical samples were
433	ultracentrifuged and treated with PMA or untreated. PMA was selected because overall,
434	our previous findings indicated that PMA treatment was more efficient than EMA with
435	regards to PRRSV RT-qPCR, PVDA and HTS detection.
436	
437	PRRSV and the amplifiable host genomic DNA copy numbers were significantly reduced
438	in PMA treated lung tissues (Fig. 4A and Fig. 4B; P<0.001). The important PRRSV
439	decrease in PMA treated samples was probably caused by the presence of damaged
440	virions and/or non-encapsidated viral genomes within clinical samples. PRRSV was
441	undetectable in all untreated samples by DNA array (Fig. 4C). Interestingly, several
442	PRRSV probes were found positive for lung #1 in PMA treated samples (Fig. 4C;
443	P<0.001). However, PRRSV was not detected by DNA array in lung #3 and few PRRSV
444	probes were found positive with lung #2 following PMA treatment (Fig. 4C). For HTS

445	results, when the three clinical cases are taken into account together, results revealed that
446	PMA tends to increase the number of reads obtained from lung tissues compared to
447	untreated samples (Fig. 4D; P=0.0529). Nonetheless, PMA treatment significantly
448	improved the percentage of PRRSV HTS reads in two out of three clinical cases tested
449	(Fig 4D, P<0.001). Although these experiments showed an important increase in PRRSV
450	genomic coverage (3 to 6-fold), no overall significant differences were detected (Fig. 4E;
451	P=0.1117). No increase in PRRSV coverage was detected for lung #1 (Fig. 4E).
452	Although lung #3 showed no increase in the percentage of PRRSV reads, an important
453	increase (6-fold) of PRRSV coverage was detected. However, a higher host genomic
454	DNA content is observed in this sample as suggested by the lower Ct values detected in
455	treated and untreated sample (Fig. 4B) and the higher genomic percentage of reads (Fig.
456	4F), compared to lungs #1 and #2.
457	

458 PMA treatment of clinical sera had no significant effect on amplifiable PRRSV (Fig. 5A) 459 or host genomeic DNA levels (Fig. 5B, Ct values >40). In agreement with spiked sera 460 samples, PRRSV was strongly detected with all experimental conditions tested from both 461 clinical sera samples by PVDA and HTS (Fig. 5C, D and E). However, the number of 462 PRRSV positive probes was significantly lower in PMA treated samples for both sera 463 samples (Fig. 5C; P<0.01). HTS results revealed that the PMA treatment also lowers the 464 ratio of PRRSV reads in one out of two cases (Fig. 5D; P<0.001). PRRSV coverage was 465 high in all cases (over 60%), except for serum 2 treated with PMA where the PRRSV 466 percent of coverage was slightly higher than 40%.

<u>4.0 Discussion and conclusion</u>

469	Although generally preferable, direct virus isolation and identification from clinical
470	samples are not always possible and can sometimes lead to mis-identification of the
471	etiological agent (29). Consequently direct identification within clinical samples, using
472	newly available genomic technologies, is desirable. During the past decade, PVDA and
473	HTS technologies have led to the discovery of new viruses [24-31]. However, the
474	sensitivity of these technologies can suffer from excessive amounts of contaminating host
475	DNA and RNA. Any methodology to decrease the masking effect that these contaminants
476	have on viral detection is important.
477	
478	A new approach to lower the host genomic DNA within clinical samples is presented in
479	this report. Our results support an increase in sensitivity of PVDA and HTS in lung tissue
480	samples treated with PMA and, to a lesser extent, with EMA. This treatment can be done
481	as a standalone treatment or in combination with other treatments like ultracentrifugation.
482	Surprisingly, adding an ultracentrifugation step before the EMA or PMA treatment
483	sometimes lowers the sensitivity of both PVDA and HTS. This is probably caused by a
484	physical degradation of viral particles during ultracentrifugation, making these particles
485	more sensitive to EMA or PMA treatment.
486	
487	Interestingly, our results indicate a higher sensitivity of PVDA and HTS with sera
488	samples, compared to tissue homogenates. This may be explained by two phenomena.

489 Firstly, there is a lower concentration of hg/cont in sera samples compared to tissue

490 homogenates, as demonstrated by β -actin DNA measurements for both untreated sera 491 samples and tissue homogenates. Secondly, the random amplification method used to 492 increase the amount of DNA for both HTS and PVDA techniques amplify all nucleic 493 DNA and RNA sequences found in a sample, including hg/cont. Thus, the sensitivity of 494 both PVDA and HTS will be highly affected by the ratio of the viral genetic material of 495 interest over the total amount of hg/cont found in samples. This indicates that the initial 496 amount of hg/cont in clinical samples has a deep impact on PVDA and HTS sensitivity 497 for the identification of viruses. The variation in hg/cont content within nucleic acid 498 extraction from clinical samples may explain the high standard deviation obtained within 499 the results of PVDA and HTS with lung tissue homogenates spiked with the lowest 500 PRRSV concentration. This variation can be explained by multiple factors like the 501 extraction method, the tissue quality and the homogenization process. Also, the virus 502 integrity in clinical samples will have to be taken into account to avoid virus particle 503 degradation during the tissue manipulation, storage and homogenization, which can 504 sensitize viral particles to EMA or PMA treatment. This is especially true for clinical 505 samples where the virus type, the integrity of tissue (dead animal, sample conservation at 506 room temperature, etc.), the amount of hg/cont or the presence of PCR inhibitors will 507 have an critical impact on PVDA and HTS sensitivity. In addition, the efficiency of the 508 random amplification process could be affected by the viral genome itself (its sequence 509 and its secondary structures), making some viral genomes less compatible with the use of 510 random amplification prior to HTS and PVDA [32]. It is important to note that our work 511 utilized a unique virus, and does not take into account the efficiency of EMA and PMA 512 treatments on other types of viruses. However, the outer structure of the virions of several

513	viruses can protect the viral genetic material from PMA treatment [19], suggesting that
514	this treatment should reduce the influence of hg/cont when used for clinical samples with
515	other virus types.

517	Multiple reports have revealed differential PVDA and HTS sensitivities for viral
518	detection and identification in clinical samples following the use of different treatment
519	combinations, including ultracentrifugation and nuclease treatment [24, 33]. The lowest
520	viral load in spiked serum samples was shown by Nicholson and collaborators (2011)
521	where they determined the limit of PVDA detection for PRRSV in spiked serum samples,
522	not subjected to nuclease treatment, to be 10,000 TCID ₅₀ /mL [34]. Similar results were
523	obtained in the present study but with lower virus concentration (5 000 TCID ₅₀ /mL).
524	
525	Previous studies have reported the ratio of viral sequencing reads to total number of reads
526	ranged between 0.00019% and 2.8% from non-nuclease treated serum and
527	nasopharyngeal aspirates [25, 26]. However, Mishra and collaborators (2014) showed a
528	ratio (viral reads/ total number of reads) of 0.00012% by HTS from muscle tissue
529	samples [24]. In this study, rRNA was depleted and a DNase treatment was done
530	following the RNA extraction, in order to lower hg/cont in that clinical sample [24].
531	These results are in accordance with our work since the percentage of PRRSV specific
532	reads ranged between 0% and 0.00059% in spiked untreated samples and between 0%
533	and 0.19785% in EMA and PMA-treated spiked samples. In contrast, Djikeng and
534	collaborators (2008) have reported much higher ratios of host genomic content to isolated
535	virus ranging between 3 and 40% [33] while Nakamura and collaborators (2009) have

536 reported higher genomic content ranging between 90.0% and 94.6% [26]. The variation 537 of the host genomic DNA content between those studies is probably explained by the 538 difference in purification and treatment methods used for each virus, like the use of 539 gradient density centrifugation to obtained highly purified viruses with lower hg/cont 540 [33]. The ratio of host genomic DNA content reported in our study varied between 541 67.50% and 77.40% in untreated samples and between 40.91% and 72.76% in EMA and 542 PMA-treated samples. This represents an improvement over the results reported by 543 Nakamura and collaborators (2009) where no purification methods were used, and less 544 than the ratio of hg/cont reported by Djikeng and collaborators (2008). However, in the 545 last case, the viruses were isolated from cell culture and the virions were subsequently 546 purified.

547

548 Thus, our results indicates that EMA and PMA treatments improve the sensitivity of 549 PVDA and HTS to detect viruses in clinical samples contaminated with hg/cont. 550 Furthermore, EMA/PMA treatments are faster and easier to perform than a nuclease 551 treatment. Firstly, they require shorter incubation times compared to nuclease treatment 552 which would result in faster processing of clinical samples in a diagnostic laboratory, and 553 should increase the robustness of the method by exerting less stress on temperature 554 sensitive viral particles. Secondly, EMA and PMA are easy to inactivate through light 555 exposure, subsequently leaving EMA/PMA molecules unable to destroy newly exposed 556 viral genomic material following nucleic acid extraction, unlike the case when residual 557 nucleases may still be present after nucleic acid purification steps. This is especially true 558 if RNase or DNase treatment is being used in the presence of RNA or DNA viruses,

559 respectively. PMA/EMA treatments were more effective in tissue samples compared to 560 sera samples which was presumably due to lower hg/cont in the latter. PMA was more 561 effective than EMA in improving HTS and PVDA sensitivity for viral detection in 562 clinical samples. This would be explained by the fact that EMA can leak through 563 phospholipid bilayer membrane [35]. Moreover, ultracentrifugation appears to lower the 564 sensitivity of HTS and PVDA following some treatments, possibly because of direct 565 physical degradation of the viral particle. In conclusion, pre-treatment of clinical samples 566 with EMA, and especially PMA, represents an interesting novel approach that improves 567 PVDA and HTS sensitivity for the identification of viruses from clinical samples.

568

569 <u>5.0 Acknowledgements</u>

570 This manuscript was financially supported by the Canadian Swine Health Board (CSHB).

571 C.A. Gagnon was financially supported by the Natural Sciences and Engineering

572 Research Council of Canada (NSERC). The authors wish to thank Guy Beauchamp and

573 Philippe Garneau for scientific support, and Miria Elias for technical support. The authors

574 have no conflict of interest.

575

576 **<u>6.0. References</u>**

577

578 [1] Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., et al., Microarray-based detection

579 and genotyping of viral pathogens. *Proceedings of the National Academy of Sciences of*

580 *the United States of America* 2002, *99*, 15687-15692.

- 581 [2] Chen, E. C., Miller, S. A., DeRisi, J. L., Chiu, C. Y., Using a pan-viral microarray
- 582 assay (Virochip) to screen clinical samples for viral pathogens. Journal of visualized
- 583 *experiments : JoVE* 2011.
- 584 [3] Wang, D., Urisman, A., Liu, Y. T., Springer, M., et al., Viral discovery and sequence
- 585 recovery using DNA microarrays. *PLoS biology* 2003, *1*, E2.
- 586 [4] Delwart, E., Animal virus discovery: improving animal health, understanding
- zoonoses, and opportunities for vaccine development. *Current opinion in virology* 2012,
 2, 344-352.
- 589 [5] Massart, S., Olmos, A., Jijakli, H., Candresse, T., Current impact and future directions
- of high throughput sequencing in plant virus diagnostics. *Virus research* 2014, *188C*, 9096.
- 592 [6] Lipkin, W. I., Firth, C., Viral surveillance and discovery. *Current opinion in virology*593 2013, *3*, 199-204.
- 594 [7] Quinones-Mateu, M. E., Avila, S., Reyes-Teran, G., Martinez, M. A., Deep
- 595 sequencing: Becoming a critical tool in clinical virology. Journal of clinical virology :
- *the official publication of the Pan American Society for Clinical Virology* 2014, *61*, 9-19.
- 597 [8] Bellehumeur, C., Boyle, B., Mandeville, I., Gagnon, C. A., High-throughput
- 598 sequencing revealed the presence of an unforeseen parvovirus species in Canadian swine:
- 599 the porcine partetravirus. *The Canadian veterinary journal. La revue veterinaire*
- 600 *canadienne* 2013, *54*, 787-789.
- 601 [9] Hall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., et al., Evaluation of rapid and
- simple techniques for the enrichment of viruses prior to metagenomic virus discovery.
- 603 Journal of virological methods 2014, 195, 194-204.

- 604 [10] Firth, C., Lipkin, W. I., The genomics of emerging pathogens. *Annual review of*
- 605 genomics and human genetics 2013, 14, 281-300.
- 606 [11] Barzon, L., Lavezzo, E., Costanzi, G., Franchin, E., et al., Next-generation
- 607 sequencing technologies in diagnostic virology. Journal of clinical virology : the official
- 608 publication of the Pan American Society for Clinical Virology 2013, 58, 346-350.
- 609 [12] Kang, X., Qin, C., Li, Y., Liu, H., et al., Improvement of the specificity of a pan-
- 610 viral microarray by using genus-specific oligonucleotides and reduction of interference
- 611 by host genomes. *Journal of medical virology* 2011, *83*, 1624-1630.
- 612 [13] Yang, J., Yang, F., Ren, L., Xiong, Z., et al., Unbiased parallel detection of viral
- 613 pathogens in clinical samples by use of a metagenomic approach. Journal of clinical
- 614 *microbiology* 2011, *49*, 3463-3469.
- 615 [14] Clem, A. L., Sims, J., Telang, S., Eaton, J. W., Chesney, J., Virus detection and
- 616 identification using random multiplex (RT)-PCR with 3'-locked random primers.
- 617 *Virology journal* 2007, *4*, 65.
- 618 [15] Nocker, A., Sossa-Fernandez, P., Burr, M. D., Camper, A. K., Use of propidium
- 619 monoazide for live/dead distinction in microbial ecology. Applied and environmental
- 620 *microbiology* 2007, *73*, 5111-5117.
- 621 [16] Gatteschi, D., Fittipaldi, M., Sangregorio, C., Sorace, L., Exploring the no-man's
- 622 land between molecular nanomagnets and magnetic nanoparticles. *Angewandte Chemie*
- 623 2012, *51*, 4792-4800.
- 624 [17] Codony, F., Perez, L. M., Adrados, B., Agusti, G., et al., Amoeba-related health risk
- 625 in drinking water systems: could monitoring of amoebae be a complementary approach to
- 626 current quality control strategies? *Future microbiology* 2012, 7, 25-31.

- 627 [18] Nocker, A., Mazza, A., Masson, L., Camper, A. K., Brousseau, R., Selective
- 628 detection of live bacteria combining propidium monoazide sample treatment with
- 629 microarray technology. Journal of microbiological methods 2009, 76, 253-261.
- 630 [19] Elizaquivel, P., Aznar, R., Sanchez, G., Recent developments in the use of viability
- 631 dyes and quantitative PCR in the food microbiology field. *Journal of applied*
- 632 *microbiology* 2014, *116*, 1-13.
- 633 [20] Beura, L. K., Sarkar, S. N., Kwon, B., Subramaniam, S., et al., Porcine reproductive
- and respiratory syndrome virus nonstructural protein 1 beta modulates host innate immune
- response by antagonizing IRF3 activation. *Journal of virology* 2010, 84, 1574-1584.
- 636 [21] Gagnon, C. A., Lachapelle, G., Langelier, Y., Massie, B., Dea, S., Adenoviral-
- 637 expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its
- 638 cellular maturation from the authentic viral protein but maintains known biological
- 639 functions. *Archives of virology* 2003, *148*, 951-972.
- 640 [22] Gagnon, C. A., del Castillo, J. R., Music, N., Fontaine, G., et al., Development and
- 641 use of a multiplex real-time quantitative polymerase chain reaction assay for detection
- and differentiation of Porcine circovirus-2 genotypes 2a and 2b in an epidemiological
- 643 survey. Journal of veterinary diagnostic investigation : official publication of the
- 644 *American Association of Veterinary Laboratory Diagnosticians, Inc* 2008, 20, 545-558.
- 645 [23] Vuong, N. M., Villemur, R., Payment, P., Brousseau, R., et al., Fecal source tracking
- 646 in water using a mitochondrial DNA microarray. *Water research* 2013, 47, 16-30.
- 647 [24] Mishra, N., Pereira, M., Rhodes, R. H., An, P., et al., Identification of a Novel
- 648 Polyomavirus in a Pancreatic Transplant Recipient With Retinal Blindness and Vasculitic
- 649 Myopathy. *The Journal of infectious diseases* 2014.

- 650 [25] Yozwiak, N. L., Skewes-Cox, P., Stenglein, M. D., Balmaseda, A., et al., Virus
- 651 identification in unknown tropical febrile illness cases using deep sequencing. *PLoS*
- 652 *neglected tropical diseases* 2012, 6, e1485.
- [26] Nakamura, S., Yang, C. S., Sakon, N., Ueda, M., et al., Direct metagenomic
- detection of viral pathogens in nasal and fecal specimens using an unbiased high-
- throughput sequencing approach. *PloS one* 2009, *4*, e4219.
- 656 [27] Blomstrom, A. L., Belak, S., Fossum, C., McKillen, J., et al., Detection of a novel
- 657 porcine boca-like virus in the background of porcine circovirus type 2 induced
- postweaning multisystemic wasting syndrome. *Virus research* 2009, *146*, 125-129.
- [28] Mihindukulasuriya, K. A., Wu, G., St Leger, J., Nordhausen, R. W., Wang, D.,
- 660 Identification of a novel coronavirus from a beluga whale by using a panviral microarray.
- 661 *Journal of virology* 2008, *82*, 5084-5088.
- 662 [29] Victoria, J. G., Kapoor, A., Dupuis, K., Schnurr, D. P., Delwart, E. L., Rapid
- 663 identification of known and new RNA viruses from animal tissues. *PLoS pathogens*
- 664 2008, *4*, e1000163.
- [30] Hang, J., Forshey, B. M., Kochel, T. J., Li, T., et al., Random amplification and
- 666 pyrosequencing for identification of novel viral genome sequences. *Journal of*
- *biomolecular techniques : JBT* 2012, 23, 4-10.
- [31] Rosseel, T., Lambrecht, B., Vandenbussche, F., van den Berg, T., Van Borm, S.,
- 669 Identification and complete genome sequencing of paramyxoviruses in mallard ducks
- 670 (Anas platyrhynchos) using random access amplification and next generation sequencing
- technologies. *Virology journal* 2011, 8, 463.

- 672 [32] Codony, F., Fittipaldi, M., Lopez, E., Morato, J., Agusti, G., Well water as a possible
- 673 source of Waddlia chondrophila infections. *Microbes and environments / JSME* 2012, 27,
- 674529-532.
- [33] Djikeng, A., Halpin, R., Kuzmickas, R., Depasse, J., et al., Viral genome sequencing
- by random priming methods. *BMC genomics* 2008, 9, 5.
- [34] Nicholson, T. L., Kukielka, D., Vincent, A. L., Brockmeier, S. L., et al., Utility of a
- 678 panviral microarray for detection of swine respiratory viruses in clinical samples. *Journal*
- 679 *of clinical microbiology* 2011, *49*, 1542-1548.
- 680 [35] Nocker, A., Cheung, C. Y., Camper, A. K., Comparison of propidium monoazide
- 681 with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal
- of DNA from dead cells. *Journal of microbiological methods* 2006, 67, 310-320.
- 683
- 684

686 7.0. Figures legends

687

688 *Figure 1*

689 PRRSV and host genomic detection in spiked tissues following EMA or PMA

690 treatment using qPCR. Effect of EMA and PMA treatments, with or without

- 691 ultracentrifugation, on A) PRRSV quantification and B) host genomic DNA (β-Actin) in
- 692 lung tissue homogenates spiked with PRRSV (5,000 TCID₅₀/mL or 50,000 TCID₅₀/mL)

693 or in serum spiked with PRRSV (5,000 TCID₅₀/mL). Results are expressed as Ct and

- 694 were obtained from two to seven independent experiments. The results of each
- 695 independent experiment (trial) are illustrated in Supplemental Figure 1. Sample

696 (TCID₅₀/mL) represents the type of tissue spiked with PRRSV. Numbers in brackets

697 represent the PRRSV concentration for each spiked sample expressed in TCID₅₀/mL.

698 Open bars represent results obtained from samples processed without an

- 699 ultracentrifugation step while filled bars represent results obtained from samples treated
- 700 with an ultracentrifugation step. A Ct value of 37 (dashed line) represents the limit of

701 detection of each qPCR test. Labeling of two sets of data with different letters indicates

that these two sets of data are statistically different (P < 0.05). Sets of data using letters

with the same superscript number must be compared only together.

704

705 *Figure 2*

706 PRRSV detection in spiked samples by DNA array following EMA or PMA

707 **treatments.** DNA array probes relative intensity from A) lung tissue homogenates spiked

708 with PRRSV (5,000 TCID₅₀/mL), B) lung tissue homogenates spiked with PRRSV

709 (50,000 TCID₅₀/mL) and C) serum samples spiked with PRRSV (5,000 TCID₅₀/mL). 710 Dots are relative fluorescence intensity mean values of two identical probes gathered 711 from two to seven independent experiments (each experiment consisting of a duplicate of 712 34 PRRSV specific probes) and was calculated as followed: [(PFL-BFL)/BFL] where 713 PFL represents a PRRSV probe fluorescence intensity and BFL represents the basal 714 fluorescence level (negative control probe fluorescence). The results of each independent 715 experiment (trial) are illustrated in Supplemental Figure 2. The line represents the 716 fluorescence mean value of all probes. Open dot circles represent results obtained from 717 samples processed without an ultracentrifugation step while filled dot circles represent 718 results obtained from samples treated with an ultracentrifugation step. Labeling of two 719 sets of data with different letters indicates that these two sets of data are statistically 720 different (P < 0.05). A probe relative intensity of 1 (dashed line) represents the lowest 721 limit of DNA array positive results.

722

723 *Figure 3*

724 PRRSV and host genomic detection efficiency in spiked tissue samples following 725 EMA or PMA treatment by high-throughput sequencing. HTS results gathered from 726 A), B) and C) lung tissue homogenates spiked with PRRSV (5,000 TCID₅₀/mL); from D), 727 E) and F) lung tissue homogenates spiked with PRRSV (50,000 TCID₅₀/mL); and from 728 G), H) and I) serum samples spiked with PRRSV (5,000 TCID₅₀/mL). The amounts of 729 PRRSV specific reads compared to the total number of reads gathered from each HTS 730 run (expressed as %) are reported in panels A), D) and G) while the percentage coverage 731 of PRRSV recovered from the total number of PRRSV specific reads are reported in

732	panel B), E) and H. The host genomic specific reads compared to the total number of							
733	reads gathered from each HTS run (expressed as %) are reported in panels C), F) and I).							
734	Open bars represent results obtained from samples processed without an							
735	ultracentrifugation step while filled bars represent results obtained from samples treated							
736	with an ultracentrifugation step. The results from each experiment are expressed							
737	separately in each graphic. Labeling of two sets of data with different letters indicates that							
738	these two sets of data are statistically different ($P < 0.05$). Sets of data using letters with							
739	the same superscript number must be compared only together. The overall P-values							
740	shown in the boxes represent the statistical analysis of treatments effects taking into							
741	account all the experimental groups.							
742								
743	Figure 4							
744	Detection of PRRSV and of host genomic DNA in clinical lung samples by RT-							
745	qPCR, DNA array and high-throughput sequencing following PMA treatment.							
746	Results obtained from three clinical lung samples by A) PRRSV RT-qPCR; B) swine							
747	host genomic quantification (β -Actin) qPCR; C) DNA array; D) HTS PRRSV specific							
748	reads compared to the total amount of reads (expressed as %); E) HTS PRRSV							
749	percentage coverage recovered from the total number of PRRSV specific reads; and F)							
750								
100	host genomic specific reads compared to the total amount of reads (expressed as %).							
751	host genomic specific reads compared to the total amount of reads (expressed as %). Open bars or open circles represent results obtained from untreated samples while filled							
751 752	host genomic specific reads compared to the total amount of reads (expressed as %).Open bars or open circles represent results obtained from untreated samples while filledbars or filled circles represent results obtained from samples treated with PMA. A Ct							
751 752 753	 host genomic specific reads compared to the total amount of reads (expressed as %). Open bars or open circles represent results obtained from untreated samples while filled bars or filled circles represent results obtained from samples treated with PMA. A Ct value of 37 (dashed line) represents the limit of detection of each qPCR test. Dots are 							

755 independent experiments (each experiment consisting of a duplicate of 34 PRRSV 756 specific probes) and was calculated as followed: [(PFL-BFL)/BFL] where PFL represents 757 a PRRSV probe fluorescence intensity and BFL represents the basal fluorescence level 758 (negative control probe fluorescence). The line represents the fluorescence mean value of 759 all probes. A probe relative intensity of 1 (dashed line) represents the lowest limit of 760 DNA array positive results. Results obtained from each clinical case are expressed 761 separately in each panel. The overall P values shown in boxes represents the statistical 762 analysis of treatments effects taking into account all the experimental groups. When two 763 sets of data or group of data are labeled with an asterisk, it indicates that these two sets of 764 data and group are statistically different (*** P<0.001). Labeling of two sets of data with 765 different letters indicates that these two sets of data are statistically different (P < 0.05). 766 Only sets of data using letters with the same superscript number should be compared 767 together.

768

769 *Figure 5*

770 Detection of PRRSV and of host genomic DNA in clinical sera samples by RT-

771 qPCR, DNA array and high-throughput sequencing following PMA treatment.

Results obtained from two clinical serum samples by A) PRRSV RT-qPCR; B) swine

773 host genomic quantification (β-Actin) qPCR; C) DNA array; D) HTS PRRSV specific

reads compared to the total amount of reads (expressed as %); E) HTS PRRSV

percentage coverage recovered from the total number of PRRSV specific reads; and F)

host genomic specific reads compared to the total amount of reads (expressed as %).

777 Open bars or open circles represent results obtained from untreated samples while filled

778 bars or filled circles represent results obtained from samples treated with PMA. A Ct 779 value of 37 (dashed line) represents the limit of detection of each qPCR test. Dots are 780 relative fluorescence intensity mean values of two identical probes gathered from two 781 independent experiments (each experiment consisting of a duplicate of 34 PRRSV 782 specific probes) and was calculated as followed: [(PFL-BFL)/BFL] where PFL represents 783 a PRRSV probe fluorescence intensity and BFL represents the basal fluorescence level 784 (negative control probe fluorescence). The line represents the fluorescence mean value of 785 all probes. A probe relative intensity of 1 (dashed line) represents the lowest limit of 786 DNA array positive results. The results from each clinical case are expressed separately 787 in each panel. The overall P values shown in boxes represent the statistical analysis of 788 treatments effects taking into account all the experimental groups. When two sets of data 789 or group of data are labeled with an asterisk, it indicates that these two sets of data and 790 group are statistically different (*** P<0.001; ** P<0.01). Labeling of two sets of data 791 with different letters indicates that these two sets of data are statistically different 792 (P < 0.05). Only sets of data using letters with the same superscript number should be 793 compared together.

794

795 Supplemental Figure 1

796 Colour coded individual trial results of PRRSV and host genome detection in spiked

797 tissues following EMA or PMA treatment using qPCR. Effect of EMA and PMA

- treatments, with or without ultracentrifugation (UC), on PRRSV quantification in lung
- tissue homogenates spiked with A) PRRSV (5,000 TCID₅₀/mL) or with C) PRRSV
- 800 (50,000 TCID₅₀/mL) and E) serum spiked with PRRSV (5,000 TCID₅₀/mL); and on host

801	genomic DNA c	uantification (β -Actin)	in lung	tissue 1	homogenates	spiked v	vith B)
			. /	<i>(</i> .	,				/

- 802 PRRSV (5,000 TCID₅₀/mL) or with D) PRRSV (50,000 TCID₅₀/mL) and F) serum
- spiked with PRRSV (5,000 TCID₅₀/mL). Each trial identification number represents a
- 804 unique experiment. All trials are the same than those illustrated in Supplemental Figure 2.
- 805 Results are expressed as Ct. A Ct value of 37 (dashed line) represents the limit of
- 806 detection of each the PRRSV qPCR assay. See Figure 1 for the combined statistical
- analyses of all trials. N.D.: not determined.
- 808

809 Supplemental Figure 2

810 Colour coded individual trial results of PRRSV detection in spiked samples by DNA

811 array following EMA or PMA treatments. DNA array probes relative intensity from

- A) lung tissue homogenates spiked with PRRSV (5,000 TCID₅₀/mL), B) lung tissue
- 813 homogenates spiked with PRRSV (50,000 TCID₅₀/mL) and C) serum samples spiked
- 814 with PRRSV (5,000 TCID₅₀/mL). Dots are relative fluorescence intensity mean values of
- two identical probes from each trials (each experiment consisting of a duplicate of 34
- 816 PRRSV specific probes) and was calculated as followed: [(PFL-BFL)/BFL] where PFL
- 817 represents a PRRSV probe fluorescence intensity and BFL represents the basal
- 818 fluorescence level (negative control probe fluorescence). Each trial identification number
- 819 represents a unique experiment. All trials are the same than those illustrated in
- 820 Supplemental Figure 1. A probe relative intensity of 1 (dashed line) represents the lowest
- 821 limit of DNA array positive results. See Figure 2 for combined statistical analyses of all
- trials.

Figure(s)

Figure 1

Lungs (5 000 TCID 50/mL)

Figure 2

РМА Treatments

ЕМА

None PMA

2

EMA

None PMA EMA

3

Figure 4

Figure 5

Supplemental Figure(s)

C)

B)

Sera (5 000 TCID 50/mL)

