Université de Montréal

Synthesis of Transition Metal N-Heterocyclic Carbene Complexes and Applications in Catalysis

Par

Michael Holtz-Mulholland

Département de chimie Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l'obtention du grade de philosophiæ doctor (Ph.D.) en chimie

Août, 2014

© Michael Holtz-Mulholland, 2014

Université de Montréal

Faculté des études supérieures et postdoctorales

Cette thèse intitulée:

Synthesis of Transition Metal N-Heterocyclic Carbene Complexes and Applications in Catalysis

Présentée par:

Michael Holtz-Mulholland

A été évaluée par un jury composé des personnes suivantes:

Pr. Davit Zargarian, président-rapporteur
Pr. Shawn K. Collins, directeur de recherche
Pr. André B. Charette, membre du jury
Pr. Bruce A. Arndtsen, examinateur externe
Pr. David Morse, représentant du doyen de la FAS

Abstract

A new class of C_1 -symmetric N-heterocyclic carbene (NHC) ligands has been developed. The new ligands exploit a biaryl methyne as a chiral relay, and an N-methyl group as a reactivity controlling element. The precursors for the new ligands were synthesized via a modular scheme that allows for facile diversification. Several of the new ligands were installed onto both copper and gold, generating mono N-heterocyclic carbene transition metal complexes.

The new C_1 -symmetric copper complexes were tested as catalysts for the synthesis of binaphthols via the oxidative coupling of electron poor 2-naphthols. The new C_1 -symmetric ligands afforded higher yields than their C_2 -symmetric counterparts. During the course of the optimization, small molecule additives were found to modulate the reactivity of the copper catalyst. Pyridine additives, such as 2-picoline, were found to induce low to moderate enantioselectivity in the oxidative coupling reaction, while diethylmalonate was found to improve the reaction yield without affecting the selectivity.

The malonate additive was employed in the catalytic oxidative heterocoupling of electronically dissimilar 2-naphthols. The electron-rich coupling partner is normally added in a large excess due to its tendency to degrade. When the malonate additive is used, the coupling partners can be used in equimolar quantities. The discovery resulted in the development of a general protocol for the additive assisted aerobic oxidative heterocoupling of electronically dissimilar 2-naphthols.

Keywords: *N*-Heterocyclic Carbene, NHC, chiral relay, C₁-symmetric, alkylation, copper, gold, oxidative coupling, BINOL, binaphthyl

Résumé

Les ligands de carbènes *N*-hétérocycliques (NHC) qui possèdent une symétrie C_1 attirent beaucoup l'attention dans la littérature. Le présent projet de recherche propose de synthétiser une nouvelle série de ligands NHC C_1 -symétriques avec deux groupements *N*-alkyles qui exploitent un relais chiral. Un protocole modulaire et efficace pour la synthèse des sels d'imidazolium chiraux qui servent comme préligands pour les NHC a été développé. Quelquesuns de ces nouveaux ligands ont été installés sur le cuivre et de l'or, créant de nouveaux complexes chiraux.

Les nouveaux complexes à base de cuivre ont été évalués comme catalyseurs pour le couplage oxydatif de 2-naphthols. Les ligands C_1 -symmétriques ont fourni des meilleurs rendements que les ligands C_2 -symmétriques. Au cours de l'optimisation, des additifs ont été évalués; les additifs à base de pyridine ont fourni des énantiosélectivités modérées tandis que les additifs à base de malonate ont donné des meilleurs rendements de la réaction de couplage oxydatif.

Ultérieurement, les additifs à base de malonate ont été appliqués envers l'hétérocouplage de 2-naphthols. Le partenaire de couplage qui est riche en électrons est normalement en grand excès à cause de sa tendance à dégrader. Avec le bénéfice de l'additif, les deux partenaires de couplage peuvent être utilisés dans des quantités équivalentes. La découverte de l'effet des additifs a permis le développement d'un protocole général pour l'hétérocouplage de 2-naphthols.

Mots Clés: Carbène *N*-Hétérocyclic, NHC, relais chiral, C₁-symmétrique, alkylation, cuivre, or, couplage oxydatif, BINOL, binaphthyl

Table of Contents

Abstract	i
Résumé	ii
Table of Contents	iii
List of Abbreviations	vi
List of Figures	viii
List of Schemes	Х
List of Tables	xiii
Acknowledgements	xiv
Foreword	XV
Chapter 1: Introduction to N-Heterocyclic Carbenes	1
1.1 - Persistent Carbenes	1
1.2 - N-Heterocyclic Carbenes	1
1.2.1 - N-Heterocyclic Carbenes of 5-Membered Rings	2
1.2.2 - N-Heterocyclic Carbenes of Larger Ring Sizes	4
1.3 - Installation of N-Heterocyclic Carbenes onto Transition Metals	4
1.3.1 - Carbene Generation via Deprotonation	4
1.3.2 - Transmetallation	7
1.3.3 - Masked Carbenes	9
1.4 - Electronic and Steric Parameters of N-Heterocyclic Carbenes	12
1.4.1 - Electronic Properties	12
1.4.2 - Buried Volume	14
1.5 - N-Heterocyclic Carbenes as Ligands in Transition Metal Catalysis	16
1.5.1 - Olefin Metathesis	16
1.5.2 - Conjugate Addition	18
1.5.3 - Hydrosilylation	19
1.5.4 - Huisgen 1,3-Dipolar Cycloaddition	20
1.5.5 - Palladium Catalyzed Cross-Coupling	21
1.5.6 - Oxidative Coupling of 2-Naphthols	22
Chapter 2: Introduction to Chiral N-Heterocyclic Carbenes	23
2.1 - NHCs Containing Chiral Groups on Nitrogen	23
2.2 - NHCs that Exploit a Chiral Relay	23
2.3 - C ₂ -Symmetric vs. C ₁ -Symmetric Ligands	25
2.4 - Chiral NHCs in Asymmetric Catalysis, Comparison of Reactivity between C ₁	
and C ₂ -Symmetric Ligands	26
2.4.1 - Olefin Metathesis	27
2.4.2 - Conjugate Addition	30
2.4.3 - Allylic Substitution	32
Chapter 3: Synthesis of Novel C_1 -Symmetric <i>N</i> -Heterocyclic Carbenes	35
3.1 - Ligand Design	35

3.2 - Synthesis of Precursors	36
3.3 - Preliminary Experiments	37
3.4 - Optimization of Alkylation Conditions	38
3.5 - Scope of the First Alkylation	40
3.6 - Synthesis of Imidazolinium Salts	43
Chapter 4: Synthesis of New Chiral Transition Metal NHC Complexes	46
4.1 - Synthesis of Chiral Copper NHC Complexes	46
4.2 - Synthesis of a Chiral Gold NHC Complex	51
4.3 - Towards the Synthesis of a Chiral Palladium Complex	53
4.4 - Towards the Synthesis of New Chiral Ruthenium Catalysts	54
4.5 - Towards the Synthesis of a New Chiral Iridium Complex	55
Chapter 5: Oxidative Coupling of 2-Naphthols	56
5.1 - Introduction to BINOLs	56
5.2 - BINOLs in Enantioselective Transformations	58
5.2.1 - BINAL-H	58
5.2.2 - Asymmetric Aldol Reaction	59
5.2.3 - Asymmetric Diels-Alder Cycloaddition	59
5.2.4 - Asymmetric Transfer Hydrogenation	60
5.2.5 – Asymmetric Arylation of Imines	60
5.3 - Synthesis of BINOLS Employing Stoichiometric Amounts of Transition	61
Metal	
5.3.1 – Homocoupling of 2-Naphthols	61
5.3.2 – Heterocoupling of Electronically Dissimilar 2-Naphthols	62
5.3.3 – Asymmetric Induction	62
5.4 - Mechanism of the Catalytic Oxidative Coupling of 2-Naphthols	64
5.4.1 – Catalytic Oxidative Coupling of 2-Naphthols	64
5.4.2 – Catalytic Cycle	64
5.4.3 – Non-productive Oxidation Products	66
5.5 – Catalytic Asymmetric Oxidative Coupling	67
5.5.1 – Asymmetric Homocoupling of 2-Naphthols	67
5.5.2 – Asymmetric Heterocoupling of Electronically Dissimilar 2-Naphthols	69
Chapter 6: Towards the Enantioselective Oxidative Homocoupling of 2-Napththols	71
6.1 - Preface and Preliminary Experiments	71
6.2 - Optimization of the Reaction Conditions	72
6.3 - Altering the Steric Bulk of Substrates for the Homocoupling of 2-Naphthols	77
6.3.1 - Synthesis of Substrates	77
6.3.2 - Coupling Results	78
6.4 - Additive Effects in the Oxidative Coupling of 2-Naphthols	80
6.4.1 - Additive Concept	80
6.4.2 - Additive Screen	81

6.5 - Application of Chiral Catalysts Towards the Heterocoupling of Electronically Dissimilar 2-Naphthols	84
Chapter 7: Additive Effects in the Oxidative Heterocoupling of 2-Naphthols	86
7.1 - Optimization of the Reaction Conditions	87
7.2 - Additive Screen	88
7.3 - Role of the Additive	89
7.4 - Substrate Scope	91
7.4.1 - Synthesis of Substrates	91
7.4.2 - Results of Coupling Reactions	97
Chapter 8: Conclusions and Perspectives	101
Chapter 9: Experimental Section	105
9.1 – General Considerations	105
9.2 – Synthetic Procedures	106
9.2.1 – Synthesis of Alkyl Halides	106
9.2.2 – Synthesis of Alkyl Diamine	108
9.2.3 – Synthesis of Alkyl Imidazolines	108
9.2.4 – Synthesis of Dialkyl Imidazolium Salts	110
9.2.5 – Synthesis of C ₂ -Symmetric NHC Precursor	113
9.2.6 – Synthesis of Transition Metal Complexes	114
9.2.7 – Isolation of Naphthyl Impurity	117
9.2.8 – Synthesis of Substituted 2-Naphthols	117
9.2.9 – Synthesis of C ₂ -Symmetric BINOLS	119
$9.2.10 - Synthesis of C_1-Symmetric BINOLS$	121
Appendix: NMR Spectra of New Compounds	А
Appendix: HPLC Data	XXX
Appendix: X-Ray Data	AAAA
Appendix: Bibliography	AAAAA

List of Abbreviations

0	Degrees
ACN	Acetonitrile
all	allyl
ARCM	Asymmetric Ring-Closing Metathesis
BINOL	1,1'-Binaphthyl-2,2'-diol
С	Celsius
CAAC	Cyclic Alkyl-Amino Carbene
DBE	1,2-Dibromoethane
DCE	1,2-Dichloroethane
DCM	Dichloromethane
DEM	Diethylmalonate
DIAD	Di-isopropylcarbodiimide
DIPP	2,6-Di-isopropylphenyl
DME	1,2-Dimethoxyethane
DMF	N,N-Dimethylformamide
DMPU	1,3-Dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone
DMS	Dimethylsufide
h	Hour(s)
IAd	1,3-bis-(1-adamantyl)imidazolin-2-ylidene
ItBu	1,3-bis-(t-butyl)imidazolin-2-ylidene
ICy	1,3-dicyclohexylimidazolin-2-ylidene
IMes	1,3-bis-(mesityl)imidazolin-2-ylidene
IPr	1,3-bis-(2,6-Di-isopropylphenyl)imidazolin-2-ylidene
IiPr	1,3-bis-(isopropyl)imidazolin-2-ylidene
KHMDS	Potassium Hexamethyldisilylamide
LAH	Lithium Aluminum Hydride
LDA	Lithium Di-isopropylamide
Mes	Mesityl
min	Minutes
NHC	N-Heterocyclic Carbene
NMR	Nuclear Magnetic Resonance
NOBIN	2'-amino-2-hydroxy-1,1'-binaphthalene
PEPPSI	Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation
nin	Pinacol
PMB	4-Methoxybenzyl
RCM	Ring-Closing Metathesis
rt	Room Temperature
SIMes	1 3-bis-(mesityl)imidazolidin-2-ylidene
S11100	1,5 515 (moster) minute 2 yndono

- SIPr 1,3-bis-(2,6-Di-isopropylphenyl)imidazolidin-2-ylidene
- THF Tetrahydrofuran
- TEP Tolman Electronic Parameter
- TES Triethylsilyl
- VBur Buried Volume

List of Figures

1-1	Bertrand's Push-Pull Carbene	1
1-2	Imidazole Based NHCs Bearing Two Alkyl Groups	2
1-3	Imidazole Based NHCs Bearing Two Aryl Groups	3
1-4	Five Membered NHCs Containing only One Nitrogen	3
1-5	NHCs of Different Ring Sizes	4
1-6	Mechanism of Carbene Formation with Sodium <i>t</i> -Butoxide	5
1-7	Decomposition of a Masked Carbene	9
1-8	Calculation of Steric Parameters of Ligands in Transition Metal Complexes	14
1-9	NHC Containing Olefin Metathesis Catalysts	16
2-1	NHCs Bearing Chiral Groups on Nitrogen	23
2-2	NHC Ligands that Exploit a Chiral Relay Effect	24
2-3	Chiral Relay in a Rhodium NHC Complex	24
2-4	C1-Symmetric NHCs	25
2-5	Steric Environment of C ₁ -Symmetric vs. C ₂ -Symmetric NHCs	26
2-6	Chiral Ruthenium-Based Olefin Metathesis Catalysts	27
2-7	Kinetic Plot of Catalysts 2.20 and 2.17 in the ARCM of Triene 2.23a	30
3-1	C2-Symmetric Precursor and Model Substrate	36
4-1	Crystal Structure of Complex 4.1	47
4-2	Crystal Structure of Complex 4.2b	49
4-3	Ligands that Could not be Installed onto a Transition Metal	51
4-4	Failure to Install Picolyl Ligands 3.38 onto Copper	51
4-5	Crystal Structure of Complex 4.5	52
4-6	Attempted Synthesis of a Chiral C ₂ -Symmetric Gold Complex	53
4-7	Failed Installation of Ligand 3.32 onto Ruthenium Complex 1.23	54
4-8	Attempted Synthesis of a Chiral Ruthenium Complex	54
4-9	Failed Synthesis of a Chiral Iridium Complex	55
5-1	The Atropisomers of BINOL 5.1	56
5-2	BINOL Containing Structure Employed in Asymmetric Catalysis	57
5-3	Biologically Active Natural Products Containing the BINOL Scaffold	58
5-4	Mechanism of the Oxidative Coupling of 2-Naphthols	65
5-5	Competing Mechanisms in Aerobic Oxidative Coupling	66
5-6	Formation of Undesired C-O Coupling Products	67
6-1	Potential Interaction of Naphthol 1.76 with Copper Catalyst 4.1	71
6-2	Catalysts Used for Optimization	73
6-3	X-Ray Structure of Naphthyl Impurity 6.1	76
6-4	Resemblance of an Quinone 5.30 to a Small Molecule Additive	80

7-1	Copper Catalysts Used for Optimization	87
7-2 7-3	Effect of Additive Loading on the Yield of Binaphthyl 1.78 Stability of Binaphthyl 1.78 to the Oxidative Coupling Conditions in the	90
	Presence of the Additive	91
7-4	Glossary of Substrates for the Oxidative Heterocoupling Reaction	92
8-1	New Chiral Transition Metal NHC Complexes	101
8-2	General NOBIN Synthesis	104

List of Schemes

1-1	Arduengo's Synthesis of IAd	2
1-2	Synthesis of Cu(SIMes)Br Employing NaOt-Bu as a Base	5
1-3	Isolation of IPr and Synthesis of Au(IPr)Cl	6
1-4	Carbene Formation with KHMDS	6
1-5	Synthesis of a Palladium NHC Complex with Potassium Carbonate	7
1-6	Synthesis of Au(IMes)Cl from IMes•H ₂ CO ₃	7
1-7	Direct Synthesis of Cu(IPr)Br from Cu ₂ O	8
1-8	Synthesis of a Bis NHC Palladium Complex via Transmetallation from Silver	8
1-9	Use of an <i>in-situ</i> Generated Silver Complex to Synthesize Au(IMes)Cl	9
1-10	Extrusion of Methanol to Form a Ruthenium NHC Complex	10
1-11	Extrusion of Pentafluorobenzene to Form Pd(SIMes)(all)Cl	10
1-12	Extrusion of Chloroform to Make Grubbs II	10
1-13	Decarboxylative Synthesis of Cu(IMes)Br	11
1-14	Copper Catalyzed 1,4-Addition with SIMes	19
1-15	Hydrosilylation of Cyclohexanone with a Cu(NHC) Catalyst	19
1-16	1,3-Dipolar Cycloaddition Between an Azide and a Terminal Alkyne with a Copper Catalyst	20
1-17	Cu(SIMes)Br Catalyzed Cycloaddition Between Benzyl Azide and 3-Hexyne	20
1-18	Suzuki Coupling of 4-Chlorotoluene with Phenylboronic Acid Catalyzed By Pd(IAd)2	21
1-19	Suzuki Coupling of an Aryl Halide using a PEPPSI Complex	22
1-20	Oxidative Coupling of 2-Naphthols Employing a bis NHC Copper Catalyst	22
2-1	Rhodium Catalyzed Asymmetric Hydrosilylation of Acetophenone 2.14	26
2-2	ARCM of Triene 2.24 Catalyzed by Ruthenium Complex 2.22	29
2-3	Copper Catalyzed Asymmetric Conjugate Addition Forming Tertiary vs.	
	Quaternary Stereocenters	31
2-4	Copper Catalyzed β -Alkylation of Cyclohexenone 2.30 with Diethyl Zinc	31
2-5	Cu-NHC Catalyzed β-Borylation of Cinnamate 2.33	32
2-6	Copper Catalyzed Asymmetric Allylic Alkylation of Allyl Phosphonate 2.37	33
2-7	Synthesis of Chiral Allylic Alcohol 2.41 via Asymmetric Allylic Borylation	33
2-8	Synthesis of Chiral Allylic Alcohol 2.45 via Asymmetric Allylic Borylation	34
3-1	Copper Catalyzed Asymmetric Allylic Alkylation of Allyl Bromides	35
3-2	Synthesis of (1R, 2R)-1,2-di-t-butylethylenendiamine 3.8	37
3-3	Synthesis of Bis(ortho-tolyl)methyl Bromide	37
3-4	Alkylation of Chiral Diamines with Bromide 3.12	38
3-5	Synthesis of Imidazoline 3.17	38
3-6	Isolation of Imidazolinium Salt 3.19	39
3-7	Reversibility of Formation of Imidazolinium Salt 3.19	40
3-8	Variation of the Reactivity Controlling Substituent	45

4-1	Synthesis of Chiral Copper NHC Complex 4.1	46
4-2	Synthesis of Chiral Naphthyl Copper Complexes 4.2	48
4-3	Synthesis of Benzyl Complex 4.3	50
4-4	Synthesis of C ₂ -Symmetric Copper Complex 4.4	50
4-5	Synthesis of Chiral C ₁ -Symmetric Gold Complex 4.5	51
4-6	Synthesis of Chiral C ₁ -Symmetric Palladium Complex 4.6	54
5-1	Asymmetric Reduction of a Propargylic Ketone with BINAL-H	58
5-2	Asymmetric Aldol Reaction Catalyzed by a Zirconium-BINOL Complex	59
5-3	Asymmetric Diels-Alder Reaction Catalyzed by an <i>in-situ</i> Generated	
5 A	Titanium-BINOL Complex	60
5-4	Asymmetric Transfer Hydrogenation of an Imine Catalyzed by a Chiral Bransted Acid	60
5 5	Asymmetric Arylation of an Imine with a Chiral Phosphoramidite Ligand	61
5-6	Microwaye Assisted Iron Mediated BINOL Synthesis	61
5-7	Copper(II) Mediated Oxidative Heterocoupling of Electronically Dissimilar 2-	01
0 1	Naphthols	62
5-8	Amine Assisted Oxidative Heterocoupling of Electronically Dissimilar 2-	
	Naphthols	62
5-9	Asymmetric Heterocoupling of 2-Naphthols with a Cu(II)-(-)-Sparteine	()
5 10	Complex	63
5-10	Diastereoselective Oxidative Coupling of Proline Amide 5.27	63
5-11 5-12	Copper Catalyzed Aerobic Oxidative Coupling of Ester 1./6 Effect of Vtterbium(III) Triflate on the Oxidative Heterocoupling of 2	64
3-12	Nanhthols	66
5-13	Catalytic Asymmetric Oxidative Coupling of Electron Rich 2-Naphthols	68
5-14	Catalytic Asymmetric Oxidative Coupling of Electron Poor 2-Naphthols	68
5-15	Copper Catalyzed Asymmetric Heterocoupling of 2-Naphthols	69
5-16	Iron Catalyzed Asymmetric Heterocoupling of 2-Naphthols	70
6-1	Homocoupling of Naphthol 1 76 with an Ill-defined Cu(NHC) Catalyst 1 79	72
6-2	Homocoupling of Naphthol 1.76 with a Mono NHC Copper Catalyst	72
6-3	Fischer Esterification of 3-Hydroxy-2-naphthoic Acid	77
6-4	Synthesis of Naphthol Ester 6.4	78
6-5	Synthesis of Benzylic Naphthol Esters	78
7-1	Preliminary Experiment	86
7-2	Synthesis of Substrate Bearing Pendant Alcohol	92
7-3	Synthesis of 3-Phenanthrol 7.9	93
7-4	Synthesis of t-Butyl Substituted Naphthol 7.12	93
7-5	Synthesis of Menthol Ester 7.13	93
7-6	Synthesis of the Phosphonate Ester 7.14	94
7-7	Synthesis of Nitro Precursor	94
7-8	Synthesis of 3-Bromo-2-naphthol 7.16	95
7-9	Synthesis of 2-Naphthol-3-boronic Acid 7.17	95

7-10	Synthesis of Borate Esters 7.18	95
7-11	Synthesis of Amide 7.19	96
7-12	Synthesis of Imine 7.20	96
8-1	Modular Synthesis of Chiral Dialkyl Substituted C ₁ -Symmetric NHC	
	Precursors	101
8-2	Copper NHC Catalyzed Oxidative Coupling of Naphthol 1.76	102
8-3	Additive Assisted Oxidative Heterocoupling of 2-Naphthols	102
8-4	Ongoing Work Towards a New Chiral Palladium Complex	103
8-5	Preliminary Result in the Desymmetrization of Diyne 8.1	103

List of Tables

1-1	TEP for Assorted Ligands	13
1-2	Buried Volumes of Commonly Screened Ligands	15
1-3	RCM to Form Disubstituted Olefins	17
1-4	RCM to Form Tetrasubstituted Olefins	18
2-1	Asymmetric Ring-Closing Olefin Metathesis Forming Trisubstituted Olefins	29
3-1	Alkylation of Imidazoline 3.17 with Bromide 3.12	39
3-2	Synthesis of Biarylmethanols via Grignard Reaction	41
3-3	Halogenation of Biarylmethanols	42
3-4	Scope of Alkylation of Imidazoline 3.17	43
3-5	Methylation and Counterion Exchange	44
4-1	Selected Structural Parameters of Complex 4.1	48
4-2	Selected Structural Parameters of Cu(SIPr)Cl	48
4-3	Selected Structural Parameters of Complex 4.2b	49
4-4	Selected Structural Parameters of Complex 4.5	52
6-1	Catalyst Screen	74
6-2	Optimization of the Silver Source	75
6-3	Optimization of the Solvent	76
6-4	Oxidative Coupling of Various Naphthol Esters	79
6-5	Effect of Solvent on Additive Effectiveness	81
6-6	Additive Effects in the Homocoupling of 2-Naphthols	83
6-7	Additive Effects in the Oxidative Heterocoupling of 2-Naphthols Catalyzed	
	by Complex 4.1	84
7-1	Optimization of the Reaction Conditions	88
7-2	Optimization of Additive Structure	89
7-3	Variation of Naphthyl Substituents	98
7-4	Variation of the Electron Withdrawing Group	99
7-5	Ineffective Electron-Withdrawing Groups	100

Acknowledgements

It is difficult to compile a list of all the people I should thank. My original attempt was written in the hour preceding the printing of this thesis and was generally lacking. I would like to thank Shawn for accepting me into his group and giving me the opportunity to work on a variety of interesting projects, as well as Pat who was responsible for our introduction. I need to thank Mylène, who assisted with the substrate scope of the oxidative heterocoupling reaction and proofread the résumé section. Tatiana, Sandra, Alain and Marie-Êve laid the groundwork for the oxidative coupling chemistry. Antoine explored interesting new territory during an awesome summer as my stagiaire. The remaining members of the group: Anne-Cat, Tito, Mad-Dog, Jeff, Jr., Phil, and Brice for the productive discussions and friendship over the last few years.

In addition to the members of the Collins group, I need to thank many others. The crystal structures found in chapters 4 and 6 were solved by Francine Bélanger and Benoît Deschênes-Simard. Members of the Charette (Éric, Daniella, Carolyn, Scott, Louis-Phillipe, Will, Guillaume, Jacob, Callum), Schmitzer (Julien, Vanessa, Vincent, Marc, Claude, Nadim, Dat, Salim, Matthieu, Julie), Hannessian (Rob, Étienne, Benoît, Stéphane) and Lebel (Nicholas, Carl, Laura, Henri, Johan) groups as well as Todd, Élodie, Simon, Boris and André. Lastly I would like to thank my family and friends for their unwavering support.

Foreword

The research goals of the project to be presented are in two parts; firstly, to develop a new series of chiral dialkyl C_1 -symmetric NHC ligands. Additionally, the ligand synthesis must be modular and robust. The new chiral ligands are to be installed onto transition metals so they can be employed as catalysts for reactions of organic compounds.

The second part of the project is to apply newly synthesized chiral copper complexes towards the asymmetric homocoupling of 2-naphthols. The goal of the second part of the project is to investigate the effect of varying steric bulk of the chiral NHC ligands on the selectivity and yield of the reaction. Focus will be put on the augmented reactivity of methyl-substituted C_1 -symmetric NHC ligands.

An additional goal in the oxidative coupling chemistry is to modulate the reactivity of the copper catalyst via the use of an additive. The ability of additives which resemble quinone-like structures to improve the chemoselectivity of the heterocoupling of electronically dissimilar 2-naphthols, will be tested.

Chapter 1 - Introduction to N-Heterocyclic Carbenes

1.1 – Persistent Carbenes

Carbenes are carbon atoms that bear two covalent bonds and two unpaired electrons. Persistent carbenes are stabilized carbenes that have a much longer lifetime than other carbenes. Persistent carbenes are normally singlet, meaning that the two valence electrons are paired and there is an empty p orbital present. The empty p orbital can be stabilized by the lone pairs of adjacent heteroatoms; the resonance effect stabilizes the singlet state. The first example of a discreet persistent carbene is shown in Figure 1-1.¹ Carbene **1.1** is often referred to as a push-pull carbene. The lone pair on the carbon atom, in an sp² orbital, is stabilized by the low-lying empty d orbitals of the silicon atom, while the vacant p orbital of the carbon atom is stabilized by the lone pair on the phosphorous.

Figure 1-1: Bertrand's Push-Pull Carbene

1.2 – N-Heterocyclic Carbenes

N-heterocyclic carbenes (NHCs) are persistent carbenes that are part of a nitrogencontaining heterocycle. The lone pairs of the nitrogen atoms provide the stabilization of the singlet state of the carbene. Most NHCs that are used in catalysis have two heteroatoms for improved stability. Although NHCs were under investigation as early as the 1960s,² isolation of the discrete carbene was not known until 1990.³ Carbene **1.4**, whose synthesis is shown in Scheme 1-1, was the first NHC to be synthesized and isolated. It is based on the heterocycle imidazole and as such it has two nitrogen atoms stabilizing the singlet carbene.

The carbene precursor, imidazolium **1.3**, is synthesized in a 4-step one pot procedure (Scheme 1-1) from adamantyl amine (**1.2**), paraformaldehyde, glyoxal, and HCl. The precursor is deprotonated with potassium *t*-butoxide in dry THF at room temperature, affording nearly

¹ Igau, A.; Grutzmacher, H.; Baceirdo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463.

² Wanzlick, I.H.W. Angew. Chem., Int. Ed. 1962, 1, 75.

³ Arduengeo, A.J.III; Harlow, R.L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 363.

quantitative yield of carbene **1.4** which has been named IAd. The name derives from the structure, the I is for imidazole and Ad denotes the adamantyl groups bound to the nitrogen atoms. Although carbene **1.4** does not dimerize in solution, it is still strongly nucleophilic and unstable to both moisture and oxygen.

Scheme 1-1: Arduengo's Synthesis of IAd

1.2.1 – N-Heterocyclic Carbenes of 5-Membered Rings

The earliest NHCs synthesized belong to the same imidazole family as IAd (1.4). By exchanging the amine used during the synthesis, they can all be synthesized in a method analogous to that developed for IAd (1.4).⁴ Four examples are shown in Figure 1-2. Several alkyl groups of varying steric bulk are shown; IiPr (1.5) bears two N-isopropyl groups, ICy bears two N-cyclohexyl groups, ItBu (1.7) bears two N-t-butyl groups, and IAd (1.4) bears two N-adamantyl substituents.

Figure 1-2: Imidazole Based NHCs Bearing Two Alkyl Groups

N-Aryl substituents were suspected to have more tuneable steric and electronic properties than their *N*-alkyl counterparts. The *N*-aryl groups of the carbenes commonly employed in catalysis have substituents at the ortho positions. The ortho substituents prevent the aryl groups from being in conjugation with the nitrogen atoms by forcing them to rotate out of plane. The first aryl group that was used for that purpose was mesityl (2,4,6-trimethylphenyl, or Mes). Shown in Figure 1-3 are the unsaturated version IMes⁵ (1.9), and SIMes⁶ (1.8) which has a fully

⁴ Arduengo, A. J. III US 5077414, **1991.**

⁵ Arduengo, A. J. III; Dias, H.V.R.; Harlow, R.L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.

saturated backbone. Both can be prepared like IAd (1.4) by deprotonation of the corresponding azolium salt.^{5,6} Bulky DIPP (2,6-di-isopropylphenyl) substituents were originally installed in order to increase the stability of the isolated carbene by providing more electron density to the nitrogen atoms, and more steric bulk about the carbene, which helps inhibit dimerization.⁷ The unsaturated, aromatic IPr (1.10), and SIPr (1.11) having a saturated backbone have both been isolated.

Figure 1-3: Imidazole Based NHCs Bearing Two Aryl Groups

The stability of NHCs extends to other nitrogen-containing heterocycles (Figure 1-4). Oxazole based carbene **1.12** has not been isolated as a free carbene, but has been installed onto transition metals for use in catalysis.⁸ Although thiazole based carbene **1.13** has yet to be used as a transition metal ligand, the free carbene has been shown to be an effective organocatalyst.⁹ In general, sterically unencumbered NHCs such as **1.12** and **1.13** are not isolable as they are prone to dimerization.⁷ Bertrand has shown that a second heteroatom is not necessary, making a class of ligand referred to as cyclic alkyl-amino carbenes (CAACs).¹⁰ Carbene **1.14** is a representative example. In place of a nitrogen in the 3-position, it has a bulky spiro-cyclohexane ring.

Figure 1-4: Five Membered NHCs Containing only One Nitrogen

1.2.2 - N-Heterocyclic Carbenes of Larger Ring-Sizes

⁶ Arduengo, A. J. III; Goerlich, J.R.; Marshall, W.J. J. Am. Chem. Soc. 1995, 117, 11027.

⁷ Arduengo, A. J. III; Krafczyk, R.; Schmutzler, R. *Tetrahedron* 1999, 55, 14523.

⁸ Tubaro, C.; Biffis, A.; Basato, M.; Benetollo, F.; Cavell, K. J.; Ooi, L. L. Organometallics 2005, 24, 4153.

⁹ a) Miyashita, A.; Suzuki, Y.; Kobayashi, M.; Kuriyama, N.; Higashino, T. Heterocycles 1996, 43, 509. b) Diba,

A. K.; Noll, C.; Richter, M.; Gieseler, M. T.; Kalesse, M. Angew. Chem., Int. Ed. 2010, 49, 8367.

¹⁰ Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705

Most NHCs are based on 5-membered rings; increasing the ring size can have a significant impact on the steric and electronic properties. While six membered precursors will have a wider angle between the substituents, meaning more steric bulk pushed towards a metal centre, they cannot be aromatic. An aromatic six-membered precursor would be a dication, and would not generate a neutral carbene. Carbene **1,15** is built upon a scaffold of tetrahydropyrimidine.¹¹ The seven-membered scaffold of carbene **1.16** is spread even wider than that of carbene **1.15**.¹²

Figure 1-5: NHCs of Different Ring Sizes

1.3 – Installation of N-Heterocyclic Carbenes onto Transition Metals

Several methods exist for the installation of NHCs onto transition metals. The methods can be classified into 3 categories: deprotonation, transmetallation, and employment of a masked carbene.

1.3.1 – Carbene Generation via Deprotonation

The most common method for the installation of an NHC onto a metal centre is via *in*situ generation of the free carbene with a base. A strong base such as sodium *t*-butoxide can be used at room temperature to generate the free carbene. As shown in Scheme 1-2, sodium *t*butoxide reacts with SIMes•HCl (1.17) and a small excess of CuBr affording Cu(SIMes)Br (1.18) in 71 % yield.¹³ While sodium *t*-butoxide is considered a strong base, its reaction with imidazolium 1.17 is only formally a deprotonation; it has a stronger tendency to act as a nucleophile.

¹¹ Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.; Linehan, E.; Oliva, J. M.; Orpen, G.; Quayle, M. J. Chem. Commun. **1999**, 241.

¹² Iglesias, M.; Beetstra, D.J.; Stasch, A.; Horton, P.N.; Hursthouse, M.B.; Coles, S.J.; Cavell, K.J.; Dervisi, A.; Fallis, I. A. *Organometallics* **2007**, *26*, 4800.

¹³ Diez-Gonzalez, S.; Correa, A.; Cavallo, L. Nolan, S. P. Chem.-Eur. J. 2006, 12, 7558.

Scheme 1-2: Synthesis of Cu(SIMes)Br Employing NaOt-Bu as a Base

Figure 1-6 shows the mechanism of carbene formation with sodium *t*-butoxide. The alkoxide adds to the imidazolium as a nucleophile, transiently forming a neutral adduct (1.19), which then decomposes in solution at room temperature to form the free carbene (1.8).¹⁴ The *t*-butoxide adduct 1.19 is considered to be short-lived, and the decomposition to the carbene is quantitative.

Figure 1-6: Mechanism of Carbene Formation with Sodium t-Butoxide

A demonstration of the necessity of the nucleophilic addition is the synthesis of Au(IPr)Cl (1.21), shown in Scheme 1-3. Imidazolium salt 1.20 reacts with a catalytic amount of potassium *t*-butoxide in the presence of sodium hydride, affording carbene 1.10 in 84 % yield.¹⁵ The process is not as efficient without the potassium *t*-butoxide. The free carbene is then exposed to Au(DMS)Cl, affording gold complex 1.21 in 75 % yield.¹⁶

Scheme 1-3: Isolation of IPr and Synthesis of Au(IPr)Cl

¹⁴ Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T. L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. **2003**, *125*, 2546.

¹⁵ Bantreil, X.; Nolan, S. P. Nat. Prot. **2011**, *6*, 69.

¹⁶ De Fremont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2006, 24, 2411.

The other most commonly employed strong base for carbene formation is hexamethyldisilazide, generally the potassium salt (KHMDS). Unlike sodium *t*-butoxide, KHMDS is a poor nucleophile and thus acts as a base. The unsymmetrical precursor imidazolinium **1.22** is readily deprotonated at room temperature to form free the carbene (Scheme 1-4). Addition of half an equivalent of Grubbs I (**1.23**) affords complex **1.24** in 69 % yield following recrystallization.¹⁷

Scheme 1-4: Carbene Formation with KHMDS

Milder bases can also be employed, although they require heating in order to generate the free carbene. Palladium complex **1.26**, shown in Scheme 1-5, is afforded in 97 % yield when IPr•HCl (**1.25**) is heated overnight with potassium carbonate and palladium(II) chloride in 3-chloropyridine.¹⁸ The pyridine acts as an additional ligand in order to form a stable and monomeric mono NHC palladium complex **1.26**. The use of potassium carbonate has also been extended to the synthesis of gold,¹⁹ and copper complexes.²⁰

Scheme 1-5: Synthesis of a Palladium NHC Complex with Potassium Carbonate

A weak base can also be used as the counterion for the imidazolium salt (Scheme 1-6). When an excess of IMes•H₂CO₃ (1.27) and (dimethylsulfide)gold(I) chloride are heated at 50 $^{\circ}$ C

¹⁷ Ledoux, N.; Allaert, B.; Linden, A.; Van der Voort, P.; Verpoort, F. Organometallics 2007, 26, 1052.

¹⁸ O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. *Chem.-Eur. J.* **2006**, *12*, 4743.

¹⁹ Collado, A.; Gomez-Suarez, A.; Martin, A. R.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2013, 49, 5541.

²⁰ Santoro, O.; Collado, A.; Slawin, A. M. Z.; Nolan, S. P.; Cazin, C. S. J. Chem. Commun. 2013, 49, 10483.

in THF for 1 h, complex **1.28** is afforded in 89 % yield.²¹ The aryl substituted imidazolium salts exist as the bicarbonate salts while dialkyl imidazolium salts exhibit equilibrium between the bicarbonate salt and the corresponding carboxylate adduct.

Scheme 1-6: Synthesis of Au(IMes)Cl from IMes•H₂CO₃

More recently, copper(I) oxide has been employed as a reactant for the direct synthesis of mono NHC copper complexes.²² Unlike the above methods, the counterion of the imidazolium precursor ends up bound to the copper atom, and the only by-product is water. Heating IPr•HBr (**1.29**) with copper(I) oxide in dioxane affords Cu(IPr)Br (**1.30**) in 92 % yield. The method has been shown to work in water,²³ and has also been adapted to work in continuous flow.²⁴

Scheme 1-7: Direct Synthesis of Cu(IPr)Br from Cu₂O

1.3.2 – Transmetallation

Transition metal NHC complexes can be synthesized via transmetallation from a more labile transition metal. The transition metal most often employed in the literature is silver.²⁵ Silver NHC complexes can be generated directly using silver oxide, in a method analogous to the one shown in Scheme 1-7. Unlike the corresponding copper(I) complexes, silver(I) NHC

²¹ Fevre, M.; Pinaud, J.; Leteneur, A.; Gnanou, Y.; Vignolle, J.; Taton, D.; Miqueu, K.; Sotiropouplos. J. M. J. Am. Chem. Soc. **2012**, *134*, 6776.

²² Chun, J.; Lee, H. S.; Jung, I. G.; Lee, S. W.; Kim, H. J.; Son, S. U. Organometallics 2010, 29, 1518.

²³ Citadelle, C. A.; Le Nouy, E.; Bisaro, F.; Slawin, A. M. Z.; Cazin, C. S. J. Dalton Trans. **2010**, *39*, 4489.

²⁴ Opalka, S. M.; Park, J. K.; Longstreet, A. R.; McQuade, D. T. Org. Lett. 2013, 15, 996.

²⁵ Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007, 251, 642.

complexes are labile and can be used to transfer the NHC to another transition metal. Silver NHC complexes can be isolated, but are often generated *in-situ* and used without purification.

Scheme 1-8: Synthesis of a Bis NHC Palladium Complex via Transmetallation from Silver

The first example of a silver NHC complex being used a carbene transfer reagent is shown in Scheme 1-8.²⁶ Imidazolium **1.31** is treated with silver oxide, affording silver complex **1.32** in 89 % yield, with dibromoargentate(I) as a counterion. When the complex is mixed with bis(acetonitrile)palladium(II) chloride, NHC transfer occurs within 30 min, affording palladium complex **1.33** 87 % yield.

Scheme 1-9: Use of an in-situ Generated Silver Complex to Synthesize Au(IMes)Cl

In-situ generation of the silver complex is also effective. When IMes•HCl (1.34) is treated with silver(I) oxide, the corresponding silver complex is formed *in-situ*. Au(DMS)Cl is then added to the mixture, affording Au(IMes)Cl (1.35) in 63 % yield.¹⁶ Performing both steps in one pot simplifies the reaction setup and saves a workup step.

1.3.3 – Masked Carbenes

NHCs can also be generated in solution by thermal decomposition of a masked carbene. The majority of masked carbenes consist of an HX adduct of the carbene where X is an electron

²⁶ Wang, H. M; Lin, I. J. B. Organometallics 1998, 17, 972.

withdrawing group. The electron withdrawing group can be an alkoxide, a haloalkane, or an arene. An exception to the rule is the carbon dioxide adduct which exists as a zwitterionic compound.

Figure 1-7: Decomposition of a Masked Carbene

Enders first isolated methoxy adduct **1.37** shown in Scheme 1-10.²⁷ The compound was shown to quantitatively generate the carbene when heated under vacuum. The use of the methoxy adduct as a stable carbene precursor was exploited by Grubbs in order to install a carbene onto ruthenium.¹⁴ When methoxy adduct **1.37** is heated to 80 °C in toluene in the presence of ruthenium complex **1.23**, the ruthenium NHC complex **1.38** is afforded in 59 % yield.

Scheme 1-10: Extrusion of Methanol to Form a Ruthenium NHC Complex

The pentafluorophenylimidazolidine **1.39** shown in Scheme 1-11 also decomposes upon heating to generate the free carbene. In the case of imidazolidine **1.39**, pentafluorobenzene is generated as a byproduct. When imidazolidine **1.39** is heated in the presence of allylpalladium chloride dimer, the mono NHC palladium complex **1.40** is afforded in quantitative yield.²⁸

²⁷ Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J. P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 1021.

²⁸ Nyce, G. W.; Csihony, S.; Waymouth, R. M.; Hedrick, J. L. Chem.-Eur. J. 2004, 10, 4073.

Scheme 1-11: Extrusion of Pentafluorobenzene to Form Pd(SIMes)(all)Cl

Chloroform adducts have also been shown to decompose to form the corresponding free carbenes. Early experiments with less sterically hindered carbenes led to rapid homodimerization of the carbene.²⁹ The strategy was later exploited for the installation of an NHC onto ruthenium (Scheme 1-12).¹⁴ An excess of imidazolidine **1.41** forms the free carbene *in-situ* when heated in toluene. In the presence of ruthenium complex **1.23**, the second generation Grubbs catalyst (**1.42**) is afforded in 84 % yield.

Scheme 1-12: Extrusion of Chloroform to Make Grubbs II

Zwitterionic carboxylate adducts as NHC precursors were first reported by Crabtree in 2006.³⁰ The charge separation makes the carbon dioxide adducts very different from other masked carbenes. Although formally neutral, imidazolium carboxylates have decreased solubility in organic solvents. Carboxylate adducts have the advantage of being air and moisture stable. The loss of carbon dioxide to the gas phase upon heating helps ensure irreversible conversion to the carbene.

²⁹ Cardin, D. J.; Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1973, 514.

³⁰ Voutchkova, A. M.; Appelhans, L. N.; Chianese, A. R.; Crabtree, R. H. J. Am. Chem. Soc. 2006, 127, 17624.

Scheme 1-13: Decarboxylative Synthesis of Cu(IMes)Br

The Collins group has recently exploited imidazolium carboxylates for the synthesis of copper(I) NHC complexes.³¹ The method is particularly advantageous for the synthesis of copper(I) complexes of unsaturated NHCs. Unsaturated NHCs have a strong tendency to form the corresponding bis NHC copper complexes, which precipitate out of solution. The two strategies normally employed to improve yields of the mono NHC complex are the use of a preligated copper species such as Cu(SMe₂)Br or to use an excess of the copper salt.³² The carboxylate method shown in Scheme 1-13 generates 70 % of Cu(IMes)Br (1.44) when carboxylate 1.43 is heated in the presence of a slight excess of CuBr.

 ³¹ Le Gall, T.; Baltatu, S.; Collins, S. K. *Synthesis* 2011, 3687.
 ³² Diez-Ganzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, A. M. Z.; Nolan, S. P. Dalton Trans. 2010, 39, 7595.

1.4 – Electronic and Steric Parameters of N-Heterocyclic Carbenes

1.4.1 – Electronic Properties

NHCs are some of the strongest σ donors currently known.³³ Due to the high amount of electron density being donated from the nitrogen atoms, there is minimal π back-bonding to the unoccupied p orbital, although it can become significant in some cases.³⁴ The standard method for the comparison of the electronic properties of ligands is to measure the stretching frequency of carbon monoxide ligands in a metal carbonyl complex. The stretching frequency of the LNi(CO)₃ complex is the standard for comparison,³⁵ and is referred to as the Tolman electronic parameter (TEP). The measurement does not have to be taken from the nickel complex; the correction can be done computationally.³⁶ The relationship between the electronic character and the TEP is inversely proportional, stronger σ donors resulting in a lower carbonyl stretching frequency.

The electronic parameters for several NHC and phosphine ligands are shown in Table 1-1, and have been arranged in order of increasing electron density.³³ Triphenylphosphine is the least donating of the group (entry 1). The most donating are the NHCs of non-standard ring size (entries 15, 16), with carbene **1.16** being the most donating. Very close to the 6 membered NHC **1.15** (entry 15), is Bertrand's CAAC ligand **1.14** (entry 14). When comparing oxazole NHC **1.12** and thiazole NHC **1.13** (entries 2, 3), the 2 p mixing ability of oxygen proves to have a slightly larger effect than sulphur's larger electron density. It can also be seen from the data that alkyl substituted NHCs are more donating than aryl substituted NHCs. The higher electron density of unsaturated imidazole type ligands makes them more donating than the saturated imidazoline framework. For a direct comparison, SIMes (**1.8**) (entry 6) has a higher TEP than IMes (**1.9**) (entry 10). Aryl substituted NHCs have tuneable electronic character. Entries 4 and 11 are structurally analogous to IMes (entry 10), but NHC **1.46** bears an electron withdrawing substituent at the 4 position of the aryl group while NHC **1.48** bears an electron-donating

³³ Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 6940.

³⁴ Khramov, D.M.; Lynch, V.M.; Bielawski, C.W. Organometallics 2007, 27, 6042.

³⁵ Tolman, C. A. Chem. Rev. **1977**, 77, 313.

³⁶ Kelly, R. A. III; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. *Organometallics* **2008**, *27*, 202.

substituent. As expected, the TEP of NHC **1.46** (entry 11) is lower than SIMes (**1.8**) (entry 10), and the TEP of NHC **1.48** (entry 4) is higher.

Entry	Ligand	TEP (cm^{-1})	Entry	Ligand	TEP (cm^{-1})
1	1.45	2068.9	9	$ \underbrace{ \begin{array}{c} & & \\ &$	2050.1
2	Me ^{-N} , S 1.13	2061.5	10	I.9 IMes	2050.7
3	Me-N_0 1.12	2060	11	Et ₂ N N N NEt ₂ 1.48	2049.8
4		2057	12	N I.6 ICy	2049.6
5		2056.3	13	NNN I.4 IAd	2049.5
6	N N I-11 SIPr	2052.3	14		2048.5
7	I.8 SIMes	2051.5	15	$\begin{array}{c} & & \\$	2048.3
8	N N I.5 IIPr	2051.5	16		2044.3

Table 1-1: TEP for Assorted Ligands

1.4.2 – Buried Volume

N-Heterocyclic carbenes represent a highly diverse class of ligands. While their electronic character can be evaluated using the standard techniques, the traditional method for comparing steric bulk among ligands falls short of an accurate description. The Tolman cone angle was originally designed to be able to compare the steric bulk of different phosphine ligands.³⁷ Phosphines have a relatively conical distribution when bound to a metal centre (Figure 1-9a); NHCs on the other hand vary widely depending upon which angle the viewer is looking from (Figure 1-8, b and c). Looking into the plane of the imidazolium ring (b), the NHC appears to have a very wide cone angle. Viewing the complex along the plane (c) shows a much narrower angle. Buried volume (Figure 1-9d) provides a much more apt description.³⁸ For a sphere of a given radius, the buried volume represents the percentage of the volume occupied by the ligand. No longer constrained by the symmetry of the ligand, a much more accurate comparison of the steric parameters is possible.

Figure 1-8: Calculation of the Steric Parameters of Ligands in Transition Metal Complexes

Nolan and Clavier summarized the buried volumes of the ligands most commonly employed in catalysis (Table 1-2), they have been arranged in order of increasing steric bulk.³⁹ Of note is the minimal difference between the saturated and unsaturated versions of the ligand (entries 2 and 3). The differences are intuitive, many of the examples have groups which extend far away from the metal centre and as such have little impact on the buried volume. The

³⁷ Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956.

³⁸ Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. *Eur. J. Inorg. Chem.* **2009**, 1759.

³⁹ Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841.

isopropyl groups on IPr (1.10) (entry 1) penetrate into the coordination sphere of the metal, giving it a much higher buried volume, even higher than tri(*t*-butyl)phosphine (1.49) (entry 5).

Entry	Ligand	Buried Volume (%) ^a	Entry Ligand	Buried Volume (%) ^a
1	N N 1.10 IPr	44.5	5 1.9 IMes	36.5
2	→ → P → 1.49	43.9	6 1.45	34.8
3	N N I.4 IAd	39.8	Ме 7 Ме∕ ^Р `Ме 1.50	27.3
4	1.8 SIMes	36.9		

Table 1-2: Buried Volumes of Commonly Screened Ligands

a) Based on the Au(NHC)Cl complex

1.5 – N-Heterocyclic Carbenes as Ligands in Transition Metal Catalysis

N-Heterocyclic carbenes have been getting increased attention as ligands in transition metal catalysis.⁴⁰ As outlined in the preceding sections, NHCs have many advantages, including tuneable steric and electronic properties. Most transition metal NHC complexes have high stability to air and moisture, negating the need for specialized equipment in their handling. Transition metal NHC complexes can also be generated *in-situ* from stable precursors.

1.5.1 – Olefin Metathesis

N-Heterocyclic carbenes have been shown to be very effective ligands for ruthenium catalyzed olefin metathesis reactions.^{40c} NHC containing catalysts react faster and are more stable than those containing other ligands.^{40a} The wide variety of NHCs available has created a large diversity of catalysts with different reactivity.^{40c} The selectivity of olefin metathesis catalysts is sterically controlled.⁴¹ Having ligands with very different steric properties allows for effective control of reaction selectivity as more sterically hindered catalysts will have higher selectivity towards unhindered olefins.

Figure 1-9: NHC Containing Olefin Metathesis Catalysts

⁴⁰ a) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. *Chem. Rev.* **2009**, *109*, 3612. b) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. *Chem. Rev.* **2009**, *109*, 3561. c) Samojlowicz, C.; Bieniek, M.; Grela, K. *Chem. Rev.* **2009**, *109*, 3708.

⁴¹ Nolan, S. P.; Clavier, H. Chem. Soc. Rev. 2010, 39, 3305.

The first well-defined ruthenium based olefin metathesis catalyst **1.23**, commonly referred to as Grubbs I contains no NHC (Figure 1-9). It was the starting point for the development of the NHC containing catalysts. The first NHC containing catalyst in the literature was reported by Nolan in 1999 when his group installed IMes onto ruthenium complex **1.23**, generating ruthenium catalyst **1.42u**.⁴² Shortly thereafter, Grubbs reported the installation of SIMes onto complex **1.23**, yielding the second generation Grubbs catalyst **1.42**.⁴³ The NHC containing catalysts were found to have enhanced reactivity and stability. The stability was further increased by the group of Hoveyda who installed the pendant ether on the alkylidene, resulting in catalyst **1.51**.⁴⁴ Altering the steric bulk of the NHC changes the catalyst reactivity.⁴¹ Substituting the bulky mesityl group for sterically less-encumbered *ortho*-tolyl groups in complex **1.52** makes the metal coordination sphere less hindered.⁴⁵ The decrease in bulk allows for the reaction of more sterically encumbered substrates. The NHC IPr (**1.10**) has also been installed onto a ruthenium olefin metathesis catalyst (**1.53**).⁴⁶ The increased steric bulk affords a faster initiating catalyst, and hence shorter reaction times for sterically unencumbered substrates.

Table 1-3: RCM to Form Disubstituted Olefins

MeO ₂ C, CO ₂ Me		
\sim	Ru Cat. (5 mol %)	
	DCM	
1.54		1.55

Entry	Catalyst	Temperature	Time (min)	Conversion (%)	Ref.
1	1.23	r.t.	15	85	46
2	1.42	30 °C	30	95	47
3	1.51	30 °C	20	95	47
4	1.53	r.t.	15	100	46

Table 1-3 shows a comparison of the reactivity of several ruthenium olefin metathesis catalysts for one of the benchmark ring-closing reactions, ring-closing metathesis (RCM) of malonate **1.54**. Catalyst **1.23** converts 85 % of the substrate in 15 min at room temperature. Catalyst **1.42**, takes 30 min at a slightly higher temperature to achieve near quantitative

⁴² Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674.

⁴³ Scholl, M.; Ding, A.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.

⁴⁴ Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.

⁴⁵ Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589.

⁴⁶ Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. **2000**, 606, 49.

conversion. Catalyst **1.51** is faster, achieving quantitative conversion in only 20 min.⁴⁷ Catalyst **1.53** initiates much faster, converting diene **1.54** quantitatively at room temperature in only 15 min. All of the catalysts show high reactivity towards terminal olefins. The differences are more apparent with more sterically encumbered substrates.

	le Ru Cat. (5 mol %)	
	DCM, 40 °C, 1 h	
1.56		1.57
Entry	Catalyst	Conversion (%)
1	1.42	4
2	1.51	0

Table 1-4: RCM to Form Tetrasubstituted Olefins

The *ortho*-tolyl substituted Stewart-Grubbs catalyst **1.52** shows enhanced activity for the formation of tetrasubstituted olefins via RCM.⁴⁵ After 24 h in refluxing dichloromethane, catalyst **1.42** has only converted 4 % of diene **1.56**, catalyst **1.51** converts none of diene **1.56**, while catalyst **1.52** has converted 86 % of diene **1.56** to cyclopentene **1.57**. The less sterically encumbered ligand is more effective for the ring-closing of more sterically hindered substrates.

1.5.2 – Conjugate Addition

The use of organocuprates for conjugate addition is not a new concept in organic chemistry.⁴⁸ The development of new ligands allows for acceleration of the process.⁴⁹ In addition, the reaction can be made catalytic in copper.⁵⁰ The reaction passes through a transient copper(III) intermediate, which is formed via formal oxidative addition of the copper(I) catalyst to the olefin.⁵¹ As such, strongly σ donating ligands facilitate the reaction by stabilizing the high oxidation state intermediate.

 ⁴⁷ Anderson, D. R.; Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. *Angew. Chem., Int. Ed.* 2007, *46*, 7262.
 ⁴⁸ Alexakis, A.; Chuit, C.; Commercon, Bourgain, M.; Foulon, J. P.; Jabri, N.; Mengeney, P.; Normant, J. F. *Pure Appl. Chem.* 1984, *56*, 91.

⁴⁹ Alexakis, A.; Frutos, J.; Mangeney, P. *Tetrahedron: Asymmetry* **1993**, *4*, 2427.

⁵⁰ Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.

⁵¹ Woodward, S. Chem. Soc. Rev. **2000**, 29, 393.

Scheme 1-14: Copper Catalyzed 1,4-Addition with SIMes

An unligated copper salt is not an effective catalyst for conjugate addition to enones. When diethylzinc is mixed with a catalytic amount of copper(II) triflate at low temperature, followed by addition of cyclohexenone **1.58**, only 14 % of cyclohexanone **1.59** is generated after 30 min (Scheme 1-14). In contrast, adding a catalytic amount of SIMes (**1.8**), generated *in-situ* prior to introduction of the substrate, affords 82 % of ketone **1.59**.⁵²

1.5.3 – Hydrosilylation

Hydrosilylation is an important reduction method in organic synthesis.⁵³ It allows for the direct conversion of a ketone into a silyl protected alcohol. The reaction is normally carried out with silane and a transition metal catalyst.⁵³ While a wide array of transition metals can catalyze the reaction, investigations with transition metal NHC complexes have primarily focused on copper³² and rhodium.⁵⁴

Scheme 1-15: Hydrosilylation of Cyclohexanone with a Cu(NHC) Catalyst

An example with a copper NHC catalyst is shown in Scheme 1-15. In the presence of tbutoxide, Cu(SIMes)Cl (1.62) undergoes anion exchange to form the copper alkoxide, which is an effective catalyst for the hydrosilylation of ketones.³² The new complex formed *in-situ* catalyzes the hydrosilylation of cyclohexanone (1.60) with triethylsilane. The reaction proceeds at room temperature in toluene, affording 93 % of silyl ether 1.61 in 30 min.

⁵² Fraser, P. K.; Woodward, S. Tetrahedron Lett. 2001, 42, 2747.

⁵³ Diez-Gonzalez, S.; Nolan, S. P. Org. Prep. Proc. Int. 2007, 39, 523.

⁵⁴ Hill, J. E.; Nile, T. A. J. Organomet. Chem. 1977, 137, 293.
1.5.4 – Huisgen 1,3-Dipolar Cycloaddition

Copper catalyzed azide-alkyne cycloaddition has been getting increased attention in organic synthesis, due to its high yields and simple reaction setup.⁵⁵ Cu(IAd)I (**1.66**) has been shown to be a highly effective catalyst for the 1,3-dipolar cycloaddition of terminal alkynes with alkyl azides.³² The reaction can be performed neat at room temperature. When phenylacetylene (**1.63**) and benzyl azide (**1.64**) are exposed to catalyst **1.66**, the reaction affords triazole **1.65** in quantitative yield after only 10 min. If an unligated copper salt is added to the reaction in place of copper complex **1.66**, no reaction is observed after one hour. If the halide is replaced with a phosphine, it has been shown that the NHC acts as a base and deprotonates the acetylene.⁵⁶

Scheme 1-16: 1,3-Dipolar Cycloaddition Between an Azide and a Terminal Alkyne with a Copper Catalyst

Huisgen 1,3 dipolar cycloadditions of internal alkynes such as alkyne **1.67** cannot form the reactive acetylide intermediate,⁵⁷ and are thus more challenging. Cu(SIMes)Br (**1.18**) catalyzes the 1,3-dipolar cycloaddition between benzyl azide (**1.63**) and 3-hexyne (**1.67**), the reaction requires heating and takes 2 days, affording triazole **1.68** in 80 % yield (Scheme 1-17).⁵⁸

Scheme 1-17: Cu(SIMes)Br Catalyzed Cycloaddition Between Benzyl Azide and 3-Hexyne

⁵⁵ Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.

⁵⁶ Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J. Organometallics 2012, 31, 7969.

⁵⁷ Himo, F. Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. **2006**, 127, 210.

⁵⁸ Diez-Gonzalez, S.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem.-Eur. J. 2006, 12, 7558.

1.5.5 – Palladium Catalyzed Cross-Coupling

In palladium catalyzed cross-coupling chemistry, one of the early challenges was slow oxidative addition into less reactive aryl halides.⁵⁹ Having a strongly donating ligand such as an NHC increases the electron density at palladium and allows for insertion into less reactive bonds.⁶⁰ The earliest example is the employment of $Pd(IAd)_2$ (1.72) as a catalyst (Scheme 1-18).⁶¹ Palladium complex 1.72 inserts into aryl chlorides at room temperature. When 4-chlorotoluene and phenylboronic acid are stirred with a catalytic amount of palladium complex 1.72 and cesium fluoride, 75 % of biaryl 1.71 is afforded after 2 hours.

Scheme 1-18: Suzuki Coupling of 4-Chlorotoluene with Phenylboronic Acid Catalyzed by Pd(IAd)₂

More recently, mono NHC palladium(II) complexes have been getting increased attention as stable catalyst precursors for cross-coupling reactions.⁶² Complex **1.26** whose synthesis is shown in Scheme 1-5 is member of a new class of palladium precatalysts. The new catalysts are referred to as PEPPSI (pyridine enhanced precatalyst preparation, stabilization and initiation) complexes and have the general structure of an NHC trans to a pyridine ligand. The new catalysts are characterized by high stability and fast initiation. Catalyst **1.26** catalyzes the coupling of 4-chloroanisole and 4-methylphenylboronic acid in dioxane at room temperature affording biaryl product **1-75** in 86 % yield after 2 h.¹⁸ To achieve the same level of reactivity for the same coupling reaction in the same solvent, a phosphine coordinated precatalyst needs to be refluxed for over 9 h.⁶³ In addition to Suzuki coupling, PEPPSI complexes have been directed towards Negishi⁶⁴ and Kumada⁶⁵ coupling reactions.

⁵⁹ Sturmer, R. Angew. Chem., Int. Ed. 1999, 38, 3307.

⁶⁰ Crabtree, R. H.; The Organometallic Chemistry of the Transition Metals, Wiley: Hoboken, 2005, p 161.

⁶¹ Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed. **2002**, *41*, 1363.

 ⁶² Valente, C.; Calimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
 ⁶³ Lu, B.; Fu, C.; Ma, S. Tetrahedron Lett. 2010, 51, 1284.

⁶⁴ Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.; Valente, C. Chem.-Eur. J. **2006**, *12*, 4749.

Scheme 1-19: Suzuki Coupling of an Aryl Chloride using a PEPPSI Complex

1.5.6 – Oxidative Coupling of 2-Naphthols

Copper complex **1.79** catalyzes the oxidative coupling of 2-naphthols.⁶⁶ The catalyst was synthesized from the chloroform adduct of SIMes (**1.41**); however, the counterion of the complex is not known. An excess of the electron-rich coupling partner is necessary to achieve high yields as the substrate has a tendency to degrade in non-productive side reactions. When naphthol carboxylate **1.76** and 2 equivalents of naphthol **1.77** are mixed with 10 mol % of copper catalyst **1.79**, silver nitrate as an activator and oxone as an oxidant, cross-coupling product **1.78** is afforded in 80 % yield.

Scheme 1-20: Oxidative Coupling of 2-Naphthols Employing a bis NHC Copper Catalyst

⁶⁵ Organ, M. G.; Abel-Hadi, M.; Avola, S.; Hadei, N.; Nasielski, J.; O'Brien, A. J.; Valente, C. Chem.-Eur. J. 2007, 13, 150.

⁶⁶ Grandbois, A.; Mayer, M.-E.; Bedard, M.; Collins, S. K.; Michel, T. Chem.-Eur. J. 2009, 15, 9655.

Chapter 2 – Introduction to Chiral N-Heterocyclic Carbenes

The preceding chapter showed the development of *N*-heterocyclic carbenes and their application in transition metal catalyzed transformations. The following sections will discuss the development of chiral imidazole based *N*-heterocyclic carbenes and their applications in asymmetric catalysis. There are two strategies that can be employed to make a chiral NHC. An exocyclic chiral group can be bound to one of the nitrogen atoms, or a chiral element can be built into the NHC backbone, enforcing a preferential conformation of the exocyclic groups bound to the nitrogen atoms. The reactivity of C_1 and C_2 -symmetric NHCs will be compared in several asymmetric transformations.

2.1 – NHCs Containing Chiral Groups on Nitrogen

The earliest examples of chiral NHCs are derived from chiral amines and thus have exocyclic chiral groups bound to the nitrogen atoms.^{40a} Several examples based on the imidazole scaffold are shown in Figure 5-1. Carbene **2.1** has two planar-chiral cyclophane units bound to the two nitrogen atoms.⁶⁷ Carbene **2.2** is based on (+)-isopinocampheylamine.⁶⁸ Carbene **2.3** is based on the chiral bisoxazoline structure.⁶⁹ The simplest, carbene **2.4**, is based on (R)-phenylethylamine.⁷⁰

Figure 2-1: NHCs Bearing Chiral Groups on Nitrogen

2.2 – NHCs that Exploit a Chiral Relay

NHCs that exploit a preferred conformation of a bulky group in order to create a chiral environment in the metal's coordination sphere are said to possess a chiral relay. In general, the stereogenic unit that enforces the preferred conformation is found in the NHC backbone. In the

⁶⁷ Song, C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. Tetrahedron Lett. 2005, 46, 3241.

⁶⁸ Huang, J.; Jafarpour, L.; Hillier, A. C.; Stevens, E. D.; Nolan, S. P. Organometallics, 2001, 20, 2878.

⁶⁹ Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704.

⁷⁰ Herrmann, W. A.; Goossen, L. J.; Kocher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. **1996**, 35, 2805.

case of imidazole based NHCs, the ligand is often based off of a chiral diamine. Several NHCs that exploit a chiral relay are shown in Figure 2-2. Grubbs reported carbene **2.5** as a ligand for asymmetric olefin metathesis reactions.⁷¹ Other aryl groups such as naphthyl as in carbene **2.6** can be installed.⁷² Carbene **2.7** with two trimethylbenzyl substituents shows that the chiral relay bound to nitrogen does not have to be an aryl group and can also be alkyl.⁷³ Dialkyl substituted carbene **2.8** provides a more sterically demanding and more conformationally rigid environment than carbene **2.7**.⁷⁴

Figure 2-2: NHC Ligands that Exploit a Chiral Relay Effect

The X-ray structure of a rhodium complex **2.9** of carbene **2.5**, showing the conformational bias of its chiral relay is shown in Figure 2-3.⁷⁵ The *ortho*-tolyl group in the foreground is noticeably twisted compared to the plane of the imidazolidinylidene. Indeed the angle between them is only 58 °. The direction that the *ortho*-tolyl is oriented is controlled by the adjacent phenyl group on the chiral imidazolidinylidene backbone, creating a highly dissymmetric environment about the metal centre.

Figure 2-3: Chiral Relay in a Rhodium NHC Complex

⁷¹ Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.

⁷² Kehrli, S.; Martin, D.; Rix, D.; Mauduit, M.; Alexakis, A. Chem.-Eur. J. 2010, 16, 9890.

⁷³ Matsumoto, Y.; Yamada, K.-I.; Tomioka, K. J. Org. Chem. **2008**, 73, 4578.

⁷⁴ Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K., Angew. Chem., Int. Ed. 2009, 48, 8733.

⁷⁵ Faller, J. W.; Fontaine, P. P. Organometallics 2006, 25, 5887.

2.3 – C₂-Symmetric vs. C₁-Symmetric Ligands

All of the *N*-heterocyclic carbenes shown in the preceding section are C_2 -symmetric. C_1 -symmetric NHCs possess a higher level of asymmetry. Two different approaches to C_1 -symmetric NHC ligands are shown in Figure 2-4. Examples **2.10** and **2.11** have chiral groups attached to one of the nitrogen atoms while examples **2.12** and **2.13** exploit a chiral relay effect. Examples **2.10** and **2.12** are also bidentate. Carbene **2.10** is based on an axially chiral NOBIN motif; the pendant naphthol makes the ligand bidentate.⁷⁶ Carbene **2.11** is a C₁-symmetric version of oxazole-based C₂-symmetric carbene **2.3**.⁷⁶ Carbene **2.12** bearing an *ortho*-sulfonate is bidentate, the chiral backbone of the imidazolidinylidene influences conformation of the aryl groups and hence the binding of the sulfonate to any transition metal.⁷⁷ Methyl-substituted carbene **2.13** provides a less sterically demanding environment than its C₂-symmetric counterparts.⁷⁸

Figure 2-4: C₁-Symmetric NHCs

 C_1 -symmetric NHCs generally provide a more asymmetric environment compared to C_2 symmetric NHCs. Hoveyda has described the high asymmetry of metal complexes bearing C_1 symmetric NHCs using a quadrant system (Figure 2-5).⁷⁹ Figure 2-5a shows the quadrant
system applied to a metal complex bearing a C_2 -symmetric NHC ligand. Among the 4
quadrants, **A** and **C**, and **B** and **D** provide the same environment for substrate binding; hence
there are only 2 unique approaches. Figure 2-5b shows the quadrant system applied to a metal
complex bearing a C_1 -symmetric NHC ligand. In the case of the C_1 -symmetric NHC, none of
the quadrants provide the same approach for substrate binding.

⁷⁶ Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954.

⁷⁷ Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 1097.

⁷⁸ Fournier, P.-A.; Collins, S. K. Organometallics, 2007, 26, 2945.

⁷⁹ Lee, K.-S.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455.

Figure 2-5: Steric Environment of C₁-Symmetric vs. C₂-Symmetric NHCs

2.4 – Chiral NHCs in Asymmetric Catalysis, Comparison of Reactivity between C₁ and C₂-Symmetric Ligands

The earliest example of the application of a chiral NHC in asymmetric catalysis is that of the rhodium NHC catalyzed hydrosilylation of ketones (Scheme 2-1).^{40a} Chiral rhodium complex **2.16** catalyzes the asymmetric hydrosilylation of acetophenone **2.14**, converting 90 % of ketone **2.14** to silyl protected alcohol **2.15** in 32 % ee.⁷⁰ It should be noted that the silyl ether products are normally hydrolyzed and it is the corresponding alcohols that are evaluated for enantiomeric excess.

Scheme 2-1: Rhodium Catalyzed Asymmetric Hydrosilylation of Acetophenone 2.14

Since then, chiral *N*-heterocyclic carbenes have received increased attention in asymmetric catalysis.⁸⁰ The number of transformations is diverse and the structures of the ligands increasingly specialized. The following section will show the benefit that C_1 -symmetric NHCs have brought to three asymmetric transformations: ring-closing olefin metathesis, conjugate addition and allylic substitution.

⁸⁰ Wang, F.; Liu, L.-J.; Wang, W.; Li, S.; Shi, M. Coord. Chem. Rev. 2012, 256, 804.

2.4.1 – Olefin Metathesis

With the advent of chiral *N*-heterocyclic carbenes, chiral ruthenium catalysts for olefin metathesis have been synthesized.⁸¹ Several examples of chiral ruthenium catalysts are shown in Figure 2-6. Among the C₂-symmetric catalysts, complex **2.17** was the first to show important enantioselectivity in desymmetrization reactions.⁷¹ Complexes **2.18** and **2.19** were synthesized in order to provide higher levels of steric bulk within the ruthenium atom's coordination sphere.⁸² Methyl substituted catalysts **2.20** and **2.21** were designed to retain the enantioselectivity of the C₂-symmetric catalysts while having augmented reactivity.^{78,83} Catalysts **2.20** and **2.21** although reactive, have poor solution stability; benzyl catalyst **2.22** was designed to have a longer lifetime in solution.⁸⁴

Figure 2-6: Chiral Ruthenium-Based Olefin Metathesis Catalysts

⁸¹ Kress, S.; Blechert, S. Chem. Soc. Rev. 2012, 41, 4389.

⁸² Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.

⁸³ Fournier, P.-A.; Savoie, J.; Stenne, B.; Bedard, M.; Grandbois, A.; Collins, S. K. Chem.-Eur. J. 2008, 14, 8690.

⁸⁴ Savoie, J.; Stenne, B.; Collins, S. K. Adv. Synth. Catal. 2009, 351, 1826.

The first desymmetrization reaction conceived employing chiral ruthenium based olefin metathesis catalysts is the asymmetric ring-closing metathesis (ARCM) of prochiral trienes. The ARCM of prochiral trienes necessitates a substrate that has one olefin that is less sterically encumbered than the other two which are bound to the prochiral centre. The reactivities and selectivities of several chiral ruthenium olefin metathesis catalysts are compared in Table 2-1.83 Complex 2.18 catalyzes the ring closing of triene 2.23a, converting it quantitatively to dihydrofuran 2.24a in 46 % ee (entry 1). When sodium iodide is added to replace the chlorine atoms on the catalyst, the ee improves to 90 % (entry 2). Catalyst 2.19 also converts triene 2.23a quantitatively to dihydrofuran 2.24a in 30 % ee (entry 3) and 87 % ee when sodium iodide is employed (entry 4). Methyl substituted catalyst 2.20 affords the same quantitative conversion of triene 2.23a while affording heterocycle 2.24a in 82 % ee (entry 5) without the need for sodium iodide. The more sterically demanding catalyst 2.21 converts triene 2.23a quantitatively in 81 % ee (entry 6). Catalyst 2.17 quantitatively converts triene 2.23b to six-membered 2.24b in 90 % ee in the presence of sodium iodide (entry 7). While catalyst 2.20 converts triene 2.23b quantitatively, it affords heterocycle 2.24b in only 28 % ee (entry 8). The more sterically demanding catalyst 2.21 converts 2.23b quantitatively to heterocycle 2.24b in 92 % ee (entry 9). Complex 2.17 converts 5 % of triene 2.23c to seven-membered 2.24c in 85 % ee (entry 10). Methyl substituted catalyst 2.20 converts triene 2.23c quantitatively to heterocycle 2.24c in 60 % ee (entry 11). Complex 2.21 converts triene 2.23c quantitatively to heterocycle 2.24c in 88 % ee (entry 12). The methyl substituted C_1 -symmetric catalysts provide high enantioselectivities without the need of sodium iodide as an additive. They also achieve much higher yields in the formation of seven-membered ring 2.24c.

Table 2-1: Asymmetric Ring-Closing Olefin Metathesis Forming Trisubstituted Olefins

			catalyst (Nal (4 r DCM, 40	2 mol %) mol %) °C, 2 h		
	n =	2.23 1: a; n = 2	2: b; n = 3: c		2.24	
Entry	Catalyst	n	Product	NaI	Conversion (%) ^a	ee (%) ^b
1	2.18	1	2.24a	no	>98	46
2	2.18	1	2.24a	yes ^c	>98	90
3	2.19	1	2.24a	no	>98	30
4	2.19	1	2.24a	yes ^c	> 98	87
5	2.20	1	2.24a	no	> 98	82
6	2.21	1	2.24a	no	> 98	81
7	2.17	2	2.24b	yes ^c	> 98	90
8	2.20	2	2.24b	no	>98	28
9	2.21	2	2.24b	no	> 98	92
10	2.17	3	2.24c	no	5	85
11	2.20	3	2.24c	no	>98	60
12	2.21	3	2.24c	no	> 98	88

a) Conversion determined by ¹HNMR. b) Enantiomeric excess determined by HPLC c) Reaction performed in THF.

Due to the low solution stability of the methyl-substituted catalysts **2.20** and **2.21**, they provide only poor conversions in ARCM reactions forming tetrasubstituted olefins.⁸⁵ Benzyl substituted catalyst **2.22** catalyzes the ARCM of triene **2.25**, affording dihydrofuran in **2.26** in 63 % yield and 50 % ee (Scheme 2-2). To date catalyst **2.22** is the only catalyst reported to perform ARCM forming tetrasubstituted olefins.

Scheme 2-2: ARCM of Triene 2.24 Catalyzed by Ruthenium Complex 2.22

⁸⁵ Stenne, B.; Timperio, J.; Savoie, J.; Dudding, T.; Collins, S. K. Org. Lett. 2010, 12, 2032.

The preceding sections showed the augmented reactivity of ruthenium catalysts bearing methyl-substituted C₁-symmetric NHC ligands. Kinetic data for the ARCM of triene **2.22a** is shown in Figure 2-7.⁷⁸ The graph compares C₂-symmetric catalyst **2.17** with its methyl-substituted C₁-symmetric counterpart, catalyst **2.20**. The difference in reaction rate is clearly visible. While methyl-substituted catalyst **2.20** has reached near-quantitative conversion in only 9 min, its C₂-symmetric counterpart, catalyst **2.17** has yet to reach 10 %.

Figure 2-7: Kinetic Plot of Catalysts 2.20 and 2.17 in the ARCM of Triene 2.23a

2.4.2 – Conjugate Addition

Asymmetric conjugate addition is an important reaction in organic synthesis.⁸⁶ Many chiral transition metal NHC complexes have been applied towards asymmetric conjugate addition reactions.⁸⁰ A comparison of the reactivity of different NHC ligands in copper catalyzed asymmetric conjugate addition follows.

⁸⁶ Harutyunyan, S. R.; den Hertog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.

Scheme 2-3: Copper Catalyzed Asymmetric Conjugate Addition Forming Tertiary vs. Quaternary Stereocenters

Scheme 2-3 shows the addition of diethylzinc to cyclic enones catalyzed by *in-situ* generated copper catalysts. Both examples employ the same chiral C₂-symmetric NHC ligand bound to a copper(II) salt. When cyclohexenone **2.27a** and diethylzinc are mixed in the presence of catalyst **2.29a** at low temperature, ketone **2.28a** is afforded in 87 % yield and 59 % ee.⁸⁷ However, when methylcyclohexenone **2.27b** and diethylzinc are mixed in the presence of catalyst **2.29b**, even at higher temperature only 1 % of the enone starting material **2.27b** is converted after 16 h.⁸⁸

Scheme 2-4: Copper Catalyzed β-Alkylation of Cyclohexenone 2.30 with Diethyl Zinc

In contrast to the difficulty in constructing quaternary stereocenters with a copper catalyst bearing a C₂-symmetric ligand, Hoveyda reported the generation of quaternary stereocenters via addition of dialkylzinc reagents to enones catalyzed by an *in-situ* generated chiral C₁-symmetric copper complex (Scheme 2-4).⁸⁹ When silver complex **2.32** is mixed with an equimolar quantity

⁸⁷ Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. Adv. Synth. Catal. 2003, 345, 345.

⁸⁸ Martin, D.; Kehrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416.

⁸⁹ Lee, K.-S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182.

of a copper(I) salt, the corresponding copper NHC complex is formed via transmetallation. The resultant complex catalyzes the asymmetric conjugate addition of diethylzinc to enone **2.30**, converting 94 % of enone **2.30** and affording ketone **2.31** in 93 % ee.

Scheme 2-5: Cu-NHC Catalyzed β-Borylation of Cinnamate 2.33

Chiral copper NHC complexes can also catalyze the asymmetric β -borylation of enones (Scheme 2-5).⁹⁰ Imidazolinium salts **2.35** and **2.36** react with copper(I) chloride and sodium *t*-butoxide *in-situ* to form chiral copper NHC complexes. The resultant copper complexes catalyze the asymmetric conjugate addition of bis(pinacolato)diboron to enone **2.33**, affording alkyl boronate **2.34**. C₂-symmetric salt **2.35** converts 96 % of enone **2.33** in 24 % ee. Bidentate C₁-symmetric salt **2.36** converts enone **2.33** quantitatively in 76 % ee. When the temperature is lowered to -78 °C, the ee increases to 93 % while retaining full conversion.

2.4.3 – Allylic Substitution

Asymmetric allylic substitution is an important transformation in organic chemistry, finding many applications in total synthesis.⁹¹ C₁-symmetric NHCs enable the construction of quaternary stereocenters via copper catalyzed allylic substitution. An *in-situ* generated chiral copper NHC complex catalyzes the addition of dialkylzinc reagents to allylic phosphonate esters (Scheme 2-6).⁹² Chiral silver complex **2.39** and a copper(I) salt undergo transmetallation in solution, generating a chiral copper NHC catalyst *in-situ*. The *in-situ* generated copper catalyzes the allylic substitution of phosphonate ester **2.37** with diethylzinc, affording quaternary compound **2.38** in 88 % yield and 91 % ee.

⁹⁰ O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630.

⁹¹ Tros, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.

⁹² Larsen, A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130.

Scheme 2-6: Copper Catalyzed Asymmetric Allylic Alkylation of Allyl Phosphonate 2.37

Chiral allylic alcohols can be generated following oxidative cleavage of an organoboron compound generated by substitution of an allyl carbonate (Scheme 2-7).⁹³ Imidazolinium salts **2.42** and **2.43** react with sodium methoxide, generating the free carbene and forming a copper catalyst *in-situ* with copper(II) triflate. The *in-situ* generated chiral copper NHC complexes catalyze the allylic substitution of allyl carbonate **2.40** with bis(pinacolato)diboron, following oxidative workup, alcohol **2.41** is afforded. C₂-symmetric NHC precursor **2.42** affords alcohol **2.41** in 53 % yield and 26 % ee. C₁-symmetric NHC precursor **2.43** affords alcohol **2.41** in 69 % yield and 88 % ee.

Scheme 2-7: Synthesis of Chiral Allylic Alcohol 2.41 via Asymmetric Allylic Borylation

⁹³ Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634.

 C_1 -symmetric NHCs allow for the construction of chiral quaternary allylic alcohols (Scheme 2-8).⁹⁴ Imidazolinium salt **2.43** reacts with sodium methoxide, forming free carbene which forms a copper catalyst *in-situ* with copper(II) triflate. The *in-situ* generated chiral copper NHC complex catalyzes the allylic substitution of allyl carbonate **2.44** with bis(pinacolato)diboron; following oxidative workup, alcohol **2.45** is afforded in 96 % yield and 93 % ee.

Scheme 2-8: Synthesis of Chiral Allylic Alcohol 2.45 via Asymmetric Allylic Borylation

⁹⁴ Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634.

Chapter 3 - Synthesis of Novel Chiral C₁-Symmetric NHCs

3.1 – Ligand Design

The preceding chapter showed the utility of chiral NHCs as ligands for asymmetric transition metal catalysis. Emphasis was placed on the utility of C_1 -symmetric ligands in transformations involving sterically encumbered substrates. Copper catalyzed allylic substitution forming quaternary stereocenters was shown to benefit from the employment of C_1 -symmetric NHC ligands.

Many C₁-symmetric NHCs exploit aryl groups as the chiral relay element bound to nitrogen,⁸⁰ and there has yet to be an example in the literature of a chiral C₁-symmetric NHC which exploits an alkyl group as a chiral relay. Alkyl substituents are sterically and electronically different from the standard aryl groups found on most chiral NHC ligands,^{33,39} and are thus of great interest to expand the diversity of chiral NHCs.

Chiral C₂-symmetric copper complex **3.3** bearing dialkyl NHC ligand **2.8** catalyzes the allylic substitution of allyl bromides with aryl Grignard reagents (Scheme 3-1).⁷⁴ Allyl bromide **3.1** reacts with phenylmagnesium bromide in the presence of catalyst **3.3**, affording substitution product **3.2** in 94 % yield and 98 % ee.

Scheme 3-1: Copper Catalyzed Asymmetric Allylic Arylation of Allyl Bromides

The project goal is to synthesize a series of chiral dialkyl C₁-symmetric NHCs which exploit a chiral relay. Criteria of modular synthesis and simplified purification were stipulated for the synthetic protocols. The model substrate, carbene **3.4**, is shown in Figure 3-1. The chiral relay element chosen is the biaryl methyl group inspired by ligand **2.8**.⁷⁴ The group provides more bulk than the standard aryl groups and can penetrate deeper into a metal's coordination

sphere. Since methyl substituted NHCs show enhanced reactivity, a methyl group was chosen as the second alkyl substituent.⁷⁸ As with prior work in the Collins group,^{78,83,84} the backbone of the NHC is based on di-*t*-butylethylenediamine. The larger *t*-butyl groups help to push the relay element closer to the metal.

Figure 3-1: C₂-Symmetric Precursor and Model Substrate

3.2 – Synthesis of Precursors

The existing syntheses of dialkyl NHC ligands that exploit a chiral relay effect rely on the alkylation of a chiral diamine.⁷⁴ The diamine required to synthesize the model ligand scaffold is chiral diamine **3.8**. (1R, 2R)-Di-*t*-butylethylenediamine (**3.8**) is not readily available from commercial sources. It can be synthesized on large scale in 3 steps from commercially available starting materials (Scheme 3-2),⁹⁵ begining with the formation of diimine **3.6**. Diimine **3.6** is formed by stirring (S)-phenylethylamine and glyoxal under dehydrating conditions, and following evaporation of solvent is added to a suspension of *t*-butylmagnesium chloride. The addition of the Grignard reagent to diimine **3.6** is diastereoselective, affording only diamine **3.7** in 20 % yield⁹⁶ over two steps. The phenylethyl groups are then removed via transfer hydrogenation using Pearlman's catalyst, affording diamine **3.8** in 90 % yield.

⁹⁵ Roland, S.; Mangeney, P.; Alexakis, A. Synthesis 1999, 228.

⁹⁶ The reported yield in the literature is 95 %. In our hands the figure in the text represents the average isolated yield.

Scheme 3-2: Synthesis of (1R, 2R)-1,2-Di-t-butylethylenediamine 3.8

The biaryl methyne is installed via $S_N 2$ substitution on the corresponding alkyl bromide. Alkyl halide **3.12** is synthesized from alcohol **3.11**, which is formed via Grignard reaction between 2-iodotoluene (**3.10**) and *ortho*-salicylaldehyde (**3.9**) (Scheme 3-3). *Ortho*tolylmagnesium iodide is formed *in-situ* from iodide **3.10** and magnesium in refluxing THF. The aldehyde is then added, and following quench and recrystallization alcohol **3.11** is afforded in 50 % yield. Alcohol **3.11** is then brominated using phosphorous tribromide in DCM to afford bromide **3.12** in 80 % yield.

Scheme 3-3: Synthesis of Bis(ortho-tolyl)methyl Bromide

3.3 – Preliminary Experiments

With the precursors prepared, the previously reported alkylation conditions⁷⁴ were applied to di-*t*-butylethylenediamine (**3.8**). While the alkylation of diphenylethylenediamine (**3.15**) affords 67 % of alkylated diamine **3.14**, the *t*-butyl diamine **3.8** proved to be problematic (Scheme 3-4). The standard conditions did not result in formation of diamine **3.13**. But, when the reaction time was increased to 24 hours, trace amounts of diamine **3.13** were formed. However, isolating the product from the DMPU solvent proved troublesome. Since satisfactory yields of diamine **3.13** could not be obtained, it was decided to move forward instead with imidazoline **3.17** in place of diamine **3.8**.

Scheme 3-4: Alkylation of Chiral Diamines with Bromide 3.12

Imidazoline **3.17** is prepared from diamine **3.7** in two steps (Scheme 3-5).⁹⁷ Diamine **3.7** is treated with formaldehyde under dehydrating conditions, affording imidazolidine **3.16** in 80 % yield. The phenylethyl groups of imidazolidine **3.16** are then cleaved via transfer hydrogenation. During the reaction, an oxidation at the amine occurs, resulting in the formation of imidazoline **3.17** in 90 % yield.

Scheme 3-5: Synthesis of Imidazoline 3.17

3.4 – Optimization of Alkylation Conditions

Table 3-1 shows the optimization of the conditions for the alkylation of imidazoline **3.17** with bromide **3.12** (Table 3-1). Initial experiments involved deprotonation of imidazoline **3.17** with a strong base, followed by addition of bromide **3.12**. Reactions employing either n-butyl lithium (entry 1) or sodium hydride (entry 2) as a base did not generate any alkylation products. Employing a milder base in potassium carbonate with dichloromethane as a solvent (entry 3) afforded imidazoline **3.18** in 20 % yield after 3 days. Changing the solvent to acetone and bringing the reaction to reflux (entry 4) improved the yield to 30 % in 24 hours. Performing the reaction in refluxing DMF (entry 5) afforded imidazoline **3.18** in only 17 % yield. The best yield was obtained by heating the reaction in acetone at 100 °C in a sealed tube for two days, affording imidazoline **3.18** in 45 % yield. Use of additives such as sodium iodide (entry 7) or silver carbonate (entry 8) did not have a significant effect on the yield of imidazoline **3.18**.

⁹⁷ Pytkovicz, J.; Roland, S.; Mangeney, P. J. Organomet. Chem. **2001**, 631, 157.

Table 3-1: Alkylation of Imidazoline 3.17 with Bromide 3.12

Entry	Base (eq.)	Solvent	Temperature (°C)	Time	Additive (eq.)	Yield (%) ^a
1	n-BuLi(1)	THF	0^{b}	2 h	N/A	0
2	NaH (1)	THF	0^{b}	2 h	N/A	0
3	$K_{2}CO_{3}(5)$	DCM	20	72 h	N/A	20
4	$K_{2}CO_{3}(5)$	Acetone	60	24 h	N/A	30
5	$K_{2}CO_{3}(5)$	DMF	120	24 h	N/A	17
6	$K_{2}CO_{3}(5)$	Acetone	100	48 h	N/A	45
7	$K_{2}CO_{3}(5)$	Acetone	100	48 h	NaI (1)	45
8	$K_{2}CO_{3}(5)$	Acetone	100	48 h	$Ag_2CO_3(1)$	39

a) Yields following column chromatography, b) Reagent was added at 0 °C, and the reaction was allowed warm to room temperature

The yield of the reaction was found to be dependent on the concentration. Increasing the concentration of the reaction from 0.1 M to 0.5 M led to a drop in yield, affording only 12 % of imidazoline **3.18**. In addition, alkyl halide **3.12** was found to have formed the double addition product, imidazolinium salt **3.19**, which precipitated out of solution in 88 % yield (Scheme 3-6).

Scheme 3-6: Isolation of Imidazolinium Salt 3-19

The poor yield of imidazoline **3.18** in the alkylation of imidazolium **3.17** at 0.5 M (Scheme 3-6) suggests that the insolubility of imidazolinium **3.9** has a negative impact on the reaction yield. Furthermore, it suggests that the addition of the second alkyl group, resulting in imidazolinium **3.19**, is reversible. To test the reversibility of the second alkylation, imidazolinium **3.19** was resubmitted to the reaction conditions (Scheme 3-7), affording imidazoline **3.18** in only 14 % yield. The result indicates that the formation of imidazolinium salt **3.19** is poorly reversible and suggests that at higher concentration all of bromide **3.12** in

solution is converted to imidazolinium **3.19** before equilibrium shifts back towards formation of imidazoline **3.8**. At lower concentration, formation of imidazoline **3.18** is favoured.

Scheme 3-7: Reversibility of Formation of Imidazolinium Salt 3.19

3.5 – Scope of the First Alkylation

With the conditions for the alkylation of imidazoline **3.7** optimized, attention was turned to the scope of the alkylation reaction. To that end, a series of biarylmethyl halides were synthesized in order to provide varying levels of steric bulk. All of the alkyl halides were prepared from biarylmethanol precursors. The alcohols were synthesized by reaction of 2 equivalents of the Grignard reagent formed from the corresponding alkyl bromide with ethyl formate (Table 3-2). Mesityl substituted alcohol **3.20** and 2-naphthyl substituted alcohol **3.21** were both synthesized in high yields, affording 90 and 94 % yields respectively. Alcohol **3.22** bearing 1-naphthyl substituents was afforded in good although somewhat lower 68 % yield. Alcohol **3.23** bearing 1-pyrenyl substituents was afforded in moderate 46 % yield.

	1) Mg (5 eq.) I ₂ (cat.), THF reflux 30min 2) ArBr, reflux, 2 h 3) ethyl formate reflux, 15 h	OH Ar Ar
Entry	Product	Yield (%) ^a
1	3.20 OH 3.20	90
2	0H 3.21	94
3	OH 3.22	68
4] 46 ^b

Table 3-2: Synthesis of Biarylmethanols via Grignard Reaction

a) Isolated yields following recrystallization, b) Represents a crude yield

Not all of the alcohols shown in Table 3-2 could be halogenated in the same fashion as alcohol **3.11** with phosphorous tribromide. The halogenation conditions of the alcohols are summarized in Table 3-3. The halogenation of alcohol **3.20**, which has been described previously,⁹⁸ was carried out under biphasic conditions between a benzene solution of alcohol **3.20** and concentrated HCl, affording 85 % of alkyl chloride **3.24**. Alcohol **3.22** was brominated with phosphorous tribromide, affording alkyl bromide **3.25** in 90 % yield. Alkyl chloride **3.26** was afforded in 79 % yield by treating alcohol **3.21** with 2 equivalents of thionyl chloride at room temperature. Pyrene substituted alcohol **3.23** was chlorinated with 2 equivalents of thionyl chloride at reflux, affording alkyl chloride **3.27** in 95 % yield.

⁹⁸ Nauta, W. T.; Wuis, P. J. Rec. trav. chim. 1937, 56, 535.

Table 3-3: Halogenation of Biarylmethanols

Entry	Product	Reagent (eq.)	Solvent	Temperature	Time	Yield (%) ^a
1	3.24	HCl (xs)	H ₂ O/Benzene	r.t.	2 d	85
2	Br 3.25	PBr ₃ (0.6)	DCM	0 °C ^b	15 h	90
3		$SOCl_2(2)$	Benzene	0 °C ^b	15 h	79
4		$SOCl_2(2)$	Benzene	reflux	15 h	95°

a) Yields following filtration on basic alumina, b) Reagent was added at 0 °C, and the reaction was allowed to warm to room temperature overnight, c) Represents a crude yield

The alkyl halides shown in Table 3-3 were submitted to the optimized conditions for the alkylation of imidazoline **3.17**. The results of the alkylation reactions are summarized in Table 3-4. Mesityl substituted alkyl halide **3.24** resulted in a higher yield than the model system, affording imidazoline **3.19** in 60 % yield. Alkylation with bromide **3.25** resulted in the lowest yield, affording imidazoline **3.29** in 20 % yield. Imidazoline **3.30** was synthesized in 46 % yield from alkyl chloride **3.26**. Pyrene substituted alkyl halide **3.27** resulted in the highest yield, affording imidazoline **3.31** in 68 % yield.

	$\begin{array}{c} t - Bu \\ HN \\ \hline \end{array} N \\ 1.1 eq. \end{array} + \begin{array}{c} X \\ Ar \\ - Ar \\ 1.1 eq. \end{array}$	$\begin{array}{c} CO_3 (5 \text{ eq.}) \\ Acetone \\ 10 \ ^\circ\text{C}, 2 \text{ d} \end{array} \xrightarrow{t-Bu} N \xrightarrow{t-Bu} N$	Bu
Entry	Alkyl Halide	Product	Yield (%)
1	Br 3.12	<i>t</i> -Bu, <i>t</i> -Bu N, N 3.18	45
2	3.24	t-Bu, t-Bu N, N 3.28	60
3	Br 3.25	<i>t</i> -Bu, <i>t</i> -Bu N, <i>S</i> N 3.29	20
4	CI 3.26	t-Bu, t-Bu	46
5		t-Bu, t-Bu	68

Table 3-4: Scope of Alkylation of Imidazoline 3.17

t-Bu

_t-Bu

a) Yields following column chromatography

3.6 – Synthesis of Imidazolinium Salts

The main series of C₁-symmetric NHC precursors synthesized bears an N-methyl group for enhanced reactivity. The methyl group can be installed quantitatively on imidazoline 3.18 with an excess of methyl iodide (Table 3-5, entry 1). Since many procedures for the installation of an NHC onto a transition metal centre necessitate a non-coordinating counterion, the imidazolinium salts were prepared with tetrafluoroborate counterions. The exchange was performed *in-situ* with sodium tetrafluoroborate in a one-pot, two-step process. Imidazolines **3.18**, **3.29**, and **3.30** reacted quantitatively, affording exclusively imidazolinium salts **3.32**, **3.34**, and **3.35** respectively. While the mesityl substituted imidazoline **3.30** was also found to react quantitatively, imidazolinium salt **3.33** was found to be much less stable than the other derivatives. Attempted purification on silica gel resulted in decomposition of the compound. As such, it was deemed inappropriate for further investigation, since it would decompose when exposed to reagents for forming a transition metal complex. The synthesis 1-pyenenyl derivative **3.31** was more challenging, affording imidazolinium salt **3.36** in a moderate 60 % yield and requiring more rigorous purification.

Table 3-5: Methylation and Counterion Exchange

Mel (5 eq.) NaBF₄ (5 eq.) DCM, r.t. t-Bu,

t-Bu

t-Bu

t-Bu

a) Yields following purification, b) Compound is unstable

Reactivity controlling groups other than methyl were also investigated. To such an end, *N*-benzyl and *N*-(2-picolyl) substituents were installed on imidazoline **3.17** (Scheme 3-8). The

benzyl substituent was installed by heating imidazoline **3.17** with 2 equivalents of benzyl chloride in a sealed tube, affording imidazolinium salt **3.37** in 60 % yield following recrystallization. While the 2-picolyl group could also be installed using a similar protocol, imidazolinium salt **3.38** could not be adequately purified for installation onto a transition metal. Stirring imidazoline **3.18** with 2-picolyl chloride at room temperature for 3 days afforded imidazolinium salt **3.38** in a crude 30 % yield.

Scheme 3-8: Variation of the Reactivity Controlling Substituent

A convergent and modular protocol was created which allows for the efficient synthesis of chiral C_1 -symmetric dialkyl NHC ligands in 2 steps from a chiral imidazoline precursor.⁹⁹ The protocol is based on chiral imidazoline **3.17** which is more stable than diamine **3.8** and has the added advantage of not requiring a high temperature distillation to purify. Biaryl methyne substituents of varying steric bulk could be installed as a chiral relay, in synthetically relevant yields. Reactivity controlling elements can be installed in moderate to excellent yields, and most imidazolinium salts could be used without the need for rigorous purification.

⁹⁹ Holtz-Mulholland, M.; Collins, S. K. Synthesis 2014, 46, 375.

Chapter 4 – Synthesis New Chiral of Transition Metal NHC Complexes

The utility of NHC ligands in transition metal catalysis was shown in Chapter 1. The increasing interest in chiral C_1 -symmetric NHC ligands in asymmetric catalysis was shown in Chapter 2. Since transition metal NHC complexes make good catalysts, the chiral C_1 -symmetric NHC precursors whose synthesis was shown in the preceding chapter were submitted to metalation conditions for installation onto catalytically relevant transition metals. The target metals were copper, gold, palladium, ruthenium and iridium.

4.1 – Synthesis of Chiral Copper NHC Complexes

Chiral copper NHC complexes have found many uses in asymmetric catalysis.⁸⁰ As such, the copper NHC complexes of the new NHC ligands were synthesized. NHC precursor **3.32**, which is the C₁-symmetric analog of the previously reported C₂-symmetric ligand **2.8**,⁷⁴ was submitted to conditions developed by Nolan³² for the synthesis of mono NHC copper complexes. Imidazolium salt **3.32** was stirred for 30 min in THF with a slight excess of sodium *t*-butoxide, generating the free carbene *in-situ*. Stirring the resultant solution overnight with a large excess of copper(I) chloride afforded chiral NHC complex **4.1** in 60 % yield (Scheme 4-1). Employing KHMDS or silver(I) oxide as carbene generating reagents did not result in higher yields of complex **4.1**.

Scheme 4-1: Synthesis of Chiral Copper NHC Complex 4-1

Diffraction quality crystals of complex **4.1** were grown by vapour diffusion of pentane into a DCM solution of the complex. The X-ray structure of complex **4.1** is shown in Figure 4-1 and selected structural parameters are shown in Table 4-1. Figure 4-1b shows the staggered view of complex **4.1**, the area adjacent the sterically unencumbered methyl group is sterically accessible whereas the area surrounding the biaryl methyne is blocked by the aryl groups. Figure 4-1c shows the complex through the plane of the NHC from the side of the methyl group. The different conformations of the two aryl groups on biaryl methyne create a highly dissymmetric environment about the metal centre. The structural parameters of the complex are very similar to the values for Cu(SIPr)Cl (Table 4-2).¹⁰⁰ The copper-carbon bond of complex **4.1** is 1.893(2) Å long and the copper-chlorine bond is 2.1066(7) Å long. For Cu(SIPr)Cl the copper-carbon bond is 1.896(7) Å long and the copper-chlorine bond is 2.114(2) Å long. The carbon-copper-chlorine angle in complex **4.1** is slightly bent from the linear configuration at an angle of 171.51(7)°, the carbon-copper-chlorine angle of Cu(SIPr)Cl is also slightly bent, being 174.4(2)°. The buried volume of complex **4.1** is 44.5 %, slightly smaller than Cu(SIPr)Cl which has a buried volume of 46.4 %.

Figure 4-1: Crystal Structure of Complex 4-1

¹⁰⁰ (a) Diez-Gonzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, M. Z. A.; Nolan, S. P. *Dalton Trans* **2010**, *39*, 7595. (b) Diez-Gonzalez, S.; Stevens, E. D.; Nolan, S. P. *Chem. Commun.* **2008**, 4747. (c) Buried volumes were computed using the MoLNaC SambVca web application using a fixed bond length of 2 Å, a sphere radius of 3.5 Å, and scaled bond radii. For examples see: Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. *Eur. J. Inorg. Chem.* **2009**, 1759.

Entry	Parameter	Value
1	Cu-C	1.893(2) Å
2	Cu-Cl	2.1066(7) Å
3	C-Cu-Cl	171.51(7)°
4	Vbur	44.5 %

Table 4-1: Selected Structural Parameters of Complex 4.1

Table 4-2: Selected Structural Parameters of Cu(SIPr)Cl

Entry	Parameter	Value
1	Cu-C	1.896(7) Å
2	Cu-Cl	2.114(2) Å
3	C-Cu-Cl	174.4(2)°
4	Vbur	46.4 %

Naphthyl substituted ligand 3.34 was also installed onto copper(I) using sodium *t*butoxide (Scheme 4-2). When copper(I) chloride was employed as the copper source, complex 4.2a was isolated in 24 % yield. Changing the copper source to copper(I) iodide afforded complex 4.2b in 42 % yield. As with the synthesis of complex 4.1 the use of KHMDS or silver(I) oxide as a carbene generating reagent did not result in higher yields of the desired copper NHC complex.

Scheme 4-2: Synthesis of Chiral Naphthyl Copper Complexes 4.2

Diffraction quality crystals of complex **4.2b** were grown by vapour diffusion of pentane into a saturated DCM solution of the complex. The X-ray structure of complex **4.2b**, which crystallized as a DCM solvate, is shown in Figure 4-2. Figure 4-2b shows the staggered view of complex **4.2b**. As with complex **4.1** the area adjacent the *N*-methyl group is sterically accessible, while the area surrounding the biaryl methyne is sterically encumbered. A look down the *N*-methyl bond, in Figure 4-2c, shows a highly dissymmetric environment about the metal centre. Selected structural parameters for complex **4.2b** are shown in Table 4-3. The complex has a copper-carbon bond length of 1.894(3) Å, nearly identical to that of complex **4.1**. The copper-iodine bond length of complex **4.2b** is 2.3967(3) Å and the copper-carbon-iodine angle is again slightly bent at $173.22(9)^{\circ}$. The buried volume of complex **4.2b** is 43.9 %, slightly smaller than complex **4.1**. The slight difference is likely due to the increased steric repulsion of the larger naphthyl groups, pushing them further from the metal centre.

Figure 4-2: Crystal Structure of Complex 4.2b

Table 4-3: Selected Structural Parameters of Complex 4.2	2b
--	----

Entry	Parameter	Value
1	Cu-C	1.894(3) Å
2	Cu-I	2.3967(3) Å
3	C-Cu-I	173.22(9)°
4	Vbur	43.9 %

Benzyl substituted ligand **3.37** decomposes in the presence of strong bases, likely due to competitive reactions such as deprotonation at the benzylic position. Exposure of imidazolium

3.37 to either KHMDS or sodium *t*-butoxide at room temperature results in complete decomposition of the ligand. Generation of a silver complex *in-situ* with silver(I) oxide followed by transmetallation with an excess of copper(I) chloride affords chiral copper complex **4.3** in 20 % yield.

Scheme 4-3: Synthesis of Benzyl Complex 4.3

The *t*-butyl substituted analog of ligand **2.8**, imidazolium **3.19** did not generate mono NHC copper complexes when treated with KHMDS, sodium t-butoxide, or silver oxide. Heating with potassium carbonate as in the recently reported procedure,²⁰ afforded C₂-symmetric complex **4.4** in 45 % yield. It should be noted that the reaction must be performed in degassed acetone otherwise only trace quantities of complex **4.4** are obtained.

Scheme 4-4: Synthesis of C₂-Symmetric Copper Complex 4.4

Imidazolinium salts **3.35** and **3.36** bearing 2-naphthyl and 1-pyrenyl groups respectively could not be installed successfully onto copper(I) (Figure 4-3). Use of strong bases such as KHMDS or sodium *t*-butoxide resulted in decomposition of the ligand, while use of milder reagents such as silver(I) oxide failed to convert the starting material to the desired products.

Figure 4-3: Ligands that Could not be Installed onto a Transition Metal

Bidentate picolyl substituted imidazolinium salt **3.38** could not be installed onto copper by any means. All efforts to install the ligand onto copper met with failure, generally with decomposition of the ligand into unidentifiable products. It should be noted that the starting material was never recovered.

Figure 4-4: Failure to Install Picolyl Ligand 3.38 onto Copper

4.2 – Synthesis of a Chiral Gold NHC Complex

Due to the prevalence of gold NHC complexes in catalysis,^{40a,b} the gold NHC complexes of the new ligands were targeted for synthesis. Imidazolinium salt **3.32** generates free carbene in the presence of sodium *t*-butoxide; addition of (dimethylsulfide)gold(I) chloride forms the corresponding gold NHC complex, which undergoes counterion exchange with iodide affording complex **4.5** in 20 % yield.

Scheme 4-5: Synthesis of Chiral C₁-Symmetric Gold Complex 4.5

Diffraction quality crystals of complex **4.5** were obtained by slow diffusion of diethyl ether into a saturated solution of complex **4.5** in dichloromethane. The X-ray structure of complex **4.5** is shown in Figure 4-5 and selected structural parameters are shown in Table 4-4.

Figure 4-5b shows the staggered view of the complex, the area adjacent to the *N*-methyl group is sterically accessible. Figure 4-5b shows the complex from the angle of the *N*-methyl bond, two different steric environments are visible due to the aryl groups in the background. The gold-carbon bond of complex **4.5** is 2.00(1) Å long and the gold-iodine bond is 2.544(1) Å long. The carbon-gold-iodine angle of complex **4.5** is closer to linearity than the other examples, being $177.4(3)^{\circ}$. The buried volume of complex **4.5** is 42.3 %, slightly smaller than the corresponding copper complex **4.1**, likely due to increased steric repulsion between the chiral relay and the larger metal centre.

Figure 4-5: Crystal Structure of Complex 4.5

Table 4-4: Selected Structural Parameters of Complex 4-5

Entry	Parameter	Value
1	Au-C	2.00(1) Å
2	Au-I	2.544(1) Å
3	C-Au-I	177.4(3)°
4	Vbur	42.3 %

Attempting to form a chiral C_2 -symmetric gold(I) complex from imidazolium salt **3.19** in a method analogous to the formation of copper complex **4.4**, by heating imidazolium salt **3.19** with potassium carbonate in the presence of (dimethylsulfide)gold(I) chloride, resulted in failure. No new gold-containing products were formed in the reaction conditions and the majority of the imidazolium salt starting material was recovered.

Figure 4-6: Attempted Synthesis of a Chiral C₂-Symmetric Gold Complex

4.3 – Towards the Synthesis of a Chiral Palladium NHC Complex

Due to the increased usage of NHC ligands in palladium catalyzed transformations,^{40a} attempts were made to install ligand 3.32 onto palladium. Reactions, with any base, that did not include an additional L ligand for palladium did not result in the formation of isolable palladium NHC products. Neither acetonitrile nor triphenylphosphine formed stable and isolable heteroleptic mono NHC palladium complexes with ligand 3.32. The method for generating palladium PEPPSI complexes¹⁸ with potassium carbonate did not generate palladium complex 4.6. Only *in-situ* carbene generation with sodium *t*-butoxide followed by complexation to palladium(II) chloride and addition of pyridine afforded what appears to be chiral palladium complex 4.6 in 18 % yield (Scheme 4-6). The results are highly preliminary as full characterization of the complex is not yet complete. Efforts are underway to obtain diffraction quality crystals of the complex. The pyridine and the NHC ligand are visible in a 1:1 ratio by 1 H NMR spectroscopy. Mass spectrometric analysis of the crude product reveals a product containing one chlorine atom and one palladium atom, and a mass value high enough to imply the presence of the NHC ligand.

Scheme 4-6: Synthesis of Chiral C₁-Symmetric Palladium NHC Complex 4.6

4.4 – Towards the Synthesis of New Chiral Ruthenium Catalysts

Due to recent successes in asymmetric olefin metathesis reactions with ruthenium catalysts bearing chiral NHC ligands,⁸¹ imidazolinium salt **3.32** was subjected to the standard conditions for the synthesis of ruthenium NHC complexes. Heating imidazolinium salt **3.32** with potassium hexafluoro-*t*-butoxide in the presence of Grubbs I (**1.23**) did not result in the formation of a new ruthenium catalyst. The bulky tricyclohexylphosphine likely did not leave sufficient space for the NHC to approach the ruthenium centre.

Figure 4-7: Failed Installation of Ligand 3.32 onto Ruthenium Complex 1.23

Attempts to install a chiral C₁-symmetric dialkyl NHC onto ruthenium(II)(*para*-cymene) dimer were also unsuccessful. When the free carbene was generated followed by addition of ruthenium and pyridine as a ligand, no ruthenium NHC products were observed.

Figure 4-8: Attempted Synthesis of a Chiral Ruthenium Complex

4.5 – Towards the Synthesis of a New Chiral Iridium Complex

Iridium NHC complexes have shown their utility in catalytic transformations.^{40a} Attempts to install a chiral NHC onto iridium were not successful (Figure 4-9). All attempts to form carbene complexes using methoxy iridium species met with failure. While using silver oxide as a carbene generating reagent did generate interesting new products, they were not found to correspond to an iridium NHC complex.

Figure 4-9: Failed Synthesis of a Chiral Iridium Complex
Chapter 5 - Oxidative Coupling of 2-Naphthols

5.1 – Introduction to BINOLs

Biaryl compounds such as 1,1'-binaphthyl-2,2'-diol (BINOL) **5.1** represent a privileged ligand scaffold in organic chemistry. While all of the carbon atoms in the biaryl are sp^2 , there is restricted rotation about the bond between the two aryl groups leading to two atropisomers. Figure 5-1 shows the atropisomers of BINOL **5.1** as well as their structures in the solid state.¹⁰¹ The atropisomers are configurationally stable at room temperature; the temperature at which BINOL **5.1** racemizes varies from solvent to solvent but averages ~200 °C.¹⁰²

Figure 5-1: The Atropisomers of BINOL 5.1

Due to the axial chirality of the binaphthyl scaffold, BINOL **5.1** and BINOL derivatives have seen widespread use for asymmetric induction in chiral transformations.¹⁰³ BINOL **5.1** as well as 3 common derivatives are shown in Figure 5-2. In order to diversify the reactivity and steric environment of binaphthyls, BINOLs such as **5.2** bearing substituents at the 3 position of the naphthyl ring-system have been developed.¹⁰⁴ Functional groups can be chosen for steric bulk or to modify the electronic character of the aromatic system. Chiral phosphoric acid **5.3**

¹⁰¹ Lee, T.; Peng, J. F. Crystal Growth and Design 2010, 10, 3547.

¹⁰² Meca, L.; Reha, D.; Havlas, Z. J. Org. Chem. 2003, 68, 5677.

¹⁰³ a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155. b) Brunel, J. M. Chem. Rev. 2007, 107, PR1.

¹⁰⁴ a) Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L. H.; Moreau, P.; Koga, K.; Mayer, J.

M.; Chao, Y.; Siegel, M. G.; Hoffman, D. H.; Sogah, G. D. Y. J. Org. Chem. **1978**, 43, 1930 b) Liu, G.-H.; Xue, Y.-N.; Yao, M.; Fang, H.-B.; Yu, H.; Yang, S.-P. J. Mol. Struct. **2008**, 875, 50.

was developed as a chiral Brønsted acid for use in acid-catalyzed transformations.¹⁰⁵ More recently, phosphoramidite ligands such as phosphoramidite **5.4** based on BINOL have become popular for use in asymmetric transition metal catalysis.¹⁰⁶

Figure 5-2: BINOL Containing Structures Employed in Asymmetric Synthesis

In addition to being an important structure for enantioinduction in organic chemistry, the axially chiral binaphthyl structure is found in many natural products. Three biologically relevant natural products containing an axially chiral BINOL skeleton are shown in Figure 5-3. Nigerone **5.5**, which can be synthesized via oxidative biaryl coupling,¹⁰⁷ displays both antibacterial¹⁰⁸ and antitumor¹⁰⁹ activity. Hypocrellin **5.6** has been shown to be a potent antifungal,¹¹⁰ as well as displaying antitumor activity.¹¹¹ Cercosporin **5.7**, in which the BINOL hydroxyl groups are tethered, displays antiviral activity.¹¹²

¹⁰⁵ Koy, C.; Michalik, M.; Oehme, G.; Tillack, A.; Baudisch, H.; Kempe, R. *Phosporous, Sulfur and Silicon and the Related Elements* **1999**, *152*, 203.

¹⁰⁶ Teichert, J.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486.

¹⁰⁷ DiVirgilio, E. S.; Dugan, E. C.; Mulrooney, C. A.; Kozlowski, M. K. Org. Lett. **2007**, *9*, 385.

¹⁰⁸ Boutibonnes, P.; Malherbe, C.; Kogbo, W.; Marais, C. Microbiol., Aliments, Nutr. 1983, 1, 259.

¹⁰⁹ Koyama, K.; Ominato, K.; Natori, S.; Tashiro, T.; Tsuruo, T. J. Pharmacobio. Dynamics **1988**, 11, 630.

¹¹⁰ Xing, M.-Z.; Zhang, X.-Z.; Sun, Z.-L.; Zhang, H.-Y. J. Agric. Food. Chem. 2003, 51, 7722.

¹¹¹ Morgan, B. J.; Dey, S.; Johnson, S. W.; Kozlowski, M. C. J. Am. Chem. Soc. 2009, 131, 9413.

¹¹² Hudson, J. B.; Imperial, V.; Haughland, R. P.; Diwu, Z. Photochem. Photobiol. 1997, 65, 352.

Figure 5-3: Biologically Active Natural Products Containing the BINOL Scaffold

5.2 – BINOLs in Enantioselective Transformations

BINOL and its derivatives have been employed in many asymmetric transformations.¹⁰³ BINOL containing compounds have been employed both as catalysts and as stoichiometric chiral reagents. Several examples that demonstrate good enantioselectivity follow.

5.2.1 – BINAL-H

Aluminum hydride **5.10**, commonly referred to as BINAL-H, is a stoichiometric chiral reducing agent that is synthesized from BINOL and lithium aluminum hydride.¹¹³ The third alkoxy substituent on aluminum was found to be necessary to promote asymmetry in the reduction process, as having two hydrides bound to aluminum led to poor enantioselectivity. BINAL-H **5.10** reduces propargylic ketone **5.8**, at low temperature, affording propargylic alcohol **5.9** in 90 % yield and 92 % ee (Scheme 5-1).¹¹⁴

Scheme 5-1: Asymmetric Reduction of a Propargylic Ketone with BINAL-H

¹¹³ Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709.

¹¹⁴ Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. **1984**, 106, 6717.

5.2.2 – Asymmetric Aldol Reaction

Chiral zirconium complexes **5.14** catalyze the aldol addition of silyl enol ether **5.12** to benzaldehyde **5.11** (Scheme 5-2).¹¹⁵ The zirconium centre acts as a Lewis acid for the aldehyde oxygen atom. The unsubstituted versus 3,3'-disubstituted BINOL variants of the catalyst show large changes in selectivity. The unfunctionalized catalyst **5.14a** affords alcohol **5.13** in 72 % yield and 57 % ee. The iodo substituted catalyst **5.14b** affords only a slight increase in terms of yield, affording alcohol **5.13** in 81 % yield. However, the selectivity is greatly improved, affording alcohol **5.13** in 92 % ee.

Scheme 5-2: Asymmetric Aldol Reaction Catalyzed by a Zirconium-BINOL Complex

5.2.3 – Asymmetric Diels-Alder Cycloaddition

The Diels-Alder cycloaddition is one of the most popular tools for the construction of 6membered rings, and has found widespread application in total synthesis.¹¹⁶ Chiral titanium-BINOL complex **5.18**, catalyzes the asymmetric cycloaddition of diene **5.15** and acrylaldehyde **5.16** (Scheme 5-3).¹¹⁷ Titanium catalyst **5.18** is generated *in-situ* from BINOL **5.1** and Ti(OiPr)₂Cl₂. When diene **5.15** and aldehyde **5.16** are exposed to a catalytic amount of *in-situ* generated titanium catalyst **5.18**, cyclohexenol **5.17** is afforded in 63 % yield and 94 % ee.

¹¹⁵ Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 5403.

¹¹⁶ Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.

¹¹⁷ Mikami, K.; Motoyama, Y.; Tereda, M. J. Am. Chem. Soc. **1994**, 116, 2812.

Scheme 5-3: Asymmetric Diels-Alder Reaction Catalyzed by an *in-situ* Generated Titanium-BINOL Complex

5.2.4 – Asymmetric Transfer Hydrogenation

BINOL derived chiral phosphoric acid **5.21** catalyzes the asymmetric transfer hydrogenation of imine **5.19** with the Hantzsch ester **5.22** (Scheme 5-4).¹¹⁸ Chiral Brønsted acids induce chirality by forming a tight ion pair with the protonated intermediate. Imine **5.19** is reduced by the Hantzsch ester **5.22** in the presence of 20 mol % of phosphoric acid **5.21**, affording chiral amine **5.20** in 82 % yield and 84 % ee.

Scheme 5-4: Asymmetric Transfer Hydrogenation of an Imine Catalyzed by a Chiral Brønsted Acid

5.2.5 – Asymmetric Arylation of Imines

BINOL containing phosphoramidite ligands have become increasingly popular in asymmetric transition metal catalysis.¹⁰⁶ Phosphoramidite **5.26** acts as a ligand for the rhodium-

¹¹⁸ Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

catalyzed arylation of imine **5.23** with phenylboronic acid **5.24** (Scheme 5-5).¹¹⁹ Imine **5.23** reacts with a slight excess of phenylboronic acid **5.24** in the presence of an *in-situ* generated rhodium phosphoramidite catalyst, affording chiral amine **5.25** in 98 % yield and 94 % ee.

Scheme 5-5: Asymmetric Arylation of an Imine with a Chiral Phosphoramidite Ligand

5.3 – Synthesis of BINOLS Employing Stoichiometric Amounts of Transition Metal

5.3.1 – Homocoupling of 2-Naphthols

First reported in 1926, the synthesis of BINOL **5.1** is achieved via oxidative coupling of 2-naphthol with iron(III) chloride.¹²⁰ While the original BINOL synthesis was aqueous, the coupling reaction can also be performed in the solid state (Scheme 5-6).¹²¹ The coupling reaction is anaerobic, the iron(III) acts as the oxidant. When a finely ground mixture of 2-naphthol **1.77** and iron(III) chloride is irradiated in the microwave for 5 min, BINOL **5.1** is afforded in 97 % yield.

Scheme 5-6: Microwave Assisted, Iron Mediated BINOL Synthesis

¹¹⁹ Jagt, R. B.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Angew. Chem., Int. Ed. **2006**, 45, 2789.

¹²⁰ Pummerer, R.; Prell, E.; Rieche, A. Chem. Ber. 1926, 59, 2159.

¹²¹ Li, S.-J.; Lu, J.; Zhhu, X.; Yang, J.; Lang, J.-P.; Wu, L. Synth. Commun. 2002, 32, 3069.

5.3.2 – Heterocoupling of Electronically Dissimilar 2-Naphthols

Stoichiometric amounts of copper(II) salts mediate the oxidative coupling of electronically dissimilar 2-naphthols.¹²² As in the homocoupling of 2-naphthols, the transition metal is the oxidant, and the reaction is carried out under anaerobic conditions. Ester **1.76** and naphthol **1.77** undergo heterocoupling in the presence of a large excess of a copper(II) salt, affording binaphthyl **1.78** in 86 % yield (Scheme 5-7).^{122a}

Scheme 5-7: Copper(II) Mediated Oxidative Heterocoupling of Electronically Dissimilar 2-Naphthols

Amines have been found to help tune the reactivity of the copper reagent.^{122b} When tbutylamine is employed as a ligand, the reaction requires a smaller excess of the copper(II) oxidant. The coupling of ester **1.76** and naphthol **1.77** is mediated by an excess of copper(II) chloride and t-butylamine, affording binaphthyl **1.78** in 81 % yield (Scheme 5-8).

Scheme 5-8: Amine Assisted Oxidative Heterocoupling of Electronically Dissimilar 2-Naphthols

5.3.3 – Asymmetric Induction

The copper mediated oxidative coupling of 2-naphthols can be performed asymmetrically with the right choice of ligand.¹²³ Moderate to high selectivity can be achieved for both homocoupling and heterocoupling reactions, a representative example of the latter is shown in Scheme 5-9. Ester **1.76** and naphthol **1.77** undergo cross-coupling in the presence of 2

¹²² a) Hovorka, M.; Scigel, R.; Gunterova, J.; Tichy, M.; Zavada, J. *Tetrahedron*, **1992**, *48*, 9503. b) Smrcina, M.; Vyskocil, S.; Maca, B.; Polakova, J.; Claxton, T. A.; Abbot, A. P.; Kocovsky, P. J. Org. Chem. **1994**, *59*, 2156.

¹²³ Smrcina, M.; Polakova, J.; Vyskocil, S.; Kocovsky, P. J. Org. Chem., 1993, 58, 4534.

equivalents of a bis(sparteine)copper(II) complex, affording binaphthyl **1.78** in 45 % yield and 71 % ee.

Scheme 5-9: Asymmetric Heterocoupling of 2-naphthols with a Cu(II)-(-)-Sparteine Complex

Proline substituted naphthyl amide **5.27** undergoes oxidative coupling diastereoselectively (Scheme 5-10).¹²⁴ Amide **5.27** undergoes homocoupling in the presence of a stoichiometric amount of copper(I) chloride under an oxygen atmosphere, affording binaphthyl **5.28** in 50 % yield and 65 % de. The diastereomers are separable on silica gel, allowing for facile resolution of the two enantiomers of BINOL. The proline groups can then be cleaved with aqueous hydrochloric acid.

Scheme 5-10: Diastereoselective Oxidative Coupling of Proline Amide 5-27

¹²⁴ Xin, Z.-Q.; Da, C.-S.; Dong, S.-L.; Liu, D.-X.; Wei, J.; Wang, R. Tetrahedron: Asymmetry 2002, 13, 1937.

5.4 – Mechanism of the Catalytic Oxidative Coupling of 2-Naphthols

5.4.1 – Catalytic Oxidative Coupling of 2-Naphthols

The amine assisted oxidative coupling of 2-naphthols can be made catalytic in copper.¹²⁵ Ester **1.76** undergoes homocoupling in the presence of a catalytic amount of CuCl(OH)-TMEDA under aerobic conditions, affording binaphthyl **5.29** in 98 % yield (Scheme 5-11).

Scheme 5-11: Copper Catalyzed Aerobic Oxidative Coupling of Ester 1-76

5.4.2 – Catalytic Cycle

The mechanism of the oxidative coupling of 2-naphthols is proposed to proceed via a single electron transfer.¹²⁶ The reaction pathway has been explored both computationally and experimentally with both infrared spectroscopy and mass spectrometry. A representative example for the heterocoupling of electronically dissimilar 2-naphthols is shown in Figure 5-4. First the copper(I) precatalyst must be oxidized to copper(II). The copper(II) intermediate represents the catalyst resting state. Each substrate is then bound by one equivalent of copper(II). The homocoupling of ester **1.76** with copper-TMEDA has been shown to pass through a bridged bimetallic intermediate.¹²⁷ While the reaction is proposed to proceed via single electron transfer, the copper(II)-naphthol complex does not behave as a discrete radical.¹²⁶ Each copper atom transfers an electron to the naphthol to which it is bound during the bond forming event. The resulting species is a copper(I) bound ketone tautomer of the binaphthyl coupling product. Tautomerization in solution leads to the coupling product, while reoxidation of the catalyst restarts the catalytic cycle. The catalytic and stoichiometric versions of the oxidative coupling mechanism vary only in that the catalytic variant has the additional step of reoxidation of the catalyst.

¹²⁵ Nakajime, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.-I. J. Org. Chem. 1999, 64, 2264.

¹²⁶ Roithova, J.; Milko, P. J. Am. Chem. Soc. 2010, 132, 281.

¹²⁷ Roithova, J.; Schroder, D. Chem.-Eur. J. 2008, 14, 2180.

radical- addition mechanism ?

Figure 5-4: Mechanism of the Oxidative Coupling of 2-Naphthols

In the case of homocoupling reactions of 2-naphthols, the electron transfer is considered to be simultaneous between the two coupling partners.¹²⁷ For the heterocoupling of electronically dissimilar 2-naphthols, the employment of a Lewis acid has been found to be beneficial (Scheme 5-12).¹²⁸ The benefit of the Lewis acid additive suggests an added subtlety to the heterocoupling mechanism. The electron rich coupling partner donates its electron to the bond forming event before the electron poor coupling partner in a radical addition mechanism. The aerobic oxidative coupling of ester **1.76** and naphthol **1.77** is catalyzed by CuCl(OH)-TMEDA, affording binaphthyl **1.78** in 47 % yield. Addition of 20 mol % of ytterbium(III) triflate, affords coupling product **1.78** in 78 % yield.

¹²⁸ a) Yan, P.; Sugiyama, Y.; Takahashi, Y.; Kinemuchi, H.; Temma, T.; Habaue, S. *Tetrahedron* **2008**, *64*, 4325. b) Habaue, S.; Temma, T.; Sugiyama, Y.; Yan, P. *Tetrahedron Lett.* **2007**, *48*, 8595. c) Temma, T.; Hatano, B.; Habaue, S. *Tetrahedron* **2006**, *62*, 8559.

Scheme 5-12: Effect of Ytterbium(III) Triflate on the Oxidative Heterocoupling of 2-Naphthols

5.4.3 – Non-productive Oxidation Products

The major challenge in the catalytic oxidative coupling of 2-naphthols and especially in the heterocoupling of electronically dissimilar 2-naphthols, is the tendency to form new carbon-oxygen as opposed to new carbon-carbon bonds.¹²⁹ Figure 5-5 illustrates the two competing mechanisms that the activated naphthol can undergo. Electron rich 2-naphthols have a higher tendency to competitively incorporate oxygen. As such, the electron rich coupling partner is generally employed in large excess when heterocoupling of electronically dissimilar 2-naphthols is conducted.

Figure 5-5: Competing Mechanisms in Aerobic Oxidative Coupling

From the asymmetric oxidative coupling of naphthol **1.76** catalyzed by a chiral copper diamine complex, Kozlowski and Stahl isolated C-O coupling products (Figure 5-6).¹³⁰ The chiral copper complex catalyzes the aerobic oxidative coupling of naphthol **1.76**, affording binaphthyl **5.29** in 85 % yield and 93 % ee. Quinone **5.30** and oxidized coupling product **5.31** were both isolated from the reaction mixture. The reaction kinetics show that that reaction has a short induction period during which there is a burst of non-productive oxidation. A small quantity of quinone **5.30** is generated before any C-C coupling products are formed. The authors suggest that the small quatity of quinone **5.30** that is generated may be acting as a ligand for the

¹²⁹ Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137.

¹³⁰ Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 132, 12232.

catalyst. Naphthol **1.77** has been found to degrade to similar oxygen conatining products when subjected to conditions for aerobic oxidative coupling.¹³¹

Figure 5-6: Formation of Undesired C-O Coupling Products

5.5 – Catalytic Asymmetric Oxidative Coupling

5.5.1 – Asymmetric Homocoupling of 2-Naphthols

While many methods exist for the catalytic homocoupling of electron rich 2-naphthols, the best asymmetric methods are vanadium catalyzed (Scheme 5-13).^{103a} Mono vanadium complex **5.33** catalyzes the homocoupling of 2-naphthol **1.77** under aerobic conditions, affording BINOL **5.1** in 82 % yield and 51 % ee.¹³² Bis vanadium complex **5.32** provides much higher enantioselectivity, affording BINOL **5.1** in 95 % yield and 83 % ee. It should be noted that the catalysts are inactive towards 2-naphthols bearing substituents at the 3 position.

¹³¹ Illesinghe, J.; Ebeling, R.; Ferguson, B.; Patel, J.; Campi, E. M.; Jackson, W. R.; Robinson, A. J. *Aust. J. Chem.* **2004**, *57*, 167.

¹³² Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. **2007**, *129*, 13927.

Scheme 5-13: Catalytic Asymmetric Oxidative Coupling of Electron Rich 2-Naphthols

In contrast, the most efficient methods for the asymmetric homocoupling of electron poor 2-naphthols are copper catalyzed (Scheme 5-14).¹³³ Proline derivative **5.35** affords good yields and enantioselectivity in the asymmetric homocoupling of ester **1.76**.¹²⁵ When a complex of proline derivative **5.35** and copper(I) is exposed to a naphthol under aerobic conditions, the results depend on the substitution of the naphthol. Unsubstituted 2-naphthol **1.77** affords BINOL **5.1** in 89 % yield and 17 % ee, while 3-substituted naphthol ester **1.76** affords binaphthyl **5.29** in 85 % yield and 78 % ee. Diazadecalin **5.34** affords even higher selectivity while still requiring the substituent at the 3 position to induce chirality.¹³⁴ Naphthol **1.76** affords higher enantioselectivities due to bidentate coordination of the ester in the 3 position, which prevents the substrate from rotating freely when bound to the catalyst.¹²⁹ When unsubstituted 2-naphthol **1.77** is exposed to diazadecalin **5.34** and copper(I) chloride under aerobic conditions, BINOL **5.1** is afforded in 72 % yield and 13 % ee. Naphthol ester **1.76** on the other hand, affords binaphthyl **5.29** in 85 % yield and 91 % ee.

Scheme 5-14: Catalytic Asymmetric Oxidative Coupling of Electron Poor 2-Naphthols

¹³³ Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500.

¹³⁴ Mulrooney, C. A.; Li, X.; DiVirgilio, E. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2003, 125, 6856.

5.5.2 – Asymmetric Heterocoupling of Electronically Dissimilar 2-Naphthols

While there exist high-yielding, highly selective methods for the asymmetric homocoupling of 2-naphthols, comparable methods for the asymmetric heterocoupling of electronically dissimilar 2-naphthols are still under development.¹⁰³ The asymmetric heterocoupling of electronically dissimilar 2-naphthols that is achieved with a stoichiometric amount of copper and sparteine¹²³ can be adapted for catalytic aerobic conditions (Scheme 5-15). ¹³⁵ A bidentate copper complex formed *in-situ* from copper(I) chloride and (-)-sparteine catalyzes the oxidative heterocoupling of ester **1.76** and naphthol **1.77**, affording binaphthyl **1.78** formed is higher than reported and that the ee has been enhanced via partial crystallization. Other chiral ligands such as bisoxazolines afforded higher yields while affording only poor enantioselectivity.

Scheme 5-15: Copper Catalyzed Asymmetric Heterocoupling of 2-Naphthols

¹³⁵ Temma, T.; Habaue, S. *Tetrahedron Lett.* **2006**, *46*, 5655.

The iron-catalyzed asymmetric heterocoupling of electronically dissimilar 2-naphthols shown in Scheme 5-16 represents the state of the art in the field. ¹³⁶ While the ratio of coupling partners **5.36** and **5.37** shown in the example is 1:1, most of the examples require an excess of the electron rich coupling partner due to its tendency to rapidly degrade to undesired oxygen containing products. It should also be noted that the electron rich coupling partner is added slowly via syringe pump in order to slow formation of undesired oxygen containing products. Chiral iron catalyst **5.41** catalyzes the heterocoupling of naphthols **5.36** and **5.37** in moderate yield and excellent enantioselectivity, affording binaphthyl **5.38** in 47 % yield and 93 % ee in a 4:1:1 ratio with the homocoupling products **5.39** and **5.40**.

Scheme 5-16: Iron Catalyzed Asymmetric Heterocoupling of 2-Naphthols

¹³⁶ Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633.

Chapter 6 – Towards the Enantioselective Oxidative Coupling of 2-Naphthols

6.1 – Preface and Preliminary Experiments

The preceding chapter showed the high yields and enantioselectivities afforded by chiral copper catalysts in the asymmetric homocoupling of electron deficient 2-naphthols. Since copper NHC complexes have been shown to be active catalysts for the oxidative coupling of 2-naphthols,⁶⁶ the new chiral C₁-symmetric copper NHC complexes synthesized in chapter 4 were tested as catalysts for the asymmetric oxidative homocoupling of electron deficient 2-naphthols. Figure 6-1a shows the interaction between naphthol **1.76** and a copper diazadecalin catalyst proposed by Kozlowski.¹²⁹ The coordination geometry of the copper is tetrahedral. While the copper centre is formally copper(II) the intermediate is considered to behave as a radical bound to copper(I). Figure 6-1b shows the potential interaction between chiral copper catalyst **4.1** and naphthol **1.76**, with the methyl group of the *ortho*-tolyl substituent helping to orient the substrate. Since copper NHC catalyzed oxidative coupling of 2-naphthols requires silver nitrate as an additive,⁶⁶ the proposed intermediate is cationic. The coordination geometry of the copper atom is tetrahedral with the fourth coordination site being occupied by solvent, although the proximity of the coordination site to the aryl group of the biaryl methyne increases the chances of a 3-coordinate intermediate.

Figure 6-1: Potential Interaction of Naphthol 1.76 with Copper Catalyst 4.1

The ill-defined bis NHC copper complex **1.79**, introduced in Scheme 1-20, not only catalyzes the heterocoupling of electronically dissimilar 2-naphthols, but also the homocoupling of electron poor 2-naphthols.⁶⁶ When 10 mol % of complex **1.79** is employed to catalyze the homocoupling of naphthol **1.76**, binaphthyl **5.29** is afforded in 89 % yield (Scheme 6-1).

Scheme 6-1: Homocoupling of Naphthol 1-76 with an Ill-defined Cu(NHC) Catalyst 1.79

Since catalyst **1.79** is ill-defined and has problematic solubility properties, it was decided to test the reaction with a well-defined and homogenous mono copper NHC complex. To that end, Cu(SIMes)Br (**1.18**) was employed as a catalyst. Catalyst **1.18** was found to be much less reactive than catalyst **1.79** in the oxidative homocoupling of naphthol **1.76**, the reaction required heating, affording binaphthyl **5.29** in 50 % yield (Scheme 6-2).

Scheme 6-2: Homocoupling of Naphthol 1.76 with a Mono NHC Copper Catalyst

6.2 – Optimization of the Reaction Conditions

For the oxidative coupling of 2-naphthols catalyzed by chiral copper NHC complexes, the enhanced reactivity of methyl substituted C₁-symmetric NHCs was of prime interest. As such, several catalysts of varying steric bulk were tested (Figure 6-2). Methyl-substituted catalyst **4.1** is the least sterically demanding of the group. Naphthyl catalyst **4.2b** provides the second least encumbered environment, as it still bears one methyl group. Benzyl-substituted catalyst **4.3** is slightly larger still. Catalysts **3.3** and **4.4** being C₂-symmetric are the bulkiest, **4.4** being the most encumbered due to the influence of the bulky t-butyl substituents on the imidazolidinylidene backbone.

Figure 6-2: Catalysts Used for Optimization

The catalysts shown in Figure 6-2 were tested in the oxidative homocoupling of ester **1.76**; the results of the catalyst screen are summarized in Table 6-1. Methyl substituted catalyst **4.1** provided the best yield in the oxidative coupling of naphthol **1.76**, affording binaphthyl **5.29** in 76 % yield, while affording <5 % ee. Benzyl substituted catalyst **4.3** afforded coupling product **5.29** in a significantly lower yield of 22 % with no change in selectivity. C₂-symmetric catalyst **3.3** also afforded coupling product **5.29** in 22 % yield without any enantioninduction. Catalyst **4.4**, bearing *t*-butyl groups on the imidazolidinylidene backbone, provided the lowest yield, affording coupling product **5.29** in 14 % yield as a racemic mixture. Methyl substituted catalyst **4.2b**, being bulkier than catalyst **4.1**, afforded slightly lower yield, affording coupling product **5.29** in 31 % yield as a racemic mixture. It should be noted that lowering the reaction temperature did not induce any enantioselectivity in the product. The results show that copper catalysts bearing methyl substituted ligands afford higher yields in the oxidative homocoupling of naphthol **1.76** than catalysts bearing more sterically encumbered ligands.

Table 6-1: Catalyst Screen

a) Yields following column chromatography.b) Isolated products were racemic.c) Reaction was performed in THF.

In order to improve the yield of the oxidative coupling of naphthol **1.76** catalyzed by complex **4.1**, several silver(I) additives were screened (Table 6-2). Silver is necessary for the reaction to proceed, when no silver salt is added to the reaction (entry 1), only trace amounts of coupling product **5.29** are formed. Silver nitrate (entry 2) affords coupling product **5.29** in 76 % yield. Silver chloride (entry 3) affords coupling product **5.29** in 73 % yield. Silver carbonate (entry 4) affords coupling product **5.29** in 64 % yield. Weakly coordinating silver triflate and non-coordinating silver hexafluoroantimonate (entries 5 and 6) surprisingly afford coupling product **5.29** in 13 % and 14 % yield respectively. Silver oxide (entry 7) affords coupling product **5.29** in 52 % yield. It should be noted that all of the coupling products isolated during the silver screen were isolated as racemic mixtures.

Table 6-2: Optimization of the Silver Source

a) Yields following column chromatography. b) Isolated products were racemic.

While silver nitrate remained the best silver source, solvent effects were also investigated. Several solvents were chosen, both for polarity and potential π stacking effects. The benchmark for the optimization in methanol affords binaphthyl **5.29** in 76 % yield. Performing the oxidative coupling of naphthol **1.76** in benzene was intended to induce potential π - π interactions. While several of the starting materials including the silver additive and oxone oxidant displayed diminished solubility in benzene, coupling product **5.29** was still isolated in 74 % yield, albeit still as a racemic mixture. Although more polar than benzene, THF afforded binaphthyl **5.29** in 48 % yield. The copper NHC catalyzed oxidative coupling of 2-napthols produces trace amounts of an unidentified yellow side-product. When the oxidative coupling of naphthol **1.76** catalyzed by complex **4.1** is performed in acetone, the only product isolated is an unidentified bright yellow compound.

Table 6-3: Optimization of the Solvent

a) Yields following column chromatography.b) Isolated products were racemic.c) The isolated compound is not the desired product.

Isolation of the undesired yellow side-product followed by ¹H NMR analysis strongly suggested substitution of naphthol **1.76** at the 1 position as in coupling product **5.29**. Large needle-like crystals of the compound were grown by slow evaporation of an acetone solution. X-ray crystallographic analysis of the crystals showed the presence of a nitro group at the 1 position, identifying the product as naphthol **6.1** (Figure 6-3). The identity of naphthol **6.1** was confirmed by HRMS. The nitration of naphthol **1.76** is likely due to the formation of a nitro nitronium ion when silver nitrate and strongly acidic oxone are heated together.

Figure 6-3: X-Ray Structure of Naphthyl Impurity 6.1

6.3 – Altering the Steric Bulk of Substrates for the Homocoupling of 2-Naphthols

Bulky C₂-symmetric catalysts **3.3** and **4.4** afforded poor yields of binaphthyl **5.29** compared to less-hindered methyl-substituted C₁-symmetric catalysts **4.1** and **4.2b** without affording any enantioselectivity. As such, further investigations were continued with methyl substituted catalyst **4.1** which afforded the highest yields. Several substrates of varying steric bulk were investigated in order to determine if increasing the bulk of the substrate might lead to enantioinduction in the coupling product. Since the proposed mechanism shows a chelate between the ester substrate and copper,¹²⁶ several groups were attached to the ester in order to vary the steric bulk in close proximity to the metal centre.

6.3.1 – Synthesis of Substrates

Methyl ester **1.76** has been previously reported in the literature.¹³⁷ Ester **1.76** is prepared via Fischer esterification of carboxylic acid **6.2** (Scheme 6-3). When acid **6.2** is refluxed overnight in methanol with a catalytic amount of sulphuric acid, ester **1.76** is afforded in 98 % yield; the isopropyl ester **6.3** is synthesized in an analogous method, when acid **6.2** is refluxed in 2-propanol with a catalytic amount of sulphuric acid, ester **6.3** is afforded in 80 % yield.

Scheme 6-3: Fischer Esterification of 3-Hydroxy-2-naphthoic Acid

Phenyl ester 6.4 was synthesized in order to provide more steric bulk, but also an aromatic surface for potential π stacking. Phenyl ester 6.4 is not synthesized by Fischer esterification.¹³⁸ When carboxylic acid 6.2 and phenol are heated with phosphorous oxychloride, phenyl ester 6.4 is generated in 33 % yield (Scheme 6-4).

¹³⁷ AlHujran, T. A.; Dawe, L. N.; Collins, J.; Georghiou, P. E. J. Org. Chem. **2011**, *76*, 971.

¹³⁸ Strohbach, E. Chem. Ber. 1901, 34, 4146.

Scheme 6-4: Synthesis of Naphthol Ester 6.4

Benzyl esters 6.5, 6.6, and 6.7 were also synthesized in an attempt to exploit potential π - π interactions. The different electronic character between the perfluoro and methoxy substituted phenyl groups is intended to probe any potential π interactions. The synthesis of benzyl ester 6.5 was reported previously.¹³³ Deprotonation of carboxylic acid 6.2 with potassium carbonate is followed by addition of benzyl bromide, affording benzyl ester 6.5 in 95 % yield. Perfluorophenyl 6.6 and para-methoxy 6.7 can be synthesized using the same method, affording ester 6.6 and ester 6.7 in 72 and 37 % yield respectively.

Scheme 6-5: Synthesis of Benzylic Naphthol Esters

6.3.2 – Coupling Results

The synthesized naphthol esters were submitted to the oxidative coupling conditions of heating in methanol with catalyst **4.1**, silver nitrate and oxone (Table 6-4). The benchmark of the methyl ester affords coupling product **5.29** in 76 % yield (entry 1). Ester **6.3** undergoes homocoupling under the optimized conditions, affording binaphthyl **6.8** in 32 % yield (entry 2). Oxidative coupling of benzyl ester **6.5** affords binaphthyl **6.9** in 50 % yield (entry 3). Perflourophenyl substituted **6.6** is considerably less reactive, affording binaphthyl **6.10** in only 13 % yield (entry 4). Para-methoxy substituted ester **6.7** also displays diminished reactivity compared to ester **1.76**, affording binaphthyl **6.11** in 17 % yield. Phenyl ester **6.4**, which is sterically very similar to isopropyl ester **6.3** affords binaphthyl **6.12** in 31 % yield. It should be noted that all of the coupling products were isolated as racemic mixtures.

a) Yields following column chromatography. b) Products were racemic.

6.4 – Additive Effects in the Oxidative Coupling of 2-Naphthols

6.4.1 – Additive Concept

The oxidative coupling of 2-naphthols has been shown to produce undesired C-O coupling products before C-C bond formation occurs.¹³⁰ The reaction has a short induction period before productive coupling begins, during which oxygen containing products such as quinone **5.30** are produced. The formation of undesired C-O coupling products is discussed in further detail in section 5.4.3. Since the quinone product **5.30** is suggested to act as ligand for the copper catalyst, it was decided to employ a small molecule additive in an attempt to mimic its effect.

Figure 6-4: Resemblance of an Quinone 5.30 to a Small Molecule Additive

Figure 6-4a shows the similarity between quinone **5.30** and a common commercially available small molecule diethylmalonate (DEM) **6.13**. Figure 6-4b shows the potential interaction between catalyst **4.1** and DEM. Shown is an equilibrium between the catalyst resting state, which would be stabilized by the presence of DEM, and an intermediate where naphthol **1.76** is bound to the catalyst in a bidentate fashion. By occupying the fourth coordination site, DEM would make a better defined active species. Figure 6-4c shows the potential interaction between a monodentate pyridine additive and the catalyst with the substrate bound. The preferential conformation adopted by the pyridine ligand would force naphthol **1.76** to adopt a more rigid conformation and potentially induce enantioselectivity.

6.4.2 – Additive Screen

Due to its structural similarity to the overoxidation products which are proposed to modify the reactivity of copper catalysts in the oxidative coupling of ester **1.76**, DEM **6.13** was the model additive tested in the oxidative coupling of ester **1.76**. Since the additive is expected to act as a ligand for the catalyst, it modifies the active catalytic species. As such, the solvent was re-optimized in the presence of the additive (Table 6-5). In the presence of 50 mol % of DEM, the oxidative coupling of ester **1.76** in methanol affords binaphthyl **5.29** in 67 % yield. While the yield of coupling product **5.29** is somewhat lower than the reaction preformed without additive, more of ester **1.76** was recovered and fewer impurities were visible by TLC. Employing DEM as an additive in benzene did not result in a large impact on the reactivity, affording binaphthyl **5.29** in 91 % yield. It should be noted that when the reaction is performed in THF without the additive, that binaphthyl **5.29** is afforded in lower 48 % yield.

Table 6-5: Effect of Solvent on Additive Effectiveness

a) Yields following column chromatography. b) Isolated products were racemic.

c) Suppression of impurities was observed. d) Performed without additive.

With DEM showing an impact on the reactivity of catalyst 4.1 in THF, several other small molecule additives were assayed for effects on both reactivity and enantioselectivity (Table 6-6). In an attempt to influence the enantioselectivity of the reaction, several pyridine containing additives were surveyed as well as methyl salicylate, which is structurally similar to quinone 5.30. Employing 50 mol % of pyridine 6.14 as an additive was found to completely shut the reaction down, resulting in no coupling product being formed and near quantitative recovery of the starting material. DMAP 6.15 formed an almost as unreactive system, forming only trace amounts of coupling product 5.29 with negligible enantioselectivity. Additive 4-cyanopyridine 6.16 provided the first observed enantioselectivity, affording binaphthyl 5.29 in 10 % yield and 15 % ee. Additive 2-cyanopyridine 6.17, afforded coupling product 5.29 in 31 % yield with negligible ee. Methyl 2-picolinate 6.18 afforded binaphthyl 5.29 in 22 % yield and 10 % ee. Additive 2-phenylpyrdine 6.19 afforded coupling product 5.29 in 72 % yield as a racemic mixture. Additive 2-picoline 6.20 on the other hand, afforded coupling product 5.29 in 21 % vield and 41 % ee. Additive 2,6-lutidine 6.21 afforded binaphthyl 5.29 in 63 % yield and 24 % ee. Bidentate additive 1,10-phenanthroline 6.22 afforded only trace amounts of coupling product 5-29 and no measurable enantioselectivity. Additive 2,2'-bipyridine 6.23 afforded binaphthyl 5.29 in 14 % yield and 12 % ee. Additive quinoline 6.24 afforded coupling product 5.29 in 12 % vield and 9 % ee. Methyl salicylate 6.25 afforded coupling product 5.29 in 31 % yield and 12 % ee. DEM 6.13 afforded the highest yield of 91 % without affording any ee. Without any additive the reaction affords binaphthyl 5.29 in 48 % yield. While 2-picoline 6.14 was able to afford binaphthyl 5.29 in low yield and moderate enantioselectivity, diethyl malonate affords the coupling product in high yield. In the testing, DEM 6.13 showed a clear ability to suppress the formation of highly coloured over-oxidation products in the homocoupling of ester 1.76.

Table 6-6: Additive Effects in the Homocoupling of 2-Naphthols

a) Yields following column chromatography. b) Ee measurements were made by HPLC with a chiralpak AD-H column.

6.5 – Application of Chiral Catalysts towards the Heterocoupling of Electronically Dissimilar 2-Naphthols

Based on the success of DEM **6.13** at suppressing the formation of undesired C-O coupling products in the oxidative coupling of naphthol **1.76**, the additive was applied towards the oxidative coupling of electronically dissimilar 2-naphthols (Table 6-7). Naphthol **1.77** is more prone to the formation of undesired oxidation products than naphthol **1.76**.¹³⁰ When 2 equivalents of **1.77** and 1 equivalent of **1.76** are heated with catalyst **4.1**, silver nitrate and oxone in THF, binaphthyl **1.78** is afforded in 50 % yield. When 50 mol % of DEM is employed as an additive, binaphthyl **1.78** is afforded in 79 % yield. Additive 2-picoline **6.20** affords binaphthyl **1.78** in 51 % yield. Additive 2,6-luitidine **6.21** affords coupling product **1.78** in 63 % yield. It should be noted that all of the coupling products were isolated as racemic mixtures, unlike the homocoupling reaction which afforded binaphthyl **1.78** in 41 % ee with the 2-picoline additive.

a) Yields following column chromatography. b) Products were racemic.

In the copper NHC catalyzed oxidative coupling of 2-naphthols, two important concepts were proven. Firstly, the augmented reactivity of methyl-substituted C_1 -symmetric NHCs over C_2 -symmetric NHCs in the copper catalyzed oxidative coupling of electron poor 2-naphthols was demonstrated. Catalysts **4.1** and **4.2b** bearing methyl-substituted NHCs provided higher yields than catalysts bearing more sterically demanding NHCs such as C_2 -symmetric catalyst **3.3**. Secondly, the introduction of a small molecule additive was shown to modulate the reactivity of copper catalysts in the oxidative coupling of 2-naphthols. Additive 2-picoline **6.20** was found to induce enantioselectivity in the oxidative homocoupling of ester **1.76** affording binaphthyl **5.29** in 21 % yield and 41 % ee. Additive DEM **6.13** was found to suppress the formation of undesired oxidation products both in the oxidative homocoupling of ester **1.76** and in the oxidative heterocoupling of electronically dissimilar 2-naphthols.

Chapter 7 – Additive Effects in the Oxidative Heterocoupling of 2-Naphthols

In the preceding chapter, the use of a small molecule additive, diethylmalonate (DEM) was found to suppress the formation of undesired C-O coupling products in the oxidative heterocoupling of naphthol ester **1.76** and naphthol **1.77**. Recent advances in the oxidative heterocoupling of electronically dissimilar 2-naphthols have focused on improving the enantioselectivity of the reaction.¹³⁶ While the chiral copper NHC complexes did not provide high enantioselectivity for the oxidative coupling of 2-naphthols, the combination of a copper NHC catalyst and a small molecule additive could be used to improve the chemoselectivity of the reaction.

In the heterocoupling of electronically dissimilar 2-naphthols, the electron rich coupling partner reacts much faster than the electron poor coupling partner.¹²⁶ As such, homocoupling and degradation products of the electron rich coupling partner are often observed.¹²⁹ The principal goal of the project is to improve the chemoselectivity of the coupling reaction so that the electron rich coupling partner does not have to be used in large excess. Additionally, slow addition techniques, which can be employed to prevent premature degradation of the substrate, will not be used. Finally, a "greener alternative" to the harsh oxidant oxone will be evaluated.

Scheme 7-1: Preliminary Experiment

In a preliminary experiment, the achiral copper complex Cu(SIMes)Br (1.18) was tested for activity in the oxidative heterocoupling of ester 1.76 and naphthol 1.77; the reaction was performed in THF, since the effects of the additives were found to be much more pronounced in that solvent. With 20 mol % of silver(I) nitrate and a slight excess of oxone, copper complex **1.18** catalyzes the heterocoupling of naphthol **1.76** and 2 equivalents of naphthol **1.77**, affording binaphthyl **1.78** in 67 % yield (Scheme 7-1).

7.1 – Optimization of the Reaction Conditions

Since achiral copper complex **1.18** was found to catalyze the oxidative coupling between naphthol ester **1.76** and naphthol **1.77**, a selection of common mono-NHC copper catalysts were surveyed in the reaction (Figure 7-1). The catalysts were chosen to evaluate steric differences between the mesityl and di-isopropylphenyl aryl groups, as well as electronic differences between saturated and unsaturated ligands. Since the lability of the counterion of the copper atom can have a large impact on the reactivity,⁷⁹ both chloro and bromo complexes were tested for activity.

Figure 7-1: Copper Catalysts Used for Optimization

Initial experiments with oxone as the oxidant (Table 7-1) showed that catalyst **1.18** (entry 1) afforded a slightly higher yield than catalyst **1.30** (entry 2), affording binaphthyl **1.78** in 67 % and 63 % yield respectively. If one equivalent of naphthol **1.77** is used in the coupling reaction with catalyst **1.18** and oxone as the oxidant, the reaction affords only 8 % yield of binaphthyl **1.78** (entry 3). It should be noted that no homocoupling products were observed in the reaction mixture. Changing oxidant from oxone to oxygen gas with catalyst **1.18** and an excess of naphthol **1.77**, afforded binaphthyl **1.78** in 77 % yield (entry 4). Adding 50 mol % of diethyl malonate (DEM) afforded nearly quantitative amounts of binaphthyl **1.78** (entry 5). Catalyst **1.62** bearing a less labile chlorine atom, was much less reactive than catalyst **1.18** (entry 5), affording binaphthyl **1.78** in 64 % yield (entry 6). The unsaturated IMesCuCl (**7.2**, entry 7) and IPrCuCl (**7.1**, entry 8) catalysts both showed levels of reactivity comparable to catalyst **1.18** (entry 5), both affording near quantitative yields of binaphthyl **1.78**. It was decided to remain

with complex **1.18** as the optimal catalyst due to the simplicity of its synthesis.³² With catalyst **1.18** and the diethylmalonate additive, it was possible to decrease the amount of naphthol **1.77** to one equivalent and still obtain binaphthyl **1.78** in 69 % yield (entry 9). When the loading of the diethylmalonate additive was decreased to 10 mol % (entry 10), the yield of binaphthyl **1.78** further improved to 79 %.

Table 7-1: Optimization of the Reaction Conditions

DEM: Diethylmalonate. a) Oxone (1.1 eq.), oxygen (1 atm.). b) Yields following column chromatography. c) 1 eq. AgNO₃.

7.2 – Additive Screen

Having shown that the use of an additive increased the yield of the oxidative heterocoupling of ester **1.76** and naphthol **1.77**, the effect of additive structure on the reaction was investigated. In addition to diethylmalonate (**6.13**), 3 additives based on the 1,3-dicarbonyl scaffold were tested. Diphenylmalonate **7.3** provides a variation of steric bulk. Additive **7.4** and additive **7.5** with one and two ketones respectively were chosen to investigate the effect of the electronic character of the 1,3-dicarbonyl scaffold on the oxidative coupling reaction.

Table 7-2: Optimization of Additive Structure

a) Yields following column chromatography.

The additives were tested in the oxidative heterocoupling of naphthol **1.76** and naphthol **1.77**. The coupling partners were used in equimolar quantities with catalytic amounts of complex **1.18**, silver(I) nitrate and additive. The results of the additive screen are summarized in Table 7-2. Diphenylmalonate **7.3** was found to provide identical results to diethylmalonate **6.13**, both affording binaphthyl **1.78** in 79 % yield. Employing acetylacetate **7.4** afforded binaphthyl **1.78** in 69 % yield. Acetylacetone **7.5**, when employed as an additive leads to only 14 % of binaphthyl **1.78**. Due to its commercial availability, diethylmalonate **6.13** was retained as the optimal additive.

7.3 – Role of the Additive

With the additive providing a significant increase in the yield of the oxidative heterocoupling of ester **1.76** and naphthol **1.77**, it was left to determine the role of the additive in the reaction. Since the additive was proposed to act as a ligand for the copper catalyst,¹³⁹ the effect of the additive loading on the yield of the oxidative coupling reaction was investigated. If the additive is acting as a ligand for the catalyst, the reaction yield will plateau.

¹³⁹ For more details see section 5.4.3

Figure 7-2: Effect of Additive Loading on the Yield of Binaphthyl 1.78

The graph in Figure 7-2 shows the effect of the additive loading on the yield of the oxidative heterocoupling of ester **1.76** and naphthol **1.77**. The graph shows that the oxidative coupling requires only a catalytic amount of malonate **6.13** in order to achieve maximum yield, with a plateau at 10 mol %. That only 10 mol % of additive is necessary suggests that the additive is acting as a ligand for the metal, and that only one equivalent of malonate binds to the catalyst. Furthermore, there is no inhibition of the catalyst at high loadings of DEM.

While the additive has been shown to improve isolated yield of binaphthyl **1.78**, the observed effect could still be due to inhibition of the decomposition of coupling product **1.78**. To that end, the effect of the additive on the recovery of binaphthyl **1.78** when resubmitted to the optimized oxidative coupling conditions was investigated. Figure 7-3 shows the effect of additive loading on the stability of binaphthyl **1.78** to the oxidative coupling conditions. No significant difference is observed in the amount of binaphthyl **1.78** recovered, even at high loadings of DEM **6-13**. The results together suggest strongly that the additive is acting as a

ligand that modulates the reactivity of the copper catalyst, promoting C-C bond formation over C-O bond formation.

Figure 7-3: Stability of Binaphthyl 1.78 to the Oxidative Coupling Conditions in the Presence of the Additive

7.4 – Substrate Scope

7.4.1 – Synthesis of Substrates

With optimized conditions for the additive assisted heterocoupling of electronically dissimilar 2-naphthols in hand, attention was turned towards the scope of the reaction. Substrates were selected in order to evaluate steric bulk as well as electronic effects (Figure 7-4). Naphthol 1.77 as well as substituted naphthols 7.6 - 7.9 and aminonaphthalene 7.10 were targeted as electron rich coupling partners. Ester 1.76 as well as naphthols 7.12 - 7.20 were targeted as electron deficient coupling partners. The synthesis of ester 1.76 was shown in the
preceding chapter. Naphthols **1.77**, **7.6** and **7.7** are commercially available, the syntheses of the remaining compounds follow.

Figure 7-4: Glossary of Substrates for the Oxidative Heterocoupling Reaction

Naphthol **7.8** bearing a pendant alcohol is synthesized by reduction of ester **1.76**. When ester **1.76** is heated with an excess of LAH overnight, alcohol **7.6** is isolated in 68 % yield.

Scheme 7-2: Synthesis of Substrate Bearing Pendant Alcohol

Phenanthrol **7.9** is synthesized from phenanthroline in 2 steps.¹⁴⁰ First phenanthrene **7.21** is sulfonated, followed by separation of the regioisomers. The 3-phenanthryl sulfonate is then submitted to fusion conditions in liquid potassium hydroxide, affording 3-phenanthrol **7.9** in 19 % yield over the 2 steps.

Scheme 7-3: Synthesis of 3-Phenanthrol 7.9

Ester 7.12 bearing a *t*-butyl substituent is synthesized from ester 1.76 via Friedel-Crafts alkylation (Scheme 7-4).¹³⁷ Ester 1.76 is alkylated with a large excess of *t*-butyl chloride and aluminum chloride in dichloromethane, affording *t*-butyl substituted naphthol 7.12 in 86 % yield.

Scheme 7-4: Synthesis of t-Butyl Substituted Naphthol 7.12

Menthol ester **7.13** was synthesized via Mitsunobu reaction following a previously reported procedure (Scheme 7-5).⁶⁶ Carboxylic acid **6.2** and menthol **7.22** are treated with triphenylphosphine and di-isopropylcarbodiimide, affording menthol ester **7.13** in 17 % yield following column chromatography.

Scheme 7-5: Synthesis of Menthol Ester 7.13

¹⁴⁰ Suzumura, H. Bull. Chem. Soc. Jpn. **1961**, 34, 1822.

Phosphonate 7.14 is synthesized by what is formally a Fries rearrangement (Scheme 7-6).¹²⁹ First 2-napthol 1.77 is refluxed with POCl₃ and cesium carbonate, followed by quenching with methanol to form phosphonate 7.23 in 33 % yield. The rearrangement is performed by directed ortho metalation of the ring with *in-situ* generated LDA. If the LDA is poorly formed and the *n*-BuLi performs the metalation, the phosphonate will migrate to the 1 position. Metalation at the 3 position provides the rearranged product 7-14 in 50 % yield.

Scheme 7-6: Synthesis of the Phosphonate Ester 7.14

Nitronaphthol **7.15** is synthesized in 5 steps from tetrahydronaphthol **7.24** (Scheme 7-7).¹⁴¹ Tetrahydronaphthol **7.24** is nitrated with nitric acid in acetic acid for 5 h, followed by acetylation with acetyl chloride, affording nitro compound **7.25** in 17 % yield over the 2 steps. Intermediate **7.25** is then subjected to radical bromination with NBS and a catalytic amount of benzoyl peroxide as an initiator. The product is carried forward to elimination with potassium acetate, followed by cleavage of the acetate with HCl in refluxing ethanol. The overall yield for the 3 steps is 56 % of nitronaphthol **7.15**.

Scheme 7-7: Synthesis of Nitro Precursor

The synthesis of bromide **7.16** has been described previously (Scheme 7-8).¹⁴² Directed ortho metalation of methoxynaphthalene **7.26** by *n*-BuLi, followed by quenching with a brominating agent leads to methoxynaphthalene **7.27**. When NBS or bromine is employed as a bromine source, only poor yields are obtained. Dibromoethane on the other hand, affords

¹⁴¹ Woodcock, D.; Clifford, D. R. J. Chem. Soc. 1957, 4139.

¹⁴² Biehl, E. R.; Deshmukh, A. R.; Dutt, M. Synthesis 1993, 885.

bromonaphthalene 7.27 in 63 % yield. Methoxynaphthalene 7.27 is de-methylated using boron tribromide, affording naphthol 7.16 in 60 % yield.

Scheme 7-8: Synthesis of 3-Bromo-2-naphthol 7-16

Due to the prevalence of aryl boronic acids in palladium cross-coupling, boronic acid **7.17** was synthesized (Scheme 7-9).¹⁴³ Boronic acid **7.17** is prepared in a similar fashion to bromide **7.16**.¹⁴⁴ Directed ortho metalation of naphthalene **7.26** is followed by quenching with a trialkyl borate. Quenching with trimethylborate did not lead to isolation of the desired product. However, quenching with tri-isopropyl borate affords boronic acid **7.28** in 43 % yield following acid workup. Methoxynaphthalene **7.28** is de-methylated with boron tribromide, affording boronic acid **7.17** in 80 % yield.

Scheme 7-9: Synthesis of 2-Naphthol-3-boronic Acid 7.17

Pinacol esters are also common substrates in palladium cross-coupling chemistry.¹⁴⁵ Pinacol ester **7.18** was synthesized in 38 % yield by stirring boronic acid **7.17** in ether at room temperature with a slight excess of pinacol under dehydrating conditions (Scheme 7-10).

Scheme 7-10: Synthesis of Borate Esters 7-18

¹⁴³ Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457.

¹⁴⁴ Routier, S.; Peixoto, P.; Merour, J. Y.; Coudert, G.; Dias, N.; Bailly, C.; Pierre, A.; Leonce, S.; Caignard, D. H. J. *Med. Chem.* **2005**, *48*, 1401.

¹⁴⁵ Kotha, S.; Lahiri, K.; Kashinath, D. *Tetrahedron* **2002**, *58*, 9633.

Amide 7.19 was synthesized from the transiently generated acyl halide of carboxylic acid 6.2 following a previously reported procedure (Scheme 7-11).¹³³ Carboxylic acid 6.2 is refluxed with thionyl chloride until gas evolution ceases. The excess thionyl chloride is then distilled off and the resultant oil is dissolved in dichloromethane. DMAP and then morpholine are added at low temperature, the solution is then allowed to return to room temperature, affording amide 7.19 in 26 % yield.

Scheme 7-11: Synthesis of Amide 7.19

Imine **7.20** is synthesized via condensation of *para*-anisidine with aldehyde **7.29** (Scheme 7-12. Aldehyde **7.29** is prepared by sequential LAH reduction and PCC oxidation of carboxylic acid **6.2**. When aldehyde **7.29** and *para*-anisidine are stirred in ethanol at room temperature, imine **7.20** precipitates out of solution in 76 % yield.

Scheme 7-12: Synthesis of Imine 7.20

7.4.2 – Results of Coupling Reactions

The substrates shown in Figure 7-4 were assayed for reactivity in the additive assisted heterocoupling of electronically dissimilar 2-naphthols. The results are summarized in Tables 7-3 - 7-5. Bromo substituted naphthol 7.6 when used in excess, couples nearly quantitatively with ester 1.76, affording binaphthyl 7.30 in 95 % yield. However, when the loading naphthol 7.6 was decreased to one equivalent, the yield of binaphthyl 7.30 dropped to 58 %. When two equivalents of methoxy naphthol 7.7 are coupled with ester 1-76, a slightly lower yield of 86 % of binaphthyl 7.31 is obtained; however, when 1 equivalent of methoxy naphthol 7.7 is employed, the yield remains quite good, affording naphthalene 7.31 in 76 % yield. The same coupling reactions were performed with *t*-butyl substituted ester 7.12. Coupling of ester 7.12 with naphthol 1.77 afforded binaphthyl 7.32 in 72 % yield with one equivalent of naphthol 1.77 and 86 % yield with 2 equivalents of naphthol 1.77. The number of equivalents of bromide 7.6 again showed a large impact on the yield, affording 82 % of binaphthyl 7.26 with 1.5 equivalents of naphthol 7.6 and 46 % with 1 equivalent. The difference in yield suggests an instability of naphthol 7.6 to the reaction conditions, similar to the instability of 2-naphthol 1.77 without the benefit of the additive. Methoxy naphthalene 7.7 coupled with ester 7.12 in good yields, affording 60 % of coupling product 7.34 with 1 equivalent of the electron-rich coupling partner and near quantitative yield with 2 equivalents. 3-phenanthrol 7.9, a product known to be quite sensitive⁶⁶ still yields 49 % of biaryl 7.35 with only 1.3 equivalents of the electron rich coupling partner. Most surprising was the synthesis of NOBIN derivative 7.36 which was afforded in 67 % yield when employing 1.3 equivalents of 2-aminonaphthalene 7.10 and 47 % yield with 1 equivalent. Pendant alcohol 7.8 was found to have a very negative impact on the reaction yield; even when 2 equivalents of alcohol 7.8 are used, it affords only 14 % of coupling product 7.37. The diminished reactivity is likely due to the formation of a stable chelate between alcohol 7.8 and catalyst 1.18. Menthol derivative 7.13 also afforded lower yields, affording only 31 % of coupling product 7.38 when coupled with 2 equivalents of 2-naphthol 1.77. The chelate with the ester is known to be reactive;¹²⁸ however, the bulk of the menthol is likely the cause of the diminished reactivity.

Table 7-3: Variation of Naphthyl Substituents

a) Yields following column chromatography. b) For 1 mmol scale yield is 77 %. c) 50 mol % additive.

After investigating the effect of substitution patterns the next step was to investigate the effect of variation of the electron withdrawing group (Table 7-4). Phosphonate **7.14** coupled successfully with one equivalent of 2-naphthol **1.77**, affording coupling product **7.39** in 77 %

yield. The bromo and methoxy derivatives could also be synthesized, affording binaphthyl **7.40** and binaphthyl **7.41** in 50 % and 62 % yield respectively. Nitronaphthol **7.15** coupled with 1 equivalent of naphthol **1.77**, affording binaphthyl **7.42** in 71 % yield. Bromide **7.16** reacted surprisingly well, considering that the bromo substituent is only inductively withdrawing, affording coupling product **7.43** in 61 % yield when 1.3 equivalents of 2-naphthol **1.77** were employed.

a) Yields following column chromatography. b) For 1 mmol scale yield is 66 %. c) 50 mol % additive. d) 1.3 eq. 2-naphthol.

Some of the derivatives synthesized did not generate coupling products when submitted to the optimized reaction conditions (Table 7-5). Boronic acid derivatives (entries 1-2) failed to provide coupling products of the boron containing compounds, even with an excess of 2-naphthol **1.77**. Amide substrate **7.19** was found to decompose in the reaction conditions as

opposed to forming any recognizable coupling products. Imine **7.20** also failed to generate coupling products under the reaction conditions. New products were formed; unfortunately none of them corresponded to the desired oxidative coupling product.

Table 7-5: Ineffective Electron-Withdrawing Groups

The effectiveness of copper NHC complexes as catalysts for the oxidative coupling of 2naphthols has been demonstrated.^{66,146} In addition, the use of a small molecule additive diethylmalonate, has been shown to improve the chemoselectivity of the cross-coupling reaction, allowing the electron-rich coupling partner to be employed in stoichiometric quantities while still providing synthetically relevant yields of the C₁-symmetric BINOL products.¹⁴⁵ The purification of the binaphthyl products has been simplified by the suppression of the formation of C-O coupling products. The reaction is performed with the environmentally benign oxidant, molecular oxygen, and does not require slow addition of the electron rich coupling partner to achieve the reported yields.

¹⁴⁶ Holtz-Mulholland, M.; De Léséleuc, M.; Collins, S. K. Chem. Commun. 2013, 49, 1835.

8 - Conclusions and Perspectives

A new protocol for the synthesis of chiral C_1 -symmetric, dialkyl substituted NHC precursors was developed (Scheme 8-1). The protocol is modular and efficient, derived from sequential alkylations of chiral imidazoline **3.17**. A series of biaryl methynes of varying steric bulk were installed by heating imidazoline **3.17** with the corresponding alkyl halide, affording mono-alkylated chiral imidazolines in 40 - 68 % yield. The newly generated chiral imidazolines were then alkylated to generate chiral imidazolinium salts which serve as NHC precursors. Methyl, benzyl and picolyl substituents could be installed, affording chiral imidazolinium salts in 60 - 99 % yield.

Scheme 8-1: Modular Synthesis of Chiral Dialkyl Substituted C1-Symmetric NHC Precursors

The new NHC precursors were submitted to conditions for the formation of transition metal NHC complexes. Four new chiral copper complexes **4.1**, **4.2b**, **4.3** and **4.4** and a new chiral gold complex **4.5** were synthesized (Figure 8-1). Crystal structures of copper complexes **4.1** and **4.2b** as well as gold complex **4.5** were obtained.

Figure 8-1: New Chiral Transition Metal NHC Complexes

The new chiral copper complexes were tested in the oxidative homocoupling of naphthol **1.76**. Catalysts bearing methyl-substituted C₁-symmetric NHCs were found to provide higher yields than their bulkier C₂-symmetric counterparts, without showing any change in selectivity (Scheme 8-2). Catalyst **4.1** affords binaphthyl **5.29** in 76 % yield while catalyst **4.4** affords binaphthyl **5.29** in 17 % yield. The use of a small molecule additive was found to modulate the catalyst reactivity. When the oxidative coupling of naphthol **1.76** catalyzed by complex **4.1** was carried out in the presence of 2-picoline, binaphthyl **5.29** was afforded in 21 % yield and 41 % ee. When diethyl malonate was employed as an additive, binaphthyl **5.29** was afforded in 91 % yield and a suppression of impurities was observed.

Scheme 8-2: Copper NHC Catalyzed Oxidative Coupling of Naphthol 1.76

The malonate additive was applied to the symmetric oxidative heterocoupling of electronically dissimilar 2-naphthols (Scheme 8-3). The additive was able to improve the chemoselectivity so that the coupling partners can now be used in equimolar quantities. A series of C₁-symmetric BINOLs and one NOBIN derivative were synthesized following the general protocol in 35 - 98 % yield.

Scheme 8-3: Additive Assisted Oxidative Heterocoupling of 2-Naphthols

Future work may include the characterization of palladium complex **4.6** (Scheme 8-4). The complex could be tested as a catalyst for asymmetric transformations such as allylic alkylation and biaryl synthesis via Suzuki coupling.

Scheme 8-4: Ongoing Work Towards a New Chiral Palladium Complex

The copper and gold complexes could also find new uses in catalytic asymmetric transformations. Sterically unencumbered C₁-symmetric NHCs allow for the construction of sterically hindered products such as quaternary stereocenters via reactions such as conjugate addition, allylic substitution and potentially hydroamination in the case of the gold complex. Scheme 5 shows a preliminary result in the desymmetrization of diyne **8.1** via Huisgen 1,3-dipolar cycloaddition catalyzed by complex **4-1**, affording triazole **8.2** in 66 % yield and 5 % ee.¹⁴⁷

Scheme 5: Preliminary Result in the Desymmetrization of Diyne 1

¹⁴⁷ The ee is an average of 2 experiments.

The additive chemistry could be adapted towards a general protocol for the catalytic aerobic synthesis of NOBIN derivatives via oxidative coupling. The additive would slow the degradation and homocoupling of 2-aminonaphthalene (Figure 8-2).

Figure 8-2: General NOBIN Synthesis

9 - Experimental Section

9.1 - General Considerations

All reactions that were carried out under anhydrous conditions were performed under an inert argon or nitrogen atmosphere in glassware that had previously been dried overnight at 120 °C or had been flame dried and cooled under a stream of argon or nitrogen.¹⁴⁸ All chemical products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and were reagent quality. Technical solvents were obtained from VWR International Co. Anhydrous solvents (CH₂Cl₂, Et₂O, THF, DMF, Toluene, and *n*-hexane) were dried and deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following flash column silica gel chromatography. Organic compounds were purified using the method reported by W. C. Still¹⁴⁹ and using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, 0.25 mm, F₂₅₄.). Visualization of TLC plate was performed by UV (254 nm), KMnO₄ or *p*-anisaldehyde stains. All mixed solvent eluents are reported as v/v solutions. Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous by thin layer chromatography (TLC) and by ¹H NMR. NMR spectra were taken in deuterated CDCl₃ using Bruker AV-300, AV-400, AV-500, AV-700 and DRX-400 instruments unless otherwise noted. Signals due to the solvent served as the internal standard (CHCl₃: δ 7.27 for ¹H, δ 77.0 for ¹³C)(acetone: δ 2.05 for ¹H, δ 29.84 for ¹³C). The acquisition parameters are shown on all spectra. The ¹H NMR chemical shifts and coupling constants were determined assuming firstorder behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), g (quartet), sept(septet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. High resolution mass spectroscopy (HRMS) was done by the Centre régional de spectrométrie de masse at the Département de Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted.

¹⁴⁸ Shriver, D. F.; Drezdon, M. A. in *The Manipulation of Air-Sensitive Compounds*; Wiley-VCH: New York, 1986.

¹⁴⁹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923-2925.

9.2 - Synthetic Procedures

9.2.1 - Synthesis of Alkyl Halides

Bis(2-methylphenyl)methyl bromide (3.12): Bis(2-methylphenyl)methanol¹⁵⁰ (6.30 g, 29.7 mmol) was dissolved in dichloromethane (300 mL). Phosphorous tribromide (1.40 mL, 14.7 mmol) was added slowly at 0 °C and the solution was allowed to warm to room temperature. The reaction was stirred at room temperature overnight after which water was added. The aqueous layer was extracted twice with dichloromethane. The combined organic fractions were dried over sodium sulfate and filtered on basic alumina. The solvent was removed *in vacuo* to afford the product as a beige solid (7.0 g, 86 %). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.27 – 7.22 (m, 4H), 7.19 (dd, *J* = 5.6, 3.5 Hz, 2H), 6.63 (s, 1H), 2.36 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 138.42, 135.08, 130.46, 129.57, 128.07, 126.41, 50.78, 19.12; HRMS (ESI +) for C₁₅H₁₅ [M - Br]⁺ calculated: 195.1168 found: 195.1176.

Bis(1-naphthyl)methyl bromide (3.25): Bis(1-naphthyl)methanol¹⁵¹ (1.7 g, 6 mmol) was dissolved in dichloromethane (60 mL). Phosphorous tribromide (0.28 mL, 3 mmol) was added slowly at 0 °C and the solution was allowed to warm to room temperature. The reaction was stirred at room temperature overnight after which water was added. The aqueous layer was extracted twice with dichloromethane. The combined organic fractions were dried over sodium sulfate and filtered on basic alumina. The solvent was removed *in vacuo* to afford the product as a white solid (1.87 g, 90 %). ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.06 (m, 2H), 7.98 – 7.90 (m, 2H), 7.91 – 7.82 (m, *J* = 9.5 Hz, 3H), 7.77 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.49 (m, 4H), 7.45 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 135.86, 133.83, 130.14, 129.16, 128.94, 128.22, 126.74, 125.92, 125.47, 123.15, 50.00; HRMS (ESI +) for C₂₁H₁₅ [M - Br]⁺ calculated: 267.11683 found: 267.11745.

¹⁵⁰ Bis(2-methylphenyl)methanol was prepared *via* Grignard reaction, see: Griffin, G.; Manmade, A. J. Org. Chem. **1972**, *37*, 2589.

¹⁵¹ Bis(1-naphthyl)methanol was prepared *via* Grignard reaction, see: Bassas, O.; Huuskonen, J.; Rissanen, K.; Koskinen, A. M. P. *Eur. J. Org. Chem.* **2009**, 1340-1351.

Bis(2-naphthyl)methyl chloride (3.26): Bis(2-naphthyl)methanol¹⁵² (1.94 g, 7 mmol) was dissolved in benzene (20 mL). Thionyl chloride (0.75 mL, 10 mmol) was added slowly at room temperature and the solution was heated to reflux. The reaction was stirred at reflux overnight after which the reaction mixture was cooled and water was added. The aqueous layer was extracted twice with dichloromethane. The combined organic fractions were dried over sodium sulfate and filtered on basic alumina. The solvent was removed *in vacuo* to afford the product as a beige solid (1.64 g, 79 %). ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (s, 2 H), 7.90 - 7.79 (m, 6 H), 7.61 - 7.47 (m, 6 H), 6.49 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ = 138.1, 133.0, 132.9, 128.5, 128.2, 127.6, 126.7, 126.5, 126.5, 125.7, 64.8; HRMS (ESI +) for C₂₁H₁₅ [M - Cl]⁺ calculated: 267.11683 found: 267.11699.

Bis(1-pyenyl)methyl chloride (3.27): In a flame dried flask under nitrogen, magnesium turnings (0.225 g, 9.3 mmol) were suspended in THF (15 mL) and a crystal of iodine was added. The suspension was refluxed until the colour dissipated, approximately 30 min. To the activated magnesium was added 1-bromopyrene (1.5 g, 5.3 mmol). The solution was refluxed for 2 h at which point ethyl formate (0.2 mL, 2.5 mmol) was added. The mixture was left at reflux for an additional 15 h. The reaction was removed from heat and allowed to cool to room temperature. The reaction was slowly quenched with saturated aqueous ammonium chloride. The mixture was filtered to remove excess magnesium and the product was extracted with 3 portions of dichloromethane. The combined organic fractions were dried over sodium sulfate and the solvent was removed in vacuo to give the crude product. The crude product was dissolved in toluene, addition of hexane yielded white crystals (0.53 g, 50 %). The product was carried on to the next step without further purification as degradation was observed over short periods of time (days). Bis(1-pyrenyl)methanol (2 g, 4.6 mmol) was dissolved in benzene (20 mL). Thionyl chloride (0.75 mL, 10 mmol) was added slowly at room temperature and the solution was heated to reflux. The reaction was stirred at reflux overnight after which the reaction mixture was cooled and water was added. The aqueous layer was extracted twice with dichloromethane. The combined organic fractions were dried over sodium sulfate and filtered on basic alumina. The solvent was removed in vacuo to afford the product as a brown solid (2.1 g, > 95 %). The product could not be sufficiently purified for characterization purposes and was typically used crude in the following alkylation step without additional purification. ¹H NMR (400 MHz, C₆D₆) $\delta 8.75 - 8.22$ (m, 5H), 8.20 - 7.62 (m, 14H).

¹⁵² Bis(2-naphthyl)methanol was prepared *via* Grignard reaction, see: Park, B. S.; Lee, S. W.; Kim, I. T.; Tae, J. S.; Lee, S. H. *Heteroatom Chemistry* **2012**, *23*, 66-73.

9.2.2 - Synthesis of Alkyl Diamine

(1R,2R)- 1,2-Di-*tert*-butyl-N-(bis(2-methylphenyl)methyl)ethylenediamine (3-13): In a sealed tube was placed alkyl halide 3-10 (150 mg, 0.55 mmol), diamine 3-6 (45 mg, 0.26 mmol), and potassium carbonate (345 mg, 2.5 mmol). To the starting materials was added acetone (1.8 mL). The tube was sealed and placed in a 100 °C oil bath for 2 days. The sealed tube was removed from the bath and allowed to return to room temperature. The solids were filtered off on Celite and the solvent removed *in vacuo*. The crude product was purified by column chromatography on silica gel (4:1, Hexanes:EtOAc) to yield 3.11 (43 mg, 45 %) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ = 7.58 (d, *J* = 7.5 Hz, 1H), 7.31 (s, 1H), 7.25 - 7.18 (m, 2H), 7.18 - 7.03 (m, 4H), 6.96 (d, *J* = 6.4 Hz, 1H), 5.91 (s, 1H), 3.49 (dd, *J* = 4.5, 1.4 Hz, 1H), 3.33 (d, *J* = 4.5 Hz, 1H), 2.53 (s, 3H), 2.04 (s, 3H), 0.84 (s, 9H), 0.75 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 153.48, 140.14, 139.49, 135.20, 134.85, 130.83, 130.67, 128.55, 127.14, 126.31, 126.05, 76.93, 71.13, 59.16, 35.93, 34.00, 26.15, 20.51, 19.54; HRMS (ESI+) for C₂₅H₃₉N₂ [M+H⁺] calculated: 367.3108 found: 367.3109.

9.2.3 - Synthesis of Alkyl Imidazolines

General Procedure for the Mono-Alkylation of Imidazoline 3.17

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)imidazoline (3.18): In a sealed tube was placed imidazoline precursor 3.17 (1.0 g, 5.5 mmol), alkyl halide 3.12 (1.66 g, 6 mmol) and potassium carbonate (3.75 g, 27.1 mmol). To the mixture was added acetone (100 mL) and the tube was sealed and placed in a 100 °C oil bath for 2 days. The tube was removed from the oil bath and cooled to room temperature. The solution was then diluted with ethyl acetate and filtered on Celite®. The solvent was removed *in vacuo* to yield a crude oil. The crude product was purified by column chromatography on silica gel (2:98, NEt₃: Et₂O) yielding compound **3.16** (0.93 g, 45 %) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ = 7.58 (d, *J* = 7.5 Hz, 1H), 7.31 (s, 1H), 7.25 - 7.18 (m, 2H), 7.18 - 7.03 (m, 4H), 6.96 (d, *J* = 6.4 Hz, 1H), 5.91 (s, 1H), 3.49 (dd, *J* = 4.5, 1.4 Hz, 1H), 3.33 (d, *J* = 4.5 Hz, 1H), 2.53 (s, 3H), 2.04 (s, 3H), 0.84 (s, 9H), 0.75 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 153.48, 140.14, 139.49, 135.20, 134.85, 130.83, 130.67, 128.55, 127.14, 126.31, 126.05, 76.93, 71.13, 59.16, 35.93, 34.00, 26.15, 20.51, 19.54; HRMS (ESI+) for C₂₆H₃₇N₂ [M+H⁺] calculated: 377.2951 found: 377.2954.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(2,4,6-trimethylphenyl)methyl)imidazoline (3.28): Was prepared from 3.15 using the general procedure. Dimesitylmethyl chloride 3.24 was synthesized following a procedure found in the literature.¹⁵³ The crude product was purified by column chromatography on silica gel (1:99, NEt₃: Et₂O) yielding compound 3.28 (71 mg, 62 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃) δ = 6.83 (d, *J* = 9.5 Hz, 2 H), 6.69 (s, 1 H), 6.73 (s, 1 H), 5.96 (s, 1 H), 3.62 - 3.57 (m, 1 H), 3.57 - 3.52 (m, 1 H), 2.70 (s, 3 H), 2.63 (s, 3 H), 2.24 (s, 3 H), 2.19 (s, 3 H), 1.99 (s, 3 H), 1.95 (s, 3 H), 1.44 (s, 1 H), 0.87 (s, 9 H), 0.78 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ = 157.2, 136.7, 136.4, 136.3, 136.2, 136.0, 135.8, 132.6, 132.4, 130.5, 130.2, 76.0, 73.6, 61.5, 53.8, 35.6, 34.3, 29.3, 27.2, 26.6, 23.4, 23.4, 21.6, 21.3, 20.5, 20.5; HRMS (ESI+) for C₁₉H₂₃ [M-Imid⁺] calculated: 251.17943 found: 251.18007.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(1-naphthyl)methyl)imidazoline (3.29): Was prepared from 3.17 using the general procedure. The crude product was purified by column chromatography on silica gel (2:98, NEt₃: Et₂O) yielding compound 3.29 (0.47 g, 40 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.88 (dd, J = 17.2, 8.4 Hz, 3H), 7.75 (t, J = 7.6 Hz, 1H), 7.71 – 7.49 (m, 4H), 7.41 – 7.34 (m, J = 6.3, 5.2 Hz, 2H), 7.26 – 7.13 (m, 3H), 7.09 (d, J = 7.0 Hz, 1H), 3.56 (d, J = 4.4 Hz, 1H), 3.48 (d, J = 4.3 Hz, 1H), 0.91 (s, 9H), 0.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 153.79, 138.91, 137.68, 134.30, 133.97, 130.82, 130.72, 129.52, 128.87, 128.36, 128.15, 126.99, 126.45, 126.35, 125.82, 125.61, 125.58, 125.14, 125.11, 123.27, 122.72, 77.00, 71.27, 36.20, 33.77, 26.28, 25.78; HRMS (ESI+) for C₃₂H₃₇N₂ [M+H⁺] calculated: 449.29513 found: 449.2958.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(2-naphthyl)methyl)imidazoline (3.30): Was prepared from 3.17 using the general procedure. The crude product was purified by column chromatography on silica gel (2:98, NEt₃: Et₂O) yielding compound 3.28 (0.57 g, 46 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.88 - 7.74 (m, 8 H), 7.56 - 7.47 (m, 5 H), 7.33 - 7.27 (m, 2 H), 5.94 (s, 1

¹⁵³ Nauta, W. T.; Wuis, P. J. Rec. trav. chim. 1937, 56, 535-540.

H), 3.54 (d, J = 3.2 Hz, 1 H), 3.19 (d, J = 4.6 Hz, 1 H), 1.08 (s, 9 H), 0.48 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 152.6$, 138.2, 137.7, 133.2, 133.1, 132.9, 132.5, 128.9, 128.6, 128.3, 128.1, 127.9, 127.7, 127.5, 126.7, 126.6, 126.4, 126.3, 126.2, 126.2, 125.8, 77.4, 68.6, 67.0, 36.5, 34.0, 26.6, 26.1; HRMS (ESI+) for C₃₂H₃₇N₂ [M+H⁺] calculated: 449.29513 found: 449.29572.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(1-pyrenyl)methyl)imidazoline (3.31): Was prepared from 3.17 using the general procedure. The crude product was purified by column chromatography on silica gel (4:96, NEt₃: Et₂O) yielding compound 3.29 (0.41 g, 68 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.93 (d, *J* = 9.2 Hz, 1 H), 8.71 (d, *J* = 8.1 Hz, 1 H), 8.44 (d, *J* = 8.1 Hz, 2 H), 8.32 (d, *J* = 7.8 Hz, 1 H), 8.23 (d, *J* = 7.4 Hz, 1 H), 8.15 (d, *J* = 8.8 Hz, 2 H), 8.11 - 8.02 (m, 3 H), 8.00 - 7.88 (m, 5 H), 7.79 (s, 1 H), 7.73 (d, *J* = 9.2 Hz, 1 H), 7.69 - 7.62 (m, 2 H), 3.79 (d, *J* = 4.2 Hz, 1 H), 3.60 (d, *J* = 3.9 Hz, 1 H), 1.01 (s, 9 H), 0.50 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ = 153.8, 136.9, 135.7, 131.4, 131.2, 130.9, 130.6, 130.5, 130.3, 129.0, 128.2, 127.9, 127.9, 127.6, 127.4, 127.4, 126.7, 126.1, 126.0, 125.8, 125.5, 125.3, 125.2, 125.2, 125.2, 125.1, 125.0, 124.7, 124.6, 122.3, 77.2, 77.1, 71.7, 36.2, 33.9, 26.4, 25.9; HRMS (ESI+) for C₄₄H₄₁N₂ [M+H⁺] calculated: 597.32643 found: 597.32594.

9.2.4 - Synthesis of Imidazolidinium Salts

General Procedure for the Synthesis of Methyl Substituted Imidazolidinium Salts

(4R,5R)-4,5-Di-tert-butyl-3-methyl-1-(bis(2-methylphenyl)methyl)imidazolidinium

fluoborate (3.32): To a solution of imidazolinium salt **3.18** (430 mg, 1.14 mmol) in dichloromethane (10 mL) was added methyl iodide (0.21 mL, 3.42 mmol) and sodium tetrafluoroborate (625 mg, 5.7 mmol). The resulting suspension was stirred at room temperature for 2 days. The reaction mixture was filtered. Solvent and excess methyl iodide were removed *in vacuo* giving imidazolidinium salt **3.30** (543 mg, >95 %) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 9.82 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.64 - 7.54 (m, 2H), 7.34 (t, *J* = 6.7 Hz, 2H), 7.26 - 7.18 (m, 3H), 6.13 (s, 1H), 3.91 (d, *J* = 3.2 Hz, 1H), 3.79 (s, 3H), 3.66 (d, *J* = 3.9 Hz, 1H), 2.65 (s, 3H), 2.15 (s, 3H), 0.99 (s, 9H), 0.97 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ = 158.8, 136.7, 134.8, 134.2, 133.8, 131.3, 130.8, 129.3, 128.9, 128.5, 128.4, 127.7, 127.1, 75.7, 73.5, 61.6, 38.8, 35.8, 35.2, 26.3, 25.4, 20.3, 19.6; HRMS (ESI+) for C₂₇H₃₉N₂ [M⁺] calculated: 391.3108 found: 391.3112.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-3-methyl-1-(bis(mesityl)methyl)imidazolidinium fluoborate (3.33): Imidazolinium salt 3.33 was prepared following the general procedure. ¹HNMR analysis of the reaction mixture showed 3.33 as the only identifiable product. Loading the product onto silica gel for purification resulted in decomposition of the product, with 3.28 as well as several unidentifiable products being isolated. ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 9 H), 1.14 (s, 9 H), 1.55 (s, 3 H), 2.23 (s, 3 H), 2.25 (s, 3 H), 2.46 (s, 3 H), 2.52 (s, 3 H), 2.92 (s, 3 H), 2.98 (s, 3 H), 3.80 (d, *J* = 5.65 Hz, 1 H), 3.83 (d, *J* = 5.65 Hz, 1 H), 6.22 (s, 1 H), 6.95 (s, 1 H), 7.01 (s, 1 H), 7.10 (s, 1 H), 7.12 (s, 1 H), 7.38 (s, 1 H).

(4*R*,5*R*)-4,5-Di-*tert*-butyl-3-methyl-1-(bis(1-naphthyl)methyl)imidazolidinium fluoborate (3.34): Imidazolinium salt 3.34 was prepared following the general procedure. The product can be recrystallized from a mixture of dichloromethane and hexanes to yield a yellow solid (0.58 g, >95 %). ¹H NMR (400 MHz, CDCl₃) δ = 10.17 (s, 1 H), 8.49 (d, *J* = 7.4 Hz, 2 H), 7.96 - 7.81 (m, 5 H), 7.76 (t, *J* = 7.6 Hz, 2 H), 7.65 - 7.59 (m, 1 H), 7.48 - 7.41 (m, 2 H), 7.37 (t, *J* = 7.6 Hz, 1 H), 7.32 (s, 1 H), 7.23 - 7.16 (m, 1 H), 4.09 (d, *J* = 3.2 Hz, 1 H), 3.68 (s, 3 H), 3.50 (d, *J* = 3.2 Hz, 1 H), 0.95 (s, 9 H), 0.58 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ = 159.8, 136.0, 134.0, 131.5, 130.1, 129.7, 129.6, 129.4, 129.2, 128.2, 127.8, 127.2, 127.0, 126.2, 126.0, 125.8, 121.8, 121.1, 77.9, 75.7, 73.9, 38.7, 36.0, 34.9, 25.9, 25.5; HRMS (ESI+) for C₃₃H₃₉N₂ [M⁺] calculated: 463.31078 found: 463.30906.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-3-methyl-1-(bis(2-naphthyl)methyl)imidazolidinium fluoborate (3.35): Imidazolinium salt 3.35 was prepared following the general procedure. The product can be recrystallized from a mixture of dichloromethane and hexanes to yield 3.35 as a yellow solid (0.6 g, >95 %). ¹H NMR (400 MHz, CDCl₃) δ = 9.83 (s, 1 H), 8.24 (s, 2 H), 8.17 - 8.11 (m, 1 H), 8.04 - 7.97 (m, 1 H), 7.90 - 7.82 (m, 2 H), 7.81 - 7.74 (m, 3 H), 7.54 - 7.41 (m, 5 H), 6.28 (s, 1 H), 4.06 (d, *J* = 3.1 Hz, 1 H), 3.59 (s, 3 H), 3.50 (d, *J* = 3.1 Hz, 1 H), 1.07 (s, 9 H), 0.74 (s, 9 H);

¹³C NMR (101 MHz, CDCl₃) δ = 158.2, 133.2, 133.1, 133.0, 132.8, 129.7, 129.3, 129.0, 128.5, 127.5, 127.3, 127.0, 126.7, 126.6, 126.0, 125.0, 105.5, 73.9, 73.7, 38.7, 36.0, 35.6, 26.2, 25.9; HRMS (ESI+) for C₃₃H₃₉N₂ [M⁺] calculated: 463.31078 found: 463.31117.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-3-methyl-1-(bis(1-pyrenyl)methyl)imidazolidinium fluoborate (3.36): Imidazolinium salt 3.36 was prepared following the general procedure. The product can be recrystallized from a mixture of dichloromethane and hexanes to yield 3-36 as a yellow solid (0.35 g, 72 %). ¹H NMR (400 MHz, CDCl₃) $\delta = 10.36$ (s, 1 H), 9.20 (d, *J* = 8.1 Hz, 1 H), 9.12 (d, *J* = 9.2 Hz, 1 H), 8.66 - 8.56 (m, 2 H), 8.37 (d, *J* = 8.1 Hz, 1 H), 8.25 (d, *J* = 7.4 Hz, 1 H), 8.12 (d, *J* = 7.8 Hz, 1 H), 8.06 (d, *J* = 8.1 Hz, 1 H), 8.02 - 7.87 (m, 5 H), 7.85 - 7.79 (m, 1 H), 7.78 - 7.69 (m, 4 H), 7.64 (d, *J* = 9.2 Hz, 1 H), 4.47 (d, *J* = 2.8 Hz, 1 H), 3.67 (s, 3 H), 3.54 (d, *J* = 2.8 Hz, 1 H), 0.98 (s, 9 H), 0.58 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 159.6$, 133.4, 131.3, 131.1, 131.1, 130.8, 130.3, 130.2, 130.0, 129.8, 128.7, 128.2, 127.4, 127.2, 127.1, 127.1, 127.0, 126.6, 126.2, 126.2, 125.9, 125.7, 125.6, 125.6, 125.1, 125.0, 124.9, 124.7, 124.6, 124.0, 121.3, 120.8, 77.2, 76.0, 73.7, 38.5, 35.9, 35.1, 25.9, 25.5; HRMS (ESI+) for C₄₅H₄₃N₂ [M⁺] calculated: 611.34208 found: 611.34397.

(4*R*,5*R*)-3-Benzyl-4,5-di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)imidazolidinium chloride (3.37): In a sealed tube, imidazoline 3.18 (140 mg, 0.37 mmol) was dissolved in dichloromethane (6 mL), and benzyl chloride (0.3 mL, 2.6 mmol) was added. The tube was sealed, and was put in a 60 °C oil bath overnight. After cooling to room temperature, the reaction mixture was concentrated (~1 mL) and diethyl ether was added to precipitate the product 3.37 as an off-white solid (112 mg, 60 %). ¹H NMR (400 MHz, CDCl₃) δ = 11.01 (d, *J* = 6.7 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.76 - 7.69 (m, 3H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.44 - 7.32 (m, 4H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.22 - 7.16 (m, 1H), 7.15 - 7.08 (m, 2H), 6.41 (dd, *J* = 14.1, 3.9 Hz, 1H), 5.98 (s, 1H), 4.45 (d, *J* = 14.1 Hz, 1H), 3.76 (d, *J* = 3.5 Hz, 1H), 3.45 (d, *J* = 3.5 Hz, 1H), 2.59 (s, 3H), 2.03 (s, 3H), 0.96 (s, 9H), 0.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ = 161.2, 136.9, 135.4, 133.1, 131.0, 130.4, 130.4, 130.3, 130.3, 130.3, 129.1, 129.0, 128.8, 128.3, 127.7, 127.7, 126.8, 126.8, 76.0, 68.0, 61.4, 53.0, 35.7, 35.5, 26.9, 25.3, 20.3, 19.6; HRMS (ESI+) for C₃₃H₄₃N₂ [M⁺] calculated: 467.3421 found: 467.3425.

(4R,5R)-3-(2-Picolyl)-4,5-di-tert-butyl-1-(bis(2-methylphenyl)methyl)imidazolidinium

chloride (3.38): To a solution of 2-pyridinemethanol (1.1 mL, 104 mmol) in chloroform (500 mL), was added thionyl chloride (15 mL, 208 mmol). The solution was allowed to stir at room temperature for 2 h. Full consumption of the starting material was confirmed by thin layer chromatography. The solution was washed with aqueous sodium bicarbonate, dried over sodium The solvent was removed in vacuo to yield 2sulfate and filtered on basic alumina. picolylchloride as a red oil (1 g, 75 %). In a round-bottom flask was added 3.18 (1 g, 2.6 mmol) and picolyl chloride (1 g, 7.8 mmol). 26 mL of anhydrous dichloromethane was added and the mixture was allowed to stir at room temperature for 3 days. Ether was added to precipitate the product which was collected via vacuum filtration to yield **3.38** as a red solid (400 mg, 30 %). Despite repeated attempts, silica gel chromatography (9:1; DCM:MeOH) could not fully remove trace impurities from the product. ¹H NMR (400 MHz, CDCl₃) $\delta = 10.24$ (s. 1 H), 8.57 (d. J = 6.0 Hz, 1 H), 8.20 (d, J = 7.9 Hz, 1 H), 7.94 (d, J = 7.5 Hz, 1 H), 7.83 - 7.75 (m, 1 H), 7.57 - 7.48 (m, 2 H), 7.36 (s, 1 H), 7.29 (br. s., 2 H), 7.25 - 7.13 (m, 3 H), 6.05 (s, 1 H), 6.03 (d, J = 14.8 Hz, 1 H), 4.87 (d, J = 14.5 Hz, 1 H), 4.18 (d, J = 3.5 Hz, 1 H), 3.80 (d, J = 3.5 Hz, 1 H), 2.57 (s, 3 H), 2.08 (s, 3 H), 0.99 (s, 9 H), 0.62 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ = 160.8, 153.8, 148.8, 138.0, 136.8, 135.4, 134.5, 133.8, 131.3, 130.8, 129.5, 129.0, 128.6, 128.5, 127.5, 126.8, 125.3, 123.6, 77.2, 75.8, 69.7, 61.4, 53.8, 35.8, 35.7, 26.6, 25.5, 20.2, 19.6; HRMS (ESI+) for $C_{32}H_{42}N_3$ [M⁺] calculated: 468.3373 found: 468.3393.

9.2.5 - Synthesis of C₂-Symmetric NHC Precursor

(4*R*,5*R*)-4,5-Di-*tert*-butyl-bis-1,3-(bis(2-methylphenyl)methyl)imidazoline (3.19): In an open sealed tube vessel was placed imidazoline precursor 3.17 (365 mg, 2 mmol), alkyl halide 3.12 (600 mg, 2.2 mmol) and potassium carbonate (1.8 g, 13 mmol). To the mixture was added acetone (5 mL) and the tube was sealed and placed in a 100 °C oil bath for 2 days. The tube was removed from the oil bath and cooled to room temperature. The tube was opened and the solution was then diluted with ethyl acetate and filtered on Celite®. The Celite was then flushed with an excess of dichloromethane. The DCM filtrate was treated with diethyl ether to precipitate the product 3.19 (700 mg, 88 %) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ = 7.05 - 6.99 (m, 4 H), 6.98 - 6.91 (m, 4 H), 6.91 - 6.85 (m, 4 H), 6.82 (d, *J* = 7.3 Hz, 2 H), 6.43 (d, *J* = 7.7 Hz, 2 H), 5.94 (s, 2 H), 3.99 (br. s., 2 H), 2.03 (br. s., 6 H), 1.76 (s, 6 H), 0.68 (s, 18 H);

¹³C NMR (101 MHz, CDCl₃) δ = 158.3, 135.0, 134.5, 134.0, 132.4, 131.4, 131.1, 128.7, 128.4, 126.3, 126.0, 125.5, 73.9, 34.8, 25.8, 19.2, 18.6; HRMS (ESI+) for C₄₁H₅₁N₂ [M⁺] calculated: 571.4047 found: 571.4060.

9.2.6 - Synthesis of Transition Metal Complexes

(*4R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)-3-methylimidazolidin-2-ylidene copper(I) chloride (4.1): In a flame dried flask under nitrogen, imidazolidinium salt 3.32 (400 mg, 0.84 mmol) and sodium *tert*-butoxide (90 mg, 0.93 mmol) were suspended in THF (8.4 mL) and stirred at room temperature for 30 minutes. Copper (I) chloride (164 mg, 1.64 mmol) was then added and the reaction mixture stirred overnight. The crude mixture was filtered on Celite® and the solvent was removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel (2:98, MeOH:CH₂Cl₂) to yield the product 4.1 as a white solid (250 mg, 60 %). Diffraction quality crystals were grown *via* vapour diffusion of pentane into a saturated solution in DCM. ¹H NMR (400 MHz, CDCl₃) δ = 8.26 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 7.4 Hz, 1H), 7.48 (m, 1H), 7.40 - 7.18 (m, 5 H), 6.11 (s, 1H), 3.74 (d, *J* = 3.2 Hz, 1H), 3.54 (s, 3H), 3.31 (d, *J* = 3.2 Hz, 1H), 2.63 (s, 3H), 2.16 (s, 3H), 1.02 (s, 9H), 0.98 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ = 139.6, 138.2, 134.2, 131.4, 130.4, 128.8, 128.1, 127.9, 127.9, 127.6, 126.6, 76.4, 73.8, 61.2, 40.7, 35.3, 34.7, 27.3, 26.1, 20.4, 19.6; HRMS (ESI+) for C₂₇H₃₈CuN₂ [M-Cl]⁺ calculated: 453.2325 found: 453.2334.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-3-methyl-1-(bis(1-naphthyl)methyl)imidazolidin-2-ylidene copper(I) chloride (4.2b): Complex 4.2b was prepared from imidazolium 3.34 using the same procedure as for 4.1. The resulting residue was purified by column chromatography on silica gel (2:98, MeOH:CH₂Cl₂) to yield the product 4.2b as a white solid (15 mg, 42 %). Diffraction quality crystals were grown *via* vapour diffusion of pentane into a saturated solution in DCM. ¹H NMR (400 MHz, CDCl₃) δ = 8.71 (d, *J* = 7.2 Hz, 1 H), 8.47 (d, *J* = 8.6 Hz, 1 H), 7.95 - 7.89 (m, 4 H), 7.86 (d, *J* = 7.9 Hz, 1 H), 7.72 (m, 3 H), 7.62 - 7.55 (m, 1 H), 7.45 (d, *J* = 8.6 Hz, 1 H), 7.37 (t, *J* = 7.7 Hz, 2 H), 7.22 - 7.14 (m, 2 H), 3.91 (d, *J* = 3.1 Hz, 1 H), 3.36 (s, 3 H), 3.17 (d, *J* = 3.1 Hz, 1 H), 0.88 (s, 9 H), 0.58 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ = 139.1, 135.5, 134.1, 134.1, 130.6, 130.2, 129.9, 129.1, 129.0, 128.8, 127.5, 127.5, 127.0, 126.6, 125.9, 125.8, 125.6, 125.2, 122.6, 122.4, 76.6, 74.0, 60.1, 40.6, 35.6, 34.4, 26.9, 26.1; HRMS (ESI+) for C₃₃H₃₈CuN₂ [M-Cl]⁺ calculated: 525.2326 found: 525.2339.

(*4R*,5*R*)-3-Benzyl-4,5-di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)imidazolidin-2-ylidene copper(I) chloride (4.3): In a flame dried flask under nitrogen, imidazolidinium 3.37 (200 mg, 0.4 mmol) and silver oxide (47 mg, 0.2 mmol) were suspended in dichloromethane (4 mL). The mixture was stirred at room temperature for 1 h. Copper (I) chloride (56 mg, 0.8 mmol) was added and the reaction was stirred at room temperature overnight. The solution was then filtered on Celite® and the solvent removed *in vacuo*. The crude residue was purified by flash chromatography on silica gel (2:98, MeOH:CH₂Cl₂) to yield the product **4.3** as an off-white solid (22.3 mg, 60 %). ¹H NMR (300 MHz, CDCl₃) δ = 8.02 (d, *J* = 7.3 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.53 - 7.47 (m, 2H), 7.41 - 7.29 (m, 4H), 7.29 - 7.10 (m, 5H), 5.97 (s, 1H), 5.59 (d, *J* = 14.3 Hz, 1H), 4.56 (d, *J* = 14.7 Hz, 1H), 3.64 (d, *J* = 3.5 Hz, 1H), 3.27 (d, *J* = 3.5 Hz, 1H), 2.47 (s, 3H), 2.05 (s, 3H), 1.00 (s, 9H), 0.54 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 139.19, 137.96, 135.32, 134.31, 133.72, 131.35, 130.54, 129.44, 129.40, 129.30, 128.68, 128.34, 128.30, 128.17, 127.98, 127.88, 127.72, 126.67, 69.22, 63.11, 61.29, 56.77, 28.24, 27.27, 26.29, 25.82, 20.38, 19.69; HRMS (ESI+) for C₃₃H₄2CuN₂ [M-Cl]⁺ calculated: 529.2638 found: 529.2638.

(4R,5R)-4,5-Di-tert-butyl-1,3-bis(bis(2-methylphenyl)methyl)imidazolidin-2-ylidene

copper(I) chloride (4.4): In an open oven-dried sealed tube vessel under nitrogen, imidazolidinium salt **3.19** (150 mg, 0.23 mmol), copper (I) chloride (45 mg, 0.46 mmol), and potassium carbonate (138 mg, 1.1 mmol) were suspended in degassed acetone (3 mL). The tube was then sealed and the mixture was stirred at 60 °C overnight. The tube was removed from oil bath and allowed to cool. The vessel was opened and the crude mixture was then filtered on Celite® and the solvent was removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel (5:95, MeOH:CH₂Cl₂) to yield the product **4.1** as a white solid (76 mg, 49 %). ¹H NMR (400 MHz, CDCl₃) δ = 8.11 (br. s., 2 H), 7.97 (d, *J* = 4.0 Hz, 2 H), 7.33 - 7.28 (m, 2 H), 7.25 - 7.11 (m, 8 H), 7.09 - 7.02 (m, 2 H), 6.05 (s, 2 H), 3.64 (s, 2 H), 2.60 (s, 6 H), 1.85 (s, 6 H), 0.81 (s, 18 H); ¹³C NMR (101 MHz, CDCl₃) δ = 139.7, 137.6, 135.0, 134.1, 131.1, 130.4, 130.2, 128.1, 127.9, 127.8, 126.1, 75.3, 62.6, 35.6, 26.7, 20.9, 19.8; HRMS (ESI+) for C₄₁H₅₀ClCuN₂Na [M+Na]⁺ calculated: 691.2851 found: 691.2854.

(4*R*,5*R*)-4,5-Di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)-3-methylimidazolidin-2-ylidene gold(I) iodide (4.1): In a flame dried flask under nitrogen, imidazolidinium salt 3.32 (81 mg, 0.16 mmol) and sodium *tert*-butoxide (18 mg, 0.19 mmol) were suspended in THF (1.6 mL) and stirred at room temperature for 30 minutes. (Dimethylsulfide)gold(I) chloride (50 mg, 0.16 mmol) was then added and the reaction mixture stirred overnight. The crude mixture was filtered on Celite® and the solvent was removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel (CH₂Cl₂) to yield the product 4.5 as a white solid (14 mg, 20 %). ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (d, *J* = 7.7 Hz, 1 H), 7.93 (d, *J* = 7.3 Hz, 1 H), 7.35 (t, *J* = 7.6 Hz, 1 H), 7.27 - 7.21 (m, 1 H), 7.18 - 7.04 (m, 4 H), 5.93 (s, 1 H), 3.69 (d, *J* = 2.9 Hz, 1 H), 3.44 (s, 3 H), 3.22 (d, *J* = 2.9 Hz, 1 H), 2.58 (s, 3 H), 1.87 (s, 3 H), 0.90 (s, 8 H), 0.87 (s, 8 H); ¹³C NMR (101 MHz, CDCl₃) δ = 204.2, 138.4, 138.3, 135.0, 131.7, 131.0, 129.9, 128.3, 128.2, 127.7, 127.6, 126.0, 77.2, 73.3, 40.9, 35.5, 34.8, 27.2, 25.9, 21.0, 19.6; HRMS (ESI+) for C₂₇H₃₈AuN₂ C₂H₃N [M-Cl+ACN]⁺ calculated: 628.2961 found: 628.2953.

Pyridine(*4R*,*5R*)-4,5-di-*tert*-butyl-1-(bis(2-methylphenyl)methyl)-3-methylimidazolidin-2ylidene palladium(II) chloride (4.6): In a flame dried flask under nitrogen, imidazolidinium salt 3.30 (50 mg, 0.1 mmol) and sodium *tert*-butoxide (12 mg, 0.11 mmol) were suspended in THF (2 mL) and stirred at room temperature for 30 minutes. Palladium(II) chloride (18.4 mg, 0.1 mmol) was then added and the reaction mixture stirred overnight. Then pyridine (48 μ L, 0.6 mmol) was added, and the reaction mixture was stirred a further 2 hours. Ether was added to precipitate left over starting material, the crude mixture was filtered on Celite®, and the solvent was removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel (CH₂Cl₂) to yield the product 4.6 as a yellow solid (12 mg, 18 %). ¹H NMR (400 MHz, CDCl₃) δ = 8.42 (d, *J* = 4.8 Hz, 2 H), 8.36 (d, *J* = 7.5 Hz, 1 H), 7.75 (d, *J* = 8.1 Hz, 1 H), 7.60 -7.53 (m, 1 H), 7.42 - 7.34 (m, 1 H), 7.26 - 7.17 (m, 3 H), 7.15 - 6.99 (m, 4 H), 6.58 (s, 1 H), 3.84 (s, 3 H), 3.44 - 3.38 (m, 2 H), 2.82 (s, 3 H), 2.00 (s, 3 H), 1.15 (d, *J* = 7.7 Hz, 18 H); MS (ESI+) for C₃₁H₅₀ClN₂O₂Pd [M-Cl + H₂O + OtBu]⁺ calculated: 623.26 found: 623.29.

9.2.7 - Isolation of Naphthyl Impurity

Methyl 2-Hydroxy-1-nitro-3-naphthoate (6.1): In an open sealed-tube vessel equipped with a stir bar, methyl 3-hydroxy-2-naphthoate (21 mg, 0.1 mmol), copper catalyst **4.1** (5 mg, 0.01 mmol), silver nitrate (17 mg, 0.1 mmol) and oxone (35 mg, 0.11 mmol) were suspended in acetone (1 mL). The tube was sealed and the mixture was stirred at 60 °C overnight. The reaction mixture was then cooled to room temperature, the vessel was opened, silica gel was added and the residual solvent was removed *in vacuo*. The resulting solid was purified by column chromatography on silica gel (20 % EtOAc: Hexanes) affording the product **6.1** as a bright yellow solid (13 mg, 53 %). Diffraction quality crystals were obtained by slow evaporation of an acetone solution of naphthol **6.1**. ¹H NMR (500 MHz ,CDCl₃) $\delta = 11.26$ (s, 1 H), 8.63 (s, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.77 - 7.69 (m, 2 H), 7.49 (ddd, J = 1.5, 6.6, 8.2 Hz, 1 H), 4.09 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 169.2$, 149.0, 135.0, 132.0, 129.7, 128.8, 126.1, 125.6, 120.6, 114.2, 53.3; HRMS (ESI+) for C₁₂H₁₀NO₅ [M+H]⁺ calculated: 248.0554 found: 248.0335.

9.2.8 - Synthesis of Substituted 2-Napthols

Isopropyl 3-Hydroxy-2-naphthoate (6.3): In a 250 mL round-bottom flask equipped with a stir bar, 3-hydroxy-2-naphthoic acid (2.0 g, 10.6 mmol) was dissolved in 2-propanol (100 mL). A few drops of sulfuric acid were added after which a reflux condenser was fitted and the flask was put in a hot oil bath to reflux overnight. The reaction mixture was then cooled to room temperature and silica gel was added and the residual solvent was removed *in vacuo*. The resulting solid was purified by column chromatography on silica gel (10 % EtOAc: Hexanes) to give the product **6.3** as a yellow solid (1.35 g, 55 %). ¹H NMR (400 MHz ,CDCl₃) δ = 10.64 (s, 1H), 8.49 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.50 (ddd, *J* = 8.2, 7.0, 1.3 Hz, 1H), 7.37 - 7.29 (m, 2H), 5.38 (spt, *J* = 6.3 Hz, 1H), 1.47 (d, *J* = 6.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ = 169.5, 156.5, 137.8, 132.2, 129.2, 129.0, 127.0, 126.3, 123.8, 114.8, 111.6, 69.7, 21.9; HRMS (ESI+) for C₁₄H₁₅O₃ [M+H]⁺ calculated: 231.1016 found: 231.1022.

4-Methoxyphenylmethyl 3-Hydroxy-2-naphthoate (6.7): In a 250 mL round-bottom flask equipped with a stir bar, 3-hydroxy-2-naphthoic acid (0.5 g, 2.7 mmol) and potassium carbonate (184 mg, 1.3 mmol) were dissolved in DMF (25 mL). The resultant solution was stirred at room

temperature for 30 minutes. To the flask was added 4-methoxybenzyl choride (0.36 mL, 2.7 mmol), and the solution was stirred at room temperature overnight. Water was added and the mixture was extracted 3x with ethyl acetate. The organic fractions were dried over sodium sulfate and the solvent removed *in-vacuo*. The resultant oil was purified by column chromatography on silica gel (10 % EtOAc: Hexanes) to give the product **6.7** as a yellow solid (308 mg, 37 %). ¹H NMR (400 MHz, Acetone) δ 11.29 (s, 1H), 8.60 (s, 1H), 8.05 – 7.86 (m, 3H), 7.57 – 7.44 (m, 1H), 7.35 (ddd, *J* = 8.0, 6.8, 0.9 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 3H), 6.77 (d, *J* = 8.7 Hz, 3H), 4.42 (s, 3H), 3.69 (s, 6H); ¹³C NMR (75 MHz, Acetone) δ 172.93, 158.82, 155.15, 137.47, 133.66, 132.58, 131.08, 130.08, 128.14, 124.40, 124.27, 121.77, 114.63, 114.47, 55.34; Unfortunately mass-spec data does not closely agree with the calculated values (diff = 35 ppm), HRMS (ESI+) for C₁₉H₁₇O₄Na [M+Na]⁺ calculated: 331.0941 found: 331.0824.

Pentafluorophenylmethyl 3-Hydroxy-2-naphthoate (6.6): In a 250 mL round-bottom flask equipped with a stir bar, 3-hydroxy-2-naphthoic acid (0.5 g, 2.7 mmol) and potassium carbonate (184 mg, 1.3 mmol) were dissolved in DMF (25 mL). The resultant solution was stirred at room temperature for 30 minutes. To the flask was added pentafluorobenzyl bromide (0.4 mL, 2.7 mmol), and the solution was stirred at room temperature overnight. Water was added and the mixture was extracted 3x with ethyl acetate. The organic fractions were dried over sodium sulfate and the solvent removed *in-vacuo*. The resultant oil was purified by column chromatography on silica gel (10 % EtOAc: Hexanes) to give the product **6.6** as a yellow solid (715 mg, 72 %). ¹H NMR (400 MHz ,CDCl₃) δ = 10.15 (s, 1 H), 8.43 (s, 1 H), 7.79 (d, *J* = 8.1 Hz, 1 H), 7.69 (d, *J* = 8.6 Hz, 1 H), 7.51 (ddd, *J* = 1.3, 6.9, 8.3 Hz, 1 H), 7.35 - 7.30 (m, 2 H), 5.59 - 5.51 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ = 169.1, 156.2, 138.1, 132.6, 129.5, 129.2, 127.0, 126.3, 124.1, 113.3, 111.9, 54.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -141.35 (dd, *J* = 21.3, 7.8 Hz), -151.51 (t, *J* = 20.8 Hz), -160.43 - -161.47 (m); HRMS (ESI+) for C₁₄H₁₅O₃ [M+H]⁺ calculated: 369.0545 found: 369.0556.

(3-Hydroxy-2-naphthyl)pincolatoboronate (7.18): In a round-bottom flask equipped with a stir bar boronic acid 7.17 (200 mg, 1.1 mmol) and pinacol (151 mg, 1.3 mmol) were suspended in methyl t-butyl ether. Activated 4 Å molecular sieves were added and the suspension was stirred at room temperature overnight. The mixture was filtered, silica gel was added and the residual solvent was removed *in vacuo*. The resulting solid was purified by column chromatography on silica gel (20 % EtOAc: Hexanes) to give the product 7.18 as a yellow solid (113 mg, 38 %). Spectral data agreed with those found in the literature.¹⁵⁴

¹⁵⁴ Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806.

4-Methoxyphenyl 2-Hydroxynaphthalene-3-carboxyimine (7.20): In a round-bottom flask equipped with a stir bar, 2-naphthol-3-carboxaldehyde (50 mg, 0.3 mmol) and p-anisidine (36 mg, 0.3 mmol) were dissolved in ethanol (0.7 mL). The solution was allowed to stir overnight at room temperature after which the product **7.20** precipitated as a bright yellow solid (61 mg, 76 %). ¹H NMR (400 MHz, CDCl₃) δ = 8.88 (s, 1 H), 8.06 (br. s., 1 H), 7.80 (d, *J* = 8.6 Hz, 1 H), 7.67 (d, *J* = 8.2 Hz, 1 H), 7.47 (t, *J* = 7.5 Hz, 1 H), 7.43 - 7.35 (m, 3 H), 7.31 (t, *J* = 7.4 Hz, 1 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 3.88 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ = 160.1, 159.1, 156.7, 141.2, 136.1, 133.8, 128.4, 128.3, 127.5, 126.4, 123.5, 122.4, 121.7, 114.7, 111.1, 55.5; HRMS (ESI+) for C₁₈H₁₆NO₂ [M+H]⁺ calculated: 278.1176 found: 278.1175.

9.2.9 - Synthesis of C₂-Symmetric BINOLs

General Procedure for the Homocoupling of 2-Naphthols

In a sealed tube, naphthol ester **1.76** (20.8 mg, 0.1 mmol), catalyst **4.1** (5 mg, 0.01 mmol), silver (I) nitrate (17.4 mg, 0.1 mmol) and Oxone[®] (34.6 mg, 0.11 mg) were added to methanol (1 mL). The tube was placed in a 60 °C oil bath and stirred overnight. The tube was removed from the bath and allowed to cool to room temperature. After cooling, silica gel was added and the solvent was removed in vacuo. The crude solid was purified by flash chromatography on silica gel (1:9, EtOAc:Hexanes) to give the product **5.29** as a yellow solid (15.7 mg, 76 %). Spectral data for the compound agreed with that found in the literature.¹⁵⁵

Diisopropyl 2,2'-Dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate (6.8): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (1:9, EtOAc:Hexanes) to yield **6.8** as an off-white solid (8 mg, 32 %). ¹H NMR (400 MHz, CDCl₃) δ = 10.92 (s, 2H), 8.68 (s, 2H), 7.97 - 7.90 (m, 2H), 7.39 - 7.30 (m, 4H), 7.20 - 7.13 (m, 2H), 5.40 (spt, *J* = 6.2 Hz, 2H), 1.49 (dd, *J* = 8.3, 6.3 Hz, 12H); ¹³C NMR (101 MHz

¹⁵⁵ Wang, K.; Hu, Y.; Li, Z.; Wu, M.; Liu, Z.; Su, B.; Yu, A.; Liu, Y.; Wang, Q. Synthesis, **2010**, 1083.

,CDCl₃) δ = 169.7, 154.2, 137.1, 132.6, 129.7, 129.3, 127.1, 124.7, 123.8, 116.9, 114.7, 69.8, 21.9; HRMS (ESI+) for C₂₈H₂₇O₆ [M+H]⁺ calculated: 459.1802 found: 459.1817.

Bis(4-methyoxybenzyl) 2,2'-Dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate (6.11): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (2:8, EtOAc:Hexanes) to yield **6.11** as a yellow solid (5 mg, 17 %). ¹H NMR (400 MHz, CDCl₃) δ = 10.73 (s, 2 H), 8.69 (s, 2 H), 7.98 - 7.86 (m, 2 H), 7.51 - 7.43 (m, 4 H), 7.37 - 7.30 (m, 4 H), 7.17 - 7.11 (m, 2 H), 7.02 - 6.95 (m, 4 H), 5.43 (s, 4 H), 3.86 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 169.99, 154.08, 137.86, 132.91, 130.50, 129.76, 129.41, 127.28, 127.15, 124.66, 123.91, 114.27, 114.14, 67.34, 55.35; HRMS (ESI+) for C₃₈H₃₀AgO₈ [M+Ag]⁺ calculated: 721.0986 found: 721.0952.

Bis(pentafluorobenzyl) 2,2'-Dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate (6.10): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (1:9, EtOAc:Hexanes) to yield **6.10** as a yellow solid (5 mg, 13 %). ¹H NMR (400 MHz, CDCl₃) δ = 10.40 (s, 2 H), 8.62 (s, 2 H), 7.95 - 7.86 (m, 2 H), 7.39 - 7.31 (m, 4 H), 7.19 - 7.10 (m, 2 H), 5.58 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 169.31, 153.88, 137.40, 133.12, 129.85, 129.81, 127.14, 124.65, 124.17, 117.07, 113.35, 54.39; ¹⁹F NMR (471 MHz, CDCl₃) δ -141.25 (d, *J* = 14.2 Hz), -151.48 (t, *J* = 21.6 Hz), -160.96 (dd, *J* = 20.6, 13.0 Hz); HRMS (ESI+) for C₃₆H₁₇F₁₀O₆[M+H]⁺ calculated: 735.0860 found: 735.0843.

Diphenyl 2,2'-Dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylate (6.12): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (1:9, EtOAc:Hexanes) to yield **6.12** as an off-white solid (8 mg, 31 %). ¹H NMR (400 MHz, CDCl₃) δ = 10.45 (s, 2 H), 8.97 (s, 2 H), 8.04 - 7.97 (m, 2 H), 7.56 - 7.46 (m, 4 H), 7.44 - 7.39 (m, 4 H), 7.39 - 7.33 (m, 2 H), 7.31 (d, *J* = 7.5 Hz, 4 H), 7.24 (d, *J* = 9.5 Hz, 2 H); ¹³C NMR (101 MHz ,CDCl₃) δ = 168.9, 154.2, 150.2, 137.6, 133.7, 130.0, 129.9, 129.8, 127.3, 126.5, 124.7, 124.3, 121.7, 117.2, 113.6; HRMS (ESI+) for C₃₄H₂₃O₆ [M+H]⁺ calculated: 527.1489 found: 527.1489.

9.2.10 - Synthesis of C₁-Symmetric BINOLs

General Procedure for Oxidative Heterocoupling of 2-Naphthols:

In a sealed-tube was added the 2-naphthol **1.77** (16.1 mg, 0.111 mmol), methyl-2-hydroxy-3naphthoate **1.76** (22.5 mg, 0.111 mmol), silver nitrate (4.0 mg, 0.022 mmol), diethylmalonate (0.1 mL of 0.1 M solution in THF, 0.011 mmol), and Cu(SIMes)Br (5.0 mg, 0.011 mmol) and dissolved in THF (1.1 mL). Upon dissolution, the solution had oxygen bubbled through it under sonication for 5 min. The reaction was then capped and stirred for 15 h in a 60 °C oil bath. The reaction was removed from the oil bath and allowed to cool to room temperature. The tube was opened, the cap rinsed with ethyl acetate and the stir-bar removed. Silica gel was added to the crude reaction mixture and the solvent was then removed *in vacuo*. The resulting solid is purified by flash chromatography on silica gel (20 % EtOAc/Hexanes) to give the product **1.78** (30.2 mg, 79%) as a yellow solid. NMR data of this compound matched that previously reported in the literature.¹²²

Methyl 6'-Bromo-2,2'-dihydroxy-1,1'-binaphthyl-3-carboxylate (7.30): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (20% EtOAc/Hexanes) to afford the product **7.30** (27.4 mg, 58 %) as a yellow solid. NMR data for this compound matched that found in the literature.⁶⁶

Methyl 6'-Bromo-2,2'-dihydroxy-1,1'-binaphthyl-3-carboxylate (7.31): Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (20% EtOAc/Hexanes) to afford the product **7.31** (31.3 mg, 75 %) as a yellow solid. NMR data for this compound matched that found in the literature.⁶⁶

Methyl 6-*tert***-Butyl-2,2'-dihydroxy-1,1'-binaphthyl-3-carboxylate (7.32):** Prepared following the general procedure for the oxidative coupling. The product was purified by flash chromatography on silica gel (20% EtOAc/Hexanes) to afford the product **7.32** (32.2 mg, 72 %) as a yellow solid. ¹H NMR (400MHz ,CDCl₃) $\delta = 10.79$ (s, 1H), 8.73 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.90 - 7.84 (m, 2H), 7.49 (dd, J = 9.0, 2.2 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.34 (ddd, J = 8.0, 6.9, 1.3 Hz, 1H), 7.26 (td, J = 7.6, 1.3 Hz, 1H), 7.14 (m, 2H), 4.98 (s, 1H), 4.08 (s, 3H), 1.39 (s, 9H); ¹³C NMR (101MHz, CDCl₃): $\delta = 170.4$, 154.6, 151.3, 147.2, 135.6, 133.8, 133.5, 130.2, 129.4, 129.2, 128.2, 127.3, 126.6, 124.6, 124.6, 124.5, 123.4, 117.6, 114.1, 114.1, 114.0, 52.8, 34.6, 31.0 ppm; HRMS (ESI+) for C₂₆H₂₅O₄ [M + H]⁺ calculated: 401.1747, found: 401.1728.

Methyl 6-*tert*-Butyl-7'-methoxy-2,2'-dihydroxy-1,1'-binaphthyl-3-carboxylate (7.34): Prepared following the general procedure for the oxidative coupling. The product was purified by silica gel column chromatography (20 % EtOAc/Hexanes) to afford the product 7.34 as a yellow solid (22.1 mg, 46 %). ¹H NMR (400MHz ,CDCl₃) δ = 10.79 (s, 1 H), 8.72 (s, 1 H), 7.88 - 7.82 (m, 2 H), 7.78 (d, *J* = 9.0 Hz, 1 H), 7.50 (dd, *J* = 2.0, 9.0 Hz, 1 H), 7.22 (d, *J* = 8.8 Hz, 1 H), 7.17 (d, *J* = 9.0 Hz, 1 H), 7.00 (dd, *J* = 2.5, 8.9 Hz, 1 H), 6.41 (d, *J* = 2.4 Hz, 1 H), 4.95 (s, 1 H), 4.08 (s, 3 H), 3.54 (s, 3 H), 1.39 (s, 9 H); ¹³C NMR (101MHz ,CDCl₃) δ = 170.4, 158.3, 154.5, 152.0, 147.2, 135.5, 134.8, 133.8, 129.9, 129.8, 129.4, 127.4, 124.7, 124.6, 124.6, 115.1, 115.0, 114.1, 114.1, 113.3, 104.3, 55.0, 52.8, 34.6, 31.0; HRMS (ESI+) for C₂₇H₂₇O₅ [M + H]⁺ calculated: 431.1853, found: 431.18596.

Methyl 6'-Bromo-6-tert-butyl-2,2'-dihydroxy-1,1'-binaphthyl-3-carboxylate (7.33):

Prepared following the general procedure for the oxidative coupling. The product was purified by silica gel column chromatography (20 % EtOAc/Hexanes) to afford the product **7.33** as a yellow solid (31.9 mg, 60 %). ¹H NMR (400MHz , CDCl₃) δ = 10.83 (s, 1 H), 8.73 (s, 1 H), 8.02 (d, *J* = 2.0 Hz, 1 H), 7.85 - 7.81 (m, 1 H), 7.66 (d, *J* = 9.7 Hz, 1 H), 7.39 (d, *J* = 9.0 Hz, 1 H), 7.31 (dd, *J* = 2.0, 9.0 Hz, 1 H), 7.13-7.09 (m, 2H), 6.99 (d, *J* = 9.0 Hz, 1 H), 5.07 (s, 1 H),

4.08 (s, 3 H), 1.39 (s, 9 H); ¹³C NMR (101MHz ,CDCl₃) δ = 170.4, 154.5, 153.7, 151.7, 134.1, 133.0, 130.1, 129.8, 129.7, 129.7, 129.5, 129.2, 128.9, 128.0, 126.6, 124.7, 124.2, 118.8, 117.0, 114.1, 109.5, 52.9, 34.6, 31.0; HRMS (ESI+) for C₂₆H₂₄BrO₄ [M + H]⁺ calculated: 479.08525, found: 479.08574.

Methyl 2-Hydroxy-1-(3-hydroxyphenanthren-4-yl)naphthalene-3-carboxylate (7.35): Prepared following the general procedure for the oxidative coupling except the quantity of 3phenanthrol (29.1 mg, 0.144 mmol) was increased. The product was purified by flash chromatography on silica gel (20% EtOAc/Hexanes) to afford the product 7.35 (21.4 mg, 49%) as a yellow solid. NMR data for this compound matched that found in the literature.⁶⁶

3-Nitro-1,1'-binapthalene-2,2'-diol (7.42): Prepared following the general procedure for the oxidative coupling except the quantity of diethylmalonate was increased (0.5 mL of a 0.1M solution in THF, 0.056 mmol). The product was purified by flash chromatography on silica gel (15% EtOAc/Hexanes) to afford the product **7.42** (26.1 mg, 71%) as a red solid. ¹H NMR (400MHz, CDCl₃) δ ppm 10.27 (s, 1H), 9.01 (s, 1H), 8.03 (m, 1H), 7.97 (d, *J* = 9.2 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.49 (m, 2H), 7.36 (m, 2H), 7.30 (m, 1H), 7.25 (m, 1H), 7.05 (d, *J* = 8.4Hz, 1H) 4.90 (s, 1H) ¹³C NMR (CDCl₃, 75MHz) δ ppm 151.3, 148.0, 138.1, 134.6, 133.2, 131.8, 130.8, 130.5, 129.3, 128.4, 128.2, 127.0, 126.8, 126.0, 125.08, 124.1, 123.7, 118.2, 117.8, 112.9 HRMS (ESI+) for C₂₀H₁₄NO₄ [M+H⁺] calculated: 332.0917, found: 332.0928.

3-Bromo-1,1'-binaphthalene-2,2'-diol (7.43): Prepared following the general procedure for the oxidative coupling except the quantity of 2-naphthol was increased (20.7 mg, 0.144 mmol). The product was purified by flash chromatography on silica gel (15% EtOAc/Hexanes) to afford the product **7.43** (25 mg, 62 %) as a yellow solid. NMR data for this compound matched that found in the literature.¹⁵⁶

¹⁵⁶ Harada, T., Kanda, K. Org. Lett. 2006, 8, 3817.

Dimethyl 2,2'-Dihydroxy-1,1'-binaphthyl-3-phosphate (7.39): Prepared following the general procedure for the oxidative coupling. The product was purified by silica gel column chromatography (1 % MeOH/DCM) to afford the product **7.39** as a yellow solid (34.5 mg, 77 %). ¹H NMR (400MHz , CDCl₃) δ = 9.87 (d, *J* = 0.9 Hz, 1H), 8.30 (s, 1H), 7.99 - 7.85 (m, 3H), 7.44 - 7.31 (m, 4H), 7.26 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.21 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.04 (s, 1H), 3.92 (d, *J* = 4.0 Hz, 3H), 3.89 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (176MHz ,CDCl₃) δ = 155.0 (d, J = 7.8 Hz), 151.4, 137.1, 136.0 (d, J = 5.2 Hz), 133.3, 130.4, 129.8, 129.2 (d, J = 9.8 Hz), 128.3, 127.8, 126.7, 124.9, 124.6, 124.5, 123.4, 117.7, 114.4 (d, J = 11.7 Hz), 113.8 (d, J = 1.9 Hz), 112.1, 111.1, 53.5 (d, J = 5.9 Hz), 53.4 (d, J = 5.2 Hz); HRMS (ESI+) for C₂₂H₂₀O₅P [M+H⁺] calculated: 395.1043, found: 395.1048.

Dimethyl 6'-Bromo-2,2'-dihydroxy-1,1'-binaphthyl-3-phosphate (7.40): Prepared following the general procedure for the oxidative coupling. The product was purified by silica gel column chromatography (2.5 % MeOH/DCM) to afford the product **7.40** as a brown solid (25 mg, 48 %). ¹H NMR (400MHz ,CDCl₃) δ = 10.03 (s, 1H), 8.27 (d, *J* = 16.1 Hz, 1H), 8.03 (s, 1H), 7.97 - 7.89 (m, 1H), 7.84 (d, *J* = 8.8 Hz, 1H), 7.47 - 7.35 (m, 3H), 7.31 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.21 - 7.11 (m, 1H), 6.96 (d, *J* = 9.0 Hz, 1H), 5.05 (s, 1H), 3.93 (d, *J* = 4.0 Hz, 3H), 3.90 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (176MHz ,CDCl₃) δ = 155.1 (d, *J* = 7.8 Hz), 151.7, 137.0 (d, *J* = 2.6 Hz), 136.2 (d, *J* = 5.9 Hz), 131.9, 130.3, 130.0, 129.9, 129.4, 129.3, 127.7, 127.7, 126.4, 124.7, 118.9, 117.2, 114.2 (d, *J* = 1.3 Hz), 113.8 (d, *J* = 11.7 Hz), 112.1, 111.1, 53.5 (d, *J* = 5.2 Hz), 53.5 (d, *J* = 5.2 Hz); HRMS (ESI+) for C₂₂H₁₉BrO₅P [M+H⁺] calculated: 473.0148, found: 473.0169.

Dimethyl 7'-Methoxy-2,2'-dihydroxy-1,1'-binaphthyl-3-phosphate (7.41): Prepared following the general procedure for the oxidative coupling. The product was purified by silica gel column chromatography (2.5 % MeOH/DCM) to afford the product 7.41 as a red solid (29.2

mg, 62 %). ¹H NMR (400MHz ,CDCl₃) δ = 9.66 (s, 1H), 8.28 (d, *J* = 16.3 Hz, 1H), 7.95 - 7.89 (m, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.44 - 7.36 (m, 2H), 7.22 (d, *J* = 9.0 Hz, 1H), 7.01 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.45 - 6.38 (m, 1H), 5.10 (s, 1H), 3.91 (d, *J* = 5.3 Hz, 3H), 3.88 (d, *J* = 5.5 Hz, 3H), 3.54 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 158.4, 154.9(d, J = 7.2 Hz), 152.1, 136.9 (d, J = 2.6 Hz), 136.1 (d, J = 5.9 Hz), 134.7, 130.1, 129.9 (d, J = 11.1 Hz), 129.2, 127.8 (d, J = 15.6 Hz), 125.0, 124.7, 124.6, 115.2, 115.0, 114.5, 112.8, 112.2, 111.2, 104.2, 55.0, 53.5 (d, J = 5.2 Hz), 53.3(d, J = 5.2 Hz); HRMS (ESI+) for C₂₃H₂₂O₆P [M+H⁺] calculated: 425.1148, found: 425.1163.

Methyl 2'-Amino-2-hydroxy-1,1'-binaphthalene-3-carboxylate (7.36): Prepared following the general procedure for the oxidative coupling except 2-naphthylamine (20.6 mg, 0.144 mmol) was used. The product was purified by flash chromatography on silica gel (10% EtOAc/Hexanes) to afford the product **7.36** (25 mg, 67 %) as a yellow solid. NMR data for this compound matched that found in the literature.¹⁵⁷

Methyl 3'-Hydroxymethyl-2,2'-dihydroxy-1,1'-binaphthalene-3-carboxylate (7.37): Prepared following the general procedure with the exception that 3-hydroxymethyl-2-naphthol (39 mg, 0.22 mmol) was used. The product was purified by flash chromatography on silica gel (2:8, EtOAc:Hexanes) to afford biaryl 7.37 (6 mg, 14 %). NMR data for compound 7.37 agreed with those found in the literature.⁶⁶

¹⁵⁷ Smrcina, M., Vykskocil, S., Maca, B., Polasek, M., Claxton, T. A., Abbott, A. P., Kocovsky, P. J. Org. Chem. **1994**, *59*, 2156-2163.

Menthyl 2,2'-Dihydroxy-1,1'-binaphthalene-3-carboxylate (7.38): Prepared following the general procedure except that menthol ester **7.38** (36 mg, 0.11 mmol) and an excess of 2-naphthol (32 mg, 0.22 mmol) were used. The product was purified by column chromatography on silica gel (2:8; EtOAc:Hexanes) to afford coupling product **7.38** (16 mg, 31 %). NMR data for compound **7.38** agreed with those found in the literature.⁶⁶

Appendix I: NMR Data

Alkyl Halides

Imidazolines

¹H NMR spectrum of **3.18**:

¹H NMR spectrum of **3.28**:

¹³C NMR spectrum of **3.28**:

¹H NMR spectrum of **3.29**:

¹H NMR spectrum of **3.30**:

¹³C NMR spectrum of **3.30**:

¹H NMR spectrum of **3.31**:

¹³C NMR spectrum of **3.31**:

Imidazolinium Salts

¹H NMR spectrum of **3.32**:

¹³C NMR spectrum of **3.32**:

t-Bu t-Bu Me-N* BF_4^-

¹H NMR spectrum of **3.34**:

¹³C NMR spectrum of **3.34**:

¹H NMR spectrum of **3.35**:

¹³C NMR spectrum of **3.35**:

¹H NMR spectrum of **3.36**:

¹³C NMR spectrum of **3.36**:

¹H NMR spectrum of **3.37**:

¹³C NMR spectrum of **3.37**:

Metal Complexes

¹H NMR spectrum of **4.1**:

¹³C NMR spectrum of **4.1**:

¹H NMR spectrum of **4.3**:

¹³C NMR spectrum of **4.3**:

¹³C NMR spectrum of **4.2b**:

¹H NMR spectrum of **4.4**:

¹³C NMR spectrum of **4.4**:

¹³C NMR spectrum of **4.5**:

¹H NMR spectrum of **4.6**:

2-Naphthols

C₂-Symmetric BINOLS

¹⁹F NMR Spectrum of **6.10**:

C₁-Symmetric BINOLS

Appendix II: HPLC Data

Method: 1 mL/min 10 % i-PrOH, 90 % Hexane; chiralpak AD-H

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

DAD1 A, Sig=254,4 Ref=360,100 (C:\CHEM32\1\DATA\COLLINS\MIKE\MIKE 2011-04-06 15-20-12\MM-02-183D.D)

Entry 8

Appendix III: X-Ray Data

Crystallographic Parameters for Complex 4.1 (CCDC-913107)

F(000)	1040
Crystal size	0.13 x 0.10 x 0.03 mm
Theta range for data collection	4.20 to 69.35°
Index ranges	$-13 \le h \le 13$, $-16 \le k \le 12$, $-19 \le \ell \le 19$
Reflections collected	49781
Independent reflections	$4644 [R_{int} = 0.052]$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9326 and 0.7088
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4644 / 0 / 290
Goodness-of-fit on F^2	1.056
Final R indices [I>2sigma(I)]	$R_1 = 0.0306$, $wR_2 = 0.0818$
R indices (all data)	$R_1 = 0.0322$, $wR_2 = 0.0833$
Absolute structure parameter	0.004(14)
Largest diff. peak and hole	0.524 and -0.289 e/Å ³

Crystallographic Parameters for Complex 4.2 (DCM solvate) (CCDC-947160)

Empirical formula (solvent)	C33 H38 Cu I N2 • C H2 C12
Empirical formula	C34 H40 Cl2 Cu I N2
Formula weight	738.02
Temperature	150К
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	a = 12.4293(3) Å α = 90° b = 15.5759(3) Å β = 90° c = 16.8950(4) Å γ = 90°
Volume	3270.83(13)Å ³
Z	4
Density (calculated)	1.499 g/cm ³
Absorption coefficient	10.038 mm ⁻¹
F(000)	1496
Crystal size	0.13 x 0.09 x 0.05 mm
Theta range for data collection	3.86 to 69.36°
Index ranges	$-15 \le h \le 12$, $-18 \le k \le 18$, $-20 \le \ell \le 20$
Reflections collected	56989

Independent reflections	5888 [Rint = 0.044]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6054 and 0.4197
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5888 / 0 / 369
Goodness-of-fit on F^2	1.077
Final R indices [I>2sigma(I)]	R ₁ = 0.0276, wR ₂ = 0.0779
R indices (all data)	R ₁ = 0.0281, wR ₂ = 0.0783
Absolute structure parameter	0.018(4)
Extinction coefficient	0.00065(7)
Largest diff. peak and hole	0.489 and -0.534 e/Å ³

Crystallographic Information for Complex 4.5:

Label	Xfrac + ESD	Yfrac + ESD	Zfrac + ESD
Au1	0.29446(5)	0.35688(3)	0.54002(2)
I1	0.36785(10)	0.36685(6)	0.60570(2)
N1	0.2229(10)	0.4220(6)	0.4658(2)
N2	0.2156(11)	0.2807(6)	0.4699(2)
C1	0.2403(11)	0.3544(7)	0.4879(3)
C2	0.1992(12)	0.2942(7)	0.4306(3)
H2	0.1149	0.2638	0.4223
C3	0.1736(11)	0.3932(8)	0.4298(3)
H3	0.2337	0.4192	0.4109
C4	0.2591(11)	0.5133(7)	0.4732(3)
H4	0.2392	0.5447	0.4502
C5	0.1717(11)	0.5567(8)	0.5010(3)
C6	0.1753(11)	0.6508(7)	0.5033(3)
C7	0.0988(14)	0.6921(9)	0.5292(4)
H7	0.1029	0.7533	0.5311
C8	0.0139(15)	0.6452(11)	0.5533(4)
H8	-0.0369	0.674	0.5715
C9	0.0073(12)	0.5574(8)	0.5495(3)
H9	-0.0515	0.5254	0.5649
C10	0.0820(12)	0.5148(7)	0.5245(3)
H10	0.0731	0.4539	0.5228
C11	0.2619(15)	0.7036(8)	0.4777(4)
H11A	0.3559	0.7057	0.4867
H11B	0.2254	0.7624	0.4762
H11C	0.2606	0.6769	0.4538
C12	0.4127(12)	0.5247(7)	0.4791(3)
C13	0.4993(14)	0.5440(10)	0.4491(4)
C14	0.6416(14)	0.5562(9)	0.4571(4)
H14	0.7024	0.5682	0.4378
C15	0.6922(13)	0.5513(9)	0.4908(4)
H15	0.7872	0.559	0.4947
C16	0.6071(14)	0.5353(8)	0.5198(4)
H16	0.643	0.5336	0.5436
C17	0.4663(13)	0.5215(8)	0.5138(4)
H17	0.4079	0.5099	0.5337
C18	0.4551(18)	0.5555(13)	0.4115(4)
H18A	0.3746	0.593	0.4109
H18B	0.4323	0.4992	0.4011
H18C	0.5289	0.5821	0.3976
C19	0.1869(13)	0.1988(7)	0.4870(3)

Table 1: List of Atoms

H19A	0.1033	0.1743	0.4767
H19B	0.175	0.2074	0.513
H19C	0.263	0.159	0.4827
C20	0.3218(13)	0.2608(8)	0.4088(3)
C21	0.4581(14)	0.3000(12)	0.4235(4)
H21A	0.4587	0.3625	0.4193
H21B	0.5354	0.2735	0.4109
H21C	0.4654	0.2886	0.4494
C22	0.327(2)	0.1626(10)	0.4097(4)
H22A	0.3503	0.1433	0.4341
H22B	0.396	0.1421	0.3927
H22C	0.2376	0.1393	0.4029
C23	0.3055(14)	0.2869(8)	0.3695(3)
H23A	0.2158	0.2685	0.3608
H23B	0.3768	0.2592	0.355
H23C	0.3134	0.3498	0.3674
C24	0.0223(11)	0.4183(7)	0.4213(3)
C25	-0.0752(12)	0.3795(8)	0.4490(3)
H25A	-0.0691	0.3164	0.4482
H25B	-0.1687	0.3974	0.4434
H25C	-0.0504	0.3999	0.4731
C26	0.0044(12)	0.5181(7)	0.4206(3)
H26A	-0.0879	0.5324	0.4124
H26B	0.0712	0.5436	0.4041
H26C	0.0186	0.5413	0.4449
C27	-0.0135(12)	0.3858(8)	0.3832(3)
H27A	-0.0032	0.3229	0.3822
H27B	0.0478	0.4126	0.3655
H27C	-0.108	0.4013	0.3775
Au2	0.22064(5)	0.39202(3)	0.28475(2)
I2	0.26762(13)	0.53230(6)	0.31838(3)
N31	0.2762(10)	0.2371(6)	0.2381(2)
N32	0.0804(10)	0.2283(6)	0.2661(3)
C31	0.1936(11)	0.2767(7)	0.2599(3)
C32	0.0949(11)	0.1405(8)	0.2510(3)
H32	0.0128	0.1281	0.2358
C33	0.2197(12)	0.1521(7)	0.2254(3)
H33	0.2877	0.1054	0.2302
C34	0.4185(11)	0.2620(8)	0.2299(3)
H34	0.4599	0.2102	0.2181
C35	0.5038(13)	0.2769(10)	0.2645(3)
C36	0.5595(13)	0.2051(13)	0.2829(4)
C37	0.6295(15)	0.2207(17)	0.3145(4)

H37	0.6663	0.1729	0.3273
C38	0.6481(16)	0.3002(19)	0.3279(4)
H38	0.6948	0.3075	0.3501
C39	0.5973(16)	0.3757(17)	0.3086(5)
H39	0.6126	0.4324	0.3174
C40	0.5260(13)	0.3618(12)	0.2770(4)
H40	0.4919	0.4095	0.2636
C41	0.5499(16)	0.1150(12)	0.2697(4)
H41A	0.4547	0.0959	0.2705
H41B	0.6056	0.0773	0.285
H41C	0.5831	0.1121	0.2448
C42	0.4320(13)	0.3355(7)	0.2019(3)
C43	0.5558(13)	0.3436(9)	0.1831(3)
C44	0.5651(14)	0.4062(9)	0.1560(3)
H44	0.6483	0.4126	0.1431
C45	0.4559(15)	0.4590(9)	0.1476(3)
H45	0.4641	0.5007	0.1289
C46	0.3344(15)	0.4509(8)	0.1664(3)
H46	0.2596	0.4877	0.1611
C47	0.3234(13)	0.3878(8)	0.1933(3)
H47	0.2396	0.381	0.2058
C48	0.6750(13)	0.2844(11)	0.1900(4)
H48A	0.6998	0.2869	0.2156
H48B	0.7529	0.3028	0.1753
H48C	0.6499	0.2251	0.1836
C49	-0.0406(12)	0.2570(8)	0.2847(4)
H49A	-0.0403	0.2343	0.3094
H49B	-0.1216	0.236	0.272
H49C	-0.0421	0.3203	0.2854
C50	0.1055(12)	0.0688(8)	0.2806(3)
C51	0.1922(13)	0.1004(8)	0.3127(3)
H51A	0.1515	0.1529	0.3228
H51B	0.285	0.1129	0.3044
H51C	0.1951	0.0553	0.3313
C52	-0.0395(15)	0.0480(10)	0.2941(4)
H52A	-0.0343	0.006	0.3138
H52B	-0.0932	0.0237	0.2742
H52C	-0.0831	0.101	0.3028
C53	0.1640(17)	-0.0150(8)	0.2656(4)
H53A	0.1532	-0.0612	0.2834
H53B	0.2611	-0.0071	0.2602
H53C	0.1155	-0.0306	0.2434
C54	0.1779(12)	0.1502(8)	0.1848(3)

C55	0.1246(16)	0.0596(10)	0.1766(4)
H55A	0.2004	0.0183	0.1772
H55B	0.0829	0.059	0.1525
H55C	0.0563	0.0433	0.1946
C56	0.3014(14)	0.1660(9)	0.1604(3)
H56A	0.3398	0.2232	0.1655
H56B	0.273	0.1633	0.1351
H56C	0.3706	0.1217	0.165
C57	0.0684(13)	0.2175(9)	0.1762(3)
H57A	-0.0192	0.1984	0.1861
H57B	0.0605	0.2241	0.15
H57C	0.0937	0.2729	0.1871
Cl1	0.4210(5)	0.7490(3)	0.56991(12)
Cl2	0.5270(6)	0.6105(3)	0.61495(14)
C58	0.381(2)	0.6569(11)	0.5945(5)
H58A	0.338	0.6138	0.5783
H58B	0.3138	0.672	0.6135

Table 2: List of Bonds

I

-

Atom1	Atom2	Length
Aul	I1	2.544(1)
Au1	C1	2.00(1)
N1	C1	1.34(1)
N1	C3	1.49(1)
N1	C4	1.48(1)
N2	C1	1.34(1)
N2	C2	1.48(1)
N2	C19	1.45(1)
C2	H2	1.00(1)
C2	C3	1.55(2)
C2	C20	1.54(2)
C3	H3	1.00(1)
C3	C24	1.57(2)
C4	H4	1.00(1)
C4	C5	1.50(2)
C4	C12	1.53(2)
C5	C6	1.46(2)
C5	C10	1.40(2)
C6	C7	1.38(2)
C6	C11	1.51(2)
C7	H7	0.95(1)

C7	C8	1.42(2)
C8	H8	0.95(2)
C8	C9	1.37(2)
C9	Н9	0.95(1)
C9	C10	1.35(2)
C10	H10	0.95(1)
C11	H11A	0.98(1)
C11	H11B	0.98(1)
C11	H11C	0.98(1)
C12	C13	1.43(2)
C12	C17	1.39(2)
C13	C14	1.44(2)
C13	C18	1.47(2)
C14	H14	0.95(1)
C14	C15	1.35(2)
C15	H15	0.95(1)
C15	C16	1.38(2)
C16	H16	0.95(1)
C16	C17	1.42(2)
C17	H17	0.95(1)
C18	H18A	0.98(2)
C18	H18B	0.98(2)
C18	H18C	0.98(2)
C19	H19A	0.98(1)
C19	H19B	0.98(1)
C19	H19C	0.98(1)
C20	C21	1.57(2)
C20	C22	1.52(2)
C20	C23	1.52(2)
C21	H21A	0.98(2)
C21	H21B	0.98(1)
C21	H21C	0.98(1)
C22	H22A	0.98(2)
C22	H22B	0.98(2)
C22	H22C	0.98(2)
C23	H23A	0.98(1)
C23	H23B	0.98(1)
C23	H23C	0.98(1)
C24	C25	1.53(2)
C24	C26	1.56(2)
C24	C27	1.54(2)
C25	H25A	0.98(1)
C25	H25B	0.98(1)

C25	H25C	0.98(1)
C26	H26A	0.98(1)
C26	H26B	0.98(1)
C26	H26C	0.98(1)
C27	H27A	0.98(1)
C27	H27B	0.98(1)
C27	H27C	0.98(1)
Au2	I2	2.546(1)
Au2	C31	2.03(1)
N31	C31	1.30(1)
N31	C33	1.50(1)
N31	C34	1.48(1)
N32	C31	1.36(1)
N32	C32	1.48(2)
N32	C49	1.44(2)
C32	H32	1.00(1)
C32	C33	1.56(2)
C32	C50	1.56(2)
C33	H33	1.00(1)
C33	C54	1.56(2)
C34	H34	1.00(1)
C34	C35	1.55(2)
C34	C42	1.55(2)
C35	C36	1.41(2)
C35	C40	1.41(2)
C36	C37	1.38(2)
C36	C41	1.48(3)
C37	H37	0.95(2)
C37	C38	1.34(4)
C38	H38	0.95(2)
C38	C39	1.46(3)
C39	H39	0.95(3)
C39	C40	1.38(2)
C40	H40	0.95(2)
C41	H41A	0.98(2)
C41	H41B	0.98(2)
C41	H41C	0.98(1)
C42	C43	1.41(2)
C42	C47	1.38(2)
C43	C44	1.40(2)
C43	C48	1.51(2)
C44	H44	0.95(1)
C44	C45	1.38(2)

C45	H45	0.95(1)
C45	C46	1.39(2)
C46	H46	0.95(1)
C46	C47	1.40(2)
C47	H47	0.95(1)
C48	H48A	0.98(1)
C48	H48B	0.98(1)
C48	H48C	0.98(2)
C49	H49A	0.98(1)
C49	H49B	0.98(1)
C49	H49C	0.98(1)
C50	C51	1.54(2)
C50	C52	1.54(2)
C50	C53	1.52(2)
C51	H51A	0.98(1)
C51	H51B	0.98(1)
C51	H51C	0.98(1)
C52	H52A	0.98(2)
C52	H52B	0.98(1)
C52	H52C	0.98(2)
C53	H53A	0.98(1)
C53	H53B	0.98(2)
C53	H53C	0.98(2)
C54	C55	1.53(2)
C54	C56	1.53(2)
C54	C57	1.53(2)
C55	H55A	0.98(2)
C55	H55B	0.98(1)
C55	H55C	0.98(2)
C56	H56A	0.98(1)
C56	H56B	0.98(1)
C56	H56C	0.98(1)
C57	H57A	0.98(1)
C57	H57B	0.98(1)
C57	H57C	0.98(1)
Cl1	C58	1.74(2)
Cl2	C58	1.77(2)
C58	H58A	0.99(2)
C58	H58B	0.99(2)

Atom1	Atom2	Atom3	Angle
I1	Au1	C1	177.4(3)
C1	N1	C3	110.8(9)
C1	N1	C4	126.9(9)
C3	N1	C4	122.0(9)
C1	N2	C2	112.9(9)
C1	N2	C19	124.2(9)
C2	N2	C19	122.3(9)
Au1	C1	N1	127.5(8)
Au1	C1	N2	122.9(8)
N1	C1	N2	109.7(9)
N2	C2	H2	109(1)
N2	C2	C3	100.1(9)
N2	C2	C20	112.6(9)
H2	C2	C3	109(1)
H2	C2	C20	109(1)
C3	C2	C20	116.6(9)
N1	C3	C2	103.1(9)
N1	C3	Н3	108(1)
N1	C3	C24	114.5(9)
C2	C3	Н3	108(1)
C2	C3	C24	113.7(9)
Н3	C3	C24	109(1)
N1	C4	H4	105.0(9)
N1	C4	C5	114.7(9)
N1	C4	C12	111.8(9)
H4	C4	C5	104.9(9)
H4	C4	C12	104.9(9)
C5	C4	C12	114.3(9)
C4	C5	C6	118(1)
C4	C5	C10	125(1)
C6	C5	C10	116(1)
C5	C6	C7	119(1)
C5	C6	C11	121(1)
C7	C6	C11	120(1)
C6	C7	H7	119(1)
C6	C7	C8	121(1)
H7	C7	C8	119(1)
C7	C8	H8	121(1)
C7	C8	C9	118(1)
H8	C8	C9	121(1)

Table 3: List of Angles

C8	C9	Н9	119(1)
C8	C9	C10	122(1)
H9	C9	C10	119(1)
C5	C10	С9	123(1)
C5	C10	H10	119(1)
C9	C10	H10	119(1)
C6	C11	H11A	109(1)
C6	C11	H11B	109(1)
C6	C11	H11C	109(1)
H11A	C11	H11B	109(1)
H11A	C11	H11C	110(1)
H11B	C11	H11C	110(1)
C4	C12	C13	120(1)
C4	C12	C17	120(1)
C13	C12	C17	120(1)
C12	C13	C14	116(1)
C12	C13	C18	126(1)
C14	C13	C18	118(1)
C13	C14	H14	119(1)
C13	C14	C15	123(1)
H14	C14	C15	119(1)
C14	C15	H15	120(1)
C14	C15	C16	121(1)
H15	C15	C16	120(1)
C15	C16	H16	120(1)
C15	C16	C17	120(1)
H16	C16	C17	120(1)
C12	C17	C16	121(1)
C12	C17	H17	120(1)
C16	C17	H17	120(1)
C13	C18	H18A	109(2)
C13	C18	H18B	109(2)
C13	C18	H18C	109(2)
H18A	C18	H18B	110(2)
H18A	C18	H18C	110(2)
H18B	C18	H18C	110(2)
N2	C19	H19A	109(1)
N2	C19	H19B	110(1)
N2	C19	H19C	109(1)
H19A	C19	H19B	110(1)
H19A	C19	H19C	109(1)
H19B	C19	H19C	110(1)
C2	C20	C21	111(1)

C2	C20	C22	111(1)
C2	C20	C23	109(1)
C21	C20	C22	111(1)
C21	C20	C23	109(1)
C22	C20	C23	107(1)
C20	C21	H21A	109(1)
C20	C21	H21B	109(1)
C20	C21	H21C	110(1)
H21A	C21	H21B	109(1)
H21A	C21	H21C	109(2)
H21B	C21	H21C	110(2)
C20	C22	H22A	109(1)
C20	C22	H22B	109(1)
C20	C22	H22C	109(1)
H22A	C22	H22B	110(2)
H22A	C22	H22C	109(2)
H22B	C22	H22C	109(2)
C20	C23	H23A	109(1)
C20	C23	H23B	110(1)
C20	C23	H23C	109(1)
H23A	C23	H23B	109(1)
H23A	C23	H23C	110(1)
H23B	C23	H23C	110(1)
C3	C24	C25	111.1(9)
C3	C24	C26	110.9(9)
C3	C24	C27	108.6(9)
C25	C24	C26	109.4(9)
C25	C24	C27	110.2(9)
C26	C24	C27	106.5(9)
C24	C25	H25A	110(1)
C24	C25	H25B	109(1)
C24	C25	H25C	109(1)
H25A	C25	H25B	109(1)
H25A	C25	H25C	110(1)
H25B	C25	H25C	110(1)
C24	C26	H26A	109(1)
C24	C26	H26B	110(1)
C24	C26	H26C	109(1)
H26A	C26	H26B	109(1)
H26A	C26	H26C	109(1)
H26B	C26	H26C	109(1)
C24	C27	H27A	110(1)
C24	C27	H27B	110(1)

C24	C27	H27C	109(1)
H27A	C27	H27B	109(1)
H27A	C27	H27C	109(1)
H27B	C27	H27C	109(1)
I2	Au2	C31	176.1(3)
C31	N31	C33	112.2(9)
C31	N31	C34	126.4(9)
C33	N31	C34	120.8(9)
C31	N32	C32	111.4(9)
C31	N32	C49	126(1)
C32	N32	C49	123(1)
Au2	C31	N31	128.1(8)
Au2	C31	N32	121.0(8)
N31	C31	N32	111(1)
N32	C32	H32	108(1)
N32	C32	C33	101.6(9)
N32	C32	C50	113.2(9)
H32	C32	C33	108(1)
H32	C32	C50	108(1)
C33	C32	C50	117.2(9)
N31	C33	C32	101.5(8)
N31	C33	H33	109.4(9)
N31	C33	C54	114.5(9)
C32	C33	H33	109(1)
C32	C33	C54	112.3(9)
H33	C33	C54	109(1)
N31	C34	H34	105.3(9)
N31	C34	C35	112.2(9)
N31	C34	C42	114.2(9)
H34	C34	C35	105(1)
H34	C34	C42	105(1)
C35	C34	C42	114(1)
C34	C35	C36	119(1)
C34	C35	C40	120(1)
C36	C35	C40	121(1)
C35	C36	C37	118(1)
C35	C36	C41	124(1)
C37	C36	C41	119(1)
C36	C37	H37	118(2)
C36	C37	C38	123(2)
H37	C37	C38	119(2)
C37	C38	H38	120(2)
C37	C38	C39	121(2)

H38	C38	C39	120(2)
C38	C39	H39	121(2)
C38	C39	C40	118(2)
H39	C39	C40	121(2)
C35	C40	C39	120(1)
C35	C40	H40	120(1)
C39	C40	H40	120(2)
C36	C41	H41A	110(1)
C36	C41	H41B	110(1)
C36	C41	H41C	109(1)
H41A	C41	H41B	110(2)
H41A	C41	H41C	109(2)
H41B	C41	H41C	109(2)
C34	C42	C43	118(1)
C34	C42	C47	122(1)
C43	C42	C47	120(1)
C42	C43	C44	118(1)
C42	C43	C48	122(1)
C44	C43	C48	120(1)
C43	C44	H44	119(1)
C43	C44	C45	121(1)
H44	C44	C45	119(1)
C44	C45	H45	120(1)
C44	C45	C46	120(1)
H45	C45	C46	120(1)
C45	C46	H46	120(1)
C45	C46	C47	119(1)
H46	C46	C47	120(1)
C42	C47	C46	121(1)
C42	C47	H47	119(1)
C46	C47	H47	119(1)
C43	C48	H48A	109(1)
C43	C48	H48B	109(1)
C43	C48	H48C	109(1)
H48A	C48	H48B	109(1)
H48A	C48	H48C	109(1)
H48B	C48	H48C	109(1)
N32	C49	H49A	109(1)
N32	C49	H49B	110(1)
N32	C49	H49C	109(1)
H49A	C49	H49B	109(1)
H49A	C49	H49C	109(1)
H49B	C49	H49C	109(1)

C32	C50	C51	110.7(9)
C32	C50	C52	108(1)
C32	C50	C53	112(1)
C51	C50	C52	109(1)
C51	C50	C53	110(1)
C52	C50	C53	107(1)
C50	C51	H51A	109(1)
C50	C51	H51B	109(1)
C50	C51	H51C	109(1)
H51A	C51	H51B	110(1)
H51A	C51	H51C	109(1)
H51B	C51	H51C	110(1)
C50	C52	H52A	109(1)
C50	C52	H52B	109(1)
C50	C52	H52C	110(1)
H52A	C52	H52B	110(1)
H52A	C52	H52C	109(1)
H52B	C52	H52C	110(1)
C50	C53	H53A	110(1)
C50	C53	H53B	110(1)
C50	C53	H53C	109(1)
H53A	C53	H53B	109(1)
H53A	C53	H53C	109(1)
H53B	C53	H53C	109(1)
C33	C54	C55	107(1)
C33	C54	C56	111(1)
C33	C54	C57	112(1)
C55	C54	C56	107(1)
C55	C54	C57	110(1)
C56	C54	C57	109(1)
C54	C55	H55A	110(1)
C54	C55	H55B	109(1)
C54	C55	H55C	110(1)
H55A	C55	H55B	109(1)
H55A	C55	H55C	110(1)
H55B	C55	H55C	109(1)
C54	C56	H56A	110(1)
C54	C56	H56B	110(1)
C54	C56	H56C	109(1)
H56A	C56	H56B	109(1)
H56A	C56	H56C	109(1)
H56B	C56	H56C	110(1)
C54	C57	H57A	109(1)

C54	C57	H57B	109(1)
C54	C57	H57C	109(1)
H57A	C57	H57B	109(1)
H57A	C57	H57C	109(1)
H57B	C57	H57C	110(1)
Cl1	C58	Cl2	112(1)
Cl1	C58	H58A	109(1)
Cl1	C58	H58B	109(1)
Cl2	C58	H58A	109(1)
Cl2	C58	H58B	109(1)
H58A	C58	H58B	108(2)

Crystallographic Information for Compound 6.1

Empirical formula	C24 H18 N2 O10
Formula weight	494.40
Temperature	100K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	a = 10.2650(2) Å α = 90° b = 30.2487(5) Å β = 106.173(1)° c = 7.2124(1) Å γ = 90°
Volume	2150.84(6)Å ³
Z	4
Density (calculated)	1.527 g/cm ³
Absorption coefficient	1.033 mm ⁻¹
F(000)	1024
Crystal size	0.08 x 0.03 x 0.02 mm
Theta range for data collec	tion 2.92 to 70.95°
Index ranges	$-12 \le h \le 12$, $-36 \le k \le 36$, $-6 \le \ell \le 8$

TTTT

Reflections collected	38170
Independent reflections	4071 [$R_{int} = 0.024$]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9796 and 0.8489
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4071 / 0 / 335
Goodness-of-fit on F^2	1.037
Final R indices [I>2sigma(I)]	R ₁ = 0.0346, wR ₂ = 0.0991
R indices (all data)	$R_1 = 0.0397$, $wR_2 = 0.1044$
Largest diff. peak and hole	0.280 and -0.206 e/Å ³

Label Xfrac + ESD Yfrac + ESD Zfrac + ESD 012 0.28807(9)0.92420(3)0.03078(13)H12 0.220(2) 0.9402(7) -0.032(3)013 0.47413(12) 0.86730(3) 0.36427(17) 014 0.57518(12) 0.86895(3) 0.13981(18) N13 0.51860(10) 0.88681(3) 0.24697(16) O21 0.14269(8) 0.99526(3) -0.08337(12)022 0.23102(8) 1.06150(3) 0.02395(12) C11 0.99919(4) 0.36782(11)0.12516(17) C12 0.95218(4) 0.12950(17) 0.38468(12) C13 0.50494(12)0.93527(4)0.23926(17) C14 0.96092(4)0.34699(17) 0.61542(12)C15 0.73945(12)0.94293(4)0.46051(18) H15 0.7522 0.9118 0.4678 C16 0.84113(12) 0.97049(4) 0.55981(18) 0.924 0.9582 H16 0.6359 C17 0.82443(12) 1.01677(4) 0.55062(18) 1.0354 H17 0.8962 0.6194 0.70517(12) C18 1.03505(4) 0.44296(17) H18 0.6946 1.0663 0.4385 C19 0.59742(11) 1.00775(4) 0.33818(17) C20 0.47276(12) 1.02551(4)0.22711(17) H20 0.461 1.0567 0.2227 C21 0.23627(11) 1.01778(4) 0.01121(17)

1.08185(4)

-0.0857(2)

C22

0.10515(13)

Table 1: List of Atoms

H22A	0.092	1.0765	-0.2237
H22B	0.1091	1.1137	-0.0611
H22C	0.0293	1.069	-0.0464
O32	-0.17411(9)	0.82338(3)	0.40544(13)
H32	-0.239(2)	0.8072(6)	0.336(3)
O33	0.03791(11)	0.88151(3)	0.76437(16)
O34	0.08122(11)	0.87955(3)	0.48800(15)
N33	0.05379(10)	0.86188(3)	0.62467(16)
O41	-0.30690(8)	0.75107(3)	0.26846(13)
O42	-0.22118(8)	0.68569(3)	0.39097(13)
C31	-0.08951(11)	0.74872(4)	0.49910(17)
C32	-0.07631(11)	0.79583(4)	0.50577(17)
C33	0.04143(12)	0.81341(4)	0.62122(17)
C34	0.15221(12)	0.78838(4)	0.73129(17)
C35	0.27405(12)	0.80709(4)	0.84875(17)
H35	0.2837	0.8383	0.8601
C36	0.37763(12)	0.78005(4)	0.94568(18)
H36	0.4588	0.7927	1.0247
C37	0.36582(12)	0.73367(4)	0.93015(17)
H37	0.4396	0.7155	0.9966
C38	0.24884(12)	0.71466(4)	0.82002(17)
H38	0.2414	0.6834	0.8119
C39	0.13863(11)	0.74143(4)	0.71783(17)
C40	0.01682(11)	0.72294(4)	0.60242(17)
H40	0.0077	0.6917	0.5956
C41	-0.21669(12)	0.72933(4)	0.37530(17)
C42	-0.33902(12)	0.66433(4)	0.26319(19)
H42A	-0.4214	0.6753	0.2909
H42B	-0.3323	0.6323	0.2836
H42C	-0.3429	0.671	0.1288

Table 2: List of Bonds

Atom1	Atom2	Length
012	H12	0.87(2)
O12	C12	1.347(1)
O13	N13	1.220(2)
O14	N13	1.215(2)
N13	C13	1.472(2)
O21	C21	1.219(1)
O22	C21	1.328(2)
O22	C22	1.451(1)

C11	C12	1.432(2)
C11	C20	1.376(2)
C11	C21	1.482(1)
C12	C13	1.367(2)
C13	C14	1.415(2)
C14	C15	1.417(2)
C14	C19	1.428(2)
C15	H15	0.950(1)
C15	C16	1.371(2)
C16	H16	0.950(1)
C16	C17	1.410(2)
C17	H17	0.950(1)
C17	C18	1.370(2)
C18	H18	0.951(1)
C18	C19	1.418(2)
C19	C20	1.413(2)
C20	H20	0.951(1)
C22	H22A	0.980(1)
C22	H22B	0.978(1)
C22	H22C	0.980(1)
O32	H32	0.86(2)
O32	C32	1.350(1)
O33	N33	1.219(2)
O34	N33	1.221(2)
N33	C33	1.471(2)
O41	C41	1.219(1)
O42	C41	1.327(2)
O42	C42	1.452(1)
C31	C32	1.431(2)
C31	C40	1.379(2)
C31	C41	1.482(2)
C32	C33	1.370(2)
C33	C34	1.412(2)
C34	C35	1.418(2)
C34	C39	1.428(2)
C35	H35	0.950(1)
C35	C36	1.369(2)
C36	H36	0.949(1)
C36	C37	1.410(2)
C37	H37	0.950(1)
C37	C38	1.368(2)
C38	H38	0.949(1)
C38	C39	1.419(2)

C39	C40	1.410(1)
C40	H40	0.950(1)
C42	H42A	0.979(1)
C42	H42B	0.980(1)
C42	H42C	0.980(1)

Table 3: List of Angles

Number	Atom1	Atom2	Atom3	Angle
1	H12	O12	C12	107(1)
2	O13	N13	O14	124.3(1)
3	O13	N13	C13	117.3(1)
4	O14	N13	C13	118.4(1)
5	C21	O22	C22	115.6(1)
6	C12	C11	C20	119.4(1)
7	C12	C11	C21	118.3(1)
8	C20	C11	C21	122.2(1)
9	O12	C12	C11	123.1(1)
10	O12	C12	C13	119.0(1)
11	C11	C12	C13	117.9(1)
12	N13	C13	C12	117.1(1)
13	N13	C13	C14	118.2(1)
14	C12	C13	C14	124.7(1)
15	C13	C14	C15	124.1(1)
16	C13	C14	C19	116.5(1)
17	C15	C14	C19	119.4(1)
18	C14	C15	H15	120.0(1)
19	C14	C15	C16	119.9(1)
20	H15	C15	C16	120.0(1)
21	C15	C16	H16	119.5(1)
22	C15	C16	C17	120.9(1)
23	H16	C16	C17	119.6(1)
24	C16	C17	H17	119.9(1)
25	C16	C17	C18	120.3(1)
26	H17	C17	C18	119.8(1)
27	C17	C18	H18	119.7(1)
28	C17	C18	C19	120.5(1)
29	H18	C18	C19	119.7(1)
30	C14	C19	C18	118.8(1)
31	C14	C19	C20	119.2(1)
32	C18	C19	C20	122.0(1)
33	C11	C20	C19	122.2(1)

34	C11	C20	H20	118.9(1)
35	C19	C20	H20	118.9(1)
36	O21	C21	O22	123.7(1)
37	O21	C21	C11	123.5(1)
38	O22	C21	C11	112.8(1)
39	O22	C22	H22A	109.5(1)
40	O22	C22	H22B	109.5(1)
41	O22	C22	H22C	109.4(1)
42	H22A	C22	H22B	109.5(1)
43	H22A	C22	H22C	109.4(1)
44	H22B	C22	H22C	109.5(1)
45	H32	O32	C32	107(1)
46	O33	N33	O34	124.6(1)
47	O33	N33	C33	117.9(1)
48	O34	N33	C33	117.4(1)
49	C41	O42	C42	115.5(1)
50	C32	C31	C40	119.5(1)
51	C32	C31	C41	118.3(1)
52	C40	C31	C41	122.2(1)
53	O32	C32	C31	123.2(1)
54	O32	C32	C33	119.0(1)
55	C31	C32	C33	117.8(1)
56	N33	C33	C32	117.0(1)
57	N33	C33	C34	118.2(1)
58	C32	C33	C34	124.7(1)
59	C33	C34	C35	124.0(1)
60	C33	C34	C39	116.6(1)
61	C35	C34	C39	119.4(1)
62	C34	C35	H35	120.1(1)
63	C34	C35	C36	119.8(1)
64	H35	C35	C36	120.1(1)
65	C35	C36	H36	119.5(1)
66	C35	C36	C37	121.1(1)
67	H36	C36	C37	119.4(1)
68	C36	C37	H37	119.8(1)
69	C36	C37	C38	120.4(1)
70	H37	C37	C38	119.8(1)
71	C37	C38	H38	119.8(1)
72	C37	C38	C39	120.4(1)
73	H38	C38	C39	119.8(1)
74	C34	C39	C38	118.9(1)
75	C34	C39	C40	119.2(1)
76	C38	C39	C40	121.8(1)

77	C31	C40	C39	122.2(1)
78	C31	C40	H40	118.9(1)
79	C39	C40	H40	118.9(1)
80	O41	C41	O42	123.5(1)
81	O41	C41	C31	123.6(1)
82	O42	C41	C31	112.8(1)
83	O42	C42	H42A	109.5(1)
84	O42	C42	H42B	109.5(1)
85	O42	C42	H42C	109.5(1)
86	H42A	C42	H42B	109.5(1)
87	H42A	C42	H42C	109.4(1)
88	H42B	C42	H42C	109.5(1)

Bibliography

- 1) Igau, A.; Grutzmacher, H.; Baceirdo, A.; Bertrand, G. J. Am. Chem. Soc. 1988, 110, 6463.
- 2) Wanzlick, I.H.W. Angew. Chem., Int. Ed. 1962, 1, 75.
- 3) Arduengeo, A.J.III; Harlow, R.L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 363.
- 4) Arduengo, A. J. III US 5077414, 1991.
- 5) Arduengo, A. J. III; Dias, H.V.R.; Harlow, R.L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.
- 6) Arduengo, A. J. III; Goerlich, J.R.; Marshall, W.J. J. Am. Chem. Soc. 1995, 117, 11027.
- 7) Arduengo, A. J. III; Krafczyk, R.; Schmutzler, R. Tetrahedron 1999, 55, 14523.
- 8) Tubaro, C.; Biffis, A.; Basato, M.; Benetollo, F.; Cavell, K. J.; Ooi, L. L. Organometallics 2005, 24, 4153.
- 9) a) Miyashita, A.; Suzuki, Y.; Kobayashi, M.; Kuriyama, N.; Higashino, T. *Heterocycles* **1996**, *43*, 509. b) Diba, A. K.; Noll, C.; Richter, M.; Gieseler, M. T.; Kalesse, M. *Angew. Chem.*, *Int. Ed.* **2010**, *49*, 8367.
- 10) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. **2005**, *44*, 5705
- 11) Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.; Linehan, E.; Oliva, J. M.; Orpen, G.; Quayle, M. J. Chem. Commun. 1999, 241.
- 12) Iglesias, M.; Beetstra, D.J.; Stasch, A.; Horton, P.N.; Hursthouse, M.B.; Coles, S.J.; Cavell,
- K.J.; Dervisi, A.; Fallis, I. A. Organometallics 2007, 26, 4800.
- 13) Diez-Gonzalez, S.; Correa, A.; Cavallo, L. Nolan, S. P. Chem.-Eur. J. 2006, 12, 7558.
- 14) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T. L.; Ding,
- S.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 2546.
- 15) Bantreil, X.; Nolan, S. P. Nat. Prot. 2011, 6, 69.
- 16) De Fremont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2006, 24, 2411.
- 17) Ledoux, N.; Allaert, B.; Linden, A.; Van der Voort, P.; Verpoort, F. *Organometallics* 2007, *26*, 1052.
- 18) O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.;
- Hopkinson, A. C.; Organ, M. G. Chem.-Eur. J. 2006, 12, 4743.
- 19) Collado, A.; Gomez-Suarez, A.; Martin, A. R.; Slawin, A. M. Z.; Nolan, S. P. *Chem. Commun.* **2013**, *49*, 5541.
- 20) Santoro, O.; Collado, A.; Slawin, A. M. Z.; Nolan, S. P.; Cazin, C. S. J. *Chem. Commun.* **2013**, *49*, 10483.
- 21) Fevre, M.; Pinaud, J.; Leteneur, A.; Gnanou, Y.; Vignolle, J.; Taton, D.; Miqueu, K.; Sotiropouplos. J. M. J. Am. Chem. Soc. 2012, 134, 6776.
- 22) Chun, J.; Lee, H. S.; Jung, I. G.; Lee, S. W.; Kim, H. J.; Son, S. U. Organometallics 2010, 29, 1518.
- 23) Citadelle, C. A.; Le Nouy, E.; Bisaro, F.; Slawin, A. M. Z.; Cazin, C. S. J. *Dalton Trans.* 2010, *39*, 4489.
- 24) Opalka, S. M.; Park, J. K.; Longstreet, A. R.; McQuade, D. T. Org. Lett. 2013, 15, 996.
- 25) Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007, 251, 642.
- 26) Wang, H. M; Lin, I. J. B. Organometallics 1998, 17, 972.
- 27) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J. P.; Ebel, K.; Brode,
- S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.
- 28) Nyce, G. W.; Csihony, S.; Waymouth, R. M.; Hedrick, J. L. Chem.-Eur. J. 2004, 10, 4073.

- 29) Cardin, D. J.; Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1973, 514.
- 30) Voutchkova, A. M.; Appelhans, L. N.; Chianese, A. R.; Crabtree, R. H. J. Am. Chem. Soc. 2006, 127, 17624.
- 31) Le Gall, T.; Baltatu, S.; Collins, S. K. Synthesis 2011, 3687.
- 32) Diez-Ganzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, A. M.
- Z.; Nolan, S. P. Dalton Trans. 2010, 39, 7595.
- 33) Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 6940.
- 34) Khramov, D.M.; Lynch, V.M.; Bielawski, C.W. Organometallics 2007, 27, 6042.
- 35) Tolman, C. A. Chem. Rev. 1977, 77, 313.
- 36) Kelly, R. A. III; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.;
- Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics 2008, 27, 202.
- 37) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956.
- 38) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. *Eur. J. Inorg. Chem.* **2009**, 1759.
- 39) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841.
- 40) a) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. b) Lin, J. C.
- Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009,
- 109, 3561. c) Samojlowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009, 109, 3708.
- 41) Nolan, S. P.; Clavier, H. Chem. Soc. Rev. 2010, 39, 3305.
- 42) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674.
- 43) Scholl, M.; Ding, A.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
- 44) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
- 45) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589.
- 46) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49.
- 47) Anderson, D. R.; Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 7262.
- 48) Alexakis, A.; Chuit, C.; Commercon, Bourgain, M.; Foulon, J. P.; Jabri, N.; Mengeney, P.; Normant, J. F. *Pure Appl. Chem.* **1984**, *56*, 91.
- 49) Alexakis, A.; Frutos, J.; Mangeney, P. Tetrahedron: Asymmetry 1993, 4, 2427.
- 50) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.
- 51) Woodward, S. Chem. Soc. Rev. 2000, 29, 393.
- 52) Fraser, P. K.; Woodward, S. Tetrahedron Lett. 2001, 42, 2747.
- 53) Diez-Gonzalez, S.; Nolan, S. P. Org. Prep. Proc. Int. 2007, 39, 523.
- 54) Hill, J. E.; Nile, T. A. J. Organomet. Chem. 1977, 137, 293.
- 55) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
- 56) Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J. Organometallics 2012, 31, 7969.
- 57) Himo, F. Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. **2006**, *127*, 210.
- 58) Diez-Gonzalez, S.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem.-Eur. J. 2006, 12, 7558.
- 59) Sturmer, R. Angew. Chem., Int. Ed. 1999, 38, 3307.
- 60) Crabtree, R. H.; *The Organometallic Chemistry of the Transition Metals*, Wiley: Hoboken, **2005**, p 161.

- 61) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A. *Angew. Chem., Int. Ed.* **2002**, *41*, 1363.
- 62) Valente, C.; Calimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
- 63) Lu, B.; Fu, C.; Ma, S. Tetrahedron Lett. 2010, 51, 1284.
- 64) Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.;
- Valente, C. Chem.-Eur. J. 2006, 12, 4749.
- 65) Organ, M. G.; Abel-Hadi, M.; Avola, S.; Hadei, N.; Nasielski, J.; O'Brien, A. J.; Valente, C. *Chem.-Eur. J.* 2007, 13, 150.
- 66) Grandbois, A.; Mayer, M.-E.; Bedard, M.; Collins, S. K.; Michel, T. Chem.-Eur. J. 2009, 15, 9655.
- 67) Song, C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. *Tetrahedron Lett.* **2005**, *46*, 3241.
- 68) Huang, J.; Jafarpour, L.; Hillier, A. C.; Stevens, E. D.; Nolan, S. P. Organometallics, 2001, 20, 2878.
- 69) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704.
- 70) Herrmann, W. A.; Goossen, L. J.; Kocher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 2805.
- 71) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
- 72) Kehrli, S.; Martin, D.; Rix, D.; Mauduit, M.; Alexakis, A. Chem.-Eur. J. 2010, 16, 9890.
- 73) Matsumoto, Y.; Yamada, K.-I.; Tomioka, K. J. Org. Chem. 2008, 73, 4578.
- 74) Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K., Angew. Chem., Int. Ed. 2009, 48, 8733.
- 75) Faller, J. W.; Fontaine, P. P. Organometallics 2006, 25, 5887.
- 76) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc. **2002**, *124*, 4954.
- 77) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 1097.
- 78) Fournier, P.-A.; Collins, S. K. Organometallics, 2007, 26, 2945.
- 79) Lee, K.-S.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455.
- 80) Wang, F.; Liu, L.-J.; Wang, W.; Li, S.; Shi, M. Coord. Chem. Rev. 2012, 256, 804.
- 81) Kress, S.; Blechert, S. Chem. Soc. Rev. 2012, 41, 4389.
- 82) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.
- 83) Fournier, P.-A.; Savoie, J.; Stenne, B.; Bedard, M.; Grandbois, A.; Collins, S. K. Chem.-Eur. J. 2008, 14, 8690.
- 84) Savoie, J.; Stenne, B.; Collins, S. K. Adv. Synth. Catal. 2009, 351, 1826.
- 85) Stenne, B.; Timperio, J.; Savoie, J.; Dudding, T.; Collins, S. K. Org. Lett. 2010, 12, 2032.
- 86) Harutyunyan, S. R.; den Hertog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. **2008**, *108*, 2824.
- 87) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. Adv. Synth. Catal. 2003, 345, 345.
- 88) Martin, D.; Kehrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416.
- 89) Lee, K.-S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182.
- 90) O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630.
- 91) Tros, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.

- 92) Larsen, A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130.
- 93) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634.
- 95) Roland, S.; Mangeney, P.; Alexakis, A. Synthesis 1999, 228.
- 97) Pytkovicz, J.; Roland, S.; Mangeney, P. J. Organomet. Chem. 2001, 631, 157.
- 98) Nauta, W. T.; Wuis, P. J. Rec. trav. chim. 1937, 56, 535.
- 99) Holtz-Mulholland, M.; Collins, S. K. Synthesis 2014, 46, 375.
- 100) (a) Diez-Gonzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin,
- M. Z. A.; Nolan, S. P. Dalton Trans. 2010, 39, 7595. (b) Diez-Gonzalez, S.; Stevens, E. D.;
- Nolan, S. P. Chem. Commun. 2008, 4747. (c) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.;
- Ragone, F.; Scarano, V.; Cavallo, L. Eur. J. Inorg. Chem. 2009, 1759.
- 101) Lee, T.; Peng, J. F. Crystal Growth and Design 2010, 10, 3547.
- 102) Meca, L.; Reha, D.; Havlas, Z. J. Org. Chem. 2003, 68, 5677.
- 103) a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155. b) Brunel, J. M. Chem. Rev. 2007, 107, PR1.
- 104) a) Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L. H.; Moreau, P.; Koga, K.; Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffman, D. H.; Sogah, G. D. Y. *J. Org. Chem.* **1978**, *43*, 1930. b) Liu, G.-H.; Xue, Y.-N.; Yao, M.; Fang, H.-B.; Yu, H.; Yang, S.-P. *J. Mol. Struct.* **2008**, *875*, 50.
- 105) Koy, C.; Michalik, M.; Oehme, G.; Tillack, A.; Baudisch, H.; Kempe, R. *Phosporous, Sulfur and Silicon and the Related Elements* **1999**, *152*, 203.
- 106) Teichert, J.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486.
- 107) DiVirgilio, E. S.; Dugan, E. C.; Mulrooney, C. A.; Kozlowski, M. K. Org. Lett. 2007, 9, 385.
- 108) Boutibonnes, P.; Malherbe, C.; Kogbo, W.; Marais, C. *Microbiol., Aliments, Nutr.* **1983**, *1*, 259.
- 109) Koyama, K.; Ominato, K.; Natori, S.; Tashiro, T.; Tsuruo, T. J. *Pharmacobio. Dynamics* **1988**, *11*, 630.
- 110) Xing, M.-Z.; Zhang, X.-Z.; Sun, Z.-L.; Zhang, H.-Y. J. Agric. Food. Chem. 2003, 51, 7722.
- 111) Morgan, B. J.; Dey, S.; Johnson, S. W.; Kozlowski, M. C. J. Am. Chem. Soc. 2009, 131, 9413.
- 112) Hudson, J. B.; Imperial, V.; Haughland, R. P.; Diwu, Z. *Photochem. Photobiol.* **1997**, *65*, 352.
- 113) Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709.
- 114) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717.
- 115) Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 5403.
- 116) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.
- 117) Mikami, K.; Motoyama, Y.; Tereda, M. J. Am. Chem. Soc. 1994, 116, 2812.
- 118) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.
- 119) Jagt, R. B.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J.
- Angew. Chem., Int. Ed. 2006, 45, 2789.
- 120) Pummerer, R.; Prell, E.; Rieche, A. Chem. Ber. 1926, 59, 2159.
- 121) Li, S.-J.; Lu, J.; Zhhu, X.; Yang, J.; Lang, J.-P.; Wu, L. Synth. Commun. 2002, 32, 3069.

- 122) a) Hovorka, M.; Scigel, R.; Gunterova, J.; Tichy, M.; Zavada, J. *Tetrahedron* **1992**, *48*, 9503. b) Smrcina, M.; Vyskocil, S.; Maca, B.; Polakova, J.; Claxton, T. A.; Abbot, A. P.; Kocovsky, P. J. Org. Chem. **1994**, *59*, 2156.
- 123) Smrcina, M.; Polakova, J.; Vyskocil, S.; Kocovsky, P. *J. Org. Chem.* **1993**, *58*, 4534 124) Xin, Z.-Q.; Da, C.-S.; Dong, S.-L.; Liu, D.-X.; Wei, J.; Wang, R. *Tetrahedron: Asymmetry* **2002**, *13*, 1937.
- 125) Nakajime, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.-I. J. Org. Chem. 1999, 64, 2264.
- 126) Roithova, J.; Milko, P. J. Am. Chem. Soc. 2010, 132, 281.
- 127) Roithova, J.; Schroder, D. Chem.-Eur. J. 2008, 14, 2180.
- 128) a) Yan, P.; Sugiyama, Y.; Takahashi, Y.; Kinemuchi, H.; Temma, T.; Habaue, S.
- Tetrahedron 2008, 64, 4325. b) Habaue, S.; Temma, T.; Sugiyama, Y.; Yan, P. Tetrahedron
- Lett. 2007, 48, 8595. c) Temma, T.; Hatano, B.; Habaue, S. Tetrahedron 2006, 62, 8559.
- 129) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137.
- 130) Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 132, 12232.
- 131) Illesinghe, J.; Ebeling, R.; Ferguson, B.; Patel, J.; Campi, E. M.; Jackson, W. R.; Robinson, A. J. Aust. J. Chem. 2004, 57, 167.
- 132) Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 13927.
- 133) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500.
- 134) Mulrooney, C. A.; Li, X.; DiVirgilio, E. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2003, 125, 6856.
- 135) Temma, T.; Habaue, S. Tetrahedron Lett. 2006, 46, 5655.
- 136) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633.
- 137) AlHujran, T. A.; Dawe, L. N.; Collins, J.; Georghiou, P. E. J. Org. Chem. 2011, 76, 971.
- 138) Strohbach, E. Chem. Ber. 1901, 34, 4146.
- 140) Suzumura, H. Bull. Chem. Soc. Jpn. 1961, 34, 1822.
- 141) Woodcock, D.; Clifford, D. R. J. Chem. Soc. 1957, 4139.
- 142) Biehl, E. R.; Deshmukh, A. R.; Dutt, M. Synthesis 1993, 885.
- 143) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- 144) Routier, S.; Peixoto, P.; Merour, J. Y.; Coudert, G.; Dias, N.; Bailly, C.; Pierre, A.; Leonce,
- S.; Caignard, D. H. J. Med. Chem. 2005, 48, 1401.
- 145) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
- 146) Holtz-Mulholland, M.; De Léséleuc, M.; Collins, S. K. Chem. Commun. 2013, 49, 1835.
- 147) Shriver, D. F.; Drezdon, M. A. in *The Manipulation of Air-Sensitive Compounds*; Wiley-VCH: New York, **1986**.
- 148) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- 150) Griffin, G.; Manmade, A. J. Org. Chem. 1972, 37, 2589.
- 151) Bassas, O.; Huuskonen, J.; Rissanen, K.; Koskinen, A. M. P. Eur. J. Org. Chem. 2009, 1340.
- 152) Park, B. S.; Lee, S. W.; Kim, I. T.; Tae, J. S.; Lee, S. H. *Heteroatom Chemistry* **2012**, *23*, 66.
- 153) Nauta, W. T.; Wuis, P. J. Rec. trav. chim. 1937, 56, 535.
- 154) Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806.
155) Wang, K.; Hu, Y.; Li, Z.; Wu, M.; Liu, Z.; Su, B.; Yu, A.; Liu, Y.; Wang, Q. Synthesis, **2010**, 1083.

156) Harada, T., Kanda, K. Org. Lett. 2006, 8, 3817.

157) Smrcina, M., Vykskocil, S., Maca, B., Polasek, M., Claxton, T. A., Abbott, A. P.,

Kocovsky, P. J. Org. Chem. 1994, 59, 2156.