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en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Avril, 2014

c� Ian Goodfellow, 2014.



Résumé

L’objectif de cette thèse par articles est de présenter modestement quelques
étapes du parcours qui mènera (on espère) à une solution générale du problème de
l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun
une di↵érente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage
machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces
documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une
tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte
plus général, et dans certains cas elles ont été appliquées ailleurs, mais ceci ne sera
pas abordé dans le contexte de cette de thèse.

Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence
variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike-
and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser
des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démon-
trons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand
très peu d’exemples étiquetés sont disponibles pour l’entrâınement. Partant d’un
modèle CPSS, nous construisons ensuite une architecture profonde, la machine de
Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de
manière à simplifier d’entrâınement des machines de Boltzmann profondes qui né-
cessitent normalement une phase de pré-entrâınement glouton pour chaque couche.
Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le
nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière
pratique.

Dans le deuxième article, nous revenons au problème d’entrâınement joint de
machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de
modèles, nous introduisons un nouveau critère d’entrâınement qui donne naissance
aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les
MBP-MP sont entrâınables en une seule étape et ont un meilleur taux de succès
en classification que les MBP classiques. Elles s’entrâınent aussi avec des méthodes
variationelles standard au lieu de nécessiter un classificateur discriminant pour ob-
tenir un bon taux de succès en classification. Par contre, un des inconvénients de
tels modèles est leur incapacité de générer des échantillons, mais ceci n’est pas trop
grave puisque la performance de classification des machines de Boltzmann pro-
fondes n’est plus une priorité étant donné les dernières avancées en apprentissage
supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont ca-
pable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent
pas faire, telles que celle de classifier des données incomplètes ou encore celle de
combler intelligemment l’information manquante dans ces données incomplètes.
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Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de
transformations importantes du domaine de l’apprentissage à réseaux neuronaux
profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par
Geo↵rey Hinton. Dropout rend possible un entrâınement purement supervisé d’ar-
chitectures de propagation unidirectionnel sans être exposé au danger de sur-
entrâınement. Le troisième article présenté dans cette thèse introduit une nouvelle
fonction d’activation spécialement conçue pour aller avec l’algorithme de Dropout.
Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation
multi-canal dans un contexte d’apprentissage purement supervisé. Nous démon-
trons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies
par l’utilisation de maxout.

Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la
transcription d’adresses de maisons à plusieurs chi↵res. En combinant maxout avec
une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution,
nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui
des humains sur un ensemble de données coriace constitué de photos prises par les
voitures de Google. Ce système a été déployé avec succès chez Google pour lire
environ cent million d’adresses de maisons.

Mots-clés: réseau de neurones, apprentissage profond, apprentissage non su-
pervisé, apprentissage supervisé, apprentissage semi-supervisé, machines de Boltz-
mann, les modèles basés sur l’énergie, l’inference variationnel, l’apprentissage va-
riationnel, le codage parcimonieux, réseaux neuronaux de convolution, la fonction
d’activation, “dropout,” la reconnaissance d’objets, transcription, reconnaissance
optique de caractères, géocodage, entrées manquantes
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Summary

The goal of this thesis is to present a few small steps along the road to solving
general artificial intelligence. This is a thesis by articles containing four articles.
Each of these articles presents a new method for performing perceptual inference
using machine learning and deep architectures. Each of these papers demonstrates
the utility of the proposed method in the context of a computer vision task. The
methods are more generally applicable and in some cases have been applied to other
kinds of tasks, but this thesis does not explore such applications.

In the first article, we present two fast new variational inference algorithms
for a generative model of images known as spike-and-slab sparse coding (S3C).
These faster inference algorithms allow us to scale spike-and-slab sparse coding to
unprecedented problem sizes and show that it is a superior feature extractor for
object recognition tasks when very few labeled examples are available. We then
build a new deep architecture, the partially-directed deep Boltzmann machine (PD-
DBM) on top of the S3C model. This model was designed to simplify the training
procedure for deep Boltzmann machines, which previously required a greedy layer-
wise pretraining procedure. This model partially succeeds at solving this problem,
but the cost of inference in the new model is high enough that it makes scaling the
model to serious applications di�cult.

In the second article, we revisit the problem of jointly training deep Boltz-
mann machines. This time, rather than changing the model family, we present a
new training criterion, resulting in multi-prediction deep Boltzmann machines (MP-
DBMs). MP-DBMs may be trained in a single stage and obtain better classification
accuracy than traditional DBMs. They also are able to classify well using standard
variational inference techniques, rather than requiring a separate, specialized, dis-
criminatively trained classifier to obtain good classification performance. However,
this comes at the cost of the model not being able to generate good samples. The
classification performance of deep Boltzmann machines is no longer especially inter-
esting following recent advances in supervised learning, but the MP-DBM remains
interesting because it can perform tasks that purely supervised models cannot, such
as classification in the presence of missing inputs and imputation of missing inputs.

The general zeitgeist of deep learning research changed dramatically during the
midst of the work on this thesis with the introduction of Geo↵rey Hinton’s dropout
algorithm. Dropout permits purely supervised training of feedforward architectures
with little overfitting. The third paper in this thesis presents a new activation
function for feedforward neural networks which was explicitly designed to work
well with dropout. This activation function, called maxout, makes it possible to
learn architectures that leverage the benefits of cross-channel pooling in a purely
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supervised manner. We demonstrate improvements on several object recognition
tasks using this activation function.

Finally, we solve a real world task: transcription of photos of multi-digit house
numbers for geo-coding. Using maxout units and a new kind of output layer for
convolutional neural networks, we demonstrate human level accuracy (with limited
coverage) on a challenging real-world dataset. This system has been deployed at
Google and successfully used to transcribe nearly 100 million house numbers.

Keywords: neural network, deep learning, unsupervised learning, supervised
learning, semi-supervised learning, Boltzmann machines, energy-based models, vari-
ational inference, variational learning, feature learning, sparse coding, convolutional
networks, activation function, dropout, pooling, object recognition, transcription,
optical character recognition, inpainting, missing inputs
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1Machine Learning

This thesis focuses on advancing the state of the art of machine perception,

with a particular focus on computer vision. Computer vision and many other

forms of machine perception are too di�cult to solve by manually designing rules

for processing inputs. Instead, some degree of learning is necessary. My personal

view is that nearly the entire perception system should be learned.

Throughout the rest of this thesis, the narrator will be referred to as “we,”

rather than “I.”This is because, as a thesis by articles, this thesis presents research

conducted in a collaborative setting. It should be understood that the writing

outside of the articles themselves is my own.

This chapter provides some background on machine learning in general. The

subsequent chapters give more background on the particular kinds of machine learn-

ing used in the rest of the thesis. The remainder of the thesis presents the articles

containing new methods.

1.1 Introduction to Machine Learning

Machine learning is the study of designing machines (or more commonly, soft-

ware for general purpose machines) that can learn from data. This is useful for

solving a variety of tasks, including computer vision, for which the solution is too

di�cult for a human software engineer to specify in terms of a fixed piece of soft-

ware. Moreover, since learning is a critical part of intelligence, studying machine

learning can shed light on the principles that govern intelligence.

But what exactly does it mean for a machine to learn? A commonly-cited

definition is “A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P , if its performance at tasks

in T , as measured by P , improves with experience E” (Mitchell, 1997) . One can
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imagine a very wide variety of experiences E, tasks T , and performance measures

P .

In this work, the experience E always includes the experience of observing a

set of examples encoded in a design matrix X 2 Rm⇥n. Each of the m rows of

X represents a di↵erent example which is described by n features. For computer

vision tasks in which the examples are images, each feature is the intensity of a

di↵erent pixel in the image.

For most but not all of the experiments in this thesis, the experience E also

includes observing a label for each of the examples. For classification tasks such as

object recognition, the labels are encoded in a vector y 2 {1, . . . , k}m, with element

y
i

specifying which of k object classes example i belongs to. Each numeric value

in the domain of y
i

corresponds to a real-world category, e.g. 0 can mean “dogs”, 1

can mean “cats”, 2 can mean “cars”, etc.

In some experiments in this thesis, the label for each example is a vector, speci-

fying a sequence of symbols to associate with each example. This is used in chapter

11 for transcribing multi-digit house numbers from photos.

Machine learning researchers study very many di↵erent tasks T . In this work,

we explore the following tasks:

— Density estimation: In this task, the machine learning algorithm is asked

to learn a function p
model

: Rn ! R, where p
model

(x) can be interpreted as

a probability density function on the space that the examples were drawn

from. To do this task well (we’ll specify exactly what that means when we

discuss performance measures P ), the algorithm needs to learn the structure

of the data it has seen. It must know where examples cluster tightly and

where they are unlikely to occur.

— Imputation of missing values: In this task, the machine learning algorithm

is given a new example x 2 Rn, but with some entries x
i

of x missing. The

algorithm must provide a prediction of the values of the missing entries.

This task is closely related to density estimation, because it can be solved

by learning p
model

(x) then conditioning on the observed entries of x.

— Classification: In this task, the algorithm is asked to output a function

f : Rn ! {1, . . . , k}. Here f(x) can be interpreted as an estimate of the

category that x belongs to. There are other variants of the classification task,

for example, where f outputs a probability distribution over classes, but this

2



thesis does not make any extensive use of the probability distribution over

classes.

— Classification with missing inputs : This is similar to classification, except

rather than providing a single classification function, the algorithm must

learn a set of functions. Each function corresponds to classifying x with a

di↵erent subset of its inputs missing.

— Transcription : This is similar to classification, except that the output is a

sequence of symbols, rather than a single symbol.

Each of these tasks must be evaluated with a performance measure P . For the

density estimation task, one could define a new set of examples X(test) and measure

the probability of these examples according to the model. Evaluating the perfor-

mance of a density estimation algorithm is di�cult and we often turn to proxies for

this value. For missing values imputation, we can measure the conditional proba-

bility the model assigns to the missing pixels in the test set, or some proxy thereof.

For the classification and related tasks, one could define a set of labels y(test), and

measure the classification accuracy of the model, i.e., the frequency with which

f(X(test)

i,:

) = y(test)

i

.

1.1.1 Generalization and the IID assumptions

An important aspect of the performance measures described above is that they

both depend on a test set of data not seen during the learning process. This

means that the learning algorithm must be able to generalize to new examples.

Generalization is what makes machine learning di↵erent from optimization.

In order to be able to generalize from the training set to the test set, one needs

to assume that there is some common structure in the data. The most commonly

used set of assumptions are the i.i.d. assumptions . These assumptions state that

the data is independently and identically distributed: each example is generated

independently from the other examples, and each example is drawn from the same

distribution p
data

(Cover, 2006) . Formally,

p
data

(X,y) = ⇧
i

p
data

(X
i:

, y
i

).

This assumption is crucial to theoretically establishing that the procedures de-

scribed in the subsequent subsections will generalize.
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1.1.2 Maximum likelihood estimation

An extremely popular approach to machine learning is maximum likelihood es-

timation. In this approach, one defines a probabilistic model that is controlled by a

set of parameters ✓. The model provides a probability distribution p
model

(x; ✓) over

examples x. (In this work we do not explore non-parametric modeling in which

p is some function of the training set which can not be encoded in a fixed-length

parameter vector) One can then use a statistical estimator to obtain the correct

value of ✓, drawn from set ⇥ of permissible values.

The estimator used in maximum likelihood is

✓̂ = argmax
✓2⇥

⇧
i

p
model

(X
i:

; ✓)

= argmax
✓2⇥

X

i

log p
model

(X
i:

; ✓).

In other words, the maximum likelihood estimation procedure is to pick the

parameters that maximize the probability that the model will generate the training

data. As shown above, one usually exploits the monotonically increasing property

of the logarithm and instead optimizes the log likelihood, an alternative criterion

which is maximized by the same value of ✓. The log likelihood is more convenient to

work with than the likelihood. As a product of several factors in the interval [0, 1],

computing the likelihood on a digital computer often results in numerical underflow.

The log likelihood avoids this di�culty. It also conveniently decomposes into a sum

over separate examples, which makes many forms of mathematical analysis more

convenient.

To justify the maximum likelihood estimation approach, assume that p
data

(x) 2
{p

model

(x; ✓), ✓ 2 ⇥}. Given this and the i.i.d assumptions one can prove that in

the limit of infinite data, the maximum likelihood estimator recovers a p
model

that

matches p
data

. Note that we claim we can recover the true probability distribution,

not the true value of ✓. This is because the value of ✓ that was used to generate the

training data cannot be determined if multiple values of ✓ correspond to the same

probability distribution. The ability of the estimator to asymptotically recover the

correct distribution is called consistency (Newey and McFadden, 1994).

Of course, to generalize well the maximum likelihood estimator must also do
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well without infinite data. In the case of finite data, the maximum likelihood es-

timator is not always the best possible approach. In cases where very little data

is available, maximum likelihood estimation of parametric models performs poorly

compared to other approaches such as Bayesian inference (in which one makes

new predictions by integrating over all possible values of ✓). Unfortunately, the

family of models for which this integral can be evaluated analytically is extremely

limited. Bayesian inference usually entails computationally expensive Monte Carlo

approximations. In practice, a commonly used middle ground between maximum

likelihood and Bayesian inference is to use an estimator which has been regular-

ized. This usually has roughly the same computation cost as maximum likelihood

yet generalizes better. Regularization is often achieved by biasing the maximum

likelihood estimator so that new predictions from the model will resemble those

obtained by Bayesian inference. Typically this means maximizing a function with

two terms, one term being the log likelihood of the data given ✓ and the other being

the log likelihood of ✓ under some prior. This is equivalent to performing Bayesian

inference by approximating the integral over all ✓ with a Dirac distribution centered

on the MAP estimate of ✓.

In this work, we usually use maximum likelihood estimation only in situations

where at least tens of thousands of examples are available, and we typically use at

least one form of regularization. With this amount of data available, it is reasonable

to expect maximum likelihood to do a good job of recovering ✓, especially when

using regularization.

1.1.3 Optimization

Much of machine learning can be cast as optimization. In the case of maxi-

mum likelihood estimation, one can define an objective function given by the log

likelihood

`(✓) =
X

i

log p
model

(X
i:

; ✓)

and solve the optimization problem

maximize `(✓)

subject to ✓ 2 ⇥.
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Sometimes this can be done simply by analytically solving r
✓

`(✓) = 0 for ✓.

Other times, there is no closed-form solution to that equation and the solution

must be obtained by an iterative optimization method.

One of the simplest iterative optimization methods is gradient ascent. This

algorithm is based on the observation that r
✓

`(✓) gives the direction in which `

increases most rapidly in a local neighborhood around ✓. The idea is to take small

steps in the direction of the gradient.

On iteration t of the gradient ascent algorithm, we compute the updated value

of ✓ using the following rule:

✓(t) = ✓(t�1) + ↵(t)r
✓

`(✓)

where ↵(t) is a positive scalar controlling the size of the step (Bishop, 2006,

Chapter 3) . The scalar ↵ is commonly referred to as the learning rate.

Gradient ascent may be expensive if there is a lot of redundancy in the dataset.

It may take only a small number of examples to get a good estimate of the direction

of the gradient from the current value of ✓ but gradient ascent will compute the

gradient contribution of every single example in the dataset. As an extreme case,

consider the behavior of gradient ascent when all m examples in the training set are

the same as each other. In this case, the cost of computing the gradient is m times

what is necessary to obtain the correct step direction. More generally, consider the

standard error of the mean of our estimate of the gradient. The denominator isp
m, meaning that the error of our estimate of the true gradient decreases slower

than linearly as we add more examples. Because the computation of the estimate

increases linearly, it is usually not computationally cost-e↵ective to use a large

number of examples to estimate the gradient.

An alternative algorithm resolves this problem. In stochastic gradient ascent

(Bishop, 2006, Chapter 3) , use the following update rule:

✓(t) = ✓(t�1) + ↵(t)r
✓

X

i2S

log p
model

(X
i:

; ✓)

where S is a random subset of {1, . . . , m}. The randomly selected training

examples are called a minibatch. Typical minibatch sizes range from 1 to 128.

Stochastic gradient descent is widely believed to have other beneficial charac-

teristics besides reducing redundant computations, but not all of these are well-
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characterized, and we do not explore them here.

When training deep neural nets, it is important to enhance stochastic gradient

ascent with a technique called momentum. Momentum is a computationally inex-

pensive modification of stochastic gradient ascent where the parameters move with

a velocity that is influenced by the gradient at each step:

v(t) = µ(t)v(t�1) + ↵(t)r
✓

X

i2S

log p
model

(X
i:

; ✓)

✓(t) = ✓(t�1) + v(t)

While standard gradient ascent follows the steepest direction at each step, mo-

mentum partially accounts for the curvature of the function. Sutskever et al. (2013)

showed that this simple method can perform as well as much more complicated

second order methods like Hessian-free optimization (Nocedal and Wright, 2006;

Martens, 2010).

In this introduction we have presented the optimization in terms of ascending

the log likelihood, but in practice the optimization technique is most broadly known

as stochastic gradient descent (SGD). In this case, the learning rule is presented

as descending a cost function. One can of course ascend the log likelihood by

descending the negative log likelihood.

A machine learning practictioner has two main ways of influencing the results

of training a model with a gradient method.

One is picking the function ↵(t) that determines how the learning rate evolves

over time (and the µ(t) function when using momentum). Constant ↵ often works

well, as does a linearly decreasing ↵(t). For µ(t), it is often e↵ective to begin at

0.5 and linearly increase to a value around 0.9.

The other parameter under the practitioner’s control is the convergence crite-

rion. A common practice is to halt if `(✓) (evaluated on a held-out validation set)

does not increase very much after some number of passes through the dataset. In

some cases it is infeasible to compute `(✓) but learning is possible so long as one

can compute r
✓

`(✓) or a reasonable approximation thereof. In these cases we must

design other proxies to use to determine convergence.

It may seem intuitive to run the optimization process until the gradient on the

the training set is near zero, indicating that we have reached a local maximum.

In practice, doing so usually results in overfitting, a condition that occurs when
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the model memorizes spurious patterns in the training set and as a result obtains

much worse accuracy on the test set. Generally, in machine learning applications,

we care about performance on the test set, which we can estimate by monitoring

performance on a held out validation set. The best criteria for deep learning usually

are based on validation set performance. The main goal of such criteria is to

prevent overfitting, not to make sure that a maximum has been reached. A common

approach is to store the parameters that have attained the best accuracy on the

validation set, and stop training when no new best parameters have been found

within some fixed number of update steps. At the end of training, we use the best

stored parameters, not the last parameters visited by SGD.

Many other sophisticated optimization algorithms exist, but they have not

proven as e↵ective for deep learning as stochastic gradient and momentum have.

1.2 Supervised learning

Supervised learning is the class of learning problems where the desired output of

the model on some training set is known in advance and supplied by a supervisor.

One example of this is the aforementioned classification problem, where the learned

model is a function f(x) that maps examples x to category IDs. Another common

supervised learning problem is regression. In the context of regression, the training

set consists of a design matrix X and a vector of real-valued targets y 2 Rm (or a

matrix of outputs in the case of multiple output targets for each example). In this

work, we do not study regression.

It is possible to solve the classification problem using maximum likelihood es-

timation and stochastic gradient ascent. One simply fits a model p(y | x; ✓) or

p(x, y; ✓) to the training set, and returns f(x) = argmax
y

p(y | x).

The maximum likelihood approach is the one most commonly employed in deep

learning. We describe deep supervised learning in more detail in chapter 3.

Among shallow learning models, one of the best known supervised learning

approaches is the support vector machine.
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1.2.1 Support vector machines and statistical learning the-

ory

The support vector machine (SVM) is a widely used model and associated learn-

ing algorithm for supervised learning. SVMs may be used to solve both regression

(Drucker et al., 1996) and classification (Cortes and Vapnik, 1995) problems. We

found classification SVMs useful for some of the work described in this thesis.

When solving the classification problem, an SVM discriminates between two

classes. In order to solve a k-class classification problem, one may train k di↵erent

SVMs. SVM i learns to discriminate class i from the other k � 1 classes. This is

called one-against-all classification (bo Duan and Keerthi, 2005). Other methods

of solving multi-class problems exist, but this is the one we use in the current work.

When training a basic two-class SVM it is conventional to regard labels y
i

as

drawn from {�1, 1}. This makes some of the algebraic expressions that follow more

compact. Examples belonging to class 1 are referred to as positive examples while

examples belong to class -1 are known as negative examples.

The SVM works by finding a hyperplane that separates the positive examples

from the negative examples as well as possible (di↵erent kinds of SVMs have dif-

ferent ways of quantifying “as well as possible,” and the simplest form of SVM

is only applicable to data that can be separated perfectly). This hyperplane

is parameterized by a vector w and a scalar b. The classification function is

f(x) = sign(w>x+b). In order to obtain good generalization, none of the examples

should lie very close to the hyperplane. If a training example lies close to the hy-

perplane, a similar test example might cross the hyperplane and receive a di↵erent

label. To this end, SVM training algorithms try to ensure that y(w>x+ b) � 1 for

all training examples x.

SVMs are commonly used with the kernel trick. The kernel trick replaces dot

products x>z with evaluations of a kernel function K(x, z) = �(x)>�(z). All

operations that the SVM and its training algorithm perform on the input can be

written in terms of dot products x>z. By replacing these dot products with K(x, z),

one can train the SVM in �-mapped space rather than the original space. Clever

choices of K allow the use of high-dimensional, even infinite-dimensional, �. In the

case of non-linear �, the SVM will have a non-linear decision boundary rather than

a separating hyperplane in the original data space. Its decision function will still
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be a hyperplane in �-mapped space. While the kernel trick is popular, it has many

disadvantages, including requiring the training algorithm to be adapted in ways

that reduce its ability to scale to very large numbers of training examples. Because

of these di�culties, we do not use the kernel trick in this work. The deep learning

methods employed in this thesis can be considered as analogous to learning the

kernel.

Various methods of training SVMs exist. We found that a variant called the L2-

SVM (Keerthi et al., 2005) is easy to train and obtains the best generalization on the

tasks we consider here. The L2-SVM is controlled by a regularization parameter C.

C must be positive and it determines the cost of misclassifying a training example.

Larger values of C mean that the SVM will learn to have higher accuracy on the

training set. Too large of a value of C can however result in overfitting.

Formally, the L2-SVM training algorithm is to solve the following optimization

problem:

minimize
1

2
(||w||2 + b2) +

C

2
||⇠||2

subject to y
i

(X
i,:

w + b) � 1 � ⇠
i

8i

where each ⇠
i

is an introduced auxiliary variable measuring how far example

i comes from satisfying the margin condition. This optimization problem may be

solved e�ciently by solving analytically for ⇠, substituting the expression for ⇠

into the objective function to obtain an unconstrained problem, and applying an

iterative optimization algorithm called LBFGS (Byrd et al., 1995).

In section 1.1.2, we saw that the concept of asymptotic consistency of statistical

estimators provides some justificiation for using maximum likelihood estimation as

a machine learning algorithm that generalizes to new data. SVMs have a di↵erent

theoretical justification that is more directly related to the classification task and

better developed for the case where there is a small amount of labeled data.

Results from statistical learning theory (Vapnik, 1999) show that by solving the

SVM optimization problem, we can guarantee that the SVM’s accuracy on the

test set is likely to be reasonably similar to its accuracy on the training set. More

formally, suppose the i.i.d assumptions hold, the SVM is trained on m examples

consisting of n features each, and the SVM misclassifies ✏̂ of the training set. Let ✏
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represent the proportion of examples drawn from p
data

that the SVM misclassifies

(i.e., its error rate on an infinitely large test set). For any � 2 (0, 1) we can

guarantee (Vapnik and Chervonenkis, 1971)

with probability 1 � �, ✏  ✏̂ +

s
(n + 1) log( 2m

n+1

+ 1) � log( �

4

)

m

This is a conservative bound; it applies to any p
data

and any classifier based

on a separating hyperplane. Real-world distributions usually result in much better

test set performance. It is also possible to obtain tighter bounds that are specific

to SVMs.

1.3 Unsupervised learning

An unsupervised learning problem is one where the learning algorithm is not

provided with labels y; it is provided only with the design matrix of examples X.

The goal of an unsupervised learning algorithm is to discover something about the

structure of p
data

.

Unsupervised learning need not be explicitly probabilistic. Many unsupervised

learning algorithms are rather geometrical in nature.

A few common types of unsupervised learning include

— Density estimation, in which the learning algorithm attempts to recover

p
data

. Knowing p
data

is useful for a variety of purposes, such as making

predictions. Another application is anomaly detection. For example, a credit

card company might suspect fraud if a purchase seems very unlikely given

a model of a customer’s spending habits. Examples of models used for

density estimation include the mixture of Gaussians (Titterington et al.,

1985) model.

— Manifold learning, in which the learning algorithm tries to explain the data

as lying on a low-dimensional manifold embedded in the original space. Dis-

tance along such manifolds often gives a more meaningful way to measure

the similarity of two examples than distance in the original space does. One

example of such a model is the contractive autoencoder (Rifai et al., 2011).
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— Clustering, in which the learning algorithm attempts to discover a set of

categories that the data can be divided into neatly. For example, an online

store might cluster its customers based on their purchasing habits. When

a new customer buys one item, the store can see which cluster of previous

customers tends to buy that item the most, and recommend other items

bought by customers in that cluster. Examples of clustering algorithms

include k-means (Steinhaus, 1957) and mean-shift (Fukunaga and Hostetler,

1975) clustering.

These are not necessarily mutually exclusive categories (density estimation is

commonly but not always used to achieve all of the others). Nor are all of their goals

clearly defined (a dataset of carrots, oranges, radishes, and apples could equally well

be divided into two clusters consisting of fruit and vegetables or into two clusters

consisting of orange objects and red objects).

As an example, the mixture of Gaussians model supposes that the data can

be divided into k di↵erent categories. A latent variable h 2 {1, . . . , k} whose dis-

tribution is governed by a parameter c identifies which category a given example

belongs to. The distribution over members of category i is given by a multivari-

ate Gaussian distribution with mean µ(i) and covariance matrix ⌃(i). Often ⌃ is

restricted to be a diagonal matrix for computational and statistical reasons. The

complete generative model is:

p(h = i) = c
i

p(x | h) = N (x | µ(h),⌃(h)).

This model can be fit with straightforward maximum likelihood estimation tech-

niques. Fitting the model accomplishes both a density estimation task and a clus-

tering task– an example x belongs to the cluster argmax
h

p(h | x).

1.4 Feature learning

Feature learning (also known as representation learning) is an important strat-

egy in machine learning. Many learning problems become “easier” if the inputs x

are transformed to a new set of inputs �(x). Properly designed feature mappings
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Figure 1.1 – Left: An example dataset for an SVM. Right: The same dataset transformed by
�(x), where � is conversion to polar coordinates.

� can reduce both overfitting and underfitting. However, it can be di�cult to

explicitly design good functions �. Feature learning refers to learning the feature

mapping �. All of the work in this thesis employs this strategy in one way or

another.

As an example, consider fitting a linear SVM to the dataset depicted in Fig 1.1.

In the original space, the SVM cannot represent the right decision boundary. In

the transformed space, it is easy to linearly separate the data.

In this example, � was mostly helpful because it overcame a problem with the

linear SVM’s representational capacity–even with infinite data, the SVM simply

has no way of specifying the right decision boundary to separate the data. Most

practical applications of feature learning also aim to improve statistical e�ciency.

Many feature learning algorithms are based on unsupervised learning, and can

learn a reasonably useful mapping � without any labeled data. This allows hy-

brid learning systems that can improve performance on supervised learning tasks

by learning features on unlabeled data. One of the main reasons this approach is

beneficial is that unlabeled data is usually more abundant. For example, an unsu-

pervised learning algorithm trained on a large amount of images of cats and cars

might discover features that are indicator variables for concepts like “has ears” or
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“has wheels.” A classifier trained with these high-level input features then needs

few labeled examples in order to generalize well.

Even when all of the available examples are labeled, training the features to

model the input can provide some regularization.

Unsupervised feature learning is also useful because it allows the model to be

split into pieces and trained one component at a time, even if each individual

component cannot be meaningfully associated with an output target. For example,

if we divide a 32 ⇥ 32 pixel image of a cat into a collection of small 6 ⇥ 6 pixel

image patches, many of these patches do not contain any portion of the cat at all

and those that do contain some portion of the cat probably do not contain enough

information to identify it. We therefore cannot associate each image patch with a

label, so supervised learning cannot make progress with the input divided up in this

way. Unsupervised learning can still learn good descriptions of each image patch,

allowing us to learn thousands of features per image patch. When extracted at all

locations in the image, this corresponds to millions of features per image. Learning

these millions of features on a per-patch basis greatly reduces the computational

cost of training such a system. This patch-based learning approach has been used in

several practical applications (Lee et al., 2009; Coates et al., 2011) and is exploited

in this thesis.

A closely related idea to feature learning is deep learning (Bengio, 2009). In deep

learning, the feature extractor � is formed by composing several simpler mappings:

�(x) = �(L)(�(L�1)(. . . �(1)(x)))

where L is the total number of mappings. Each mapping �(i) is known as a layer.

The composite feature extractor � is considered “deep” because the computational

graph describing it has several of these layers. Each layer of a deep learning system

can be thought of as being analogous to a line of code in a program–each layer

references the results of earlier layers, and complicated tasks can be accomplished

by running multiple simple layers in sequence. For example, see Fig. 1.2.

Deep learning was popularized by the success of deep belief networks (Hinton

et al., 2006), stacked autoencoders (Bengio et al., 2007), and stacked denoising

autoencoders (Vincent et al., 2008). In these approaches to deep learning, each sub-

mapping �(i) is trained in isolation. This is known as greedy layer-wise pretraining.
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Figure 1.2 – Deep learning example: When trained on images, the first layer of a deep learning
system operates on the pixels and usually extracts some sort of edges from the image. The second
layer operates on this representation in terms of edges and might extract small object parts that
can be described as collections of small numbers of edges. The third layer operates on this
representation in terms of object parts and might extract entire objects that can be described as
collections of small numbers of object parts. The exact results depend on the algorithm employed,
model architecture, and formatting of the dataset. (This image was joint work with Honglak Lee
and Andrew Saxe, originally prepared for an oral presentation of (Goodfellow et al., 2009))
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This pretraining is usually followed by joint fine-tuning of the entire system.

Since this style of deep learning system is formed by composing shallow learn-

ers, a popular form of deep learning research is devising new shallow learners.

Some examples of recent work in developing shallow learners for feature learn-

ing includes work with sparse coding (Raina et al., 2007), restricted Boltzmann

machines (RBMs) (Hinton et al., 2006; Courville et al., 2011a), the aforemen-

tioned autoencoder-based methods, and hybrids of autoencoders and sparse cod-

ing (Kavukcuoglu et al., 2010a). The spike-and-slab sparse coding work we intro-

duce in chapter 5 can be seen as a continuation of this line of research.

Other approaches to deep learning involve training the entire deep learning

system simultaneously. This is the approach we use in the remainder of this thesis.
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2 Structured Probabilistic

Models

Chapter 1 presented some of the basic ideas of probabilistic modeling with

maximum likelihood estimation. This chapter explores these ideas in greater depth,

applying maximum likelihood estimation to more complicated models that require

us to introduce approximations.

Sections 2.1 and 2.2 describe two ways of representing structure in a probabilistic

model. Viewing probabilistic models as containing simplifying structure is a crucial

cognitive tool that motivates design choices throughout the rest of this thesis.

Section 2.3 explains a basic design choice about how to represent complicated

interactions between multiple units.

Section 2.4 explains how to train models for which the likelihood cannot be

computed using sampling-based approximations to the gradient of the log likeli-

hood. Other approximate methods of training are possible for these models but

the strategies detailed in this section are the ones that are used in this thesis.

Section 2.5, demonstrates how models with an intractable posterior distribution

over their latent variables can be trained using variational approximations. Again,

other approximations are possible, so the presentation here focuses on the methods

actually used in the present work.

Finally, I’ll discuss combining both forms of approximation in section 2.6.

2.1 Directed models

In general, a probability distribution over a vector-valued variable x repre-

sents probabilistic interactions between all of the variables. Suppose that x 2
{1, . . . , k}n. To parameterize a fully general P (x) on discrete data like this is re-

quires a table containing kn � 1 entries! (one entry for all but one of the members
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of the outcome space, with the probability of the last entry determined by the

constraint that a probability distribution sum to 1)

Fortunately, most probability distributions we actually work with in practice do

not involve all possible interactions between all possible variables. Many variables

interact with each other only indirectly. This allows us to greatly simplify our

representation of the distribution.

Probabilistic models that exploit this idea are called structured probabilistic

models, because they represent the variables as belonging to a structure that re-

stricts their ability to interact directly. Structure enables a model to do its job with

fewer parameters, thus reducing the computational cost of storing it and increas-

ing its statistical e�ciency. It also reduces the computational cost of performing

operations like computing marginal or conditional distributions over subsets of the

variables (Koller and Friedman, 2009).

A common form of structured probabilistic model is the Bayesian network

(Pearl, 1985). A Bayesian network is defined by a directed acyclic graph G whose

vertices are the random variables in the model, and a set of local conditional prob-

ability distributions p(x
i

| PaG(x
i

)) where PaG(x
i

) returns the parents of x
i

in G.

The probability distribution over x is given by

p(x) = ⇧
i

p(x
i

| PaG(x
i

)).

So long as each variable has few parents in the graph, the distribution can be

represented with very few parameters. Simple restrictions on the graph structure

can also guarantee that operations like computing marginal or conditional distri-

butions over subsets of variables are e�cient.

2.2 Undirected models

Some interactions between variables may not be well-captured by local con-

ditional probability distributions. For example, when modeling the pixels in an

image, there is no clear reason for one pixel to be a parent of the other; their

interactions are basically symmetrical.
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A Markov network (Kindermann, 1980) is a structured graphical model defined

on an undirected graph G. For each clique C in the graph, a factor �(C) measures the

a�nity of the variables in that clique for being in each of their possible states. The

factors are constrained to be non-negative. Together they define an unnormalized

probability distribution

p̃(x) = ⇧C2G�(C).

The unnormalized probability distribution is e�cient to work with so long as

all the cliques are small.

Obtaining the normalized probability distribution may be costly. To do so,

one must compute the partition function Z (though Z is conventionally written

without arguments, it is in fact a function of whatever parameters govern each of

the � functions). Since

Z =

Z

x

p̃(x)dx

it may be intractable to compute for high-dimensional x, depending on the

structure of G and the functional form of the �s.

Many interesting theoretical results about undirected models depend on the

assumption that 8x, p̃(x) > 0. A convenient way to enforce this to use an energy-

based model (EBM) where

p̃(x) = exp(�E(x))

and E(x) is known as the energy function. This can still be interpreted as a

standard Markov network; the exponentation makes each term in the energy func-

tion correspond to a factor for a di↵erent clique. The � sign isn’t strictly necessary

from a computational point of view (and some machine learning researchers have

tried to do without it, e.g. (Smolensky, 1986)). It is a commonly used conven-

tion inherited from statistical phyiscs, along with the terms “energy function” and

“partition function.”

Some results in this chapter are presented in terms of energy-based models. For

these results, the theory doesn’t hold if p̃(x) = 0 for some x. Note that a directed

graphical model may be encoded as an energy-based model so long as this condition

is respected.
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2.2.1 Sampling

Drawing a sample x from the probability distribution p(x) defined by a struc-

tured model is an important operation. We briefly describe how to sample from

directed models and EBMs here. For more detail, see (Koller and Friedman, 2009).

Sampling from a directed model is straightforward, assuming that one can sam-

ple from each of the conditional probability distributions. The procedure used in

this case is called ancestral sampling. One simply draws samples of each of the

variables in the network in an order that respects the network topology, i.e., before

sampling a variable x
i

from P (x
i

| Pa
xi), sample each of the members of Pa

xi . This

defines an e�cient means of sampling all variables with a single pass through the

network.

Sampling from an EBM is not straightforward. Suppose we have an EBM

defining a distribution p(a, b). In order to sample a, we must draw it from p(a | b),

and in order to sample b, we must draw it from p(b | a). This “chicken and

egg” problem means we can no longer use ancestral sampling. Since G is no longer

directed and acyclical, we don’t have a way of ordering the variables such that every

variable can be sampled given only variables that come earlier in the ordering.

It turns out that we can sample from an EBM, but we can not generally do

so with a single pass through the network. Instead we need to sample using a

Markov chain. A Markov chain is defined by a state x and a transition distribution

T (x0 | x). Running the Markov chain means repeatedly updating the state x to a

value x0 sampled from T (x0 | x).

Under certain distributions, a Markov chain is eventually guaranteed to draw

x from an equilibrium distribution ⇡(x0), defined by the condition

8x0, ⇡(x0) =
X

x

T (x0 | x)⇡(x).

This condition guarantees that repeated applications of the transition sampling

procedure don’t change the distribution over the state of the Markov chain. Run-

ning the Markov chain until it reaches its equilibrium distribution is called“burning

in” the Markov chain.

Unfortunately, there is no theory to predict how many steps the Markov chain

must run before reaching its equilibrium distribution, nor any way to tell for sure

that this event has happened. Also, even though successive samples come from the
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same distribution, they are highly correlated with each other, so to obtain multiple

independent samples one should run the Markov chain for several steps between

collecting each sample. Markov chains tend to get stuck in a single mode of ⇡(x)

for several steps. The speed with which a Markov chain moves from mode to mode

is called its mixing rate. Since burning in a Markov chain and getting it to mix

well may take several sampling steps, sampling correctly from an EBM is still a

somewhat costly procedure.

Of course, all of this depends on ensuring ⇡(x) = p(x) . Fortunately, this is easy

so long as p(x) is defined by an EBM. The simplest method is to use Gibbs sampling,

in which sampling from T (x0 | x) is accomplished by selecting one variable x
i

and

sampling it from p conditioned on its neighbors in G. It is also possible to sample

several variables at the same time so long as they are conditionally independent

given all of their neighbors.

2.3 Latent variables

Most of this thesis concerns models that have two types of variables: observed

or “visible” variables v and latent or “hidden” variables h. v corresponds to the

variables actually provided in the design matrix X during training. h consists of

variables that are introduced to the model in order to help it explain the structure

in v. Generally the exact semantics of h depend on the model parameters and are

created by the learning algorithm. The motivation for this is twofold.

2.3.1 Latent variables versus structure learning

Often the di↵erent elements of v are highly dependent on each other. A good

model of v which did not contain any latent variables would need to have very

large numbers of parents per node in a Bayesian network or very large cliques in a

Markov network. Just representing these higher order interactions is costly–both

in a computational sense, because the number of parameters that must be stored in

memory scales exponentially with the number of members in a clique, but also in a

statistical sense, because this exponential number of parameters requires a wealth

of data to estimate accurately.
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There is also the problem of learning which variables need to be in such large

cliques. An entire field of machine learning called structure learning is devoted to

this problem . Most structure learning techniques involve fitting a model with a

specific structure to the data, assigning it some score that rewards high training

set accuracy and penalizes model complexity, then greedily adding or subtracting

an edge from the graph in a way that is expected to increase the score. See (Koller

and Friedman, 2009) for details of several approaches.

Using latent variables mostly avoids the problem of learning structure. A fixed

structure over visible and hidden variables can use direct interactions between

visible and hidden units to impose indirect interactions between visible units. Using

simple parameter learning techniques we can learn a model with a fixed structure

that imputes the right structure on the marginal p(v). Of course, one still has the

problem of determining the amount of latent variables and their connectivity, but it

is usually not as important to determine the absolutely optimal model architecture

when using latent variables as when using structure learning on fully observed

models. Usually, in the context of deep learning and latent variable models, the

architecture is controlled by a small number of hyperparameters, which are searched

relatively coarsely.

2.3.2 Latent variables for feature learning

Another advantage of using latent variables is that they often develop useful

semantics. As discussed in section 1.3, the mixture of Gaussians model learns a

latent variable that corresponds to which category of examples the input was drawn

from. Other more sophisticated models with more latent variables can create even

richer descriptions of the input. Most of the approaches mentioned in section 1.4

accomplish feature learning by learning latent variables. Often, given some model

of v and h, it turns out that E[h | v] or argmax
h

p(h,v) is a good feature mapping

for v.
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2.4 Stochastic approximations to maximum

likelihood

Consider an energy-based model p(v,h) = 1

Z

exp(�E(v,h)).

Suppose that the partition function Z cannot be computed. This model may

still be useful. As explained in section 2.2.1, one can still draw samples from this

model, perhaps even e�ciently. One might also be able to compute the ratio of

the probability of two events, p(v,h)/p(v0,h0), or the posterior p(h | v), which as

shown in 2.3 could be useful as a set of features to describe v.

Given that such a model is useful, learning one is a desirable capability. How-

ever, our primary method of learning models is maximum likelihood estimation.

As seen in section 1.1.3, this involves computing

r
✓

log p(v).

Unfortunately, if we expand the definition of p(v), we see that this expression

contains Z:

r
✓

log p̃(v) � r
✓

log Z.

Since Z is intractable, there doesn’t seem to be much hope of computing

r
✓

log Z.

Fortunately, so long as Leibniz’s rule applies, a sampling trick can approximate

the gradient:
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The expectation can be approximated by drawing samples of v and h, but this

of course raises the question of how to set up the Markov chain in a way that yields

a good approximation and is e�cient.

The naive approach is to initialize a new Markov chain and run it to its equilib-

rium distribution on every step of stochastic gradient ascent. Unfortunately, that

is too expensive.

One solution to this problem is contrastive divergence (CD-k) (Hinton, 2002).

This approach makes use of several Markov chains in parallel, one per example

in the minibatch. At each learning step, each Markov chain is initialized with

the corresponding data example and run for k steps. Typically k = 1. Clearly this

approach only explores parts of space that are near the data points. This procedure

generally results in the model’s distribution having about the right shape near the

data points, but the model may inadvertently learn to represent other modes far

from the data.

Another approach is known alternatively as stochastic maximum likelihood (SML)

(Younes, 1998) or persistent contrastive divergence (PCD) (Tieleman, 2008). This

approach also makes use of parallel Markov chains but each is initialized only once,

at the start of training. The state of each chain is sampled once per gradient

ascent step. This approach depends on the assumption that the learning rate is

small enough that the Markov chains will remain at their equilibrium distribution
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Figure 2.1 – An example RBM drawn as a Markov network

even though that equilibrium distribution is continually changing. The advantage

of SML over CD is that each Markov chain is updated for several steps, and con-

sequently should explore all of the model’s modes. This enables SML to suppress

modes that are far from the data that CD might overlook.

2.4.1 Example: The restricted Boltzmann machine

The restricted Boltzmann machine (RBM) (Smolensky, 1986) is an example of

a model that has intractable Z (Long and Servedio, 2010) yet may be trained using

the techniques described in this section (Hinton, 2002).

It is an energy-based model with binary visible and hidden units. Its energy

function is

E(v,h) = �b>v � c>h � v>Wh

where b, c, and W are unconstrained, real-valued, learnable parameters. The

model is depicted graphically in Fig. 2.1. As this figure makes clear, an important

aspect of this model is that there are no direct interactions between any two visible

units or between any two hidden units (hence the “restricted”; a general Boltzmann

machine may have arbitrary connections).

The restrictions on the RBM structure yield the nice properties

p(h | v) = ⇧
i

p(h
i

| v)

and
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p(v | h) = ⇧
i

p(v
i

| h).

The individual conditionals are simple to compute as well, for example

p(h
i

= 1 | v) = �
�
v>W

i

+ b
i

�

where � is the logistic sigmoid function.

Together these properties allow for e�cient block Gibbs sampling, alternating

between sampling all of h simultaneously and sampling all of v simultaneously.

Since the energy function itself is just a linear function of the parameters, it is

easy to take the needed derivatives. For example,

@

@W
ij

E(v,h) = �v
i

h
j

.

These two properties–e�cient Gibbs sampling and e�cient derivatives– make

it possible to train the RBM with stochastic approximations to r
✓

log Z.

2.5 Variational approximations

Another common di�culty in probabilistic modeling is that for many models

the posterior distribution p(h | v) is infeasible to compute or even represent. Alter-

nately, it may be infeasible to take expectations with respect to this distribution.

This poses problems for our goal outlined in section 2.3.2 of using E[h | v] as

features. It also usually means that maximum likelihood estimation is infeasible.

As shown in (Neal and Hinton, 1999), maximizing p(v) is equivalent to maximizing

E
h⇠P (h|v)

log P (v,h).

Fortunately, variational approximations provide a solution to both of these dif-

ficulties.
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2.5.1 Variational learning

For any distribution Q(h), the log likelihood may be decomposed (Neal and

Hinton, 1999) into two terms.

log p(v) = D
KL

(Q(h)kp(h | v)) + L(v, Q).

Here, D
KL

is the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

and L is the negative variational free energy. The KL divergence is guaranteed to

be non-negative, so this decomposition proves

log p(v) � L(v, Q).

L(v, Q) is thus a lower bound on the log likelihood. The KL divergence measures

the di↵erence between two distributions, and goes to 0 when the two distributions

are the same. Thus this lower bound is tight when Q(h) = P (h | v). Consequently,

one can maximize L(v, Q) as a proxy for log p(v). Note that this maximization

will involve modifying both the distribution Q (to make the lower bound tighter)

and the parameters controlling p (to optimize the model using the bound).

In order to maximize L, let’s examine its functional form:

L(v, Q) = E
h⇠Q

[log P (v,h)] + H
Q

(h)

where H
Q

(h) is the Shannon entropy (Cover, 2006) of h under Q.

Since computing L(v, Q) involves taking an expectation with respect to Q, it is

necessary to restrict Q in order to make the expectation tractable. A particularly

elegant way to restrict Q is to require it to take the form of a graphical model with

a specific graph structure G (Saul and Jordan, 1996). A common approach is to

use the mean field approximation

Q(h) = ⇧
i

Q(h
i

)

which corresponds to a G with no edges. So long as inference in Q remains tractable,

one can obtain better approximations by using a more complicated G. This ap-

proach is known as structured variational approximation.
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2.5.2 Variational inference

A common operation is to compute the Q that minimizes D
KL

(Q(h)kP (h | v)).

This is necessary for extracting features E[h | v]. It is also a common inner-loop to

variational learning algorithms which alternate between optimizing L(v, Q) with

respect to Q and optimizing it with respect to the model parameters.

This operation is called variational inference (Koller and Friedman, 2009) be-

cause in the general case it involves solving a calculus of variations problem. Calcu-

lus of variations is the study of optimizing functionals. A functional is a mapping

much like a function, except that a functional takes a function as its input. In

variational inference, the functional being minimized is the KL divergence. The

function being optimized is the distribution Q. Note that in the special case where

none of the h variables is continuous, Q is merely a vector and may be optimized

with traditional calculus techniques.

Usually variational inference involves using calculus of variations to find the

functional form of Q, followed by an iterative procedure to find the parameters of

Q. Consider the following example from (Bishop, 2006).

Suppose h 2 R2 and p(h | v) = N (h | µ, ��1) (for the purpose of simplicity, in

this example, the hidden units do not actually interact with the visible units).

Constrain Q with the mean field assumption Q(h) = Q(h
1

)Q(h
2

). Using calcu-

lus of variations one may then show

Q(h
i

) = N (h
i

| ĥ
i

, 1/�
i,i

).

In other words, the fact that p(h | v) is jointly Gaussian implies that the

correct Q is also Gaussian. We never assumed that Q was Gaussian, only that it

was factorial. The Gaussian nature of Q had to be derived via calculus of variations.

There is still an unknown: the mean of Q, ĥ. This is an example of a variational

parameter, a parameter controlling Q that cannot be found analytically. These

parameters must be obtained by an iterative optimization procedure. Gradient

descent would work, but is a slow and expensive procedure to use in the inner

loop of a learning algorithm. Typically it is faster to optimize these parameters by

iterating between fixed point equations.
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2.6 Combining approximations: The deep

Boltzmann machine

This chapter has described the tools needed to fit a very broad class of proba-

bilistic models. Which tool to use depends on which aspects of the log-likelihood

are problematic.

For the simplest distributions p, the log likelihood is tractable, and the model

can be fit with a straightforward application of maximum likelihood estimation and

gradient ascent as described in chapter 1.

This chapter has shown to implement probabilistic models in two di↵erent di�-

cult cases. In the case where Z is intractable, one may still use maximum likelihood

estimation via the sampling approximation techniques described in section 2.4. In

the case where p(h | v) is intractable, one may still train the model using the

negative variational free energy rather than the likelihood, as described in 2.5.

It is also possible that both of these di�culties will arise. An example of this

occurs with the deep Boltzmann machine (Salakhutdinov and Hinton, 2009), which

is a sequence of RBMs chained together with undirected connections. The model

is depicted graphically in Fig. 2.2.

This model still has the same problem with computing the partition function

as the simpler RBM does. It has also discarded the restricted structure that made

P (h | v) easy to represent in the RBM. The typical way to train the DBM is

to minimize the variational free energy rather than maximize the likelihood. Of

course, the variational free energy still depends on the partition function, so it is

necessary to use sampling techniques to approximate its gradient.

We put all of these techniques to use in chapter 5.2.2 when we introduce our

own partially-directed deep Boltzmann machine.
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Figure 2.2 – An example graph of a deep Boltzmann machine
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3 Supervised deep learning

The current version of deep learning models that is most widely used to solve

di�cult engineering problems for industrial scale applications is based on purely

supervised learning.

The standard deep learning model is the multilayer perceptron (MLP) , also

known as the feed-forward neural network (Rumelhart et al., 1986a). This consists

of a neural network that takes some input x and composes together transformations

defined by several layers to produce an output:

f(x) = f
L

(f
L�1

(. . . f
1

(x)))

Each layer typically provides a matrix of learnable parameters W and a vector

of learnable parameters b defining an a�ne transformation of the input. If each

layer consisted only of an a�ne transformation, the entire function f would also

be a�ne, so each layer also includes some fixed non-linear activation function g:

f
i

(v) = g(Wv + b).

Such models are motivated by a philosophy called connectionism (McClelland

et al., 1986). The idea behind connectionism is that an individual neuron in an

animal or a human being is not capable of doing anything interesting in isolation,

but populations of neurons acting together can achieve intelligent behavior. Sim-

ilarly, a single unit of a hidden layer in an MLP is useless, but any function can

be approximated with any desired non-zero amount of error by an MLP with su�-

ciently many hidden units (Cybenko, 1989; Stinchcombe and White, 1989; Hornik

et al., 1989). One can view humans and animals as a proof of concept illustrating

that di↵erent amounts of intelligent behavior are possible with the amount of com-

putational resources possessed by di↵erent species of animals. It may be possible

for us to design algorithms that use hardware even more e�ciently.

A special case of MLPs is the convolutional neural network (CNN). For a re-
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cent review including a history of the development of this technique, see (Lecun,

Kavukcuoglu, and Farabet, Lecun et al.). This thesis is primarily concerned with

describing how the method works.

These networks restrict the structure of W and b for some of their layers.

Specifically, when the input to the layer can be seen as samples taken on a grid in

some space (for example, a rasterized image is a set of samples of brightness values

collected by a 2-D grid of sensors, an audio recording is a set of samples of amplitude

values collected on a 1-D grid throughout time, etc.), W may be restricted to

define a discrete convolution rather than a general matrix multiplication. This

makes Wx become equivariant to translations of the input. Because convolutions

use the same parameters at every location, this significantly reduces the number

of parameters that need to be stored and learned, improving both the model’s

memory requirements and statistical e�ciency. Typically, the kernel used for the

discrete convolution is small, meaning that the network is sparsely connected, which

further reduces the number of parameters, and reduces the runtime of inference and

backpropagation in the network.

Convolutional networks also typically include some kind of spatial pooling in

their activation functions g; this refers to taking summary statistics over small

spatial regions of the output in order to make the final output invariant to small

spatial translations of the input. CNNs have been very successful for commerical

image processing applications since the early 1990s. This commercial success con-

tinues today, with convolutional nets being used to perform a variety of computer

vision tasks (Krizhevsky et al., 2012; Zeiler and Fergus, 2013b; Szegedy et al., 2013;

Goodfellow et al., 2014).

MLPs and CNNs may be trained using stochastic gradient descent and mo-

mentum. The gradient, as defined by the chain rule of di↵erentiation, contains

very many terms. Fortunately, the di↵erent elements of the gradient contain many

common subexpressions. Using a dynamic programming 1approach, one can avoid

re-computing these subexpressions in order to compute the gradient e�ciently.

This idea is the basis of the backpropagation algorithm commonly used to compute

the gradient (Bryson et al., 1963; Werbos, 1974; Rumelhart et al., 1986b). Not all

1. “Dynamic programming” is an overloaded term and can refer to table-filling algorithms that
avoid repeatedly computing sommon subexpressions, or to iterating the Bellman equations. Here
we use the former sense of the term.

32



modern approaches necessarily use the backpropagation algorithm per se (di↵erent

choices of how to set up the dynamic programming process yield di↵erent speed-

memory tradeo↵s) but all do use symbolic di↵erentiation strategies that employ

the same basic dynamic programming technique.

Supervised deep learning has existed for decades and was even been used to

solve some commercial applications long before the recent resurgence in its pop-

ularity. However, some commercially interesting problems, such as general object

recognition, only recently became feasible to solve with this approach. This is for

three major reasons:

First, significantly larger labeled datasets are available now than were available

previously. This allows much larger models to be fit than was previously possible,

and reduces the need to design algorithms that avoid overfitting.

Second, until recently, the hardware and software infrastructure available did

not allow for training of su�ciently large networks. If we refer back to the bi-

ological inspiration for connectionism, and view biological intelligence as a proof

of concept giving some indication of what we can hope to achieve by simulating

di↵erent amounts of neurons, Fig. 3.1 shows that until recently our networks were

smaller than even the most primitive of biological nervous systems. As shown in

Fig. 3.2, machine learning models were able to compensate for this somewhat by

being nearly as densely connected as biological systems. However, we still lag ab-

solute scale of the human nervous system by many orders of magnitude. It is only

recently, with GPU-GPU implementations of machine learning algorithms (Chel-

lapilla et al., 2006), optimizing compilers for GP-GPU based on machine learning-

oriented domain-specific languages (Bergstra et al., 2010; Bastien et al., 2012) and

distributed (Dean et al., 2012) implementations of machine learning software that

we have started to approach the necessary scale. Maxout, presented in chapter 9,

can be seen as an attempt to increase the amount of feature detectors in the model

without requiring a proportional increase in connections between feature detectors.

Third, SGD often produces less than satisfactory results for the types of ac-

tivation functions g that were used until recently. The use of the rectified linear

activation function (Jarrett et al., 2009; Glorot et al., 2011)

g(z)
i

= max{z
i

, 0}
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Figure 3.1 – Number of neurons in animals and machine learning models: In the context of
a machine learning model, a “neuron” refers to a hidden unit, which may in fact represent a
considerably simpler functional unit than a biological neuron. One of the key tenets of connec-
tionism is the idea that individual neurons are not particularly useful, but large populations of
neurons can exhibit intelligent behaviors. Until very recently, artificial neural networks contained
fewer “neurons” than even the most primitive of animals, making it somewhat wondrous that
they worked at all. Modern neural networks employ about the same number of neurons as large
insects, suggesting that further advances might be possible just by scaling to the greater amounts
of neurons used by vertebrate animals. Current machine learning models are several orders of
magnitude smaller than the human brain. Estimates of the number of neurons in various ani-
mals taken from http://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons.
“DBN” refers to (Hinton et al., 2006). “AlexNet” refers to (Krizhevsky and Hinton, 2009).
“AdamNet” refers to (Coates et al., 2013). Images are not my own.

made MLPs and CNNs significantly easier to optimize. In chapter 9.8 we show

how the maxout activation function results in further improvements in the ease of

optimizing a deep network.

Finally, we have only recently been able to overcome the problem of overfitting

in rectified linear networks. Previous approaches to preventing overfitting relied on

unsupervised pretraining, and no unsupervised pretraining method has been shown

to work especially well for deep rectifier networks. We are now able to regularize

rectifier networks e↵ectively using the dropout (Hinton et al., 2012) algorithm.

This has resulted in significant reduction of the error rate on smaller benchmark

datasets of interest to the academic community.

In chapter 11 we demonstrate the application of the modern supervised deep

learning techniques described in this chapter to a real world task on a dataset of

commercial interest.
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Figure 3.2 – Average number of connections per neuron in animals and machine learning mod-
els: Part of the success of machine learning models despite their low number of neurons may
be due to the comparatively high number of connections between neurons in machine learn-
ing models. In fact, machine learning models are not far from human levels of connectivity.
This suggests that technologies that increase the total number of features in a model while re-
ducing computational cost by limiting connectivity may be very e↵ective. This explains the
success of models that employ sparse connectivity and pooling, such as convolutional networks,
especially maxout networks (see chapter 9). Estimates of the average number of connections
per neuron obtained by dividing the number of neurons by the number of synapses listed
at http://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons. “DBN” refers
to (Hinton et al., 2006). “AdamNet” refers to (Coates et al., 2013). Images, with the exception
of the photo of my cat, Stripey, are not my own.
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4 Prologue to First Article

4.1 Article Details

Scaling up Spike-and-Slab Models for Unsupervised Feature Learn-

ing. Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio. IEEE Transactions

on Pattern Analysis and Machine Intelligence 35 (8), 1902-1914.

Personal Contribution. The idea that a structured variational inference in a

sparse coding model could provide an e↵ective means of feature extraction was

my own idea. Aaron Courville suggested using spike-and-slab sparse coding as the

base model; my original idea was to use binary sparse coding. Aaron Courville

also suggested one of the two inference algorithms presented in the paper, the

method based on conjugate gradient descent. Aaron Courville and I developed

the equations necessary for inference and learning jointly. The partially directed

deep Boltzmann machine was my own idea. I implemented all of the necessary

software and performed all of the experiments. I wrote the majority of the paper,

with significant contributions to the writing from both Aaron Courville and Yoshua

Bengio. I produced all of the figures.

4.2 Context

At the time that we wrote this article, the state of the art approach to object

recognition on many datasets was to train a high-dimensional dictionary describing

an image patch, extract the features of this dictionary at all locations in the image,

pool the extracted features, and classify the resulting feature vector with an SVM.

This pipeline was popularized by Coates et al. (2011). Later, Coates and Ng (2011)

showed that, in this pipeline, sparse coding yields more regularized features than

other feature extraction methods. This motivated us to explore applications of

36



sparse coding. In this article, we develop a means of scaling inference in the more

regularized spike-and-slab sparse coding model to unprecedented problem sizes.

We present the original paper as it appeared in IEEE TPAMI without modifi-

cation, but take the opportunity to provide some clarifications. The term “sparse

coding”may be used specifically to refer to the inference problem of finding a sparse

set of coe�cients that describe a point using a given set of basis vectors. This ar-

ticle uses that term to refer to the more broad problem of learning a generative

model that relies heavily on such an inference process. In other words, this arti-

cle uses the term “sparse coding” to refer to techniques that other authors might

describe as “sparse modeling” or “dictionary learning.” The references chosen for

the paper were primarily intended to reflect our most recent influences and were

necessarily restricted in order to fit within page limits for conference and journal

publications. A historically inclined reader should be aware of many other relevent

references. For background on contemporary approaches to sparse modeling, see

(Mairal et al., 2009; Yang et al., 2010; Boureau et al., 2010). A variety of other

earlier work explores the general idea of learning dictionaries intended to be used

with some sort of sparse coe�cients (Lee et al., 2007; Ranzato et al., 2007,?,?;

Jarrett et al., 2009; Kavukcuoglu et al., 2010b) though many of these approaches

use autoencoder models rather than iterative optimization procedures to perform

the inference.

4.3 Contributions

The contribution of this paper is the introduction of two algorithms for perform-

ing fast inference in the spike-and-slab sparse coding (S3C) probabilistic model.

The improved speed of these algorithms on parallel architectures allows us to scale

S3C to unprecedented problem sizes. In particular, S3C is now a viable feature

extractor for object recognition problems. It is most useful when labeled data is

scarce. We demonstrated its utility in this regime by using S3C to win a transfer

learning competition.
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4.4 Recent Developments

Following the invention of dropout (Hinton et al., 2012), the importance of

unsupervised feature learning as a means of regularizing classifiers has significantly

diminished. This has reduced the practical utility of the work presented in this

article, but S3C may become useful again when computer hardware advances to

the point that we are able to run models larger than can be successfully regularized

with dropout alone.

There have been numerous advances in generative models of natural images, but

none of these has resulted in significant advances in the approach of regularizing

classifiers via generative pretraining.
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5
Scaling up Spike-and-Slab

Models for Unsupervised

Feature Learning

5.1 Introduction

It is di�cult to overstate the importance of the quality of the input features

to supervised learning algorithms. A supervised learning algorithm is given a set

of examples V = {v(1), . . . , v(m)} and associated labels {y(1), . . . , y(m)} from which

it learns a mapping from v to y that can predict the labels y of new unlabeled

examples v. The di�culty of this task is strongly influenced by the choice of rep-

resentation, or the feature set used to encode the input examples v. The premise

of unsupervised feature discovery is that, by learning the structure of V , we can

discover a feature mapping �(v) that renders standard supervised learning algo-

rithms, such as the support vector machine, more e↵ective. Because �(v) can be

learned from unlabeled data, unsupervised feature discovery can be used for semi-

supervised learning (where many more unlabeled examples than labeled examples

are available) or transfer learning (where the classifier will be evaluated on only a

subset of the categories present in the training data).

When adopting a deep learning (Bengio, 2009) approach, the feature learning

algorithm should discover a � that consists of the composition of several simple

feature mappings, each of which transforms the output of the earlier mappings in

order to incrementally disentangle the factors of variation present in the data. Deep

learning methods are typically created by repeatedly composing together shallow

unsupervised feature learners. Examples of shallow models applied to feature dis-

covery include sparse coding (Raina et al., 2007), restricted Boltzmann machines

(RBMs) (Hinton et al., 2006; Courville et al., 2011a), various autoencoder-based

models (Bengio et al., 2007; Vincent et al., 2008), and hybrids of autoencoders and

sparse coding (Kavukcuoglu et al., 2010a).

In this paper, we describe how to use a model which we call spike-and-slab sparse

coding (S3C) as an e�cient feature learning algorithm. We also demonstrate how to
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construct a new deep model, the partially directed deep Boltzmann machine (PD-

DBM) with S3C as its first layer. Both are models of real-valued data, and as such

are well-suited to modeling images, or image-like data, such as audio that has been

preprocessed into an image-like space (Deng et al., 2010). In this paper, we focus

on applying these models to object recognition.

Single-layer convolutional models based on simple thresholded linear feature

extractors are currently among the state-of-the-art performers on the CIFAR-10

object recognition dataset (Coates and Ng, 2011; Jia and Huang, 2011). However,

the CIFAR-10 dataset contains 5,000 labels per class, and this amount of labeled

data can be inconvenient or expensive to obtain for applications requiring more than

10 classes. Previous work has shown that the performance of a simple thresholded

linear feature set degrades sharply in accuracy as the number of labeled examples

decreases (Coates and Ng, 2011).

We introduce the use of the S3C model as a feature extractor in order to make

features more robust to this degradation. This is motivated by the observation

that sparse coding performs relatively well when the number of labeled examples is

low (Coates and Ng, 2011). Sparse coding inference invokes a competition among

the features to explain the data and therefore, relative to simple thresholded linear

feature extractors, acts as a more regularized feature extraction scheme. We specu-

late that this additional regularization is responsible for its improved performance

in the low-labeled-data regime. S3C can be considered as employing an alternative

regularization for feature extraction where, unlike sparse coding, the sparsity prior

is decoupled from the magnitude of the non-zero, real-valued feature values.

The S3C generative model can be viewed as a hybrid of sparse coding and

the recently introduced spike-and-slab RBM (Courville et al., 2011b). Like the

spike-and-slab RBM (ssRBM), S3C possesses a layer of hidden units composed of

real-valued slab variables and binary spike variables. The binary spike variables

are well suited as inputs to subsequent layers in a deep model. However, like sparse

coding and unlike the ssRBM, S3C can be interpreted as a directed graphical model,

implying that features in S3C compete with each other to explain the input. As

we show, S3C can be derived either from sparse coding by replacing the factorial

Laplace prior with a factorial spike-and-slab prior, or from the ssRBM, by simply

adding a term to its energy function that causes the hidden units to compete with

each other.
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We hypothesize that S3C features have a stronger regularizing e↵ect than sparse

coding features due to the greater sparsity in the spike-and-slab prior relative to

the Laplace prior. We validate this hypothesis by showing that S3C has superior

performance when labeled data is scarce. We present results on the the CIFAR-10

and CIFAR-100 object classification datasets. We also describe how we used S3C

to win a transfer learning challenge.

The major technical challenge in using S3C is that exact inference over the pos-

terior of the latent layer is intractable. We derive an e�cient structured variational

approximation to the posterior distribution and use it to perform approximate in-

ference as well as learning as part of a variational Expectation Maximization (EM)

procedure (Saul and Jordan, 1996). Our inference algorithm allows us to scale in-

ference and learning in the spike-and-slab coding model to the large problem sizes

required for state-of-the-art object recognition.

Our use of a variational approximation for inference distinguishes S3C from

standard sparse coding schemes where maximum a posteriori (MAP) inference is

typically used. It also allows us to naturally incorporate S3C as a module of a deeper

model. We introduce learning rules for the resulting PD-DBM, describe some of its

interesting theoretical properties, and demonstrate how this model can be trained

jointly by a single algorithm, rather than requiring the traditional greedy learning

algorithm that consists of composing individually trained components (Salakhutdi-

nov and Hinton, 2009). The ability to jointly train deep models in a single unified

learning stage has the advantage that it allows the units in higher layers to influence

the entire learning process at the lower layers. We anticipate that this property

may become essential in the future as the size of the models increases. Consider an

extremely large deep model, with size su�cient that it requires sparse connections.

When this model is trained jointly, the feedback from the units in higher layers will

cause units in lower layers to naturally group themselves so that each higher layer

unit receives all of the information it needs in its sparse receptive field. Even in

small, densely connected models, greedy training may get caught in local optimal

that joint training can avoid.
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5.2 Models

We now describe the models considered in this paper. We first study a model

we call the spike-and-slab sparse coding (S3C) model. This model has appeared

previously in the literature in a variety of di↵erent domains (Lücke and Sheikh,

2011; Garrigues and Olshausen, 2008; Mohamed et al., 2012; Zhou et al., 2009;

Titsias and Lázaro-Gredilla, 2011). Next, we describe a way to incorporate S3C

into a deeper model, with the primary goal of obtaining a better generative model.

5.2.1 The spike-and-slab sparse coding model

The spike-and-slab sparse coding model consists of latent binary spike variables

h 2 {0, 1}N , latent real-valued slab variables s 2 RN , and real-valued visible vector

v 2 RD generated according to this process:

8i 2 {1, . . . , N}, d 2 {1, . . . , D},

p(h
i

= 1) = �(b
i

)

p(s
i

| h
i

) = N (s
i

| h
i

µ
i

, ↵�1

ii

) (5.1)
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(h � s), ��1

dd

)

where � is the logistic sigmoid function, b is a set of biases on h, µ and W govern the

linear dependence of s on h and v on s respectively, ↵ and � are diagonal precision

matrices of their respective conditionals, and h�s denotes the element-wise product

of h and s.

To avoid overparameterizing the distribution, we constrain the columns of W

to have unit norm, as in sparse coding. We restrict ↵ to be a diagonal matrix and

� to be a diagonal matrix or a scalar. We refer to the variables h
i

and s
i

as jointly

defining the ith hidden unit, so that there are a total of N rather than 2N hidden

units. The state of a hidden unit is best understood as h
i

s
i

, that is, the spike

variables gate the slab variables 1.

5.2.2 The partially directed deep Boltzmann machine model

As described above, the S3C prior is factorial over the hidden units (h
i

s
i

pairs).

Distributions such as the distribution over natural images are rarely well described

1. We can essentially recover hi and si from hisi since si = 0 has zero measure.
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by simple independent factor models, and so we expect that S3C will likely be a

poor generative model for the kinds of data that we wish to consider. We now

show one way of incorporating S3C into a deeper model, with the primary goal of

obtaining a better generative model. If we assume that µ becomes large relative

to ↵, then the primary structure we need to model is in h. We therefore propose

placing a DBM prior rather than a factorial prior on h. The resulting model can

be viewed as a deep Boltzmann machine with directed connections at the bottom

layer. We call the resulting model a partially directed deep Boltzmann machine

(PD-DBM).

The PD-DBM model consists of an observed input vector v 2 RD, a vector

of slab variables s 2 RN

0 , and a set of binary vectors h = {h(0), . . . , h(L)} where

h(l) 2 {0, 1}Nl and L is the number of layers added on top of the S3C model.

The model is parameterized by �, ↵, and µ, which play the same roles as in

S3C. The parameters W (l) and b(l), l 2 {0, . . . , L} provide the weights and biases

of both the S3C model and the DBM prior attached to it.

Together, the complete model implements the following probability distribution:

P
PD�DBM

(v, s,h) = P
S3C

(v, s|h(0))P
DBM

(h)

where

P
DBM

(h) / exp

 
�

LX

l=0

b(l)T h(l) �
LX

l=1

h(l�1)T W (l)h(l)

!
.

A version of the model with three hidden layers (L = 2) is depicted graphically in

Fig. 5.1.

Besides admitting a straightforward learning algorithm, the PD-DBM has sev-

eral useful properties:

— The partition function exists for all parameter settings. This is not true of

the spike-and-slab restricted Boltzmann machine (ssRBM), which is a very

good generative model of natural images (Courville et al., 2011b).

— The model family is a universal approximator. The DBM portion, which is a

universal approximator of binary distributions (Le Roux and Bengio, 2008),

can implement a one-hot prior on h(0), thus turning the overall model into

a mixture of Gaussians, which is a universal approximator of real-valued

distributions (Titterington et al., 1985).

— Inference of the posterior involves feedforward, feedback, and lateral connec-
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Figure 5.1 – A graphical model depicting an example PD-DBM.
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tions. This increases the biological plausibility of the model, and enables it

to learn and exploit several rich kinds of interactions between features. The

lateral interactions make the lower level features compete to explain the in-

put, and the top-down influences help to obtain the correct representations

of ambiguous input.

5.3 Learning procedures

Maximum likelihood learning is intractable for both models. S3C su↵ers from

an intractable posterior distribution over the latent variables. In addition to an in-

tractable posterior distribution, the PD-DBM su↵ers from an intractable partition

function.

We follow the variational learning approach used by Salakhutdinov and Hinton

(2009) to train DBMs: rather than maximizing the log likelihood, we maximize a

variational lower bound on the log likelihood. In the case of the PD-DBM we must

do so using a stochastic approximation of the gradient.

The basic strategy of variational learning is to approximate the true posterior

P (h, s | v) with a simpler distribution Q(h, s). The choice of Q induces a lower

bound on the log likelihood called the negative variational free energy. The term

of the negative variational free energy that depends on the model parameters is

E
s,h⇠Q

[log P (v, s, h)]

= � E
s,h⇠Q

[log P (v | s, h(0)) + log P (s | h) + log P (h)]

In the case of S3C, this bound is tractable, and can be optimized in a straightfor-

ward manner. It is even possible to use variational EM (Saul and Jordan, 1996)

to make large, closed-form jumps in parameter space. However, we find gradient

ascent learning to be preferable in practice, due to the computational expense of

the closed-form solution, which involves estimating and inverting the covariance

matrix of all of the hidden units.

In the case of the PD-DBM, the objective function is not tractable because

the partition function of the DBM portion of the model is not tractable. We

can use contrastive divergence (Hinton, 2000) or stochastic maximum likelihood

(Younes, 1998; Tieleman, 2008) to make a sampling-based approximation to the
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DBM partition function’s contribution to the gradient. Thus, unlike S3C, we must

do gradient-based learning rather than closed-form parameter updates. However,

the PD-DBM model still has some nice properties in that only a subset of the

variables must be sampled during training. The factors of the partition function

originating from the S3C portion of the model are still tractable. In particular,

training does not ever require sampling real-valued variables. This is a nice property

because it means that the gradient estimates are bounded for fixed parameters and

data. When sampling real-valued variables, it is possible for the sampling procedure

to make gradient estimates arbitrarily large.

We found that using the “true gradient” (Douglas et al., 1999) method to be

useful for learning with the norm constraint on W . We also found that using

momentum (Hinton, 2010) is very important for learning PD-DBMs.

5.3.1 Avoiding greedy pretraining

Deep models are commonly pretrained in a greedy layerwise fashion. For ex-

ample, a DBM is usually initialized from a stack of RBMs, with one RBM trained

on the data and each of the other RBMs trained on samples of the previous RBM’s

hidden layer.

Any greedy training procedure can obviously get stuck in a local minimum.

Avoiding the need for greedy training could thus result in better models. For

example, when pretraining with an RBM, the lack of explaining away in the pos-

terior prevents the first layer from learning nearly parallel weight vectors, since

these would result in similar activations (up to the bias term, which could simply

make one unit always less active than the other). Even though the deeper layers

of the DBM could implement the explaining away needed for these weight vectors

to function correctly (ie, to have the one that resembles the input the most acti-

vate, and inhibit the other unit), the greedy learning procedure does not have the

opportunity to learn such weight vectors.

Previous e↵orts at jointly training even two layer DBMs on MNIST have failed

(Salakhutdinov and Hinton, 2009; Desjardins et al., 2012; Montavon and Müller,

2012). Typically, the jointly trained DBM does not make good use of the second

layer, either because the second layer weights are very small or because they contain

several duplicate weights focused on a small subset of first layer units that became
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Figure 5.2 – This example histogram of EQ[hisi] shows that Q is a sparse distribution. For this
6,000 hidden unit S3C model trained on 6 ⇥ 6 image patches, Q(hi = 1) < .01 99.7% of the time.

active early during training. We hypothesize that this is because the second layer

hidden units in a DBM must both learn to model correlations in the first layer

induced by the data and to counteract correlations in the first layer induced by the

model family. When the second layer weights are set to 0, the DBM prior acts to

correlate hidden units that have similar weight vectors (see Section 5.5.2).

The PD-DBM model avoids this problem. When the second layer weights are set

to 0, the first layer hidden units are independent in the PD-DBM prior (essentially

the S3C prior). The second layer thus has only one task: to model the correlations

between first layer units induced by the data. As we will show, this hypothesis is

supported by the fact that we are able to succesfully train a two layer PD-DBM

without greedy pre-training.

5.4 Inference procedures

The goal of variational inference is to maximize the lower bound on the log

likelihood with respect to the approximate distribution Q over the unobserved

variables. This is accomplished by selecting the Q that minimizes the Kullback–

Leibler divergence:

D
KL

(Q(h, s)kP (h, s|v)) (5.2)
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Figure 5.3 – The explaining-away e↵ect makes the S3C representation become more sparse with
each damped iteration of the variational inference fixed point equations.

where Q(h, s) is drawn from a restricted family of distributions. This family

can be chosen to ensure that learning and inference with Q is tractable.

Variational inference can be seen as analogous to the encoding step of the tra-

diational sparse coding algorithm. The key di↵erence is that while sparse coding

approximates the true posterior with a MAP point estimate of the latent vari-

ables, variational inference approximates the true posterior everywhere with the

distribution Q.

5.4.1 Variational inference for S3C

When working with S3C, we constrain Q to be drawn from the family Q(h, s) =

⇧
i

Q(h
i

, s
i

). This is a richer approximation than the fully factorized family used

in the mean field approximation. It allows us to capture the tight correlation

between each spike variable and its corresponding slab variable while still allowing

simple and e�cient inference in the approximating distribution. It also avoids

a pathological condition in the mean field distribution where Q(s
i

) can never be

updated if Q(h
i

) = 0.

Observing that eq. (5.2) is an instance of the Euler-Lagrange equation, we find

that the solution must take the form

Q(h
i

= 1) = ĥ
i

,

Q(s
i

| h
i

) = N (s
i

| h
i

ŝ
i

, (↵
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W>
i

�W
i
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where ĥ
i

and ŝ
i

must be found by an iterative process. In a typical applica-

48



tion of variational inference, the iterative process consists of sequentially applying

fixed point equations that give the optimal value of the parameters ĥ
i

and ŝ
i

for

one factor Q(h
i

, s
i

) given the value all of the other factors’ parameters. This is

for example the approach taken by Titsias and Lázaro-Gredilla (2011) who inde-

pendently developed a variational inference procedure for the same problem. This

process is only guaranteed to decrease the KL divergence if applied to each factor

sequentially, i.e. first updating ĥ
1

and ŝ
1

to optimize Q(h
1

, s
1

), then updating ĥ
2

and ŝ
2

to optimize Q(h
2

, s
2

), and so on. In a typical application of variational in-

ference, the optimal values for each update are simply given by the solutions to the

Euler-Lagrange equations. For S3C, we make three deviations from this standard

approach.

Because we apply S3C to very large-scale problems, we need an algorithm that

can fully exploit the benefits of parallel hardware such as GPUs. Sequential updates

across all N factors require far too much run-time to be competitive in this regime.

We have considered two di↵erent methods that enable parallel updates to all

units. In the first method, we start each iteration by partially minimizing the

KL divergence with respect to ŝ. The terms of the KL divergence that depend

on ŝ make up a quadratic function so this can be minimized via conjugate gra-

dient descent. We implement conjugate gradient descent e�ciently by using the

R-operator (Pearlmutter, 1994) to perform Hessian-vector products rather than

computing the entire Hessian explicitly (Schraudolph, 2002). This step is guaran-

teed to improve the KL divergence on each iteration. We next update ĥ in parallel,

shrinking the update by a damping coe�cient. This approach is not guaranteed to

decrease the KL divergence on each iteration but it is a widely applied approach

that works well in practice (Koller and Friedman, 2009).

With the second method (Algorithm 1), we find in practice that we obtain faster

convergence, reaching equally good solutions by replacing the conjugate gradient

update to ŝ with a more heuristic approach. We use a parallel damped update

on ŝ much like what we do for ĥ. In this case we make an additional heuristic

modification to the update rule which is made necessary by the unbounded nature

of ŝ. We clip the update to ŝ so that if ŝ
new

has the opposite sign from ŝ, its

magnitude is at most ⇢|ŝ|. In all of our experiments we used ⇢ = 0.5 but any

value in [0, 1] is sensible. This prevents a case where multiple mutually inhibitory s

units inhibit each other so strongly that rather than being driven to 0 they change
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sign and actually increase in magnitude. This case is a failure mode of the parallel

updates that can result in ŝ amplifying without bound if clipping is not used.

Note that Algorithm 1 does not specify a convergence criterion. Many conver-

gence criteria are possible–the convergence criterion could be based on the norm of

the gradient of the KL divergence with respect to the variational parameters, the

amount that the KL divergence has decreased in the last iteration, or the amount

that the variational parameters have changed in the final iteration. Salakhutdinov

and Hinton (2009) use the third approach when training deep Boltzmann machines

and we find that it works well for S3C and the PD-DBM as well.

Algorithm 1 Fixed-Point Inference

Initialize

ˆh(0) = �(b), ŝ(0) = µ, and k = 0.

while not converged do

Compute the individually optimal value ŝ⇤i for each i simultaneously:

ŝ⇤i =

µi↵ii + v>�Wi �Wi�
hP

j 6=i Wj
ˆhj ŝj(k)

i

↵ii + W>
i �Wi

Clip reflections by assigning

ci = ⇢sign(ŝ⇤i )|ŝi(k)|

for all i such that sign(ŝ⇤i ) 6= sign(ŝi(k)) and |ŝ⇤i | > ⇢|ŝi(k)|, and assigning ci = ŝ⇤i for all other i.
Damp the updates by assigning

ŝ(k + 1)i = ⌘sc + (1� ⌘s)ŝ(k)

where ⌘s 2 (0, 1].

Compute the individually optimal values for

ˆh:

zi =

0

@v �
X

j 6=i

Wj ŝj(k + 1)

ˆhj(k)�
1

2

Wiŝi(k + 1)

1

A
>

�Wiŝi(k + 1) + bi �
1

2

↵ii(ŝi(k + 1)� µi)
2 �

1

2

log(↵ii + W>
i �Wi) +

1

2

log(↵ii)

ˆh⇤
i = �(z)

Damp the update to

ˆh:

ˆh(k + 1) = ⌘h
ˆh⇤

+ (1� ⌘h)

ˆh(k)

k  k + 1

end while

We include some visualizations that demonstrate the e↵ect of our inference

procedure. Figure 5.2 shows that it produces a sparse representation. Figure

5.3 shows that the explaining-away e↵ect incrementally makes the representation

more sparse. Figure 5.4 shows that the inference procedure increases the negative

variational free energy.
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Figure 5.4 – The negative variational free energy of a batch of 5000 image patches increases
during the course of variational inference.

5.4.2 Variational inference for the PD-DBM

Inference in the PD-DBM is very similar to inference in S3C. We use the vari-

ational family

Q(s, h) = ⇧N

0

i=1

Q(s
i

, h(0)

i

)⇧L

l=1

⇧Nl
i=1

Q(h(l)

i

)

whose solutions take the form

Q(h(l)

i

= 1) = ĥ(l)

i

,

Q(s
i

| h(0)

i

) = N (s
i

| h(0)

i

ŝ
i

, (↵
i

+ h
i

W>
i

�W
i

)�1).

We apply more or less the same inference procedure as in S3C. On each update

step we update either ŝ or ĥ(l) for some value of l. The update to ŝ is exactly the

same as in S3C. The update to ĥ(0) changes slightly to incorporate top-down influ-

ence from ĥ(1). When computing the individually optimal values of the elements

of ĥ(0) we use the following fixed-point formula:

ĥ(0)⇤
i

= �(z
i

+ W (1)ĥ(1))

The update to ĥ(l) for l > 0 is simple; it is the same as the mean field update in

the DBM. No damping is necessary for this update. The conditional independence

properties of the DBM guarantee that the optimal values of the elements of ĥ(l) do

not depend on each other, so the individually optimal values are globally optimal

(for a given ĥ(l�1) and ĥ(l+1)). The update is given by

ĥ(l)⇤ = �
⇣
b(l) + ĥ(l�1)T W (l) + W (l+1)ĥ(l+1)

⌘

where the term for layer l + 1 is dropped if l + 1 > L.
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5.5 Comparison to other feature encoding

methods

Here we compare S3C as a feature discovery algorithm to other popular ap-

proaches. We describing how S3C occupies a middle ground between two of these

methods, sparse coding and the ssRBM, while avoiding many of the respective

disadvantages when applied as feature discovery algorithms.

5.5.1 Comparison to sparse coding

Sparse coding (Olshausen and Field, 1997) has been widely used to discover

features for classification (Raina et al., 2007). Recently Coates and Ng (2011)

showed that this approach achieves excellent performance on the CIFAR-10 object

recognition dataset. Sparse coding refers to a class of generative models where the

observed data v is normally distributed given a set of continuous latent variables

s and a dictionary matrix W : v ⇠ N (Ws, �I). Sparse coding places a factorial

and heavy tailed prior distribution over s (e.g. a Cauchy or Laplace distribution)

chosen to encourage the mode of the posterior p(s | v) to be sparse. One can derive

the S3C model from sparse coding by replacing the factorial Cauchy or Laplace

prior with a spike-and-slab prior.

One drawback of sparse coding is that the latent variables are not merely en-

couraged to be sparse; they are encouraged to remain close to 0, even when they

are active. This kind of regularization is not necessarily undesirable, but in the

case of simple but popular priors such as the Laplace prior (corresponding to an

L
1

penalty on the latent variables s), the degree of regularization on active units

is confounded with the degree of sparsity. There is little reason to believe that in

realistic settings, these two types of complexity control should be so tightly bound

together. The S3C model avoids this issue by controlling the sparsity of units via

the b parameter that determines how likely each spike unit is to be active, while

separately controlling the magnitude of active units via the µ and ↵ parameters

that govern the distribution over s. Sparse coding has no parameter analogous to

µ and cannot control these aspects of the posterior independently.

Another drawback of sparse coding is that the factors are not actually sparse in

the generative distribution. Indeed, each factor is zero with probability zero. The
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features extracted by sparse coding are only sparse because they are obtained via

MAP inference. In the S3C model, the spike variables ensure that each factor is

zero with non-zero probability in the generative distribution. Since this places a

greater restriction on the code variables, we hypothesize that S3C features provide

more of a regularizing e↵ect when solving classification problems.

Sparse coding is also di�cult to integrate into a deep generative model of data

such as natural images. While Yu et al. (2011) and Zeiler et al. (2011) have recently

shown some success at learning hierarchical sparse coding, our goal is to integrate

the feature extraction scheme into a proven generative model framework such as

the deep Boltzmann machine (Salakhutdinov and Hinton, 2009). Existing inference

schemes known to work well in the DBM-type (deep Boltzmann machine) setting

are all either sample-based or are based on variational approximations to the model

posteriors, while sparse coding schemes typically employ MAP inference. Our use

of variational inference makes the S3C framework well suited to integrate into the

known successful strategies for learning and inference in DBM models. In fact,

the compatibility of the S3C and DBM inference procedures is confirmed by the

success of the PD-DBM inference procedure. It is not obvious how one can employ

a variational inference strategy to standard sparse coding with the goal of achieving

sparse feature encoding.

Sparse coding models can be learned e�ciently by alternately running MAP

inference for several examples and then making a large, closed-form updates to

the parameters. The same approach is also possible with S3C, and is in fact more

principled since it is based on maximizing a variational lower bound rather than

the MAP approximation. We do not explore this learning method for S3C in this

paper.

5.5.2 Comparison to restricted Boltzmann machines

The S3C model also resembles another class of models commonly used for fea-

ture discovery: the RBM. An RBM (Smolensky, 1986) is a model defined through

an energy function that describes the interactions between the observed data vari-

ables and a set of latent variables. It is possible to interpret the S3C as an energy-

based model, by rearranging p(v, s, h) to take the form exp{�E(v, s, h)}/Z, with
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the following energy function:
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The ssRBM model family is a good starting point for S3C because it has demon-

strated both reasonable performance as a feature discovery scheme and remarkable

performance as a generative model (Courville et al., 2011b). Within the ssRBM

family, S3C’s closest relative is a variant of the µ-ssRBM, defined by the following

energy function:
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where the variables and parameters are defined identically to those in S3C. Com-

parison of equations 5.4 and 5.5 reveals that the simple addition of a latent factor

interaction term 1

2

(h � s)>W>�W (h � s) to the ssRBM energy function turns the

ssRBM into the S3C model. With the inclusion of this term S3C moves from

an undirected ssRBM model to the directed graphical model described in equa-

tion (5.1). This change from undirected modeling to directed modeling has three

important e↵ects, that we describe in the following paragraphs:

The e↵ect on the partition function: The most immediate consequence of

the transition to directed modeling is that the partition function becomes tractable.

Because the RBM parition function is intractable, most training algorithms for the

RBM require making stochastic approximations to the partition function, the same

as our learning procedure for the PD-DBM does. Since the S3C partition function

is tractable, we can follow its true gradient, which provides one advantage over

the RBM. The partition function of S3C is also guaranteed to exist for all possible

settings of the model parameters, which is not true of the ssRBM. In the ssRBM,

for some parameter values, it is possible for p(s, v | h) to take the form of a normal

distribution whose covariance matrix is not positive definite. Courville et al.

(2011b) have explored resolving this issue by constraining the parameters, but this
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was found to hurt classification performance.

The e↵ect on the posterior: RBMs have a factorial posterior, but S3C

and sparse coding have a complicated posterior due to the “explaining away” e↵ect.

For this reason, RBMs can use exact inference and maximum likelihood estimation.

Models with an intractable posterior such as S3C and DBMs must use approximate

inference and are often trained with a variational lower bound on the likelihood.

The RBMs factorial posterior means that features defined by similar basis func-

tions will have similar activations, while in directed models, similar features will

compete so that only the most relevant features will remain significantly active.

As shown by Coates and Ng (2011), the sparse Gaussian RBM is not a very good

feature extractor – the set of basis functions W learned by the RBM actually work

better for supervised learning when these parameters are plugged into a sparse

coding model than when the RBM itself is used for feature extraction. We think

this is due to the factorial posterior. In the vastly overcomplete setting, being able

to selectively activate a small set of features that cooperate to explain the input

likely provides S3C a major advantage in discriminative capability.

Considerations of biological plausibility also motivate the use of a model with

a complicated posterior. As described in (Hyvärinen et al., 2009), a phenomenon

called “end stopping” similar to explaining away has been observed in V1 simple

cells. End-stopping occurs when an edge detector is inhibited when retinal cells

near the ends of the edge it detects are stimulated. The inhibition occurs due to

lateral interactions with other simple cells, and is a major motivation for the lateral

interactions present in the sparse coding posterior.

The e↵ect on the prior: The addition of the interaction term causes S3C

to have a factorial prior. This probably makes it a poor generative model, but this

is not a problem for the purpose of feature discovery. Moreover, the quality of the

generative model can be improved by incorporating S3C into a deeper architecture,

as we will show.

RBMs were designed with a nonfactorial prior because factor models with fac-

torial priors are generally known to result in poor generative models. However,

in the case of real-valued data, typical RBM priors are not especially useful. For
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example, the ssRBM variant described in eq. (5.5) has the following prior:
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It is readily apparent from the first term (all other terms factorize across hidden

units) that this prior acts to correlate units that have similar basis vectors, which

is almost certainly not a desirable property for feature extraction tasks. Indeed it

is this nature of the RBM prior that causes both the desirable (easy computation)

and undesirable (no explaining away) properties of the posterior.

5.5.3 Other related work

The notion of a spike-and-slab prior was established in statistics by Mitchell

and Beauchamp (1988). Outside the context of unsupervised feature discovery

for supervised learning, the basic form of the S3C model (i.e. a spike-and-slab

latent factor model) has appeared a number of times in di↵erent domains (Lücke

and Sheikh, 2011; Garrigues and Olshausen, 2008; Mohamed et al., 2012; Zhou

et al., 2009; Titsias and Lázaro-Gredilla, 2011). To this literature, we contribute

an inference scheme that scales to the kinds of object classifications tasks that we

consider. We outline this inference scheme next.

5.6 Runtime results

Our inference scheme achieves very good computational performance, both in

terms of memory consumption and in terms of run-time. The computational bot-

tleneck in our classification pipeline is SVM training, not feature learning or feature

extraction.

Comparing the computational cost of our inference scheme to others is a di�cult

task because it could be confounded by di↵erences in implementation and because

it is not clear exactly what sparse coding problem is equivalent to an equivalent

spike-and-slab sparse coding problem. However, we observed informally during our
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supervised learning experiments that feature extraction using S3C took roughly

the same amount of time as feature extraction using sparse coding.

In Fig. 5.5, we show that our improvements to spike-and-slab inference perfor-

mance allow us to scale spike-and-slab modeling to the problem sizes needed for

object recognition tasks. Previous work on spike-and-slab modeling was not able

to use similar amounts of hidden units or training examples.

As a large-scale test of our inference scheme’s ability, we trained over 8,000

densely-connected filters on full 32⇥32 color images. A visualization of the learned

filters is shown in Fig. 5.6. This test demonstrated that our approach scales

well to large (over 3,000 dimensional) inputs, though it is not yet known how to

use features for classification as e↵ectively as patch-based features which can be

incorporated into a convolutional architecture with pooling. For comparison, to

our knowledge the largest image patches used in previous spike-and-slab models

with lateral interactions were 16 ⇥ 16 (Garrigues and Olshausen, 2008).

Finally, we performed a series of experiments to compare our heuristic method

of updating ŝ with the conjugate gradient method of updating ŝ. The conjugate

gradient method is guaranteed to reduce the KL divergence on each update to

ŝ. The heuristic method has no such guarantee. These experiments provide an

empirical justification for the use of the heuristic method.

We considered three di↵erent models, each on a di↵erent dataset. We used

MNIST (LeCun et al., 1998), CIFAR-100 (Krizhevsky and Hinton, 2009) , and

whitened 6 ⇥ 6 patches drawn from CIFAR-100 as the three datasets.

Because we wish to compare di↵erent inference algorithms and inference a↵ects

learning, we did not want to compare the algorithms on models whose parameters

were the result of learning. Instead we obtained the value of W by drawing ran-

domly selected patches ranging in size from 6 ⇥ 6 to the full image size for each

dataset. This provides a data-driven version of W with some of the same properties

like local support that learned filters tend to have. None of the examples used to

initialize W were used in the later timing experiments. We initialized b, µ, ↵, and

� randomly. We used 400 hidden units for some experiments and 1600 units for

others, to investigate the e↵ect of overcompleteness on runtime.

For each inference scheme considered, we found the fastest possible variant

obtainable via a two-dimensional grid search over ⌘
h

and either ⌘
s

in the case of

the heuristic method or the number of conjugate gradient steps to apply per ŝ
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Figure 5.5 – Our inference scheme enables us to extend spike-and-slab modeling from small
problems to the scale needed for object recognition. Previous object recognition work is from
(Coates and Ng, 2011; Courville et al., 2011b). Previous spike-and-slab work is from (Mohamed
et al., 2012; Zhou et al., 2009; Garrigues and Olshausen, 2008; Lücke and Sheikh, 2011; Titsias
and Lázaro-Gredilla, 2011).

Figure 5.6 – Example filters from a dictionary of over 8,000 learned on full 32x32 images.

update in the case of the conjugate gradient method. We used the same value of

these parameters on every pair of update steps. It may be possible to obtain faster

results by varying the parameters throughout the course of inference.

For these timing experiments, it is necessary to make sure that each algorithm

is not able to appear faster by converging early to an incorrect solution. We thus

replace the standard convergence criterion based on the size of the change in the

variational parameters with a requirement that the KL divergence reach within 0.05

on average of our best estimate of the true minimum value of the KL divergence

found by batch gradient descent.

All experiments were performed on an Nvidia Ge-Force GTX-580.

The results are summarized in Fig. 5.7.
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Figure 5.7 – The inference speed for each method was computed based on the inference time
for the same set of 100 examples from each dataset. The heuristic method is consistently faster
than the conjugate gradient method. The conjugate gradient method is slowed more by problem
size than the heuristic method is, as shown by the conjugate gradient method’s low speed on the
CIFAR-100 full image task. The heuristic method has a very low cost per iteration but is strongly
a↵ected by the strength of explaining-away interactions–moving from CIFAR-100 full images to
CIFAR-100 patches actually slows it down because the degree of overcompleteness increases.

5.7 Classification results

Because S3C forms the basis of all further model development in this line of

research, we concentrate on validating its value as a feature discovery algorithm.

We conducted experiments to evaluate the usefulness of S3C features for supervised

learning on the CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009) datasets.

Both datasets consist of color images of objects such as animals and vehicles. Each

contains 50,000 train and 10,000 test examples. CIFAR-10 contains 10 classes while

CIFAR-100 contains 100 classes, so there are fewer labeled examples per class in

the case of CIFAR-100.

For all experiments, we used the same overall procedure as Coates and Ng (2011)

except for feature learning. CIFAR-10 consists of 32 ⇥ 32 images. We train our

feature extractor on 6⇥6 contrast-normalized and ZCA-whitened patches from the

training set (this preprocessing step is not necessary to obtain good performance

with S3C; we included it primarily to facilitate comparison with other work). At

test time, we extract features from all 6⇥6 patches on an image, then average-pool

them. The average-pooling regions are arranged on a non-overlapping grid. Finally,

we train an L2-SVM with a linear kernel on the pooled features.
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Figure 5.8 – Semi-supervised classification accuracy on subsets of CIFAR-10. Thresholding, the
best feature extractor on the full dataset, performs worse than sparse coding when few labels are
available. S3C improves upon sparse coding’s advantage.
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Figure 5.9 – CIFAR-100 classification accuracy for various models. As expected, S3C out-
performs SC (sparse coding) and and OMP-1. S3C with spatial pyramid pooling is near the
state-of-the-art method, which uses a learned pooling structure.
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5.7.1 CIFAR-10

We use CIFAR-10 to evaluate our hypothesis that S3C is similar to a more

regularized version of sparse coding.

Coates and Ng (2011) used 1600 basis vectors in all of their sparse coding

experiments. They post-processed the sparse coding feature vectors by splitting

them into the positive and negative part for a total of 3200 features per average-

pooling region. They average-pool on a 2 ⇥ 2 grid for a total of 12,800 features

per image (i.e. each element of the 2 ⇥ 2 grid averages over a block with sides

d(32 � 6 + 1)/2e or b(32 � 6 + 1)/2c). We used E
Q

[h] as our feature vector. Unlike

the output of sparse coding, this does not have a negative part, so using a 2 ⇥ 2

grid we would have only 6,400 features. In order to compare with similar sizes of

feature vectors we used a 3 ⇥ 3 pooling grid for a total of 14,400 features (i.e. each

element of the 3 ⇥ 3 grid averages over 9 ⇥ 9 locations) when evaluating S3C. To

ensure this is a fair means of comparison, we confirmed that running sparse coding

with a 3⇥3 grid and absolute value rectification performs worse than sparse coding

with a 2 ⇥ 2 grid and sign splitting (76.8% versus 77.9% on the validation set).

We tested the regularizing e↵ect of S3C by training the SVM on small subsets of

the CIFAR-10 training set, but using features that were learned on patches drawn

from the entire CIFAR-10 train set. The results, summarized in Figure 5.8, show

that S3C has the advantage over both thresholding and sparse coding for a wide

range of amounts of labeled data. (In the extreme low-data limit, the confidence

interval becomes too large to distinguish sparse coding from S3C).

On the full dataset, S3C achieves a test set accuracy of 78.3 ± 0.9 % with 95%

confidence. Coates and Ng (2011) do not report test set accuracy for sparse coding

with “natural encoding” (i.e., extracting features in a model whose parameters are

all the same as in the model used for training) but sparse coding with di↵erent

parameters for feature extraction than training achieves an accuracy of 78.8 ±
0.9% (Coates and Ng, 2011). Since we have not enhanced our performance by

modifying parameters at feature extraction time these results seem to indicate

that S3C is roughly equivalent to sparse coding for this classification task. S3C

also outperforms ssRBMs, which require 4,096 basis vectors per patch and a 3 ⇥ 3

pooling grid to achieve 76.7 ± 0.9% accuracy. All of these approaches are close to

the best result, using the pipeline from Coates and Ng (2011), of 81.5% achieved

using thresholding of linear features learned with OMP-1. These results show that
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S3C is a useful feature extractor that performs comparably to the best approaches

when large amounts of labeled data are available.

5.7.2 CIFAR-100

Having verified that S3C features help to regularize a classifier, we proceed to

use them to improve performance on the CIFAR-100 dataset, which has ten times

as many classes and ten times fewer labeled examples per class. We compare S3C

to two other feature extraction methods: OMP-1 with thresholding, which Coates

and Ng (2011) found to be the best feature extractor on CIFAR-10, and sparse

coding, which is known to perform well when less labeled data is available. We

evaluated only a single set of hyperparameters for S3C. For sparse coding and

OMP-1 we searched over the same set of hyperparameters as Coates and Ng (2011)

did: {0.5, 0.75, 1.0, 1.25, 1.25} for the sparse coding penalty and {0.1, 0.25, 0.5, 1.0}
for the thresholding value. In order to use a comparable amount of computational

resources in all cases, we used at most 1600 hidden units and a 3 ⇥ 3 pooling grid

for all three methods. For S3C, this was the only feature encoding we evaluated.

For SC (sparse coding) and OMP-1, which double their number of features via sign

splitting, we also evaluated 2⇥2 pooling with 1600 latent variables and 3⇥3 pooling

with 800 latent variables to be sure the models do not su↵er from overfitting caused

by the larger feature set. These results are summarized in Fig. 5.9.

The best result to our knowledge on CIFAR-100 is 54.8 ± 1% (Jia and Huang,

2011), achieved using a learned pooling structure on top of “triangle code” features

from a dictionary learned using k-means. This feature extractor is very similar to

thresholded OMP-1 features and is known to perform slightly worse on CIFAR-10.

The validation set results, which all use the same control pooling layer, in Fig. 5.9

show that S3C is the best known detector layer on CIFAR-100. Using a pooling

strategy of concatenating 1 ⇥ 1, 2 ⇥ 2 and 3 ⇥ 3 pooled features we achieve a test

set accuracy of 53.7 ± 1%.

5.7.3 Transfer learning challenge

For the NIPS 2011 Workshop on Challenges in Learning Hierarchical Models

(Le et al., 2011), the organizers proposed a transfer learning competition. This

competition used a dataset consisting of 32 ⇥ 32 color images, including 100,000
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Figure 5.10 – Performance of several limited variants of S3C

unlabeled examples, 50,000 labeled examples of 100 object classes not present in

the test set, and 120 labeled examples of 10 object classes present in the test set.

The test set was not made public until after the competition. We recognized this

contest as a chance to demonstrate S3C’s ability to perform well with extremely

small amounts of labeled data. We chose to disregard the 50,000 labels and treat

this as a semi-supervised learning task.

We applied the same approach as on the CIFAR datasets, albeit with a small

modification to the SVM training procedure. Due to the small labeled dataset size,

we used leave-one-out cross validation rather than five fold cross validation.

We won the competition, with a test set accuracy of 48.6 %. We do not have

any information about the competing entries, other than that we outperformed

them. Our test set accuracy was tied with a method run by the contest organizers,

based on a combination of methods (Coates et al., 2011; Le et al., 2011). Since

these methods do not use transfer learning either, this suggests that the contest

primarily provides evidence that S3C is a powerful semi-supervised learning tool.

5.7.4 Ablative analysis

In order to better understand which aspects of our S3C object classification

method are most important to obtaining good performance, we conducted a series

of ablative analysis experiments. For these experiments we trained on 5,000 labels

of the STL-10 dataset (Coates et al., 2011). Previous work on the STL-10 dataset

is based on training on 1,000 label subsets of the training set, so the performance

numbers in this section should only be compared to each other, not to previous

work. The results are presented in Fig. 5.10.
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Figure 5.11 – Left: Samples drawn from an S3C model trained on MNIST. Right: The filters
used by this S3C model.

Our best-performing method uses E
Q

[h] as features. This allows us to abstract

out the s variables, so that they achieve a form of per-component brightness invari-

ance. Our experiments show that including the s variables or using MAP inference

in Q rather than an expectation hurts classification performance. We experimented

with fixing µ to 0 so that s is regularized to be small as well as sparse, as in sparse

coding. We found that this hurts performance even more. Lastly we experimented

with replacing S3C learning with simply assigning W to be a set of randomly se-

lected patches from the training set. We call this approach S3C-RP. We found that

this does not impair performance much, so learning is not very important com-

pared to our inference algorithm. This is consistent with Coates and Ng (2011)’s

observations that the feature extractor matters more than the learning algorithm

and that learning matters less for large numbers of hidden units.

5.8 Sampling results

In order to demonstrate the improvements in the generative modeling capability

conferred by adding a DBM prior on h, we trained an S3C model and a PD-DBM

model on the MNIST dataset. We chose to use MNIST for this portion of the

experiments because it is easy for a human observer to qualitatively judge whether

samples come from the same distribution as this dataset.
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Figure 5.12 – Left: Samples drawn from a PD-DBM model trained on MNIST using joint
training only. Center: Samples drawn from a DBM model of the same size, trained using greedy
layerwise pretraining followed by joint training. Right: Samples drawn from a DBM trained using
joint training only

For the PD-DBM, we used L = 1, for a total of two hidden layers. We did not

use greedy, layerwise pretraining– the entire model was learned jointly. Such joint

learning without greedy pretraining has never been accomplished with similar deep

models such as DBMs or DBNs.

The S3C samples and basis vectors are shown in Fig. 5.11. The samples do

not resemble digits, suggesting that S3C has failed to model the data. However,

inspection of the S3C filters shows that S3C has learned a good basis set for rep-

resenting MNIST digits using digit templates, pen strokes, etc. It simply does not

have the correct prior on these bases and as a result activates subsets of them

that do not correspond to MNIST digits. The PD-DBM samples clearly resemble

digits, as shown in Fig. 5.12. For comparison, Fig. 5.12 also shows samples from

two DBMs. In all cases we display the expected value of the visible units given the

hidden units.

The first DBM was trained by running the demo code that accompanies (Salakhut-

dinov and Hinton, 2009). We used the same number of units in each layer in order

to make these models comparable (500 in the first layer and 1,000 in the second).

This means that the PD-DBM has a slightly greater number of parameters than

the DBM, since the first layer units of the PD-DBM have both mean and preci-

sion parameters while the first layer units of the DBM have only a bias parameter.

Note that the DBM operates on a binarized version of MNIST while S3C and the

PD-DBM regard MNIST as real-valued. Additionally, the DBM demo code uses
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Figure 5.13 – Each panel shows a visualization of the weights for a di↵erent model. Each row
represents a di↵erent second layer hidden unit. We show ten units for each model corresponding
to those with the largest weight vector norm. Within each row, we plot the weight vectors for the
ten most strongly connected first layer units. Black corresponds to inhibition, white to excitation,
and gray to zero weight. This figure is best viewed in color–units plotted with a yellow border
have excitatory second layer weights while units plotted with a magenta border have inhibitory
second layer weights. Left: PD-DBM model trained jointly. Note that each row contains many
similar filters. This is how the second layer weights achieve invariance to some transformations
such as image translation. This is one way that deep architectures are able to disentangle factors
of variation. One can also see how the second layer helps implement the correct prior for the
generative task. For example, the unit plotted in the first row excites filters used to draw 7s and
inhibits filters used to draw 1s. Also, observe that the first layer filters are much more localized
and contained fewer templates than those in Fig. 5.11 right. This suggests that joint training
has a significant e↵ect on the quality of the first layer weights; greedy pretraining would have
attempted to solve the generative task with more templates due to S3C’s independent prior.
Center: DBM model with greedy pretraining followed by joint training. These weights show the
same disentangling and invariance properties as those of the PD-DBM. Note that the filters have
more black areas. This is because the RBM must use inhibitory weights to limit hidden unit
activities, while S3C accomplishes the same purpose via the explaining-away e↵ect. Right: DBM
with joint training only. Note that many of the second layer weight vectors are duplicates of
each other. This is because the second layer has a pathological tendency to focus on modeling a
handful of first-layer units that learn interesting responses earliest in learning.
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the MNIST labels during generative training while the PD-DBM and S3C were

not trained with the benefit of the labels. The DBM demo code is hardcoded to

pretrain the first layer for 100 epochs, the second layer for 200 epochs, and then

jointly train the DBM for 300 epochs. We trained the PD-DBM starting from a

random initialization for 350 epochs.

The second DBM was trained using two modifications from the demo code

in order to train it in as similar a fashion to our PD-DBM model as possible:

first, it was trained without access to labels, and second, it did not receive any

pretraining. This model was trained for only 230 epochs because it had already

converged to a bad local optimum by this time. This DBM is included to provide an

example of how DBM training fails when greedy layerwise pretraining is not used.

DBM training can fail in a variety of ways and no example should be considered

representative of all of them.

To analyze the di↵erences between these models, we display a visualization of

the weights of the models that shows how the layers interact in Fig. 5.13.

5.9 Conclusion

We have motivated the use of the S3C model for unsupervised feature discov-

ery. We have described a variational approximation scheme that makes it feasible

to perform learning and inference in large-scale S3C and PD-DBM models. We

have demonstrated that S3C is an e↵ective feature discovery algorithm for both

supervised and semi-supervised learning with small amounts of labeled data. This

work addresses two scaling problems: the computation problem of scaling spike-

and-slab sparse coding to the problem sizes used in object recognition, and the

problem of scaling object recognition techniques to work with more classes. We

demonstrate that this work can be extended to a deep architecture using a similar

inference procedure, and show that the deeper architecture is better able to model

the input distribution. Remarkably, this deep architecture does not require greedy

training, unlike its DBM predecessor.
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6 Prologue to Second Article

6.1 Article Details

Multi-Prediction Deep Boltzmann Machines. Ian J. Goodfellow, Mehdi

Mirza, Aaron Courville, and Yoshua Bengio. In Advances in Neural Information

Processing Systems 26 (NIPS ’13), pp. 646-654.

Personal Contribution. The basic ideas of multi-prediction training and the

multi-inference trick were my own. The details were refined with guidance from

Aaron Courville and Yoshua Bengio. Yoshua Bengio discovered the connection to

generative stochastic networks. I implemented the training and inference proce-

dures. Mehdi Mirza assisted with hyperparameter search and creation of the fig-

ures. I did most of the writing, with assistance from Aaron Courville and Yoshua

Bengio.

6.2 Context

See chapter 2.6 for an overview of deep Boltzmann machines. Deep Boltzmann

machines are probabilistic models that are among the best performers in terms

of likelihood on datasets such as MNIST. DBMs have also proven their value for

tasks such as classification. At the time that we began this work, pretraining via

unsupervised learning was the dominant strategy for obtaining a well-regularized,

high capacity classifier. Today, purely supervised networks outperform pretrained

networks on most tasks, but on the MNIST dataset, the deep Boltzmann machine

remains the basis for the state of the art classification method (Hinton et al., 2012).

Unfortunately, deep Boltzmann machines are di�cult to train. They require

multiple training stages, including a troublingly greedy layer-wise pretraining stage.
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Practitioners seeking to apply deep Boltzmann machines must have a good theo-

retical and intuitive understanding of Markov chain Monte Carlo sampling in order

to diagnose problems with the model that arise during hyperparameter search.

Moreover, to obtain good classification results, inference in the generative model

defined by the deep Boltzmann machine is insu�cient. Instead, the deep Boltz-

mann machine must be used as a feature extractor for a specialized classifier. This

dependence on a specialized classifier subtracts from the usefulness of the deep

Boltzmann machine, since inference cannot be used to fill in arbitrary subsets of

variables with high accuracy, as one would expect from a probabilistic model.

6.3 Contributions

The primary contribution of this paper is to introduce a new means of train-

ing the deep Boltzmann machine. This new method allows the deep Boltzmann

machine to be trained in a single stage and results in a model that can classify

well simply by using approximate inference, without needing to train dedicated

classifiers for specific inference problems. This comes at the cost of the model not

being able to generate good samples, but it makes the model useful for engineering

tasks such as imputing missing values or classifying despite missing inputs. It also

simplifies the process of training the model as a classifier.

6.4 Recent Developments

Since the development of this model, Uria et al. (2013) have developed a crite-

rion similar to multi-prediction training. Rather than using a family of recurrent

nets, it uses a family of NADE models.
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7Multi-Prediction Deep

Boltzmann Machines

7.1 Introduction

A deep Boltzmann machine (DBM) (Salakhutdinov and Hinton, 2009) is a struc-

tured probabilistic model consisting of many layers of random variables, most of

which are latent. DBMs are well established as generative models and as feature

learning algorithms for classifiers.

Exact inference in a DBM is intractable. DBMs are usually used as feature

learners, where the mean field expectations of the hidden units are used as input

features to a separate classifier, such as an MLP or logistic regression. To some

extent, this erodes the utility of the DBM as a probabilistic model–it can generate

good samples, and provides good features for deterministic models, but it has not

proven especially useful for solving inference problems such as predicting class labels

given input features or completing missing input features.

Another drawback to the DBM is the complexity of training it. Typically it is

trained in a greedy, layerwise fashion, by training a stack of RBMs. Training each

RBM to model samples from the previous RBM’s posterior distribution increases a

variational lower bound on the likelihood of the DBM, and serves as a good way to

initialize the joint model. Training the DBM from a random initialization generally

does not work. It can be di�cult for practitioners to tell whether a given lower

layer RBM is a good starting point to build a larger model.

We propose a new way of training deep Boltzmann machines called multi-

prediction training (MPT). MPT uses the mean field equations for the DBM to

induce recurrent nets that are then trained to solve di↵erent inference tasks. The

resulting trained MP-DBM model can be viewed either as a single probabilistic

model trained with a variational criterion, or as a family of recurrent nets that

solve related inference tasks.
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We find empirically 1that the MP-DBM does not require greedy layerwise train-

ing, so its performance on the final task can be monitored from the start. This

makes it more suitable than the DBM for practitioners who do not have extensive

experience with layerwise pretraining techniques or Markov chains. Anyone with

experience minimizing non-convex functions should find MP-DBM training familiar

and straightforward. Moreover, we show that inference in the MP-DBM is useful–

the MP-DBM does not need an extra classifier built on top of its learned features to

obtain good inference accuracy. We show that it outperforms the DBM at solving a

variety of inference tasks including classification, classification with missing inputs,

and prediction of randomly selected subsets of variables. Specifically, we use the

MP-DBM to outperform the classification results reported for the standard DBM

by Salakhutdinov and Hinton (2009) on both the MNIST handwritten character

dataset (LeCun et al., 1998) and the NORB object recognition dataset (LeCun

et al., 2004).

7.2 Review of deep Boltzmann machines

Typically, a DBM contains a set of D input features v that are called the

visible units because they are always observed during both training and evaluation.

When a class label is present the DBM typically represents it with a discrete-valued

label unit y. The unit y is observed (on examples for which it is available) during

training, but typically is not available at test time. The DBM also contains several

latent variables that are never observed. These hidden units are usually organized

into L layers h(i) of size N
i

, i 2 {1, . . . , L}, with each unit in a layer conditionally

independent of the other units in the layer given the neighboring layers.

The DBM is trained to maximize the mean field lower bound on log P (v, y).

Unfortunately, training the entire model simultaneously does not seem to be feasi-

ble. See (Goodfellow et al., 2013) for an example of a DBM that has failed to learn

using the naive training algorithm. Salakhutdinov and Hinton (2009) found that

for their joint training procedure to work, the DBM must first be initialized by

training one layer at a time. After each layer is trained as an RBM, the RBMs can

1. Code and hyperparameters available at http://www-etud.iro.umontreal.ca/~goodfeli/
mp_dbm.html
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be modified slightly, assembled into a DBM, and the DBM may be trained with

PCD (Younes, 1998; Tieleman, 2008) and mean field. In order to achieve good

classification results, an MLP designed specifically to predict y from v must be

trained on top of the DBM model. Simply running mean field inference to predict

y given v in the DBM model does not work nearly as well. See figure 7.1 for a

graphical description of the training procedure used by Salakhutdinov and Hinton

(2009).

The standard approach to training a DBM requires training L+2 di↵erent mod-

els using L+2 di↵erent objective functions, and does not yield a single model that

excels at answering all queries. Our proposed approach requires training only one

model with only one objective function, and the resulting model outperforms pre-

vious approaches at answering many kinds of queries (classification, classification

with missing inputs, predicting arbitrary subsets of variables given the complemen-

tary subset).

7.3 Motivation

There are numerous reasons to prefer a single-model, single-training stage ap-

proach to deep Boltzmann machine learning:

1. Optimization As a greedy optimization procedure, layerwise training may

be suboptimal. Small-scale experimental work has demonstrated this to be

the case for deep belief networks (Arnold and Ollivier, 2012).

In general, for layerwise training to be optimal, the training procedure for

each layer must take into account the influence that the deeper layers will

provide. The layerwise initialization procedure simply does not attempt to

be optimal.

The procedures used by Le Roux and Bengio (2008); Arnold and Ollivier

(2012) make an optimistic assumption that the deeper layers will be able to

implement the best possible prior on the current layer’s hidden units. This

approach is not immediately applicable to Boltzmann machines because it

is specified in terms of learning the parameters of P (h(i�1)|h(i)) assuming

that the parameters of the P (h(i)) will be set optimally later. In a DBM the

73



symmetrical nature of the interactions between units means that these two

distributions share parameters, so it is not possible to set the parameters of

the one distribution, leave them fixed for the remainder of learning, and then

set the parameters of the other distribution. Moreover, model architectures

incorporating design features such as sparse connections, pooling, or factored

multilinear interactions make it di�cult to predict how best to structure one

layer’s hidden units in order for the next layer to make good use of them.

2. Probabilistic modeling Using multiple models and having some models

specialized for exactly one task (like predicting y from v) loses some of the

benefit of probabilistic modeling. If we have one model that excels at all

tasks, we can use inference in this model to answer arbitrary queries, perform

classification with missing inputs, and so on. The standard DBM training

procedure gives this up by training a rich probabilistic model and then using

it as just a feature extractor for an MLP.

3. Simplicity Needing to implement multiple models and training stages

makes the cost of developing software with DBMs greater, and makes using

them more cumbersome. Beyond the software engineering considerations,

it can be di�cult to monitor training and tell what kind of results during

layerwise RBM pretraining will correspond to good DBM classification ac-

curacy later. Our joint training procedure allows the user to monitor the

model’s ability of interest (usually ability to classify y given v) from the very

start of training.

7.4 Methods

We now described the new methods proposed in this paper, and some pre-

existing methods that we compare against.

7.4.1 Multi-prediction Training

Our proposed approach is to directly train the DBM to be good at solving

all possible variational inference problems. We call this multi-prediction training
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because the procedure involves training the model to predict any subset of variables

given the complement of that subset of variables.

Let O be a vector containing all variables that are observed during training. For

a purely unsupervised learning task, O is just v itself. In the supervised setting,

O = [v, y]>. Note that y won’t be observed at test time, only training time. Let

D be the training set, i.e. a collection of values of O. Let S be a sequence of

subsets of the possible indices of O. Let Q
i

be the variational (e.g., mean-field)

approximation to the joint of O
Si and h given O�Si .

Q
i

(O
Si , h) = argmin

Q

D
KL

(Q(O
Si , h)kP (O

Si , h | O�Si)) .

In all of the experiments presented in this paper, Q is constrained to be factorial,

though one could design model families for which it makes sense to use richer struc-

ture in Q. Note that there is not an explicit formula for Q; Q must be computed

by an iterative optimization process. In order to accomplish this minimization, we

run the mean field fixed point equations to convergence. Because each fixed point

update uses the output of a previous fixed point update as input, this optimization

procedure can be viewed as a recurrent neural network. (To simplify implemen-

tation, we don’t explicitly test for convergence, but run the recurrent net for a

pre-specified number of iterations that is chosen to be high enough that the net

usually converges)

We train the MP-DBM by using minibatch stochastic gradient descent on the

multi-prediction (MP) objective function

J(D, ✓) = �
X

O2D

X

i

log Q
i

(O
Si)

In other words, the criterion for a single example O is a sum of several terms,

with term i measuring the model’s ability to predict (through a variational approx-

imation) a subset of the variables in the training set, O
Si , given the remainder of

the observed variables, O�Si .

During SGD training, we sample minibatches of values of O and S
i

. Sampling

O just means drawing an example from the training set. Sampling an S
i

uniformly

simply requires sampling one bit (1 with probability 0.5) for each variable, to

determine whether that variable should be an input to the inference procedure

or a prediction target. To compute the gradient, we simply backprop the error
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c) d)b)a)

Figure 7.1 – The training procedure used by Salakhutdinov and Hinton (2009) on MNIST. a)
Train an RBM to maximize log P (v) using CD. b) Train another RBM to maximize log P (h(1), y)
where h(1) is drawn from the first RBM’s posterior. c) Stitch the two RBMs into one DBM. Train
the DBM to maximize log P (v, y). d) Delete y from the model (don’t marginalize it out, just
remove the layer from the model). Make an MLP with inputs v and the mean field expectations
of h(1) and h(2). Fix the DBM parameters. Initialize the MLP parameters based on the DBM
parameters. Train the MLP parameters to predict y.

derivatives of J through the recurrent net defining Q.

See Fig. 7.2 for a graphical description of this training procedure, and Fig. 7.3

for an example of the inference procedure run on MNIST digits.

This training procedure is similar to one introduced by Brakel et al. (2013) for

time-series models. The primary di↵erence is that we use log Q as the loss function,

while Brakel et al. (2013) apply hard-coded loss functions such as mean squared

error to the predictions of the missing values.

7.4.2 The Multi-Inference Trick

Mean field inference can be expensive due to needing to run the fixed point

equations several times in order to reach convergence. In order to reduce this

computational expense, it is possible to train using fewer mean field iterations than

required to reach convergence. In this case, we are no longer necessarily minimizing

J as written, but rather doing partial training of a large number of fixed-iteration

recurrent nets that solve related problems.

We can approximately take the geometric mean over all predicted distributions

Q (for di↵erent subsets S
i

) and renormalize in order to combine the predictions of

all of these recurrent nets. This way, imperfections in the training procedure are

averaged out, and we are able to solve inference tasks even if the corresponding

recurrent net was never sampled during MP training.
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Figure 7.2 – Multi-prediction training: This diagram shows the neural nets instantiated to do
multi-prediction training on one minibatch of data. The three rows show three di↵erent examples.
Black circles represent variables the net is allowed to oberve. Blue circles represent prediction
targets. Green arrows represent computational dependencies. Each column shows a single mean
field fixed point update. Each mean field iteration consists of two fixed point updates. Here we
show only one iteration to save space, but in a real application MP training should be run with
5-15 iterations.
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Figure 7.3 – Mean field inference applied to MNIST digits. Within each pair of rows, the upper
row shows pixels and the lower row shows class labels. The first column shows a complete, labeled
example. The second column shows information to be masked out, using red pixels to indicate
information that is removed. The subsequent columns show steps of mean field. The images show
the pixels being filled back in by the mean field inference, and the blue bars show the probability
of the correct class under the mean field posterior.
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Mean Field Iteration

Multi-Inference Iteration

+ =

Step 1 Step 2Previous State + Reconstruction

Step 1 Step 2Previous State

Figure 7.4 – Multi-inference trick: When estimating y given v, a mean field iteration consists
of first applying a mean field update to h(1) and y, then applying one to h(2). To use the multi-
inference trick, start the iteration by computing r as the mean field update v would receive if it
were not observed. Then use 0.5(r + v) in place of v and run a regular mean field iteration.
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Figure 7.5 – Samples generated by alternately sampling Si uniformly and sampling O�Si from
Qi(O�Si).
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In order to approximate this average e�ciently, we simply take the geometric

mean at each step of inference, instead of attempting to take the correct geometric

mean of the entire inference process. See Fig. 7.4 for a graphical depiction of

the method. This is the same type of approximation used to take the average

over several MLP predictions when using dropout (Hinton et al., 2012). Here, the

averaging rule is slightly di↵erent. In dropout, the di↵erent MLPs we average over

either include or exclude each variable. To take the geometric mean over a unit h
j

that receives input from v
i

, we average together the contribution v
i

W
ij

from the

model that contains v
i

and the contribution 0 from the model that does not. The

final contribution from v
i

is 0.5v
i

W
ij

so the dropout model averaging rule is to run

an MLP with the weights divided by 2.

For the multi-inference trick, each recurrent net we average over solves a di↵er-

ent inference problem. In half of the problems, v
i

is observed, and contributes v
i

W
ij

to h
j

’s total input. In the other half of the problems, v
i

is inferred. In contrast to

dropout, v
i

is never completely absent. If we represent the mean field estimate of

v
i

with r
i

, then in this case that unit contributes r
i

W
ij

to h
j

’s total input. To run

multi-inference, we thus replace references to v with 0.5(v + r), where r is updated

at each mean field iteration. The main benefit to this approach is that it gives a

good way to incorporate information from many recurrent nets trained in slightly

di↵erent ways. If the recurrent net corresponding to the desired inference task is

somewhat suboptimal due to not having been sampled enough during training, its

defects can be oftened be remedied by averaging its predictions with those of other

similar recurrent nets. The multi-inference trick can also be understood as includ-

ing an input denoising step built into the inference. In practice, multi-inference

mostly seems to be beneficial if the network was trained without letting mean

field run to convergence. When the model was trained with converged mean field,

each recurrent net is just solving an optimization problem in a graphical model,

and it doesn’t matter whether every recurrent net has been individually trained.

The multi-inference trick is mostly useful as a cheap alternative when getting the

absolute best possible test set accuracy is not as important as fast training and

evaluation.
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7.4.3 Justification and advantages

In the case where we run the recurrent net for predicting Q to convergence, the

multi-prediction training algorithm follows the gradient of the objective function

J . This can be viewed as a mean field approximation to the generalized pseudo-

likelihood.

While both pseudolikelihood and likelihood are asymptotically consistent esti-

mators, their behavior in the limited data case is di↵erent. Maximum likelihood

should be better if the overall goal is to draw realistic samples from the model, but

generalized pseudolikelihood can often be better for training a model to answer

queries conditioning on sets similar to the S
i

used during training.

Note that our variational approximation is not quite the same as the way vari-

ational approximations are usually applied. We use variational inference to ensure

that the distributions we shape using backprop are as close as possible to the

true conditionals. This is di↵erent from the usual approach to variational learn-

ing, where Q is used to define a lower bound on the log likelihood and variational

inference is used to make the bound as tight as possible.

In the case where the recurrent net is not trained to convergence, there is an

alternate way to justify MP training. Rather than doing variational learning on a

single probabilistic model, the MP procedure trains a family of recurrent nets to

solve related prediction problems by running for some fixed number of iterations.

Each recurrent net is trained only on a subset of the data (and most recurrent nets

are never trained at all, but only work because they share parameters with the

others). In this case, the multi-inference trick allows us to justify MP training as

approximately training an ensemble of recurrent nets using bagging.

Stoyanov et al. (2011) have observed that a training strategy similar to MPT

(but lacking the multi-inference trick) is useful because it trains the model to work

well with the inference approximations it will be evaluated with at test time. We

find these properties to be useful as well. The choice of this type of variational learn-

ing combined with the underlying generalized pseudolikelihood objective makes an

MP-DBM very well suited for solving approximate inference problems but not very

well suited for sampling.

Our primary design consideration when developing multi-prediction training

was ensuring that the learning rule was state-free. PCD training uses persistent

Markov chains to estimate the gradient. These Markov chains are used to approx-
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imately sample from the model, and only sample from approximately the right

distribution if the model parameters evolve slowly. The MP training rule does not

make any reference to earlier training steps, and can be computed with no burn in.

This means that the accuracy of the MP gradient is not dependent on properties

of the training algorithm such as the learning rate which can easily break PCD for

many choices of the hyperparameters.

Another benefit of MP is that it is easy to obtain an unbiased estimate of the

MP objective from a small number of samples of v and i. This is in contrast

to the log likelihood, which requires estimating the log partition function. The

best known method for doing so is AIS, which is relatively expensive (Neal, 2001).

Cheap estimates of the objective function enable early stopping based on the MP-

objective (though we generally use early stopping based on classification accuracy)

and optimization based on line searches (though we do not explore that possibility

in this paper).

7.4.4 Regularization

In order to obtain good generalization performance, Salakhutdinov and Hinton

(2009) regularized both the weights and the activations of the network.

Salakhutdinov and Hinton (2009) regularize the weights using an L2 penalty. We

find that for joint training, it is critically important to not do this (on the MNIST

dataset, we were not able to find any MP-DBM hyperparameter configuration

involving weight decay that performs as well as layerwise DBMs, but without weight

decay MP-DBMs outperform DBMs). When the second layer weights are not

trained well enough for them to be useful for modeling the data, the weight decay

term will drive them to become very small, and they will never have an opportunity

to recover. It is much better to use constraints on the norms of the columns of the

weight vectors as done by Srebro and Shraibman (2005).

Salakhutdinov and Hinton (2009) regularize the activities of the hidden units

with a somewhat complicated sparsity penalty. See

http://www.mit.edu/~rsalakhu/DBM.html for details. We use max(|E
h⇠Q(h)

[h]�
t| � �, 0) and backpropagate this through the entire inference graph. t and � are

hyperparameters.
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7.4.5 Related work: centering

Montavon and Müller (2012) showed that an alternative, “centered” representa-

tion of the DBM results in successful generative training without a greedy layerwise

pretraining step. However, centered DBMs have never been shown to have good

classification performance. We therefore evaluate the classification performance of

centering in this work. We consider two methods of variational PCD training. In

one, we use Rao-Blackwellization (Blackwell, 1947; Kolmogorov, 1953; Rao, 1973)

of the negative phase particles to reduce the variance of the negative phase. In the

other variant (“centering+”), we use a special negative phase that Salakhutdinov

and Hinton (2009) found useful. This negative phase uses a small amount of mean

field, which reduces the variance further but introduces some bias, and has better

symmetry with the positive phase. See http://www.mit.edu/~rsalakhu/DBM.html

for details.

7.4.6 Sampling, and a connection to GSNs

The focus of this paper is solving inference problems, not generating samples, so

we do not investigate the sampling properties of MP-DBMs extensively. However, it

is interesting to note that an MP-DBM can be viewed as a collection of dependency

networks (Heckerman et al., 2000) with shared parameters. Dependency networks

are a special case of generative stochastic networks or GSNs (Bengio et al. (2014),

section 3.4). This means that the MP-DBM is associated with a distribution arising

out of the Markov chain in which at each step one samples an S
i

uniformly and then

samples O from Q
i

(O). Example samples are shown in figure 7.5. Furthermore, it

means that if MPT is a consistent estimator of the conditional distributions, then

MPT is a consistent estimator of the probability distribution defined by the sta-

tionary distribution of this Markov chain. Samples drawn by Gibbs sampling in the

DBM model do not look as good (probably because the variational approximation

is too damaging). This suggests that the perspective of the MP-DBM as a GSN

merits further investigation.
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Figure 7.6 – Quantitative results on MNIST: (a) During cross-validation, MP training performs
well for most hyperparameters, while both centering and centering with the special negative phase
do not perform as well and only perform well for a few hyperparameter values. Note that the
vertical axis is on a log scale. (b) Generic inference tasks: When classifying with missing inputs,
the MP-DBM outperforms the other DBMs for most amounts of missing inputs. (c) When using
approximate inference to resolve general queries, the standard DBM, centered DBM, and MP-
DBM all perform about the same when asked to predict a small number of variables. For larger
queries, the MP-DBM performs the best.

7.5 Experiments

7.5.1 MNIST experiments
In order to compare MP training and centering to standard DBM performance,

we cross-validated each of the new methods by running 25 training experiments for

each of three conditions: centered DBMs, centered DBMs with the special negative

phase (“Centering+”), and MP training.

All three conditions visited exactly the same set of 25 hyperparameter values for

the momentum schedule, sparsity regularization hyperparameters, weight and bias

initialization hyperparameters, weight norm constraint values, and number of mean

field iterations. The centered DBMs also required one additional hyperparameter,

the number of Gibbs steps to run for variational PCD. We used di↵erent values

of the learning rate for the di↵erent conditions, because the di↵erent conditions

require di↵erent ranges of learning rate to perform well. We use the same size

of model, minibatch and negative chain collection as Salakhutdinov and Hinton

(2009), with 500 hidden units in the first layer, 1,000 hidden units in the second,

100 examples per minibatch, and 100 negative chains. The energy function for this

model is

E(v, h, y) = �v>W (1)h(1) � h(1)T W (2)h(2) � h(2)T W (3)y

�v>b(0) � h(1)T b(1) � h(2)T b(2) � y>b(3).

See Fig. 7.6a for the results of cross-validation. On the validation set, MP training

consistently performs better and is much less sensitive to hyperparameters than
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the other methods. This is likely because the state-free nature of the learning rule

makes it perform better with settings of the learning rate and momentum schedule

that result in the model distribution changing too fast for a method based on

Markov chains to keep up.

When we add an MLP classifier (as shown in Fig. 7.1d), the best “Center-

ing+” DBM obtains a classification error of 1.22% on the test set. The best MP-

DBM obtains a classification error of 0.88%. This compares to 0.95% obtained by

Salakhutdinov and Hinton (2009).

If instead of adding an MLP to the model, we simply train a larger MP-DBM

with twice as many hidden units in each layer, and apply the multi-inference trick,

we obtain a classification error rate of 0.91%. In other words, we are able to classify

nearly as well using a single large DBM and a generic inference procedure, rather

than using a DBM followed by an entirely separate MLP model specialized for

classification.

The original DBM was motivated primarily as a generative model with a high

AIS score and as a means of initializing a classifier. Here we explore some more

uses of the DBM as a generative model. Fig. 7.6b shows an evaluation of various

DBM’s ability to classify with missing inputs. Fig. 7.6c shows an evaluation of

their ability to resolve queries about random subsets of variables. In both cases we

find that the MP-DBM performs the best for most amounts of missing inputs.

7.5.2 NORB experiments

NORB consists of 96⇥96 binocular greyscale images of objects from five di↵erent

categories, under a variety of pose and lighting conditions. Salakhutdinov and

Hinton (2009) preprocessed the images by resampling them with bigger pixels near

the border of the image, yielding an input vector of size 8,976. We used this

preprocessing as well. Salakhutdinov and Hinton (2009) then trained an RBM

with 4,000 binary hidden units and Gaussian visible units to preprocess the data

into an all-binary representation, and trained a DBM with two hidden layers of

4,000 units each on this representation. Since the goal of this work is to provide a

single unified model and training algorithm, we do not train a separate Gaussian

RBM. Instead we train a single MP-DBM with Gaussian visible units and three

hidden layers of 4,000 units each. The energy function for this model is
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E(v, h, y) = �(v � µ)>�W (1)h(1) � h(1)T W (2)h(2) � h(2)T W (3)h(3) � h(3)T W (4)y

+
1

2
(v � µ)>�(v � µ) � h(1)T b(1) � h(2)T b(2) � h(3)T b(3) � y>b(4).

where µ is a learned vector of visible unit means and � is a learned diagonal
precision matrix.

By adding an MLP on top of the MP-DBM, following the same architecture as

Salakhutdinov and Hinton (2009), we were able to obtain a test set error of 10.6%.

This is a slight improvement over the standard DBM’s 10.8%.

On MNIST we were able to outperform the DBM without using the MLP clas-

sifier because we were able to train a larger MP-DBM. On NORB, the model size

used by Salakhutdinov and Hinton (2009) is already as large as we are able to fit

on most of our graphics cards, so we were not able to do the same for this dataset.

It is possible to do better on NORB using convolution or synthetic transformations

of the training data. We did not evaluate the e↵ect of these techniques on the

MP-DBM because our present goal is not to obtain state-of-the-art object recog-

nition performance but only to verify that our joint training procedure works as

well as the layerwise training procedure for DBMs. There is no public demo code

available for the standard DBM on this dataset, and we were not able to reproduce

the standard DBM results (layerwise DBM training requires significant experience

and intuition). We therefore can’t compare the MP-DBM to the original DBM

in terms of answering general queries or classification with missing inputs on this

dataset.

7.6 Conclusion

This paper has demonstrated that MP training and the multi-inference trick

provide a means of training a single model, with a single stage of training, that

matches the performance of standard DBMs but still works as a general proba-

bilistic model, capable of handling missing inputs and answering general queries.

We have verified that MP training outperforms the standard training procedure at

classification on the MNIST and NORB datasets where the original DBM was first

applied. We have shown that MP training works well with binary, Gaussian, and

softmax units, as well as architectures with either two or three hidden layers. In
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future work, we hope to apply the MP-DBM to more practical applications, and

explore techniques, such as dropout, that could improve its performance further.
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8 Prologue to Third Article

8.1 Article Details

Maxout Networks. Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,

Aaron Courville, and Yoshua Bengio. Proceedings of the 30th International Con-

ference on Machine Learning (ICML ’13), pp. 1319-1327.

Personal Contribution. The idea for the maxout activation function and using

it in combination with dropout was my own. All of my co-authors suggested experi-

ments for understanding the e↵ectiveness of this combination. David Warde-Farley,

Mehdi Mirza, and I jointly ran these more scientific experiments. I wrote the code

for the activation function itself. David Warde-Farley and I jointly wrote the code

to accelerate convolution in Theano along with help from other Theano developers.

I found the best hyperparameters for both versions of the MNIST dataset. I found

hyperparameters for non-augmented CIFAR-10 that improved upon the state of

the art, and then David Warde-Farley improved upon mine further and obtained

the state of the art on augmented CIFAR-10 as well. I found the best hyperparam-

eters for CIFAR-100. Mehdi Mirza implemented the infrastructure code needed

to handle large datasets in order to work with SVHN. He also implemented the

preprocessing code for SVHN and found the best hyperparameters for this dataset.

David Warde-Farley, Mehdi Mirza, and I each made figures for the paper. All

authors contributed to the writing of the paper. I supplied the basic idea for the

universal approximation proof, and Aaron Courville wrote the formal proof sketch.

8.2 Context

At the time that we wrote this article, the dropout (Hinton et al., 2012) algo-

rithm had been recently introduced. In the excitement following the introduction
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of dropout, we were interested in finding a model family that would synergize

well with dropout. Dropout also presented the opportunity to train models that

had previously su↵ered from overfitting. The maxout activation function, with its

cross-channel pooling, is one such model.

8.3 Contributions

The main contribution of this paper is to introduce a new activation function

for feedforward neural networks that significantly improves their performance. We

also perform detailed experiments to explain these performance gains.

8.4 Recent Developments

Since its publication, this work has been frequently cited and expanded upon.

Wang and Manning (2013) developed a fast analytical approximation to dropout

and included formulas for using their method with maxout layers. Smirnov (2013)

used maxout for whale call detection. Xie et al. (2013) used maxout to rank highly

in a machine learning contest (Goodfellow et al., 2013). Miao et al. (2013) used

maxout for low resource speech recognition. Cai et al. (2013) also applied maxout

to speech recognition, and found that maxout works well even without dropout

training, so long as the dataset is large and the number of pieces per maxout unit

is low. Alsharif and Pineau (2013) used maxout networks to implement the condi-

tional probability distributions in a larger graphical model used to transcribe text

from photos. Goodfellow et al. (2014) used maxout networks directly to transcribe

house numbers from photos, as presented in chapter 11.
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9Maxout Networks

9.1 Introduction

Dropout (Hinton et al., 2012) provides an inexpensive and simple means of

both training a large ensemble of models that share parameters and approximately

averaging together these models’ predictions. Dropout applied to multilayer per-

ceptrons and deep convolutional networks has improved the state of the art on

tasks ranging from audio classification to very large scale object recognition (Hin-

ton et al., 2012; Krizhevsky et al., 2012). While dropout is known to work well in

practice, it has not previously been demonstrated to actually perform model aver-

aging for deep architectures 1 . Dropout is generally viewed as an indiscriminately

applicable tool that reliably yields a modest improvement in performance when

applied to almost any model.

We argue that rather than using dropout as a slight performance enhancement

applied to arbitrary models, the best performance may be obtained by directly de-

signing a model that enhances dropout’s abilities as a model averaging technique.

Training using dropout di↵ers significantly from previous approaches such as ordi-

nary stochastic gradient descent. Dropout is most e↵ective when taking relatively

large steps in parameter space. In this regime, each update can be seen as mak-

ing a significant update to a di↵erent model on a di↵erent subset of the training

set. The ideal operating regime for dropout is when the overall training procedure

resembles training an ensemble with bagging under parameter sharing constraints.

This di↵ers radically from the ideal stochastic gradient operating regime in which a

single model makes steady progress via small steps. Another consideration is that

dropout model averaging is only an approximation when applied to deep models.

Explicitly designing models to minimize this approximation error may thus enhance

dropout’s performance as well.

1. Between submission and publication of this paper, we have learned that Srivastava (2013)
performed experiments on this subject similar to ours.
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We propose a simple model that we call maxout that has beneficial characteris-

tics both for optimization and model averaging with dropout. We use this model in

conjunction with dropout to set the state of the art on four benchmark datasets 2 .

9.2 Review of dropout

Dropout is a technique that can be applied to deterministic feedforward archi-

tectures that predict an output y given input vector v. These architectures contain

a series of hidden layers h = {h(1), . . . , h(L)}. Dropout trains an ensemble of models

consisting of the set of all models that contain a subset of the variables in both v

and h. The same set of parameters ✓ is used to parameterize a family of distri-

butions p(y | v; ✓, µ) where µ 2 M is a binary mask determining which variables

to include in the model. On each presentation of a training example, we train

a di↵erent sub-model by following the gradient of log p(y | v; ✓, µ) for a di↵erent

randomly sampled µ. For many parameterizations of p (such as most multilayer

perceptrons) the instantiation of di↵erent sub-models p(y | v; ✓, µ) can be obtained

by elementwise multiplication of v and h with the mask µ. Dropout training is

similar to bagging (Breiman, 1994), where many di↵erent models are trained on

di↵erent subsets of the data. Dropout training di↵ers from bagging in that each

model is trained for only one step and all of the models share parameters. For

this training procedure to behave as if it is training an ensemble rather than a

single model, each update must have a large e↵ect, so that it makes the sub-model

induced by that µ fit the current input v well.

The functional form becomes important when it comes time for the ensem-

ble to make a prediction by averaging together all the sub-models’ predictions.

Most prior work on bagging averages with the arithmetic mean, but it is not

obvious how to do so with the exponentially many models trained by dropout.

Fortunately, some model families yield an inexpensive geometric mean. When

p(y | v; ✓) = softmax(v>W +b), the predictive distribution defined by renormalizing

the geometric mean of p(y | v; ✓, µ) over M is simply given by softmax(v>W/2+b).

In other words, the average prediction of exponentially many sub-models can be

2. Code and hyperparameters available at http://www-etud.iro.umontreal.ca/~goodfeli/
maxout.html
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computed simply by running the full model with the weights divided by 2. This

result holds exactly in the case of a single layer softmax model. Previous work on

dropout applies the same scheme in deeper architectures, such as multilayer per-

ceptrons, where the W/2 method is only an approximation to the geometric mean.

The approximation has not been characterized mathematically, but performs well

in practice.

9.3 Description of maxout

The maxout model is simply a feed-forward achitecture, such as a multilayer

perceptron or deep convolutional neural network, that uses a new type of activation

function: the maxout unit. Given an input x 2 Rd (x may be v, or may be a hidden

layer’s state), a maxout hidden layer implements the function

h
i

(x) = max
j2[1,k]

z
ij

where z
ij

= x>W···ij + b
ij

, and W 2 Rd⇥m⇥k and b 2 Rm⇥k are learned parameters.

In a convolutional network, a maxout feature map can be constructed by taking the

maximum across k a�ne feature maps (i.e., pool across channels, in addition spatial

locations). When training with dropout, we perform the elementwise multiplication

with the dropout mask immediately prior to the multiplication by the weights in

all cases–we do not drop inputs to the max operator. A single maxout unit can

be interpreted as making a piecewise linear approximation to an arbitrary convex

function. Maxout networks learn not just the relationship between hidden units,

but also the activation function of each hidden unit. See Fig. 9.1 for a graphical

depiction of how this works.

Maxout abandons many of the mainstays of traditional activation function de-

sign. The representation it produces is not sparse at all (see Fig. 9.2), though

the gradient is highly sparse and dropout will artificially sparsify the e↵ective rep-

resentation during training. While maxout may learn to saturate on one side or

the other this is a measure zero event (so it is almost never bounded from above).

While a significant proportion of parameter space corresponds to the function being

bounded from below, maxout is not constrained to learn to be bounded at all. Max-

out is locally linear almost everywhere, while many popular activation functions
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Figure 9.1 – Graphical depiction of how the maxout activation function can implement the
rectified linear, absolute value rectifier, and approximate the quadratic activation function. This
diagram is 2D and only shows how maxout behaves with a 1D input, but in multiple dimensions
a maxout unit can approximate arbitrary convex functions.

have signficant curvature. Given all of these departures from standard practice,

it may seem surprising that maxout activation functions work at all, but we find

that they are very robust and easy to train with dropout, and achieve excellent

performance.
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Figure 9.2 – The activations of maxout units are not sparse.
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Figure 9.3 – An MLP containing two maxout units can arbitrarily approximate any continuous
function. The weights in the final layer can set g to be the di↵erence of h1 and h2. If z1 and z2

are allowed to have arbitrarily high cardinality, h1 and h2 can approximate any convex function.
g can thus approximate any continuous function due to being a di↵erence of approximations of
arbitrary convex functions.

9.4 Maxout is a universal approximator

A standard MLP with enough hidden units is a universal approximator. Simi-

larly, maxout networks are universal approximators. Provided that each individual

maxout unit may have arbitrarily many a�ne components, we show that a maxout

model with just two hidden units can approximate, arbitrarily well, any continuous

function of v 2 Rn. A diagram illustrating the basic idea of the proof is presented

in Fig. 9.3.

Consider the continuous piecewise linear (PWL) function g(v) consisting of k

locally a�ne regions on Rn.

Proposition 9.4.1. (From Theorem 2.1 in Wang (2004)) For any positive integers

m and n, there exist two groups of n+1-dimensional real-valued parameter vectors

[W
1j

, b
1j

], j 2 [1, k] and [W
2j

, b
2j

], j 2 [1, k] such that:

g(v) = h
1

(v) � h
2

(v) (9.1)

That is, any continuous PWL function can be expressed as a di↵erence of two

convex PWL functions. The proof is given in Wang (2004).

Proposition 9.4.2. From the Stone-Weierstrass approximation theorem, let C be

a compact domain C ⇢ Rn, f : C ! R be a continuous function, and ✏ > 0 be any

positive real number. Then there exists a continuous PWL function g, (depending
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upon ✏), such that for all v 2 C, |f(v) � g(v)| < ✏.

Theorem 9.4.3. Universal approximator theorem. Any continuous function f can

be approximated arbitrarily well on a compact domain C ⇢ Rn by a maxout network

with two maxout hidden units.

Sketch of Proof By Proposition 9.4.2, any continuous function can be approxi-

mated arbitrarily well (up to ✏), by a piecewise linear function. We now note that

the representation of piecewise linear functions given in Proposition 9.4.1 exactly

matches a maxout network with two hidden units h
1

(v) and h
2

(v), with su�ciently

large k to achieve the desired degree of approximation ✏. Combining these, we

conclude that a two hidden unit maxout network can approximate any continuous

function f(v) arbitrarily well on the compact domain C. In general as ✏ ! 0, we

have k ! 1.

Figure 9.4 – Example filters learned by a maxout MLP trained with dropout on MNIST. Each
row contains the filters whose responses are pooled to form a maxout unit.

9.5 Benchmark results

We evaluated the maxout model on four benchmark datasets and set the state

of the art on all of them.
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Table 9.1 – Test set misclassification rates for the best methods on the permutation invariant
MNIST dataset. Only methods that are regularized by modeling the input distribution outper-
form the maxout MLP.

Method Test error

Rectifier MLP +
dropout (Srivastava,
2013)

1.05%

DBM (Salakhutdinov and
Hinton, 2009)

0.95%

Maxout MLP + dropout 0.94%

MP-DBM (Goodfellow
et al., 2013)

0.88%

Deep Convex Network
(Yu and Deng, 2011)

0.83%

Manifold Tangent Clas-
sifier (Rifai et al., 2011)

0.81%

DBM + dropout (Hinton
et al., 2012)

0.79%

9.5.1 MNIST

The MNIST (LeCun et al., 1998) dataset consists of 28 ⇥ 28 pixel greyscale

images of handwritten digits 0-9, with 60,000 training and 10,000 test examples.

For the permutation invariant version of the MNIST task, only methods unaware

of the 2D structure of the data are permitted. For this task, we trained a model

consisting of two densely connected maxout layers followed by a softmax layer. We

regularized the model with dropout and by imposing a constraint on the norm of

each weight vector, as in (Srebro and Shraibman, 2005). Apart from the maxout

units, this is the same architecture used by Hinton et al. (2012). We selected the

hyperparameters by minimizing the error on a validation set consisting of the last

10,000 training examples. To make use of the full training set, we recorded the

value of the log likelihood on the first 50,000 examples at the point of minimal

validation error. We then continued training on the full 60,000 example training

set until the validation set log likelihood matched this number. We obtained a

test set error of 0.94%, which is the best result we are aware of that does not use

unsupervised pretraining. We summarize the best published results on permutation
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Table 9.2 – Test set misclassification rates for the best methods on the general MNIST dataset,
excluding methods that augment the training data.

Method Test error

2-layer CNN+2-layer NN
(Jarrett et al., 2009)

0.53%

Stochastic pooling
Zeiler and Fergus
(2013a)

0.47%

Conv. maxout + dropout 0.45%

invariant MNIST in Table 9.1.

We also considered the MNIST dataset without the permutation invariance

restriction. In this case, we used three convolutional maxout hidden layers (with

spatial max pooling on top of the maxout layers) followed by a densely connected

softmax layer. We were able to rapidly explore hyperparameter space thanks to

the extremely fast GPU convolution library developed by Krizhevsky et al. (2012).

We obtained a test set error rate of 0.45%, which sets a new state of the art in

this category. (It is possible to get better results on MNIST by augmenting the

dataset with transformations of the standard set of images (Ciresan et al., 2010)

) A summary of the best methods on the general MNIST dataset is provided in

Table 9.2.

9.5.2 CIFAR-10

The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) consists of 32 ⇥ 32 color

images drawn from 10 classes split into 50,000 train and 10,000 test images. We

preprocess the data using global contrast normalization and ZCA whitening.

We follow a similar procedure as with the MNIST dataset, with one change.

On MNIST, we find the best number of training epochs in terms of validation set

error, then record the training set log likelihood and continue training using the

entire training set until the validation set log likelihood has reached this value. On

CIFAR-10, continuing training in this fashion is infeasible because the final value

of the learning rate is very small and the validation set error is very high. Training

until the validation set likelihood matches the cross-validated value of the training

likelihood would thus take prohibitively long. Instead, we retrain the model from
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Table 9.3 – Test set misclassification rates for the best methods on the CIFAR-10 dataset.

Method Test error

Stochastic pooling
Zeiler and Fergus
(2013a)

15.13%

CNN + Spearmint Snoek
et al. (2012)

14.98%

Conv. maxout + dropout 11.68 %

CNN + Spearmint +
data augmentation Snoek
et al. (2012)

9.50 %

Conv. maxout + dropout
+ data augmentation

9.38 %

scratch, and stop when the new likelihood matches the old one.

Our best model consists of three convolutional maxout layers, a fully connected

maxout layer, and a fully connected softmax layer. Using this approach we obtain

a test set error of 11.68%, which improves upon the state of the art by over two

percentage points. (If we do not train on the validation set, we obtain a test

set error of 13.2%, which also improves over the previous state of the art). If

we additionally augment the data with translations and horizontal reflections, we

obtain the absolute state of the art on this task at 9.35% error. In this case, the

likelihood during the retrain never reaches the likelihood from the validation run,

so we retrain for the same number of epochs as the validation run. A summary of

the best CIFAR-10 methods is provided in Table 9.3.

9.5.3 CIFAR-100

The CIFAR-100 (Krizhevsky and Hinton, 2009) dataset is the same size and

format as the CIFAR-10 dataset, but contains 100 classes, with only one tenth as

many labeled examples per class. Due to lack of time we did not extensively cross-

validate hyperparameters on CIFAR-100 but simply applied hyperparameters we

found to work well on CIFAR-10. We obtained a test set error of 38.57%, which is

state of the art. If we do not retrain using the entire training set, we obtain a test
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Figure 9.5 – When training maxout, the improvement in validation set error that results from
using dropout is dramatic. Here we find a greater than 25% reduction in our validation set error
on CIFAR-10.

set error of 41.48%, which also surpasses the current state of the art. A summary

of the best methods on CIFAR-100 is provided in Table 9.4.

9.5.4 Street View House Numbers

The SVHN (Netzer et al., 2011) dataset consists of color images of house num-

bers collected by Google Street View. The dataset comes in two formats. We

consider the second format, in which each image is of size 32 ⇥ 32 and the task is

to classify the digit in the center of the image. Additional digits may appear beside

it but must be ignored. There are 73,257 digits in the training set, 26,032 digits in

the test set and 531,131 additional, somewhat less di�cult examples, to use as an

extra training set. Following Sermanet et al. (2012), to build a validation set, we

select 400 samples per class from the training set and 200 samples per class from

the extra set. The remaining digits of the train and extra sets are used for training.
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Table 9.4 – Test set misclassification rates for the best methods on the CIFAR-100 dataset.

Method Test error

Learned pooling (Mali-
nowski and Fritz, 2013)

43.71%

Stochastic poolingZeiler
and Fergus (2013a)

42.51%

Conv. maxout + dropout 38.57%

Table 9.5 – Test set misclassification rates for the best methods on the SVHN dataset.

Method Test error

Sermanet et al. (2012) 4.90%

Stochastic pooling
Zeiler and Fergus
(2013a)

2.80 %

Rectifiers + dropout
Srivastava (2013)

2.78 %

Rectifiers + dropout +
synthetic translation
Srivastava (2013)

2.68 %

Conv. maxout + dropout 2.47 %

For SVHN, we did not train on the validation set at all. We used it only to find

the best hyperparameters. We applied local contrast normalization preprocessing

the same way as Zeiler and Fergus (2013a). Otherwise, we followed the same

approach as on MNIST. Our best model consists of three convolutional maxout

hidden layers and a densely connected maxout layer followed by a densely connected

softmax layer. We obtained a test set error rate of 2.47%, which sets the state of

the art. A summary of comparable methods is provided in Table 9.5.

9.6 Comparison to rectifiers

One obvious question about our results is whether we obtained them by im-

proved preprocessing or larger models, rather than by the use of maxout. For

MNIST we used no preprocessing, and for SVHN, we use the same preprocessing
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as Zeiler and Fergus (2013a). However on the CIFAR datasets we did use a new

form of preprocessing. We therefore compare maxout to rectifiers run with the

same processing and a variety of model sizes on this dataset.

By running a large cross-validation experiment (see Fig. 9.6) we found that

maxout o↵ers a clear improvement over rectifiers. We also found that our pre-

processing and size of models improves rectifiers and dropout beyond the previous

state of the art result. Cross-channel pooling is a method for reducing the size of

state and number of parameters needed to have a given number of filters in the

model. Performance seems to correlate well with the number of filters for maxout

but with the number of output units for rectifiers–i.e, rectifier units do not benefit

much from cross-channel pooling. Rectifier units do best without cross-channel

pooling but with the same number of filters, meaning that the size of the state

and the number of parameters must be about k times higher for rectifiers to obtain

generalization performance approaching that of maxout.

9.7 Model averaging

Having demonstrated that maxout networks are e↵ective models, we now ana-

lyze the reasons for their success. We first identify reasons that maxout is highly

compatible with dropout’s approximate model averaging technique.

The intuitive justification for averaging sub-models by dividing the weights

by 2 given by (Hinton et al., 2012) is that this does exact model averaging for

a single layer model, softmax regression. To this characterization, we add the

observation that the model averaging remains exact if the model is extended to

multiple linear layers. While this has the same representational power as a single

layer, the expression of the weights as a product of several matrices could have

a di↵erent inductive bias. More importantly, it indicates that dropout does exact

model averaging in deeper architectures provided that they are locally linear among

the space of inputs to each layer that are visited by applying di↵erent dropout

masks.

We argue that dropout training encourages maxout units to have large linear

regions around inputs that appear in the training data. Because each sub-model

must make a good prediction of the output, each unit should learn to have roughly
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the same activation regardless of which inputs are dropped. In a maxout network

with arbitrarily selected parameters, varying the dropout mask will often move

the e↵ective inputs far enough to escape the local region surrounding the clean

inputs in which the hidden units are linear, i.e., changing the dropout mask could

frequently change which piece of the piecewise function an input is mapped to.

Maxout trained with dropout may have the identity of the maximal filter in each

unit change relatively rarely as the dropout mask changes. Networks of linear

operations and max(·) may learn to exploit dropout’s approximate model averaging

technique well.

Many popular activation functions have significant curvature nearly everywhere.

These observations suggest that the approximate model averaging of dropout will

not be as accurate for networks incorporating such activation functions. To test

this, we compared the best maxout model trained on MNIST with dropout to a

hyperbolic tangent network trained on MNIST with dropout. We sampled several

subsets of each model and compared the geometric mean of these sampled mod-

els’ predictions to the prediction made using the dropout technique of dividing the

weights by 2. We found evidence that dropout is indeed performing model averag-

ing, even in multilayer networks, and that it is more accurate in the case of maxout.

See Fig. 9.7 and Fig. 9.8 for details.

9.8 Optimization

The second key reason that maxout performs well is that it improves the bagging

style training phase of dropout. Note that the arguments in section 9.7 motivating

the use of maxout also apply equally to rectified linear units (Salinas and Abbott,

1996; Hahnloser, 1998; Glorot et al., 2011). The only di↵erence between maxout

and max pooling over a set of rectified linear units is that maxout does not include

a 0 in the max. Superficially, this seems to be a small di↵erence, but we find that

including this constant 0 is very harmful to optimization in the context of dropout.

For instance, on MNIST our best validation set error with an MLP is 1.04%. If we

include a 0 in the max, this rises to over 1.2%. We argue that, when trained with

dropout, maxout is easier to optimize than rectified linear units with cross-channel

pooling.
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9.8.1 Optimization experiments

To verify that maxout yields better optimization performance than max pooled

rectified linear units when training with dropout, we carried out two experiments.

First, we stressed the optimization capabilities of the training algorithm by training

a small (two hidden convolutional layers with k = 2 and sixteen kernels) model on

the large (600,000 example) SVHN dataset. When training with rectifier units the

training error gets stuck at 7.3%. If we train instead with maxout units, we obtain

5.1% training error. As another optimization stress test, we tried training very

deep and narrow models on MNIST, and found that maxout copes better with

increasing depth than pooled rectifiers. See Fig. 9.9 for details.

9.8.2 Saturation

Optimization proceeds very di↵erently when using dropout than when using

ordinary stochastic gradient descent. SGD usually works best with a small learn-

ing rate that results in a smoothly decreasing objective function, while dropout

works best with a large learning rate, resulting in a constantly fluctuating objec-

tive function. Dropout rapidly explores many di↵erent directions and rejects the

ones that worsen performance, while SGD moves slowly and steadily in the most

promising direction. We find empirically that these di↵erent operating regimes

result in di↵erent outcomes for rectifier units. When training with SGD, we find

that the rectifier units saturate at 0 less than 5% of the time. When training with

dropout, we initialize the units to sature rarely but training gradually increases

their saturation rate to 60%. Because the 0 in the max(0, z) activation function is

a constant, this blocks the gradient from flowing through the unit. In the absence of

gradient through the unit, it is di�cult for training to change this unit to become

active again. Maxout does not su↵er from this problem because gradient always

flows through every maxout unit–even when a maxout unit is 0, this 0 is a function

of the parameters and may be adjusted Units that take on negative activations

may be steered to become positive again later. Fig. 9.10 illustrates how active

rectifier units become inactive at a greater rate than inactive units become active

when training with dropout, but maxout units, which are always active, transition

between positive and negative activations at about equal rates in each direction.

We hypothesize that the high proportion of zeros and the di�culty of escaping

104



them impairs the optimization performance of rectifiers relative to maxout.

To test this hypothesis, we trained two MLPs on MNIST, both with two hidden

layers and 1200 filters per layer pooled in groups of 5. When we include a constant

0 in the max pooling, the resulting trained model fails to make use of 17.6% of

the filters in the second layer and 39.2% of the filters in the second layer. A small

minority of the filters usually took on the maximal value in the pool, and the rest

of the time the maximal value was a constant 0. Maxout, on the other hand, used

all but 2 of the 2400 filters in the network. Each filter in each maxout unit in the

network was maximal for some training example. All filters had been utilised and

tuned.

9.8.3 Lower layer gradients and bagging

To behave di↵erently from SGD, dropout requires the gradient to change notice-

ably as the choice of which units to drop changes. If the gradient is approximately

constant with respect to the dropout mask, then dropout simplifies to SGD training.

We tested the hypothesis that rectifier networks su↵er from diminished gradient

flow to the lower layers of the network by monitoring the variance with respect to

dropout masks for fixed data during training of two di↵erent MLPs on MNIST.

The variance of the gradient on the output weights was 1.4 times larger for maxout

on an average training step, while the variance on the gradient of the first layer

weights was 3.4 times larger for maxout than for rectifiers. Combined with our

previous result showing that maxout allows training deeper networks, this greater

variance suggests that maxout better propagates varying information downward

to the lower layers and helps dropout training to better resemble bagging for the

lower-layer parameters. Rectifier networks, with more of their gradient lost to sat-

uration, presumably cause dropout training to resemble regular SGD toward the

bottom of the network.

9.9 Conclusion

We have proposed a new activation function called maxout that is particularly

well suited for training with dropout, and for which we have proven a universal

approximation theorem. We have shown empirical evidence that dropout attains
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a good approximation to model averaging in deep models. We have shown that

maxout exploits this model averaging behavior because the approximation is more

accurate for maxout units than for tanh units. We have demonstrated that opti-

mization behaves very di↵erently in the context of dropout than in the pure SGD

case. By designing the maxout gradient to avoid pitfalls such as failing to use

many of a model’s filters, we are able to train deeper networks than is possible

using rectifier units. We have also shown that maxout propagates variations in

the gradient due to di↵erent choices of dropout masks to the lowest layers of a

network, ensuring that every parameter in the model can enjoy the full benefit of

dropout and more faithfully emulate bagging training. The state of the art per-

formance of our approach on five di↵erent benchmark tasks motivates the design

of further models that are explicitly intended to perform well when combined with

inexpensive approximations to model averaging.
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Figure 9.6 – We cross-validated the momentum and learning rate for four architectures of
model: 1) Medium-sized maxout network. 2) Rectifier network with cross-channel pooling, and
exactly the same number of parameters and units as the maxout network. 3) Rectifier network
without cross-channel pooling, and the same number of units as the maxout network (thus fewer
parameters). 4) Rectifier network without cross-channel pooling, but with k times as many units
as the maxout network. Because making layer i have k times more outputs increases the number
of inputs to layer i + 1, this network has roughly k times more parameters than the maxout
network, and requires significantly more memory and runtime. We sampled 10 learning rate
and momentum schedules and random seeds for dropout, then ran each configuration for all 4
architectures. Each curve terminates after failing to improve the validation error in the last 100
epochs.
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10 Prologue to Fourth Article

10.1 Article Details

Multi-digit number recognition from Street View imagery using deep

convolutional neural networks. Ian J. Goodfellow, Yaroslav Bulatov, Julian

Ibarz, Sacha Arnoud, and Vinay Shet (2014). In International Conference on

Learning Representations.

Personal Contribution. Because this article was written in the context of an

internship with the Street Smart team at Google, my personal contribution to this

article was less than to the other articles used in this thesis. The rest of the Street

Smart team already had the basic idea of doing transcription with a single neural

net before I arrived, and ran the experiments necessary for scientific publication

after I left. My main contribution was to clearly define the equations needed for

maximum likelihood training and MAP inference in the output sequence model, to

write the code for those features, and to configure the system for good performance

on the internal, private dataset. I did not perform any of the experiments designed

to explain the factors driving the success of the system, nor did I do any of the

work on the publicly available dataset.

10.2 Context

Prior to this work, no results had been published for the full sequence tran-

scription task on the Street View House Numbers dataset. Previous work, such

as that presented in chapter 9, had exclusively focused on the isolated digit recog-

nition task. Viable technologies already existed for sequence transcription, but

were mostly evaluated on other datasets. These technologies were not based on

learning to perform localization and segmentation in a single neural network, but
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rather employed hand-designed probabilistic models that sometimes used neural

networks to implement individual conditional probability distributions within the

model. See (Alsharif and Pineau, 2013) for an example of a recent state of the art

system employing this approach.

We reproduce the paper here as it appeared in ICLR in its original form. How-

ever, it should be stressed that the ICLR version was written as a conference paper

and as such emphasized recent references. This work in fact builds on a very long

history of work on sequence recognition using convolutional neural networks. See

for example (Matan et al., 1992; Burges et al., 1992; Bengio et al., 1995; Schenkel

et al., 1993; LeCun and Bengio, 1994; Schenkel et al., 1995; Guyon et al., 1996; Bot-

tou et al., 1996, 1997; LeCun et al., 1997; LeCun et al., 1998; Bottou and LeCun,

2005).

10.3 Contributions

The contribution of this paper is twofold. First, we demonstrate a solution

to the problem of short sequence transcription for geocoding. Second, in doing

so, we have shown that deep neural networks can learn to perform complicated

localization and segmentation tasks rather than simply recognition tasks.

10.4 Recent Developments

This paper is very recent, and will in fact not be presented until after the writing

of this thesis. There are therefore no more recent developments to report.
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11

Multi-digit Number

Recognition from Street

View Imagery using Deep

Convolutional Neural

Networks

11.1 Introduction

Recognizing multi-digit numbers in photographs captured at street level is an

important component of modern-day map making. A classic example of a cor-

pus of such street level photographs is Google’s Street View imagery comprised of

hundreds of millions of geo-located 360 degree panoramic images. The ability to

automatically transcribe an address number from a geo-located patch of pixels and

associate the transcribed number with a known street address helps pinpoint, with

a high degree of accuracy, the location of the building it represents.

More broadly, recognizing numbers in photographs is a problem of interest to

the optical character recognition community. While OCR on constrained domains

like document processing is well studied, arbitrary multi-character text recognition

in photographs is still highly challenging. This di�culty arises due to the wide

variability in the visual appearance of text in the wild on account of a large range

of fonts, colors, styles, orientations, and character arrangements. The recognition

problem is further complicated by environmental factors such as lighting, shad-

ows, specularities, and occlusions as well as by image acquisition factors such as

resolution, motion, and focus blurs.

In this paper, we focus on recognizing multi-digit numbers from Street View

panoramas. While this reduces the space of characters that need to be recognized,

the complexities listed above still apply to this sub-domain. Due to these com-

plexities, traditional approaches to solve this problem typically separate out the

localization, segmentation, and recognition steps.

In this paper we propose a unified approach that integrates these three steps

via the use of a deep convolutional neural network that operates directly on the

image pixels. This model is configured with multiple hidden layers (our best con-

figuration had eleven layers, but our experiments suggest deeper architectures may
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obtain better accuracy, with diminishing returns), all with feedforward connections.

We employ DistBelief to implement these large-scale deep neural networks. The

key contributions of this paper are: (a) a unified model to localize, segment, and

recognize multi-digit numbers from street level photographs (b) a new kind of out-

put layer, providing a conditional probabilistic model of sequences (c) empirical

results that show this model performing best with a deep architecture (d) reaching

human level performance at specific operating thresholds.

We have evaluated this approach on the publicly available Street View House

Numbers (SVHN) dataset and achieve over 96% accuracy in recognizing street

numbers. We show that on a per-digit recognition task, we improve upon the state-

of-the-art and achieve 97.84% accuracy. We also evaluated this approach on an even

more challenging dataset generated from Street View imagery containing several

tens of millions of street number annotations and achieve over 90% accuracy. Our

evaluations further indicate that at specific operating thresholds, the performance

of the proposed system is comparable to that of human operators. To date, our

system has helped us extract close to 100 million street numbers from Street View

imagery worldwide.

The rest of the paper is organized as follows: Section 11.2 explores past work on

deep neural networks and on Photo-OCR. Sections 11.3 and 11.4 list the problem

definition and describe the proposed method. Section 11.5 describes the experi-

mental set up and results. Key takeaway ideas are discussed in Section 11.6.

11.2 Related work

Convolutional neural networks (Fukushima, 1980; LeCun et al., 1998) are neural

networks with sets of neurons having tied parameters. Like most neural networks,

they contain several filtering layers with each layer applying an a�ne transforma-

tion to the vector input followed by an elementwise non-linearity. In the case of

convolutional networks, the a�ne transformation can be implemented as a discrete

convolution rather than a fully general matrix multiplication. This makes convo-

lutional networks computationally e�cient, allowing them to scale to large images.

It also builds equivariance to translation into the model (in other words, if the

image is shifted by one pixel to the right, then the output of the convolution is
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also shifted one pixel to the right; the two representations vary equally with trans-

lation). Image-based convolutional networks typically use a pooling layer which

summarizes the activations of many adjacent filters with a single response. Such

pooling layers may summarize the activations of groups of units with a function

such as their maximum, mean, or L2 norm. These pooling layers help the network

be robust to small translations of the input.

Increases in the availability of computational resources, increases in the size

of available training sets, and algorithmic advances such as the use of piecewise

linear units (Jarrett et al., 2009; Glorot et al., 2011; Goodfellow et al., 2013) and

dropout training (Hinton et al., 2012) have resulted in many recent successes using

deep convolutional neural networks. Krizhevsky et al. (2012) obtained dramatic

improvements in the state of the art in object recognition. Zeiler and Fergus (2013b)

later improved upon these results.

On huge datasets, such as those used at Google, overfitting is not an issue, and

increasing the size of the network increases both training and testing accuracy. To

this end, Dean et al. (2012) developed DistBelief, a scalable implementation of deep

neural networks, which includes support for convolutional networks. We use this

infrastructure as the basis for the experiments in this paper.

Convolutional neural networks have previously been used mostly for applica-

tions such as recognition of single objects in the input image. In some cases they

have been used as components of systems that solve more complicated tasks. Gir-

shick et al. (2013) use convolutional neural networks as feature extractors for a

system that performs object detection and localization. However, the system as

a whole is larger than the neural network portion trained with backprop, and has

special code for handling much of the mechanics such as proposing candidate object

regions. Szegedy et al. (2013) showed that a neural network could learn to output

a heatmap that could be post-processed to solve the object localization problem.

In our work, we take a similar approach, but with less post-processing and with

the additional requirement that the output be an ordered sequence rather than an

unordered list of detected objects. Alsharif and Pineau (2013) use convolutional

maxout networks (Goodfellow et al., 2013) to provide many of the conditional prob-

ability distributions used in a larger model using HMMs to transcribe text from

images. In this work, we propose to solve similar tasks involving localization and

segmentation, but we propose to perform the entire task completely within the
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Figure 11.1 – a) An example input image to be transcribed. The correct output for this image
is “700”. b) The graphical model structure of our sequence transcription model, depicted using
plate notation (Buntine, 1994) to represent the multiple Si. Note that the relationship between
X and H is deterministic. The edges going from L to Si are optional, but help draw attention to
the fact that our definition of P (S | X) does not query Si for i > L.

learned convolutional network. In our approach, there is no need for a separate

component of the system to propose candidate segmentations or provide a higher

level model of the image.

11.3 Problem description

Street number transcription is a special kind of sequence recognition. Given

an image, the task is to identify the number in the image. See an example in

Fig. 11.1a. The number to be identified is a sequence of digits, s = s
1

, s
2

, . . . , s
n

.

When determining the accuracy of a digit transcriber, we compute the proportion of

the input images for which the length n of the sequence and every element s
i

of the

sequence is predicted correctly. There is no “partial credit” for getting individual

digits of the sequence correct. This is because for the purpose of making a map, a

building can only be found on the map from its address if the whole street number

was transcribed correctly.

For the purpose of building a map, it is extremely important to have at least

human level accuracy. Users of maps find it very time consuming and frustrating to

be led to the wrong location, so it is essential to minimize the amount of incorrect

transcriptions entered into the map. It is, however, acceptable not to transcribe

every input image. Because each street number may have been photographed many
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times, it is still quite likely that the proportion of buildings we can place on the map

is greater than the proportion of images we can transcribe. We therefore advocate

evaluating this task based on the coverage at certain levels of accuracy, rather than

evaluating only the total degree of accuracy of the system. To evaluate coverage,

the system must return a confidence value, such as the probability of the most likely

prediction being correct. Transcriptions below some confidence threshold can then

be discarded. The coverage is defined to be the proportion of inputs that are not

discarded. The coverage at a certain specific accuracy level is the coverage that

results when the confidence threshold is chosen to achieve that desired accuracy

level. For map-making purposes, we are primarily interested in coverage at 98%

accuracy or better, since this roughly corresponds to human accuracy.

Using confidence thresholding allows us to improve maps incrementally over

time–if we develop a system with poor accuracy overall but good accuracy at some

threshold, we can make a map with partial coverage, then improve the coverage

when we get a more accurate transcription system in the future. We can also use

confidence thresholding to do as much of the work as possible via the automated

system and do the rest using more expensive means such as hiring human operators

to transcribe the remaining di�cult inputs.

One special property of the street number transcription problem is that the

sequences are of bounded length. Very few street numbers contain more than five

digits, so we can use models that assume the sequence length n is at most some

constant N , with N = 5 for this work. Systems that make such an assumption

should be able to identify whenever this assumption is violated and refuse to re-

turn a transcription so that the few street numbers of length greater than N are

not incorrectly added to the map after being transcribed as being length N . (Al-

ternately, one can return the most likely sequence of length N , and because the

probability of that transcription being correct is low, the default confidence thresh-

olding mechanism will usually reject such transcriptions without needing special

code for handling the excess length case)
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11.4 Methods

Our basic approach is to train a probabilistic model of sequences given images.

Let S represent the output sequence and X represent the input image. Our goal is

then to learn a model of P (S | X) by maximizing log P (S | X) on the training set.

To model S, we define S as a collection of N random variables S
1

, . . . , S
N

representing the elements of the sequence and an additional random variable L

representing the length of the sequence. We assume that the identities of the

separate digits are independent from each other, so that the probability of a specific

sequence s = s
1

, . . . , s
n

is given by

P (S = s|X) = P (L = n | X)⇧n

i=1

P (S
i

= s
i

| X).

This model can be extended to detect when our assumption that the sequence has

length at most N is violated. To allow for detecting this case, we simply add an

additional value of L that represents this outcome.

Each of the variables above is discrete, and when applied to the street number

transcription problem, each has a small number of possible values: L has only 7

values (0, . . . , 5, and “more than 5”), and each of the digit variables has 10 possible

values. This means it is feasible to represent each of them with a softmax classifier

that receives as input features extracted from X by a convolutional neural network.

We can represent these features as a random variable H whose value is deterministic

given X. In this model, P (S | X) = P (S | H). See Fig. 11.1b for a graphical model

depiction of the network structure.

To train the model, one can maximize log P (S | X) on the training set using

a generic method like stochastic gradient descent. Each of the softmax models

(the model for L and each S
i

) can use exactly the same backprop learning rule

as when training an isolated softmax layer, except that a digit classifier softmax

model backprops nothing on examples for which that digit is not present.

At test time, we predict

s = (l, s
1

, . . . , s
l

) = argmax
L,S

1

,...,SL
log P (S | X).

This argmax can be computed in linear time. The argmax for each character can

be computed independently. We then incrementally add up the log probabilities

for each character. For each length l, the complete log probability is given by this

running sum of character log probabilities, plus log P (l | x). The total runtime is
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thus O(N).

We preprocess by subtracting the mean of each image. We do not use any

whitening (Hyvärinen et al., 2001), local contrast normalization (Sermanet et al.,

2012), etc.

11.5 Experiments

In this section we present our experimental results. First, we describe our state

of the art results on the public Street View House Numbers dataset in section 11.5.1.

Next, we describe the performance of this system on our more challenging, larger

but internal version of the dataset in section 11.5.2. We then present some experi-

ments analyzing the performance of the system in section 11.5.3.

11.5.1 Public Street View House Numbers dataset

The Street View House Numbers (SVHN) dataset (Netzer et al., 2011) is a

dataset of about 200k street numbers, along with bounding boxes for individual

digits, giving about 600k digits total. To our knowledge, all previously published

work cropped individual digits and tried to recognize those. We instead take orig-

inal images containing multiple digits, and focus on recognizing them all simulta-

neously.

We preprocess the dataset in the following way – first we find the small rect-

angular bounding box that will contain individual character bounding boxes. We

then expand this bounding box by 30% in both the x and the y direction, crop the

image to that bounding box and resize the crop to 64 ⇥ 64 pixels. We then crop a

54 ⇥ 54 pixel image from a random location within the 64 ⇥ 64 pixel image. This

means we generated several randomly shifted versions of each training example,

in order to increase the size of the dataset. Without this data augmentation, we

lose about half a percentage point of accuracy. Because of the di↵ering number of

characters in the image, this introduces considerable scale variability – for a single

digit street number, the digit fills the whole box, meanwhile a 5 digit street number

will have to be shrunk considerably in order to fit.
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Our best model obtained a sequence transcription accuracy of 96.03%. This

is not accurate enough to use for adding street numbers to geographic location

databases for placement on maps. However, using confidence thresholding we ob-

tain 95.64% coverage at 98% accuracy. Since 98% accuracy is the performance

of human operators, these transcriptions are acceptable to include in a map. We

encourage researchers who work on this dataset in the future to publish coverage

at 98% accuracy as well as the standard accuracy measure. Our system achieves a

character-level accuracy of 97.84%. This is slightly better than the previous state of

the art for a single network on the individual character task of 97.53% (Goodfellow

et al., 2013).

Training this model took approximately six days using 10 replicas in DistBe-

lief. The exact training time varies for each of the performance measures reported

above–we picked the best stopping point for each performance measure separately,

using a validation set.

Our best architecture consists of eight convolutional hidden layers, one locally

connected hidden layer, and two densely connected hidden layers. All connections

are feedforward and go from one layer to the next (no skip connections). The first

hidden layer contains maxout units (Goodfellow et al., 2013) (with three filters

per unit) while the others contain rectifier units (Jarrett et al., 2009; Glorot et al.,

2011). The number of units at each spatial location in each layer is [48, 64, 128,

160] for the first four layers and 192 for all other locally connected layers. The

fully connected layers contain 3,072 units each. Each convolutional layer includes

max pooling and subtractive normalization. The max pooling window size is 2⇥2.

The stride alternates between 2 and 1 at each layer, so that half of the layers don’t

reduce the spatial size of the representation. All convolutions use zero padding on

the input to preserve representation size. The subtractive normalization operates

on 3x3 windows and preserves representation size. All convolution kernels were of

size 5 ⇥ 5. We trained with dropout applied to all hidden layers but not the input.

11.5.2 Internal Street View data

Internally, we have a dataset with tens of millions of transcribed street numbers.

However, on this dataset, there are no ground truth bounding boxes available. We

use an automated method (beyond the scope of this paper) to estimate the centroid
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Figure 11.2 – Di�cult but correctly transcribed examples from the internal street numbers
dataset. Some of the challenges in this dataset include diagonal or vertical layouts, incorrectly
applied blurring from license plate detection pipelines, shadows and other occlusions.

of each house number, then crop to a 128 ⇥ 128 pixel region surrounding the house

number. We do not rescale the image because we do not know the extent of the

house number. This means the network must be robust to a wider variation of

scales than our public SVHN network. On this dataset, the network must also

localize the house number, rather than merely localizing the digits within each

house number. Also, because the training set is larger in this setting, we did not

need augment the data with random translations.

This dataset is more di�cult because it comes from more countries (more than

12), has street numbers with non-digit characters and the quality of the ground

truth is lower. See Fig. 11.2 for some examples of di�cult inputs from this dataset

that our system was able to transcribe correctly, and Fig. 11.3 for some examples

of di�cult inputs that were considered errors.

We obtained an overall sequence transcription accuracy of 91% on this more

challenging dataset. Using confidence thresholding, we were able to obtain a cov-

erage of 83% with 99% accuracy, or 89% coverage at 98% accuracy. On this task,

due to the larger amount of training data, we did not see significant overfitting like

we saw in SVHN so we did not use dropout. Dropout tends to increase training
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100 vs. 676 1110 vs. 2641 23 vs. 37 1 vs. 198

4 vs. 332 2 vs 239 1879 vs. 1879-1883 228 vs. 22B

96 vs. 86 1844 vs. 184 62 vs. 62-37 1180 vs. 1780

Figure 11.3 – Examples of incorrectly transcribed street numbers from the large internal dataset
(transcription vs. ground truth). Note that for some of these, the “ground truth” is also incorrect.
The ground truth labels in this dataset are quite noisy, as is common in real world settings. Some
reasons for the ground truth errors in this dataset include: 1. The data was repurposed from
an existing indexing pipeline where operators manually entered street numbers they saw. It
was impractical to use the same size of images as the humans saw, so heuristics were used to
create smaller crops. Sometimes the resulting crop omits some digits. 2. Some examples are
fundamentally ambiguous, for instance street numbers including non-digit characters, or having
multiple street numbers in same image which humans transcribed as a single number with an
arbitrary separator like “,” or “-”.
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time, and our largest models are already very costly to train. We also did not use

maxout units. All hidden units were rectifiers (Jarrett et al., 2009; Glorot et al.,

2011). Our best architecture for this dataset is similar to the best architecture

for the public dataset, except we use only five convolutional layers rather than

eight. (We have not tried using eight convolutional layers on this dataset; eight

layers may obtain slightly better results but the version of the network with five

convolutional layers performed accurately enough to meet our business objectives)

The locally connected layers have 128 units per spatial location, while the fully

connected layers have 4096 units per layer.

11.5.3 Performance analysis

In this section we explore the reasons for the unprecedented success of our neural

network architecture for a complicated task involving localization and segmenta-

tion rather than just recognition. We hypothesize that for such a complicated task,

depth is crucial to achieve an e�cient representation of the task. State of the art

recognition networks for images of cropped and centered digits or objects may have

between two to four convolutional layers followed by one or two densely connected

hidden layers and the classification layers (Goodfellow et al., 2013). In this work

we used several more convolutional layers. We hypothesize that the depth was

crucial to our success. This is most likely because the earlier layers can solve the

localization and segmentation tasks, and prepare a representation that has already

been segmented so that later layers can focus on just recognition. Moreover, we

hypothesize that such deep networks have very high representational capacity, and

thus need a large amount of data to train successfully. Prior to our successful

demonstration of this system, it would have been reasonable to expect that factors

other than just depth would be necessary to achieve good performance on these

tasks. For example, it could have been possible that a su�ciently deep network

would be too di�cult to optimize. In Fig. 11.4, we present the results of an exper-

iment that confirms our hypothesis that depth is necessary for good performance

on this task.
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Figure 11.4 – Performance analysis experiments on the public SVHN dataset show that fairly
deep architectures are needed to obtain good performance on the sequence transcription task.

11.5.4 Application to Geocoding

The motivation for the development of this model was to decrease the cost of

geocoding as well as scale it worldwide and keep up with change in the world.

The model has now reached a high enough quality level that we can automate the

extraction of street numbers on Street View images. Also, even if the model can

be considered quite large, it is still e�cient.

We can for example transcribe all the views we have of street numbers in France

in less than an hour using our Google infrastructure. Most of the cost actually

comes from the detection stage that locates the street numbers in the large Street

View images. Worldwide, we automatically detected and transcribed close to 100

million physical street numbers at operator level accuracy. Having this new dataset

significantly increased the geocoding quality of Google Maps in several countries

especially the ones that did not already have other sources of good geocoding. In

Fig. 11.5, you can see some automatically extracted street numbers from Street

View imagery captured in South Africa.
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11.6 Discussion

We believe with this model we have solved OCR for short sequences for many

applications. On our particular task, we believe that now the biggest gain we could

easily get is to increase the quality of the training set itself as well as increasing its

size for general OCR transcription.

One caveat to our results with this architecture is that they rest heavily on

the assumption that the sequence is of bounded length, with a reasonably small

maximum length N . For unbounded N , our method is not directly applicable,

and for large N our method is unlikely to scale well. Each separate digit classifier

requires its own separate weight matrix. For long sequences this could incur too

high of a memory cost. When using DistBelief, memory is not much of an issue

(just use more machines) but statistical e�ciency is likely to become problematic.

Another problem with long sequences is the cost function itself. It’s also possible

that, due to longer sequences having more digit probabilities multiplied together,

a model of longer sequences could have trouble with systematic underestimation of

the sequence length.

One possible solution could be to train a model that outputs one “word” (N

character sequence) at a time and then slide it over the entire image followed by a

simple decoding. Some early experiments in this direction have been promising.

Perhaps our most interesting finding is that neural networks can learn to per-

form complicated tasks such as simultaneous localization and segmentation of or-

dered sequences of objects. This approach of using a single neural network as an

entire end-to-end system could be applicable to other problems, such as general

text transcription or speech recognition.
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Figure 11.5 – Automatically extracted street numbers from Street View imagery captured in
South Africa.

.
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12 General conclusion

The work in this thesis has tracked the general change in the zeitgeist of deep

learning research that took place during the time it was written.

The projects begun earlier in the work for this thesis were based on the paradigm

of representation learning. The hypothesis guiding these works was that by learning

to represent the world, we might learn to reason about it more accurately, and

improve accuracy on supervised learning tasks. In the short run, that hypothesis

has proven to be of little value. The MP-DBM, trained simultaneously to model the

input and to predict the output, performs slightly better than a purely supervised

maxout network, but the improvement in accuracy is small compared to the increase

in complexity of the network.

Instead, we have found that averaging together large ensembles of models is a

much more powerful, and in the short term, feasible approach to improving the

generalization of models for computer vision. The success of the MP-DBM is

attributable in part to the fact that it trains an exponentially large ensemble of

recurrent networks. Likewise, the later projects in this thesis, leverage dropout to

train exponentially large ensembles of feedforward networks.

Similarly, it seems that in the short term it is much easier to collect large

amounts of data than to learn to generalize well from small amounts of data. Using

this strategy, we were able to automatically transcribe over one hundred million

address numbers from photos around the world.

This shift from representation learning to implicit ensembles and supervised

learning with large datasets has been an industry-wide phenomenon. This thesis

also highlights a few nuances of the overall findings of the research community over

the past few years. First, the experiments with S3C and small amounts of labeled

data show that representation learning is of some use when the amount of unlabeled

data greatly exceeds the amount of labeled data. However, these approaches are

not yet su�cient to succeed at AI-style tasks. The experiments with the MP-DBM

have also shown that generative models can still be useful even when su�cient
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labeled data is available. The MP-DBM can replace missing input values and

can perform classification even when some inputs are missing. This suggests that

generative modeling may still be relevant even in the age of “big data.”

Finally, one lesson that can be gleaned from this thesis is that it is possible

to achieve powerful synergy in a machine learning system by designing each of its

components to interact well with each other. As engineers, we draw great benefit

from designing modular systems, with components that can be analyzed separately.

Machine learning systems can usually be broken into subsystems that represent

knowledge, subsystems that perform inference given the stored knowledge, and op-

timization procedures that inject new knowledge into the representation. Being

able to diagnose which of these subsystems performs the worst is usually the best

basis we have for determining how to improve a machine learning system. This

ability to consider the components in isolation is crucial to understanding machine

learning systems. But we should not forget to also consider their combined per-

formance. Maxout works well because it is a representation system that works

especially well with both the optimization procedure and the inference procedure

used when training with dropout. This general principle of seeking synergy be-

tween components that remain simple to analyze in isolation could lead to more

advances in other machine learning systems.
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A Example transcription

network inference

In this appendix we provide a detailed example of how to run inference in a

trained network to transcribe a house number. The purpose of this appendix is to

remove any ambiguity from the more general description in the main text.

Transcription begins by computing the distribution over the sequence S given

an image X. See Fig. A.1 for details of how this computation is performed.

To commit to a single specific sequence transcription, we need to compute

argmax
s

P (S = s | H). It is easiest to do this in log scale, to avoid multiplying

together many small numbers, since such multiplication can result in numerical

underflow. i.e., in practice we actually compute argmax
s

log P (S = s | H).

Note that log softmax(z) can be computed e�ciently and with numerical sta-

bility with the formula log softmax(z)
i

= z
i

� P
j

exp(z
j

). It is best to compute

the log probabilities using this stable approach, rather than first computing the

probabilities and then taking their logarithm. The latter approach is unstable; it

can incorrectly yield �1 for small probabilities.

Suppose that we have all of our output probabilities computed, and that they

are the following (these are idealized example values, not actual values from the

model):

L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L > 5

P (L) .002 .002 .002 .9 .09 .002 .002

log P (L) -6.2146 -6.2146 -6.2146 -0.10536 -2.4079 -6.2146 -6.2146
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

P (S1 = i) .00125 .9 .00125 .00125 .00125 .00125 .00125 .1 .00125 .00125

log P (S1 = i) -6.6846 -0.10536 -6.6846 -6.6846 -6.6846 -6.6846 -6.6846 -2.4079 -6.6846 -6.6846

P (S2 = i) .00125 .00125 .00125 .00125 .00125 .00125 .00125 .9 .00125 .1

log P (S2 = i) -6.6846 -6.6846 -6.6846 -6.6846 -6.6846 -6.6846 -6.6846 -0.10536 -6.6846 -2.4079

P (S3 = i) .00125 .00125 .00125 .00125 .00125 .9 .1 .00125 .00125 .00125

log P (S3 = i) -6.6846 -6.6846 -6.6846 -6.6846 -6.6846 -0.10536 -2.4079 -6.6846 -6.6846 -6.6846

P (S4 = i) .08889 .2 .08889 .08889 .08889 .08889 .08889 .08889 .08889 .08889

log P (S4 = i) -2.4204 -1.6094 -2.4204 -2.4204 -2.4204 -2.4204 -2.4204 -2.4204 -2.4204 -2.4204

P (S5 = i) .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

log P (S5 = i) -2.3026 -2.3026 -2.3026 -2.3026 -2.3026 -2.3026 -2.3026 -2.3026 -2.3026 -2.3026

Refer to the example input image in Fig. A.1 to understand these probabilities.

The correct length is 3. Our distribution over L accurately reflects this, though

we do think there is a reasonable possibility that L is 4–maybe the edge of the

door looks like a fourth digit. The correct transcription is 175, and we do assign

these digits the highest probability, but also assign significant probability to the

first digit being a 7, the second being a 9, or the third being a 6. There is no fourth

digit, but if we parse the edge of the door as being a digit, there is some chance of

it being a 1. Our distribution over the fifth digit is totally uniform since there is

no fifth digit.

Our independence assumptions mean that when we compute the most likely

sequence, the choice of which digit appears in each position doesn’t a↵ect our

choice of which digit appears in the other positions. We can thus pick the most

likely digit in each position separately, leaving us with this table:

j argmax
sj

log P (S
j

= s
j

) max
sj log P (S

j

= s
j

)

1 1 -0.10536

2 7 -0.10536

3 5 -0.10536

4 1 -1.6094

5 0 -2.3026
Finally, we can complete the maximization by explicitly calculating the proba-

bility of all seven possible sequence lengths:
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L Prediction log P (S
1

, . . . S
L

) log P (S)

0 0. -6.2146

1 1 -0.1054 -7.2686

2 17 -0.2107 -8.3226

3 175 -0.3161 -0.42144

4 1751 -1.9255 -4.3334

5 17510 -4.2281 -10.443

> 5 17510. . . -4.2281 -10.443

Here the third column is just a cumulative sum over log P (S
L

) so it can be

computed in linear time. Likewise, the fourth column is just computed by adding

the third column to our existing log P (L) table. It is not even necessary to keep

this final table in memory, we can just use a for loop that generates it one element

at a time and remembers the maximal element.

The correct transcription, 175, obtains the maximal log probability of �0.42144,

and the model outputs this correct transcription.
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X: 128x128x3  
input image

Deep 
convolutional 

feature 
extraction

H∈�4096: Feature vector 

ZS1 ∈�10 =
WS1H+bS1

ZL ∈�7 =
WLH+bL

ZS2 ∈�10 =
WS2H+bS2

ZS3 ∈�10 =
WS3H+bS3 ZS4 ∈�10 =

WS4H+bS4

ZS5 ∈�10 =
WS5H+bS5

P(L|H) =
softmax(ZL)

P(S1|H) =
softmax(ZS1)

P(S2|H) =
softmax(ZS2)

P(S3|H) =
softmax(ZS3)

P(S4|H) =
softmax(ZS4)

P(S5|H) =
softmax(ZS5)

Figure A.1 – Details of the computational graph we used to transcribe house numbers. In this
diagram, we show how we compute the parameters of P (S | X), where X is the input image and
S is the sequence of numbers depicted by the image. We first extract a set of features H from X
using a convolutional network with a fully connected final layer. Note that only one such feature
vector is extracted for the entire image. We do not use an HMM that models features explicitly
extracted at separate locations. Because the final layer of the convolutional feature extractor is
fully connected and has no weight sharing, we have not explicitly engineered any concept of spatial
location into this representation. The network must learn its own means of representing spatial
location in H. Six separate softmax classifiers are then connected to this feature vector H, i.e.,
each softmax classifier forms a response by making an a�ne transformation of H and normalizing
this response with the softmax function. One of these classifiers provides the distribution over
the sequence length P (L | H), while the others provide the distribution over each of the members
of the sequence, P (S1 | H), . . . , P (S5 | H).
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