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RÉSUMÉ 

Le syndrome reproducteur et respiratoire porcin (SRRP) est la maladie infectieuse la plus 

économiquement importante de l’industrie porcine. Une étude récente a démontré que le 

surnageant de culture d’Actinobacillus pleuropneumoniae (App) inhibe l’infection du virus 

SRRP (VSRRP) in vitro dans des cellules de singe. L’objectif de cette étude est de démontrer 

l’effet antiviral d’App contre le VSRRP dans les cellules cibles du virus in vivo: les 

macrophages alvéolaires porcins (MAPs) et d’étudier les mécanismes spécifiques impliqués 

lors de l’inhibition virale.  Les MAPs ont été traités avec App, avant et après l’infection avec 

le VSRRP. À différents temps post-infection, la réplication et la transcription du génome viral 

ont été quantifiées. L’expression des interférons (IFN) type I et II, ainsi que le profil 

protéomique en présence ou absence d’App ont été évalués. L’expression de certaines 

protéines a été confirmée par immunobuvardage et immunofluorescence (IF). Les résultats ont 

démontré que l’effet antiviral d’App n’est pas via l’induction des IFN type I et II. App inhibe 

l’infection virale dans MAPs avant la réplication et la transcription du génome viral, ce qui 

indique qu’App inhibe précocement le cycle réplicatif viral. Le profil protéomique a révélé 

qu’App augmentait l’expression de la cofiline, une protéine qui provoque la dépolymérisation 

de l’actine. De plus, ce phénomène de dépolymérisation a été confirmé par IF. Le traitement 

des MAPs avec la cytochalasin D (un composé qui provoque la fragmentation des 

microfilments) a démontré que comme pour App, cette drogue inhibe la réplication virale. Les 

résultats obtenus suggèrent que l’effet antiviral d’App est via l'activation de la cofiline et 

dépolymérisation de l’actine, affectant probablement l’endocytose du VSRRP.    

 

Mot clés : SRRP/ VSRRP/ MAPs/ réplication du VSRRP / cytosquelette d'actine/cofiline/A. 

pleuropneumoniae 
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ABSTRACT 

Porcine reproductive and respiratory syndrome (PRRS) is the most economically important 

infectious disease of swine production. A recent study has demonstrated that the culture 

supernatant of Actinobacilus pleuropneumoniae (App) inhibits PRRS virus (PRRSV) infection 

in vitro in a monkey cell line. Following this finding, the objective of this study was to 

demonstrate the antiviral effect of App in the primary target cells of PRRSV in vivo: porcine 

alveolar macrophages (PAM) and to elucidate how App inhibits PRRSV replication in PAM. 

Cells were treated with App before and after PRRSV infection. At different times post-

infection, viral genome replication and transcription were measured in the presence of App. 

mRNA expression of type I and II interferon (IFN) and the proteomic profile of infected cells 

treated with App were evaluated. The expression of selected proteins was confirmed by 

immunofluorescence (IFA) and Western blot assays. Results showed that App antiviral effect 

against PRRSV is not via the induction of type I and II IFN expression. Moreover, it was 

observed that App inhibits PRRSV infection in PAM before its genome replication and 

transcription, indicating that App antiviral effect takes place early in PRRSV replication cycle. 

Proteomic results revealed that App increases cofilin, a protein that induces actin filaments 

depolymerisation in its active form. This depolymerisation phenomenon was further 

confirmed by IFA. Interestingly, a microfilament-disrupting compound (cytochalasin D) 

induced the same effect on PRRSV replication than App suggesting that App antiviral effect 

against PRRSV takes place via the activation of cofilin and thus actin depolymerisation, which 

probably affects PRRSV endocytosis. 

  

Key words: PRRS/ PRRSV/ PAM/ PRRSV replication/ actin cytoskeleton/ cofilin/ A. 

pleuropneumoniae 
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Porcine reproductive and respiratory syndrome (PRRS) is a worldwide endemic infectious 

disease which causes significant economic losses in the swine industry (1). The etiological 

agent, PRRS virus (PRRSV), is an enveloped and single-stranded positive sense RNA virus of 

approximately 15 kb that encodes for at least 10 open reading frames (ORFs) (2-5). PRRSV is 

classified in the order Nidovirales, family Arteriviridae and genus Arterivirus, which also 

includes the lactate dehydrogenase-elevating virus of mice, equine arteritis virus and simian 

hemorrhagic fever virus (6, 7). PRRSV isolates are divided into two genotypes, where the 

Lelystad virus in Europe and ATCC VR-2332 in North America are the reference strains for 

genotype I and II, respectively (6, 8, 9).  

PRRSV has a very narrow cell tropism both in vivo and in vitro. In vivo, PRRSV has 

preference for cells of monocyte/macrophage lineage, especially the fully differentiated 

macrophages of lungs, lymphoid organs and placenta (10-12). Porcine alveolar macrophages 

(PAM) constitutes the main in vivo target cells of PRRSV and primary PAM has been 

extensively used for in vitro study of host cell infection (6, 11, 13, 14). Two continuous cell 

lines, from monkey origin, are the only cells able to fully support PRRSV replication in vitro: 

the African green monkey kidney cell line MA-104 and derivatives such as MARC-145 and 

CL2621 (15) and the newly reported St-Jude porcine lung (SJPL) cells (16, 17). 

Following PRRSV entry and release of the viral genome into the cytoplasm, the PRRSV 

ORF1 is translated and the resulting non-structural proteins (nsps) trigger the formation of the 

replication-transcription complex, which is associated with double membrane vesicles and 

supports genome replication and transcription process (18-20). The genome replication is 

produced by the continuous synthesis of negative (-) full-length RNA strands using as 

template the genomic RNA (gRNA), then the (-) RNA strands will lead the formation of new 

gRNAs (21). The genome transcription process is named to the synthesis of a nested set of six 

sub-genomic mRNAs (sg mRNAs). According with a model proposed by Sawicki and 

colleagues (22), the generation of these sg mRNAs is through a discontinuous RNA synthesis 

process, where (-) sg RNA strands are produced and then are used as template for the 

synthesis of the sg mRNAs. 
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The actin cytoskeleton plays an important role in PRRSV life cycle inside cells. It has been 

reported that PRRSV entry into PAM is via clathrin-mediated endocytosis and that this 

process is microfilament-dependent (13). The use of cytochalasin D (a microfilament-

disrupting compound) inhibited PRRSV primary and secondary infection in MARC-145 cell 

line (23). Moreover, it was observed that in PRRSV infected cells there were less actin 

filaments (F-actin) expression, than in the adjacent untreated cells suggesting that PRRSV can 

modulate the actin cytoskeleton to favor cell infection and that higher F-actin expression 

correlated with PRRSV resistance (23).  

Current management strategies to control PRRS, which include surveillance, severe 

biosecurity measures, whole herd depopulation and repopulation, herd closure and 

vaccination, seem to be partially efficient for the control of the disease (24-26). This 

phenomenon has stimulated the research of novel strategies to successfully control PRRSV 

infection. Several studies have found natural compounds with antiviral activity against 

PRRSV such as macrolides (27), N-acetylpenicillamine (28), Cryptoporus volvatus extracts 

(29), morpholino oligomer (30, 31), matrine (32), sodium tanshinone IIA sulfonate (33). 

However, for the moment there are no effective commercially available drugs to prevent 

PRRSV infection. 

Actinobacillus pleuropneumoniae (App) is the etiological agent of porcine pleuropneumonia a 

worldwide endemic disease (34). App is divided into two biotypes, the biotype 1 which is 

dependent on exogenous beta-nicotinamide adenine dinucleotide (β-NAD) and the biotype 2 

which is NAD-independent (35). App is divided also into 15 serotypes (1-4, 5a, 5b and 6-15) 

(34, 36). A recent study performed in our laboratory demonstrated that the culture supernatant 

of a mutant App strain (AppΔapxICΔapxIIC), which produces inactive Apx I and II toxins, has 

a potent antiviral effect against PRRSV (37). This phenomenon of inhibition was observed in 

the monkey SJPL cell line. Since, PAM are the main in vivo target cells of PRRSV, the first 

objective of this study was to demonstrate the App supernatant antiviral effect against PRRSV 

in primary cultures of PAM. Results corresponding to this objective were already published 

[(37), Annexe I] and demonstrated that App supernatant efficiently inhibits PRRSV infection 

in PAM. Based on the literature and according with preliminary results obtained in our 

laboratory, it is hypothesised that App cell culture supernatant modulates cellular(s) 
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component(s) and by consequence PRRSV infection is blocked. Then, the second objective of 

this study is to determine the possible mechanisms involved in the viral inhibition. 
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1. ACTINOBACILLUS PLEUROPNEUMONIAE 

HISTORY 

In 1957, the first case of porcine pleuropneumonia was reported in United States by Pattison 

and colleagues (38) and the bacteria associated with the pneumonic lesions was firstly 

classified in the genus Haemophilus. Afterwards, in 1983 it was reclassified, since DNA 

studies revealed that this pathogen belonged to the genus Actinobacillus of the 

Pasteurellaceae family together with the bacteria of the genus Haemophilus, Pasteurella and 

Mannheimia. Thus, Actinobacillus pleuropneumoniae (App) is the etiologic agent of porcine 

pleuropneumonia a worldwide endemic disease, which affects pigs of all ages and causes 

considerable economic losses (34). 

CLASSIFICATION 

App is a non-motile and a facultative anaerobic Gram-negative encapsulated coccobacillus 

(39). App strains are classified into two biotypes, where the biotype 1 is dependent on 

exogenous beta-nicotinamide adenine dinucleotide (β-NAD), whereas the biotype 2 is able to 

synthesize this component by itself (35). Based on the surface polysaccharides this bacterium 

has been divided into 15 serotypes (1-4, 5a, 5b and 6-15) (34, 36). All serotypes can induce 

the disease but with differences in virulence (40). App is also positive to the CAMP (Christie 

Atkins Munch-Petersen) test (41).  

VIRULENCE FACTORS 

The lower respiratory tract is the preferential site of infection of App, since it binds the ciliated 

cells of the terminal bronchiole and alveolar epithelial cells. There are three important steps 

during App infection that allow the apparition of the disease: the colonization, the evasion of 

the host’s defense mechanisms and host tissue damages (42). Different virulence factors have 

been identified to participate in each of these stages. 

Lipopolysaccharides 

Several studies have confirmed that the lipopolysaccharide (LPS) is necessary in App 

adherence to the respiratory epithelium (43-45). However, others have postulated that this 

stage in bacterial pathogenesis is probably LPS-independent (46). The LPS is formed of three 
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regions: the lipid A, the LPS core and the O-antigen (47). Provost and collaborators 

demonstrated that a LPS core mutant decreased adherence to host cells, showing its critical 

role in adhesion (48). According with a proposed multiple-step adhesion mechanism, firstly 

the O-antigen of the LPS may interact with the phosphatidylethanolamine (a host membrane 

phospholipid) by a low-affinity binding, then, a stronger union to the respiratory tract is made 

by the interaction of the LPS core and/or surface proteins (a 55 kDa protein, type 4 fimbriae 

(will be discussed below)) to other host cell receptors (49). The lipid A of the LPS is able to 

bind the porcine hemoglobin and by this way the bacteria acquires the iron for its growth (50). 

The LPS is being associated also to the formation of lesions, since it was demonstrated that the 

LPS outer core interacts with ApxI and ApxII toxins and this interaction may enhance App 

cytotoxicity and virulence (51). 

Capsular polysaccharides 

Cruijsen and colleagues demonstrated that App reduces the phagocytic activity of porcine 

alveolar macrophages (PAM) in vitro by inducing cell lysis, which causes viable bacteria 

liberation (52). Among the factors that may contribute to App survival, the capsular 

polysaccharides should play an important role. It was demonstrated that encapsulated App 

strains were resistant to complement-mediated killing, whereas non-capsulated strains were 

killed (53, 54). Moreover, there is a direct association between the type and the amount of App 

capsular polysaccharides and its virulence in vivo (55). Capsular polysaccharides are not 

involved in App adherence, since it was observed that a capsule deficient mutant adheres more 

efficiently to cells than the wild type strain. However, the capsule can mask the adhesins, at 

least in part, affecting indirectly the adherence (56).  

Apx toxins 

App repeats-in-toxins (RTX) exoproteins (ApxI, ApxII, ApxIII and Apx IV) are involved in 

the induction of pulmonary lesions (57, 58). ApxI is the most haemolytic and cytotoxic toxin 

for alveolar macrophages and neutrophils and induces apoptosis in PAM cells (57, 59-61), 

ApxII is weakly haemolytic and moderately cytotoxic (34, 60, 62), ApxIII is non-haemolytic, 

highly cytotoxic and has a pro-apoptotic activity (63) and Apx IV is only secreted in vivo and 

is essential for App full virulence (64, 65).  
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Iron-uptake systems 

The lower respiratory tract is limited in supplying the essential nutrients for bacterial growth 

(34). However, App is able to use the host transferrin (66-68) and hemoglobin (50, 69) and 

exogenous siderophores (70) as sources of iron for its growth. App binds to transferrin through 

two proteins present on its surface of approximately 60 and 100 kDa, where the 100 kDa 

protein is a transmembrane protein that may form a channel allowing the transport of iron 

across the outer membrane (67, 71).  The hemoglobin receptors are two outer membrane 

proteins of approximately 75 and 105 kDa, where the 75 kDa protein can also bind hemin 

(47). The last iron-acquisition system is mediated by the uptake of exogenous siderophores 

such as the hydroxamate siderophore ferrichrome. There are four genes implicated in the ferric 

hydroxamate uptake, which are located in a single operon. These genes encode for the outer 

membrane protein FhuA, which is the receptor for ferrichrome, the FhuD protein is 

responsible for the translocation of ferric hydroxamate from the outer to the inner membrane 

and FhuC and FhuB proteins are cytoplasmic-membrane-associated proteins, which are 

components of an ABC transporter that internalizes the ferric hydroxamate (72). 

Biofilm formation 

Several studies have demonstrated that App has the ability to form biofilm. It is believed that 

biofilm is necessary for bacteria colonization (34, 73-76). The polysaccharide poly-N-

acetylglucosamine (PGA) was observed to be involved in biofilm formation and probably 

functions as the major biofilm adhesin in App (73, 76). Moreover, Buettner and collaborators 

showed that a mutant App strain, deficient in biofilm formation, had a reduction in its 

virulence (77). A transcriptomic study revealed that, after contact of App with the newborn pig 

trachea (NPTr) cell line, genes involved in biofilm biosynthesis were up-regulated (78).    

Other outer membrane proteins  

Fimbriae is a bacterial surface structure that is believed to be involved in App adhesion since it 

was demonstrated that the type 4 fimbriae was induced by contact of App with the host cells in 

vitro and in vivo (79). A 55 kDa outer membrane protein was identified and is postulated to be 

implicated in the adhesion to the host alveolar epithelial cells (80). Additionally, another 
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surface protein of 60 kDa was identified, which is able to adhere to porcine collagen and 

fibrinogen (81).  

Secreted proteases 

The App secreted proteases can be considered as another virulence factor because it was 

demonstrated that they can degrade the immunoglobulin A and G (IgA, IgG) and the 

hemoglobin from porcine, human and bovine origin (82, 83). It was observed in another study 

that a 24 kDa App zinc metalloprotease can degrade actin protein in vitro (84). In addition 

there is another App protease that was described, the ClpP (member of the Clp (caseinolytic 

protease family)), to be important in virulence regulation (85). 

IMMUNE RESPONSES 

App pathobiology includes pulmonary lesions which are characterized by the presence of 

macrophages, granulocytes, lymphocytes, hemorrhages, necrosis, etc (42). Cruijsen and 

colleagues compared PAM and polymorphonuclear leukocytes (PMN) abilities to phagocytize 

and kill App in vitro (52). It was observed that both cells were able to phagocytize the bacteria. 

However, PAM was unable to kill the intracellular bacteria compared to PMN, which killed 

95% of the ingested App. There are two possible explanations to this phenomenon in PAM 1) 

cytolysin produced by App might affects the cellular killing mechanisms or 2) the 

phagocytised App can cause the impairment of reactive oxygen species synthesis (which have 

a potential bactericidal capacity), allowing then, the releasing of viable bacteria.  

Cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1beta (IL-1β), IL-1α, 

IL-6 and IL-8 were produced in experimentally infected pigs with App (86, 87). The 

overexpression of these proinflammatory mediators in response to App infection are probably 

involved in the pulmonary lesions associated with the disease (88). Additionally, the 

expression of IL-10 and IL-12 was detected also in experimentally infected pigs and it was 

suggested that they are involved in App pathogenesis (89). Benga and colleagues detected 

different amounts of interferon gamma (IFN-γ) in plasma and in bronchoalveolar lavage fluid 

(BALF) during the infection (90). Moreover, it was observed that the increase of IFN-γ was 

associated with an increase in the severity of the disease. However, this increase of IFN-γ was 
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dependant on pig breeds, where the porcine breeds not showing any increase of IFN-γ were 

more resistant to the disease (90). 

2. PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS 

HISTORY 

In the United States, in 1987, a new emerging “mystery swine disease” of unknown etiology 

causing reproductive failure and neonatal severe pneumonia was reported (91, 92). A similar 

syndrome was after recognized in Europe in 1990 (93, 94). The causative agent was firstly 

isolated in the Netherlands using porcine alveolar macrophages and designated as Lelystad 

virus (LV) (8). Shortly after, it was isolated in North America using gnotobiotic pigs and 

designated as American Type Culture Collection (ATCC) VR-2332 virus (9). In 1992, the 

disease was named porcine reproductive and respiratory syndrome (PRRS), according with the 

symptoms and the observed clinical signs. The PRRS etiological agent, PRRS virus (PRRSV), 

has spread worldwide in the last decades. In 2006, a highly pathogenic PRRS virus (PRRSV) 

strain emerged in China and Vietnam, which caused an atypical PRRS outbreak (95). At 

present, PRRS is a worldwide endemic disease causing significant economic losses in swine 

production, since it can provoke a severe pneumonia in growing and finishing pigs (1). 

TAXONOMY 

PRRSV is an enveloped and single-stranded (ss) positive sense RNA virus classified in the 

order Nidovirales, family Arteriviridae and genus Arterivirus, which also includes the lactate 

dehydrogenase-elevating virus (LDV) of mice, equine arteritis virus (EAV) and simian 

hemorrhagic fever virus (6, 7). PRRSV isolates are divided into two genotypes, where LV and 

ATCC VR-2332 are considered the reference strains for PRRSV genotypes I and II, 

respectively (6, 8). The two genotypes share approximately 60% nucleotide identity (96, 97). 

Additionally, within the same genotype exists high genetic variabilities (98-101). 

MORPHOLOGY 

PRRSV virions are pleomorphic with form varying from spherical to oval shape. As observed 

by cryoelectron tomography, virions size range between 50 to 65 nm with an internal core of 

around 40 nm in diameter (102). The virion outer membrane is smooth and is formed by a 
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lipid bilayer, which has protrusions that probably correspond to ectodomains formed by the 

envelope proteins (102). The nucleocapsid core is formed by the nucleocapsid protein (N) and 

the viral RNA and it’s been suggested to have an asymmetric and helical organization (102, 

103). Virions survival and stability are dependent on the pH and temperature. For instance, it 

was demonstrated that at pH 7.5, the virus was stable for a long period at -20°C and -70°C. 

The virions half-life is 50 hours at 4°C and pH 6.25 while at a high temperature (37°C) and pH 

6.0, it is 6.5 hours (104). Besides, the addition of lipid solvents such as chloroform reduced the 

virion infectivity from 105 TCID50/mL (tissue culture infectious dose 50 % per mL) to < 101 

TCID50/mL (6).  

GENOME ORGANIZATION 

PRRSV genome is approximately 15 kb in length, encodes for at least 10 open reading frames 

(ORFs) and is capped at the 5' end and polyadenylated at the 3' tail (3-5, 105) (Figure  1). The 

ORF1a and ORF1b, which comprise almost the three-quarters of the total genome, encodes for 

14 non-structural proteins (nsps) (103). The nsps are synthesized as polyproteins (pp1a and 

pp1ab) obtained from ORF1a and ORF1b, respectively (20). The pp1ab is expressed from a −1 

programmed ribosomal frameshifting (PRF) in the ORF1a/ORF1b overlap region (106). The 

polyproteins are then processed to lead the formation of the 14 nsps: nsp1α, nsp1β, nsp2-6, 

nsp7α, nsp7β and nsp8-12 (39, 107). The nsp1α, nsp1β, nsp2 and nsp4 encode the viral 

proteases responsible for polyprotein processing (20, 108, 109). The nsps are also implicated 

in viral RNA replication, sub-genomic (sg) mRNA transcription and translation. Recently, 

other PRF (not illustrated in Figure 1) was found that allows the access to a short transframe 

(TF) ORF, that overlaps the nsp2-encoding region of ORF1a in the +1 frame and it is 

translated by −2 PRF, yielding the expression of nsp2TF protein (105). The PRRSV structural 

proteins encoded by the ORF 2 to 7 are synthesized from a nested set of six sg mRNAs by a 

process of discontinuous RNA synthesis (110). The sg mRNAs are structurally polycistronic 

with the exception of the sg mRNA7, but are presumed to be functionally monocistronic, with 

the exception of the sg mRNAs 2 and 5, that are believed to be bicistronic (4, 5, 111).  All the 

sg mRNAs are 3' co-terminal and also shares a 5' leader sequence, which is identical to the 5' 

end of the genome (108, 112, 113). ORFs 2a, 3 - 5 encode for the glycoproteins (GP) 2a, 3, 4 

and 5, respectively. ORF6 and ORF 7 encode for the membrane protein (M) and the N protein, 
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respectively (2, 108). ORF2b is fully inside the ORF2a and encode for the non-glycosylated 

protein E (114). The recently discovered ORF5a, which overlaps the 5' end of the ORF5, 

encode for the ORF5a protein (4, 5).   

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of PRRSV genome organization.  

Adapted from Music and Gagnon (115). The top of the figure represents the PRRSV complete 

genome from ORF1 to ORF7. The leader sequence is represented by a black rectangle and the 

ribosomal frame shift (between ORF1a and ORF1b) is illustrated as a black circle. The 14 

nsps resulted from the proteolytic cleavage of the two polyproteins (pp1a and pp1ab) are 

represented as well as the four proteases responsible for it:  the papain-like cysteine proteinase 

domains (PCPα and PCPβ) located in nsp1α and nsp1β, respectively, the chymotrypsin-like 

cysteine protease domain (PL2pro) presented in nsp2 and the main serine proteinase, 3C-like 

proteinase domain (3CLpro), located in nsp4 (108, 116). PCPα, PCPβ and PL2pro cleave the 

junction between nsp1α/nsp1β, nsp1β/nsp2 and nsp2/nsp3, respectively and 3CLpro is 

responsible for the liberation of the remainder nsps (nsp3 to nsp12).  The sg mRNAs (2-7) are 

3’ co-terminal and also contain a common leader sequence in the 5’ end. The translated 

proteins form each sg mRNA are represented between parenthesis. 
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PRRSV NON-STRUCTURAL PROTEINS 

Table 1 describes the principal functions and the most important generalities of the non-

structural proteins. 

Table 1: PRRSV non-structural proteins characteristics and functions.  

Adapted from Music and Gagnon (115). 

Nsps Genes Characteristics and functions 

nsp1  

Proteolytic activities (PCPα and PCPβ) (20); zinc finger domain 

involved in sg mRNAs synthesis (19); virion biogenesis (19); type 

I interferon suppression (39, 113); induce antibody specific 

immune response together with nsp2 and nsp7 (113, 117, 118). 

nsp2  

The largest and the most variable nsp (96, 97); ideal marker for 

monitoring genetic variation and for developing differential 

diagnostic tests; proteolytic activity (PL2pro) (20, 115, 119); 

member of the ovarian tumor protease superfamily (113, 120, 

121); type I IFN antagonist (122-124); formation of double 

membrane vesicles together with nsp3 and nsp5 (18, 125, 126). 

 

nsp3 
ORF1a 

No specific functions have been attributed 

 

nsp4 

 

Proteolytic activity (3CLpro) (127, 128); type I IFN inhibition 

(129). 

 

nsp5  No specific functions have been attributed 
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nsp6  No specific functions have been attributed 

nsp7 
 

Cleaved by 3CLpro in nsp7α and nsp7β (109); genome synthesis 

and translation of viral proteins (130). 

nsp8  No specific functions have been attributed 

nsp9  
RNA-dependent RNA polymerase (RdRp); virus transcription and 

replication (131, 132). 

  Helicase; zinc-binding domain (133, 134); ATPase activity  

in vitro (135, 136). nsp10 

ORF1b 
Nidovirus endoribonuclease (NendoU), which is considered the 

genetic marker of Nidovirales order (133, 137, 138); type I IFN 

inhibition (139). nsp11 

 

 

nsp12  No specific functions have been attributed 

 

PRRSV STRUCTURAL PROTEINS 

The PRRSV structural proteins are classified into major or minor structural proteins, based in 

their abundance into the virion. GP2a, E, GP3 and GP4 are considered the minor structural 

envelope proteins and GP5 and M are the major structural envelope components. N protein is 

the sole component of the viral nucleocapsid.  Table 2 summarises the main characteristics 

and functions of PRRSV structural proteins. 
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Table 2: PRRSV structural proteins characteristics and functions.  

Adapted from Music and Gagnon (115). 

Structural 

proteins 
Genes Characteristics and functions 

GP2a ORF2a 

Contains 2 two highly conserved putative N-linked glycosylation 

sites (140); incorporated into virions as a multimeric (GP2a, E, 

GP3 and GP4) complex; essential for virus infectivity (141); 

interacts with the cellular receptor CD163 (142, 143); involved in 

PRRSV uncoating; apoptosis inhibition (144). 

E ORF2b 

Unglycosylated and myristoylated structural protein (111); 

incorporated into virions as a multimeric complex (141); essential 

for virus infectivity (141, 145); possesses ion-channel like 

properties and may function as a viroporin in the envelope (145); 

involved in genome released into the cytoplasm. 

GP3 ORF3 

One of the most variable PRRSV proteins; highly glycosylated that 

contains seven predicted N-glycosilation sites (2); its membrane 

topology is strain dependent (146); highly antigenic and involved 

in the glycan shielding process (147); incorporated into virions as 

a multimeric complex; essential for virus infectivity (141). 

GP4 ORF4 

Highly glycosylated protein; key protein in the formation of the 

multimeric complex incorporated into virions (141); essential for 

virus infectivity; mediates interaction between the multimeric 

complex and GP5 (142); interacts with the cellular receptor CD163 

(142, 143); involved in PRRSV uncoating; induce neutralizing 

antibodies and cell-mediated immune responses (148-151). 

GP5 ORF5 The major PRRSV GP and the most variable structural protein 

with a variable number of potential N-glycosylation sites (140); 
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covalent association of GP5 and M is crucial for virus assembly 

(152, 153); involved in virus entry into the cells and in apoptosis; 

neutralizing antibodies are predominantly directed to GP5 (154, 

155); involved in glycan shielding process (147). 

ORF5a ORF5a 
Overlaps the ORF5 in its 5' end; essential for virus viability (4, 5, 

156); cannot protect animals from PRRSV infection (157). 

M ORF6 

Unglycosylated and the most conserved structural protein; 

involved in virus assembly and budding (2, 115, 152); GP5/M 

heterodimer is crucial for virus infectivity (152, 153). 

N ORF7 

Unglycosylated, small and highly basic protein (115, 140); the sole 

component of the viral capsid and interacts with itself by covalent 

and non covalent interactions to form a homodimer (2, 152); 

highly immunogenic and is used in diagnostic procedures to detect 

the presence of the disease (149, 158); localised in the cytoplasm 

and in the nucleus and nucleolus (159); type I IFN inhibition 

(160). 

 

CELLULAR TROPISM 

PRRSV has a very narrow cell tropism both in vivo and in vitro. In vivo, PRRSV has high 

preferences for cells of monocyte/macrophage lineage, especially the fully differentiated 

macrophages of lungs, lymphoid organs and placenta (10-12). It was also reported that porcine 

dendritic cells support PRRSV infection, however in those studies monocyte-derived dendritic 

cells and bone marrow-derived dendritic cells were used, those may differ from the primary 

dendritic cells (161-164). In naturally infected pigs PRRSV antigens were found in 

bronchiolar epithelial cells (165). However this finding is contradictory with the result 

obtained by Teifke and collaborators, which demonstrated that PAM are the only pulmonary 

target cells of PRRSV (166). In fact, PAM constitutes the main in vivo target cells of PRRSV 

and primary PAM has been extensively used for in vitro study of host cell infection. These 
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cells are of myeloid origin, which circulate in the blood as monocytes and are differentiated 

into macrophages that reside in tissues (167).  PAM cells are members of the mononuclear 

phagocyte system of the lung and they are able to protect the respiratory tract from invasion of 

foreign pathogens (by phagocytosis; bactericidal activity; cytotoxicity; cytokines production; 

activation of T cells) (168, 169). However, ingestion of virus (ex. PRRSV) by PAM allows 

viral infection and the subsequent functional impairment of the cells (161, 170, 171). 

In addition, there are only two continuous cell lines, from monkey origin, that are able to fully 

support PRRSV replication: the African green monkey kidney cell line MA-104 and its 

derivatives such as MARC-145 and CL2621 (15) and the newly reported SJPL cells (16, 17).  

In the literature, it has been reported that non permissive continuous cell lines were able to 

support PRRSV replication after the introduction of the PRRSV receptors: CD163 or 

sialoadhesin (172, 173).   

PRRSV LIFE CYCLE IN CELLS 

In this part, each stage of PRRSV replication cycle inside cells and the cellular components 

involved in it will be described. Figure 2 summarizes all the steps of the virus replication 

cycle. 

PRRSV entry  

PRRSV entry may differ between PAM and MARC-145 cells since the cellular receptors 

required for it are different. In PAM, a recent review has proposed a possible model for 

PRRSV entry by integrating the major findings about PRRSV entry into PAM (164). 

According with the model proposed PRRSV first interacts with the heparan sulphate on the 

macrophage surface. Then, PRRSV GP5/M heterodimer interacts with PAM sialoadhesin in a 

much stable way, through the sialic acid-binding domain present in the macrophage 

sialoadhesin and the sialic acids present on the heterodimer. This is followed by internalization 

of the virus-receptor complex via a process of clathrin-mediated endocytosis. This process was 

demonstrated to be dependent on actin cytoskeleton, since the use of cytochalasin D, a 

microfilament-disrupting compound, blocked virus entry (13). Subsequently, the viral genome 

is released (will be explained below), from the early endosome, into the cytoplasm (164), 
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showing its ability to escape prematurely from the endocytic pathway, by evading its 

degradation in the lysosome (174). In MARC-145 cells, the sialoadhesin is not present (14) 

and the sialic acids on the virion surface are not essential for the entry (175). It’s believed that 

the virus firstly bind to a heparin-like molecule (176), then will be internalized also via a 

mechanism of clathrin-mediated endocytosis, since it was demonstrated that cytochalasin D 

can inhibit PRRSV primary and secondary infections in this cell type (23). However recent 

studies demonstrated that cholesterol was involved in virus entry and release and also 

suggested that PRRSV entry in MARC-145 cells could be via a lipid-raft-dependent 

endocytosis (177, 178). Moreover, the vimentin protein, an intermediate filament, can interact 

with the PRRSV N protein and is suggested to mediate transport of virus inside the cells, 

together with other components of the intermediate filaments (179, 180).  

 

 

 

 

 

 

 

 

 

Figure 2: Arterivirus replication cycle inside cells.  

Taken from Snijder and collaborators (113). Followed entry via receptor-mediated endocytosis 

the viral genome is released from the early endosome to the cytoplasm. There the ORF1a and 

ORF1b are translated to lead the formation of the polyproteins and the subsequent mature nsps 

are formed, which trigger the formation of the replication-transcription complex (RTC), which 
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is associated with double membrane vesicles (DMVs). RTC supports genome replication and 

transcription. The sg mRNAs are translated to obtain the different structural proteins. Once the 

new genomic RNAs (gRNAs) and the structural proteins are synthesised, the virus is 

assembled. First, genome encapsidation is triggered and then, the nucleocapsid buds to the 

smooth ER/Golgi complex (where the envelope proteins are retained) to get the viral envelope. 

Then, the new viral particles are accumulated into vesicles and are released by exocytosis. 

PRRSV uncoating  

This stage is when the viral RNA genome is released from the early endosome to the 

cytoplasm. According with the model proposed by Van Breedam and colleagues (164), this 

process is critically dependent on the acidic pH of the endosome and on the interaction with 

the CD163 receptor (13, 173). GP2 and GP4 are the structural proteins responsible for this 

interaction with the scavenger receptor (142). Additionally, it was demonstrated that aspartic 

protease cathepsin E is involved in PRRSV uncoating stage (181). In MARC-145, PRRSV 

uncoating was clearly demonstrated to be also dependant on endosome acidification (182). 

CD151, a host cellular protein, interacts with PRRSV 3’ untranslated region (UTR) RNA and 

may be involved in viral envelope fusion with the endosome (183). CD163 is also necessary 

for PRRSV infection in MARC-145 cells (173). However, the exact action mechanism of both 

receptors is yet unknown. 

Genome replication and transcription 

This stage of PRRSV replication cycle is produced in double membrane vesicles (DMVs) 

present in the cytoplasm and recently was suggested that probably they are autophagosome-

like DMVs (184, 185). Then, once the gRNA is released into the cytoplasm, it will act as an 

mRNA and the host translational machinery will translate the ORF1a and ORF1b to obtain the 

polyproteins, which are then cleaved by the internal proteases to obtain the mature nsps. 

Subsequently, these nsps trigger the formation of the RTC that is associated with the DMVs, 

which are the presumably site of PRRSV replication and transcription (18, 19). The RTC 

directs both genome replication and transcription. The replication includes the continuous 

synthesis, by the RNA-dependent RNA polymerase (RdRp), of negative (-) full-length RNA 

strands using as template the gRNA and then these (-) RNA strands will lead the formation of 
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new gRNAs (Figure 3). The transcription process is the synthesis of a nested set of six sg 

mRNA, where all these sg mRNAs are 5’- and 3’-coterminal with the gRNA (112, 186). Then, 

the question of how these sg mRNAs are formed, has been subjected to many hypotheses and 

the most accepted is the model proposed by Sawicki and Sawicki (22), which is probably 

common within Nidovirales order. This model proposes that the sg mRNAs are synthesized 

from (-) sg RNA strands, which are produced by a discontinuous RNA synthesis process 

(Figure 3). Conserved transcription regulatory sequences (TRSs) are found preceding each 

structural protein ORFs termed as body TRSs in the gRNA. The same sequence is also present 

at the 3’ end of the leader sequence (5’ end of gRNA) and is denominated as leader TRS 

(187). The synthesis of (-) sg RNA strands begin at the 3’ end of the gRNA, then the 

elongation (by the RdRp) of the nascent (-) sg RNA strand will follow until the first body TRS 

appears. Subsequently, the synthesis is attenuated and the nascent (-) sg RNA strand, which 

carry in its 3’ end the complementary sequence to the body TRS, is relocated to the 5’ end of 

the gRNA. There, the complementary body TRS sequence of the nascent (-) sg RNA strand 

and the leader TRS sequence will be complementary and the nascent (-) sg RNA strand will be 

elongated by copying the 5’ end of the gRNA. Finally, the complete (-) sg RNA strands will 

serve as template for the synthesis of the sg mRNAs. These sg mRNAs are then translated to 

form the different structural proteins.  
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Figure 3: Model for Arterivirus genome replication and transcription.  

Adapted from Nedialkova and colleagues (21). The genome replication (top of the figure) 

occurs by a continuous RNA synthesis process (leaded by the RdRp complex), where the new 

gRNAs are obtained from (-) full-length RNA strands. The second part of the figure represents 

the discontinuous synthesis of the sg mRNAs, which are obtained from (-) sg RNA strands. 

The extension of the (-) sg RNA strands begins at the 3’ end of the gRNA and is attenuated 

when the body TRSs appear (yellow rectangle). The nascent (-) sg RNA strand, porting in its 

3’ end the complementary sequence of the body TRS (violet rectangle), is transferred to the 5’ 

end of the gRNA and will form complementary base pairs with the leader TRS (pink 

rectangle). Following this union, the elongation of the nascent (-) sg RNA strand is finished 

and is used as template for the synthesis of the sg mRNAs. 

Virion assembly 

Virion assembly is believed to begin in the replication site, where de genome and the N 

protein should interact to form the nucleocapsid (188) and finished in the endoplasmic 

reticulum (ER) or Golgi complex, where the envelope proteins are retained (113, 189, 190). 

Therefore, the preformed nucleocapsid is wrapped by the smooth ER/Golgi complex to 

acquire the viral envelope, a process known as budding. Although the exact mechanism of 
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virus assembly is not known yet, the formation of GP5/M heterodimer is believed to be 

determinant in this stage (153, 191). 

Virus released 

It is beleived that PRRSV virions leave the infected cells by exocytosis (2, 192). The new 

formed viral particles are accumulated into intracellular vesicles and finally are released by 

exocytosis (193). This last stage in PRRSV life cycle was demonstrated to be also dependant 

on cellular cytoskeleton (23).   

VIRAL PATHOGENESIS IN VIVO 

PRRSV can be transmitted horizontally (between infected and naïve animals) and vertically 

(from sows to the fetuses) and also via the semen of infected boars (194-198). When PRRSV 

enters the organism (via intranasal, oro-nasal or intramuscular route), it first replicates in the 

respiratory tract, probably in PAM (198). Afterwards, viremia is developed, as observed in 

inoculated young pigs (1 to 2 months old), between 3 to 14 days post infection (dpi). After this 

time, PRRSV persistence (though a “smoldering” infection, where the virus replicates at a low 

level) was detected in lung lymph nodes and tonsil tissues up to 156 dpi (199). In most cases, 

the infection is cleared by 156 dpi or shortly after. In young or growing and finishing pigs, the 

clinical sigs are mainly anorexia, lethargy, cutaneous hyperemia, dyspnea, reduced weight 

gain and an increase in mortality from secondary infections (200). In infected pregnant sows, 

PRRSV probably enters into the endometrium during viremia, which probably passes through 

the placenta and then, can infect fetuses (197, 201). It was demonstrated that the congenital 

infection is mainly restricted to the end of gestation, probably because there are high number 

of PRRSV susceptible cells in placenta, late in the gestation (202). The reproductive failure is 

characterized by late-term abortions, premature farrowings, stillborn fetuses, mummified 

fetuses and live weak born pigs (203). The molecular bases of PRRSV pathogenesis are not 

clear at all. However, several studies have demonstrated that PRRSV replication induces 

apoptosis in infected and in bystander uninfected cells both in vivo and in vitro. For instance, it 

was demonstrated that PRRSV induces cell death by apoptosis in the endometrium and 

placenta in late gestation (201), which probably can justify the reproductive failure associate 

with the disease. Moreover, PRRSV induces apoptosis in PAM and in pulmonary intravascular 
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macrophages (PIM) and is able to interfere with the macrophage phagocytic activity, leading 

the organism susceptible for opportunistic secondary infections (204). In infected MARC-145 

cells, it was demonstrated that PRRSV induces, early in infection, antiapoptotic mechanisms, 

probably to favor its replication, but later cells die by apoptosis (144, 205).   

IMMUNE RESPONSES 

Innate immune response 

During PRRSV infection in PAM, it has been suggested that the virus and the toll-like 

receptors (TLR) interact. These receptors constitute an early host defense against invading 

pathogens, since they recognize specific molecular patterns present in the microbes. 

Stimulation of TLR3, TLR7, TLR8 and TLR9 lead the induction of the type I interferon (IFN) 

(206), which constitute key cytokines against viruses infections (207). TLR3 is activated by 

double-stranded (ds) RNA and is well known that during PRRSV genome replication there is 

formation of dsRNA, then, it is believed that PRRSV eventually interacts with this receptor 

(149). It has been proposed that PRRSV is able to evade TLR3 signaling pathway in PAM, 

since it was clearly demonstrated that the induction of the TLR3 using a dsRNA synthetic 

molecule (poly I: C) increased the level of IFN-alpha (IFN-α), which suppressed PRRSV 

infection (208), however its susceptibly to IFN-α differ among isolates (209). In contrast, it 

was observed that PRRSV suppress type I IFN expression in poly I:C treated MARC-145 cells 

(210). Therefore, PRRSV has developed different strategies to evade the antiviral effects of 

type I IFN. To date, PRRSV is able to inhibit type I IFN synthesis [by interfering with the 

functions of ISP-1 (IFN-beta promoter stimulator 1) (139), IRF3 (IFN regulatory factor 3) 

(129), NFκB (transcriptional regulator nuclear factor-κB) (124, 211) and CREB ((cyclic AMP 

responsive element binding)-binding protein (CBP)) (212)] and type I IFN signaling [by 

affecting JAK-STAT signaling pathway (39) and IFN-stimulated response elements such as 

the ISG15 (interferon-stimulated gene 15 ) (122, 123)]. Different studies have revealed that 

the pro-inflammatory cytokines such as TNF- α (213, 214) and IL-6 (215, 216) can be up or 

downregulated during PRRSV infection and IL-8 is highly expressed (217, 218).  Most of the 

studies, in vivo or in vitro, demonstrated that PRRSV can induce the mRNA and protein 

expressions of the pleiotropic IL-10, which is a potent immunosuppressive cytokine that is 
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believed to play a key role in the immunopathogenesis of PRRSV (170, 219). Moreover, it 

was recently discovered that PRRSV IL-10 induction depends on NFκB activation and P38 

mitogen-activated protein kinase (220).  

Adaptive response 

PRRSV induces high antibody responses which started at around 5 dpi and can last until 56 

dpi and all challenged animals are seroconverting at 14 dpi (215, 221, 222). The antibodies are 

predominately directed against the glycoproteins, M, N and nsps (nsp1α, nsp1β, nsp2 and 

nsp7), where N protein induces the strongest response (117, 118, 149, 158). However, most of 

these are non-neutralizing antibodies (Non-NAbs) and is proposed that they (mainly the 

antibodies directed against GP5 and N protein ) may enhance viral infection by a phenomenon 

termed as antibody-dependent enhancement (ADE) (223, 224). In ADE, the opsonised virus, 

by the Non-NAbs, is delivered into the macrophages, which allow virus replication. NAbs 

appear late in PRRSV infection, around the fourth week pi and the titers are usually low (158, 

215). The NAbs are generally directed against the GP3, GP4, GP5 and M, but is believed that 

GP5 possess the major neutralizing epitope in its ectodomain (148, 149, 225). In vitro studies 

demonstrated that NAbs are able to block PRRSV internalization (14, 226) , however it is not 

clear why in vivo they appear late and theirs titers remain lows. Several hypotheses have been 

postulated to explain it and one of the most accepted phenomenon is the presence of a decoy 

epitope in the GP5 ectodomain (225). Two epitopes were detected in GP5 ectodomain, named 

A and B. A is the immunodominant epitope and B has neutralizing activity and it was 

proposed that A may act as a decoy epitope, which interferes with the immune response 

against B and then cause a delay in the apparition of NAbs. The other proposed hypothesis is 

related with the number of N-glycosylations residues around the neutralizing epitope in GP5, 

which interfere with the recognition of the epitope by NAbs, a phenomenon known as glycan 

shielding (147).  

The cell-mediated immune response face to PRRSV infection has not been well explored. 

CD4+, CD8+ and CD4+/CD8+ T cells have been detected during PRRSV infection and their 

responses are directed mainly against GP4, GP5, M and N (113, 149). IFN-γ-inducing 

epitopes have been identified into these structural proteins in addition to nsp2, nsp5, nsp9 and 
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nsp10 (149, 227, 228). IFN-γ produced by T-cells against PRRSV appears around 8-10 weeks 

pi and increase gradually after 3-4 months pi or post-vaccination (221). The induced IFN-γ 

seems to be insufficient to reduce the infection in vivo. However, a pre-treatment of MARC-

145 and PAM cells with IFN-γ clearly reduced PRRSV infection, probably by the induction of 

cellular protective immunity (229, 230). Also, it was demonstrated that following PRRSV 

infection, the expression of MHC II (major histocompatibility complex class II) is decreased 

(163). 

PRRSV CONTROL AND ELIMINATION 

PRRSV current management strategies include surveillance, for instance: avoid introduction 

of contaminated semen into the herd, pig’s clinical examination and blood samples analysis, 

surveillance of pig’s production to detect possible reproductive problems, the implantation of 

severe biosecurity measures within the herd. Once the virus is already inside the farm, 

different measures have been described to eliminate it, such as: test and removal, whole herd 

depopulation and repopulation, herd closure and vaccination (25). At present, vaccination 

partially prevents PRRSV infection. There are two types of commercially available vaccines, 

the modified-live virus (MLV) vaccine and the killed-virus vaccine (24, 26). Adaptive 

response against MLV vaccines is weak and late (24, 149). However, they can offer an 

effective protection in reducing the reproductive and respiratory sigs and lesions associated 

with the disease (24, 231, 232). Nevertheless, the MLV vaccines efficacy has been questioned 

since they are genotype-specific vaccines or even strain-specific vaccines, which make them 

partially ineffective face to heterologous field strains (233). Another aspect that put in doubt 

the MLV vaccines is their safety, since their reversion to virulence it was clearly proved, 

through recombination with field isolates (234). The killed-virus vaccines are safe, but less 

effective or ineffective in inducing protection (26, 235). Additionally, another problem found 

was that vaccinated pigs cannot be differentiated from pigs naturally infected (133). For these 

reasons, there are continuous efforts in order to find the perfect safe and effective PRRSV 

vaccine. In this sense, several alternative vaccines have been created such as bacterial vector 

vaccines (236), DNA vaccines (237), plant-derived vaccines (238), multistrain vaccines (239), 

autogenous inactivated PRRSV vaccines (240) and others.   
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3. BACKGROUND OF THIS THESIS 

Together with the current novel vaccine strategies against PRRSV, other researchers have 

been focusing in finding PRRSV antiviral compounds, which can be an alternative and also 

effective strategy to prevent or control PRRSV infection. Accordingly, recent published works 

showed a few natural compounds with antiviral activities against PRRSV, as glycosides, 

terpenoids, coumarins, isoflavones, peptolides, alkaloids, flavones, macrolides (27), N-

acetylpenicillamine (28), sodium tanshinone IIA sulfonate (33), morpholino oligomer (30, 31), 

flavaspidic acid AB (241), Matrine (32), dietary germanium biotite (242), Cryptoporus 

volvatus extracts (29), etc. Each of these compounds inhibits PRRSV replication differently. 

For instance, the flavaspidic acid AB inhibits PRRSV internalization and the cell-to-cell 

transmission, probably by the induction of type I IFN (241). Sun and colleagues demonstrated 

that Matrine inhibits N protein expression and has antiapoptotic functions (32). Moreover, 

Cryptoporus volvatus extract was demonstrated to inhibit PRRSV infection in vitro and in 

vivo, probably by the direct inhibition of PRRSV polymerase (RdRp) activity (29). Despite all 

these efforts, there are no effective commercially available antiviral drugs to prevent PRRSV 

infections. 

A recent research performed in our laboratory demonstrated that the culture supernatant of a 

mutant App (AppΔapxICΔapxIIC) strain has a potent antiviral activity against PRRSV ((37), 

Annexe I).This strong antiviral effect was observed in the newly discovered SJPL permissive 

cell line, but was almost ineffective in MARC-145 infected cells. Interestingly, this 

phenomenon was also observed in the primary target cells of PRRSV, the porcine alveolar 

macrophages (results corresponding to the first objective of this project). Since it is believed 

that the bacterial antiviral effect against PRRSV is via the modulation of cellular(s) 

component(s), this thesis has as second goal to identify the possible mechanisms used by App 

to inhibit PRRSV infection in PAM.   
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CHAPTER II: Actinobacillus pleuropneumoniae blocks porcine reproductive and 

respiratory syndrome virus replication prior to its genome replication and transcription. 
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ABSTRACT 

Current management strategies are inadequate for long term control of PRRS, which justifies 

the search of novel strategies to control the disease. Recently, a strong antiviral acitvity of 

Actinobacillus pleuropneumoniae (App) cell culture supernantant against PRRSV in PAM and 

SJPL infected cells was discovered. Following this finding, the objective of the present study 

was to understand how App inhibits PRRSV replication. First, cells were treated with App 

before and after PRRSV infection. At different times post-infections, viral genome replication 

and transcription were measured in the presence of App. Type I and II interferon (IFN) mRNA 

expression and proteins expression modulation of PRRSV infected PAM cells treated with 

App were evaluated using qRT-PCR and the KINEX™ Microarrays assays, respectively. The 

expression of some modulated proteins were subsequently, confirmed by immunofluorescence 

(IFA) and western blot assays. Results showed that type I and II IFN mRNA expressions were 

not modulated in the presence of App. Moreover, it was observed that App inhibits PRRSV 

infection before the first cycle of genome replication and transcription, indicating that App 

antiviral effect against PRRSV take place at an early step during PRRSV infection. The 

proteomic experiments revealed an increase of cofilin expression (a protein that regulates actin 

cytoskeleton dynamics) in the presence of App, which was further confirmed by western blot. 

Subsequently, a diminution of actin filaments was demonstrated by IFA. Interestingly, the 

treatment with cytochalasin D (an actin polymerization inhibitor) revealed the same effect on 

PRRSV replication than App suggesting that App antiviral effect against PRRSV may take 

place via the activation of cofilin which provokes actin depolymerisation and subsequently, 

probably affects PRRSV endocytosis. 
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INTRODUCTION 

Porcine reproductive and respiratory syndrome (PRRS) is considered a worldwide endemic 

disease which causes significant economic losses in pig-producing countries. The causative 

agent, PRRS virus (PRRSV), belongs to the family Arteriviridae of the Nidovirales order. 

PRRSV is an enveloped single-stranded positive sense RNA virus of approximately 15 kb in 

length that encodes for at least 10 open reading frames (ORFs) (1, 2). PRRSV has a strongly 

restricted cell tropism for the monocyte–macrophage lineage in vivo. The primary target cells 

for PRRSV infection in vivo are the fully differentiated porcine alveolar macrophages (PAM), 

which are often used for in vitro study of host cell infections (3-6). In the literature, the only 

two continuous cell lines non-genetically modified able to fully replicate PRRSV are: African 

green monkey kidney cell line MA-104 and its derivatives such as MARC-145 (7) and the 

newly reported SJPL cells (8, 9). 

Following PRRSV entry and release of the viral genome into the cytoplasm, the PRRSV 

ORF1 is translated and the resulting non-structural proteins trigger the formation of the 

replication-transcription complex, which is associated with double membrane vesicles and 

supports genome replication and transcription processes (10-12). The genome replication is 

produced by the continuous synthesis of negative (-) full-length RNA strands using as 

template the positive genomic RNA [(+) gRNA], then the (-) RNA strands will lead the 

formation of new (+) gRNAs (13). The genome transcription process is the synthesis of a 

nested set of six sub-genomic mRNAs (sg mRNAs). According to a model proposed by 

Sawicki and colleagues (14), the generation of these sg mRNAs is through a discontinuous 

RNA synthesis process, where (-) sg RNA strands are produced and then are used as template 

for the synthesis of the sg mRNAs. 

Current management strategies, which focus on the prevention of PRRSV infection (ex. 

surveillance and removal, whole herd depopulation and repopulation, herd closure (15), etc.) 

and vaccination using commercially available modified live-attenuated vaccines or autogenous 

killed vaccines, have usually been demonstrated to be inadequate for long-term control of 

PRRS (16). This supports the search of novel strategies to control PRRSV infection. Recent 

published works have reported the discovery of natural compounds that possess antiviral 
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activities against PRRSV such as macrolides (17), N-acetylpenicillamine (18), Cryptoporus 

volvatus extract (19), morpholino oligomer (16, 20), Matrine (21), sodium tanshinone IIA 

sulfonate (22). Each of these compounds inhibits PRRSV replication differently. For instance, 

the flavaspidic acid AB inhibits PRRSV internalization and cell-to-cell virus transmission, 

probably by the induction of type I IFN (23). Sun and colleagues demonstrated that Matrine 

inhibits N protein expression and has antiapoptotic functions (21). Moreover, Cryptoporus 

volvatus extract was demonstrated to inhibit PRRSV infection in vitro and in vivo, probably by 

the direct inhibition of PRRSV polymerase activity (19). However and despite these efforts, 

there are no effective commercially available drugs to prevent PRRSV infection. 

Recent works performed in our laboratory revealed that the cell culture supernatant of 

Actinobacillus pleuropneumoniae (App) mutant strain (AppΔapxICΔapxIIC) possesses a strong 

antiviral activity against PRRSV in SJPL and PAM cells, but this antiviral activity was not 

observed in MARC-145 cells (24). This was the first report of a bacterial antiviral effect 

against PRRSV in vitro. Thus, the purpose of this study is to elucidate the action mechanism 

of App cell culture supernatant antiviral effect against PRRSV. Results showed that App cell 

culture supernatant blocks PRRSV replication prior to its first genome replication and 

transcription cycle in PAM and SJPL cells. Following proteomic analyses, data suggest that 

the early App antiviral effect against PRRSV in PAM cells takes place via the activation of 

cofilin and thus actin depolymerisation, which would probably affect PRRSV endocytosis. 

RESULTS 

Impact of App cell culture supernatant on cells viability and mortality   

In order to evaluate the impact of App cell culture supernatant on cell viability and mortality, 

PRRSV PAM infected cells were incubated during 48 hours in the presence or absence of App 

cell culture supernatant. The viability test, based on an enzymatic reaction that will occur only 

in metabolically active cells, showed no statistically significant differences between the 

negative control and the App cell culture supernatant treated cells as illustrated in Figure 1A. 

PRRSV infected cells had the lowest cell survival compared to all the other treatments. 

PRRSV PAM infected cells and treated with App cell culture supernatant demonstrated higher 

cell survival compared to App non-treated PRRSV infected cells. Opposite results were 
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observed in the mortality test (Figure 1B), which measures the LDH released in death-lysed 

cells. Negative control and App cell culture supernatant treated cells had low mortality rate. 

PRRSV infected cells had the highest cell mortality. PRRSV infected cells treated with App 

cell culture supernatant had a significant lower mortality rate compare to App non-treated 

PRRSV infected cells. Results showed that App cell culture supernatant did not affect PAM 

cells integrity and metabolism and counteracts PRRSV effect. 

Figure 1: PAM viability and mortality in the presence of App cell culture supernatant.  

PAM cells were infected with PRRSV IAF-Klop strain (MOI 0.5) during 4 hours followed by 

the addition of App cell culture supernatant. At 52 hours pi the cell viability (A) and mortality 

(B) were determined. Bars labelled with different superscripts letters within the same assay 

indicates that these sets of data are statistically different (P <0.05). 

Type I IFN and IFN-γ mRNAs relative expression in App treated cells. 

Specific qRT-PCR assays were performed to determine if the App cell culture supernatant was 

inducing the expression of type I and II IFN mRNAs because they are known as potent 

antiviral molecules against PRRSV infection (29-31). Results showed that at 52 hours pi, App 

cell culture supernatant only induced a basal level of IFN-β and IFN-γ mRNAs expression, 

which were similar to the expression level found in the negative control, while IFN-α mRNA 

expression was only slightly increase compared to the negative control (Figure 2). A 
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statistically significant decrease in IFN-α and IFN-β mRNA relative expressions were 

observed in PAM infected cells treated with the bacterial supernatant compared to PRRSV 

infected cells alone, which can be the consequence of PRRSV replication reduction caused by 

App treatment.  

Figure 2: Type I and II IFN mRNAs relative expression in PAM cells treated with App cell 

culture supernatant.  

mRNA relative expression of IFN-α, IFN-β and IFN-γ was determined at 52 hours pi in 

presence or absence of App cell culture supernatant. Transfected cells with Poly (I:C) were 

included as positive control. Bars labelled with different superscripts letters within the same 

assay indicates that these sets of data are statistically different (P <0.05). 
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PRRSV genome replication and transcription kinetics in the presence of App cell culture 

supernatant. 

PRRSV genome replication and transcription were studied to pinpoint where the App antiviral 

effect occurs in the PRRSV replication cycle. The (+) gRNA and the sg mRNAs copies/mL 

were quantified by qRT-PCR through time during 52 hours using both infection protocols. In 

PRRSV PAM infected cells, starting between 8-16 hours pi, an increase in (+) gRNA 

copies/mL was observed reaching a plateau at 32 hours pi (Figure 3). However, in PAM 

PRRSV infected and App supernatant treated cells no increase in (+) gRNA copies/mL was 

detected. Moreover, in the presence of App cell culture supernatant, a statistically significant 

diminution in (+) gRNA copies/mL from 28 to 52 hours pi was observed when compared with 

the data at 4 hours pi. Similarly to genome replication results, PRRSV sg mRNAs copies/mL 

began to rise between 8-16 hours pi in PRRSV infected cells reaching a plateau at 32 hours pi 

and no increase in the presence of App cell culture supernatant was observed. Also, a 

statistically significant decrease in sg mRNAs copies/mL from 24-52 hours pi was observed 

when compared with to 4 hours pi, in PRRSV infected cells treated with App supernatant 

(Figure 3). Similarly to PAM cells, an increase in (+) gRNA and sg mRNAs copies/mL 

between 8-16 hours pi (Figure 3) in PRRSV SJPL infected cells was observed compared to 

PRRSV infected and App treated cells. However, a statistically significant increase was 

observed in the presence of the bacterial supernatant in (+) gRNA and sg mRNA copies/mL 

from 38 to 52 hours pi and from 24 to 52 hours pi, respectively, when compared to 4 hours pi. 

In MARC-145 cells, no significant differences were obtained between the infected cells 

treated or not with App cell culture supernatant in both genome replication and transcription 

assays (Figure 3). These results clearly showed that App cell culture supernatant inhibits 

PRRSV infection before the first cycle of PRRSV genome replication/transcription, in PAM 

and SJPL cells. In addition, similar results were obtained in the three cell types using both 

infections protocols (data not shown).  
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Figure 3: PRRSV genome replication and transcription kinetics assays in infected cells treated 

with App cell culture supernatant.  

Cells were pre-treated with the bacterial antiviral during 2 hours followed by PRRSV infection 

during 4 hours and after freshly bacterial supernatant was added. At different times post-

infection (pi) the PRRSV (+) gRNA and sg mRNAs copies/mL were calculated in PAM, SJPL 
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and MARC-145. The two-way ANOVA statistical analyse was performed using the raw data 

(Ct values). The asterisk means that in the same time point both groups are statistically 

different (* P < 0.05, ** P < 0.01, *** P < 0.001). The t tests statistical analyse, within the 

experimental group of PAM and SJPL infected cells treated with App, was performed in order 

to compare all the times respect to time 4 hours pi (+P < 0.05). 

Proteomic Microarray study 

A proteomic microarray (Kinexus (KAM)) was performed in PAM infected and/or App treated 

cells at 52 hours pi. Z-ratios were used to compare changes between the control and treated 

samples. Z-ratios were calculated between: 1) all treatments compared to the negative control, 

2) PRRSV infected cells treated with App cell culture supernatant compared to cells treated 

with App cell culture supernatant alone and 3) PRRSV infected cells treated with App cell 

culture supernatant compared to PRRSV infected cells. The analysis report obtained by 

Kinexus includes all the proteins analysed that were modulated or not and also a shortlist 

which resume the protein modulation events (i.e. expression and/or phosphorylation state) that 

are recommended for follow-up. After sorting out the Z-ratios results, the mostly modulated 

proteins were put together and listed in Table 1. For instance, proteins implicated in cell cycle 

regulation such as tumor suppressor protein p53 (32) and cyclin-dependent protein-serine 

kinase 1/2 (CDK1/2)(33) were downexpressed or in cell division such as retinoblastoma-

associated protein 1 (Rb) (34) was overexpressed in PRRSV infected PAM cells treated with 

App supernatant  compared to PRRSV infected cells alone. NF-kappa-B p65 nuclear 

transcription factor, which is implicated in many biological processes, such as cell growth (35) 

and apoptosis (36), was overexpressed mostly in PAM infected cells in the presence of the 

bacterial supernatant compared to negative control. The protein SET (I2PP2A), involved in 

apoptosis (37), was also overexpressed in PRRSV infected PAM treated with App compared to 

PRRSV infected cells. As shown in Table 1, total cofilin 1 (a protein that regulates actin 

cytoskeleton dynamics) was overexpressed in PRRSV infected cells treated with the App cell 

culture supernatant in comparison to PRRSV infected cells, App treated cells and negative 

control cells.  
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Table 1: Z-ratios of the most modulated cell proteins by PRRSV and App supernatant. 

 

a KAM tracks both protein expression (with pan-specific antibodies) and phosphorylation 

(with phospho-site-specific antibodies). The phosphorylation sites detected with the phospho-

site antibodies are numbered corresponding to the human sequences. 

Target Protein 
Name 

Phospho Site 
(Human)a 

Z-ratio  
(App + PRRSV 

vs  PRRSV)b 

Z-ratio  
(App + PRRSV vs 

APP) 

Z-ratio 
(App vs 

Neg) 

Z-ratio  
 (PRRSV vs 

Neg) 

Z-ratio  
(App + PRRSV 

vs Neg) 

p53 S392 -1.50 - c - 1.04 - 

CDK1/2 T14+Y15 -1.74 - - 1.50 - 

CDK1 (CDC2) Pan-specific -2.76 -2.27 - - -2.23 

Rb T821 1.53 - - - - 

NFkappaB p65 S529 1.07 1.62 1.90 2.05 3.30 

I2PP2A Pan-specific 1.69 - 1.24 - 1.63 

CREB1 S129+S133 1.33 - - - - 

Catenin b1 Pan-specific -1.82 - - - - 

Smad2/3 Pan-specific 2.85 - - - - 

Cofilin 1 Pan-specific 1.01 1.37 - - 1.28 

Actin Pan-specific -  1.06 - - - 

LIMK1 Pan-specific - -1.98 - - - 

RONa Pan-specific 1.32 - - -1.30 - 

SOD (Mn) Pan-specific 1.30 - - - - 

HO1 Pan-specific - 1.75 - - 1.55 

MEK3/6 
(MAP2K3/6) 

S218/S207 - 1.63 - - 1.34 

Hsc70 Pan-specific - -1.66 - - - 

Hsp105 Pan-specific - -1.94 1.31 - - 
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b Z-ratios reveal the largest changes between the control and treated samples. Positive and 

negative Z-ratios mean a protein over- or down-expressed compared to the specific 

experimental groups.   

c -: non-modulated proteins. 

Actin cytoskeleton modulation in App treated cells 

According to previous reports, App has been shown to degrade actin in vitro (38). 

Furthermore, PRRSV needs an intact actin cytoskeleton for cell infection and replication (5, 

28). In order to confirm KAM results, western blot analysis were performed to detect total and 

phosphorylated cofilin (P-cofilin) at 52 hours pi. Thus, in order to confirm the antibodies 

microarray (KAM) results and the involvement of cytoskeleton in the App antiviral effect, 

western blot analyses were performed to detect total and phosphorylated cofilin (P-cofilin) at 

52 hours pi using the three PRRSV permissive cell lines. Western blot analyses revealed that 

in PRRSV infected PAM cells treated with App cell culture supernatant, the total cofilin 

relative density was higher (1.52) compared to PRRSV infected cells (1.06), in App cell 

culture supernatant treated cells (0.83) and in untreated cells (0.63) (Figure 4 and Table 2). 

Interestingly, the relative density of P-cofilin was lower (0.3) in PAM infected cells treated 

with the bacterial supernatant and also in PRRSV infected cells (0.54) compared to the other 

experimental groups (Figure 4 and Table 2). Since total cofilin was mostly increased in PAM 

infected cells treated with the bacterial supernatant antiviral and P-cofilin was lowered, then it 

is easy to conclude that there is relatively more active cofilin in this experimental group 

compared to others treatments. In SJPL cell line, the P-cofilin relative density was lowered in 

PRRSV infected cells treated (0.68) or not (0.3) with the bacterial antiviral as in PAM. 

However there was no difference in total cofilin expression between treatments (Figure 4 and 

Table 2). In MARC-145 cells, similarly to SJPL cells, the total cofilin protein level did not 

differ between treatments (Figure 4 and Table 2). However, in a surprising way, it was 

observed that in MARC-145 infected cells treated with App cell culture supernatant there was 

more P-cofilin (relative density of 1.74) than in the other treatments (Figure 4 and Table 2), 

which differs to those results obtained in PAM and SJPL.   
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Since cofilin is known to provoke F-actin depolymerisation in its active form 

(dephosphorylated) and the previous presented results indicated differences in cofilin active 

form level between treatments, the next step was to study the F-actin expression in the three 

cell types at 52 hours pi. A decrease in F-actin fluorescence intensity in App cell culture 

supernatant treated PAM cells was observed, but this diminution was more remarkable in 

PRRSV infected cells treated with App supernatant (Figure 5A). In SJPL cell line, IFA 

revealed also a decreased in F-actin fluorescence in SJPL App cell culture supernatant treated 

cells compared to the untreated cells (Figure 5B). Interestingly, in MARC-145, no marked 

differences were detected between the App supernatant treated or untreated cells (Figure 5B). 

Following these findings, the β-actin mRNA and protein expressions were studied in PAM, 

SJPL and MARC-145 cells. These results highly suggest that actin cytoskeleton is involved in 

App cell culture supernatant antiviral effect. In addition, as showed in Figure S1, in 

supplemental information, the β-actin mRNA and the protein expression levels were unaltered 

between treatments in each cell types.  
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Figure 4: Cofilin expression level in PRRSV infected cells treated or not with App cell culture 

supernatant.  

At 52 hours pi, protein extracts were obtained and western blot analysis were performed to 

detect total cofilin and its inactive form (phosphorylated) in PAM, SJPL and MARC-145 cells. 

GAPDH was included as an internal control.  

 

 

 

 

 

 

 

 

 

 

 

 



 

41 
 

Table 2: Total cofilin and P-cofilin relative densities in PAM, SJPL and MARC-145 cells. 

 

a Image J program was used to calculate the total cofilin and P-cofilin relative densities from 

the images represented in the Figure 4. 

 

 

 

 

 

 

 Relative density a  Relative density 

PAM Total cofilin P-cofilin SJPL Total cofilin P-cofilin 

Negative control 0.63 1.55 Negative control 0.96 1.39 

App cell culture supernatant 0.83 1.52 
App cell culture 

supernatant 
1.09 1.69 

PRRSV 1.06 0.54 PRRSV 1.01 0.30 

PRRSV+ App cell culture 

supernatant 
1.52 0.30 

PRRSV+ App cell 

culture supernatant 
0.93 0.68 

MARC-145 Total cofilin P-cofilin    

Negative control 0.97 1.03    

App cell culture supernatant 0.98 1.10    

PRRSV 1.00 0.19    

PRRSV+ App cell culture 

supernatant 
0.97 1.74    
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Figure 5: F-actin expression in the presence of App cell culture supernatant.  

At 52 hours pi, cells were fixed to perform IFA.  A: Confocal microscopy projection images in 

PAM, DAPI: nuclei staining (bleu), FITC: PRRSV detection (green), Alexa Fluor® 594 

phalloidin: F-actin (red). Pictures were taken at 200X magnification. B: IFA images of SJPL 

and MARC-145 cells treated or not with the bacterial supernatant. Pictures were taken at 100X 

magnification. 

Infectious viral particles production in PRRSV-infected cells treated with cytochalasin 

D.  

The microfilament disrupt compound, cytochalasin D, effect on PRRSV infection in PAM and 

MARC-145 cells is already known (5, 28). However, it was important to test its effect in our 

experimental conditions and with the cells that have not been previously tested, i.e SJPL. For 

this purpose, PAM, SJPL and MARC-145 cells were infected and treated with 3µM of 

cytochalasin D using both infection protocols. At 52 hours pi the infectious viral particles 

produced were determined. As illustrated in Figure 6, the amount of infectious virions in PAM 

infected cells in the presence of cytochalasin D (2.2 log10 TCID50/mL) was significantly lower 
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than in non-treated infected cells (5.5 log10 TCID50/mL) with a difference of 3.3 log10 

(P<0.05). In addition, cytochalasin D completely blocked PRRSV infection in SJPL cells with 

at least a 5 X 105 times infectious titer reduction (P<0.05) (Figure 6). Interestingly, in MARC-

145 cells, cytochalasin D did not inhibit PRRSV infection with virus titers of 6.5 log10 and 

6.8 log10 TCID50/mL in cytochalasin D treated and untreated cells, respectively, (Figure 6). 

Moreover, in PAM and SJPL cells, there is a complete inhibition of PRRSV infection in the 

presence of cytochalasin D because the amount of infectious virions obtained in infected cells 

treated with this compound, was lower or equal to the infectious PRRSV particles measured at 

4 hours pi, which is considered to be the amount of particles attached and/or entered into the 

cells [2.6 and ≤1.5 log10 TCID50/mL in PAM and SJPL, respectively) (Figure 6). In addition, 

with both infection protocols (cytochalasin D added 2 hours before or 4 hours after PRRSV 

infection) similar results were obtained (data not shown). These results clearly showed that 

cytochalasin D inhibits PRRSV infection in PAM and SJPL cells, but not in MARC-145 cells 

such as App cell culture supernatant. 



 

44 
 

PAM

0

1

2

3

4

5

6

7

Negative control
Cytochalasin D
PRRSV
Cytochalasin D + PRRSV

a

b

------------------------------------------------
a aP

R
R

S
V

 t
it

er
 (

lo
g

10
 T

C
ID

5
0
/m

L
)

SJPL

0

1

2

3

4

5

6

7

Negative control
Cytochalasin D
PRRSV
Cytochalasin D + PRRSV

a

b

---------------------------------------------------
aaP

R
R

S
V

 t
it

er
(l

o
g

10
 T

C
ID

5
0
/m

L
)

MARC-145

0

1

2

3

4

5

6

7

Negative control
Cytochalasin D
PRRSV
Cytochalasin D + PRRSV

--------------------------------------------------
a a

b b

P
R

R
S

V
 t

it
er

(l
o

g
10

 T
C

ID
5

0
/m

L
)

 

Figure 6: Infectious viral particles production in PRRSV-infected PAM, SJPL and MARC-

145 cells treated with cytochalasin D. 

Cells were pre-treated with 3 µM of cytochalasin D during 2 hours followed by PRRSV IAF-

Klop strain infection during 4 hours period. At 52 hours pi, viral titers were determined by the 

Kärber method and were expressed in TCID50/mL. The dotted lines represent the intracellular 

infectious PRRSV particles at 4 hours pi. Log10 TCID50/mL ≤ 1.5 is established when no 

cytopathic effect is observed. Bars labelled with different superscripts letters within a cell line 

indicate that these sets of data are statistically different (P <0.05). 
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App cell culture supernatant antiviral effect against others PRRSV strains in MARC-145 

cells. 

Levesque and colleagues have clearly demonstrated that the App cell culture supernatant 

antiviral effect against PRRSV is irrelevant in MARC-145 cells when compared to PAM and 

SJPL response (24). Thus, in order to determine if the App antiviral effect against PRRSV in 

MARC-145 cells was PRRSV strain dependent, virus titers for different PRRSV strains was 

calculated at 52 hours pi. Results demonstrated that the amount of infectious virions in 

PRRSV LV infected cells treated with App supernatant (5.7 log10 TCID50/mL) was 

significantly lower than in PRRSV LV infected cells (6.8 log10 TCID50/mL) with an 

approximately difference of 1 log10 TCID50/mL (P<0.05) (Figure 7). Viral titers obtained with 

PRRSV NVSL strain demonstrated that the bacterial supernatant significantly reduces the 

amount of infectious virions to 5.4 log10 TCID50/mL compared to PRRSV NVSL infected 

cells alone (6.9 log10 TCID50/mL) (Figure 7). The highest App supernatant antiviral effect was 

observed to be against PRRSV FMV09-11SS278 strain. A 4.1 and 6.6 log10 TCID50/mL was 

obtained in PRRSV FMV09-11SS278 infected cells treated or not with App supernatant, 

respectively, with a significant difference of 2.5 log10 TCID50/mL (P<0.05).  
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Figure 7: App supernatant antiviral activity against others PRRSV strains in MARC-145 cells. 

MARC-145 cells were infected with PRRSV LV, FMV09-11SS278 and NVSL strains (MOI 

0.5) during 4 hours followed by the addition of App cell culture supernatant. Viral titers were 

determined by the Kärber method at 52 hours pi and were expressed in TCID50/mL. PRRSV 

IAF-Klop MARC-145 infected cells were used as control. Bars labelled with different 

superscripts letters within the same assay indicates that these sets of data are statistically 

different (P <0.05). 
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DISCUSSION 

The newly discovered antiviral activity of App supernatant against PRRSV was shown to be 

effective in the SJPL and PAM cells (24) but not in MARC-145 cells. In this previous study, it 

was also demonstrated that other viruses such as equine herpes virus type 1, swine influenza 

H1N1 and H3N2 infection could be inhibited by the App cell culture supernatant in the SJPL 

cells but to a significant much lower extend compared to PRRSV. Interestingly, bovine 

adenovirus 3, bovine herpes virus type 1 and bovine viral diarrhea virus type 1 infections were 

not affected by the App cell culture supernatant, indicating that SJPL cells are metabolically 

active and able to support virus replication. Unfortunately, since the impact of App cell culture 

supernatant on PAM cells viability and mortality was unknown, it was important to establish 

the PAM cells status following App supernatant treatment.  Results indicate that the bacterial 

supernatant did not induce cell death, since similar results were obtained between the 

untreated cells and App cell culture supernatant treated cells (Figure1). In addition, it was 

observed that in PRRSV infected cells treated with App antiviral, there was a significant 

increase of cell survival and a significant decrease in mortality rate compared to PRRSV 

infected cells. This can be the consequence of the PRRSV lower replication due to the 

antiviral effect of App cell culture supernatant. Taken together, these results demonstrated that 

PAM App treated cells are viable and metabolically active to support virus infection and, that 

the observed antiviral effect of the bacterial supernatant is not due to cell mortality.  

In order to identify the App antiviral mechanism of action, the expression of type I and II IFN 

was determined because those cytokines are very important in the host antiviral immune 

response (39, 40), even though it is well known that PRRSV has developed strategies to evade 

their antiviral effects (41-44). It was observed that PRRSV infected PAM cells treated with 

App cell culture supernatant has not increased type I IFN and IFN-γ mRNA relative 

expressions compared to App supernatant treated and untreated cells (Figure 2), indicating that 

App antiviral effect is not via the induction of those cytokines. Lévesque and collaborators 

also observed that the bacterial supernatant did not induce type I IFN expressions in the SJPL 

cell line (24). However, an induction in type II IFN was detected in SJPL cells, which suggest 

that App antiviral effect might be via the induction of IFN-γ. These results also suggest that 

App antiviral effect could occur via different mechanisms that are cell type dependant. 
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Moreover, it was showed that mRNA relative expression of type I IFN was decrease in PAM 

PRRSV infected cells treated with the bacterial supernatant compared to PRRSV infected cells 

alone, which it is supposed to be due to the bacterial antiviral effect.   

Garcia-Cuellar and colleagues have demonstrated that an App secreted 24kDa cloned Zn-

metalloprotease is able to degrade actin protein in vitro (38). On the other hand, different 

studies have revealed the important role of actin cytoskeleton on PRRSV infection (5, 6, 28, 

45). Therefore, followings these previous findings, it is more likely that App cell culture 

supernatant antiviral effect was specifically directed against the cells which subsequently 

induced PRRSV infection inhibition. All stages of virus replication cycle are dependent on 

host cell machinery. For instance, 1) PRRSV entry occurs via receptor-mediated endocytosis 

and this process was demonstrated to be microfilament dependent (5, 28); 2) PRRSV 

uncoating is known to be dependent on acidic pH of the early endosomes and also involved 

cellular proteases (5, 46, 47); 3) PRRSV genome replication/transcription is believe to be 

produced in autophagosome-like double-membrane vesicles (48, 49); etc. In order to identify 

at which PRRSV replication cycle step the bacterial antiviral effect occurs, the PRRSV 

genome replication and transcription were evaluated. Results clearly demonstrate that App 

antiviral effect against PRRSV takes place prior to the first cycle of genome replication and 

transcription. The fact that during the first 4 to 8 hours pi similar results were obtained 

between infected cells treated or not with App supernatant using both PRRSV infection 

protocols (App treatment prior or after PRRSV infection) (Figure 3), indicated that at least 

PRRSV attachment to cells is not inhibited by App treatment because it’s well known that this 

process in PAM reaches a maximum at one hour pi (5). Overall, the viral genome 

replication/transcription kinetics results clearly indicate that App cell culture supernatant 

PRRSV antiviral effect takes place at least during the entry, uncoating or during the formation 

of the replication/transcription complex. Unfortunately, at the moment, it is not possible to 

specify at which of these three virus replication steps, the App antiviral effect occurs. 

Otherwise, the App antiviral effects seem more efficient in PAM compared to SJPL cells. The 

gRNA replication was entirely inhibited in PAM cells whereas in SJPL cells, a small but 

statistically significant increase of (+) gRNA and sg mRNAs copies was observed over time 

(Figure 3) suggesting that in these cells, few PRRSV particles can achieve a complete 
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replication cycle. Both cell types are phenotypically different and this may explain these 

observations. A recent study performed by Provost and colleagues has demonstrated that 

PRRSV receptors harbour in both cell types are different, since in SJPL cell line, only the 

CD151 receptor was identified, but not the CD163 and sialoadhesin as in PAM (9). Further 

studies should be conducted in order to identify PRRSV entry mediators and to know in 

details about PRRSV replication cycle in the new SJPL cells infection model. At the moment, 

there is no data to explain why MARC-145 cellular response in regards to App antiviral action 

is different. The major difference known between MARC-145 and PAM cells in regards to 

PRRSV replication cycle is the virus entry into the cell. PAM and MARC-145 cells PRRSV 

entry mediators are different confirming that virus entry differs between the two cell types. 

For instance, in MARC-145 cells, contrary to PAM, the sialoadhesin is absent (6) and the 

sialic acids present in the virion are not essential for infectivity (50). It was also reported that 

cholesterol is critical for PRRSV entry in MARC-145 cells and also suggested that PRRSV 

entry could be via a lipid-raft-dependent endocytosis (51, 52). Therefore, the MARC-145 

adapted IAF-Klop strain can use a completely different entry mechanism to that in PAM, 

which makes PRRSV infection in this cell type resistant to App antiviral effect.  

The use of specific antibodies expanded in a microarray is an effective and convenient method 

for tracking specific proteins and their phosphorylation states that could be involved in a 

cellular response. As mentioned previously, both pathogens interact with the actin 

cytoskeleton and Kinexus microarray results revealed that cofilin 1 and LIMK1 (proteins 

implied in actin pathway) were modulated. Consequently, the actin cytoskeleton modulation 

was investigated. It has been established that cofilin severing activity induces F-actin free ends 

accessible for actin polymerization and depolymerisation (53, 54). Cofilin has two states: 

unphosphorylated and phosphorylated, where only the active cofilin (unphosphorylated form) 

is able to bind F-actin and promote depolymerisation (53). LIMK can be finding in two states, 

the phosphorylated LIMK being active and is assumed to deactivate cofilin following its 

phosphorylation (54, 55). In Kinexus (Table 1) total cofilin and LIMK proteins were over and 

downexpressed, respectively. Thus, these results suggested a possible involvement of the actin 

cytoskeleton in the App antiviral activity. 
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Actin cytoskeleton is involved in many RNA and DNA virus replication cycle (56-59). During 

PRRSV infection, the microfilaments are a critical component necessary for PRRSV primary 

and secondary infection (5, 28). It was observed more active cofilin in PAM infected cells 

treated with the bacterial supernatant than in the others experimental groups (Figure 4 and 

Table 2). This finding suggests the possible modulation of F-actin, which was further analysed 

by IFA. In fact, the confocal microscopy images revealed that F-actin fluorescence intensity 

was decreased in App cell culture supernatant treated cells, but the decrease was more 

pronounced in PAM infected cells treated with the bacterial antiviral (Figure 5 A). A previous 

study suggested that a negative correlation between the F-actin expression level and PRRSV 

infection exists (28), indicating that probably PRRSV decreases F-actin to favour its infection. 

Therefore, it is possible that PRRSV establishes the F-actin quantities needed for its infection 

but when certain low and high thresholds are exceeded, PRRSV infection is inhibited. For that 

reason, it is believed that probably when PRRSV infected cells are treated with App cell 

culture supernatant, there is a detectable increase of active cofilin that will subsequently 

induce F-actin depolymerisation and thereafter PRRSV infection inhibition. Interestingly, a 

decreased of P-cofilin combined with a reduction of F-actin in SJPL cells treated with App 

suggest that the antiviral mechanism in both PAM and SJPL might be similar. Interestingly, in 

MARC-145 PRRSV infected cells treated with the bacterial antiviral more P-cofilin was 

detected than in the others experimental groups (Figure 4 and Table 2) and it was observed by 

IFA that there is no F-actin depolymerisation in the presence of App cell culture supernatant 

compared to negative cells (Figure 5B). Therefore, since MARC-145 cellular response face to 

App antiviral differs from PAM and SJPL cells, these results highly suggest that cofilin is a 

possible cellular target of App cell culture supernatant. Moreover, the fact that β-actin mRNA 

and protein expression levels were unaltered between treatments in the three cell types (Figure 

S1), suggest that the observed F-actin depolymerisation phenomenon in PAM and SJPL is  not 

due to the metalloprotease secreted by App that degrade β-actin in vitro (38) but rather due to 

cofilin (54).  

In order to confirm the involvement of actin cytoskeleton in App antiviral effect, the effect of 

cytochalasin D (a drug that destabilizes actin filaments) on PRRSV replication was determined 

in the three PRRSV permissive cell models. The use of this drug has been a valuable tool for 
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investigating the functional roles of actin filaments in cellular processes and in viral 

pathogenesis (5, 28, 59-64). cytochalasin D was able to inhibit PRRSV replication in PAM 

and SJPL cells, but not in MARC-145 cells just like App cell culture supernatant (Figure 6 

compared to Figure 4 from Levesque and colleagues (24)). Cytochalasin D was added before 

or shortly after few hours pi and both experimental designs were able to inhibit PRRSV 

replication (data not shown) indicating that PRRSV was able at least to attach to the target 

cells. Therefore, these results highly suggest that App supernatant inhibits PRRSV infection 

during PRRSV entry via clathrin-mediated endocytosis, since it is well known that this process 

is actin cytoskeleton dependant (5, 28, 65-67). Conflicting data have been previously reported 

in regards to the antiviral effect of cytochalasin D against PRRSV in MARC-145 infected 

cells. In fact, Cafruny and collaborators have demonstrated that cytochalasin D at 1-2 µM 

concentration was able to inhibit PRRSV primary infection in MARC-145 cells (28). 

However, in the present study, a higher dose (3 µM) was used which may explain why 

cytochalasin D was able to inhibit PRRSV replication in MARC-145 infected cells. 

Noteworthy, this discrepancy can also be the consequence of having used different PRRSV 

strains in each study. Several studies have demonstrated that PRRSV isolates adaptation 

process in MARC-145 generates genetic changes, including deletions, insertions or 

substitutions and is characterised by higher titers, faster growth kinetics making the new 

adapted isolates less virulent than the wild type (68-72). It would be possible that PRRSV 

IAF-Klop strain can use an entry mechanism that is actin cytoskeleton independent, in order to 

successfully replicate in the MARC-145 cells, which perfectly explains why the App antiviral 

effect is inefficient in MARC-145 cells. 

Following this hypothesis the App supernatant antiviral effect against others PRRSV strains 

was investigated in MARC-145 infected cells. It was observed that App supernatant inhibits 

PRRSV LV similar to IAF-Klop strain ((24) and Figure 7). However, the bacterial antiviral 

effect was more effective against PRRSV NVSL and FMV09-11SS278 strains, which 

confirmed that App supernatant antiviral effect is PRRSV strain dependent in MARC-145 

cells. Further studies need to be conducted in order to ascertain this hypothesis.   

In conclusion, this study clearly demonstrated that App cell culture supernatant inhibits 

PRRSV infection prior to the first cycle of PRRSV genome replication/transcription in PAM 
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and SJPL, probably via the activation of cofilin, which can provoke actin depolymerisation 

and subsequently this phenomenon might affects PRRSV endocytosis. Further studies are in 

progress in order 1) to confirm that App cell culture supernatant affects PRRSV entry by 

endocytosis in PAM and 2) to find the active metabolite(s) present in App cell culture 

supernatant that is responsible for its antiviral effect.  

MATERIAL AND METHODS 

Cells 

MARC-145 cells, a subclone of the African green monkey kidney MA104, and the SJPL  cell 

lines were maintained as previously described (24). The SJPL cell line was kindly provided by 

Dr R.G. Webster (St. Jude Children's Hospital, Memphis, TN, USA) (8). PAM cells were 

obtained from lungs of 2 to 14 weeks old pigs as previously described (9, 24) and animals 

were sacrificed following the ethic protocol 12-Rech-1640 approved by our institutional ethic 

committee. PAM cells were cultured for 24 hours in complete Dulbecco’s modified Eagle’s 

medium (DMEM) (Invitrogen Corporation GibcoBRL, Burlington, ON, CA) prior to assay 

(24). All cells were cultured and infected at 37°C in 5% CO2 atmosphere.  

Viral and bacterial strains 

The PRRSV strain used in this study was the Canadian genotype II reference strain IAF-Klop 

and the virus stocks were obtained as previously described (9). The App strain used in this 

study was the mutant MBHPP147 from the strain S4074, which is the serotype 1 reference 

strain. This mutant (AppΔapxICΔapxIIC) is known to produce non-active ApxI and ApxII 

toxins and was kindly provided by Ruud P.A.M. Segers (MSD Animal Health, Boxmeer, The 

Netherlands). AppΔapxICΔapxIIC strain was cultured on brain heart infusion (BHI) broth 

and/or agar (Invitrogen) supplemented with 15 µg/ml nicotinamide adenine dinucleotide 

(NAD) at 37°C in 5% CO2. The cell culture supernatant from AppΔapxICΔapxIIC strain was 

obtained as previously described (24). Briefly, AppΔapxIΔapxIIC from an overnight culture 

grown at an OD600nm of 0.6 were resuspended at a multiple of infection (MOI) of 10:1 in 

complete cell culture medium, containing NAD, to a concentration of 106 CFU/ml and 

incubated overnight at 37°C in 5% CO2. Thereafter, the mutant grown in complete cell culture 
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medium was centrifuged at 4000 rpm for 15 minutes and harvested supernatants were passed 

through a 0.22 µm filter to remove all residual bacteria.  The supernatant was then conserved 

at -20°C for further usage. 

Cells infection 

Protocol #1: Cells were infected, as previously described (24), at 0.5 MOI with PRRSV IAF-

Klop strain and incubated in DMEM without serum or other additives during four hours, then 

all non-attached virus were removed following two soft washing step using PBS. Thereafter, 

the AppΔapxIΔapxIIC (App) cell culture supernatant or complete medium in the case of 

controls, were added. In addition, another PRRSV infection protocol was tested to determine if 

App cell culture supernatant had an impact prior PRRSV infection. Protocol #2: Cells were 

pre-treated with the bacterial supernatant during two hrs, followed by PRRSV infection at 0.5 

MOI in DMEM without serum or other additives during four hours, then infected cells were 

washed and finally App cell culture supernatant or the complete medium were added. Both 

infection protocols were used in all experiments, unless specified. 

Cells viability and mortality 

A total of 2x105 PAM cells/well were seeded into 96 well-tissue culture plates (Corning, 

Tewksbury, MA, USA) and incubated for a 24 hours period. Afterwards, cells were infected 

using the protocol #1 described above and incubated in the presence of App cell culture 

supernatant or complete medium during 48 hours. Cell viability was measured with CellTiter 

96® Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA) at 52 

hours post-infection (pi). Twenty ul of the CellTiter substrate were added to the cells followed 

by one hour of incubation at 37°C in 5% CO2. Cellular mortality was determined using the 

lactate dehydrogenase (LDH)-measuring CytoTox 96 nonradioactive cytotoxicity assay 

(Promega, Madison, WI, USA). Released LDH in culture supernatants was measured with a 

30-minutes coupled enzymatic assay. Mechanically lysed cells were used as 100%-mortality 

positive control. For both methods non-infected cells were used as a negative control and the 

absorbance was measured at 490 nm with a SynergyTM HT multi-detection microplate reader 

(Biotek, Winooski, VT, USA). Both assays were repeated three times. 
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Type I IFN, IFN gamma (IFN-γ) and β-actin relative mRNA expression. 

4x106 PAM cells/well and 5x105 (SJPL/MARC-145) cells/well seeded in 6 well-tissue culture 

plates were infected and incubated in the presence of App cell culture supernatant or complete 

medium during 48 hours. As positive control for innate immunity induction PAM were 

transfected with Polyinosinic–polycytidylic acid potassium salt (Poly (I:C) [50 μg/mL] 

(Sigma-Aldrich, St. Louis, MO, USA), using polyethylenimine (PEI) [1 μg/μL] (Sigma-

Aldrich, St. Louis, MO, USA). Total cellular RNA was extracted from cells using Trizol 

reagent (Invitrogen, Burlington, ON, Canada) according to the manufacturer’s instructions. 

RNA quantification was performed using NanoDrop® ND-1000 (NanoDrop Technologies, 

Inc., Wilmington, DE, USA). One μg of total RNA was reverse-transcribed using the 

QuantiTect reverse transcription kit (Qiagen, Mississauga, ON, Canada). The cDNA obtained 

was amplified using the SsoFast™ EvaGreenW Supermix kit (Bio-rad, Hercules, CA, USA) in 

the Bio-Rad CFX-96 sequence detector apparatus. The PCR amplification steps used were an 

enzyme activation step of 3 min at 98°C, followed by 40 cycles of a denaturing step of 2 sec at 

98°C and an annealing/extension step of 5 sec at 57°C. The primers pairs used for the 

amplification of type I IFNs and IFN-γ in PAM were: IFN-α: F 5’-

ACTCCATCCTGGCTGTGAGGAAAT-3’ and R 5’-

TCTGTCTTGCAGGTTTGTGGAGGA-3’; IFN-β: F 5’-CTCTCCTGATGTGTTTCTCC-3’ 

and R 5’-GTTCATCCTATCTTCGAGGC-3’; IFN- γ: F 5’-

GAGCCAAATTGTCTCCTTCTAC-3’ and R 5’- CGAAGTCATTCAGTTTCCCAG-3’. The 

β-actin gene amplification was performed using the primers F 5’-

ACCACTGGCATTGTCATGGACTCT-3’  and R 5’-

ATCTTCATGAGGTAGTCGGTCAGG-3’ for PAM (porcine origin) and the primers F 5’-

GGCATCCATGAAACTACCTTC-3’ and R 5’-AGGGCAGTAATCTCCTTCTG-3’  for 

SJPL and MARC-145 cells (monkey origin). Peptidylprolyl isomerase A (PPIA) and beta-2 

microglobulin (B2M) were employed as normalizing genes in PAM and SJPL/MARC-145 

cells, respectively, and were amplified using the following primers pairs: PPIA: F 5’-

TGCAGACAAAGTTCCAAAGACAG-3’  and R 5’-GCCACCAGTGCCATTATGG-3’; 

B2M (9): F 5’-GTGCTATCTCCACGTTTGAG-3’ and R 5’-

GCTTCGAGTGCAAGAGATTG-3’. All primer sequences were designed from the NCBI 
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Gen-Bank mRNA sequences using web-based software primerquest from Integrated DNA 

technologies (http://www.idtdna.com/Scitools/Applications/Primerquest/) unless specified. 

Uninfected cells were employed as the calibrator reference in the analysis. Differences mRNA 

quantification between experimental groups were calculated using the 2-ΔΔCt method. 

Experiments were repeated three times in duplicate. 

PRRSV genome replication/transcription kinetics 

For this experience, 4x106 PAM cells/well and 5x105 SJPL/MARC-145 cells/well, were plated 

into 6 well-tissue culture plates (Corning, Tewksbury, MA, USA) and incubated during 24 

hours. Cells were infected and incubated in the presence of App cell culture supernatant. At 

different times pi (4, 6, 8, 14, 24, 28, 32, 38, 48 and 52 hours) samples were collected to 

perform specific qRT-PCR assays. Total RNAs were extracted from cells and quantified as 

described above. 1.5 µg of total RNA was reverse-transcribed using M-MLV reverse 

transcriptase (Invitrogen, Burlington, ON, CA) following the manufacturer’s protocol. The 

strategy used to determine PRRSV genome replication and transcription has already been 

published however new primers were designed for this study (25). Briefly, in the RT-PCR 

were added individually in each sample 2 pmol of the gene-specific reverse primers, PRRSV 

ORF1: R 5’-AGAAAGCACGTAAGCTCCAGCCAA-3’, which allows detecting only the 

PRRSV (+) gRNA and PRRSV ORF7: R 5’-AGCATCTGGCACAGCTGATTGACT-3’ to 

detect all the viral sg mRNAs (which all contain ORF7 gene sequence). It is important to 

specify that with the ORF7 reverse primer, all the (+ strand) ORF7 sequence are detected, 

which include the ORF7 sequence from PRRSV viral genome and all the viral sg mRNAs 

sequences, explaining its use to quantify genome transcription. As internal control, the 

housekeeping mRNA from PPIA (in PAM cells samples) and B2M (in SJPL and MARC-145 

cells samples) were also performed on the same RNA preparations using the reverse primers 

described above. The cDNA was treated with 1.5 μg RNase A (Invitrogen, Burlington, ON, 

Canada) for 30 minutes at 37°C to remove the remaining RNAs, followed by inactivation of 

RNase A by heating at 95°C for 10 minutes. 2µl of cDNA was amplified using the same 

reagents and conditions described above. The primers pairs used for amplification were: 

PRRSV ORF1: F 5’-TGTGAGTTTGACTCGCCAGAGTGT-3’ and R 5’-

TACAGTCTGCAACAATGCCAAGCC-3’, PRRSV ORF7: F 5’-
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GCGGCAAGTGATAACCACGCATTT-3’ and R 5’-TGCTGCTTGCCGTTGTTATTTGGC-

3’ and for PPIA and B2M, the primers pairs used are described above. The Ct values obtained 

were expressed in PRRSV (+) gRNA and PRRSV sg mRNAs copies/mL, for PRRSV genome 

replication and transcription, respectively. For this purpose, a standard curve was generated. 

First, the PRRSV viral genome molecular weight was calculated using the PRRSV strain 

ATCC VR-2332 complete genome sequence (26) and a formula available in Life technologies 

web site (http://www.lifetechnologies.com/ca/en/home/references/ambion-tech-support/rna-

tools-and-calculators/dna-and-rna-molecular-weights-and-conversions/) was used. Afterwards, 

PRRSV viral genome was purified from the virus stock and its concentration was determined. 

Ten-fold dilutions of the PRRSV purified RNA was done and RT-qPCR assays were 

performed as described above to establish the standard curve. All experiments were repeated 

three times in duplicate. 

Proteomic assay 

4x106 PAM cells were infected using the infection protocol #2 and incubated in the presence 

or absence of App cell culture supernatant during 48 hours. Cells were disrupted in a lysis 

buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 0.1% CHAPS, 1 mM DTT and 100 μM 

EDTA) for 5 minutes follow by sonication (8 × 10 sec pulses on ice, with cooling intervals of 

15 seconds) (Sonifier S-450A, Branson, Danbury, CT, USA). Then, total cell protein 

concentrations were measured by a Bradford assay following the manufacturer’s instructions 

(Bio-Rad Laboratories Ltd, Mississauga, ON, Canada). Cell lysates (uninfected cells, App 

supernatant treated cells, virus infected cells and cells treated with both) were sent to Kinexus 

Bioinformatics Corporation (Vancouver, BC, Canada) to perform the Kinex™ Antibody 

Microarray (KAM) (http://www.kinexus.ca/). KAM tracks both protein expression (with pan-

specific antibodies) and phosphorylation (with phospho-site-specific antibodies). The 

phosphorylation sites detected with the phospho-site antibodies are those corresponding to the 

human sequences. In addition, KAM consider as significant a Z ratio of ±1.2-1.5. A negative 

value infers a decrease in expression or phosphorylation from the control sample, whereas a 

positive value infers an increase expression compared to the control. 
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Western blot assays 

4x106 PAM cells and 5x105 SJPL/MARC-145 cells were infected and incubated in the 

presence or absence of App cell culture supernatant. At 52 hours pi, total protein extracts were 

obtained and quantified as described above. Forty μg of total proteins from each samples were 

loaded using 4X laemmli buffer and were fractionated in denaturing conditions by 

electrophoresis on 10% (w/v) SDS-PAGE gels, then transferred onto a nitrocellulose 

membrane (Bio-rad, Hercules, CA, USA) using Trans-Blot® SD Semi-Dry Transfer Cell (Bio-

rad, Hercules, CA, USA). Membranes were blocked with TBS-Tween 20 containing 5% (w/v) 

BSA (Sigma-Aldrich, St. Louis, MO, USA) or 5% (w/v) non fat dry milk during 2-3 hours at 

room temperature. Subsequently, they were labelled with a 1:1,000 dilution of rabbit Cofilin 

antibody (# 3312, Cell Signaling Technology, MA, USA) and with 1:2,500 dilution of mouse 

monoclonal β-actin antibody (mAbcam 8226, Abcam Inc., MA, USA) and incubated at 4°C 

overnight. Horseradish peroxidase-conjugated goat anti-rabbit IgG (Thermo scientific, IL, 

USA) and horseradish peroxidase-conjugated goat anti-mouse (Thermo scientific, IL, USA) at 

a dilution of 1:3,000 were used as secondary antibodies, respectively. The protein bands were 

visualized using the SuperSignal® West Dura Extended Duration Substrate (Thermo 

scientific, IL, USA) in the FUSION-FX Chemiluminescence System (Montreal Biotech Inc., 

QC, Canada). The same membranes were mild striped using the protocol described in Abcam  

web site 

(http://www.abcam.com/index.html?pageconfig=resource&rid=11353&source=pagetrap&viap

agetrap=strippingforreprobing) and were re-probed with rabbit GAPDH monoclonal antibody 

(#5174, Cell Signaling Technology, MA, USA) to confirm equal loading and with the rabbit 

Phospho-Cofilin antibody (#3311, Cell Signaling Technology, MA, USA) both at a dilution of 

1:1,000. Relative density of total cofilin and P-cofilin were calculated with the image 

processing program Image J. All experiments were repeated two times. 

Immunofluorescence assay (IFA) for the detection of PRRSV antigen and F-actin  

Cells were seeded in 8 well glass slide Nunc® Lab-Tek® Chamber Slide™ system (Sigma-

Aldrich, St. Louis, MO, USA) and were fixed at 52 hours pi, during 30 minutes at room 

temperature, with a 4% paraformaldehyde (PFA) solution prepared as described previously 
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(9). Uninfected cells were used as negative control. The IFA assay was performed as describe 

previously (9). Briefly, the fixed cells were washed with a phosphate buffer saline solution 

(PBS) and were permeabilized during 10 minutes in a PBS solution containing 1% Triton X-

100. Subsequently, they were washed with PBS-Tween 20 (0.02%) and incubated during 30 

minutes with PBS containing 0.2% Tween 20 and 1% BSA. Then, cells were incubated with 

the α7 rabbit monospecific antiserum (a specific anti-N PRRSV protein antibody) diluted 

1/200 at 4°C overnight (27). Finally, cells were washed and incubated in 1/160 dilution of 

anti-rabbit specific antiserum FITC conjugated (Sigma-Aldrich, St. Louis, MO, USA) and in 

1/40 dilution of Alexa Fluor® 594 phalloidin (a high-affinity F-actin probe conjugated) 

(Invitrogen, Burlington, ON, Canada) during 30 minutes at room temperature. Nuclei were 

stained with 4',6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) as 

recommended by the manufacturer. PAM stained cells were visualized by confocal laser 

scanning microscopy (Olympus FV1000 IX81, Markham, ON, Canada). MARC-145 and 

SJPL cells were visualized using a DMI 4000B reverse fluorescence microscope. Images of 

these cells were taking with a DFC 490 digital camera and were analyzed using the Leica 

Application Suite Software, version 2.4.0 (Leica Microsystems Inc., Richmond Hill, Canada). 

Cytochalasin D PRRSV replication inhibition 

A total of 2x105 PAM,  1x104 MARC-145 and SJPL cells were infected using both protocols 

described above, where the App cell culture supernatant was replaced by 3µM of cytochalasin 

D (28) (Sigma-Aldrich, St. Louis, MO, USA). At 52 hours pi, PRRSV was tittered by the 

Kärber method (9, 24). Briefly, samples infected with PRRSV were subjected to three cycles 

of freeze-thaw and cellular suspensions were then clarified by low speed centrifugation at 

1200g for 10 minutes. Serial 10-fold dilutions of supernatants were used to infect 96-well 

tissue culture plate of MARC-145 cells. Then, plates were incubated for 96 hours. Virus titers 

were expressed in tissue culture infectious dose 50 % per ml (TCID50/mL). All experiments 

were repeated three times in duplicate. 
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App cell culture supernatant antiviral activity against other PRRSV strains 

The PRRSV viruses used in this experiment were the PRRSV genotype I reference strain 

Lelystad virus (LV) and two PRRSV genotype II strains, NVSL strain and FMV09-11SS278. 

1x104 MARC-145 cells were infected with each virus using the protocol #1 described above. 

The infectious dose of each virus was calculated as described above. All experiments were 

repeated three times in duplicate. 

Statistical analyses 

A One-way ANOVA model, followed by Tukey’s Multiple Comparison Test (GraphPad 

Prism Version 5.03 software) was used to establish if statistical significant differences existed 

between PRRSV infected and uninfected cells treated or not with the App cell culture 

supernatant in the cell viability and mortality tests. Moreover, the same test was employed to 

determine if PRRSV titers and β-actin mRNA relative expression in the presence or absence of 

cytochalasin D or/and App cell culture supernatant, respectively, were statistically significant. 

Two-way ANOVA model, followed by Bonferroni post-hoc tests (GraphPad Prism Version 

5.03 software) was performed to determine if statistical significant differences exist between 

PRRSV infected and uninfected cells untreated or treated with App cell culture supernatant in 

the virus replication/transcription kinetic assays. Moreover, t test statistical analyses (unpaired 

t tests) were also performed in the PRRSV replication/transcription kinetic assay to compared 

App treated and untreated cells at all-time points with 4 hours pi. The same test was also used 

to determine if the type I and type II IFN mRNA relative expressions in PRRSV infected or 

uninfected cells treated or not with the App cell culture supernatant, were statistically 

different. Differences between experimental groups were considered statistically significant 

with a P<0.05.  
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SUPPORTING INFORMATION 

 

 

 

 

 

 

Figure S1: β-actin protein and mRNA expression in the presence of App cell culture 

supernatant. 

At 52 hours pi cells were harvested or total RNAs were extracted to perform western blot and 

qRT-PCR assays, respectively. The β-actin protein expression level and mRNA relative 

expression were determined in PAM, SJPL and MARC-145 infected or uninfected cells 

treated or untreated with App cell culture supernatant. 
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For more than two decades porcine reproductive and respiratory syndrom virus (PRRSV) has 

been the major concern of the swine industry, causing in United States an annual loss of 

approximately $560 million (1). This data clearly shows that current strategies to control 

PRRS are no longer efficient. To date, managent strategies are mainly: surveillance, whole 

herd depopulation and repopulation, herd closure and vaccination (25). There are two types of 

commercially available vaccines, the modified-live virus (MLV) vaccines and the killed-virus 

vaccines (24, 26), which cannot prevent PRRSV infection. Other studies have focused in to 

find anti-PRRSV specific drugs (27-29, 31, 33) without success, since there are no 

commercially available antiviral drugs to control or eradicate PRRS.  

To the best of our knowledge, Lévesque and colleagues recently discovered which constitutes 

the first bacterial culture supernatant with antiviral properties against PRRSV (37). This 

antiviral activity is present in the cell culture supernatant of the Actinobacillus 

pleuropneumoniae (App) mutant (MBHPP147) of the S4074 serotype 1 reference strain, which 

produces non-active ApxI and ApxII toxins (AppΔapxICΔapxIIC). The bacterial supernatant 

has a strong antiviral effect against PRRSV infection in the newly discovered SJPL permissive 

cell line, from monkey origin, but its effect is insignificant in MARC-145 infected cells. 

Following these findings, the goals of this project were 1) to demonstrate the App antiviral 

effect in the primary target cells of PRRSV: porcine alveolar macrophages (PAM) and 2) to 

identify the possible mechanisms used by App to inhibit PRRSV infection in PAM.   

The results concerning the first objective of this project have been recently  published ((37), 

Annexe I: Figures 3 and 4). In this study, it was clearly demonstrated that App cell culture 

supernatant inhibits PRRSV infection in PAM, which represents an important finding since 

PAM are the PRRSV natural host target cells. 

Once demonstrated the App antiviral effect against PRRSV in PAM, the next step was to 

determine the specific mechanisms involved in this antiviral effect. For this purpose, firstly it 

was determined if App cell culture supernatant PAM treated cells were suitable for virus 

replication. Cell viability and mortality tests showed that PAM integrity or metabolism are not 

affected in the presence of App cell culture supernatant and that the App antiviral has no 

impact on cell death, which suggest that the bacterial antiviral mechanism is not via the 



 

70 
 

induction of cell cytotoxicity. Lévesque and collaborators also demonstrated, that in SJPL 

cells, the cell culture supernatant from the App mutant strain is not toxic to cells and that the 

SJPL cells were metabolically active and able to support other viral infections in the presence 

of App supernatant (37). 

Types I and II interferon (IFN) are known as potent antiviral molecules against PRRSV (208, 

229, 230). Therefore, in this study it was critical to determine if the bacterial supernatant was 

able to induce their expressions in PAM, even though it is well known that PRRSV has 

developed strategies to evade their antiviral effects in order to prolong its survival in the host 

(124, 129, 139, 211, 212, 221, 243). Results showed that mRNA relative expression of type I 

and II IFN in the presence of App cell culture supernatant is similar to that observed in 

untreated cells. Thus, these results suggest that App antiviral effect is not via the induction of 

IFN-α, IFN-β or IFN-γ. Lévesque and collaborators also observed that the bacterial 

supernatant does not induce the type I IFN expressions in the SJPL cell line (37). However an 

induction of type II IFN was detected, which suggest that App antiviral effect in SJPL cell line 

might be via the induction of IFN-γ (37). These results also suggest that the App antiviral 

action mechanism, in PAM and SJPL cells, might be different. 

All stages during PRRSV replication cycle are dependent on host machinery. For instance, 

PRRSV entry is via receptor-mediated endocytosis and this process was demonstrated to be 

microfilament-dependent (13, 23); PRRSV uncoating is known to be dependent on acidic pH 

of the early endosomes and are also involved cellular proteases (13, 181, 182); PRRSV 

genome replication/transcription is believed to be produced in autophagosome-like double-

membrane vesicles (184, 185). Furthermore, in order to elucidate the possible App supernatant 

antiviral mechanism it was developed a strategy to determine if the bacterial supernatant 

inhibits PRRSV replication cycle before or after viral genome replication / transcription in 

PAM, SJPL and MARC-145 cells. SJPL and MARC-145 cells were included in this study 

because 1) the App antiviral mechanism in these two cell lines is also unknown and 2) to 

compare their results with those obtained in PAM cells will allow to better understand the 

mechanism of action of the bacterial supernatant. Results clearly showed that the bacterial 

antiviral inhibits PRRSV infection in PAM and in SJPL, prior the first cycle of PRRSV 
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genome replication/transcription, which suggests that App antiviral activity possibly occurs 

during PRRSV entry, uncoating or genome replication/transcription stages.  

It was demonstrated by Garcia-Cuellar and colleagues that a 24 kDa cloned Zn-

metalloprotease which is secreted by App is able to degrade actin protein in vitro (84). On the 

other hand, different studies have revealed the important role of actin cytoskeleton on PRRSV 

infection (13, 14, 23, 164). Following these findings, it was hypothesized that App actin 

cytoskeleton modulation maybe is responsible for the antiviral effect against PRRSV. A 

proteomic study was performed using the KINEX™ Microarray, which revealed that cofilin, a 

protein implied in actin signalling pathway, was modulated, which suggested a possible 

involvement of actin filaments (F-actin) in App antiviral mechanism.  

Cofilin has two statuses: unphosphorylated and phosphorylated, where only the active 

(unphosphorylated) cofilin is able to bind F-actin and promote polymerization and 

depolymerisation (243). Western blot analyses revealed that in PAM infected cells treated 

with App cell culture supernatant there was more active cofilin than in the others experimental 

groups. However, the western blot test showed an increase of inactive cofilin in MARC-145 

infected cells in the presence of App supernatant. Since results obtained with MARC-145 and 

PAM cells are opposite and it was well demonstrated that in MARC-145 cells the App 

antiviral effect is insignificant compared to PAM cells (37), the data obtained highly suggest 

that cofilin it is probably involved in App antiviral effect and that a modulation in F-actin 

exists.  

The immunofluorescence assay (IFA) revealed a marked F-actin fluorescence intensity 

diminution in App cell culture supernatant treated cells, but was markedly reduced in PAM 

infected cells treated with the bacterial antiviral. A previous study suggested that a negative 

correlation between the F-actin expression level and PRRSV infection exists (23), indicating 

that probably PRRSV decreases F-actin to favour its infection. Therefore, it is possible to 

conclude that PRRSV establishes the F-actin quantities needed for its infection, but when 

certain low and high thresholds are exceeded PRRSV infection is inhibited. For that reason, it 

is believed that when PRRSV PAM infected cells are treated with App cell culture supernatant 

there is a detectable increase in active cofilin, thus a considerable F-actin depolymerisation 
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causing PRRSV infection inhibition. Interestingly, similar F-actin fluorescence intensity was 

obtained between the App supernatant treated and untreated MARC-145 cells, which suggest 

that F-actin depolymerisation phenomenon is involved in App antiviral effect. 

Cytochalasin D, a drug that destabilizes actin filaments, has been extensively used to 

determine the role of actin cytoskeleton in many cellular processes and in viral pathogenesis 

(13, 23, 245-247). In order to confirm if actin cytoskeleton is implied in App supernatant 

antiviral effect, the viral titer was determined in the presence of the drug and it was compared 

to those obtained in the presence of the bacterial supernatant. Results showed that the drug 

inhibits PRRSV infection similarly to App cell culture supernatant in PAM, SJPL and MARC-

145 cells ((37) and Annexe I: Figure 4), which confirmed that the observed F-actin 

depolymerisation phenomenon is involved in App cell culture supernatant antiviral effect. 

Interestingly, in MARC-145 cells no PRRSV infection inhibition was detected with the drug, 

as happens with the bacterial culture supernatant. This result is contradictory to those reported 

in the literature (23), where it was demonstrated that smaller drug doses (1-2 µM) than the 

dose used in this study (3 µM) were able to inhibits PRRSV infection in MARC-145 cells. 

Thus, it is believed that the Canadian PRRSV strain used in this study probably does not need 

the actin cytoskeleton to successful infect this cell line, which can explains why App cell 

culture supernatant has almost no effect on PRRSV infection. Overall, these results highly 

suggest that PRRSV inhibition in PAM is probably during the entry by endocytosis because 

before genome replication and transcription, the entry is the only stage, according to the 

literature (13, 23), that is dependent on actin cytoskeleton. 

In conclusion, our results suggest that App cell culture supernatant antiviral activity probably 

increases F-actin depolymerisation by the activation of cofilin in PAM infected cells and 

subsequently this phenomenon can affects PRRSV entry by endocytosis. Further studies need 

to be conducted in order to discover the molecular bases of the App antiviral effect in PAM 

and to find the molecule (s) present in App cell culture supernatant responsible for this 

antiviral activity.  
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Because PRRSV has become the major concern of pig producing countries, the discovery of 

the strong App cell culture supernatant antiviral effect against PRRSV in the main in vivo 

target cells of PRRSV, PAM, represents a new hope for the porcine industry worldwide. 

Moreover, the uncovered App antiviral mechanism yielded some interesting findings about 

PRRSV cellular infection mechanism in PAM and MARC-145 cells. In addition, the App 

antiviral effect in MARC-145 cells was showed to be PRRSV strain dependant, while in SJPL 

cell line was observed to be RNA viruses dependent, which demonstrated that App cell culture 

supernatant is a promising antiviral that can lead to the development of prophylactic or 

therapeutic specific drugs against others viral diseases. 
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ANNEXE I: Actinobacillus pleuropneumoniae possesses an antiviral activity against 

porcine reproductive and respiratory syndrome virus. 
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ABSTRACT 

Pigs are often colonized by more than one bacterial and/or viral species during respiratory 

tract infections. This phenomenon is known as the porcine respiratory disease complex 

(PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory 

syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main 

objective of this project was to study the in vitro interactions between these two pathogens and 

the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive 

cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A 

pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by 

an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results 

showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and 

App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of 

SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and 

PAM cells with an App cell-free culture supernatant is also sufficient to significantly block 

PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular 

weight, heat-resistant App metabolites (< 1 kDa). The antiviral activity was also observed in 

SJPL cells infected with swine influenza virus but to a much lower extent compared to 

PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the 

cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, 

at least in part, to the production of interferon γ. The use of in vitro experimental models to 

study viral and bacterial co-infections will lead to a better understanding of the interactions 

between pathogens and their host cells, and could allow the development of novel prophylactic 

and therapeutic tools. 
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INTRODUCTION 

Respiratory disease in pigs is common in modern pork production worldwide and is often 

referred to as porcine respiratory disease complex (PRDC) [1]. PRDC is polymicrobial in 

nature, and occurs following infections with various combinations of primary and secondary 

respiratory pathogens. There are a variety of viral and bacterial pathogens commonly 

associated with PRDC including porcine reproductive and respiratory syndrome virus 

(PRRSV) and Actinobacillus pleuropneumoniae (App) [1]. Both are considered pathogens of 

major importance or relevance for the pig industry [1]. Furthermore, bacterial-viral co-

infections can exacerbate the pathogenicity of respiratory pig diseases [1]. For example, co-

infections with Mycoplasma hyopneumoniae and swine influenza virus (SIV) exhibited more 

severe clinical disease [2], PRRSV and Streptococcus suis co-infection experiments confirmed 

that PRRSV predisposes pigs to S. suis infection and bacteremia [3] and increases the 

virulence of PRRSV in pigs [4], M. hyopneumoniae infection increases effectiveness of 

PRRSV infection and lesions [5], and PRRSV infection was able to accelerate Haemophilus 

parasuis infection and loads [6]. Those studies on co-infections principally looked at the 

macroscopic lesions and at the clinical signs. Only a few recent studies are investigating more 

closely the direct interactions and mechanisms involved between the pathogens. As an 

example, Qiao and collaborators showed that PRRSV and bacterial endotoxin (LPS) act in 

synergy to amplify the inflammatory response of infected macrophages [7]. Thus, it is crucial 

to develop new in vitro models to investigate in more details the mechanistic and the 

interactions involved in polymicrobial infections.  

Porcine reproductive and respiratory syndrome (PRRS) is the most economically devastating 

viral disease affecting the swine industry worldwide [8]. The etiological agent, PRRSV, 

possesses a RNA viral genome with ten open reading frames [8-10]. PRRSV virulence is 

multigenic and resides in both the non-structural and structural viral proteins. The molecular 

characteristics, biological and immunological functions of the PRRSV structural and non-

structural proteins and their involvement in the virus pathogenesis were recently reviewed [8]. 

The disease induced by PRRSV has many clinical manifestations but the two most prevalent 

are severe reproductive failure in sows and gilts (characterized by late-term abortions, an 

increased number of stillborn, mummified and weak-born pigs) [11,12] and respiratory 
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problems in pigs of all ages associated with a non-specific lymphomononuclear interstitial 

pneumonitis [11-13]. 

App is the causative agent of porcine pleuropneumonia, a severe and highly contagious 

respiratory disease responsible for major economic losses in the swine industry worldwide 

[14]. The disease, transmitted by aerosol or by direct contact with infected pigs, may result in 

rapid death or in severe pathology characterized by hemorrhagic, fibrinous, and necrotic lung 

lesions. Exposure to the organism may lead to chronic infection such that animals fail to 

thrive; alternatively, they survive as asymptomatic carriers that transmit the disease to healthy 

herds. Many virulence factors of this microorganism have been well characterized [14-16]. To 

date, fifteen serotypes of App based on capsular antigens have been described [17,18]. The 

prevalence of specific serotypes varies with geographic region [17]. 

Recent advances in pathogen detection methods allow better understanding of interactions 

between pathogens, improve characterization of their mechanisms in disease potentiation and 

demonstrate the importance of polymicrobial disease [1]. In the present study, the in vitro 

interactions between PRRSV and App in PRRSV permissive cell models were investigated. 

Thus, MARC-145 cells, SJPL cell line and pulmonary alveolar macrophages (PAM) were used 

in this study since they have been shown previously to be permissive to PRRSV infection and 

replication [8,19]. Results indicate that App possesses a strong antiviral activity against PRRSV 

in vitro. 

RESULTS 

PRRSV infection effect on App bacterial adherence 

Bacterial adherence of Appwt and AppΔapxIΔapxIIC to PRRSV-infected and non-infected 

SJPL and MARC-145 cells was compared (Figure 1). Prior infection of both cell types with 

PRRSV did not significantly affect the adhesion of neither Appwt nor AppΔapxIΔapxIIC 

strain.  
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Figure 1: Bacterial adherence over time of Appwt or AppΔapxIΔapxIIC in PRRSV co-infected 

SJPL and MARC-145 cells.  

SJPL (A) and MARC-145 (B) cells were infected with or without PRRSV at an MOI of 0.5 

during 72 hours, and then cells were co-infected with Appwt or AppΔapxIΔapxIIC at an MOI 

of 10. Bacterial adherence was measured in CFU per well after 1, 2 and 3 hours post bacterial 

infection as described in Auger et al., 2009 [20]. Values are presented as ± Standard Deviation  

(SD). No statistical significance was obtained following two-away ANOVA analysis. All 

experiments were repeated 3 times. 
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Impact of App and PRRSV co-infection on cell cytotoxicity 

Auger et al. 2009 [20] have previously published that SJPL cell death induced by App occurs 

through necrosis and not apoptosis. Consequently, based on this previous report, only a 

cytotoxicity experiment was performed in order to verify if PRRSV infection increases the 

cytotoxicity of App. Moreover, this assay was done to confirm that inactivation of the toxins 

ApxI and ApxII in the mutant AppΔapxIΔapxIIC reduces cell death seen with Appwt strain. 

Thus, LDH cytotoxicity assays to detect cell death were performed on cells infected with 

PRRSV for 72 hours and then co-infected with Appwt strain or AppΔapxIΔapxIIC. As shown 

in Figure 2, the cytotoxic activity of Appwt was higher in both cell lines after 2 hours of 

incubation, around 36% in SJPL cells (Figure 2A) and around 14% in MARC-145 cells 

(Figure 2C) compared to the one of AppΔapxIΔapxIIC mutant after 6 hours of incubation, 

which was less than 15% in SJPL cells (Figure 2B) and around 7% in MARC-145 cells 

(Figure 2D). As expected, the AppΔapxIΔapxIIC mutant is markedly less cytotoxic than the 

parental strain Appwt. Thus, AppΔapxIΔapxIIC mutant allows much longer incubation periods 

with cells and facilitate in vitro observation. Furthermore, co-infection with PRRSV and 

AppΔapxIΔapxIIC increased SJPL and MARC-145 cells death compared to App single 

infection (Figure 2B and D, respectively), showing an additive cytotoxicity effect of PRRSV 

and AppΔapxIΔapxIIC. Because of its markedly reduced cytotoxicity, the AppΔapxIΔapxIIC 

was used for all the subsequent experiments.  
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Figure 2: Cytotoxicity over time of Appwt or AppΔapxIΔapxIIC in PRRSV co-infected SJPL 

and MARC-145 cells.   

SJPL (A and B) and MARC-145 cells (C and D) were infected with or without PRRSV at an 

MOI of 0.5 during 72 hours, and then cells were co-infected with App (for 1 or 2 hours) (A 

and C, respectively) or with AppΔapxIΔapxIIC (for 4, 5 and 6 hours) (B and D, respectively) 

at an MOI of 10. Cytotoxicity was measured in % using lactate dehydrogenase (LDH) 

CytoTox assay [20]. Values are presented as ± Standard Deviation (SD). Two-away ANOVA 

analysis was used to obtain statistical data. * P<0.05. All experiments were performed 3 times. 

App effects on PRRSV infection 

In SJPL cells, co-infection with AppΔapxIΔapxIIC and PRRSV shows absence of PRRSV N 

viral protein detection by IFA compared to control where SJPL cells were infected with 

PRRSV alone (Figure 3A) suggesting an inhibition of PRRSV infection and/or replication 
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(Figure 3B). MARC-145 cell line was used to compare results obtained with SJPL cell line 

since MARC-145 cells are the most common cells used during in vitro PRRSV studies. 

Interestingly, results were different between the two cell lines. In PRRSV infected MARC-145 

cells, only a small reduction of cells expressing the PRRSV N protein was observed following 

a co-infection with AppΔapxIΔapxIIC (Figure 3G). Thus, SJPL cells were qualitatively more 

responsive to the App antiviral affect than MARC-145 cells. Moreover, since SJPL cells were 

recently shown to be from monkey origin [21] and not from swine as first described [22], 

evaluation of the antiviral activity of App was tested in a porcine relevant cell model, the PAM 

cells. Co-infection with AppΔapxIΔapxIIC and PRRSV in PAM cells also presented total 

absence of PRRSV N protein detection (Figure 3L), as in SJPL cells (Figure 3B), suggesting 

that AppΔapxIΔapxIIC can also inhibits PRRSV in PRRSV’s in vivo porcine target cells, the 

porcine alveolar macrophages. Incubation with UV-inactivated AppΔapxIΔapxIIC bacteria 

after PRRSV infection allowed the detection of N proteins of PRRSV by IFA in all cell types 

(Figure 3C, 3H and 3M) showing that UV-inactivated bacteria were not able to block PRRSV 

infection. Interestingly, the bacteria-free culture supernatant of AppΔapxIΔapxIIC also 

effectively blocked PRRSV infection in SJPL and PAM cells (Figure 3D and 3N, 

respectively). A weak inhibition was observed in MARC-145 cells (Figure 3I). pH did not 

vary between all the tested conditions, being stable at around 7.3 ± 0.1. The active metabolites 

present in the culture supernatant did not seem to be App LPS (Figure 3E, 3J and 3O) nor 

peptidoglycan fragments (assayed with NOD1 or NOD2 ligands) (Figure S1D and S1F, 

respectively). Dilutions of AppΔapxIΔapxIIC supernatant showed a dose-dependent effect on 

PRRSV’s detection by IFA. A 1:2 dilution resulted in twice as much PRRSV N protein when 

observed with IFA (data not shown). The loss of antiviral activity of AppΔapxIΔapxIIC 

supernatant was observed with 1:10, 1:20 and 1:40 dilutions. 

PRRSV titers were measured to confirm IFA observations and to quantify the inhibitory effect 

of AppΔapxIΔapxIIC on PRRSV infection. SJPL, MARC-145 and PAM cells were infected or 

treated as described previously. In SJPL cells after 72 hours post PRRSV infection, viral titer 

obtained was 6.25 log10 TCID50/ml (Figure 4A), in MARC-145 cells, was 7.6 log10 

TCID50/ml (Figure 4B) and in PAM cells, 6.0 log10 TCID50/ml (Figure 4C). Co-infection with 

AppΔapxIΔapxIIC or treatment with its culture supernatant blocked completely PRRSV 
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replication (P<0.01) in SJPL cells (Figure 4A). But in MARC-145 cells, their antiviral effect 

on PRRSV replication was markedly less efficient. More specifically, in MARC-145 cells, 

PRRSV titers were 4.9 log 10 TCID50/ml (which correspond to a 751 fold decrease compared 

to PRRSV non-treated infected cell) and 6.5 log10 TCID50/ml (which correspond to a 19 fold 

decrease compared to PRRSV non-treated infected cell) for AppΔapxIΔapxIIC (P<0.01) and 

its cell-free culture supernatant (P<0.05) treated cells, respectively (Figure 4B). In PAM cells, 

results obtained with PRRSV’s titration showed that live AppΔapxIΔapxIIC completely 

blocked PRRSV replication (P<0.001) and that its culture supernatant significantly inhibits 

PRRSV infection in PAM, reducing its amount of infectious virions to 2.9 log10 TCID50/ml 

(P<0.001 compared to PRRSV infection at 106 TCID50/mL) which correspond to a 1250 fold 

decrease (Figure 4C). Stimulation of the cells with App purified LPS or co-infection with UV 

inactivated bacteria did not have any effect on PRRSV titer in all cell types (Figure 4A, 4B 

and 4C). Those results confirm the IFA data obtained previously. In addition, it is important to 

note that inhibition in PAM is total with live AppΔapxIΔapxIIC as observed previously in 

SJPL cells and below PRRSV inoculum when treated with AppΔapxIΔapxIIC cell culture 

supernatant. Thus, those results indicate that AppΔapxIΔapxIIC antiviral effect against PRRSV 

can be observed not only in SJPL cells but also in porcine alveolar macrophages. 
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Figure 3: PRRSV antigen detection in SJPL, MARC-145 and PAM cells co-infected with 

AppΔapxIΔapxIIC.  

PRRSV N protein revealed by IFA in SJPL (A-E), MARC-145 (F-J) and PAM cells (K-O) 

were infected with PRRSV at an MOI of 0.5 for 4 hours (A, F and K) then co-infected with 

live AppΔapxIΔapxIIC at an MOI of 10 (B, G and L), or with UV inactivated 

AppΔapxIΔapxIIC at an MOI of 10 (C, H and M), or with AppΔapxIΔapxIIC supernatant (D, I 

and N) or treated with LPS 4µg/ml (E, J and O) for 48 hours. Inserts are negative control 

where cells were not infected with PRRSV. White scale bar represents 200 µm for SJPL and 

MARC-145 cells, and 100 µm for PAM cells. Pictures were taken at 100X magnification for 

SJPL and MARC-145 cells, and 200X for PAM cells. 
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Figure 4: PRRSV titer in App treated SJPL, MARC-

145 and PAM cells.  

SJPL (A), MARC-145 (B) and PAM (C) cells were 

infected with PRRSV MOI of 0.5 for 4 hours and then 

co-infected with AppΔapxIΔapxIIC MOI of 10, or with 

UV inactivated AppΔapxIΔapxIIC MOI of 10, or 

treated with LPS (4 µg/ml) or culture supernatant of 

AppΔapxIΔapxIIC for 48 hours. PRRSV titer was 

determined on MARC-145 cells by the Kärber method. 

Values are presented as ± Standard Deviation (SD). 

One-away ANOVA analysis was used to obtain 

statistical data. When bars within a cell type are 

labeled with superscripts letters, it indicates that these 

sets of data are statistically different from the other 

bars (P < 0.05).   

 

Fractionation of cell culture supernatant of AppΔapxIΔapxIIC 

Fractionation of the cell culture supernatant of AppΔapxIΔapxIIC indicated that the ihnibitory 

effect on PRRSV infection is mediated by small App metabolite(s) weighting < 1 kDa (Figure 

5C). The same results were obtained with all small fractions tested, < 3 (Figure S2D), 10 (data 

not shown) and 50 kDa (Figure S2F). Additionally, treatment at 56°C for 30 min of these low 

molecular weight App metabolite(s) did not inactivate their ihnibitory effect on PRRSV 

infection and/or replication in SJPL cells, showing that those App antiviral metabolites are 

heat-resistant (data not shown). 
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Figure 5: AppΔapxIΔapxIIC cell culture 

supernatant < 1 kDa fraction antiviral activity 

against PRRSV.  

Detection of the N viral protein in PRRSV 

infected SJPL cells by immunofluorescence. 

SJPL cells were infected with 0.5 MOI of 

PRRSV for 4 hours then incubated with 

DMEM culture medium alone (DMEM) (A) or 

either a DMEM culture medium fraction of < 1 

kDa (DMEM < 1 kDa) (B) or a 

AppΔapxIΔapxIIC cell culture supernatant < 1 

kDa fraction (App < 1 kDa) (C) added to 

complete SJPL culture medium for 48 hours. 

White scale bar represents 200 µm. Pictures 

were taken at 100X magnification. 

 

 

Antiviral efficacy of AppΔapxIΔapxIIC cell culture supernatant against several other 

viruses 

Since AppΔapxIΔapxIIC cell culture supernatant inhibits PRRSV replication, other viruses 

were tested in order to verify if this inhibition is virus specific or if it is a general antiviral 

effect. First, the SJPL cells permissivity was tested in regards to different DNA genome 

viruses such as: BAV3, BHV-1, BHV-4, CPV, EHV-1, and PCV2; as well as RNA genome 

viruses such as: BVDV-1, Influenza H1N1, and Influenza H3N2. BAV3, BHV-1, EHV-1, 

BVDV-1, Influenza H1N1, and Influenza H3N2 viruses were able to infect and replicate in 

SJPL cells (Table 1). Thus, treatment with AppΔapxIΔapxIIC culture supernatant was 

performed after infection with those viruses in SJPL cells, to verify its spectrum of antiviral 

activity. Overall, 50% of the viruses tested that are able to replicate in SJPL cells (excluding 
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PRRSV) were inhibited by AppΔapxIΔapxIIC cell culture supernatant. Those inhibited viruses 

were: EHV-1, Influenza H1N1 and H3N2. However, it is important to note that the inhibition 

of PRRSV replication observed following treatment with AppΔapxICΔapxIIC supernatant was 

significantly higher compared to than the inhibition observed against EHV-1, Influenza H1N1 

and H3N2 (Table 1). These results are important because they indicate that SJPL cells were 

still able to allow the replication of several viruses in the presence of AppΔapxIΔapxIIC cell 

culture supernatant, indicating that the SJPL cells are still metabolically active and fit for 

viruses’ replication. 

Table 1: Antiviral activity of AppΔapxIΔapxIIC supernatant against several animal DNA and 

RNA viruses in SJPL infected cells. 

 

Effect of AppΔapxIΔapxIIC cell culture supernatant on the mRNA level of type I and 

type II IFNs 

Since the levels of mRNA expression of type I (IFNα and IFNβ) and type II (IFNγ) interferons 

are known to be implicated in the cellular antiviral effect against PRRSV [23-26], mRNA 

levels of those cytokines were measured by qRT-PCR (Figure 6). No modulation of IFNα was 

observed in any of the tested conditions, including the Poly I:C control. This observation was 
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also previously made by Provost et al., 2012 [19]. PRRSV infection in SJPL cells significantly 

increased IFNβ levels compared to mock infected cells, as previously described in Provost et 

al., 2012 [19]. Treatment with AppΔapxICΔapxIIC supernantant alone induced a significant 

increase of IFNβ mRNA compared to mock infected cells, but co-treated cells did not showed 

a significant increase compared to mock infected cells. PRRSV infection in SJPL cells did not 

modulate IFNγ mRNA levels. However, treatment with AppΔapxICΔapxIIC supernantant 

alone or as co-treatment significantly increased IFNγ mRNA compared to mock infected SJPL 

cells.  

 

 

 

 

 

 

 

 

 

Figure 6: AppΔapxIΔapxIIC cell culture supernatant and PRRSV effects on mRNA 

quantification of type I (IFNα, IFNβ) and type II (IFNγ) interferons.  

qRT-PCR results expressed in relative expression (ΔΔCT) for IFNα (A), IFNβ (B) and IFNγ 

(C) in SJPL cells. The cells were mock infected or infected with 0.5 MOI of PRRSV for 4 

hours then treated without or with AppΔapxICΔapxIIC cell culture supernatant for 48 hours. 

Poly (I:C) and LPS were used as positive controls. Data labeled with superscripts of different 

letters indicates that these sets of data are statistically different (P < 0.05). 

DISCUSSION 

Many studies have previously shown that respiratory viral infections can increase bacterial 

adherence to cells. For example, influenza A infection increases adherence of Streptococcus 
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pyogenes to MDCK cells [27], rhinovirus infection increases adherence of Streptococcus 

pneumoniae to cultured human airway epithelial cells [28], and respiratory syncytial virus 

(RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus increase the adherence of 

Haemophilus influenzae and S. pneumoniae to respiratory epithelial cells [29]. However, in the 

present study, no modulation of App adherence was observed when cells were infected with 

PRRSV.  

Appwt induced, as expected, a high percentage of cytotoxicity in SJPL cells (Figure 2). Its 

derivative, AppΔapxIΔapxIIC, that is expressing the non-activated toxins ApxI and ApxII, 

showed a much lower cytotoxicity in SJPL cells. Furthermore, as previously described in 

Provost et al. 2012, PRRSV infection in SJPL cells induced a significant increase of cell death 

[19]. However, co-infection with PRRSV and AppΔapxIΔapxIIC did not result in a significant 

increase of cell death when compared to PRRSV infection alone, supporting that 

AppΔapxIΔapxIIC is less (if not) toxic to eukaryotic cells and that cytotoxicity is mainly 

caused by PRRSV in co-infected cells. Interestingly, this less toxic App mutant enables longer 

exposure in in vitro experiments and allowed us to observe App’s antiviral effect on PRRSV.  

The antiviral effect of AppΔapxIΔapxIIC was first observed on SJPL cells co-infected with 

PRRSV (Figure 3). Subsequently, other results showed that the antiviral activity was also 

present in the bacterial supernatant and was not due to App purified LPS, nor NOD ligands, 

but probably to low molecular weight metabolites of < 1 kDa. Inhibition of PRRSV replication 

by AppΔapxIΔapxIIC is not generated by contact between bacterial and eukaryotic host cell, 

since it was also observed with App cell culture supernatant; thus without the presence of App 

bacterial cells. Furthermore, this antiviral effect is not only observed in SJPL cells but also in 

the PRRSV natural host target cells, i.e. PAM. This suggests that the antiviral action of 

AppΔapxIΔapxIIC can be efficient in different cell species and types. Viral inhibition in PAM 

cells was complete in presence of the bacteria AppΔapxIΔapxIIC and was partial when treated 

with its cell culture supernatant. Other combinations of treatments have been tested. Data 

obtained gave some information about the mechanism of the antiviral activity of 

AppΔapxIΔapxIIC supernatant. Overall, they suggested that AppΔapxIΔapxIIC supernatant’s 

antiviral activity is not interfering with PRRSV attachment and entry. Other experiments are 
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currently in progress to further investigate by which mechanisms the AppΔapxIΔapxIIC 

supernatant is inhibiting PRRSV replication.  

Despite the fact that MARC-145 and SJPL are of monkey origin, they are phenotypically 

distinct as demonstrated by our group in Provost et al. (2012) [19]. In this previous report, we 

demonstrated that SJPL and MARC-145 cells do not have the same division rate and that the 

development of the cytopathic effect (CPE) induced by PRRSV in SJPL cells was delayed 

compared to MARC-145 cells. Furthermore, the cytokine profiles after PRRSV infection were 

different between the two cell lines. These results suggested that PRRSV infection could be 

different in each. Thus, the difference in PRRSV infection between both cell lines could 

explain the difference observed for the AppΔapxIΔapxIIC supernatant antiviral activity. 

Type I IFNs, produced by many cell types, are part of the innate immunity response [30]. 

Moreover, it is well known in the literature that type I IFNs are often part of the cellular 

response against viral infections, including PRRSV infections [23,25]. Results of this study 

showed that there is no modulation of IFNα mRNA levels. IFNβ mRNA levels were increased 

in PRRSV and in AppΔapxIΔapxIIC supernatant alone but no significant increase was 

observed in the PRRSV + AppΔapxIΔapxIIC supernatant condition when compared to mock 

infected cells. Thus, the impaired IFNβexpression following co-treatment might be due to 

PRRSV replication which might block IFN production induced by AppΔapxIΔapxIIC 

supernatant. Additionally, those results demonstrate that since PRRSV can inhibit type I IFN 

induction and signalling [31-34], antiviral activity induced by AppΔapxIΔapxIIC supernatant 

may not rely on its ability to induce IFNβ. However, this does not mean that IFNβ is not part 

of the antiviral activity of AppΔapxIΔapxIIC supernatant, since most viruses are still sensitive 

to type I IFNs.  

Type II IFNγ, mainly produced by activated T cells and Natural Killer cells, is mostly 

responsible for adaptive Th1 response, which is part of cell-mediated immunity [35]. 

Furthermore, its implication in antiviral response against PRRSV was also demonstrated 

[24,26]. Nonetheless, IFNγ mRNA levels in SJPL cells were significantly increased by 

AppΔapxIΔapxIIC supernatant alone and in PRRSV + AppΔapxIΔapxIIC supernatant 

condition. This observation might give a clue by which cellular response AppΔapxIΔapxIIC 
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supernatant induces its antiviral effect; i.e. via the increased of IFNγ mRNA levels by the cell. 

However, it is important to mention that it is not known if SJPL cells possess IFNγ receptors, 

which are necessary for IFNγ mediated signalling. Further investigations are needed to 

confirm this hypothesis. 

PRRSV can lead to persistent infections [36,37] and current PRRSV vaccines are not yet 

optimal, since they lack the ability to induce a strong immune response and since they do not 

provide complete immunity against homologous PRRSV infections (for review see [38,39]). 

Moreover, most PRRSV vaccines are live attenuated virus and thus present a safety issue; 

some vaccinated pigs were shown to produce shedding of virulent PRRSV particles [40]. 

Thus, it is important to further investigate new possible ways to control PRRSV infections. In 

that regards, an antiviral molecule or metabolite might be a good alternative to the currently 

used vaccines. Recently published studies showed few compounds that can inhibits PRRSV as 

glycosides, terpenoids, coumarins, isoflavones, peptolides, alkaloids, flavones, macrolides 

[41], N-acetylpenicillamine [42], cyclosporine A [43], sodium tanshinone IIA sulfonate [44], 

flavaspidic acid AB [45], Ribavirin [46], and morpholino oligomer [47], or compounds 

derived from plant as a polysaccharide isolated from Achyranthes bidentata [48] or a 

mushroom extract from Cryptoporus volvatus [49]. However, there is no commercially 

available antiviral drug against PRRSV on the market. 

In conclusion, to the best of our knowledge, this is the first description of an App antiviral 

activity. This study might lead to the development of a new treatment against PRRSV derived 

from App cell culture supernatant. However, more investigations are needed to identify and/or 

purify the target metabolite(s) secreted by App before generating a possible new antiviral 

molecule against PRRSV. Moreover, since we have demonstrated that the antiviral effect of 

the metabolite(s) secreted from App is not only specific to PRRSV, but also effective against 

other RNA viruses, this antiviral activity might as well lead to a new antiviral treatment. For 

example, molecules such as Ribavirin, which is currently used against human respiratory 

syncytial virus (RSV) [50,51] and hepatitis C infection [52], was initially demonstrated to 

have a broad antiviral activity against animal viruses [53]. This study might therefore allow 

the development of a new antiviral molecule against PRRSV, but also against other viruses 

such as influenza. 
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MATERIALS AND METHODS 

Cells 

All cells products were ordered from Invitrogen Corporation GibcoBRL (Burlington, ON, CA) 

unless specified. MARC-145 cells, a subclone of African green monkey kidney MA104 cells, 

were grown in minimum essential medium (MEM) supplemented with 10% of foetal bovine 

serum (FBS) (Wisent Inc, St-Bruno, QC, Canada), 0.1 mM HEPES, 2 mM L-glutamine, 10 

U/mL of penicillin, 10 μg/mL of streptomycin and 250 g/L antibiotic-antimitotic solution [54]. 

The SJPL cell line (St. Jude porcine lung epithelial cell) was provided by Dr. R.G. Webster 

(St. Jude Children’s Hospital, Memphis, TN, USA) [22] and later was demonstrated to be 

from monkey origin [21]. This cell line was grown in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% FBS (Wisent Inc), 1 mM sodium pyruvate, 2 mM L-

glutamine, 1 μM MEM nonessential amino acid, 10 U/mL of penicillin, 10 μg/mL of 

streptomycin and 250 g/L antibiotic-antimitotic solution and, 100 mg/L gentamicin. Porcine 

alveolar macrophages (PAM) were harvested from lungs of 2 to 14 weeks old pigs as 

described previously [19]. Pigs were sacrificed following ethic protocol 12-Rech-1640 

approved by our institutional ethic committee (Comité d’éthique de l’utilisation des animaux – 

CÉUA) following the guidelines of the Canadian Council on Animal Care. Briefly, an 

instillation of the lungs with PBS containing 10 units/mL penicillin, 10 µg/mL streptomycin 

and 100 mg/L gentamicin was realized. Then, phosphate buffer saline solution (PBS) was 

collected and PAM removed following low speed centrifugation. Cells were washed with 

DMEM medium complemented with 2 mM L-glutamine, 0,1 mM HEPES, 1 µM non-essential 

amino acids, 250 g/L amphotericin B (Wisent Inc), 10 units/mL penicillin, 10 µg/mL 

streptomycin and 100 mg/L gentamicin. Cells were then collected following low speed 

centrifugation and were resuspended in freezing medium (same as wash medium plus 20% 

foetal bovine serum and 10 % DMSO (Sigma-Aldrich, St-Louis, MO, USA)) and slowly 

frozen, than stored in liquid nitrogen until further utilization. PAM cells were cultured for 24 

hours in complete DMEM prior to assay. All cells were cultured and infected at 37°C in 5% 

CO2 atmosphere.  
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Bacterial and viral strains 

The App strains used in this study were the S4074 serotype 1 reference wild type strain 

(Appwt) and a mutant of this strain (MBHPP147) producing non-active ApxI and ApxII toxins 

(AppΔapxICΔapxIIC), kindly provided by Ruud P.A.M. Segers (MSD Animal Health, 

Boxmeer, The Netherlands).  App strains were cultured on brain heart infusion (BHI) broth 

and/or agar (Gibco) supplemented with 15 µg/ml nicotinamide adenine dinucleotide (NAD) at 

37°C in 5% CO2. The PRRSV strain used in this study was the Canadian genotype II reference 

strain IAF-Klop [55].  

Adherence assay 

For the adherence assay, 105 epithelial cells/well were seeded into 24 well-tissue culture plates 

(Sarstedt, Numbrecht, Germany) and incubated overnight (O/N). Cells were infected with 

PRRSV at 0.5 multiplicity of infection (MOI; virus particles or bacterial cells per cell). Appwt 

and AppΔapxIΔapxIIC from an overnight culture grown at an OD600nm of 0.6 were 

resuspended in complete cell culture medium to a concentration of 106 CFU/ml. One ml of 

either suspension was added to each well at an MOI of 10 after 72 hours PRRSV infection, 

and plates were incubated for 1, 2 or 3 hours. Non-adherent bacteria were removed by 

washing four times with Dulbecco's Phosphate-Buffered Saline (DPBS) (Gibco). Cells with 

adherent bacteria were released from the wells by adding 100 µl of 1X trypsin-EDTA (Gibco) 

and resuspended in 900 µl DPBS buffer. Serial dilutions were performed and poured on agar 

plates to determine the number of bacteria that adhered to the epithelial cells. Bacteria 

colonies were counted as colonies forming unit per well (CFU/well) as described by Auger et 

al., 2009 [20]. 

Cytotoxicity detection assay 

For the cytotoxicity detection assay, 105 epithelial cells/wells were seeded into 24 well-tissue 

culture plates (Sarstedt) and incubated O/N. Cells were infected with PRRSV at 0.5 MOI. 

Appwt and AppΔapxIΔapxIIC from an overnight culture grown at an OD600nm of 0.6 were 

resuspended in complete cell culture medium to a concentration of 106 CFU/ml. One ml of 

either suspension was added to each well at an MOI of 10 after 72 hours PRRSV infection, 
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and plates were incubated for 1 or 2 hours with Appwt or for 4, 5 and 6 hours with 

AppΔapxIΔapxIIC. The cellular cytotoxicity was determined using the lactate dehydrogenase 

(LDH)-measuring CytoTox 96 nonradioactive cytotoxicity assay (Promega, Madison, WI) as 

described by the manufacturer. Noninfected cells were used as a negative control, while total 

cell lysate was used for the 100%-cytotoxicity positive control, since all LDH is released when 

cells are mechanically lysed. Optical densities were measured at 490 nm with a Power Wave 

X340 (Biotek Instruments Inc, Winooski, VT) microplate reader and used to calculate the 

percentage of cytotoxicity [55]. 

Immunofluorescence assay 

The presence of PRRSV antigens in infected cells was determined by an immunofluorescence 

assay (IFA). Cells were infected or treated as described below. Following treatment and/or 

infections, cells were fixed with a 4% paraformaldehyde (PFA) solution prepared as 

previously described [19]. Mock-infected or non-treated cells were used as negative controls. 

After an incubation period of 20 minutes at room temperature, the PFA solution was removed 

and cells were washed three times with Phosphate buffer solution (PBS). Then, cells were 

incubated during 10 minutes at room temperature with a PBS solution containing 0.1% Triton 

X-100 for cell membrane permeabilization. After removing the Triton X-100 solution, cells 

were washed three times with a PBS-Tween 20 solution (PBS containing 0.02% Tween 20). 

Thereafter, cells were incubated 30 minutes with PBS containing 0.02% Tween 20 and 1% 

foetal bovine serum albumin. Then, the α7 rabbit monospecific antisera (anti-N PRRSV 

protein) [55] was diluted 1/100 in the blocking solution and added to the cells and incubated at 

37°C for 90 minutes. Cells were then washed and incubated for 60 minutes with the blocking 

solution containing a 1/160 dilution of anti-rabbit specific antiserum FITC conjugated 

(Sigma). Finally, cells were visualized using a DMI 4000B reverse fluorescence microscope, 

image of the cells were taken with a DFC 490 digital camera and the images were analyzed 

using the Leica Application Suite Software, version 2.4.0 (Leica Microsystems Inc., 

Richmond Hill, Canada). 
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Antiviral activity of AppΔapxIΔapxIIC against PRRSV 

Cells were infected with 0.5 MOI of PRRSV and incubated in DMEM without serum or other 

additives for 4 hours, then all non-attached virus were removed from the medium with soft 

washing step using PBS. Thereafter fresh medium was added. AppΔapxIΔapxIIC from an 

overnight culture grown at an OD600nm of 0.6 were resuspended at an MOI of 10 in complete 

cell culture medium to a concentration of 106 CFU/ml. To obtain AppΔapxIΔapxIIC UV 

inactivated, resuspended AppΔapxIΔapxIIC at an MOI 100:1 were inactivated for 2 hours 

under UV light (315 nm) in a rocking petri dish and their inactivation was confirmed by 

plating on BHI-NAD. To obtain AppΔapxIΔapxIIC supernatant, resuspended 

AppΔapxIΔapxIIC at an MOI of 10 were centrifuged at 500 g for 15 minutes and harvested 

supernatants were passed through a 0.22 µm filter to remove all residual bacteria. Bacterial 

culture supernatants were further fractionated through ultrafiltration membranes with cut-off 

of 50, 10, 3 (Amicon Ultra-15, Millipore, Billerica, MA) or 1 kDa (Macrosep 1K, Pall Life 

Sciences, Port Washington, NY) to obtain AppΔapxIΔapxIIC cell culture supernatant fractions. 

AppΔapxIΔapxIIC supernatant was also diluted 1:2, 1:10, 1:20, 1:40. One ml of the 

suspensions was added to each well 4 hours after PRRSV infection, and plates were incubated 

for 48 hours. pH measurements were performed directly in the wells of treated SJPL cells 

using an Accumet basic AB15 pH meter (Fisher Scientific, Ottawa, ON). The presence of 

PRRSV N antigen was determined by IFA. The infectious dose of the virus was determined 

from serial dilutions and calculated by the Kärber method [56]. Briefly, samples infected by 

PRRSV were subjected to three cycles of freeze-thaw and cellular suspensions were then 

clarified by low speed centrifugation at 1200g for 10 minutes. Supernatants were serially 

diluted then used to infect MARC-145 cells in a 96-well tissue culture plate. The plate was 

incubated for 96 hours. Virus titers were expressed in tissue culture infectious dose 50 per ml 

(TCID50/ml). Presence of PRRSV was also evaluated by qRT-PCR using a commercial kit 

(Tetracore Inc., Rockville, MD, USA) as previously described [57]. 

Treatment with LPS and NOD ligands  

Cells were infected with PRRSV at 0.5 MOI of in DMEM without serum and other additives 

and incubated for 4 hours. Then infected cells were washed and fresh medium was added. 
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Cells were treated with 4µg/ml of LPS purified from Appwt [58], or 100 to 1,000 ng/ml of 

C12-iE-DAP (a NOD1 ligand, InvivoGen, San Diego CA), or 100 to 1,000 ng/ml of L18-MDP 

(a NOD2 ligand, InvivoGen) for 48 hours. The presence of PRRSV N protein was determined 

by IFA. The virus titer was determined as described above. 

App cell culture supernatant antiviral activity against other DNA and RNA viruses 

The DNA genome viruses used in this experiment were: bovine herpes virus type 4 (BHV-4) 

of strain FMV09-1180503; porcine circovirus 2 (PCV2b) of strain FMV05-6302 and bovine 

adenovirus 3 (BAV3); bovine herpes virus type 1 (BHV-1); canine parvovirus (CPV); equine 

herpes virus type 1 (EHV-1). The RNA genome viruses used in this experiment were: bovine 

viral diarrhea virus type 1 (BVDV1) of strain NADL (ATCC VR-534); swine influenza H1N1 

of strain A/Swine/Saint-Hyacinthe/148/90 [59]; and Swine Influenza H3N2 of strain 

A/Swine/Quebec/4001/05 [60]. Cells were infected with each virus at different dilutions (1/10; 

1/100; 1/1000; 1/10000; 1/1000000; 1/10000000) for 4 hours in DMEM as described for 

PRRSV and than treated with AppΔapxIΔapxIIC culture supernatant for 48 hours as described 

above. The infectious dose of each virus was calculated as described above for PRRSV using 

SJPL cells. 

Analysis of cytokine mRNAs expression by real time reverse transcriptase-quantitative 

PCR 

SJPL cells and PAMs were treated and infected as described above or transfected with 

Polyinosinic–polycytidylic acid potassium salt (Poly (I:C)) [50 μg/mL] (Sigma-Aldrich Inc., 

St-Louis, USA) as a positive control for innate immunity induction, using polyethylenimine 

(PEI) [1μg/µL] (Sigma) for 48 hours or treated with 1μg/ml of lipopolysaccharide (LPS) from 

E. coli (Sigma) for 20 hours, as an IFNγ inducer. Total cellular RNA was extracted from cells 

using Trizol reagent (Invitrogen, Burlington, ON, Canada) according to the manufacturer’s 

protocol. Quantification of RNA was performed with a Nanodrop (NanoDrop Technologies, 

Inc., Wilmington, Delaware, USA). 1 μg of total RNA was reverse-transcribed using the 

QuantiTect reverse transcription kit (Qiagen, Mississauga, ON, Canada). The cDNA was 

amplified using the SsoFast EvaGreen Supermix kit (Bio-rad, Hercules, CA, USA). The PCR 

amplification program for all cDNA consisted of an enzyme activation step of 3 min at 98°C, 
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followed by 40 cycles of a denaturing step for 2 sec at 98°C and an annealing/extension step 

for 5 sec at 57°C. The primers used for amplification of the different target cDNA were 

previously described in Provost et al., 2012 [19]. All primers were tested to achieve 

amplification efficiency between 90% and 110%. The primer sequences were all designed 

from the NCBI GenBank mRNA sequences using web-based software primerquest from 

Integrated DNA technologies. The Bio-Rad CFX-96 sequence detector apparatus was used for 

the cDNA amplification. The quantification of differences between the different groups was 

calculated using the 2-ΔΔCt method. Beta-2 microglobulin (B2M) was used as the normalizing 

gene to compensate for potential differences in cDNA amounts. The non-infected PAMs and 

SJPL cells were used as the calibrator reference in the analysis.  

Statistical analyses 

A two-way ANOVA model, followed by Bonferroni post-hoc tests (Graphpad PRISM Version 

5.03 software) were used to determine if a statistically significant difference exists between 

infections performed in adherence and cytotoxicity assays. One-way ANOVA model, 

followed by Tukey's Multiple Comparison Test (Graphpad PRISM) were used to determine if 

a statistically significant difference exists between PRRSV titer (TCID50) obtained in MARC-

145, SJPL and PAM cells. Unpaired t tests were used for the qRT-PCR statistical analysis. 

Differences were considered statistically significant with a P<0.05.  
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Figure S1: NOD1 and NOD2 inhibition effect on PRRSV replication.  

Detection of the N viral protein in PRRSV infected SJPL cells by immunofluorescence. SJPL 

cells were infected with PRRSV MOI of 0.5 for 4 hours (B) and then treated with 100 µM of 

C12-iE-DAP (a NOD1 ligand) (D), or 100 µM of L18-MDP (a NOD2 ligand) (F) for 48 

hours. Control are SJPL cells untreated (A) treated only with 100 µM of C12-iE-DAP (C), or 

100 µM of L18-MDP (E) for 48 hours. White scale bar represents 200 µm. Pictures were 

taken at 100X magnification. 
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Figure S2: Antiviral activities of AppΔapxIΔapxIIC cell culture supernatant fractions against 

PRRSV.  

Detection of the N viral protein in PRRSV infected SJPL cells by immunofluorescence. SJPL 

cells were untreated (A) or infected with 0.5 MOI of PRRSV for 4 hours (B) then incubated 

with > 3 kDa (C), or < 3 kDa (D), or > 50 kDa (E), or < 50 kDa (F) fraction of 

AppΔapxIΔapxIIC cell culture supernatant. White scale bar represents 200 µm. Pictures were 

taken at 100X magnification. 
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