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Résumé 

Ce travail de thèse s’est intéressé à la plasticité cérébrale associée à la 
privation/restauration visuelle. A travers deux études transversales utilisant 

l’imagerie par résonance magnétique fonctionnelle auprès d’un groupe de 
participants présentant une cécité congénitale ou précoce (ainsi qu’auprès d’un 

groupe contrôle de participants voyants), nous avons tenté de caractériser la 
manière dont le cortex occipital - typiquement dédié au traitement de 

l’information visuelle - se réorganise afin de traiter différents stimuli auditifs. 
Nous démontrons qu’en cas de cécité précoce, différentes régions du cortex 

occipital présentent une préférence fonctionnelle pour certains types de stimuli 
non-visuels, avec une spécialisation fonctionnelle qui respecte celle de régions 

typiquement impliquées dans le traitement d’informations similaires en vision. 
Ces découvertes constituent une avancée conceptuelle concernant le rôle joué 

par les contraintes intrinsèques d’une part, et par l’expérience d’autre part, dans 
l’émergence de réponses sensorielles et fonctionnelles du cortex occipital. D’une 

part, l’observation de réponses occipitales à la stimulation auditive chez le non-
voyant précoce (réorganisation transmodale) rend compte de la capacité du 

cortex occipital à réorienter sa modalité sensorielle préférentielle en fonction de 
l’expérience. D’autre part, l’existence de modules cognitifs spécialisés dans le 

cortex occipital du non-voyant précoce, semblables à ceux du cerveau voyant, 
démontre les contraintes intrinsèques imposées à une telle plasticité. Dans une 

étude de cas longitudinale, nous avons également exploré comment les 
changements plastiques associés à la cécité interagissent avec une récupération 

visuelle partielle à l’âge adulte. Nous avons réalisé des mesures pré et post-
opératoires auprès d’un patient ayant récupéré la vision, en combinant les 

techniques comportementales ainsi que de neuroimagerie fonctionnelle et 
structurelle afin d’investiguer conjointement l’évolution de la réorganisation 

transmodale et de la récupération des fonctions visuelles à travers le temps. 
Nous démontrons que les changements structurels et fonctionnels caractérisant 

le cortex occipital du non-voyant sont partiellement réversibles suite à une 
récupération visuelle à l’âge adulte. De manière générale, ces recherches 

témoignent de l’importante adaptabilité du cortex occipital aux prises avec des 
changements drastiques dans l’expérience visuelle. 

Mots-clés: cécité, plasticité transmodale, système ventral-dorsal, restauration 
visuelle, imagerie par resonance magnétique fonctionnelle 
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Abstract 

The present Ph.D. work was dedicated to the study of experience-dependent 
brain plasticity associated with visual deprivation/restoration. In two cross-

sectional studies involving the use of functional magnetic resonance imaging in a 
group of participants with congenital or early blindness (and in a control group 

of sighted participants), we attempted to characterize the way the occipital 
cortex - typically devoted to vision – reorganizes itself in order to process 

different auditory stimuli. We demonstrate that in case of early visual 
deprivation, distinct regions of the occipital cortex display a functional 

preference for specific non-visual attributes, maintaining a functional 
specialization similar to the one that characterizes the sighted brain. Such 

studies have shed new light on the role played by intrinsic constraints on the 
one side, and experience on the other, in shaping the modality- and functional 

tuning of the occipital cortex. On the one hand, the observation of occipital 
responses to auditory stimulation (crossmodal plasticity) highlights the ability of 

the occipital cortex to reorient its preferential tuning towards the preserved 
sensory modalities as a function of experience. On the other hand, the 

observation of specialized cognitive modules in the occipital cortex, similar to 
those observed in the sighted, highlights the intrinsic constraints imposed to 

such plasticity. In a longitudinal single-case study, we further explored how the 
neuroplastic changes associated with blindness may interact with the newly 

reacquired visual inputs following partial visual restoration in adulthood. We 
performed both pre- and post-surgery measurements in a sight-recovery patient 

combining behavioral, neurostructural and neurofunctional methods in order to 
jointly investigate the evolution of crossmodal reorganization and visual 

recovery across time. We demonstrate that functional and structural changes 
evidenced in the visually-deprived occipital cortex can only partially reverse 

following sight restoration in adulthood. Altogether, our findings demonstrate 
the striking adaptability of the occipital cortex facing drastic changes in visual 

experience. 

Keywords: blindness, crossmodal plasticity, ventral-dorsal systems, sight-

restoration, functional magnetic resonance imaging. 
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Introduction 

The study of neuroplasticity has increased rapidly over the last decades, 
opening up exciting new fields of research based on the remarkable ability of 

both the young and the adult brain to be shaped by experience. The visual 
(occipital) cortex in particular has been extensively studied as a model of 

neuronal development and plasticity. Since the pioneering work of Hubel and 
Wiesel conducted in the early 1960’s, it is widely accepted that alterations in 

visual experience have the potential to modify the typical development of the 
occipital cortex (Hubel & Wiesel, 1970; Wiesel & Hubel, 1963; 1965).  

Striking demonstrations of experience-dependent plasticity in humans also 
originate from the study of individuals who are born with or have later acquired 

non-reversible blindness from a peripheral origin. In these individuals, the 
visually-deprived brain encounters important reorganizations resulting from the 

combination of the absent visual input and of an increased reliance on inputs 
provided by the spared sensory modalities.  

Findings from several studies have suggested that sensory representations 
within the cortices subtending the preserved non-visual modalities are 

significantly expanded in blind compared to sighted individuals. For instance, the 
tonotopic map is enlarged within the auditory cortex of blind individuals (Elbert 

et al., 2002) and so is the somatosensory representation of the reading fingers 
in blind proficient Braille readers (Pascual-Leone & Torres, 1993; Sterr, Müller, 

Elbert, Rockstroh, Pantev, & Taub, 1998a; 1998b). These use-dependent cortical 
reorganizations are thought to underlie changes in the perceptual auditory and 

tactile abilities of the blind (Elbert et al., 2002; Sterr, Müller, Elbert, Rockstroh, 
Pantev, & Taub, 1998a; 1998b). Aside from these examples of intra-modal 

plasticity within the auditory and the somatosensory cortices, the visually-
deprived occipital cortex itself is the locus of massive cross-modal 

reorganizations. Indeed, this large portion of the brain that is typically devoted 
to visual processing, becomes highly responsive to non-visual stimulation in 

blind subjects (for reviews see Bavelier & Neville, 2002; Frasnelli, Collignon, 
Voss, & Lepore, 2011; Pascual-Leone, Amedi, Fregni, & Merabet, 2005). In 

congenitally- and early blind individuals in particular, this cross-modal plasticity 
is considered to be functional by nature since it may correlate with superior non-

visual performance (Amedi, Raz, Pianka, Malach, & Zohary, 2003; Gougoux, 
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Zatorre, Lassonde, Voss, & Lepore, 2005) and transcranial magnetic stimulation 

(TMS) delivered on the occipital cortex alters non-visual functions (Amedi, Floel, 
Knecht, Zohary, & Cohen, 2004; Cohen et al., 1997; Collignon, Lassonde, 

Lepore, Bastien, & Veraart, 2007; Kupers et al., 2007). In addition, increasing 
evidence suggests that despite the reorientation in modality-tuning, the occipital 

cortex of early-blind individuals maintains a division of computational labor 
somehow similar to the one that characterizes the sighted brain (for reviews see 

Dormal & Collignon, 2011; Reich, Maidenbaum, & Amedi, 2012). As such, early 
blindness represents a unique model to investigate the role of sensory 

experience in shaping the modality and functional tuning of the “visual” cortex. 

Using functional magnetic resonance imaging (MRI), the empirical work 

presented in the present thesis first aimed at investigating how specific neural 
systems typically associated to the dorsal and the ventral “visual” pathways 

have evolved in case of early visual deprivation. These studies are presented in 
chapter 2 and chapter 3. 

Among individuals deprived of visual experience early in life, the rare cases 
that recover vision after longstanding visual deprivation have the potential to 

answer the crucial question of how the long-deprived and reorganized “visual” 
cortex will cope with the newly acquired visual input. Indeed, crossmodal 

plasticity documented in blind individuals inevitably raises crucial challenges for 
visual recovery, as it may prevent the deprived and reorganized occipital cortex 

from performing its original function optimally (Merabet & Pascual-Leone, 2009).  

We address this question in chapter 4, in the longitudinal case study of an 

early-onset visually impaired individual whose vision was partially restored in 
adulthood. In this study, we used fMRI in order to jointly investigate the 

evolution of crossmodal plasticity and visual recovery with the “visual” cortex.  

Before the presentation of the 3 empirical studies, chapter 1 reviews existing 

evidence of crossmodal reorganization in blindness and considers the impact this 
phenomenon may have for the outcome of surgical interventions aimed at 

restoring visual input in the blind.  



 

 

 

Chapter 1. 

Crossmodal plasticity in the blind brain 
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Crossmodal plasticity in the blind brain 

This chapter describes in detail existing evidence about the consequences of 
visual deprivation in humans, both at the behavioral and at the neural level. For 

the sake of clarity, we focus on findings reported in congenitally- and early blind 
individuals1 in the first and second part of the chapter. We discuss the existence 

of sensitive periods for crossmodal reorganization in the third section of the 
chapter. The fourth section considers restoration and rehabilitation strategies 

and provides existing evidence suggesting that crossmodal plasticity may 
interfere with the recovery of visual functions. 

1. Early evidence of crossmodal plasticity in the blind 

The development of functional MRI (fMRI) and positron emission tomography 

(PET) has allowed the non-invasive investigation of the neural correlates of 
various sensory, motor and cognitive functions in humans, with a relatively high 

spatial resolution. In order to characterize functional reorganization in early-
blind subjects, fMRI and PET studies have compared brain activations in blind 

and sighted participants either at rest or using a variety of paradigms ranging 
from passive stimulation to higher perceptual and cognitive tasks. 

In two pioneer PET studies, Wanet-Defalque et al. (1988) and Veraart et al. 
(1990) investigated cerebral glucose metabolism in human subjects who became 

blind early in life. At rest, elevated metabolic activity was disclosed in occipital 
areas of early blind individuals. This activity was significantly higher than in 

blindfolded sighted individuals (Veraart et al., 1990; Wanet-Defalque et al., 
1988) and was comparable to the one measured in sighted participants with 

opened eyes (Veraart et al., 1990). A follow-up study from the same group 
demonstrated that this elevated metabolic activity was indeed related to neural 

activity rather than to gliosis (De Volder et al., 1997). Following these seminal 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1Congenital blindness refers to individuals that were born blind and, as a result, never had 
any visual experience. Early blindness refers to cases of blindness that occurred during the 
first few years of life, generally before the age of 5, although there are exceptions (Cohen 
et al., 1999; Sadato, Okada, Honda, & Yonekura, 2002). Typically, early blind groups also 
include congenitally blind subjects. Late blindness generally refers to cases of blindness 
that occurred after puberty or in adulthood. 
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studies, increases in activation within occipital areas in early-blind individuals 

were primarily investigated in neuroimaging studies of Braille reading. 

1.1. Braille reading 

Using PET, Sadato and collaborators (1996) were among the first to 

document increases in activation in striate and extrastriate occipital areas of 
blind individuals during Braille reading compared to rest (Figure 1A) and to other 

non-Braille tactile discrimination tasks. In contrast, sighted control participants 
deactivated visual areas during tactile discrimination tasks (Sadato et al., 1996). 

Subsequent studies reported converging findings of task-related increases of 
activation in the occipito-temporal cortex of early blind individuals during Braille 

reading relative to rest (Gizewski, Gasser, de Greiff, Boehm, & Forsting, 2003; 
Sadato et al., 1996; 1998), relative to reading non-lexical Braille strings 

(Burton, Snyder, Conturo, Akbudak, Ollinger, et al., 2002a), relative to 
sweeping fingers over meaningless Braille strings (Amedi et al., 2003), relative 

to an auditory baseline (Büchel, Price, & Friston, 1998a) and relative to auditory 
words processing (i.e. controlling for implicit word processing) (Büchel, Price, 

Frackowiak, & Friston, 1998b). In these studies, the reported activations during 
Braille reading in blind individuals encompassed the striate and extrastriate 

occipital areas (but see Büchel, Price, Frackowiak, & Friston, 1998b). Unlike 
Braille and non-Braille tactile discrimination tasks (Sadato et al., 1996; 1998; 

2002), simple sensori-motor tasks involving no discrimination such as passive 
tactile stimulation (Sadato et al., 1996; 1998) and finger tapping (Gizewski et 

al., 2003) did not elicit similar occipital activations suggesting that complex 
high-level tasks only engage occipital regions in the blind. Taken together, these 

studies compellingly demonstrated that blind individuals massively activate 
occipito-temporal areas during Braille reading2. 

Neuroimaging evidence of crossmodal activations of the “visual” cortex in 
blind individuals during Braille reading does not prove that these areas are 

functionally relevant for non-visual processing. These activations may simply 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Because our empirical contribution has employed fMRI in order to investigate crossmodal 
plasticity in blind individuals, we have focused on TEP and fMRI studies in this chapter. 
Aside from this work, a wealth of electrophysiological studies have consistently 
demonstrated that electrophysiological components display a more posterior distribution in 
blind compared to sighted subjects during a variety of tasks such as Braille reading (Uhl, 
Franzen, Lindinger, Lang, & Deecke, 1991; Uhl et al., 1994), detection of deviant sounds 
in frequency (Kujala et al., 1995), or intensity (Liotti, Ryder, & Woldorff, 1998), spatial 
localization of sounds (Leclerc, Saint-Amour, Lavoie, Lassonde, & Lepore, 2000; Röder et 
al., 1999) and more recently, voice identification (Föcker, Best, Hölig, & Röder, 2012). 
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reflect an epiphenomenon resulting from irrelevant neural activations. In order 

to demonstrate a causal role between a given brain region and a particular 
perceptual or cognitive function, researchers have turned to lesions that are 

either induced by a neurological condition or elicited experimentally via 
transcranial magnetic stimulation (TMS) (“virtual lesion”) (Pascual-Leone, 

Walsh, & Rothwell, 2000). Clear evidence accounting for the necessary role of 
the occipital cortex in Braille reading comes from observations reported in a case 

study (Hamilton, Keenan, Catala, & Pascual-Leone, 2000). A woman had been 
blind since birth due to retinopathy of prematurity and was a proficient Braille 

reader. At the age of 62 years old, she suffered from a bilateral posterior artery 
stroke that lead to large bilateral occipital lesions (Figure 1B). Since then, she 

developed alexia for Braille while other more simple tactile discrimination 
abilities (e.g. tactile object recognition) remained unaffected. She described 

being able to feel Braille dots but could not make sense of this tactile 
perception. In the same vein, TMS studies have demonstrated that transient 

disruption of the medial occipital cortex induces a significant increase in error 
rates when early blind individuals read Braille letters (Cohen et al., 1997; 

Kupers et al., 2007) or embossed Roman letters (Cohen et al., 1997) whereas it 
has no effect on sighted control participants during the haptic identification of 

embossed Roman letters (Cohen et al., 1997) (Figure 1C). In contrast, TMS 
targeting the somatosensory cortex contralateral to the reading hand does not 

alter reading performance in the blind (Cohen et al., 1997; Kupers et al., 2007) 
whereas it alters performance in sighted control participants discriminating 

embossed Roman letters by touch (Cohen et al., 1997) (Figure 1C). These 
findings suggest that individuals with typical visual experience do not recruit the 

occipital cortex for tactile identification of Roman letters as early-blind 
individuals do for Braille reading and haptic identification of Roman letters 

(Cohen et al., 1997). In the latter study, Cohen and colleagues (1997) further 
reported that occipital stimulation using TMS occasionally elicited distorted 

somatosensory perceptions in early-blind subjects. This anecdotal report was 
more recently confirmed in a TMS study demonstrating that stimulation applied 

over the occipital cortex induces parasthesiae in the fingers of Braille blind 
readers in the absence of any tactile stimulation (Ptito, Fumal, de Noordhout, 

Schoenen, Gjedde, et al., 2008a). In contrast and replicating previous findings 
(Cowey & Walsh, 2000), the same experimental manipulation performed in 

individuals with typical visual experience induced phosphenes (Ptito, Fumal, de 
Noordhout, Schoenen, Gjedde, et al., 2008a). 
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Taken together, these early findings were interpreted as suggesting that, 

when deprived of visual input early in life, the occipital cortex reorganizes in 
order to perform tactile processing in a functionally-relevant manner, notably in 

order to support Braille reading. However, other studies at the time revealed 
task-dependent occipital responses in early blind subjects during various tasks 

other than tactile processing, such as during the spatial localization of sounds 
compared to rest (Weeks et al., 2000) or during mental imagery of shape 

triggered by sounds of objects compared to a control auditory condition (De 
Volder et al., 2001). Other studies, described in the next section, provided 

evidence suggesting that task-dependent increases of activation in occipital 
areas during Braille reading in the blind might underlie linguistic processes per 

se. 

Figure 1. Occipital cortex participation in Braille reading in the early blind brain. 
(A) Activation map for Braille reading compared to rest in a group of early blind 
participants. Color bar represents Z values. (B) Anatomical MRI image of the patient 
described by Hamilton et al. (2000) denoting large bilateral occipital lesions resulting from 
a cerebrovascular accident. (C) TMS applied over the mid-occipital cortex (red) alters 
performance of early blind participants reading Braille. In contrast, this has no effect on 
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the performance of sighted control participants performing a tactile discrimination task on 
embossed Roman letters. Opposite findings are observed when applying TMS over the 
somatosensory cortex contralateral to the reading hand (gray). Adapted from Sadato et al. 
(1996) (A), Hamilton et al. (2000) (B) and Cohen et al. (1997) (C). 

1.2. Language and verbal memory 

Röder and colleagues (2002) demonstrated that auditory speech processing 
elicited activations of striate and extrastriate occipital regions in congenitally 

blind subjects but not in sighted control subjects. Interestingly, activity level in 
occipital areas increased as a function of syntactic difficulty and semantic 

demands in congenitally blind participants, suggesting that these responses 
were related to linguistic/conceptual processing rather than to basic auditory 

operations (Röder, Stock, Bien, Neville, & Rösler, 2002). Focusing on semantic 
retrieval, other studies demonstrated increases in task-related occipital 

activations when early blind subjects performed semantic decisions on heard 
nouns (Noppeney, Friston, & Price, 2003) or covertly generated semantically 

related verbs to heard nouns (Amedi et al., 2003; Burton, Snyder, Diamond, & 
Raichle, 2002b) compared to control conditions matched for low-level 

characteristics. In the same vein, Burton and colleagues (2003) investigated this 
issue using lists of verbally presented words and observed preferential occipital 

activations in early-blind subjects during the covert generation of semantically-
related words relative to the covert generation of phonologically-related words 

(Burton, Diamond, & McDermott, 2003) (Figure 2A). These occipital activations 
were not observed in sighted control subjects (Figure 2A). Importantly, the 

functional relevance of occipital cortex involvement in verb generation was 
accounted by Amedi and colleagues (2004) in a TMS study. These authors 

reported that transient disruption of the left primary visual cortex (V1) increased 
the error rate during a verb generation task in early blind but not sighted 

subjects (Amedi et al., 2004) (Figure 2B). A similar trend was also observed 
when TMS was applied over the left lateral occipital complex (LO). In contrast, 

TMS applied over a control site in the somatosensory cortex (S1) did not affect 
performance in either group (Figure 2B). Interestingly, among the errors elicited 

by the application of TMS over the occipital cortex of the blind, the authors 
noted a larger proportion of semantic errors compared to phonological and 

morphosyntatic errors, suggesting that TMS interfered more specifically with 
semantic verbal processing.  
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Figure 2. Occipital recruitment during linguistic tasks in the early blind brain. (A) 
Differential activations observed in a group of sighted and early blind subjects during a 
covert verb generation task implying the generation of semantically-related vs. 
phonologically-related verbs in response to heard nouns. Large occipital activations are 
observed in early blind but not in sighted subjects. (B) TMS applied over the occipital pole 
(V1) alters behavioral performance in a similar verb generation task in early blind but not 
sighted subjects. A similar trend is observed when TMS is applied over the left lateral 
occipital complex (LO). In contrast, TMS application over the primary somatosensory 
cortex (S1) has no effect on behavioral performance in either group. Adapted from Burton 
et al. (2003) (A) and Amedi et al. (2004) (B). 

In another fMRI study (Amedi et al., 2003), congenitally blind and sighted 
control participants covertly recalled a list of previously learned abstract words 

in the absence of any sensory stimulation. Congenitally blind but not sighted 
controls showed increased activations in striate and extrastriate occipital areas 

during this verbal memory task relative to a rest condition (Figure 3, left-hand). 
At the behavioral level, congenitally blind participants outperformed the sighted 

in an old/new recognition test conducted 6 months later as well as in verbal 
memory tests from the Wechsler Intelligence Scale. Interestingly, individual 

performance on these tests positively correlated with the magnitude of V1 
activation measured during covert recall of the words in the scanner (Amedi et 

al., 2003) (Figure 3, right-hand): the higher the behavioral performance in the 
memory tests, the higher the activity measured in V1. A follow-up study (Raz, 

Amedi, & Zohary, 2005) conducted one year later with the same blind 
participants measured brain activity when these participants performed a 

recognition task on the words initially learned before the first scan. This study 
revealed that individual magnitude of activation in V1 during the recognition 

task was positively correlated to online memory performance. Altogether, these 
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findings suggest a functional involvement of the visually-deprived occipital 

cortex in episodic verbal memory and further indicate that this crossmodal 
recruitment may account for the superior verbal memory abilities observed in 

the blind at the behavioral level (Amedi et al., 2003; Röder & Rösler, 2003; 
Röder, Rösler, & Neville, 2001). 

Figure 3. Occipital involvement in episodic verbal memory in the early blind 
brain. Left-hand image displays activity observed in a group of congenitally blind subjects 
during the covert recall of a list of previously learned words (no sensory stimulation) 
compared to a rest condition. Right-hand graph plots activation of V1 during this task in 
each blind subject relative to this subject’s own behavioral performance in a verbal 
memory test from the Wechsler Intelligence Scale (immediate recall). Adapted from Amedi 
et al. (2003). 

In summary, early neuroimaging studies demonstrated a massive 

reorganization of brain functions in early blind subjects so that the occipital 
cortex, typically devoted to vision, is activated during numerous non-visual 

tasks. Importantly, this crossmodal plasticity is considered compensatory 
because it may correlate with superior non-visual performance and TMS 

delivered on the occipital cortex alters non-visual functions in the blind. Based 
on these findings, one might wonder whether the occipital cortex of the blind 

reorganizes in a general manner so that it is indifferently devoted to various 
tasks and sensory modalities, or whether sub-regions within the occipital cortex 

may develop specialized functional characteristics after early visual deprivation. 
Amedi and colleagues (2003) reported that different portions of the occipital 

cortex in congenitally blind subjects were preferentially responsive to Braille 
reading on the one hand, and verb generation and verbal memory on the other 

hand (Amedi et al., 2003). These authors were among the first to propose that, 
rather than being generally-responsive to the non-visual modalities, the visually-
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deprived occipital cortex may be organized in a topographical fashion, much like 

the visual cortex is for specific visual functions in the sighted brain.  

2. Functional specialization in crossmodal plasticity 

In sighted individuals, the existence of separate hierarchical pathways for 
object identification (the ventral “what” stream) and object localization/grasping 

in space (the dorsal “where” stream) appears as a general principle of 
organization of the visual cortices (Goodale & Milner, 1992; Haxby et al., 1991). 

Beyond this general dual-stream segregation, a division of labor further 
characterizes the visual cortices, whereby different functional regions or 

modules process different aspects of vision. In the last decade, increasing 
evidence has accounted for the idea that crossmodal plasticity in individuals 

deprived of vision early in life follows organizational principles that maintain a 
similar segregation of the “visual” cortex for non-visual processing (for reviews 

see Collignon, Voss, Lassonde, & Lepore, 2009b; Dormal & Collignon, 2011; 
Voss & Zatorre, 2012). In this perspective, specialized regions of the “visual” 

cortex in early blind individuals continue to serve the same function although 
there is a shift in the primary sensory modality on which these regions operate 

(Pascual-Leone & Hamilton, 2001). 

2.1. Dorsal visual pathway and spatial processing3 

Visual areas hMT+/V5 and dorsal V3/V3A have been extensively described as 

underlying motion perception in the visual modality (Sunaert, Van Hecke, 
Marchal, & Orban, 1999; Tootell et al., 1995; Watson et al., 1993). In blind 

individuals who have lost vision at birth or soon after birth, the putative 
homolog of these regions show responses to motion albeit in the auditory 

(Bedny, Konkle, Pelphrey, Saxe, & Pascual-Leone, 2010; Poirier et al., 2006) 
and in the tactile (Matteau, Kupers, Ricciardi, Pietrini, & Ptito, 2010; Ricciardi et 

al., 2007) modalities. Moreover, activation in response to auditory motion in 
putative homolog of area hMT+/V5 in blind individuals reflects the direction of 

perceived moving sounds (Wolbers, Zahorik, & Giudice, 2011b), a property that 
is known to characterize this region in the sighted brain for visually moving 

stimuli (Born & Bradley, 2005). These findings have accounted for the notion 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This section is a modified version of published work: Dormal, G., Lepore F., & Collignon, 
O. (2012). Plasticity of the dorsal “spatial” stream in visually deprived individuals. Neural 
Plasticity, 2012, 687659.  
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that crossmodal activations in response to auditory dynamic stimulation in these 

regions have a functional role in non-visual motion processing rather than 
representing unspecific activation. In the same vein, several studies using 

different paradigms and neuroimaging techniques have consistently 
demonstrated that spatial hearing in the early blind leads to dorsal occipital 

recruitment, mainly in the right, spatially-dominant, hemisphere. In a PET 
study, Weeks and collaborators (2000) reported that sound localization, 

compared to rest, strongly activated association areas in the right dorsal 
occipital cortex of early blind individuals but not sighted controls (Weeks et al., 

2000). Another PET study extended these findings demonstrating that several 
regions in the right dorsal extrastriate cortex correlated with sound localization 

performance, accounting for the functional relevance of these activations 
(Gougoux et al., 2005). Similar findings were later reported by Voss and 

colleagues (2008) in the left dorsal extrastriate cortex during a monaural sound 
source discrimination task (Voss, Gougoux, Zatorre, Lassonde, & Lepore, 2008). 

Interestingly, specific recruitment of right dorsal occipital regions in early blind 
individuals for spatial processing occurs not only for auditory but also for tactile 

inputs (Renier et al., 2010). 

Recently, Collignon and colleagues (2011) characterized brain activity in 

congenitally blind and sighted individuals while participants were performing a 
discrimination task on pairs of sounds differing either in terms of location in 

space or in pitch (Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 
2011b). In this study, a staircase paradigm was used in order to equalize the 

difficulty level across tasks and participants. The spatial localization task relative 
to the pitch discrimination task was shown to preferentially map onto specialized 

sub-regions of the right dorsal occipital stream in the congenitally blind group 
but not in the sighted group (Figure 4A). The two main activated regions were 

the right cuneus and the right middle occipital gyrus in the vicinity of regions 
that have previously been described in the sighted as the dorsal V3/V3A and the 

complex hMT+/V5, involved in visuospatial and visual motion processing (Haxby 
et al., 1991; Sunaert et al., 1999). Although the task implicated auditory 

localization rather than motion processing, the authors hypothesized that 
hMT+/V5 was activated because the task generated a vivid perception of 

apparent motion (Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 
2011b). Functional connectivity analyses further demonstrated that these 

occipital regions were part of a larger parieto-frontal network including 
multisensory regions (i.e. the inferior parietal lobules, the intraparietal sulcus 
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and the superior frontal gyrus) that are typically involved in spatial attention and 

awareness (Szczepanski, Konen, & Kastner, 2010) (Figure 4A). In other words, 
it appears that the dorsal occipital regions recruited by spatial hearing in the 

early blind are inherently part of the network involved in auditory localization 
(Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b). Hence, 

these authors proposed that this pattern of connectivity may constrain regions 
with a similar function to reorganize in a functionally specific manner.  

Figure 4. Recruitment of right dorsal occipital regions for spatial hearing in early 
blind individuals. (A) Activations for the spatial over the pitch processing of sounds in 
early blind subjects relative to sighted controls. The right part of the figure displays 
psychophysiological interaction results using the two main activity peaks as seed areas. 
(b) Real rTMS applied over the right dorsal extrastriate occipital cortex (BA 18) leads to a 
significant increase in error rate in early blind subjects and selectively for the sound 
location/spatial task. The histogram on the right bottom of the figure represents the 
percentage of errors in the spatial location task in early blind and sighted subjects for the 
real rTMS condition minus the sham TMS condition (isolating the effect of the TMS), as a 
function of sound position. Negative values on the x-axis are refer to the left external 
space, positive values on the x-axis refer to the right external space. Adapted from 
Collignon et al. (2011b (A), 2007 (B)). 
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TMS studies have further accounted for the functional relevance of the right 

dorsal occipital recruitment observed for spatial hearing in the early blind brain 
(Collignon et al., 2007; Collignon, Davare, Olivier, & De Volder, 2009a). Notably, 

Collignon and collaborators (2007) demonstrated that the stimulation of the 
right dorsal extrastriate occipital cortex disrupted auditory spatial localization 

abilities in early blind but not sighted controls participants, while pitch and 
intensity perception remained unaffected in either group (Collignon et al., 2007) 

(Figure 4B). Interestingly, the detrimental effect of TMS in the early blind group 
during the spatial localization task was strongly driven by a disruption in the 

ability of blind individuals to locate sounds presented at the closest position 
relative to the reference sound in the contralateral (left) field relative to the 

right-sided site of stimulation (Dormal, Lepore, & Collignon, 2012). This is 
consistent with evidence from the sighted literature documenting a contralateral 

field preference in several visual areas along the dorsal pathway including 
V3/V3A and the posterior portion of hMT+/V5 (Dukelow et al., 2001; Tootell et 

al., 1995; 1997). These results further stress the notion that crossmodal 
recruitment of the dorsal stream in early blind individuals is functionally-relevant 

and somehow follows similar computational constraints as those observed in 
sighted individuals when processing visual inputs. 

2.2. Ventral visual pathway and object identification  

Aside from the dorsal occipital recruitment for motion and spatial processing 
documented in the early blind, other studies reported activations along the 

ventral occipito-temporal pathway during tasks involving the 
identification/recognition of an auditory or a tactile stimulus. Among early 

neuroimaging studies described in the first section of this chapter, several found 
occipito-temporal activations that were more extended in the left – language-

dominant – hemisphere during tasks involving semantic decisions (Noppeney et 
al., 2003), covert speech production (Amedi et al., 2003; Burton et al., 2003; 

Burton, Snyder, Diamond, & Raichle, 2002b; Ofan & Zohary, 2007) and during 
the retrieval (Amedi et al., 2003) (Figure 3, left-hand) and recognition of verbal 

material (Raz et al., 2005). Left-lateralized striate and extrastriate occipital 
activations were reported more recently in a group of congenitally blind subjects 

(but not sighted subjects) for speech comprehension compared to meaningless 
or reversed speech (Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & Saxe, 

2011). Similarly, several early studies exploring the neural correlates of Braille 
reading in early blind individuals using different control tasks (see section 1 of 
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this chapter), reported more extended occipital activations in the left 

hemisphere (Amedi et al., 2003; Burton, Snyder, Conturo, Akbudak, Ollinger, et 
al., 2002a; Büchel, Price, Frackowiak, & Friston, 1998b; Gizewski et al., 2003). 

Most interestingly, Büchel and colleagues (1998) compellingly demonstrated 
that the reading of Braille words, when contrasted to the reading of non-words 

Braille strings, elicits focal activations in an area localized in the anterior portion 
of the left fusiform gyrus in congenitally blind subjects (Büchel, Price, & Friston, 

1998a) (Figure 5A). In the same study (Büchel, Price, & Friston, 1998a), an 
independent visual experiment performed in a group of sighted participants 

revealed that this region overlapped with a region responding selectively to 
written strings (Figure 5A), later referred to as the Visual Word Form Area 

(VWFA) (L. Cohen et al., 2000). These findings were recently replicated by Reich 
and colleagues (2011) in a separate group of congenitally blind and sighted 

participants (Reich, Szwed, Cohen, & Amedi, 2011) (Figure 5B).  

Figure 5. Braille reading in the early blind brain. Braille reading of words compared to 
non-words activates a region in the left fusiform gyrus in congenitally blind subjects as 
shown on coronal slices in (A, left-hand) and (B). This region overlaps with the VWFA 
responding selectively to written words in sighted subjects (A, right-hand). The graphic on 
the right-hand of the figure represents estimated activity for Braille reading of words 
compared to non-words in a region-of-interest corresponding to the sighted’s VWFA. 
Adapted from Büchel et al. (1998a) (A) and Reich et al. (2011) (B). 

In sighted subjects, a large portion of the lateral and ventral visual cortices, 
referred to as the lateral occipital complex (LOC), is preferentially responsive to 

pictures of objects relative to scrambled objects (Malach et al., 1995) and is well 
known for its involvement in object recognition (Grill-Spector, Kourtzi, & 

Kanwisher, 2001). Several studies have documented selective activations within 
LOC when early blind individuals process shape information about objects using 

the preserved non-visual modalities. Notably, increased activity within sub-
regions of LOC in early blind subjects was demonstrated during the tactile 

exploration of objects (Amedi, Raz, Azulay, & Malach, 2010), during shape 
imagery tasks triggered by sounds of objects (De Volder et al., 2001) or by their 
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names (Peelen, He, Han, Caramazza, & Bi, 2014) and when processing object’s 

shape with auditory “soundscapes” provided by prosthetic visual-to-auditory 
devices (Amedi, Stern, Camprodon, & Bermpohl, 2007a; Merabet et al., 2009).  

Studies in the field have further attempted to examine the role of visual 
experience in shaping category-specific representations of objects within the 

ventral visual cortex, by investigating the presence of similar category-related 
responses in people who are born blind or have lost sight early in life. For 

example, the presence of category-related patterns of activations for faces 
versus manmade objects within the fusiform gyri was reported in 4 early blind 

subjects, suggesting that visual experience is not necessary for category-related 
representations to develop in these regions (Pietrini et al., 2004). In the same 

vein, another study found that regions of the ventral stream characterized by 
category preferences for nonliving versus living objects in sighted participants 

(viewing pictures) displayed similar category preferences in 3 congenitally blind 
individuals performing a size judgment task on heard nouns of the same objects 

(Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza, 2009a). Using the 
same task, similar findings were recently reported in a group of congenitally 

blind subjects for manipulable objects (tools) in the posterior left middle 
temporal gyrus (Peelen et al., 2013) and large non-manipulable objects in the 

parahippocampal gyri bilaterally (He et al., 2013)4. Human voices are a very 
specific category of sounds considered as the auditory counterpart of faces for 

person identification (Campanella & Belin, 2007). Interestingly, regions within 
the right fusiform gyrus in the vicinity of areas involved in face processing in the 

sighted brain (Kanwisher, McDermott, & Chun, 1997; Rossion, Hanseeuw, & 
Dricot, 2012) display stronger responses to human voices relative to object 

sounds (Gougoux et al., 2009) and larger voice priming effects in congenitally 
blind individuals compared to sighted subjects (Hölig, Föcker, Best, Röder, & 

Büchel, 2014).  

In summary, whereas specific dorsal occipital regions with a right 

hemispheric dominance are activated during tasks involving spatial localization 
and motion, ventral occipital regions in the early blind seem to maintain a 

preferential coding for the processing of stimulus identity. This suggests that the 
dual-stream segregation of ventral and dorsal cortical pathways develops in the 

absence of early visual experience (Dormal & Collignon, 2011; Voss & Zatorre, 
2012). A recent study noted that the major difference characterizing tasks 
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evoking activations in the dorsal or the ventral “visual” areas in the blind may be 

their reliance on semantic information (Hölig et al., 2014). Speech 
comprehension and production, semantic processing, verbal memory, objects 

and voice identification, in contrast to spatial and motion processing, are 
cognitive functions that imply the retrieval of semantic information and its 

association with the percept such as its name or its meaning.  

Beyond this dual-stream organization of the “visual” cortex, the anatomo-

functional similarity observed between occipital regions activated by specific 
non-visual tasks in the early blind and the ones associated to analogue functions 

in the visual modality in the sighted, suggests that these areas may retain their 
functional coding ability despite visual deprivation. Hence, rather than being a 

tabula rasa at birth, the “visual” cortex appears to be organized into specific 
computational units that are biased towards the accomplishment of a particular 

function. However, the sensory input to perform this function appears to be 
experience-dependent, so that the “visual cortex” may be reoriented towards 

the non-visual modalities, at least when vision is lost early in life.  

2.3. Non-visual activations in the visual cortex of the sighted 

A growing body of evidence suggests that tactile and auditory processing 

may elicit task-specific activations in the visual cortex even in subjects with 
typical visual experience. For instance, several groups have shown that 

hMT+/V5 responds to auditory (Alink, Singer, & Muckli, 2008; Poirier et al., 
2005; Strnad, Peelen, Bedny, & Caramazza, 2013; Warren, Zielinski, Green, 

Rauschecker, & Griffiths, 2002) and tactile motion (Blake, Sobel, & James, 
2004; Hagen et al., 2002; Ricciardi et al., 2007; van Kemenade et al., 2014) in 

sighted subjects. Likewise, sub-regions of LOC are responsive when sighted 
individuals process shape information through the haptic exploration of objects 

(Amedi et al., 2010; Amedi, Jacobson, Hendler, Malach, & Zohary, 2002; Amedi, 
Malach, Hendler, Peled, & Zohary, 2001; Amedi et al., 2007; Snow, Strother, & 

Humphreys, 2014; Zhang, Weisser, Stilla, Prather, & Sathian, 2004) but not 
when they must recognize objects by their characteristic sound (Amedi et al., 

2002; 2007b). In the same vein, size judgment tasks based on heard nouns of 
living versus non-living objects (Mahon, Anzellotti, Schwarzbach, Zampini, & 

Caramazza, 2009b), manipulable (Peelen et al., 2013) and non-manipulable 
objects (He et al., 2013) lead to category-specific patterns of activation in the 

ventral visual pathway of sighted subjects. 
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Observations of overlapping task-related increases of activation in response 

to visual and non-visual stimuli in the sighted visual cortex, joined to reports of 
co-localized non-visual responses in the sighted and the early blind brain, have 

lead some researchers to propose an influential theory of the brain as a 
metamodal or supramodal structure (Pascual-Leone & Hamilton, 2001; Reich et 

al., 2012; Ricciardi & Pietrini, 2011). According to this theory originally proposed 
by Pascual-Leone and Hamilton (2001), distinct functional areas, including 

regions that are classically considered as purely unisensory, are characterized by 
the computation or function they execute (i.e. spatial processing, shape 

processing) regardless of the sensory input modality on which they operate 
(Pascual-Leone & Hamilton, 2001). These so-called “operators” may show a 

preference for a given sensory modality according to the suitability of this 
sensory modality for a given computation. For example, right dorsal extrastriate 

areas are thought to be “visual” regions only because these regions are 
originally suited to perform spatial processing, a computation for which vision 

(compared to touch or sound) provides the most informative cues (e.g. distance, 
space, size). In the case of visual deprivation however, these regions would 

execute their assigned function based on the remaining sensory information. 
According to more recent interpretations of this theory (Reich et al., 2012; 

Ricciardi & Pietrini, 2011), the “visual” cortex (and the brain in general) 
represents information in a highly abstract form and its functional organization 

develops in the absence of any visual experience. For instance, LOC was 
proposed to act as a metamodal operator for shape, subtending form processing 

independently of the modality through which this information is provided and 
independently of previous visual experience with shape (Amedi et al., 2001; 

2002; 2007b; 2010; Peelen et al., 2014; Ptito et al., 2012). In the same vein, 
the hMT+/V5 complex is considered by some as a metamodal operator for 

motion (Ricciardi et al., 2007) and the VWFA as a metamodal reading center 
(Reich et al., 2011) for reviews see (Reich et al., 2012; Ricciardi & Pietrini, 

2011).  

Most of the studies reporting crossmodal occipital task-related activations in 

sighted subjects have discussed the possible implication of mental visual 
imagery and have considered it unlikely. Nevertheless, clear evidence has 

accounted for the fact that mental visual imagery in the absence of any 
stimulation elicits reliable responses in the visual cortex of sighted subjects 

(Kosslyn et al., 1993; Slotnick, Thompson, & Kosslyn, 2005) for a review see 
(Kosslyn & Thompson, 2003), and that such mechanisms may in fact facilitate 
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performance during non-visual tasks and mediate occipital cortical involvement 

(Sathian, Zangaladze, Hoffman, & Grafton, 1997; Zhang et al., 2004). In other 
words, occipital crossmodal activation reported in sighted individuals may simply 

stem from top-down visual imagery processes triggered by somatosensory or 
auditory input, casting doubt on the idea that this involvement is “metamodal” 

or independent of sensory modality. In support of this assumption, De Volder 
and colleagues (2001) demonstrated robust and selective activations in bilateral 

LOC when sighted participants listened to object sounds and were explicitly 
asked to mentally visualize the shape of the corresponding objects (De Volder et 

al., 2001). Moreover, the observation of crossmodal responses in the sighted 
visual cortex during non-visual tasks is far from being unequivocal. Many studies 

haven’t reported such findings and others have even demonstrated deactivations 
in extrastriate visual regions of the sighted brain during non-visual tasks (Bedny 

et al., 2010; Collignon et al., 2013; Gougoux et al., 2005; Lewis, Beauchamp, & 
DeYoe, 2000; Renier et al., 2010; Saenz, Lewis, Huth, Fine, & Koch, 2008; Voss, 

Lepore, Gougoux, & Zatorre, 2011), possibly as a result of inhibitory 
mechanisms acting in order to reduce interference from distracting visual inputs 

(Laurienti et al., 2002).  

3. Sensitive periods for crossmodal plasticity in the blind 

Most research demonstrating crossmodal reorganization and superior 
behavioral performance in the blind has been carried out in individuals who are 

blind since birth or have lost sight early in life. Investigating those who have lost 
sight later in life, after the development of the visual system, provides a unique 

window into the existence of sensitive periods modulating the effects of visual 
deprivation on the reorganization of the occipital cortex. One of the pioneer 

studies investigating glucose metabolism in blind human adults at rest also 
examined late blind individuals (Veraart et al., 1990). Early blind subjects 

displayed larger activity in the occipital cortex compared to sighted control 
individuals with eyes closed, whereas late blind individuals showed the opposite 

pattern (Figure 6). Hence, the onset of visual deprivation is likely to play a 
determining role in the changes encountered by the occipital cortex following 

visual deprivation. In line with this assumption, a couple of studies suggested 
the existence of a critical period, beyond which visual deprivation leads to little 

or no crossmodal reorganization in the occipital cortex, especially in V1 (Cohen 
et al., 1999; Sadato et al., 2002). However, this view was challenged by studies 

demonstrating that the visually-deprived brain is capable of experience-
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dependent plasticity even in adulthood, albeit to a lesser extent than in early 

blind individuals. 

In a PET study, Büchel and colleagues (1998) were among the first to 

demonstrate the existence of task-dependent activations of occipital areas in 
late-onset blind individuals during Braille reading and auditory word processing 

(Büchel, Price, Frackowiak, & Friston, 1998b). Similar findings were 
subsequently reported for a variety of tactile and of verbal auditory tasks in a 

series of studies conducted by Burton and collaborators (Burton et al., 2003; 
Burton, Sinclair, & McLaren, 2004; Burton, Snyder, Conturo, Akbudak, Ollinger, 

et al., 2002a; Burton, Snyder, Diamond, & Raichle, 2002b). In all of these 
studies except one (Büchel, Price, Frackowiak, & Friston, 1998b), task-

dependent occipital activations during non-visual processing were somewhat 
more extended in early blind compared to late blind subjects. Aside from these 

quantitative differences, crossmodal plasticity in those who have lost sight later 
in life seems to also differ qualitatively from the one that characterizes the 

occipital cortex of early blind individuals (for a review see Voss, 2013), notably 
in terms of functional relevance, and of functional specialization. 

Figure 6. Glucose metabolism at rest in sighted and blind subjects. Glucose 
metabolism maps are displayed in a sighted subject with eyes opened (top-left) and eyes 
closed (top-right), in an early blind subject (bottom-left) and in a late blind subject 
(bottom-right). Glucose utilization is more elevated in the occipital cortex of early blind 
subjects than in sighted subjects with eyes closed and in late blind subjects. Adapted from 
Veraart et al. (1990). 
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3.1. Functional relevance of late acquired blindness 

Although occipital activations were documented in late blind subjects when 
performing an auditory spatial localization task (Voss et al., 2008; Voss, 

Gougoux, Lassonde, Zatorre, & Lepore, 2006), this crossmodal activity has not 
been associated with enhanced behavioral abilities, unlike what is typically 

reported in early blind individuals. Voss and collaborators (2008) reported that 
occipital regions that were negative predictors of behavioral performance in an 

auditory localization task were the regions most strongly activated in late blind 
subjects (Voss et al., 2008). Hence, far from being beneficial, crossmodal 

activity may even be detrimental in cases of late onset visual deprivation. This 
observation parallels the finding of a recent fMRI study conducted in a group of 

late blind participants scanned while performing pitch and spatial discrimination 
tasks (Collignon et al., 2013). In this study, regression analyses were performed 

between the number of years of total blindness and brain activity triggered by 
auditory processing. Surprisingly, the strength of auditory activity measured in 

several regions of the occipital cortex was inversely related to the total duration 
of blindness. In other words, those individuals who were in the dark for a 

shorter amount of time were the ones displaying the largest crossmodal activity 
in these occipital regions. This finding is thus opposed to what would have been 

expected if activity in these regions reflected a compensatory effect of visual 
deprivation (related for example, to a longer experience in relying on auditory 

and tactile modalities). Further accounting for the functional irrelevance of 
crossmodal occipital activations observed in late blind, Cohen and colleagues 

(1999) demonstrated that transient disruption of the medial occipital cortex 
using TMS affected Braille reading performance in congenitally and early blind 

participants, but not in late blind subjects (Cohen et al., 1999). Together, these 
findings argue against a compensatory effect of crossmodal activity in late-onset 

blind individuals. 

3.2. Functional specialization of late acquired blindness 

As described in Section 2 of this chapter, increasing evidence has accounted 

for the notion that the functional organization of the “visual” cortex is somewhat 
preserved after visual deprivation, at least when occurring early in life. Recent 

research has begun to examine the existence of sensitive periods for the 
maintenance of functional specialization in crossmodal plasticity. Collignon and 

colleagues (2013) reported robust crossmodal recruitment of occipital cortex 
during auditory processing in both congenitally blind and late blind individuals 
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irrespective of the task. Crucially however, the preferential activation of right 

dorsal occipital regions for auditory spatial (over pitch) processing and its 
increased connectivity with a fronto-parietal network was only observed in the 

former group (Collignon et al., 2013) (Figure 7A, left-hand). Similar findings 
were reported in another study investigating speech comprehension in 

congenitally blind and late blind individuals (Bedny, Pascual-Leone, Dravida, & 
Saxe, 2012). Again, while robust crossmodal occipital activations were observed 

in both blind groups for unspecific auditory processing (speech relative to rest), 
only the congenitally blind displayed left-lateralized occipital responses for 

speech (over backward speech) processing (Bedny et al., 2012) (Figure 7A, 
right-hand). In the same vein albeit using a region-of-interest approach, Bedny 

and colleagues (2010) demonstrated that the putative homolog of hMT+/V5 
responded to auditory moving sounds in congenitally blind subjects but not in 

sighted controls or late blind participants (Bedny et al., 2010) (Figure 7B). 
Interestingly, no motion preference was observed in an early-blind individual 

who had functional vision until he lost it between 2 and 3 years of age (Figure 
7B). Taken as a whole, these observations are suggestive of an early sensitive 

period during which the absence of visual input drives different occipital regions 
to develop selective crossmodal responses to specific non-visual inputs.  

Altogether, these findings support the notion that the expression of 
blindness-induced plasticity is critically dependent on the developmental period 

of blindness onset. Unlike crossmodal plasticity observed in early-blind subjects, 
the same phenomenon in late-onset blind subjects appears to be less extended 

and, most importantly, to be neither compensatory, nor functionally specific. 
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Figure 7. Sensitive periods for functional specialization in the occipital cortex of 
the blind. Although crossmodal unspecific activations for auditory processing are present 
in the occipital cortex of the late blind (not shown here), only congenitally blind display 
specific responses for spatial localization of sounds in right dorsal extrastriate occipital 
areas (A, left-hand), and specific responses to heard speech in the left ventral occipito-
temporal cortex (A, right-hand). Similarly, visual area hMT+/V5 responds to auditory 
looming sounds with high (straight lines) and low motion content (dashed lines) only in 
congenitally blind subjects, but not in sighted or late blind subjects, nor in an early blind 
subject who lost sight at the age of 2.5 years old. RH: right hemisphere, LH: left 
hemisphere. Adapted from Collignon et al. (2013) (A, left-hand), Bedny et al. (2010) (B) 
and Bedny et al. (2012) (A, right-hand). 
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4. Outcomes for visual restoration and rehabilitation5  

Understanding the plastic changes occurring along the visual pathway of the 

early- and the late- blind is of primary importance given current advances in the 
field of sensory rehabilitation technologies, whether they are of the invasive or 

of the non-invasive type (Collignon, Champoux, Voss, & Lepore, 2011a; 
Merabet, Rizzo, Amedi, Somers, & Pascual-Leone, 2005; Reich et al., 2012; 

Veraart, Duret, Brelén, Oozeer, & Delbeke, 2004).  

4.1 Non-invasive interventions 

Non-invasive interventions such as sensory-substitution devices, may take 

advantage of added neural resources in the processing of the remaining senses 
resulting from crossmodal plasticity (Reich et al., 2012). The concept of sensory 

substitution refers to the use of one sensory modality to supply information 
normally gathered from another sense (Bach-y-Rita, Collins, Saunders, White, & 

Scadden, 1969). Probably the most well-known and successful example is Braille 
reading, which allows provinding reading material to the blind brain through the 

spared tactile modality. Other examples concern the use of the long-cane as an 
extension of the body (Serino, Bassolino, Farnè, & Làdavas, 2007) and the use 

of sounds reverberation to locate obstacles and discriminate object size (Arnott, 
Thaler, Milne, Kish, & Goodale, 2013; Stroffregen & Pittenger, 1995). Such 

abilities represent domains of high proficiency in blind individuals, resulting from 
the combination of extensive training programs and neuroplastic changes. For 

instance, Braille reading skills are the result of extensive practice (Wong & 
Gnanakumaran, 2011) and, as reviewed earlier in this chapter, are associated 

with occipital function in the early blind brain (Büchel, Price, Frackowiak, & 
Friston, 1998b; Cohen et al., 1997; Hamilton et al., 2000; Kupers et al., 2007; 

Sadato et al., 1996; 1998; 2002). Other more sophisticated devices aimed at 
transforming visual information into auditory or tactile signals have also been 

developed (Bach-y-Rita, Kaczmarek, Tyler, & Garcia-Lara, 1998; Capelle, 
Trullemans, Arno, & Veraart, 1998) and have proven their efficacy for the 

recognition of complex shape information (Amedi et al., 2007; Arno, Capelle, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This section is a modified version of published work: Collignon, O., Dormal, G. & Lepore, 
F. (2012). Building the brain in the dark: functional and specific crossmodal reorganization 
in the occipital cortex of blind individuals. In: Jenkin, M., Steeves, J. & Harris, L. (Eds). 
Plasticity in sensory systems, Cambridge, University Press. 
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Wanet-Defalque, Catalan-Ahumada, & Veraart, 1999; Arno et al., 2001; Striem-

Amit, Dakwar, Reich, & Amedi, 2012), the localization of objects (Proulx, 
Stoerig, Ludowig, & Knoll, 2008; Renier & De Volder, 2010; Renier et al., 2005; 

Striem-Amit et al., 2012) or the navigation in a “virtual” environment (Segond, 
Weiss, & Sampaio, 2005). While these devices presently suffer from a poor 

ergonomic value, as they are not yet at a point were they can be used efficiently 
in everyday life, they represent a potentially promising tool for rehabilitation in 

blind individuals. Moreover, because these non-invasive techniques of 
rehabilitation take advantage of the preserved non-visual abilities in the blind, 

they may be expected to be more efficient in early blind individuals rather than 
in late blind subjects.  

4.2. Invasive interventions 

Surgical interventions to restore sight rely on the integrity of the deprived 
visual system. In this case, crossmodal reorganization following visual 

deprivation might prevent the reorganized cortex from performing its original 
function efficiently, especially in those who have lost sight early in life 

(Collignon, Champoux, Voss, & Lepore, 2011a; Merabet et al., 2005; Reich et 
al., 2012; Veraart et al., 2004). In fact, the functional relevance and functional 

specificity characterizing crossmodal plasticity in the early blind brain is likely to 
interfere with the proper reacquisition of vision. In the same vein, the 

deterioration of optic and geniculo-cortical tracts associated to early visual 
deprivation 6  (Bridge, Cowey, Ragge, & Watkins, 2009; Noppeney, Friston, 

Ashburner, Frackowiak, & Price, 2005; Pan et al., 2007; Park et al., 2007; Ptito, 
Schneider, Paulson, & Kupers, 2008b; Shimony, 2005; Shu, Li, Li, Yu, & Jiang, 

2009; Wang et al., 2013) is likely to compromise visual recovery. Support for 
the assumption that crossmodal plasticity might interfere with visual restoration 

comes from cases of sight recovery after longstanding blindness on the one 
hand, and from research conducted on deaf cochlear implant users on the other.  

4.2.1. Cases of sight-recovery 

Reported cases of sight-recovery individuals in adulthood following early-
onset blindness have been associated with poor recovery of visual functions 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6Disuse-atrophy of the geniculo-cortical tracts has also been reported in late blind subjects 
(Voss, Pike, & Zatorre, 2014; Wang et al., 2013) although such findings are somewhat 
inconsistent (Schoth, Burgel, Dorsch, Reinges, & Krings, 2006; Zhang, Wan, Ge, & Zhang, 
2012). 
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(Ackroyd, Humphrey, & Warrington, 1974; Carlson, Hyvärinen, & Raninen, 

1986; Fine et al., 2003; Gregory, 2003; Gregory & Wallace, 1974; von Senden, 
1960). Animals deprived of visual input during the critical period are functionally 

blind after re-opening of the eyes (Carlson, Pertovaara, & Tanila, 1987; 
Hyvärinen, Carlson, & Hyvärinen, 1981). These poor outcomes have been 

attributed to the idea that early visual deprivation deeply and permanently 
affects the development of the visual cortex and its ability to process visual 

information. In humans, two cases of sight-recovery, SB and MM, have been 
quite extensively described in the scientific literature (Fine et al., 2003; Gregory, 

2003; Gregory & Wallace, 1974). SB lost effective sight at 10 months of age and 
received a corneal graft after fifty years as a blind person. MM became blind at 3 

years old and received stem-cell transplant in his right eye at the age of 46. SB 
and MM presented striking similarities in their visual disabilities following sight 

restoration. Despite the fact that their retinas regained some functionality, they 
both encountered extreme difficulties interpreting what they saw, suggesting 

that these deficiencies were from central rather than from peripheral origins. 
Although they could recognize colors and simple shapes quite accurately, 

recognition of complex shapes (including faces and everyday life objects), 
perception of depth cues as well as detection of illusory contours were all 

abilities that were highly altered. In MM, these visual deficits were further 
accounted by neuroimaging evidence showing a massive reduction of activation 

to faces and objects in the fusiform and lingual gyri bilaterally (i.e., brain areas 
usually devoted to object and face perception) (Fine et al., 2003) (Figure 8C, 

left-hand) and an abnormal neural representation of the visual field (Levin, 
Dumoulin, Winawer, Dougherty, & Wandell, 2010) (Figure 8B). Seven years 

after the intervention, he still had poor spatial resolution and limited visual 
abilities that prevented him from efficiently relying on his vision in every day life 

(Levin et al., 2010; Saenz et al., 2008). In contrast to these marked difficulties 
encountered by SB and MM, motion perception abilities appeared to be quite 

well preserved in both cases despite years of blindness. MM for instance 
performed within normal limits in several motion tasks, whether he had to 

detect the direction of a moving pattern, or perceive the orientation or the shape 
of a moving object. Similarly, Gregory and Wallace (1963) reported that SB was 

only able to recognize certain objects in the environment provided they were 
moving. As such, motion cues constituted information on which these patients 

could rely more confidently in order to use their newly acquired vision in their 
day-to-day activities. Consistently with these preserved motion perception 
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abilities, fMRI measures in MM documented normal size of area hMT+/V5 and 

normal activation in response to moving versus stationary visual stimuli when 
tested within months following sight restoration (Fine et al., 2003) (Figure 8C, 

right-hand) as well as 7 years later (Saenz et al., 2008) (Figure 10). In marked 
contrast to deficiencies observed in several aspects of vision, the preservation of 

motion perception abilities in both patients were interpreted as resulting from an 
earlier development of motion compared to form processing, the former being 

therefore more established prior to visual deprivation (Fine et al., 2003; Saenz 
et al., 2008)7.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 The pattern of preserved and deficient visual abilities reported in these patients parallels 
observations reported in individuals who were visually-deprived for a short period of time 
early during development because they were born or developed dense bilateral cataracts 
which were then surgically removed. These studies have documented epochs of time 
during development in which visual experience is necessary for the later undisturbed 
development of specific aspects of vision and have stressed that specific visual functions 
may have different sensitive periods (Lewis & Maurer, 2005). For instance, visual 
deprivation at birth, even when ending in the first two years of life, causes permanent 
deficits in visual acuity (Ellemberg, Lewis, Maurer, Brar, & Brent, 2002), sensitivity to mid- 
and high- spatial frequencies (Ellemberg, Lewis, Maurer, Lui, & Brent, 1999; Maurer, 
Ellemberg, & Lewis, 2006), configural/holistic face processing (Le Grand, Mondloch, 
Maurer, & Brent, 2001; 2004), discrimination of faces from different viewpoints (Geldart, 
Mondloch, & Maurer, 2002; Putzar, Hötting, & Röder, 2010), detection of illusory contours 
(Putzar, Hötting, Rösler, & Röder, 2007) and sensitivity to the global direction of a 
unidirectionally moving stimulus (Ellemberg et al., 2002; Hadad, Maurer, & Lewis, 2012). 
In contrast, sensitivity to low spatial frequencies (Ellemberg et al., 1999) and perception 
of biological motion (Hadad et al., 2012) can fully recover from a period of early 
deprivation since birth. Interestingly, the loss of sight after a few months of age preserves 
the global detection of motion even when the period of blindness is extended as it is the 
case for SB and MM (Fine et al., 2003; Gregory & Wallace, 1974) but still can dramatically 
impair letter acuity (Lewis & Maurer, 2005) and peripheral light sensitivity (Bowering, 
Maurer, Lewis, & Brent, 1993). Although behavioral studies have suggested that detection 
of large shapes including facial features and face external contour can resist a period of 
early visual deprivation (Geldart et al., 2002; Le Grand et al., 2001; 2004; Mondloch et 
al., 2013; Putzar et al., 2010), recent EEG studies have demonstrated that the 
electrophysiological markers of face detection (Bentin, Allison, Puce, Perez, & McCarthy, 
1996) differ in individuals lacking early visual experience compared to individuals with 
typical visual experience (Mondloch et al., 2013; Röder, Ley, Shenoy, Kekunnaya, & 
Bottari, 2013) and to individuals who have developed visual impairment later in life (Röder 
et al., 2013). 
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Figure 8. Findings collected in studies carried out with sight-recovery subject 
MM. (A) MM's contrast sensitivity as a function of spatial frequency measured 
psychophysically 5 to 21 months after surgery. (B) Visual field eccentricity representation 
(central 14°) in medial occipital cortex of MM's left (left panel) and right (right panel) 
hemispheres. For comparison, visual field representation is also displayed for a sighted 
control subject. MM’s eccentricity map in peri-calcarine cortex differs from the controls as 
it shows a more extended representation of the peripheral visual (beyond about 10°) 
together with a lack of foveal representation at the occipital pole (below about 3°). (C, 
left-hand) Left hemisphere activation in response to faces versus objects (red–orange 
regions respond more to faces and green–blue regions respond more to objects). The 
control subject shows a typical pattern of activation, with large contiguous regions 
responding more either to faces or objects in the fusiform gyrus (FuG) and lingual gyrus 
(LiG). In contrast, MM shows little activity to objects, and almost no activity to faces. (C, 
right-hand) In contrast, motion selective responses in area hMT+/V5 in MM are 
comparable to controls both in terms of strength and extent. Adapted from Fine et al. 
(2003) (A, C) and Levin et al. (2010) (B). 

A recent study reported the case of two congenitally blind subjects treated 
for bilateral cataract after 7 and 13 years of blindness, respectively, and of an 

early-onset visually-impaired individual (pre-corrective visual acuity: 20/900) 
who received optical correction at the age of 29 years old (Ostrovsky, Meyers, 



 

	
   42 

Ganesh, Mathur, & Sinha, 2009). As observed in SB and MM, these patients 

presented strong deficits in form perception. They perceived objects as distinct 
and separate patches of colors and had a hard time putting them together as a 

whole. However, performance in form and object recognition was greatly 
improved by the introduction of motion cues. Further, their ability to recognize 

static images of objects was higher for images of objects that typically move 
(i.e. a face, a bird as opposed to a flower or a telephone). Hence, it was 

suggested that motion information in an object might favor binding of the 
constituent parts together into a unique representation, allowing these subjects 

to recognize these objects even when they were still. Despite the fact that the 
human brain appears to retain an impressive capacity for visual learning well 

into late childhood (Held et al., 2011; Kalia et al., 2014; Ostrovsky et al., 2009; 
Ostrovsky, Andalman, & Sinha, 2006), an important point raised by these 

studies in sight-restored patients is that early intervention is often a good 
predictor of visual abilities in adults. In the particular case of congenital 

blindness, sight restoration in adults may be less beneficial than intuitively 
expected, notably because of the structural (deterioration of the visual tracks) 

and functional (crossmodal plasticity) changes that are encountered by the 
deprived visual cortices (Bavelier & Neville, 2002; Noppeney, 2007). 

4.2.2. Insights from deaf cochlear implant users 

Another more straightforward line of evidence accounting for the idea that 
crossmodal plasticity is likely to challenge sensory recovery stems from research 

conducted on deaf individuals who receive cochlear implants to restore auditory 
input. Paralleling findings in the blind, research conducted on deaf individuals 

has revealed task-related crossmodal visual activity in the sensory-deprived 
auditory cortices (for reviews see Bavelier & Neville, 2002; Frasnelli et al., 

2011). Recent research on early deaf cats further suggests that this crossmodal 
reorganization may be functionally specific (Lomber, Meredith, & Kral, 2010; 

Meredith et al., 2011; for a review see Dormal & Collignon, 2011). 

It was initially thought that hearing abilities following cochlear implants were 

mainly predicted by the duration of deafness (Lee et al., 2001; O'Donoghue, 
Nikolopoulos, & Archbold, 2000). However, the latter was shown to only account 

for 9% of the variance in implant outcome (Green et al., 2007), suggesting that 
other factors should be taken into consideration. A related predictor was 

identified by Lee et al. (2001) who measured glucose metabolism at rest using 
PET in a group of pre-lingually deaf children before they underwent cochlear 
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implantation (Lee et al., 2001). These authors demonstrated that as children 

grew older and the duration of deafness increased, the extent of 
hypometabolism (i.e. number of hypometabolic voxels) measured in the 

auditory-deprived temporal cortices decreased. Most importantly, the extent of 
pre-operative hypometabolism measured in these regions was a positive 

predictor of the speech abilities of these children assessed post-implantation. In 
other words, a longer duration of deafness was associated with a smaller extent 

of hypometabolism in the auditory cortices before cochlear implantation and to a 
worse outcome in speech performance after cochlear implantation. In the same 

vein, it was later demonstrated that weak pre-operative resting state metabolic 
activity in the superior temporal sulcus and to some extent in the right primary 

auditory cortex were associated to higher speech performance scores assessed 3 
years post-implantation, even when factoring out the confounding effect of age 

at implantation (Lee et al., 2007) (Figure 9A). These authors proposed that the 
lack of hypometabolism observed in auditory-deprived temporal cortices may 

reflect their colonization by the remaining senses, a phenomenon that may 
hinder the ability of these regions to process auditory input provided by cochlear 

implants (Lee et al., 2001; Lee et al., 2007).  

Accounting for this hypothesis, visual evoked potential studies have reported 

a negative impact of crossmodal reorganization in temporal cortices on the 
outcome of cochlear implant use (Buckley & Tobey, 2011; Doucet, Bergeron, 

Lassonde, Ferron, & Lepore, 2006; Sandmann et al., 2012). More specifically, 
visual crossmodal responses measured over the right auditory cortex in cochlear 

implant users are negatively correlated with speech perception scores (Buckley 
& Tobey, 2011; Sandmann et al., 2012). Although Buckley and Toby (2011) 

reported that crossmodal activity accounted for speech performance only in pre- 
but not in post-lingually hearing impaired cochlear implant users, Sandmann et 

al. (2012) identified this effect in a group of post-lingually deaf cochlear implant 
users. In fact, similar findings were reported in a PET study (Strelnikov et al., 

2013) (Figure 9B). In this study, resting state brain activity in the right superior 
temporal gyrus measured shortly after cochlear implantation (T0) was 

negatively correlated to speech performance assessed 6 months later, extending 
the findings of Lee et al. (2007) to post-lingually deaf cochlear implant users. 

Interestingly, the same finding was reported when participants were scanned 
during a challenging visual (speech lip-reading) discrimination task, suggesting 

that crossmodal reorganization of the auditory association cortices may 
compromise auditory recovery (Strelnikov et al., 2013). The same group of 
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post-lingually deaf participants were scanned again between 3 to 15 months 

after cochlear implantation (T1) (Rouger et al., 2012). In two auditory areas, 
namely the right posterior and anterior STS, crossmodal activations during the 

visual task were significant at T0 but not at T1, although this difference reached 
significance only in the anterior area. 

Figure 9. Inverse correlation between crossmodal plasticity in the deaf auditory 
cortex measured with PET and speech performance after cochlear implantation. 
(A) Pre-operative resting state glucose metabolism in the superior temporal sulcus is 
inversely related to 3 years post-operative speech performance in pre-lingually deaf 
cochlear users. (B) Similar findings are shown for the right superior temporal gyrus in 
post-lingually deaf cochlear users at rest when relating brain activity shortly after cochlear 
implantation to speech performance 6 months later. Adapted from Lee et al. (2007) (A) 
and Strelnikov et al. (2013) (B). 

Together, these studies suggest that crossmodal plasticity in the deprived 

sensory cortices may be detrimental for sensory recovery not only in early onset 
sensory-deprived individuals but, to some extent, even in those individuals who 

lose sensory input later in life. As stated earlier, empirical investigations of this 
question in visually-deprived individuals are very scarce. Since the advent of 

neuroimaging, only one fMRI study jointly investigated occipital visual and 
crossmodal responses in MM and in another early blind patient whose vision was 

partially restored in adulthood (Saenz et al., 2008). This study demonstrated 
robust and specific crossmodal auditory motion responses coexisting with 

regained visual motion responses in area hMT+/V5 (Figure 10). However, since 
this study was carried out several years after sight restoration, no observations 



 

	
   45 

were reported about the evolution of the occipital cortex functional tuning before 

and after sight was regained. 

Figure 10. Surface maps of auditory and visual motion responses in hMT+/V5 in 
sighted controls subjects and in two sight-recovery subjects, MM and MS. Yellow 
regions responded more to moving relative to stationary auditory white noise. Shown in 
green and blue are hMT+/V5 location as determined by a visual motion localizer in the 
same subjects. Note the near complete overlap (very little blue) in subjects MM and MS 
indicating co-localization of hMT+/V5 for visual and auditory motion processing. Adapted 
from Saenz et al. (2008). 
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5. Summary and conclusions 

In the present chapter, we have reviewed compelling evidence that the 

visually-deprived occipital cortex strongly responds to auditory and tactile 
stimulation, a phenomenon referred to as crossmodal plasticity. In those who 

lost sight early in life, this crossmodal reorganization is thought to be 
functionally relevant since it may be associated with compensatory behavioral 

abilities in the remaining senses (Amedi et al., 2003; Gougoux et al., 2005) and 
TMS delivered on the occipital cortex alters behavioral performance in several 

non-visual tasks (Amedi et al., 2004; Cohen et al., 1997; Collignon et al., 2007; 
Kupers et al., 2007). Moreover, accumulating evidence suggests that the 

functional organization of the occipital cortex is preserved in early blind 
individuals (for reviews see (Dormal & Collignon, 2011; Reich et al., 2011; 

Ricciardi & Pietrini, 2011). Interestingly, the nature of the neuroplastic changes 
observed in blind individuals seems to depend on the period of development 

during which vision is lost.  

Within this theoretical framework, the empirical work presented in the 

following chapters aimed at investigating the role of visual experience in shaping 
the modality- and functional specialization of neural systems typically associated 

with functions of the dorsal and of the ventral visual pathways. Using fMRI, we 
characterized brain responses to different types of auditory stimuli aiming at 

targeting these two streams in a group of early-onset totally blind participants 
and in a group of matched sighted control participants. These studies are 

presented in chapter 2 and chapter 3, respectively. In chapter 2, we revisited 
the question of auditory motion selectivity in the reorganized occipito-temporal 

cortex of early blind individuals by using whole-brain analyses and stimuli only 
differing in motion content. Indeed, because previous studies exploring this 

question have used conditions differing in terms of low-level features of the 
stimuli or focused their analyses within regions of interest, the question of 

whether specific “visual” regions (e.g., hMT+/V5) may show a unique and 
selective contribution to auditory motion processing in the early blind remained 

unanswered. Moreover, we tested whether looming/receding sounds, as 
compared to laterally moving sounds, elicited specific reorganizations in the 

blind occipito-temporal cortex. Indeed, in-depth motion in the visual modality is 
a crucial cue for efficient locomotion and heading (Britten & van Wezel, 1998), 

and relies on specific visual cortical structures (De Jong, Shipp, Skidmore, 
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Frackowiak, & Zeki, 1994; Morrone, Tosetti, Montanaro, & Fiorentini, 2000; 

Wunderlich et al., 2002).  

In the second study presented in chapter 3, we investigated whether 

category-specific and topographically organized crossmodal responses to voices 
and object sounds exist in the ventral occipito-temporal cortex. Regarding object 

sounds more specifically, we investigated whether sounds of objects that do not 
explicitly convey shape-related information may elicit selective responses within 

LOC in early blind individuals. Indeed, an influential theoretical account proposes 
that cross-modal involvement of LOC (e.g. tactile exploration of objects) 

underlies knowledge of shape independently of modality through which this 
information is conveyed and independently of visual experience (Amedi et al., 

2007; 2010; Peelen et al., 2014; Ptito et al., 2012). However, whether 
crossmodal responses in LOC during object identification are solely related to the 

processing of shape remains unknown. 

In the third study presented in chapter 4, we had the opportunity to jointly 

investigate the evolution of crossmodal plasticity and visual recovery in an early-
onset visually impaired individual, KL, who partially recovered sight at the age of 

47 years old. KL was tested on 3 separate sessions taking place 3 weeks prior to 
as well as 1.5 and 7 months after surgery using identical behavioral, structural 

and functional MRI paradigms. This unique case study provides unprecedented 
information about how regained visual functions interplay with the crossmodally 

reorganized occipital cortex of a person with longstanding and severe visual 
impairment.  



Chapter 2. 

Investigating auditory motion processing in the 
occipito-temporal cortex of early blind                        

and sighted individuals8  

Abstract  

Early blindness represents a unique model for investigating the role of visual 
experience in the functional development of specific brain regions that are 

normally devoted to a particular aspect of vision. The hMT+/V5 complex has 
been extensively documented as a region underlying visual motion perception in 

the sighted brain. In-depth motion in particular elicits distributed activations in 
ventral extrastriate occipital regions. Here, we aimed at identifying how the 

occipital cortex selectively engages in motion processing depending on visual 
experience since birth. Using fMRI, brain responses to in-depth, laterally 

moving, and static sounds were recorded in a group of early blind (EB) and 
blindfolded sighted control participants (SI). Univariate whole brain analyses 

demonstrated that a single region in the right middle temporal gyrus showed a 
strong functional selectivity for both in-depth and laterally moving sounds in EB. 

This region largely overlapped with the right hMT+/V5 area localized in an 
independent visual experiment performed in the SI group. Moreover, in-depth 

moving sounds elicited specific activity in bilateral ventral occipital cortex in EB 
compared to SI, whereas a similar finding was observed in SI in the visual 

modality. Despite the absence of auditory-driven motion activity in area 
hMT+/V5 in SI, multivariate pattern analyses indicated that crossmodal motion 

information was present in this region in both EB and SI, although it was 
significantly more robust in EB. Altogether, these results demonstrate that the 

reorganized occipito-temporal cortex of EB is segregated into distinct functional 
areas showing preference for the computation of motion over static information, 

and for the computation of specific motion trajectories, while preserving a 
domain selectivity that is strikingly similar to the one observed in the sigthed 

brain when presented with similar information in the visual modality. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 This chapter is a slightly different version of a paper with the same title by Dormal, 
Tawfik, Yakobov, Lepore, & Collignon that is currently under review. 
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Investigating auditory motion processing in the 
occipito-temporal cortex of early blind                       

and sighted individuals  

1. Introduction  

Perception of visual motion is a crucial skill for survival. In line with its 
evolutionary importance, this visual ability is known to rely on a set of highly 

specialized brain regions. Neuroimaging studies in humans have identified a 
strong motion-responsive region in the ascending limb of the inferior temporal 

sulcus (Dumoulin et al., 2000) considered as the human homologue of the 
macaque’s MT-MST (Duffy & Wurtz, 1991; Mikami, Newsome, & Wurtz, 1986; 

Saito et al., 1986; Tanaka & Saito, 1989) and referred to as the hMT+/V5 
complex (Tootell et al., 1995; Watson et al., 1993; Zeki et al., 1991). The first 

markers of visual motion perception in humans emerge soon after birth, as 
infants as young as 1 month of age preferentially look at moving over stationary 

stimuli (Volkmann and Dobson, 1986). Visual evoked potentials studies have 
identified directional selective cortical responses in infants between 2 and 4 

months of age (Braddick, Birtles, Wattam-Bell, & Atkinson, 2005; Hou, Gilmore, 
Pettet, & Norcia, 2009) and responses to coherent patterns of motion by 5 

months of age (Gilmore, Hou, Pettet, & Norcia, 2007; Shirai et al., 2009; 
Wattam-Bell et al., 2010).  Together, the findings that visual motion perception 

is phylogenetically conserved (with a set of similar brain regions in both humans 
and non-human primates), and that its cortical markers emerge early during 

development, provide evidence that this visual ability may at least partially rely 
on innate predispositions.  

Yet, the role of visual experience in shaping visual motion perception, and 
presumably the neural system on which it relies is widely accepted. For instance, 

global motion perception (i.e. the ability to perceive the overall direction of 
motion of a stimulus), which relies on the integrity of area hMT+/V5 (Becker, 

Haarmeier, Tatagiba, & Gharabaghi, 2013; Newsome & Paré, 1988), is 
permanently altered if vision is absent at birth because of congenital cataracts, 

even if the period of deprivation is short (Ellemberg et al., 2002; Hadad et al., 
2012). However, this function is preserved in cases where the loss of sight 

occurs after a few months of age (Ellemberg et al., 2002). These observations 
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thus suggest that motion-selective regions of the brain, and notably hMT+/V5, 

may tune to visual motion information early in life provided normal visual 
experience was acquired soon after birth (for a review see Dormal et al., 2012).  

Early blindness represents a unique model to unravel the interplay between 
intrinsic constraints and experience in shaping the sensory-functional 

development of cortical regions that are typically devoted to vision. Studies on 
early visually-deprived individuals have shown that brain areas typically 

subtending visual abilities massively reorganize in order to support non-visual 
functions (for a review see Bavelier & Neville, 2002). Despite this reorientation 

in modality tuning, the visually-deprived occipital cortex appears to maintain a 
division of computational labor somewhat similar to the one that characterizes 

the sighted brain (for reviews see Dormal & Collignon, 2011; Reich et al., 2012; 
Ricciardi & Pietrini, 2011). In particular, consistent with its role in vision, 

hMT+/V5 has been shown to respond to auditory (Bedny et al., 2010; Poirier et 
al., 2006) and tactile (Ricciardi et al., 2007) motion signals in the early blind 

brain, suggesting that the absence of early visual input may tune this cortical 
region to the remaining non-visual modalities while preserving its original 

function for motion computation. 

However, this interpretation of selective crossmodal reorganization of 

hMT+/V5 for non-visual motion processing has been challenged by recent 
studies in the field (Lewald & Getzmann, 2013; Watkins et al., 2013). In an fMRI 

study, Watkins and colleagues (2013) demonstrated the presence of a tonotopic 
organization for auditory trains of different frequencies within area hMT+/V5 in 

congenitally blind (anophtalmic) subjects, suggesting that crossmodal 
reorganization of this area as a result of early visual deprivation may be 

unrelated to motion processing per se (Watkins et al., 2013). Moreover, in a 
recent electrophysiological study, Lewald and Getzmann (2013) identified a 

widespread activity within the occipital cortex of blind compared to sighted 
individuals in response to auditory motion, suggesting that motion selectivity 

may not be restricted to area hMT+/V5 but rather is a more general attribute of 
the visually-deprived and reorganized occipital cortex (Lewald & Getzmann, 

2013). Together, these findings stress the importance of controlling the low-
level features of the contrasted stimuli in order to unequivocally determine that 

hMT+/V5 is selective to motion processing in EB. Moreover, they stress the 
necessity of adopting a whole-brain approach, as opposed to a region-of-interest 

approach when investigating motion selectivity in the reorganized occipital 
cortex of EB. Because previous studies exploring motion selectivity in early blind 
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individuals have used conditions differing in terms of low-level features of the 

stimuli (not only differing in their motion content), or focused their analyses 
within regions of interest, the question of whether specific occipital regions in 

the blind (eg. hMT+/V5) may show a unique and selective contribution to 
auditory motion processing remains unanswered. 

In addition, the question of whether different non-visual motion signals 
simulating different trajectories, such as translational/unidirectional or 

rotational/radial motion, may elicit specific responses in the visually-deprived 
occipito-temporal cortex has received little research attention. In the sighted 

brain, visual signals that mimic in-depth motion such as optic flow patterns and 
radially moving patterns, compared to other moving stimuli, generate selective 

distributed activations in bilateral extrastriate occipital regions (De Jong et al., 
1994; Ptito, Kupers, Faubert, & Gjedde, 2001; van der Hoorn, Beudel, & De 

Jong, 2010; Wunderlich et al., 2002), presumably because of the importance of 
such dynamic cues for effective heading orientation, locomotion, and navigation 

in the environment. Hence, non-visual signals that mimic  in-depth motion may 
be expected to lead to specific adaptations and reorganizations compared to 

other types of moving sounds in the visually-deprived brain. To date, one fMRI 
study investigated brain responses to translational (unidirectional) and rotational 

tactile patterns delivered on the tip of the fingers in four early blind subjects 
(Ricciardi et al., 2007). This study reported indistinguishable patterns of brain 

activity between these two conditions (Ricciardi et al., 2007). However, beyond 
their informational utility for object localization outside of peri-personal space, 

in-depth auditory signals such as approaching and receding sounds represent a 
more meaningful non-visual counterpart to visual motion in-depth. Supporting 

this assumption, strong associations between auditory signals and perception of 
visual in-depth motion have been observed in sighted individuals. For example, 

adaptation to visual motion in-depth (either approaching or receding) leads to 
the subsequent perception of a steady sound as changing in loudness in the 

opposite direction (increasing or decreasing, a physical correlate of auditory 
motion in-depth) (Jain, Sally, & Papathomas, 2008; Kitagawa & Ichihara, 2002). 

Similarly, a static auditory stimulus can be perceived as moving together 
(approaching or receding) with a visually presented in-depth moving stimulus 

(Jain et al., 2008; Kitajima & Yamashita, 1999). When the visual stimulus is 
ambiguous, similar cross-modal effects have been reported from audition to 

vision so that approaching and receding sounds lead to the perception of a 
simultaneously presented visual pattern as moving in-depth in the same 
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direction (Jain et al., 2008; B. Schouten, Troje, Vroomen, & Verfaillie, 2011). 

When lacking visual input, such in-depth auditory motion cues, and particularly 
looming signals, are likely to play a crucial role in guiding locomotion and 

anticipating the arrival of potentially dangerous objects (Neuhoff, 1998).  

A largely debated question in the field concerns the extent to which the 

sighted brain itself displays crossmodal responses to non-visual motion signals 
in area hMT+/V5.  Whereas some studies have reported absent (Alink, Euler, 

Kriegeskorte, Singer, & Kohler, 2011; Bedny et al., 2010; Bremmer et al., 2001; 
Saenz et al., 2008) or suppressed (Lewis et al., 2000) responses to tactile 

and/or auditory dynamic stimuli in the vicinity of area hMT+/V5 in sighted 
subjects, others have found activation for non-visual motion stimuli in this 

region (Alink et al., 2008; Blake et al., 2004; Hagen et al., 2002; Poirier et al., 
2005; Ricciardi et al., 2007; Strnad et al., 2013; Warren et al., 2002). Similar 

inconsistent findings in sighted subjects stem from studies that used 
multivariate pattern analyses in order to decode auditory and tactile motion 

information from the activation pattern of area hMT+/V5 localized visually. 
Whereas one study reported that the direction of leftward and rightward moving 

sounds could not be decoded above chance level in area hMT+/V5 in sighted 
subjects (Alink et al., 2011), two studies demonstrated opposite findings for 

auditory (sounds with high versus low motion content Strnad et al., 2013) and 
tactile motion signals (leftward versus rightward tactile motion van Kemenade et 

al., 2014), although mean decoding accuracy was below 60% in both studies 
(Strnad et al., 2013; van Kemenade et al., 2014). Observation of cross-modal 

responses to non-visual motion information in the vicinity of area hMT+/V5 even 
in subjects with typical visual experience has lead some to suggest that this 

region may act as a metamodal/supramodal structure for motion computation 
(Ricciardi et al., 2007; for reviews see Pascual-Leone & Hamilton, 2001; Reich et 

al., 2012; Ricciardi & Pietrini, 2011). According to this theoretical perspective, 
hMT+/V5 may act as a motion processor, independently from the modality on 

which it operates and independently of visual experience.  

In the present study, we aimed at investigating the role of visual experience 

in setting the modality and functional tuning of the occipito-temporal cortex to 
motion processing. Our goals were threefold. First, we performed whole-brain 

univariate analyses in order to investigate crossmodal responses to auditory 
motion within and between-groups by comparing brain responses to moving 

sounds relative to static control sounds matched in terms of low-level properties 
(e.g. energy and frequency spectrum). For this purpose, we tested whether 
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unequivocal selectivity for auditory motion processing was present in occipito-

temporal regions and whether these regions overlapped with regions selective to 
visual motion as assessed by and independent visual localizer in the sighted. 

Secondly, we characterized specific crossmodal responses elicited by different 
types of moving sounds, namely in-depth versus laterally moving sounds, within 

and between-groups. Again, we aimed at comparing any specific activation 
patterns elicited by different types of auditory moving signals in early blind 

(relative to sighted) to the activation patterns elicited by different types of visual 
dynamic signals, namely radially moving dots (simulating in-depth motion) and 

translationally moving dots (in analogy to laterally moving sounds). Finally, we 
performed multivariate pattern analyses in the regions of interest defined by our 

univariate approach in order to further investigate the presence of crossmodal 
responses to different auditory moving signals relative to static sounds in the 

occipito-temporal cortex of early blind and sighted subjects.  

2. Materials and Methods 

2.1. Participants 

Two groups were included in this experiment: a group of sixteen early blind 

(EB) (5 females, range 23 to 62 years, mean ± SD = 45 ± 12 years), and a 
group of fifteen sighted controls (SI) matched to the EB group for age, sex, 

handedness, educational level and musical experience (5 females, range 22 to 
61 years, mean ± SD = 42 ± 12 years). EB participants were either totally blind 

or had only rudimentary sensitivity for brightness differences and no pattern 
vision. In all cases, blindness was attributed to peripheral deficits with no 

neurological impairment (Supplemental Table 1). All the procedures were 
approved by the research ethic and scientific boards of the “Centre for 

Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)” and the 
“Quebec Bio-Imaging Network (QBIN)”. Experiments were undertaken with the 

consent of each participant.  

2.2. Task and general experimental design 

Participants in both groups were scanned in an auditory run and were 

blindfolded throughout the fMRI acquisition. SI participants were also scanned in 
a visual run on a separate day. In order to familiarize the participants to the 

fMRI environment before an fMRI acquisition, participants underwent a training 
session in a mock scanner. During that session participants practiced the tasks 
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in the bore of the simulator while listening to recorded scanner sounds. In the 

scanner, auditory stimuli were delivered by means of circumaural, fMRI-
compatible headphones (Mr Confon, Magdeburg, Germany). Visual stimuli were 

projected on a screen at the back of the scanner and visualized through a mirror 
(127 mm x 102 mm) that was mounted at a distance of approximately 12 cm 

from the eyes of the participants. 

2.2.1. Auditory experiment. Auditory stimuli consisted of pink noise sounds 

from 3 different categories: (1) in-depth motion, (2) lateral motion, and (3) 
stationary sounds (no motion) (Figure 1A). Pink noise (44.1 Hz sampling rate) 

sounds were created and edited using Audacity 
(http://audacity.sourceforge.net) and MATLAB (The MathWorks, Inc., Natick, 

Massachusetts, United States). They lasted either 1s (standard) or 1.8s (target) 
in duration. In the in-depth motion condition, sounds (mono) either rose or 

decreased exponentially in intensity (from 10% to maximal intensity and from 
maximal intensity to 10% intensity) creating the vivid perception of a sound 

moving towards or away from the listener. In the lateral motion condition, the 
same sounds were presented separately in the left and the right ear (stereo) 

with intensity increasing in one ear while decreasing simultaneously in the other 
one, creating the vivid perception of a sound moving from one ear to the other 

in the azimuth. In the static condition, 1s and 1.8s pink noise sounds (mono) of 
constant intensity. A 25 ms ascending/descending ramp was applied at the 

beginning/end of the static sounds. In order to ensure equal global acoustic 
energy across conditions despite the application of a ramp in the static 

condition, the static sounds were normalized based on the mean Root Mean 
Square (RMS) of the sounds from the motion conditions. 

The whole run consisted of 30 consecutive blocks (10 repetitions/category) 
separated by rest periods of 7s. Each block included 18 consecutive auditory 

stimuli (no ISI) (Figure 1A). Stimuli within the motion blocks always alternated 
between the two opposite directions (approaching and receding in the in-depth 

condition, left-to-right and right-to-left in the lateral motion condition). The task 
consisted of detecting longer (1.8s) sounds by pressing the response button 

with the index finger of the right hand. Subjects were asked to respond as 
accurately as possible. Response speed was not emphasized. Within each 

category, there were 4 blocks with one such target (18.8s duration), 4 blocks 
with 2 such targets (19.6s duration) and 2 blocks with 3 such targets (20.4s 

duration). The whole run thus contained a total of 18 targets/category. 



 

	
   55 

2.2.2. Visual experiment. Visual stimuli were generated from random-dot 

patterns consisting of 3 different categories in analogy to the auditory 
experiment: (1) radial motion, (2) translation (vertical) motion, and (3) flicker 

(no motion) (Figure 1B). The use of vertically rather than laterally moving 
stimuli in the translational condition was introduced in order to minimize the 

generation of saccades (Morrone et al., 2000). In the auditory experiment, we 
used laterally moving sounds because the perception of vertically moving sounds 

is difficult to achieve with the use of headphones. Moreover, it was shown that 
the processing of vertically and laterally moving sounds (over static sounds) 

leads to common and undifferentiated brain responses, suggesting that the 
same neural substrates subtend auditory motion processing in both directions 

(Pavani, Macaluso, Warren, Driver, & Griffiths, 2002). Stimuli consisted of 90 
frames of 512 x 384 pixels (about 30° x 24° of visual angle in the scanner). 

Each frame contained 200 white dots of 4 pixels diameter (about 0.25° in the 
scanner), randomly placed at a minimum radius of 25 pixels (about 1.5° in the 

scanner) from a central white fixation cross (29 pixels in width and height, about 
1.7° in the scanner). From one frame to the other, each dot shifted 4 pixels 

towards the periphery in the radial condition (i.e. expanding from the center to 
the periphery) and 4 pixels toward the upward direction in the vertical condition. 

In the radial condition, the magnitude of the dot displacement from one frame 
to the next one was always constant across space so that it did not differ from 

the vertical condition in terms of local speed (Burr & Santoro, 2001). In the 
flickering condition, each dot remained stationary from one frame to another. In 

all conditions, each dot had a limited lifetime so that it disappeared after 12 
frames and reappeared somewhere else in the display. All 90 frames were 

presented sequentially at a rate of 16.667 ms from frame 1 to frame 90 
(expanding motion in the radial condition, upward motion in the vertical 

condition and flickering) and from frame 89 to frame 1 (contracting motion in 
the radial condition, downward motion in the vertical condition and flickering), 

creating moving/flickering stimuli of 1.5s duration each. Therefore dots had a 
limited lifetime of 200 ms and moved (in the radial and vertical condition only) 

with a velocity of approximately 15°/s in the scanner. Limited lifetime dots were 
used in order to ensure that the global direction of motion could only be 

determined by integrating local signals over a larger summation field rather than 
by following a single dot (especially in the vertical condition where all dots move 

in the same direction) (Bex, Simmers, & Dakin, 2003). Additionally, limited 
lifetime dots allowed the use of control flickering (as opposed to purely static) 
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stimuli that were matched in terms of temporal resolution with the moving 

stimuli.  

The whole run consisted of 30 consecutive blocks (10 repetitions/category) of 

21s duration each, separated by rest periods of 7s. Each block included 14 
stimuli presented with no ISI. Stimuli within motion blocks always alternated 

between the two opposite directions (expanding and contracting in the radial 
condition, moving upward and downward in the vertical motion condition). In 

the radial condition, stimuli were designed to simulate in-depth motion (towards 
or away from the viewer). The task consisted of detecting a 500 ms (30 frames) 

color change (from white to grey) in the central fixation cross by pressing the 
response button with the index finger of the right hand. Subjects were asked to 

respond as accurately as possible. Response speed was not emphasized. For 
each category, there were 5 blocks with one target and 5 blocks with 2 targets. 

The whole run thus contained a total of 15 targets/category. 

Figure 1. Illustration of the stimuli used in the (A) auditory and (B) visual 
experiments. (A) Sound properties of a representative block from the in-depth 
(looming/receding) motion, lateral motion (leftward/rightward) and static (no motion) 
condition. Graphs represent the amplitude of a block as a function of time (waveform) and 
the spectrum of frequencies as a function of time (frequency spetcrum). Pink dashed lines 
indicate the occurrence of a 1.8 s target sound (the standard sound duration was of 1 s ). 
The sounds delivered to each ear were in-phase in the in-depth motion condition, and in 
the static condition (black waveforms represent the sound delivered to the two ears), and 
out-of-phase in the lateral motion condition (black/blue waveforms represent the sounds 
delivered to the right/left ear). 
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2.3. Behavioral analysis  

Performance in the auditory run was analyzed by submitting accuracy scores 
(hits minus false alarms) to a 2 (between-subjects factor Group) × 3 (within-

subjects factor Condition) repeated measures ANOVA. In the sighted group, a 
repeated measures ANOVA (3 within-subjects factor Condition) was also 

performed in the visual run.  

2.4. MRI data acquisition 

Functional MRI-series were acquired using a 3-T TRIO TIM system (Siemens, 

Erlangen, Germany), equipped with a 12-channel head coil. Multislice T2*-
weighted fMRI images were obtained with a gradient echo-planar sequence 

using axial slice orientation (TR = 2200 ms, TE = 30 ms, FA = 90°, 35 
transverse slices, 3.2 mm slice thickness, 0.8 mm inter-slice gap, FoV = 

192×192 mm², matrix size = 64×64×35, voxel size = 3×3×3.2 mm³).  Slices 
were sequentially acquired along the z-axis in feet-to-head direction. The 4 

initial scans were discarded to allow for steady state magnetization. Participants’ 
head was immobilized with the use of foam pads that applied pressure onto the 

headphones. A structural T1-weigthed 3D MP-RAGE sequence (voxel size= 
1x1x1.2 mm³; matrix size= 240x256; TR= 2300 ms, TE= 2.91 ms, TI= 900 ms, 

FoV= 256; 160 slices) was also acquired for all participants.  

2.5. Functional MRI analysis 

2.5.1. Univariate analyses. Functional volumes from the auditory and the 

visual experiment were pre-processed and analysed separately using SPM8 
(Welcome Department of Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), implemented in MATLAB 
(The MathWorks, Inc., Natick, Massachusetts, United States).  

Pre-processing included slice timing correction of the functional time series 
(Sladky et al., 2011), realignment of functional time series, co-registration of 

functional and anatomical data, creation of an anatomical template using 
DARTEL (a template including participants from both groups in the auditory 

experiment, and a template including sighted participants only in the visual 
experiment) (Ashburner, 2007), spatial normalization of anatomical and 

functional data to the template, and  spatial smoothing (Gaussian kernel, 8mm 
full-width at half-maximum, FWHM). The creation of a study-specific template 

using DARTEL was performed to reduce deformation errors that are more likely 
to arise when registering single subject images to an unusually shaped template 



 

	
   58 

(Ashburner, 2007). This is particularly relevant when comparing early blind and 

sighted subjects as early blindness is associated with significant structural 
changes, particularly within the occipital cortex (Jiang et al., 2009; Noppeney et 

al., 2005; Pan et al., 2007; Park et al., 2009). 

After these pre-processing steps, the analysis of fMRI data, based on a mixed 

effects model, was conducted in two serial steps, accounting respectively for 
fixed and random effects. For each subject, changes in brain regional responses 

were estimated by a general linear model including the responses to the 3 
experimental conditions (In-depth motion, Lateral motion and Static conditions 

in the auditory experiment; Radial, Translational and Flicker in the visual 
experiment). These regressors consisted of boxcar function convolved with the 

canonical hemodynamic response function. The movement parameters derived 
from realignment of the functional volumes (translations in x, y and z directions 

and rotations around x, y and z axes) and a constant vector were also included 
as covariates of no interest. High-pass filtering was implemented in the design 

matrix using a cut-off period of 128 seconds to remove low-frequency noise and 
signal drift from the time series. Serial correlations in fMRI signal were 

estimated using an autoregressive (order 1) plus white noise model and a 
restricted maximum likelihood (ReML) algorithm. 

In the auditory experiment, linear contrasts were used to test the main effect 
of each condition ([In-depth], [Lateral], [Static], the contrasts between 

conditions ([In-depth>Static], [Lateral>Static], [In-depth>Lateral], [Lateral>In-
depth]), the main effect of general auditory processing ([In-

depth+Lateral+Static]) and generated statistical parametric maps [SPM(T)]. 
These summary statistics images were further spatially smoothed (Gaussian 

kernel 6mm FWHM) and entered in a second-level analysis, corresponding to a 
random effects model, accounting for inter-subject variance. One-sample t-tests 

characterized the main effect of conditions ([In-depth], [Lateral], [Static], [In-
depth>Static], [Lateral>Static], [In-depth>Lateral], [Lateral>In-depth], [In-

depth+Lateral+Static]) in each group separately. Two-sample t-tests were then 
performed to identify group effect for each condition separately, group effects 

independent of the condition, and to explore group-by-condition interaction 
effects. In the visual experiment, linear contrasts tested the main effect of each 

condition ([Radial], [Vertical], [Flicker]) and the contrasts between conditions 
([Radial>Flicker], [Vertical>Flicker], [Radial>Vertical], [Vertical>Radial]) and 

generated statistical parametric maps [SPM(T)]. These summary statistics 
images were further spatially smoothed (Gaussian kernel 6mm FWHM) and 
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entered in a second-level analysis, corresponding to a random effects model, 

accounting for inter-subject variance. One-sample t-tests characterized the main 
effect of conditions ([Radial], [Vertical], [Flicker], [Radial>Flicker], 

[Vertical>Flicker], [Radial>Vertical], [Vertical>Flicker].  

The resulting set of voxels values for each contrast constituted a map of the t 

statistic [SPM(T)], thresholded at p < 0.001 (uncorrected for multiple 
comparisons). We only report group-by-condition interaction effects driven by 

the EB group. For this purpose, interaction effects were inclusively masked by 
the main effects in the EB group (p < 0.001 uncorrected). Statistical inferences 

were performed at a threshold of p < 0.05 after correction for multiple 
comparisons (Family Wise Error method) over either the entire brain volume, or 

over small spherical volumes (15 mm radius) located in structures of interest. 
Significant clusters were anatomically labeled using brain atlases 

(http://www.thehumanbrain.info/; Petrides, 2012). To select the coordinates of 
interest, we consulted a body of litterature examining brain activations related 

to auditory motion/spatial processing in blind and sighted subjects, and visual 
motion processing in sighted subjects. Before performing any small-volume 

correction (SVC), peaks reported in Talairach space (Talairach & Tournoux, 
1988) were transformed to Montreal Neurological Institute space using Matthew 

Brett’s bilinear transformation (http://imaging.mrc-
cbu.cam.ac.uk/imaging/MniTalairach). Standard stereotactic coordinates (x,y,z) 

used for SVC are listed below.  

Frontal locations: Right middle frontal gyrus : 50, 38, 26 and 56, 22, 36 

(Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b) ; left middle 
frontal gyrus : -48, 28, 26 (Poirier et al., 2005); right superior frontal gyrus : -

3, 14, 47 (Lewis et al., 2000) and 6, 6, 60 (Collignon, Vandewalle, Voss, Albouy, 
Charbonneau, et al., 2011b); left inferior frontal gyrus : -40, 50, 6 (Collignon, 

Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b), right inferior frontal 
gyrus : 52, 10, 6 (Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 

2011b); left precentral gyrus: -54, 14, 6 (Bedny et al., 2010). Parietal locations: 
Left superior parietal lobule: -30, -54, 64 (Pavani et al., 2002); left inferior 

parietal lobule: -66, -24, 40 (Collignon, Vandewalle, Voss, Albouy, Charbonneau, 
et al., 2011b); right inferior parietal lobule: 30, -38, 40 (Collignon, Vandewalle, 

Voss, Albouy, Charbonneau, et al., 2011b); right intraparietal sulcus: 48, -40, 
56 and 28, -62, 62 (Pavani et al., 2002); right posterior intraparietal sulcus : 

16, -77, 44 (Sunaert et al., 1999); left posterior intraparietal sulcus: -14, -84, 
38 (Poirier et al., 2006); right ventral intraparietal sulcus : 24, -76, 28 (Sunaert 



 

	
   60 

et al., 1999); right dorsal intraparietal sulcus anterior : 33, -44, 61 (Sunaert et 

al., 1999). Temporal locations: Left superior temporal gyrus : -44, -34, 18 
(Griffiths & Green, 1999); right superior temporal gyrus : 64, -26, 10 (Pavani et 

al., 2002); right inferior temporal gyrus: 44, -70, 2 (Bedny et al., 2010); left 
inferior temporal gyrus: -48, -74, -8 (Bedny et al., 2010); right middle temporal 

gyrus: 48, -72, 10 (Bedny et al., 2010); left hMT+/V5 : -42, -66, -2 (Sunaert et 
al., 1999); right hMT+/V5: 42, -62, 6 (Sunaert et al., 1999). Insular cortex: Left 

insula : -32, 18, 6 (Bedny et al., 2010); right insula : 34, 20, 4 (Bedny et al., 
2010); posterior insular cortex : 45, -31, 24 (Sunaert et al., 1999). Cingulate 

cortex: Posterior cingulate gyrus: 14, -22, 46 (Sunaert et al., 1999). Occipital 
locations: Left superior occipital gyrus: -20, -80, 30 (Collignon, Vandewalle, 

Voss, Albouy, Charbonneau, et al., 2011b); left cuneus : 0, -90, 22 (Bedny et 
al., 2010); left lingual gyrus: -20, -80, -8 (Sunaert et al., 1999); left fusiform 

gyrus: -40, -64, -12 (Sunaert et al., 1999); left pericalcarine cortex (V1/V2) : -
24, -88, -8 (Poirier et al., 2006). 

2.5.2. Multivariate pattern analyses. Preprocessing steps were identical to the 
ones performed for univariate analyses, with one exception; In the current 

analyses, functional time series were smoothed with a Gaussian kernel of 2 mm 
(FWHM), and first order linear detrending and demeaning was applied to the 

data. 

MVPA analyses targeted 2 regions-of-interests (ROIs) defined on the basis of 

the resulting activations from the univariate analyses in the auditory and the 
visual experiments, respectively. For this purpose, two spherical ROIs (5-mm 

radius) were created, one at the middle temporal gyrus peak resulting from the 
conjunction analysis of the 2 contrasts comparing brain responses to each 

auditory motion condition relative to the static condition in EB (46 -60 4, 
Supplemental Table 4.3), the other at the right hMT+/V5 peak resulting from 

the conjunction analysis of the 2 contrasts comparing brain responses to each 
visual motion condition relative to the flicker (no motion) condition in SI (40, -

60, 6, Figure 3C, Supplemental Table 6.3). To ensure that the decoding 
accuracies did not result from spurious factors (e.g. task-correlated head 

movements), the same classification analyses were also ran in two non-brain 
ROIs where above-chance decoding should not be expected: the right ventricle 

(RV) (4mm sphere) and outside of the brain (OB) (5mm sphere) (Gallivan, 
McLean, Valyear, & Culham, 2013; Schrouff et al., 2013). 
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Analyses were performed using the PRoNTo toolbox (Schrouff et al., 2013) 

implemented in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United 
States). Because of the slow nature of the BOLD signal, only functional data 

starting 6s after the onset of each block (i.e. typically corresponding to the peak 
of the BOLD signal) were considered for the analyses (training and testing). In 

the auditory experiment, 3 linear binary support vector machine (SVM) 
classifiers were created for each participant (within each group) in order to 

discriminate response patterns corresponding to different auditory conditions 
pairwise (In-depth versus Static, Lateral versus Static, In-depth versus Lateral) 

in the ROIs and control regions. Similarly, in the visual experiment, 3 linear 
binary SVM classifiers were created for each participant of the sighted group in 

order to discriminate response patterns corresponding to different visual 
conditions pairwise (Radial versus Flicker, Translation versus Flicker, Radial 

versus Translation) in the ROI and the control regions. A N-fold “Leave One 
Block Out” cross-validation scheme was implemented within each subject, where 

a classifier was trained on all the blocks except one, and then tested on the left-
out block. A single decoding accuracy was obtained for each subject by 

averaging accuracies resulting from each cross-validation fold (10 in total). 

Statistical analyses were performed in two steps. Firstly, one-sided one-

sample t-tests were performed in order to test whether group average decoding 
accuracy in each ROI was significantly above chance level (50%). Secondly, 

repeated-measures ANOVAs were performed separately in the auditory and the 
visual experiment. In the auditory experiment, decoding accuracies were 

entered into a 2 (between-subjects factor Group: blind and sighted) × 4 (within-
subjects factor ROI: rhMT+/V5, rMTG, RV, OB) x 3 (within-subjects factor 

Classification: in-depth versus static, lateral versus static, in-depth versus 
lateral) repeated measures ANOVA. In the visual experiment, average 

accuracies were entered into a 3 (within-subject factor ROI: rhMT+/V5, RV, OB) 
x 3 (within-subject factor Classification: radial versus flicker, translation versus 

flicker, radial versus translation) repeated-measures ANOVA.  

3. Results 

3.1. Behavioral Results 

3.1.1. Auditory experiment. One participant from the blind group and two 

participants from the sighted group were excluded from further analyses 
because their target detection performance (hits – false alarms) in the scanner 
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was below 2 standard deviations from the mean performance of their group. 

fMRI data was analyzed  with and without these outliers.  Excluding the outliers 
from the analyses had no effect on the results. The main effect of group was not 

significant (p > 0.08), indicating that overall target detection accuracy (hits – 
false alarms) did not differ between the EB (mean ± SD = 94.7% ± 4.9%) and 

the SI group (mean ± SD = 90.03% ± 8.54%). There was however a significant 
main effect of condition (F(2,52) = 11.107; p = 0.001). The interaction was not 

significant (p > 0.2). Two-tailed paired-sample t-tests indicated overall lower 
detection accuracy in the in-depth motion condition (mean ± SD = 86.9% ± 

13.37%) compared to the lateral motion (mean ± SD = 94.25% ± 8.07%; t(27)= 
-2.908, p = 0.007) and to the static conditions (mean ± SD = 96.43% ± 

6.45%; t(27)= -3.905, p = 0.001).  

3.1.2. Visual experiment. Two participants from the sighted group were 

excluded from further analyses because their target detection performance (hits 
– false alarms) in the visual experiment was below 2 standard deviations from 

the mean performance of the group. fMRI data was analyzed bwith and without 
these outliers., Removing the outliers from the analyses did not affect the 

results. The remaining twelve sighted participants performed close to ceiling in 
all conditions (radial: mean ± SD = 77.2% ± 4.21%; translational: mean ± SD 

= 77.35% ± 8%; flicker: mean ± SD = 76.5% ± 8.22%). The main effect of 
condition was not significant (p > 0.6), indicating that detection accuracy was 

equivalent across conditions. 

3.2. fMRI Results – Univariate analyses 

3.2.1. Auditory motion related activity in early blind and sighted subjects. We 

first conducted a between-group conjunction analysis (examining regions that 
were jointly activated in both groups) separately in the in-depth motion relative 

to the static condition ([BLIND In-depth > Static] ∩ [SIGHTED In-depth > 
Static]), and in the lateral motion relative to the static condition ([BLIND Lateral 

> Static] ∩ [SIGHTED Lateral > Static]). In line with previous studies, the right 
superior temporal gyrus was activated in both groups for both in-depth moving 

sounds (Seifritz et al., 2002) and laterally moving sounds (Pavani et al., 2002; 
Warren et al., 2002) relative to static sounds (Supplemental Table 2.1). 

Laterally moving sounds (relative to the static sounds) additionally activated the 
superior parietal lobule and supramarginal gyrus bilaterally. Looming/receding 

sounds (relative to the static condition) elicited additional activations in the right 
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frontal cortex encompassing the middle and inferior frontal gyri, as well as in the 

left middle frontal gyrus (Supplemental Table 2.2). 

3.2.2. Crossmodal plasticity in the occipito-temporal cortex of early blind 

subjects. To test the effect of early blindness on the general processing of 
sounds, we compared brain responses of blind relative to sighted subjects when 

combining all auditory conditions ([Blind>Sighted] x [In-depth+Lateral+Static]). 
This analysis yielded substantial activity in most of the right occipito-temporal 

cortex, encompassing the middle temporal gyrus, the middle and inferior 
occipital gyri, the pericalcarine cortex, the cuneus and the superior occipital 

gyrus. In the left hemisphere, activations were observed in the middle occipital 
and superior occipital gyri (Figure 2, Supplemental Table 3).  

Figure 2. Unspecific crossmodal plasticity in the blind. Upper panel : Activations 
obtained from contrasts testing the main effects of group independently of condition [Blind 
> Sighted] x [In-depth + Lateral + Static] (displayed at puncorr < 0.001). Images show the 
lateral surface of the left and right hemisphere using a population-averaged surface 
representation to take into account between-subject variability in sulcal anatomy (Van 
Essen, 2005). Color bars represent t-values.  Lower panel : Mean activity estimates 
(arbitrary units ± SEM) associated with sound processing (in-depth + Lateral + Static) in 
the blind and the sighted. Significant main effects within each group are indicated with 
asterisks : *p < 0.05 SVC (FWE), **p=0.05 whole brain corrected (FWE), ***p<0.05 
whole brain corrected (FWE).  
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3.2.3. Functional specialization for auditory motion processing in the occipito-

temporal cortex of early blind subjects. The group [EB>SI] x condition [In-
depth>Static] interaction analysis revealed large bilateral activations in the 

occipito-temporal cortex with a right hemispheric dominance (Figure 3A, 
Supplemenary Table 4.1). In the right hemisphere, these activations 

encompassed the inferior occipital gyrus extending to the lingual gyrus, the 
cuneus, the medial occipital gyrus and the temporal gyrus. In the left 

hemisphere, activations were restricted to the lingual and fusiform gyri. The 
group [Blind>Sighted] x condition [Lateral>Static] interaction analysis revealed 

one cluster in the right middle temporal gyrus (Figure 3B, Supplemental Table 
4.2). A conjunction (AND) analysis was then conducted on these two contrasts 

in order to identify if any regions were commonly activated in EB (relative to SI) 
during the processing of both moving conditions (in-depth and lateral motion) 

relative to the static condition. This analysis revealed a single right lateralized 
cluster in the middle temporal gyrus ((46, -62, 4), Figure 3C, Supplemental 

Table 4.3) overlapping with the right hMT+/V5 as localized visually in the group 
of sighted subjects using the conjunction of the contrasts [Radial motion > 

Flicker] and [Translational motion > Flicker] ((40, -60, 6), Figure 3C, 
Supplemental Table 6.3). 
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Figure 3. Auditory motion-specific (compared to static) crossmodal plasticity in 
the blind. Activations obtained from (A) the contrast testing the group by condition 
interaction ([Blind > Sighted] x [Looming > Static], (B) the contrast testing the task by 
group interaction ([Blind > Sighted] x [Lateral > Static] and (C) from the conjunction of 
(A) and (B) are displayed at (puncorr < 0.001). Templates represent the ventral surface of 
the left hemisphere and the lateral surface of the right hemisphere using a population-
averaged surface representation to take into account between-subject variability in sulcal 
anatomy (Van Essen, 2005). Color bars represent t-values. Graphs show mean activity 
estimates (arbitrary units ± SEM) associated with in-depth motion (pink), lateral motion 
(dark blue) and static conditions (grey) in blind and sighted subjects. Significant main 
effects within each group are indicated with asterisks : *p < 0.05 SVC (FWE), **p=0.05 
whole brain corrected (FWE), ***p<0.05 whole brain corrected (FWE).  

3.2.4. Specific reorganization for in-depth motion in the occipito-temporal 
cortex of early blind subjects. Looming/receding sounds relative to laterally 

moving sounds (group [EB>SI] x condition [In-depth>Lateral] interaction) 
yielded specific activations in bilateral ventral portions of the occipito-temporal 

cortex (Figure 4, Supplemental Table 5). These activations included the middle 
occipital, inferior occipital, lingual and fusiform gyri in the left hemisphere and 

the inferior occipital gyrus in the right hemisphere. Interestingly, in the visual 
modality, activations obtained in the sighted group for radially moving dots 
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relative to translationally moving dots elicited similar posterior activations 

encompassing bilateral middle occipital gyri, left pericalcarine cortex, and right 
superior occipital gyrus (Figure 4, Supplemental Table 6.4). There were no 

specific activations for laterally moving sounds relative to in-depth moving 
sounds in blind relative to sighted subjects (group interaction [Blind>Sighted] x 

[Lateral>In-depth]). 

Figure 4. In-depth motion specific (compared to lateral motion) crossmodal 
plasticity in the blind. (Upper) Activations obtained from the contrast testing the group 
by condition interaction ([Blind > Sighted] x [In-depth > Lateral] are displayed at puncorr < 
0.001. Outlined in green are activations obtained in the corresponding contrast from the 
visual experiment in sighted subjects [Sighted Radial > Translational]. Color bar represent 
t-values. (Lower) Mean activity estimates (arbitrary units ± SEM) associated with the 
processing of in-depth (pink) and lateral (dark blue) motion in blind and sighted subjects. 
Results are displayed (puncorr < 0.001) over sagittal, coronal and tranversal slices of the 
mean structural image of all subjects normalized to the same stereotaxic space. 
Significant main effects within each group are indicated with asterisks : *p < 0.05 SVC 
(FWE), **p=0.05 whole brain corrected (FWE), ***p<0.05 whole brain corrected (FWE). 
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3.3. fMRI Results – Multivariate pattern analyses 

3.3.1. Auditory experiment. In order to further investigate the sensitivity of 

hMT+/V5 to auditory motion signals in EB and SI, multivariate pattern analyses 
(MVPA) using binary classifiers were performed in two regions of interests: (1) 

the right middle temporal gyrus (rMTG) that was commonly activated during 
each auditory motion condition compared to the static condition in EB (46 -60 

4), Supplemental Table 4.3) and (2) the right hMT+/V5 (rhMT+/V5) peak 
commonly activated in sighted individuals during each visual motion condition 

compared to the flicker condition (40 -60 6), Figure 3B, Supplemental Table 
6.3).  MVPA analyses were also performed in two controls regions (see 

Methods).  

Binary decoding accuracy for all 3 classifications (In-depth versus Static, 

Lateral versus Static, In-depth versus Lateral) was significantly above chance 
level (50%) in rMTG and rhMT+/V5 in EB (all ts > 4, all ps (one-tailed) < 

0.0002) and SI (all ts > 2, all ps (one-tailed) < 0.02) (Figure 5). In contrast, 
decoding accuracy in control regions did not differ from chance (all ts < 1, all ps 

> 0.1) (Figure 5). An ANOVA with Group (EB, SI) as a between-subjects factor 
and ROI (rMTG, rhMT+/V5, OB, RV) and Classification (In-depth vs. Static, 

Lateral vs. Static, In-depth vs. Lateral) as within-subjects factors revealed a 
significant main effect of Group (F(1,26) = 6.552, p = 0.017) and a significant 

main effect of ROI (F(3,78) = 7.48, p < 0.001) that were modulated by a 
significant interaction between these two factors (F(3,26) = 6.312, p = 0.001). 

The effect of classification was not significant (p > 0.2), and no other interaction 
was significant. Follow-up analyses (two-tailed independent sample t-tests) 

performed for each ROI separately indicated that decoding accuracy was 
significantly higher in EB than in SI in rMTG (75.89% ± 11.6% vs. 63.72% ± 

11.85%; t(26) = 2.74, p = 0.01) and in rhMT+/V5 (74.4% ± 13.9% vs. 59.87% 
± 9.96%; t(26) = 3.107, p = 0.005) whereas decoding accuracy did not differ 

between the two groups in the control regions OB and RV (ts < 0.4, ps > 0.6). 
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Figure 5. Results of multivariate pattern analyses in the auditory experiment. 
Classification accuracy (mean % ± SEM) is plotted for regions of interest and for 2 control 
regions. Dotted lines represent chance level (50%). Asterisks denote classification 
significantly above chance level. 

3.3.2. Visual experiment. Multivariate pattern analyses (MVPA) were also 

performed in rhMT+/V5 with visual stimuli in the sighted group (Figure 6). 
Decoding accuracy was significantly above chance level in rhMT+/V5 for all 

classifications (all ts > 3, all ps (one-tailed) < 0.002) but did not differ from 
chance in the control regions OB and OV (all ts > -1.35 and <-0.13, all ps > 

0.2) (Figure 6). A repeated measures ANOVA with ROI (rhMT+/V5, OB, RV) and 
Classification (Radial vs. Flicker, Translation vs. Flicker, Radial vs. Translation) 

as within-subject factors revealed a significant main effect of ROI (F(2,24) 
=46.6, p < 0.001). No other main effect or interaction was significant. Follow-up 

analyses (two-tailed paired sample t-tests) indicated higher decoding accuracies 
in rhMT+/V5 (mean ± SD = 75.9% ± 10.44%) relative to both control regions 

OB (mean ± SD = 48.3% ± 6%, t(12) = 7.42, p < 0.001) and RV (mean ± SD 
= 48.7% ± 6%, t(12) = 7.27, p < 0.001).  
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Figure 6. Results of multivariate pattern analyses in the visual experiment. 
Classification accuracy (mean % ± SEM) is plotted for regions of interest and for 2 control 
regions. Dotted lines represent chance level (50%). Asterisks denote classification 
significantly above chance level.  

4. Discussion 

In the present study, we investigated the role of visual experience in setting 

the modality and functional tuning of the occipito-temporal cortex to motion 
processing. Specifically, we aimed at (1) exploring the presence of crossmodal 

selectivity for auditory motion processing in early blind individuals with the use 
of whole-brain analyses and stimuli well-matched for low-level properties; (2) 

testing whether specific reorganizations occur for in-depth auditory motion 
perception in particular (compared to lateral motion) as a result of early 

blindness and (3) clarifying whether cross-modal responses to auditory motion 
may be found even in subjects with typical visual experience. Using univariate 

analyses, we found that a region in the right middle temporal gyrus showed a 
very specific functional preference for both in-depth and laterally moving sounds 

in EB but not in SI (Figure 3C, Supplemental Table 4.3). An independent visual 
experiment in SI confirmed that this region strikingly overlapped with the right 

hMT+/V5 area (Tootell et al., 1995; Watson et al., 1993) (Figure 3C, 
Supplemental Table 6.3). Importantly, in-depth moving sounds relative to 

laterally moving sounds elicited specific activity in bilateral ventral occipital 
cortex in EB compared to SI (Figure 4, Supplemental Table 5), a finding that 

was also observed in the visual modality when contrasting activations elicited by 
radially moving relative to translationally moving dots in SI (Figure 4, 

Supplemental Table 6.4). Despite the absence of auditory-driven activity in the 
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right occipito-temporal cortex of SI, multivariate pattern analyses revealed that 

right hMT+/V5 contains information about auditory motion signals in both 
groups, although such information (decoding accuracy) was more robust in EB 

compared to SI (Figure 5). Altogether, these results demonstrate that the 
reorganized occipito-temporal cortex of EB is segregated into distinct functional 

areas showing preference for the computation of motion over static information, 
and for the computation of specific motion trajectories, preserving a domain 

selectivity remarkably similar to the one observed in vision in SI.  

4.1. Auditory motion related activity in sighted and blind subjects 

The existence of regions responsive to auditory motion has been previously 
demonstrated for in-depth moving sounds (Seifritz et al., 2002) and 

laterally/vertically moving sounds (Pavani et al., 2002; Warren et al., 2002). So 
far, existing imaging data suggests that these moving sounds share a common 

location in the right planum temporale (for a review see Hall & Moore, 2003). 
Consistent with previous findings, and confirming that our paradigm was 

efficient in eliciting auditory motion related brain activity, we found that both EB 
and SI displayed stronger activity for in-depth relative to static sounds and for 

laterally moving sounds relative to static sounds in the right planum temporale 
(Supplemental Table 2). 

4.2. Functional specialization for auditory motion processing in 
the occipito-temporal cortex of blind subjects 

In line with several previous studies investigating crossmodal processing 
associated with blindness, the findings of the present study demonstrated 

substantial activity in the occipital cortex of EB compared to SI in response to 
sound processing (Figure 2, Supplemental Table 3). A subset of these regions 

showed a preference for in-depth moving over static sounds (Figure 3A, 
Supplemental Table 4.1), and for laterally moving over static sounds (Figure 3B, 

Supplemental Table 4.2). The common neural substrate elicited by both in-depth 
and laterally moving sounds relative to static sounds in EB overlapped with 

hMT+/V5 localized visually in SI (Figure 3C, Supplemental Table 6.3). This 
finding strongly suggests that when hMT+/V5 is deprived of visual input early in 

life, this cortical area redirects its modality tuning toward a non-visual modality, 
here audition, but maintains its functional role in selective processing of 

information related to motion. These results are in line with findings reported in 
our previous studies showing that this region preferentially responds to spatial 

over pitch attributes of sounds in congenitally blind but not in sighted (Collignon, 
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Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b) or late-blind individuals 

(Collignon et al., 2013). Our results are also consistent with studies who focused 
on hMT+/V5 (ROI approach) and demonstrated higher responses for laterally 

moving relative to static sounds (Poirier et al., 2006) and for looming sounds 
with high motion content relative to looming sounds with low motion content in 

this region (Bedny et al., 2010). In the latter study (Bedny et al., 2010), 
however, significant differences between looming stimuli with high and low 

motion content were found only in left hMT+/V5. We found the opposite results: 
whereas left hMT+/V5 showed substantial auditory-driven activity (Figure 2) but 

unspecific to motion content (Figure 3), a cluster overlapping with right 
hMT+/V5 displayed strong motion-specific responses to both looming/receding 

and laterally moving sounds in EB subjects (Figure 3C). This conflicting finding 
may be due to the different stimuli used in these studies. Unlike the stimuli used 

in the present study (Figure 1A), the high and low motion content stimuli used 
in the study of Bedny and colleagues (2010) differed in many aspects in terms 

of low-level properties and perceptual salience (Bedny et al., 2010; Strnad et 
al., 2013), so that any difference observed between conditions might be 

putatively associated to differences in the physical attributes of the sounds or in 
the level of arousal they generate, rather than to differences in motion content 

itself. Indeed, hMT+/V5 was recently shown to display a tonotopic mapping in 
response to pure tones of varying frequencies, suggesting that this region might 

be sensitive to early aspects of auditory processing (Watkins et al., 2013). To 
our knowledge, the present study is the first to demonstrate   that when using a 

whole-brain approach and well-matched moving and static stimuli differing 
solely in their motion content, the right hMT+/V5 is the only region that 

responds to both types of moving sounds compared to static in EB (compared to 
SI). 

4.3. Specific reorganization for in-depth motion in the occipito-
temporal cortex of blind subjects 

Another novel finding of the present study concerns the preferential 
responses observed for in-depth motion over lateral motion in EB relative to SI 

subjects in bilateral ventral extrastriate occipital regions (Figure 4).  Stronger 
responses for visual radial motion over visual translational motion were 

observed in partially overlapping regions in SI although extending more medially 
in the occipital cortex, in line with observations previously reported in the 

literature (Koyama et al., 2005; Ptito et al., 2001; Wunderlich et al., 2002) 
(Figure 4). The pattern of extrastriate regions displaying larger responses to 
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looming/receding over laterally moving sounds in EB subjects was also strikingly 

similar to the ones reported in visual studies contrasting radially moving 
patterns (mimicking in-depth motion) to rotational (Wunderlich et al., 2002) and 

randomly moving patterns (De Jong et al., 1994; Ptito et al., 2001). In line with 
these studies and with our own findings, these regions were localized more 

ventrally and posteriorly compared to the location of hMT+/V5. These findings 
therefore bring the first evidence for specific reorganizations for 

looming/receding signals compared to laterally moving signals in the early 
visually deprived occipito-temporal cortex, in the vicinity of regions underlying 

the perception of visual motion in-depth in the sighted brain (De Jong et al., 
1994; Ptito et al., 2001; van der Hoorn et al., 2010; Wunderlich et al., 2002). 

4.4. Decoding auditory motion content within the right middle 
temporal gyrus 

In order to further investigate motion selectivity in hMT+/V5, multivariate 
pattern analyses with binary classifiers were performed in two ROIs, namely at 

the rMTG peak commonly activated during each auditory motion condition 
compared to the static condition in EB (46 -60 4), Supplemental Table 4.3) and 

at the rhMT+/V5 peak commonly activated in sighted during each visual motion 
condition compared to the flicker condition (40 -60 6), Figure 3C, Supplemental 

Table 6.3). In both ROIs, decoding accuracy was significantly above chance level 
in EB not only between each motion condition compared to the static condition 

(a result that was already present in the univariate analyses) but, importantly, 
between the two motion conditions as well (Figure 5). Similarly, in the visual 

modality in SI, multivariate pattern analyses performed in rhMT+/V5, revealed 
above level decoding accuracy between each visual motion condition relative to 

flicker but also between the two motion conditions, whereas this last dissociation 
was not observed with univariate analysis (Figure 6). In sum, activity pattern in 

the same right hMT+/V5 region differentiated specific motion trajectories in the 
auditory modality in EB, and in the visual modality in SI.  

Importantly, univariate analyses revealed that, in stark contrast to EB, SI did 
not show motion-selective activations to auditory moving sounds in the “visual” 

cortex (Supplemental Figure 1). In all of the motion-selective reorganized 
regions of the occipito-temporal cortex of EB, including the right middle 

temporal gyrus overlapping with visually-defined hMT+/V5, activity was silent or 
even suppressed in SI when processing sounds (Figure 3 and Figure 4). In line 

with these findings, several other studies have reported silent or suppressed 
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responses in motion-selective visual cortex, notably hMT+/V5, when sighted 

individuals were engaged in the processing of auditory (Alink et al., 2011; Bedny 
et al., 2010; Lewis et al., 2000; Saenz et al., 2008) and tactile dynamic 

information (Bremmer et al., 2001). Deactivations of extrastriate occipital 
regions during non-visual processing in sighted subjects have been typically 

associated with an attempt to reduce interference from distracting visual inputs 
(Laurienti et al., 2002). In contrast, other studies have reported the presence of 

crossmodal responses to auditory (Alink et al., 2008; Poirier et al., 2005; 
Warren et al., 2002) and tactile motion signals (Blake et al., 2004; Hagen et al., 

2002; Ricciardi et al., 2007; van Kemenade et al., 2014) in the vicinity of area 
hMT+/V5 in sighted subjects.  

This conflicting finding may be resolved when examining the results obtained 
from our complementary multivariate pattern analyses in SI. Indeed, despite the 

absence of significant auditory-driven activations in visually-defined hMT+/V5 in 
SI (Figure 3C), multivariate pattern analyses targeting this area (and a closeby 

rMTG selectively activated in EB for auditory motion processing) indicated that 
auditory motion conditions could be decoded significantly above chance level 

even in SI (Figure 5). A previous study demonstrated relatively low (even if 
significant) decoding accuracy for looming stimuli with low versus high motion 

content within area hMT+/V5 in sighted and congenitally blind individuals, with 
no significant difference between groups (Strnad et al., 2013). In the present 

study, even if motion content could also be decoded in both rhMT+/V5 and rMTG 
in the sighted group, the decoding accuracy was less accurate in SI compared to 

EB (Figure 5). In sum, despite no crossmodal motion activity was found in area 
hMT+/V5 in SI subjects with univariate analyses (Supplemental Figure 1), traces 

of auditory motion information could be detected using multivariate pattern 
analyses in this area, although the distance between the patterns of activity 

related to each auditory condition was not as robust as the one observed in EB.  

Different theoretical accounts may explain the presence of non-visual motion 

information in a region that strongly responds to visual motion in sighted 
subjects. According to the metamodal/supramodal theory of the brain (for 

reviews see Pascual-Leone & Hamilton, 2001; Reich et al., 2012; Ricciardi & 
Pietrini, 2011), area hMT+/V5 may act as a supramodal processor for motion, 

performing motion computations independently of the modality over which it 
operates. Findings from our univariate analyses showed large responses to 

visual but not to auditory motion in this area, and in combination with our 
multivariate analyses, demonstrated high decoding accuracy for visual motion 
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and relatively weak (even if significant) decoding of auditory motion in area 

hMT+/V5. Together, these findings argue against the notion that the 
computational implementation underlying motion processing in hMT+/V5 of the 

sighted is “independent” of the input modality.  Similarly, even in studies that 
reported overlapping visual and non-visual motion responses in area hMT+/V5 in 

sighted subjects, the results consistently demonstrated markedly larger and 
more robust responses for visual compared to non-visual motion information in 

this area (Alink et al., 2008; Blake et al., 2004; van Kemenade et al., 2014). An 
alternative explanation for the presence of crossmodal motion information in 

area hMT+/V5 of sighted subjects may be their reliance on mental visual 
imagery. According to this assumption, activation of hMT+/V5 may subtend 

auditory motion processing per se in blind subjects whereas it may subtend 
auditorily triggered visual mental imagery in the sighted. In fact, reliable 

responses of area hMT+/V5 during visual imagery of motion have been 
previously reported (Goebel, Khorram-Sefat, Muckli, Hacker, & Singer, 1998). 

We do not exclude the possibility that non-visual motion information might be 
present in hMT+/V5 of the sighted aside of visual imagery. However, no study to 

date, including ours, can compellingly reject the visual imagery hypothesis. This 
also holds true for studies reporting overlapping crossmodal responses to non-

visual information in both sighted and blind subjects, as similar activation 
patterns in these two populations may be subtended by different cognitive 

processes. 

5. Conclusions  

Our findings demonstrate that the occipito-temporal cortex responds to 
auditory dynamic stimuli radically differently in sighted and early blind subjects 

– with specific activations present only in the latter. Moreover, our results 
indicate that even if auditory motion signal can be reliably decoded in hMT+/V5 

of SI, it is significanly less robust than the one observed in EB. These findings, in 
addition to the major differences observed in the sighted between the visual and 

the auditory modality, argue against the view that the computation implemented 
in hMT+/V5 for processing motion information is abstract or independent from 

the sensory information conveying the motion signal. The findings of the present 
study rather suggest that developmental visual experience, or the absence of it, 

shapes motion-selective regions of the occipito-temporal cortex to process 
dynamic information related to a specific sensory modality.  
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Area X (mm) Y (mm) Z (mm) Z p 

    

(1) Between-Groups Conjunction [In-depth > Static] 
   

R Middle Frontal G 54 30 28 3.72 0.009* 

R Inferior Frontal G (triangular part) 48 36 26 3.61 0.013* 

R Inferior Frontal G (triangular part) 46 44 14 3.14 0.049* 

L Middle Frontal G (anterior) -38 50 4 3.23 0.039* 

R Superior Temporal Gyrus 60 -34 14 3.26 0.035* 

(2) Between-Groups Conjunction [Lateral > Static] 
   

R Superior Parietal Lobule 34 -40 52 3.78 0.006* 

L IPS/ Superior Parietal Lobule -32 -46 52 3.38 0.02* 

L Supramarginal Gyrus -42 -34 26 2.93 0.052# 

R Supramarginal Gyrus 50 -28 28 3.03 0.053# 

R Superior Temporal Gyrus 66 -36 14 2.96 0.062# 

      

Supplemental Table 2. Summary of the functional results obtained for the between-
group conjunctions (common activations between EB and SI) testing for specific responses 
to (1) In-depth moving relative Static sounds, and (2) Laterally moving compared to Static 
sounds. (*) Coordinates significant (pcorr < 0.05 FWE) after correction over small spherical 
volumes (SVC, 15 mm radius). (#) Coordinates marginally significant after correction over 
small spherical volumes (SVC, 15 mm radius).  
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Area 
X 

(mm) 
Y 

(mm) 
Z 

(mm) Z p 

      

(1) [Radial > Flicker]   
     

R Middle Temporal Gyrus (hMT+/V5) 40 -60 4 5.05 0.008*** 

L Middle Occipito Gyrus (hMT+/V5) -34 -66 4 3.53 0.013* 

R Superior Occipital Gyrus 24 -82 24 3.45 0.016* 

(2) [Translational > Flicker]   
     

R Middle Temporal Gyrus (hMT+/V5) 40 -62 6 5.12 0.006*** 

R Rolandic Operculum (Lateral fissure) 46 -32 20 4.10 0.003* 

R Superior Parietal Lobule 26 -50 60 3.93 0.005* 

R Postcentral Gyrus 30 -38 62 3.22 0.035* 

L Inferior Parietal Lobule -24 -50 54 3.28 0.030* 

R Middle Cingulate Gyrus 14 -20 44 3.15 0.042* 

(3) Conjunction of (1) and (2) 
     

R Middle Temporal Gyrus (hMT+/V5) 40 -60 6 4.86 0.016*** 

(4) [Radial > Translational]   
     

R Middle/Superior Occipital Gyrus 24 -96 10 4.97 0.015*** 

L Pericalcarine Cortex -14 -94 -4 4.17 0.003* 

L Middle Occipital Gyrus -40 -72 4 3.49 0.020* 

R Middle Occipital Gyrus 38 -68 6 3.40 0.025* 

      

Supplemental Table 6. Summary of the functional results obtained in the visual 
experiment for responses to (1) radially moving patterns relative to flicker, (2) 
Translational moving patterns relative to flicker; (3) common regions obtained in (1) and 
(2); (4) Radially moving patterns relative to translationally moving patterns. Coordinates 
are significant (pcorr < 0.05 FWE) after correction over (*) small spherical volumes (SVC, 
15 mm radius) or over (***) the whole brain. 

	
  



	
  

	
  
Supplemental Figure 1. Auditory motion processing in sighted subjects. 
Activations obtained from the contrasts [In-depth > Static] and [Lateral > Static] in 
sighted subjects. Functional data are displayed at a threshold of puncorr < 0.005. Even at 
this liberal threshold, no significant activity is observed in the vicinity of visually localized 
area hMT+/V5 (outlined in white). Images show the lateral surface of the left and right 
hemisphere using a population-averaged surface representation to take into account 
between-subject variability in sulcal anatomy (Van Essen, 2005). 

	
  
	
  
	
  



Chapter 3. 

Selectivity for sounds of objects in the occipito-
temporal cortex of early blind individuals9 

Abstract  

The ventral occipito-temporal cortex (VOTC) is organized in partially distinct 
regions displaying a preferential tuning for specific categories of visual objects in 

sighted individuals. Recent studies in early blind subjects have suggested that 
some aspects of this functional organization are independent of visual 

experience. The lateral occipital complex (LOC), traditionally involved in visual 
form and object identification (LOC), is thought to underlie object identification 

through shape processing in the blind. However, it remains unknown whether 
object sound processing might trigger preferential activity in the VOTC 

independently of shape processing. Using fMRI, we recorded brain responses to 
object sounds and voices during a task that minimized the potential involvement 

of shape imagery in a group of early blind individuals (EB) and in sighted 
participants (SI). Sounds of objects elicited selective crossmodal responses in 

the occipital cortex of EB but not SI, including regions traditionally involved in 
visual object identification (LOC), and more posterior occipital regions that have 

been previously associated to semantic processing in the blind. In contrast, 
human voices did not elicit selective crossmodal responses in either group. 

These findings suggest that the absence of developmental vision leads the 
occipital cortex, including LOC, to represent object sounds in the absence of 

shape information. We propose that LOC and more posterior regions in the blind 
may support the extraction of low-level auditory cues in order to allow auditory 

object identification and support higher-level semantic processes related to the 
automatic processing of the meaning of object sounds. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 This chapter is a manuscript in preparation for submission by authors Dormal, Pelland, 
Lepore, & Collignon. 
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Selectivity for sounds of objects in the occipito-
temporal cortex of early blind individuals 

1. Introduction  

A principle of organization of the human visual cortex is functional 

specialization, whereby different functional regions are preferentially responsive 
to different aspects of a visual scene (Goodale & Milner, 1992; Haxby et al., 

1991; Zeki et al., 1991). Within this division of labor, the ventral occipito-
temporal cortex (VOTC) partially separates into distinct areas displaying 

preferences for specific categories of objects such as faces, bodies, animals, 
words, tools or places (Chao, Haxby, & Martin, 1999; Cohen & Dehaene, 2004; 

Downing, Jiang, Shuman, & Kanwisher, 2001; Epstein & Kanwisher, 1998; 
Kanwisher et al., 1997). What drives such functional organization in VOTC 

remains however the matter of intense debates (Bracci & Peelen, 2013; 
Downing, Chan, Peelen, Dodds, & Kanwisher, 2006; Ishai, Ungerleider, Martin, 

Schouten, & Haxby, 1999; Konkle & Caramazza, 2013; Levy, Hasson, Avidan, 
Hendler, & Malach, 2001; Mahon et al., 2007). 

In the last decade, early blindness has emerged as a unique model for 
investigating the role of intrinsic constraints and experience in shaping the 

functional organization of the high-level ventral visual cortex. Studies on early 
visually-deprived individuals have shown that brain areas typically subtending 

visual abilities massively reorganize in order to support non-visual functions (for 
a review see Bavelier & Neville, 2002). Despite this reorientation in modality 

tuning, a rapidly increasing number of studies have demonstrated that at least 
some aspects of category-selectivity are present in the VOTC of congenitally 

blind individuals, suggesting they may develop in the absence of any visual 
experience (Büchel, Price, & Friston, 1998a; He et al., 2013; Mahon, Anzellotti, 

Schwarzbach, Zampini, & Caramazza, 2009b; Peelen et al., 2013; Pietrini et al., 
2004; Reich et al., 2011).  

The lateral occipital complex (LOC) is a large portion of the lateral and 
ventral OTC that is preferentially responsive to pictures of objects relative to 

scrambled objects (Malach et al., 1995), and is well known for its involvement in 
visual form/object processing (Grill-Spector et al., 2001). Accounting for the 

critical role of shape processing for visual object recognition, lesion to LOC 
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causes visual object agnosia, a permanent deficit in object recognition (Bridge et 

al., 2013; James, Culham, Humphrey, Milner, & Goodale, 2003; Milner et al., 
1991). Numerous studies have demonstrated that in early blind individuals, this 

region displays selective responses during the active exploration of object’s 
shape through touch or, when provided with sufficient training, even audition. 

Such crossmodal responses were observed during the haptic exploration of 
objects (Amedi et al., 2007; 2010; Pietrini et al., 2004), during a shape imagery 

task triggered by the presentation of sounds of objects previously explored by 
touch (De Volder et al., 2001), during size judgment tasks based on objects’ 

heard names (Peelen et al., 2014) as well as during objects’ exploration through 
echolocation (Arnott et al., 2013) and through the use of sensory-substitution 

devices (Amedi et al., 2007). Selective activations in LOC were also reported in 
sighted participants performing similar non-visual tasks (Amedi et al., 2001; 

2002; 2007b; 2010; Peelen et al., 2014; Snow et al., 2014; M. Zhang et al., 
2004). Based on these observations, LOC was proposed to act as a metamodal 

operator for shape, reflecting knowledge of object shape regardless of sensory 
modality and independent of the modality through which this knowledge was 

acquired (Amedi et al., 2007; 2010; Peelen et al., 2014). However, the question 
of whether sounds produced by objects may elicit selective crossmodal 

activation of LOC in early blind individuals in the absence of shape discrimination 
has been barely addressed in the literature (Amedi et al., 2007). This is of 

crucial interest since, in contrast to vision or touch, the recognition of object 
sounds relies on the extraction of spectro-temporal acoustic attributes not 

intrinsically linked to the shape of the object. In sighted individuals, the 
extraction of these acoustic perceptual features and the conceptual 

representation it triggers relies on a specific regions within the superior and 
middle temporal cortices (Bizley & Cohen, 2013). It remains unknown whether 

object sound processing in the blind might trigger preferential activity in the 
VOTC independently of shape processing.  

Other regions of the VOTC in the sighted brain, notably the fusiform and 
inferior occipital gyri, have been extensively described as being preferentially 

responsive to pictures of faces relative to non-face objects (Kanwisher et al., 
1997; Rossion et al., 2012). Interestingly, a functional magnetic resonance 

imaging (fMRI) study reported category-selective responses in the vicinity of 
these regions in congenitally blind individuals (but not sighted individuals) when 

passively listening to voices compared to objects sounds (Gougoux et al., 2009). 
These findings are in line with the notion that voices represent “auditory faces” 
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(Belin, Fecteau, & Bédard, 2004; Yovel & Belin, 2013) and suggest that, in case 

of early visual deprivation, regions that would have typically developed to 
perform face processing may reorganize in order to support person identification 

via the preserved auditory modality. In this study however, sounds presented in 
the two conditions differed in several aspects other than their categorical 

belonging so that the differential responses observed for voices compared to 
objects may be driven by stimuli counfounds. On the one hand, the voice 

category consisted of a large variety of human vocalizations including emotional 
content (e.g. baby cries, laughs), speech, singing, etc. On the other hand, since 

voices and object sounds were only matched in terms of overall energy (RMS), 
they differed in many constituent acoustic features. Moreover, the use of a 

passive task in this study cannot rule out the possibility that participants 
attended more to human vocalizations than to object sounds, for example via 

mechanisms of attentional capture similar to the ones that have been described 
for faces (Yovel & Belin, 2013). 

In the present study, we used fMRI to further investigate the role of visual 
experience in shaping the functional organization of the VOTC. Specifically, we 

investigated the existence of functional selectivity for voices and object sounds, 
by controlling that this selectivity was specific to the perceptual category and 

independent from basic constituent acoustic features. We used an orthogonal 
task in the scanner (i.e. not related to category) in order to maintain attention 

and arousal constant across categories. Moreover, we used short stimuli that 
were presented at a fast rate in order to minimize the potential intervention of 

shape representations (and visual imagery in the sighted). We tested whether 
putative object-selective responses in the blind overlapped with visual shape 

selective cortex (LOC). Similarly, we tested whether putative voice-selective 
responses in the blind overlapped with face selective areas. 

2. Materials and Methods 

2.1. Participants 

Two groups were included in this experiment: a group of sixteen early blind 
(EB) (5 females, range 23 to 62 years, mean ± SD = 45 ± 12 years), and a 

group of fifteen sighted controls (SI) matched to the EB group for age, sex, 
handedness, educational level and musical experience (5 females, range 22 to 

61 years, mean ± SD = 42 ± 12 years). EB participants were either totally blind 
or had only rudimentary sensitivity for brightness differences and no pattern 
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vision. In all cases, blindness was attributed to peripheral deficits with no 

neurological impairment (Supplemental Table 1). All the procedures were 
approved by the research ethic and scientific boards of the “Centre for 

Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)” and the 
“Quebec Bio-Imaging Network (QBIN)”. Experiments were undertaken with the 

consent of each participant.  

2.2. Task and general experimental design 

Participants in both groups were scanned in an auditory run and were 

blindfolded throughout the fMRI acquisition. SI participants were also scanned in 
a visual run on a separate day. In order to familiarize the participants to the 

fMRI environment before an fMRI acquisition, participants underwent a training 
session in a mock scanner. During that session participants practiced the tasks 

in the bore of the simulator while listening to recorded scanner sounds..In the 
scanner, auditory stimuli were delivered by means of circumaural, fMRI-

compatible headphones (Mr Confon, Magdeburg, Germany). Visual stimuli were 
projected on a screen at the back of the scanner and visualized through a mirror 

(127 mm x 102 mm) that was mounted at a distance of approximately 12 cm 
from the eyes of the participants. 

2.2.1. Auditory experiment. Auditory stimuli consisted of 4 different 
categories: human voices, object sounds, and their respective scrambled version 

(Figure 1). All sounds were monophonic, 16-bit and sampled at 44.1 Hz. Voices 
and object sounds were cut at 995ms and were applied a 5ms ascending ramp 

in the beginning and a 5ms descending ramp in the end. A 5ms silence was 
added at the beginning of the stimuli to avoid them from clicking.  

Human voices consisted of 8 exemplars of each of 5 vowels (“a”, “e”, “i”, “o”, 
“u”), pronounced by 40 different francophone speakers (half male) recorded in 

the lab (Figure 1A).  Object sounds consisted of 40 sounds of non-living 
objects from the environment that were compiled from professional CD 

collections (Figure 1B). To ensure that the sounds would be well-recognized by 
the participants, they were first selected in a pilot study from a larger database, 

based on the recognition performance of 10 sighted participants who did not 
participate in the fMRI study. In this pilot study, participants performed a 

recognition task where they were asked to name each sound and subsequently 
rate it on a scale from 1 to 10 according to how the sound was characteristic 

(representative) of the object. The 40 sounds with the highest rates (all above 
7) were selected for the experiment.  



 

	
   87 

Scrambled versions of the vocal and object sounds were performed in 

MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) (Figure 1C 
and 1D). Each vocal and object sound was submitted to a fast Fourier 

transformation and the resulting components were separated into frequency 
windows of ~700 Hz based on their center frequency. Scrambling was then 

performed by randomly intermixing the magnitude and phase of each Fourier 
component (Belin, Zatorre, & Ahad, 2002; Belin, Zatorre, Lafaille, Ahad, & Pike, 

2000) within each of these frequency windows separately. The inverse Fourier 
transform was then applied on the resulting signal. The output was a sound of 

the same length of the original sound with similar energy within each frequency 
band. For scrambled vocal sounds only, the envelope of the original voice was 

further applied on the output signal (Figure 1C). This was not done for 
scrambled object sounds because the application of the original envelope in this 

case lead many scrambled object sounds to be recognizable despite the 
scrambling (Figure 1D). Hence, for these sounds, a 5ms ramp was applied in the 

beginning and at the end and a 5 ms silence was added at the beginning. 
Following standard practices, voices, object sounds and their scambled versions 

were equalized in root mean square (RMS) level (Belin et al., 2000; 2002; 
Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013). 

The run lasted about 18 minutes and consisted of 10 repetitions of each of 
the 4 conditions alternating in blocks of 21s duration and separated by silent 

periods of 7s. Each block consisted of the presentation of 20 stimuli with a 50ms 
ISI (Figure 1). Participants were instructed to detect a repetition in the sounds 

(same sound presented twice in a row) by pressing the response button with the 
index finger of the right hand. Emphasis was put on accuracy rather then speed. 

Within each condition, there were 4 blocks with one such repetition, 4 blocks 
with 2 repetitions and 2 blocks with 3 repetitions, for a total of 18 

targets/condition. This design aimed at matching as best as possible attention, 
arousal and motor components between conditions. 

2.2.2. Visual experiment. Stimuli consisted of 4 different categories: pictures 
of faces, objects and their phase-scrambled version (Rossion et al., 2012). The 

face category consisted of full front pictures of 50 different faces (half male) 
(between 170 and 210 pixels width and 250 pixels height), that were cropped 

for external features and embedded in a white rectangle (220 pixels width x 270 
pixels height). Similarly, the objects category consisted of pictures of 50 

different objects (between 170 – 210 pixels width and 250 pixels height) 
inserted in a white rectangle (220 pixels width x 270 pixels height). The phase-



 

	
   88 

scrambled pictures were used in order to control spatial frequencies and pixel 

intensity in each color channel (RGB) in the face and in the object categories. 
They were created using a Fourier phase randomization procedure by replacing 

the phase of each original image by the phase of a uniform noise allowing for 
amplitude to be conserved in each frequency band (Sadr & Sinha, 2004). 

The run lasted about 18 minutes and consisted of 10 repetitions of each of 
the 4 conditions, alternating in blocks of 21s. Blocks were separated by a 

baseline condition consisting of a white fixation cross on a black background. In 
each block, 20 pictures were presented on a black background for 1000ms with 

a 50ms ISI. Participants were instructed to detect a repetition in the pictures 
(the same picture presented twice in a row) by pressing a key with the right 

index finger. Emphasis was put on accuracy rather then speed. Stimuli in each 
block were presented centrally, but their location varied either in the x or in the 

y axis in steps of 30 pixels from trial to trial (average location is centered). This 
was done so that specific elements of the stimuli did not appear at the same 

location in consecutive trials, forcing the participants to pay more attention. 
Within each condition, there were 4 blocks with one such repetition, 4 blocks 

with 2 repetitions and 2 blocks with 3 repetitions, for a total of 18 
targets/condition. This design aimed at matching as best as possible attention, 

arousal and motor components between conditions. 

Figure 1. Illustration of the stimuli used in the auditory experiment. Sound 
properties of a representative block from the (A) Voice condition, (B) Object sounds 
condition and (C,D) the respective scrambled (control) conditions. Graphs represent the 
amplitude of a block as a function of time (waveform) and the spectrum of frequencies as 
a function of time (frequency spectrum). Red dashed lines indicate the occurrence of a 
target sound (repetition of a sound twice in a row).  
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2.3. Behavioral analysis  

Performance in the auditory run was analyzed by submitting accuracy scores 
(hits minus false alarms) to a 2 (Group: Blind, Sighted; between-subjects 

factor) × 4 (Condition: voices, scrambled voices, objects, scrambled objects) 
repeated measures ANOVA. Performance in the visual run was analyzed by 

submitting accuracy scores (hits minus false alarms) to a repeated measures 
ANOVA with Condition (faces, scrambled faces, objects, scrambled objects) as a 

within-subjects factor. 

2.4. MRI data acquisition 

Functional MRI-series were acquired using a 3-T TRIO TIM system (Siemens, 

Erlangen, Germany), equipped with a 12-channel head coil. Multislice T2*-
weighted fMRI images were obtained with a gradient echo-planar sequence 

using axial slice orientation (TR = 2200 ms, TE = 30 ms, FA = 90°, 35 
transverse slices, 3.2 mm slice thickness, 0.8 mm inter-slice gap, FoV = 

192×192 mm², matrix size = 64×64×35, voxel size = 3×3×3.2 mm³).  Slices 
were sequentially acquired along the z-axis in feet-to-head direction. The 4 

initial scans were discarded to allow for steady state magnetization. Participants’ 
head was immobilized with the use of foam pads that applied pressure onto the 

headphones. A structural T1-weigthed 3D MP-RAGE sequence (voxel size= 
1x1x1.2 mm³; matrix size= 240x256; TR= 2300 ms, TE= 2.91 ms, TI= 900 ms, 

FoV= 256; 160 slices) was also acquired for all participants.  

2.5. Functional MRI analysis 

Functional volumes from the auditory and the visual experiment were pre-

processed and analysed separately using SPM8 (Welcome Department of 
Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), implemented in MATLAB 
R2008a (The MathWorks, Inc., Natick, Massachusetts, United States). 

Pre-processing included slice timing correction of the functional time series 
(Sladky et al., 2011), realignment of functional time series, co-registration of 

functional and anatomical data, creation of an anatomical template using 
DARTEL (a template including participants from both groups in the auditory 

experiment, and a template including sighted participants only in the visual 
experiment) (Ashburner, 2007), spatial normalization of anatomical and 

functional data to the template, and  spatial smoothing (Gaussian kernel, 8mm 
full-width at half-maximum, FWHM). The creation of a study-specific template 
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using DARTEL was performed to reduce deformations errors that are more likely 

to arise when registering single subject images to an unusually shaped template 
(Ashburner, 2007). This is particularly relevant when comparing blind and 

sighted subjects as blindness is associated with significant changes in the 
structure of the brain itself, particularly within the occipital cortex (Jiang et al., 

2009; Noppeney et al., 2005; Pan et al., 2007; Park et al., 2009). 

After these pre-processing steps, the analysis of fMRI data, based on a mixed 

effects model, was conducted in two serial steps, accounting respectively for 
fixed and random effects. For each subject, changes in brain regional responses 

were estimated by a general linear model including the responses to each of the 
4 conditions (Objects, ScrO, Voices, ScrV). These regressors consisted of boxcar 

function convolved with the canonical hemodynamic response function. The 
movement parameters derived from realignment of the functional volumes 

(translations in x, y and z directions and rotations around x, y and z axes) and a 
constant vector were also included as covariates of no interest. High-pass 

filtering was implemented in the design matrix using a cut-off period of 128 
seconds to remove low-frequency noise and signal drift from the time series. 

Serial correlations in fMRI signal were estimated using an autoregressive (order 
1) plus white noise model and a restricted maximum likelihood (ReML) 

algorithm.  

Linear contrasts tested the main effect of each condition [Object], [ScrO], 

([Voice], [ScrV]), the contrasts between conditions ([Object>ScrO], 
[Voice>ScrV], [Object>Voice], [Voice>Object]), the main effect of general 

auditory processing ([Object+ScrO+ Voice+ScrV]) and generated statistical 
parametric maps [SPM(T)]. These summary statistics images were then further 

spatially smoothed (Gaussian kernel 6mm FWHM) and entered in a second-level 
analysis, corresponding to a random effects model, accounting for inter-subject 

variance. One-sample t tests characterized the main effect of conditions 
([Object], [ScrO], [Voice], [ScrV], [Object>ScrO], [Voice>ScrV], 

[Object>Voice], [Voice>Object], [Object+ScrO+Voice+ScrV] in each group 
separately. Two-sample t-tests were then performed to identify group effects for 

each condition separately, group effects independent of the condition and to 
explore group-by-condition interaction effects. Identical analyses were 

conducted on the visual experiment based on the 4 visual conditions (Objects, 
ScrO, Faces, ScrF). 
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The resulting set of voxels values for each contrast constituted a map of the t 

statistic [SPM(T)], thresholded at p < 0.001 (uncorrected for multiple 
comparisons). Statistical inferences were performed at a threshold of p < 0.05 

after correction for multiple comparisons (Family Wise Error method) over either 
the entire brain volume, or over small spherical volumes (15 mm radius) located 

in structures of interest. Significant clusters were anatomically labeled using 
brain atlases (http://www.thehumanbrain.info/; Petrides, 2012). In the auditory 

experiment, main effects of condition in each group were used as inclusive 
(puncorr < 0.001) or exclusive (puncorr <0.005) masks in order to identify which 

group was driving the interaction effect.   

3. Results 

3.1. Behavioral Results 

3.1.1. Auditory experiment. Two participants from each group were excluded 

from further analyses because their repetition detection performance in the 
scanner was below 2 standard deviations from the mean performance of their 

respective group. The main effect of Group was significant (F(1,25) = 9.837, p = 
0.004), indicating that EB were overall more accurate (hits – false alarms) than 

SI in detecting repetitions (EB: mean ± SD = 95.53% ± 3%; SI: mean ± SD = 
88.14% ± 8.25%). There was also a significant main effect of condition (F(3,75) = 

7.740, p < 0.001). The interaction between the 2 factors was not significant (p 
> 0.3). Follow-up analyses (two-tailed paired t-tests) indicated that accuracy 

was lower in the scrambled objects condition (mean ± SD = 87.44% ± 10.63%) 
compared to the voices (mean ± SD = 92.4% ± 8.73%, t(26) = -2.975, p = 

0.006), the scrambled voices (mean ± SD = 93.62% ± 8.8%, t(26) = -3.844, p 
= 0.001) and the objects conditions (mean ± SD = 94.44% ± 6.16%, t(26) = -

4.132, p < 0.001). 

3.1.2. Visual experiment. One sighted participant was excluded from further 

analyses because her target detection performance in the scanner was below 2 
standard deviations from the mean performance of the group. The main effect of 

condition was significant (F(3,39) = 7.601, p < 0.001). Follow-up analyses (two-
tailed paired t-tests) indicated that accuracy (hits minus false alarms) was 

significantly lower in the scrambled faces condition (mean ± SD = 76.98% ± 
13.05%) compared to remaining conditions (faces: mean ± SD = 85.32% ± 

10.8%, t(13) = -2.215, p =0.045; objects: mean ± SD = 93.25% ± 8.48%, t(13) 
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= -5.147, p < 0.001; scrambled objects: mean ± SD = 89.3% ± 10.33%, t(13) = 

-3.613, p = 0.003).  

3.2. fMRI Results  

3.2.1. Object-specific activity in both early blind and sighted subjects. We 

first conducted a between-group conjunction (AND) analysis (looking at what is 
jointly activated in both groups of subjects) testing for specific object-related 

activity relative to both scrambled objects and voices ([BLIND Object > ScrO] ∩ 
[BLIND Object > Voice] ∩ [SIGHTED Object > ScrO] ∩ [SIGHTED Object > 

Voice]) (Figure 2, Supplemental Table 2). This analysis identified bilateral 
activations - although stronger in the left hemisphere - in the medial part of the 

transverse temporal gyrus (A1) extending laterally along the lateral fissure and 
posteriorly to the planum temporale. Bilateral activations were also found in the 

intraparietal sulci. In the left hemisphere, additional clusters of activation were 
found within the frontal cortex, in the inferior and middle frontal gyri, and within 

the temporal cortex, in the posterior middle temporal gyrus extending to the 
inferior temporal sulcus and in the fusiform gyrus (Supplemental Figure 1, 

Supplemental Table 2). 

3.2.2. Voice-specific activity in both early blind and sighted subjects. In the 

same vein, we conducted a between-group conjunction (AND) analysis (looking 
at what is jointly activated in both groups of subjects) testing for specific voice-

related activity relative to both scrambled voices and objects ([BLIND Voice > 
ScrV] ∩ [BLIND Voice > Object] ∩ [SIGHTED Voice > ScrV] ∩ [SIGHTED Voice > 

Object]). This analysis yielded specific activity in the superior temporal sulcus 
bilaterally (Figure 2, Supplemental Table 2). 
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Figure 2. Selective responses to object sounds and voices common to early blind 
and sighted subjects. Activations obtained for the conjunction contrasts testing 
selectivity to object sounds ([Obj > ScrO] (AND) [Obj > Vo]) and voices ([Vo > ScrV] 
(AND) [Vo > Obj]) common to blind and sighted participants (displayed at puncorr < 0.001 
and puncorr < 0.005). Images show the lateral surface of the left and right hemisphere using 
a population-averaged surface representation to take into account between-subject 
variability in sulcal anatomy (Van Essen, 2005). Color bar represents t-values. Graphs 
show mean activity estimates (arbitrary units ± SEM) in blind and sighted subjects.  

3.2.3. Crossmodal plasticity in the occipital cortex of early blind subjects.  

To test the effect of early blindness on the general processing of sounds, we 

compared brain responses of blind relative to sighted subjects when combining 
all auditory conditions (group [EB>SI] x condition [Object+ScrO+Voice+ScrV]). 

This analysis yielded substantial activity in bilateral occipito-temporal cortices 
(Figure 3, Supplemental Table 3). In the left hemisphere, activations were 

observed in the middle occipito-temporal gyrus and the inferior occipital gyrus 
as well as in the superior occipital gyrus. In the right hemisphere, a large cluster 

of activation was found in the inferior occipito-temporal gyrus, extending 
ventrally and anteriorly to the lateral occipito-temporal sulcus, and extending 

posteriorly and superiorly to the middle occipital gyrus. This interaction effect 
was driven by the EB group since an inclusive mask of the main effect in EB 

(puncorr<0.001) did not affect this analysis. 
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Figure 3. Unspecific crossmodal plasticity in the blind. Activations obtained from the 
contrast testing the main effect of group independently of condition [Blind > Sighted] x 
[Objects + ScrO + Voices + ScrV] (displayed at puncorr < 0.001). Graphs show mean 
activity estimates (arbitrary units ± SEM) in blind and sighted subjects.  

3.2.4. Functional specialization for object sounds in the occipital cortex of 
early blind subjects. The group [EB>SI] x condition [Object>ScrO] interaction 

analysis revealed bilateral activations in the lateral and ventral portions of the 
occipito-temporal cortex bilaterally (Supplemental Table 4.1). These activations 

encompassed the middle and inferior occipital gyri and extended medially to the 
fusiform gyri. The group [EB>SI] x condition [Object>Voice] interaction analysis 

revealed a very similar activation pattern although this analysis yielded 
additional activations in the superior occipital gyrus and cuneus bilaterally 

(Supplemental Table 4.2). In both analyses, activations were bilateral although 
more extended in the left hemisphere. These interaction effects were both 

driven by the EB group since an inclusive mask of the corresponding main 
effects in EB (puncorr<0.001) did not affect these analyses.  

A conjunction (AND) analysis was then conducted on these 2 contrasts in 
order to identify the regions specifically activated in EB (relative to SI) for the 

processing of object sounds relative to both scrambled objects and voices 
(Figure 4, Supplemental Table 4.3). This analysis revealed bilateral activations, 

in the middle and inferior occipital gyri, which, in the left hemisphere, extended 
to the fusiform gyrus. Peaks of activations on the lateral portion of the occipito-

temporal cortex in the left (xyz = -36, -78, -4) and right (xyz = 40, -64, 4) 
(Figure 4, Supplemental Table 4.3) hemisphere were in close vicinity to left and 
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right LOC peaks (left LOC xyz = -46, -82, -6; Z=4.92; p=0.022; right LOC xyz 

= 48, -70, -12; Z = 5.24; p=0.006 (whole-brain corrected)) that were localized 
visually in SI using the contrast [Object pictures>Scrambled]. 

Figure 4. Object-specific crossmodal responses in the blind. Conjunction analysis of 
the contrasts testing the group by condition interactions [Blind > Sighted] x [Objects > 
ScrO] AND [Blind > Sighted] x [Objects > Voices] (displayed at pcorr < 0.05). Images show 
the lateral surface of the left and the right hemisphere using a population-averaged 
surface representation to take into account between-subject variability in sulcal anatomy 
(Van Essen, 2005). Color bar represents t-values. Graphs show mean activity estimates 
(arbitrary units ± SEM) in blind and sighted subjects 

3.2.5. Larger activation to voices relative to scrambled voices but not to 
object sounds in the fusiform gyrus of early blind subjects. The group [EB>SI] x 

condition [Voice>ScrV] interaction analysis revealed activations in the fusiform 
gyrus bilaterally (Figure 5, Supplemental Table 5). This interaction effect was 

driven by the EB group since an inclusive mask of the main effect in EB 
(puncorr<0.001) did not affect this analysis. There were no significant activations 

in the group [EB>SI] x condition [Voice>Object] interaction. 
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Figure 5. Crossmodal responses to voices relative to scrambled voices in the 
blind. Results of the contrast testing the group by condition interaction [Blind > Sighted] 
x [Voices > ScrV] are displayed at puncorr < 0.001 over transversal slices of the mean 
structural image of all subjects normalized to the same stereotaxic space. Color bar 
represents t-values. Graphs show mean activity estimates (arbitrary units ± SEM) in blind 
and sighted subjects. 

4. Discussion 

Mirroring the functional organization that characterizes the VOTC for the 

representation of distinct visual categories of objects, previous studies have 
shown that the auditory system also hosts a topographical organization where 

distinct areas preferentially respond to different categories of complex 
environmental sounds such as voices, animal vocalizations, tools or musical 

instruments (Belin et al., 2000; Engel, Frum, Puce, Walker, & Lewis, 2009; 
Lewis, Brefczynski, Phinney, Janik, & DeYoe, 2005; Lewis, Talkington, Puce, 

Engel, & Frum, 2011; Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002). In 
line with previous studies, non-living object-specific activity was observed along 

the lateral fissure bilaterally and extending to the planum temporale (Giordano 
et al., 2013; Lewis, Talkington, Tallaksen, & Frum, 2012) whereas human voice-

specific activity was found in bilateral superior temporal sulci (Belin et al., 2000; 
2002) in both groups of participants (Figure 2, Supplemental Table 2). In EB 

(relative to SI), selective responses to sounds of objects were also found in the 
middle and inferior occipital gyri bilaterally and were stronger and more 

extended in the left hemisphere (Figure 4, Supplemental Table 4.3). 
Interestingly, crossmodal object-selective responses over the lateral portions of 

the occipital cortex in EB (relative to SI) partially overlapped with LOC (Malach 
et al., 1995) as independently localized with visual stimuli in our group of 
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sighted participants. In contrast, no selective responses to voices, when 

compared to object sounds, were observed in the VOTC of EB (or SI).  

Previous studies have shown that regions within LOC display crossmodal 

responses in both early blind individuals and sighted subjects during tasks 
involving the active processing of object-related shape information (Amedi et 

al., 2007; 2010; Peelen et al., 2014). These findings, together with the 
observation that typical sounds produced by objects do not elicit crossmodal 

activity in LOC of sighted individuals (Amedi et al., 2002; 2007b) nor in two 
blind individuals (Amedi et al., 2007) – unless these sounds explicitly triggered a 

mental shape imagery task (De Volder et al., 2001) – were taken as evidence 
that LOC acts as a metamodal operator for shape. It was therefore suggested 

that LOC supports the processing of object shape independently from the input 
modality providing the information, and even develops independently from 

previous visual experience with object shape (Amedi et al., 2007; 2010; Peelen 
et al., 2014). However, similar crossmodal involvement of LOC in early blind and 

sighted individuals does not necessarily imply that this region supports identical 
representations in these two populations. In fact, crossmodal involvement of 

LOC reported in sighted individuals in previous studies may simply stem from 
top-down visual imagery processes triggered by somatosensory or auditory 

input, casting doubt on the idea that this involvement is independent of sensory 
modality. The fact that sighted individuals display activations in LOC when 

haptically exploring objects but not when hearing the typical sounds produced 
by objects (Amedi et al., 2002; 2007b) – unless associated to an explicit visual 

imagery task (De Volder et al., 2001) – may be simply due to the fact that the 
former (haptic processing) is more susceptible to implicitly trigger mental visual 

imagery of shape. In fact, visual imagery abilities are tightly linked to the extent 
of tactile object activation of LOC in sighted individuals (Zhang et al., 2004). 

In the present study, we used a task that minimized the potential 
intervention of shape representations and visual imagery and demonstrate that 

sounds of objects, compared to both voice and scrambled objects sounds, elicit 
robust and selective crossmodal responses within occipital regions in early blind 

but not sighted individuals (Figure 4). Importantly, these responses (Figure 4 
(b) and (c)) partially overlapped with bilateral LOC (localized visually) in the 

absence of any shape-related information. Together, these findings suggest that 
at least portions of LOC in early blind individuals contain representations of 

object sounds that are not related to shape and that these regions develop 
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because of a lack of developmental vision, since they are not observed in 

sighted individuals.  

What may be the nature of these representations? In vision, LOC is thought 

to support hierarchically intermediate processing stages for analyzing coarse 
object-like features, such as shape, by the assimilation of inputs from lower 

visual regions in the hierarchy (Malach et al., 1995). This may contribute to the 
segmentation of a distinct object present within a complex visual scene 

(MacEvoy & Epstein, 2011). While sounds of objects, unlike vision, typically 
convey no information about the size or shape of these objects, they provide 

different sensory cues that allow for their identification (e.g. frequency 
spectrum, pitch, envelope, harmonicity). In fact, in the absence of vision, these 

sensory cues are likely to become particularly important in order to identify 
objects that are outside of peri-personal space and can thus not be recognized 

by touch. Environemental sounds that are perceived as “object-like”, such as 
those produced by automated machinery and man-made objects (as in the 

present study), share common acoustical features which may serve as low-level 
cues for their rapid identification in a complex acoustic environment (Lewis et 

al., 2012). In the present study, sounds of objects elicited selective responses in 
bilateral LOC compared to another category of sounds with high harmonicity 

(voices) and compared to non-harmonic unrecognizable sounds matched in 
overall energy and frequency spectrum. Hence, it is possible that crossmodal 

plasticity associated to early visual deprivation drives the occipital cortex, 
including LOC, to rely on the extraction of such low-level auditory features in 

order to gain auditory object recognition.  

Selective responses to sounds of objects in the deprived occipital cortex of EB 

were not limited to bilateral LOC but extended medially and posteriorly towards 
the middle occipital gyrus, particularly in the left hemisphere. Interestingly, 

these activations are in the vicinity of regions previously reported as displaying 
semantic effects when early blind subjects (compared to sighted subjects) 

process lexical information (sentences and word lists compared to non-words 
sentences and non-word lists) (Bedny et al., 2011), generate semantically 

related verb to heard nouns (Burton et al., 2003), and perform semantic 
decisions on heard nouns (Noppeney et al., 2003). Since all sounds of objects 

used in the present study were highly recognizable, a possibility is that these 
activations are related to the automatic processing of object meaning (i.e. what 

the object is) when listening to these sounds. Supporting this assumption, both 
EB and SI displayed common selective responses to object sounds (relative to 
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voices and scrambled objects) in the inferior frontal cortex as well as in lateral 

and ventral portions of the posterior temporal cortex in the left hemisphere 
(Supplemental Figure 1, Supplemental Table 2), regions that have been 

consistently associated to conceptual and semantic processing across a number 
of tasks requiring meaning-based processing, especially regarding concrete 

objects (Gold et al., 2006; Gough, Nobre, & Devlin, 2005; Sharp, Scott, & Wise, 
2004; Wheatley, Weisberg, Beauchamp, & Martin, 2005; for a review see 

Martin, 2007).   

Future studies should investigate how the reorganized occipital regions of the 

early blind integrates the hierarchical processing flow allowing the extraction of 
specific acoustic features leading to auditory object-selective response. 

Contrary to our expectations, we did not observe any selective responses to 
voices when contrasted to object sounds in the VOTC of EB (or SI) subjects. 

Nevertheless, activations in the bilateral fusiform gyri were observed in EB 
(relative to SI) when contrasting voices to their scambled controls only (Figure 

5, Supplemental Table 5), in line with a recent study that reported a voice 
congruency effect in congenitally blind (relative to sighted controls) in the right 

anterior fusiform gyrus (Hölig et al., 2014). The lack of category selective 
responses in VOTC of EB individuals contrasts with another fMRI study that 

identified selective responses to vocal over non-vocal sounds in the fusiform, 
lingual and inferior occipital gyri of five congenitally blind individuals (compared 

to sighted subjects) when passively listening to these sounds (Gougoux et al., 
2009). In this study however, unlike ours, there was not attempt to control for 

low-level acoustic features of the stimuli from the vocal and non-vocal 
categories. Hence, any differential response could be putatively related to 

differences in the constituent acoustic features. Moreover, vocal stimuli in that 
study involved many different human vocalizations varying in prosody, 

emotional content, speech etc. In the present study, we chose to use neutral 
vowels in order to target more specifically the intrinsic neural coding of voice 

information. In turn, it is possible that these vocal stimuli lacked saliency 
compared to the object sounds used and may have prevented the observation of 

crossmodal category-specific effects for voices in the VOTC of EB.  

However, the observation of selective activation for voice information in 

bilateral superior temporal sulcus (e.g. the temporal voice area) suggests that 
the absence of functional preference for voices in the occipito-temporal cortex of 

EB is unlikely to be solely related to a lack of sensitivity of our paradigm. These 
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findings may suggest that different regions within the VOTC cortex are not 

equally susceptible to reorganize in a functional specific manner following visual 
deprivation since early life. For instance, regions that are face-selective in the 

sighted brain may not transfer their function to the recognition of human voices 
(over other categorical information such as sounds of objects) in case of early 

blindness. Because face recognition is an evolutionary ancient cognitive ability 
with potential survival advantage, it has been argued that this skill may be 

under high genetic control (Kanwisher, 2010). This assumption is supported by 
studies on families with hereditary prosopagnosia (Duchaine, Germine, & 

Nakayama, 2007; Grüter, Grüter, & Carbon, 2008; Schmalzl, Palermo, & 
Coltheart, 2008) and performance of monozigotic relative to dizigotic twins in a 

face memory task (Wilmer et al., 2010). In the same vein, Polk and 
collaborators (2007) found that genetics may play a larger role on neural 

activity patterns evoked by faces (and places) (Polk, Park, Smith, & Park, 2007) 
compared to the ones evoked by written peuso-words, the latter being more 

dependent on experience (Park, Park, & Polk, 2012; Polk et al., 2007; but see 
Pinel et al., 2014). Hence, different functional areas in the cortex may result 

from different neurodevelopmental factors (Kanwisher, 2010). For example, 
while the visual word form area selectivity for word strings may emerge through 

pure learning-dependent mechanisms (Dehaene et al., 2010; He, Liu, Jiang, 
Chen, & Gong, 2009), face selectivity in the FFA may arise because “the specific 

instructions for constructing the critical circuits for face perception are in the 
genome” (Kanwisher, 2010). These different developmental mechanisms for the 

emergence of functional areas might interact with sensory deprivation and 
therefore influence and constrain the process of crossmodal plasticity.  

In summary, these findings demonstrate that object sound processing in the 
blind triggers preferential activity in the occipital cortex, including LOC, 

independently of shape processing. However, the absence of voice-selective 
crossmodal responses in the VOTC of early blind individuals suggests that the 

anatomo-functional correspondence observed between sighted and blind 
individuals may not be a general principle of the reorganized “visual” cortex 

following early visual deprivation. Rather, the maintenance of a functional 
specialization in crossmodal plasticity may depend on the neural systems 

investigated and on the neurodevelopmental mechanisms based on which these 
systems emerge. 
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Area 
X 

(mm) 
Y 

(mm) 
Z 

(mm) Z p 

      
(1) Between-groups conjunction for object-selective responses 

L Planum Temporale  -50 -28 12 4.80 0.017*** 

L Transverse Temporal G  -40 -34 18 4.64 0.033*** 

L Transverse Temporal Sulcus (A1) -42 -22 -2 4.80 0.017*** 

L posterior Middle Temporal Gyrus -54 -60 0 4.63 0.034*** 

L Inferior Temporal Gyrus -48 -56 -6 4.24 0.002* 

L Inferior Temporal Sulcus  -60 -48 -12 3.17 0.045* 

R Heschl's G (A1)  48 -24 8 4.56 0.044*** 

R Planum Temporale  62 -36 16 3.82 0.007* 

L Inferior Frontal G (Orbital part) -34 32 -8 4.47 0.062*** 

L Inferior Frontal Sulcus  -46 38 12 4.11 0.003* 

L Intraparietal Sulcus -32 -72 36 3.76 0.01* 

R Intraparietal Sulcus 32 -70 50 3.94 0.005* 

L Collateral Sulcus (Fusiform G) -26 -38 -18 4.17 0.002* 

L Fusiform G -36 -26 -20 3.51 0.018* 

(2) Between-groups conjunction for voice-selective responses 

R Superior Temporal Sulcus 62 -24 0 3.04 0.065# 

L Superior Temporal Sulcus -62 -28 0 3.03 0.068# 

 

Supplemental Table 2. Summary of the functional results obtained for the between-
group conjunctions (common activations between EB and SI) testing for specific responses 
to (1) object sounds (compared to both voices and scrambled objects) and (2) voices 
(compared to both object sounds and scrambled voices). Coordinates significant (pcorr < 
0.05 FWE) after correction (*) over small spherical volumes (SVC, 15 mm radius) or (***) 
over the whole brain. (#) Coordinates marginally significant after correction over small 
spherical volumes (SVC, 15 mm radius). 

 



 

 

Area 
X 

(mm) 
Y 

(mm) 
Z 

(mm) Z p 

      
[Blind > Sighted] X [Objects + Voices + ScrO + ScrV]   

L Middle Occipito-Temporal Gyrus  -48 -72 6 5.01 0.007*** 

R Inferior Occipito-Temporal Gyrus 46 -64 -4 4.57 0.042*** 

R Lateral Occipito-Temporal Sulcus  48 -44 -16 4.56 0.045*** 

R Middle Occipital Gyrus 34 -84 10 3.82 0.008* 

L Lateral Occipito-Temporal Sulcus -46 -46 -14 3.56 0.016* 

L Superior Occipital Gyrus -20 -82 36 3.33 0.03* 

 

Supplemental Table 3. Summary of the functional results obtained for the main effect of 
group (Blind > Sighted) independently of condition. Coordinates are significant (pcorr < 
0.05 FWE) after correction over (*) small spherical volumes (SVC, 15 mm radius) or over 
(***) the whole brain. 

 

 

	
  



 

      

Area 
X 

(mm) 
Y 

(mm) 
Z 

(mm) Z p 

      
(1) [Blind > Sighted] X [Objects > ScrO]   

    
L Middle/Inferior Occipital G  -36 -80 -2 5.64 0.000*** 

L Inferior Occipital Gyrus -22 -92 -6 5.58 0.001*** 

L Fusiform Gyrus -38 -68 -14 5.43 0.001*** 

R Inferior Occipito-Temporal Gyrus  40 -64 -4 5.46 0.001*** 

R Fusiform Sulcus  36 -42 -18 5.33 0.002*** 

R posterior Middle Temporal Gyrus 50 -68 10 5.03 0.007*** 

(2) [Blind > Sighted] X [Objects > Voices] 
    

R Inferior Occipito-Temporal Gyrus 40 -66 -6 5.56 0.001*** 

R Fusiform Gyrus 32 -76 -2 4.96 0.011*** 

R Lateral Occipital Sulcus  34 -84 6 4.83 0.019*** 

L Middle/Inferior Occipital Gyrus -36 -78 -4 5.54 0.001*** 

L Lateral Occipital Sulcus  -34 -80 8 5.47 0.001*** 

L Middle Occipital Gyrus -26 -90 8 5.38 0.002*** 

R Superior Occipital Gyrus 22 -74 22 4.93 0.013*** 

L Cuneus -10 -90 34 4.80 0.022*** 

R Cuneus/Superior Occipital Gyrus  16 -94 24 4.77 0.025*** 

R Superior Occipital Gyrus  22 -78 36 4.60 0.048*** 

(3) Conjunction of (1) and (2) 
     

L Middle/Inferior Occipital G  -36 -78 -4 5.50 0.001*** 

L Middle Occipital Gyrus -26 -90 8 5.36 0.002*** 

L Fusiform Gyrus -32 -56 -12 4.79 0.018*** 

R Inferior Occipito-Temporal Gyrus  40 -64 -4 5.46 0.001*** 

R Inferior Occipital Gyrus 32 -80 -2 4.62 0.035*** 

R Middle Occipital Gyrus 36 -84 10 4.75 0.022*** 

 

Supplemental Table 4. Summary of the functional results obtained for the Group by 
Task interaction analyses testing for (1) larger responses to Object sounds relative to ScrO 
in EB relative to SI, (2) larger responses to Object sounds relative to Voices in EB relative 
to SI, (3) Conjunction of (1) and (2). (***) Coordinates are significant (pcorr < 0.05 FWE) 
after correction over the whole brain. 

 



 

      

Area 
X 

(mm) 
Y 

(mm) 
Z 

(mm) Z p 

      
[Blind > Sighted] X [Voices > ScrV]   

  
R Fusiform G 32 -60 -18 3.59 0.015* 

R Fusiform G 42 -46 -8 3.32 0.032* 

L Fusiform G -36 -46 -22 3.63 0.014* 

L Lateral Occipito-Temporal Sulcus -40 -50 -10 3.47 0.022* 

      
Supplemental Table 5. Summary of the functional results obtained for the Group by 
Task interaction analyses testing for larger responses to Voices relative to ScrV in EB 
relative to SI. There were no significant activations for the contrast testing for larger 
responses to Voices relative to Object sounds in EB relative to SI. (*) Coordinates are 
significant (pcorr < 0.05 FWE) after correction over small spherical volumes (SVC, 15 mm 
radius). 

 

 

 

 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
  
Supplementary Figure 1. Common Task-related brain activity for object sounds (relative 
to both Voices and Scrambled Objects) common to blind and sighted participants are 
displayed at puncorr < 0.001 over transversal slices of the mean structural image of all 
subjects normalized to the same stereotaxic space. Color bar represents t-values. Mean 
activity estimates (arbitrary units ± SEM) in the blind and the sighted. 



Chapter 4. 

Tracking the evolution of crossmodal plasticity and 
visual recovery before and after sight-restoration10 

Abstract  

Visual deprivation leads to massive reorganization in both the structure and 
function of the occipital cortex, inevitably raising crucial challenges for sight-

restoration. We tracked the behavioral, structural and neurofunctional changes 
occurring in an early and severely visually impaired patient before as well as 1.5 

and 7 months after sight restoration using magnetic resonance imaging. Robust 
pre-surgical auditory responses were found in occipital cortex despite residual 

preoperative vision. In primary visual cortex, crossmodal auditory responses 
overlapped with visual responses and remained elevated even 7 months post-

surgery. However, these responses decreased in extrastriate occipital regions 
after surgery, together with improved behavioral vision and with increases in 

grey matter density and neural activation in low-level visual regions. Visual 
selective responses in high-level visual regions involved in motion and face 

processing were present even pre-surgery and did not evolve after surgery. 
Altogether, these findings demonstrate that structural and functional 

reorganization of occipital regions are present in an individual with a 
longstanding history of severe visual impairment, and that such reorganizations 

can be partially reversed by visual restoration in adulthood. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10This chapter is a slightly modified version of a manuscript with the same title by authors 
Dormal, Lepore, Harissi-Dagher, Albouy, Bertone, Rossion, & Collignon that is currently 
under review. 
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Tracking the evolution of crossmodal plasticity and 
visual recovery before and after sight-restoration 

1. Introduction  

One of the most striking examples of experience-dependent brain plasticity 
originates from studies of blind individuals, whose cortical areas normally 

devoted to vision reorganize to support non-visual functions (Bavelier & Neville, 
2002; Noppeney, 2007). This crossmodal plasticity inevitably raises important 

challenges for individuals undergoing surgical procedures to recover vision, as 
the deprived and reorganized occipital cortex may not provide the necessary 

cortical resources for adequate visual analysis of the restored optical input 
(Collignon, Champoux, Voss, & Lepore, 2011a; Merabet & Pascual-Leone, 2009). 

Support for this assumption comes from research conducted on deaf individuals 
demonstrating that the success of cochlear implants is inversely related to the 

amount of visual activity measured in the auditory cortex (Lee et al., 2007; 
Sandmann et al., 2012; Strelnikov et al., 2013). Empirical investigations of this 

question in visually-deprived individuals are very scarce. Historical cases of 
sight-recovery in adulthood after longstanding blindness typically encounter 

severe visual deficits even years following the intervention (Ackroyd et al., 
1974; Carlson et al., 1986; Fine et al., 2003; Gregory & Wallace, 1974). Only 

one functional Magnetic Resonance Imaging (fMRI) study to date jointly 
investigated occipital visual and crossmodal responses in two early blind patients 

whose vision was partially restored in adulthood and demonstrated robust and 
specific crossmodal auditory motion responses coexisting with regained visual 

motion responses in area MT+/V5 (Saenz et al., 2008). However, since this 
study was carried out several years after sight restoration, no observations were 

reported about the evolution of the occipital cortex functional tuning before and 
after sight was regained.  

In addition, neuroimaging studies exploring the impact of longstanding visual 
deprivation on sight-recovery were carried out in individuals experiencing total 

blindness since early infancy (i.e. diffuse light perception at most) (Fine et al., 
2003; Röder et al., 2013; Saenz et al., 2008). However, most cases of vision 

loss occur gradually and individuals often maintain some degree of residual 
sensory function (Merabet & Pascual-Leone, 2009). Surprisingly, the question of 

whether crossmodal plasticity may be observed even in cases where the sensory 
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deprivation is not total remains largely unexplored. This is an issue of particular 

relevance considering these individuals are the main targets of new advances in 
surgical procedures to restore vision (Aldave, Kamal, Vo, & Yu, 2009; Robert & 

Harissi-Dagher, 2011). 

In the present study, we provide the first extensive longitudinal investigation 

of a case of sight-recovery after a life-long history of severe visual impairment. 
We performed both pre- and post-surgery measurements and combined 

behavioral, neurostructural (MRI) and neurofunctional (fMRI) methods in order 
to test the presence of crossmodal plasticity prior to surgery despite residual 

visual functions and investigate its evolution together with visual recovery within 
face and motion processing systems. 

2. Materials and Methods 

2.1. Case Description 

KL is a right-handed female, born in 1965 in Meteghan, Nova Scotia in a 
family with low socio-economical status. Her visual impairment history was 

assessed by obtaining access to her medical records, by discussing the case with 
the ophthalmologist who carried out the ophthalmic procedure (MHD in the 

authorship), and by carrying out detailed anamneses with her and with her 9 
years older brother. KL’s vision has been highly altered since very early in life. 

At 10 months of age, her parents and older brothers noticed a lack of visually 
guided behavior and an inability to avoid obstacles around her. She was 

diagnosed with dense bilateral cataracts between 2 and 3 years of age, which 
were surgically removed at that time by extraction of the crystalline lens 

bilaterally. The surgery was not successful in restoring functional vision since 
she has only experienced residual patterned, color and motion information in the 

right eye but none in the left. The left eye was deemed amblyopic. During 
infancy and adolescence, she attended school in specific classes for children with 

learning disabilities. At that time, she would always sit a few feet away from the 
black board and was capable of reading in books with large letters from a 

distance of about 5 inches. She had to stop attending school in grade 8 (first 
year of high school), as there were no more adapted classes and her vision was 

too altered to allow her to attend regular classes. At home she would rather 
listen to music than watching television and when she did it was from about 3 

inches from the screen. She never played any sports involving a ball as she was 
unable to see it on time in order to catch it. KL and her older brother recall it 
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was never possible for her to recognize anyone familiar solely based on their 

face.  

KL got married and moved from Nova Scotia to Quebec in 1984. In 1996, 

rhegmatogenous retinal detachment occurred in her right eye for which she 
underwent surgical repair by pars plana vitrectomy. In 2000, a rhegmatogenous 

retinal detachment occurred again in the same eye, which was also repaired by 
pars plana vitrectomy. She worked as a dishwasher in a restaurant between 

1995 and 2005 and as a nurse aid from 2005 to 2007, until her vision decreased 
even more to a point were she stopped working completely. A corneal graft was 

attempted in her right eye in December 2008 and an anterior chamber lens was 
implanted to correct the refractive power. The corneal graft was rejected in 

September 2010. A second corneal graft was attempted in October 2010 and 
was rejected again 3 months later. At that point, visual acuity in her medical 

records was reported to be 20/300 and KL resorted to using a white cane. A 
Boston Keratoprosthesis was implanted in her right eye in April 2012. A soft 

contact lens with optical correction of -0.5 diopters was placed to protect the 
eye. KL was tested with this correction at Post 1.5m. In August 2012, the optical 

correction of the lens was increased to -6 diopters to improve distance vision, 
and KL was prescribed glasses with optical correction of +2 diopters for near 

vision. KL was tested with this correction at Post 7m. 

2.2. General experimental design and control participants 

KL was tested in 3 separate sessions involving identical behavioral, MRI and 

fMRI procedures. The first session, referred to as Pre, took place 3 weeks (18 
days) prior to surgery. The two other sessions, referred to as Post 1.5m and 

Post 7m, took place 1.5 months (48 days) and 7 months (218 days) following 
visual restoration with Boston Keratoprosthesis (Khan, Harissi-Dagher, Khan, & 

Dohlman, 2007). Behavioral tasks consisted of computerized tests evaluating 
visual acuity, contrast sensitivity, global motion detection, face/non-face 

categorization and individual face discrimination. Each neuroimaging session 
comprised four functional runs followed by the acquisition of a high-resolution 

anatomical image in order to investigate structural changes across time. 
Functional runs consisted of a motion localizer, a face localizer, and two auditory 

experiments. Visual runs aimed at testing residual visual functions within key 
neural systems of the dorsal and of the ventral visual pathways. The two 

auditory experiments tested the presence of crossmodal recruitment of occipital 
regions by sounds, as a result of longstanding visual impairment. Three normally 
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sighted (SI) right-handed females with corrected-to-normal vision and aged 55, 

40 and 52, were tested in the behavioral experiments and served as control 
participants. For MRI measures, we used previously acquired anatomical images 

from 9 normally sighted subjects (3 females) who were scanned on two 
occasions separated by a delay ranging between 35 days and 3.5 years (mean 

delay ± SD = 1.45 ± 1.32 years ; mean age at Scan 1 ± SD = 35 ± 10 years ; 
mean age at Scan 2 ± SD = 36 ± 10 years). For fMRI experiments, we used 

previously acquired data with identical paradigms from 12 sighted controls (SI) 
with normal or corrected-to-normal vision for the motion localizer, the face 

localizer and the auditory experiment 1 (4 females, mean age ± SD = 29 ± 4,3 
years), and from 17 sighted (SI) with normal or corrected-to-normal vision (9 

females, mean age ± SD = 40 ± 14 years), 12 early blind (4 females, mean age 
± SD = 41 ± 11 years), and 10 late blind individuals (8 females, mean age ± 

SD = 48 ± 11 years) for the auditory experiment 2 (Collignon et al., 2013; 
Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b). All 

participants gave their written informed consent to take part in the study, which 
was approved by the research ethic and scientific boards of the Quebec Bio-

Imaging Network (QBIN), the Notre-Dame hospital (CHUM) and the Centre for 
Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR).  

2.3. Behavioral experiments 

Behavioral tasks consisted of computerized tests evaluating distance visual 
acuity, contrast sensitivity function, global motion detection thresholds, 

face/non-face categorization and face individuation abilities. They were 
administered in a dimly lighted room and presented on a Viewsonic (PT775) CRT 

monitor (330 mm x 245 mm). Stimulus generation, presentation and data 
collection for tests of distance visual acuity, contrast sensitivity and global 

motion detection were controlled by a Macintosh Pro 2.8 GHz Quad-Core Intel 
Xeon using DataPixx (www.vpixx.com) graphic program and visual stimulator 

(16-bit video digital-to-analogue converter (DAC)). The mean luminance of the 
display was 50.0 cd/m2 (x = 0.2783, y = 0.3210 in CIE (Commission 

Internationale de l'Eclairage) u' v' color space) where Lmin and Lmax were 0.5 and 
99.50 cd/m2, respectively. Screen resolution was 1280 x 1024 pixels and refresh 

rate was 85 Hz. Stimulus presentation and data collection for the face/non-face 
categorization and the face individuation tasks were controlled with an HP 

Compaq dc5850 Microtower PC using E-prime2 (Psychology Software Tools). 
Screen resolution was 1024 x 768 pixels and refresh rate was 60 Hz.  
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Measures of distance visual acuity, contrast sensitivity and global motion 

detection were performed with MLPEST algorithm (Harvey, 1997) implementing 
the maximum-likelihood adaptive staircase method for estimating sensory 

thresholds. The staircase fitted a new psychometric function to the data after 
each trial and ended after a 90% confidence level that the detection threshold 

estimate fell within ±0,1 log units of the true threshold measure. In all of these 
tasks, responses were given verbally by the participants and were encoded by 

the experimenter. Luminance readings and gamma correction were verified 
using a Minolta CS-100 Chroma Meter colorimeter on a regular basis. 

2.3.1. Distance Visual Acuity. Distance visual acuity was measured 
binocularly and monocularly using a Landolt-C paradigm at a distance of 285 cm 

from the computer screen (with the exception of KL at Pre who was tested at 
100 cm because of her impossibility to carry out the task at the same distance). 

Stimuli corresponded to high contrast white optotypes (Loptotype = 99.5 cd/m2) on 
a black background (Lbackground = 0.5 cd/m2). Participants were asked to identify 

the orientation (up, down, left or right) of the gap opening of the optotype using 
a four alternative forced-choice paradigm. Far visual acuity was defined by 

Snellen decimal acuity, the reciprocal of the smallest resolvable visual angle of 
the optotype gap in arc minutes needed to correctly identify its orientation.  

2.3.2. Contrast Sensitivity. Contrast sensitivity function (CSF) was assessed 
binocularly at a distance of 57 cm from the computer screen, by measuring 

contrast detection thresholds to luminance-defined vertically-oriented sine-wave 
gratings with smoothed edges (in gaussian envelope) of different spatial 

frequencies. Gratings size was 20° x 20° when viewed from 57 cm. The mean 
luminance of the remainder of the display was 50 cd/m2. Detection thresholds 

were measured separately for gratings of 0.25, 0.5, 1, 2, 4, 6 and 8 cycles per 
degree (cpd). In each trial, the target grating appeared in either one of two 

successively presented frames of 1 s duration each and separated by a 200 ms 
interval. A sound was emitted concomitantly to each frame presentation. 

Participants were instructed to indicate verbally in which presentation, the first 
or the second, the target grating was present. The non-target presentation 

consisted of a uniform gray screen. The contrast sensitivity function was 
calculated for each participant using the inverse of the contrast detection 

threshold measured for each spatial frequency. 

2.3.3. Global Motion Detection. Global motion detection thresholds were 

measured separately for radial and vertical trajectories at a distance of 57 cm 



 

	
   113 

from the computer screen. Stimuli consisted of limited lifetime random-dot 

kinematogram displays (RDKs) (Newsome & Paré, 1988). A hundred white dots 
(0.75° diameter, Ldots = 99.5 cd/m2) were presented against a 23° x 23° black 

background square (Lbackground = 0.5 cd/m2) and moved at a speed of 12°/sec. A 
subset of randomly chosen (signal) dots moved in the same direction whereas 

the remaining (noise) dots in the display moved in random directions. Signal 
strength was manipulated by varying the percentage of signal dots in the 

display. The dots had a limited lifetime of 250 ms to ensure that the global 
direction of motion could not be simply detected based on local motion 

information. In the radial task, signal dots moved toward (contracting) or away 
from (expanding) the center of the screen. In the vertical task, signal dots 

moved upward or downward. In line with previous studies that have used 
comparable radial RDKs stimuli (Burr & Santoro, 2001), the magnitude of the 

dot displacement in the radial task was always constant across space so that it 
did not differ from the vertical task in terms of local speed. We measured a 

coherence threshold for each of the 2 tasks (minimum percentage of signal dots 
required to accurately detect the overall direction of motion). Participants were 

instructed to identify the direction of the dots that were coherently moving 
towards the same direction. Each trial lasted for maximum of 5 seconds, or until 

participants responded.  

KL’s distance visual acuity for binocular and monocular vision (in Snellen 

decimal acuity), contrast detection thresholds at each spatial frequency (in 
percentage), global motion detection thresholds (in percentage) measured at 

Pre, Post 1.5m and Post 7m were compared to the controls by means of the 
modified t-test of Crawford et al. (Crawford, Garthwaite, & Porter, 2010), 

specifically designed for comparing an individual’s test score against norms 
derived from small samples. Here we used a p-value 0.05 within the framework 

of a unilateral hypothesis. Consequently, KL’s thresholds associated with a one-
tailed p-value below 0.05 were considered as reflecting a significant difference 

relative to the controls. Analyses were conducted using a computerized version 
of the method (SINGLIMS_ES.exe). 

2.3.4. Face/Non-face Categorization. Face categorization was assessed using 
a sequential two alternative forced choice delayed matching task (2AFC). A total 

of 48 greyscale pictures of full front faces (half male) and full front cars were 
used in this task. Pictures measured 300 pixels in height (about 9.5° on the 

screen) with a width ranging between 200 and 250 pixels for faces (about 7.5° 
on the screen), and between 350 and 400 pixels for cars (about 12° on the 
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screen). All pictures were equalized for luminance using the SHINEtoolbox 

(Willenbockel et al., 2010)  implemented in MATLAB (Mathworks). Each trial 
consisted of the presentation of either a face or a car at the centre of the screen 

during 360 ms and followed, after a 1000 ms delay, by the central presentation 
of two objects (one of each category) arranged the one on top of the other, 

which remained on the screen until a response was given. The task was to 
determine which object, the face or the car, had been presented at encoding. 

Participants were instructed to respond as accurately and as fast as possible. 
Forty-eight trials were administered in total, in half of the trials the encoding 

item was a face, in the other half the encoding item was a car.  

Both accuracy rates and correct response times (RTs) were considered for 

analyses. A chi-square test for independence was performed on KL’s accuracy (1 
versus 0 at each trial) in order to test for any significant change in accuracy 

across time. Only correct response times that were below 2000 ms were 
considered for analyses and were ln-transformed in order to meet criterion of 

normal distribution for the use of parametric tests. Ln-transformed correct RTs 
that were below or above 3 standard deviations from the mean of each session 

were excluded. To compare KL’s response speed across time, a one-way 
repeated-measure ANOVA and post-hoc t-tests were conducted on ln-

transformed correct RTs with Session (Pre, Post 1.5m, Post 7m) as a within-
subject factor. Finally, KL’s performance in each session (overall accuracy and 

ln-transformed correct RTs) was compared to the controls’ by means of the 
modified t-test of Crawford et al. (2010) using a p-value 0.05 within the 

framework of a unilateral hypothesis. 

2.3.5. Face Individuation. Face individuation for full front faces and depth-

rotated (¾ profile) faces were assessed using two separate tasks. Both tasks 
consisted of a sequential two alternative forced choice delayed matching 

paradigm (2AFC). Stimuli consisted of 100 pictures of full front faces (half male) 
and of 96 pictures of depth rotated (¾ profile) faces (identical identity). They all 

measured 300 pixels in height (about 9.5° on the screen) with a width ranging 
between 200 and 265 pixels (about 7° on the screen). All faces were greyscale, 

cropped for external features, and equalized for luminance using SHINEtoolbox 
(Willenbockel et al., 2010) implemented in MATLAB (Mathworks). Each trial 

consisted of the presentation of a face for 500 ms and followed, after a 1000 ms 
delay, by the central presentation of two faces arranged the one on top of the 

other, which remained on the screen until response was given. The exact same 
faces were presented at upright and inverted (vertically flipped) orientations in 
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four separate blocks (upright – inverted – inverted – upright) within each task. 

Tasks consisted of identifying within each trial, which face was presented at 
encoding. Participants were instructed to respond as accurately and as fast as 

possible. In the first task, the target face and the subsequent faces were all 
presented full front. In the second task, the target face was presented full front 

whereas the subsequent faces were depth-rotated (3/4 profile). A hundred trials 
(half upright) were administered in the first task, and 96 trials (half upright) 

were administered in the second task. 

Both accuracy rates and correct response times (RTs) were considered for 

analyses. A binomial test was conducted on KL’s accuracy scores (1 versus 0 at 
each trial) within each session, separately for upright and inverted orientations 

in order to test whether performance significantly differed from chance. As KL 
performed at chance pre-surgery in both tasks and with both orientations, we 

conducted subsequent analyses only on post-surgery data. Chi-square tests for 
independence were performed on KL’s accuracy scores (1 versus 0 at each trial) 

in order to test for any significant between-session change in performance 
separately for upright and inverted orientations and in order to test for a face 

inversion effect within each post-surgery session. The same test was conducted 
on each of the controls’ accuracy scores (1 versus 0 at each trial) in order to 

test for the presence of a face inversion effect at the individual level. Only 
correct response times that were below 5000 ms were considered for analyses 

and were ln-transformed in order to meet criterion of normal distribution for the 
use of parametric tests. Ln-transformed correct RTs that were below or above 3 

standard deviations from the mean of each session were excluded. A two-way 
between-groups ANOVA and post-hoc t-tests were conducted on KL’s ln-

transformed correct RTs to explore the impact of Orientation (upright vs. 
inverted) and Session (Post 1.5m, Post 7m) on response speed. To test the 

presence of a face inversion effect in each of the controls separately, 
independent t-tests were conducted on ln-transformed correct RTs. Finally, KL’s 

performance within each task (overall accuracy and ln-transformed correct RTs) 
at each orientations in each of the post-surgery sessions was compared to the 

controls’ by means of the modified t-test of Crawford et al. (2010) for single-
case studies using a p-value 0.05 within the framework of a unilateral 

hypothesis. 
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2.4. fMRI experiments 

KL was scanned in three separate fMRI sessions lasting about 1.5 hour each, 
and consisting of four different experiments (one functional run for each 

experiment) followed by the acquisition of a high-resolution anatomical image. 
Functional runs were block designs consisting of a motion localizer, a face 

localizer, and two auditory experiments. Before each fMRI acquisition, KL and 
controls underwent a 45 minutes training session in a mock scanner. Recorded 

scanner noise played in the bore of the simulator while practicing the tasks in 
order to familiarize them with the fMRI environment. In the scanner, visual 

stimuli were projected onto a mirror (127 mm x 102 mm) that was mounted at 
a distance of about 12 cm from the eyes of the participants. Auditory stimuli 

were delivered by means of circumaural, fMRI-compatible headphones (Mr 
Confon, Magdeburg, Germany).  

2.4.1. Motion Localizer. The motion localizer run lasted 9 min and consisted 
of radially moving dots and static images of the same dots alternating in a block 

design with 18 s blocks that were each repeated 10 times. Stimuli in both 
conditions consisted of large white dots (about 1.5° in the scanner) on a black 

background (about 45° x 45° in the scanner), randomly placed at a minimum 
radius (about 3° in the scanner) from a central white fixation cross (about 2° x 

2° in the scanner). Blocks were separated by a baseline (white fixation cross on 
a black background) lasting 7, 9 or 11 s (9 s on average). In the Motion blocks, 

6 consecutive radially moving stimuli each lasting 3 seconds (1.5 s of expansion 
and 1.5 s of contraction) were presented (no ISI) (dots lifetime: 250 ms, 

velocity: about 15°/s in scanner). In the static blocks, 6 consecutive frames 
were presented in random order for 3 seconds each (no ISI). Occasionally, the 

background of the display turned from black to grey for 500 ms. Within each 
condition, there were 3 blocks with one such target, 3 blocks with 2 such targets 

and 4 blocks with no targets at all. The task consisted of detecting that color 
change and press a response key with the right index finger.  

2.4.2. Face Localizer. The face localizer run lasted 15 minutes and consisted 
of 8 repetitions of each of 4 conditions, alternating in blocks of 19.35 s. Each 

condition consisted of a different category: faces, cars and their phase-
scrambled version (Rossion et al., 2012). Pictures measured 210 x 184 (about 

20° width x 25° height in the scanner). The Face category consisted of full front 
pictures of 43 (22 females) different faces that were cropped for external 

features and embedded in a grey rectangle. Similarly, the Car category 
consisted of full front pictures of 43 different cars inserted in a grey rectangle. 
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Pictures of faces and cars were equalized for luminance and presented in color. 

The phase-scrambled pictures were used in order to control spatial frequencies 
and pixel intensity in each color channel (RGB) in the Face and in the Car 

categories. They were created using a Fourier phase randomization procedure by 
replacing the phase of each original image by the phase of a uniform noise 

allowing for amplitude to be conserved in each frequency band (Sadr & Sinha, 
2004). Blocks were separated by a baseline condition (white fixation cross of 

about 2° x 2° on a black background) lasting 7, 9 or 11 s (9 s on average). In 
each block, 43 images were presented on a black background for 380 ms with a 

70 ms ISI. Occasionally, a picture was replaced by a uniform gray rectangle 
(380 ms) that the participant had to detect by pressing a key with the right 

index finger. Within each condition, there were 3 blocks with one such target, 2 
blocks with 2 such targets and 3 blocks with no targets at all. 

2.4.3. Auditory Experiment 1: Voices versus horizontally moving sounds. 
Participants were instructed to keep their eyes closed during this run. The run 

lasted about 13 minutes and consisted of 2 conditions alternating in blocks of 
16.8 s with 15 repetitions for each condition. The 2 conditions consisted of 

human voices and horizontally moving sounds which were matched for low-level 
properties. Human voices were vowels ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, pronounced by 12 

different francophone speakers (half male) recorded in the lab. They were cut at 
700 ms (695ms + 5ms silence) and normalized for overall RMS using MATLAB) 

(Mathworks). Target vowels consisted of a longer vowel lasting 1400 ms. 
Original and target vowels were then concatenated (no ISI) into 10 blocks of 

16.8 s, such that 5 blocks contained 1 target (23 stimuli total), 5 blocks 
contained 2 targets (22 stimuli total) and 5 blocks contained 3 targets (21 

stimuli total). Blocks of horizontally moving sounds were created based on the 
frequency-scrambled version of the vocal blocks. Firstly, the vocal blocks were 

Fourier fast transformed and cut into frequency windows of 150 Hz. Scrambling 
was then performed by randomly intermixing the amplitude and frequency of 

each Fourier component (Belin et al., 2000) within each of these frequency 
windows separately. The inverse Fourier transform was then applied on the 

resulting signal. The output was a sound of the same length of the original vocal 
block with similar energy within each frequency band. Secondly, an envelope 

was created and applied on each scrambled block. This envelope consisted of 21 
(3 targets blocks), 22 (2 targets blocks) or 23 (1 target blocks) linear ramps 

going from 0 to maximal intensity and from maximal intensity to 0 every 700 
ms (or 1400 ms when position in the scrambled block corresponded to a target 
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in the original vocal block). This envelope was applied separately for the left and 

the right ear resulting in a stereo sound where intensity would increase in one 
ear, and decrease simultaneously in the other ear, creating the vivid perception 

of a sound moving from one ear to the other in the azimuth every 700 ms (or 
1400 ms for target moving sounds). Blocks were separated by rest periods of 7, 

9 or 11 s (9 s on average). Occasionally, a stimulus (either a vowel or a moving 
sound) lasted longer (1400 ms). The task was to detect that target and press a 

response key with the right index finger. Stimuli and task were modeled after 
those used in previous studies of crossmodal verbal/voice responses (Gougoux 

et al., 2009) and motion responses (Poirier et al., 2006; Saenz et al., 2008) in 
blind subjects. 

2.4.4. Auditory Experiment 2: Spatial versus pitch discrimination. Stimuli and 
paradigm were identical to the ones used in previous studies of our group (see 

(Collignon et al., 2013; Collignon, Vandewalle, Voss, Albouy, Charbonneau, et 
al., 2011b) for a full description of the procedure). Participants that were tested 

in these studies were blindfolded at that time. However, because KL in the 
present study had to perform visual experiments within the same scanning 

session, she was simply instructed to keep her eyes closed during this run.  
During both auditory runs, the scanning room was put in complete darkness by 

shutting down the light of the room and of the projector, resulting in complete 
obscurity, and ensuring that no light was perceived even through the closed 

eyelids. 

2.5. MRI/fMRI data acquisition 

The fMRI series were acquired using a 3T TRIO TIM system (Siemens) 

equipped with a 12-channel head coil. Multislice T2*-weighted fMRI images were 
obtained with a gradient echo-planar sequence using axial slice orientation (time 

to repetition (TR) 2200 ms; echo time (ET) 30 ms; flip angle (FA) 90°; 35 
transverse slices; 3.2 mm slice thickness; 0.8 mm (25%) inter-slices gap; field 

of view 192 x 192 mm2; matrix size 64 x 64 x 35; voxel size 3 x 3 x 3.2 mm3). 
The 3 (in all runs except auditory experiment 2) or 4 (in auditory experiment 2) 

initial scans were discarded to allow for steady-state magnetization. A structural 
T1-weigthed 3D magnetization prepared rapid gradient echo sequence (voxel 

size 1 x 1 x 1.2 mm3; matrix size 240 x 256; TR 2300 ms; ET 2.91 ms; TI 900 
ms; FoV 256; 160 slices) was also acquired in each session. Functional volumes 

were preprocessed and analyzed using SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/; Welcome Department of 
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Imaging Neuroscience, London), implemented in MATLAB (Mathworks). 

Preprocessing included the realignment of functional time series, the 
coregistration of functional and anatomical data, a spatial normalization to an 

echo planar imaging template conforming to the Montreal Neurological Institute 
space, and a spatial smoothing (8 mm Full Width at Half Maximum (FWHM) 

isotropic Gaussian kernel). 

2.6. MRI data analysis: Voxel Based Morphometry (VBM) 

Anatomical images acquired in the Pre, Post 1.5m and Post 7m session were 

preprocessed using the vbm8 toolbox of SPM8 (Wellcome Trust Centre for 
Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/, London, UK). The ‘Process 

Longitudinal Data’ module, taking into account the characteristics of intra-
subject analysis, was used to perform these analyses. Following an initial 

realignment of the anatomical images from the 3 sessions, the mean image was 
calculated and was used as a reference image for a subsequent realignment. 

Realigned anatomical images were then corrected for signal inhomogeneity with 
regard to the reference (mean) image. Bias-corrected realigned images from 

each session were segmented into grey matter, white matter and cerebrospinal 
fluid. This procedure resulted in a set of nine images (3 tissue probability maps 

for each session of the 3 sessions) in the same space as the original T1-
weighted image, in which each voxel was assigned a probability of being grey 

matter, white matter, and cerebrospinal fluid, respectively. These images were 
spatially smoothed with an 8 mm (FWHM) isotropic Gaussian kernel.  

In order to estimate the variability of the measure (including error noise) that 
should be expected when comparing grey matter tissue probability maps (GM 

TPM) from anatomical images acquired on separate sessions, we performed 
identical analyses on the anatomical images of 9 normally sighted participants 

who were scanned on two separate occasions (Scan 1 and Scan 2). 

Statistical analyses were computed as follows. Firstly, we calculated 

between-session differential images in KL and in each control subject using the 
ImCalc function implemented in SPM. This lead to 3 differential images in KL 

(Post 7m - Pre, Post 1.5m - Pre, Post 7m - Post 1.5m) (Figure 2A and 2B) and 1 
differential image in each control subject (Scan 2 - Scan 1). Secondly, for each 

of these 13 differential images, we calculated the mean and standard deviation 
of the distribution of differential values obtained within each voxel across the 

brain (Figure 2A and 2B). As expected, mean absolute differences (increases or 
decreases) between Scan 1 and Scan 2 in controls were close to 0, with a 
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change of 0.4% on average (range = min. 0.15% - max. 0.82%, SD = 0.25%). 

Similarly in KL, mean absolute between-session differences were 0.08% (within 
normal range) in the Post 7m - Post 1.5m differential image. In contrast, mean 

absolute between-session differences in KL in Post 1.5m and Post 7m relative to 
Pre were 1.32% and 1.22%, respectively, more than 3 SD above the mean of 

controls. Thus, only the latter differential images were considered for further 
analyses in KL. Across KL’s brain, we defined voxels showing significant 

differences at Post 1.5m relative to Pre and at Post 7m relative to Pre, as the 
ones displaying the largest 1% increases or decreases within each differential 

image (± 3SD from the mean of the distribution of changes, see grey shaded 
areas in Figure 1A and 1B). Finally, to ensure reliability of the changes across 

sessions, we reported only those voxels that passed the statistical threshold in 
both Post 1.5m and Post 7m sessions relative to Pre (i.e. voxels showing 

significant gains/losses both in Post 1.5m (≥8.07%/≤-5.43%) and Post 7m 
(≥8.45%/≤-6.01%) relative to Pre) (Figure 1C). 

2.7. fMRI Data Analysis 

Analyses of fMRI data in KL (3 sessions) and in controls (1 session, see 
General design and control participants section) were performed based on a 

mixed effects model, and were conducted in a single step accounting for fixed 
effects. Changes in brain regional responses in KL were estimated by a general 

linear model including 6 regressors in the motion localizer (2 conditions x 3 
sessions), 12 regressors in the face localizer (4 conditions x 3 sessions) and 6 

regressors in each of the two auditory experiments (2 conditions x 3 sessions). 
In controls, changes in brain regional responses were estimated by a general 

linear model including 2 regressors in the motion localizer, 4 regressors in the 
face localizer and 2 regressors in each of the two auditory experiments. These 

regressors consisted of a boxcar function convolved with the canonical 
hemodynamic response function. For each session, the movement parameters 

derived from realignment of the functional volumes (translations in the x, y and 
z directions and rotations around the x, y and z axes) and a constant vector 

were included as covariates of no interest. In addition, for each session of the 
auditory experiment 2, the instructions preceding each block were further 

included as a covariate of no interest. High-pass filtering was implemented in 
sessions using a cut-off period of 128 s to remove slow drifts from the time 

series. Serial correlations in fMRI signal were estimated using an autoregressive 
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(order 1) plus white noise model and a restricted maximum likelihood (ReML) 

algorithm.  

In controls, contrasts of interest in each of the 4 experimental runs were 

performed as follows. In the motion localizer, the contrast [Motion > Static] 
identified motion-specific responses. In the face localizer, a conjunction analysis 

was performed in order to identify face-specific responses relative to both 
scrambled faces and to cars [Face > ScrFaces ∩ Face > ScrFaces] (Rossion et 

al., 2012). In auditory experiment 1, the contrast [Motion + Voice] tested the 
global processing of sounds, and the contrasts [Motion > Voice] and [Voice > 

Motion] tested specific processing of motion and voices. Finally, in auditory 
experiment 2, the contrast [Spatial + Pitch] tested the global processing of 

sounds, and the contrasts [Spatial > Pitch] and [Pitch > Spatial] tested specific 
processing of spatial and pitch attributes of sounds (Collignon et al., 2013; 

Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b). 

In KL, for each of the 4 experimental run separately, analyses were 

performed in two steps. Firstly, a conjunction (AND) analyses between sessions 
[Pre ∩ Post 1.5m ∩ Post 7m] was performed on contrasts of interest in order to 

identify regions that were consistently activated in a given contrast across 
sessions (motion Localizer: motion-specific responses across sessions [Motion > 

Static Pre ∩ Post 1.5m ∩ Post 7m]; auditory experiment 1: global processing of 
sounds across sessions [Motion + Voice Pre ∩ Post 1.5m ∩ Post 7m], specific 

processing of moving sounds across sessions [Motion > Voice Pre ∩ Post 1.5m ∩ 
Post 7m] and specific processing of voices across sessions [Voice > Motion Pre ∩ 

Post 1.5m ∩ Post 7m]; auditory experiment 2: global processing of sounds 
across sessions [Spatial + Pitch Pre ∩ Post 1.5m ∩ Post 7m], spatial processing 

of sounds across sessions [Spatial > Pitch Pre ∩ Post 1.5m ∩ Post 7m] and pitch 
processing across sessions [Pitch > Spatial Pre ∩ Post 1.5m ∩ Post 7m]). In the 

face localizer, the conjunction was performed across sessions [Pre + Post 1.5m 
+ Post 7m] in order to identify face-specific responses relative to both 

scrambled faces and to cars when considering all sessions [Face all sessions > 
ScrFaces all sessions ∩ Face all sessions > ScrFaces all sessions] (Rossion et al., 

2012). Secondly, between-session comparisons were performed using linear 
contrasts testing for significant between-session brain responses between 

conditions of interest (motion localizer: linear contrasts testing the effect of 
session on motion-specific responses ([Motion > Static X Post 1.5m > Pre]; 

[Motion > Static X Post 7m > Pre], [Motion > Static X Post 7m > Post 1.5m]); 
face localizer: conjunctions between linear contrasts testing the effect of session 
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on face-specific responses relative to both scrambled faces and cars ([Faces > 

ScrFaces ∩ Faces > Cars X Post 1.5m > Pre]; [Faces > ScrFaces ∩ Faces > Cars 
X Post 7m > Pre], [Faces > ScrFaces ∩ Faces > Cars X Post 7m > Post 1.5m]); 

auditory experiment 1: linear contrasts testing the effect of session for general 
auditory processing [Motion + Voice X Pre > Post 1.5m], [Motion + Voice X Pre 

> Post 7m], [Motion + Voice X Post 1.5m > Post 7m], for specific processing of 
moving sounds [Motion > Voice X Pre > Post 1.5m], [Motion > Voice X Pre > 

Post2], [Motion > Voice X Post 1.5m > Post 7m] and for specific processing of 
voices [Voice > Motion X Pre > Post 1.5m], [Voice > Motion X Pre > Post 7m], 

[Voice > Motion X Post 1.5m > Post 7m]; auditory experiment 2: linear 
contrasts testing the effect of session for general auditory processing [Pitch + 

Spatial X Pre > Post 1.5m], [Pitch + Spatial X Pre > Post 7m], [Pitch + Spatial X 
Post 1.5m > Post 7m]), for the spatial processing of sounds [Spatial > Pitch X 

Pre > Post 1.5m], [Spatial > Pitch X Pre > Post 7m], [Spatial > Pitch X Post 
1.5m > Post 7m], and for pitch processing [Pitch > Spatial X Pre > Post 1.5m], 

[Pitch > Spatial  X Pre > Post 7m], [Pitch > Spatial X Post 1.5m > Post 7m]).   

Statistical inferences on the t-statistics maps resulting from contrasts of 

interest were performed at a threshold of p<0.05 after correction for multiple 
comparisons over the whole brain (Family Wise Error method) or over small 

spherical volumes (15mm radius) located in regions of interest (SVC). 
Significant clusters extended to at least 10 contiguous voxels - unless localized 

in regions of interest - and were anatomically labelled using structural 
neuroanatomy information provided by the Anatomical Automated Labelling 

(AAL) toolbox (Tzourio-Mazoyer et al., 2002) and Pickatlas (Maldjian, Laurienti, 
Kraft, & Burdette, 2003). Automatic labelling was systematically and carefully 

checked. In order to ensure reliability of the changes across sessions in KL, 
between-session comparisons of brain responses in Pre vs. Post 1.5m session 

and in Post 1.5m vs. Post 7m session were masked inclusively (puncorr < 0.001) 
by the between-session contrast comparing brain responses in Pre vs. Post 7m 

session. Doing so, we only included regions showing between-session changes 
that were consistent over time (e.g. regions showing a differential effect when 

comparing Pre vs. Post 1.5m for a given contrast but no differential effect when 
comparing Pre vs. Post 7m for the same contrast would not be included). 

In order to illustrate brain responses to sounds within KL’s primary visual 
cortex, 13 spheres of 6 mm radius were traced along the calcarine sulcus 

including its lower and upper banks, in steps of 3 mm along the y axis, from the 
most caudal part (y = -96) to the most rostral part (y = -60). The coordinates of 
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these 13 ROIs were: [0, -60, 15], [0, -63, 15], [0, -66, 14], [0, -69, 12], [0, -

72, 9], [0, -75, 5], [0, -78, 0], [0, -81, -1], [0, -84, -2], [0, -87, -2], [0, -90, -
2], [0, -93, -2], [0, -96, -2]. Using Marsbar toolbox (Brett, Anton, Valabregue, & 

Poline, 2002), we extracted the t-values in each of these ROIs (see Mahon, 
Anzellotti, Schwarzbach, Zampini, & Caramazza, 2009a for similar analyses). 

Finally, in order to illustrate the crossmodal recruitment of primary visual cortex 
during sound processing in KL within each session relative to early blind, late 

blind (auditory experiment 2) and sighted control participants (auditory 
experiments 1 and 2), we used an anatomical mask encompassing the primary 

visual cortex around the calcarine fissure (delivered by Marsbar toolbox (Brett et 
al., 2002)) and we extracted the estimated auditory activity in this mask using 

the Marsbar toolbox (Brett et al., 2002) for auditory experiment 1 and 2 
separately, in KL (3 sessions separately) and in sighted, early blind and late 

blind participants (1 session).  

Spherical small volume correction (SVC, 15 mm sphere) were used only in 

the Face Localizer in order to identify face-selective regions. These SVCs were 
performed on coordinates reported in Rossion et al. (2012) who used identical 

stimuli and analyses as in the present study. As coordinates in that paper were 
reported in Talairach space, we first transformed them in MNI space using 

Matthew Brett’s bilinear transformation (http://imaging.mrc-
cbu.cam.ac.uk/imaging/MNITalairach) before performing the SVCs. Standard 

stereotactic coordinates were as follows: the right fusiform gyrus (37, -48, -15) 
and the right inferior Occipital Gyrus (OFA) (38, -72, -11).  

3. Results 

3.1. Behavioral Results 

Far Visual Acuity. At Pre, KL’s best corrected distance visual acuity expressed 
in Snellen decimal acuity was 0.04 in the right (operated) eye (Figure 1A). The 

success of the surgery was witnessed by improvements in visual acuity as soon 
as 1.5 months after surgery. Acuity in the right eye increased to 0.2 at Post 

1.5m, and to 0.7 at Post 7m. At all times, distance visual acuity in left eye was 
too low to be tested. In fact, distance visual acuity for binocular vision (OU) was 

identical to the one measured in the right (operated) eye (OD). Even at Post 
7m, KL’s acuity remained significantly below normal range (OU: t=-3.3, OD: t=-

2.9, ps<0.05). 
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Contrast Sensitivity Function. KL’s contrast sensitivity function (CSF) pre-

surgery was essentially flat, with a resolution limit of 6 cycles per degree (cpd) 
(Figure 1B). A substantial and selective improvement for low spatial frequencies 

was observed at Post 1.5m and Post 7m. Between 1.5 and 7 months post-
surgery, contrast sensitivity did not improve further for spatial frequencies up to 

0.5 cpd, but there were improvements for spatial frequencies from 1 to 4 cpd at 
Post 7m relative to Post 1.5m. KL’s contrast sensitivity at all spatial frequency 

ranges was well below normal range in all sessions (all ps < 0.00001) except for 
0.25 cpd at Post 7m (0.25 cpd, t=2.798, p=0.053).  

Global Motion. KL’s coherence thresholds were stable across the 3 sessions in 
both the radial and the vertical conditions (Figure 1C). In the radial condition, 

thresholds measured in each session (Pre=22.6%, Post 1.5m=23.9%, Post 
7m=27.4%) were comparable to normal controls’ thresholds (30%, all p>0.3), 

whereas in the vertical condition thresholds were higher (worse performance) 
for KL (Pre=37.8%, Post 1.5m=37.2%, Post 7m=35.9%) compared to controls 

(19.8%, all ps < 0.02).  

 Face categorization and individuation. KL performed well in the face vs. car 

categorization task in all sessions (Pre=90%, Post 1.5m=96%, Post 7m=100%), 
with accuracy being significantly below controls’ only at Pre (t=-7.432, p=0.009; 

other ps > 0.06; no differences in correct RTs: all ps > 0.3) (Figure 1D). The 
effect of Session did not reach significance neither in accuracy rates (χ2 (2, 

n=140)=5.706, p=0.06) nor in ln-transformed correct RTs (F(2,80)=2.913, 
p=0.06). 

In the front-to-front (FF) and the front-to-profile (FP) individual face 
discrimination task, KL performed at chance prior to surgery in both orientations 

and in both tasks (all ps > 0.12). Post-surgery, she performed significantly 
above chance (all ps < 0.01) except in the FP task at Post 1.5m, where 

performance with inverted faces was still not significantly different than chance 
(p=0.11) (Figure 1E and 1F).  

There was no significant change in performance between Post 1.5m and Post 
7m neither for upright faces (FF: χ 2 (1, n=100)=0.61, p=0.44 ; FP: χ 2 (1, 

n=96)=0.865, p=0.35) nor for inverted faces (FF: χ 2 (1, n=100)=0.203, 
p=0.65 ; FP: χ2 (1, n=96)=1.212, p=0.27).  In the FF task, KL was faster overall 

at Post 7m compared to Post 1.5m (main effect of Session FF : F(1,150)=6.89, 
p=0.01), but slower at Post 7m relative to Post 1.5m in the FP task (main effect 

of Session FP : F(1,132)=20.77, p<0.001). Performance with upright faces 
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remained significantly below normal range in both tasks post-surgery (all 

ps<0.035) whereas performance with inverted faces was below normal range at 
Post 1.5m (FF: t=-3.468, p=0.037 ; FP: t=-5.489, p=0.015) but not at Post 7m 

(FF : t=-2.22, p=0.07 ; FP : t=-2.081, p=0.086). KL was as fast as the controls 
in both tasks at Post 1.5m and Post 7m (all ps > 0.13).  

Some controls showed an inversion effect – a lower performance for upright 
than inverted faces (Rossion, 2008) - in accuracy (FF task : Ctrl2: χ 2 (1, 

n=100)=4.43, p=0.035; FP task : Ctrl1: χ2 (1, n=96)=4.41, p=0.036; Ctrl2: χ2 

(1, n=96)=5.55, p=0.019), and all showed an inversion effect in correct RTs in 

both tasks ((FF task: Ctrl1: t(61.7)=-4.07, p<0.001; Ctrl2: t(91)=-5.44, 
p<0.001; Ctrl3: t(86)=-7.44, p<0.001; FP task: Ctrl1: t(83.3)=-7.13, p<0.001; 

Ctrl2: t(86)=-3.85, p<0.001; Ctrl3: t(80)=-5.269, p<0.001). Importantly, KL 
did not show any significant inversion effect post-surgery in accuracy in any task 

(all ps > 0.09). In the FP task, she showed no inversion effect in correct 
response times (main effect of Orientation and interaction not significant, ps > 

0.25). In the FF task, the interaction between Session and Orientation was 
significant (F(1,150)=9.613, p=0.002), due to faster response times for upright 

than for inverted faces at Post 1.5m (t(76)=2.27, p= 0.026) and faster response 
times for inverted than for upright faces at Post 7m (t(74)=-2.13, p= 0.036). 

In summary, individual face discrimination was at chance prior to surgery 
and was significantly above chance level for both upright and inverted faces 7 

moths post-surgery. However, performance remained quantitatively below (for 
upright faces at least) and qualitatively different from normal controls, as there 

was no consistent evidence of a face inversion effect in KL.  
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Figure 1. Behavioral performance in KL (at Pre, Post 1.5m and Post 7m) and in 
sighted controls (SI). (A) Distance visual acuity measures expressed in Snellen Decimal 
acuity obtained in the Landolt-C paradigm for binocular (OU) and right (operated) eye 
(OD). (B) Contrast sensitivity function (CSF). (C) Percentage coherence thresholds for 
radial and vertical global motion detection. Percent accuracy and ln-transformed correct 
response times in (D) the face categorization task, (E) the front-to-front and (F) the front-
to-profile face individuation tasks, separately for upright and inverted faces. Bars 
represent standard error from the mean.  

3.2. Voxel-Based Morphometry Results 

Because of the well-known impact of perceptual experience on brain 

structure and the close relationship existing between brain structure and brain 
function (Zatorre, Fields, & Johansen-Berg, 2012), we investigated potential 

morphological changes associated with sight restoration using voxel-based 
morphometry. Grey matter density increases were consistently observed at Post 

1.5m and Post 7m relative to Pre in several occipital regions including bilateral 
peri-calcarine cortex and lingual gyri, left inferior occipital gyrus and right 

cuneus (Figure 2C, Supplemental Table 1).  
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Figure 2. Voxel-based morphometry analyses and results. VBM analyses in KL are 
illustrated in (A) and (B). The smoothed grey matter tissue probability map (GM TPM) 
obtained at Pre was subtracted from the smoothed GM TPM obtained at Post 1.5m (A) and 
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at Post 7m (B). Thresholds for significant differences were established based on the mean 
and standard deviations of the distribution of positive and negative differences observed in 
the differential image obtained in (A) and (B). Only voxels showing common between-
session differences above or below 3 standard deviations from the mean of the distribution 
in (A) and (B) were reported in (C), by overlapping the thresholded differential image on 
KL’s native anatomical image.  

3.3. fMRI Results 

3.3.1. Behavioral performance in the scanner. Visual detection performance 

(hits versus misses) in the Motion (i.e. detect change in background color) and 
in the Face (i.e. detect a gray rectangle) localizers was close to ceiling in all 

sessions with no difference between sessions (Hits in Face Localizer at Pre, Post 
1.5m, Post 7m: 26, 27, 22 (out of 28 targets), χ2 (2, n=84)=5.227, p=0.073 - 

Hits in Motion Localizer at Pre, Post 1.5m, Post 7m: 18, 17, 17 (out of 18 
targets),   χ2 (2, n=54)=1.038, p=0.59). In auditory experiment 1 (i.e. repetition 

detection in the Voice condition vs. speed change detection in the Motion 
condition), performance was higher in the Voice condition relative to the Motion 

condition at Pre (Hits in Voice vs. Motion conditions at Pre : 28, 18 (out of 30 
targets),  χ2 (1, n=60)=7.547, p=0.006) but not at Post 1.5m (Hits in Voice vs. 

Motion conditions at Post 1.5m : 24, 18 (out of 30 targets),   χ2 (1, n=60)=1.984, 
p=0.159) nor at Post 7m (Hits in Voice vs. Motion conditions at Post 7m : 27, 26 

(out of 30 targets),  χ2 (1, n=60)=0, p=1). There was a significant association 
between Session and performance only in the Motion condition (   χ 2 (2, 

n=90)=6.636, p=0.036) due to higher performance at Post 7m relative to both 
Pre and Post 1.5m sessions in that condition (  χ2 (1, n=60)=4.176, p=0.041). 

Performance in the Voice condition remained stable across time (   χ 2 (2, 
n=90)=2.693, p=0.26). In auditory experiment 2 (i.e. discrimination of Pitch vs. 

Spatial attributes of sounds), there was a main effect of Condition 
(F(1,14)=220.59, p<0.001) indicating that KL was more accurate in the Spatial 

than in the Pitch condition and a main effect of Session (F(2,28)=6.083, 
p=0.006) due to the overall better performance at Post 7m (74%) relative to 

Pre (63%, p=0.037) and Post 1.5m (64%, p=0.04) sessions. The interaction 
between the 2 factors was also significant (F(2,28)=4.752, p=0.017) as 

performance significantly improved over time only in the Pitch condition when 
comparing performance at Post 7m relative to Pre (t(14)=3.544, p=0.003) and 

Post 1.5m (t(14)=3.371, p=0.005). 

3.3.2. Visual Motion Localizer. A conjunction (AND) analysis identified a large 

set of regions which consistently responded to radially moving relative to static 
dots across the 3 sessions  ([Motion > Static Pre ∩ Post 1.5m ∩ Post 7m]) 
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(Figure 3A, Supplemental Table 2). In line with previous studies investigating 

visual-motion selectivity (Sunaert et al., 1999; Tootell et al., 1995), these 
regions included the middle temporal cortex (MT+/V5), the superior occipital 

gyrus (V3/V3A), and the superior temporal gyrus bilaterally as well as the left 
middle occipital gyrus (LOS/KO). Similar activation maps were observed in our 

control participants scanned with the same protocol (Supplemental Figure 1A). 
In KL, between-session increases in motion-selective  activity were observed at 

Post 7m relative to Pre ([Motion > Static X Post 7m > Pre])  in bilateral 
extrastriate cortices along the motion pathway localized posteriorly to MT+/V5: 

the middle occipital gyri bilaterally extending medially to the superior occipital 
gyri/cuneus (V2/V3/V3A) [Motion > Static Post 7m > Pre] (Figure 3B, 

Supplemental Table 2). No such changes were observed in bilateral MT+/V5 
(Figure 3B).  

	
  
Figure 3. fMRI activation maps of visual motion processing. (A) Between-session 
conjunction analysis highlighting regions showing consistent motion-specific responses 
[Motion>Static] across the 3 sessions in KL, and associated beta parameter estimates in 
bilateral MT+/V5. (B) Brain regions showing larger motion-specific visual responses 
[Motion>Static] at Post 7m relative to Pre and associated beta parameter estimates. 
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Results are displayed at a threshold of p<0.05 FWE corrected over the whole brain on a 
3D render of the brain. 

3.3.3. Face Localizer. Before surgery, regions in fusiform and inferior occipital 

gyri showed a preference for faces over cars and scrambled faces ([Faces Pre > 
ScrFaces Pre ∩ Faces Pre > Cars Pre]) (Supplemental Figure 1B) with no 

significant changes across time (Supplemental Table 3). Hence, a conjunction 
(AND) analysis was performed across sessions [Faces all sessions > ScrFaces all 

sessions ∩ Faces all sessions > Cars all sessions] (Rossion et al., 2012) and 
disclosed face selectivity in bilateral inferior occipital gyrus (“Occipital Face Area” 

or “OFA”) and in the right fusiform gyrus (“Fusiform Face Area” or “FFA”) (Figure 
4, Supplemental Table 3), in accordance with previous neuroimaging studies of 

face perception (Haxby, Hoffman, & Gobbini, 2000) and with activation maps 
observed in our sighted control participants scanned with the same protocol 

(Supplemental Figure 1B).  

	
  
Figure 4. fMRI activation maps of face processing. Brain regions responding more to 
Faces relative to both Cars and Scrambled Faces in all sessions in KL, and associated beta 
parameter estimates. Results are displayed at a threshold of p<0.001 uncorrected on a 3D 
render of the brain.  

3.3.4. Auditory Experiments. In both auditory experiments, several occipital 

regions were consistently recruited during the processing of auditory information 
across the 3 sessions in KL ([Motion + Voice Pre ∩ Post 1.5m ∩ Post 7m] ; 

[Spatial + Pitch Pre ∩ Post 1.5m ∩ Post 7m])  (Figure 5A and 5B, Supplemental 
Tables 4, 5). These regions were essentially localized along the calcarine sulcus 



 

	
   131 

extending medially to the cuneus and to the lingual gyrus (Figure 5A and 5B, 

Supplemental Tables 4, 5). In both auditory experiments, peaks of activation to 
global auditory processing in KL’s primary visual cortex were located in the 

caudal part of the calcarine sulcus and t-values steadily decreased along the 
calcarine sulcus when sliding to its most rostral part (Figure 5A and 5B). 

Importantly, significant auditory responses in peri-calcarine regions were also 
observed in early- and late-blind participants (tested with the same protocol as 

in auditory experiment 2 (Collignon et al., 2013; Collignon, Vandewalle, Voss, 
Albouy, Charbonneau, et al., 2011b)), but not in normally sighted participants 

(tested with the same protocols as in auditory experiments 1 and 2) (Figure 5C, 
Supplemental Figure 1C and 1D).  

Despite the fact that auditory activity was still massively present 7 months 
post-surgery in striate cortex (Figure 5A to C), the recruitment of occipital 

cortex for auditory processing steadily decreased relative to pre-surgery 
([Motion + Voice X Pre > Post 7m] ; [Spatial + Pitch X Pre > Post 7m]), 

especially in extrastriate regions, including the bilateral middle occipital gyri in 
both auditory experiments as well as the bilateral superior occipital gyri and 

lingual gyri in auditory experiment 2  (Figure 5D and 5E, Supplemental Tables 4, 
5). Beta parameter estimates in these regions highlight a progressive reduction 

of activation in response to auditory stimulation with time, some of these 
regions even showing sound-related deactivation at Post 7m (Figure  5D, 5E).  

No consistent functional specialization (selective auditory activity for a 
specific task) was found in KL’s occipital cortex in either of the two auditory 

experiments across sessions (i.e., contrast between Motion and Voice conditions 
in auditory experiment 1 and between Spatial and Pitch conditions in auditory 

experiment 2 (Collignon et al., 2013; Collignon, Vandewalle, Voss, Albouy, 
Charbonneau, et al., 2011b)). 
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Figure 5. fMRI activation maps of auditory processing. (A-B) Between-session 
conjunction analysis highlighting brain regions that are consistently activated during 
auditory stimulation across the 3 sessions in KL in (A) auditory experiment 1 [Motion + 
Voice Pre ∩ Post 1.5m ∩ Post 7m] and (B) auditory experiment 2 [Spatial + Pitch Pre ∩ 
Post 1.5m ∩ Post 7m]. Corresponding t-values are plotted along the calcarine sulcus from 
the most rostral pole (-60 in the Y axis) to the most caudal pole (-96 along the Y axis) for 
each session separately (Pre, Post 1.5m and Post 7m) in grey and for the average of all 
sessions in black. (C) Beta parameter estimates are plotted for the main effect of sounds 
in an anatomical mask encompassing the peri-calcarine region (primary visual cortex) in 
auditory experiment 1 for KL (at Pre, Post 1.5m and Post 7m) and sighted controls (SI) 
and in auditory experiment 2 for KL (at Pre, Post 1.5m and Post 7m), early blind (EB), late 
blind (LB) and sighted controls (SI). Bars represent standard error from the mean. (D-E) 
Brain regions showing larger recruitment during auditory stimulation at Pre relative to Post 
7m in KL and associated beta parameter estimates in (D) auditory experiment 1 [Motion + 
Voice X Pre > Post 7m] and (E) auditory experiment 2 [Spatial + Pitch X Pre > Post 7m]. 
Results are displayed at a threshold of p < 0.05 FWE corrected over the whole brain on 
sagittal, coronal and tranversal slices of KL’s structural image normalized to the MNI 
space.  

4. Discussion 

In the present study, we provide a comprehensive overview of the changes 

occurring in perceptual visual abilities as well as in brain structure and function 
in an early and severely visually impaired patient, KL, before and after sight 

restoration. KL was tested on 3 separate sessions taking place before, as well as 
1.5 and 7 months following surgery with identical behavioral, MRI and fMRI 
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protocols. The extent of KL’s preoperative visual impairments was evidenced by 

extremely reduced visual acuity (0.04) and CSF pre-surgery. However, 
presurgical perceptual global motion detection (radial patterns) and face/non-

face categorization abilities were accurate (Figure 1C and 1D) and sufficient to 
elicit specific functional responses within high-level visual areas involved in 

motion and face processing (Figure 3A, 4, Supplemental Figure 1A and 1B). 
Despite these residual visual functions, robust crossmodal auditory responses 

were observed within KL’s occipital cortex pre-surgery, similar to those typically 
observed in totally blind individuals (Figure 5C and Supplemental Figure 1D). In 

peri-calcarine cortex, crossmodal responses overlapped with visual responses 
(Figure 6) and remained elevated even 7 months post-surgery (Figure 5A to C).  

The success of the surgery was evidenced by behavioral improvements in 
visual acuity, sensitivity to low-spatial frequencies and face individuation (Figure 

1A, 1B, 1E and 1F), as well as by significant increases in neural responses to 
radially moving patterns in low-level visual regions (Figure 3B). Crucially, 

crossmodal auditory responses progressively decreased in extrastriate occipital 
regions post-surgery relative to pre (Figure 5D and 5E). Moreover, significant 

increases in grey matter density were observed in low-level visual cortex as 
soon as 1.5 months post-surgery. 

Figure 6. Overlap between auditory and visual responses in KL’s primary visual 
cortex in all sessions. Shown in blue is the between-session conjunction of the main 
effect of auditory conditions in auditory experiment 2 [Spatial + Pitch Pre ∩ Post 1.5m ∩ 
Post 7m]. Shown in red is the between-session conjunction of the main effect of visual 
conditions in the Motion localizer [Motion + Static Pre ∩ Post 1.5m ∩ Post 7m]. Shown in 
blue-grey is the overlap. Results are displayed at a threshold of p < 0.05 FWE corrected 
over the whole brain on sagittal and transversal slices of KL’s structural image normalized 
to the MNI space.  
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4.1. Presurgical visual selective responses in high-level visual 
cortex involved in motion and face processing 

In accordance with the observation of normal presurgical performance in 

global motion detection thresholds for radially moving patterns and in face/non-
face categorization, motion- and face-selective responses were found within 

well-documented regions of the dorsal and of the ventral visual pathway in KL 
pre-surgery and did not evolve post-surgery. These findings suggest that 

functionally specific responses have emerged in KL’s high-level visual cortex 
during development despite a life-long history of severely degraded visual 

experience. In the case of motion-selective responses, this assumption is in 
good agreement with the fact that area MT+/V5 receives most of its input from 

the magnocellular pathway (Maunsell, Nealey, & DePriest, 1990) and may thus 
have tuned to visual motion despite a highly blurred optical input. In the case of 

face-selective responses, while a total absence of visual input since an early age 
seems to permanently alter the functional tuning of high level face-selective 

regions (Fine et al., 2003; Röder et al., 2013), residual visual information may 
be sufficient in tuning face-selective regions to categorical information of faces 

at least. Importantly, findings of face selective responses in OFA and FFA even 
prior to surgery (Figure 4 and Supplemental Figure 1B) do not necessarily imply 

that these regions are optimally tuned to individual faces discrimination. In fact, 
KL’s individual face discrimination pre-surgery was at chance level (Figure 1E 

and 1F). In the same vein, the presence of face selective regions in the brain of 
acquired prosopagnosic patients is the neural signature of their ability to 

discriminate faces from non-face objects, despite profound deficits in individual 
face discrimination (Dricot, Sorger, Schiltz, Goebel, & Rossion, 2008; Rossion et 

al., 2003; Schiltz et al., 2006; Steeves et al., 2009). In these patients however, 
fMRI signal in these regions, despite being preferential for faces, does not show 

any evidence of sensitivity to the discrimination of individual faces (i.e. lack of 
release from adaptation with different compared to identical faces) (Dricot et al., 

2008; Schiltz et al., 2006; Steeves et al., 2009). In KL, within face 
discrimination abilities increased after surgery (Figure 1E and 1F) but no 

changes in activation were observed in face-selective regions (Figure 4).  

4.2. Presurgical crossmodal auditory responses in occipital 
cortex and overlap with visual responses 

The finding of crossmodal responses in an individual with preoperative form 

vision (Figure 5A to C, Supplemental Figure 1C and 1D) suggests that this form 
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of reorganization can be observed even when the visual loss is not total and 

despite the presence of visual functional specialization in high-level visual 
cortex. Similar evidence was previously reported in an adult man with severe 

visual impairment since childhood, who displayed crossmodal responses within 
the visual cortex during tactile pattern recognition tasks (Cheung, Fang, He, & 

Legge, 2009). 

 In the peri-calcarine cortex, crossmodal responses were robust and reliable 

across both auditory experiments and sessions and were comparable to the ones 
measured in totally blind subjects (Figure 5C and Supplemental Figure 1D). 

Interestingly, these responses in KL largely overlapped with visual responses in 
all sessions (Figure 6). Findings of coexisting crossmodal and visual responses 

were previously reported within high-level visual cortex in two sight-recovery 
subjects (Saenz et al., 2008) and in a case of severe visual impairment (Cheung 

et al., 2009). Our results thus extend these observations to the peri-calcarine 
cortex, demonstrating that this region, classically considered as purely 

unimodal, can respond to both visual and auditory modalities in cases with a 
life-long history of altered visual experience.  

Across auditory experiments and sessions, estimated response amplitude 
during global sound processing steadily decreased from the most posterior part 

to the most anterior part of the calcarine sulcus (Figure 5A and 5B). In the 
sighted brain, the posterior part of the calcarine sulcus displays representations 

of the foveal and parafoveal visual field (Sereno et al., 1995) and contains 
neurons tuned to higher spatial frequencies (Singh, Smith, & Greenlee, 2000). 

In line with KL’s poor sensitivity for high spatial frequencies (Figure 1B), we 
speculate that the reduced optical quality of her visual input since an early age 

prevented the normal development of populations of neurons in this region. In 
the same vein, retinotopic mapping in sight-recovery patient MM displayed a 

lack of foveal representation at the pole of the calcarine sulcus (Levin et al., 
2010). In KL, the lack of optimal visual input to this region since early infancy 

may have yielded this area to process auditory information, as previously 
suggested in the case documented by Cheung and colleagues (2009), in whom 

crossmodal tactile responses in primary visual cortex were mainly observed at 
the occipital pole. These findings raise the possibility that crossmodal responses 

may interfere on visual functioning, preventing optimal visual recovery (Lee et 
al., 2007; Sandmann et al., 2012). 
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The absence of consistent functional specialization in crossmodal responses 

across sessions (selective auditory activity for a specific task) within KL’s visual 
cortex suggests that the nature of crossmodal reorganization taking place in 

subjects with residual visual abilities may differ from the one observed in early-
onset totally blind subjects, and rather resemble the one observed in late-onset 

totally blind subjects (Collignon et al., 2013; Collignon, Vandewalle, Voss, 
Albouy, Charbonneau, et al., 2011b). Indeed, as in the latter case, KL has 

developed visually specific responses in higher-level visual regions, which might 
in return prevent the development of functionally specific crossmodal responses 

to auditory information. For instance, MT+/V5 responds to moving sounds in 
early- but not late-blind participants (Bedny et al., 2010; Collignon et al., 2013), 

in accordance with the assumption that this region tunes to visual motion 
information early during development (Ellemberg et al., 2002; Fine et al., 2003; 

Saenz et al., 2008). 

4.3. Postsurgical decrease in crossmodal auditory responses in 
extrastriate occipital cortex 

In deep contrast to what was observed in peri-calcarine regions, some 

extrastriate occipital regions showed robust between-session decreases in 
crossmodal recruitment. Several regions showing robust auditory activation 

before surgery even showed sound-related deactivation 7 months after sight-
restoration (Figure 5D, 5E), as typically observed in sighted individuals 

(Laurienti et al., 2002). Therefore the progressive appearance of sound-related 
deactivations in KL’s extrastriate occipital cortex may parallel the regain of 

visual tuning observed within these regions (Figure 3B). Overall, our results 
suggest that the primary visual cortex maintains its involvement in the 

processing of non-visual information despite sight restoration, whereas 
presurgical auditory responses in extrastriate regions decrease following sight 

restoration. Altogether, these data compellingly demonstrate the existence of 
region-specific mechanisms in the way visual deprivation and restoration affect 

the modality-tuning of the occipital cortex. 

4.4. Postsurgical increase in grey matter density in low-level 
visual cortex 

As soon as 1.5 months post-surgery, significant increases in grey matter 

density were evidenced in several portions of the low-level visual cortex (Figure 
2C). These observations are in good agreement with experience-dependent grey 

matter density increases reported in longitudinal studies involving training 
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protocols (Ditye et al., 2013; Draganski et al., 2004; Ilg et al., 2008) and 

suggest that important structural changes may be induced far more quickly than 
previously expected (gains of more than 8% in grey matter density in occipital 

cortex after only 1.5 month) when significantly increasing the quality of a 
sensory input (here vision). 

5. Conclusions 

 The occipital cortex has long served as a front-runner model to 

understand how brain regions develop, specialize and reorganize their tuning 
toward a specific input and function (Hubel, 1995). We provide the first 

longitudinal investigation of the way crossmodal plasticity interacts with restored 
vision in a sight-recovery subject. We show that structural and functional 

reorganization of occipital regions are present in an individual with a 
longstanding history of severe visual impairment, and that such reorganizations 

can be partially reversed by visual restoration in adulthood. 
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Figure 7. fMRI activation maps in control subjects. Brain regions responding more to 
(A) Moving relative to Stationary dots and (B) Faces relative to both Cars and Scrambled 
Faces are shown in a representative subject from the sighted control group (right-handed 
female, 32 years old) and in KL before surgery. (C) Brain regions responding during global 
sound processing in auditory experiment 1 [Motion + Voice] are shown in a representative 
subject from the sighted control group (right-handed female, 32 years old) and KL pre-
surgery. (D) Brain regions responding during global sound processing in auditory 
experiment 2 [Spatial + Pitch] are shown in a representative subject from the sighted 
control group (right-handed female, 48 years old), a representative subject from the early 
blind group (right-handed female, 56 years old), a representative subject from the late 
blind group (right-handed female, 46 years old) and KL pre-surgery. Results are displayed 
at a threshold p<0.05 corrected (FWE) corrected over the whole brain in (A), (C) and (D) 
and at a threshold of p<0.001 uncorrected in (B) on transversal slices of each subject’s 
structural image normalized to the MNI space. 



	
  
     

 

NATIVE SPACE 
 

  

MNI SPACE 
 

Area 
 

X 
(mm) 

Y 
(mm) 

Z 
(mm) 

Change  
(%) 

Cluster 
Size 

X 
(mm) 

Y 
(mm) 

Z 
(mm) 

         Grey matter density increases in Post 1.5m and Post 7m relative to Pre  

R Cerebellum 27 -55 -35 17,47 3823 35 -62 -43 
 
L Peri-calcarine cortex/ 
Inferior Occipital Gyrus -16 -89 -8 12,17 1296 -16 -99 0 

L Cerebellum -27 -59 -32 13,07 1049 -30 -68 -37 

R Cuneus 1 -83 17 15,15 590 6 -88 29 

R Midd Frontal Gyrus  26 39 7 9,82 235 29 56 -14 

L Fusiform Gyrus  -16 3 -29 11,07 169 -20 6 -45 

R Putamen 23 -13 13 11,22 153 28 -7 9 
 
L Peri-calcarine/Lingual 
Gyrus -1 -73 -5 9,79 112 1 -79 -1 

R Inf Temporal Gyrus  40 -20 -21 9,88 59 51 -18 -31 

R Midd Frontal Gyrus  26 36 14 9,13 55 29 54 -4 
 
L Inferior Occipital 
/Temporal Gyrus -46 -62 -8 8,86 34 -53 -69 -4 

L Sup Frontal Gyrus  -8 31 -3 9,04 29 -13 43 -24 

L Midd Frontal Gyrus -32 -6 51 9,17 22 -41 8 56 

R Lingual Gyrus 6 -76 -10 8,95 18 10 -83 -8 

L Peri-calcarine cortex -3 -87 0 8,90 14 -1 -95 9 

         Grey matter density decreases in Post 1.5m and Post 7m relative to Pre  

L Cerebellum -17 -46 -40 -12,92 1057 -18 -54 -50 

R Postcentral Gyrus 7 -41 56 -7,73 354 13 -32 68 

L Cerebellum -40 -44 -33 -7,75 153 -46 -52 -41 

R Postcentral Gyrus 23 -32 50 -7,19 74 34 -25 58 

L Paracentral Lobule -16 -41 53 -6,65 29 -16 -32 66 
 
L Dorsolateral Superior 
Frontal Gyrus -6 38 23 -5,73 7 -11 58 7 
	
  

Supplemental Table 1. Summary of the between-session grey matter changes obtained 
in the VBM analyses. Significant clusters are reported in KL’s native space coordinates and 
in MNI space coordinates.  



 

Area 
 

      Cluster 
      Size 

X 
(mm)  

Y 
(mm) 

 
      Z  
 (mm) 

 
z 
 

  p 
 

 
       
Conjunction  [Motion > Static Pre ∩ Post 1.5m ∩ Post 7m] 
   

R Middle Temporal Gyrus (MT+/V5) 404 46 -60 2   Inf <0.001 

R Superior Temporal Gyrus 129 62 -28 14  7.74 <0.001 
 
L Middle Occipito-Temporal Gyrus 
(MT+/V5) 225 -42 -66 2  7.46 <0.001 

R Middle/Superior Occipital Gyrus  314 34 -90 24  7.08 <0.001 

L Middle Occipital Gyrus  79 -30 -86 6  6.72 <0.001 

L Superior Occipital Gyrus  121 -16 -86 26  6.26 <0.001 

L Superior Temporal Gyrus 18 -58 -42 18  5.62 0.001 

R Superior Occipital Gyrus  21 30 -78 44  5.30 0.003 

       
[Motion > Static Post 1.5m > Pre] 
      
no suprathrehold voxels 
       
[Motion > Static Post 7m > Pre] 
      

L Middle Occipital Gyrus  737 -38 -88 8  6.22 <0.001 

R Cuneus 239 14 -96 28  5.84 <0.001 

R Middle Occipital Gyrus  39 38 -88 14  5.27 0.004 

       
[Motion > Static Post 7m > Post 1.5m] 
     

L Middle Occipital Gyrus   596 -40 -86 10  6.71 <0.001 

R Cuneus 135 8 -86 20  6.61 <0.001 

L Cuneus/Superior Occipital Gyrus  149 -10 -94 22  6.43 <0.001 

R Middle Occipital Gyrus 177 36 -78 18  5.81 <0.001 

L Inferior Occipital/Fusiform Gyrus 32 -42 -70 -14  5.81 <0.001 

R Inferior Occipital Gyrus 21 52 -70 -2  5.53 0.001 

R Inferior Occipital Gyrus 12 38 -82 -4  5.01 0.013 

       

Supplemental Table 2. Summary of the functional results obtained for the specific 
responses to visual motion relative to static dots (Motion > Static). All coordinates 
reported in this table are significant after correction over the entire brain (FWE p < 0.05).  

	
  



	
  

Area 
 

Cluster 
Size 

 
X   

(mm) 
Y  

(mm) 
Z 

(mm) 
z 

 
     p 

 

       
Conjunction  [Faces > ScrF ∩ Faces > Cars all sessions] 
 

L Inferior Occipital Gyrus (OFA) 101 -50 -76 -6  6.50 <0.001 

R Inferior Occipital Gyrus (OFA)* 20 42 -72 -4  3.93 0.011 

R Fusiform Gyrus (FFA)* 7 34 -52 -20  3.31 0.074 

        

Supplemental Table 3. Summary of the functional results obtained for the specific 
responses to Faces relative to both Scrambled Faces and Cars. There were no significant 
activations in any of the between-session comparisons. Coordinates are significant after 
correction over the entire brain (FWE p < 0.05) or (*) over small spherical volumes (SVC, 
15 mm radius).  

 

	
  



	
  

Area 
 

 Cluster 
 Size 

 
X  

(mm) 

 
Y 

(mm) 
Z 

 (mm) 
z 
 

p 
 

 
       
Conjunction  [Motion + Voice Pre ∩ Post 1.5m ∩ Post 7m] 
  

L Superior Temporal Gyrus 1918 -64 -16 12   Inf <0.001 

R Middle Temporal Gyrus 2915 56 -22 -6   Inf <0.001 

R Middle Frontal Gyrus 342 42 38 30  7.41 <0.001 

R Peri-calcarine Cortex 56 22 -94 -2  7.06 <0.001 

L Cerebellum 95 -4 -82 -24  6.61 <0.001 

R Inferior Frontal Gyrus 35 52 42 6  6.52 <0.001 

R Superior Temporal Gyrus 16 68 -38 22  6.25 <0.001 

L Peri-calcarine Cortex 104 -4 -102 6  6.10 <0.001 

R Superior Temporal Gyrus 37 40 4 -18  5.82 <0.001 

L Middle Frontal Gyrus 44 -38 52 10  5.77 <0.001 

R Superior Frontal Gyrus 55 6 6 66  5.37 0.002 

R Peri-calcarine Cortex 12 6 -92 12  5.34 0.003 

L Thalamus 14 -12 -16 6  5.33 0.003 

R Middle Temporal Gyrus 18 52 -48 8  5.22 0.005 

L Cerebellum 17 -22 -66 -22  5.20 0.005 

R Precentral Gyrus 31 42 4 36  5.11 0.008 

R Supplementary Motor Area 16 8 16 50  5.09 0.009 
 
[Motion + Voice Pre > Post 1.5m] 
   

no suprathreshold voxels       

   
[Motion + Voice Pre > Post 7m] 
   

R Middle/Superior Occipital Gyrus 18 26 -92 18  5.23 0.004 

L Middle Occipital Gyrus 16 -20 -92 0  4.91 0.020 

       
[Motion + Voice Post 1.5m > Post 7m] 
   

no suprathrehold voxels       

Supplemental Table 4. Summary of the functional results obtained for the main effect of 
global sound processing in auditory experiment 1 [Motion + Voice]. All coordinates 
reported in this table are significant after correction over the entire brain (FWE p < 0.05).



 
Area 

 
Cluster 

Size 

 
X  

(mm) 
Y  

(mm) 
Z  

(mm) 
z 
 

p 
 

 
 
      

Conjunction  [Spatial + Pitch Pre ∩ Post 1.5m ∩ Post 7m] 
  

L Postcentral Gyrus 912 -58 -18 14   Inf <0.001 

R Precentral Gyrus 719 44 6 32   Inf <0.001 

R Insula 260 32 22 6   Inf <0.001 

L Inferior Parietal Lobule 2393 -40 -44 42   Inf <0.001 

R Inferior Frontal Gyrus 920 56 12 10   Inf <0.001 

L Supplementary Motor Area 167 -8 -6 56   Inf <0.001 

R Supramarginal Gyrus 584 42 -40 36   Inf <0.001 

L Inferior Frontal Gyrus 330 -50 8 12   Inf <0.001 

R Superior Frontal Gyrus 329 8 20 44  7.43 <0.001 

R Peri-calcarine 76 20 -96 0  7.16 <0.001 

L Superior Occipital Gyrus 732 -10 -102 6  7.13 <0.001 

L Cerebellum 118 -38 -60 -46  7.06 <0.001 

R Middle Frontal Gyus 304 42 32 26  6.88 <0.001 

R Middle Frontal Gyus  42 46 26  6.37 <0.001 

L Middle Frontal Gyus 45 -34 52 12  6.71 <0.001 

L Superior Parietal Gyrus 143 -22 -70 50  6.55 <0.001 

R Superior Occipital Gyrus 17 16 -100 16  6.14 <0.001 

L Superior Temporal Gyrus 24 -42 -20 0  5.86 <0.001 

R Cerebellum 44 28 -50 -48  5.84 <0.001 

L Cerebellum 28 -12 -70 -46  5.82 <0.001 

L Insula 52 -34 22 -2  5.71 <0.001 

L Middle Occipital Gyrus 23 -30 -96 10  5.66 0.001 

L Inferior Frontal Gyrus 20 -34 34 14  5.59 0.001 

L Cerebellum 33 0 -82 -24  5.51 0.001 

L Lingual Gyrus 20 -12 -78 -14  5.41 0.002 

R Cerebellum 20 16 -68 -46  5.41 0.002 

L Temporal Pole 29 -56 14 -2  5.35 0.003 

R Superior Frontal Gyrus 14 24 2 62  5.23 0.006 

L Cerebellum 12 -18 -66 -24  5.22 0.006 

       
[Spatial + Pitch Pre > Post 1.5m] 
     

no suprathreshold voxels       
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[Spatial + Pitch Pre > Post 7m] 

 

L Middle Occipital Gyrus 390 -32 -88 18  6.86 <0.001 

R Lingual Gyrus 69 12 -82 -4  6.33 <0.001 

R Superior Frontal Gyrus 18 20 0 70  6.19 <0.001 

L Superior Temporal Sulcus 96 -48 -28 2  6.05 <0.001 

R Middle/Sup Occipital Gyrus 95 28 -92 14  6.02 <0.001 

R Cuneus/Middle Occipital Gyrus 16 -92 14  5.96 <0.001 

       
[Spatial + Pitch Post 1.5m > Post 7m] 

 

R Inferior Occipital Gyrus 84 46 -82 -4  6.35 <0.001 

R Middle Occipital Gyrus 43 40 -76 4  5.49 0.001 

R Middle Frontal Gyrus 28 4 36 -16  5.41 0.002 

L Middle Temporal Gyrus 15 -54 -34 0  5.14 0.009 
       

Supplemental Table 5. Summary of the functional results obtained for the main effect of 
global sound processing in auditory experiment 2 [Spatial + Pitch]. All coordinates 
reported in this table are significant after correction over the entire brain (FWE p< 0.05).  
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General discussion 

1. Functional selectivity in the occipito-temporal cortex of early 
blind individuals 

Studies presented in chapter 2 and chapter 3 aimed at investigating the role 

of visual experience in shaping the modality- and functional specialization of 
neural systems typically associated with functions of the dorsal and of the 

ventral visual pathways, namely motion perception and object identification, 
respectively. In chapter 2, we investigated whether crossmodal selectivity for 

auditory motion processing is present in early blind individuals and whether 
specific reorganizations occur for in-depth auditory motion perception in 

particular (compared to lateral motion). In this chapter, we also attempted to 
clarify the extent to which cross-modal responses to auditory motion may be 

observed even in subjects with typical visual experience. Results of this 
experiment revealed that a region in the right middle temporal gyrus showed a 

very specific functional preference for both in-depth and laterally moving sounds 
in early blind but not in sighted subjects. An independent visual experiment in 

sighted controls confirmed that this region overlapped with the right visual 
hMT+/V5 area (Tootell et al., 1995; Watson et al., 1993). Moreover, in-depth 

moving sounds relative to laterally moving sounds elicited specific activity in 
bilateral ventral occipital cortex in early blind compared to sighted, a result that 

was also observed in the visual modality. Finally, despite the absence of 
auditory-driven activity in the right occipito-temporal cortex of sighted subjects, 

multivariate pattern analyses revealed that right hMT+/V5 contained information 
about auditory motion signals in both groups, although such information was 

more robust (higher decoding accuracy) in early blind compared to sighted 
participants.  

In chapter 3, we investigated whether early visual deprivation leads to the 
existence of category-specific and topographically organized crossmodal 

responses to voices and object sounds in the ventral occipito-temporal cortex. 
Regarding object sounds more specifically, we tested whether sounds of objects 

that do not explicitly convey shape-related information may elicit selective 
responses within LOC in early blind individuals. Indeed, an influential theoretical 

account proposes that cross-modal involvement of LOC (e.g. tactile exploration 
of objects) underlies knowledge of shape independently of modality through 
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which this information is conveyed and independently of visual experience 

(Amedi et al., 2010; Peelen et al., 2014). However, whether crossmodal 
responses in LOC during object identification are solely related to the processing 

of shape remains unknown. In line with previous studies and accounting for the 
notion that our task did not trigger mental imagery of shape (De Volder et al., 

2001), sounds of objects did not elicit any activity in the shape-selective visual 
cortex of sighted subjects (or elsewhere in the occipital cortex) (Amedi et al., 

2002; 2007b). In contrast, early blind subjects displayed robust and selective 
responses to sounds of objects (compared to both scrambled objects and voices) 

in the middle and inferior occipital gyri bilaterally. Finally, human voices did not 
elicit selective crossmodal responses (compared to both scrambled voices and 

object sounds) in either group of participants. An independent visual experiment 
conducted in the sighted showed that object-selective responses of early-blind 

participants partially overlapped with LOC bilaterally, and extended medially and 
posteriorly particularly in the left hemisphere. These findings demonstrate that 

the occipital cortex of early blind individuals disposes of specialized regions 
supporting the representation of auditory objects. We speculate that these 

regions may support the extraction of low-level auditory cues in order to allow 
auditory object identification and/or support higher-level semantic processes 

related to the automatic processing of the meaning of object sounds (i.e. what 
the object is). 

Altogether, these findings demonstrate that the reorganized occipito-
temporal cortex of early blind individuals is topographically organized so that 

distinct functional areas show preferential responses to different auditory stimuli 
(here conveying motion information on the one hand, and object-related 

information on the other) (Figure 1). Such a division of computational labor 
could ensure an efficient processing of different types of information provided by 

the preserved non-visual modalities (here audition) and, in this sense, may be 
considered as another argument accounting for the notion that cross-modal 

reorganization in early blindness is functionally-relevant.  
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Figure 1. Schematic representation of functional specialization characterizing 
crossmodal plasticity in the early blind brain. Several lines of evidence, including our 
empirical contribution presented in chapter 2 and chapter 3, suggest that crossmodal 
plasticity associated to early visual deprivation maintains a topographical organization 
similar to the one that characterizes the sighted occipital cortex, notably regarding its 
segregation into a dorsal “where” pathway involved in spatial/motion processing and a 
ventral “what” pathway involved in object identification. Adapted from Dormal & Collignon 
(2011). 

Importantly, no cross-modal responses to auditory motion or object sounds 

were observed in the visual cortex of sighted control participants (chapter 2 and 
chapter 3) unless using more fine-grained multivariate pattern analyses (chapter 

2). Even then, decoding accuracy was significantly less robust in the sighted 
compared to the blind (chapter 2).  

Independent visual experiments performed in sighted subjects confirmed that 
the anatomical localization of the reorganized occipito-temporal areas (e.g. right 

MTG for auditory motion, bilateral LOC for object-sounds) of early blind 
individuals closely matched the location of areas devoted to similar functions in 

the visual modality. Hence, these findings are in agreement with the notion that 
different areas of the occipital cortex may be inherently biased to subserve 

specific functions and that in case of early visual deprivation, these areas may 
still serve similar functions although shifting their modality-tuning from vision to 

audition (or touch) (Figure 1).  

Nevertheless, findings from chapter 3 suggest that there are limits to this 

anatomo-functional correspondence. Human voices are a very specific category 
of sounds considered as the auditory counterpart of faces for person 

identification (Belin et al., 2004; Yovel & Belin, 2013). Based on recent findings 
(Föcker et al., 2012; Gougoux et al., 2009; Hölig et al., 2014), we expected to 

observe selective responses to voices in early blind individuals, in the vicinity of 
areas typically devoted to face processing (Kanwisher et al., 1997; Rossion et 
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al., 2012). Despite the fact that we did find larger responses to voices relative to 

their scrambled control in the fusiform gyri bilaterally, no selectivity in these 
regions was observed when voices were contrasted to object sounds. A possible 

interpretation of this result is that different regions of the visual cortex may not 
be equipotential in their ability to transfer their function to another modality in 

case of early visual deprivation. For instance, it has been proposed that the 
development of face-selectivity in the human brain is under high genetic control 

(Kanwisher, 2010) and, as a consequence, may be more resistant to experience 
compared to other regions. Another possible explanation for the absence of 

crossmodal category-selective reponses to voices in our study may be a lack of 
sensitivity of the paradigm used. Indeed, it is possible that the vocal stimuli 

used in our study (i.e. vowels pronounced neutrally) lacked saliency compared 
to the sounds of objects and thus prevented the observation of crossmodal 

category-specific effects for voices in the blind. In light of recent evidence 
demonstrating that congenitally blind subjects show superior voice processing 

abilities and display voice identity priming effects in the anterior fusiform gyrus 
(Föcker et al., 2012; Hölig et al., 2014), it is important that future studies 

further investigate whether a category preference for voices exists, or not, in 
the reorganized occipital cortex of early blind individuals.  

Even if we observed corresponding functional specialization in the sighted 
and in the blind, the modality tuning of these domain-selective regions differed 

radically between the two groups. Overall, the sighted individuals only showed 
marginal functional tuning towards auditory information in the occipital cortex 

(chapter 2). These findings do not support the influential view of the brain as a 
metamodal/supramodal structure segregated into operators acting 

independently of sensory modality and developing in the absence of visual 
experience (Pascual-Leone & Hamilton, 2001; Reich et al., 2012; Ricciardi & 

Pietrini, 2011). Beyond the fact that such a view appears theoretically 
implausible, several caveats challenge its validation.  

Firstly, studies conducted on subjects who lost sight later in life suggest that 
crossmodal plasticity in these individuals is not functionally-specific (Bedny et 

al., 2012; Bedny et al., 2010; Collignon et al., 2013). These findings thus run 
counter to the predictions of the metamodal theory according to which any 

region should be able to perform its function irrespective of the input modality 
and irrespective of the presence or absence of previous visual experience. 
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Secondly, this theory relies on the misleading reasoning that co-localized 

activations observed in blind and sighted individuals during non-visual 
processing, and observed in sighted individuals during visual (e.g. picture 

viewing) and non-visual processing (e.g. haptic exploration of objects) 
necessarily imply that common (“metamodal/supramodal”) representations are 

involved. Pushing this reasoning even further, many have argued that occipital 
activations during non-visual processing in the sighted cannot be solely related 

to visual imagery if similar crossmodal activations are observed in the blind (in 
whom visual imagery is absent) (Amedi et al., 2001; 2010; He et al., 2013; 

Peelen et al., 2014; Pietrini et al., 2004; Ricciardi et al., 2007). However, 
similar/overlapping activations in blind and sighted individuals during non-visual 

processing may be related to very different mechanisms in these two 
populations. For example, they may subtend non-visual sensory processing per 

se in the blind, whereas they may be associated to visual imagery in sighted 
subjects. This also applies to the observation of co-localized occipital responses 

to visual and non-visual information in the sighted, the latter being possibly 
related to visual imagery. We do not exclude the possibility that non-visual 

information might be present in the occipital cortex of the sighted aside of visual 
imagery. However, no study to date can compellingly reject the visual imagery 

hypothesis, challenging the empirical validation of the metamodal theory.  

Even if not related to visual imagery, overlapping responses to visual and 

non-visual processing in the occipital cortex of the sighted could be associated 
with the involvement of different neuronal populations that are distinctly 

implemented on a scale that is below the standard resolution of fMRI. The 
question of whether similar or different neuronal populations in the occipital 

cortex are involved when processing a given type of stimulus (e.g. motion) in 
the auditory modality in the blind versus the same operation implemented in 

vision in the sighted remains almost entirely unexplored. For the reasons 
mentioned above, simple conjunction analyses carried out on smoothed 

functional data between the two groups are probably inappropriate for 
unraveling whether the same neural populations code for similar functions 

between groups and/or between sensory inputs. This question is crucial to 
address in order to state that a region is truly “supramodal” and therefore 

abstracted from its sensory input and/or sensory experience. 

Future studies using techniques with enhanced spatial resolution and/or 

advanced modelisation of fMRI data (eg. crossmodal MVPA; hyperalignment) 
might prove to be useful to further address these questions. Indeed, identifying 
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the format of the representations underlying the crossmodal occipital activations 

observed in blind and sighted subjects represents one of the most important 
challenges for future research in the field. 

2. Putative mechanisms for cross-modal plasticity  

The mechanisms underlying cross-modal reorganization of the visually-

deprived occipital cortex remain largely elusive. The seminal observations of 
Veraart and collaborators (1990) were an early indication that the differential 

pattern of metabolic activity measured in the occipital cortex of early and late 
blind subjects at rest (see Figure 6 in chapter 1) might be related to the onset of 

deprivation occurring at radically different epochs during visual cortex 
development.  

The human primary visual cortex undergoes dramatic changes in synaptic 
density across typical development from the prenatal period to late childhood 

(Huttenlocher, 1990; Huttenlocher & de Courten, 1987; Huttenlocher, de 
Courten, Garey, & Van der Loos, 1982; Zecevic, 1998). After a burst of 

synaptogenesis peaking between 2 to 4 months and ending approximately at the 
age of 8 months, about 40% of the synapses of the striate cortex are gradually 

pruned to achieve a stable synaptic density around the age of 11 years old 
(Huttenlocher, 1990; Huttenlocher et al., 1982; Huttenlocher & de Courten, 

1987). Developmental changes in the human brain have also been examined by 
measuring brain glucose metabolism at rest using PET (Chugani, 1998; Chugani 

& Phelps, 1986; Chugani, Phelps, & Mazziotta, 1987; Kinnala et al., 1996). In 
the human occipital cortex, glucose metabolic rates at birth are about 30% 

below those measured in adults. These rates subsequently increase until about 4 
years of age where they are twice as elevated as those observed in adults. 

These high metabolic rates are maintained until about 10 years of age and 
subsequently decline to reach adult levels by 16 to 18 years old (Chugani, 1998; 

Chugani & Phelps, 1986). While their interpretation at the cellular level is not 
straightforward, these PET studies nicely parallel the early postnatal 

overproduction of synapses and its subsequent decline reported in histological 
studies, suggesting that synaptic activity accounts for a large part of the glucose 

consumption measured in the cerebral cortex (Chugani, 1998; Chugani, Hovda, 
Villablanca, Phelps, & Xu, 1991).  

Similar time courses of synaptogenesis and synaptic pruning have been 
reported within the striate cortex of the macaque monkey (Bourgeois & Rakic, 
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1993; Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986) and of the 

cat (Chugani et al., 1991; Winfield, 1981). In the same vein, projections from 
somatosensory and auditory cortices to the visual cortices present in newborn 

kittens and macaque monkeys are gradually eliminated through cell death or 
retraction of exuberant collaterals during the synaptic pruning phase (Dehay, 

Kennedy, & Bullier, 1988; Innocenti & Clarke, 1984; Innocenti, Berbel, & Clarke, 
1988; Kennedy, Bullier, & Dehay, 1989), and only a small fraction of these 

projections are maintained into adulthood (Falchier, Clavagnier, Barone, & 
Kennedy, 2002; Innocenti et al., 1988). While the first phase of synaptic 

proliferation appears to be relatively independent of retinal input (Bourgeois & 
Rakic, 1996; Bourgeois, Jastreboff, & Rakic, 1989; Winfield, 1981), synaptic 

revision is thought to be critically dependent on visual experience. Indeed, when 
animals are visually-deprived at birth, exuberant cortico-cortical and thalamo-

cortical projections to the visual cortex fail to get pruned (Berman, 1991; 
Karlen, Kahn, & Krubitzer, 2006; Kingsbury, Lettman, & Finlay, 2002).  

Based on the findings from animal studies, it is thus assumed that in the 
absence of a competitive visual input during the synaptic stabilization phase, a 

significant number of exuberant synapses and projections may persist and be 
reinforced in an activity-dependent manner (Hebbian-plasticity), and may be 

responsible for the recruitment of the occipital cortex for non-visual processing 
in early blind individuals11.  

In animals with typical visual experience, a small portion of the intermodal 
projections to the visual cortices present at birth survive the pruning period and 

stabilize (Innocenti et al., 1988). In fact, anatomical tracer studies in adult 
sighted monkeys have demonstrated the existence of direct projections from 

early auditory to early visual cortex (Falchier et al., 2002; Rockland & Ojima, 
2003). Evidence for the existence of direct structural connections between 

primary auditory and visual cortices in sighted humans was recently provided in 
a diffusion tensor imaging (DTI) tractography study (Beer, Plank, & Greenlee, 

2011). These connections are thought to contribute to multimodal integration at 
very early stages of the visual pathway in normally seeing subjects (for a review 

see Driver & Noesselt, 2008). As mentioned above, the absence of competitive 
visual input during the pruning period would lead to a larger maintenance of 

these ectopic connections and putatively support the recruitment of occipital 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11In contrast, in individuals losing sight later in life, exuberant synapses and projections 
would not escape the typical synaptic pruning due to the presence of stabilizing visual 
input.	
  



 

	
   153 

regions for non-visual functions. In early blind humans, support for the 

assumption of reinforced intermodal connections comes notably from a PET 
study that visualized the effects of TMS application over the primary 

somatosensory cortex (S1) in early blind and sighted participants (Wittenberg, 
Werhahn, Wassermann, Herscovitch, & Cohen, 2004). The application of TMS 

over S1 induced significant activation of the peri-calcarine cortex in the absence 
of any thalamic activation in early blind individuals only, suggesting that V1 

activation in this group was mediated by cortico-cortical connections, rather 
than subcortical connections. Interestingly, this activation did not reach 

significance in direct group comparisons. Hence, these findings are in line with 
the hypothesis of a re-inforcement, in early blind individuals, of cortico-cortical 

connections (here between S1 and V1) that are also potentially present in the 
sighted. More recently, a study by Klinge and collaborators (2010) used dynamic 

causal modeling12 (DCM) to investigate how auditory information reaches V1 in 
congenitally blind and sighted individuals (Klinge, Eippert, Röder, & Büchel, 

2010). In line with findings from Wittenberg et al. (2004), these authors were 
able to establish that cortico-cortical connections, rather than thalamo-cortical 

connections were more likely to convey auditory information from A1 to V1 in 
both groups of subjects and, furthermore, that this connectivity was significantly 

stronger in congenitally blind compared to sighted control subjects. According to 
another DCM study, cortico-cortical pathways conveying auditory information in 

V1 in congenitally blind individuals are likely to reflect direct long-range 
connections from A1 rather than indirect connections through polysensory 

(parietal) areas (Collignon et al., 2013).  

In summary, the current theoretical account proposes that normally transient 

synapses and intermodal projections fail to get pruned during the synaptic 
revision period in early visually-deprived individuals, a phenomenon that may 

explain the observation of strong cross-modal responses to auditory stimuli in 
early blind but not sighted participants in our studies (chapter 2 and chapter 3). 

Beyond the fact that this theoretical account needs further empirical support 
in humans, it also does not provide an explanation for the maintenance of a 

functional specialization in the visually-deprived occipital cortex. Indeed, 
functional specialization and stabilization of cortical networks during typical 

development are thought to occur through synaptic pruning. Hence, a lack of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12DCM is a powerful hypothesis-driven tool that allows inferring the causal relationship 
existing between functional activity measured in different regions of the brain (Friston, 
Harrison, & Penny, 2003).  



 

	
   154 

synaptic pruning would rather predict that the occipital cortex responds in an 

undifferentiated fashion to non-visual stimulation.  

Alternative mechanisms driving the maintenance of functional specialization 

in the visually-deprived brain may be found in more recent theories of human 
brain development (Johnson, 2011; Mahon & Caramazza, 2011). According to 

these theoretical frameworks, the functional specialization or domain selectivity 
of individual regions in the human cortex is determined by the patterns of 

connectivity these regions have with larger functional networks serving a 
particular function (Johnson, 2011; Mahon & Caramazza, 2011). Mahon & 

Caramazza (2011) in particular proposed that domain selectivity for different 
object categories in the ventral stream may be constrained by the innate pattern 

of connectivity existing between these regions and higher-order (e.g. motor or 
affective) systems. According to these authors, it is an innate pattern of 

connectivity, rather than bottom-up sensory experience, that drives domain 
selectivity observed in the ventral pathway (Mahon & Caramazza, 2011). 

Transfering these theoretical frameworks to early visual deprivation, it could be 
that functional selectivity observed in specific occipital regions (e.g. hMT+/V5) 

for non-visual processing (e.g. auditory motion) arises from the intrinsic pattern 
of connectivity these regions share with a larger network devoted to a similar 

function (e.g. motion processing). This was notably supported by Collignon and 
colleagues (2011), who found that right extrastriate occipital regions devoted to 

auditory spatial processing in congenitally blind individuals were part of a larger 
network of fronto-parietal areas typically involved in spatial attention and 

awareness (Collignon, Vandewalle, Voss, Albouy, Charbonneau, et al., 2011b). 
In the same vein, He et al. (2013) and Peelen et al. (2013) recently reported 

similar patterns of resting state activity in congenitally blind and sighted 
subjects between specific regions of the occipito-temporal cortex and larger 

brain networks (He et al., 2013; Peelen et al., 2013). 

3. Crossmodal plasticity and visual recovery 

The question of whether crossmodal plasticity may be observed even in cases 
where the sensory deprivation is not total remains largely unexplored. This is a 

crucial issue considering most cases of blindness occur gradually and individuals 
often maintain some degree of residual visual functions (Merabet & Pascual-

Leone, 2009). In addition, these individuals are the main targets of current 
surgical procedures (Aldave et al., 2009; Robert & Harissi-Dagher, 2011), and 

crossmodal plasticity may interfere with the recovery of visual functions after 
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surgery (Collignon, Champoux, Voss, & Lepore, 2011a; Merabet & Pascual-

Leone, 2009). In chapter 4, we investigated a case of sight-recovery after a 
longstanding history of visual impairment. We performed both pre- and post-

surgery measurements and combined behavioral, neurostructural (MRI) and 
neurofunctional (fMRI) methods. Our aim was to test the presence of 

crossmodal plasticity prior to surgery, despite residual visual functions, and 
investigate its evolution together with visual recovery within neural systems of 

the ventral (i.e. face) and of the dorsal (i.e. motion) processing systems.  

Pre-surgery, robust auditory responses were found in occipital cortex despite 

residual preoperative form vision and despite visual functional specialization (for 
faces and visual motion) in high-level visual cortex. In the primary visual cortex, 

auditory responses largely overlapped with visual responses and remained 
elevated even 7 months post-surgery. Following surgery, behavioral 

improvements in both visual acuity and contrast sensitivity were accompanied 
by neural changes across time. Specifically, auditory responses decreased in 

extrastriate occipital regions, together with rapid increases in grey matter 
density and in neural activation in low-level visual regions.  

These findings imply that crossmodal plasticity may be observed even in 
cases where visual loss is not total. Similar findings were previously reported in 

an adult man with severe visual impairment since the age of 6, who also 
displayed cross-modal tactile responses in the visual cortex (Cheung et al., 

2009). Interestingly, a recent EEG study conducted on hearing impaired 
individuals reported the existence of crossmodal visual responses in the auditory 

cortex during the early stage of hearing loss (Campbell & Sharma, 2014). These 
findings and our own thus suggest that total sensory deprivation is not 

necessary for crossmodal plasticity to occur in sensory-deprived cortices.  

Moreover, crossmodal changes associated to early visual impairment appear 

to be qualitatively different from the ones observed in early-onset and complete 
visual deprivation. Indeed, despite the fact that cross-modal auditory responses 

measured in the occipital cortex of KL were at least as high as the ones 
measured in early and totally blind individuals, they were largely unspecific. This 

pattern thus contrasts with the functional specialization that characterizes these 
responses in early blind individuals (see also chapter 2 and 3 in the present 

thesis), and with findings reported in patient MM (Saenz et al., 2008) who 
displayed cross-modal responses to moving sounds in hMT+/V5 when tested 

years after sight-recovery. The absence of functionally-specific responses in KL 
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is unlikely to be related to the auditory stimuli used in our study, since at least 

those from auditory experiment 2 previously revealed functionally-specific 
crossmodal responses for auditory spatial processing in congenitally blind 

subjects compared to both sighted (Collignon, Vandewalle, Voss, Albouy, 
Charbonneau, et al., 2011b) and late blind subjects (Collignon et al., 2013). In 

KL, we were able to demonstrate that residual visual abilities in face 
categorization and global motion detection were associated with functionally-

specific responses in relevant high-level visual regions (i.e. hMT+/V5 for visual 
motion > static dots, and FFA/OFA for faces > objects and scrambled objects). 

Hence, we hypothesize that this functional specialization to relevant visual 
information may have prevented the development of functionally-specific 

crossmodal responses in these regions. In the same vein, cortical visual areas 
such as hMT+/V5, do not display functionally-specific crossmodal responses in 

late onset blind individuals, presumably because developmental vision has tuned 
these regions to relevant visuo-spatial information before sight was lost (Bedny 

et al., 2010; Collignon et al., 2013). This assumption is in line with a general 
principle of human postnatal functional brain development (“interactive 

specialization”) according to which the extent of plasticity observed within a 
given region following sensory deprivation is dependent on the degree of 

specialization already achieved by this region (Johnson, 2011). In other words, a 
region that is already well specialized, in the sense that it is confined to a limited 

amount of cortical tissue and that it responds selectively to a given class of 
stimuli relative to another, will be less susceptible to change (Johnson, 2011).  

Importantly, crossmodal plasticity associated with severe visual impairment 
appears to be at least partially reversible following visual recovery. Indeed in KL, 

although auditory responses remained elevated in the primary visual cortex 
even 7 months after surgery, they progressively decreased in extrastriate visual 

areas when compared to pre-surgery. It is tempting to associate this decrease in 
crossmodal auditory responses with improvements observed in visual abilities at 

the behavioral level (e.g. visual acuity, contrast sensitivity, face individuation) 
and with occipital increases observed in grey matter density and in neural 

responses to visual motion. Similarly, it could be hypothesized that overlapping 
auditory and visual responses in the primary visual cortex before and after 

surgery may prevent vision from recovering to a larger extent. Indeed, as 
reviewed in chapter 1 (section 4.2.2), studies conducted in deaf cochlear 

implant users have provided clear evidence for the existence of an inverse 
relationship between the magnitude of cross-modal visual or resting activity in 
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auditory cortices, and speech performance following cochlear implantation (Lee 

et al., 2001; Lee et al., 2007; Sandmann et al., 2012).  

Since cases with residual vision are the main targets of current surgical 

interventions (Aldave et al., 2009; Robert & Harissi-Dagher, 2011), there is a 
necessity for future studies to characterize the nature of crossmodal plasticity 

occurring in such cases, to understand the factors that may influence it (e.g. 
onset, duration and severity of the visual impairment) and, most importantly, to 

clarify how this phenomenon is likely to modulate visual recovery. These studies 
are crucial in order to define pre-surgical predictors for the outcome of surgical 

interventions.  

Future studies may also benefit from a finer investigation of different visual 

functions, such as motion and face processing, and of the integrity of the neural 
systems on which these functions rely. For instance, in KL, we found a 

dissociation at the behavioral level between global motion thresholds for radial 
motion (preserved) and global motion thresholds for vertical/translational 

motion (altered). This pattern of performance was observed before surgery and 
did not evolve after surgery. It is interesting to note that previous studies 

reported impaired sensitivity to translational (vertical) motion in patients born 
with dense bilateral cataracts that had been treated before the age of 8 months 

(Ellemberg et al., 2002; Hadad et al., 2012). Although radial motion was not 
tested in these studies, the same cohort of patients showed spared sensitivity to 

biological motion (Hadad et al., 2012). Together, these observations suggest 
that some types of motion processing (e.g. radial flow or biological motion) may 

be more resistant to severe visual impairment. Radial motion conveys motion-
in-depth information, which is a crucial cue for many actions such as avoiding or 

reaching an object, heading, locomotion and posture. Accounting for the 
particular status of radial over translation motion, infants as young as 3 months 

of age preferentially look at radial over translational random-dots 
kinematograms (RDKs) (Shirai, Kanazawa, & Yamaguchi, 2008), and aging was 

reported to have a detrimental effect on translational motion but not on radial 
and biological motion (Billino, Bremmer, & Gegenfurtner, 2008). In KL, we only 

used radially moving patterns in the scanner as these are the most commonly 
used stimuli in neuroimaging studies of motion processing (Sunaert et al., 1999; 

Tootell et al., 1995). In line with KL’s normal behavioral performance with 
radially moving patterns, these stimuli, compared to static patterns of dots, 

elicited strong selective responses in area hMT+/V5 in all sessions. Future 
studies in visually-impaired could thus further investigate whether dissociations 



 

	
   158 

may be observed both behaviorally and at the neurofunctional level for different 

types of motion. This is of particular interest in order to further develop adapted 
rehabilitation programs, since the perception of visual dynamic information in 

general is thought to be more resistant to visual deprivation compared to other 
visual abilities. Moreover, dynamic information is a cue on which sight-recovery 

subjects tend to rely heavily to compensate for their visual impairment (Fine et 
al., 2003; Gregory & Wallace, 1974; Ostrovsky et al., 2009). 

Regarding face perception in KL, individual face discrimination was at chance 
prior to surgery and significantly improved for both upright and inverted faces 7 

months post-surgery. In the scanner however, we only investigated face 
categorical responses (compared to objects and scrambled faces). In line with 

KL’s accurate face categorization performance even prior to surgery, we found 
face-selective responses in FFA and OFA at that time. These responses did not 

evolve after surgery, despite the improvement in individual face discrimination 
observed at the behavioral level. Interestingly, acquired prosopagnosic patients 

also display face selective regions despite profound deficits in individual face 
discrimination (Dricot et al., 2008; Rossion et al., 2003; Schiltz et al., 2006; 

Steeves et al., 2009). However, adaptation paradigms have revealed that 
activity in these regions, despite being preferential for faces over non-face 

objects, is not sensitive to the discrimination of individual faces (Dricot et al., 
2008; Schiltz et al., 2006; Steeves et al., 2009). Hence, future studies with 

sight-recovery individuals may therefore test sensitivity to faces in face-selective 
regions by means of adaptation paradigms in order to provide a finer 

investigation of neural responses to faces before and after surgery. 

4. Conclusions 

The study of crossmodal plasticity associated with visual deprivation has 
fascinated neuroscientists for nearly thirty years now, and has evolved 

considerably in the last decade. Research in this field has provided compelling 
evidence accounting for the crucial role played by sensory experience in the 

development of brain regions and of their functional role. Our studies in early 
and totally blind individuals (chapter 2 and 3) have notably shown the immense 

adaptability of the brain in response to visual deprivation occurring early in life. 
Moreover, the functional specialization we observe in crossmodal plasticity and 

its anatomo-functional correspondence with the organization of the visual cortex 
in sighted subjects, suggests that experience-independent mechanisms may be 

present early in life (maybe in the form of endogenous patterns of connectivity) 
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and bias different cortical regions to process specific types of relevant 

information provided by the available sensory modalities.  

However, there is a risk for an overemphasis of the similarity observed 

between the organization of the “visual” cortex in blind and sighted subjects 
(Fine, 2014). As pointed out in chapter 3, it may well be that this anatomo-

functional correspondence is not a general principle of the reorganized occipital 
cortex following early visual deprivation. Moreover, the choice of the stimuli 

used and, even more dramatically, the choice of the regions where to look for 
“selective” crossmodal responses, are inevitably biased by our understanding of 

the way the visual cortex is organized in sighted individuals. As stressed in 
chapter 2, the use of whole-brain rather than region-of-interests analyses is, in 

our opinion, of primary importance in order to ascertain the existence of 
functional selectivity in the visually-deprived occipital cortex. Moreover, the 

possibility that sensory experience specific to one modality (e.g. tonotopy in 
audition, somatototopic mapping in touch) may be present in the occipital cortex 

of blind individuals with no direct correspondence in vision remains unexplored 
(Fine, 2014). 

There is a crucial need for a larger understanding of the mechanisms 
underlying crossmodal reorganization in total blindness. The lack of synaptic 

pruning hypothesis is mainly based on animal work and necessitates further 
validation in humans. A better understanding of these mechanisms is crucial in 

order to propose adapted interventions to blind individuals, whether of the 
invasive or of the non-invasive type. Crossmodal plasticity in particular may be 

beneficial for the use of non-invasive sensory substitution devices but may be 
detrimental in cases of surgical interventions to restore vision, especially in 

cases where vision was lost early in life. 

Our findings from chapter 4 indicate that robust crossmodal responses may 

be observed even in cases were visual deprivation is not total. In KL, these 
crossmodal responses remained elevated in primary visual cortex even months 

following surgery, a phenomenon that might potentially interfere with optimal 
visual recovery. However, auditory-driven responses decreased in extrastriate 

regions together with an increase in optical quality, suggesting that crossmodal 
plasticity may be modulated by a change in sensory experience even well into 

adulthood. Since low vision individuals are the main targets to current surgical 
interventions to restore visual input, there is a necessity of increasing this type 

of research in the future, in order to provide clear factors that may predict visual 
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outcome and in order to develop adapted postsurgical rehabilitation 

interventions. 
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